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Preface

This book is an introduction to the regularity theory for free boundary problems.
The focus is on the one-phase Bernoulli problem, which is of particular interest
as it deeply influenced the modern free boundary regularity theory and is still an
object of intensive research. The exposition is organized around four main theorems,
which are dedicated to the one-phase functional in its simplest form. Many of the
methods and the techniques we present here are very recent and were developed in
the context of different free boundary problems. We also give the detailed proofs of
several classical results, which are based on some universal ideas and are recurrent
in the free boundary, PDE, and the geometric regularity theories.

Pisa, Italy Bozhidar Velichkov

vii



Acknowledgment

The work of several authors deeply influenced the exposition, in particular Alt-
Caffarelli [3], Alt-Caffarelli-Friedman (see [4] and Sect. 3.2), Briangon-Hayouni-
Pierre ([7] and Sect. 3.2), Danielli-Petrosyan (see [18] and Sect. 3.3), Weiss (see [52]
and Sect. 9), Federer (see [32] and Sect. 10), Garofalo-Lin (see [34] and Sect. 11.3),
De Silva (see [23] and Sect. 8), Reifenberg (see [45] and Sect. 12.5), Bucur (see [8]
and Sect. 5.2), and Briangon and Lamboley (see [5], [6] and Sect. 11.5).

Most of the present book consists of my personal notes, taken during the prepa-
ration of [41], [49], [42], [10], [29], [46] and [50]; I warmly thank my co-authors
Luca Spolaor [49, 50], Dario Mazzoleni and Susanna Terracini [41, 42], Giuseppe
Buttazzo [10], Max Engelstein [29], Emmanuel Russ [46], and BaptisteTrey [46, 50]
for being part of this journey.

Part of these notes was presented in my lectures “Regularity for free boundary
and shape optimization problems”; the course was held in Naples in 2019 and
was part of the Indam Intensive Period “Shape optimization, control and inverse
problems for PDEs.” We warmly thank the organizers for this opportunity.

The author was supported by the European Research Council (ERC), under
the European Union’s Horizon 2020 research and innovation program, through the
project ERC VAREG—Variational approach to the regularity of the free boundaries
(grant agreement No. 853404).

ix



Contents

1 Introduction and Main Results .......................... 1
1.1 Free Boundary Problems: Classical and Variational
FormulationsS.........coouuiiiie e 1
1.2 Regularity of the Free Boundary ................ccoooiiiiiiiii. 5
1.3 The Regularity Theorem of Alt and Caffarelli...................... 7
1.4 The Dimension of the Singular Set....................oooiiiia. 11
1.5  Regularity of the Free Boundary for Measure Constrained
MINIMUIZETS .« ettt et aeeee e 14
1.6 An Epiperimetric Inequality Approach to the Regularity
of the Free Boundary in Dimension Two............................ 19
1.7 Further Results ........oooiiiiiiiii e 20
2 Existence of Solutions, Qualitative Properties and Examples ......... 23
2.1  Properties of the Functional F ..., 24
2.2 Proof of Proposition 2.1.......oouuiiiiiiiiiiiii i 25
2.3 Half-Plane SOIUtions .......cooiuiiieiiiiiii e 29
2.4 Radial SOIUtionS .....ueuiiei it 32
3 Lipschitz Continuity of the Minimizers .................................. 39
3.1  The Alt-Caffarelli’s Proof of the Lipschitz Continuity ............. 43
3.2 The Laplacian EStimate ..............uuuuiiiiiiiiiiiiiinnienenns 46
3.3  The Danielli-Petrosyan Approach ...............cooeiiiiiiiinn.. 48
4  Non-degeneracy of the Local Minimizers................................ 59
5  Measure and Dimension of the Free Boundary ......................... 65
5.1  Density Estimates for the Domain €2,.........cccceeiiiiiin.. 66
5.2 The Positivity set €2, Has Finite Perimeter ......................... 67
5.3  Hausdorff Measure of the Free Boundary........................... 70
6  Blow-Up Sequences and Blow-Up Limits ................................ 73
6.1  Convergence of Local Minimizers .................ooooeeeiiiinn.. 75
6.2  Convergence of the Free Boundary........................o..oo.. 80

xi



xii

10

11

12

Contents

6.3 Proof of Proposition 6.2............ccoiiiiiiiiiiiiiiiiiiiii 84
6.4  Regular and Singular Parts of the Free Boundary .................. 85
Improvement of Flatness.................ccooiiiiiiiiiiiiiiiiiiiiiiiens 89
7.1 The Optimality Condition on the Free Boundary ................... 91
7.2 Partial Harnack Inequality ..., 93

7.2.1  Interior Harnack Inequality ...............cooiiiiieia. 94

7.2.2  Partial Harnack Inequality at the Free Boundary ......... 96
7.3 Convergence of Flat Solutions.............oooeeiiiiiiiiiiiinn. 98
7.4  Improvement of Flatness: Proof of Theorem 7.4 ................... 103
Regularity of the Flat Free Boundaries .................................. 111
8.1  Improvement of Flatness, Uniqueness of the Blow-Up

Limit and Rate of Convergence of the Blow-Up Sequence ........ 113
8.2  Regularity of the One-Phase Free Boundaries ...................... 116
The Weiss Monotonicity Formula and Its Consequences .............. 125
9.1  The Weiss Boundary Adjusted Energy ........................oo.... 127
9.2 Stationary Free Boundaries ... 132
9.3  Homogeneity of the Blow-Up Limits .......................o... 136
9.4  Regularity of the Free Boundaries in Dimension Two ............. 138
9.5  The Optimality Condition on the Free Boundary:

A Monotonicity Formula Approach ........................ 139
9.6  Energy and Lebesgue Densities ..............cceeviiiiiieiiiinnn.. 143
Dimension of the Singular Set........................ 149
10.1 Hausdorff Measure and Hausdorff Dimension...................... 149
10.2 Convergence of the Singular Sets ..........ccooeviiiiiiiennn. 153
10.3  Dimension Reduction ...............euuuiiiiiiiiiiiiiiiiiiieeeeienens 155
10.4  Proof of Theorem 1.4 ...t 159
Regularity of the Free Boundary for Measure Constrained
MINIMIZETS .. ... 163
11.1  Existence of MINITMIZETS ......uuuuuriiiiiiiiiieeeeeeens 164
11.2  Euler-Lagrange Equation ... 166
11.3  Strict Positivity of the Lagrange Multiplier ......................... 169
11.4 Convergence of the Lagrange Multipliers........................... 176
11.5 Almost Optimality of u at Small Scales............................. 180
An Epiperimetric Inequality Approach to the Regularity of
the One-Phase Free Boundaries.............................ooe. 189
12.1 Preliminary Results ... 193
12.2  Homogeneity Improvement of the Higher Modes: Proof

of Lemma 12.6 ... 196
12.3  Epiperimetric Inequality for the Principal Modes: Proof

of Lemma 12.7 ..o oo 199

12.3.1 ReductiontotheCaseci =1 ......ovviiiiiiiiiinii.. .. 200

12.3.2 An Estimate on the Energy Gain........................... 201



Contents xiii
12.3.3  Computation of f......ccooiiiiiiiiiiiiiiiiii ... 201
12.3.4 Conclusion of the Proof of Lemma 12.7 .................. 202
12.4 Proof of Theorem 12.1 ......cooiiiiiiiiiiiiiiii e 204
12.5 Epiperimetric Inequality and Regularity of the Free Boundary .... 207
12.6 Comparison with Half-Plane Solutions ......................c..... 216
A The Epiperimetric Inequality in Dimension Two ....................... 223
A.1  Proofof Theorem 12.3 .....oooiiiiiiiii s 224
A2 Proofof Lemma A.2 .....ooiiiiiiiiiiii 227

A.3  Epiperimetric Inequality for Large Cones:
Proof of Lemma A3 ..o o e 228
B  Notations and Definitions ... 233
References.............oooiiii i 241
IndeX .. 245



Chapter 1 )
Introduction and Main Results Chack for

1.1 Free Boundary Problems: Classical and Variational
Formulations

The free boundary problems are a special type of boundary value problems, in which
the domain, where the PDE is solved, depends on the solution of the boundary value
problem. A classical example of a free boundary problem is the Serrin problem:

Find a bounded open C2—regular connected domain Q C RY
and a function u : Q — R such that :

—Au=1 in £, u=0 and |Vu|=c on 0%2.

It is well-known (see [47]) that, up to translation, the unique solution of the Serrin
problem is given by the couple (B, wpg), where B is the ball of radius R = d (d is the
dimension of the space) and wp : B — R is the function wp(x) = 21d (R2 — |x|2).

More generally, if D is a smooth bounded open set in R¢, then we can consider
the following problem. Find a couple (€2, #) such that:

¢ the domain 2 is contained in D
e while the functionu : 2 — R

— solves a PDE in €2, which in the example (1.1) below (as in the rest of these
notes) is elliptic but, in general, can also involve a time variable:

d d

Z a;jj(x)d;ju + Zbi(x)aiu +cx)ux)= f(x) in Q; (1.1)

i,j=1 i=1

© The Author(s) 2023 1
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2 1 Introduction and Main Results

— satisfies a boundary condition on the fixed boundary 9 D, that is,
F(x,u,Vu)=0 on 0DNJY; (1.2)

— satisfies an overdetermined boundary condition on the free boundary 42 N D

G(x,u,Vu)=0 and H(x,u,Vu)=0 on 092ND, (1.3)

where the functions F, G, H : R2d+1 R, as well as the elliptic operator and
the right-hand side in (1.1), are given. The aim of the free boundary regularity
theory is to describe the interaction between the free boundary d€2 and the solution
u of the PDE. For instance, it is well-known that, the solutions of boundary value
problems (with sufficiently smooth data) inherit the regularity of the boundary 9€2,
that is, if 9 is C'*, then |Vu| is Holder continuous up to the boundary (see [35]).
Conversely, one can ask the opposite question. Suppose that u is a solution of the
free boundary problem (1.1)—(1.3), where the overdetermined condition (1.3) on the
free boundary is given by

u=0 and |Vul>=Q(x) on aQND,

for some Hélder continuous function Q. Is it true that 92 is C*-regular? More
generally, we can ask the following question:

Is it possible to obtain information on the local structure of the free boundary, just from the
fact that the overdetermined boundary value problem admits a solution?

Notice that, here we do not impose any a priori regularity on the domain 2. For
an extensive introduction to the free boundary problems, with numerous concrete
examples and applications, we refer to the book [33], while a more advanced reading
is [15].

A free boundary problem of particular relevance for the theory is the so-called
one-phase Bernoulli problem, which was the object of numerous studies in the last
40 years; it also motivated the introduction of several new tools and the development
of new regularity techniques. The problem is the following. We have given:

« asmooth bounded open set D in R?,
* anon-negative function g : 9D — R,
* apositive constant A,

and we search for a couple (€2, u), of a domain Q2 C D and a functionu : Q — R,
such that:

Au=0 in £,
u=g on ILNID, (1.4)
u=0 and |Vu|=+~A on 3IQND.
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Fig. 1.1 A minimizer # and
its free boundary; for
simplicity we take D = B

the graph of u over D

the graph of u over 9D

oD the free boundary 9§,

We notice that a solution should depend both on the ambient domain D and the
boundary value g. Thus, we cannot hope to find explicitly the domain €2 and the
function u, except in some very special cases. In fact, even the existence of a couple
(2, u) solving (1.4) is a non-trivial question. One way to solve the existence issue
is to consider the variational problem, which consists in minimizing the functional

u > F(u, D) =/ IVul?dx + Al{u > 0} N D|,
D

among all functions u : D — R such that
ue H(D) and u=g on dD.

A solution to (1.4) can be obtained in the following way (see Fig. 1.1). To any
minimizer u : D — R, we associate the domain

Q, :={u > 0},

and the free boundary d€2, N D. Then, at least formally, one can show that the couple
(€24, u) is a solution to the free boundary problem (1.4).

o First, notice that the conditions
u=0 on 092,ND,
u=g on 0R,NiD,
are fulfilled by construction.
. In order to show that u is harmonic in €2,,, we suppose that €2,, is open and that
u is continuous. Let ¢ € C2°(£2,,) be a smooth function of compact support in

. Then, for any ¢ € R sufficiently close to zero, we have

{u+tp>0}={u=>0},
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and so,

Fa(u+to, D) = Fp(u, D) +/ (IV@ +t)* = |Vul?) dx.

Qu

Now, the minimality of u gives that
d
2| Vu-Vedx = ‘ Falu+1tg, D) = 0.
5 dt lt=0

Integrating by parts and using the fact that ¢ is arbitrary, we get that
Au=0 in .

. Finally, for what concerns the overdetermined condition on the free boundary,
we proceed as follows. For any compactly supported smooth vector field & :
D — R? and any (small) + > 0, we consider the diffeomorphism W, (x) =
x + t&€(x) and the test function u; = u o W, ! Then, by the optimality of u, we
obtain

d
0= , D).
9t tzo]: Aur, D)
On the other hand, the derivative on the right-hand side can be computed
explicitly (see Lemma 9.5). Precisely, if we assume that u and 92, are smooth
enough, we have

0

ot t:OJ:A(u[’D) = / (— |Vul|® + A)E - pdHI,

1o

where v is the exterior normal to d€2,. Since £ is arbitrary, we get that
[Vu| =+A on 9, ND.

In conclusion, by minimizing the function 5, we obtain at once the function u
and the domain 2 solving (1.4). The function u is a minimizer of F, and the set
2 is defined as 2 = 2, = {# > 0}. The equation in €2, and the overdetermined
condition on the free boundary 0€2, N D are in fact the Euler-Lagrange equations
associated to the functional. Thus, instead of studying directly the free boundary
problem (1.4), in these notes, we will restrict our attention to minimizers of Fx. In
order to fix the terminology and the notations in this section, and also for the rest of
these notes, we give the following definition.
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Definition 1.1 (Minimizers of F,) Let D be a bounded open set in RY. We say
that the function u : D — R is a minimizer of F in D, if u € Hl(D), u>0in D
and

Fa(u,D) < Fa(v,D)  forevery ve H'(D) suchthat u—ve H}(D).

1.2 Regularity of the Free Boundary

These notes are an introduction to the free boundary regularity theory; the aim is
to describe the local structure of the free boundary 9€2, (which is a geometric
object) just by using the fact that ¥ minimizes the functional F» and solves an
overdetermined boundary value problem (that is, with techniques coming from
Calculus of Variations and PDESs). In fact, the free boundary regularity theory stands
on the crossroad of Calculus of Variations, PDEs and Geometric Analysis, and is
characterized by the interaction between geometric and analytic objects, which is
precisely what makes it so fascinating (and hard) field of Analysis.

Our aim in these notes is to prove a first theorem on the local structure of the free
boundary. In particular, just by using the fact that « is a minimizer of the functional
Fa, we will prove the following facts:

* u: D — Ris (locally) Lipschitz continuous;
* theset Q, := {u > 0} is open and the free boundary 9€2,, N D can be decomposed
as the disjoint union of a regular part, Reg (92, ), and a singular part, Sing(9<2,),

39 N D = Reg(3Q,) U Sing(0%)

for instance, as on Fig. 1.2;

* the regular part Reg(92,) is a C*-smooth manifold of dimension (d — 1);

* the singular part Sing(9<2,) is a closed subset of 92, N D and its Hausdorff
dimension is at most d — 3 (at the moment, the best known estimate for the
Hausdorff dimension of the singular set is d — 5).

The overall approach and many of the tools that we will present are universal and
have counterparts in other fields, for instance, in the regularity of area-minimizing

Fig. 1.2 A picture of a free
boundary 9€2, with regular
and singular points
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currents, in free discontinuity problems and harmonic maps. In fact, there are several
points which are common for the regularity theory in all these (and many other)
variational problems:

— the local behavior of the solution is determined through the analysis of the so-
called blow-up sequences and blow-up limits;

— the points of the free boundary are labelled regular or singular according to
the structure of the so called blow-up limits at each point; this provides a
decomposition of the free boundary into a regular part and a singular part;

— at regular points, the regularity of the free boundary, which might be expressed in
geometric (Theorem 7.4) or energetic (Theorem 12.1 and Lemma 12.14) terms,
improves along the blow-up sequences;

— the set of singular points can become bigger when the dimension of the ambient
space is higher; the measure and the dimension of the singular set can be
estimated through the so-called dimension reduction principle, which uses the
fact that the blow-up limit are homogeneous functions; the homogeneity of the
blow-up limits can be obtained through a monotonicity formula.

We will prove four main theorems.

In Theorem 1.2 (Sect. 1.3) we prove a regularity result for minimizers of Fx.
We will obtain the C'* regularity of the regular part of the free boundary through
an improvement-of-flatness approach, while we will only give a weak estimate on
the measure of the singular set. The proof of this theorem is carried out through
Chaps. 2-8.

In Theorem 1.4 (Sect.1.4) we give an estimate on the dimension of the set
of singular points. We will use the Weiss monotonicity formula to obtain the
homogeneity of the blow-up limits and the Federer dimension reduction principle
to estimate the dimension of the singular set. The proof of this theorem is contained
in Chaps. 9 and 10.

In Theorem 1.9 (Sect.1.5) we prove a regularity theorem for functions u
minimizing Fo under the additional measure constraint |€2,| = m. In this case,
we show that there is a Lagrange multiplier A such that u is a critical point for the
functional F,. In this case, the regularity of the free boundary is a more delicate
issue and the Theorems 1.2 and 1.4 cannot be applied directly. The proof requires
the Chaps. 2—10, and also the specific analysis from Chap. 11.

Theorem 1.10 (Sect. 1.6) is dedicated to the epiperimetric inequality (Theo-
rem 12.1) approach to the regularity of the free boundary, which was introduced
in [49]. In particular, we give another proof of the fact that, if u is a local minimizer
of Fa in dimension two, then the (entire) free boundary is C!'* regular. The
proof is based on the epiperimetric inequality from Sect. 12, which replaces the
improvement of flatness argument from Chap.7, but we still use results from
Chaps. 2, 3, 4, 6, 8 and 9. Finally, we notice that the fact that an epiperimetric
inequality in dimension d implies the regularity of the free boundary holds in any
dimension (see Sect. 12.5).

