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Preface

This book is an introduction to the regularity theory for free boundary problems.
The focus is on the one-phase Bernoulli problem, which is of particular interest
as it deeply influenced the modern free boundary regularity theory and is still an
object of intensive research. The exposition is organized around four main theorems,
which are dedicated to the one-phase functional in its simplest form. Many of the
methods and the techniques we present here are very recent and were developed in
the context of different free boundary problems. We also give the detailed proofs of
several classical results, which are based on some universal ideas and are recurrent
in the free boundary, PDE, and the geometric regularity theories.

Pisa, Italy Bozhidar Velichkov
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Chapter 1
Introduction and Main Results

1.1 Free Boundary Problems: Classical and Variational
Formulations

The free boundary problems are a special type of boundary value problems, in which
the domain, where the PDE is solved, depends on the solution of the boundary value
problem. A classical example of a free boundary problem is the Serrin problem:

Find a bounded open C2−regular connected domain � ⊂ R
d

and a function u : � → R such that :

− �u = 1 in �, u = 0 and |∇u| = c on ∂�.

It is well-known (see [47]) that, up to translation, the unique solution of the Serrin
problem is given by the couple (B,wB), whereB is the ball of radiusR = d (d is the
dimension of the space) and wB : B → R is the function wB(x) = 1

2d

(
R2 − |x|2).

More generally, if D is a smooth bounded open set in Rd , then we can consider
the following problem. Find a couple (�, u) such that:

• the domain � is contained in D

• while the function u : � → R

– solves a PDE in �, which in the example (1.1) below (as in the rest of these
notes) is elliptic but, in general, can also involve a time variable:

d∑

i,j=1

aij (x)∂ij u +
d∑

i=1

bi(x)∂iu + c(x)u(x) = f (x) in �; (1.1)

© The Author(s) 2023
B. Velichkov, Regularity of the One-phase Free Boundaries,
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2 1 Introduction and Main Results

– satisfies a boundary condition on the fixed boundary ∂D, that is,

F(x, u,∇u) = 0 on ∂D ∩ ∂�; (1.2)

– satisfies an overdetermined boundary condition on the free boundary ∂� ∩ D

G(x, u,∇u) = 0 and H(x, u,∇u) = 0 on ∂� ∩ D, (1.3)

where the functions F ,G,H : R2d+1 → R, as well as the elliptic operator and
the right-hand side in (1.1), are given. The aim of the free boundary regularity
theory is to describe the interaction between the free boundary ∂� and the solution
u of the PDE. For instance, it is well-known that, the solutions of boundary value
problems (with sufficiently smooth data) inherit the regularity of the boundary ∂�,
that is, if ∂� is C1,α , then |∇u| is Hölder continuous up to the boundary (see [35]).
Conversely, one can ask the opposite question. Suppose that u is a solution of the
free boundary problem (1.1)–(1.3), where the overdetermined condition (1.3) on the
free boundary is given by

u = 0 and |∇u|2 = Q(x) on ∂� ∩ D,

for some Hölder continuous function Q. Is it true that ∂� is C1,α-regular? More
generally, we can ask the following question:

Is it possible to obtain information on the local structure of the free boundary, just from the
fact that the overdetermined boundary value problem admits a solution?

Notice that, here we do not impose any a priori regularity on the domain �. For
an extensive introduction to the free boundary problems, with numerous concrete
examples and applications, we refer to the book [33], while a more advanced reading
is [15].

A free boundary problem of particular relevance for the theory is the so-called
one-phase Bernoulli problem, which was the object of numerous studies in the last
40 years; it also motivated the introduction of several new tools and the development
of new regularity techniques. The problem is the following. We have given:

• a smooth bounded open set D in Rd ,
• a non-negative function g : ∂D → R,
• a positive constant �,

and we search for a couple (�, u), of a domain � ⊂ D and a function u : � → R,
such that:

⎧
⎪⎪⎨

⎪⎪⎩

�u = 0 in �,

u = g on ∂� ∩ ∂D,

u = 0 and |∇u| = √
� on ∂� ∩ D.

(1.4)
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Fig. 1.1 A minimizer u and
its free boundary; for
simplicity we take D = B1

Ωu

∂D

u = 0

the graph of u over D

the graph of u over ∂D

the free boundary ∂Ωu

We notice that a solution should depend both on the ambient domain D and the
boundary value g. Thus, we cannot hope to find explicitly the domain � and the
function u, except in some very special cases. In fact, even the existence of a couple
(�, u) solving (1.4) is a non-trivial question. One way to solve the existence issue
is to consider the variational problem, which consists in minimizing the functional

u �→ F�(u,D) =
∫

D

|∇u|2 dx + �|{u > 0} ∩ D|,

among all functions u : D → R such that

u ∈ H 1(D) and u = g on ∂D.

A solution to (1.4) can be obtained in the following way (see Fig. 1.1). To any
minimizer u : D → R, we associate the domain

�u := {u > 0},

and the free boundary ∂�u∩D. Then, at least formally, one can show that the couple
(�u, u) is a solution to the free boundary problem (1.4).

• First, notice that the conditions

u = 0 on ∂�u ∩ D,

u = g on ∂�u ∩ ∂D,

are fulfilled by construction.
• In order to show that u is harmonic in �u, we suppose that �u is open and that

u is continuous. Let ϕ ∈ C∞
c (�u) be a smooth function of compact support in

�u. Then, for any t ∈ R sufficiently close to zero, we have

{u + tϕ > 0} = {u > 0},
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and so,

F�(u + tϕ,D) = F�(u,D) +
∫

�u

(|∇(u + tϕ)|2 − |∇u|2) dx.

Now, the minimality of u gives that

2
∫

�u

∇u · ∇ϕ dx = ∂

∂t

∣
∣
∣
t=0

F�(u + tϕ,D) = 0.

Integrating by parts and using the fact that ϕ is arbitrary, we get that

�u = 0 in �u.

• Finally, for what concerns the overdetermined condition on the free boundary,
we proceed as follows. For any compactly supported smooth vector field ξ :
D → Rd and any (small) t > 0, we consider the diffeomorphism 	t(x) =
x + tξ(x) and the test function ut = u ◦ 	−1

t . Then, by the optimality of u, we
obtain

0 = ∂

∂t

∣∣
∣
t=0

F�(ut ,D).

On the other hand, the derivative on the right-hand side can be computed
explicitly (see Lemma 9.5). Precisely, if we assume that u and ∂�u are smooth
enough, we have

∂

∂t

∣∣
∣
t=0

F�(ut ,D) =
∫

∂�u

(− |∇u|2 + �
)
ξ · ν dHd−1,

where ν is the exterior normal to ∂�u. Since ξ is arbitrary, we get that

|∇u| = √
� on ∂�u ∩ D.

In conclusion, by minimizing the function F�, we obtain at once the function u

and the domain � solving (1.4). The function u is a minimizer of F� and the set
� is defined as � = �u = {u > 0}. The equation in �u and the overdetermined
condition on the free boundary ∂�u ∩ D are in fact the Euler-Lagrange equations
associated to the functional. Thus, instead of studying directly the free boundary
problem (1.4), in these notes, we will restrict our attention to minimizers of F�. In
order to fix the terminology and the notations in this section, and also for the rest of
these notes, we give the following definition.



1.2 Regularity of the Free Boundary 5

Definition 1.1 (Minimizers of F�) Let D be a bounded open set in Rd . We say
that the function u : D → R is a minimizer of F� in D, if u ∈ H 1(D), u ≥ 0 in D

and

F�(u,D) ≤ F�(v,D) for every v ∈ H 1(D) such that u−v ∈ H 1
0 (D).

1.2 Regularity of the Free Boundary

These notes are an introduction to the free boundary regularity theory; the aim is
to describe the local structure of the free boundary ∂�u (which is a geometric
object) just by using the fact that u minimizes the functional F� and solves an
overdetermined boundary value problem (that is, with techniques coming from
Calculus of Variations and PDEs). In fact, the free boundary regularity theory stands
on the crossroad of Calculus of Variations, PDEs and Geometric Analysis, and is
characterized by the interaction between geometric and analytic objects, which is
precisely what makes it so fascinating (and hard) field of Analysis.

Our aim in these notes is to prove a first theorem on the local structure of the free
boundary. In particular, just by using the fact that u is a minimizer of the functional
F�, we will prove the following facts:

• u : D → R is (locally) Lipschitz continuous;
• the set�u := {u > 0} is open and the free boundary ∂�u∩D can be decomposed

as the disjoint union of a regular part,Reg(∂�u), and a singular part, Sing(∂�u),

∂�u ∩ D = Reg(∂�u) ∪ Sing(∂�u) ,

for instance, as on Fig. 1.2;
• the regular part Reg(∂�u) is a C1,α-smooth manifold of dimension (d − 1);
• the singular part Sing(∂�u) is a closed subset of ∂�u ∩ D and its Hausdorff

dimension is at most d − 3 (at the moment, the best known estimate for the
Hausdorff dimension of the singular set is d − 5).

The overall approach and many of the tools that we will present are universal and
have counterparts in other fields, for instance, in the regularity of area-minimizing

Fig. 1.2 A picture of a free
boundary ∂�u with regular
and singular points

Ωu

Reg(∂Ωu)

Sing(∂Ωu)
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currents, in free discontinuity problems and harmonicmaps. In fact, there are several
points which are common for the regularity theory in all these (and many other)
variational problems:

− the local behavior of the solution is determined through the analysis of the so-
called blow-up sequences and blow-up limits;

− the points of the free boundary are labelled regular or singular according to
the structure of the so called blow-up limits at each point; this provides a
decomposition of the free boundary into a regular part and a singular part;

− at regular points, the regularity of the free boundary,which might be expressed in
geometric (Theorem 7.4) or energetic (Theorem 12.1 and Lemma 12.14) terms,
improves along the blow-up sequences;

− the set of singular points can become bigger when the dimension of the ambient
space is higher; the measure and the dimension of the singular set can be
estimated through the so-called dimension reduction principle, which uses the
fact that the blow-up limit are homogeneous functions; the homogeneity of the
blow-up limits can be obtained through a monotonicity formula.

We will prove four main theorems.
In Theorem 1.2 (Sect. 1.3) we prove a regularity result for minimizers of F�.

We will obtain the C1,α regularity of the regular part of the free boundary through
an improvement-of-flatness approach, while we will only give a weak estimate on
the measure of the singular set. The proof of this theorem is carried out through
Chaps. 2–8.

In Theorem 1.4 (Sect. 1.4) we give an estimate on the dimension of the set
of singular points. We will use the Weiss monotonicity formula to obtain the
homogeneity of the blow-up limits and the Federer dimension reduction principle
to estimate the dimension of the singular set. The proof of this theorem is contained
in Chaps. 9 and 10.

In Theorem 1.9 (Sect. 1.5) we prove a regularity theorem for functions u

minimizing F0 under the additional measure constraint |�u| = m. In this case,
we show that there is a Lagrange multiplier � such that u is a critical point for the
functional F�. In this case, the regularity of the free boundary is a more delicate
issue and the Theorems 1.2 and 1.4 cannot be applied directly. The proof requires
the Chaps. 2–10, and also the specific analysis from Chap. 11.

Theorem 1.10 (Sect. 1.6) is dedicated to the epiperimetric inequality (Theo-
rem 12.1) approach to the regularity of the free boundary, which was introduced
in [49]. In particular, we give another proof of the fact that, if u is a local minimizer
of F� in dimension two, then the (entire) free boundary is C1,α regular. The
proof is based on the epiperimetric inequality from Sect. 12, which replaces the
improvement of flatness argument from Chap. 7, but we still use results from
Chaps. 2, 3, 4, 6, 8 and 9. Finally, we notice that the fact that an epiperimetric
inequality in dimension d implies the regularity of the free boundary holds in any
dimension (see Sect. 12.5).

The rest of the introduction is organized as follows. Each of the Sects. 1.3, 1.4, 1.5
and 1.6 is dedicated to one of the main theorems 1.2, 1.4, 1.9 and 1.10. Finally, in



1.3 The Regularity Theorem of Alt and Caffarelli 7

Sect. 1.7, we briefly discuss some of the results, obtained or just reported in these
notes, which might also be of interest for specialists in the field.

1.3 The Regularity Theorem of Alt and Caffarelli

Alt and Caffarelli pioneered the study of the one-phase free boundaries in [3], where
they proved the following theorem.

Theorem 1.2 (Alt-Caffarelli) Let D be a bounded open set in Rd and u ∈ H 1(D)

be a non-negative minimizer of F� in D. Then u is locally Lipschitz continuous in
D, the set �u = {u > 0} is open and the free boundary can be decomposed as:

∂�u ∩ D = Reg(∂�u) ∪ Sing(∂�u),

where Reg(∂�u) and Sing(∂�u) are disjoint sets such that:

(i) Reg(∂�u) is a C1,α-regular (d−1)-dimensional surface in D, for some α > 0;
(ii) Sing(∂�u) is a closed set of zero (d − 1)-dimensional Hausdorff measure.

In these notes we will give a proof of this result, which is different from the
original one (see [3]) and is based on recent methods developed in several different
contexts: for instance, the two-phase problem [4, 50], almost-minimizers for the
one-phase problem [19, 50], the one-phase problem for singular operators [18], the
vectorial Bernoulli problems [41, 42], shape optimization problems [9, 46]. We will
also use tools, which were developed after [3] as, for instance, viscosity solutions
[12], [13], [14], [23], [26] and [15], monotonicity formula [52] and epiperimetric
inequalities [29, 49].

In order to make these notes easier to read, we give the sketch of the proof in
the introduction; for the technical details and generalizations, we refer to the results
from the forthcoming chapters.

Proof In the proof of Theorem 1.2 we will use only results from Chaps. 2–8.
Section 2 is dedicated to the existence of minimizers and also to several explicit

examples and preliminary results that will be useful in the forthcoming sections.
The existence of minimizers for fixed boundary datum on ∂D is obtained in
Proposition 2.1. In Lemma 2.6 and Lemma 2.7 we give two different proofs of the
fact that the minimizers of F� are subharmonic functions. This result has several
important applications. First of all, when we study the local behavior of u and of
the free boundary ∂�u, we may assume a priori that the function u is bounded.
Moreover, as for a subharmonic function, the limit

lim
r→0

∫
Br (x0)

u(x) dx
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exists at every point x0 ∈ R, we may also assume that u (which is a priori a Sobolev
function, so defined as a class of equivalence of Lebesgue measurable functions)
is defined pointwise everywhere in D. In particular, we will always work with the
precise representative of u, defined by

u(x0) = lim
r→0

∫
Br(x0)

u(x) dx for every x0 ∈ D.

In particular, the set �u = {u > 0} and its topological boundary ∂�u are also well-
defined (for all these results, we refer to Proposition 2.1). Moreover, in Lemma 2.9,
we prove that the topological boundary coincides with the measure-theoretic one in
the following sense:

∂�u ∩ D =
{
x ∈ D : |Br(x) ∩ �u| > 0 and |Br(x) ∩ {u = 0}| > 0, ∀r > 0

}
.

In Chap. 3 we prove that the function u : D → R is locally Lipschitz
continuous in D (Theorem 3.1). The main result of this section is more general
(see Theorem 3.2) as for the Lipschitz continuity of u we only use that minimality
of the function with respect to outwards perturbations.

We give three different proofs of the local Lipschitz continuity, inspired by three
different methods, which were developed in the contexts of different free boundary
problems. In Sect. 3.1, we report the original proof of Alt and Caffarelli; in Sect. 3.2,
we give a proof which is inspired from the two-phase problem of Alt-Caffarelli-
Friedman and already proved to be useful in several different contexts, for instance,
for vectorial problems (see [9]) and for operators with drift (see [46]); in Sect. 3.3,
we present the proof of Danielli and Petrosyan, which was originally introduced
to deal with free boundary problems involving the p-Laplacian (see [18]); each of
these subsections can be read independently.

As a consequence of the Lipschitz continuity, we obtain that the set �u is open.
Now, from the fact that u minimizes F�, we deduce that u is harmonic on �u:

�u = 0 in �u ∩ D.

In particular, u is C∞ regular (and analytic) in �u.
In Chap. 4 (see Lemma 4.4 and/or Lemma 4.5), we prove that u is non-degenerate

at the free boundary, that is, there is a constant κ > 0 such that the following claim
holds:

If x0 ∈ �u ∩ D, then ‖u‖L∞(Br (x0)) ≥ κr , for every r > 0 such that Br(x0) ⊂ D.

This means that the Lipschitz estimate from Chap. 3 is optimal at the free boundary.
This is a technical result, which we will use several times throughout the proof of
Theorem 1.2, for instance, in Chaps. 5, 6 and 8.
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In Chap. 5 we use the Lipschitz continuity and the non-degeneracy of u to obtain
several results on the measure-theoretic structure of the free boundary. We will use
this information in Sect. 6.4 to prove that the singular set has zero (d −1)-Hausdorff
measure. The main results of Chap. 5 are the following:

• In Sect. 5.1 (Lemma 5.1), we prove that there is a constant c ∈ (0, 1) such that,
for every x0 ∈ D and every radius r small enough,

c|Br | ≤ |�u ∩ Br(x0)| ≤ (1 − c)|Br |.

In particular, the free boundary cannot contain points of Lebesgue density 0 or 1.
• In Sect. 5.2 (see Proposition 5.3 and Corollary 5.4), we prove that the set �u

has locally finite perimeter in D. We will use this result in Sect. 6.4 in order to
estimate the dimension of the singular set.

• In Sect. 5.3 (Proposition 5.7), we prove that the free boundary ∂�u ∩ D has
locally finite (d − 1)-dimensional Hausdorff measure, which is slightly more
general result than the one from Corollary 5.4.

Section 6 is dedicated to the convergence of the blow-up sequences and the
analysis of the blow-up limits; both being essential for determining the local
structure of the free boundary. The notion of a blow-up is introduced in the
beginning of Chap. 6 (see Definition 6.1). For convenience of the reader, we
anticipate that

for every x0 ∈ ∂�u ∩ D and every infinitesimal sequence (rn)n≥1,

the sequence of rescalings

ux0,rn(x) := 1

rn
u(x0 + rnx)

is called a blow-up sequence at x0. The (local) Lipschitz continuity of u : D → R

implies that, up to a subsequence, ux0,rn converges to a globally defined Lipschitz
continuous function u0 : Rd → R. Any function u0 obtained in this way is called a
blow-up limit of u at x0. Notice that the non-degeneracy of u implies that u0 cannot
be constantly zero. In Proposition 6.2 we prove that the blow-up limit u0 is a global
minimizer of F� (see Sect. 6.1) and that the free boundaries ∂{ux0,rn > 0} converge
to ∂{u0 > 0} locally in the Hausdorff distance (Sect. 6.2).

In Sect. 6.4, we decompose the free boundary into regular and singular parts (see
Definition 6.10), Reg(∂�u) and Sing(∂�u) := (∂�u ∩ D) \ Reg(∂�u). Precisely,
we say that a point x0 ∈ ∂�u ∩ D is regular, if there is a blow-up limit u0, of u at
x0, of the form

u0(x) = √
� (x · ν)+ (1.5)

for some unit vector ν. We then prove (see Lemma 6.11) that the regular part
Reg(∂�u) contains the reduced boundary ∂∗�u ∩ D. This is a consequence to the
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following two facts: first, at points of the reduced boundary x0 ∈ ∂∗�u ∩ D, the
support of the blow-up limits is precisely a half-space {x : x · ν > 0}; second, if
u0 is a global solution supported on a half-space, then it has the form (1.5). This
implies that Hd−1

(
Sing(∂�u)

) = 0. In fact, this is an immediate consequence
of the inclusion Reg(∂�u) ⊂ ∂∗�u and a well-known theorem of Federer, which
states that if � is a set of finite perimeter, then

Hd−1(∂� \ (�(1) ∪ �(0) ∪ ∂∗�)
) = 0,

and of the fact that ∂� ∩ (�(1) ∪ �(0)
) = ∅ (see Sect. 5.1). In particular, this

completes the proof of claim (ii) of Theorem 1.2.
Chapters 7 and 8 are dedicated to the regularity of Reg(∂�u) (Theorem 1.2

(i)). We will use the theory presented in this sections both for Theorem 1.2 and
Theorem 1.9.

In Sect. 7.1 (Proposition 7.1) we use the examples of radial solutions from
Sect. 2.4 (Propositions 2.15 and 2.16) as test functions to prove that the minimizer
u satisfies the following optimality condition in viscosity sense:

|∇u| = √
� on ∂�u ∩ D.

The Sects. 7.2, 7.3 and 7.4 are dedicated to the proof of the improvement-of-flatness
theorem of De Silva [23] (Theorem 7.4), which holds for viscosity solutions. We
notice that in the two-dimensional case (Theorem 1.10) all the result from this
section will be replaced by the epiperimetric inequality approach from Chap. 12.

In Chap. 8 we show how the improvement of flatness implies the regularity of
the free boundary. Precisely, in Sect. 8.1 we prove that the improvement of flatness
(Condition 8.3) implies the uniqueness of the blow-up limit ux0 at every point x0
of the free boundary. Moreover, it provides us with a rate of convergence of the
blow-up sequence (Lemma 8.4). Finally, in Sect. 8.2, we show how the uniqueness
of the blow-up limit and the rate of convergence of the blow-up sequence imply the
C1,α regularity of the free boundary (Proposition 8.6), which concludes the proof of
Theorem 1.2. ��

Remark 1.3 The proof of the regularity of Reg(∂�u) is based on an improvement-
of-flatness argument and is due to De Silva (see [23]). Just as the original proof of
Alt and Caffarelli it is based on comparison arguments and does not make use of
any type of monotonicity formula. In order to keep the original spirit of [3], we do
not use monotonicity formulas in the proof of Theorem 1.2 (Chaps. 2–8). On the
other hand, without a monotonicity formula, one can prove that the singular set has
zero (d − 1)-dimensional Hausdorff measure. Notice that, in [3] it was also shown
that the singular set is empty in dimension two. We postpone this result to Sect. 9.4
since it is a trivial consequence of the monotonicity formula ofWeiss. We also notice
that the proof of Theorem 1.2 is essentially self-contained and requires only basic
knowledge on Sobolev spaces and elliptic PDEs.
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1.4 The Dimension of the Singular Set

In Theorem 1.2, we show that the singular part of the free boundary Sing(∂�u) has
the following properties:

• it is a closed subset of the free boundary ∂�u ∩ D;
• it has zero Hausdorff measure, that is, Hd−1

(
Sing(∂�u)

) = 0; in particular, this
implies that the (Hausdorff) dimension of Sing(∂�u) is at most d − 1.

In [52], using a monotonicity formula and the Federer’s dimension reduction
principle, Weiss proved the following result.

Theorem 1.4 (Weiss) Let D be a bounded open set in Rd and u ∈ H 1(D) be a
non-negative minimizer of F� in D. Let Reg(∂�u) and Sing(∂�u) be the regular
and singular sets from Theorem 1.2. There exists a critical dimension d∗ (see
Definition 1.5) such that the following holds.

(i) If d < d∗, then Sing(∂�u) is empty.
(ii) If d = d∗, then the singular set Sing(∂�u) is a discrete (locally finite) set of

isolated points in D.
(iii) If d > d∗, then the singular set Sing(∂�u) is a closed set of Hausdorff

dimension d − d∗, that is,

Hd−d∗+ε(∂�u ∩ D) = 0 for every ε ∈ (0, 1).

Definition 1.5 (Definition of d∗) We will denote by d∗ the smallest dimension d

such that there exists a function z : Rd → R with the following properties:

• z is non-negative and one-homogeneous;
• z is a local minimizer of F� in Rd ;
• the free boundary ∂�z is not a (d − 1)-dimensionalC1-regular manifold in Rd .

Remark 1.6 The value of d∗ does not depend on � > 0. Without loss of generality,
we may take � = 1.

Remark 1.7 (On the Critical Dimension d∗) In this notes, we prove that d∗ ≥ 3
(see Sect. 9.4). Already this is a better estimate (on the dimension of the singular
set) with respect to the one from Theorem 1.2 as it means that

Hd−3+ε(∂�u ∩ D) = 0 for every ε ∈ (0, 1).

In fact, it is now known that

d∗ = 5, 6, or 7.
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Fig. 1.3 The free boundary
(in red) of the
one-homogeneous global
solution u : R7 → R of De
Silva and Jerison

x7

Δu = 0
u > 0

5

u = 0

u = 0

0

Precisely, Caffarelli, Jerison and Kenig [16] proved that there are no singular one-
homogeneous global minimizers in R3 (thus, d∗ ≥ 4). Later, Jerison and Savin [37]
proved the same result in R4 (so, d∗ ≥ 5). On the other hand, De Silva and Jerison
[24] gave an explicit example (see Fig. 1.3) of a singular free boundary in dimension
seven (which means that d∗ ≤ 7).

In order to prove Theorem 1.4 we will need most of the theory developed for the
proof of Theorem 1.2. For instance, the Lipschitz continuity and the non-degeneracy
of the minimizers (Chaps. 3 and 4), the convergence of the blow-up sequences
(Chap. 6) and the epsilon regularity theorem (Theorem 8.1 from Chap. 8). On the
other hand, we will not need the results from Chap. 5.

The main results that we will need for the proof of Theorem 1.4 are contained
in Chaps. 9 and 10. Chapter 9 is dedicated to the Weiss monotonicity formula
from [52], which we prove both for minimizing and stationary free boundaries.
Chapter 10 is dedicated to the Federer’s dimension reduction principle (see [32]).
Even if the results of this section concern the one-phase free boundaries, the
underlying principle is universal and can be applied to numerous other problems;
for instance, in geometric analysis (see [32] and [48]) or to other free boundary
problems [42].

Proof of Theorem 1.4 We will first prove that all the blow-up limits of u (at
any point of the free boundary) are one-homogeneous global minimizers of F�.
The global minimality (see Definition 2.12) of the blow-up limits follows from
Proposition 6.2. In order to prove the one-homogeneity of the blow-up limits
(Proposition 9.12) we will use the Weiss’ boundary adjusted energy, defined for
any function ϕ ∈ H 1(B1) as

W�(ϕ) :=
∫

B1

|∇ϕ|2 dx −
∫

∂B1

ϕ2 dHd−1 + �
∣
∣{ϕ > 0} ∩ B1

∣
∣.

Let now x0 ∈ ∂�u ∩ D and ux0,r be the usual rescaling (blow-up sequence)

ur ,x0(x) = 1

r
u(x0 + rx).
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If we choose r > 0 small enough, then the function ux0,r is defined onB1 and so, we
can compute the Weiss energy W�(ux0,r ). In Lemma 9.2 we compute the derivative
of W�(ux0,r ) with respect to r , from which we deduce that (see Proposition 9.4):

• the function r �→ W�(ux0,r ) is monotone increasing in r;
• and is constant on an interval of the form (0,R), if and only if, u is one-

homogeneous in the ball BR(x0).

In particular, the monotonicity of r �→ W�(ux0,r ) and the Lipschitz continuity of u

(which gives a lower bound on W�(ux0,r )) imply that the limit

L := lim
r→0

W�(ux0,r ),

exists and is finite.
Let now v be a blow-up limit of u at x0 and (rn)n be an infinitesimal sequence

such that

v = lim
n→∞ ux0,rn .

Let s > 0 be fixed. Then, the blow-up sequence ux0,srn = 1
srn

u(x0 + srnx)

converges locally uniformly to the rescaling vs(x) := 1
s
v(sx) of the blow-up v.

Now, Proposition 6.2 implies that:

• the sequence ux0,srn converges to vs strongly in H 1(B1);
• the sequence of characteristic functions 1{ux0,srn >0} converges to the characteris-

tic function 1{vs>0} in L1(B1).

Thus, for every s > 0, we have

L = lim
r→0

W�(ux0,r ) = lim
n→∞ W�(ux0,srn) = W�(vs),

and so the function s �→ W�(vs) is constant in s. Applying again Proposition 9.4,
we get that v is one-homogeneous.

Theorem 1.4 now follows by the more general result proved in Proposition 10.13,
which can be applied to u since we have the epsilon regularity theorem (Theo-
rem 8.1), the non-degeneracy of u (see Chap. 4), the strong convergence of the
blow-up sequences (Proposition 6.2) and the homogeneity of the blow-up limits,
which we proved above. ��

Remark 1.8 Finally, we notice that an even better result was recently obtained by
Edelen and Engelstein (see [27]). Using the powerful method of Naber and Valtorta
(see [44]), they proved that the singular set Sing(∂�u) has locally finite (d − d∗)—
Hausdorff measure, which in particular implies claim (ii) of Theorem 1.4.
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1.5 Regularity of the Free Boundary for Measure
Constrained Minimizers

Let D ⊂ Rd be a smooth and connected bounded open set, m ∈ (0, |D|) and
g : D → R be a given non-negative function in H 1(D). This section is dedicated to
the following variational minimization problem with measure constraint

min
{F0(v,D) : v ∈ H 1(D), v − g ∈ H 1

0 (D), |�v| = m
}
, (1.6)

which means

Find u ∈ H 1(D) such that u − g ∈ H 1
0 (D), |�u| = m and

F0(u,D) ≤ F0(v,D), for every v ∈ H 1(D) such that v − g ∈ H 1
0 (D) and |�v | = m.

This is the constrained version of the variational problem from Theorems 1.2 and
1.4. We notice that if u is a minimizer of F� in D, for some � > 0, then
u is (obviously) a solution to the minimization problem (1.6) with m := |�u|.
Conversely, if u is a solution to the variational problem (1.6), then (as we will show
in Proposition 11.2) there is a Lagrange multiplier � > 0, depending on u, such
that u formally satisfies the optimality condition

�u = 0 in �u , |∇u| = √
� on ∂�u ∩ D, (1.7)

in the sense that u is stationary for F� in D (see Definition 9.7). Unfortunately, this
does not imply that u is a minimizer ofF� inD. The free boundary regularity theory
for the solutions to (1.6) is more involved since the competitors used to prove the
Lipschitz continuity (Chap. 3), non-degeneracy (Chap. 4), improvement of flatness
(Chap. 7) and the monotonicity formula (Proposition 9.4) do not satisfy the measure
constraint in (1.6).

The free boundary regularity for solutions of (1.6) was first obtained by Aguilera,
Alt and Caffarelli in [1]. Our approach is different and strongly relies on the Weiss’
monotonicity formula, from which we will deduce both:

• the optimality condition in (1.7) in viscosity sense, which in turn allows to apply
the De Silva epsilon regularity theorem (Theorem 8.1) and thus to obtain the
C1,α-regularity of Reg(∂�u) (see Chap. 8);

• the estimate of the dimension of the singular set, which is a consequence of
the homogeneity of the blow-up limits and the Federer’s dimension reduction
(Chap. 10).

Our approach is inspired by the theory developed in [46] and contains several
ideas from [41] and the work of Briançon [5] and Briançon-Lamboley [6]. Our main
result is the following.
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Theorem 1.9 (Regularity of the Measure Constrained Minimizers) Let D be a
connected smooth bounded open set in Rd , m ∈ (0, |D|) be a positive real constant
and g : D → R be a given non-negative function in H 1(D). Then, there is a
solution to the problem (1.6). Moreover, every solution u is non-negative and locally
Lipschitz continuous in D, the set �u = {u > 0} is open and the free boundary can
be decomposed as:

∂�u ∩ D = Reg(∂�u) ∪ Sing(∂�u),

where Reg(∂�u) and Sing(∂�u) are disjoint sets such that:

(i) the regular part Reg(∂�u) is a C1,α-regular (d − 1)-dimensional manifold in
D, for some α > 0;

(ii) the singular part Sing(∂�u) is a closed set of Hausdorff dimension d − d∗
(where the critical dimension d∗ is again given by Definition 1.5), that is,

Hd−d∗+ε(∂�u ∩ D) = 0 for every ε ∈ (0, 1).

Moreover, if d < d∗, then Sing(∂�u) is empty, and if d = d∗, then Sing(∂�u) is a
countable discrete (locally finite) set of points in D.

Proof of Theorem 1.4 We prove the existence of a solution u : D → R in
Sect. 11.1, where we also show that u is harmonic in �u in the following sense

∫

D

|∇u|2 dx ≤
∫

D

|∇v|2 dx for every v ∈ H 1(D)

such that u − v ∈ H 1
0 (D) and v = 0 on D \ �u.

In particular, applying Lemma 2.7, we get that u is subharmonic in D. Thus, we can
suppose that u is defined at every point of D and that

u(x0) :=
∫

∂Br(x0)

u dHd−1 =
∫

Br(x0)

u dx for every x0 ∈ D.

Moreover, the subharmonicity of u implies that it is locally bounded so, from now
on, without loss of generality, we will assume that u ∈ L∞(D). Finally, we notice
that the set �u is defined everywhere in D (not just up to a set of zero Lebesgue
measure) and its topological boundary coincides with the measure-theoretic one
(see Lemma 2.9). Precisely, this means that

x0 ∈ ∂�u if and only if 0 < |�u ∩ Br(x0)| ≤ |Br | for every r > 0.

In order to prove the Lipschitz continuity of u and the regularity of the free
boundary ∂�u∩D we proceed in several steps. Notice that we cannot apply directly
the results from Chaps. 3–10 since it is not a priori known if the solution u is a
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local minimizer of F� for some � > 0, that is, one cannot remove the constraint
in (1.6) by adding a Lagrange multiplier � directly in the functional. In fact, it
is only possible to prove the existence of � for which the solution u of (1.6) is
stationary but not minimal forF�. From this, we will deduce that u satisfies a quasi-
minimality condition, which will allow to proceed as in the proof of Theorems 1.2
and 1.4.

Step 1 Existence of a Lagrange multiplier. In Sect. 11.2, we show that there exists
� > 0 such that u is stationary for the functionalF�, that is,

∂F�(u,D)[ξ ] = 0 for every ξ ∈ C∞
c (D;Rd ),

where the first variation ∂F�(u,D)[ξ ] of F� in the direction of the (compactly
supported) vector field ξ is defined in (9.6). The existence of a non-negative
Lagrange multiplier can be obtained by a standard variational argument (see
Proposition 11.2 and its proof in Sect. 11.2, after Lemma 11.3). The strict positivity
of � is a non-trivial question which requires some fine analysis of the functions,
which are stationary forF0; we prove it in Sect. 11.3 using the Almgren’s frequency
function and following the proof of an analogous result from [46], which is a (small
with respect to the original result) improvement of the unique continuation principle
of Garofalo-Lin [34].

Step 2 Almost-minimality of u. Let x0 ∈ ∂�u ∩ D. In Sect. 11.5 (Proposi-
tion 11.10), we prove that u is an almost minimizer of F� (� is the Lagrange
multiplier from the previous step) in a neighborhood of x0 in the following sense.
There exists a ball B, centered in x0, in which u satisfies the following almost-
minimality condition:

For every ε > 0, there is r > 0 such that, for every ball Br(y0) ⊂ B, u satisfies
the following optimality conditions in Br(y0):

F�+ε(u,D) ≤ F�+ε(v,D) for every v ∈ H 1(D) such that

{
v − u ∈ H 1

0 (Br(y0)),

|�u| ≤ |�v |.
(1.8)

F�−ε(u,D) ≤ F�−ε(v,D) for every v ∈ H 1(D) such that

{
v − u ∈ H 1

0 (Br(y0)),

|�u| ≥ |�v |.
(1.9)

The proof of Proposition 11.10 follows step-by-step the proof of the analogous
result from [46] and is based on the method of Briançon [5]. Once we have
Proposition 11.10, we can proceed as in Theorems 1.2 and 1.4.
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Step 3 Lipschitz continuity and non-degeneracy of u. In order to prove the (local)
Lipschitz continuity of u, we notice that (1.8) leads to an outwards optimality
condition. In fact, fixed ε > 0 and x0 ∈ D, there is a ball Br(x0) such that:

F�+ε(u,D) ≤ F�+ε(v,D) for every v ∈ H 1(D) such that

⎧
⎨

⎩
v − u ∈ H 1

0 (Br(x0)),

�u ⊂ �v .

(1.10)

Now, the Lipschitz continuity of u follows by (1.10) and Theorem 3.2.

On the other hand, for the non-degeneracy of u, we notice that, (1.9) implies the
following inwards optimality condition:

Fixed ε > 0 and x0 ∈ D, there is a ball Br(x0) such that:

F�−ε(u,D) ≤ F�−ε(v,D) for every v ∈ H 1(D) such that

{
v − u ∈ H 1

0 (Br(x0)),

�u ⊃ �v .

(1.11)

The non-degeneracy of u follows by (1.11) and the results from Chap. 4 (one can
apply both Lemma 4.4 and 4.5).

As a consequence of the Lipschitz continuity and the non-degeneracy of u, we
obtain the following results:

• �u satisfies interior and exterior density estimates (Lemma 5.1);
• �u has locally finite perimeter in D (Proposition 5.3);
• ∂�u has locally finite (d − 1)-dimensional Hausdorff measure in D (Proposi-

tion 5.7).

Step 4. Convergence of the blow-up sequences and analysis of the blow-up limits.
We recall that, for any x0 ∈ D and any r > 0, the function

ux0,r (x) := 1

r
u(x0 + rx),

is well-defined on the set 1
r
(−x0 + D) and, in particular, on the ball of radius

1
r
dist (x0, ∂D) centered in zero. By the Lipschitz continuity of u, we notice that

for any x0 ∈ ∂�u ∩ D and any R > 0 the family of functions

{
ux0,r : 0 < r <

1

R
dist (x0, ∂D)

}
,

is equicontinuous and uniformly bounded on the ballBR ⊂ Rd . This implies that for
every sequence ux0,rn , with x0 ∈ ∂�u ∩D and lim

n→∞ rn = 0, there are a subsequence

(still denoted by (ux0,rn)n∈N) and a (Lipschitz) function u0 : Rd → R such that,
for every fixed R > 0, the sequence ux0,rn converges uniformly to u0 in the ball



18 1 Introduction and Main Results

BR . We say that u0 is a blow-up limit of u at x0 and ux0,rn is a blow-up sequence.
Recall that u is Lipschitz continuous, non-degenerate, harmonic in �u and satisfies
the following quasi-minimality condition, which is a direct consequence of (1.8)
and (1.9). For every x0 ∈ ∂�u ∩ D, there are r0 > 0 and a continuous non-negative
function ε : [0, r] → R, vanishing in zero and such that

F�(u,D) ≤F�(v,D) + ε(r)|Br | for every 0 < r ≤ r0

and every v ∈ H 1(D) such that u − v ∈ H 1
0 (Br(x0)).

Let ux0,rn be a blow-up sequence converging locally uniformly to the blow-up limit
u0. By Proposition 6.2 and the results of Sect. 6.2 we have that, for every R > 0,

(i) the sequence ux0,rn converges to u0 strongly in H 1(BR);
(ii) the sequence of characteristic functions 1�n converges to 1�0 in L1(BR),

where

�n := {ux0,rn > 0} and �0 := {u0 > 0} ;
(iii) the sequence of sets �n converges locally Hausdorff in BR to �0;

Moreover, using again Proposition 6.2, we get that every blow-up limit u0 of u is
a global minimizer of F�. Next, since u is a critical point of F�, we can apply
Lemma 9.11 obtaining that every blow-up limit of u0 is one-homogeneous. We
summarize this in the following statement, with which we conclude this step of
the proof:

Every blow-up of u is a one-homogeneous global minimizer of F�. (1.12)

Step 5. Optimality condition on the free boundary. Using the convergence of the
blow-up sequences (proved in the previous step) and the structure of the blow-up
limits (claim (1.12)), we can apply Proposition 9.18. Thus, u is a viscosity solution
of

�u = 0 in �u, |∇u| = √
� on ∂�u ∩ D. (1.13)

in viscosity sense (see Definition 7.6).
Step 6. Decomposition of the free boundary into a regular and a singular parts. As
in the proof of Theorem 1.2, we say that x0 ∈ Reg(∂�u) if x0 ∈ ∂�u ∩D and there
exists a blow-up limit u0 of u (at x0), for which there is a unit vector ν ∈ Rd such
that

u0(x) = √
� (x · ν)+ for every x ∈ R

d .

The singular part of the free boundary is defined as Sing(∂�u) := (∂�u ∩ D) \
Reg(∂�u). The C1,α-regularity of Reg(∂�u) now follows by Theorem 8.1 and the
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fact that u is a solution of (1.13). The estimate on the dimension of the singular set
(Theorem 1.9 (ii)) now follows directly from Proposition 10.13. ��

1.6 An Epiperimetric Inequality Approach to the Regularity
of the Free Boundary in Dimension Two

This section is dedicated to a recent alternative approach to the regularity of the
free boundaries based on the so-called epiperimetric inequality, which was first
introduced by Reifenberg in the contact of area-minimizing surfaces, but in the
context of the one-phase problem, it was first proved in [49]. We restrict our
attention to the two-dimensional case since the epiperimetric inequality is (for
now) known to hold only in dimension two (see Theorem 12.1 and Theorem 12.3).
Precisely, we will give an alternative proof to the following result.

Theorem 1.10 (Regularity of the Free Boundary in Dimension Two) Let D be a
bounded open set in R2. Let u : D → R be a non-negative function and a minimizer
of F� in D. Then:

(i) u is locally Lipschitz continuous in D and the set �u = {u > 0} is open;
(ii) the free boundary ∂�u ∩ D is C1,α-regular.

Proof of Theorem 1.4 We first notice that the Lipschitz continuity of u follows by
Theorem 3.1. In what follows, without loss of generality we assume that � = 1. By
the non-degeneracy of the solutions (Chap. 4) and the convergence of the blow-up
sequences (Chap. 6, Proposition 6.2), we have that, for every free boundary point
x0 ∈ ∂�u and every infinitesimal sequence rn → 0, there exists a subsequence of
rn (still denoted by rn) such that ux0,rn converges locally uniformly to a non-trivial
blow-up limit u0 : R2 → R. Moreover,

• the sequence ux0,rn converges to u0 strongly in H 1(B1);
• the sequence of characteristic functions1{ux0,rn>0} converge to 1{u0>0} inL1(B1).

Next, we notice that by the Weiss monotonicity formula (Proposition 9.4) the
function r �→ W1(ux0,r ) is monotone increasing in r and the blow-up limit u0
is one-homogeneous global minimizer of F1 in R2 (see Lemma 9.10). Thus, by
Proposition 9.13, we obtain that u0 is a half-plane solution, that is

u0(x) = (x · ν)+ ,

for some unit vector ν ∈ R2. Now, the strong convergence of the blow-up sequence
and the monotonicity formula (Proposition 9.4) imply that

inf
r>0

W1(ux0,r ) = lim
r→0

W1(ux0,r ) = lim
n→∞ W1(ux0,rn) = W1(u0) = π

2
.
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In conclusion, we have that:

• the energy

E(u) := W1(u) − π

2
,

is non-negative along any blow-up sequence ux0,r with x0 ∈ ∂�u ∩ D,

E(ux0,r ) := W1(ux0,r ) − π

2
≥ 0 for every r > 0;

• the free boundary is flat, that is, for every x0 ∈ ∂�u ∩ D and every ε > 0, there
exists r > 0 and ν ∈ ∂B1, such that:

(x · ν − ε)+ ≤ ux0,r (x) ≤ (x · ν + ε)+ for every x ∈ B1.

Now, by the epiperimetric inequality (Theorem 12.1) and Proposition 12.13, we
obtain that, in a neighborhood of x0, ∂�u is the graph of a C1,α regular function.

��

1.7 Further Results

The main objective of these notes is to introduce the reader to the free boundary
regularity theory and to provide a complete and self-contained proof of the
regularity of the one-phase free boundaries. In this perspective, our main results
are Theorems 1.2, 1.4, 1.9 and 1.10. On the other hand, in these notes, we also
prove several other results, which might be interesting for specialists and non. Here
is a list of results, by section, which are worth to be mentioned in this context.

Chapter 2 In Proposition 2.10 we give a direct proof to the fact that the half-plane
solutions are global minimizers of F�. This is well-known, as the result can be
obtained from the following facts:

− the blow-up limits of a solution u at points of the reduced boundary ∂∗�u are
half-plane solutions (Lemma 6.11);

− the reduced boundary ∂∗�u is non-empty as �u is a set of finite perimeter
(Proposition 5.3) and for sets of finite perimeter we have the identity Per(�u) =
Hd−1(∂∗�u) (see [43]).

In Lemmas 2.15 and 2.16 we prove the existence and the uniqueness of two one-
phase free boundary problems. Moreover, we prove that the solutions are radially
symmetric and we write them explicitly.
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Chapters 3 and 4 In Proposition 3.15 and Lemma 4.5, we present the methods
of Danielli-Petrosyan ([18], for the Lipschitz continuity) and David-Toro ([19], for
the non-degeneracy) in the simplified context of the classical one-phase Bernoulli
problem. Both methods are very robust and can be applied to more general free
boundary problems.

Chapter 5 In Proposition 5.3 we prove that if u is a minimizer of F� in a set
D, then �u has locally finite De Giorgi perimeter in D. The method is a localized
version of a global estimate by Bucur (see [8]), on the perimeter of the optimal
shapes for the eigenvalues of the Dirichlet Laplacian.

In Proposition 5.7 we prove that, if u is a minimizer of F� in a set D, then
the Hd−1 Hausdorff measure of the free boundary ∂�u is locally finite in D. The
method is very general and can be applied to many different free boundary problems,
for instance, to the vectorial problem (see [42]).

Chapter 6 In Proposition 6.2 we give the detailed proof of the strong convergence
of the blow-up sequences, which is often omitted in the literature. Moreover, we
state and prove a general result (Lemma 6.3) which can be applied to different free
boundary and shape optimization problems.

Chapter 7 In Proposition 7.1 we prove that if u is a minimizer of F� in D, then it
is satisfies the optimality condition

|∇u| = √
� on ∂�u ∩ D,

in viscosity sense (Definition 7.6). This result is well-known, but in the literature the
proof is usually omitted. Our proof of Proposition 7.1 is based on a comparison with
the radial solutions constructed in Lemmas 2.15 and 2.16. We give another proof of
this fact in Chap. 9.

Chapter 8 In this section we give a detailed proof of the fact that the improvement
of flatness (Condition 8.3) implies the C1,α regularity of the free boundary (see
Lemma 8.4 and Proposition 8.6). In particular, in Sect. 8.2, we explain the relation
between the uniqueness of the blow-up limits, the rate of convergence of the blow-
up sequences, and the regularity of the free boundary (Proposition 8.6).

Chapter 9 In Sect. 9.5, we give another proof of the fact that, if u is a local
minimizer of F� in D, then it satisfies the optimality condition

|∇u| = √
� on ∂�u ∩ D,

in viscosity sense (see also Proposition 7.1). The method that we propose is based
on the Weiss monotonicity formula and is very robust, for instance, it applies to
general operators (see [46]) and to vectorial problems (see [41]). This method was
first introduced in [41].
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Chapter 10 This section is an introduction to the Federer’s Dimension Reduction
Principle in the context of free boundary problems. Our main result (Proposi-
tion 10.13) is an estimate on the dimension of the singular set under general
conditions.

Chapter 11 In Sect. 11.3 we combine the unique continuation principle of
Garofalo-Lin [34] with the Faber-Krahn-type inequality from [10] to prove a strong
unique continuation result for stationary functions of the Dirichlet energy F0 (see
Proposition 9.19 and [46]).

Chapter 12 This section is dedicated to the epiperimetric inequality (Theo-
rem 12.1) that first appeared in [49]. We give here a different proof that inspired the
approach to the epiperimetric inequality at the singular points in higher dimension
(see [29]).

In Lemma 12.14 we prove that the epiperimetric inequality at the flat free
boundary points in any dimension (Condition 12.12) implies the regularity of the
free boundary. The proof is similar to the one in [49], but has to deal with the
closeness condition in the epiperimetric inequality (see Condition 12.12), precisely
as in [29] and [28].

In Sect. 12.6 we prove comparison results for minimizers of F� (Proposi-
tion 12.19 and Lemma 12.22) and for viscosity solutions (Lemma 12.21).

In Theorem 12.3 we prove an epiperimetric inequality in dimension two without
any specific assumption on the trace on the sphere. This results covers both
Theorem 12.1 and the main theorem of [49]. Both Theorem 12.3 and Theorem 12.1
are new results.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 506 3432
a 506 3432 a
 
http://creativecommons.org/licenses/by/4.0/


Chapter 2
Existence of Solutions, Qualitative
Properties and Examples

In this section, we prove that local minimizers of the functional F� do exist
(Proposition 2.1) and we give several important examples of local minimizers that
can be computed explicitly (Proposition 2.10, Lemmas 2.15 and 2.16).

Proposition 2.1 Let � > 0, D ⊂ Rd be a bounded open set and the function
g ∈ H 1(D) be fixed and such that g ≥ 0 in D. Then, there exists a solution to the
variational problem

min
{F�(u,D) : u ∈ H 1(D), u − g ∈ H 1

0 (D)
}
. (2.1)

Moreover, every solution u of (2.1) has the following properties:

(i) u is non-negative in D;
(ii) u is locally bounded in D;

(iii) there is a function ũ : D → R such that ũ ≥ 0 and ũ = u almost everywhere
in D and

ũ(x0) = lim
r→0

1

|Br |
∫

Br (x0)

ũ(x) dx for every x0 ∈ D.

Remark 2.2 From now on, we will identify any solution u of (2.1) with its
representative ũ; for the sake of simplicity, we will always write u instead of ũ.

The rest of the section is organized as follows. In Sect. 2.1 we discuss some of
the properties (scaling and truncation) of the function F�. Section 2.2 is dedicated
to the proof of Proposition 2.1. In Sects. 2.3 and 2.4, we discuss several examples of
local minimizers, which we will find application in the next sections.

© The Author(s) 2023
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2.1 Properties of the FunctionalF

In this section, we discuss several basic properties of the functional

(�, t ,D) �→ F�(u,D).

We give the precise statements in Lemmas 2.3, 2.4 and 2.5.

Lemma 2.3 (Scaling) Let � ⊂ Rd be an open set and u ∈ H 1(�).

(a) Let x0 ∈ R, r > 0 and

ux0,r (x) := 1

r
u(x0 + rx) and �x0,r =

{
x = y − x0

r
∈ R : y ∈ �

}
.

Then ux0,r ∈ H 1(�x0,r ) and

F�(ux0,r ,�x0,r ) = r−d F�(u,�).

In particular, if u is a minimizer of F� in �, then ux0,r is a minimizer of F� in
�x0,r .

(b) For every t > 0, we have

Ft2�(tu,�) = t2 F�(u,�).

In particular, if u is a minimizer of F� in �, then tu is a minimizer of Ft2�

in �.

Proof The proof is a straightforward computation. ��

Lemma 2.4 (Truncation) Let � ⊂ Rd be an open set and u ∈ H 1(�). Then,

F�(u,�) − F�(0 ∨ u,�) =
∫

{u<0}∩�

|∇u|2 dx.

Moreover, for every t ≥ 0, we have

F�(u,�) − F�(u ∧ t ,�) =
∫

{u>t}∩�

|∇u|2 dx.

Proof The proof follows by the definition of F and the identities

∇(u∧t) = 1{u<t}∇u and ∇(u∨0) = 1{u>0}∇u.

��
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Lemma 2.5 (Comparison) Let � ⊂ Rd be an open set and u, v ∈ H 1(�) be two
given functions. Then we have

F�(u ∨ v,�) + F�(u ∧ v,�) = F�(u,�) + F�(v,�).

Proof The proof is a straightforward computation. In fact, we have

F�(u ∨ v,�) + F�(u ∧ v,�)

=
∫

�

|∇(u ∨ v)|2 dx + �|{u ∨ v > 0} ∩ �|

+
∫

�

|∇(u ∧ v)|2 dx + �|{u ∧ v > 0} ∩ �|

=
∫

�∩{u≥v}
|∇u|2 dx +

∫

�∩{u<v}
|∇v|2 dx + �

∣∣({u > 0} ∪ {v > 0}) ∩ �
∣∣

+
∫

�∩{u≥v}
|∇v|2 dx +

∫

�∩{u<v}
|∇u|2 dx + �

∣
∣{u > 0} ∩ {v > 0} ∩ �

∣
∣

=
∫

�

|∇u|2 dx + �|{u > 0} ∩ �| +
∫

�

|∇v|2 dx + �|{v > 0} ∩ �|

= F�(u,�) + F�(v,�) ,

which concludes the proof. ��

2.2 Proof of Proposition 2.1

In this section we prove Proposition 2.1. We will first show that the minimizers
of F� are subharmonic functions (Lemmas 2.6 and 2.7) and then we will deduce
the claim (iii) of Proposition 2.1 (see Remark 2.2). At the end of this section, we
will complete the proof of Proposition 2.1 by proving that there is a solution to the
variational problem (2.1). Finally, in Lemma 2.9, we discuss the definition of the
free boundary, which can be (equivalently) defined both as the topological boundary
of the representative ũ (of the function u ∈ H 1(D)) defined in Proposition 2.1 and as
the measure-theoretic boundary of �u, which does not depend on the representative
of u and is defined as the set of points x0 ∈ D for which

|Br(x0) ∩ �u| > 0 and |�u \ Br(x0)| > 0 for every r > 0.

Lemma 2.6 (The Minimizers of F� Are Subharmonic Functions) Let D ⊂ Rd

be a bounded open set and the non-negative function u ∈ H 1(D) be a minimizer of
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F� in D. Then u is subharmonic, �u ≥ 0, on D in sense of distributions:

∫

D

∇u · ∇ϕ dx ≤ 0 for every ϕ ∈ C∞
c (D) such that ϕ ≥ 0 on D.

Proof Let ϕ ∈ C∞
c (D) be a given non-negative function. Suppose that t ≥ 0 and

v = u − tϕ. Then we have that v+ ≤ u. In particular, integrating on the support of
ϕ we have

F�(u,D) =
∫

D

|∇u|2 dx + �|{u > 0} ∩ D|

≤
∫

D

|∇v+|2 dx+�|{v+ > 0} ∩ D| ≤
∫

D

|∇v|2 dx+�|{u > 0} ∩ D|.