The rest of the introduction is organized as follows. Each of the Sects. 1.3, 1.4, 1.5
and 1.6 is dedicated to one of the main theorems 1.2, 1.4, 1.9 and 1.10. Finally, in
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Sect. 1.7, we briefly discuss some of the results, obtained or just reported in these
notes, which might also be of interest for specialists in the field.

1.3 The Regularity Theorem of Alt and Caffarelli

Alt and Caffarelli pioneered the study of the one-phase free boundaries in [3], where
they proved the following theorem.

Theorem 1.2 (Alt-Caffarelli) Ler D be a bounded open set in R® and u € H'(D)
be a non-negative minimizer of Fp in D. Then u is locally Lipschitz continuous in
D, the set Q,, = {u > 0} is open and the free boundary can be decomposed as:

3 N D = Reg(3) U Sing(3S2,),

where Reg(02,) and Sing(02,) are disjoint sets such that:

(i) Reg(0R2,)isa Cl’“-regular (d — 1)-dimensional surface in D, for some o > 0;
(ii) Sing(0S2,) is a closed set of zero (d — 1)-dimensional Hausdorff measure.

In these notes we will give a proof of this result, which is different from the
original one (see [3]) and is based on recent methods developed in several different
contexts: for instance, the two-phase problem [4, 50], almost-minimizers for the
one-phase problem [19, 50], the one-phase problem for singular operators [18], the
vectorial Bernoulli problems [41, 42], shape optimization problems [9, 46]. We will
also use tools, which were developed after [3] as, for instance, viscosity solutions
[12], [13], [14], [23], [26] and [15], monotonicity formula [52] and epiperimetric
inequalities [29, 49].

In order to make these notes easier to read, we give the sketch of the proof in
the introduction; for the technical details and generalizations, we refer to the results
from the forthcoming chapters.

Proof In the proof of Theorem 1.2 we will use only results from Chaps. 2-8.

Section 2 is dedicated to the existence of minimizers and also to several explicit
examples and preliminary results that will be useful in the forthcoming sections.
The existence of minimizers for fixed boundary datum on 9D is obtained in
Proposition 2.1. In Lemma 2.6 and Lemma 2.7 we give two different proofs of the
fact that the minimizers of F are subharmonic functions. This result has several
important applications. First of all, when we study the local behavior of u and of
the free boundary 9€2,, we may assume a priori that the function u# is bounded.
Moreover, as for a subharmonic function, the limit

lim u(x)dx
=0/ B, (xo)
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exists at every point xg € R, we may also assume that # (which is a priori a Sobolev
function, so defined as a class of equivalence of Lebesgue measurable functions)
is defined pointwise everywhere in D. In particular, we will always work with the
precise representative of u, defined by

u(xg) = lim u(x)dx for every xo € D.
r—0 By (x0)

In particular, the set €2, = {u > 0} and its topological boundary 02, are also well-
defined (for all these results, we refer to Proposition 2.1). Moreover, in Lemma 2.9,
we prove that the topological boundary coincides with the measure-theoretic one in
the following sense:

aQuﬂDz{xeD CIB()N Q| >0 and By (x)N{u =0} >0, Vr>0].

In Chap.3 we prove that the function u : D — R is locally Lipschitz
continuous in D (Theorem 3.1). The main result of this section is more general
(see Theorem 3.2) as for the Lipschitz continuity of # we only use that minimality
of the function with respect to outwards perturbations.

We give three different proofs of the local Lipschitz continuity, inspired by three
different methods, which were developed in the contexts of different free boundary
problems. In Sect. 3.1, we report the original proof of Alt and Caffarelli; in Sect. 3.2,
we give a proof which is inspired from the two-phase problem of Alt-Caffarelli-
Friedman and already proved to be useful in several different contexts, for instance,
for vectorial problems (see [9]) and for operators with drift (see [46]); in Sect. 3.3,
we present the proof of Danielli and Petrosyan, which was originally introduced
to deal with free boundary problems involving the p-Laplacian (see [18]); each of
these subsections can be read independently.

As a consequence of the Lipschitz continuity, we obtain that the set €2, is open.
Now, from the fact that ¥ minimizes F,, we deduce that i is harmonic on £2,,:

Au=0 in €,ND.

In particular, u is C* regular (and analytic) in 2.

In Chap. 4 (see Lemma 4.4 and/or Lemma 4.5), we prove that u is non-degenerate
at the free boundary, that is, there is a constant ¥ > 0 such that the following claim
holds:

If xo € Q, N D, then ||u|l (B, (xp)) = &7, for every r > 0 such that B, (xo) C D.
This means that the Lipschitz estimate from Chap. 3 is optimal at the free boundary.

This is a technical result, which we will use several times throughout the proof of
Theorem 1.2, for instance, in Chaps. 5, 6 and 8.
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In Chap. 5 we use the Lipschitz continuity and the non-degeneracy of « to obtain
several results on the measure-theoretic structure of the free boundary. We will use
this information in Sect. 6.4 to prove that the singular set has zero (d — 1)-Hausdorff
measure. The main results of Chap. 5 are the following:

e In Sect.5.1 (Lemma 5.1), we prove that there is a constant ¢ € (0, 1) such that,
for every xo € D and every radius r small enough,

¢|Br| < €2, N Br(x0)| = (1 —¢)|Br|.

In particular, the free boundary cannot contain points of Lebesgue density 0 or 1.
* In Sect.5.2 (see Proposition 5.3 and Corollary 5.4), we prove that the set €2,
has locally finite perimeter in D. We will use this result in Sect. 6.4 in order to
estimate the dimension of the singular set.
e In Sect.5.3 (Proposition 5.7), we prove that the free boundary 9€2, N D has
locally finite (d — 1)-dimensional Hausdorff measure, which is slightly more
general result than the one from Corollary 5.4.

Section 6 is dedicated to the convergence of the blow-up sequences and the
analysis of the blow-up limits; both being essential for determining the local
structure of the free boundary. The notion of a blow-up is introduced in the
beginning of Chap.6 (see Definition 6.1). For convenience of the reader, we
anticipate that

forevery xo € 9, N D and every infinitesimal sequence (r,),>1,

the sequence of rescalings

1
uxOJn(‘x) = r M()C() +r}’lx)
n

is called a blow-up sequence at xo. The (local) Lipschitz continuity of u : D — R
implies that, up to a subsequence, uy, ,, converges to a globally defined Lipschitz
continuous function uo : R? — R. Any function uq obtained in this way is called a
blow-up limit of u at xo. Notice that the non-degeneracy of u implies that u( cannot
be constantly zero. In Proposition 6.2 we prove that the blow-up limit i is a global
minimizer of 75 (see Sect. 6.1) and that the free boundaries 0{uy, ,, > 0} converge
to d{up > 0} locally in the Hausdorff distance (Sect. 6.2).

In Sect. 6.4, we decompose the free boundary into regular and singular parts (see
Definition 6.10), Reg(3€2,) and Sing(02,) := (02, N D) \ Reg(9L2,). Precisely,
we say that a point xo € 92, N D is regular, if there is a blow-up limit g, of u at
x0, of the form

up(x) = VA (x -v)4 (1.5)

for some unit vector v. We then prove (see Lemma 6.11) that the regular part
Reg(9£2,) contains the reduced boundary 9*€2,, N D. This is a consequence to the
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following two facts: first, at points of the reduced boundary xo € 9%, N D, the
support of the blow-up limits is precisely a half-space {x : x - v > 0}; second, if
uo is a global solution supported on a half-space, then it has the form (1.5). This
implies that ’H,d_l(Sing(BQM)) = 0. In fact, this is an immediate consequence
of the inclusion Reg(9€2,) C 9*Q, and a well-known theorem of Federer, which
states that if €2 is a set of finite perimeter, then

Hi7ae\ (@P U@ uar) =0,

and of the fact that 92 N (Q“) U Q(O)) = () (see Sect.5.1). In particular, this
completes the proof of claim (ii) of Theorem 1.2.

Chapters 7 and 8 are dedicated to the regularity of Reg(9<2,) (Theorem 1.2
(1)). We will use the theory presented in this sections both for Theorem 1.2 and
Theorem 1.9.

In Sect.7.1 (Proposition 7.1) we use the examples of radial solutions from
Sect. 2.4 (Propositions 2.15 and 2.16) as test functions to prove that the minimizer
u satisfies the following optimality condition in viscosity sense:

Vu| =~A on 99Q,ND.

The Sects.7.2,7.3 and 7.4 are dedicated to the proof of the improvement-of-flatness
theorem of De Silva [23] (Theorem 7.4), which holds for viscosity solutions. We
notice that in the two-dimensional case (Theorem 1.10) all the result from this
section will be replaced by the epiperimetric inequality approach from Chap. 12.

In Chap.8 we show how the improvement of flatness implies the regularity of
the free boundary. Precisely, in Sect. 8.1 we prove that the improvement of flatness
(Condition 8.3) implies the uniqueness of the blow-up limit u,, at every point xq
of the free boundary. Moreover, it provides us with a rate of convergence of the
blow-up sequence (Lemma 8.4). Finally, in Sect. 8.2, we show how the uniqueness
of the blow-up limit and the rate of convergence of the blow-up sequence imply the
C 1 regularity of the free boundary (Proposition 8.6), which concludes the proof of
Theorem 1.2. O

Remark 1.3 The proof of the regularity of Reg(d€2,) is based on an improvement-
of-flatness argument and is due to De Silva (see [23]). Just as the original proof of
Alt and Caffarelli it is based on comparison arguments and does not make use of
any type of monotonicity formula. In order to keep the original spirit of [3], we do
not use monotonicity formulas in the proof of Theorem 1.2 (Chaps. 2-8). On the
other hand, without a monotonicity formula, one can prove that the singular set has
zero (d — 1)-dimensional Hausdorff measure. Notice that, in [3] it was also shown
that the singular set is empty in dimension two. We postpone this result to Sect. 9.4
since it is a trivial consequence of the monotonicity formula of Weiss. We also notice
that the proof of Theorem 1.2 is essentially self-contained and requires only basic
knowledge on Sobolev spaces and elliptic PDEs.
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1.4 The Dimension of the Singular Set

In Theorem 1.2, we show that the singular part of the free boundary Sing(9<2,) has
the following properties:

e itis aclosed subset of the free boundary 0€2, N D;
* it has zero Hausdorff measure, that is, 9! (S ing(d Qu)) = 0; in particular, this
implies that the (Hausdorff) dimension of Sing(9€2,) is at mostd — 1.

In [52], using a monotonicity formula and the Federer’s dimension reduction
principle, Weiss proved the following result.

Theorem 1.4 (Weiss) Let D be a bounded open set in R¢ and u € H'(D) be a
non-negative minimizer of Fp in D. Let Reg(0<2,) and Sing(0<2,) be the regular
and singular sets from Theorem 1.2. There exists a critical dimension d* (see
Definition 1.5) such that the following holds.

(i) If d < d*, then Sing(9K2,) is empty.
(ii) If d = d*, then the singular set Sing(9S2,) is a discrete (locally finite) set of
isolated points in D.
(iii) If d > d*, then the singular set Sing(3S2,) is a closed set of Hausdorff
dimension d — d*, that is,

Hd—d*Jre(aQu ND)=0 forevery ¢¢€(0,1).

Definition 1.5 (Definition of d*) We will denote by d* the smallest dimension d
such that there exists a function z : R¢ — R with the following properties:

e 7 is non-negative and one-homogeneous;
* zis alocal minimizer of F, in RY;
» the free boundary 32, is not a (d — 1)-dimensional C!-regular manifold in R¢.

Remark 1.6 The value of d* does not depend on A > 0. Without loss of generality,
we may take A = 1.

Remark 1.7 (On the Critical Dimension d*) In this notes, we prove that d* > 3
(see Sect.9.4). Already this is a better estimate (on the dimension of the singular
set) with respect to the one from Theorem 1.2 as it means that

HI3HOQ, N D) =0 forevery ¢ e (0,1).

In fact, it is now known that

d*=35,6, or7.
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Fig. 1.3 The free boundary
(in red) of the
one-homogeneous global
solution u : R” — R of De
Silva and Jerison

Precisely, Caffarelli, Jerison and Kenig [16] proved that there are no singular one-
homogeneous global minimizers in R3 (thus, d* > 4). Later, Jerison and Savin [37]
proved the same result in R* (so, d* > 5). On the other hand, De Silva and Jerison
[24] gave an explicit example (see Fig. 1.3) of a singular free boundary in dimension
seven (which means that d* < 7).

In order to prove Theorem 1.4 we will need most of the theory developed for the
proof of Theorem 1.2. For instance, the Lipschitz continuity and the non-degeneracy
of the minimizers (Chaps.3 and 4), the convergence of the blow-up sequences
(Chap. 6) and the epsilon regularity theorem (Theorem 8.1 from Chap. 8). On the
other hand, we will not need the results from Chap. 5.

The main results that we will need for the proof of Theorem 1.4 are contained
in Chaps.9 and 10. Chapter 9 is dedicated to the Weiss monotonicity formula
from [52], which we prove both for minimizing and stationary free boundaries.
Chapter 10 is dedicated to the Federer’s dimension reduction principle (see [32]).
Even if the results of this section concern the one-phase free boundaries, the
underlying principle is universal and can be applied to numerous other problems;
for instance, in geometric analysis (see [32] and [48]) or to other free boundary
problems [42].

Proof of Theorem 1.4 We will first prove that all the blow-up limits of u (at
any point of the free boundary) are one-homogeneous global minimizers of Fj.
The global minimality (see Definition 2.12) of the blow-up limits follows from
Proposition 6.2. In order to prove the one-homogeneity of the blow-up limits
(Proposition 9.12) we will use the Weiss’ boundary adjusted energy, defined for
any function ¢ € H'(B)) as

Wa () :=/ IVol* dx —/ o*dH + Allp > 0} N By
B dB
Let now xg € 32, N D and uy, , be the usual rescaling (blow-up sequence)

1
U xo(X) = . u(xo +rx).
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If we choose » > 0 small enough, then the function u, - is defined on B; and so, we
can compute the Weiss energy Wa (ux,,-). In Lemma 9.2 we compute the derivative
of Wh (uy,,-) with respect to r, from which we deduce that (see Proposition 9.4):

* the function 7 > Wy (ux,,-) is monotone increasing in r;
e and is constant on an interval of the form (0, R), if and only if, u is one-
homogeneous in the ball B (x¢).

In particular, the monotonicity of r + Wy (1, ) and the Lipschitz continuity of u
(which gives a lower bound on Wy (uy, ) imply that the limit

L := lim Wa (ux,,r),
r—0

exists and is finite.
Let now v be a blow-up limit of u at xo and (r,), be an infinitesimal sequence
such that

v= lim u .
n—soo  Y07n

Let s > 0 be fixed. Then, the blow-up sequence uy,s,, = Sinu(xo + srpx)
converges locally uniformly to the rescaling vs(x) := iv(sx) of the blow-up v.

Now, Proposition 6.2 implies that:

* the sequence uy, s, converges to vy strongly in H Y(B1);
* the sequence of characteristic functions 1, ,, ~0) converges to the characteris-

tic function 1{y,~0) in L! (By).

Thus, for every s > 0, we have

L = lim Wy (”xo,r) = lim W (uxo,sr,,) = Wa(vs),
r—0 n—o0o

and so the function s — Wy (vy) is constant in s. Applying again Proposition 9.4,
we get that v is one-homogeneous.

Theorem 1.4 now follows by the more general result proved in Proposition 10.13,
which can be applied to u since we have the epsilon regularity theorem (Theo-
rem 8.1), the non-degeneracy of u (see Chap.4), the strong convergence of the
blow-up sequences (Proposition 6.2) and the homogeneity of the blow-up limits,
which we proved above. O

Remark 1.8 Finally, we notice that an even better result was recently obtained by
Edelen and Engelstein (see [27]). Using the powerful method of Naber and Valtorta
(see [44]), they proved that the singular set Sing(9€2,) has locally finite (d — d*)—
Hausdorff measure, which in particular implies claim (ii) of Theorem 1.4.
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1.5 Regularity of the Free Boundary for Measure
Constrained Minimizers

Let D C R? be a smooth and connected bounded open set, m € (0,|D|) and
g : D — R be a given non-negative function in H' (D). This section is dedicated to
the following variational minimization problem with measure constraint

min {Fo(v, D) : v e H(D), v—g e Hy(D), || = m}, (1.6)
which means

Find u € H'(D) such that u — g € H}(D), || = m and

Folu, D) < Fo(v, D), for every v € H' (D) such that v — g € H} (D) and || = m.

This is the constrained version of the variational problem from Theorems 1.2 and
1.4. We notice that if u# is a minimizer of F in D, for some A > 0, then
u is (obviously) a solution to the minimization problem (1.6) with m = |,].
Conversely, if u is a solution to the variational problem (1.6), then (as we will show
in Proposition 11.2) there is a Lagrange multiplier A > 0, depending on u, such
that # formally satisfies the optimality condition

Au=0 in Q. |Vul=+A on Q. ND, (1.7)

in the sense that u is stationary for 7 in D (see Definition 9.7). Unfortunately, this
does not imply that u is a minimizer of F in D. The free boundary regularity theory
for the solutions to (1.6) is more involved since the competitors used to prove the
Lipschitz continuity (Chap. 3), non-degeneracy (Chap.4), improvement of flatness
(Chap. 7) and the monotonicity formula (Proposition 9.4) do not satisfy the measure
constraint in (1.6).