This implies that

∫

D

|∇u|2 dx ≤
∫

D

|∇(u − tϕ)|2 dx =
∫

D

|∇u|2 dx−2t
∫

D

∇u · ∇ϕ dx+t2
∫

D

|∇ϕ|2 dx,

and the claim follows by taking the (right) derivative at t = 0. ��
There is also a more general result, which applies not only to minimizers, but

also to generic non-negative functions, which are harmonic where they are strictly
positive. The proof can also be found in the book of Henrot and Pierre [36].

Lemma 2.7 (The Minimizers of F� Are Subharmonic Functions II) Let D ⊂
Rd be a bounded open set and the non-negative function u ∈ H 1(D) be harmonic
in the set �u := {u > 0}, that is

∫

D

|∇u|2 dx ≤
∫

D

|∇v|2 dx for every v ∈ H 1(D)

such that u − v ∈ H 1
0 (D) and v = 0 on D \ �u.

Then u is subharmonic, �u ≥ 0, on D in sense of distributions.

Proof Let φ ∈ C∞
c (D) be a given non-negative function and let pε : R → R be

given by

pε(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ ε/2,
1

ε
(2x − ε) if x ∈ [ε/2, ε],

1 if x ≥ ε .

Since ut := u + t pε(u)φ is a competitor for u and for t ∈ R small enough

{u > 0} = {ut > 0},
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we have that for t small enough

∫

D

|∇u|2 dx ≤
∫

D

|∇ut |2 dx,

which gives

∫

D

pε(u)∇u · ∇φ dx ≤
∫

D

p′
ε(u)|∇u|2φ dx +

∫

D

pε(u)∇u · ∇φ dx

=
∫

D

∇u · ∇(pε(u)φ) dx = 0 ,

where the last inequality is due to the fact that pε is increasing. Now since pε(u)

converges to 1{u>0}, as ε → 0, we get that

∫

D

∇u · ∇φ dx ≤ 0,

which concludes the proof. ��

Remark 2.8 (Pointwise Definition of a Subharmonic Function) Let D be an open
set and u ∈ H 1(D) be a subharmonic function. Then, for every x0 ∈ D, we have
that

the functions r �→
∫

∂Br(x0)

u dHd−1 and r �→
∫

Br (x0)

u dx are non-decreasing.

(2.2)

As a consequence of (2.2), we obtain that:

• u is locally bounded, u ∈ L∞
loc(D);

• we define ũ : D → R as

ũ(x0) := lim
r→0+

∫
Br(x0)

u(x) dx for every x0 ∈ D.

Proof of Proposition 2.1 We first prove that a solution exists. Let un ∈ H 1(D) be
a minimizing sequence such that un − g ∈ H 1

0 (D) and

F�(un,D) ≤ F�(g,D) for every n ≥ 1.

By Lemma 2.4 we may assume that, for every n ≥ 1, un ≥ 0 on D. For simplicity,

we assume that d > 2 (the case d = 2 is analogous) and we set 2∗ = 2d

d − 2
. Then,
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we have

‖un − g‖2
L2∗ (D)

≤ Cd

∫

D

|∇(un − g)|2 dx ≤ 2Cd

(∫

D

|∇un|2 dx +
∫

D

|∇g|2 dx

)

≤ 2Cd

(F�(un,D) + F�(g,D)
) ≤ 4CdF�(g,D).

Now, we estimate,

‖un − g‖2
L2(D)

≤ |{un − g �= 0}|2/d ‖un − g‖2
L2∗ (D)

≤(|{un > 0} ∩ D| + |{g > 0} ∩ D|)2/d4CdF�(g,D)≤8Cd�− 2
d F�(g,D)

2+d
d ,

which implies that the sequence un is uniformly bounded in H 1(D). Then, up to a
subsequence, we may assume that un converges weakly in H 1(D) and strongly in
L2(D) to a function u ∈ H 1(D). Now, the semi-continuity of the H 1 norm (with
respect to the weak H 1 convergence) gives that

∫

D

|∇u|2 dx ≤ lim inf
n→∞

∫

D

|∇un|2 dx.

On the other hand, passing again to a subsequence, we get that un converges
pointwise almost everywhere to u. This implies that

1{u>0} ≤ lim inf
n→∞ 1{un>0},

and so,

|{u > 0} ∩ D| ≤ lim inf
n→∞ |{un > 0} ∩ D|,

which finally gives that

F�(u,D) ≤ lim inf
n→∞ F�(un,D),

and so, u is a solution to (2.1). Now, we notice that Lemma 2.4 implies that u ≥ 0
on D. Lemma 2.6 and Remark 2.8 give the claims (ii) and (iii). ��

We conclude this subsection with the following lemma, where we show that the
set �u has a topological boundary that coincides with the measure theoretic one.
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Lemma 2.9 (Topological andMeasure Theoretic Free Boundaries) Let D ⊂ Rd

be a bounded open set and u be a local minimizer of F� in the open set D ⊂ Rd or,
more generally, let u : D → R, u ∈ H 1(D), be a non-negative function satisfying

(a) u is harmonic in �u = {u > 0} in the sense that

∫

D

|∇u|2 dx ≤
∫

D

|∇v|2 dx for every v ∈ H 1(D)

such that u − v ∈ H 1
0 (D) and v = 0 on D \ �u.

(b) u is defined everywhere in D and

u(x0) := lim
r→0+

∫
Br(x0)

u(x) dx for every x0 ∈ D.

Then, the topological boundary of �u coincides with the measure-theoretic one:

∂�u ∩ D =
{
x ∈ D : |Br(x) ∩ �u| > 0 and |Br(x) ∩ {u = 0}| > 0, ∀r > 0

}
.

Proof We first notice that the following inclusion holds :

∂�u ∩ D ⊃
{
x ∈ D : |Br(x) ∩ �u| > 0 and |Br(x) ∩ {u = 0}| > 0, ∀r > 0

}
.

In order to prove the opposite inclusion we show that

(i) if |Br ∩ {u = 0}| = 0, then u is harmonic in Br and Br ∩ {u = 0} = ∅.
(ii) if |Br ∩ {u > 0}| = 0, then u = 0 in Br , i.e. Br ∩ {u > 0} = ∅.
In order to prove (i) we notice that u is necessarily harmonic in Br , since otherwise
we can contradict the minimality of u by replacing it with the harmonic function
with the same boundary values. By the strong maximum principle, u is strictly
positive in Br . The proof of (ii) follows directly from (b). ��

2.3 Half-Plane Solutions

The so-called half-plane solutions (see Fig. 2.1)

hν(x) = √
�(x · ν)+

play a fundamental role in the free boundary regularity theory. In fact, in the next
sections we will show that if a local minimizer u is close to a half-plane solution
(at some, possibly very small, scale), then the free boundary is C1,α regular; then,
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Fig. 2.1 A half-plane
solution

−ν

hν = 0

Δhν = 0

|∇hν | =
√

Λ

we will also prove that at almost-every free boundary point the solution u coincides
with a half-plane solution at order 1.

In this subsection, we make a first step in this direction and we prove that the half-
plane solutions are global minimizers. This result is usually omitted in the literature
since it is implicitly contained in the fact that the blow-up limits at the points of the
reduced free boundary (of any local minimizer) are indeed half-plane solutions (we
will prove this fact later, in Lemma 6.11). The main result of this subsection is the
following.

Proposition 2.10 (The Half-Plane Solutions Are Local Minimizers) Let ν ∈ Rd

be a unit vector. Then the function Hν(x) = √
� (ν · x)+ is a global minimizer of

F�.

Definition 2.11 (Local Minimizers) Let D be an open set in Rd . We say that the
function u : D → R is a local minimizer of F� in D, if u ∈ H 1

loc(D), u ≥ 0, and
for any bounded open set � such that � ⊂ D, we have

F�(u,�) ≤ F�(v,�) for every v ∈ H 1
loc(D) such that u−v ∈ H 1

0 (�).

Definition 2.12 (Global Minimizers) We say that the function u : Rd → R is a
global minimizer of F�, if u is non-negative on Rd , u ∈ H 1

loc(R
d ) and u is a local

minimizer of F� in Rd .

In order to prove the minimality of the half-plane solutions, we will need the
following lemma. We notice that it is useful also in other contexts. For instance, it
allows to prove that the solutions of (2.1) are bounded.

Lemma 2.13 Let D ⊂ Rd be a bounded smooth open set or D = Rd . Let x0 ∈ Rd

be a given point, ν ∈ Rd be a unit vector and let

v(x) = hν(x − x0) = √
� sup{0, (x − x0) · ν}.
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Suppose that u ∈ H 1(D) is a non-negative function such that

u = 0 on ∂D ∩ {v = 0}.

Then

F�(u ∧ v,D) ≤ F�(u,D),

with an equality if and only if u = u ∧ v.
In particular, if u is a solution to (2.1), then u has bounded support. Precisely,

u = 0 outside the set conv(D) + B1, where conv(D) is the convex hull of D.

Proof Without loss of generality we can suppose that ν = ed and x0 = 0. For the
sake of simplicity, we set H+ = {xd > 0} and H− = {xd < 0}. Then

F�(u,D) − F�(u ∧ v,D) =
∫

H−
|∇u|2 dx + �

∣∣H− ∩ {u > 0}∣∣

+
∫

H+∩{u>
√

�xd }
(|∇u|2 − |∇v|2) dx,

where (in the case when D is bounded) we assume that u is extended by zero on
H− \ D. By the fact that v(x) = �x+

d is harmonic on {xd > 0}, we get that
∫

H+∩{u>
√

� xd }
(|∇u|2 − |∇v|2) dx =

∫

H+∩{u>
√

� xd }
(|∇(u − v)|2 + 2∇v · ∇(u − v)+

)
dx

=
∫

H+∩{u>
√

� xd }
|∇(u − v)|2 dx − 2

√
�

∫

{xd =0}
u dHd−1.

We recall that for every u ∈ H 1({xd < 0}) we have the inequality1
∫

{xd<0}
|∇u|2 dx + �

∣
∣{u > 0} ∩ {xd < 0}∣∣ ≥ 2

√
�

∫

{xd=0}
u dHd−1,

where the equality holds, if and only if, u ≡ 0 on {xd < 0}. Thus, we obtain

F�(u,�) − F�(u ∧ v,�) ≥
∫

H+∩{u>
√

� xd }
|∇(u − v)|2 dx ≥ 0,

where the last inequality is an equality if and only if u ≤ v on Rd . ��

1 Indeed, if f : R → R+ is a Sobolev function such that f (a) = 0 for some a < 0, then we have

f (0) =
∫ 0

a

f ′(t) dt ≤ ∣∣{f �= 0} ∩ {a ≤ t ≤ 0}∣∣ 12
(∫ 0

a

|f ′(t)|2 dt

) 1
2

≤ 1

2

(∣
∣{f �= 0} ∩ {t ≤ 0}∣∣+

∫ 0

a

|f ′(t)|2 dt

)
.
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Proof of Proposition 2.10 Without loss of generality we may suppose that ν = ed

and set

h(x) = √
� x+

d .

Suppose that R > 0 and u ∈ H 1
loc(R

d) is a non-negative function such that u − h ∈
H 1

0 (BR). It is sufficient to prove that F�(h,BR) ≤ F�(u,BR). By Lemma 2.13 we
have that

F�(u ∧ h,BR) ≤ F�(u,BR).

Thus, we may suppose that u ≤ h. Since h is harmonic in {xd > 0} we get that

F�(u,BR) − F�(h,BR) =
∫

{xd>0}
∣∣∇(u − h)

∣∣2 dx − �
∣∣{xd > 0} ∩ {u = 0}∣∣

=
∫

{xd>0}∩{u>0}
∣
∣∇(u − h)

∣
∣2 dx,

where the last equality is due to the fact that

|∇(u − h)| = |∇h| = √
� on the set {u = 0}.

This concludes the proof. ��

2.4 Radial Solutions

In this subsection, we give two examples of local minimizers, which are radial
functions. Despite of being ones of the few non-trivial examples of local minimizers,
they will also be useful in the proof (to be precise, in one of the two proofs that we
will give) of the fact that the local minimizers satisfy an overdetermined condition
on the free boundary in viscosity sense (see Definition 7.6 and Proposition 7.1).

Let D be a bounded open set in Rd with smooth boundary. We consider the
following variational minimization problem in the exterior domain Rd \ D.

min

{∫

Rd

|∇u|2 dx + ∣∣{u > 0}∣∣ : u ∈ H 1(Rd ), u = 1 in D

}
. (2.3)

The “interior” version of this problem reads as

min

{∫

D

|∇u|2 dx + ∣∣{u > 0} ∩ D
∣
∣ : u ∈ H 1(D), u = 1 on ∂D

}
. (2.4)

We first prove that the problems (2.3) and (2.4) admit solutions.
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Lemma 2.14 (Existence of a Solution) Suppose that D is a bounded open set in
Rd with smooth boundary. Then the variational problems (2.3) and (2.4) admit
solutions.

Proof We give the proof for (2.3), the case (2.4) being analogous (and easier as
it does not require the use of Lemma 2.13). Let un be a minimizing sequence in
H 1(Rd). By Lemmas 2.4 and 2.13 we can suppose that 0 ≤ un ≤ 1 and supp (un) ⊂
conv(D) + B1. Now, up to a subsequence, we may suppose that un converges in
L2(Rd) and pointwise almost everywhere to a function u ∈ H 1(Rd ). The claim
follows by the semicontinuity of F�. ��

In Propositions 2.15 and 2.16, we will prove that, in the special case when the
domains D in (2.3) and (2.4) are balls, the solution is unique and can be computed
explicitly.

Proposition 2.15 (Optimal Exterior Domains) Let the domain D in Rd be the
ball Br . Then, there is a unique solution ur of (2.3). Moreover, for every r , there is
a radius R > r , uniquely determined by r and d , such that ur is given by

ur = 1 in Br , ur = 0 in R
d \ BR and ur = hr in BR \ Br ,

where hr is a radial harmonic function (as on Fig. 2.2). Precisely, hr is given by

hr(x) = |x|2−d − R2−d

r2−d − R2−d
if d ≥ 3 , hr(x) = ln |x| − lnR

ln r − lnR
if d = 2 .

Moreover, the radius R and the function ur satisfy the following properties:

(i) The radius R = R(r) is a continuous function of r such that

r < R < r + 1

and

lim
r→+∞ |R(r) − (r + 1)| = 0.

Fig. 2.2 An exterior radial
solution

Δur = 0

ur = 1 on Br

|∇ur| = 1 on ∂BR
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(ii) The gradient of hr is given by

|∇hr |(x) = (|x|/R)1−d .

Proof We first notice that taking the Schwartz symmetrization u∗ of any function
u we get that F1(u

∗,Rd) ≤ F1(u,Rd). Thus, there is a minimizer of F1 which is a
radial function. We first show that there is a unique radial function that minimizes
of F1 in the class of radial functions.

Let d ≥ 3. For every 0 < r < R, consider the function

ur ,R(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if |x| ≤ r ,
|x|2−d − R2−d

r2−d − R2−d
, if r < |x| < R,

0, if |x| ≥ R.

Since ur ,R is the unique harmonic function in BR \ Br , we get that the minimizer of
F1 among the radial functions is necessarily given by a function of the form ur ,R.
We calculate the energy

F1(ur ,R,Rd) =
∫

BR\Br

|∇ur ,R|2 dx + |BR| = d(d − 2)ωd

r2−d − R2−d
+ ωdRd .

We notice that the function f (R) := d(d − 2)

r2−d − R2−d
+ Rd is strictly convex and

lim
R→r+ f (R) = lim

R→+∞ f (R) = +∞.

Thus, there is a unique radiusR > r that minimizes f . We denote this radius by R∗.
Notice that, since f ′(R∗) = 0, we have

Rd−1∗
(
r2−d − R2−d∗

) = d − 2. (2.5)

Let d = 2. For every 0 < r < R, consider the function

ur ,R(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if |x| ≤ r ,
ln (R/|x|)
ln (R/r)

, if r < |x| < R,

0, if |x| ≥ R.

As in the case d ≥ 3, we calculate the energy

F1(ur ,R,R
d) =

∫

BR\Br

|∇ur ,R|2 dx + |BR| = 2π

ln (R/r)
+ πR2.
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As in the case d > 2, there is a unique R∗ > r that minimizes the function R �→
F(ur ,R). Moreover,R∗ is such that

R∗
(
lnR∗ − ln r

) = 1. (2.6)

We notice that the claims (i) and (ii) follow by (2.5) and (2.6).
We now prove that the functions ur ,R∗ are the unique minimizers ofF1 among all

admissible functions. Indeed, consider any minimizer u of F1 and suppose that it is
not radial. We notice that the symmetrized function u∗ is also a solution. Since it is
radial, we get that u∗ = ur ,R∗

d
and in particular |{u > 0}| = |BR∗ |. By Lemma 2.5,

the functions v = u ∧ u∗ and V = u ∨ u∗ are also minimizers of F . If u is not
radial, then we have |{v > 0}| �= |BR∗ | or |{V > 0}| �= |BR∗ |. On the other
hand the symmetrized function v∗ and V ∗ are also solutions and so, we must have
v∗ = V ∗ = u∗ and in particular |{v > 0}| = |{V > 0}| = |BR∗ |, which is in
contradiction with the assumption that u is not radially symmetric. ��

Proposition 2.16 (Optimal Interior Domains) Let the domain D in Rd be the
ball BR . Then, there is a dimensional constant Cd > 0 such that, for every R > Cd ,
there is a unique solution uR of (2.4). Moreover, uR is radially symmetric and has
the following properties:

uR = 1 on ∂BR , uR = 0 in Br and uR = hR in BR \ Br ,

(2.7)

where hR is a radially symmetric harmonic function (see Fig. 2.3). Precisely,

hR(x) = |x|2−d − r2−d

R2−d − r2−d
if d ≥ 3 , hR(x) = ln |x| − ln r

lnR − ln r
if d = 2 ,

Fig. 2.3 An interior radial
solution

ΔuR = 0

uR = 1 on BR

uR = 0 and |∇uR| = 1 on ∂Br
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where the radius r depends on R and d and has the following properties:

(i) The radius r = r(R) is a continuous function of R such that

lim
R→+∞ |r(R) − (R − 1)| = 0.

(ii) The gradient of hR is given by

|∇hR|(x) = (|x|/r)1−d .

Proof As in the proof of Lemma 2.15, we start by noticing that for every function
u, there is a radially symmetric function u∗ with lower energy. In fact, it is sufficient
to consider the function v = 1 − u and its Schwartz symmetrization v∗. We define
u∗ as u∗ := 1 − v∗ and we notice that

F1(u
∗,BR) =

∫

BR

|∇u∗|2 dx + |{u∗ > 0} ∩ BR | =
∫

BR

|∇v∗|2 dx + |{v∗ < 1} ∩ BR |

≤
∫

BR

|∇v|2 dx + |{v < 1} ∩ BR | =
∫

BR

|∇u|2 dx + |{u > 0} ∩ BR | = F1(u,BR).

Thus, there exists a radially symmetric minimizer u∗ of F . Now, since u∗ is
harmonic in {u∗ > 0}, it should be of the form u∗ = ur ,R , where ur ,R is given
by (2.7) for some radius r < R. Now, for any r ∈ (0,R), the energy of ur ,R is given
by

F1(ur ,R,BR) =
∫

BR\Br

|∇ur ,R|2 dx + |BR \ Br | = d(d − 2)ωd

r2−d − R2−d
+ ωd(Rd − rd).

Consider the function

f (r) := d(d − 2)

r2−d − R2−d
− rd .

It is easy to check that,

lim
r→0

f (r) = 0 and lim
r→R

f (r) = +∞.

Moreover, for R large enough, f (R/2) < 0. We now calculate

f ′(r) = d(d − 2)2r1−d

(
r2−d − R2−d

)2 − drd−1.

Thus, f ′(r) = 0 if and only if

g(r) := (d − 2) − r + rd−1R2−d = 0.
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Now, the equation g(r) = 0 has at most two solutions and we have that

g(0) = g(R) = d − 2 > 0.

On the other hand, for R large enough, we have

g(d − 1) < 0 and g(R − 2) < 0.

Thus, the equation g(r) = 0 has exactly two solutions:

r− ∈ (0, d − 1) and r+ ∈ (R − 2,R).

Now, let Md be the minimum of f in the interval [0, d − 1]. For R large enough, we
have

f (R − 2) = (R − 2)d−2
(

d(d − 2)

1 − (1 − 2/R)d−2 − (R − 2)2
)

< Md .

Thus, there is a unique r ∈ (0,R) that minimizes f in (0,R). Moreover, R − 2 <

r < R. Moreover, the claim (i) follows from the fact that, for every ε > 0, there is
Rε > 0 such that if R > Rε , then

g(R − (1 − ε)) < 0 and g(R − (1 + ε)) > 0.

This implies that R − (1 + ε) ≤ r(R) ≤ R − (1 − ε), which is precisely (i).
Let now d = 2. For every r ∈ (0,R), consider the function ur ,R given by (2.7)

for some r > 0. We calculate the energy

F1(ur ,R ,BR) =
∫

BR\Br

|∇ur ,R|2 dx + |BR \ Br | = 2π

ln (R/r)
+ π(R2 − r2).

Next, we define

f (r) := 2

lnR − ln r
− r2,

we calculate

f ′(r) = 2

r(lnR − ln r)2
− 2r ,

and we set

g(r) := 1 − r(lnR − ln r).
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As above, g can have at most two zeros in the interval (0,R). Moreover, g(0) =
g(R) = 1 and for R large enough, we have

g(1) = 1 − lnR < 0 and g(R − 2) = 1 − (R − 2) ln

(
1 − 2

R − 2

)
< 0.

Thus, the two zeros of g are in the intervals (0, 1) and (R−2,R), respectively. Now,
for R large enough, we have

f (R − 2) = 2

ln
(
1 + 2

R−2

) − (R − 2)2 < −1 < f (1).

Thus, for large enough R, there is a unique r that minimizes f in (0,R) and R−2 <

r < R. The claim (i) follows as in the case d > 2. The claim (ii) is immediate and
follows from the equation g(r) = 0. The uniqueness of the solution now follows as
in Lemma 2.15. ��
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Chapter 3
Lipschitz Continuity of the Minimizers

In this section, we will prove that the local minimizers of F� are Lipschitz
continuous. Our main result is the following.

Theorem 3.1 Let D ⊂ Rd be an open set and u ∈ H 1
loc(D). Suppose that u is a

local minimizer of F� in D. Then, u is locally Lipschitz continuous in D.

Theorem 3.1 is a consequence of the more general Theorem 3.2, which can be
applied not only to minimizers of F� (we will need this result for the proofs of
Theorems 1.2, 1.4 and 1.10), but also to the case of minimizers for the problem
with a measure constraint (Theorem 1.9); we notice that we will be able to apply
Theorem 3.2 to (1.6) only after proving that an outwards minimality property of the
type (3.1) holds at very small scale (see Sect. 11.5).

Theorem 3.2 Let D be a bounded open set in Rd and u ∈ H 1(D) be a non-negative
function satisfying the following minimality condition:

F�(u,D) ≤ F�(v,D) for every v ∈ H 1(D) such that

u − v ∈ H 1
0 (D) and �u ⊂ �v . (3.1)

Then, u is locally Lipschitz continuous in D.

The outwards minimality condition appeared recently in [9] in the context of a
shape optimization problem, which can be reduced to a free boundary problem for
vector-valued functions (see [41]). This property proved to be very useful only in the
context of other free boundary and shape optimization problems as, for instance, the
ones involving functionals depending on the perimeter of the set (see [21] and [22]).
In the case of F� the outwards minimality condition (3.1) can also be expressed in
a different way. We give the precise statement in the following lemma.
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Lemma 3.3 Let D be a bounded open set in Rd and u ∈ H 1(D) be a given non-
negative function. Then the following are equivalent:

(i) u satisfies the minimality condition (3.1);
(ii) u is harmonic in �u in the following sense:

∫

D

|∇u|2 dx ≤
∫

D

|∇v|2 dx for every v ∈ H 1(D) such that

u − v ∈ H 1(Rd ) and u − v = 0 a.e. in R
d \ �u,
(3.2)

and satisfies the minimality condition

F�(u,D) ≤ F�(v,D) for every v ∈ H 1(D) such that

u − v ∈ H 1
0 (D) and u ≤ v in D.

(3.3)

Remark 3.4 (On the Sign of the Test Functions in (3.1), (3.2) and (3.3)) Since u is
non-negative in D, we may suppose that the test functions v in (3.1), (3.2) and (3.3)
are all non-negative.

Proof of Lemma 3.3 The fact that (3.1) implies (3.2) and (3.3) is trivial. Suppose
now that u satisfies both (3.2) and (3.3) and let v ∈ H 1(D) be a non-negative
function such that u − v ∈ H 1

0 (D) and �u ⊂ �v . Then consider the test functions
u ∧ v and u ∨ v. Since u ∧ v = 0 outside �u, by (3.2), we have that

∫

D

|∇u|2 dx ≤
∫

D

|∇(u ∧ v)|2 dx.

On the other hand, since u ∨ v ≥ u, (3.3) implies that

∫

D

|∇u|2 dx + �|�u| ≤
∫

D

|∇(u ∨ v)|2 dx + �|�u∨v|.

Summing up the two inequalities, we get

2
∫

D

|∇u|2 dx + �|�u| ≤
∫

D

|∇(u ∧ v)|2 dx +
∫

D

|∇(u ∨ v)|2 dx + �|�u∨v|

=
∫

D

|∇u|2 dx +
∫

D

|∇v|2 dx + �|�v|,

which is precisely (3.1). ��
We will give three different proofs of Theorem 3.2, but in each one of them, the

conclusion (the Lipschitz continuity of u) will be a consequence of the following
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estimate on the growth of the function u at the free boundary

∫
∂Br (x0)

u dHd−1 ≤ C r for every x0 ∈ ∂�u and every 0 < r < r0,

(3.4)

where r0 > 0 and C > 0 are universal constants depending on the distance to the
boundary ∂D. We give the precise statement in the following lemma.

Lemma 3.5 Suppose that u ∈ H 1(D) is a non-negative function such that:

• u is harmonic in the interior of the set �u := {u > 0};
• u satisfies the inequality (3.4) with constants C and r0 uniformly in D.

Then the set �u is open and the function u is locally Lipschitz continuous in D.
Precisely, the gradient of u can be estimated as

‖∇u‖L∞(Dδ) ≤ Cd

(

C +
‖u‖L1(Dδ/2)

δd+1

)

for every 0 < δ < r0,

where Cd is a dimensional constant and, for r > 0, we use the notation

Dr :=
{
x ∈ D : dist (x, ∂D) > r

}
.

Proof Suppose that x0 ∈ D ∩ ∂�u. Passing to the limit as r → 0 the estimate (3.4)
we obtain that u(x0) = 0. Thus �u ∩ ∂�u = ∅ and so �u is open.

Let now x0 ∈ Dδ . We consider two cases.

• If dist(x0, ∂�u) ≥ δ/4, then u is harmonic in the ball Bδ/4(x0) and so, by the
gradient estimate (see for example [30]) we have

|∇u(x0)| ≤ Cd

δd+1

∫

Bδ(x0)

u dx,

where Cd is a dimensional constant.
• If dist(x0, ∂�u) < δ/4, then we suppose that the distance to the free boundary is

realized by some y0 ∈ ∂�u and we set

r = dist(x0, ∂�u) = |x0 − y0|.

Since u is harmonic inBr(x0), we can again apply the gradient estimate obtaining

|∇u(x0)| ≤ Cd

rd+1

∫

Br(x0)

u dx ≤ Cd

rd+1

∫

B2r (y0)

u dx ≤ Cd C,
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where the second inequality follows by the positivity of u and the inclusion
Br(x0) ⊂ B2r (y0). The last inequality is simply a consequence of (3.4) and the
fact that

∫

B2r (y0)

u dx =
∫ 2r

0
ds

∫

∂Bs(y0)

u dHd−1.

��

Remark 3.6 (An Alternative Statement of (3.4)) We notice that (3.4) is a conse-
quence of the following inequality

∫
∂Br (x0)

u dHd−1 ≤ C r for every x0 ∈ {u = 0} and every 0 < r < r0.

(3.5)

This is trivial if we knew a priori that u is continuous, but is true also in general.
Indeed, by Lemma 2.9, we have that

∂�u =
{
x0 ∈ D : 0 < |�u ∩ Br(x0)| < |Br | for every r > 0

}
.

Thus, every point x0 ∈ ∂�u can be obtained as limit of points xn ∈ {u = 0},
for which the estimate (3.5) does hold. The claim follows by the continuity of the
function

x �→
∫

∂Br(x)

u dHd−1,

for every fixed r > 0, which is due to the fact that u ∈ H 1(D).

The rest of this section is dedicated to the proof of (3.4) in the hypotheses of
Theorem 3.2. In the next three subsections we will give three different proofs of this
fact.

• Section 3.1. The Alt-Caffarelli proof of the Lipschitz continuity.
In this section we present the original proof proposed by Alt and Caffarelli

(see [3]), which we divide in two steps (Lemmas 3.7 and 3.8). This entire section
comes directly from [51] and we report it here for the sake of completeness.

• Section 3.2. The Laplacian estimate.
In this section we give a proof, which is inspired from the proof of the

Lipschitz continuity of the solution to the two-phase problem, which was given
by Alt, Caffarelli and Friedman in [4]. In our case there is only one phase
(that is, the solution u is positive), so we do not make use of the two-phase
monotonicity formula of Alt-Caffarelli-Friedman, which significantly simplifies
the proof. This approach can be used also in other situations, for instance, for
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functionals involving elliptic operators (in divergence form) with non-constant
coefficients (see [46]).

• Section 3.3. The Danielli-Petrosyan approach.
This last subsection is dedicated to the method proposed by Danielli and

Petrosyan in [18] in the context of non-linear operators. It consists of two
steps. The first one is to show that u is Hölder continuous. This part of the
argument is very general and is based on classical regularity estimates for
(almost-)minimizers of variational problems. In the second step of the proof, the
Lipschitz continuity is obtained by absurd and the result of the first step is used to
assure the convergence of the sequence of minimizers produced by contradiction.
This type of argument (proving a weaker estimate and then obtaining the main
result by contradiction) will be used also in Chap. 8, this time to obtain the
regularity of the free boundary.

3.1 The Alt-Caffarelli’s Proof of the Lipschitz Continuity

This subsection contains the original argument proposed by Alt and Caffarelli in
[3]. The main steps of the proof are the following:

• Comparing the energy F�(u,Br(x0)) of u in the ball Br(x0) with the one of the
harmonic extension h of u in Br(x0) we get

∫

Br (x0)

|∇(u − h)|2 dx ≤ �
∣
∣{u = 0} ∩ Br(x0)

∣
∣.

• It is now sufficient to estimate from below the right-hand side of the above
inequality. In Lemma 3.7 we will prove that

1

r2

∣
∣{u = 0} ∩ Br(x0)

∣
∣
(∫

∂Br(x0)

u dHd−1
)2

≤ Cd

∫

Br(x0)

|∇(u − h)|2 dx.

• If x0 ∈ �u, then
∣
∣{u = 0}∩Br(x0)

∣
∣ �= 0. Combining the two inequalities we get

1

r

∫
∂Br (x0)

u dHd−1 ≤ √Cd�.

We now give the details of the proof sketched above. The key ingredient is the
following trace-type inequality (Lemma 3.7), which is implicitly contained in the
proof of the Lipschitz continuity given in [3] (and can also be found in [51]) and is
an interesting result by itself.
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Lemma 3.7 For every u ∈ H 1(Br) we have the following estimate:

1

r2

∣∣{u = 0} ∩ Br

∣∣
(∫

∂Br

u dHd−1
)2

≤ Cd

∫

Br

|∇(u − h)|2 dx, (3.6)

where:

• Cd is a constant that depends only on the dimension d;
• h is the harmonic replacement of u in Br , that is, the harmonic function in Br

such that u = h on ∂Br .

Proof We report here the proof for the sake of completeness, and refer the reader
to [3, Lemma 3.2 ]. We note that it is sufficient to prove the result in the case u ≥ 0.
Let v ∈ H 1(Br ) be the solution of the problem

min

{∫

Br

|∇v|2 dx : u − v ∈ H 1
0 (Br), v ≥ u

}
.

Notice that v is super-harmonic on Br and harmonic on the set {v > u}.
For each |z| ≤ 1/2, we consider the functions uz and vz defined on Br as

uz(x) := u
(
(r − |x|)z + x

)
and vz(x) := v

(
(r − |x|)z + x

)
.

Note that both uz and vz still belong toH 1(Br) and that their gradients are controlled
from above and below by the gradients of u and v. We call Sz the set of all |ξ | = 1

such that the set
{
ρ :

r

8
≤ ρ ≤ r , uz(ρξ) = 0

}
is not empty. For ξ ∈ Sz we define

rξ = inf
{
ρ :

r

8
≤ ρ ≤ r , uz(ρξ) = 0

}
.

For almost all ξ ∈ Sd−1 (and then for almost all ξ ∈ Sz), the functions ρ �→
∇uz(ρξ) and ρ �→ ∇vz(ρξ) are square integrable. For those ξ , one can suppose
that the equation

(
(uz(ρ2ξ) − vz(ρ2ξ)

) − (uz(ρ1ξ) − vz(ρ1ξ)
) =

∫ ρ2

ρ1

ξ · ∇(uz(ρξ) − vz(ρξ)
)
dρ,

holds for all ρ1, ρ2 ∈ [0, r]. Moreover, we have the estimate

vz(rξ ξ) =
∫ r

rξ

ξ · ∇(vz − uz)(ρξ) dρ ≤ √r − rξ

(∫ r

rξ

|∇(vz − uz)(ρξ)|2 dρ

)1/2

.
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Since v is superharmonic we have that, by the Poisson’s integral formula,

v(x) ≥ h(x) = r2 − |x|2
dωdr

∫

∂Br

u(y)

|x − y|d dHd−1(y) ≥ cd
r − |x|

r

∫
∂Br

u dHd−1,

where h is the harmonic function such that h = u(= v) on ∂Br . Taking

x = (r − rξ )z + rξ ξ ,

we have

vz(rξ ξ)=v
(
(r−rξ )z+rξ ξ

)≥ cd

2

r − rξ

r

∫
∂Br

u dHd−1 = cd

2

r − rξ

r

∫
∂Br

uz dHd−1.

Combining the two inequalities, we have

r − rξ

r2

(∫
∂Br

u dHd−1
)2

≤ Cd

∫ r

rξ

|∇(vz − uz)|2(ρξ) dρ.

Integrating over ξ ∈ Sz ⊂ Sd−1, we obtain the inequality

(∫

Sz

r − rξ

r2
dξ

)(∫
∂Br

u dHd−1
)2

≤ Cd

∫

∂B1

∫ r

rξ

|∇(vz − uz)(ρξ)|2 dρ dξ ,

and, by the estimate that r/8 ≤ rξ ≤ r , we have

1

r2

∣
∣{u = 0} ∩ Br\Br/4(rz)

∣
∣
(∫

∂Br

u dHd−1
)2

≤ Cd

∫

Br

|∇(vz − uz)|2 dx

≤ Cd

∫

Br

|∇(v − u)|2 dx.

Integrating over z, we obtain (3.6). ��

Lemma 3.8 Suppose that u ∈ H 1
loc(D) be a local minimizer of F� in the open set

D ⊂ Rd . Then for every ball Br(x0) ⊂ D we have

∣∣{u = 0} ∩ Br(x0)
∣∣
(√

Cd� − 1

r

∫
∂Br(x0)

u dHd−1
)

≥ 0.

In particular, if x0 ∈ ∂�u, then

∫
∂Br(x0)

u dHd−1 ≤ Cd

√
� r .
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Proof Suppose that x0 = 0. Let h ∈ H 1(Br) be the harmonic function in Br such
that h = u on ∂Br . By the optimality of u we get

∫

Br

|∇u|2 dx + �
∣
∣{u > 0} ∩ Br

∣
∣ ≤

∫

Br

|∇h|2 dx + �|Br |.

Now using (3.6) and the fact that

∫

Br

|∇(u − h)|2 dx =
∫

Br

(
|∇u|2 − |∇h|2

)
dx ≤ �|{u = 0} ∩ Br |,

we get

∣
∣{u = 0} ∩ Br

∣
∣
(√

Cd� − 1

r

∫
∂Br

u dHd−1
)(√

Cd� + 1

r

∫
∂Br

u dHd−1
)

≥ 0,

which gives the claim. ��

3.2 The Laplacian Estimate

In this section, we propose a different approach to the Lipschitz continuity of u.
The method comes from the two-phase free boundary theory and, in particular,
from the work of Alt-Caffarelli-Friedman [4] and Briançon-Hayouni-Pierre [7].
This argument was also adapted to the vectorial case in [41] and to a one-phase
shape optimization problem in [46]. The proof consists of two steps:

• For every local minimizer u of F1 we have that �u is a positive measure. In
Lemma 3.9, we prove that the optimality of u implies the estimate

�u(Br) ≤ C rd−1.

• In Lemma 3.10, we show that the Laplacian estimate and the classical identity

d

dr

∫
∂Br

u dHd−1 = �u(Br)

d ωd rd−1
,

imply that

∫
∂Br

u dHd−1 ≤ Cr ,

which gives the Lipschitz continuity of u by Proposition 3.5.
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Lemma 3.9 (The Laplacian Estimate) Suppose that u is a local minimizer of F1
in D. Then, for every ball Br(x0) such that B2r (x0) ⊂ D we have

�u(Br(x0)) ≤ C rd−1.

Proof Without loss of generality we can assume that x0 = 0. We now notice that
by Lemma 2.6 the distributional Laplacian

�u(ϕ) := −
∫

D

∇u · ∇ϕ dx for every ϕ ∈ C1
c (D),

is a positive Radon measure. We first prove that

�u(ϕ) ≤ Cd r
d/2 ‖∇ϕ‖L2(Br)

for every ϕ ∈ C∞
c (Br) and every Br ⊂ D.

(3.7)

Indeed, for every ψ ∈ C∞
c (Br), the optimality of u gives

∫

Br

|∇u|2 dx ≤
∫

Br

|∇u|2 dx + ∣∣{u > 0} ∩ Br

∣
∣ ≤

∫

Br

|∇(u + ψ)|2 dx + |Br |.

Developing the gradient on the right-hand side, we get

−
∫

Br

∇u · ∇ψ dx ≤ 1

2

(∫

Br

|∇ψ|2 dx + ωd rd

)
.

Setting ψ = r
d/2 ‖∇ϕ‖−1

L2(Br )
ϕ, we get

−
∫

Br

∇u · ∇ϕ dx ≤ 1 + ωd

2
r

d/2 ‖∇ϕ‖L2(Br )
,

which is precisely (3.7) with Cd = 1 + ωd

2
.

Let now ϕ ∈ C∞
c (B2r ) be such that

ϕ ≥ 0 on B2r , ϕ = 1 on Br , and ‖∇ϕ‖L∞(B2r ) ≤ 2

r
.

Thus, ϕ ≥ 1Br and by the positivity of �u we have

�u(Br) ≤ �u(ϕ) ≤ Cd (2r)d/2 ‖∇ϕ‖L2(B2r )
≤ Crd−1.

��
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Now the estimate (3.4) follows by the following lemma.

Lemma 3.10 Suppose that u ∈ H 1(BR) is a non-negative sub-harmonic function
in the ball BR ⊂ Rd such that u(0) = 0. Suppose that there is a constant C > 0
such that

�u(Br) ≤ C rd−1 for every 0 < r < R. (3.8)

Then we have
∫

∂Br

u dHd−1 ≤ C

dωd

r for every 0 < r < R. (3.9)

Proof We first notice that for every smooth uε we have

d

dr

∫
∂Br

uε dHd−1 =
∫

∂Br

∂uε

∂n
dHd−1 = 1

d ωd rd−1

∫

Br

�uε(x) dx.

Integrating in r and passing to the limit as ε → 0 we get

∫
∂Br

u dHd−1 ≤
∫ r

0

�u(Br)

d ωd rd−1
dr .

Now, using (3.8) we get (3.9). ��

3.3 The Danielli-Petrosyan Approach

Finally, in the last section dedicated to the Lipschitz continuity of the minimizers,
we present another proof, which is due to Danielli and Petrosyan and was originally
carried out in the framework of the p-laplacian (see [18]). In fact, this proof is
very close in spirit to the one of the regularity of the free boundary that we will
present in Chap. 8. It consists of two steps. The first one is to prove that the local
minimizers are Hölder continuous and to find a uniform estimate on their C0,α

norm (see Lemma 3.11, Lemma 3.12 and Proposition 3.13). Then, the Lipschitz
continuity (see Proposition 3.15) follows by a contradiction argument, in which the
compactness is a consequence of the aforementioned uniform C0,α estimate.

Lemma 3.11 Suppose that � ⊂ Rd is a bounded open set and that the function
u ∈ H 1(�) ∩ L∞(�) is such that:

(a) u is non-negative and subharmonic in �;
(b) u satisfies the minimality condition (3.3) for some constant � > 0.
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Then, setting

ε = 2

d
, α = 2

2 + d
and C = 2d+3|B1|

(
� + ‖u‖2L∞(�)

)
,

the following inequality does hold:

∫

Bρ(x0)

|∇u|2 dx ≤ Cρd−2(1−α) for every Bρ(x0) ⊂ � with ρ ≤ 2− d+2
2 .

Proof Let r = ρ
1

1+ε . Thus we have Br(x0) ⊂ �. Without loss of generality we
can assume that x0 = 0. Let h be the harmonic extension of u in the ball Br . Then,
u ≤ h and, by the optimality of u, we get

∫

Br

|∇(u − h)|2 dx =
∫

Br

|∇u|2 dx −
∫

Br

|∇h|2 dx ≤ �|Br |.

Thus, we can estimate the gradient of u as follows

∫

B
r1+ε

|∇u|2 dx ≤ 2
∫

B
r1+ε

|∇(u − h)|2 dx + 2
∫

B
r1+ε

|∇h|2 dx

≤ 2
∫

Br

|∇(u − h)|2 dx + 2
|Br1+ε |
|Br/2|

∫

Br/2

|∇h|2 dx

≤ 2�|Br | + 2d+1rεd

∫

Br/2

|∇h|2 dx ,

where the second inequality follows by the fact that |∇h|2 is subharmonic in Br and
the inequality rε ≤ 1/2. Now, we use the Caccioppoli inequality

∫

Br/2

|∇h|2 dx ≤
∫

Br

|∇(hϕ)|2 dx =
∫

Br

|∇ϕ|2 h2 dx ≤ ‖∇ϕ‖2L∞

∫

Br

h2 dx ≤ 4|Br |M2

r2
,

where M = ‖u‖L∞(D) ≥ ‖h‖L∞(Br ) and ϕ is given by

ϕ(x) = 0 if |x| ≥ r , ϕ(x) = 1 if |x| ≤ r

2
, ϕ(x) = 2

r
(r − |x|) if

r

2
< |x| < r .

Since ρ = r1+ε and ε = 2/d we obtain

∫

Bρ

|∇u|2 dx ≤ 2�|B1|ρ d
1+ε + 2d+3|B1|M2ρd− 2

1+ε ≤ 2d+3|B1|
(
� + M2)ρ

d
1+ε

which gives the claim. ��
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Lemma 3.12 (Morrey) Suppose that � ⊂ Rd , u ∈ H 1(BR) and that there are
constants C > 0 and α ∈ (0, 1) such that

∫
Br (x0)

|∇u|2 dx ≤ Cr2(α−1) for every x0 ∈ BR/8 and every r ≤ R/2.

Then u ∈ C0,α(BR/8) and

|u(x) − u(y)| ≤ √
C

(
2d + 2

α

)
|x − y|α for every x, y ∈ BR/8.

Proof Suppose that x, y ∈ BR/8 and let r = |x − y|.
∣
∣∣
∣

∫

Br(x)

u −
∫

Br(y)

u

∣
∣∣
∣ =

∣
∣∣
∣

∫

Br

[
u(x + z) − u(y + z)

]
dz

∣
∣∣
∣

=
∣
∣
∣
∣

∫

Br

dz

∫ 1

0
(y − x) · ∇u(x(1 − t) + ty + z) dt

∣
∣
∣
∣

≤ |x − y|
∫

Br

dz

∫ 1

0
|∇u(x(1 − t) + ty + z)| dt

= |x − y|
∫ 1

0
dt

∫

Br

|∇u(x(1 − t) + ty + z)| dz

≤ |x − y|
∫ 1

0
dt

∫

B2r (x)

|∇u| = r

∫

B2r (x)

|∇u|

≤ r |B2r |
(∫

B2r (x)

|∇u|2
)1/2

≤ 2d
√

C|Br |rα.

Let now x0 ∈ BR/8 be fixed. Assume for simplicity that x0 = 0. Then we have

∫
Br

u −
∫

Bs

u =
∫

B1

[
u(rx) − u(sx)

]
dx =

∫
B1

dx

∫ r

s

x · ∇u(tx) dt

≤
∫

B1

dx

∫ r

s

|∇u(tx)| dt =
∫ r

s

dt

∫
B1

|∇u(tx)| dx =
∫ r

s

dt

∫
Bt

|∇u| dx

≤
∫ r

s

dt

(∫
Bt

|∇u|2 dx

)1/2

≤
∫ r

s

√
Ctα−1 dt ≤

√
C

α
rα ,

which concludes the proof. ��
The following proposition is a direct consequence of Lemmas 3.11 and 3.12.
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Proposition 3.13 (A Uniform Hölder Estimate) Suppose that the non-negative
function u ∈ H 1(B1) ∩ L∞(B1) satisfies the minimality condition (3.1) in the
set D = B1. Then, there is a dimensional constant Cd and a universal numerical
constant ρ > 0 (one may take ρ = 1/8) such that

∫

Bρ

|∇u|2 dx ≤ Cd

(
� + ‖u‖2L∞(B1)

)
,

and

|u(x) − u(y)| ≤ Cd

(
� + ‖u‖2L∞(B1)

) 1
2 |x − y| 2

2+d for every x, y ∈ Bρ .

We are now in position to prove the Lipschitz continuity of u. The idea is
to argue by contradiction. In fact, suppose that there is a sequence of functions
uk that minimize the functional F� in B1 and are such that uk(0) = 0 and
mk := ‖uk‖L∞(B1/2)

→ +∞. Then, the functions vk = m−1
k uk minimize F�/mk

and are such that vk(0) = 0 and ‖vk‖L∞(B1/2)
= 1. Now, if vk converges to some

v∞ weakly in H 1(B1/2), then v∞ is harmonic in B1/2. Moreover, if the convergence
is also uniform, then v∞(0) = 0, v∞ ≥ 0 in B1/2 and ‖v∞‖L∞(B1/2)

= 1, which is
impossible. Now, there are two main difficulties that we will have to deal with.

• The first one is the compactness of the sequence vk . Notice that the L∞ bound
of vk in B1/2 only assures the uniform C0,α bound strictly inside B1/2. On the
other hand if vk converges uniformly to zero inside B1/2 there wouldn’t be any
contradiction at the limit. Thus, we will need an Harnack-type inequality in order
to assure that vk remains bounded from below also inside B1/2. We will solve this
issue in the proof of Proposition 3.15.

• The second issue is the harmonicity of v∞, which will be a consequence of
Lemma 3.14 below.

Lemma 3.14 (Convergence of Local Minimizers) Let BR ⊂ Rd and un be a
sequence of non-negative functions in H 1(BR) such that:

(a) every un satisfies the quasi-minimality condition

F0(un,BR) ≤ F0(un + ϕ,BR) + εn

for every ϕ ∈ H 1
0 (Br) and every r < R , (3.10)

where εn is a vanishing sequence of positive constants.
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(b) the sequence un is uniformly bounded in H 1(BR), that is, for some constant
C > 0,

‖un‖2H 1(BR)
= F0(un,BR) +

∫

BR

u2n dx ≤ C for every n ≥ 1.

Then, there a non-negative u∞ ∈ H 1(BR) such that, up to a subsequence, we
have:

(i) un converges to u∞ strongly in H 1(Br ), for every 0 < r < R;
(ii) u∞ is harmonic in BR .

Proof Up to extracting a subsequence, we can suppose that the sequence un

converges to a function u∞ ∈ H 1(BR) weakly in H 1(BR), strongly in L2(BR)

and a.e. in BR . The weak H 1-convergence implies that for every 0 < r ≤ R

‖∇u∞‖L2(Br )
≤ lim inf

n→∞ ‖∇un‖L2(Br )
, (3.11)

with an equality, if and only if, (up to a subsequence) the convergence is strong in
Br . Up to extracting a subsequence we may assume that the limits in the right-hand
side of (3.11) do exist. In order to prove (i), we will show that, for fixed 0 < r < R,
we have

‖∇u∞‖L2(Br )
= lim

n→∞ ‖∇un‖L2(Br)
. (3.12)

Let η : BR → R be a function such that

η ∈ C∞(BR) , 0 ≤ η ≤ 1 in BR , η = 1 on ∂BR , η = 0 on Br .
(3.13)

Consider the test function ũn = ηun + (1 − η)u∞. Since un satisfies the (quasi-
)minimality condition (3.10), we have

∫

BR

|∇un|2 dx ≤
∫

BR

|∇ũn|2 dx + εn .

Next, since

|∇ũn|2 = ∣∣∇(ηun + (1 − η)u∞)
∣
∣2 = ∣∣(un − u∞)∇η + η∇un + (1 − η)∇u∞

∣
∣2,

and since un → u∞ strongly in L2(BR), we have

lim sup
n→∞

∫

BR

(
|∇ũn|2 − |∇un|2

)
dx

= lim sup
n→∞

∫

BR

(∣
∣(un − u∞)∇η + η∇un + (1 − η)∇u∞

∣
∣2 − |∇un|2

)
dx



3.3 The Danielli-Petrosyan Approach 53

= lim sup
n→∞

∫

BR

(
(η2 − 1)|∇un|2 + 2η(1 − η)∇un · ∇u∞ + (1 − η)2|∇u∞|2

)
dx

= lim sup
n→∞

∫

BR

(
1 − η2

)(|∇u∞|2 − |∇un|2
)

dx

≤ lim sup
n→∞

∫

{η=0}

(
|∇u∞|2 − |∇un|2

)
dx +

∫

BR\{η=0}
|∇u∞|2 dx. (3.14)

By the weak H 1 convergence of un to u∞ on the set {η = 0} \ Br , we have

∫

{η=0}\Br

|∇u∞|2 dx ≤ lim inf
n→∞

∫

{η=0}\Br

|∇un|2 dx ,

which implies

lim sup
n→∞

∫

{η=0}

(
|∇u∞|2 − |∇un|2

)
dx ≤ lim sup

n→∞

∫

Br

(
|∇u∞|2 − |∇un|2

)
dx

+ lim sup
n→∞

∫

{η=0}\Br

(
|∇u∞|2 − |∇un|2

)
dx

≤ lim sup
n→∞

∫

Br

(
|∇u∞|2 − |∇un|2

)
dx. (3.15)

On the other hand, the optimality of un gives

0 = lim
n→∞ εn ≤ lim sup

n→∞

∫

BR

(
|∇ũn|2 − |∇un|2

)
dx . (3.16)

Finally, (3.14), (3.15), and (3.16) give

0 ≤ lim sup
n→∞

∫

Br

(
|∇u∞|2 − |∇un|2

)
dx +

∫

{η>0}
|∇u∞|2 dx ,

which can be re-written as

lim inf
n→∞

∫

Br

|∇un|2 dx ≤
∫

Br

|∇u∞|2 dx +
∫

{η>0}
|∇u∞|2 dx.

Now, since η is arbitrary, we finally obtain

lim inf
n→∞

∫

Br

|∇un|2 dx ≤
∫

Br

|∇u∞|2 dx,

which concludes the proof of (i).
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We now prove (ii). Let 0 < r < R and ϕ ∈ H 1
0 (Br ). It is enough to show that

∫

BR

|∇u∞|2 dx ≤
∫

BR

|∇(u∞ + ϕ)|2 dx . (3.17)

Let η : BR → R be a function that satisfies (3.13) and is such that the set N :=
{η < 1} is a ball strictly contained in BR . Notice that

{ϕ �= 0} ⊂ Br ⊂ {η = 0} ⊂ N = {η < 1} ⊂ BR ,

the last two inclusions being strict. We define the competitor

vn = un + ϕ + (1 − η)(u∞ − un),

and we set for simplicity v∞ := u∞ + ϕ. Now, since ϕ = 0 on BR \ N , we have
that:

• vn = v∞ on the set {η = 0};
• (3.17) is equivalent to

∫

N
|∇u∞|2 dx ≤

∫

N
|∇(u∞ + ϕ)|2 dx .

Now, using the strong H 1 convergence of un in N , then the optimality of un and
again the strong H 1 convergence from claim (i), we get

∫

N
|∇u∞|2 dx = lim

n→∞

∫

N
|∇un|2 dx ≤ lim inf

n→∞

∫

N
|∇vn|2 dx =

∫

N
|∇v∞|2 dx ,

which concludes the proof. ��

Proposition 3.15 (Lipschitz Continuity of u) Suppose that the function u ∈
H 1(B2) is such that:

(a) u is non-negative in B2 and u(0) = 0;
(b) u is harmonic in �u = {u > 0};
(c) u satisfies the minimality condition

F�(u) ≤ F�(v) for every v ∈ H 1(B2)

such that u − v ∈ H 1
0 (B2) and u ≤ v in B2.

Then, there is a constant C�, depending only on � and d , such that

‖u‖L∞(B1/8)
≤ C�.

Proof Let uk ∈ H 1(B2) be a sequence of functions satisfying the hypotheses (a),
(b) and (c) above. Suppose, that uk(0) = 0 and set mk := ‖uk‖L∞(B1/8)

, for k ≥ 1.
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Fig. 3.1 The two sets Wk

and �k = {uk > 0}

For every k ≥ 1, we define the set (see Fig. 3.1)

Wk :=
{
x ∈ B1 : dist

(
x, {uk = 0}) ≤ 1

3
(1 − |x|)

}
.