The free boundary regularity for solutions of (1.6) was first obtained by Aguilera,
Alt and Caffarelli in [1]. Our approach is different and strongly relies on the Weiss’
monotonicity formula, from which we will deduce both:

* the optimality condition in (1.7) in viscosity sense, which in turn allows to apply
the De Silva epsilon regularity theorem (Theorem 8.1) and thus to obtain the
C'“_regularity of Reg(9,) (see Chap. 8);

* the estimate of the dimension of the singular set, which is a consequence of
the homogeneity of the blow-up limits and the Federer’s dimension reduction
(Chap. 10).

Our approach is inspired by the theory developed in [46] and contains several
ideas from [41] and the work of Briancon [5] and Briangon-Lamboley [6]. Our main
result is the following.
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Theorem 1.9 (Regularity of the Measure Constrained Minimizers) Let D be a
connected smooth bounded open set in R%, m € (0,|D|) be a positive real constant
and g : D — R be a given non-negative function in H'(D). Then, there is a
solution to the problem (1.6). Moreover, every solution u is non-negative and locally
Lipschitz continuous in D, the set 2, = {u > 0} is open and the free boundary can
be decomposed as:

3 N D = Reg(3) U Sing(3S2,),

where Reg(02,) and Sing(9K2,) are disjoint sets such that:

(i) the regular part Reg(3S2,) is a C'*-regular (d — 1)-dimensional manifold in
D, for some o > 0;

(ii) the singular part Sing(dS2,) is a closed set of Hausdorff dimension d — d*
(where the critical dimension d* is again given by Definition 1.5), that is,

HI=HBQ, N D) =0 forevery &€ (0,1).

Moreover, if d < d*, then Sing(9K2,) is empty, and if d = d*, then Sing(d0R2,) is a
countable discrete (locally finite) set of points in D.

Proof of Theorem 1.4 We prove the existence of a solution u : D — R in
Sect. 11.1, where we also show that u is harmonic in €2, in the following sense

/|Vu|2dx 5/ |Vu>dx forevery ve H'(D)
D D
such that u—veH(}(D) and v=0 on D\ Q.

In particular, applying Lemma 2.7, we get that u is subharmonic in D. Thus, we can
suppose that u is defined at every point of D and that

u(xo) :=/ udH4! =/ udx for every xo € D.
9By (x0) Br(x0)

Moreover, the subharmonicity of u implies that it is locally bounded so, from now
on, without loss of generality, we will assume that u € L° (D). Finally, we notice
that the set €2, is defined everywhere in D (not just up to a set of zero Lebesgue
measure) and its topological boundary coincides with the measure-theoretic one
(see Lemma 2.9). Precisely, this means that

xg € 082, if and only if 0 < |, NBy(x0)| <|By| forevery r > 0.
In order to prove the Lipschitz continuity of # and the regularity of the free

boundary 9€2, N D we proceed in several steps. Notice that we cannot apply directly
the results from Chaps.3-10 since it is not a priori known if the solution u is a
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local minimizer of F for some A > 0, that is, one cannot remove the constraint
in (1.6) by adding a Lagrange multiplier A directly in the functional. In fact, it
is only possible to prove the existence of A for which the solution u of (1.6) is
stationary but not minimal for F . From this, we will deduce that u satisfies a quasi-
minimality condition, which will allow to proceed as in the proof of Theorems 1.2
and 1.4.

Step 1 Existence of a Lagrange multiplier. In Sect. 11.2, we show that there exists
A > 0 such that u is stationary for the functional Fy, that is,

0Fpa(u,D)[§]=0 forevery & € CSO(D;[R”I),

where the first variation d.Fx (u, D)[§] of F in the direction of the (compactly
supported) vector field £ is defined in (9.6). The existence of a non-negative
Lagrange multiplier can be obtained by a standard variational argument (see
Proposition 11.2 and its proof in Sect. 11.2, after Lemma 11.3). The strict positivity
of A is a non-trivial question which requires some fine analysis of the functions,
which are stationary for F¢; we prove it in Sect. 11.3 using the Almgren’s frequency
function and following the proof of an analogous result from [46], which is a (small
with respect to the original result) improvement of the unique continuation principle
of Garofalo-Lin [34].

Step 2 Almost-minimality of u. Let xo € 9, N D. In Sect.11.5 (Proposi-
tion 11.10), we prove that u is an almost minimizer of 75 (A is the Lagrange
multiplier from the previous step) in a neighborhood of xg in the following sense.
There exists a ball B, centered in xp, in which u satisfies the following almost-
minimality condition:

For every ¢ > 0, there is r > 0 such that, for every ball B,(yy) C B, u satisfies
the following optimality conditions in B, (yo):

v—u e H} (B, (),
(2] < [2].

Fate(u, D) < Fpqe(v, D) forevery v € HI(D) such that

(1.8)

v—u € Hi(B,(y)),
[2,] > [€2,].

Fr—e(u,D) < Fpa—_e(v, D) forevery v € HI(D) such that

(1.9)

The proof of Proposition 11.10 follows step-by-step the proof of the analogous
result from [46] and is based on the method of Briancon [5]. Once we have
Proposition 11.10, we can proceed as in Theorems 1.2 and 1.4.



1.5 Regularity of the Free Boundary for Measure Constrained Minimizers 17

Step 3 Lipschitz continuity and non-degeneracy of u. In order to prove the (local)
Lipschitz continuity of u, we notice that (1.8) leads to an outwards optimality
condition. In fact, fixed ¢ > 0 and xg € D, there is a ball B, (xg) such that:

i v —u € Hy (B (x0)),
Fat+eW, D) < Fpye(v, D) forevery v € H (D) such that
Q, C Q.
(1.10)

Now, the Lipschitz continuity of u# follows by (1.10) and Theorem 3.2.

On the other hand, for the non-degeneracy of u, we notice that, (1.9) implies the
following inwards optimality condition:
Fixed ¢ > 0 and xo € D, there is a ball B, (xq) such that:

v —u € Hj(B,(x0)),

Fr—e(u,D) < Fpa_e(v, D) forevery v € Hl(D) such that
Q, D Qy.

(1.11)

The non-degeneracy of u follows by (1.11) and the results from Chap.4 (one can
apply both Lemma 4.4 and 4.5).

As a consequence of the Lipschitz continuity and the non-degeneracy of u, we
obtain the following results:

* , satisfies interior and exterior density estimates (Lemma 5.1);

* Q, haslocally finite perimeter in D (Proposition 5.3);

e 0€2, has locally finite (d — 1)-dimensional Hausdorff measure in D (Proposi-
tion 5.7).

Step 4. Convergence of the blow-up sequences and analysis of the blow-up limits.
We recall that, for any xp € D and any r > 0, the function

1
”xo,r(x) = r”(x() +rx),

is well-defined on the set i(—xo + D) and, in particular, on the ball of radius

idist (x0,dD) centered in zero. By the Lipschitz continuity of u#, we notice that
for any xp € 92, N D and any R > 0 the family of functions

I
s 2 0<r < distio.0D)],

is equicontinuous and uniformly bounded on the ball Bz C R?. This implies that for

every sequence Uy, ,,, with xo € 92, N D and lim r, = 0, there are a subsequence
n—>oo

(still denoted by (ux,r, Jnen) and a (Lipschitz) function ug : RY — R such that,
for every fixed R > 0, the sequence uy,,, converges uniformly to uo in the ball



18 1 Introduction and Main Results

Bpr. We say that ug is a blow-up limit of u at xo and uy,, is a blow-up sequence.
Recall that u is Lipschitz continuous, non-degenerate, harmonic in €2, and satisfies
the following quasi-minimality condition, which is a direct consequence of (1.8)
and (1.9). For every xo € €2, N D, there are ry > 0 and a continuous non-negative
function ¢ : [0,7] — R, vanishing in zero and such that

Fa(u,D) <Fp(v,D)+e(r)|B:| forevery 0<r <ry

andevery v € HI(D) suchthat u —v e Ho1 (B, (x0)).

Let uy, ., be a blow-up sequence converging locally uniformly to the blow-up limit
uo. By Proposition 6.2 and the results of Sect. 6.2 we have that, for every R > 0,

(i) the sequence uy,, , converges to ug strongly in H Y(BR);
(ii) the sequence of characteristic functions 1g, converges to lg, in LI(BR),
where

Qp = {uxyr, >0} and Qo :={up > 0};

(iii) the sequence of sets €2, converges locally Hausdorff in Bg to 2p;

Moreover, using again Proposition 6.2, we get that every blow-up limit u¢ of u is
a global minimizer of FA. Next, since u is a critical point of F,, we can apply
Lemma 9.11 obtaining that every blow-up limit of u( is one-homogeneous. We
summarize this in the following statement, with which we conclude this step of
the proof:

Every blow-up of « is a one-homogeneous global minimizer of Fx. (1.12)

Step 5. Optimality condition on the free boundary. Using the convergence of the
blow-up sequences (proved in the previous step) and the structure of the blow-up
limits (claim (1.12)), we can apply Proposition 9.18. Thus, u is a viscosity solution
of

Au=0 in Vu| =~A on 99Q,ND. (1.13)

in viscosity sense (see Definition 7.6).

Step 6. Decomposition of the free boundary into a regular and a singular parts. As
in the proof of Theorem 1.2, we say that xo € Reg(92,) if xo € 92, N D and there
exists a blow-up limit ug of u (at xp), for which there is a unit vector v € R4 such
that

up(x) = VA (x-v); forevery x e R,

The singular part of the free boundary is defined as Sing(9<2,) := (02, N D) \
Reg(092,). The Cl""-regularity of Reg(9£2,) now follows by Theorem 8.1 and the
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fact that u is a solution of (1.13). The estimate on the dimension of the singular set
(Theorem 1.9 (ii)) now follows directly from Proposition 10.13. |

1.6 An Epiperimetric Inequality Approach to the Regularity
of the Free Boundary in Dimension Two

This section is dedicated to a recent alternative approach to the regularity of the
free boundaries based on the so-called epiperimetric inequality, which was first
introduced by Reifenberg in the contact of area-minimizing surfaces, but in the
context of the one-phase problem, it was first proved in [49]. We restrict our
attention to the two-dimensional case since the epiperimetric inequality is (for
now) known to hold only in dimension two (see Theorem 12.1 and Theorem 12.3).
Precisely, we will give an alternative proof to the following result.

Theorem 1.10 (Regularity of the Free Boundary in Dimension Two) Let D be a
bounded open set in R?. Letu : D — R be a non-negative function and a minimizer
of Fa in D. Then:

(i) u is locally Lipschitz continuous in D and the set 2, = {u > 0} is open;
(ii) the free boundary 3, N D is C'*-regular.

Proof of Theorem 1.4 We first notice that the Lipschitz continuity of u follows by
Theorem 3.1. In what follows, without loss of generality we assume that A = 1. By
the non-degeneracy of the solutions (Chap.4) and the convergence of the blow-up
sequences (Chap. 6, Proposition 6.2), we have that, for every free boundary point
xo € 02, and every infinitesimal sequence r, — 0, there exists a subsequence of
1y (still denoted by 7,,) such that uy, ,, converges locally uniformly to a non-trivial
blow-up limit ug : R — R. Moreover,

* the sequence uy, ,, converges to ug strongly in H Y(B1);
* the sequence of characteristic functions 1, ,, ~o0j converge to Ly,,>o) in LY(By).

Next, we notice that by the Weiss monotonicity formula (Proposition 9.4) the
function r — Wj(uy,,) is monotone increasing in r and the blow-up limit ug
is one-homogeneous global minimizer of F| in R? (see Lemma 9.10). Thus, by
Proposition 9.13, we obtain that u( is a half-plane solution, that is

uo(x) = (x - v)y,

for some unit vector v € R%. Now, the strong convergence of the blow-up sequence
and the monotonicity formula (Proposition 9.4) imply that

}2{) Wi (uxo,r) = }E}}) Wi (uxo,r) = nli)ngo Wi (uxo,r,,) = Wi(uo) = 7
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In conclusion, we have that:

* the energy
b4
Ew) :=Wiw) — _,
2
is non-negative along any blow-up sequence uy, » with xo € 92, N D,
b4
Euxyr) = Wiy, ) — ) >0 forevery r > 0;

* the free boundary is flat, that is, for every xo € 92, N D and every ¢ > 0, there
exists r > 0 and v € 0 By, such that:

(x-v—8)y Uy, (x) <(x-v+e)y forevery x e By.

Now, by the epiperimetric inequality (Theorem 12.1) and Proposition 12.13, we
obtain that, in a neighborhood of x¢, 8Q, is the graph of a C!* regular function.
O

1.7 Further Results

The main objective of these notes is to introduce the reader to the free boundary
regularity theory and to provide a complete and self-contained proof of the
regularity of the one-phase free boundaries. In this perspective, our main results
are Theorems 1.2, 1.4, 1.9 and 1.10. On the other hand, in these notes, we also
prove several other results, which might be interesting for specialists and non. Here
is a list of results, by section, which are worth to be mentioned in this context.

Chapter 2 In Proposition 2.10 we give a direct proof to the fact that the half-plane
solutions are global minimizers of F,. This is well-known, as the result can be
obtained from the following facts:

— the blow-up limits of a solution u at points of the reduced boundary 9*<2,, are
half-plane solutions (Lemma 6.11);

— the reduced boundary 9*$2, is non-empty as €2, is a set of finite perimeter
(Proposition 5.3) and for sets of finite perimeter we have the identity Per($2,) =
HA=1(9*Q,) (see [43]).

In Lemmas 2.15 and 2.16 we prove the existence and the uniqueness of two one-
phase free boundary problems. Moreover, we prove that the solutions are radially
symmetric and we write them explicitly.
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Chapters 3 and 4 In Proposition 3.15 and Lemma 4.5, we present the methods
of Danielli-Petrosyan ([18], for the Lipschitz continuity) and David-Toro ([19], for
the non-degeneracy) in the simplified context of the classical one-phase Bernoulli
problem. Both methods are very robust and can be applied to more general free
boundary problems.

Chapter 5 In Proposition 5.3 we prove that if u is a minimizer of F, in a set
D, then 2, has locally finite De Giorgi perimeter in D. The method is a localized
version of a global estimate by Bucur (see [8]), on the perimeter of the optimal
shapes for the eigenvalues of the Dirichlet Laplacian.

In Proposition 5.7 we prove that, if # is a minimizer of F, in a set D, then
the H?~! Hausdorff measure of the free boundary €2, is locally finite in D. The
method is very general and can be applied to many different free boundary problems,
for instance, to the vectorial problem (see [42]).

Chapter 6 In Proposition 6.2 we give the detailed proof of the strong convergence
of the blow-up sequences, which is often omitted in the literature. Moreover, we
state and prove a general result (Lemma 6.3) which can be applied to different free
boundary and shape optimization problems.

Chapter 7 In Proposition 7.1 we prove that if « is a minimizer of F, in D, then it
is satisfies the optimality condition

|Vu| =+/A on 8Q,ND,

in viscosity sense (Definition 7.6). This result is well-known, but in the literature the
proof is usually omitted. Our proof of Proposition 7.1 is based on a comparison with
the radial solutions constructed in Lemmas 2.15 and 2.16. We give another proof of
this fact in Chap. 9.

Chapter 8 In this section we give a detailed proof of the fact that the improvement
of flatness (Condition 8.3) implies the C'* regularity of the free boundary (see
Lemma 8.4 and Proposition 8.6). In particular, in Sect. 8.2, we explain the relation
between the uniqueness of the blow-up limits, the rate of convergence of the blow-
up sequences, and the regularity of the free boundary (Proposition 8.6).

Chapter 9 In Sect.9.5, we give another proof of the fact that, if u is a local
minimizer of F in D, then it satisfies the optimality condition

|Vu| =+/A on 8Q,ND,

in viscosity sense (see also Proposition 7.1). The method that we propose is based
on the Weiss monotonicity formula and is very robust, for instance, it applies to
general operators (see [46]) and to vectorial problems (see [41]). This method was
first introduced in [41].
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Chapter 10 This section is an introduction to the Federer’s Dimension Reduction
Principle in the context of free boundary problems. Our main result (Proposi-
tion 10.13) is an estimate on the dimension of the singular set under general
conditions.

Chapter 11 In Sect.11.3 we combine the unique continuation principle of
Garofalo-Lin [34] with the Faber-Krahn-type inequality from [10] to prove a strong
unique continuation result for stationary functions of the Dirichlet energy Fo (see
Proposition 9.19 and [46]).

Chapter 12 This section is dedicated to the epiperimetric inequality (Theo-
rem 12.1) that first appeared in [49]. We give here a different proof that inspired the
approach to the epiperimetric inequality at the singular points in higher dimension
(see [29)).

In Lemma 12.14 we prove that the epiperimetric inequality at the flat free
boundary points in any dimension (Condition 12.12) implies the regularity of the
free boundary. The proof is similar to the one in [49], but has to deal with the
closeness condition in the epiperimetric inequality (see Condition 12.12), precisely
as in [29] and [28].

In Sect.12.6 we prove comparison results for minimizers of F, (Proposi-
tion 12.19 and Lemma 12.22) and for viscosity solutions (Lemma 12.21).

In Theorem 12.3 we prove an epiperimetric inequality in dimension two without
any specific assumption on the trace on the sphere. This results covers both
Theorem 12.1 and the main theorem of [49]. Both Theorem 12.3 and Theorem 12.1
are new results.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 2 )
Existence of Solutions, Qualitative fleckir
Properties and Examples

In this section, we prove that local minimizers of the functional F, do exist
(Proposition 2.1) and we give several important examples of local minimizers that
can be computed explicitly (Proposition 2.10, Lemmas 2.15 and 2.16).

Proposition 2.1 Let A > 0, D C R? be a bounded open set and the function
g € HY (D) be fixed and such that g > 0 in D. Then, there exists a solution to the
variational problem

min {Fau,D) : u € H' (D), u — g € Hj(D)}. (2.1

Moreover; every solution u of (2.1) has the following properties:

(i) u is non-negative in D;
(ii) u is locally bounded in D;
(iii) there is a function u : D — R such that u > 0 and it = u almost everywhere
in D and

1
i (xo) = lim u(x)dx for every xo € D.
r—0 |Br| JB, (xy)

Remark 2.2 From now on, we will identify any solution u of (2.1) with its
representative i; for the sake of simplicity, we will always write u instead of u.