Notice that, the set Wk and the function uk have the following properties:

• B1/8 ⊂ Wk (this is due to the fact that uk(0) = 0);
• uk is continuous on B1;
• as a consequence of the previous points, we have that the maximum of uk on the

(closed) set Wk is achieved at a point xk ∈ Wk ∩ B1 and we have

Mk := uk(xk) = max
x∈Wk

uk(x) ≥ mk .

Let �k := {uk > 0} and yk ∈ ∂�k be the projection of xk

on the (closed) set ∂�k ∩ B1. By definition xk ∈ Wk, we have that

rk := |xk − yk| = dist
(
xk , ∂�k

) ≤ 1

3
(1 − |xk|).

Thus, we get

|yk| ≤ |xk| + |xk − yk| ≤ |xk| + 1

3
(1 − |xk|) = 1 − 2

3
(1 − |xk|).

This implies that |yk| < 1 and

|yk| ≤ 1 − 2rk and
2

3
rk ≤ 1

3
(1 − |yk|).

Notice that the last inequality implies that Brk/2(yk) ⊂ Wk . Indeed, for every x ∈
Brk/2(yk), we have

dist(x, ∂�k) ≤ |x − yk| ≤ 1

2
rk ,
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while

1

3
(1 − |x|) ≥ 1

3
(1 − |yk|) − 1

3
|x − yk| ≥ 2

3
rk − 1

6
rk = 1

2
rk .

In particular, we obtain that

sup
Brk/2(yk)

uk ≤ Mk . (3.18)

On the other hand, the function uk is harmonic in Brk (xk) so, by the Harnack
inequality, we get that

uk(zk) ≥ uk(xk)

Cd

= Mk

Cd

where zk := 1

8
xk + 7

8
yk , (3.19)

and Cd > 1 is a dimensional constant. Now, (3.19) and (3.18) give

Mk

Cd

≤ uk(zk) ≤ �k ≤ Mk where �k := sup
Bρk

(yk)

uk and ρk = rk

4
.

Consider the function

vk(x) = uk(yk + ρkx)

uk(zk)
.

and the point ζk = zk − yk

ρk

. We have that:

(1) vk satisfies the minimality condition

F0(vk) ≤ F0(φ) + �|B2|
u2k(ζk)

,

for every φ ∈ H 1(B2) such that vk − φ ∈ H 1
0 (B2) and vk ≤ φ in B2;

(2) vk(0) = 0 and the point ζk ∈ B1 is such that

|ζk| = 1

2
, vk(ζk) = 1 and sup

B2

vk ≤ Cd vk(ζk) = Cd ;

(3) vk is harmonic in B1/2(ζk) and in �vk ;
(4) vk is non-negative and subharmonic in B2.

Now, by Proposition 3.13, we have that the sequence vk is uniformly bounded in
H 1(B1) and converges uniformly to a function v∞ in B1. Thus, we have

v∞(0) = 0 and v∞(ζ∞) = 1 and ζ∞ = lim
k→∞ ζk . (3.20)
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We will next prove that v∞ is harmonic in B1. Let k ∈ N be fixed and let φk : B1 →
R be a non-negative function such that φk = vk on ∂B1. Then, since vk is harmonic
in �vk , we have

∫

B1

|∇vk|2 dx ≤
∫

B1

|∇(vk ∧ φk)|2 dx.

On the other hand, the optimality condition (1) implies that

∫

B1

|∇vk|2 dx ≤
∫

B1

|∇(vk ∨ φk)|2 dx + �|B2|
u2k(zk)

.

Putting together these two estimates, we get

∫

B1

|∇vk |2 ≤
∫

B1

|∇φk|2 dx + εk where εk := �|B2|
u2k(zk)

.

Now, since εk → 0, by Proposition 3.14, we get that v∞ is harmonic in B1. This is
a contradiction with (3.20). ��
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Chapter 4
Non-degeneracy of the Local Minimizers

In this section we prove the non-degeneracy of the solutions to the one-phase
problem (2.1). Our main result is the following:

Proposition 4.1 (Non-degeneracy of the Solutions: Alt-Caffarelli [3]) Suppose
that D is a bounded open set in Rd and u ∈ H 1(D) is non-negative and minimizes
the functional F� in D, for some � > 0. Then, there is a constant κ > 0, depending
on � and d , such that the following claim holds:

If Br(x0) ⊂ D and x0 ∈ �u, then ‖u‖L∞(Br (x0)) ≥ κr .

The non-degeneracy holds in particular for functions satisfying the following
optimality condition:

F�(u,�) ≤ F�(v,�) for every v ∈ H 1(�) such that v ≤ u. (4.1)

For the sake of completeness, we notice that this optimality condition can also
be expressed in a different way, at least when it comes to functions u, which are
harmonic on their positivity set �u. In fact, the following result is analogous to
Lemma 3.3. Moreover, as in Lemma 3.3 (see Remark 3.4), we can suppose that all
the test functions v in (4.1), (4.3) and (4.2) are non-negative.

Lemma 4.2 Let D be a bounded open set in Rd and u ∈ H 1(D) be a given non-
negative function. Then the following are equivalent:

(i) u satisfies the inwards minimality condition

F�(u,D) ≤ F�(v,D) for every v ∈ H 1(D) such that

u − v ∈ H 1
0 (D) and �u ⊃ �v .

(4.2)

© The Author(s) 2023
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(ii) u is harmonic in �u in the following sense:

∫

D

|∇u|2 dx ≤
∫

D

|∇v|2 dx for every v ∈ H 1(D) such that

u − v ∈ H 1(Rd ) and u − v = 0 a.e. in R
d \ �u,
(4.3)

and satisfies the minimality condition (4.1).

Proof The implication (i) ⇒ (ii) is immediate. In fact, (4.2) implies both (4.3)
and (4.1). In order to prove that (ii) implies (i), we suppose that u satisfies (4.3)
and (4.1) and we consider a (non-negative) function v ∈ H 1(D) such that u − v ∈
H 1

0 (D) and �u ⊂ �v . As in the proof of Lemma 3.3, we consider the test functions
u∧ v and u∨ v. Since u∨ v = 0 on D \�u, the harmonicity of u (4.3) implies that

∫

D

|∇u|2 dx ≤
∫

D

|∇(u ∨ v)|2 dx.

On the other hand, we can use u ∧ v as a test function in (4.2). Thus

∫

D

|∇u|2 dx + �|�u| ≤
∫

D

|∇(u ∧ v)|2 dx + �|�u∧v|.

Summing these inequalities and using that �v = �u∧v , we obtain

2
∫

D

|∇u|2 dx + �|�u| ≤
∫

D

|∇(u ∨ v)|2 dx +
∫

D

|∇(u ∧ v)|2 dx + �|�u∧v|

=
∫

D

|∇u|2 dx +
∫

D

|∇v|2 dx + �|�v|,

which concludes the proof of (4.1). ��

Remark 4.3 (On the Terminology: Inwards Optimality and Subsolutions; Outwards
Optimality and Supersolutions) We will often call the optimality conditions (4.2)
and (3.1) inwards and outwards optimality condition, respectively. This is justified
by the fact that the admissible test functions in (4.2) and (3.1) have positivity sets
contained in or containing �u. On the other hand, we will call (4.1) and (3.3)
suboptimality condition and superoptimality condition, respectively, and the func-
tions satisfying (4.1) and (3.3) will be called subsolutions and supersolutions.
The terms inwards optimality and outwards optimality come from Geometric
Analysis. The term subsolution was introduced in Shape Optimization by Bucur
[8], originally to indicate inwards optimality with respect to shape functionals. The
term supersolution appeared in the same context in several works (see for instance
[51] and the references therein) to indicate outwards optimality. In the context of
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the functional F�, it seems more appropriate to use the terms subsolution and
supersolution, when the condition is on the test functions, and the terms inwards
and outwards, when the condition is on their (superlevel) sets. Nevertheless, being
partially justified by Lemmas 3.3 and 4.2, we will often abuse this terminology
by using subsolution and inwards-minimizing, and supersolution and outwards-
minimizing as synonyms.

We will give two different proofs of the non-degeneracy. Lemma 4.4 is due to
Alt and Caffarelli (see [3]), while Lemma 4.5 is due to David and Toro, it requires
the function to be Lipschitz continuous, but the argument is more versatile and can
be easily adapted, for instance, to the case of almost-minimizers of the functional
F� (see [19]).

Lemma 4.4 (Non-degeneracy: Alt-Caffarelli) Let D ⊂ Rd be a bounded open
set. Suppose that u ∈ H 1(D) satisfies the condition (4.1) and let x0 ∈ D. If x0 ∈
�u ∩ D, then for every ball Br(x0) ⊂ D, we have that ‖u‖L∞(Br (x0)) ≥ �

1/2cd r ,
where cd > 0 is a dimensional constant.

Proof Without loss of generality we can suppose that x0 = 0 and that � = 1. For
r > 0, let φr be the solution of

�φr = 0 in B2r \ Br , φr = 0 on ∂Br , φr = 1 on ∂B2r .

Then we have φr(x) = φ1 (x/r), for every x ∈ B2r \ Br . We consider the function
ũ ∈ H 1

loc(�) defined by

ũ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

u(x), if x ∈ � \ B2r ,

u(x) ∧ M2rφr , if x ∈ B2r \ Br ,

0, if x ∈ Br ,

where M2r = ‖u‖L∞(B2r ). By the optimality of u in B2r , we have that

F1(u,B2r ) ≤ F1(ũ,B2r ),

which means that

F1(u,Br) ≤ F1(ũ,B2r ) − F1(u,B2r \ Br) = F1(ũ,B2r \ Br) − F1(u,B2r \ Br).

Since {u > 0} = {ũ > 0} in B2r \ Br , we get that

F1(ũ,B2r \ Br) − F1(u,B2r \ Br) =
∫

B2r\Br

|∇ũ|2 dx −
∫

B2r\Br

|∇u|2 dx,
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and so, we can estimate

F1(u,Br) ≤
∫

B2r\Br

(
|∇ũ|2 − |∇u|2

)
dx

≤ −
∫

B2r\Br

|∇(u − ũ)|2 dx +
∫

B2r\Br

2∇ũ · ∇(ũ − u) dx.

Now, since

∫

B2r\Br

2∇ũ · ∇(ũ − u) dx =
∫

{ũ �=u}∩B2r\Br

2∇ũ · ∇(ũ − u) dx,

by the definition of ũ, we obtain

F1(u,Br) ≤
∫

{u>M2r φr }∩B2r\Br

2M2r∇φr · ∇(M2rφr − u) dx

=2M2r

∫

∂Br

|∇φr |u dHd−1 dx =4
M2r

2r
‖∇φ1‖L∞(∂Br )

∫

∂Br

u dHd−1 dx.

On the other hand, we have the following trace inequality

∫

∂Br

u dHd−1 ≤ Cd

(∫

Br

|∇u| dx + 1

r

∫

Br

u dx

)

≤ Cd

(∫

Br

|∇u|2 dx +
(
1 + Mr

r

) ∣∣{u > 0} ∩ Br

∣∣
)

≤ Cd

(
1 + Mr

r

)
F1(u,Br).

Thus, if F1(u,Br) > 0, then we have

1 ≤ Cd

(
1 + Mr

r

)
M2r

2r
,

which gives the claim. ��

Lemma 4.5 (Non-degeneracy: David-Toro) Suppose that D ⊂ Rd is a bounded
open set and u : D → R is a non-negative Lipschitz continuous functions satisfying
the optimality condition (4.1). Then, there is a constant κ0 > 0, depending on the
dimension d , the Lipschitz constant L = ‖∇u‖L∞(D) and the constant �, such that:

If x0 ∈ D and r ∈ (0, dist (x0, ∂D)
)

are such that
∫

∂Br (x0)

u dHd−1 ≤ κ0r ,

then u=0 in Br/8(x0).
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Proof The proof is a consequence of the following three claims:

Claim 1 Suppose that
∫

∂Br (x0)

u dHd−1 ≤ κ0r . Then,

u ≤ κ1r on Br/2(x0) where κ1 = 2dκ0.

Claim 2 Suppose that u ≤ κ1r on Br/2(x0). Then,

∣
∣�u ∩ Br/2(x0)

∣
∣ ≤ κ2|Br | where κ2 = 6L + 9κ1

�
κ1.

Claim 3 Suppose that
∣
∣�u ∩ Br/2(x0)

∣
∣ ≤ κ2|Br | and ‖u‖L∞(Br/2(x0)) ≤ κ1r . Then,

for every y0 ∈ Br/8(x0), there is ρ ∈ [r/4, r/8] such that

∫
∂Bρ(y0)

u dHd−1 ≤ κ3ρ where κ3 = 8d+1κ1κ2.

We first prove Claim 1. Let h be the harmonic extension of u in the ball Br(x0).
By the strong maximum principle, we have that u ≤ h on Br(x0) (we notice that the
optimality condition (4.1) trivially implies that the function u is subharmonic). On
the other hand, the Poisson formula implies that

h(y) = r2 − |y|2
dωdr

∫

∂Br(x0)

u(ζ )

|y − ζ |d dHd−1(ζ ) ≤ 2dκ0r ,

which gives Claim 1.
In order to prove Claim 2, we consider the function φ ∈ C∞

c (Br) such that

0 ≤ φ ≤ 1 on Br(x0), φ = 1 on Br/2(x0), |∇φ| ≤ 3r−1.

Consider the competitor v = (u − κ1rφ)+. Then, the optimality of u in Br(x0)

implies that

�|�u ∩ Br/2(x0)| ≤ �|�u ∩ Br(x0)| − �|�v ∩ Br(x0)| ≤
∫

Br (x0)

|∇v|2 dx −
∫

Br (x0)

|∇u|2 dx

≤
∫

Br (x0)

|∇(u − κ1rφ)|2 dx −
∫

Br (x0)

|∇u|2 dx

≤ 2κ1r
∫

Br (x0)

|∇u| |∇φ| dx + κ2
1 r2
∫

Br (x0)

|∇φ|2 dx ≤
(
6κ1L + 9κ2

1

)
|Br |,

which concludes the proof of Claim 2.
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Let us now prove Claim 3. We first estimate

∫

Br/2(x0)

u dx ≤ ‖u‖L∞(Br/2(x0))|�u ∩ Br/2(x0)| ≤ κ1κ2|Br |r .

Now, taking y0 ∈ Br/8(x0), we have Br/4(y0)\Br/8(y0) ⊂ Br/2(x0), so there is ρ such
that r/8 ≤ ρ ≤ r/4 and

∫

∂Bρ(y0)

u dHd−1 ≤ 8

r

∫ r/4

r/8

∫

∂Bs(y0)

u dHd−1 ds ≤ 8

r

∫

Br/2(x0)

u dx

≤ 8κ1κ2|Br | ≤ 8d+1κ1κ2ωdρd ,

which concludes the proof of Claim 3.

We are now in position to conclude the proof of the lemma. We first notice that

κ3 ≤ 8d+1κ1κ2 ≤ 27d+8L + κ0

�
κ2
0 .

Choosing

κ0 = inf

{
1,

�

(L + 1)27d+8

}
,

we get that κ3 ≤ κ0. In particular, if
∫

∂Br(x0)

u dHd−1 ≤ κ0r , then for any

y0 ∈ Br/8(x0) there is a sequence ρj , j ≤ 1, such that
r

8
≤ ρ1 ≤ r

4
and

ρj

8
≤ ρj+1 ≤ ρj

4
and

∫
∂Bρj

(y0)

u dHd−1 ≤ κ0ρj for every j ≥ 1.

In particular, this implies that u = 0 in Br/8(x0), which proves the claim. ��
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Chapter 5
Measure and Dimension of the Free
Boundary

This chapter is dedicated to the measure theoretic structure of the free boundary
∂�u. The results presented here are mainly a consequence of the Lipschitz continu-
ity and the non-degeneracy of the minimizer u (Theorem 3.1 and Proposition 4.1).
The chapter is organized as follows:

• Section 5.1. Density estimates for the domain �u.
This section is dedicated to the density estimate of �u at the boundary ∂�u.

The argument presented here is precisely the one from the original work of Alt
and Caffarelli [3].

• Section 5.2. The positivity set �u has finite perimeter.
In this section we prove that the set �u has (locally) finite perimeter in the

sense of De Giorgi. We will use this result, together with the density estimate of
the previous section in order to prove that the singular part of the free boundary
has zero Hd−1 Hausdorff measure. The proof that we give here is the local
counterpart of an argument proposed by Bucur in [8] for estimating the perimeter
of the optimal sets for the higher eigenvalues of the Dirichlet Laplacian.

• Section 5.3. Hausdorff measure of the free boundary.
In this section, we prove that the Hd−1 measure of ∂�u is (locally) finite.1

Our argument is very general and essentially uses the Lipschitz continuity and
non-degeneracy of u and the fact that the optimality condition (4.1) implies that
�u has a finite inner Minkowski content in a sense that will be specified below.

1 Notice that this is not the consequence of Sect. 5.2 as the finiteness of the (generalized) perimeter
implies only that the Hd−1 measure of the reduced boundary is finite.
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5.1 Density Estimates for the Domain �u

In this section, we prove that if u minimizes F� in a set D ⊂ Rd , then the set
�u = {u > 0} satisfies lower and upper (Lebesgue) density estimates at the bound-
ary ∂�u. The result and the proof are due to Alt and Caffarelli [3].

Lemma 5.1 (Density Estimate) Let D ⊂ Rd be a bounded open set. Let
u : D → R be a non-negative function such that:

(a) u is Lipschitz continuous and L := ‖∇u‖L∞(D);
(b) u is non-degenerate, that is, there is a constant κ0 > 0 such that

∫
∂Br (x0)

u dHd−1 ≥ κ0r for every x0 ∈ D ∩ ∂�u

and every r ∈ (0, dist(x0, ∂D)
)
;

(c) u is subharmonic in D;
(d) there is � > 0 such that u satisfies the optimality condition (3.3), that is,

F�(u,D) ≤ F�(v,D) for every v ∈ H 1(D) such that v ≥ u.

There is a constant δ0 ∈ (0, 1), depending on the dimension d , the Lipschitz constant
L and the non-degeneracy constant κ0, such that

δ0|Br | ≤ ∣∣�u ∩ Br(x0)
∣∣ ≤ (1 − δ0)|Br |, (5.1)

for every x0 ∈ D ∩ ∂�u and every r ∈ (0, dist (x0, ∂D)
)
. In particular, (5.1) holds

for every local minimizer of F� in D.

Remark 5.2 Notice that the conditions (b) and (c) are fulfilled by any function
satisfying the suboptimality condition (4.1). All the conditions (a), (b), (c) and (d)
are satisfied for functions that minimizeF� in an open set U containing the compact
set D.

Proof of Lemma 5.1 Without loss of generality we can suppose that x0 = 0.
We first prove the estimate by below in (5.1). Indeed, since 0 ∈ ∂�u, the non-

degeneracy condition (b) implies that ‖u‖L∞(Br/2) ≥ κ0
r
2 . Thus, there is a point

y ∈ Br/2 such that u(y) ≥ κ0
r
2 . Now, the Lipschitz continuity of u implies that

u > 0 on the ball Bρ(y), where ρ = r

2
min

{
1,

κ0

L

}
, and so, we get the first estimate

in (5.1).
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For the upper bound on the density, we consider the harmonic replacement h of u

in the ball Br . Since u is subharmonic, we get that u ≤ h in Br . Now, the optimality
condition (3.1), implies that

�
∣
∣{u = 0} ∩ Br

∣
∣ ≥

∫

Br

|∇u|2 dx −
∫

Br

|∇h|2 dx =
∫

Br

|∇(u − h)|2 dx.

By the Poincaré inequality on the ball Br we have that

∫

Br

|∇(h − u)|2 dx ≥ Cd

r2

∫

Br

|h − u|2 dx ≥ Cd

|Br |
(
1

r

∫

Br

(h − u) dx

)2
.

The non-degeneracy of u now implies

h(0) =
∫

∂Br

h dHd−1 =
∫

∂Br

u dHd−1 ≥ κ0 r .

By the Harnack inequality applied to h, there is a dimensional constant cd > 0 such
that

h ≥ cd κ0 r in the ball Br/2 ,

On the other hand, the Lipschitz continuity of u and the fact that u(0) = 0 give that

u ≤ Lεr in the ball Bεr .

Choosing ε > 0 small enough such that cdκ0 ≥ 2εL, we get

∫

Br

(h − u) dx ≥
∫

Bεr

(h − u) dx ≥ 1

2
cd κ0 r |Bεr |,

which concludes the proof. ��

5.2 The Positivity set �u Has Finite Perimeter

In this section we prove that the (generalized) perimeter of �u is locally finite in D.
In particular, this means that �u has locally finite perimeter. The proof that we give
here was already generalized in two different contexts: for the vectorial Bernoulli
problem (see [42]) and for a shape optimization problem with drift (see [46]). In
fact, our proof is inspired by the global argument of Bucur (see [8]) used in the
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context of a shape optimization problem in Rd . The main result of this subsection is
the following:

Proposition 5.3 (Inwards-Minimizing Sets Have Locally Finite Perimeter)
Suppose that D is a bounded open set in Rd and that u ∈ H 1(D) is non-negative
and satisfies the following minimality condition:

F�(u,D) ≤ F�(v,D) for every v ∈ H 1(D)) such that v ≤ u in D

and u − v ∈ H 1
0 (D).

Then �u has locally finite perimeter in D.

As a direct consequence, we obtain that the support �u of a minimizer u of F�

has locally finite perimeter.

Corollary 5.4 (Minimizers have Locally Finite Perimeter) Suppose that D is
a bounded open set in Rd and that the non-negative function u ∈ H 1(D) is a
minimizer of F� in D. Then �u has locally finite perimeter in D.

We divide the proof of Proposition 5.3 in two main steps: Lemmas 5.5 and 5.6.
Lemma 5.5 is a sufficient condition for the local finiteness of the perimeter of a
super-level set of a Sobolev function, while in Lemma 5.6, we will show that the
subsolutions satisfy this condition. The conclusion of the proof of Proposition 5.3 is
given at the end of the subsection.

Lemma 5.5 Suppose that D ⊂ Rd is an open set and that φ : D → [0,+∞] is a
function in H 1(D) for which there exist ε > 0 and C > 0 such that

∫

{0<φ≤ε}∩D

|∇φ|2 dx + �
∣
∣{0 < φ ≤ ε} ∩ D

∣
∣ ≤ Cε , for every 0 < ε ≤ ε.

(5.2)

Then, Per
({φ > 0};D) ≤ C

√
�.

Proof By the co-area formula, the Cauchy-Schwarz inequality and (5.2), we have
that, for every ε ≤ ε,

∫ ε

0
Hd−1({φ = t} ∩ D

)
dt =

∫

{0<φ≤ε}∩D
|∇φ| dx

≤ ∣∣{0 < φ ≤ ε} ∩ D
∣
∣1/2
( ∫

{0<φ≤ε}∩D
|∇φ|2 dx

)1/2 ≤ ε C
√

�.

Taking ε = 1/n, we get that there is δn ∈ [0, 1/n] such that

Hd−1(∂∗{φ > δn} ∩ D
) ≤ n

∫ 1/n

0
Hd−1({φ = t} ∩ D

)
dt ≤ C

√
�.
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Passing to the limit as n → ∞, we obtain

Hd−1(∂∗{φ > 0} ∩ D
) ≤ C

√
�,

which concludes the proof of the lemma. ��
Lemma 5.6 Suppose that u ∈ H 1(B2r (x0)) is non-negative and satisfies the
following minimality condition in the ball B2r (x0) ⊂ Rd :

F�(u) ≤ F�(v) for every v ∈ H 1(B2r (x0)) such that

⎧
⎨

⎩
v ≤ u in B2r (x0),

u = v on ∂B2r (x0).

Then, there exists a constant C > 0 such that

∫

{0<u≤ε}∩Br (x0)

|∇u|2 dx + �
∣
∣{0 < u ≤ ε} ∩ Br(x0)

∣
∣ ≤ Cε

for every 0 < ε ≤ 1. (5.3)

Precisely, one can take

C = Cd

(
r−1‖∇u‖L2(B2r (x0))

+ r−2
)
,

where Cd is a dimensional constant.

Proof We fix a function φ ∈ C∞(Rd ) such that

φ = 0 in Br and φ = 1 in R
d \ B2r .

For a fixed ε > 0 we consider the functions

uε = (u − ε)+ and ũε = φu + (1 − φ)uε .

We now calculate |∇ũε|2 in the ball B2r .

|∇ũε|2 = 1{0<u≤ε}|∇(uφ)|2 + 1{u>ε}|∇(u − ε(1 − φ))|2

≤ 1{0<u<ε}φ2|∇u|2 + 1{u>ε}|∇u|2

+ ε 1{0<u≤ε}
(
2|∇u||∇φ| + ε|∇φ|2

)
+ ε 1{u>ε}

(
2|∇u||∇φ| + ε|∇φ|2

)
.

Now setting

C = 2‖∇u‖L2(B2r )
‖∇φ‖L2(B2r )

+ ‖∇φ‖2
L2(B2r )

,



70 5 Measure and Dimension of the Free Boundary

and using the optimality of u, we get

0 ≥
∫

B2r

|∇u|2 dx −
∫

B2r

|∇ũε|2 dx + ∣∣{u > 0} ∩ B2r
∣
∣− ∣∣{uε > 0} ∩ B2r

∣
∣

=
∫

B2r

|∇u|2 dx −
∫

B2r

|∇ũε|2 dx + ∣∣{0 < u ≤ ε} ∩ Br

∣
∣

≥
∫

{0<u≤ε}∩B2r

(1 − φ2)|∇u|2 dx + ∣∣{0 < u ≤ ε} ∩ Br

∣∣− Cε

≥
∫

{0<u≤ε}∩Br

|∇u|2 dx + ∣∣{0 < u ≤ ε} ∩ Br

∣
∣− Cε,

which concludes the proof. ��
Proof of Proposition 5.3 Lemma 5.6 implies that (5.3) does hold. By Lemma 5.5,
we obtain that the perimeter is locally bounded. Precisely,

Per(�u;Br/2(x0)) ≤ C for every Br(x0) ⊂ D,

where C depends on r , � and d . ��

5.3 Hausdorff Measure of the Free Boundary

In this section we prove that the (d −1)—dimensional Hausdorff measure of ∂�u is
locally finite in D. In particular, this means that �u has locally finite perimeter and
so, we recover Proposition 5.3. We will use the Lipschitz continuity and the non-
degeneracy of the solution, as well as, the inner Hausdorff content estimate (5.4),
which is a consequence of Lemma 5.6. This is a very general result, which may find
application to different free boundary problems (see for instance [42]).

Proposition 5.7 Let D ⊂ Rd be a bounded open set and u : D → R a Lipschitz
continuous function such that:

(a) u is non-degenerate, that is, there is a constants c > 0 such that

sup
Br (x0)

u ≥ cr for every x0 ∈ ∂�u ∩ D and every 0 < r < dist(x0, ∂D).

(b) u satisfies the following (sub-)minimality condition:

F�(u,D) ≤ F�(v,D) for every v ∈ H 1(D) such that v ≤ u in D

and u − v ∈ H 1
0 (D).

Then, for every compact set K ⊂ �, we have Hd−1(K ∩ ∂�u) < ∞.
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As an immediate corollary, we obtain:

Corollary 5.8 (Hausdorff Measure of the Free Boundary) Let D be a bounded
open set in Rd and the non-negative function u ∈ H 1(D) be a minimizer of F� in
D. Then, for every compact set K ⊂ D, we have Hd−1(K ∩ ∂�u) < ∞.

The proof of Proposition 5.7 is a consequence of Lemma 5.6 and the following
lemma.

Lemma 5.9 Let D ⊂ Rd be an open set and u : D → R a Lipschitz continuous
function such that:

(a) u is non-degenerate, that is, there is a constants c > 0 such that

sup
Br (x0)

u ≥ cr for every x0 ∈ ∂�u ∩ D and every 0 < r < dist(x0, ∂D).

(b) there is a constant C > 0 such that u satisfies the estimate
∣
∣{0 < u ≤ ε} ∩ D

∣
∣ ≤ Cε for every ε > 0. (5.4)

Then, for every compact set K ⊂ �, we have Hd−1(K ∩ ∂�u) < ∞.

Proof Let us first recall that, for every δ > 0 and every A ⊂ Rd ,

Hd−1
2δ (A) ≤ ωd−1 inf

{ ∞∑

j=1

rd−1
j : for every Brj (xj ) such that

∞⋃

j=1

Brj (xj ) ⊃ A and rj ≤ δ
}
.

and

Hd−1(A) = lim
δ→0

Hd−1
δ (A).

Let δ > 0 be fixed and let {Bδ(xj )}Nj=1 be a covering of K ∩ ∂�u such that
xj ∈ ∂�u for every j = 1, . . . , n and the balls Bδ/5(xj ) are disjoint. The non-
degeneracy of u implies that, in every ball Bδ/10(xj ) there is a point yj such that
u(yj ) ≥ cδ/10. The Lipschitz continuity of u implies that Bcδ/10L(yj ) ⊂ �u, where
L = max{1, ‖∇u‖L∞}. On the other hand, since u(xj ) = 0, we have that

u < L

(
cδ

10L
+ cδ

10

)
= (L + 1)

cδ

10
on Bcδ/10L(yj ).

This implies that the balls Bcδ/10L(yj ), j = 1, . . . ,N , are disjoint and contained in
the set

{
0 < u < (L + 1) cδ

10

}
. Now, the estimate from point (b) implies that

C(L + 1)
cδ

10
≥

N∑

j=1

|Bcδ/10L(yj )| ≥ Nωd
cdδd

Ld10d
,
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which implies that

N dωdδd−1 ≤ dC
10d−1

cd−1 Ld(L + 1).

Since, the right-hand side does not depend on δ, we get that

Hd−1(K ∩ ∂�u) ≤ dC
10d−1

cd−1 Ld(L + 1).

��
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Chapter 6
Blow-Up Sequences and Blow-Up Limits

Let D be an open set in Rd and u : D → R be a (non-negative) local minimizer of
F� inD. Recall that, by Theorem 3.1, we have that u is locally Lipschitz continuous
in D. Let x0 ∈ ∂�u ∩ D be a given point on the free boundary. For every r > 0, we
define the rescaled function

ux0,r (x) := 1

r
u(x0 + rx).

Let (rn)n≥1 be a vanishing sequence of positive numbers. We say that the sequence
of functions ux0,rn is a blow-up sequence. We notice that ux0,rn is not defined on the
entireRd (since a priori we might have that D �= Rd ), its domain of definition being
the set

1

r
(−x0 + D) := {x ∈ R

d : x0 + rx ∈ D
}
.

On the other hand, since rn converges to zero, for every fixed R > 0, there exists
m > 0 such that, for every n ≥ m, ux0,rn is defined on BR , that is,

BR ⊂ 1

rn
(−x0 + D).

Now since,

∇ux0,rn(x) = ∇u(x0 + rx) for every x ∈ BR ,

we have that

‖∇ux0,rn‖L∞(BR) = ‖∇u‖L∞(BR/rn
(x0)).

© The Author(s) 2023
B. Velichkov, Regularity of the One-phase Free Boundaries,
Lecture Notes of the Unione Matematica Italiana 28,
https://doi.org/10.1007/978-3-031-13238-4_6

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13238-4_6&domain=pdf

 -151 4612 a -151
4612 a
 
https://doi.org/10.1007/978-3-031-13238-4_6
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Since u is locally Lipschitz continuous and u(x0) = 0, we get that the sequence
ux0,rn is uniformly bounded and equicontinuous on BR . Thus, by the Theorem
of Ascoli-Arzelà, we obtain that there is a subsequence of ux0,rn that converges
uniformly in the ball BR . Repeating this argument for every (natural number)R > 0
and extracting a diagonal sequence, we get that there exists a function u0 : Rd → R

such that, for every R > 0, the sequence ux0,rn converges uniformly to u0 in BR ,

lim
n→∞ ‖ux0,rn − u0‖L∞(BR) = 0 for every R > 0. (6.1)

Definition 6.1 (Blow-Up Limit) We will say that the function u0 : Rd → R is a
blow-up limit of u at x0 if (6.1) does hold.

We notice that every blow-up limit u0 of a local minimizer u of F� is non-negative,
Lipschitz continuous (in Rd ) and vanishes in zero. We also stress that there might be
numerous blow-up limits, each one depending on the choice of the (sub-)sequence
ux0,rn . If this is the case, then we simply say that the blow-up limit is not unique.
For instance, the function φ : B1 → R defined in polar coordinates as (see Fig. 6.1)

φ(ρ, θ) = ρ max{0, cos(θ + ln ρ)}

has infinitely many blow-up limits in zero (but it is not a local minimizer of the
functional F�). We will denote the family of all blow-up limits of u at x0 by
BUu(x0). The classification of all the possible blow-up limits and the uniqueness
of the blow-up limit at a given point x0 ∈ ∂�u are both central questions in the free
boundary regularity theory, which do not have a complete answer yet.

In this chapter we will decompose the free boundary into a regular and singular
parts according to the structure of the space of blow-up limits at the points of ∂�u.
The Sects. 6.1, 6.2, and 6.3 are dedicated to the proof of the following result.

Proposition 6.2 (Convergence of the Blow-Up Sequences) Let D be an open
subset of Rd and let u : D → R be non-negative, u ∈ H 1

loc(D) and a local
minimizer of F� in D. Let x0 ∈ ∂�u ∩ D and let rn → 0 be a vanishing sequence
of positive real numbers such that the blow-up sequence ux0,rn converges locally

Fig. 6.1 Example of a
(Lipschitz) function with
infinitely many blow-up
limits in zero

φ > 0

φ > 0
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uniformly to the blow-up limit u0 : Rd → R in the sense of (6.1). Then, there is a
subsequence such that, for every R > 0, we have:

(i) the sequence ux0,rn converges to u0 strongly in H 1(BR);
(ii) the sequence of characteristic functions 1�n converges to 1�0 in L1(BR),

where

�n := {ux0,rn > 0} and �0 := {u0 > 0} ;

(iii) the sequence of sets �n converges locally Hausdorff in BR to �0;
(iv) u0 is a non-trivial local minimizer of F� in Rd .

In particular, Sect. 6.1 is dedicated to the strong convergence of the blow-up
sequences (claims (i) and (ii)) and the optimality of the blow-up limits (claim
(iv)); the main result of this section (Lemma 6.3) is more general and will also
be used in the proof of Theorem 1.9. Section 6.2 is dedicated to the local Hausdorff
convergence of the free boundaries (claim (iii)); the results of this section apply
both to Theorem 1.2 and Theorem 1.9. In Sect. 6.3, we conclude the proof of
Proposition 6.2.

In Sect. 6.4, we define the regular part Reg(∂�u) and the singular part
Sing(∂�u) of the free boundary. Moreover, we prove that the singular set
Sing(∂�u) has zero (d − 1)-dimensional Hausdorff measure (Proposition 6.12).
We notice that this result applies to Theorems 1.2, 1.4, and 1.9, but is interesting
only for Theorem 1.2, in which we do not make use of monotonicity formulas. In
fact, in Sect. 10, we will obtain better estimates on the dimension of the singular
set by means of the Weiss’ monotonicity formula, which we will apply to both
Theorem 1.4 and Theorem 1.9.

6.1 Convergence of Local Minimizers

In this section we prove the strong convergence of the blow-up sequences and the
minimality of the blow-up limits at every point of the free boundary of a local
minimizer. Our result (Lemma 6.3) is more general and applies also to other free
boundary problems; for instance, we will use it in the proof of Theorem 1.9.

Lemma 6.3 Let � > 0 be a given constant, BR ⊂ Rd and un ∈ H 1(BR) be a
sequence of non-negative functions such that:

(a) every un is a local minimizer of F� in BR or, more generally, satisfies

F�(un,BR) ≤ F�(un +ϕ,BR)+εn for every ϕ ∈ H 1
0 (Br ) and every r < R ,

where εn is a vanishing sequence of positive constants.
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(b) the sequence un is uniformly bounded in H 1(BR), that is, for some constant
C > 0,

‖un‖2H 1(BR)
= F0(un,BR) +

∫

BR

u2n dx ≤ C for every n ≥ 1.

Then, there is a function u∞ ∈ H 1(BR) such that, up to a subsequence, we have

(i) un converges to u∞ strongly in H 1(Br ), for every 0 < r < R;
(ii) the sequence of characteristic functions 1{un>0} converges to 1{u∞>0} strongly

in L1(Br ) and pointwise almost-everywhere in Br , for every 0 < r < R;
(iii) u∞ is a local minimizer of F� in BR .

Proof The idea of the proof is very similar to the one in Lemma 3.14, but is more
involved due to the presence of the measure term. Up to extracting a subsequence,
we can suppose that the sequence un converges to a function u∞ ∈ H 1(BR) weakly
in H 1(BR), strongly in L2(BR) and pointwise (Lebesgue) almost-everywhere in
BR . We set for simplicity

�n = {un > 0} and �∞ = {u∞ > 0}.

The weak H 1-convergence implies that for every 0 < r ≤ R

‖∇u∞‖L2(Br )
≤ lim inf

n→∞ ‖∇un‖L2(Br )
, (6.2)

with an equality, if and only if, (up to a subsequence) the convergence is strong in
Br . On the other hand, the pointwise convergenceof un implies that for almost-every
x ∈ BR

x ∈ �∞ ⇒ u∞(x) > 0 ⇒ un(x) > 0 for large n ⇒ x ∈ �n for large n.

In particular, this implies that

1�∞ ≤ lim inf
n→∞ 1�n ,

and so, by the Fatou Lemma, for every 0 < r ≤ R, we have

|�∞ ∩ Br | ≤ lim inf
n→∞ |�n ∩ Br |, (6.3)

with an equality, if and only if, (again, up to a subsequence) 1�n converges strongly
to 1�∞ in L1(Br). Notice that, up to extracting a subsequence we may assume that
the limits in the right-hand sides of (6.3) and (6.2) do exist.
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In order to prove (i) and (ii), it is sufficient to prove that, for fixed 0 < r < R,
we have

‖∇u∞‖L2(Br )
= lim inf

n→∞ ‖∇un‖L2(Br )
and |�∞ ∩ Br | = lim inf

n→∞ |�n ∩ Br |.
(6.4)

Let η : BR → R be a function such that

η ∈ C∞(BR) , 0 ≤ η ≤ 1 in BR , η = 1 on ∂BR , η = 0 on Br .
(6.5)

Consider the test function ũn = ηun + (1− η)u∞. Since un is a local minimizer for
F� in BR , and since un = ũn on ∂BR , we have F�(un,BR) ≤ F�(ũn,BR) + εn,
that is,

0 ≤
∫

BR

|∇ũn|2 dx −
∫

BR

|∇un|2 dx + �|�̃n ∩ BR| − �|�n ∩ BR| + εn,

where we have set �̃n := {ũn > 0}. We first estimate

|�̃n ∩ BR| − |�n ∩ BR| = |�̃n ∩ {η = 0}| − |�n ∩ {η = 0}|
+ |�̃n ∩ {η > 0}| − |�n ∩ {η > 0}|

= |�∞ ∩ {η = 0}| − |�n ∩ {η = 0}|
+ |(�n ∪ �∞) ∩ {η > 0}| − |�n ∩ {η > 0}|

≤ |�∞ ∩ {η = 0}| − |�n ∩ {η = 0}| − |{η > 0}|.

By the Fatou Lemma on the set {η = 0} \ Br , we have that

|�∞ ∩ {η = 0} \ Br | ≤ lim inf
n→∞ |�n ∩ {η = 0} \ Br | ,

and so, we get

lim sup
n→∞

(
|�̃n∩BR |−|�n ∩BR|

)
≤ lim sup

n→∞
(
|�∞∩Br |−|�n ∩Br |

)
−|{η > 0}|. (6.6)

We next calculate

|∇ũn|2 − |∇un|2 = ∣∣∇(ηun + (1 − η)u∞)
∣
∣2 − |∇un|2

= ∣∣(un − u∞)∇η + η∇un + (1 − η)∇u∞
∣
∣2 − |∇un|2.
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Now since un → u∞ strongly in L2(BR), we have that

lim sup
n→∞

∫

BR

(
|∇ũn|2 − |∇un|2

)
dx

= lim sup
n→∞

∫

BR

(∣
∣(un − u∞)∇η + η∇un + (1 − η)∇u∞

∣
∣2 − |∇un|2

)
dx

= lim sup
n→∞

∫

BR

(
(η2 − 1)|∇un|2 + 2η(1 − η)∇un · ∇u∞ + (1 − η)2|∇u∞|2

)
dx

= lim sup
n→∞

∫

BR

(
1 − η2

)(|∇u∞|2 − |∇un|2
)

dx

≤ lim sup
n→∞

∫

{η=0}

(
|∇u∞|2 − |∇un|2

)
dx +

∫

BR\{η=0}
|∇u∞|2 dx.

By the weak H 1 convergence of un to u∞ on the set {η = 0} \ Br , we have

lim sup
n→∞

∫

BR

(
|∇ũn|2 − |∇un|2

)
dx ≤ lim sup

n→∞

∫

Br

(
|∇u∞|2 − |∇un|2

)
dx +

∫

{η>0}
|∇u∞|2 dx.

This estimate, together with (6.6) and the minimality of un, gives

lim inf
n→∞ F�(un,Br) = lim inf

n→∞
∫

Br

|∇un|2 dx + �|�n ∩ Br |

≤
∫

Br

|∇u∞|2 dx + �|�∞ ∩ Br | +
∫

{η>0}
|∇u∞|2 dx + �|{η > 0}|

= F�(u∞,Br) +
∫

{η>0}
|∇u∞|2 dx + �|{η > 0}|.

Since η is arbitrary, we finally obtain

lim inf
n→∞ F�(un,Br) ≤ F�(u∞,Br),

which implies (6.4) and, as a consequence, the claims (i) and (ii).
We now prove (iii). Let 0 < r < R and ϕ ∈ H 1

0 (Br ). We will show that

F�(u∞,Br) ≤ F�(u∞ + ϕ,Br). (6.7)

In order to prove(6.7), we will use the optimality of un and we will pass to the
limit. We notice that, for a fixed n ≥ 1, the natural competitor is simply un + ϕ.
Unfortunately, we cannot follow this strategy since we do NOT a priori know that

lim
n→∞ |{un + ϕ > 0}| = |{u∞ + ϕ > 0}|.
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Thus, we consider a function η : BR → R that satisfies (6.5) and is such that the
set N := {η < 1} is a ball strictly contained in BR . Precisely, we have that the
following inclusions do hold:

{ϕ �= 0} ⊂ Br ⊂ {η = 0} ⊂ N = {η < 1} ⊂ BR ,

the last two inclusions being strict. We define the competitor

vn = un + ϕ + (1 − η)(u∞ − un),

and we set for simplicity v∞ := u∞ + ϕ. Now, since ϕ = 0 on BR \ N , we have
that vn = v∞ on the set {η = 0} and (6.7) is equivalent to

F�(u∞,N ) ≤ F�(v∞,N ). (6.8)

By the points (i) and (ii), we have that

F�(u∞,N ) = lim
n→∞F�(un,N ).

The optimality of un and the strong H 1 convergence of un to u∞ in N give

lim
n→∞F�(un,N ) ≤ lim inf

n→∞ F�(vn,N ) =
∫

N
|∇v∞|2 dx + � lim inf

n→∞ |{vn > 0} ∩ N |.
(6.9)

Moreover, since

vn = v∞ on the set {η = 0},

we have

|{vn > 0} ∩ N | = |{vn > 0} ∩ {η = 0}| + |{vn > 0} ∩ {0 < η < 1}|
≤ |{v∞ > 0} ∩ N | + |{0 < η < 1}|,

which, together with (6.9) and (6.8), gives

F�(u∞,N ) = lim
n→∞F�(un,N ) ≤ F�(v∞,N ) + |{0 < η < 1}|.

Now, since the set {0 < η < 1} is arbitratry, we get (6.8) and so, the claim (iii). ��
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6.2 Convergence of the Free Boundary

This section is dedicated to the proof of Proposition 6.2 (iii). In particular, we define
the notion of local Hausdorff convergence (see Definition 6.4 below) and we prove
several results, which are general and can be used in the context of different free
boundary problems.

Definition 6.4 (Local Hausdorff Convergence) Suppose that Xn is a sequence of
closed sets in Rd and � is an open subset of Rd . We say that Xn converges locally
Hausdorff in � to (the closed set) X, if for every compact set K ⊂ � and every
open set U , such that K ⊂ U ⊂ �, we have

lim
n→∞ distK,U (Xn,X) = 0,

where, for any pair of closed subset X, Y of �, we define

distK,U (X, Y ) := max
{

max
x∈X∩K

dist (x, Y ∩ U), max
y∈Y∩K

dist (y,X ∩ U)
}
.

Lemma 6.5 (Hausdorff Convergence of the Supports) Let BR be the ball of
radius R in Rd . Let un : B2R → R be a sequence of continuous non-negative
functions such that:

(a) un converges uniformly in B2R to the continuous non-negative function u0 :
B2R → R;

(b) un is uniformly non-degenerate, that is, there is a strictly increasing function

ω : [0,+∞) → [0,+∞),

such that ω(0) = 0 and

‖un‖L∞(Br (x0)) ≥ ω(r) for every x0 ∈ �un∩B3R/2 , r ∈ (0, R/2) and n ∈ N .

Then the sequence of closed sets �un converges locally Hausdorff in BR to �u0 .

Proof We first prove the non-degeneracy of u0. Suppose that x ∈ �u0 ∩ BR and
r ≤ R/2. Then, there is y ∈ Br/2(x) such that u0(y) > 0 and so, for n large enough
we have that un(y) > 0. By the non-degeneracy of un, there is a point zn ∈ Br/2(y)

such that un(zn) ≥ ω(r/2). Up to a subsequence zn converges to some z ∈ Br/2(y).
By the uniform convergence of un we have

u0(z) = lim
n→∞ un(zn) ≥ ω(r/2),
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which proves that

‖u0‖L∞(Br (x)) ≥ ω(r/2) for every x ∈ �u0 ∩ BR and every r ≤ R/2 .

We can now prove the local Hausdorff convergence of �un to �u0 . Let K ⊂ BR be
a given compact set and U ⊂ BR be an open set containing K. Let δ > 0 be the
distance fromK to the boundary of U . We reason by contradiction. Indeed, suppose
that there is ε > 0 such that distK,U

(
�un ,�u0

)
> ε. Then, up to extracting a

subsequence, we can assume that one of the following does hold:

(1) There is a sequence (xn)n such that

xn ∈ �un ∩ K and dist (xn,�u0 ∩ U) ≥ ε.

(2) There is a sequence (xn)n such that

xn ∈ �u0 ∩ K and dist (xn,�un ∩ U) ≥ ε.

Moreover, we can assume that 0 < ε ≤ δ.
Suppose that (1) holds. Since xn ∈ �un we have that there is yn ∈ Bε/2(xn) ⊂ U

such that un(yn) > ω(ε/2). On the other hand, (1) implies that u0(yn) = 0, in
contradiction with the uniform convergence of un to u0.

Suppose that (2) holds. By the non-degeneracy of u0 we have that there is
yn ∈ Bε/2(xn) ⊂ U such that u0(yn) ≥ ω(ε/4). On the other hand un(yn) = 0,
in contradiction with the uniform convergence of un to u0. ��

Lemma 6.6 (Hausdorff Convergence of the Zero Level Sets) Let BR be the ball
of radius R in Rd . Let un : B2R → R be a sequence of continuous non-negative
functions such that:

(a) un converges uniformly in B2R to the continuous non-negative function
u0 : B2R → R;

(b) un(0) = 0 and un satisfies the following uniform growth condition:

un(x) ≥ ω
(
dist (x, {un = 0}∩B2R)

)
for every x∩BR and every n ∈ N ,

where ω : [0,+∞) → [0,+∞) is a strictly increasing function such that
ω(0) = 0.

Then the sequence of closed sets {un = 0} converges locally Hausdorff in BR to
{u0 = 0}.
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Proof Let K ⊂ BR be a compact set and let U ⊂ BR be an open set containing K.
Let δ > 0 be the distance from K to the boundary ∂U . We reason by contradiction
and we suppose that there is ε ∈ (0, δ) such that

distK,U
({un = 0}, {u0 = 0}) ≥ ε.

Then, up to a subsequence, we have one of the following possibilities:

(1) There is a sequence (xn)n such that

xn ∈ {un = 0} ∩ K and dist(xn, {u0 = 0} ∩ U) ≥ ε.

(2) There is a sequence (xn)n such that

xn ∈ {u0 = 0} ∩ K and dist(xn, {un = 0} ∩ U) ≥ ε.

Suppose first that (1) holds. Up to extracting a subsequence, we can suppose that
xn converges to x0 ∈ K. By the uniform convergence of un and the continuity of u0,
we have

un(x0) ≤ un(xn)+|u0(xn)−un(xn)|+ |u0(x0)−u0(xn)|+ |un(x0)−u0(x0)| → 0.

Passing to the limit as n → ∞, we get that u0(x0) = 0, which is a contradiction
since

dist (x0, {u0 = 0} ∩ U) ≥ lim
n→∞ dist (xn, {u0 = 0} ∩ U) ≥ ε.

Suppose now that (2) holds. Now, let yn be the point in B2R ∩ {un = 0} that
realizes the distance from xn to this set. There are two possibilities:

• yn ∈ B2R \ U . In this case, we have |xn − yn| ≥ δ.
• yn ∈ U . Then, we have dist(xn, {un = 0} ∩ U) = |xn − yn| ≥ ε.

In both cases, we have that |xn − yn| ≥ ε. By the uniform growth condition (b), we
have

un(xn) ≥ ω(|xn − yn|) ≥ ω(ε),

which is a contradiction with the uniform convergence of un to u0. ��
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Lemma 6.7 (Hausdorff Convergence of the Free Boundaries) Let BR be the ball
of radius R in Rd . Let un : B2R → R be a sequence of continuous non-negative
functions and u0 : B2R → R be a continuous non-negative function such that:

(a) the sequence �un converges locally Hausdorff in BR to �u0 ;
(b) the sequence {un = 0} converges locally Hausdorff in BR to {u0 = 0}.
Then, ∂�un converges locally Hausdorff in BR to ∂�u0 .

Proof Let K ⊂ BR be a fixed compact set and U ⊂ BR be a given open set. Let
δ > 0 be the distance between K and ∂U . Let ε ∈ (0, δ) be fixed.

Let x0 ∈ ∂�u0 ∩ K. By the Hausdorff convergence of �un and {un = 0}, we get
that, for n large enough, there are points

yn ∈ �un ∩ U and zn ∈ {un = 0} ∩ U ,

such that

|x0 − yn| < ε and |x0 − zn| < ε.

Since un is continuous, there is a point wn on the segment [yn, zn] such that
wn ∈ ∂�wn . Moreover, by construction wn ∈ Bε(x0) ⊂ U . Since x0 is arbitrary, we
get that

max
x∈∂�u0∩K

dist (x, ∂�un ∩ U) < ε.

Conversely, let xn ∈ ∂�un ∩ K be fixed. Using again the Hausdorff convergence of
�un and {un = 0}, we get that, for n large enough, there are points

y0 ∈ �u0 ∩ U and z0 ∈ {u0 = 0} ∩ U ,

such that

|xn − y0| < ε and |xn − z0| < ε.

Now, by the continuity of u0, we get that there is a point w0 on the segment [y0, z0]
such that w0 ∈ ∂�w0 ∩ Bε(xn). Since xn is arbitrary, we get

max
x∈∂�un∩K

dist (x, ∂�u0 ∩ U) < ε,

which concludes the proof. ��
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6.3 Proof of Proposition 6.2

By the local Lipschitz continuity of u, we have that for any fixed R > 0, the
sequence un = ux0,rn is uniformly bounded in H 1(BR). Thus, applying Lemma 6.3,
we get at once the claims (i), (ii) and (iv) of Proposition 6.2. We notice that the fact
that the blow-up limit is non-trivial (u0 ≡ 0) follows by the non-degeneracy of u,
which assures that for every n ≥ N and every R > 0, there is a point xn ∈ BR

such that ux0,rn(xn) ≥ κ , where κ is a constant that depends only on � and the
dimension d . The Hausdorff convergence of the free boundary (Proposition 6.2
(iii)) follows by Lemma 6.5; Lemma 6.6 and finally, by Lemma 6.7. Notice that
the non-degeneracy condition of Lemma 6.5 follows by Proposition 4.1, while the
uniform growth condition of Lemma 6.6 is a consequence of the following lemma
(Lemma 6.8).

Lemma 6.8 Let u : B2R → R be a continuous non-negative function such that:

(1) u(0) = 0;
(2) u satisfies the following non-degeneracy condition:

‖u‖L∞(Br (x)) ≥ κr for every x ∈ �u ∩ BR and every r ∈ (0,R),

for some given constant κ > 0;
(3) u is harmonic in �u ∩ B2R .

Then, u satisfies the following growth condition:

u(x) ≥ κ

2d+1 dist (x, {u = 0} ∩ B2R) for every x ∈ BR .

Proof Suppose that x0 ∈ �u ∩ BR and let y0 ∈ ∂�u ∩ B2R be such that

r := |x0 − y0| = dist (x0, {u = 0} ∩ B2R).

Then, the non-degeneracy of u implies that there is a point z0 ∈ Br/2(x0) at which

u(z0) ≥ κ
r

2
.

Now, since u is harmonic in �u, we get

∫

Br/2(z0)

u(x) dx ≥ |Br/2|u(z0) ≥ κ ωd rd+1

2d+1 .
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Since u is non-negative and harmonic in Br(x0) , we have that

u(x0) = 1

|Br |
∫

Br (x0)

u(x) dx ≥ 1

|Br |
∫

Br/2(z0)

u(x) dx ≥ κ ωd rd+1

ωd rd 2d+1 = κ

2d+1 r ,

which concludes the proof. ��
As an immediate corollary, we obtain the following well-known result (see for

instance [3]), which we give here for the sake of completeness.

Corollary 6.9 Suppose that u is a (non-negative) minimizer of F� in the ball
B2R ⊂ Rd such that u(0) = 0. Then, there are constants C1 and C2, depending
only on � and d , such that the following inequality does hold:

C1 dist (x, {u = 0}∩B2R) ≤ u(x) ≤ C2 dist (x, {u = 0}∩B2R) for every x ∈ BR .

Proof The first inequality follows by Lemma 6.8, while the second one is due to
the Lipschitz continuity of u (see Theorem 3.1). ��

6.4 Regular and Singular Parts of the Free Boundary

In this section, we define the regular and the singular parts of the free boundary.

We notice that we will use exactly the same definition of regular and singular parts in
Theorems 1.2, 1.4, 1.9 and 1.10.

Let D be a bounded open set in Rd and let u : D → R be a non-negative
continuous function (in particular, one can take u to be a minimizer of F� in D).
Let x0 be a fixed point on the free boundary ∂�u ∩ D, where �u = {u > 0}.
Definition 6.10 (Decomposition of the Free Boundary) We say that x0 is a
regular point if there exists a blow-up limit u0 of u at x0 (see Definition 6.1) of
the form

u0(x) = √
� (x · ν)+ for every x ∈ R

d ,

for some unit vector ν ∈ Rd . We will denote the set of all regular points
x0 ∈ ∂�u ∩ D by Reg(∂�u), and we define the singular part of the free boundary
as

Sing(∂�u) = (∂�u ∩ D) \ Reg(∂�u).

In Chap. 8, we will prove that Reg(∂�u) is an open subset of ∂�u and is a C1,α-
regular surface in Rd . In this section, we will prove that the reduced boundary ∂∗�u

is actually a subset of the regular part Reg(∂�u) and (as a consequence) that the
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singular set is small. Precisely, we will show that

Hd−1(Sing(∂�u)
) = 0.

We start with the following lemma.

Lemma 6.11 Let D be a bounded open set in Rd and u be a minimizer of F� in
D. Let x0 ∈ ∂�u ∩ D be a free boundary point, for which there exists a unit vector
ν ∈ Rd and a vanishing sequence rn → 0 such that

1�n → 1Hν in BR for every R > 0, (6.10)

where �n := 1
rn

(−x0+�u) and Hν := {x ∈ Rd : x·ν > 0}. Then, x0 ∈ Reg(∂�u).

Proof Let un be the blow-up sequence

un(x) := ux0,rn(x) = 1

rn
u(x0 + rnx).

Notice that �n = {un > 0}. By Proposition 6.2, we have that, up to a subsequence
and for every R > 0, un converges locally uniformly in BR and strongly in H 1 to a
functionu0, which is a non-negativeLipschitz continuous global minimizer ofF� in
Rd . Moreover, we have that the sequence of characteristic functions 1�n converges
in L1(BR) to 1�u0

. In particular, this implies that �u0 = Hν almost everywhere.
Now, the minimality of u0 and the fact that |{u0 = 0} ∩ Hν | = 0 implies that u0 is
harmonic in Hν . By the maximum principle, we get that �u0 = Hν . Thus, u0 is C∞
smooth up to the boundary ∂Hν (where it vanishes).

We will next prove that

∇u0 = √
� ν on ∂Hν .

Indeed, suppose that this is not the case. Then, there are two possibilities:

(1) there is a point y ∈ ∂Hν such that ∇u0 = Aν for some A >
√

�;
(2) there is a point y ∈ ∂Hν such that ∇u0 = Bν for some 0 < B <

√
�.

Suppose that (1) holds. Let hr ,R be the radial solution from Proposition 2.15, where
r is large enough and R = R(r) is uniquely determined by r . Recall that:

r < R , lim
r→∞ |R − (r + 1)| = 0 , {hr ,R > 0} = BR ,

hr ,R = 1 on Br and |∇hr ,R| = 1 + o(1) on BR \ Br .
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Moreover, the function
√

� hr ,R is a local minimizer of F� in Rd \Br . Let yr ∈ Rd

be such that the ball BR(yr) is contained in Hν and is tangent to ∂Hν at y. Let r > 0
be fixed and such that

|∇hr ,R| <
1

2
+ A

2
√

�
.

Then, there is ε > 0 small enough, for which the function

h̃(x) := √
� hr ,R(x + εν)

satisfies the following conditions:

• the support of h̃ is not entirely contained in Hν , that is, {h̃ > 0} ∩ {u0 = 0} �= ∅;
• h̃ > u0 only in a small neighborhood of y, precisely, {h̃ > u0} ⊂ B1/2(y).

Next, we notice that both h̃ and u0 are minimizers of F� in B := B1/2(y). Since, by
construction u0 ≥ h on ∂B, we get that

F�(h̃,B) ≤ F�(u0 ∧ h̃,B) and F�(u0,B) ≤ F�(u0 ∨ h̃,B). (6.11)

On the other hand,

F�(h̃,B) + F�(u0,B) = F�(u0 ∧ h̃,B) + F�(u0 ∨ h̃,B),

which means that both the inequalities in (6.11) are equalities and that both the
functions h̃∧u0 and h̃∨u0 are minimizers ofF� in B. For instance, this means that
h̃∨u0 is harmonic in the set {h̃ > 0}∩B, which is impossible since by construction
h̃∨u0 is not C1 (for instance, the gradient is not continuous on the segment [y, yr]).
Thus, (1) cannot happen. By the same argument, also (2) cannot happen, which
means that

|∇u0| = √
� on ∂Hν.

Now, by the unique continuation principle we have that u0(x) = √
� (x · ν) on Hν .

Indeed, the function ũ0, defined as

ũ0(x) = u0(x) in Hν and ũ0(x) = √
�(x · ν) on R

d \ Hν ,

is harmonic in the entire space Rd and so, it should coincide everywhere with the
function x �→ √

� (x · ν). This concludes the proof. ��

Proposition 6.12 (The Singular Set Is Negligible) Let D be a bounded open set
in Rd and u ∈ H 1(D) be a minimizer of F� in D. Then, Hd−1

(
Sing(∂�u)

) = 0.
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Proof By Proposition 5.3, �u has locally finite perimeter in D. Let ∂∗�u be the
reduced boundary of �u. It is well-known (see for instance [43, Theorem 5.15])
that, for every x0 ∈ ∂∗�u, there is a unit vector ν ∈ Rd such that the property (6.10)
does hold. Thus, by Lemma 6.11, we have that ∂∗�u ⊂ Reg(∂�u). On the other
hand, by the Second Theorem of Federer (see [43]), we have that

Hd−1((∂�u ∩ D) \ (�(1)
u ∪ �(0)

u ∪ ∂∗�u)
) = 0. (6.12)

Recall that, by Lemma 5.1, there are no points of density 1 and 0 on the free
boundary, that is,

(∂�u ∩ D) ∩ (�(1)
u ∪ �(0)

u

) = ∅.

Thus, by (6.12)

Hd−1((∂�u ∩ D) \ ∂∗�u

) = 0.

Now, by the definition of the singular part, we have

Sing(∂�u) = (∂�u ∩ D) \ Reg(∂�u) ⊂ (∂�u ∩ D) \ ∂∗�u ,

which concludes the proof. ��
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Chapter 7
Improvement of Flatness

In this chapter, we will prove that the regular part of the free boundary Reg(∂�u)

(defined in Sect. 6.4) is C1,α regular, for every α ∈ (0, 1/2). We will first show that
the minimizers of F� are viscosity solutions of an overdetermined boundary value
problem. Precisely, we will prove the following result.

Proposition 7.1 (Local Minimizers Are Viscosity Solutions) Let D be a bounded
open set of Rd and let u ∈ H 1(D) be a minimizer of F� in D. Then, u is a viscosity
solution of

�u = 0 in �u, |∇u| = √
� on ∂�u ∩ D, (7.1)

in the sense of Definition 7.6.

The rest of the section is dedicated to the De Silva improvement of flatness
theorem [23]. Precisely, we will prove that the (viscosity) solutions to (7.1) have
C1,α regular free boundary. The proof follows step-by-step (sometimes with minor
modifications) the original proof of De Silva [23].

Without loss of generality, we can assume that � = 1. This is due to the
following remark, which is an immediate consequence of the definition of a
viscosity solution (Definition 7.6).

Remark 7.2 The continuous non-negative function u : B1 → R is a viscosity
solution to (7.1), for some � > 0, if and only if the function v := �−1/2 u is a
viscosity solution to

�v = 0 in �v , |∇v| = 1 on ∂�v ∩ D. (7.2)

As a consequence, it is sufficient to give the notion of flatness in the case � = 1.

© The Author(s) 2023
B. Velichkov, Regularity of the One-phase Free Boundaries,
Lecture Notes of the Unione Matematica Italiana 28,
https://doi.org/10.1007/978-3-031-13238-4_7

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13238-4_7&domain=pdf

 -151 4612 a -151
4612 a
 
https://doi.org/10.1007/978-3-031-13238-4_7


90 7 Improvement of Flatness

Definition 7.3 (Flatness) Let u : B1 → R be a given function. Let ε > 0 be a
fixed real number and ν ∈ Rd a unit vector. We say that

u is ε−flat, in the direction ν, in B1,

if

(x · ν − ε)+ ≤ u(x) ≤ (x · ν + ε)+ for every x ∈ B1.

Theorem 7.4 (Improvement of Flatness for Viscosity Solutions, De Silva [23])
There are dimensional constants C0 > 0, ε0 > 0, σ ∈ (0, 1) and r0 > 0 such that
the following holds:

If u : B1 → R be a continuous function such that:

(a) u is non-negative and 0 ∈ ∂�u;
(b) u is a viscosity solution to

{
�u = 0 in �u ∩ B1 ,

|∇u| = 1 on ∂�u ∩ B1 ;

(c) there is ε ∈ (0, ε0] such that u is ε-flat in B1, in the direction of the unit vector
ν ∈ Rd .

Then, there is a unit vector ν̃ ∈ ∂B1 ⊂ Rd such that:

(i) |ν̃ − ν| ≤ C0ε;
(ii) the function ur0 : B1 → R is σε-flat in B1, in the direction ν̃, where we recall

that ur0(x) = 1

r0
u(r0x).

Precisely, for any ε0 > 0, we may take

C0 = Cd , ε0 = r0 and σ = Cdr0,

where Cd is a dimensional constant.

From the improvement of flatness (Theorem 7.4) we will deduce the regularity
of the free boundary (see Chap. 8). The section is organized as follows:

• In Sect. 7.1 we give the definition of a viscosity solution and we prove Propo-
sition 7.1 using as competitors the radial solutions from the Propositions 2.15
and 2.16.
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• In order to prove Theorem 7.4, we will reason by contradiction. This means
that we will need a compactness result for a sequence of viscosity solutions
un : B1 → R which are εn-flat in B1 (εn being an infinitesimal sequence). This
will be the aim of Sects. 7.2 and 7.3. In Sect. 7.2, we will prove the so-called
Partial Harnack inequality (see Theorem 7.7), which we will use in Sect. 7.3 to
obtain the compactness result (Lemma 7.14).

• Section 7.4 is dedicated to the proof of Theorem 7.4.
• Sections 8.1 and 8.2 are dedicated to the proof of Theorem 8.1, which is based on

a classical argument and is well-known to be a consequence of the improvement
of flatness Theorem 7.4.

7.1 The Optimality Condition on the Free Boundary

In this section, we give the definition of a viscosity solution and we prove
Proposition 7.1.

Definition 7.5 Suppose that � ⊂ Rd is an open set and that u is a continuous
function, defined on the closure �. Let x0 ∈ �. We say that the function
φ ∈ C∞(Rd ) touches u from below (resp. from above) at x0 in � if:

• u(x0) = φ(x0);
• there is a neighborhood N (x0) ⊂ Rd of x0 such that u(x) ≥ φ(x)

(resp. u(x) ≤ φ(x)), for every x ∈ N (x0) ∩ �.

Definition 7.6 (Viscosity Solutions) Let D ⊂ Rd be an open set, A > 0 and
u : D → R+ be a continuous function. We say that u is a viscosity solution of the
problem

�u = 0 in �u, |∇u| = A on ∂�u ∩ D,

if for every x0 ∈ �u ∩ D and φ ∈ C∞(D), we have

• if x0 ∈ �u = {u > 0} and
– if φ touches u from below at x0 in �u, then �φ(x0) ≤ 0;
– if φ touches u from above at x0 in �u, then �φ(x0) ≥ 0;

• if x0 ∈ ∂�u ∩ D and

– if φ touches u from below at x0 in �u, then |∇φ(x0)| ≤ A;
– if φ+ touches u from above at x0 in �u, then |∇φ(x0)| ≥ A.
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Proof of Proposition 7.1 Suppose that x0 ∈ �u and that φ ∈ C∞(D) touches u

from below in x0. Since u is harmonic (and smooth) in the (open) set �u, we get that
�φ(x0) ≥ 0. The case when φ touches u from above at x0 ∈ �u is analogous. Let
now x0 ∈ ∂�u. Suppose that φ touches u from below at x0 and that |∇φ(x0)| > 1.
We assume that x0 = 0 and we set

|∇φ(0)| = a and ν = 1

a
∇φ(0) ∈ ∂B1 ,

we get that, for some ρ > 0 small enough,

u(x) ≥ φ+(x) ≥ 1 + a

2
(x · ν)+ for every x ∈ Bρ .

Let now r > 0 be large enough such that the radial solution ur from Lemma 2.15
satisfies

ur = 1 in Br , ur = 0 in R
d \ BR , |∇ur | ≤ 2 + a

3
in BR \ Br .

Let ũε be the following translation of ur

ũε(x) := ur

(
x − (R − ε)ν

)
.

Choosing ε small enough we can suppose that ũε(0) > 0 but

ũε(x) ≤ 1 + a

2
(x · ν)+ for every x ∈ ∂Bρ .

Thus,

ũε ∨ u = u and ũε ∧ u = ũε on ∂Bρ .

Now, since both ũε and u are both minimizers in Bρ , we get

F�(̃uε ,Bρ) ≤ F�(̃uε ∧ u,Bρ) and F�(u,Bρ) ≤ F�(̃uε ∨ u,Bρ).

On the other hand, we have

F�(̃uε,Bρ) + F�(u,Bρ) = F�(̃uε ∧ u,Bρ) + F�(̃uε ∨ u,Bρ),

which gives that

F�(̃uε ,Bρ) = F�(̃uε ∧ u,Bρ) and F�(u,Bρ) = F�(̃uε ∨ u,Bρ).
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Now, we define the function

ṽε =
{

ũε in Rd \ Bρ ,

ũε ∧ u in Bρ ,

and we set vr(x) = ṽε

(
x + (R − ε)ν

)
. Thus, we get that F�(vr ,Rd) = F�(ur ,Rd),

but vr �= ur , which is a contradiction with Lemma 2.15. The case when φ touches
u from above is analogous and follows by Lemma 2.16. ��

7.2 Partial Harnack Inequality

In this section we prove a weak version of Theorem 7.4. We will assume that u

satisfies the conditions (a), (b) and (c) of Theorem 7.4, which means, in particular,
that u is ε-flat in some direction ν:

(x · ν − ε)+ ≤ u(x) ≤ (x · ν + ε)+ for every x ∈ B1.

Then, we will prove that the flatness of u is improved in some smaller ball Br .
Precisely, we will show that

(
x · ν − (1 − c)ε

)
+ ≤ u(x) ≤ (x · ν + (1 − c)ε

)
+ for every x ∈ Br , (7.3)

for some dimensional constant c ∈ (0, 1). There are two main differences with
respect to Theorem 7.4:

• The flatness might not really be improved in the sense of Theorem 7.4 and
Fig. 7.1. Indeed, (7.3) only implies that the rescaled function

ur : B1 → R, ur(x) = 1

r
u(rx),

is (1 − c) ε
r
—flat in B1. Since the constants c and r are small, we might have

(1 − c)
ε

r
≥ ε,

which means that ur might not be flatter than u.

Fig. 7.1 Improvement of
flatness in the ball B1. For
simplicity, we set r := r0
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• The flatness direction does not change (ν′ = ν). Notice that, without changing
the direction, the improvement of flatness (in the sense of Theorem 7.4) should
not hold. In fact, the function u(x) = x+

d is ε-flat in the direction ν (whenever
|ν − ed | = ε), but for any r > 0, ur(x) = u(x) = x+

d , thus ur cannot be more
than ε-flat in the direction ν (the improvement is only possible if we are allowed
to replace ν by a vector, which is closer to ed ).

The main result of this section is the following.

Theorem 7.7 (Partial Boundary Harnack) There are dimensional constants
ε̄ > 0 and c ∈ (0, 1) such that for every viscosity solution u of (7.2) in B1 ⊂ Rd

such that 0 ∈ �u we have the following property:
If there are two real numbers a0 < b0 such that

|b0 − a0| ≤ ε̄ and (xd + a0)+ ≤ u(x) ≤ (xd + b0)+ on B1,

then there are real numbers a1 and b1 such that a0 ≤ a1 < b1 ≤ b0,

|b1−a1| ≤ (1−c)|a0−b0| and (xd+a1)+ ≤ u(x) ≤ (xd+b1)+ on B1/20.

Proof Since 0 ∈ �u we have that a0 ≥ −1/10. We consider two cases:

1. Suppose that |a0| ≤ 1/10. Then applying Lemma 7.10 we have the claim.
2. Suppose that a0 ≥ 1/10. Then u is harmonic in B1 ∩ {xd > −1/10} (and so, in the

ball B1/10) and the claim follows by Lemma 7.9.

��
We next prove the two main results: Lemmas 7.9 and 7.10. Section 7.2.1 is dedicated
to the proof of Lemma 7.9, which is a consequence of the classical Harnack
inequality for harmonic functions stated in Lemma 7.8. Section 7.2.2 is dedicated to
the boundary version of the Harnack inequality (Lemma 7.10), which is due to De
Silva [23].

7.2.1 Interior Harnack Inequality

Lemma 7.8 (Harnack Inequality) There is a dimensional constant CH such that
for every h : B2r (x0) → R, a non-negative harmonic function in the ball B2r (x0) ⊂
Rd , the following (Harnack) inequality does hold

max
Br (x0)

h ≤ CH min
Br (x0)

h . (7.4)
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In particular, we have

h(x0) ≤ CH min
Br (x0)

h .

Proof The proof is an immediate consequence of the mean-value property. ��

Lemma 7.9 (Improvement of Flatness at Fixed Scale) Let CH > 1 be the
dimensional constant from the Harnack inequality (7.4) and let cH := (

2CH
)−1

.
Suppose that u : B2r → R is a harmonic function for which there are a constant
ε > 0 and a linear function � : Rd → R such that

�(x) ≤ u(x) ≤ �(x) + ε for every x ∈ B2r .

Then at least one of the following does hold :

(i) �(x) + cHε ≤ u(x) ≤ �(x) + ε for every x ∈ Br ;
(ii) �(x) ≤ u(x) ≤ �(x) + (1 − cH)ε for every x ∈ Br .

Proof We consider two cases.
Case 1. Suppose that u(0) ≥ �(0) + ε/2. Then the function h := u − � is harmonic
and non-negative in B2r . Then, by the Harnack inequality (7.4), we have

ε

2
≤ h(0) ≤ CH min

Br

h,

which means that

u − � ≥ ε

2CH
in Br ,

and so (i) holds.
Case 2. Suppose that u(0) ≤ �(0)+ε/2. Then the function h := �+ε−u is harmonic
and non-negative in B2r . Then, by the Harnack inequality (7.4), we have

ε

2
≤ h(0) ≤ CH min

Br

h,

which means that

� + ε − u ≥ ε

2CH
in Br ,

and so (ii) holds. ��
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7.2.2 Partial Harnack Inequality at the Free Boundary

Lemma 7.10 (Improving the Flatness at Fixed Scale; De Silva [23]) There are
dimensional constants ε̄ > 0 and c ∈ (0, 1), for which the following does hold.

Suppose that u : B1 → R is a continuous non-negative function and a viscosity
solution of (7.2) in B1 ⊂ Rd . Then, we have the following property:

If there are real constants ε and σ , 0 < ε ≤ ε̄ and |σ | < 1/10, such that

(xd + σ)+ ≤ u(x) ≤ (xd + σ + ε)+ for every x ∈ B1,

then at least one of the following does hold :

(i) (xd + σ + cε)+ ≤ u(x) ≤ (xd + σ + ε)+ for every x ∈ B1/20 ;
(ii) (xd + σ)+ ≤ u(x) ≤ (xd + σ + (1 − c)ε)+ for every x ∈ B1/20.

Proof We set

x̄ = ed

5
and c̄ =

(
20d − (4/3)d

)−1
,

and consider the function w : Rd → R, defined as (see Fig. 7.2):

w(x) =1 for x ∈ B1/20(x̄),

w(x) =0 for x ∈ R
d \ B3/4(x̄),

w(x) =c̄
(
|x − x̄|−d − (3/4)−d

)
,

for every x ∈ B3/4(x̄) \ B1/20(x̄).

The set, where the function w is not constantly vanishing, is precisely the ball
B3/4(x̄) (see Fig. 7.2). Moreover, on the annulus B3/4(x̄) \ B1/20(x̄), the function w

has the following properties :

(w1) �w(x) = 2 d c̄ |x − x̄|−(d+2) ≥ 2 d c̄
(
4/3
)d+2

> 0 .
(w2) ∂xd w ≥ Cw > 0 on the half-space {xd < 1/10}. Here, Cw > 0 is an (explicit)

constant depending only on the dimension.

Following the notation from [23] we set p(x) = xd + σ . Similarly to what we
did in the proof of Lemma 7.9, we consider two cases.
Case 1. Suppose that u(x̄) ≥ p(x̄) + ε/2.

Since the function u − p is harmonic and non-negative in the ball B1/10(x̄), we

can apply the Harnack inequality (7.4). Thus, setting cH := (2CH
)−1 we get

u(x) − p(x) ≥ cHε in B1/20(x̄).
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Fig. 7.2 The function w

0∂Ωu

w ≡ 1 in B1/20(x̄)

Δw > 0 in B3/4(x̄) \ B1/20(x̄)

w = 0 on ∂B3/4(x̄)

u > 0

u = 0

xd = 1/10

xd = −1/10

B1

We now consider the family of functions

vt (x) = p(x) + cHεw(x) − cHε + cHεt .

We will prove that for every t ∈ [0, 1), we have u(x) ≥ vt (x) in B1. We notice that,
for t < 1 the function vt has the following properties:

(v1) vt (x) < p(x) ≤ u(x) on B1 \ B3/4(x̄) (since the support of w is precisely
B3/4(x̄)),

(v2) vt (x) < u(x) in B1/20(x̄) (by the choice of the constant cH),
(v3) �vt(x) > 0 on the blue annulus B3/4(x̄) \ B1/20(x̄) (follows from (w1)),
(v4) |∇vt |(x) ≥ ∂xd vt (x) ≥ 1+ cHεCw > 1 on

(
B3/4(x̄) \ B1/20(x̄)

)∩ {xd < 1/10}.
Suppose (by absurd) that, for some t ∈ [0, 1), the function u−vt has local minimum
in B1 in a point x ∈ B1. By (v3) and the fact that u is a viscosity solution we have

that x /∈ �u ∩
(
B3/4(x̄) \ B1/20(x̄)

)
. By (v4) we have that x /∈ ∂�u ∩

(
B3/4(x̄) \

B1/20(x̄)
)
and x /∈ (B1\�u)∩

(
B3/4(x̄)\B1/20(x̄)

)
. Thus we get x /∈ B3/4(x̄)\B1/20(x̄).

By (v1) and (v2) we conclude that

min
x∈B1

{
u(x) − vt (x)

}
> 0 whenever t < 1.
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Thus, we obtain that u ≥ v1 on B1, i.e.

u(x) ≥ p(x) + cHεw(x) on B1.

Now since w is strictly positive on the ball B1/20 we get that

u(x) ≥ p(x) + cdε on B1/20,

which proves that the property (i) holds.
Case 2. Suppose that u(x̄) < p(x̄) + ε/2.
Since the function p + ε − u is harmonic and non-negative in the ball B1/10(x̄),
we can apply the Harnack inequality, thus obtaining that for a dimensional constant
cH > 0 we have

p + ε − u ≥ cHε in B1/20(x̄).

We now consider the family of functions

vt (x) = p(x) + ε − cHεw(x) + cHε − cHt ,

and, reasoning as in the previous case, we get that

vt (x)+ ≥ u(x) for every t ∈ [0, 1).

In particular, since w is strictly positive on the ball B1/20, we get that

u(x) ≤ (p(x) + (1 − cd)ε
)
+ on B1/20,

which concludes the proof. ��

7.3 Convergence of Flat Solutions

In this subsection we prove the compactness result that we will need in the proof of
Theorem 7.4. The proof is entirely based on Theorem 7.7, from which we know that
any (continuous, non-negative) viscosity solution u : B1 → R of (7.2) satisfies the
following condition.

Condition 7.11 (Partial Improvement of Flatness) There are constants ε̄ > 0
and c ∈ (0, 1) such that the following holds. If x0 ∈ �u, Br(x0) ⊂ B1 and a0 < b0
are such that

|b0 − a0| ≤ rε̄ and (xd + a0)+ ≤ u(x) ≤ (xd + b0)+ on Br(x0),



7.3 Convergence of Flat Solutions 99

then there are real numbers a1 and b1 such that a0 ≤ a1 < b1 ≤ b0,

|b1−a1| ≤ (1−c)|a0−b0| and (xd +a1)+ ≤ u(x) ≤ (xd +b1)+ on Br/20(x0).

Remark 7.12 We notice that if u : B1 → R is a continuous non-negative function
on B1, then, for any a < b and any set E ⊂ B1, the inequality

(xd + a)+ ≤ u(x) ≤ (xd + b)+ on E,

is equivalent to

xd + a ≤ u(x) ≤ xd + b on E ∩ �u,

Thus, an equivalent way to state Condition 7.11 is the following. The non-negative
function u : B1 → R satisfies Condition 7.11, if and only if, the following holds.

If x0 ∈ �u, Br(x0) ⊂ B1 and a0 < b0 are such that

|b0 − a0| ≤ rε̄ and xd + a0 ≤ u(x) ≤ xd + b0 on Br(x0) ∩ �u,

then there are real numbers a1 and b1 such that a0 ≤ a1 < b1 ≤ b0,

|b1−a1| ≤ (1−c)|a0 −b0| and xd +a1 ≤ u(x) ≤ xd +b1 on Br/20(x0)∩�u.

The constants ε̄ and c are the same as in Condition 7.11.

Lemma 7.13 Suppose that the continuous non-negative function u : B1 → R

satisfies Condition 7.11 with constants c and ε̄. Suppose that 0 ∈ �u and that there
are two real numbers a0 < b0 such that

ε := |b0 − a0| <
ε̄

2
and xd + a0 ≤ u(x) ≤ xd + b0 on B1 ∩ �u.

Then, setting

ũ(x) = u(x) − xd

ε
for every x ∈ �u ∩ B1,
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for every x0 ∈ B1/2 ∩ �u, we have the uniform estimate

|ũ(x) − ũ(x0)| ≤ C|x − x0|γ for every x ∈ �u ∩ (B1/2(x0) \ Bε/ε̄(x0)
)
,

where C is a numerical constant and γ depends only on c.

Proof Let n ≥ 0 be such that

1

2

(
1/20
)n+1 ≤ ε

ε̄
<

1

2

(
1/20
)n.

Let rj = 1

2

(
1/20
)j . Then, we have

ε ≤ ε̄rj for every j = 0, 1, . . . , n.

Thus, for every x0 ∈ B1/2 ∩ �u we can apply the (partial) improvement of flatness
in Brj (x0), for every j = 0, 1, . . . , n. Thus, we get that there are

a0 ≤ a1 ≤ · · · ≤ aj ≤ · · · ≤ an ≤ bn ≤ · · · ≤ bj ≤ · · · ≤ b1 ≤ b0

such that

|bj −aj | ≤ (1−c)j |a0−b0| and (xd +aj )+ ≤ u(x) ≤ (xd +bj )+ on Brj (x0),

which implies that

xd + aj ≤ u(x) ≤ xd + bj on Brj (x0) ∩ �u,

and so,

∣
∣(u(x) − xd

)− aj

∣
∣ ≤ (1 − c)j ε for x ∈ Brj (x0) ∩ �u.

The triangular inequality implies that

|ũ(x) − ũ(x0)| ≤ 2(1 − c)j for every x ∈ Brj (x0) ∩ �u,

which gives the claim by choosing j such that

rj+1 < |x − x0| ≤ rj ,

and setting γ to be such that
(
1/20
)γ = 1 − c. ��
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Lemma 7.14 (Compactness for Flat Sequences) Let ε̄ > 0 and c ∈ (0, 1) be fixed
constants. Suppose that uk : B1 → R is a sequence of continuous non-negative
functions such that

(a) uk satisfies Condition 7.11 in B1 with constants ε̄ and c.
(b) uk is εk-flat in B1, that is,

xd − εk ≤ uk(x) ≤ xd + εk in B1 ∩ �uk .

(c) lim
k→∞ εk = 0.

Then there is a Hölder continuous function ũ : B1/2 ∩ {xd ≥ 0} → R and a
subsequence of

ũk(x) = uk(x) − xd

εk

, uk : B1/2 ∩ �uk → R,

that we still denote by ũk such that the following claims do hold.

(i) For every δ > 0, ũk converges uniformly to ũ on the set B1/2 ∩ {xd ≥ δ}.
(ii) The sequence of graphs

�k = {(x, ũk(x)) : x ∈ �uk ∩ B1/2

} ⊂ R
d+1,

converges in the Hausdorff distance (in Rd+1) to the graph

� = {(x, ũ(x)) : x ∈ B1/2 ∩ {xd ≥ 0}}.

Proof We first prove (i). For every y ∈ B1/2 ∩ �uk we have that

xd − εk ≤ uk(x) ≤ xd + εk for every x ∈ B1/2(y) ∩ �uk .

Thus, by Lemma 7.13 we have that ũk satisfies

|ũk(x) − ũk(y)| ≤ C|x − y|γ for every x ∈ B1/2(y) ∩ �uk such that |x − y| ≥ εk

ε̄
,

which, since y is arbitrary, gives

|ũk(x) − ũk(y)| ≤ C|x − y|γ for every x, y ∈ B1/2 ∩ �uk such that |x − y| ≥ εk

ε̄
.
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Since, for εk ≤ δ, we have that {xd ≥ δ} ∩B1 ⊂ �uk ∩B1, we get that the sequence
ũk : {xd ≥ δ} ∩ B1/2 → R satisfies :

• ũk is equi-bounded on {xd ≥ δ} ∩ B1/2

−1 = (xd − εk) − xd

εk

≤ uk(x) − xd

εk

≤ (xd + εk) − xd

εk

= 1;

• ũk satisfies

osc
(
ũk;A2r ,r (x0) ∩ {xd ≥ δ} ∩ B1/2

) ≤ 2Crγ for every r ≥ εk

ε̄
,

where, for any set E ⊂ �uk , we define:

osc (ũk;E) := sup
E

ũk − inf
E

ũk ,

and, for every 0 < r < R, AR,r (x0) is the annulus

AR,r (x0) = BR(x0) \ Br(x0).

Thus, by the Ascoli-Arzelà Theorem, there is a subsequence converging uniformly
on the set {xd ≥ δ} ∩ B1/2 to a Holder continuous function

ũ : {xd ≥ δ} ∩ B1/2 → [−1, 1],

satisfying

|ũ(x) − ũ(y)| ≤ C|x − y|γ for every x, y ∈ B1/2 ∩ {xd ≥ δ}.

The above argument does not depend on δ > 0. Thus, the function ũ can be defined
on the entire half-ball {xd > 0} ∩ B1/2. Moreover, the constants C and γ do not
depend on the choice of δ > 0. This implies that we can extend ũ to a Hölder
continuous function

ũ : {xd ≥ 0} ∩ B1/2 → [−1, 1].

still satisfying the uniform continuity estimate

|ũ(x) − ũ(y)| ≤ C|x − y|γ for every x, y ∈ B1/2 ∩ {xd ≥ 0}.

We now prove (ii). Suppose that x̃ = (x, ũ(x)) ∈ �. For every δ > 0, there is a point
y ∈ B1/2 ∩ {xd > δ/2} such that |x − y| ≤ δ. (Notice that, if x ∈ B1/2 ∩ {xd > δ/2},
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then we can simply take y = x.) Then, setting ỹ = (y, ũ(y)), we have the estimate

|x̃ − ỹ|2 = |x − y|2 + |ũ(x) − ũ(y)|2 ≤ δ2 + C2δ2γ .

On the other hand, for every k such that εk ≤ δ, we have

dist
(
ỹ,�k

) ≤ |ũ(y) − ũk(y)| ≤ ‖ũ − ũk‖L∞(B1/2∩{xd>δ/2}).

Thus, we finally obtain the estimate

dist
(
x̃,�k

) ≤ (δ2 + C2δ2γ
)1/2 + ‖ũ − ũk‖L∞(B1/2∩{xd>δ/2}).

Let now x̃k = (
xk , ũk(xk)

) ∈ �k . Let k be such that εk/ε̄ ≤ δ/2. Let
yk ∈ {xd ≥ δ} ∩ B1/2 be such that δ/2 ≤ |xk − yk| ≤ 2δ and let ỹk = (

yk , ũk(yk)
)
.

Then, we have

|x̃k − ỹk|2 = |xk − yk|2 + |ũk(xk) − ũk(yk)|2 ≤ 4δ2 + 4C2δ2γ .

Reasoning as above, we get

dist
(
x̃k,�

) ≤ 2
(
δ2 + C2δ2γ

)1/2 + ‖ũ − ũk‖L∞(B1/2∩{xd>δ}).

Now, since δ is arbitrary and ũk converges to ũ uniformly on {xd > δ/2} ∩ B1/2, we
get that

lim
k→∞ distH(�k ,�) = 0.

��

7.4 Improvement of Flatness: Proof of Theorem 7.4

In this subsection, we prove Theorem 7.4. Since, we will reason by contradiction,
we will first study the limits of the sequences of (flat) viscosity solutions to (7.2) in
B1.

Lemma 7.15 (The Linearized Problem) Suppose that uk : B1 → R is a sequence
of continuous non-negative functions such that:

(a) for every k, uk is a viscosity solution of

�uk = 0 in �uk ∩ B1 , |∇uk| = 1 on ∂�uk ∩ B1. (7.5)
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(b) for every k, uk is εk-flat in B1 in the sense that

(xd − εk)+ ≤ uk(x) ≤ (xd + εk)+ in B1.

(c) lim
k→∞ εk = 0.

Then, up to extracting a subsequence, the sequence of functions

ũk : B1/2 ∩ �uk → R , ũk(x) = uk(x) − xd

εk

,

converges (in the sense of Lemma 7.14 (i) and (ii)) to a Hölder continuous function

ũ : B1/2 ∩ {xd ≥ 0} → R.

Moreover, we have that

(i) ũ is a viscosity solution to

�ũ = 0 in B1/2∩{xd > 0} , ∂ũ

∂xd

= 0 on B1/2∩{xd = 0} , (7.6)

in the sense that

• ũ is harmonic in B1/2 ∩ {xd > 0},
• If P is a polynomial touching ũ from below (above) in a point

x0 ∈ B1/2 ∩ {xd = 0}, then
∂P

∂xd

(x0) ≤ 0

(
∂P

∂xd

(x0) ≥ 0

)
.

(ii) ũ ∈ C∞(B1/2 ∩ {xd ≥ 0}) and is a classical solution of (7.6).

Proof The existence of the limit function ũ follows by Lemma 7.14.
We first prove (i). Suppose that P is a polynomial touching ũ strictly from below

in a point x0 ∈ B1/2 ∩ {xd ≥ 0}. Then there exists a sequence of points xk ∈ �uk

such that P touches ũk from below in xk and xk → x0 as k → ∞. We consider two
cases:

(1) Suppose that x0 ∈ {xd > 0}. Then there is some δ > 0 such that xk ∈ {xd > δ},
for every k large enough. Thus, xk ∈ �uk for k large enough and so, since
ũk is harmonic in �uk , �P(xk) ≥ 0. Passing to the limit as k → ∞ we get
�P(x0) ≥ 0.

(2) Suppose that x0 ∈ {xd = 0}. We suppose without loss of generality that x0 = 0.
We consider the family of polynomials

Pε(x) = P(x) + 1

ε
x2
d − εxd .
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In a sufficiently small neighborhood of zero, we have that Pε still touches ũ

(strictly) from below in 0. Moreover,

�Pε > 0 in a neighborhood of zero ,
∂Pε

∂xd

(0) = ∂P

∂xd

(0) − ε.

Thus it is sufficient to show that for every ε > 0, we have
∂Pε

∂xd

(0) ≤ 0. Let

now ε > 0 be fixed. Consider the sequence of points xk ∈ �uk such that Pε

touches ũk from below in xk and xk → x0 as k → ∞. Since �Pε(xk) > 0 and
ũk is harmonic in �uk we have that necessarily xk ∈ ∂�k. By the definition of
ũk = uk−xd

εk
we get that the polynomial Q(x) = εkPε(x) + xd touches uk from

below in xk . Since uk is a viscosity solution of (7.5), we get that

1 ≥ |∇Q(xk)|2 ≥
(
1 + εk

∂Pε

∂xd

(xk)
)2 = 1 + 2εk

∂Pε

∂xd

(xk) + ε2k

∣
∣
∣
∣
∂Pε

∂xd

(xk)

∣
∣
∣
∣

2

.

Thus, we have
∂Pε

∂xd

(0) ≤ 0, which concludes the proof after letting ε → 1.

We now prove (ii). We write Rd � x = (x ′, xd) with x ′ ∈ Rd−1 and xd ∈ R. We
consider the function w : Rd → R defined by ũ and its reflexion:

w(x ′, xd) =
{

ũ(x ′, xd), if xd ≥ 0,

ũ(x ′,−xd), if xd ≤ 0.

We will prove that w is harmonic on Rd . Suppose that P is a polynomial touching
w strictly from below in a point x0 ∈ {xd = 0}. Since w is harmonic on {xd �= 0}
it is sufficient to prove that �P(x0) ≤ 0. We first notice that since w(x ′, xd) =
w(x ′,−xd) then also the polynomial P(x ′,−xd) touches w strictly from below in
x0 and, as a consequence, so does the polynomial

Q(x ′, xd) = P(x ′, xd) + P(x ′,−xd)

2
,

which satisfies

�Q = �P and
∂Q

∂xd

= 0 on {xd = 0}.

Consider the polynomial

Qε(x) = Q(x) + ε x · ed .
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Then Qε touches w from below in a point xε and we have that xε → x0 as ε → 0.
We notice that necessarily xε ∈ {xd ≥ 0}. Moreover, we can rule out the case
xε ∈ {xd = 0} since by the hypothesis on ũ we have that in this case we should have

0 ≥ ∂Qε

∂xd

(xε) = ∂Q

∂xd

(xε) + ε = ε,

which is impossible. Thus xε ∈ {xd > 0} and since ũ is harmonic in {xd > 0} we
get that

0 ≥ �Qε(xε) = �Q(xε).

Passing to the limit as ε → 0, we obtain that �Q(x0) ≤ 0, which concludes the
proof. ��

Lemma 7.16 (First and Second Order Estimates for Harmonic Functions)
Suppose that h : BR → R is a bounded harmonic function in BR . Then

‖∇h‖L∞(BR/2)
≤ Cd

R
‖h‖L∞(BR) , (7.7)

and

∣
∣h(x) − h(0) − x · ∇h(0)

∣
∣ ≤ Cd

R2 |x|2‖h‖L∞(BR) for every x ∈ BR/2 ,

(7.8)

where Cd is a dimensional constant.

Proof Let x0 ∈ B3R/4. Since h is harmonic in BR/4(x0), we have that also ∂ih is
harmonic in the same ball BR/4(x0), we have

∂ih(x0) = 4d

ωdRd

∫

BR/4(x0)

∂ih(x) dx = 4d

ωdRd

∫

BR/4(x0)

divX dx,

where X = (0, . . . , h, . . . , 0) is the vector with the only non-zero component being
the ith one, which is precisely h. Now, the divergence theorem gives

∂ih(x0) = 4d

ωdRd

∫

∂BR/4(x0)

ν · X dHd−1 = 4d

ωdRd

∫

∂BR/4(x0)

νi (x)h(x) dHd−1(x),

which implies that

‖∂ih‖L∞(B3R/4)
≤ 4d

R
‖h‖L∞(BR),
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and so, we obtain (7.7). Now, by the same argument, we get that

‖∂ij h‖L∞(BR/2)
≤ 16d2

R2 ‖h‖L∞(BR).

Let now x ∈ BR/4 and set

f (t) = h(xt) for every t ∈ [0, 1].

Then, we have

h(x) − h(0) − x · ∇h(0) = f (1) − f (0) − f ′(0) =
∫ 1

0
(1 − t)f ′′(t) dt .

Since

f ′(t) = x · ∇h(xt) and f ′′(t) =
d∑

i,j=1

xixj ∂ij h(xt),

and

x · ∇h(xt) =
d∑

i,j=1

∫ t

0
xixj∂ij h(sx) ds,

we get precisely (7.8). ��
Proof of Theorem 7.4 We fix C0 and r0 to be dimensional constant which will be
chosen later. In order to prove that ε0 exists we reason by contradiction. Let εn → 0
and let un : B1 → R be a sequence of continuous functions satisfying the conditions
(a), (b) and (c) with εn. Without loss of generality, we may suppose that, for any n ∈
N, un is εn flat in B1 in the same direction ed . Finally, we assume by contradiction
that, there are no n ∈ N and a unit vector ν satisfying the following conditions:

(i) |ν − ed | ≤ C0ε;
(ii) the function (un)r0 : B1 → R is σε-flat in B1, in the direction ν.

By Lemma 7.14 we can suppose that the sequence

ũn(x) = un(x) − xd

εn

for x ∈ B1 ∩ �un ,

converges (in the sense of Lemma 7.14 (i) and (ii)) in B1/2 to a smooth (C∞(B1/2))
function

ũ : B1/2 ∩ {xd ≥ 0} → [−1, 1]
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that satisfies (7.6). We notice that

ũ(0) = 0 and
∂ũ

∂xd

(0) = 0.

We set

νi := ∂ũ

∂xi

(0), for every i = 1, . . . , d − 1 ; ν′ := (ν1, . . . , νd−1) ∈ R
d−1,

and we re-write (7.8) as

ν′ ·x′−4Cd |x|2 ≤ ũ(x) ≤ ν′ ·x′+4Cd |x|2 for every x = (x′ , xd) ∈ B1/4∩{xd ≥ 0}.

We now fix r ≤ 1/4. Since the graph �n of ũn converges in the Hausdorff distance
to the graph � of ũ (see Lemma 7.14 (ii)), we have that for n large enough

ν′ · x′ − 8Cdr2 ≤ ũn(x) ≤ ν′ · x′ + 8Cdr2 for every x = (x′, xd) ∈ Br ∩ �un .
(7.9)

Using the definition of ũn we can rewrite (7.9) as

xd + εnν
′ · x ′ − εn8Cdr2 ≤ un(x) ≤ xd + εnν

′ · x ′ + εn8Cdr2, (7.10)

which holds for every x = (x ′, xd) ∈ Br ∩ �un .
We define the new flatness direction ν as follows:

ν := 1
√
1 + ε2n|ν′|2 (εnν

′, 1) ∈ R
d .

By definition, we have that |ν| = 1. We next estimate the distance between ν and
ed . Since both ν and ed are unit vectors, we have

|ν − ed |2 = 2(1 − ν · ed) = 2

(

1 − 1
√
1 + ε2n|ν′|2

)

.

Notice that the following elementary inequality holds:

1 − 1√
1 + X

≤ 2X for every − 1/2 < X < 1/2 . (7.11)

In order to apply this inequality to X = ε2n|ν′|2, we first check that ε2n|ν′|2 ≤ 1/2. In
fact, by the definition of ν′ and (7.7), we have the estimate |ν′| ≤ 2Cd . Thus, for n
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large enough, we have that ε2n|ν′|2 ≤ 1/2 and so, we can estimate

|ν − ed |2 ≤ 2|ν′|2ε2n ≤ 8C2
dε2n ,

which proves that ν satisfies (i), once we choose C0 = 4Cd .
Using again the inequality (7.11) and the fact that

0 ≤ un ≤ εn + r in Br ,

which follows by the non-negativity and the εn-flatness of un, we get that

un − 8C2
dε2n(r + εn) ≤ un√

1 + ε2n|ν′|2 ≤ un in Br .

Thus, dividing (7.10) by
√
1 + ε2n|ν′|2, we get that

x · ν − Cd

(
ε2n(r + εn) + εnr

2) ≤ un(x) ≤ x · ν + Cdεnr
2,

for every x = (x ′, xd) ∈ Br ∩ �un , Cd being a dimensional constant. Choosing r0
small enough and ε0 ≤ r0, we get that

x · ν − εnr0σ ≤ un(x) ≤ x · ν + εnr0σ for every x = (x ′, xd) ∈ Br0 ∩ �un ,

and so the vector ν satisfies (i) and (ii), in contradiction with the initial assumption.
��
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Chapter 8
Regularity of the Flat Free Boundaries

This chapter is dedicated to the regularity of the flat free boundaries. In particular,
we will show how the improvement of flatness (proved in previous section) implies
the C1,α regularity of the free boundary (see Fig. 8.1). The results of this section are
based on classical arguments and are well-known to the specialists in the field. The
main result of the chapter is the following.

Theorem 8.1 (ε-Regularity for Viscosity Solutions)
There are dimensional constants ε > 0 and δ > 0 such that the following holds:
Suppose that u : B1 → R satisfies the following conditions:

(a) u is a non-negative continuous function and a viscosity solution of (7.1) in B1;
(b) u is ε-flat in B1, that is,

(xd − ε)+ ≤ u(x) ≤ (xd + ε)+ for every x ∈ B1.

Then, there is α > 0 such that the free boundary ∂�u is C1,α regular in the cylinder
B ′

δ × (−δ, δ). Precisely, there is a function g : B ′
δ → (−δ, δ) such that:

(i) g is C1,α regular in the (d − 1)-dimensional ball B ′
δ ⊂ Rd−1;

(ii) the set �u ∩ (B ′
δ × (−δ, δ)

)
is the supergraph of g, that is,

�u ∩ (B ′
δ × (−δ, δ)

) = {x = (x ′, xd) ∈ B ′
δ × (−δ, δ) : xd > g(x ′)

}
.

Moreover, g (and so, ∂�u) is C1,α regular, for any α ∈ (0, 1/2).
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Fig. 8.1 A flat free boundary

u = 0

u > 0

2δ

B′
δ

xd

Proof The existence of a function g : B ′
δ ⊂ Rd−1, which is C1,α regular, for some

α > 0, for which (ii) holds, is a consequence of:

• Theorem 7.4, in which we show that the improvement of flatness (Condition 8.3)
holds for viscosity solutions (with constants σ = Cdκ);

• Lemma 8.4, in which we show that the improvement of flatness implies the
uniqueness of the blow-up limit and the decay of the blow-up sequence:

‖ur ,x0 − ux0‖L∞(B1) ≤ Cdrγ for every r < 1/2 and every x0 ∈ B1/2,
(8.1)

where γ is such that κγ = σ ;
• Proposition 8.6, in which we show that if (8.1) holds, then ∂�u is C1,α regular in

B1/2, where α = γ
1+γ

.

In particular, we notice that by choosing κ small enough, we can take γ as close to
1 (and so, α as close to 1/2) as we want. ��
As a consequence, we obtain the regularity of the free boundary for minimizers of
F�.

Corollary 8.2 (Regularity of Reg(∂�u)) Let D be a bounded open set in Rd and
let u : D → R be a (non-negative) minimizer of F� in D. Then, every regular point
x0 ∈ Reg(∂�u) ⊂ D has a neighborhood U such that ∂�u ∩ U is a C1,α regular
manifold, for every α ∈ (0, 1/2).

Proof Notice that, up to replacing u(x) by v(x) = �−1/2u(x), we may assume that
� = 1. By the definition of Reg(∂�u) (see Sect. 6.4), there is a sequence rn → 0
such that the blow-up sequence urn,x0 converges uniformly (in B1) to a function
u0 : Rd → R of the form

u0(x) = (x · ν)+
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for some unit vector ν ∈ Rd . Then, by Proposition 6.2, for n large enough, we have

‖urn,x0 − u0‖L∞(B1) < ε,

urn,x0 > 0 in {x · ν > ε} and urn,x0 = 0 in {x · ν < −ε}.

This means that urn,x0 is 2ε-flat in B1, that is,

(
x · ν − 2ε

)
+ ≤ urn,x0(x) ≤ (x · ν + 2ε

)
+ for every x ∈ B1.

Now, taking ε small enough and applying Theorem 7.4, Proposition 7.1 and
Theorem 8.1, we get the claim. ��

This chapter is organized as follows.
In Sect. 8.1, we prove that the improvement of flatness (Condition 8.3) implies

the uniqueness of the blow-up limit and gives a (polynomial) rate of convergence of
the blow-ups in L∞(B1).

In Sect. 8.2, we prove that the uniqueness of the blow-up limit and the polynomial
rate of convergence of the blow-up sequence imply the regularity of the free
boundary. We notice that the uniqueness of the blow-up limit and the rate of
convergence of the blow-up sequence can be obtained also by different arguments,
for instance, via an epiperimetric inequality. In fact, the result of this section can
be used also in combination with Theorem 12.1, which is an alternative way to the
regularity of the free boundary.

8.1 Improvement of Flatness, Uniqueness of the Blow-Up
Limit and Rate of Convergence of the Blow-Up Sequence

Condition 8.3 (Improvement of Flatness) Let u : B1 → R be a non-negative
function. There are constants κ ∈ (0, 1), σ ∈ (0, 1), C0 > 0 and ε0 > 0 such that:

For every x0 ∈ ∂�u ∩ B1, r ≤ dist(x0, ∂B1) and ε ∈ (0, ε0] satisfying

(x · ν − ε)+ ≤ ur ,x0 ≤ (x · ν + ε)+ in B1,

there is ν̃ ∈ ∂B1 such that

|ν̃ − ν| ≤ C0ε and
(
x · ν̃ − σε

)
+ ≤ uκr ,x0 ≤ (x · ν̃ + σε

)
+ in B1.

Lemma 8.4 (Uniqueness of the Blow-Up Limit) Suppose that u : B1 → R is a
continuous non-negative function satisfying Condition 8.3. Then, there are constant
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ε1 > 0, γ > 0 and C1 > 0 (depending on ε0, κ , σ and C0) such that if

(x · ν − ε1)+ ≤ u ≤ (x · ν + ε1)+ in B1,

for some ν ∈ ∂B1, then for every x0 ∈ ∂�u ∩ B1/2 there is a unique unit vector

νx0 ∈ ∂B1 ⊂ R
d

such that

‖ur ,x0 − ux0‖L∞(B1) ≤ C1r
γ for every r ≤ 1/2 ,

where the function ux0 is defined as

ux0(x) = (νx0 · x)+ for every x ∈ R
d .

Precisely, we can take γ , ε1 and C1 as follows:

ε1 = ε0

4
, κγ = σ and C1 = (2/κ

)γ
(
1 + C0

1 − σ
+ 1

κ

)
ε0.

Proof Let ε1 = ε0
4 . Notice that if u is ε1-flat in B1, then

u1/2,x0 is ε0-flat in B1,

for every x0 ∈ ∂�u ∩ B1/2.
Let x0 ∈ ∂�u ∩ B1/2 be fixed,

rn = κn

2
and un := urn,x0 .

By the improvement of flatness, there is a sequence of unit vectors νn ∈ ∂B1 such
that

(
x · νn − ε0σ

n
)
+ ≤ un ≤ (x · νn + ε0σ

n
)
+ in B1 ,

and

|νn − νn+1| ≤ C0ε0σ
n for every n ∈ N.

In particular, for every 1 ≤ n < m, we have

|νn − νm| ≤
m−1∑

k=n

|νk − νk+1| ≤
m−1∑

k=n

C0εσ
k ≤ εC0

∞∑

k=n

σ k = C0ε

1 − σ
σn.
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This implies that there is a vector ν∞ ∈ ∂B1 such that

ν∞ = lim
n→∞ νn and |νn − ν∞| ≤

∞∑

k=n

|νk − νk+1| ≤ C0ε0

1 − σ
σn.

Thus,

∣
∣x · ν∞ − (x · νn ± ε0σ

n
)∣∣ ≤

(
1 + C0

1 − σ

)
ε0σ

n for every x ∈ B1,

which implies that

|(x · ν∞)+ − un(x)| ≤
(
1 + C0

1 − σ

)
ε0σ

n for every x ∈ B1.

Now, we set

u0(x) = (x · ν∞)+.

Let r ≤ 1/2 be arbitrary and let n ∈ N be such that

rn+1 = 1

2
κn+1 < r ≤ 1

2
κn = rn.