The rest of the section is organized as follows. In Sect. 2.1 we discuss some of
the properties (scaling and truncation) of the function F . Section 2.2 is dedicated
to the proof of Proposition 2.1. In Sects. 2.3 and 2.4, we discuss several examples of
local minimizers, which we will find application in the next sections.
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2.1 Properties of the Functional 7

In this section, we discuss several basic properties of the functional
(A, 1, D) > Fa(u, D).

We give the precise statements in Lemmas 2.3, 2.4 and 2.5.
Lemma 2.3 (Scaling) Ler Q2 C R? be an open set and u € H'(Q).

(a) Let xo € R, r > 0and
1 Yy — X0
Uyy,r (X) 1= ru(xo~|—rx) and Qyor = 31X = - eR: yeQy.

Then uy,, € Hl(QxO,,) and
Falttrgrs Qo) =1~ Fa(u, Q).
In particular, if u is a minimizer of Fp in Q, then uy, , is a minimizer of Fx in
Qo
(b) Foreveryt > 0, we have
Fop(tu, Q) =12 Fp(u, Q).

In particular, if u is a minimizer of Fp in 2, then tu is a minimizer of F2
in Q.

Proof The proof is a straightforward computation. O

Lemma 2.4 (Truncation) Ler Q C RY be an open set and u € H'(Q). Then,

Fa(u, Q) — FA(OV u, ) =/ [Vul? dx.
{u<0}NQ

Moreover, for every t > 0, we have

Faw, Q) — Falunt,Q) =/ [Vu|*dx.
{u>t}NQ

Proof The proof follows by the definition of F and the identities

V(unt) =1y« Vu and VwuVv0) = 1y Vu.



2.2 Proof of Proposition 2.1 25

Lemma 2.5 (Comparison) Let Q C R? be an open set and u,v € HY(Q) be two
given functions. Then we have

Fau v, Q2)+ Falunv, Q) = Fp(u, Q)+ Fa(v, Q).
Proof The proof is a straightforward computation. In fact, we have
Fauv o, Q)+ FaluAv, Q)

=/ IV Vv o)2dx + Alfuvv > 0}NEQ
Q
+/ IV Av)2dx + Al{u Av > 0}N QY
Q

:/ |Vu|2dx+/ Vo2 dx + A|(fu > 0} U {v > 0}) N Q|
QN{u>v} QN{u<v}

+/ |Vv|2dx+/ |Vu|2dx+A|{u>0}ﬂ{v>0}ﬂQ|
QN{u>v} QN{u<v}

=[ |Vul?>dx + Al{u >0}rm|+f IVu|?dx + Al{v > 0} N Q|
Q Q
= Fa(u, Q) + Fa(v, ),

which concludes the proof. O

2.2 Proof of Proposition 2.1

In this section we prove Proposition 2.1. We will first show that the minimizers
of F are subharmonic functions (Lemmas 2.6 and 2.7) and then we will deduce
the claim (iii) of Proposition 2.1 (see Remark 2.2). At the end of this section, we
will complete the proof of Proposition 2.1 by proving that there is a solution to the
variational problem (2.1). Finally, in Lemma 2.9, we discuss the definition of the
free boundary, which can be (equivalently) defined both as the topological boundary
of the representative i (of the functionu € H (D)) defined in Proposition 2.1 and as
the measure-theoretic boundary of €2,,, which does not depend on the representative
of u and is defined as the set of points xo € D for which

|Br(x0) N2, >0 and [, \ Br(xg)| >0 forevery r > 0.

Lemma 2.6 (The Minimizers of 74 Are Subharmonic Functions) Ler D C R
be a bounded open set and the non-negative function u € H'(D) be a minimizer of
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Fa in D. Then u is subharmonic, Au > 0, on D in sense of distributions:
/ Vu-Vedx <0 forevery ¢ € CZ(D) suchthat ¢ >0 on D.
D

Proof Let ¢ € C°(D) be a given non-negative function. Suppose that ¢+ > 0 and
v = u — t¢. Then we have that vy < u. In particular, integrating on the support of
¢ we have

}'A(u,D)zf |Vul>dx + Al{u > 0} N D|
D
5[ |Vv+|2dx+A|{v+>O}ﬂD|§/ IVvl?dx+Al{u > 0} N D|.
D D
This implies that

/|Vu|2dx§/ |V(u—t<p)|2dx=/ |Vu|2dx—2t/ Vu~V<pdx+t2/ [Vo|? dx,
D D D D D

and the claim follows by taking the (right) derivative at t = 0. O

There is also a more general result, which applies not only to minimizers, but
also to generic non-negative functions, which are harmonic where they are strictly
positive. The proof can also be found in the book of Henrot and Pierre [36].

Lemma 2.7 (The Minimizers of 75 Are Subharmonic Functions IT) Let D C
R? be a bounded open set and the non-negative function u € H'(D) be harmonic
in the set Q, := {u > 0}, that is

/|Vu|2dx 5/ |Vv|2dx for every veHl(D)
D D
such that u—veHol(D) and v=0 on D)\ .

Then u is subharmonic, Au > 0, on D in sense of distributions.

Proof Let ¢ € C°(D) be a given non-negative function and let p, : R — R be
given by

0 ifx<s/2,
1
pe(x) = 8(2x —eg) ifx €leg/2,¢],

1 ifx>e¢.
Since u; := u 4+t pe(u)¢ is a competitor for u and for # € R small enough

{u >0} ={u; >0},
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we have that for ¢ small enough

/|W|2dx5/ |Vu,|* dx,
D D

which gives
/ pe(W)Vu - Vo dx S[ Pé(u)IVulzcﬁdX-l-/ pe)Vu - Vo dx
D D b
=/ Vi V(pe@)g)dx =0,
D

where the last inequality is due to the fact that p, is increasing. Now since pg(u)
converges to 1,0y, as ¢ — 0, we get that

/ Vu-Védx <0,
D

which concludes the proof. O

Remark 2.8 (Pointwise Definition of a Subharmonic Function) Let D be an open
setand u € H l(D) be a subharmonic function. Then, for every xo € D, we have
that

the functions 7 / wdH' and r— udx are non-decreasing.
9By (xo)

By (x0)
(2.2)

As a consequence of (2.2), we obtain that:

e uislocally bounded, u € LS (D);

loc
e wedefineu : D — Ras

u(xp) ;= lim u(x)dx forevery xge€ D.
r=0%JB, (x0)

Proof of Proposition 2.1 We first prove that a solution exists. Let u,, € H'(D) be
a minimizing sequence such thatu,, — g € HO1 (D) and

Fa(un, D) < Fa(g, D)  forevery n>1.

By Lemma 2.4 we may assume that, for every n > 1, u, > 0 on D. For simplicity,

we assume that d > 2 (the case d = 2 is analogous) and we set 2* = d_2 Then,
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we have

i = 81, = Ca [ 90 = 0P =26, [ 19uiPar+ [ 19aiar)
D D D
< 2C4(Fa(un, D) + Fa(g, D)) < 4CqFa(g. D).

Now, we estimate,
litn = 81172y < 1t — 8 # O} uw — 8170

=(ltun > 0} DI +1(g > 0) N DI 4CyFa (g, D) <8C4A~4 Fa(g. D) 4",
which implies that the sequence u,, is uniformly bounded in H'(D). Then, up to a
subsequence, we may assume that u,, converges weakly in H'(D) and strongly in

L%(D) to a function u € H'(D). Now, the semi-continuity of the H ! norm (with
respect to the weak H'! convergence) gives that

/|W|2dx5hminf/ |Vin|? dx.
D n— o0 D

On the other hand, passing again to a subsequence, we get that u, converges
pointwise almost everywhere to u. This implies that

Lso) < ljlrggfﬂ{up()},
and so,
{u >0}ND| < linigfl{un > 0}N D|,
which finally gives that
Falu, D) = liminf P4 (up, D),

and so, u is a solution to (2.1). Now, we notice that Lemma 2.4 implies that u > 0
on D. Lemma 2.6 and Remark 2.8 give the claims (ii) and (iii). |

We conclude this subsection with the following lemma, where we show that the
set €2, has a topological boundary that coincides with the measure theoretic one.
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Lemma 2.9 (Topological and Measure Theoretic Free Boundaries) Ler D C R?
be a bounded open set and u be a local minimizer of Fy in the open set D C R? or,
more generally, letu : D — R, u € H'(D), be a non-negative function satisfying

(a) u is harmonic in Q, = {u > 0} in the sense that
/ |Vu|2 dx 5/ |Vv|2 dx forevery ve€ Hl(D)
D D
such that u—v € HOI(D) and v=0 on D\Q,.

(b) u is defined everywhere in D and

u(xg) := lim u(x)dx for every xo € D.
r—=0% J B, (x0)

Then, the topological boundary of 2,, coincides with the measure-theoretic one:
Q. ND = {x €D : B(x)NQ| >0 and |B(x)N{u=0}>0,Vr> 0].
Proof We first notice that the following inclusion holds :

9Q,ND > {x €D : [B(x)NQ| >0 and |B (x)N{u=0}>0,Vr> 0}.

In order to prove the opposite inclusion we show that

(1) if |B N {u = 0}] = 0, then u is harmonic in B, and B, N {u = 0} = .
(i) if |By N{u > 0} =0, thenu =0in B,,i.e. B, N {u > 0} = @.

In order to prove (i) we notice that u is necessarily harmonic in B, since otherwise
we can contradict the minimality of u by replacing it with the harmonic function
with the same boundary values. By the strong maximum principle, u is strictly
positive in B,. The proof of (ii) follows directly from (b). |

2.3 Half-Plane Solutions

The so-called half-plane solutions (see Fig.2.1)
ho(@) = VA @ -v)+
play a fundamental role in the free boundary regularity theory. In fact, in the next

sections we will show that if a local minimizer u is close to a half-plane solution
(at some, possibly very small, scale), then the free boundary is cle regular; then,
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Fig. 2.1 A half-plane

solution
Ah, =0
|Vh,| = VA
—v
—
h, =0

we will also prove that at almost-every free boundary point the solution u coincides
with a half-plane solution at order 1.

In this subsection, we make a first step in this direction and we prove that the half-
plane solutions are global minimizers. This result is usually omitted in the literature
since it is implicitly contained in the fact that the blow-up limits at the points of the
reduced free boundary (of any local minimizer) are indeed half-plane solutions (we
will prove this fact later, in Lemma 6.11). The main result of this subsection is the
following.

Proposition 2.10 (The Half-Plane Solutions Are Local Minimizers) Lerv € R4
be a unit vector. Then the function H,(x) = <A (v - x)4 is a global minimizer of
FA.

Definition 2.11 (Local Minimizers) Let D be an open set in R?. We say that the
function u : D — R is a local minimizer of F in D, if u € HZLC(D), u >0, and
for any bounded open set 2 such that 2 C D, we have

Fau,Q) < Fa(v,Q)  forevery veHl (D) suchthat u—v e Hj(Q).

Definition 2.12 (Global Minimizers) We say that the function u : RY — R is a
global minimizer of Fj, if u is non-negative on R, u e HIL C(Rd) and u is a local
minimizer of F in R9.

In order to prove the minimality of the half-plane solutions, we will need the
following lemma. We notice that it is useful also in other contexts. For instance, it
allows to prove that the solutions of (2.1) are bounded.

Lemma 2.13 Let D C R be a bounded smooth open set or D = R?. Let xo € R?
be a given point, v € RY be a unit vector and let

v(x) = hy(x — x0) = VA sup{0, (x — xg) - v}.
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Suppose that u € H'(D)isa non-negative function such that
u=0 on oDN{v=0}
Then
Fawnv,D) < Fa(u, D),

with an equality if and only ifu = u A v.
In particular, if u is a solution to (2.1), then u has bounded support. Precisely,
u = 0 outside the set conv(D) + B1, where conv(D) is the convex hull of D.

Proof Without loss of generality we can suppose that v = ¢4 and xo = 0. For the

sake of simplicity, we set Hy = {x4 > 0} and H_ = {x4 < 0}. Then

Fa(u, D) — Fa(u A v, D) =/ |Vul*dx + A|H- 0 {u > 0}
H

+f (IVul* — [Vv|*) dx,
HyN{u>+/A xg)

where (in the case when D is bounded) we assume that u is extended by zero on
H_\ D. By the fact that v(x) = ij is harmonic on {x; > 0}, we get that

(|vu|2f|vU|2)dx=/ IV —v)* +2Vv - V(u —v)4) dx
HyN{u>~/A xq}

~/1'~1+ﬁ{u>\/Axd}

|V(u—v)|2dx—2\/A/ udH .

/1:1+ﬂ{u>«/Axd} {xa=0}

We recall that for every u € H'({xy < 0}) we have the inequality'

/ |Vul? dx + Alfu > 0} N {xq < 0} 32«/1\/ udM!,
(x4 <0) (x4=0)

where the equality holds, if and only if, # = 0 on {x; < 0}. Thus, we obtain

FA(M,Q)—FA(M/\U,Q)Z/ IV(u —v)]*dx >0,
H+ﬁ{u>«/A Xq}
where the last inequality is an equality if and only if u < v on R?. O

Indeed, if f : R — R is a Sobolev function such that f(a) = 0 for some a < 0, then we have

0 1 0 é 1 0
f(0>=f f’(t)dts{{f;éO}ﬁ{aftsO}{z(f \f’(t)\zdt) §2<{{f#0}ﬂ{t§0}{+/ If’(t)\zdt)-
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Proof of Proposition 2.10 Without loss of generality we may suppose that v = ¢4
and set

h(x) = vVAx}.
Suppose that R > O and u € HZLC(R“') is a non-negative function such that u — i €
Hy (Bg). Itis sufficient to prove that F (h, BR) < Fa(u, Bg). By Lemma 2.13 we
have that
Fa(u A h, BR) < Fa(u, BR).

Thus, we may suppose that u < k. Since & is harmonic in {x; > 0} we get that

Fa(u, BR) — Fa(h, BR) = / |V(u — h)|2dx — Al{xg > 0} N {u = 0}
{xa>0}

=/ IV — )| dx,
{xg>0}N{u>0}

where the last equality is due to the fact that

IV(u—h)|=|Vh|=~A  ontheset {u=0}.

This concludes the proof. O

2.4 Radial Solutions

In this subsection, we give two examples of local minimizers, which are radial
functions. Despite of being ones of the few non-trivial examples of local minimizers,
they will also be useful in the proof (to be precise, in one of the two proofs that we
will give) of the fact that the local minimizers satisfy an overdetermined condition
on the free boundary in viscosity sense (see Definition 7.6 and Proposition 7.1).
Let D be a bounded open set in R? with smooth boundary. We consider the
following variational minimization problem in the exterior domain R? \ D.

min{/ \Vul*dx + |{u > 0}| : ue H'(RY), u=1in D}. (2.3)
R4
The “interior” version of this problem reads as
min{/ |Vul*dx + |{u >0yND| : ue H'(D), u=1on BD}. (2.4)
D

We first prove that the problems (2.3) and (2.4) admit solutions.



2.4 Radial Solutions 33

Lemma 2.14 (Existence of a Solution) Suppose that D is a bounded open set in
R? with smooth boundary. Then the variational problems (2.3) and (2.4) admit
solutions.

Proof We give the proof for (2.3), the case (2.4) being analogous (and easier as
it does not require the use of Lemma 2.13). Let u, be a minimizing sequence in
H'(R?). By Lemmas 2.4 and 2.13 we can suppose that 0 < u,, < 1 and supp (u,) C
conv(D) + Bj. Now, up to a subsequence, we may suppose that u,, converges in
L*(R?) and pointwise almost everywhere to a function u € H L(R9). The claim
follows by the semicontinuity of Fj. O

In Propositions 2.15 and 2.16, we will prove that, in the special case when the
domains D in (2.3) and (2.4) are balls, the solution is unique and can be computed
explicitly.

Proposition 2.15 (Optimal Exterior Domains) Let the domain D in R? be the
ball By. Then, there is a unique solution u, of (2.3). Moreover, for every r, there is
a radius R > r, uniquely determined by r and d, such that u, is given by

ur=1 in B, u =0 in [Rd\BR and u, =h, in Bpr\ B,
where h, is a radial harmonic function (as on Fig. 2.2). Precisely, h, is given by

|x|2~4 — RZd _Injx|—InR

W =", pa HdZ3. m@= T i d=2.

Moreover, the radius R and the function u, satisfy the following properties:

(i) The radius R = R(r) is a continuous function of r such that

r<R<r+1
and

lim |R(r) — (r + 1)| = 0.
r—>400

Fig. 2.2 An exterior radial u, =1 on B,
solution

Auyp =0 |Vu,| =1on 0Bp
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(ii) The gradient of h, is given by

VA, |(x) = (Ix|/R)' ™.

Proof We first notice that taking the Schwartz symmetrization u#* of any function
u we get that F (u*, [Rd) < Fi(u, [Rd). Thus, there is a minimizer of /7 which is a
radial function. We first show that there is a unique radial function that minimizes
of F1 in the class of radial functions.

Letd > 3. Forevery O < r < R, consider the function

L if |xl=<r,
|x|2fd _ R27(1

urr(x) = if r<|x| <R,

;2—d _ R2—d *
0, if |x|>R.

Since u, g is the unique harmonic function in Bg \ B,, we get that the minimizer of
F71 among the radial functions is necessarily given by a function of the form u, g.
We calculate the energy

dd—-2)ow,
Fiur g, RY) = / \Vu, g|*dx + |Bg| = 25,1 )2,”’,1 +waR.
BR\B ret—R
. . _ dd-2) g
We notice that the function f(R) := 2-d _ g2-d + R is strictly convex and

lim f(R)= lim f(R) = +oo.
R—rt R— 400

Thus, there is a unique radius R > r that minimizes f. We denote this radius by R..
Notice that, since f'(Rs) = 0, we have

RV - R ) =a 2. (2.5)
Letd = 2. Forevery 0 < r < R, consider the function

Loif x| <,

In (R
Uy R(x) = ?((R//PC;)’ if r<|x|<R,
n r
0, if |x|>R.