Then, there is ρ ∈ (κ , 1] such that r = ρrn. Since urn,x0 satisfies

(
x · νn − ε0σ

n
)
+ ≤ urn,x0(x) ≤ (x · νn + ε0σ

n
)
+ in B1 ,

we get that ur ,x0 = uρrn,x0 satisfies

(
x · νn − ε0

ρ
σn
)
+ ≤ ur ,x0 ≤ (x · νn + ε0

ρ
σn
)
+ in B1 ,

which implies that

‖urn,x0 − ur ,x0‖L∞(B1) ≤ ε0

ρ
σn ≤ ε0

κ
σn,

and finally gives that

‖ur ,x0 − u0‖L∞(B1) ≤
(
1 + C0

1 − σ
+ 1

κ

)
ε0σ

n.
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Since κγ = σ , we get that

σn ≤ κnγ ≤ 1

κγ

(
κn+1)γ ≤ 1

κγ

(
2r
)γ = (2/κ

)γ
rγ ,

from which, we deduce

‖ur ,x0 − u0‖L∞(B1) ≤ (2/κ
)γ
(
1 + C0

1 − σ
+ 1

κ

)
ε0r

γ ,

which concludes the proof. ��

8.2 Regularity of the One-Phase Free Boundaries

Condition 8.5 (Uniqueness of the Blow-Up Limit and Rate of Convergence of
the Blow-Up Sequence) The function u : B1 → R satisfies this condition if it is
non-negative and if there are constants C1 > 0 and γ > 0 such that, for every
x0 ∈ ∂�u ∩ B1/2 there is a unique function ux0 : B1 → R such that:

(i) there is νx0 ∈ ∂B1 such that ux0(x) = (νx0 · x)+ for every x ∈ B1;
(ii) ‖ur ,x0 − ux0‖L∞(B1) ≤ C1r

γ for every r ≤ 1/2.

Proposition 8.6 (The Condition 8.5 Implies the Regularity of ∂�u) Let u :
B1 → R be a non-negative function such that:

(a) u is Lipschitz continuous on B1 and L = ‖∇u‖L∞(B1);
(b) u is non-degenerate in the sense that there is a constant η > 0 such that

if y0 ∈ �u ∩ ∂B1/2 , then ‖u‖L∞(Br (y0)) ≥ ηr , for every r ∈ (0, 1/2).

(c) u satisfies Condition 8.5 for some γ > 0 and C1 > 0.

Then, there is ρ > 0 such that ∂�u is a C1,α manifold in Bρ , where α := γ
1+γ

.

Precisely, there are ρ > 0 and a C1,α-regular function g : B ′
ρ → (−ρ, ρ) such

that, up to a rotation of the coordinate system of Rd , we have

⎧
⎪⎪⎨

⎪⎪⎩

(
B ′

ρ × (−ρ, ρ)
) ∩ �u = {

(x ′, t) ∈ B ′
ρ × (−ρ, ρ) : g(x ′) < t

}
,

(
B ′

ρ × (−ρ, ρ)
) \ �u = {

(x ′, t) ∈ B ′
ρ × (−ρ, ρ) : g(x ′) > t

}
,

(
B ′

ρ × (−ρ, ρ)
) ∩ ∂�u = {

(x ′, t) ∈ B ′
ρ × (−ρ, ρ) : g(x ′) = t

}
.
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Lemma 8.7 (Flatness of the Free Boundary ∂�u) Let u : B1 → R be a non-
negative function such that

(a) u satisfies the Condition 8.5 with constants C1 and γ .
(b) u is non-degenerate, that is, there is a constant η > 0 such that

if y0 ∈ �u ∩ ∂B1/2 , then ‖u‖L∞(Br (y0)) ≥ ηr , for every r ∈ (0, 1/2).

Then, there are constants C > 0 and r0 > 0 such that, for every x0 ∈ ∂�u ∩ B1/2,
we have

�x0,r ∩ B1 ⊃ {x ∈ B1 : x · νx0 > Crγ }
and �x0,r ∩ {x ∈ B1 : x · νx0 < −Crγ } = ∅, (8.2)

for every r ∈ (0, r0), where �x0,r := {ux0,r > 0}.
Proof In order to prove the first part of (8.2), we notice that

‖ur ,x0 − ux0‖L∞(B1) ≤ C1r
γ

implies that

ur ,x0(x) ≥ (x · νx0 − C1r
γ
)
+ for every x ∈ B1.

This gives the first inclusion of (8.2) for any constant C ≥ C1. In order to prove the
second inclusion in (8.2), we suppose that there is a point y ∈ B1 such that

ur ,x0(y) > 0 and y · νx0 < −Crγ .

This implies that ỹ := y/2 ∈ B1/2 is such that

u2r ,x0(ỹ) > 0 and ỹ · νx0 < −1

2
Crγ .

The non-degeneracy of u now implies that

‖u2r ,x0‖L∞(Bρ(ỹ)) ≥ η ρ where ρ := 1

2
Crγ .

Notice that ux0 = 0 on Bρ(ỹ). On the other hand, choosing r0 such that

Cr
γ

0 ≤ 1,
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we get that ρ ≤ 1/2 and so Bρ(ỹ) ⊂ B1. Thus, we have that

η

2
Crγ ≤ ‖u2r ,x0 − ux0‖L∞(B1) ≤ C1(2r)γ ,

which is a contradiction, if we choose

C ≥ 2

η
C1,

which concludes the proof by taking

C = (1 + 2/η
)
C1 and r0 = inf

{
1/2 ,C−γ

}
.

��

Lemma 8.8 (Oscillation of ν) Let u : B1 → R be a Lipschitz continuous function
and let L = ‖∇u‖L∞(B1). Suppose that u satisfies the Condition 8.5 with the
constants C1 and γ . Then, there are constants R ∈ (0, 1), α and C such that

|νx0 − νy0 | ≤ C|x0 − y0|α for every x0, y0 ∈ ∂�u ∩ BR . (8.3)

Precisely, one can take

C = 2
√

d + 2
(
L + 2C1

)
, α = γ

1 + γ
and R = 2−(2+γ ) .

Proof Let α := γ
1+γ

. Let x0, y0 ∈ BR ∩∂�u and r := |x0−y0|1−α. Then, for every
x ∈ B1, we have

∣∣ux0,r (x) − uy0,r (x)
∣∣ = 1

r

∣∣u(x0 + rx) − u(y0 + rx)
∣∣ ≤ L

|x0 − y0|
r

= L|x0 − y0|α ,

which gives that

‖ux0,r − uy0,r‖L∞(B1) ≤ L|x0 − y0|α .

On the other hand, Condition 8.5 gives that

‖ux0,r − ux0‖L∞(B1) ≤ C1r
γ and ‖uy0,r − uy0‖L∞(B1) ≤ C1r

γ .

We notice that in order to apply Condition 8.5 we need that r ≤ 1/2 and R ≤ 1/2. We
choose R such that (2R)1−α ≤ 1/2. Thus, by the triangular inequality and the fact
that rγ = |x0 − y0|α, we obtain

‖ux0 − uy0‖L∞(B1) ≤ (L + 2C1
)|x0 − y0|α .
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The conclusion now follows by a general argument. Indeed, for any v1, v2 ∈ Rd , we
have

( ωd

d + 2

)1/2|v1 − v2| =
(∫

B1

|v1 · x − v2 · x|2 dx

)1/2

≤
(∫

B1

|(v1 · x)+ − (v2 · x)+|2 dx

)1/2

+
(∫

B1

|(v1 · x)− − (v2 · x)−|2 dx

)1/2

= 2

(∫

B1

|(v1 · x)+ − (v2 · x)+|2 dx

)1/2

≤ 2ω
1/2

d ‖(v1 · x)+ − (v2 · x)+‖L∞
x (B1),

which implies that

|v1 − v2| ≤ 2
√

d + 2 ‖(v1 · x)+ − (v2 · x)+‖L∞
x (B1).

Applying the above estimate to v1 = νx0 and v2 = νy0 , we get (8.3). ��
Proof of Proposition 8.6 We first notice that, for every ε > 0, there exists R > 0
such that, for x0 ∈ ∂�u ∩ BR we have

{
u > 0 on C+

ε (x0, νx0) ∩ BR(x0),

u = 0 on C−
ε (x0, νx0) ∩ BR(x0),

(8.4)

where for a vector ν ∈ ∂B1, we denote by C+
ε (x0, ν) and C−

ε (x0, ν) the cones

C±
ε (x0, ν) :=

{
x ∈ R

d : ± ν · (x − x0) > ε|x − x0|
}

(see Fig. 8.2).

Indeed, the flatness estimate (8.2) implies (8.4) by taking R such that CRγ ≤ ε,
where C and γ are the constants from Lemma 8.7.

Let ν0 be the normal vector at the origin 0 ∈ ∂�u. Without loss of generality we
can suppose that ν0 = ed . In particular, if u0(x) = (x · ν0)+ is the blow-up limit in

Fig. 8.2 The sets C±
ε (x0, ν)
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zero, then

�u0 = {u0 > 0} = {(x ′, xd) ∈ R
d−1 × R : xd > 0

}
.

Let ε ∈ (0, 1) and R > 0 be as in (8.4) and set

ρ = R
√
1 − ε2 and � = εR.

Let x ′ ∈ B ′
ρ . Then, by (8.4), we have:

• the vertical section

Sx ′
+ := {(x ′, t) ∈ BR : u(x ′, t) > 0}

contains the segment

{(x ′, t) ∈ BR : t > εR};

• the closed set

Sx ′
0 := {(x ′, t) ∈ BR : u(x ′, t) = 0}

contains the segment

{(x ′, t) ∈ BR : t < −εR}.

This implies that the function

g(x ′) := inf
{
t ∈ R : u(x ′, T ) > 0 for every T ∈ (t , ρ)

}
,

is well defined for x ′ ∈ B ′
ρ (see Fig. 8.3).

Let δ ≤ ρ. Let x ′
0 ∈ B ′

δ and let t0 := g(x ′
0). By definition, we have

x0 := (x ′
0, t0) ∈ ∂�u ∩ BR .

Fig. 8.3 Graphicality of the
free boundary
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Moreover, by construction, we have

−ε|x ′
0| ≤ g(x ′

0) ≤ ε|x ′
0|.

Thus,

|x0| ≤ δ
√
1 + ε2 ≤ √

2 δ.

We next claim that, for δ small enough, we have that

u > 0 on C+
2ε(x0, ed) ∩ BR(x0) and u = 0 on C−

2ε(x0, ed) ∩ BR(x0).
(8.5)

Indeed, applying (8.4) for the point x0, we have

u > 0 on C+
ε (x0, νx0) ∩ BR(x0) and u = 0 on C−

ε (x0, νx0) ∩ BR(x0),

so, it is sufficient to prove that

C±
2ε(x0, ed) ⊂ C±

ε (x0, νx0).

Let x ∈ C±
2ε(x0, ed). Then,

νx0 · (x − x0) = ed · (x − x0) + (νx0 − ed) · (x − x0)

> 2ε|x − x0| − C
(√

2 δ
)α|x − x0| > ε|x − x0|,

where:

• for the first inequality we used the definition of C±
2ε(x0, ed) and the following

estimate, which is a consequence of Lemma 8.8:

|νx0 − ed | ≤ C|x0|α ≤ C
(√

2 δ
)α ;

• for the second in equality, we choose δ such that C
(√

2 δ
)α ≤ ε.

This proves (8.5). As a consequence, we obtain that the sections Sx ′
+ and Sx ′

0 are
segments:

{(
B ′

δ × (−δ, δ)
) ∩ �u = {(x ′, t) ∈ B ′

δ × (−δ, δ) : g(x ′) < t
}
,

(
B ′

δ × (−δ, δ)
) \ �u = {(x ′, t) ∈ B ′

δ × (−δ, δ) : g(x ′) ≥ t
}
,

and so, the free boundary is precisely the graph of g, that is,

(
B ′

δ × (−δ, δ)
) ∩ ∂�u = {(x ′, t) ∈ B ′

δ × (−δ, δ) : g(x ′) = t
}
.
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We next prove that the function g : B ′
δ → R is Lipschitz continuous on B ′

δ . Also
this follows by the uniform cone condition (8.5). Indeed, let

x ′
1, x

′
2 ∈ B ′

δ , x1 = (x ′
1, g(x ′

1)) and x2 = (x ′
2, g(x ′

2)).

Since x1 /∈ C+
2ε(x2, ed), we have that

g(x ′
1) − g(x ′

2) = (x1 − x2) · ed ≤ 2ε|x1 − x2| ≤ 2ε|x ′
1 − x ′

2| + 2ε|g(x ′
1) − g(x ′

2)|.

Analogously, x2 /∈ C+
2ε(x1, ed) implies that

g(x ′
1) − g(x ′

2) ≤ 2ε|x ′
1 − x ′

2| + 2ε|g(x ′
1) − g(x ′

2)|,

and the two estimates give

(1 − 2ε) |g(x ′
1) − g(x ′

2)| ≤ 2ε|x ′
1 − x ′

2|,

and finally, choosing ε ≤ 1/4, we get

|g(x ′
1) − g(x ′

2)| ≤ 4ε|x ′
1 − x ′

2|,

which concludes the proof of the Lipschitz continuity of g.
We will next show that g is differentiable. Indeed, let x ′

0 ∈ B ′
δ . Now, the

improvement of flatness at x0 = (x ′
0, g(x ′

0)) implies that

−C|x − x0|1+γ ≤ (x − x0) · νx0 ≤ C|x − x0|1+γ ,

for any x = (x ′, g(x ′)) with x ′ ∈ B ′
δ . For the sake of simplicity, we set ν := νx0 and

ν = (ν′, νd) ∈ Rd−1 × R. Since

(x − x0) · νx0 = (x ′ − x ′
0) · ν′ + (g(x ′) − g(x ′

0)
)
νd ,

we get that

∣∣
∣
∣g(x ′) − g(x ′

0) − (x ′ − x ′
0) · ν′

νd

∣∣
∣
∣ ≤

C

νd

(1 + ε)1+γ |x ′ − x ′
0|1+γ .

This implies that g is differentiable at x ′
0 and that ∇g(x ′

0) = ν ′
νd
. Finally, the α-

Hölder continuity of ∇g : B ′
δ → Rd−1 follows by the γ -Hölder continuity of the
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map x �→ νx . Indeed, for any x ′, y ′ ∈ B ′
δ , x = (x ′, g(x ′)) and y = (y ′, g(y ′)) we

have that

|νx − νy | ≤ |x − y|α ≤ (1 + ε)α|x ′ − y ′|α,

which implies the Hölder continuity of all the components of the map B ′
δ � x �→

νx ∈ Rd and thus, of the gradient ∇g. This concludes the proof of Proposition 8.6.
��
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Chapter 9
The Weiss Monotonicity Formula
and Its Consequences

This chapter is dedicated to the monotonicity formula for the boundary adjusted
energy introduced by Weiss in [52]. Precisely, for every � ≥ 0 and every
u ∈ H 1(B1) we define

W�(u) :=
∫

B1

|∇u|2 dx −
∫

∂B1

u2 dHd−1 + �|�u ∩ B1|,

where we recall that �u := {u > 0}. In particular, we have

W0(u)=
∫

B1

|∇u|2 dx−
∫

∂B1

u2 dHd−1 and W�(u) = W0(u)+�|�u∩B1|.

This chapter is organized as follows:
In Sect. 9.1 we prove several preliminary results for theWeiss’ boundary adjusted

energy, which hold for a general Sobolev function u defined on an open set D ⊂ Rd .
In particular, in Lemma 9.1 we prove that the function (x0, r) �→ W�(ux0,r ) is
continuous (where it is defined), where we recall that ux0,r (x) := 1

r
u(x0 + rx); in

Lemma 9.2, we compute the derivative of W�(ux0,r ) with respect to r and we prove
that

∂

∂r
W�(ux0,r ) = d

r

(
W�(zx0,r ) − W�(ux0,r )

)+ 1

r
D(ux0,r ),

where zx0,r is the one-homogeneous extension defined in Lemma 9.2 while the
deviation D(ux0,r ) is defined as

D(ux0,r ) :=
∫

∂B1

|x · ∇ux0,r − ux0,r |2 dHd−1,

© The Author(s) 2023
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and measures at what extent the function is not one-homogeneous (see Lemma 9.3)
and controls the oscillation of u from scale to scale, which is measured by the norm
‖ux0,r − ux0,s‖L2(∂B1)

. Finally, in Proposition 9.4, as a direct consequence of the
Weiss formula (Lemma 9.2), we obtain that, if u is a (local) minimizer of F� in D,
then the Weiss energy W(ux0,r ) is monotone increasing in r .

In Sect. 9.2 we introduce the notion of stationary free boundary, that is, the free
boundary ∂�u ∩ D of a function u : D → R, which is stationary for the functional
F� with respect to internal perturbations with vector fields compactly supported in
D. In Lemma 9.5, we compute the variation of the energy F� with respect to a
compactly supported vector field ξ ∈ C∞

c (D;Rd ), which is simply defined as

δF�(u,D)[ξ ] := ∂

∂t

∣∣
∣
t=0

F�(ut ,D),

where ut : D → R is defined through the identity ut (x + tξ(x)) = u(x). We say
that a function is stationary (see Definition 9.7), if the first variation is zero with
respect to any vector field, that is, if

δF�(u,D)[ξ ] = 0 for every ξ ∈ C∞
c (D;Rd ).

In Lemma 9.6 we show that if u is a minimizer of F� in D, then it is stationary
in D. Then, in Lemma 9.8, we prove that every stationary function satisfies an
equipartition-of-the-energy identity; in Lemma 9.9, we prove that the equipartition
of the energy is sufficient for the monotonicity of the Weiss energy. In particular, the
monotonicity formula holds for stationary free boundaries. The result of Sect. 9.2
are fundamental for the proof of Theorem 1.9, but we do not need them in the proof
of Theorem 1.4, where we can use directly Proposition 9.4.

In Sect. 9.3 we give the sufficient conditions for the homogeneity of the blow-
up limits of a function u : D → R (Lemma 9.10). We then apply this result
to minimizers of F� (Proposition 9.12), but we will also use it in the context of
Theorem 1.9. This is why the exposition contains the intermediate Lemma 9.11.

In Sect. 9.4 we prove that the only one-homogeneous global solutions in dimen-
sion two are the half-plane solutions (see Proposition 9.13). In particular, this means
that d∗ ≥ 3.

In Sect. 9.5 we give another proof of the fact that the minimizers of F� are
viscosity solutions (Proposition 7.1). Our main result is Proposition 9.18, which
applies to minimizers of F�, but also in the context of Theorem 1.9.

Finally, in Sect. 9.6, we use the Weiss monotonicity formula to relate the energy
density

lim
r→0

W(ux0,r ),
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of a minimizer u of F�, to the Lebesgue density

lim
r→0

|�u ∩ Br(x0)|
|Br | ,

of the set �u, at every point of the free boundary x0 ∈ ∂�u (Lemma 9.20).
Moreover, we characterize the regular part of the free boundaryReg(∂�u) in terms
of the energy and the Lebesgue densities (Lemma 9.22). We will not use the results
from Sect. 9.6 in the proofs of Theorems 1.2, 1.4, 1.9 and 1.10, but they remain
an interesting application of the monotonicity formula and the homogeneity of the
blow-up limits and were used, for instance, in the analysis of the vectorial free
boundaries (see [41]).

9.1 The Weiss Boundary Adjusted Energy

Let u ∈ H 1(Br(x0)) be a given function on the ball Br(x0) ⊂ Rd and consider the
rescaling

ur ,x0 ∈ H 1(B1) where ur ,x0(x) = 1

r
u(x0 + rx).

We notice that the different terms of the energy W� have the following scaling
properties:

∫

B1

|∇ur ,x0 |2 dx = 1

rd

∫

Br(x0)

|∇u|2 dx ,

∫

∂B1

u2r ,x0 dHd−1 = 1

rd+1

∫

∂Br (x0)

u2 dHd−1

and
∣∣{ux0,r > 0} ∩ B1

∣∣ = 1

rd

∣∣{u > 0} ∩ Br(x0)
∣∣ .

Thus, we have

W�(ux0,r ) = 1

rd

∫

Br (x0)

|∇u|2 dx− 1

rd+1

∫

∂Br (x0)

u2 dHd−1+ �

rd

∣
∣{u > 0}∩Br(x0)

∣
∣.

In particular, since u is a Sobolev function, the function (x0, r) �→ W�(ux0,r ) is
continuous, where it is defined. We give the precise statement in the following
lemma.

Lemma 9.1 (Continuity of the Function (x0, r) �→ W�(ux0,r )) Let D be a
bounded open set in Rd and let u ∈ H 1(D). Let δ > 0 and let Dδ be the set

Dδ :=
{
x ∈ D : dist (x, ∂D) < δ

}
.
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Then, the function

�u : Dδ × (0, δ) → R , �u(x0, r) := W�(ux0,r ),

is continuous.

Proof The continuity of the terms

(x0, r) �→ 1

rd

∫

Br(x0)

|∇u|2 dx and (x0, r) �→ 1

rd

∣∣{u > 0} ∩ Br(x0)
∣∣,

follows by the fact that if f : D → R is a function in L1(D), then the map

(x0, r) �→
∫

Br(x0)

f (x) dx,

is continuous, which in turn follows by the dominated convergence theorem. In
order to prove the continuity of the function

(x0, r) �→ 1

rd+1

∫

∂Br(x0)

u2 dHd−1,

we consider the sequence to (xn, rn) ∈ Dδ × (0, δ) converging to a point (x0, r0) ∈
Dδ × (0, δ). We first notice that reasoning as above, we have

lim
n→∞ ‖∇uxn,rn‖L2(B1)

= ‖∇ux0,r0‖L2(B1)
and

lim
n→∞ ‖uxn,rn‖L2(B1)

= ‖ux0,r0‖L2(B1)
.

Next, we notice that uxn,rn converges weakly in H 1(B1) to ux0,r0 . In fact, for any
φ ∈ C∞

c (B1) we have

lim
n→∞

∫

B1

∇φ · ∇uxn ,rn dx = lim
n→∞

∫

B1

∇φ(x) · ∇u(xn + rnx) dx

= lim
n→∞

∫

B1

∇φ
(y − xn

rn

)
· ∇u(y) dy

=
∫

B1

∇φ
(y − x0

r0

)
· ∇u(y) dy

=
∫

B1

∇φ · ∇ux0,r0 dx.

Now, since the norm of uxn,rn converges to the norm of ux0,r0 , we get that

uxn,rn → ux0,r0 strongly in H 1(B1).



9.1 The Weiss Boundary Adjusted Energy 129

By the trace inequality, we have that

uxn,rn → ux0,r0 strongly in L2(∂B1),

which concludes the proof. ��

Lemma 9.2 (Derivative of theWeiss’ Energy) Let D be a bounded open set in Rd

and let u ∈ H 1(D). Let x0 ∈ D and δ = dist(x0, ∂D). Then, the function �u(x0, ·)
is differentiable almost everywhere on (0, δ) and for (almost) every r ∈ (0, δ), we
have

∂

∂r
W�(ux0,r ) = d

r

(
W�(zx0,r ) − W�(ux0,r )

)

+ 1

r

∫

∂B1

|x · ∇ux0,r − ux0,r |2 dHd−1, (9.1)

where zx0,r : B1 → R is the one-homogeneous extension of ux0,r in B1:

zx0,r (x) := |x| ux0,r (x/|x|) .

Proof Without loss of generality we can assume x0 = 0. We recall that ur := u0,r .
We first notice that the function r �→ |�u ∩ Br | is differentiable almost

everywhere and that for almost every r ∈ (0, δ) we have

∂

∂r

(
1

rd
|�u ∩ Br |

)
= − d

rd+1 |�u ∩ Br | + 1

rd
Hd−1(�u ∩ ∂Br),

which can be written as

∂

∂r

(
1

rd
|�u ∩ Br |

)
= −d

r
|�ur ∩ B1| + d

r
|�zr ∩ B1|. (9.2)

In fact, we have

|�zr ∩ B1| =
∫ 1

0
Hd−1(�ur ∩ ∂B1)s

d−1 ds = 1

d
Hd−1(�ur ∩ ∂B1) = rd−1

d
Hd−1(�u ∩ ∂Br).

Thus, (9.2) implies that it is sufficient to prove (9.1) in the case � = 0.

As above, we notice that the function r �→
∫

Br

|∇u|2 dx is differentiable almost-

everywhere and that we have

∂

∂r

(
1

rd

∫

Br

|∇u|2 dx

)
= − d

rd+1

∫

Br

|∇u|2 dx + 1

rd

∫

∂Br

|∇u|2 dHd−1

= − d

rd+1

∫

Br

|∇u|2 dx + 1

r

∫

∂B1

|∇ur |2 dHd−1. (9.3)
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In order to deal with the boundary term, we first compute

∂

∂r

(
1

rd−1

∫

∂Br

u2(x) dHd−1(x)

)
= ∂

∂r

∫

∂B1

u(ry)2 dHd−1(y)

= 2
∫

∂B1

u(ry) y · ∇u(ry) dHd−1(y)

= 2r
∫

∂B1

ur (x · ∇ur) dHd−1(x)

Thus, we have

∂

∂r

(
1

rd+1

∫

∂Br

u2 dHd−1
)

= − 2

rd+2

∫

∂Br

u2 dHd−1 + 2

r

∫

∂B1

ur (x · ∇ur ) dHd−1.

(9.4)

Now, we notice that for every r such that ur = zr ∈ H 1(∂B1), we can write
the function zr : B1 → R in polar coordinates ρ ∈ (0, 1], θ ∈ Sd−1 as
zr (ρ, θ) = ρ zr(1, θ) and we have

W0(zr) =
∫

B1

|∇zr |2 dx −
∫

∂B1

z2r dHd−1

=
∫ 1

0
rd−1 dr

∫

Sd−1

(
z2r (1, θ) + |∇θ zr |2

)
dθ −

∫

Sd−1
z2r (1, θ) dθ

= 1

d

∫

Sd−1
|∇θ zr |2 dθ − d − 1

d

∫

Sd−1
z2r (1, θ) dθ

= 1

d

∫

∂B1

(
|∇ur |2 − (x · ∇ur)

2
)

dHd−1 − d − 1

d

∫

∂B1

u2r dHd−1.

(9.5)

Now, putting together (9.3), (9.4) and (9.5), we get that

∂

∂r
W0(ux0,r ) = d

r

(
W0(zx0,r ) − W0(ux0,r )

)+ 1

r

∫

∂B1

|x · ∇ux0,r − ux0,r |2 dHd−1,

which concludes the proof. ��
We now define the deviation D as

D(φ) :=
∫

∂B1

|x · ∇φ − φ|2 dHd−1.
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Thus, (9.1) can be written as

∂

∂r
W�(ux0,r ) = d

r

(
W�(zx0,r ) − W�(ux0,r )

)+ 1

r
D(ux0,r ).

In the next lemma we show that the deviationD(ux0,r ) controls the oscillation of u.

Lemma 9.3 (The Deviation Controls the Oscillation of the Blow-Up Sequence)
Let D be a bounded open set in Rd and let u ∈ H 1(D). Let x0 ∈ D and
δ = dist(x0, ∂D). Then, for almost every 0 < r < R < δ, we have

‖ux0,R − ux0,r‖2L2(∂B1)
≤ 1

r

∫ R

r

D(ux0,s) ds.

In particular, if D(ux0,s) = 0 for every s ∈ (0, δ), then the function ux0,δ : B1 → R

is one-homogeneous, that is

u(x0 + rx) = ru(x0 + x) for every |x| ≤ δ and every r ≤ 1.

Proof We set for simplicity, x0 = 0 and ur := ux0,r . For any x ∈ ∂B1, we have

u(Rx)

R
− u(rx)

r
=
∫ R

r

(
x · (∇u)(sx)

s
− u(sx)

s2

)
ds =

∫ R

r

1

s

(
x ·∇us(x)−us(x)

)
ds.

Integrating over the sphere ∂B1 and using the Cauchy-Schwarz inequality, we obtain

∫

∂B1

|uR − ur |2 dHd−1 ≤
∫

∂B1

(∫ R

r

1

s
|x · ∇us − us | ds

)2
dHd−1

≤
∫

∂B1

(∫ R

r

s−2ds

)(∫ R

r

|x · ∇us − us |2ds

)
dHd−1

=
(
1

r
− 1

R

)∫ R

r

D(us) ds.

which concludes the proof. ��
We conclude this subsection with the following proposition.

Proposition 9.4 (Weiss Monotonicity Formula) Let D be a bounded open set
in Rd and let u ∈ H 1(D) be a minimizer of F� in D. Let x0 ∈ D and
δx0 = dist(x0, ∂D). Then the function r �→ W�(ux0,r ) is non-decreasing on the
interval (0, δx0).
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Proof By Lemma 9.2 we have that

∂

∂r
W�(ux0,r ) ≥ d

r

(
W�(zx0,r ) − W�(ux0,r )

)
.

Now, since ux0,r is a minimizer of F� in B1 and since by definition zx0,r = ux0,r on

∂B1, we get that
∂

∂r
W�(ux0,r ) ≥ 0, which concludes the proof. ��

9.2 Stationary Free Boundaries

In this section we introduce the notion of a stationary free boundary (Definition 9.7)
and we prove a monotonicity formula for the Weiss energy (Proposition 9.9).

Lemma 9.5 (First Variation of the Energy) Suppose that D ⊂ Rd is a bounded
open set and that u ∈ H 1(D). Let ξ ∈ C∞

c (D;Rd ) be a given vector field with
compact support in D and let 	t be the diffeomorphism

	t(x) = x + tξ(x) for every x ∈ D.

Then,

(i) for t small enough, 	t : D → D is a diffeomorphism and setting �t := 	−1
t ,

the function ut := u ◦ �t is well-defined and belongs to H 1(D);

(ii) the function t �→
∫

D

|∇ut |2 dx is differentiable at t = 0 and

∂

∂t

∣
∣
∣
t=0

∫

D

|∇ut |2 dx =
∫

D

(
−2∇u · Dξ∇u + |∇u|2div ξ

)
dx;

(iii) the function t �→ |�ut ∩ D| is differentiable at t = 0 and

∂

∂t

∣
∣
∣
t=0

|�ut ∩ D| =
∫

�u∩D

div ξ dx.

(iv) if �u is open, if ∂�u is a C2 regular in D and if u ∈ C2(�u), then

∂

∂t

∣∣
∣
t=0

∫

D

|∇ut |2 dx=−
∫

∂�u

ξ · ν |∇u|2 dHd−1 and

∂

∂t

∣
∣
∣
t=0

|�ut ∩ D|=
∫

∂�u

ξ · ν dHd−1 ,

where ν(x) is the exterior normal to ∂� at the point x ∈ ∂�.



9.2 Stationary Free Boundaries 133

Proof The first claim follows by the fact that ξ is smooth and compactly supported
in D. Thus, we start directly by proving (ii). We use the conventions

x =
⎛

⎜
⎝

x1
...

xd

⎞

⎟
⎠ , ∇u =

⎛

⎜
⎝

∂1u
...

∂du

⎞

⎟
⎠ , � =

⎛

⎜
⎝

�1
...

�d

⎞

⎟
⎠ , D� =

⎛

⎜
⎝

∂1�1 · · · ∂1�d

...
. . .

...
∂d�1 · · · ∂d�d

⎞

⎟
⎠ ,

for general u : Rd → R and � : Rd → Rd , so that

∇(u ◦ �)(x) = D�(x)∇u(�(x)).

In our case ut = u ◦ �t , by the change of variables y = �t(x) (thus, x = 	t(y)),
we get

∫

D
|∇ut |2(x) dx =

∫

D

(
D�t(	t (y))∇u(y)

)
·
(
D�t (	t (y))∇u(y)

)
|detD	t(y)| dy

=
∫

D
∇u(y) ·

([
D�t(	t (y))

]T
D�t(	t (y))

)
∇u(y) |detD	t (y)| dy

=
∫

D
∇u(y) ·

([
D	t(y)

]−T [
D	t (y)

]−1
)
∇u(y) |detD	t (y)| dy

We now notice that

D	t =Id+ tDξ , [D	t ]−1=Id− tDξ +o(t) , detD	t =1+ t div ξ +o(t) ,

and we calculate
∫

D

|∇ut |2 dx =
∫

D

|∇u|2 dx + t

∫

D

(
|∇u|2div ξ − 2∇u · Dξ ∇u

)
dx + o(t),

which concludes the proof of (ii).
In order to prove (iii), we notice that

x ∈ �ut ⇔ ut (x) > 0 ⇔ �t(x) ∈ �u.

This means that 1�ut
= 1�u ◦ �t , and so, we can compute

|�ut | =
∫

D

1�u(�t(x)) dx =
∫

D

1�u(y)| detD	t(y)| dy

=
∫

�u

(
1 + t div ξ(y) + o(t)

)
dy = |�u| + t

∫

�u

div ξ dx + o(t),

which proves (iii).
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We now prove (iv). Assume that u is C2 in the open set �u. Then, setting ξ =
(ξ1, . . . , ξd) and using the convention for summation over the repeating indices, we
compute

|∇u|2div ξ − 2∇u Dξ · ∇u = ∂iu ∂iu ∂j ξj − 2∂iu ∂j ξi ∂ju

= ∂iu ∂iu ∂j ξj − 2∂j (∂iu ξi ∂ju) + 2∂ij u ξi∂ju

+ 2∂iξi ∂jju

= ∂iu∂iu∂j ξj − 2∂j (∂iu ξi ∂j u) + 2∂ij u ξi ∂ju

= ∂iu ∂iu ∂j ξj − 2∂j (∂iu ξi ∂ju) + ∂i(∂ju ξi ∂ju)

− ∂ju ∂iξi ∂ju

= −2∂j (∂iu ξi ∂ju) + ∂j (∂iu ξj ∂iu)

= div
(|∇u|2ξ − 2(ξ · ∇u)∇u

)
.

Integrating by parts we obtain
∫

�u

div
(
|∇u|2ξ − 2(ξ · ∇u)∇u

)
dx

=
∫

∂�u

(
|∇u|2(ξ · ν) − 2(ξ · ∇u)(∇u · ν)

)
dHd−1.

Since u = 0 on ∂�u and positive in �u, we have that ∇u = ν|∇u|. Thus,
∫

�u

div
(
|∇u|2ξ − 2(ξ · ∇u)∇u

)
dx = −

∫

∂�u

|∇u|2(ξ · ν) dHd−1,

which proves the first part of the claim (iv). The second part of (iv) follows by a
simple integration by parts in �u. ��

As a consequence of Lemma 9.5 we obtain that for every � ∈ R, u ∈ H 1(D)

and vector field ξ ∈ C∞
c (D;Rd ) we can define the first variation of F� at u in the

direction ξ as

δF�(u,D)[ξ ] :=
∫

D

(
−2∇u · Dξ ∇u + |∇u|2div ξ + �1�udiv ξ

)
dx. (9.6)

Lemma 9.6 (The Minimizers have Zero First Variation) Let D be a bounded
open set in Rd and let u ∈ H 1(D) be a minimizer of F� in D. Then,

δF�(u,D)[ξ ] = 0 for every vector field ξ ∈ C∞
c (D;Rd ).

If, moreover, ∂�u is C2 smooth in D, then

|∇u| = √
� on ∂�u ∩ D. (9.7)
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Proof The first part of the statement follows directly by Lemma 9.5. In order to
prove the second part, we notice that in the case when ∂�u is smooth, we have

δF�(u,D)[ξ ] =
∫

∂�u

(
� − |∇u|2) ξ · ν dHd−1,

for every vector field ξ ∈ C∞
c (D;Rd ). This implies (9.7). ��

Definition 9.7 (Stationary Free Boundaries) Let D ⊂ Rd be a bounded open set
and u ∈ H 1(D) be a non-negative function such that

δF�(u,D)[ξ ] = 0 for every vector field ξ ∈ C∞
c (D;Rd ).

Then, we say that the function u and the free boundary ∂�u are stationary for F�.

As a consequence of Lemma 9.6 we obtain the following.

Lemma 9.8 (Equipartition of the Energy) Suppose that D is a bounded open set
in Rd and u ∈ H 1(D) is a non-negative function which is stationary for F� (in the
sense of Definition 9.7). Then, for every x0 ∈ D and every 0 < r < dist(x0, ∂D),
we have

W�(zx0,r ) − W�(ux0,r ) = 1

d

∫

∂B1

|x · ∇ux0,r − ux0,r |2 dHd−1, (9.8)

where we recall that ux0,r (x) = 1
r
u(x0 + rx) and that zx0,r is the one-homogeneous

extension of ux0,r in B1, that is, zx0,r (x) = |x|ux0,r
(
x/|x|
)
.

Proof Without loss of generality, we assume that x0 = 0. For every ε > 0, we
consider a function φε ∈ C∞

c (Br) such that

φε = 1 in B(1−ε)r , ∇φε(x) = − 1

rε

x

|x| + o(ε) in Br \ B(1−ε)r .

Taking the vector field ξε(x) = xφε(x) we get that

div ξε(x) = dφε(x) + x · ∇φε(x),

Dξε(x) = φε(x)Id + x ⊗ ∇φε(x).
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Thus, the stationarity of u impies that

0 = δF�(u,D)[ξ ] =
∫

D

(
−2∇u · Dξ ∇u + |∇u|2div ξ + �1�u

div ξ
)

dx

=
∫

D

(
−2φε|∇u|2 − 2(x · ∇u)(∇φε · ∇u) + (dφε + x · ∇φε)

(|∇u|2 + �1�u

))
dx

=
∫

Br

(
(d − 2)|∇u|2 + d�1�u

)
φε dx + 1

ε

∫

Br\B(1−ε)r

(

2

(
x

|x| · ∇u

)2

− |∇u|2 − �1�u

)

dx,

which passing to the limit as ε → 0 implies that

(d − 2)
∫

Br

|∇u|2 dx + d�|�u ∩ Br |=r

∫

∂Br

(
|∇τ u|2 − |∇νu|2+�1�u

)
dHd−1.

(9.9)

Since �u = 0 on �u, we have that

2
∫

Br

|∇u|2 dx = 2
∫

Br

div (u∇u) dx = 2
∫

∂Br

u(ν · ∇u) dHd−1,

which together with (9.9) implies (9.8). ��

Proposition 9.9 (Monotonicity Formula for Stationary Free Boundaries) Sup-
pose that D is a bounded open set in Rd and u ∈ H 1(D) is a non-negative
function which is stationary for F� (in the sense of Definition 9.7). Let x0 ∈ D

and δx0 = dist (x0, ∂D). Then the function r �→ W�(ux0,r ) is non-decreasing on the
interval (0, δx0) and we have

∂

∂r
W�(ux0,r ) ≥ 2

r

∫

∂B1

|x · ∇ux0,r − ux0,r |2 dHd−1. (9.10)

Proof By Lemmas 9.8 and 9.2 we obtain precisely (9.10). ��

9.3 Homogeneity of the Blow-Up Limits

In this section, we use the Weiss’ monotonicity formula to prove that the blow-
up limits of u are one-homogeneous functions. The most general result is given in
Lemma 9.10. We then prove the homogeneity of the blow-up limits of stationary
functions (Lemma 9.11) and the homogeneity of the blow-up limits of minimizers
of F� (Proposition 9.12).
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Lemma 9.10 Suppose that D is a bounded open set in Rd and u ∈ H 1(D) is a
non-negative function. Let x0 ∈ D and δx0 = dist (x0, ∂D). Let rn → 0 be an
infinitesimal sequence and let un := urn,x0 ∈ H 1(B1). Suppose that

(a) the limit

L := lim
r→0

W�(ur ,x0),

exists and is finite;
(b) un converges strongly in H 1(B1) to a function u∞ ∈ H 1(B1);
(c) 1�un

converges strongly in L1(B1) to 1�u∞ ;
(d) u∞ is stationary for F� in B1.

Then u∞ is one-homogeneous.

Proof Without loss of generality, we suppose that x0 = 0 and we write ur ,x0 = ur .
We set for simplicity v := u∞. By the hypothesis (a), we have that,

L = lim
n→∞ W�(usrn) for every s < 0 ≤ 1.

On the other hand, the strong convergence of un and 1�un
implies that

lim
n→∞ W�(usrn) = W�(vs),

where we recall that vs(x) = 1

s
v(sx). This implies that

W�(vs) = L for every s ∈ (0, 1],

and, by Proposition 9.9, we obtain that

0 = ∂

∂s
W�(vs) ≥ 2

s

∫

∂B1

|x · ∇vs − vs |2 dHd−1,

which, by Lemma 9.3, gives that v is one-homogeneous. ��

Lemma 9.11 (Homogeneity of the Blow-UpLimits) Suppose that D is a bounded
open set in Rd and u ∈ H 1(D) is a non-negative function which is stationary for
F� (in the sense of Definition 9.7). Let x0 ∈ D ∩ ∂�u, rn → 0 be an infinitesimal
sequence and un := urn,x0 ∈ H 1(B1). Suppose that

(a) un converges strongly in H 1(B1) to a function u∞ ∈ H 1(B1);
(b) 1�un

converges strongly in L1(B1) to 1�u∞ .

Then u∞ is one-homogeneous.
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Proof Since u is stationary, Lemma 9.9 implies that the function r �→ W�(ux0,r ) is
non-decreasing in r . Thus, the limit

L := lim
r→0

W�(ux0,r ) = inf
r>0

W�(ux0,r ),

does exist and so the hypothesis (a) of Lemma 9.10 is fulfilled. Now, the strong
convergence of un and 1�un

to u∞ and 1�u∞ in B1, and the definition of the first
variation δF�(·,D) imply that u∞ is also stationary in B1. Thus, hypothesis (d) of
Lemma 9.10 is also fulfilled and, so the claim follows by Lemma 9.10. ��

Proposition 9.12 (Homogeneity of the Blow-Up Limits) Suppose that D is a
bounded open set in Rd and u ∈ H 1(D) is a non-negative function and a local
minimizer of F� in D. Let x0 ∈ D. Then every blow-up limit u0 ∈ BUu(x0) is
one-homogeneous.

Proof By Lemma 9.6, every minimizer of F� is stationary for F�. Moreover, by
Proposition 6.2, we have that the conditions (a) and (b) of Lemma 9.11 are fulfilled.
This concludes the proof. ��

9.4 Regularity of the Free Boundaries in Dimension Two

The main result of this section is the following.

Proposition 9.13 (One-Homogeneous Global Minimizers in Dimension Two)
Let z : R2 → R be a one-homogeneous global minimizer of F� in R2. Then,
there is ν ∈ R2 such that

z(x) = √
� (x · ν)+ for every x ∈ R

2.

In particular, we obtain that the critical dimension d∗ is at least 3 (see Defini-
tion 1.5).
The proof of Proposition 9.13 is based on the following lemma.

Lemma 9.14 Let z ∈ H 1
loc(R

d) be a continuous and non-negative one-
homogeneous function in Rd . Then,

�z = 0 in �z,

if and only if, the trace c = z|∂B1 ∈ H 1(∂B1) is such that

−�Sc = (d − 1)c in the (open) set �c ∩ ∂B1 .
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Proof The proof follows simply by writing the Laplacian in polar coordinates. In
fact, we have that z(r , θ) = rc(θ) and

�z(r , θ) = ∂rrz(r , θ) + d − 1

r
∂rz(r , θ) + 1

r2
�Sz(r , θ)

= 1

r

(
(d − 1) c(θ) + �Sc(θ)

)
,

which concludes the proof of Lemma 9.14. ��
Proof of Proposition 9.13 Let z(r , θ) = rc(θ) and let �c ⊂ S1 be the set {c > 0}.
Since c is continuous (see Sect. 3), we have that �c is open and so it is a countable
union of disjoint arcs (which we identify with segments on the real line). Notice
that �c �= S1 since z(0) = 0 and z minimizes locally F� (the local minimizers
cannot have isolated zeros, for instance, by the density estimates from Sect. 5.1).
Now, Lemma 9.14 implies that on each arc I ⊂ �c, the trace c is a solution of the
PDE

−c′′(θ) = c(θ) in I , c > 0 in I , c = 0 on ∂I .

Thus, up to a translation I = (0,π) and c(θ) is a multiple of sin θ on I. Thus, �c is
a union of disjoint arcs, each one of length π . Thus, these arcs can be at most two.
Now, by Lemma 2.9 and the fact that 0 ∈ ∂�z, we get that |�z ∩ B1| < |B1| = π

and so, H1(�c) < 2π . This means that �c is an arc of length π and that z is of the
form z(x) = a (x · ν), for some constant a > 0. Since z is a local minimizer in Rd

and ∂�z is smooth, Lemma 6.11 implies that a = √
�, which concludes the proof.

��

9.5 The Optimality Condition on the Free Boundary:
A Monotonicity Formula Approach

The aim of this subsection is to give an alternative proof to the fact that the (local)
minimizers of F� are viscosity solutions to the problem

�u = 0 in �u , |∇u| = √
� on ∂�u .

The main result of the subsection is Proposition 9.18, which can be applied not
only to minimizers, but also to measure constrained minimizers (see Theorem 1.9
and Sect. 11). It can also be applied to a large class of problems in which a
monotonicity formula does hold. In fact, the proof is quite robust and can be applied
to almost-minimizers (see for instance [46]) and to vectorial problems (see [41]),
for which the construction of competitors is typically more involved. The proof of
Proposition 9.18 is based on the following two lemmas. Before we give the two
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statements, we recall that, for any d ≥ 2, we identify the (d − 1)-dimensional
sphere Sd−1 with the boundary of the unit ball ∂B1 in Rd . In particular, we will use
the notation

S
d−1+ = {x := (x1, . . . , xd) ∈ ∂B1 ⊂ R

d : xd > 0
}
.

Lemma 9.15 Suppose that c ∈ H 1(Sd−1) is a continuous non-negative and non-
constantly-vanishing function, satisfying the following conditions:

(a) �c ⊂ S
d−1+ , where as usual �c := {c > 0};

(b) �Sc + (d − 1)c = 0 in �c.

Then, �c = S
d−1+ and there is a constant α > 0 such that

c(x) = α(x · ed)+ for every x ∈ ∂B1.

Lemma 9.16 Suppose that c ∈ H 1(Sd−1) is a continuous non-negative function,
satisfying the following conditions:

(a) S
d−1+ ⊂ �c = {c > 0};

(b) �Sc + (d − 1)c = 0 in �c.

Then, c is given by one of the following functions:

(i) c(x) = α(x · ed)+, where α > 0 is a positive constant;
(ii) c(x) = α(x · ed)+ + β(x · ed)−, where α > 0 and β > 0.

In the proofs of Lemmas 9.15 and 9.16 we will use the following well-known
result, whose proof we the leave to the reader.

Lemma 9.17 (Variational Characterization of the Principal Eigenvalue) Let
� ⊂ Sd−1 be a connected open subset of the unit sphere. Let φ ∈ H 1

0 (�) be a
given non-zero function. Then, the following are equivalent:

(i) φ > 0 in �,
∫

�

φ2dθ = 1 , and there is λ ≥ 0 for which φ solves the PDE

−�Sφ = λφ in �

in the usual weak sense:
∫

�

∇θφ · ∇θη dθ = λ

∫

�

φη dθ for every η ∈ H 1
0 (�);

(ii) φ is the unique (up to a sign) solution of the variational problem

min
{ ∫

�

|∇θψ|2 dθ : ψ ∈ H 1
0 (�),

∫

�

ψ2 dθ = 1
}
.
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Proof of Lemma 9.15 Since the linear functions are one-homogeneous and har-
monic in Rd , we have that the function

φ1(θ) = (θ · ed)+,

defined on the sphere solves the equation

−�Sφ1 = (d − 1)φ1 in S
d−1+ .

In particular, setting αd :=
(∫

Sd−1
φ2
1 dθ

)−1

, we get that αdφ1 is the unique

minimizer of

d − 1 = min
{ ∫

S
d−1+

|∇θψ|2 dθ : ψ ∈ H 1
0 (Sd−1+ ),

∫

S
d−1+

ψ2 dθ = 1
}
.

On the other hand, c ∈ H 1
0 (Sd−1+ ) and solves the equation −�Sc = (d − 1)c in �c.

Thus,

∫

S
d−1+

|∇θ c|2 dθ =
∫

�c

|∇θ c|2 dθ = (d − 1)
∫

�c

c2 dθ = (d − 1)
∫

S
d−1+

c2 dθ ,

which means that (up to a multiplicative constant) c is a solution of the same
problem. Thus, the uniqueness of φ1 gives the claim. ��
Proof of Lemma 9.16 Let �̃c be the connected component of �c containing S

d−1+ ;
and let c̃ be the restriction of c to �̃c. Thus, �̃c = {̃c > 0} and c̃ solves the PDE

−�Sc̃ = (d − 1) c̃ in �̃c.

Thus, c̃ is the unique minimizer of

d − 1 = min
{ ∫

�̃c

|∇θψ|2 dθ : ψ ∈ H 1
0 (�̃c),

∫

�̃c

ψ2 dθ = 1
}
.

Thus, reasoning as in the proof of Lemma 9.15, we get that �̃c = S
d−1+ and that

there is a constant α > 0 such that

c̃(θ) = α(θ · ed)+.

We now consider two cases. If �c has only one connected component, then �c =
�̃c and c = c̃, which concludes the proof. If �c has more than one connected
components, then �c \ �̃c is non-empty and is contained in the half-sphere

S
d−1− = {x := (x1, . . . , xd) ∈ ∂B1 ⊂ R

d : xd < 0}.
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Thus, applying Lemma 9.15, we get that the restriction of c on �c \ �̃c should be of
the form β(θ · ed)−, for some positive constant β, which concludes the proof. ��

Proposition 9.18 Suppose that D ⊂ Rd is a bounded open set and that u ∈ H 1(D)

is a continuous non-negative function such that:

(a) u is harmonic in �u = {u > 0}.
(b) �u satisfies the upper density bound

lim sup
r→0

|�u ∩ Br(x0)|
|Br | < 1 for every x0 ∈ ∂�u ∩ D.

(c) For every x0 ∈ D ∩ ∂�u and every infinitesimal sequence rn → 0, there is a
subsequence (that we still denote by rn) such that the blow-up sequence urn,x0
converges uniformly in B1 to a blow-up limit u0 : B1 → R (u0 ∈ BUu(x0)).

(d) Every blow-up limit BUu(x0) � u0 : B1 → R is a one-homogeneous non-
identically-zero function, which is stationary for the functional F�.

Then u satisfies the optimality condition

|∇u| = √
� on ∂�u ∩ D ,

in viscosity sense.

Proof Suppose first that the function ϕ touches u from below in x0 ∈ ∂�u and
assume that x0 = 0. Consider the blow-up sequences

un(x) = 1

rn
u(rnx) and ϕn(x) = 1

rn
ϕ(rnx),

as rn → 0, the condition (c) implies that, up to a subsequence, we have

u0 = lim
n→∞ un(x) and ϕ0 = lim

n→∞ ϕn(x), (9.11)

the convergence being uniform in B1. In particular, since un are harmonic in �un ,
the uniform convergence of un to u0 implies that also u0 is harmonic on �u0 .

Notice that, as ϕ is smooth, we have ϕ0(x) = ξ · x, where the vector ξ ∈ Rd

is precisely the gradient ∇ϕ(0). Without loss of generality we may assume that
ξ = Aed for some constant A ≥ 0, thus

|∇ϕ(0)| = |∇ϕ0(0)| = A and ϕ0(x) = Axd . (9.12)

Moreover, we can assume that A > 0 since otherwise the inequality |∇ϕ| ≤ √
�

holds trivially.
Now, since u0 ≥ ϕ0, we obtain that u0 > 0 on the set {xd > 0}. Thus, u0

is a 1-homogeneous harmonic function on the cone {u0 > 0} ⊃ {xd > 0}. By
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Lemma 9.16, there are only two possibilities:

u0(x) = αx+
d or u0(x) = αx+

d + βx−
d .

The second case is ruled out since it contradicts (b). Thus,

u0(x) = αx+
d for every x ∈ B1. (9.13)

Now, the stationarity of u0 (condition (d)) and Lemma 9.5 imply that α = √
�. By

the inequality u0 ≥ ϕ0, we get that
√

� ≥ A.
Suppose now that ϕ touches u from above at a point x0 and assume that x0 = 0.

Again, we consider the blow-up limits U0 and ϕ0 defined in (9.11) and we assume
that ϕ0 is given by (9.12). Since u0 is not identically zero (assumption (d)), we get
that a > 0. Since u0 ≤ ϕ0 we have that the set {u0 > 0} is contained in the half-
space {xd > 0}. By the one-homogeneity of u0 and Lemma 9.15 we obtain that
necessarily {u0 > 0} = {xd > 0}. Thus, u0 is of the form (9.13) for some α > 0.
Now, the stationarity of u0 implies that necessarily α = √

� and, since u0 ≤ ϕ0, we
get that |∇ϕ(0)| = A ≥ √

�, which concludes the proof. ��

9.6 Energy and Lebesgue Densities

In this section, we prove that if u is a (local) minimizer of F�, then at every
boundary point x0 ∈ ∂�u the Lebesgue density of the set �u is well-defined.
Moreover, we characterize the regular part of the free boundary in terms of the
Lebesgue density. Most of the ideas in this section come from [41], where we used
a similar characterization of the regular part of the vectorial free boundaries. In
the case of the one-phase problem, we will not use this result in the proofs of
neither of the Theorems 1.2, 1.4, 1.9 nor 1.10; we give it here only for the sake
of completeness. The precise statement is the following:

Proposition 9.19 Suppose that D ⊂ Rd is a bounded open set and that u ∈ H 1(D)

is a non-negative function, a local minimizer of F� in D. Then, the limit

lim
r→0

|�u ∩ Br(x0)|
|Br | exists, for every x0 ∈ ∂�u ∩ D . (9.14)

Thus, we can write

∂�u ∩ D =
⋃

1
2≤γ<1

�
(γ )
u ∩ D . (9.15)
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The regular and the singular parts of the free boundary are given by

Reg (∂�u) ∩ D = �
(1/2)
u ∩ D and Sing (∂�u) ∩ D =

⋃

1
2<γ<1

�
(γ )
u ∩ D .

(9.16)

Moreover, for every γ ∈ [1/2, 1), we have

�
(γ )
u ∩ D =

{
x ∈ ∂�u ∩ D : |�u0 ∩ B1| = ωdγ , for every u0 ∈ BUu(x)

}
. (9.17)

Proof The claims (9.14), (9.15) and (9.17) follow directly by Lemma 9.20 below.
The claim (9.16), follows by Lemma 9.22. ��

Lemma 9.20 (Energy and Lebesgue Densities) Suppose that D ⊂ Rd is a
bounded open set and that u ∈ H 1(D) is a continuous non-negative function such
that:

(a) For every x0 ∈ D and every infinitesimal sequence rn → 0, there is a
subsequence (that we still denote by rn) such that:

• un := urn,x0 converges strongly in H 1(B1) to a function u0 : B1 → R;
• 1�un

converges in L2(B1) to 1�u0
.