As in the case d > 3, we calculate the energy

Jauuﬁ,Rd)=‘/ |Vu, g|*dx + |Bg| = + T R%.

21
BRr\B, In(R/r)
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As in the case d > 2, there is a unique R, > r that minimizes the function R —
F(ur,r). Moreover, R, is such that

Ri(InRy —1Inr) =1. (2.6)

We notice that the claims (i) and (ii) follow by (2.5) and (2.6).

We now prove that the functions u, g, are the unique minimizers of F; among all
admissible functions. Indeed, consider any minimizer u of | and suppose that it is
not radial. We notice that the symmetrized function u* is also a solution. Since it is
radial, we get that u* = Ur R and in particular |{u# > 0}| = |Bg,|.- By Lemma 2.5,
the functions v = u A u* and V = u Vv u* are also minimizers of F. If u is not
radial, then we have |{v > 0} # |Bg,| or |{V > 0}| # |Bg,|.- On the other
hand the symmetrized function v* and V* are also solutions and so, we must have
v¥ = V* = u* and in particular [{v > 0}| = |{V > 0}| = |Bg,|, which is in
contradiction with the assumption that « is not radially symmetric. O

Proposition 2.16 (Optimal Interior Domains) Let the domain D in RY be the
ball Br. Then, there is a dimensional constant Cq > 0 such that, for every R > Cgy,
there is a unique solution ug of (2.4). Moreover, uy is radially symmetric and has
the following properties:

ur=1 on 0Bg, ur=0 in B, and ur =hg in Bgr\ B,
2.7

where hg is a radially symmetric harmonic function (see Fig. 2.3). Precisely,

|2_d — y2d In|x| —1Inr

f d=z3, hir() = InR —1Inr if d=2,

|x
hR@)="pr a4 _,2a

Fig. 2.3 An interior radial
solution

up =0 and |Vugr|=1 on 9B,
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where the radius r depends on R and d and has the following properties:

(i) The radius r = r(R) is a continuous function of R such that

lim |r(R)—(R—1)|=0.
R—+o00

(ii) The gradient of hg is given by

IVhgl(x) = (Ix|/r)'.

Proof As in the proof of Lemma 2.15, we start by noticing that for every function
u, there is a radially symmetric function u™ with lower energy. In fact, it is sufficient
to consider the function v = 1 — u and its Schwartz symmetrization v*. We define
u* asu™ := 1 — v* and we notice that

Fl(u*,BR):/ [Vu* 1> dx + |[{u* >O}OBR|=/ [Vo* > dx + |{v* < 1} N Bg|

Br Br

5/ \Vv|2dx+|{v<1}ﬂBR|:/ [Vul?> dx + [{u > 0} N Bg| = Fi (u, Bg).
Br

Br

Thus, there exists a radially symmetric minimizer u* of F. Now, since u™ is
harmonic in {u* > 0}, it should be of the form u* = u, g, where u, r is given
by (2.7) for some radius r < R. Now, for any r € (0, R), the energy of u, r is given
by

d(d —2)wq
Fi(ur.g, BR) = / |Vu, gl*dx +|Br\ B, = , " +wiR—r?.
Bg\B; re =R
Consider the function
d(d —2) J

SU)y= g pra ™"
It is easy to check that,
rlig}) fr)=0 and rlif}g f(r) =+oo.
Moreover, for R large enough, f(R/2) < 0. We now calculate

_ 2,.1-d
fy o d@=2

(r2—d — R2—d)2
Thus, f/(r) = 0 if and only if

gr) = (d—-2)—r+ri"'R¥ =0.
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Now, the equation g(r) = 0 has at most two solutions and we have that
g0)=g(R)=d—-2>0.
On the other hand, for R large enough, we have
gd—-1)<0 and g(R—-12) <.
Thus, the equation g(r) = 0 has exactly two solutions:
r—e0,d-1) and r+ € (R—2,R).

Now, let M, be the minimum of f in the interval [0, d — 1]. For R large enough, we
have

dd—2)

p_ yd—2
f(R=2)=(R-2) (1_(1_2/R)d2

— (R - 2)2) < My.

Thus, there is a unique » € (0, R) that minimizes f in (0, R). Moreover, R — 2 <
r < R. Moreover, the claim (i) follows from the fact that, for every ¢ > 0, there is
R, > O such thatif R > R,, then

gR—(1—¢) <0 and g(R—(1+¢)) >0.

This implies that R — (1 +¢) < r(R) < R — (1 — ¢), which is precisely (i).
Let now d = 2. For every r € (0, R), consider the function u, g given by (2.7)
for some r > 0. We calculate the energy

Fi(ur g, BR) =/ |Vu, g|>dx +|Bg \ By| = +m(R* —r?).

T
BR\B, In(R/r)

Next, we define

r) =
InR —Inr
we calculate

2

FO= iR —mr2 2

r?

and we set

gr)y:=1—r(nR —Inr).
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As above, g can have at most two zeros in the interval (0, R). Moreover, g(0) =
g(R) = 1 and for R large enough, we have

2
g)=1—-InR <0 and g(R—2)=1—(R—2)1n<1—R 2><O.
Thus, the two zeros of g are in the intervals (0, 1) and (R — 2, R), respectively. Now,
for R large enough, we have
2

(14 .2,)

Thus, for large enough R, there is a unique r that minimizes f in (0, R) and R—2 <
r < R. The claim (i) follows as in the case d > 2. The claim (ii) is immediate and
follows from the equation g(r) = 0. The uniqueness of the solution now follows as
in Lemma 2.15. O

f(R=2)= —(R=2?<—-1< f().
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Chapter 3 )
Lipschitz Continuity of the Minimizers Shethie

In this section, we will prove that the local minimizers of FA are Lipschitz
continuous. Our main result is the following.

Theorem 3.1 Ler D C R? be an open set and u e Hlloc(D). Suppose that u is a
local minimizer of Fu in D. Then, u is locally Lipschitz continuous in D.

Theorem 3.1 is a consequence of the more general Theorem 3.2, which can be
applied not only to minimizers of F (we will need this result for the proofs of
Theorems 1.2, 1.4 and 1.10), but also to the case of minimizers for the problem
with a measure constraint (Theorem 1.9); we notice that we will be able to apply
Theorem 3.2 to (1.6) only after proving that an outwards minimality property of the
type (3.1) holds at very small scale (see Sect. 11.5).

Theorem 3.2 Let D be a bounded open set in RY and u € H'(D) be a non-negative
function satisfying the following minimality condition:

Fa(u,D) < Fa(v,D) forevery ve HY(D) such that

u—veHN(D) and Q, C Q. (3.1

Then, u is locally Lipschitz continuous in D.

The outwards minimality condition appeared recently in [9] in the context of a
shape optimization problem, which can be reduced to a free boundary problem for
vector-valued functions (see [41]). This property proved to be very useful only in the
context of other free boundary and shape optimization problems as, for instance, the
ones involving functionals depending on the perimeter of the set (see [21] and [22]).
In the case of F, the outwards minimality condition (3.1) can also be expressed in
a different way. We give the precise statement in the following lemma.

© The Author(s) 2023 39
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Lemma 3.3 Let D be a bounded open set in R and u € H'(D) be a given non-
negative function. Then the following are equivalent:

(i) u satisfies the minimality condition (3.1);
(ii) u is harmonic in 2, in the following sense:

/quldeS/Wvlzdx for every ve HY(D) such that
D D

u—veHl(IRd) and u—v=0 aein Rd\Qu,
(3.2)

and satisfies the minimality condition

Fa(u,D) < Fa(v,D) forevery ve HY(D) such that

u—veHol(D) and u<v in D.
(3.3)

Remark 3.4 (On the Sign of the Test Functions in (3.1), (3.2) and (3.3)) Since u is
non-negative in D, we may suppose that the test functions v in (3.1), (3.2) and (3.3)
are all non-negative.

Proof of Lemma 3.3 The fact that (3.1) implies (3.2) and (3.3) is trivial. Suppose
now that u satisfies both (3.2) and (3.3) and let v € H'(D) be a non-negative
function such thatu — v € H(} (D) and 2, C 2. Then consider the test functions
u Avandu V. Since u A v = 0 outside €2, by (3.2), we have that

/ |Vu|?>dx 5/ IV (u A )| dx.
D D
On the other hand, since u Vv v > u, (3.3) implies that
/ IVul>dx + A < / IV(u V)2 dx + A|Quvl.
D D
Summing up the two inequalities, we get
2/ IVul>dx + A|Qu| < f IV(u A )% dx +[ IV Vv o)2dx + A|Quvl
D D D
=/ |Vu|2dx~|—/ Vo2 dx + A,
D D

which is precisely (3.1). O

We will give three different proofs of Theorem 3.2, but in each one of them, the
conclusion (the Lipschitz continuity of u) will be a consequence of the following
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estimate on the growth of the function u at the free boundary

/ udH*! <Cr forevery xpe€d, andevery 0 <r < ry,
0By (x0)

(3.4)
where rp > 0 and C > 0 are universal constants depending on the distance to the
boundary d D. We give the precise statement in the following lemma.

Lemma 3.5 Suppose that u € H'(D) is a non-negative function such that:

* u is harmonic in the interior of the set 2, := {u > 0};
* u satisfies the inequality (3.4) with constants C and ro uniformly in D.

Then the set 2, is open and the function u is locally Lipschitz continuous in D.
Precisely, the gradient of u can be estimated as

”””LI(DM)
IVullpops) < Ca | C + sd+1 for every 0<6 <ro,

where Cq is a dimensional constant and, for r > 0, we use the notation
D, :={x €D : dist(x,0D) > r}.

Proof Suppose that xo € D N 92,. Passing to the limit as » — 0 the estimate (3.4)
we obtain that u(xo) = 0. Thus €, N 92, = ¥ and so 2, is open.
Let now x¢ € Ds. We consider two cases.

» If dist(xp, 0€2,) > 9/4, then u is harmonic in the ball Bs;(xo) and so, by the
gradient estimate (see for example [30]) we have

C
Vueol = 0y [ uan,
8 Bs(xo)

where Cy is a dimensional constant.
e If dist(xp, 0€2,) < &/4, then we suppose that the distance to the free boundary is
realized by some ygp € 9€2, and we set

r = dist(xg, 2) = |x0 — yol.

Since u is harmonic in B, (x(), we can again apply the gradient estimate obtaining

C c
Vu(xo)| < djfl/ udx < dij/ wdx < C4C,
r Br(x0) r B (y0)
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where the second inequality follows by the positivity of u# and the inclusion
B, (x9) C B,(y0). The last inequality is simply a consequence of (3.4) and the

fact that
2r
/ udx =/ ds/ udH .
By (y0) 0 9By (y0)

O

Remark 3.6 (An Alternative Statement of (3.4)) We notice that (3.4) is a conse-
quence of the following inequality

/ udH ' <cCr for every xo € {u =0} andevery 0 <r <ryp.
9By (x0)
(3.5)

This is trivial if we knew a priori that u is continuous, but is true also in general.
Indeed, by Lemma 2.9, we have that

09, = lxo eD : 0<|Q,NBr(xg)| <|Br| forevery r > 0].

Thus, every point xo € 9€2, can be obtained as limit of points x, € {u = 0},
for which the estimate (3.5) does hold. The claim follows by the continuity of the
function

X = udH 1,
9By (x)

for every fixed r > 0, which is due to the fact thatu € H L(D).

The rest of this section is dedicated to the proof of (3.4) in the hypotheses of
Theorem 3.2. In the next three subsections we will give three different proofs of this
fact.

e Section 3.1. The Alt-Caffarelli proof of the Lipschitz continuity.

In this section we present the original proof proposed by Alt and Caffarelli
(see [3]), which we divide in two steps (Lemmas 3.7 and 3.8). This entire section
comes directly from [51] and we report it here for the sake of completeness.

* Section 3.2. The Laplacian estimate.

In this section we give a proof, which is inspired from the proof of the
Lipschitz continuity of the solution to the two-phase problem, which was given
by Alt, Caffarelli and Friedman in [4]. In our case there is only one phase
(that is, the solution u is positive), so we do not make use of the two-phase
monotonicity formula of Alt-Caffarelli-Friedman, which significantly simplifies
the proof. This approach can be used also in other situations, for instance, for
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functionals involving elliptic operators (in divergence form) with non-constant
coefficients (see [46]).
Section 3.3. The Danielli-Petrosyan approach.

This last subsection is dedicated to the method proposed by Danielli and
Petrosyan in [18] in the context of non-linear operators. It consists of two
steps. The first one is to show that u# is Holder continuous. This part of the
argument is very general and is based on classical regularity estimates for
(almost-)minimizers of variational problems. In the second step of the proof, the
Lipschitz continuity is obtained by absurd and the result of the first step is used to
assure the convergence of the sequence of minimizers produced by contradiction.
This type of argument (proving a weaker estimate and then obtaining the main
result by contradiction) will be used also in Chap. 8, this time to obtain the
regularity of the free boundary.

3.1 The Alt-Caffarelli’s Proof of the Lipschitz Continuity

This subsection contains the original argument proposed by Alt and Caffarelli in
[3]. The main steps of the proof are the following:

Comparing the energy Fa (u, Br(x0)) of u in the ball B, (x¢) with the one of the
harmonic extension  of u in B, (xp) we get

/ IV(u — h)|*dx < Al{u = 0} N B, (x0)|.
By (x0)

It is now sufficient to estimate from below the right-hand side of the above
inequality. In Lemma 3.7 we will prove that

1 2
5 {u =0} N By (xo)| (/ ud%d—1> §Cd/ IV(u—h)|*dx.
r 3B (xo) By (x0)

If xo € ©,, then |{u =0}N B, (x0)| # 0. Combining the two inequalities we get

1

/ wdM" < /CyA.
" J 3By (x0)

We now give the details of the proof sketched above. The key ingredient is the

following trace-type inequality (Lemma 3.7), which is implicitly contained in the
proof of the Lipschitz continuity given in [3] (and can also be found in [51]) and is
an interesting result by itself.
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Lemma 3.7 For every u € H'(B,) we have the following estimate:

2
12 [{u =0} N B, | </ ud?—[d1> < cdf IV(u — h)|?dx, (3.6)
r 9B, B,

where:

* Cy is a constant that depends only on the dimension d;
* h is the harmonic replacement of u in B, that is, the harmonic function in B,
such thatu = h on 0B,.

Proof We report here the proof for the sake of completeness, and refer the reader
to [3, Lemma 3.2 ]. We note that it is sufficient to prove the result in the case u > 0.
Let v € H'(B,) be the solution of the problem

min{/ |Vv|2dx: Uu—ve H(}(B,), v > u}.

Notice that v is super-harmonic on B, and harmonic on the set {v > u}.
For each |z| < 1/2, we consider the functions u; and v; defined on B, as

u;(x) = u((r —|xDz +x) and v (x) = v((r — |xDz + x).

Note that both u, and v, still belong to H'(B,) and that their gradients are controlled
from above and below by the gradients of u and v. We call S; the set of all || =1

such that the set {,o : ; <p<r, u;(p) = 0} is not empty. For § € S, we define

. r
re =1nf{p: g SP=T uz(p§) =0}~

For almost all £ € S9! (and then for almost all & € S;), the functions p —
Vu,(p§) and p — Vv (p&) are square integrable. For those £, one can suppose
that the equation

)
((:(026) = ve(028) = :(018) = ve(p1) = [+ Y s(08) — v2(08)) .

P1

holds for all p1, p; € [0, r]. Moreover, we have the estimate

, , 12
Uz(V§§)=/ E-V(v: — u)(pE)dp < \Jr — re (/ |V(vz—uz>(ps>|2dp) .
rg re
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Since v is superharmonic we have that, by the Poisson’s integral formula,

rZ— |)c|2
v(x) > h(x) = /
d

dwgr

u(y)

ud%d_l,
B lx —yl?

3B,

dH () > ca

r— x|
r

where A is the harmonic function such that 7 = u(= v) on 9 B,.. Taking
x = —re)z +rgé,

we have

vz(rgg)zv((r—rg)z—l—rgg)zCd V—Vg/ ud’;’-[d_lzcd r—rg/ uzd’Hd_l.
2 r 9B, 2 r 9B,

Combining the two inequalities, we have

2 r
r—r
2*5(/ Mmd—l) < Ca [ 190~ udP ot do.
r JdB, re

Integrating over £ € S, C S9!, we obtain the inequality

2 r
(f T dé) (/ udH‘“) scd/ /W(vz—uz)(psnzdpds,
s. T 0B, 0By Jre

Z

and, by the estimate that /8 < rz < r, we have

| 2
2 [{u = 0} N B \Bu(r2)| (/a u d’:’-ld_l) <Ca | IV, —uy)l’dx
A B

r

< cd/ V(v —u)|*dx.
B,

Integrating over z, we obtain (3.6). O

Lemma 3.8 Suppose that u € Hlloc(D) be a local minimizer of Fp in the open set
D C RY. Then for every ball B,(xo) C D we have

[{u = 0} N B, (x0)| <\/ch — 1/ ud?—[dl) > 0.
¥ J 3By (x0)

In particular, if xo € 0<2y, then

/ udH! < Cd\/Ar.
9By (x0)
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Proof Suppose that xo = 0. Let & € H'(B,) be the harmonic function in B, such
that 4 = u on 0 B,. By the optimality of u we get

/|Vu|2dx+A|{u>0}ﬂBr|§/ |Vh|?dx + A|By|.
B

r

Now using (3.6) and the fact that

f |V(u—h)|2dx=/ (|W|2—|Vh|2)dx5A|{u=0}m3,|,
B, B,

we get

[{u =0} N B,| <\/ch — 1/ ude—1> (/ch + 1/ ud?—[d_1> >0,
r'JoB, " JoB,

which gives the claim. O

3.2 The Laplacian Estimate

In this section, we propose a different approach to the Lipschitz continuity of u.
The method comes from the two-phase free boundary theory and, in particular,
from the work of Alt-Caffarelli-Friedman [4] and Briangon-Hayouni-Pierre [7].
This argument was also adapted to the vectorial case in [41] and to a one-phase
shape optimization problem in [46]. The proof consists of two steps:

* For every local minimizer u of F; we have that Au is a positive measure. In
Lemma 3.9, we prove that the optimality of # implies the estimate

Au(By) < Cré 1.