(As usual, we say that u0 is a blow-up limit of u, and we note u0 ∈ BUu(x0).)
(b) Every blow-up limit BUu(x0) � u0 : B1 → R is a one-homogeneous non-

identically-zero function such that �u0 = 0 in �u0 ∩ B1.
(c) For every x0 ∈ ∂�u ∩ D, the limit

�(u, x0) := lim
r→0

W�(ur ,x0) ,

does exist.

Then, for every x0 ∈ ∂�u ∩ D, we have that

1

�ωd

�(u, x0) = lim
r→0

|�u ∩ Br(x0)|
|Br | .

Moreover, for every u0 ∈ BUu(x0), we have that

1

�ωd

�(u, x0) = |�u0 ∩ B1|
|B1| = 1

�ωd

W�(u0).

Proof We first notice that (b) implies that

W�(u0) = �|�u0 ∩ B1|.
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Let x0 ∈ ∂�u ∩D and the infinitesimal sequence rn → 0 be given. Then, by (a), up
to a subsequence, urn,x0 converges to a blow-up limit u0. Using (c) and then again
(a), we get

lim
r→0

W�(ur ,x0) = lim
n→∞ W�(urn,x0) = W�(u0).

On the other hand, the strong H 1(B1) convergence of urn,x0 to u0 implies that

lim
n→∞ W0(urn,x0) = W0(u0) = 0.

Then, we have

|�u0 ∩ B1| = 1

�
lim

n→∞ W�(urn,x0) = lim
n→∞

∣
∣{urn,x0 > 0} ∩ B1

∣
∣ = lim

n→∞
|�u ∩ Brn(x0)|

rd
n

which concludes the proof. ��
In the proof of Lemma 9.22, we will use the following result.

Theorem 9.21 (The Spherical CapsMinimize λ1 on the Sphere) For any (quasi-
)open spherical set � ⊂ Sd−1 we define the first eigenvalue λ1(�) as

λ1(�) := inf
{ ∫

�

|∇θ c|2 dθ :
∫

�

c2(θ) dθ = 1, c ∈ H 1
0 (�)

}
.

For every open set � ⊂ Sd−1 such that Hd−1(�) ≤ 1
2dωd we have that

λ1(�) ≥ λ1(S
d−1+ ),

with equality if and only if, up to a rotation, � = S
d−1+ .

Lemma 9.22 (Characterization of the Regular Part of the Free Boundary)
Suppose that D ⊂ Rd is a bounded open set and that u ∈ H 1(D) is as in
Lemma 9.20. Then,

lim
r→0

|�u ∩ Br(x0)|
|Br | ≥ 1

2
for every x0 ∈ ∂�u ∩ D . (9.18)

Moreover,

lim
r→0

|�u ∩ Br(x0)|
|Br | = 1

2
,
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if and only if, every blow-up limit u0 ∈ BUu(x0) is of the form

u0(x) = (ν · x)+ for some ν ∈ R
d . (9.19)

In particular, if u is a minimizer of F� in D, then Reg(∂�u) = �
(1/2)
u in D.

Proof Suppose that x0 ∈ ∂�u ∩ D and let

γ := lim
r→0

|�u ∩ Br(x0)|
|Br | .

Let rn → 0 be an infinitesimal sequence. Then, by the assumption Lemma 5.1 (a),
up to extracting a subsequence, we can suppose that urn,x0 converges to a blow-up
limit u0 : Rd → R. By the hypothesis Lemma 5.1 (b), we get that u0 is one-
homogeneous and harmonic in �u0 ∩ B1. This implies that, on the sphere ∂B1, u0
solves the PDE

�Su0 = (d − 1)u0 in �u0 ∩ ∂B1.

Thus, Theorem 9.21 implies that

Hd−1(�u ∩ ∂B1) ≥ dωd

2
,

which by the homogeneity of u0 gives that

|�u0 ∩ B1| ≥ ωd

2
.

Now, the convergence of �urn ,x0
to �u0 implies that

γ = lim
n→∞

∣
∣�u ∩ Brn(x0)

∣
∣

|Brn |
= lim

n→∞

∣∣�urn ,x0
∩ B1

∣∣

|B1| = |�u0 ∩ B1|
|B1| ≥ 1

2
,

which concludes the proof of the lower bound (9.18). In the case of equality γ = 1/2,

we have that u0
∣
∣∣
∂B1

is precisely the first eigenvalue on the half-sphereS+
d−1, whose

one-homogeneous extension is precisely (9.19). ��



9.6 Energy and Lebesgue Densities 147

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 506 60 a 506 60 a
 
http://creativecommons.org/licenses/by/4.0/


Chapter 10
Dimension of the Singular Set

In this chapter, we prove Theorem 1.4. As in the original work of Weiss (see
[52]), we will use the so-called Federer’s dimension reduction principle, which first
appeared in [32].

This chapter is organized as follows.

• In Sect. 10.1 we give the definitions of the Hausdorff measure and Hausdorff
dimension; we also state and prove the main properties of the Hausdorff measure,
which we will need for the proof of Theorem 1.4.

• In Sect. 10.2 we give a general result for the convergence of the singular sets of
a sequence of functions.

• In Sect. 10.3 we study the structure of the singular set of the one-homogeneous
global minimizers of F�.

• Finally, in Sect. 10.4, we use the results of the previous subsections (Lem-
mas 10.7 and 10.12) to prove Theorem 1.4.

10.1 Hausdorff Measure and Hausdorff Dimension

In this section we define the notions of Hausdorff measure and Hausdorff dimension
and we also give their main properties. For more details, we refer to the book [31].

We recall that, for every s > 0, δ ∈ (0,+∞] and every set E ⊂ Rd ,

Hs
δ(E) := ωs

2s
inf
{ ∞∑

j=1

(
diamUj

)s : for every family of sets {Uj }∞j=1

such that E ⊂
∞⋃

j=1

Uj and diamUj ≤ δ, for every j ≥ 1
}
,

(10.1)
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where, for any s ∈ (0,+∞), the constant ωs is defined as

ωs := π
s/2

�(s/2 + 1)
where �(s) :=

∫ +∞

0
xs−1ex dx.

Definition 10.1 (Hausdorff Measure) For any s ≥ 0, Hs (E) denotes the s-
dimensional Hausdorff measure of a set E ⊂ Rd and is defined as:

Hs (E) := lim
δ→0+

Hs
δ(E) = sup

δ>0
Hs

δ(E).

Remark 10.2 The constant in (10.1) is chosen in such a way that we have

Hd(Br) = |Br | = ωdrd and Hd−1(∂Br) = dωdrd−1.

Definition 10.3 The Hausdorff dimension of a set E ⊂ Rd is defined as

dimH E := inf
{
s > 0 : Hs (E) = 0

}
.

The following elementary properties of the Hausdorff measure are an immediate
consequence of the definitions ofHs ,Hs

δ andHs∞.

Proposition 10.4 (Properties of the Hausdorff Measure)

(i) For every s > 0 and δ ∈ (0,∞], the set functionals Hs and Hs
δ are translation

invariant and increasing with respect to the set inclusion. Moreover, we have

Hs (rE) = rsHs (E) and Hs∞(rE) = rsHs∞(E) for any E ⊂ R
d and r > 0.

(ii) The function δ �→ Hs
δ is non-decreasing in δ. In particular, we have

Hs(E) ≤ Hs
δ(E) ≤ Hs∞(E) for any E ⊂ R

d and any δ > 0.

(iii) Given s > 0 and E ⊂ Rd , we have that

Hs(E) = 0 if and only if Hs∞(E) = 0.

(iv) Given a sequence of sets Ej ⊂ Rd , s > 0 and δ ∈ (0,+∞] we have that

Hs
δ(E) ≤

∞∑

j=1

Hs
δ(Ej ) where E =

∞⋃

j=1

Ej .

In particular, Hs(E) = 0 if and only if Hs (Ej ) = 0, for every j ≥ 1.
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Lemma 10.5 (Existence of Points of Positive Density) Let s > 0 and let K ⊂ Rd

be a given set. If Hs(K) > 0, then there is a point x0 ∈ K such that

lim sup
r→0

Hs
(
K ∩ Br(x0)

)

rs
> 0. (10.2)

Proof Suppose that (10.2) does not hold. Then, we have

lim sup
r→0

Hs
(
K ∩ Br(x0)

)

rs
= 0. (10.3)

Let Kδ,ε ⊂ K be the set

Kδ,ε = {x ∈ K : Hs (K ∩ Br(x)) ≤ εrs for every r ≤ δ
}
.

By (10.3), we have that

⋃

δ>0

Kδ,ε =
∞⋃

n=1

Kδ,1/n = K for every fixed ε > 0. (10.4)

Let now δ and ε be fixed and let {Ui}i≥1 be a family of sets of diameter diamUi ≤ δ

such that Kδ,ε ⊂
⋃

i

Ui . Then, the subadditivity ofHs
δ gives that

Hs
δ(Kδ,ε) ≤

∞∑

i=1

Hs
δ(Ui ∩ Kδ,ε) ≤

∞∑

i=1

Hs (Ui ∩ Kδ,ε)

≤
∞∑

i=1

Hs (Ui ∩ K) ≤
∞∑

i=1

ε
(
diamUi

)s
,

where the last inequality holds since the set Ui ∩ K is contained in a ball of radius

ri = diamUi ≤ δ.

Taking the infimum over all coverings Ci with sets of diameter less than or equal to
δ, we get that

Hs
δ(Kδ,ε) ≤ ε

2s

ωs

Hs
δ(Kδ,ε),

and so, for ε small enough, Hs
δ(Kδ,ε) = 0, which implies that Hs (Kδ,ε) = 0.

Finally, (10.4) and the subadditivity of Hs imply that Hs (K) = 0, which is a
contradiction. ��
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Lemma 10.6 (Dimension Reduction: Lemma I) Let s > 0. Let E ⊂ Rd−1 be a
given set and let Ẽ = E × R ⊂ Rd . If Hs(E) = 0, then also Hs+1(Ẽ) = 0.

Proof We will prove that Hs+1(E × [0, T ]) = 0 for every T > 0. In fact, this
implies thatHs+1(E × [−T , T ]) = 0 and since

Ẽ =
⋃

T >0

E × [−T , T ],

we get Hs+1(Ẽ) = 0.
Since Hs (E) = 0, for every ε > 0, there is a family of balls B ′

ri
(xi) ⊂ Rd−1

such that

E ⊂
⋃

i≥1

B ′
ri
(xi) and

∞∑

i=1

rs
i ≤ ε .

Let now T be fixed. For every i ∈ N, we consider the point xi,k ∈ Rd of coordinates
xi,k = (xi , kri), for k = 0, 1, . . . ,Ki , where Ki := [T/ri] + 1 and the family of balls
B2ri (xi,k). Notice that

x ′ × [0, T ] ⊂
⋃

k

B2ri (xi,k) for every x ′ ∈ B ′
ri
(xi) ⊂ R

d−1.

Thus, the family of balls {B2ri (xi,k)}i,k is a covering of E×[0, T ]. We now estimate,

Hs+1∞
(
E × [0, T ]) ≤

∞∑

i=1

Ki∑

k=1

(2ri )s+1 = 2s+1
∞∑

i=1

Ki∑

k=1

rs+1
i

= 2s+1
∞∑

i=1

(Ki + 1)rs+1
i ≤ 2s+1

∞∑

i=1

2T

ri
rs+1
i ,

where the last inequality follows by the fact that, for T large enough,

Ki + 1 ≤ T

ri
+ 2 ≤ 2T

ri
.

Thus, we get

Hs+1∞
(
E × [0, T ]) ≤ 2s+2T

∞∑

i=1

rs
i ≤ 2s+2T ε,

which concludes the proof. ��



10.2 Convergence of the Singular Sets 153

10.2 Convergence of the Singular Sets

In this section we will prove a general result (Lemma 10.7) for the convergence
of the singular sets, which applies both to minimizers of F� (Theorem 1.4) and to
measure-constrained minimizers (Theorem 1.9). Recall that, if D ⊂ Rd is an open
set, u : D → R a given (continuous and non-negative) function, then for every ball
Br(x0) ⊂ D, we define

ux0,r : B1 → R, ux0,r (x) = 1

r
u(x0 + rx).

We say that a boundary point x0 ∈ ∂�u ∩ D is regular (and we write x0 ∈
Reg(∂�u)), if there is a sequence rn → 0 such that

lim
n→∞ ‖ux0,rn − hν‖L∞(B1) = 0 ,

where for simplicity we set

hν(x) = √
� (x · ν)+ ,

and we recall that

‖ux0,rn − hν

∥
∥

L∞(B1)
= ‖u(x) − hν(x − x0)‖L∞

x (Br (x0)).

We say that a point x0 is singular if it is not regular, that is, if

x0 ∈ Sing(∂�u) := (∂�u ∩ D) \ Reg(∂�u).

Lemma 10.7 (Convergence of the Singular Sets) Suppose that D ⊂ Rd is a
bounded open set. Let un : D → R be a sequence of continuous non-negative
functions satisfying the following conditions:

(a) Uniform ε-regularity. There are constants ε > 0 and R > 0 such that the
following holds:

if n ∈ N, x0 ∈ ∂�un ∩ D and r ∈ (0,R) are such that Br(x0) ⊂ D and

‖un − hν(· − x0)‖L∞(Br (x0)) ≤ εr for some ν ∈ ∂B1,

then ∂�un = Reg (∂�un) in Br/2(x0).
(b) Uniform non-degeneracy. There are constants κ > 0 and r0 > 0 such that

the following holds: if n ∈ N, x0 ∈ ∂�un ∩ D and r ∈ (0, r0) are such that
Br(x0) ⊂ D, then

‖un‖L∞(Br (x0)) ≥ κ r .



154 10 Dimension of the Singular Set

(c) Uniform convergence. The sequence un converges locally uniformly in D to a
(continuous and non-negative) function u0 : D → R.

Then, for every compact set K ⊂ D, the following claim does hold:

For every open set U ⊂ D containing Sing (∂�u0) ∩ K ,
there exists n0 ∈ N such that:

Sing (∂�un) ∩ K ⊂ U for every n ≥ n0.
(10.5)

In particular, for every s > 0,

Hs∞
(
Sing (∂�u0) ∩ K

) ≥ lim sup
n→∞

Hs∞
(
Sing (∂�un) ∩ K

)
. (10.6)

Proof The semicontinuity of the Hausdorff measure (10.6) follows by (10.5) and
the definition ofHs∞. Thus, it is sufficient to prove (10.5). Arguing by contradiction,
we suppose that there are a compact set K ⊂ D and an open set U ⊂ D such that

Sing (∂�u0) ∩ K ⊂ U ,

but (up to extracting a subsequence of un) there is a sequence

xn ∈ Sing (∂�un) ∩ K ∩ (Rd \ U).

Up to extracting a further sequence we may assume that there is a point x0 such that

x0 ∈ K ∩ (Rd \ U) and x0 = lim
n→∞ xn.

We claim that x0 ∈ ∂�u0 . Indeed, the uniform convergence of un implies that
u0(x0) = 0. On the other hand, the non-degeneracy hypothesis (b) implies that,
for every r > 0 small enough,

‖u0‖L∞(Br (x0)) ≥ lim inf
n→∞

(
‖un‖L∞(Br (x0)) − ‖un − u0‖L∞(Br (x0))

)

≥ lim inf
n→∞ ‖un‖L∞(Br/2(xn)) ≥ κ

r

2
,

which gives that x0 ∈ ∂�u0 .

Now, we notice that, since U contains Sing(∂�u0) ∩ K and x0 /∈ U , we have
that

x0 ∈ Reg(∂�u0).
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By definition of Reg(∂�u0), there is a sequence rn → 0 and a unit vector ν ∈ ∂B1
such that

lim
n→∞

1

rn
‖u0 − hν(· − x0)‖L∞(Brn (x0)) = 0.

In particular, there exists r ∈ (0,R) such that Br(x0) ⊂ D and

‖u0(x) − hν(· − x0)‖L∞(Br (x0)) ≤ ε

3
r .

By the continuity of u0 and hν , we get that, for n large enough,

‖u0 − hν(· − xn)‖L∞(Br (xn)) ≤ 2ε

3
r .

Since, un converges to u0 locally uniformly in D, we get that, for n large enough,

‖un − hν(· − xn)‖L∞(Br (xn)) ≤ εr .

Thus, (a) implies that xn ∈ Reg (∂�un), in contradiction with the initial assumption.
��

10.3 Dimension Reduction

In this section, we study the singularities of the global one-homogeneousminimizers
ofF�. In particular, we prove Theorem 1.4 in the case when u is one-homogeneous.
This (significant) simplification is essential for the proof of Theorem 1.4 since
we already know that the blow-up limits of a local minimizer are global one-
homogeneousminimizers and we will prove (see Lemma 10.7) that the dimension of
the singular set of a blow-up limit does not decrease if we choose the free boundary
point to have non-zero Hausdorff density (see Lemma 10.5).

Remark 10.8 (The Singular Set of a One-Homogeneous Function Is a Cone)
Suppose that z : Rd → R is a non-negative one-homogeneous local minimizer
of F� in Rd . Then, for any singular free boundary point x0 ∈ Sing (∂�z) \ {0},
we have that {tx0 : t ∈ R} ⊂ Sing (∂�z). This claim follows by the fact that
Reg (∂�u) is a cone. and that

Sing (∂�z) = ∂�z \ Reg (∂�z).

Lemma 10.9 (Blow-UpLimits of One-Homogeneous Functions) Let z : Rd →R

be a one-homogeneous locally Lipschitz continuous function. Let 0 �= x0 ∈ ∂�z.
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Let rn → 0 and zrn,x0 be a a blow-up sequence converging locally uniformly to a
function z0 : Rd → R. Then z0 is invariant in the direction x0, that is,

z0(x + tx0) = z0(x) for every x ∈ R and every t ∈ R.

Proof Let t ∈ R be fixed. Then, we have

z0(x + tx0) = lim
n→∞ zrn,x0(x + tx0) = lim

n→∞
1

rn
z
(
x0 + rn(x + tx0)

)

= lim
n→∞

1 + trn

rn
z
(
x0 + rn

1 + trn
x
) = lim

n→∞
1

rn
z
(
x0 + rnx

) = z0(x),

where the third inequality follows by the homogeneity of z and the fourth inequality
follows by the Lipschitz continuity of z. Precisely, setting L = ‖∇z‖L∞(B1(x0)), we
have

∣
∣
∣
1 + trn

rn
z
(
x0 + rn

1 + trn
x
)− 1

rn
z
(
x0 + rnx

)∣∣
∣

≤ t |z| (x0 + rn

1 + trn
x
)+ 1

rn

∣∣
∣z
(
x0 + rn

1 + trn
x
)− z

(
x0 + rnx

)∣∣
∣

≤ t
rnL|x|
1 + trn

+ 1

rn

tr2nL|x|
1 + trn

,

which converges to zero as n → ∞. ��

Lemma 10.10 (Translation Invariant Global Minimizers) Let u : Rd−1 → R

be a non-negative function, u ∈ H 1
loc(R

d−1) and let ũ : Rd → R be the function
defined by

ũ(x) = u(x ′) for every x = (x ′, xd) ∈ R
d .

Then, u a local minimizer of F� in Rd−1 if and only if ũ a local minimizer of F� in
Rd .

Proof Suppose first that ũ is not a local minimizer of F�. Then, there is a function
ṽ : Rd → R such that ũ = ṽ outside the cylinder CR := B ′

R ×(−R,R) ⊂ Rd−1×R

and such that F�(ũ, CR) > F�(ṽ, CR).

F�(u,BR ′) =
∫

B ′
R

|∇x ′ u|2 dx ′ + �
∣
∣B ′

R ∩ {u > 0}∣∣

= 1

2R

(∫

CR

|∇ũ|2 dx + �
∣
∣CR ∩ {ũ > 0}∣∣

)
= 1

2R
F�(ũ, CR)
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>
1

2R
F�(ṽ, CR) = 1

2R

(∫

CR

|∇ṽ|2 dx + �
∣
∣CR ∩ {ṽ > 0}∣∣

)

≥ 1

2R

∫ R

−R

(∫

B ′
R

|∇x ′ ṽ(x ′, xd)|2 dx ′ + �
∣
∣B ′

R ∩ {ṽ(·, xd) > 0}∣∣
)

dxd

≥
∫

B ′
R

|∇x ′ ṽ(x ′, t)|2 dx ′ + �
∣
∣B ′

R ∩ {ṽ(·, t) > 0}∣∣ ,

for some t ∈ (−R,R), which exists due to the mean-value theorem. Thus, also u is
not a local minimizer of F�.

Conversely, suppose that u is not a local minimizer of F�. Then, there is a
function v : Rd−1 → R such that u = v outside a ball B ′

R ⊂ Rd−1 and
F�(u,B ′

R) > F�(v,B ′
R). We now define the function

ṽ(x ′, xd) = v(x ′)φt (xd),

where for any t > 0, we define the function φt : R → [0, 1] as

φt (xd) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if |xd | ≤ t ,

0 if |xd | ≥ t + 1,

xd + t + 1 if − t − 1 ≤ xd ≤ −t ,

xd − t if t ≤ xd ≤ t + 1.

Then,

|∇xṽ|2 ≤ |∇x ′ v|2 + v21CR,t+1\CR,t ,

∣
∣CR,t+1 ∩ {ṽ > 0}∣∣ = 2(t + 1)

∣
∣B ′

R ∩ {v > 0}∣∣,

where CR,t := B ′
R × (−t , t). Thus, we have

F�(ṽ, CR,t+1) =
∫

CR,t+1

|∇ṽ|2 dx + �
∣
∣CR,t+1 ∩ {ṽ > 0}∣∣

≤ 2tF�(v,B ′
R) + 2

∫

B ′
R

v2 dx ′ + 2
∣
∣B ′

R ∩ {v > 0}∣∣.

Choosing t large enough, we have that

2tF�(v,B ′
R) + 2

∫

B ′
R

v2 dx ′ + 2
∣∣B ′

R ∩ {v > 0}∣∣ ≤ 2tF�(u,B ′
R).
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Since,

F�(ũ, CR,t+1) = 2(t + 1)F�(u,B ′
R),

we get that

F�(ṽ, CR,t+1) < F�(ũ, CR,t+1),

which concludes the proof. ��

Lemma 10.11 (Singular One-Homogeneous Global Minimizers in Rd∗
) Let z :

Rd∗ → R be a non-negative one-homogeneous local minimizer of F� in Rd∗
. Then,

one of the following does hold:

(1) z(x) = √
� (x · ν) for some ν ∈ Rd∗

(in this case Sing (∂�z) = ∅);
(2) Sing (∂�z) = {0}.
In other words,

Sing (∂�z) \ {0} = ∅.

In particular, this means that dimH Sing (∂�z) = 0.

Proof Suppose that there is a point x0 ∈ Rd \ {0} such that x0 ∈ Sing (∂�z). Then,
by Remark 10.8 we have that tx0 ∈ Sing (∂�z) for every t ∈ R. In particular, we
can suppose that |x0| = 1 and, without loss of generality, we set x0 = ed . Let now z0
be a blow-up limit of z at x0. Then, z0 is a one-homogeneous local minimizer ofF�.
Moreover, by Lemma 10.9 we have that z0(x

′, t) = z0(x
′, 0) for every x ′ ∈ Rd−1.

Now, Lemma 10.10 implies that the function z′
0 := z0(·, 0) : Rd−1 → R is still a

local minimizer of F�. Moreover, the origin 0′ ∈ Rd−1 is a singular point for ∂�z′
0

in contradiction with the definition of d∗. ��

Lemma 10.12 (Dimension Reduction: Lemma II) Suppose that d ≥ d∗ and that
z : Rd → R is a non-negative one-homogeneous local minimizer of F� in Rd .
Then,

Hd−d∗+s
(
Sing (∂�z)

) = 0 for every s > 0 .

Proof Let s > 0 be fixed. The claim in the case d = d∗ follows by Lemma 10.11.
We will prove the claim by induction. Indeed, suppose that the claim holds in
dimension d − 1, with d − 1 ≥ d∗, and let z : Rd → R be a non-negative one-
homogeneous local minimizer. If such that Hd−d∗+s

(
Sing (∂�z)

)
> 0, then, by

Lemma 10.5, there is a point x0 ∈ Sing (∂�z), a constant ε > 0 and a sequence
rn → 0 such that

Hd−d∗+s
(
Sing (∂�z) ∩ Brn(x0)

) ≥ εrd−d∗+s
n for every n ∈ N,
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which can be re-written as

Hd−d∗+s
(
Sing (∂�zn) ∩ B1

) ≥ ε for every n ∈ N, (10.7)

where we have set zn(x) := 1
rn

z(x0 + rnx).
Without loss of generality, we can assume that x0 = ed . Now, up to a

subsequence, zn converges to a blow-up limit z0 of z. By Lemma 10.9 and
Lemma 10.10, we have that:

(1) z0(x
′, xd) = z0(x

′, 0) for every x ′ ∈ Rd−1 and every xd ∈ R;
(2) z′

0 := z0(·, 0) : Rd−1 → R is one-homogeneous local minimizer of F� in
Rd−1.

By hypothesis, we have that

Hd−1−d∗+s
(
Sing (∂�z′

0
)
) = 0.

The translation invariance of z0 now implies that

Sing (∂�z0) = Sing (∂�z′
0
) × R ,

so, Lemma 10.6 gives

Hd−d∗+s
(
Sing (∂�z0)

) = 0,

which is a contradiction with (10.6) of Lemma 10.7 and (10.7). ��

10.4 Proof of Theorem 1.4

In this section, we will give an estimate on the dimension of the singular set. The
result is more general and applies to different situations, for instance to almost-
minimizers and measure-constrained minimizers.

Proposition 10.13 (Dimension of the Singular Set) Let D ⊂ Rd be a bounded
open set and u : D → R a continuous non-negative function. Let the regular and
singular sets Reg(∂�u) and Sing(∂�u) of the free boundary ∂�u ∩D be defined as
in the beginning of Sect. 10.2. Suppose that u satisfies the following hypotheses:

(a) ε-regularity. There are constants ε > 0 and R > 0 such that the following
holds:

If x0 ∈ ∂�u ∩ D and r ∈ (0,R) are such that Br(x0) ⊂ D and

‖u(x) − √
� ((x − x0) · ν)+‖L∞

x (Br (x0)) ≤ εr for some ν ∈ ∂B1, (10.8)

then ∂�u = Reg (∂�u) in Br/2(x0).
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(b) Non-degeneracy. There are constants κ > 0 and r0 > 0 such that the following
holds: if n ∈ N, x0 ∈ ∂�u ∩ D and r ∈ (0, r0) are such that Br(x0) ⊂ D, then

‖u‖L∞(Br (x0)) ≥ κ r .

(c) Convergence of the blow-up sequences. Every blow-up sequence

urn,x0(x) = 1

rn
u(x0 + rnx),

with x0 ∈ ∂�u ∩ D and rn → 0, admits a subsequence that converges locally
uniformly to a blow-up limit u0 : Rd → R.

(d) Homogeneity and minimality of the blow-up limits. Every blow-up limit of u

is a one-homogeneous global minimizer of F� in Rd .

Then,

(i) if d < d∗, then Sing (∂�u) is empty;
(ii) if d = d∗, then Sing (∂�u) is locally finite;

(iii) if d > d∗, then dimH Sing (∂�u) ≤ d − d∗.

Proof Suppose first that d < d∗. Let x0 ∈ ∂�u∩D and let rn → 0 be a infinitesimal
sequence such that urn,x0 converges locally uniformly to a blow-up limit u0 (such
a sequence exists by the hypothesis (b)). By (c), u0 is a one-homogeneous local
minimizer of F� in Rd . By definition of d∗, we get that Sing (∂�u0) = ∅. This
means that every blow-up limit of u0 is of the form

√
� (x · ν)+, for some ν ∈ ∂B1.

In particular, it holds for every blow-up limit in zero. Since u0 is one-homogeneous,
the blow-up of u0 in zero is u0 itself and so,

u0(x) = √
� (x · ν)+ for some ν ∈ ∂B1.

Thus, for n large enough, we get that

‖urn,x0(x) − √
� (x · ν)+‖L∞

x (B1) ≤ ε,

which, by the definition of urn,x0 gives precisely (10.8). Thus, by (a), we get that
x0 is a regular point, x0 ∈ Reg (∂�u). Since x0 is arbitrary, we conclude that
Sing (∂�u) = ∅.

Let now d = d∗. Suppose by contradiction that there is a sequence of points
xn ∈ Sing (∂�u) converging to a point x0 ∈ D∩Sing (∂�u). Let rn := |xn−x0|. Up
to extracting a subsequence, we can assume that the blow-up sequence un := urn,x0
converges to a blow-up limit u0 : Rd → R. By (c), u0 is a one-homogeneous local
minimizer of F� in Rd . On the other hand, notice that for every n > 0 the point
ξn = xn−x0

rn
∈ ∂B1 is a singular point for un. Up to extracting a subsequence, we

may assume that ξn converges to a point ξ0 ∈ ∂B1. By Lemma 10.7, we get that
ξ0 ∈ Sing (∂�u0), in contradiction with Lemma 10.11.
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Finally, we consider the case d > d∗. Let s > 0 be fixed. We will
prove that Hd−d∗+s

(
Sing (∂�u)

) = 0. Suppose that this is not the case and
Hd−d∗+s

(
Sing (∂�u)

)
> 0. By Lemma 10.5 we have that there is a point

x0 ∈ Sing (∂�u) and a sequence rn → 0 such that

Hd−d∗+s
(
Sing (∂�u) ∩ Brn(x0)

) ≥ εrd−d∗+s
n .

Taking, un = urn,x0 , we get that

Hd−d∗+s
(
Sing (∂�un) ∩ B1

) ≥ ε.

Using (b), we can suppose that, up to extracting a subsequence, un converges to a
blow-up limit u0. By (c), u0 is a one-homogeneous minimizer of F� in Rd . Now,
Lemma 10.7, we get thatHd−d∗+s

(
Sing (∂�u0)∩B1

) ≥ ε, which is in contradiction
with Lemma 10.12. ��
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Chapter 11
Regularity of the Free Boundary
for Measure Constrained Minimizers

Let D be a connected bounded open set in Rd and let v ∈ H 1(D) be a given non-
negative function. This chapter is dedicated to the problem

min
{
F0(u,D) : u ∈ H 1(D), u − v ∈ H 1

0 (D), |�u ∩ D| = m
}
, (11.1)

where m ∈ (0, |D|) is a fixed constant and we recall that

F0(u,D) =
∫

D

|∇u|2 dx.

In this chapter, we give the main steps of the proof of Theorem 1.9.

• Section 11.1. Existence of minimizers.
In this section, we prove that (11.1) admits a solution and that every solution is a
non-negative subharmonic function (see Proposition 11.1).

• Section 11.2. Euler-Lagrange equations.
In this section, we prove that if u is a solution to (11.1), then there exists a
Lagrange multiplier � ≥ 0 such that the first variation of F� vanishes, that is,

δF�(u,D)[ξ ] = 0 for every ξ ∈ C∞
c (D;Rd ).

• Section 11.3. Strict positivity of the Lagrange multiplier.
In this section we prove that � > 0.

• Section 11.4. Convergence of the Lagrange multipliers.
In this section, we prove a technical lemma, that we will use several times in
the next section. Roughly speaing, we show that if un is a sequence of solutions
converging to a solution u, then also the sequence of Lagrange multipliers
converge to the Lagrange multipliers of u.

• Section 11.5. Almost optimality of u at small scales.
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In this section, we show that if u is a solution to (11.1), then it minimizes F�

in every ball Br , up to an error that depends on the radius r and vanishes as
r → 0. At this point, the regularity of the free boundary (Theorem 1.9) follows
by the same arguments that we used for Theorem 1.2 and Theorem 1.4, the
necessary modifications being pointed out in the sketch of the proof given in the
introduction.

11.1 Existence of Minimizers

In this section we prove that there is a solution to the problem (11.1). This follows
by a standard argument which can be divided in two steps. We will first show that
there is a solution u to the auxiliary problem

min
{
F0(u,D) : u ∈ H 1(D), u − v ∈ H 1

0 (D), |�+
u ∩ D| ≤ m

}
, (11.2)

where for simplicity we set

�+
u = �u+ = {u > 0}.

Then we will prove that the constraint is saturated, that is, every solution u of (11.2)
is such that |�u| = |�+

u | = m. We give the details in the following proposition.

Proposition 11.1 (Existence of Minimizers) Let D be a connected bounded open
set in Rd , v ∈ H 1(D) be a non-negative function and 0 < m < |D|. Then,

(i) there is a solution to the variational problem (11.1);
(ii) the function u ∈ H 1(D) is a solution to (11.1) if and only if it is a solution

to (11.2);
(iii) every solution (to (11.1) and (11.2)) is a non-negative subharmonic function in

D and, in particular, is defined at every point of D.

Proof We will proceed in several steps.
Step 1. There is a solution to the auxiliary problem (11.2). This follows by a direct
argument. Indeed, let un be a minimizing sequence for (11.2), that is, un − v ∈
H 1

0 (D), |�+
u ∩ D| ≤ m and

lim
n→∞F0(un,D) = inf

{
F0(u,D) : u ∈ H 1(D), u−v ∈ H 1

0 (D), |�+
u ∩D| ≤ m

}
.

Then, up to a subsequence, un converges weakly in H 1(D), strongly in L2(D) and
pointwise a.e. in D to a function u∞ ∈ H 1(D) such that u∞ − v ∈ H 1

0 (D). Then,
we have

F0(u∞,D) ≤ lim inf
n→∞ F0(un,D),
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and, by the pointwise convergence of un to u∞,

1{u∞>0} ≤ lim inf
n→∞ 1{un>0} and |{u∞ > 0}| ≤ lim inf

n→∞ |{un > 0}| ≤ m,

which means that u∞ is a solution to (11.2).
Step 2. Every solution u to (11.2) is non-negative. Indeed, this follows simply by the
fact that if u = u+ − u− is a solution to (11.2), then the function u+ still satisfies
the constraints u+ − v ∈ H 1

0 (�) and |�u+| ≤ m, and we have

F0(u,D) = F0(u+,D) + F0(u−,D) ≤ F0(u+,D),

with an equality if and only if u− ≡ 0.
Step 3. Every solution u to (11.2) is subharmonic. This follows by the fact that

F0(u,D) ≤ F0(ϕ,D),

for every ϕ ≤ u with the same boundary values as u. In particular, this means that u
is defined pointwise. In fact, we simply consider the representative of u defined as

u(x0) := lim
r→0

∫
Br (x0)

u(x) dx = lim
r→0

∫
∂Br(x0)

u dHd−1.

Step 4. Every solution u to (11.2) satisfies the condition |�u| = m. Indeed, suppose
that this is not the case. Let r0 > 0 be such that |Br0 | ≤ m − |�u|. Take x0 ∈ D and
r < min

{
r0, dist(x0, ∂D)

}
. Let h be the harmonic extension of u in Br(x0), that is,

h is a solution of the PDE

�h = 0 in Br(x0), h = u on ∂Br(x0).

Then, let ũ be the competitor defined as

ũ = h in Br(x0), ũ = u in D \ Br(x0).

Then, |�ũ| ≤ m and so, the optimality of u gives

0 ≥ F0(u,D)−F0 (̃u,D) =
∫

Br(x0)
|∇h|2 dx −

∫

Br (x0)
|∇u|2 dx =

∫

Br(x0)
|∇(u−h)|2 dx,

which means that h = u in Br(x0). In particular, we get that the set {u > 0} is open:
if u(x0) > 0, then

∫
Br (x0)

u(x) dx > 0 for some r small enough, but then u > 0
in Br(x0) because it coincides with its (non-zero) harmonic extension. On the other
hand {u > 0} is also closed. Indeed, if there is a sequence of points xn converging
to x0 such that u(xn) > 0, then the harmonic extension of u in Br(x0) is non-zero,
so it is strictly positive, and so, u(x0) > 0. Since D is connected, this means that
{u > 0} = D, which is a contradiction with the fact that |�u| ≤ m < |D|.
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Step 5. u ∈ H 1(D) is a solution to (11.2) if and only if it is a solution to (11.1). This
is a trivial consequence of Step 4. ��

In the rest of this section, without loss of generality, we will only consider
functions u ∈ H 1(D), which are non-negative and satisfy the following optimality
condition:

F0(u,D) ≤ F0(v,D) for every v ∈ H 1(D) such that

{
v − u ∈ H 1

0 (D),

|�u| = |�v|.
(11.3)

11.2 Euler-Lagrange Equation

In this section, we will prove the existence of a Lagrange multiplier for functions
satisfying (11.3). We will follow step-by-step the proof from [46]. Our main result
is the following.

Proposition 11.2 (Euler-Lagrange Equation) Let D ⊂ Rd be a connected
bounded open set and let the non-negative function u : D → R be a solution
of (11.3). Then, there is a constant �u > 0 such that

δF0(u,D)[ξ ] + �u

∫

�u

div ξ dx = 0 for every ξ ∈ C∞
c (D;Rd ). (11.4)

We start with the following lemma.

Lemma 11.3 (Variation of the Measure) Let D be a connected open set in Rd

and let � ⊂ D be a Lebesgue measurable set such that 0 < |�| < |D|. Then, there
is a smooth vector field ξ ∈ C∞

c (D;Rd ) such that

∫

�

div ξ dx = 1.

Proof Assume, by contradiction, that we have

∫

�

div ξ dx = 0 for every ξ ∈ C∞
c (D;Rd ). (11.5)

In particular, for every ball Bρ(x0) ⊂ D, we may choose ξ to be the vector field

ξ(x) = (x − x0)φε(x),



11.2 Euler-Lagrange Equation 167

where

0 ≤ φε ≤ 1 and |∇φε| ≤ 1 + ερ

ερ
in Bρ(x0),

φε = 1 in Bρ(1−ε)(x0) and φε = 0 on ∂Bρ(x0).

By (11.5), we have

0 =
∫

�

div ξ dx =
∫

�

(
dφε(x) + (x − x0) · ∇φε(x)

)
dx.

Passing to the limit as ε → 0, we obtain

d|� ∩ Bρ(x0)| − ρ Hd−1(� ∩ ∂Bρ(x0)
) = 0.

In particular, we get that

∂

∂ρ

( |� ∩ Bρ(x0)|
ρd

)
= 0,

which means that the function ρ �→ ρ−d |� ∩ Bρ(x0)| is constant. In particular,
if x0 ∈ Br is a point of zero Lebesgue density for �, then � has zero Lebesgue
measure in a neighborhood of x0. Precisely, setting r(x) := dist (x,Rd \ D) we
have that

If x0 ∈ �(0) , then |� ∩ Br(x0)(x0)| = 0 . (11.6)

Now, notice that (11.6) is both an open and a closed subset of D. Since, by
hypothesis, D is connected, we have that �(0) = D or �(0) = ∅, which concludes
the proof. ��
Proof of Proposition 11.2 Let ξ ∈ C∞

c (D;Rd ). Using the notations from
Lemma 9.5, for any (small enough) t ∈ R, we set

	t = Id + tξ , �t = 	−1
t and ut := u ◦ 	t .

By Lemma 9.5, we have that

|�ut | = |�u| + t

∫

�u

div ξ dx + o(t) and

F0(ut ,D) = F0(u,D) + t δF0(u,D)[ξ ] + o(t).
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Now, let the vector field ξ0 ∈ C∞
c (D;Rd ) be such that

∫

�u

div ξ0 dx = 1 .

We are now going to prove that (11.4) holds with

�u := −δF0(u,D)[ξ0].

We fix ξ ∈ C∞
c (D;Rd ) and we consider two cases.

Case 1.
∫

�u

div ξ dx = 0.

Let ξ1 := ξ − ηξ0 , where η > 0 is a real constant. Then, we have

∫

�u

div ξ1 dx = −η.

Setting ut = u ◦ �t , where �t := (Id + tξ1)
−1, we have that, for t > 0 small

enough,

ut ∈ H 1
0 (D) and |�ut | ≤ |�u|.

By Proposition 11.1 (see Step 5 of the proof), we have that

F0(u,D) ≤ F0(ut ,D).

Taking the derivative at t = 0, we obtain

δF0(u,D)[ξ1] ≥ 0,

which can be re-written as

δF0(u,D)[ξ ] ≥ η δF0(u,D)[ξ0].

Since η is arbitrary, we can deduce that

δF0(u,D)[ξ ] ≥ 0.

Finally, repeating the same argument for −ξ instead of ξ , we obtain that

δF0(u,D)[ξ ] = 0,

which concludes the proof of (11.4) in this case.
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Case 2.
∫

�u

div ξ dx �= 0.

Let ξ2 := ξ − ξ0

∫

�u

div ξ dx. Then
∫

�u

div ξ2 dx = 0 and, by Case 1, we obtain

0 = δF0(u,D)[ξ2] = δF0(u,D)[ξ ] − δF0(u,D)[ξ0]
∫

�u

div ξ dx

= δF0(u,D)[ξ ] + �u

∫

�u

div ξ dx,

which concludes the proof of (11.4).
It only remains to prove that �u ≥ 0. Indeed, let ut = u ◦ �t , where �t =

(Id − tξ0)
−1. For t > 0 small enough, we have that |�ut | ≤ |�u|. We reason as in

Case 1. By Proposition 11.1, we get that F0(u,D) ≤ F0(ut ,D). Then, taking the
derivative at t = 0, we deduce

�u := δF0(u,D)[−ξ0] ≥ 0.

The strict positivity of �u is more involved and follows by Proposition 11.4, which
we prove in the next subsection. ��

11.3 Strict Positivity of the Lagrange Multiplier

In this section we prove that the Lagrangemultiplier from Proposition 11.2 is strictly
positive. Precisely, we will show that a function, which is critical for the functional
F0 has a monotone Almgren frequency function N(r). Now, the monotonicity of
the frequency function implies that u cannot decay too fast around the free boundary
points. On the other hand, if u is harmonic in �u, then we can use a Caccioppoli
inequality to show that if the Lebesgue density of �u is too small, then the decay
of u on the balls of radius r should be very fast. The combination of these two
estimates implies that the Lebesgue density of �u should be bounded from below at
every point of D. In particular, there cannot be points of zero Lebesgue density for
�u in D. The results from this subsection come directly from [46], but this unique-
continuation argument goes back to the work of Garofalo and Lin [34]. The main
result of this subsection is the following.

Proposition 11.4 Let D be a connected open set in Rd . Suppose that u ∈ H 1(D)

is a non-identically-zero function such that

(a) u is a solution of the equation

�u = 0 in �u = {u �= 0};
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(b) u satisfies the extremality condition

δF0(u)[ξ ] = 0 for every ξ ∈ C∞
c (D;Rd ),

where δF0(u)[ξ ] is the first variation of F0 in the direction ξ and is given by

δF0(u)[ξ ] :=
∫

D

[
2∇u · Dξ(∇u) − |∇u|2div ξ

]
dx. (11.7)

Then, |D \ �u| = 0.

Remark 11.5 It is sufficient to prove Proposition 11.4 in the case u ≥ 0. In fact, if
u : D → R satisfies the hypotheses (a) and (b) above, then the function |u| : D → R

satisfies the same hypotheses.

In the proof of Proposition 11.4 we will use the following Faber-Krahn-type
inequality, which was first proved in [10] (we report here the original proof).

Lemma 11.6 (A Faber-Krahn Inequality, [10]) There is a dimensional constant
Cd > 0 such that for every ball Br ⊂ Rd and every function v ∈ H 1(Br) satisfying

|�v ∩ Br |
|Br | ≤ 1

2
,

we have the inequality

∫

Br

v2 dx ≤ Cd r2
( |�v ∩ Br |

|Br |
)2/d ∫

Br

|∇v|2 dx , (11.8)

where we recall that �v = {v �= 0}.
Proof We first notice that:

• We can assume that v is non-negative in Br . In fact, for every v ∈ H 1(Br ), we
have that |v| ∈ H 1(Br) and the following identities do hold:

�v = �|v| , v2 = |v|2 and |∇v|2 = |∇|v||2.

• We can assume that r = 1. Indeed, setting vr(x) = v(rx), we have that

|�v ∩ Br | = rd |�vr ∩ B1| ,
∫

Br

v2 dx = rd

∫

B1

v2r dx ,

∫

Br

|∇v|2 dx = rd−2
∫

B1

|∇vr |2 dx .

We now proceed with the proof of (11.8) in the case r = 1 and v ≥ 0 on B1.
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Step 1. We claim that there is a dimensional constant Ciso > 0 such that

|�| d−1
d ≤ Ciso Per(�;Br) for every � ⊂ Br with |�| ≤ 1

2
|Br |, (11.9)

where Per(�;Br) is the relative perimeter in the sense of De Giorgi. The claim
follows by a standard compactness argument.

Step 2. Let n ∈ N and let Dn = {x · ν1 > 0} ∩ {x · ν2 > 0} be the unbounded
domain formed by the intersection of the two hyperplanes {x · ν1 = 0} and {x · ν2 =
0} forming (an interior) angle 2π/n. We claim that, for every � ⊂ B1 satisfying
|�| ≤ ωd

2 , there is a radius ρ > 0 such that

|Bρ ∩ Dn| = |�| and Per(Bρ ∩ Dn;Dn) ≤ Per(�;B1). (11.10)

Indeed, for every �, there is a unique ρ > 0 such that |Bρ ∩ Dn| = |�|. We set
�∗ := Bρ ∩ Dn. Then, we have

|�∗|(d−1)/d = n−(d−1)/d |Bρ |(d−1)/d = n−(d−1)/d

dω
1/d

d

Per(Bρ) = n
1/d

dω
1/d

d

Per(�∗;Dn).

Now, the isoperimetric inequality (11.9) implies

Per(�;D) ≥ C−1
iso|�|(d−1)/d = C−1

iso |�∗|(d−1)/d = C−1
iso

n
1/d

dω
1/d

d

Per(�∗;Dn).

Taking n large enough, such that n
1/d ≥ Ciso dω

1/d

d , we get P(�;D) ≥
Per(�∗;Dn), which proves (11.10).

Step 3. For every non-negative function v ∈ H 1(B1) we define the symmetrized
function v∗ ∈ H 1(Dn) obtained through the symmetrization of each level of v, that
is,

{v∗ > t} = {v > t}∗ for every t ≥ 0 .

We claim that
∫

Dn

v2∗ dx =
∫

B1

v2 dx and
∫

Dn

|∇v∗|2 dx ≤
∫

B1

|∇v|2 dx . (11.11)

The first part of (11.11) follows by the area formula

∫

Dn

v2∗ dx =
∫ ∞

0
t|{v∗ > t}| dt =

∫ ∞

0
t|{v > t}| dt =

∫

B1

v2 dx,



172 11 Regularity of the Free Boundary for Measure Constrained Minimizers

while for the second part we will use the co-area formula. Indeed, setting

f (t) := |{v > t}| = |{v∗ > t}|,

we have

∫

B1

|∇v|2 dx =
∫ +∞

0

( ∫

{v=t}
|∇v| dHd−1

)
dt

≥
∫ +∞

0

( ∫

{v=t}
|∇v|−1 dHd−1

)−1(Hd−1({v = t} ∩ D
))2

dt

=
∫ +∞

0
|f ′(t)|−1

(
Hd−1({v = t} ∩ B1

))2
dt

≥
∫ +∞

0
|f ′(t)|−1

(
Hd−1({v∗ = t} ∩ Dn

))2
dt

=
∫ +∞

0

( ∫

{v∗=t}
|∇v∗|−1 dHd−1

)−1(Hd−1({v∗ = t} ∩ Dn

))2
dt

=
∫ +∞

0

( ∫

{v∗=t}
|∇v∗| dH1

)
dt =

∫

Dn

|∇v∗|2 dx,

where the first inequality follows by Cauchy-Schwartz and the second one is a
consequence of (11.10).

Step 4. We claim that there is a constant Cd ,n > 0, depending only on d and n,
such that

∫

Dn

v2∗ dx ≤ Cd ,n
∣
∣{v∗ > 0}∣∣2/d

∫

Dn

|∇v∗|2 dx . (11.12)

Let ṽ∗ : Rd → R be the radially decreasing function defined by

ṽ∗(x) = v∗(y),

where y ∈ Dn is any point such that |x| = |y|. By the classical Faber-Krahn
inequality in Rd , there is a dimensional constant Cd such that

∫

Rd

ṽ2∗ dx ≤ Cd

∣
∣{ṽ∗ > 0}∣∣2/d

∫

Rd

|∇ṽ∗|2 dx .
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which gives that

∫

Dn

v2∗ dx ≤ Cd n
2/d
∣
∣{v∗ > 0}∣∣2/d

∫

Dn

|∇v∗|2 dx,

which is precisely (11.12). This, together with (11.11), concludes the proof. ��
In the next lemma, we prove that the Almgren frequency function is monotone.

This is a classical result, which was first proved by Almgren [2].

Lemma 11.7 (AlmgrenMonotonicity Formula) Let u ∈ H 1(BR). For r ∈ (0,R],
we define

H(r) :=
∫

∂Br

u2 dHd−1 and D(r) :=
∫

Br

|∇u|2 dx ,

and, if H(r) �= 0, we define the Almgren frequency function

N(r) := rD(r)

H(r)
.

Suppose that u is a solution of the equation

�u = 0 in �u = {u �= 0};

and satisfies the extremality condition

δF0(u)[ξ ] = 0 for every ξ ∈ C∞
c (BR;Rd),

where δF0(u)[ξ ] is given by (11.7). If, moreover, H > 0 on the interval (a, b) ⊂
(0,R), then the frequency function N is non-decreasing on (a, b).

Proof We first calculate the derivative of H

H ′(r) = d − 1

r
H(r) + rd−1 ∂

∂r

∫

∂B1

u2(rx) dHd−1(x)

= d − 1

r
H(r) + 2

∫

∂Br

u
∂u

∂n
dHd−1 = d − 1

r
H(r) + 2

∫

Br

|∇u|2 dx,

which we rewrite as

H ′(r) = d − 1

r
H(r) + 2D(r). (11.13)
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Next, we notice that the extremality condition δF0(u) = 0 gives that the following
equipartition of the energy does hold:

0 = −(d − 2)
∫

Br

|∇u|2 dx + r

∫

∂Br

|∇u|2 dHd−1 − 2r
∫

∂Br

(
∂u

∂n

)2
dHd−1,

which can be rewritten as

−(d − 2)D(r) + rD′(r) = 2r
∫

∂Br

(
∂u

∂n

)2
dHd−1.

We now compute the derivative of N .

N ′(r) = D(r)H(r) + rD′(r)H(r) − rD(r)H ′(r)
H 2(r)

=
D(r)H(r) + rD′(r)H(r) − rD(r)

(
d−1

r
H (r) + 2D(r)

)

H 2(r)

= −(d − 2)D(r)H(r) + rD′(r)H(r) − 2rD2(r)

H 2(r)

= 2r

H 2(r)

(

H(r)

∫

∂Br

(
∂u

∂n

)2
dHd−1 − D2(r)

)

. (11.14)

Notice that, since u is harmonic in �u, we have

D(r) =
∫

Br

|∇u|2 dx =
∫

∂Br

u
∂u

∂n
dHd−1,

and so, by the Cauchy-Schwarz inequality and (11.14) we obtain N ′(r) ≥ 0. ��

Remark 11.8 (The Derivative of lnH ) Notice that, by (11.13), we get that

d

dr

[
log

(
H(r)

rd−1

)]
= 2

N(r)

r
. (11.15)

We are now in position to prove Proposition 11.4.

Proof of Proposition 11.4 Let x0 = 0 ∈ D. We set H(r), D(r) and N(r) to be
as in Lemma 11.7 and Remark 11.8. Let r0 > 0 be such that Br0(x0) ⊂ D and
H(r0) > 0. Since u ∈ H 1(D), there is some ε > 0 such that H > 0 on the interval
(r0 − ε, r0). Then, the function r �→ N(r) is non-decreasing in r and so

N(r) ≤ N(r0) for every r0 − ε < r ≤ r0.
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By (11.15), we have

d

dr

[
log

(
H(r)

rd−1

)]
= 2

N(r)

r
≤ 2N(r0)

r
, (11.16)

and integrating we get

log

(
H(r0)

rd−1
0

)

−log

(
H(r)

rd−1

)
≤ log

( r0

r

)
2N(r0) for every r0−ε < r ≤ r0.

This means that, for every ε > 0, H is bounded from below by a positive constant
on the interval [r0−ε, r0]. In particular,H > 0 on (0, r0]. Thus, we can take ε = r0.

Let now, r ∈ (0, r0/2]. Integrating the inequality (11.16) from r to 2r , we get

log

(
H(2r)

H(r)

)
≤ (d − 1) log 2 + 2 log 2N(r0).

This implies that

H(2r) ≤ 2d−14N(r0)H (r) for every 0 < r ≤ r0

2
.

Integrating once more in r we get

∫

B2r

u2 dx ≤ 2d−14N(r0)

∫

Br

u2 dx for every 0 < r ≤ r0

2
. (11.17)

We next prove a Caccioppoli inequality for u in the ball B2r . Indeed, let φ ∈
C∞

c (Rd) be a cut-off function such that

φ = 1 in Br , φ = 0 on R
d\B2r , 0 ≤ φ ≤ 1 and |∇φ| ≤ 2/r in B2r\Br .

Since, u is harmonic in �u, the following Caccioppoli inequality does hold:

∫

Br

|∇u|2 dx ≤
∫

B2r

|∇(uφ)|2 dx =
∫

B2r

(
u2|∇φ|2 + ∇u · ∇(uφ2)

)
dx

=
∫

B2r

u2|∇φ|2 dx−
∫

B2r

uφ2�udx =
∫

B2r

u2|∇φ|2 dx ≤ 4

r2

∫

B2r

u2 dx.