* InLemma 3.10, we show that the Laplacian estimate and the classical identity

d/ wapi BB
dr Jsp dwgri—1

imply that

/ udH® ' <cCr,
0B,

which gives the Lipschitz continuity of u by Proposition 3.5.
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Lemma 3.9 (The Laplacian Estimate) Suppose that u is a local minimizer of Fi
in D. Then, for every ball B, (xo) such that By, (xo) C D we have

Au(B(x0)) < Cri L.

Proof Without loss of generality we can assume that xo = 0. We now notice that
by Lemma 2.6 the distributional Laplacian

Au(p) = —/ Vu-Vodx forevery ¢ e Cl(D),
D

is a positive Radon measure. We first prove that

Au(p) < Cqar” Vol 25, forevery ¢ € CX(B,) andevery B, C D.
(3.7)

Indeed, for every ¥ € C2°(B,), the optimality of u gives

/|Vu|2dx§/ |Vu|2dx—|—|{u>0}ﬂB,|§/ IV(u+ ¥)|*dx + | B,
B B B,

Developing the gradient on the right-hand side, we get
_ 1 2 d
Vu~V1/fdx§2 VY |“dx +wqr” ).
r B,

Setting ¥ = r? Vol [}, | @, we get

14wy 4P

_ / Vi Vodx < 1Yol 25,

. . . 1+ wq
which is precisely (3.7) with Cy =

Let now ¢ € C2°(By,) be such that

2
¢ > 0on By, ¢ =1on By, and IVolliLes,) < L

Thus, ¢ > 1p, and by the positivity of Au we have

Au(By) < Au(g) < Cq 2r)? |Vl 125, < Cri.
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Now the estimate (3.4) follows by the following lemma.

Lemma 3.10 Suppose that u € H'(Bg) is a non-negative sub-harmonic function
in the ball By C R? such that u(0) = 0. Suppose that there is a constant C > 0
such that

Au(B,) < cri! forevery 0 <r <R. (3.8)

Then we have
d—1 C
udH < r forevery 0 <r <R. 3.9
3B, dwq

Proof We first notice that for every smooth u, we have

d au 1
an'™! =/ FaniT! = / Aug(x) dx.
dr/,‘)Br e 3B, on dwy pd—1 5, ue(x)dx

Integrating in r and passing to the limit as ¢ — 0 we get

.
/ udH41 5/ Au(Br) dr.
B, o dwgri!

Now, using (3.8) we get (3.9). |

3.3 The Danielli-Petrosyan Approach

Finally, in the last section dedicated to the Lipschitz continuity of the minimizers,
we present another proof, which is due to Danielli and Petrosyan and was originally
carried out in the framework of the p-laplacian (see [18]). In fact, this proof is
very close in spirit to the one of the regularity of the free boundary that we will
present in Chap. 8. It consists of two steps. The first one is to prove that the local
minimizers are Holder continuous and to find a uniform estimate on their C%¢
norm (see Lemma 3.11, Lemma 3.12 and Proposition 3.13). Then, the Lipschitz
continuity (see Proposition 3.15) follows by a contradiction argument, in which the
compactness is a consequence of the aforementioned uniform C%¢ estimate.

Lemma 3.11 Suppose that @ C R? is a bounded open set and that the function
u € HY() N L®(Q) is such that:

(a) u is non-negative and subharmonic in ;
(b) u satisfies the minimality condition (3.3) for some constant A > 0.
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Then, setting

2 2
&= o

. =, ., c=2d+3|31|(A+||u||im(m),

the following inequality does hold:

d+2
/ |Vul? dx < Cp?720=9 for every B,(x0) C Qwithp <2~ I
By (x0)

Proof Letr = p lis. Thus we have B, (xp) C €2. Without loss of generality we
can assume that xo = 0. Let & be the harmonic extension of u in the ball B,.. Then,
u < h and, by the optimality of u, we get

IVu—h)>dx = | |Vul?dx — | |Vh[*>dx < A|B;|.
B, B, B

Thus, we can estimate the gradient of u as follows

/ |Vul>dx < 2/ |V (u — h)| dx +2/ |Vh|?>dx
Brl+5 Br1+s Brl+5

|Byise |

|Vh|?dx
|B’/2| Brpy

< 2/ IV —h)|>dx +2
B,

52A|Br|+2d+1r€d/ |Vh|?dx ,
Brpy

where the second inequality follows by the fact that |V/|? is subharmonic in B, and
the inequality r¢ < 1/2. Now, we use the Caccioppoli inequality

4|B,|M?
/ |Vh|2dxs/ |V<h<p>|2dx=/ |Vo|* h*dx < ||V¢||%oc/ Wdx < 2' :
Br/z B, B,

r

where M = |lu||poo(py = ||h||L(B,) and ¢ is given by
. . r 2 r
px)=0if |x| >r, px)=1if |x] < 5 px) = (—|x|) if ) < |x| <r.
r

Since p = rlt¢

and ¢ = 2/4 we obtain
/ Vul?dx < 2A1Bilp e + 2903 By M~ e < 2943 By| (A + M) p e
By

which gives the claim. O
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Lemma 3.12 (Morrey) Suppose that Q2 C R?, u € H'(BR) and that there are
constants C > 0 and @ € (0, 1) such that

/B - [Vu|?dx < Cr¥@=D forevery xo € Bris andevery r < R/2.
(X0
Thenu € CO’Q(BR/X) and

lu(x) —u(y)| < ~C <2d + j) |x — y|* forevery x,y € Br.
Proof Suppose that x,y € Brig andletr =[x — y].

[
By (x) Br(y)

/ [u(x +2) —u(y +2)]dz

1
:‘/ dz/ (y—x)-Vulx(1—1t)+ty+z)dt
B, 0

1
§|x—y|/B dZ/O [Vu(x(1—1)+ty+2z)|dt

1
=Ix—y|/ dt/ [Vu(x(1 —1) +ty +2)|dz
0 B,

1
§|x—y|/ dt/ |Vu|=r/ [Vu|
0 By (x) Bor (x)
1/2
sr|Bzr|</ |Vu|2> <24JC|B,Ir".
By (x)

Let now xo € Brys be fixed. Assume for simplicity that xo = 0. Then we have

/ u—/ u=/ [u(rx)—u(sx)]dx:/ dx/rx~Vu(tx)dt
r s Bl B] s
5/ dx/r |Vu(tx)|dt=/r dt/ |Vu(tx)|dx=/r de [ |Vu|dx
B s s B s B;

r 12 r C
5/ dt< IVulde) 5/ Ve ldr < v re,
s By N

o

which concludes the proof. O

The following proposition is a direct consequence of Lemmas 3.11 and 3.12.
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Proposition 3.13 (A Uniform Hoélder Estimate) Suppose that the non-negative
function u € HY(B1) N L®(By) satisfies the minimality condition (3.1) in the
set D = Bj. Then, there is a dimensional constant C; and a universal numerical
constant p > 0 (one may take p = 1/8) such that

/B |Vul*dx < Cy (A + ||u||%°O(B|))’
P

and

1
2
) = u)| = Ca (A + Nuldniz)) Ix =y forevery  x.y € B,

We are now in position to prove the Lipschitz continuity of u. The idea is
to argue by contradiction. In fact, suppose that there is a sequence of functions
uy that minimize the functional F, in B; and are such that u;(0) = 0 and
my = ||Mk||L°°(B1/2) — +o00. Then, the functions vy = m,?luk minimize Fa/m,
and are such that v;(0) = 0 and ||Uk||L°°(B1/2) = 1. Now, if vx converges to some
Voo Weakly in H 1 (B1/2), then v is harmonic in Bij,. Moreover, if the convergence
is also uniform, then v (0) = 0, veo > 0 in Biy, and ||Uoo||L°°(Bl/2) = 1, which is
impossible. Now, there are two main difficulties that we will have to deal with.

* The first one is the compactness of the sequence vg. Notice that the L* bound
of v in By, only assures the uniform C 0 bhound strictly inside Bij,. On the
other hand if v, converges uniformly to zero inside By, there wouldn’t be any
contradiction at the limit. Thus, we will need an Harnack-type inequality in order
to assure that vy remains bounded from below also inside Bi/,. We will solve this
issue in the proof of Proposition 3.15.

* The second issue is the harmonicity of ve,, which will be a consequence of
Lemma 3.14 below.

Lemma 3.14 (Convergence of Local Minimizers) Let B C R and u, be a
sequence of non-negative functions in H'(Bg) such that:

(a) every uy satisfies the quasi-minimality condition

]:O(un’ BR) S ]:O(un + (p, BR) +8}’l

forevery ¢ € HOI(B,) andevery r <R, (3.10)

where gy, is a vanishing sequence of positive constants.



52 3 Lipschitz Continuity of the Minimizers

(b) the sequence u, is uniformly bounded in H'(BR), that is, for some constant

C >0,

””"H%II(BR) = Fo(un, Br) —i—/B u% dx <C for every n>1.
R

Then, there a non-negative uso € H 1(BR) such that, up to a subsequence, we
have:

(i) u, converges to uso strongly in H'(B,), for every0 < r < R;
(ii) Uco Is harmonic in Bg.

Proof Up to extracting a subsequence, we can suppose that the sequence uj,
converges to a function us, € H'(Bg) weakly in H'(Bg), strongly in L?(Bg)
and a.e. in Bg. The weak H '-convergence implies that for every 0 < r < R

Vuosollp2(p,) < lilfgiofolf”VMnHLZ(B,), (3.11)

with an equality, if and only if, (up to a subsequence) the convergence is strong in
B,. Up to extracting a subsequence we may assume that the limits in the right-hand
side of (3.11) do exist. In order to prove (i), we will show that, for fixed 0 < r < R,
we have

||Vuoo||L2(B,) = nlgrolo Vuy, ||L2(B,)- (3.12)
Let n : B — R be a function such that

neC®Bg), 0<n<1 in Bg, n=1 on 3dBg, n=0 on B,.
(3.13)

Consider the test function i, = nu, + (1 — n)ux. Since u, satisfies the (quasi-
)minimality condition (3.10), we have

/|Vu,,|2dx§/ |Vitn|>dx + &, .
Bgr Bgr

Next, since

2

>

~ 2
|Vitn|* = [V(nun + (1 = Muoe)|” = [(n — o) Vit + nVuy + (1 — 7)) Ve

and since u, — U strongly in LZ(BR), we have

limsup/ (|szn|2 - |Vu,,|2) dx
Bg

n—o0

= limsup/ (|(un —Uso)V +nVu, + (1 — n)Vuoo|2 _ |V'4n|2) dx
Bg

n—o0
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= lim sup f (0 = DIVua 2 + 2011 = ) Vit - Vitoo + (1 = )|V ) dx
Br

n—00

n—0o

= limsup/ (1 — 772)(|Vuoo|2 — |Vun|2> dx
Br

< limsup/ (|wm|2 - |wn|2) dx +/ Vioo |2 dx. (3.14)
(1=0} Br\(n=0}

n—00

By the weak H! convergence of u, to us on the set {n = 0} \ B,, we have

f |Vitoo|? dx < liminf/ |Vun|*>dx,
{n=0)\ B, n=>o0 Jiy=0)\B,

which implies

limsup/ <|Vuoo|2 - |Vun|2> dx < limsup/ (|Vuoo|2 - |Vun|2> dx
(n=0)

n—00 n—00 .

+ limsup/ <|Vuoo|2 - |Vu,,|2) dx
(1=O]\B,

n—oo

§limsup/ (quoo|2—|Vun|2>dx. (3.15)
B,

n—oo

On the other hand, the optimality of u, gives
0= lim &, < limsup/ <|Vﬁn|2 _ |Vun|2) dx . (3.16)
n—00 n—oo JBg
Finally, (3.14), (3.15), and (3.16) give

0 Slimsup/ (|woo|2 _ |Vun|2) dx—i—/ Voo dx
B,

n—00 (n>0)

which can be re-written as

liminf/ |Vun|2dx§/ |Vuoo|2dx+/ |Vitoo|* dx.
B,

nee B, {n>0}

Now, since 7 is arbitrary, we finally obtain
lim inf/ [Vuu|>dx < f [Viool? dx,
n—oo [Jp B,

which concludes the proof of (i).
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We now prove (ii). Let0 < r < Rand ¢ € HO1 (By). It is enough to show that
f |Vioo|? dx 5[ V(oo + @) dx . (3.17)
Br Bg

Let n : Bg — R be a function that satisfies (3.13) and is such that the set N :=
{n < 1} is a ball strictly contained in Bg. Notice that

lp#0}C B Cin=0}CN ={n<1}CBg,
the last two inclusions being strict. We define the competitor
vy =up+ @+ (1 —n)Us —upn),

and we set for simplicity veo := U + ¢. Now, since ¢ = 0 on Bg \ N, we have
that:

* U, = Voo On the set {n = 0};

. (3.17)isequivalentt0/ |Vuoo|2dx§/ V(oo + @) > dx .
N N

Now, using the strong H' convergence of u, in A\, then the optimality of u, and
again the strong H' convergence from claim (i), we get

/|Vu00|2dx= lim/ |Vun|2dxfliminf/ |an|2dx=/ |Vso|® dx |

which concludes the proof. O

Proposition 3.15 (Lipschitz Continuity of u) Suppose that the function u €
HY(By) is such that:

(a) u is non-negative in By and u(0) = 0;
(b) u is harmonic in Q, = {u > 0},
(c) u satisfies the minimality condition
Fau) < Fpa(v) forevery ve H'(B>)
suchthat u —v € Hol(Bz) and u <vin B».

Then, there is a constant C p, depending only on A and d, such that
llullzoo(Byg) < Ca-

Proof Let u; € H'(B,) be a sequence of functions satisfying the hypotheses (a),
(b) and (c) above. Suppose, that uy (0) = 0 and set my := ||Mk||L°°(Bl/8)a fork > 1.
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Fig. 3.1 The two sets Wy
and Q; = {ux > 0}

For every k > 1, we define the set (see Fig.3.1)
. 1
Wi 1= [x € By : disi(r, (= 0}) = (1 - |x|)}.

Notice that, the set W and the function u; have the following properties:

* Bz C W (this is due to the fact that uy (0) = 0);

* 1y is continuous on By;

* as a consequence of the previous points, we have that the maximum of u; on the
(closed) set W is achieved at a point x; € Wy N By and we have

My = up(xr) = max up(x) > myg.
x€Wg

Let Q4 := {ux > 0} and y; € 92 be the projection of xj
on the (closed) set d2x N B1. By definition x; € W, we have that

) 1
Tk = Xk — Yi| = dlst(xk,BSZk) < 3(1 — |xkD)-
Thus, we get
1 2
Iyl < |xil + |xx — yl < |xk| + 3(1 —lx)=1- 3(1 — |xk]).
This implies that |yx| < 1 and
2 1
vkl <1—2r,  and N 3(1 — |ykD-

Notice that the last inequality implies that By ,(yr) C Wk. Indeed, for every x €
By »(yk), we have

1
dist(x, 02) < |x — yi| < 2rk7
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while

NC I P s U Sy Y P P
3 X = 3 yk 3x yk = 3rk 6rk—2rk

In particular, we obtain that

sup  up < M. (3.18)
Bry2(yk)

On the other hand, the function uy is harmonic in By, (x¢) so, by the Harnack
inequality, we get that

M 1 7
(k) =k where k= Xk + Yk, (3.19)

>
) g T g

and Cy > 1 is a dimensional constant. Now, (3.19) and (3.18) give

Tk

g <up(zk) < Ak < My where Ak = sup ug and pe=,

Ca By, (%)
Consider the function

() = ur(yk + prx)
YT @

Zk

and the point §; = — K . We have that:

k
(1) v satisfies the minimality condition

Al Ba]

Fo(vp) < Fo(p) + ,
i (k)

for every ¢ € Hl(Bz) such that vy — ¢ € HO1 (B2) and v < ¢ in By;
(2) vk (0) = 0 and the point {; € Bj is such that

1
[¢k] = 5 v (8r) =1 and supvg < Cq (&) = Cq ;
By

(3) vk is harmonic in By (§x) and in 2y, ;
(4) v is non-negative and subharmonic in Bs.
Now, by Proposition 3.13, we have that the sequence vy is uniformly bounded in
H! (B1) and converges uniformly to a function vs, in By. Thus, we have

Vo(0) =0 and Voo($oo) =1 and ¢xo = klim Ck. (3.20)
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We will next prove that v is harmonic in By. Let k € N be fixed and let ¢ : By —
R be a non-negative function such that ¢y = vx on 9 By. Then, since vy is harmonic
in €,,, we have

/|Vvk|2dxf/ IV (0 A ) dx.
B B

On the other hand, the optimality condition (1) implies that

A|By|
u,%(Zk)

/|Vvk|2dx§/ IV (e V )| dx +
B B

Putting together these two estimates, we get

A|B
/ |Vvk|2§/ |V¢k|2dx+8k where & 1= 2' 2'.
B B uy (zr)

Now, since ¢x — 0, by Proposition 3.14, we get that v is harmonic in Bj. This is
a contradiction with (3.20). |
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Chapter 4 )
Non-degeneracy of the Local Minimizers Shethie

In this section we prove the non-degeneracy of the solutions to the one-phase
problem (2.1). Our main result is the following:

Proposition 4.1 (Non-degeneracy of the Solutions: Alt-Caffarelli [3]) Suppose
that D is a bounded open set in R? and u € H'(D) is non-negative and minimizes
the functional Fp in D, for some A > 0. Then, there is a constant k > 0, depending
on A and d, such that the following claim holds:

If Br(xo) CD and xo€ Qu, then |ulro, () = K7

The non-degeneracy holds in particular for functions satisfying the following
optimality condition:

Fau,) < Fpa(v,Q) forevery ve HI(Q) such that v < u. 4.1

For the sake of completeness, we notice that this optimality condition can also
be expressed in a different way, at least when it comes to functions u«, which are
harmonic on their positivity set €2,,. In fact, the following result is analogous to
Lemma 3.3. Moreover, as in Lemma 3.3 (see Remark 3.4), we can suppose that all
the test functions v in (4.1), (4.3) and (4.2) are non-negative.

Lemma 4.2 Let D be a bounded open set in R and u € H'(D) be a given non-
negative function. Then the following are equivalent:

(i) u satisfies the inwards minimality condition

Fa(u,D) < Fa(v,D) forevery ve Hl(D) such that

u—veHN(D) and 4, D Q.
(4.2)
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(ii) u is harmonic in 2, in the following sense:

/qulzdxf/Wvlzdx for every veHl(D) such that
D D

u—veHl(IRd) and u—v=0 aein Rd\Qu,
4.3)

and satisfies the minimality condition (4.1).

Proof The implication (i) = (ii) is immediate. In fact, (4.2) implies both (4.3)
and (4.1). In order to prove that (ii) implies (i), we suppose that u satisfies (4.3)
and (4.1) and we consider a (non-negative) function v € H Y(D) such that u — v €
HOl (D) and 2, C €2,. As in the proof of Lemma 3.3, we consider the test functions
uAvandu V. Sinceu Vv =0on D\ Q,, the harmonicity of u# (4.3) implies that

/|Vu|2dx§/ IV(u V) dx.
D D

On the other hand, we can use u A v as a test function in (4.2). Thus

/ |Vul* dx + Al < / V(@ A0 dx + AlQunol-

D D
Summing these inequalities and using that €, = €, ., We obtain
2/ \Vul>dx + A|Qu| < / IV(u V)| dx +/ IV (u A )2 dx + A|Quns]
D D D
=[ |Vu|2dx+/ Vo2 dx + A|Q],
D D

which concludes the proof of (4.1). |

Remark 4.3 (On the Terminology: Inwards Optimality and Subsolutions; Outwards
Optimality and Supersolutions) We will often call the optimality conditions (4.2)
and (3.1) inwards and outwards optimality condition, respectively. This is justified
by the fact that the admissible test functions in (4.2) and (3.1) have positivity sets
contained in or containing €2,. On the other hand, we will call (4.1) and (3.3)
suboptimality condition and superoptimality condition, respectively, and the func-
tions satisfying (4.1) and (3.3) will be called subsolutions and supersolutions.
The terms inwards optimality and outwards optimality come from Geometric
Analysis. The term subsolution was introduced in Shape Optimization by Bucur
[8], originally to indicate inwards optimality with respect to shape functionals. The
term supersolution appeared in the same context in several works (see for instance
[51] and the references therein) to indicate outwards optimality. In the context of
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the functional JF,, it seems more appropriate to use the terms subsolution and
supersolution, when the condition is on the test functions, and the terms inwards
and outwards, when the condition is on their (superlevel) sets. Nevertheless, being
partially justified by Lemmas 3.3 and 4.2, we will often abuse this terminology
by using subsolution and inwards-minimizing, and supersolution and outwards-
minimizing as synonyms.

We will give two different proofs of the non-degeneracy. Lemma 4.4 is due to
Alt and Caffarelli (see [3]), while Lemma 4.5 is due to David and Toro, it requires
the function to be Lipschitz continuous, but the argument is more versatile and can
be easily adapted, for instance, to the case of almost-minimizers of the functional
Fa (see [19)).

Lemma 4.4 (Non-degeneracy: Alt-Caffarelli) Ler D C R? be a bounded open
set. Suppose that u € H'(D) satisfies the condition (4.1) and let xo € D. If xo €
Qu N D, then for every ball B,(xg) C D, we have that ||u||L= B, (xs)) = APy,
where cq > 0 is a dimensional constant.

Proof Without loss of generality we can suppose that xo = 0 and that A = 1. For
r > 0, let ¢, be the solution of

A¢, =0 in By \ By, ¢»=0 on 0B, ¢»=1 on 0By,.

Then we have ¢, (x) = ¢1 (¥/r), for every x € By, \ B.. We consider the function
ii € H! () defined by

u(x), if x e Q\ By,
u(x) = Ju(x) A My, if x € By \ By,
0, if x¢€ B,

where My, = ||ul| L~ (s,,)- By the optimality of u in B;,, we have that
Fi(u, Byr) < Fi(u, Byy),
which means that
Fi(u, Br) < Fi(u, Byr) — Fi(u, Bor \ By) = Fi (i, Bor \ Br) — Fi(u, By \ By).

Since {u > 0} = {&z > 0} in By, \ B,, we get that

Fi(u, Bor \ By) — Fi(u, Byr \ By) = f

|Vi|? dx —/ |Vul? dx,
Bor\ By Boy\ By
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and so, we can estimate

Fi(u, By) < /

(|Vﬁ|2 - |W|2) dx
BZr\Br

5—/ |V(u—ﬁ)|2dx+/ 2Vi - V(i — u) dx.
BZV\Br BZr\Br

Now, since
/ 2Viu -V —u)dx = / 2Viu - V(i —u)dx,
By \By {uu}N By, \ By
by the definition of i, we obtain
Fi(u, By) < f IMo, Ve, - V(Mo — u) dx
{u>M>, ¢ }NBo \ B,

d—1 M, d—1
=2M2r/ |V¢>r|u dH dx=4 o ||V¢1||Loo(33r)/ udH dx.
dBy 9

r

On the other hand, we have the following trace inequality

1
/ wdi ' <cy (/ |Vu|dx + / udx)
9B, B, rJs,

M, M,
gcd(/ \Vulzdx+(1+ ’)|{u>0}nB,|)gcd(1+ ’)fl(u,B,).
B, r r

Thus, if F{(u, B,) > 0, then we have

M.\ M
1§Cd<1+ r) 2r

r 2r

which gives the claim. O

Lemma 4.5 (Non-degeneracy: David-Toro) Suppose that D C R? is a bounded
open set and u : D — R is a non-negative Lipschitz continuous functions satisfying
the optimality condition (4.1). Then, there is a constant ko > 0, depending on the
dimension d, the Lipschitz constant L = ||Vu|| .« (p) and the constant A, such that:

If xoeD and re (O,dist (xo,aD)) are such that / udH4! < kor,
9By (xo)

then u=0 in Brs(xo).
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Proof The proof is a consequence of the following three claims:

Claim 1 Suppose that/ wdH™" < kor. Then,
9By (x0)

u <kir on Brp(xg) where K1=2dK0.

Claim 2 Suppose that u < k1r on B (xo). Then,

6L + 9«
K

A -

|Qu N Br/z(xo)| < k3|By| where k3=

Claim 3 Suppose that |Qu N Br/z(xo)| < k2| By| and ||ull LB (xp)) < K17 Then,
for every yo € Byjs(xo), there is p € [7/4,7/8] such that

/ udM"' < k3p where &3 = 89k k.
3B, (y0)

We first prove Claim 1. Let # be the harmonic extension of u in the ball B, (xy).
By the strong maximum principle, we have thatu < h on B, (xo) (we notice that the
optimality condition (4.1) trivially implies that the function u is subharmonic). On
the other hand, the Poisson formula implies that

22
h(y) = o=l / u¢) 4 dHT () < 2%kor,
dwgr  Jyp,(xo) 1y — €I

which gives Claim 1.
In order to prove Claim 2, we consider the function ¢ € C2°(B,) such that

0<¢p<1 on By(x)), =1 on Bplx), [Vp|<3r .

Consider the competitor v = (# — k1r¢)+. Then, the optimality of u in B, (xp)
implies that

Ay N Brpp(x0)| < AlS2, N Br(x0)| — A2y N By (x0)| < /

[Vv|? dx —/ |Vul? dx
B, (x0) By (x0)

< f IV(u — k1r¢) > dx — f [Vu|? dx
By (x0) By (x0)

< 2/(1}’/ |Vu| V| dx +K12}’2/ Vo2 dx < (6K1L -|—9K12> 1B,
By (x0) By (x0)

which concludes the proof of Claim 2.
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Let us now prove Claim 3. We first estimate
/ udx < (ullLoo (B (xo)) [2u N Brpa(x0)| < k1kc2| Br|r.
Bry2(x0)

Now, taking yo € Br/s(x0), we have Brjs(yo) \ Brs(yo) C Brj2(x0), so there is p such
thatr/s < p <r/4 and

d—1 8 7 d—1 8
/ udH* " < / / udH* " ds < / udx
9B, (y0) rJrs JoBs(yo) T J Brjp(x0)

< 8i1k2|Br| < 89 kericrwa 0,

which concludes the proof of Claim 3.
We are now in position to conclude the proof of the lemma. We first notice that

L
k3 < 89 iy < 27448 —;KOKO'
Choosing
inf {1 A
Ko = 1n 5 )
0 (L + 1)274+8
we get that k3 < «ko. In particular, if / udH?! < «kor, then for any
0By (x0)

Yo € Brss(xo) there is a sequence pj, j < 1, such that g <p1 < 2 and

P <pjt1 < Pj and / udH! < kopj for every j=>1
8 4 0By, (y0)
In particular, this implies that u = 0 in B,/ (xo), which proves the claim. O
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Chapter 5 )
Measure and Dimension of the Free Check for
Boundary

This chapter is dedicated to the measure theoretic structure of the free boundary
0%2,. The results presented here are mainly a consequence of the Lipschitz continu-
ity and the non-degeneracy of the minimizer u (Theorem 3.1 and Proposition 4.1).
The chapter is organized as follows:

e Section 5.1. Density estimates for the domain €2,,.

This section is dedicated to the density estimate of €2, at the boundary 9€2,,.
The argument presented here is precisely the one from the original work of Alt
and Caffarelli [3].

e Section 5.2. The positivity set 2, has finite perimeter.

In this section we prove that the set €2, has (locally) finite perimeter in the
sense of De Giorgi. We will use this result, together with the density estimate of
the previous section in order to prove that the singular part of the free boundary
has zero H?~! Hausdorff measure. The proof that we give here is the local
counterpart of an argument proposed by Bucur in [8] for estimating the perimeter
of the optimal sets for the higher eigenvalues of the Dirichlet Laplacian.

e Section 5.3. Hausdorff measure of the free boundary.

In this section, we prove that the #¢~! measure of 32, is (locally) finite.!
Our argument is very general and essentially uses the Lipschitz continuity and
non-degeneracy of u and the fact that the optimality condition (4.1) implies that
2, has a finite inner Minkowski content in a sense that will be specified below.

1 Notice that this is not the consequence of Sect. 5.2 as the finiteness of the (generalized) perimeter
implies only that the H¢~! measure of the reduced boundary is finite.
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66 5 Measure and Dimension of the Free Boundary
5.1 Density Estimates for the Domain €2,

In this section, we prove that if # minimizes F in a set D C [R{d, then the set
Q, = {u > 0} satisfies lower and upper (Lebesgue) density estimates at the bound-
ary 0€2,. The result and the proof are due to Alt and Caffarelli [3].

Lemma 5.1 (Density Estimate) Ler D C RY be a bounded open set. Let
u : D — R be a non-negative function such that:

(a) u is Lipschitz continuous and L := ||Vu| pop);
(b) u is non-degenerate, that is, there is a constant ky > 0 such that

/ wdH ! > Kor forevery xop € DNOK,
9By (x0)
and every r € (0, dist(xg, SD));

(c) u is subharmonic in D;
(d) thereis A > 0 such that u satisfies the optimality condition (3.3), that is,

Fa(u, D) < Fa(v, D) forevery v e HI(D) such that v > u.

There is a constant §y € (0, 1), depending on the dimension d, the Lipschitz constant
L and the non-degeneracy constant k, such that

80l B;| < [Qu N By (x0)| < (1 —80)|Brl, (.1

for every xo € D N 02, and every r € (0, dist (xo, BD)). In particular, (5.1) holds
for every local minimizer of Fp in D.

Remark 5.2 Notice that the conditions (b) and (c) are fulfilled by any function
satisfying the suboptimality condition (4.1). All the conditions (a), (b), (c) and (d)
are satisfied for functions that minimize F in an open setJ/ containing the compact
set D.

Proof of Lemma 5.1 Without loss of generality we can suppose that xg = 0.
We first prove the estimate by below in (5.1). Indeed, since 0 € 9€2,, the non-
degeneracy condition (b) implies that [|u|lz B, = k05. Thus, there is a point

y € By such that u(y) > «o5. Now, the Lipschitz continuity of u implies that

u > 0 on the ball B,(y), where p = ; min il, Iz) }, and so, we get the first estimate
in (5.1).
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For the upper bound on the density, we consider the harmonic replacement 4 of u
in the ball B,. Since u is subharmonic, we get that u < h in B,.. Now, the optimality
condition (3.1), implies that

A|{u=0}ﬂB,|Z/ |Vu|2dx—/ I\Vh)?dx = | |V(u—h)|*dx.
B, B, B,

By the Poincaré inequality on the ball B, we have that

C Cqs (1 2
\V(h —u))?dx > j/ h—uPdx> ° ( (h—u)dx) .
r= Jp, | rJg,

B, Br |

The non-degeneracy of # now implies
h(0) = / hdH* ™! = / wdH'' > kor.
3B, 3B,

By the Harnack inequality applied to #, there is a dimensional constant ¢y > 0 such
that

h>cqkor intheball B,
On the other hand, the Lipschitz continuity of «# and the fact that #(0) = 0 give that
u < Ler in the ball B, .

Choosing ¢ > 0 small enough such that cyx9 > 2¢L, we get

1
(h—u)dx > (h—u)dx > _cqkor|Bgrl,
B, Ber 2

which concludes the proof. O

5.2 The Positivity set 2, Has Finite Perimeter

In this section we prove that the (generalized) perimeter of €2, is locally finite in D.
In particular, this means that 2, has locally finite perimeter. The proof that we give
here was already generalized in two different contexts: for the vectorial Bernoulli
problem (see [42]) and for a shape optimization problem with drift (see [46]). In
fact, our proof is inspired by the global argument of Bucur (see [8]) used in the
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context of a shape optimization problem in R?. The main result of this subsection is
the following:

Proposition 5.3 (Inwards-Minimizing Sets Have Locally Finite Perimeter)
Suppose that D is a bounded open set in R? and that u € H'(D) is non-negative
and satisfies the following minimality condition:

Fa(u, D) < Fa(v,D) forevery v e Hl(D)) suchthat v <uin D

andu —v € HOI(D).

Then 2, has locally finite perimeter in D.

As a direct consequence, we obtain that the support €2, of a minimizer u of Fx
has locally finite perimeter.

Corollary 5.4 (Minimizers have Locally Finite Perimeter) Suppose that D is
a bounded open set in R? and that the non-negative function u € H'(D) is a
minimizer of Fp in D. Then 2, has locally finite perimeter in D.

We divide the proof of Proposition 5.3 in two main steps: Lemmas 5.5 and 5.6.
Lemma 5.5 is a sufficient condition for the local finiteness of the perimeter of a
super-level set of a Sobolev function, while in Lemma 5.6, we will show that the
subsolutions satisfy this condition. The conclusion of the proof of Proposition 5.3 is
given at the end of the subsection.

Lemma 5.5 Suppose that D C RY is an open set and that ¢ : D — [0, +00] is a
function in H' (D) for which there exist ¢ > 0 and C > 0 such that
/ IVol*dx + A[{0 < ¢ <e}ND| < Ce, forevery 0<e<se.
{0<¢p=<elnD
(5.2)

Then, Per({¢ > 0}; D) < Cv/A.

Proof By the co-area formula, the Cauchy-Schwarz inequality and (5.2), we have
that, for every ¢ < ¢,

/S?-td_l({dn:t}ﬂD)dt:/ V| dx
0 {0<p=<e}nD

< 1{0<¢58m1)|'/2</ |V¢|2dx)l/2§8C\/A.

{0<p=<e}nD

Taking ¢ = 1/n, we get that there is §,, € [0, I/n] such that

n
HIT (0%(¢ > 8, N D) < n/ HI7 (¢ = 1} N D) dt < CVA.
0
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Passing to the limit as n — 0o, we obtain
#HI~1(8"{¢ > 0} N D) < CVA,

which concludes the proof of the lemma.

69

O

Lemma 5.6 Suppose that u € H'(B (xo)) is non-negative and satisfies the

following minimality condition in the ball Ba,(xg) C R?:

<u in

Faw) < Fa(w) forevery ve H'(Bar(x0))  such that

u="v on

Then, there exists a constant C > 0 such that

/ IVul*dx + A|{0 < u < e} N By (xo)| < Ce
(0<u=e}nB, (xo)

for every O<e<l.

Precisely, one can take

C = Cd (r_1||Vu||L2(BZr(x0)) + r_z) N

where C4 is a dimensional constant.

Proof We fix a function ¢ € C*(R?) such that

$=0 in B and ¢=1 in RY\ B
For a fixed ¢ > 0 we consider the functions

ue = (U — &)+ and g = pu+ (1 — P)u,.
We now calculate |Vii, |2 in the ball By, .

IVite|* = Ljo<u<e)|[VUP)* + Liyse)| V(U — e(1 — $))[?

< Lio<u<e)®’IVul* + Liyse) | Vul?

9By (xo).

(5.3)

+ & Lo<usze) (21Vul VS| + £ V) + & Lyme) (2AVulIVY] + £V ).