On the other hand, by Lemma 11.6, there is a dimensional constant Cd > 0 such
that:

∫

Br

u2 dx ≤ Cd r2
( |�u ∩ Br |

|Br |
)2/d ∫

Br

|∇u|2 dx whenever
|�u ∩ Br |

|Br | ≤ 1

2
.



176 11 Regularity of the Free Boundary for Measure Constrained Minimizers

This, together with the Caccioppoli and the doubling inequality (11.17), gives that

∫

Br

u2 dx ≤ Cd

( |�u ∩ Br |
|Br |

)2/d

4N(r0)

∫

Br

u2 dx.

Since,
∫

Br

u2 dx > 0, we get that there is a dimensional constant Cd such that

min

{
1

2
,

1

Cd2N(r0)d

}
≤ |�u ∩ Br |

|Br | for every 0 < r ≤ r0

2
.

In particular, we have a lower density bound for �u at every point of D, which
implies that |D \ �u| = 0 and concludes the proof. ��

11.4 Convergence of the Lagrange Multipliers

In this section we prove that the Lagrange multipliers, associated to the solutions of
variational problems with measure constraint in a fixed connected open set D ⊂ Rd ,
are continuous with respect to variations of the constraint. This fact will be used
several times in the proof of the optimality of the blow-up limits. In the next Lemma,
which comes directly from [46], we will use the notation

δVol (�)[ξ ] :=
∫

�

div ξ dx,

for every Lebesguemeasurable set � ⊂ Rd and every vector field ξ ∈ C∞
c (Rd ;Rd ).

Lemma 11.9 (Convergence of the Lagrange Multipliers) Let D be a connected
bounded open set in Rd and let u ∈ H 1

0 (D) be a non-negative function for
which (11.3) does hold. Let �u be the Lagrange multiplier from (11.4) in D.

Let B ⊂ D be a connected bounded open set such that 0 < m := |�u∩B| < |B|.
Let (mn)n≥1 be a sequence such that lim

n→∞ mn = m and let un ∈ H 1(B) be a

solution (which exists due to Proposition 11.1) to the problem

min
{
F0(v,B) : v ∈ H 1(B), v − u ∈ H 1

0 (B), |�v| = mn

}
. (11.18)
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Then, we have:

(i) for every n, there is a Lagrange multiplier �un > 0 for which

δF0(un,B)[ξ ] + �unδVol (�un)[ξ ] = 0 for every ξ ∈ C∞
c (B;Rd),

(11.19)

(ii) for every n, there is a vector field ξn ∈ C∞
c (B;Rd ) such that

δF0(un,B)[ξn] + �un = 0 and δVol (�un)[ξn] = 1 . (11.20)

(iii) un converges strongly in H 1
0 (D) and pointwise almost everywhere to a function

u∞, which is a solution to the problem

min
{
F0(v,B) : v ∈ H 1(B), v − u ∈ H 1

0 (B), |�v| = m
}
; (11.21)

(iv) the sequence of characteristic functions 1�un
converges to 1�u∞ pointwise

almost everywhere and strongly in L2(D);
(v) lim

n→∞ �un = �u∞ , where �u∞ > 0 is the Lagrange multiplier of u∞ in B, that

is,

δF0(u∞,B)[ξ ] + �u∞δVol (�u∞)[ξ ] = 0 for every ξ ∈ C∞
c (B;Rd ),

(11.22)

(vi) Suppose that B �= D and that there is a connected component C of D \ B such
that

0 < |�u ∩ C| < |C|,

then �u∞ = �u.

Proof The existence of a solution un follows from Proposition 11.1. The existence
of a Lagrange multiplier �un and a vector field ξn ∈ C∞

c (B;Rd) with the
properties (11.20) follows by Proposition 11.2. Let ξ0 ∈ C∞

c (B;Rd ) be a vector
field such that

δF0(u,B)[ξ0] + �u = 0 and δVol (�u)[ξ0] = 1 .

Setting ut := u ◦ (Id + tξ0)
−1, we get that, for t small enough, ut − u ∈ H 1

0 (D).
Moreover, to every n large enough, we can associate a unique tn ∈ R such that

u − utn ∈ H 1
0 (B) and |�un | = mn = |�utn

|.

Thus, we can use utn as a test function in (11.18). Thus, there is a constant C

depending only on u and ξ0 such that, for every n large enough (say n ≥ n0 for
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some n0 ∈ N), we have

F0(un,B) ≤ F0(utn ,B) ≤ C.

Then the sequence (un)n≥1 is uniformly bounded in H 1(B) and so, up to a
subsequence, un converges weakly in H 1, strongly in L2 and pointwise almost
everywhere to a function u∞ ∈ H 1(B) such that u∞ − u ∈ H 1

0 (B). In particular,
the pointwise convergence of un to u∞ implies that

1�u∞ ≤ lim inf1�un
.

Thus, we get that

|�u∞| ≤ lim infmn = m,

and so, the minimality of u implies that

F0(u,B) ≤ F0(u∞,B).

On the other hand, the weak H 1 convergence of un gives that

F0(u∞,B) ≤ lim inf
n→∞ F0(un,B) ≤ lim inf

n→∞ F0(utn ,B) = F0(u,B),

so, we get F0(u∞,B) = F0(u,B). Thus, u∞ is a solution to (11.21) and |�u∞| =
m. Moreover, using again the optimality of un and the fact that utn converges to u,
we obtain

lim sup
n→∞

F0(un,B)≤ lim sup
n→∞

F0(utn ,B)=F0(u,B) ≤ F0(u∞,B)≤ lim inf
n→∞ F0(un,B),

which gives that

lim
n→∞F0(un,B) = F0(u∞,B).

Since un converges strongly in L2(B) and weakly in H 1(B) to u∞, we get that the
convergence of un to u∞ is strong in H 1(B).

We next prove (iv). We will first show that 1�un
convergence strongly in L2(B)

to 1�u∞ .
Indeed, we first notice that, up to a subsequence, there is h ∈ L2(B) such that

1�un
⇀ h weakly in L2(B). On the other hand, the pointwise convergence of un to

u∞ implies that

1�u∞ ≤ lim inf
n→∞ 1�un

.
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Thus, for any non-negative function ϕ ∈ L2(B), the Fatou Lemma implies that

∫

B

1�u∞ ϕ dx ≤
∫

B

lim inf1�un
ϕ dx ≤ lim inf

∫

B

1�un
ϕ dx =

∫

B

hϕ dx ,

which yields 1�u∞ ≤ h. In particular,

‖h‖2
L2(B)

≥ |�u∞| = m.

On the other hand, the weak L2 convergence of 1�un
to h gives that

‖h‖2
L2(B)

≤ lim inf
n→∞ ‖1�un

‖2
L2(B)

= lim
n→∞ mn = m.

As a consequence,

‖h‖2
L2(B)

= lim
n→∞ ‖1�un

‖2
L2(B)

= m,

which implies that 1�un
converges to h strongly in L2(B). Now, since

1�u∞ ≤ h and ‖h‖2
L2(B)

= |�u∞| = m,

we get that h = 1�u∞ , from which we conclude that 1�un
converges to 1�u∞

strongly in L2(B), and so, up to a subsequence 1�un
converges to 1�u∞ pointwise

almost everywhere.

We now prove (v). We first notice that u and u∞ are both solutions of (11.21). By
Proposition 11.2, there is a Lagrange multiplier �∞ := �u∞ > 0 such that (11.22)
does hold. Moreover, by (iii) and (iv), we get that, for every fixed ξ ∈ C∞

c (B;Rd ),

δF0(u∞,B)[ξ ] = lim
n→∞ δF0(un,B)[ξ ]

δVol (�u∞)[ξ ] = lim
n→∞ δVol (�un)[ξ ].

Now, choosing any ξ ∈ C∞
c (B;Rd ) such that

∫

�u∞
div ξ dx �= 0,

and using (11.22) and (11.19) we get that �un converges to �∞.
We prove the last claim (vi). Indeed, since

F0(u,B) = F0(u∞,B) and |�u∞| = |�u ∩ B| = m,
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we get that the function

ũ :=
{

u∞ in B

u in D \ B,

is in H 1(D) and is a solution to the problem

min
{
F0(v,D) : v ∈ H 1(D), v − u ∈ H 1

0 (D), |�v| = |�u|
}
.

In particular, ũ is a critical point of F�∞ in the entire D, that is,

δF0(̃u,D)[ξ ] + �∞δVol (�ũ)[ξ ] = 0 for every ξ ∈ C∞
c (D;Rd ).

On the other hand, in the connected component C, we have that ũ = u and so, there
is a vector field ξ ′

0 ∈ C∞
c (C;Rd) such that δVol (�u)[ξ ′

0] = δVol (�ũ)[ξ ′
0] = 1. This

implies that

�∞ = �∞δVol (�ũ)[ξ ′
0] = −δF0(̃u,D)[ξ ′

0]
= −δF0(u,D)[ξ ′

0] = �uδVol (�u)[ξ ′
0] = �u ,

which concludes the proof. ��

11.5 Almost Optimality of u at Small Scales

Let D ⊂ Rd be a connected bounded open set and u : D → R be a non-negative
function satisfying (11.3). In this section, we will prove the following result, which
is analogous to the results of Briançon [5], Briançon-Lamboley [6], and the more
recent [46], which are all dedicated to different (and technically more involved) free
boundary problems arising in Shape Optimization.

Proposition 11.10 Let D be a connected bounded open set in Rd and let u ∈
H 1(D) be a non-negative function satisfying (11.3). Let � > 0 be the corresponding
Lagrange multiplier, that is, � is such that δF�(u,D) = 0. Let B ⊂ D be a ball
such that:

• 0 < |�u ∩ B| < |B|;
• D \ B is connected:
• 0 < |�u ∩ D \ B| < |D \ B|.
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Then, for every ε > 0, there exists r > 0 such that u satisfies the following optimality
conditions in every Br(x0) ⊂ B:

F�+ε(u,D) ≤ F�+ε(v,D) for every v ∈ H 1(D) such that

⎧
⎨

⎩
v − u ∈ H 1

0 (Br(x0)),

|�u| ≤ |�v |.
(11.23)

F�−ε(u,D) ≤ F�−ε(v,D) for every v ∈ H 1(D) such that

⎧
⎨

⎩
v − u ∈ H 1

0 (Br(x0)),

|�u| ≥ |�v |.
(11.24)

Remark 11.11 An immediate consequence of the inwards (11.24) and the out-
wards (11.23) optimality is that u satisfies the following almost-minimality con-
dition:

F�(u,D) ≤ F�(v,D) + ε|Br | for every v ∈ H 1(D)

such that v − u ∈ H 1
0 (Br(x0)).

In order to prove Proposition 11.10 we will use the contradiction argument of
Briançon [5]. The proof presented here follows step-by-step the exposition from
[46] and uses only the existence of a Lagrange multiplier, variations with respect
to smooth vector fields and elementary variational arguments. Roughly speaking,
the main idea is to replace the localization condition u − v ∈ H 1

0 (Br) in (11.24)
and (11.23) by a bound on the measure of �v , |�v| ≤ |�u| + δ, for which the
passages to the limit are somehow easier. Proposition 11.10 is a direct consequence
of Proposition 11.16

Remark 11.12 We notice that we work in the ball B ⊂ D only because of the fact
that we will use several times the convergence of the Lagrangemultipliers associated
to solutions of auxiliary problems. Indeed, in order to assure the convergence of
these Lagrange multipliers to � (the Lagrange multiplier of the solution u), we
need to work strictly inside the domain D (see Lemma 11.9, claim (vi)).

Definition 11.13 (Upper and Lower Lagrange Multipliers) We fix u, D and B

to be as in Proposition 11.10. We set m := |�u ∩ B|. For any constant δ > 0, we
define the upper Lagrange multiplier μ+(δ) as follows:

μ+(δ) = inf
{
μ ≥ 0 for which (11.25) does hold

}
, where

Fμ(u,B) ≤ Fμ(v,B) for every v ∈ H 1(B) such that

⎧
⎨

⎩
u − v ∈ H 1

0 (B),

m ≤ |�v | ≤ m + δ .

(11.25)
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Analogously, we define the lower Lagrange multiplier μ−(δ):

μ−(δ) = sup
{
μ ≥ 0 for which (11.26) does hold

}
, where

Fμ(u,B) ≤ Fμ(v,B) for every v ∈ H 1(B) such that

⎧
⎨

⎩
u − v ∈ H 1

0 (B),

m − δ ≤ |�v | ≤ m .

(11.26)

Lemma 11.14 Suppose that D is a connected bounded open set in Rd and that
u ∈ H 1(D) is a given non-negative function such that:

(a) u �= 0 and |D \ �u| > 0;
(b) u is stationary for F�, that is,

δF�(u,D)[ξ ] = 0 for every ξ ∈ C∞
c (D;Rd ).

Then, we have the following claims:

(i) Suppose that there are δ > 0 and μ > 0 such that u satisfies (11.25). Then,
� ≤ μ.

(ii) Suppose that there are δ > 0 and μ > 0 such that u satisfies (11.26). Then,
� ≥ μ.

Proof Let us first prove claim (i). By Lemma 11.3 and the hypothesis (a), we get
that there is a vector field ξ ∈ C∞

c (D;Rd ) such that

δVol (�u)[ξ ] = d

dt

∣
∣
∣
t=0

|�ut | = 1,

where ut = u◦ (Id + tξ)−1. Since for t small enough, we have that |�u| ≤ |�ut | ≤
|�u| + δ, the minimality of u gives that

Fμ(u,D) ≤ Fμ(ut ,D).

Thus, taking the derivative at t = 0, we get that

0 ≤ d

dt

∣
∣
∣
t=0

Fμ(ut ,D) = d

dt

∣
∣
∣
t=0

F�(ut ,D) + (μ − �)
d

dt

∣
∣
∣
t=0

|�ut | = μ − �,

which proves (i). The proof of (ii) is analogous. ��
As an immediate corollary, we obtain the following lemma.

Lemma 11.15 (μ− ≤ �u ≤ μ+) Let D be a connected bounded open set in Rd

and u ∈ H 1(D) be a non-negative function such that (11.3) holds. Let m = |�u|
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and �u > 0 be the Lagrange multiplier of u in D, that is,

δF0(u,D)[ξ ] + �uδVol (�u)[ξ ] for every ξ ∈ C∞
c (D;Rd ).

Let B, μ+(δ) and μ−(δ) be as in Definition 11.13. Then, for every δ > 0, we have

μ−(δ) ≤ �u ≤ μ+(δ).

Notice that we still might have μ−(δ) = 0 and μ+(δ) = +∞. In Proposi-
tion 11.16 below we will prove that this cannot occur.

Proposition 11.16 (Convergence of the Upper and the Lower Lagrange Mul-
tipliers) Let D be a connected bounded open set in Rd . Let u ∈ H 1(D) be
a non-negative function satisfying the minimality condition (11.3) in D and let
�u > 0 be the Lagrange multiplier of u in D, given by Proposition 11.2. Let B ⊂ D

be as in Proposition 11.10. Then, we have

lim
δ→0

μ+(δ) = lim
δ→0

μ−(δ) = �u.

Proof We will work only in the ball B. The presence of the larger domain D is only
necessary to assure the convergence of the Lagrange multipliers (see Lemma 11.9)
for the different auxiliary problems that we will use below. We will proceed in three
steps.

Step 1 We will first prove that μ+(δ) < +∞, for every δ > 0. This is equivalent
to prove that there is some μ > 0, for which the minimality condition (11.25) is
satisfied. Assume, by contradiction, that for every n > 0, there exists some function
un ∈ H 1(B) such that

Fn(un,B) < Fn(u,B) , un − u ∈ H 1
0 (B) and m ≤ |�un | ≤ m + δ.

Thus, if vn is a solution of the auxiliary problem

min
{F0(v,B) + n

(|�v| − m
)
+ : v ∈ H 1(B) , v − u ∈ H 1

0 (B), |�v| ≤ m + δ
}
,

(11.27)

then, we have that

F0(vn,B) ≤ F0(vn,B) + n
(|�vn | − m

)
+ ≤ Fn(un,B) + n

(|�un | − m
)
+ (11.28)

< F0(u,B) + n
(|�u| − m

)
+ = F0(u,B).

Thus, by Proposition 11.1 (Step 5 of the proof), we obtain |�vn| > m. Thus, we
may assume

m < |�vn| ≤ m + δ for every n ∈ N .
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Using again (11.28), we obtain

F0(vn,B) + n
(|�vn | − m

)
< F0(u,B),

which, in particular, implies that

|�vn | − m ≤ 1

n
F0(u,B) and lim

n→∞ |�vn| = m.

Now, notice that, setting mn := |�vn |, we have that vn is a solution of

min
{F0(v,B) : v ∈ H 1(B) , v − u ∈ H 1

0 (B), |�v| = mn

}
.

In particular, there is a Lagrange multiplier �vn such that

δF0(vn,B)[ξ ] + �vnδVol (�vn)[ξ ] = 0 for every ξ ∈ C∞
c (B;Rd ) ,

and a vector field ξn ∈ C∞
c (B;Rd) such that

δVol (�vn)[ξn] = 1.

We set vt
n = vn◦(Id+tξn)

−1. Choosing t > 0 small enough and n ∈ N big enough,
we get

vt
n − u ∈ H 1

0 (B) and m < |�vt
n
| < m + 1

n
F0(u,B) ≤ m + δ.

Then, by (11.27), we have

F0(vn,B)+n
(|�vn | − m

) ≤ F0(v
t
n,B) + n

(|�vt
n
| − m

)

= F0(vn,B) + t δF0(vn,B)[ξn] + n
(|�vn | + t δVol (�vn)[ξn] − m

)+ o(t)

= F0(vn,B) − t�vn + n
(|�vn | + t − m

)+ o(t),

which implies n ≤ �vn . On the other hand, Lemma 11.9 implies that

lim
n→∞ �vn = �u < ∞ ,

which is a contradiction. This concludes the proof of Step 1.

Step 2 In this step, we prove that lim
δ→0

μ+(δ) = �u.

Let δn be an infinitesimal decreasing sequence. We will prove that
lim

n→∞ μ+(δn) = �u.
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Fix ε ∈ (0,�u) and set αn to be

0 < αn := μ+(δn) − ε < μ+(δn).

We will show that, for n big enough, αn ≤ �u. Let un ∈ H 1(B) be solution to the
auxiliary problem

min
{
F0(v,B)+αn

(|�v| − m
)
+ : v ∈ H 1(B), v−u ∈ H 1

0 (D), |�v| ≤ m+δn

}
.

(11.29)

We consider two cases:
Case 1 (of Step 2). Suppose that |�un | ≤ m. Then, the optimality of u gives

F0(u,B) ≤ F0(un,B).

On the other hand, the optimality of un gives

F0(u,B) + αn

(|�u| − m
) = F0(u,B) + αn

(|�u| − m
)
+ ≤ F0(un,B) + αn

(|�un | − m
)
+

≤ F0(v,B) + αn

(|�v | − m
)
+ = F0(v,B) + αn

(|�v| − m
)
,

for every v ∈ H 1(B) such that u − v ∈ H 1
0 (B) and m ≤ |�v| ≤ m + δn, which

contradicts the definition of μ+(δn).
Case 2 (of Step 2). Suppose that m < |�un| ≤ m + δn. Notice that, setting mn :=
|�un|, the solution un to (11.29) is also a solution to the problem

min
{
F0(v,B) : v ∈ H 1(B) , v − u ∈ H 1

0 (B) , |�v| = mn

}
.

By Proposition 11.2, there is a Lagrange multiplier �un ≥ 0 such that

δF0(un,B)[ξ ] + �unδVol (�un)[ξ ] = 0 for every ξ ∈ C∞
c (Br ;Rd ) ,

and a vector field ξn ∈ C∞
c (Br ;Rd) such that δVol (�un)[ξn] = 1.

We set ut
n := un ◦(Id+ tξn)

−1. By the minimality of un, for t < 0 small enough,
we have

F0(un,B)+αn

(|�un | − m
) ≤ F0(u

t
n,B) + αn

(|�ut
n
| − m

)

= F0(un,B) + t δF0(un,B)[ξn] + αn

(|�un | + t δVol (�un)[ξn] − m
)+ o(t)

= F0(un,B) − t�un + αn

(|�un | + t − m
)+ o(t),
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from which we deduce that �un ≥ αn. Now, by Lemma 11.9 we get that

lim
n→∞ μ+(δn) = ε + lim

n→∞ αn ≤ ε + lim
n→∞ �un = ε + �u.

Since �u ≤ μ+(δn) and ε > 0 is arbitrary, we get the claim of Step 2.

Step 3 In this last step we will prove that lim
δ→0

μ−(δ) = �u.

It is sufficient to show that, for aby decreasing infinitesimal sequence δn → 0, we
have

�u = lim
n→∞ μ−(δn),

Precisely, we will show that for any fixed constant ε > 0, we have �u − ε ≤
lim

n→∞ μ−(δn).

Let βn := μ−(δn) + ε and un be a solution of the problem

min
{
F0(v,B)+βn

(|�v|−(m−δn)
)
+ : v ∈ H 1(B), v−u ∈ H 1

0 (B), |�v| ≤ m
}
.

We consider three cases:
Case 1 (of Step 3). Suppose that |�un | = m.
By the minimality of u, we have that F0(u,B) ≤ F0(un,B). Now, the minimality
of un, gives that, for every v ∈ H 1(B) such that v − u ∈ H 1

0 (B) and m − δn ≤
|�v| ≤ m, we have

F0(u,B) + βn|�u| ≤ F0(un,B) + βn|�un | ≤ F0(v,B) + βn|�v|,

which contradicts the definition of μ−(δn).
Case 2 (of Step 3). Suppose that |�un | < m − δn.
Then we have

F0(un,B) ≤ F0(un + tϕ,B),

for every ϕ ∈ C∞
c (B) with sufficiently small compact support. This implies that un

is harmonic in B. By the strong maximum principle, we obtain that either un ≡ 0
or un > 0 in B, which is impossible for n large enough.
Case 3 (of Step 3). Suppose that m − δn ≤ |�un| < m.
We set mn := |�un |. Then, un is a solution to the problem

min
{
F0(v,B) : v ∈ H 1(B), v − u ∈ H 1

0 (B), |�v| = mn

}
.
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By Proposition 11.2, there is a Lagrange multiplier �un ≥ 0 such that

δF0(un,B)[ξ ] + �unδVol (�un)[ξ ] = 0 for every ξ ∈ C∞
c (B;Rd ) ,

and a vector field ξn ∈ C∞
c (B;Rd) such that δVol (�un)[ξn] = 1.

We set ut
n := un ◦ (Id + tξn)−1. Let t > 0 be small enough. Then ut

n is such that

ut
n − v ∈ H 1

0 (B) and |�un | = mn ≤ |�ut
n
| = mn + t + o(t) < m .

Thus, by the minimality of un, we get

F0(un,B)+βn

(|�un| − (m − δn)
) ≤ F0(u

t
n,B) + βn

(|�ut
n
| − (m − δn)

)

≤ F0(u
t
n,B) + t δF0(un,B)[ξn]

+ βn

(|�un | + t δVol (�un)[ξn] − (m − δn)
)+ o(t)

= F0(un,B) − �unt + βn

(|�un | + t − (m − δn)
)+ o(t),

which implies that

�un ≤ βn = μ−(δn) + ε.

Finally, by Lemma 11.9, we get

�u = lim
n→∞ �un ≤ lim

n→∞ μ−(δn) + ε,

which concludes the proof. ��
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Chapter 12
An Epiperimetric Inequality Approach
to the Regularity of the One-Phase Free
Boundaries

Throughout this chapter, we will use the notation

W0(u) =
∫

B1

|∇u|2 dx −
∫

∂B1

u2 dHd−1 and W(u) = W0(u) + |{u > 0} ∩ B1|,

where B1 is the unit ball in Rd , d ≥ 2 and u ∈ H 1(B1).
The aim of this chapter is to prove an epiperimetric inequality for the energy W

in dimension two. As a consequence, we will obtain the C1,α regularity of the one-
phase free boundaries in dimension two (see Proposition 12.13). Our main result is
the following.

Theorem 12.1 (Epiperimetric Inequality for the Flat Free Boundaries) There
are constants δ0 > 0 and ε > 0 such that: if c ∈ H 1(∂B1) is a non-negative
function on the boundary of the disk B1 ⊂ R2 and

π − δ0 ≤ H1({c > 0} ∩ ∂B1
) ≤ π + δ0,

then, there exists a (non-negative) function h ∈ H 1(B1) such that h = c on ∂B1 and

W(h) − π

2
≤ (1 − ε)

(
W(z) − π

2

)
, (12.1)

z ∈ H 1(B1) being the one-homogeneous extension of c in B1, that is,

z(x) = |x|c (x/|x|) .

Remark 12.2 On the figures in this section, we will use the following convention:

• is the support �h = {h > 0} of the competitor h;
• is the support �z = {z > 0} of the one-homogeneous function z;
• is the boundary ∂�h;
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• is the boundary ∂�z;
• is the common boundary ∂�h ∩ ∂�z.

In Theorem 12.1 the main assumption on the trace c is that the set �c ⊂ ∂B1
is close to the half-sphere. In [49, Theorem 1] the epiperimetric inequality was
proved under the different assumption that the trace is non-degenerate. In fact,
the epiperimetric inequality (12.1) holds without any assumption on the trace
c : ∂B1 → R or its free boundary ∂�c ⊂ ∂B1. Indeed, in the Appendix, we will
prove the following result, which covers both Theorem 12.1 and [49, Theorem 1].

Theorem 12.3 (Epiperimetric Inequality) There is a constant ε > 0 such that: If
c ∈ H 1(∂B1) is a non-negative function on the boundary of the disk B1 ⊂ R2 then,
there exists a (non-negative) function h ∈ H 1(B1) such that (12.1) holds and h = c

on ∂B1.

Remark 12.4 (The Epiperimetric Inequality in Dimension d ≥ 2) In higher
dimension, the epiperimetric inequality for the one-phase energy is still an open
problem. We expect that it will still be true under the assumption that the spherical
set �c is close to the half-sphere with respect to the Hausdorff distance. Indeed, it is
an immediate consequence from the results in [29] that the epiperimetric inequality
holds when the free boundary �c is a C2,α regular graph (in the sphere) over the
equator.

We stress that in higher dimension the epiperimetric inequality can hold only under
some additional assumption on the distance from the trace to the half-plane solution.
Indeed, if this was not the case (and so, the epiperimetric inequality was true in
dimension d without any assumption on the trace), then the singular set would be
empty in any dimension. This is due to the following remark.

Remark 12.5 (The Epiperimetric Inequality Implies Regularity in Any Dimension)
We claim that if u is a local minimizer of F� in a neighborhood of x0 and

W(ur ,x0) − ωd

2
≤ (1 − ε)

(
W(zr ,x0) − ωd

2

)
, (12.2)

holds, for every r > 0, then x0 is a regular point. This is due to the following facts:

• A point x0 ∈ ∂�u is regular, of and only if, the Lebesgue density of �u at x0 is
precisely equal to 1/2 (see Lemma 9.22).

• There are no points of Lebesgue density smaller than 1/2 (Lemma 9.22).
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• The function r �→ W(ur ,x0) is non-decreasing and the limit

lim
r→0

W(ur ,x0)

is precisely the Lebesgue density of �u at x0 (see Lemma 9.20); in particular

W(ur ,x0) − ωd/2 ≥ 0 for every r ≥ 0.

• Suppose that the epiperimetric inequality (12.2) holds for every r > 0. Then, by
the Weiss formula (Lemma 9.2) we obtain the following bound on the energy

W(ur ,x0) − ωd/2 ≤ Crα ,

for some α > 0 depending on ε (this was proved in (12.28), which is the first
step of the proof of Lemma 12.14). Since W(ur ,x0) − ωd

2 is non-negative, we get
that

lim
r→0

W(ur ,x0) = ωd

2
.

In particular, x0 is a point of Lebesgue density 1/2 and so, it should be a regular
point, as mentioned in the first bullet above.

As a consequence of Remark 12.5 at the singular points of the free boundary (12.2)
cannot hold, which means that in higher dimension the epiperimetric inequality can
only be true under the additional assumption that the trace on ∂B1 is close (in some
sense) to a half-plane solution.

In this chapter, we will prove Theorem 12.1 and we will show that it implies the
regularity of the free boundary (Proposition 12.13). The proof of Theorem 12.1 will
be a consequence of the following two lemmas. The first one (Lemma 12.6) is based
on a PDE argument which does not depend on the geometry of the free boundary;
this lemma is proved in Sect. 12.5 and holds in any dimension d ≥ 2. The second
lemma (Lemma 12.7) reflects the interaction of the free boundary with the Dirichlet
energy; we prove it in Sect. 12.3.3 and the proof strongly uses the fact that we work
in dimension two, even if the main idea can be used also in dimension d ≥ 2.
Precisely, we use the Slicing Lemma (Lemma 12.10) to write the total energy as an
integral of an energy defined on the spheres ∂Br . Then, we prove the epiperimetric
inequality by writing the second order expansion of the spherical energy for sets
which are graphs over the equator (that is, arcs of length close to π).

Lemma 12.6 Let ∂B1 be the unit sphere in dimension d ≥ 2. For every κ > 0,
there are constants ρ ∈ (0, 1), ε ∈ (0, 1) and α > 1, depending only on κ and d

such that:
If ψ ∈ H 1(∂B1) satisfies the inequality

∫

∂B1

|∇θψ|2 dHd−1 ≥ (d − 1 + κ)

∫

∂B1

ψ2 dHd−1,
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then, we have

W0(hρ) ≤ (1 − ε)W0(z) and W(hρ) ≤ (1 − ε)W(z), (12.3)

where in polar coordinates the functions z, hρ : B1 → R are given by

z(r , θ) = rψ(θ) and hρ(r , θ) = (max{r − ρ, 0})α ψ(θ)

(1 − ρ)α
.

Precisely, we can take

ε = ρ =
(

κ

32d2(2κ + 1)

)3
.

Lemma 12.7 (Epiperimetric Inequality for Principal Modes: The Flat Free
Boundary Case) Let B1 be the unit ball in R2. There are constants δ0 > 0 and
ε > 0 such that the following holds.

If the continuous non-negative function c : ∂B1 → R, c ∈ H 1(∂B1), is a multiple
of the first eigenfunction on {c > 0} ⊂ ∂B1 and

π − δ0 ≤ H1({c > 0} ∩ ∂B1) ≤ π + δ0,

then, there exists a (non-negative) function h ∈ H 1(B1) such that h = c on ∂B1 and

W(h) − π

2
≤ (1 − ε)

(
W(z) − π

2

)
,

z ∈ H 1(B1) being the one-homogeneous extension of c in B1. Moreover, if we
assume that the function c is of the form

c(θ) = c1 sin
( πθ

π + δ

)
1(0,π+δ)(θ) for some c1 > 0 and some δ ∈ (−δ0, δ0),

then the one-homogeneous extension is given by z(r , θ) = r c(θ) and the competitor
h can be chosen as (the support of h is illustrated on Fig. 12.1)

h(r , θ) = c1 r sin

(
πθ

π + t (r)

)
1(0,π+t (r))(θ) , where t (r) = (1 − 3(1 − r)ε

)
δ.
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Fig. 12.1 The positivity sets
�h and �z. Here, the trace c

is a multiple of the first
eigenfunction on the arc
(0,π + δ), |δ| < δ0 (δ < 0 on
the left and δ > 0 on the
right); the competitor is
obtained by moving the free
boundary ∂�z towards the
line {x2 = 0}

12.1 Preliminary Results

In this section we prove several preliminary results that we will use in the proof of
Theorem 12.1 (and also in the proof of Theorem 12.3).

This section is organized as follows:

• In Lemmas 12.8 and 12.9 we discuss the scale-invariance and the decomposition
of the energy in orthogonal directions; both these results are implicitly contained
in [49].

• The Slicing Lemma (Lemma 12.10) shows how to disintegrate the energy along
the different spheres ∂Br , 0 < r < 1. This result appeared for the first time
in [29] and was crucial for the analysis of the free boundary around isolated
singularities. We will use it in the proof of Lemma 12.7 (Sect. 12.3) and also in
Sect. 12.2.

We start with the following result, which states that once we have a competitor
for z in B1, then we can rescale it and use it in any ball Bρ (ρ ≤ 1) by attaching it
to z at ∂Bρ .

Lemma 12.8 (Scaling) Suppose that z : B1 → R, z(r , θ) = rc(θ) is a one-
homogeneous function and that h ∈ H 1(B1) is such that h = c = z on ∂B1.
For every ρ ∈ (0, 1), we set

hρ(r , θ) =
{

z(r , θ) if r ∈ [ρ, 1],
ρ h(r/ρ, θ) if r ∈ [0, ρ].

then, we have

W(hρ) − W(z) = ρd
(
W(h) − W(z)

)
.
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Proof We first compute

W0(hρ) − W0(z) =
∫

B1

|∇hρ |2 dx −
∫

B1

|∇z|2 dx =
∫

Bρ

|∇hρ |2 dx −
∫

Bρ

|∇z|2 dx

= ρd

(∫

B1

|∇h|2 dx −
∫

B1

|∇z|2 dx

)
= ρd

(
W0(h) − W0(z)

)
.

On the other hand, for the measure term, we have

|{hρ > 0} ∩ B1| − |{z > 0} ∩ B1| = |{hρ > 0} ∩ Bρ | − |{z > 0} ∩ Bρ |
= ρd

(|{h > 0} ∩ B1| − |{z > 0} ∩ B1|
)
,

which concludes the proof. ��

Lemma 12.9 (Decomposition of the Energy) Suppose that the functions h1, h2 ∈
H 1(B1) are such that, for every r ∈ (0, 1], we have

∫

Sd−1
∇θ h1(r , θ) · ∇θh2(r , θ) dθ =

∫

Sd−1
h1(r , θ)h2(r , θ) dθ = 0.

Then

W0(h1 + h2) = W0(h1) + W0(h2).

Proof The claim follows directly from the definition of W0 and the formula

∫

B1

|∇h|2 dx =
∫ 1

0
rd−1dr

∫

∂B1

(|∂rh|2 + r−2|∇θh|2) dθ ,

which holds for any h ∈ H 1(B1). ��

Lemma 12.10 (Slicing Lemma) Let B1 be the unit ball in R2. Let φ : (0, 1] ×
S1 → R be a function such that φ ∈ H 1((0, 1]×S1). Then, setting φ(r , θ) = φr(θ),
we have

W0(rφr(θ)) =
∫ 1

0
F0(φr) rdr +

∫ 1

0

∫

S1

(
∂rφr(θ)

)2
r3dr ,

and

W(rφr (θ)) =
∫ 1

0
F(φr) rdr +

∫ 1

0

∫

S1

(
∂rφr(θ)

)2
r3dr , (12.4)
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where, for any φ ∈ H 1(S1), we set

F0(φ) =
∫

S1

(|∂θφ|2−φ2) dH1 and F(φ) = F0(φ)+H1
(
{φ > 0} ∩ S

1
)
.

Proof Let φ :]0, 1] × ∂B1 → R. Then,

W0(rφr (θ)) =
∫ 1

0

∫

S1

((
φr + r∂rφr

)2 + (∂θ φr

)2)
dθ rdr −

∫

S1
φ2
1(θ) dθ

=
∫ 1

0

∫

S1

(
φ2

r + r∂r (φ
2
r ) + r2(∂rφr )

2 + (∂θφr

)2)
dθ rdr −

∫

S1
φ2
1 (θ) dθ

Integrating by parts, we get that

∫ 1

0
r2∂r (φ

2
r ) dr = φ2

1 − 2
∫ 1

0
φ2

r rdr ,

which implies that

W0(rφr(θ)) =
∫ 1

0
F0(φr) rdr +

∫ 1

0

∫

S1

(
∂rφr(θ)

)2
r3dr .

In order to prove (12.4), it is sufficient to notice that

|{h > 0} ∩ B1| =
∫ 1

0
H1({φr > 0} ∩ S

1) rdr ,

where h(r , θ) = rφr(θ). ��

Remark 12.11 (The Energy of a One-Homogeneous Function) As an immediate
consequence of Lemma 12.10, we get that if c ∈ H 1(∂B1) and z : B1 → R is
the one homogeneous extension of c in B1, that is, z(r , θ) = rc(θ), then

W0(z) = 1

2
F0(c) and W(z) = 1

2
F(c).
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12.2 Homogeneity Improvement of the Higher Modes: Proof
of Lemma 12.6

Let ρ ∈ (0, 1) be fixed. We will first compute the energy of hρ . For this purpose, we
will use the Slicing Lemma; for every r ∈ [ρ, 1], we set

φr(θ) =
(
max{r − ρ, 0})α

r

ψ(θ)

(1 − ρ)α

and we compute

F0(φr ) = (r − ρ)2α

r2(1 − ρ)2α
F0(ψ) and

∫

S1
|∂rφr |2 dθ =

(
α − 1 + ρ

r

)2 (r − ρ)2α−2

r2(1 − ρ)2α

∫

S1
ψ2 dθ .

Integrating in r , we obtain

∫ 1

ρ

F0(φr ) rd−1dr = F0(ψ)

(1 − ρ)2α

∫ 1

ρ

(r − ρ)2αrd−3dr

≤ F0(ψ)

(1 − ρ)2α

∫ 1

ρ

r2α+d−3dr ≤ 1

2α + d − 2

F0(ψ)

(1 − ρ)2α
.

(12.5)

We now compute

∫ 1

ρ

∫

Sd−1
|∂rφr |2 dθ rd+1dr =

∫ 1

ρ

(
α − 1 + ρ

r

)2 (r − ρ)2α−2

r2(1 − ρ)2α
rd+1dr

∫

Sd−1
ψ2 dθ

≤ 2

(1 − ρ)2α

∫ 1

ρ

(
(α − 1)2 + ρ2

r2

)
r2α+d−3dr

∫

Sd−1
ψ2 dθ .

Integrating in r ∈ [ρ, 1] and using that α ≥ 1 and d ≥ 2, we get

∫ 1

ρ

(
(α − 1)2 + ρ2

r2

)
r2α+d−3dr ≤ (α − 1)2

2α + d − 2
+ ρ2

2α + d − 4

≤ 1

2

(
(α − 1)2 + ρ2

α − 1

)
.
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Together with the inequality

∫

Sd−1
ψ2 dθ ≤ 1

κ
F0(ψ),

which we have by hypothesis, this implies

∫ 1

ρ

∫

Sd−1
|∂rφr |2 dθ rd+1dr ≤ 1

(1 − ρ)2α

(
(α − 1)2 + ρ2

α − 1

)
1

κ
F0(ψ).

(12.6)

Furthermore, it is immediate to check that for every α ≤ 2 and ρ ≤ 1
2 we have

1

(1 − ρ)2α
≤ 1

(1 − ρ)4
≤ 1 + 128ρ and

1

(1 − ρ)2α
≤ 16.

In particular,

(1 − ρ)−2α

2α + d − 2
≤ 1 + 128ρ

2α + d − 2
≤ 1

2α + d − 2
+ 64ρ,

which, together with (12.5) implies:

∫ 1

ρ

F0(φr ) rd−1dr ≤
(

1

2(α − 1) + d
+ 64ρ

)
F0(ψ). (12.7)

Analogously, from (12.6), we deduce

∫ 1

ρ

∫

Sd−1
|∂rφr |2 dθ rd+1dr ≤ 16

κ

(
(α − 1)2 + ρ2

α − 1

)
F0(ψ). (12.8)

We are now in position to estimate the difference W0(hρ) − W0(z). First of all, we
set

δ := α − 1.

Using the identity (see Remark 12.11)

W0(z) = 1

d
F0(ψ),
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and the inequalities (12.7) and (12.8), we estimate

W0(hρ) − W0(z) ≤
(

d

2δ + d
+ 64d ρ + 16d

κ

(
δ2 + ρ2

δ

)
− 1

)
W0(z)

≤
(

−2δ

d
+ 64d ρ + 16d

κ

(
δ2 + ρ2

δ

))
W0(z). (12.9)

We now choose

ρ = δ
3/2 and δ

1/2 = 1

32d2(2 + 1/κ)
.

Substituting in (12.9), we obtain

W0(hρ) − W0(z) ≤
(

−2δ

d
+ 64dδ

3/2 + 32d

κ
δ2
)

W0(z)

≤ δ

(
− 2

d
+ 32d(2 + 1/κ)δ

1/2

)
W0(z) ≤ − δ

d
W0(z).

In particular, the first inequality in (12.3) holds for any ε ≤ δ/d. In order to prove
the second inequality in (12.3), we notice that, by the definition of hρ , we have

∣
∣{hρ > 0} ∩ B1

∣
∣ = (1 − ρ)

∣
∣{z > 0} ∩ B1

∣
∣.

Thus,

W(hρ) − W(z) = W0(hρ) − W0(z) + ∣∣{hρ > 0} ∩ B1
∣
∣− ∣∣{z > 0} ∩ B1

∣
∣

≤ − δ

d
W0(z) − ρ

∣
∣{z > 0} ∩ B1

∣
∣.

Choosing

ε := δ
3/2,

we have that ε ≤ δ/d and so, we obtain

W(hρ) − W(z) ≤ −εW(z),

which concludes the proof of (12.3). ��
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12.3 Epiperimetric Inequality for the Principal Modes: Proof
of Lemma 12.7

We suppose that the spherical set {c > 0} is the arc (0,π + δ), where δ ∈ R (and it
might change sign). We recall that in Lemma 12.7 we assume that |δ| < δ0. Then,
we can write the trace c in the following form

c(θ) = c1φδ(θ) where c1 > 0 and φδ(θ) = sin

(
θπ

π + δ

)
for θ ∈ [0,π + δ].

Next, for every t ∈ R, we define the function φt : S1 → R as

φt(θ) = sin

(
θπ

π + t

)
for θ ∈ [0,π + t] , φt (θ) = 0 for θ /∈ [0,π + t].

Then set

f (t) :=
∫

∂B1

(
|∂θφt (θ)|2 − φ2

t (θ)
)

dθ + H1({φt > 0}) − π

and

g(t) :=
∫

∂B1

|∂tφt (θ)|2 dθ .

We consider the function

t (r) := (1 − 3(1 − r)ε
)
δ,

and define the competitor hδ as

hδ(r , θ) = rφt(r)(θ), (12.10)

which we will use in both Lemmas 12.7 and A.2.
We will show that for ε > 0 and δ > 0 small enough, we have

W(c1hδ) − π

2
≤ (1 − ε)

(
W(c1zδ) − π

2

)
, (12.11)

where zδ is the one-homogeneous extension of φδ in B1

zδ(r , θ) = rφδ(θ). (12.12)
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12.3.1 Reduction to the Case c1 = 1

Let hδ and zδ be defined by (12.10) and (12.12). We claim that if, for some δ > 0
and ε > 0, we have

W(hδ) − π

2
≤ (1 − ε)

(
W(zδ) − π

2

)
, (12.13)

then (12.11) does hold for every c1 > 0.
Indeed, using the homogeneity of W0, we get that

W0(c1zδ) = c21W0(zδ) and W0(c1hδ) = c21W0(hδ).

On the other hand, we have that

∣
∣{u > 0} ∩ B1

∣
∣ =

∫ 1

0
H1({u > 0} ∩ ∂Br

)
dr ,

for every (continuous) function u : B1 → R. Thus,

∣
∣{zδ > 0} ∩ B1

∣
∣ =

∫ 1

0
H1({φδ > 0} ∩ ∂Br

)
dr =

∫ 1

0
H1({φδ > 0} ∩ ∂B1

)
rdr

= 1

2
(π + δ).

The analogous computation for the competitor hδ gives

∣
∣{hδ > 0} ∩ B1

∣
∣ =

∫ 1

0
H1({φt(r) > 0} ∩ ∂B1

)
rdr =

∫ 1

0
(π + t (r)) rdr .

Putting together these computations, we obtain

(
W(c1hδ) − π

2

)
− (1 − ε)

(
W(c1zδ) − π

2

)
= c21

[(
W(hδ) − π

2

)
− (1 − ε)

(
W(zδ) − π

2

)]

+ (1 − c21)

(∫ 1

0
t (r)r dr − (1 − ε)

∫ 1

0
δr dr

)

= c21

[(
W(hδ) − π

2

)
− (1 − ε)

(
W(zδ) − π

2

)]
≤ 0,

where we used that the function t (r) is chosen in such a way that, for any δ and ε,
we have

∫ 1

0

(
t (r) − (1 − ε)δ

)
r dr = δ

∫ 1

0

(
(1 − 3(1 − r)ε) − (1 − ε)

)
r dr

= δε

∫ 1

0

(
3r2 − 2r

)
dr = 0.



12.3 Epiperimetric Inequality for the Principal Modes: Proof of Lemma 12.7 201

The rest of Sect. 12.3 is dedicated to the proof of (12.13).

12.3.2 An Estimate on the Energy Gain

The Slicing Lemma (Lemma 12.10) implies that

W(hδ) =
∫ 1

0
f (t (r)) r dr+

∫ 1

0
|t ′(r)|2g(t (r)) r3 dr and W(zδ) = 1

2
f (δ).

We first notice that the error term
∫ 1

0
|t ′(r)|2g(t (r)) r3dr is lower order. Precisely,

we have

∫ 1

0
|t ′(r)|2g(t (r)) r3 dr = 9ε2δ2

∫ 1

0
(1 − r)2g(t (r)) r3 dr ≤ Cε2δ2,

where C is a universal numerical constant. Thus, we get

(
W(hδ) − π

2

)
− (1 − ε)

(
W(zδ) − π

2

)
≤ F(δ) + Cε2δ2, (12.14)

where we have set

F(t) :=
∫ 1

0

(
f
(
(1 − 3(1 − r)ε)t

)− (1 − ε)f (t)
)
r dr . (12.15)

We will show that F is always negative in a neighborhoods of t = 0. First of all, we
notice that the function f can be explicitly computed.

12.3.3 Computation of f

We now compute

f (t) =
∫ π+t

0

(( π

π + t

)2
cos2

( θπ

π + t

)
− sin2

( θπ

π + t

))
dθ + t

= π + t

π

∫ π

0

(( π

π + t

)2
cos2 θ − sin2 θ

)
dθ + t

= π + t

2

(( π

π + t

)2 − 1
)

+ t

= π

(
1 + t/π

2

(( 1

1 + t/π

)2 − 1
)

+ t/π

)
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= π

2

(
1

1 + X
− 1 + X

)
= π

2

X2

1 + X
= π

2

(
X2 − X3

1 + X

)
,

where we set for simplicity X = t/π. In particular, this implies that

f (0) = f ′(0) = 0 and f ′′(0) = 1

π
. (12.16)

Moreover, we have that

∣
∣
∣
∣f (t) − t2

2π

∣
∣
∣
∣ ≤

|t|3
π2 for every − 1/2 ≤ t ≤ 1/2 . (12.17)

12.3.4 Conclusion of the Proof of Lemma 12.7

Notice that, by using (12.16) and taking the derivative under the sign of the integral,
we get that

F(0) = F ′(0) = 0.

Moreover, for the second derivative, we obtain

F ′′(0) = f ′′(0)
∫ 1

0

((
1 − 3(1 − r)ε

)2 − (1 − ε)
)
r dr

= f ′′(0)
∫ 1

0

(
− 6(1 − r)ε + 9(1 − r)2ε2 + ε

)
r dr

= f ′′(0)
∫ 1

0

(
− 5rε + 6r2ε + 9(1 − r)2ε2r

)
dr = −Cεf

′′(0),

where we have set

Cε = ε

2

(
1 − 3ε

2

)
.

Thus, the second order Taylor expansion of F in zero is given by

F(0) + F ′(0)t + 1

2
F ′′(0)t2 = − Cε

2π
t2.

We will next show that
∣
∣
∣
∣F(t) + Cε

2π
t2
∣
∣
∣
∣ ≤ |t|3 for every − 1/2 ≤ t ≤ 1/2 . (12.18)
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Indeed, using (12.17) we can compute

∣
∣∣
∣F(t) + Cε

2π
t2
∣
∣∣
∣ ≤

∣
∣∣
∣

∫ 1

0

(
f
(
(1 − 3(1 − r)ε)t

)− t2

2
f ′′(0)

(
1 − 3(1 − r)ε

)2)
r dr

∣
∣∣
∣

+ (1 − ε)

∣
∣
∣∣

∫ 1

0

(
f (t) − t2

2
f ′′(0)

)
r dr

∣
∣
∣∣

≤ |t|3
π2

(∫ 1

0

(
1 − 3(1 − r)ε

)3
r dr + (1 − ε)

∫ 1

0
r dr

)
≤ |t|3

π2 ,

which gives (12.18).
Now, using (12.14), we estimate

(
W(hδ) − π

2

)
− (1 − ε)

(
W(zδ) − π

2

)
≤ F(δ) + Cε2δ2

≤ − 1

2π

(
1 − 3ε

2

) ε

2
δ2 + |δ|3 + Cε2δ2

≤
(

− 1

2π

(
1 − 3ε

2

)ε

2
+ δ0 + Cε2

)
δ2,

where C is the numerical constant from (12.14) and we recall that, by hypothesis,
|δ| ≤ δ0.

We now choose ε and δ0.

We set ε = 16πδ0. In particular, if 0 < δ0 ≤ 1

48π
, then 1 − 3ε

2
≥ 1

2
, and so

− 1

2π

(
1 − 3ε

2

)ε

2
+ δ0 + Cε2 ≤ −2δ0 + δ0 + Cε2 ≤ −δ0 + 256π2Cδ20,

which is negative, whenever δ0 ≤ 1

256π2C
. This means that in the end, choosing

δ0 = min

{
1

48π
,

1

256π2C

}
and ε = 16πδ0,

(12.13) holds for every δ such that |δ| ≤ δ0. This concludes the proof of
Lemma 12.7. ��
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12.4 Proof of Theorem 12.1

Since c ∈ H 1(∂B1), we have that c is continuous and so, the set {c > 0} is a
countable union of disjoint intervals (arcs), that is,

{c > 0} =
⋃

j≥1

Ij

where, by hypothesis, we have

π − δ0 ≤
∑

j≥1

|Ij | ≤ π + δ0,

where |Ij | = H1(Ij ) denotes the length of the interval Ij . Now, we consider two
cases:

Case 1. There is one interval, say I1, of length |I1| ≥ π − δ0. See Fig. 12.2.
Case 2. All the intervals are shorter than π − δ0, that is, |Ij | ≤ π − δ0, for every

j ≥ 1. See Fig. 12.3.

We first notice that if φ ∈ H 1
0 (Ij ), then

∫

Ij

|∇θφ|2 dθ ≥ π2

|Ij |2
∫

Ij

φ2 dθ .

In particular, if |Ij | ≤ π − δ0, then

∫

Ij

|∇θφ|2 dθ ≥
(
1 + δ0

π

)∫

Ij

φ2 dθ .

Thus, if we are in Case 2, then the epiperimetric inequality is an immediate
consequence of Lemma 12.6 with κ = δ0/π.

Fig. 12.2 The supports of
the one homogeneous
extension z (in red) and the
competitor h (in blue); the
trace c falls in Case 1; the
length of I1 is smaller than π
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Fig. 12.3 The supports of the
one homogeneous extension z

(in red) and the competitor h

(in blue) in Case 2

Suppose that we are in Case 1. Let {φj }j≥1 be a complete orthonormal system
of eigenfunctions on the interval I1. For every j ≥ 1, we set cj to be the Fourier
coefficient

cj :=
∫

∂B1

c(θ)φj (θ) dθ .

Then, we can decompose the trace c as

c(θ) = c1φ1(θ) + ψ1(θ) + ψ2(θ),

where

ψ1(θ) =
∞∑

j=2

cjφj (θ),

and ψ2 is the restriction of c on the set
⋃

j≥2

Ij . We first claim that, for i = 1, 2, we

have
∫

S1
|∇θψi |2 dθ ≥ (1 + κ)

∫

S1
ψ2

i dθ , (12.19)

where κ > 0 is a constant depending only on δ0. Indeed, since ψ2 is supported on⋃

j≥2

Ij and since |Ij | ≤ 2δ0, for j ≥ 2, we have that

∫

S1
|∇θψ2|2 dθ ≥ π2

4δ20

∫

S1
ψ2
2 dθ . (12.20)
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On the other hand, ψ1 contains only higher modes on the interval I1. Thus,
∫

I1
|∇θψ1|2 dθ ≥ 4π2

(π + δ0)2

∫

I1
ψ2
1 dθ . (12.21)

Now, choosing δ0 small enough (for instance, δ0 ≤ π/3), (12.20) and (12.21)
imply (12.19). Let now ρ > 0 and εψ > 0 be the constants from Lemma 12.6
corresponding to the constant κ from (12.19). Let hψ1 and hψ2 be the competitors
from Lemma 12.6 associated to the traces ψ1 and ψ2, respectively. Thus, we have

W0(hψ1) ≤ (1−εψ)W0(zψ1) and W(hψ2 ) ≤ (1−εψ)W(zψ2), (12.22)

where zψi (r , θ) := zψi(θ).
Let h̃ be the competitor from Lemma 12.7, associated to the trace c1φ1, and let

z̃(r , θ) := rc1φ1(θ).

We set

h̃ρ(r , θ) =
{

z̃(r , θ) if r ∈ [ρ, 1],
ρ h̃(r/ρ, θ) if r ∈ [0, ρ].

Thus, Lemmas 12.7 and 2.3 imply that

W(h̃ρ) − π

2
≤ (1 − ρd ε̃)

(
W(z̃) − π

2

)
, (12.23)

ε̃ being the constant from Lemma 12.7. We now define the competitor h : B1 → R

as:

• h = z if W(z) ≤ π/2, where z = z̃ + zψ1 + zψ2 is the 1-homogeneous extension
of c;

• h = z̃ + hψ1 + hψ2 if W(z) > π/2, but W(z̃) ≤ π/2;
• h = h̃ + hψ1 + hψ2 if W(z) > π/2 and W(z̃) > π/2.

The first case is trivial and the second one follows directly by (12.22). We will prove
the epiperimetric inequality in the most interesting third case. We first notice that
the decomposition lemma (Lemma 12.9) implies that

W(z) = W(z̃) + W0(zψ1) + W(zψ1),

and

W(h) = W(h̃ρ) + W0(hψ1) + W(hψ1 ),
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where in the second decomposition, we use the fact that hψ1 = hψ2 = 0 in Bρ and
that h̃ = z̃ outside Bρ . Now, setting

ε = min{ρd ε̃, εψ},

the epiperimetric inequality (12.1) follows by (12.22) and (12.23). ��

12.5 Epiperimetric Inequality and Regularity of the Free
Boundary

In this section we will show how the epiperimetric inequality (12.1) implies theC1,α

regularity of the free boundary. The main result of this section is Proposition 12.13,
which we prove under the following assumption.

Condition 12.12 (Epiperimetric Inequality in Dimension d ≥ 2) We say that the
epiperimetric inequality holds in dimension d if there are constants δd > 0 and
εd > 0 such that, for every non-negative one-homogeneous function z ∈ H 1(B1),
which is δd -flat in the ball B1 in some direction ν ∈ ∂B1, that is

(x · ν − δd)+ ≤ z(x) ≤ (x · ν + δd)+ for every x ∈ B1,

there exists a non-negative function h : B1 → R such that z = h on ∂B1 and

W(h) − ωd

2
≤ (1 − εd)

(
W(z) − ωd

2

)
. (12.24)

Proposition 12.13 (ε-Regularity via Epiperimetric Inequality) Suppose that the
epiperimetric inequality holds in dimension d (that is, Condition 12.12 holds). Then,
there is a constant ε > 0 such that if u : B1 → R is a non-negative minimizer of F1
in B1 and is ε-flat in B1 in some direction ν ∈ ∂B1

(x · ν − ε)+ ≤ u(x) ≤ (x · ν + ε)+ for every x ∈ B1,

then the free boundary ∂�u is C1,α regular in B1/2.

Proof The claim is a consequence of Lemma 12.18, Lemma 12.14 and the results
of the previous sections. By Condition 12.12 and Lemma 12.18, we have that the
epiperimetric inequality (12.24) holds whenever

‖ur − hν‖L2(B2\B1)

is small enough for some half-plane solution hν .
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Using this, together with the Weiss’ monotonicity formula (Lemma 9.2), we get
that the energy

E(u) := W(u) − ωd

2

satisfies the hypotheses of Lemma 12.14. Thus, we obtain the uniqueness of the
blow-up limit and the decay of the blow-up sequences at every point of the free
boundary in B1/2, that is, for every x0 ∈ B1/2, there is a function ux0 : R

d → R such
that

ux0 = lim
r→0

ur ,x0 and ‖ur ,x0 − ux0‖L2(∂B1)
= 0.

Moreover, ux0 is a global minimizer of F1 in Rd (Proposition 6.2) and is one-
homogeneous (Proposition 9.12). Using again Lemma 12.14 (see the energy-decay
estimate (12.28) in the first step of the proof), we get that

lim
r→0

(
W(ur ,x0) − ωd

2

)
= 0.

Thus, the strong convergence of the blow-up sequence ur ,x0 (Proposition 6.2)
implies that

ωd

2
= lim

r→0
W(ur ,x0) = W(ux0).

By Lemma 9.22, we get that ux0 is a half-plane solution. Thus, by Proposition 8.6,
we get that the free boundary is a C1,α regular in B1/2. ��

The idea that a purely variational inequality as (12.1) encodes the local behavior
of the free boundary goes back to Reifenberg [45] who proved the regularity of
the area-minimizing surfaces via an epiperimetric inequality for the area functional.
Weiss was the first to prove an epiperimetric inequality in the context of a free
boundary problem; in [53] he proved such an inequality for the obstacle problem
and recovered the C1,α regularity of the (regular part of the) free boundary in any
dimension, which was first proved by Caffarelli [11]. In [49], together with Luca
Spolaor, we proved for the first time an epiperimetric inequality for the one-phase
problem; in this case the interaction between the geometry of the free boundary
and the Dirichlet energy functional is very strong and induced us to introduce the
different constructive approach, which was the core of the previous section. In all
these different contexts, once we have the epiperimetric inequality, we can obtain
the regularity of the free boundary essentially by the same argument that we will
describe in this section. The key result of this subsection is Lemma 12.14, which we
attribute to Reifenberg, who was also the first to relate the variational epiperimetric
inequality to the regularity of the local behavior of the free boundary (or area-
minimizing surface).
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Vocabulary and Notations We recall that, for any u : B1 → R and r ≤ 1, we use
the notation ur to indicate the one-homogeneous rescaling of u

ur(x) := 1

r
u(rx).

Then, if E : H 1(B1) → R is a given energy (for instance, E(u) = W1(u) − ωd

2
),

we will use the following terminology:

• By variation of the energy we mean the variation, with respect to r , of the
energy E of the rescaling ur . In other words, the variation of the energy is simply

∂

∂r
E(ur ).

• The energy deficit of a function v : B1 → R is the difference

E(v) − E(u),

where u : B1 → R is a minimizer of E among all functions such that u = v on
∂B1.

• The deviation of a function u : B1 → R (from being one-homogeneous) is

D(u) :=
∫

∂B1

|x · ∇u(x) − u(x)|2 dHd−1(x).

We notice that a function

u ∈ H 1(B1) is one-homogeneous

⇔ D(ur ) = 0 for almost-every r ∈ (0, 1).

Lemma 12.14 (Reifenberg [45]) Suppose that the function u ∈ H 1(B1) and the
energy functional E : H 1(B1) → R are such that:

(i) Minimality. ur ∈ H 1(B1) minimizes E in B1, for every 0 < r ≤ 1, that is,

E(ur) ≤ E(v) for every v ∈ H 1(B1), v = ur on ∂B1.

(ii) The variation of the energy controls the deviation. The function r �→ E(ur )

is non-negative, differentiable and there is a constant C2 > 0 such that

∂

∂r
E(ur ) ≥ C2

r
D(ur ) for every 0 < r < 1,
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where D is given by

D(u) :=
∫

∂B1

|x · ∇u(x) − u(x)|2 dHd−1(x).

(iii) The variation of the energy controls the energy deficit of the homogeneous
extension. There is a constant C3 > 0 such that

∂

∂r
E(ur ) ≥ C3

r

(E(zr ) − E(ur )
)

for every 0 < r < 1,

where zr : B1 → R is the one-homogeneous extension of the trace ur |∂B1 , that
is,

zr(x) = |x|ur(x/|x|).

(iv) Epiperimetric inequality. There is a one-homogeneous function b : Rd → R

such that, if ur is close to b in B2 \ B1, then an epiperimetric inequality holds
in B1. Precisely, there are constants ε > 0 and δ4 > 0 such that:

For every r ∈ (0, 1/2] satisfying

‖ur − b‖L2(B2\B1)
≤ δ4 , (12.25)

there is a function hr ∈ H 1(B1) such that hr = ur = zr on ∂B1 and

E(hr ) ≤ (1 − ε
)E(zr ). (12.26)

Under the hypotheses (i), (ii), (iii) and (iv), there is δ > 0 such that, if u satisfies

√
E(u1) + ‖u1 − b‖L2(B1\B1/8)

≤ δ

then there is a unique u0 ∈ H 1(B1) such that

‖ur − u0‖L2(∂B1)
≤ Crγ for every 0 < r ≤ 1/2, (12.27)

where the constants γ and C can be chosen as

γ = 1

2
εC3 and C = δ4.

Remark 12.15 If the epiperimetric inequality (12.26) holds without the closeness
assumption (12.25), then the Step 4 of the proof of Lemma 12.14 can be omitted.
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Remark 12.16 The energy to which we will apply Lemma 12.14 is the Weiss’
boundary adjusted energy

E(u) = W1(u) =
∫

B1

|∇u|2 dx −
∫

∂B1

u2 dHd−1 + |{u > 0} ∩ B1|.

In this case, both (ii) and (iii) are implied by the Weiss’ formula (Lemma 9.2).

Remark 12.17 In our case, the function b from assumption (iv) is the half-plane
solution b(x) = (x · ν)+ for some ν ∈ ∂B1. Notice, that this does not mean that the
blow-up limit u0 of ur is equal to b. In fact, it may happen that the blow-up limit
is another half-plane solution b(x) = (x · ν̃)+, with ν̃, which is close to ν. More
generally, this lemma can be applied to situations in which u0 is not just a rotation
of b, but is a completely different function. This happens for instance at isolated
singularities in higher dimension (see [29]).

Proof of Lemma 12.14 Let now 0 ≤ ρ ≤ 1/2 be the smallest non-negative number
such that

‖ur − b‖L2(B2\B1)
< δ4 for every r ∈ (ρ, 1/2],

and so, we can apply the epiperimetric inequality (12.26) for every ur with r ∈
(ρ, 1/2]. Notice that, since b is 1-homogeneous, a simple change of variables gives
that

‖ur − b‖2
L2(B2\B1)

= r−(d+2)‖u − b‖2
L2(B2r\Br)

.

Thus, by choosing δ < 4d+2δ4, we get that

‖ur − b‖L2(B2\B1)
= r− d+2

2 ‖u − b‖L2(B2r\Br)
≤ 4d+2‖u − b‖L2(B1\B1/8)

,

for every 1/8 ≤ r ≤ 1/2. Thus, ρ ≤ 1/8.
We divide the proof in several steps.

Step 1: The Epiperimetric Inequality Implies the Decay of the Energy
Let r ∈ (ρ, 1/2]. By (iii), (iv) and the minimality of ur (assumption (i)), we have

∂

∂r
E(ur) ≥ C3

r

(E(zr ) − E(ur )
)

≥ C3

r

(E(hr ) + ε E(zr ) − E(ur )
) ≥ εC3

r
E(ur ).
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Setting γ = 1

2
εC3, we get that

∂

∂r

(E(ur )

r2γ

)
≥ 0,

and so,

E(ur ) ≤ 4γ E(u1/2) r2γ for every r ∈ (ρ, 1/2]. (12.28)

Step 2: The Energy Controls the Deviation We set

e(r) = E(ur ) and f (r) = D(ur ).

By (ii), we get that

C2

r1+γ
f (r) ≤ e′(r)

rγ
= ∂

∂r

(
e(r)

rγ

)
+ γ

e(r)

r1+γ
≤ ∂

∂r

(
e(r)

rγ

)
+ γ 4γ e(1/2) r2γ−1−γ ,

which implies that for every ρ < r1 < r2 ≤ 1/2, we have the estimate

C2

∫ r2

r1

f (r)

r1+γ
dr ≤ e(r2)

r
γ

2

− e(r1)

r
γ

1

+ 4γ e(1/2)
(
r
γ

2 − r
γ

1

)

≤ e(r2)

r
γ

2

+ 4γ e(1/2) r
γ

2 ≤ 2 4γ e(1/2) r
γ

2 .

Step 3: The Deviation Controls the Oscillation of the Blow-up Sequence ur

Let x ∈ ∂B1 be fixed. Then, we have

∂

∂r

(
ur(x)

) = ∂

∂r

(
u(rx)

r

)
= x · ∇u(rx)

r
− u(rx)

r2
= 1

r

(
x · ∇ur(x) − ur(x)

)
.

Integrating in r , we get that, for every 0 < r1 < r2 ≤ 1,

|ur2(x) − ur1(x)| ≤
∫ r2

r1

1

r

∣
∣x · ∇ur(x) − ur(x)

∣
∣ dr .

Integrating in x ∈ ∂B1, and taking ρ < r1 < r2 ≤ 1/2, we obtain

∫

∂B1

∣∣ur2 − ur1

∣∣2 d Hd−1 ≤
∫

∂B1

(∫ r2

r1

1

r
|x · ∇ur − ur | dr

)2

dHd−1

≤
∫

∂B1

(∫ r2

r1

rγ −1 dt

)(∫ r2

r1

r−1−γ |x · ∇ur − ur |2 dr

)
dHd−1
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= 1

γ

(
r
γ

2 − r
γ

1

) (∫ r2

r1

r−1−γ f (r) dr

)

≤ 1

γ
r
γ

2
1

C2
2 4γ e(1/2) r

γ

2 ≤ 8 e(1/2)

γC2
r
2γ
2 . (12.29)

Step 4: The Blow-up Sequence Remains Close to b

Taking r2 ∈ (1/4, 1/2) and r1 = r ∈ (ρ, r2) in (12.29), we get

‖ur − b‖L2(∂B1)
≤ ‖ur − ur2‖L2(∂B1)

+ ‖ur2 − b‖L2(∂B1)
≤
√
8 e(1/2)

γ C2
+ ‖ur2 − b‖L2(∂B1)

.

Now, since

∫

B1/2\B1/4

|u − b|2 dx =
∫ 1/2

1/4

∫

∂Bt

|u − b|2 dHd−1 dt

=
∫ 1/2

1/4

td+1‖ut − b‖2
L2(∂B1)

dt ≥ 4−(d+1)
∫ 1/2

1/4

‖ut − b‖2
L2(∂B1)

dt ,

we can choose r2 ∈ (1/4, 1/2) such that

4d+1
∫

B1/2\B1/4

|u − b|2 dx ≥ ‖ur2 − b‖2
L2(∂B1)

.

On the other hand, taking r1 = r ∈ (ρ, r2/2), we obtain

∫

B2\B1

|ur − b|2 dx =
∫ 2

1

∫

∂Bt

|ur − b|2 dHd−1 dt =
∫ 2

1
td+1‖urt − b‖2

L2(∂B1)
dt

≤ 2d+1
∫ 2

1
‖urt − b‖2

L2(∂B1)
dt

≤ 2d+2

(√
8 e(1/2)

γC2
+ ‖ur2 − b‖L2(∂B1)

)2

≤ 2d+2

(√
8 e(1/2)

γC2
+ 2d+1‖u − b‖L2(B1/2\B1/4)

)2
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This implies that if u = u1 is such that

2d+2

(√
8 e(1/2)

γC2
+ 2d+1‖u − b‖L2(B1/2\B1/4)

)

< δ4 ,

then ρ = 0, that is, the epiperimetric inequality (12.26) can be applied to every
r ∈ (0, 1].

Step 5: Conclusion As a consequence of the previous step, the decay esti-
mate (12.29) holds on the whole interval (0, 1]:

‖ur2 − ur1‖L2(∂B1)
≤
√
8 e(1)

γC2
r
γ
2 for every 0 < r1 < r2 ≤ 1/2. (12.30)

Thus, there is u0 ∈ L2(∂B1), which is the strong L2(∂B1)-limit of the blow-up
sequence ur

lim
r→0

ur = u0.

Finally, taking r2 = r ∈ (0, 1) and passing to the limit as r1 → 0 in (12.30), we
obtain (12.27). This concludes the proof.

��
In order to prove Proposition 12.13 under the Condition 12.12 we will need the

following lemma.

Lemma 12.18 For every ε > 0 there is δ > 0 such that the following holds.
If u : B2 → R is a (non-negative) minimizer of F1 in B2 satisfying

‖u − hν‖L2(B2\B1)
≤ δ for some ν ∈ ∂B1,

where hν is the half-plane solution hν(x) = (x · ν)+,
then u is ε-flat in the direction ν in the ball B1, that is,

(x · ν − ε)+ ≤ u(x) ≤ (x · ν + ε)+ for every x ∈ B1. (12.31)

Proof We will first prove that there is ε > 0 such that u is ε-flat on ∂B3/2, that is,

(x · ν − ε)+ ≤ u(x) ≤ (x · ν + ε)+ for every x ∈ ∂B3/2. (12.32)

From this, we will deduce that u is ε-flat in B1.
In order to prove (12.32), we start by noticing that that, since u minimizes F1

in B2, it is L-Lipschitz continuous in B7/4, for some L ≥ 1 depending only on the
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dimension (see Theorem 3.1). Then, also the function

uρ − hν : B7/4 → R

is (2L)-Lipschitz continuous. Thus, there is a dimensional constant Cd such that

‖uρ − hν‖L∞(B7/4\B5/4)
≤ CdL

d
d+2 ‖uρ − hν‖

2
d+2

L2(B7/4\B5/4)
≤ Cd δ

2
d+2 .

We now choose δ > 0 such that

Cd δ
2

d+2 ≤ ε/2. (12.33)

Thus,

‖uρ − hν‖L∞(B7/4\B5/4)
≤ ε/2. (12.34)

Now, using (12.34), we obtain the estimate from below

(x · ν − ε)+ ≤ u(x) for every x ∈ B7/4 \ B5/4,

while from above we only have

u(x) ≤ (x · ν + ε)+ for every x ∈ {x · ν ≥ −ε/2} ∩ (B7/4 \ B5/4

)
.

Indeed, if x · ν ≥ −ε/2, then

u(x) ≤ ε/2+hν(x) = ε/2+(x·ν)+ ≤
{

(x · ν + ε)+ if x · ν ≥ 0,

ε/2 ≤ (x · ν + ε)+ if 0 ≥ x · ν ≥ −ε/2.

Thus, in order to prove that (12.32) it is sufficient to show that

u = 0 on the set {x · ν < −ε/2} ∩ ∂B3/2. (12.35)

On the other hand, u is also non-degenerate in the annulus A := B7/4 \ B5/4, that is,
there is a dimensional constant 0 < κ < 1 such that (see Proposition 4.1)

x0 ∈ A ∩ �u ⇒ ‖u‖L∞(Br (x0)) ≥ κr for every r ≤ 1/4.

Suppose by absurd that there is a point

x0 ∈ �u ∩ {x · ν < −ε/2} ∩ ∂B3/2.
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Then, taking r = ε/2, we get that there is

y0 ∈ Br(x0) ⊂ {x · ν < 0} ∩ B7/4 \ B5/4

such that

∣∣u(y0) − hν(x0)
∣∣ = u(y0) ≥ 1

2
κε.

If we choose δ such that

Cd δ
2

d+2 ≤ 1

2
κε, (12.36)

then we reach a contradiction. Notice that, since κ < 1, (12.36) implies (12.33).
This concludes the proof of (12.32). The conclusion now follows by Proposi-

tion 12.19. ��

12.6 Comparison with Half-Plane Solutions

In this subsection, we prove the following result, which we use in the proof of
Lemma 12.18; but is also of general interest.

Proposition 12.19 Let D ⊂ Rd be a bounded open set and let u : D → R be a
non-negative continuous function and a minimizer of the functional F� in D. Let
c ∈ R be a constant, ν ∈ Rd be a unit vector and

h(x) = √
�
(
x · ν + c

)
+

be a half-plane solution. Then, the following claims do hold.

(i) If u ≤ h on ∂D, then u ≤ h in D.
(ii) If u ≥ h on ∂D, then u ≥ h in D.

Remark 12.20 Up to replacing u and h by �−1/2u and �−1/2h (which are minimiz-
ers of F1 in D), we may assume that � = 1.

We will give two different proofs to Proposition 12.19. The first one is more natural,
but is based on the notion of viscosity solution and so it requires the results from
Sect. 7.1. The second proof is direct and is based on a purely variational argument
in the spirit of Lemma 2.13.
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Proof I of Proposition 12.19 By Proposition 7.1, u is a viscosity solution (see
Definition 7.6) of

�u = 0 in �u ∩ D, |∇u| = 1 on ∂�u ∩ D.

The conclusion now follows by Lemma 12.21 bellow. ��
Proof II of Proposition 12.19 We only prove the first claim, the proof of the second
one being analogous. For every t > 0, consider the half-plane solution

ht (x) = (x · ν + c + t)+.

Then, for every x ∈ ∂D ∩ �u, we have that h(x) ≥ u(x) > 0 and so,

u(x) ≤ h(x) ≤ ht (x) − t .

Thus, we can apply Lemma 12.22 to u and ht , obtaining that u ≤ ht in D. Since t

is arbitrary, we obtain claim (i). ��

Lemma 12.21 (Comparison of a Viscosity and a Half-Plane Solution) Let D be
a bounded open set in Rd and let u : D → R be a non-negative continuous function
and a viscosity solution (see Definition 7.6) to

�u = 0 in �u ∩ D, |∇u| = 1 on ∂�u ∩ D.

Let c ∈ R be a constant, ν ∈ Rd be a unit vector and h(x) = (
x · ν + c

)
+ be a

half-plane solution. Then, the following claims do hold.

(i) If u ≥ h on ∂D, then u ≥ h in D.
(ii) If u ≤ h on ∂D, then u ≤ h in D.

Proof We first prove (i). Let M = ‖h‖L∞(D).
For any t > 0, we define the real function ft : R → R as

ft (s) = (1 + t)max{s, 0} + t
(
max{s, 0})2,

for every s ∈ R. Then, it is immediate to check that the function

vt (x) = ft

(
x · ν + c − M(M + 1)t

)

satisfies the following conditions:

(1) �vt > 0 in the set {vt > 0};
(2) |∇vt | > 1 on {vt > 0};
(3) vt (x) ≤ h(x) ≤ u(x) for every x ∈ ∂D.
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Indeed, the first two conditions are immediate, since h is the positive part of an
affine function. In order to prove (3), we notice that the inequality is trivial whenever
x · ν + c − M(M + 1)t ≤ 0. The case x · ν + c − M(M + 1)t > 0 is a consequence
of the following estimate, which holds for any S := x · ν + c > M(M + 1)t .

ft (S − M(M + 1)t) = (1 + t)
(
S − M(M + 1)t

)+ t
(
S − M(M + 1)t

)2

≤ (1 + t)
(
S − M(M + 1)t

)+ Mt
(
S − M(M + 1)t

)

= S + t
(

− M(M + 1) + S − M(M + 1)t + MS − M2(M + 1)t
)

≤ S + t
(− M(M + 1) + S(M + 1)

) ≤ S.

We next claim that vt ≤ u on D. Indeed, suppose that this is not the case and let
T > 0 be the smallest real number such that (vt − T )+ ≤ u on D. Then, there is
x0 ∈ �u such that vt (x0) − T = u(x0) and (vt (x) − T )+ ≤ u(x), for every other
x ∈ D, that is, the test function (vt − T )+ touches from below u at x0. Since u is a
viscosity solution (see Definition 7.6 and Proposition 7.1) of

�u = 0 in �u ∩ D, |∇u| = 1 on ∂�u ∩ D,

we have that x0 /∈ ∂�u ∩ B3/2 and x0 /∈ �u. Then, the only possibility is that
x0 ∈ ∂D, but this is also impossible since (vt − T )+ < vt ≤ u on ∂D. This proves
that vt ≤ u on D. Now, letting t → 0, we get that

u(x) ≥ h(x) in D,

which concludes the proof of (i).
The proof of claim (ii) is analogous. We give the proof for the sake of

completeness. For any t > 0, we define the real function

gt (s) = (1 − εt)max{s, 0} − εt
(
max{s, 0})2 for every s ∈ R,

where ε > 0 will be chosen below. We set

Mu = diam (D) + |c| + ‖u‖L∞(D) and Mh = ‖h‖L∞(D).

The test function

wt(x) = gt

(
x · ν + c + t

)

satisfies the following conditions:

1. wt ≥ 0 for every 0 < t ≤ Mu and every s ≤ Mh;
2. �wt < 0 in the open set {wt > 0};
3. |∇wt | < 1 on the closed set {wt > 0};
4. wt(x) ≥ h(x) ≥ u(x) for every x ∈ ∂D and every t ≤ Mu.
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We start with (1w). We notice that

gt (s) = (1 − εt)max{s, 0} − εt
(
max{s, 0})2 ≥ 1 − ε

(
MuMh + MuM

2
h

)
.

Thus, in order to have (1w), we choose

ε ≤ (MuMh + MuM
2
h

)−1.

Again (2w) and (3w) are trivial, while for (4w) we will need the following estimate,
which holds for every S > 0 and t > 0.

gt (S + t) = (1 − εt)
(
S + t

) − εt
(
S + t

)2

≥ (1 − εt)
(
S + t

) − εtS
(
S + t

)

= S + t
(
1 − εS − εt − εS2 − εSt

)

≥ S + t
(
1 − ε

(
S + t + S2 + ST

))
. (12.37)

In order to have (4w), we choose

ε ≤ (Mh + Mu + M2
h + MhMu

)−1. (12.38)

We next complete the proof of (4w). First, notice that the second inequality is always
true by hypothesis. Sincewt ≥ 0, the first inequality is trivial whenever x ·ν+c ≤ 0.
Thus, we only need to prove that wt(x) ≥ h(x), whenever x · ν + c > 0. This
follows by (12.37) and the second bound on ε (12.38). This concludes the proof of
(1w) − (4w).

We now consider the set

I :=
{
t ∈ [0,Mu] : wt ≥ u on D

}
.

We notice that It is non-empty since Mu ∈ It . Let

T = inf I .

If T > 0, then there is a point x0 ∈ �u such that wT touches u from above in x0.
But this contradicts (2w)− (4w). Indeed, (2w) implies that x0 /∈ �u ∩D, (3w) gives
that x0 /∈ ∂�u ∩ D and (4w) gives that x0 /∈ ∂D. Thus, T = 0, which concludes the
proof. ��
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Lemma 12.22 (Comparison of Minimizers) Let D be a bounded open set in Rd

and u, v : D → R be continuous non-negative functions and minimizers of F� in
D. Suppose that:

(a) u ≤ v on ∂D;
(b) the above inequality is strict on the set �u∩∂D, that is, min

�u∩∂D

(v−u) = m > 0.

Then, u ≤ v in D.

Proof Let � := {x ∈ D : u(x) > v(x)}. We will prove that � = ∅. We first claim
that � is strictly contained in D, that is

∂� ∩ ∂D = ∅.

Suppose that this is not the case. Then, there is a sequence xn ∈ � converging to
some x0 ∈ ∂D. Since u and v are continuous, we get that

v(x0) − u(x0) = 0.

On the other hand, for every n ∈ N, we have

u(xn) > v(xn) ≥ 0,

which gives that xn ∈ �u. Then, xn ∈ �u and thus, x0 ∈ ∂�u. This is a
contradiction with the assumption (b).

We will next prove that

�u ∩ ∂{u > v} = �v ∩ ∂{u > v} = ∅.

We consider the competitors

u ∨ v = max{u, v} and u ∧ v = min{u, v}.

Since

u ∨ v = v on ∂D and u ∧ v = u on ∂D,

the minimality of u and v implies that

F�(v,D) ≤ F�(u ∨ v,D) and F�(u,D) ≤ F�(u ∧ v,D). (12.39)

On the other hand, we have

F�(u ∨ v,D) + F�(u ∧ v,D) = F�(u,D) + F�(v,D).
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Thus, both inequalities in (12.39) are in fact equalities and so u ∧ v is a minimizer
of F� in D. Suppose that

x0 ∈ �u ∩ ∂�.

Then, u(x0) = v(x0) > 0 and by the continuity of u and v, there is a ball Br(x0)

such that

Br(x0) ⊂ �u and Br(x0) ⊂ �v .

Thus, both the functions u and u ∧ v are positive and harmonic in Br(x0). Thus, the
strong maximum principle implies that u = u ∧ v in Br(x0). This is contradiction
with the assumption that x0 ∈ ∂{u > v}.

We are now in position to prove that � = ∅. Indeed, suppose that this is not the
case. Then, for every x0 ∈ ∂�u, we have that u(x0) = 0. Thus, we consider the
function

ũ(x) =
{

u(x) if x ∈ D \ �,

0 if x ∈ �.

Then, ũ = u on ∂D and ũ ∈ H 1(D) (this follows, from instance from the facts that
u is Lipschitz continuous on the compact subsets of D and that � ⊂ D). Thus, ũ is
an admissible competitor for u and we have

0 ≥ F�(u,D) − F�(̃u,D) =
∫

�

|∇u|2 dx + �|� ∩ �u|.

In particular,

|�| = |{u > v}| = |{u > v} ∩ {u > 0}| = |� ∩ �u| = 0,

and so, � = ∅, which concludes the proof. ��
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Appendix A
The Epiperimetric Inequality
in Dimension Two

In this section we prove the general epiperimetric inequality, which was stated in
Theorem 12.3. We show that both the flatness condition from Theorem 12.1 and the
non-degeneracy assumption from [49] are unnecessary. We also give an estimate
on the H 1 norm of the competitor h, which is useful when one deals with almost-
minimizers of the one-phase problem (see for instance [50]).

Theorem A.1 (Epiperimetric Inequality) There is a constant ε > 0 such that: if
c ∈ H 1(∂B1) is a non-negative function on the boundary of the disk B1 ⊂ R2 then,
there exists a (non-negative) function h ∈ H 1(B1) such that h = c on ∂B1 and

W(h) − π ≤ (1 − ε)
(
W(z) − π

)
, (A.1)

z ∈ H 1(B1) being the one-homogeneous extension of c in B1, that is, z(x) =
|x|c (x/|x|). Moreover, we can choose the competitor h such that

‖h‖H 1(B1)
≤ C‖z‖2

H 1(B1)
,

where C is a universal numerical constant.

In order to prove Theorem 12.3, we will still use Lemma 12.6, Lemma 12.7 and
the results from Sect. 12.1. Moreover, we will need the following results:

Lemma A.2 (Epiperimetric Inequality for Principal Modes: Large Intervals)
Let B1 be the unit ball in R2. There is a constant ε > 0 such that: if c : ∂B1 → R,
c ∈ H 1(B1), is a multiple of the first eigenfunction on {c > 0} ⊂ ∂B1 and

π ≤ H1({c > 0} ∩ ∂B1) < 2π ,
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then, there exists a (non-negative) function h ∈ H 1(B1) such that h = c on ∂B1 and

W(h) − π ≤ (1 − ε)
(
W(z) − π

)
,

z ∈ H 1(B1) being the one-homogeneous extension of c in B1.

Lemma A.3 (Homogeneity Improvement of the Large Cones) Let B1 be the unit
ball in Rd , d ≥ 2. There exist dimensional constants η0 > 0 and ε > 0 such that: If
c ∈ H 1(∂B1) is non-negative and such that

1

dωd

Hd−1({c > 0} ∩ ∂B1) ≥ 1 − η0,

then we have

W(h) − ωd

2
≤ (1 − ε)

(
W(z) − ωd

2

)
,

where z is the one-homogeneous extension of c in B1, while h is given by h1 or h2,
where

(i) h1 is the harmonic extension of c in B1;
(ii) h2 : B1 → R is given by

h2(r , θ) = (max{0, r − ρ})α c(θ)

(1 − ρ)α
,

where α > 1 and ρ ∈ (0, 1) are dimensional constants.

In both cases, there is a dimensional constant Cd > 0 such that

‖h‖H 1(B1)
≤ Cd‖c‖H 1(∂B1)

.

A.1 Proof of Theorem 12.3

As in the proof of Theorem 12.1, we decompose the open set {c > 0} ⊂ ∂B1 as a
countable union of disjoint arcs, that is,

{c > 0} =
⋃

j≥1

Ij .
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Fig. A.1 The supports of the
one homogeneous extension z

(in red) and the competitor h

(in blue) in Case 3; the length
of the arc I1 is bigger than
π + δ0

We recall that |Ij | denotes the length of the arc Ij . Let δ0 > 0 be a (small) constant
that will be chosen later. We consider four cases:

Case 1. There is one arc, say I1, which is big, that is,

π − δ0 ≤ |I1| ≤ π + δ0

while all the other arcs are small:

|Ij | ≤ π − δ0 for all j ≥ 2.

This is precisely Case 1 from the proof of Theorem 12.1 (Sect. 12.4, Fig. 12.2).
Case 2. All the arcs are small, that is,

|Ij | ≤ π − δ0 for all j ≥ 1.

This is Case 2 from the proof of Theorem 12.1 (Sect. 12.4, Fig. 12.3).
Case 3 (Fig. A.1). The arc I1 is very big, that is,

π + δ0 ≤ |I1| ≤ 2π − δ0.

As a consequence, the other arcs are small:

|Ij | ≤ π − δ0 for all j ≥ 2.

Case 4. The support of c is very big, that is,

2π − 2δ0 ≤ H1({c > 0}) ≤ 2π .

In this case the competitor is given precisely by Lemma A.3.

Thus, it is sufficient to consider Case 3. We argue precisely as in the proof of
Case 1. Let {φj }j≥1 be a complete orthonormal system of eigenfunctions on I1, and
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let cj be the Fourier coefficient

cj :=
∫

∂B1

c(θ)φj (θ) dθ for every j ≥ 2.

We decompose the trace c as

c(θ) = c1φ1(θ) + ψ1(θ) + ψ2(θ),

where

ψ1(θ) =
∞∑

j=2

cjφj (θ),

and ψ2 is the restriction of c on the set
⋃

j≥2

Ij . Since ψ2 is supported on
⋃

j≥2

Ij and

|Ij | ≤ π − δ0, for j ≥ 2, we have that

∫

S1
|∇θψ2|2 dθ ≥ π2

(π − δ0)2

∫

S1
ψ2
2 dθ .

For what concerns ψ1, since its Fourier expansion contains only higher modes on
I1 and since |I1| ≤ 2π − δ, we obtain

∫

I1
|∇θψ1|2 dθ ≥ 4π2

(2π − δ0)2

∫

I1
ψ2
1 dθ .

Thus, there is κ depending only on δ0 such that

∫

S1
|∇θψi |2 dθ ≥ (1 + κ)

∫

S1
ψ2

i dθ for i = 1, 2.

Let ρ > 0 and εψ > 0 be the constants from Lemma 12.6 corresponding to the
constant κ from (12.19); let hψ1 and hψ2 be the competitors from Lemma 12.6
associated to the traces ψ1 and ψ2, respectively. Thus, setting zψi (r , θ) := zψi(θ),
we have

W0(hψ1) ≤ (1 − εψ)W0(zψ1) and W(hψ2 ) ≤ (1 − εψ)W(zψ2). (A.2)

Let h̃ be the competitor from Lemma A.3 with trace c1φ1 and let z̃(r , θ) :=
rc1φ1(θ). We set

h̃ρ(r , θ) =
{

z̃(r , θ) if r ∈ [ρ, 1],
ρ h̃(r/ρ, θ) if r ∈ [0, ρ].
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Thus, Lemma 12.7 and Lemma 2.3 imply that

W(h̃ρ) − π ≤ (1 − ρd ε̃)
(
W(z̃) − π

)
, (A.3)

ε̃ being the constant from Lemma A.3. Finally, we define the competitor h : B1 →
R as:

• h = z if W(z) ≤ π , where z = z̃ + zψ1 + zψ2 is the 1-homogeneous extension
of c;

• h = z̃ + hψ1 + hψ2 if W(z) > π , but W(z̃) ≤ π ;
• h = h̃ + hψ1 + hψ2 if W(z) > π and W(z̃) > π .

Notice that the only non-trivial case is the third one: W(z) > π and W(z̃) > π . By
the decomposition lemma (Lemma 12.9), we have

W(z) = W(z̃) + W0(zψ1) + W(zψ1),

and

W(h) = W(h̃ρ) + W0(hψ1) + W(hψ1 ).

Setting

ε = min{ρd ε̃, εψ},

we obtain the epiperimetric inequality (A.1) as a consequence of (A.2) and (A.3).
This concludes the proof in Case 3. ��

A.2 Proof of Lemma A.2

We will use the notations from Sect. 12.3 In this case, we have that δ ∈ (0,π). The
infinitesimal argument used in the proof of Lemma 12.7 cannot be applied here.
Thus, we directly compute F(δ) (defined in (12.15)) by using the identity from
Sect. 12.3.3.

F(δ) =
∫ 1

0

(
(t (r)/π)2

1 + t (r)/π
− (1 − ε)

(δ/π)2

1 + δ/π

)

rdr

=
∫ 1

0

(π + δ)t (r)2 − (π + t (r))(1 − ε)δ2

π3 (1 + t (r)/π) (1 + δ/π)
rdr

≤ δ2

π3

∫ 1

0

(
(π + δ) (t (r)/δ)2 − (π + t (r))(1 − ε)

)
rdr .
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Now, since t (r)/δ = 1 − 3(1 − r)ε, we get that

(π + δ) (t (r)/δ)2 − (π + t (r))(1 − ε)

= (π + δ)
(
1 − 3(1 − r)ε

)2 − (π + δ − 3(1 − r)εδ
)
(1 − ε)

= −ε(π + δ)(5 − 6r) + 9ε2(π + δ)(1 − r)2 + 3(1 − r)εδ(1 − ε)

≤ −ε(π + δ)(5 − 6r) + 18πε2 + 3(1 − r)εδ.

Thus, multiplying by r and integrating over [0, 1], we get

F(δ) ≤ δ2

π3

(
−1

2
ε(π + δ) + 9πε2 + 1

2
εδ

)
= − εδ2

2π2 (1 − 18ε) .

Thus, using (12.14), we get

(
W(hδ) − π

2

)
− (1 − ε)

(
W(zδ) − π

2

)
≤ − εδ2

2π2

(
1 − 18ε − 2π2Cε

)
.

Choosing ε > 0 small enough, we get (12.13). This concludes the proof of
Lemma A.2. ��

A.3 Epiperimetric Inequality for Large Cones:
Proof of Lemma A.3

We write the trace c in Fourier series on the sphere ∂B1 as

c(θ) = c0φ0 + c1φ1(θ) +
∞∑

j=2

cjφj (θ),

where:

• φ0 is the constant (dωd)−1/2;
• φ1 : ∂B1 → R is an eigenfunction of the Laplacian on the sphere, the respective

eigenvalue being (d − 1) and
∫

∂B1

φ2
1 dθ = 1;

• φj , for j ≥ 2 are eigenfunctions orthonormal in L2(∂B1) with eigenvalues λj ≥
2d on the sphere ∂B1.

We now set

ψ(θ) :=
∞∑

j=2

cjφj (θ).
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Since the Fourier expansion of ψ contains only eigenfunctions associated to
eigenvalues ≥ 2d , we get that

∫

Sd−1
|∇θψ|2 dθ ≥ 2d

∫

Sd−1
ψ2 dθ .

Let κ = d + 1 and ρκ , εκ and ακ be the constants from Lemma 12.6; let zκ(r , θ) =
rψ(θ) and hκ be the competitor from Lemma 12.6. We choose

ρ = ρκ and α = ακ .

We consider the functions

z(r , θ) = c0rφ0 + c1rφ1(θ) + zκ (r , θ)

h̃1(r , θ) = c0φ0 + rc1φ1(θ) + hκ(r , θ).

h2(r , θ) = (r − ρ)α+
(1 − ρ)α

c0φ0 + (r − ρ)α+
(1 − ρ)α

c1φ1(θ) + hκ(r , θ).

Step 1.We first calculate the terms

W0(φ0), W0(rφ0), W0
(
rφ1(θ)

)
, W0

(
(r − ρ)α+φ0

)
and W0

(
(r − ρ)α+φ1(θ)

)
.

Since φ0 is a constant, we have that

W0(φ0) = −
∫

∂B1

φ2
0 dθ = −1.

Since rφ1(θ) is one homogeneous, we get

W0(rφ0) = 1

d
F0(φ0) = −d − 1

d

∫

∂B1

φ2
0 dθ = −d − 1

d
.

Analogously, we obtain

W0(rφ1) = 1

d
F0(φ1) = 1

d

(∫

∂B1

|∇θφ1|2 dθ − (d − 1)
∫

∂B1

φ2
1 dθ

)
= 0,
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since φ1 is a (d − 1)-eigenfunction on the sphere. For the last two terms, we use the
formula

W0
(
(r − ρ)α+φi(θ)

) =
∫ 1

ρ

rd−1 dr

∫

∂B1

(
α2(r − ρ)2α−2φ2

i + (r − ρ)2α

r2
|∇θφi |2

)
dθ

− (1 − ρ)2α
∫

∂B1

φ2
i dθ

≤ 1

2α + d − 2

(
α2 +

∫

∂B1

|∇θφi |2 dθ

)
− (1 − ρ)2α .

Since 1 < α ≤ 2,
∫

∂B1

|∇θφ0|2 dθ = 0 and
∫

∂B1

|∇θφ1|2 dθ = d − 1, we get

W0
(
(r −ρ)+φα

0

) ≤ 1−(1−ρ)2α and W0
(
(r −ρ)α+φ1(θ)

) ≤ 2−(1−ρ)2α.

Step 2. Consider the competitor h1. We set

η := 1

dωd

Hd−1({c = 0} ∩ ∂B1),

and we calculate

W(h1) − W(z) ≤ W0(h1) − W0(z) + 1

d
η ≤ W0(h̃1) − W0(z) + ωdη

=
(
c20W0(φ0) + c21W0

(
rφ1(θ)

)+ W0(hk)
)

−
(
c20W0(rφ0) + c21W0(rφ1) + W0(zκ)

)
+ ωdη

= c20

(
W0(φ0) − W0(rφ0)

)
+
(
W0(hk) − W0(zκ)

)

+ η

d
≤ −c20

d
− εκW0(zκ ) + ωdη.

Step 3. For the competitor h2 we calculate

W(h2) − W(z) = W0(h2) − W0(z) + |{h2 > 0} ∩ B1| − |{z > 0} ∩ B1|

= c20

(
1

(1 − ρ)2α
W0
(
(r − ρ)α+φ0

)− W0(rφ0)

)

+ c21

(
1

(1 − ρ)2α
W0
(
(r − ρ)α+φ1

)− W0(rφ1)

)
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+
(
W0(hk) − W0(zκ)

)
− |{z > 0} ∩ Bρ |

≤ 2

(1 − ρ)2α
(c20 + c21) − εkW0(zκ) − ωdρd (1 − η) .

Now, since

|c1| =
∣
∣
∣
∣

∫

B1

c(θ)φ1 dθ

∣
∣
∣
∣ ≤ ‖φ1‖L∞(∂B1)

∫

B1

c(θ) dθ ≤ ‖φ1‖L∞(∂B1)dωdc0,

there is a dimensional constant Cd > 0 such that

W(h+
2 ) − W(z) ≤ Cd c20 − εkW0(zκ) − ωdρd (1 − η) .

Step 4. Conclusion of the proof. We calculate the energy

W(z) − ωd

2
= c20W0(rφ0) + c21W0(rφ1) + W0(zκ) + ωd

2
− ωdη

= −d − 1

d
c20 + W0(zκ) + ωd (1/2 − η) .

Since W0(zκ ) > 0, for every ε ∈ (0, εκ), we have that the inequality

− c20

d
+ ωdη ≤ ε

(
d − 1

d
c20 − ωd (1/2 − η)

)
, (A.4)

implies that

W(h1) − W(z) ≤ −ε
(
W(z) − ωd

2

)
.

Analogously,

Cd c20 − ωdρd (1 − η) ≤ ε

(
d − 1

d
c20 − ωd (1/2 − η)

)
, (A.5)

implies that

W(h2) − W(z) ≤ −ε
(
W(z) − ωd

2

)
.

Now, (A.4) is implied by

dωd(η + ε) ≤ c20. (A.6)
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while if we assume that η0 ≤ 1/4, we get that (A.5) is implied by

Cdc20 ≤ ωd

2
(ρd − ε). (A.7)

Now, if both (A.6) and (A.7) were false, then we would have

dωd(η + ε)Cd ≥ Cdc20 ≥ ωd

2
(ρd − ε),

and finally

η ≥ 1

2dCd

(
ρd − ε(1 + 2dCd)

)
, (A.8)

Finally, we notice that the choice

ε = ρd

4dCd + 2
and η0 = ρd

2dCd

,

makes (A.8) impossible and concludes the proof of Lemma A.3. ��



Appendix B
Notations and Definitions

Euclidean Space, Topology and Distance

Rd | x·y | dist(x,K) | distH(K1,K2) | diamK | Br(x) | �̄ | ∂�

• d is the dimension of the space.
• Cd denotes a positive constant that depends only on the dimension;

Cd may change from line to line and even within the same line.
• x = (x1, . . . , xd) denotes a generic point in Rd ; we will also write

x = (x ′, xd) , where x ′ = (x1, . . . , xd−1) is a point in R
d−1.

• We denote by x · y := ∑d
i=1 xiyi the scalar product of two vectors x =

(x1, . . . , xd) and y = (y1, . . . , yd) in Rd ; |x| = √
x · x is the euclidean norm

of x in Rd .
• The standard orthonormal basis of Rd will be denoted by {e1, . . . , ed};

ed is the unit vector with coordinates (0, . . . , 0, 1).
• By dist(x,K) we denote the euclidean distance from a point x ∈ Rd to a set

K ⊂ Rd

dist(x,K) = min
y∈K

|x − y|.

• Given two sets K1 and K2 in Rd , we denote by distH(K1,K2) the Hausdorff
distance between K1 and K2, that is,

distH(K1,K2) := max
{
max
x∈K1

dist(x,K2) , max
y∈K2

dist(y,K1)
}
.
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• diamK stands for the diameter of a set K ⊂ Rd

diamK := sup
{|x − y| : x, y ∈ K

}
.

• Br(x) is the ball of radius r and center x; Br is the ball of radius r and center 0.
• For any set � ⊂ Rd , we denote by �̄ its closure and by ∂� its boundary;

Measure and Integration

|�| | ωd | �(α) | Hs
δ | Hs | Hd−1 | dimH | ∫

• |�| is the Lebesgue measure of a (Lebesgue measurable) set � ⊂ Rd .
• By ωd we denote the Lebesgue measure of the unit ball in Rd .
• For any � ⊂ Rd and α ∈ [0, 1], we define the set �(α) as the set of points at

which � has Lebesgue density equal to α, that is,

�(α) =
{
x0 ∈ R

d : lim
r→0

|� ∩ Br(x0)|
|Br | = α

}
.

We recall that

|� \ �(1)| = |�(1) \ �| = 0 and |� ∩ �(0)| = 0.

• For every s > 0, δ ∈ (0,+∞] and every set E ⊂ Rd , we define

Hs
δ(E) := ωs

2s
inf
{ ∞∑

j=1

(
diamUj

)s : for every family of sets {Uj }∞j=1

such that E ⊂
∞⋃

j=1

Uj and diamUj ≤ δ
}
,

where, if s ∈ N, then ωs is the measure of the unit ball in Rs , and we recall that
ωs can be defined for any s ∈ (0,+∞) as

ωs := π
s/2

�(s/2 + 1)
where �(s) :=

∫ +∞

0
xs−1ex dx.

• For any s ≥ 0, Hs(E) denotes the s-dimensional Hausdorff measure of a set
E ⊂ Rd .

Hs(E) = lim
δ→0+

Hs
δ(E) = sup

δ>0
Hs

δ(E).
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For instance, we have

Hd (Br) = |Br | = ωdrd and Hd−1(∂Br) = dωdrd−1.

• The Hausdorff dimension of a set E ⊂ Rd is defined as

dimH E = inf
{
s > 0 : Hs(E) = 0

}
.

• By
∫

�

φ dμ we will indicate the mean value of the function φ on the set � with

respect to the measure μ, that is,
∫

�

φ dμ := 1

μ(�)

∫

�

φ dμ.

Perimeter and Reduced Boundary

∂∗� | P er(�) | P er(�;D)

• Let � ⊂ Rd be a Lebesgue measurable set in Rd . We say that � is a set of finite
perimeter (in the sense of De Giorgi) if

Per(�) := sup
{ ∫

�

div ξ dx : ξ ∈ C1
c (Rd ;Rd), ‖ξ‖L∞(Rd) ≤ 1

}
< +∞.

Analogously, we define the relative perimeter of � in the open set D ⊂ Rd as

Per(�;D) := sup
{ ∫

�

div ξ dx : ξ ∈ C1
c (D;Rd ), ‖ξ‖L∞(D) ≤ 1

}
.

• Equivalently, � ⊂ Rd is a set of finite perimeter if there is an Rd -valued Radon
measure μ� such that

∫

�

∇φ(x) dx =
∫

Rd

φ dμ� for every φ ∈ C1
c (Rd ).

With this notations, we have

Per(�) = |μ�|(Rd ) and Per(�;D) = |μ�|(D),

where by |μ| we denote the total variation of a measure μ.

• The reduced boundary ∂∗� is defined as

∂∗� :=
{
x ∈ R

d : the limit ν�(x) := lim
r→0

μ�(Br(x))

|μ�|(Br(x))
exists and |ν�(x)| = 1

}
;
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ν� is called a measure theoretic outer normal at x. The following are well-known
facts about the reduced boundary of a set of finite perimeter (we refer to the
recent book [43], which is an excellent introduction to this topic):

1. μ� = ν� Hd−1|∂∗� ;
2. ∂∗� ⊂ �(1/2);
3. setting

�x,r := 1

r
(� − x) =

{y − x

r
: y ∈ �

}
,

we have that the characteristic functions 1�x,r converge (as r → 0) in
L1

loc(R
d ) to the characteristic function of the half-space

{
y ∈ Rd : y ·

ν�(x) < 0
}
;

(4) Hd−1
(
Rd \ (�(1) ∪ �(0) ∪ ∂∗�

)) = 0.

Unit Sphere and Polar Coordinates

Sd−1 | θ | ∇θ | �S | dθ

• Sd−1 is the unit (d − 1)-dimensional sphere; we will indicate by θ the points on
Sd−1 and we will often identify Sd−1 with ∂B1, where B1 is the unit ball in Rd ;
we will sometimes use dθ to indicate the surface measure on the sphere, thus

∫

Sd−1
φ(θ) dθ ,

∫

∂B1

φ(θ) dθ and
∫

∂B1

φ dHd−1

all denote the integral of the function φ : ∂B1 → R on the unit sphere ∂B1 in
Rd .

• For a function φ : ∂B1 → R, we denote by ∇θφ its gradient on the sphere ∂B1.
• We denote by H 1(∂B1) the Sobolev space of functions (on the sphere) which are

square integrable and have a square integrable gradient. Precisely, H 1(∂B1) is
the closure of C∞(∂B1) with respect to the norm

‖φ‖H 1(∂B1)
:=
(
‖φ‖2

H 1(∂B1)
+ ‖∇θφ‖2

H 1(∂B1)

)1/2
.

• By �Sφ we denote the (distributional) spherical Laplacian of a Sobolev function
φ ∈ H 1(∂B1); we have the following integration by parts formula

∫

∂B1

ψ�Sφ dθ = −
∫

∂B1

∇θψ · ∇θφ dθ for every ψ ∈ H 1(∂B1).
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• If u : BR → R is a function expressed in polar coordinates as u = u(r , θ), then

|∇u|2 = (∂ru)2 + r−2|∇θu|2,

and

�u = r1−d∂r

(
rd−1∂ru

)+ r−2�Su = ∂rru + d − 1

r
∂ru + 1

r2
�Su.

Moreover, we recall that

∫

BR

u dx =
∫ R

0

∫

Sd−1
u(r , θ) dθ rd−1 dr .

Functions and Sets

u ∧ v | u ∨ v | u+ | u− | {u > 0} | �u | �+
u | �−

u | 1�

• Given two real-valued functions u and v defined on the same domain, we denote
by u ∧ v and u ∨ v the functions

(u ∧ v)(x) = min{u(x), v(x)} and (u ∨ v)(x) = max{u(x), v(x)}.

• u+ = u∨0 and u− = (−u)∨0. Thus, we have u = u+ −u− and |u| = u+ +u−.

We do not distinguish between u+ and u+, nor between u− and u−.

• By {u > 0} we mean the set {x ∈ Rd : u(x) > 0}; the sets {u = 0}, {u �= 0}
and {u < 0} are defined analogously. For any u, we set

�u = {u �= 0} , �+
u = {u > 0} and �−

u = {u < 0}.

• By 1� we denote the characteristic functions of the set �, that is,

1�(x) =
{
1 if x ∈ �,

0 if x /∈ �.
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The One-Phase Functional and Related Quantities

ur ,x0 | F�(u,D) | Reg(∂�u) | Sing(∂�u) | W(u) | W0(u) | δF�(u,D)[ξ ]

• For any r > 0 and x0 ∈ Rd , we denote by ur ,x0 and ur the functions

ur ,x0(x) = 1

r
u(x0 + rx) and ur(x) = 1

r
u(rx).

• For any constant � ≥ 0, open set D ⊂ Rd and function u ∈ H 1(D), the one-
phase functional F�(u,D) is defined as

F�(u,D) =
∫

D

|∇u|2 dx + �|{u > 0} ∩ D|.

• The so-called regular part Reg(∂�u) of the free boundary ∂�u (see Sect. 6.4) is
defined as the set of points x0 ∈ ∂�u, for which there exist:

– an infinitesimal sequence rn → 0;
– a unit vector ν ∈ Rd ;

such that the blow-up sequence

un : B1 → R , un(x) = 1

rn
u(x0 + rnx), (B.1)

converges uniformly in B1 to a blow-up limit

hν : B1 → R , hν(x) = √
� (x · ν)+ . (B.2)

• The singular part Sing(∂�u) of the free boundary ∂�u is defined simply as the
complementary of Reg(∂�u)

Sing(∂�u) = ∂�u \ Reg(∂�u).

For some fine results on the structure of the singular set we refer to Sect. 10.

• By W� we denote the Weiss’ boundary adjusted energy (in the ball B1), that is,
for every u ∈ H 1(B1), we set

W0(u) =
∫

B1

|∇u|2 dx−
∫

∂B1

u2 dHd−1 and W�(u) = W0(u)+�|{u > 0}∩B1|.

For the related Weiss monotonicity formula see Lemma 9.2. Only in Sect. 12 and
in the Appendix A, we use the shorter notation W := W1.
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• Let D be an open subset of Rd and u ∈ H 1(D) be non-negative. By
δF�(u,D)[ξ ] we denote the first variation of the functionalF�(·,D) (calculated
at u) in the direction of the compactly supported smooth vector field ξ ∈
C∞

c (D;Rd ). Precisely,

δF�(u,D)[ξ ] = ∂

∂t

∣
∣
∣
t=0

F�(u ◦ 	−1
t ,D),

where 	t(x) = x + tξ(x).

Remark An explicit formula (9.6) for the first variation is given in Lemma 9.5.

Definition We say that u is stationary for F� in D (see Sect. 9.5) if

δF�(u,D)[ξ ] = 0 for every ξ ∈ C∞
c (D;Rd ).
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