Now setting

C = 2/IVull 25, IV 1203, + 1V 225, -
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and using the optimality of u, we get
0> / |Vu|? dx — / |Viie|* dx + |{u > 0} N By, | — |{u > 0} N By, |

By By

= / |Vu|? dx —/ |Viie|*dx + {0 <u < e} N B,|
By, By,

2/ (1—¢H)|Vul*dx + {0 <u < e} N B,| - Ce
{O0<u<e}NBy,

2/ |Vul*dx + [{0 < u < e} N B,| — Ce,
{0<u<e}NB,

which concludes the proof. O

Proof of Proposition 5.3 Lemma 5.6 implies that (5.3) does hold. By Lemma 5.5,
we obtain that the perimeter is locally bounded. Precisely,

Per(Q2y; Brp(x0)) < C forevery By(xo) C D,
where C depends on r, A and d. m]

5.3 Hausdorff Measure of the Free Boundary

In this section we prove that the (d — 1)—dimensional Hausdorff measure of 9€2,, is
locally finite in D. In particular, this means that €2,, has locally finite perimeter and
so, we recover Proposition 5.3. We will use the Lipschitz continuity and the non-
degeneracy of the solution, as well as, the inner Hausdorff content estimate (5.4),
which is a consequence of Lemma 5.6. This is a very general result, which may find
application to different free boundary problems (see for instance [42]).

Proposition 5.7 Let D C R? be a bounded open set and u : D — R a Lipschitz
continuous function such that:

(a) u is non-degenerate, that is, there is a constants ¢ > 0 such that

sup u >cr forevery xg€ 92, ND andevery 0 <r <dist(xp,dD).
By (x0)

(b) u satisfies the following (sub-)minimality condition:

Fa(u,D) < Fa(v,D) forevery v e HY(D) suchthat v <uin D

andu — v € H(%(D).

Then, for every compact set K C 2, we have H?~1(K N 8%,) < oo.
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As an immediate corollary, we obtain:

Corollary 5.8 (Hausdorff Measure of the Free Boundary) Let D be a bounded
open set in RY and the non-negative function u € H'(D) be a minimizer of Fa in
D. Then, for every compact set K C D, we have HY™' (K N 9Q,) < oc.

The proof of Proposition 5.7 is a consequence of Lemma 5.6 and the following
lemma.

Lemma 5.9 Let D C R? be an open set and u : D — R a Lipschitz continuous
function such that:

(a) u is non-degenerate, that is, there is a constants ¢ > 0 such that

sup u >cr forevery xg€ 92, ND andevery 0 <r < dist(xp,dD).
By (x0)

(b) there is a constant C > 0 such that u satisfies the estimate

|{O<u§8}ﬂD|§C8 forevery ¢ > 0. 5.4

Then, for every compact set K C 2, we have HY™ (K N 3L,) < oc.
Proof Let us first recall that, for every § > 0 and every A C RY,
o0 o0
Hggl(A) < wi-1 inf{ Zr;{*l : forevery By, (x;) such that U By (xj) DAandr; < 8}.
j=1 j=1
and

HI7H(A) = aliinoﬂgl—l(A).

Let 5§ > O be fixed and let {Bs; ()c/~)}§.\’:1 be a covering of K N 9€2, such that
x;j € 082 for every j = 1,...,n and the balls Bs;s(x;) are disjoint. The non-
degeneracy of u implies that, in every ball Bso(x;) there is a point y; such that
u(y;) = c3/10. The Lipschitz continuity of u implies that Bes/io.(y;) C 24, where
L = max{l, |Vul|L>}. On the other hand, since u(x;) = 0, we have that

L €8 +C(S (L+1)C(S B o)
< = on i)
" 1oL " 10 10 cd/10LLY]

This implies that the balls Bes/10.(y;), j = 1,..., N, are disjoint and contained in
the set {0 <u<(L+1 ig } Now, the estimate from point (b) implies that

dsd

C i , N
10_] 1 3/10L y/ st dldlod
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which implies that

d—

1
LYL +1).

10
Ndwgs*' <dC ", |
4

Since, the right-hand side does not depend on §, we get that

d—1

LY@+,

10
HINK N0Qy) <dC
C
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Chapter 6 )
Blow-Up Sequences and Blow-Up Limits s

Let D be an open set in R? and u : D — R be a (non-negative) local minimizer of
Fa in D. Recall that, by Theorem 3.1, we have that u is locally Lipschitz continuous
in D. Let xo € 92, N D be a given point on the free boundary. For every r > 0, we
define the rescaled function

1
Uyor (X) 1= . u(xg +rx).
Let (r,)n>1 be a vanishing sequence of positive numbers. We say that the sequence
of functions uy, ,, is a blow-up sequence. We notice that i, , is not defined on the

entire R (since a priori we might have that D # R?), its domain of definition being
the set

1
(—xo+ D) :={x e R? : xo+rx € D}.
-

On the other hand, since r,, converges to zero, for every fixed R > 0, there exists
m > 0 such that, for every n > m, uy, ;, is defined on Bg, that is,

Bg C rl,, (=xo0 + D).
Now since,
Vg (Xx) = Vu(xg+rx) forevery x € Bg,
we have that

IVttxg.ry Loy = [IVUllLoo (B, (x0))-
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74 6 Blow-Up Sequences and Blow-Up Limits

Since u is locally Lipschitz continuous and u(xp) = 0, we get that the sequence
Uy, 18 uniformly bounded and equicontinuous on Bg. Thus, by the Theorem
of Ascoli-Arzela, we obtain that there is a subsequence of uy,, that converges
uniformly in the ball Bg. Repeating this argument for every (natural number) R > 0
and extracting a diagonal sequence, we get that there exists a function ug : RY — R
such that, for every R > 0, the sequence uy, ,, converges uniformly to uq in Bg,

lim |[uxy,r,, — uollLog) =0 forevery R > 0. 6.1)
n—>oo

Definition 6.1 (Blow-Up Limit) We will say that the function uy : RY > Risa
blow-up limit of u at x¢ if (6.1) does hold.

We notice that every blow-up limit #o of a local minimizer u of F, is non-negative,
Lipschitz continuous (in R?) and vanishes in zero. We also stress that there might be
numerous blow-up limits, each one depending on the choice of the (sub-)sequence
Uxor,- 1f this is the case, then we simply say that the blow-up limit is not unique.
For instance, the function ¢ : B — R defined in polar coordinates as (see Fig. 6.1)

¢ (p,0) = p max{0, cos(6 + In p)}

has infinitely many blow-up limits in zero (but it is not a local minimizer of the
functional F,). We will denote the family of all blow-up limits of u at x¢ by
B, (xp). The classification of all the possible blow-up limits and the uniqueness
of the blow-up limit at a given point xo € 02, are both central questions in the free
boundary regularity theory, which do not have a complete answer yet.

In this chapter we will decompose the free boundary into a regular and singular
parts according to the structure of the space of blow-up limits at the points of 9€2,.
The Sects. 6.1, 6.2, and 6.3 are dedicated to the proof of the following result.

Proposition 6.2 (Convergence of the Blow-Up Sequences) Let D be an open
subset of R? and let u : D — R be non-negative, u € HZLC(D) and a local
minimizer of Fp in D. Let xo € 02, N D and let r, — 0 be a vanishing sequence
of positive real numbers such that the blow-up sequence uy,,, converges locally

Fig. 6.1 Example of a
(Lipschitz) function with
infinitely many blow-up
limits in zero
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uniformly to the blow-up limit ug : RY — R in the sense of (6.1). Then, there is a
subsequence such that, for every R > 0, we have:

(i) the sequence uy, r, converges to ug strongly in H Y(Bg);
(ii) the sequence of characteristic functions lg, converges to lg, in LY (Bg),
where

@, = {uxy, > 0} and Qo := {up > 0} ;

(iii) the sequence of sets 2, converges locally Hausdorff in B to Q2;
(iv) ug is a non-trivial local minimizer of F in R,

In particular, Sect.6.1 is dedicated to the strong convergence of the blow-up
sequences (claims (i) and (ii)) and the optimality of the blow-up limits (claim
(iv)); the main result of this section (Lemma 6.3) is more general and will also
be used in the proof of Theorem 1.9. Section 6.2 is dedicated to the local Hausdorff
convergence of the free boundaries (claim (iii)); the results of this section apply
both to Theorem 1.2 and Theorem 1.9. In Sect. 6.3, we conclude the proof of
Proposition 6.2.

In Sect.6.4, we define the regular part Reg(0€2,) and the singular part
Sing(02,) of the free boundary. Moreover, we prove that the singular set
Sing(0€2,) has zero (d — 1)-dimensional Hausdorff measure (Proposition 6.12).
We notice that this result applies to Theorems 1.2, 1.4, and 1.9, but is interesting
only for Theorem 1.2, in which we do not make use of monotonicity formulas. In
fact, in Sect. 10, we will obtain better estimates on the dimension of the singular
set by means of the Weiss’ monotonicity formula, which we will apply to both
Theorem 1.4 and Theorem 1.9.

6.1 Convergence of Local Minimizers

In this section we prove the strong convergence of the blow-up sequences and the
minimality of the blow-up limits at every point of the free boundary of a local
minimizer. Our result (Lemma 6.3) is more general and applies also to other free
boundary problems; for instance, we will use it in the proof of Theorem 1.9.

Lemma 6.3 Let A > 0 be a given constant, B C R and u, € Hl(BR) be a
sequence of non-negative functions such that:

(a) every uy is a local minimizer of Fp in Bgr or, more generally, satisfies
Fa(un, BR) < Fa(un+¢,Br)+e, forevery ¢ € H&(Br) and every r <R,

where &, is a vanishing sequence of positive constants.
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(b) the sequence u, is uniformly bounded in H'(BR), that is, for some constant

C >0,

””"H%II(BR) = Fo(un, BR) + /BR u% dx <C for every n>1.
Then, there is a function ux, € H 1 (BR) such that, up to a subsequence, we have

(i) u, converges to us strongly in H'(B,), for every 0 < r < R;
(ii) the sequence of characteristic functions 1y,,~0) converges to 1, >0y strongly
in L' (B,) and pointwise almost-everywhere in By, for every 0 < r < R;
(iii) Uuoo is a local minimizer of Fp in Bp.

Proof The idea of the proof is very similar to the one in Lemma 3.14, but is more
involved due to the presence of the measure term. Up to extracting a subsequence,
we can suppose that the sequence u,, converges to a function us, € H'!(Bg) weakly
in HY(Bg), strongly in L%(Bg) and pointwise (Lebesgue) almost-everywhere in
Bpr. We set for simplicity
Q, ={up, >0} and Qs = {us > 0}.

The weak H '-convergence implies that for every 0 < r < R

IVuosollp2(p,) < lilfgiofolf”VMnHLZ(B,), (6.2)
with an equality, if and only if, (up to a subsequence) the convergence is strong in
B, . On the other hand, the pointwise convergence of u,, implies that for almost-every
X € Bp

X € Qoo = Uo(X) >0 = u,y(x) >0 forlargen = x € Q, forlarge n.

In particular, this implies that
lg, <liminflg,
n—o0
and so, by the Fatou Lemma, for every 0 < r < R, we have
|Q60 N By| < liminf|2, N B,|, (6.3)
n—o00
with an equality, if and only if, (again, up to a subsequence) 1, converges strongly

to 1o, in L'(B,). Notice that, up to extracting a subsequence we may assume that
the limits in the right-hand sides of (6.3) and (6.2) do exist.
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In order to prove (i) and (ii), it is sufficient to prove that, for fixed 0 < r < R,
we have

||Vuoo||L2(Br) = 1}llll)lo%f||vun|lL2(Br) and |QOO N Br| = 1}111_1)102f|9n N B}’l
(6.4)

Let n : B — R be a function such that

neC>®Bg), 0<n<1 in Bg, n=1 on dBg, n=0 on B,.
(6.5)

Consider the test function it,, = nu, + (1 — n)u. Since u,, is a local minimizer for

Fa in Bg, and since u, = i, on d Bg, we have Fp (u,, BR) < Fa(un, BR) + &,
that is,

05/ |Vﬁ,,|2dx—/ [Vun|>dx + A€, N Br| — A|Q, N Bg| + &,
Bg Bgr

where we have set Q,, := {ii, > 0}. We first estimate

|, N Brl — |12, N Brl = |2, N {n =0} — [Q, N {n =0}
+ 192, N {n > 0} — |2, N {n > O}
= Qoo N {n = 0}| — |2, N {n = O}]
+ (20 U Qo0) N {1 > 0} — [, N {n > 0}]
< Qoo N {n =0} — 2, N {n =0} — [{n > O}}.

By the Fatou Lemma on the set {n = 0} \ B,, we have that
200 N {n = 0} \ B,| < liminf[$2, N {n =0} \ By,
and so, we get

lim sup (|QntR|—|szntR|> < lim sup (|QoomB,|—|Qnt,|>—|{n S0} (6.6)
n—0o0

n—0o0
We next calculate
- 2
\Viin|* = [Vun|* = [V O + (1 — Do) |” — Vi |?

2
= [(un — o)V + 0 Vity + (1 — ) Vitoo|” — |Vuu|*.
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Now since u; — uso strongly in L2(BR), we have that

lim sup (|v;;n|2 _ |w,,|2) dx

n—o00 JBpg

= lim sup (|(un —Uco)Vn +nVu, + (1 — n)Vuoo|2 — |Vun|2) dx

n—>oo JBp

= lim sup ((n2 — DIVun? +25(1 = ) Vuuy - Vitoo + (1 — n)2|woo|2) dx

n— 00 BR

=limsup [ (1 ;72)<|Woo|2 - |Vun|2) dx

n— 00 BR

: 2 2 2
§llmsup/ (|woo| — |Vitn| )dx+/ [Vitoo | dx.

n—o0 J{n=0} Bg\{n=0}

By the weak H! convergence of u, to us on the set {n = 0} \ B,, we have

limsup/ (|van|2 - |w,,|2) dx < limsup (|woo|2 - |w,,|2) dx +/ Vit |? dx.
Bgr B

n—o00 n—o00 r {n>0}

This estimate, together with (6.6) and the minimality of u,, gives
liminf Fp (u,, By) = liminf/ [Vun|? dx + A|Q O By |
n—o0 n—o0 Br

5/ |Vuoo|2dx+A|QooﬂBr|+/ [Vusol? dx + Al{n > 0}
B, {n>0}

— Fa (oo By) +/ Vusol? dx + Ally > O}
{n>0}

Since 7 is arbitrary, we finally obtain

limglgf]:/\(un, Br) =< ]:A(MOO’BI‘)’
n—

which implies (6.4) and, as a consequence, the claims (i) and (ii).
We now prove (iii). Let 0 < r < Rand ¢ € H(} (By). We will show that

Fa(oo, Br) < Faluoo + ¢, Br). (6.7)
In order to prove(6.7), we will use the optimality of u, and we will pass to the
limit. We notice that, for a fixed n > 1, the natural competitor is simply u, + ¢.

Unfortunately, we cannot follow this strategy since we do NOT a priori know that

lim [{u, + ¢ > 0} = |{tco + ¢ > 0}].
n—>oo
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Thus, we consider a function n : B — R that satisfies (6.5) and is such that the
set NV := {n < 1} is a ball strictly contained in Bg. Precisely, we have that the
following inclusions do hold:

{p#0)C B, C{n=0} CN ={n <1} CBg,
the last two inclusions being strict. We define the competitor

Vp =ty +@+ (1 —n)(Uco — n),

and we set for simplicity voo := Uno + @. Now, since ¢ = 0 on Bg \ N, we have
that v, = vso on the set {n = 0} and (6.7) is equivalent to

Fa(toos N) < Fa(voo, N). (6.8)
By the points (i) and (ii), we have that

FA (oo, N) = lim Fp(uy, N).
n—oo
The optimality of u,, and the strong H'! convergence of u, to u in N give

lim Fp (un, N) < liminf Fp (vy, N) = / |Vveo|? dx + A liminf [{v, > 0} NN
n—oo n—o00 N n—o00
(6.9)

Moreover, since
Uy = VUso oOntheset {n=0},
we have

{vn > O} NN = [{vy > 0} N {n = 0} + [{va > 0} N {0 < n < 1}]
< {vos > O} NN|+ [{0 < n < 1}],

which, together with (6.9) and (6.8), gives

Falttoo, N) = 1im Faltn, N) = Fa(voo, N) + [0 < 51 < 1)1,

Now, since the set {0 < 1 < 1} is arbitratry, we get (6.8) and so, the claim (iii). O
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6.2 Convergence of the Free Boundary

This section is dedicated to the proof of Proposition 6.2 (iii). In particular, we define
the notion of local Hausdorff convergence (see Definition 6.4 below) and we prove
several results, which are general and can be used in the context of different free
boundary problems.

Definition 6.4 (Local Hausdorff Convergence) Suppose that X, is a sequence of
closed sets in R? and €2 is an open subset of R?. We say that X,, converges locally
Hausdorff in 2 to (the closed set) X, if for every compact set  C 2 and every
open set U4, such that  C U C 2, we have

lim distxczs(Xy, X) =0,
n—>oo
where, for any pair of closed subset X, Y of €2, we define

distic (X, Y) := max{ max dist (x, Y NU), max dist(y,XﬂZ/{)}.
xeXNK yeYnkc

Lemma 6.5 (Hausdorff Convergence of the Supports) Let Br be the ball of
radius R in RY. Let u, : Bog — R be a sequence of continuous non-negative
functions such that:

(a) u, converges uniformly in Bog to the continuous non-negative function ug :
BQR d R,’
(b) u, is uniformly non-degenerate, that is, there is a strictly increasing function

 : [0,400) — [0, +00),
such that w(0) = 0 and

lunllLoo(B, (xg)) = @(r) forevery xo € Q2u,NBsrp, r€(0,R2) and neN.

Then the sequence of closed sets 2, converges locally Hausdorff in Bg to .

Proof We first prove the non-degeneracy of ug. Suppose that x € Q,, N Br and
r < R/2. Then, there is y € By, (x) such that uo(y) > 0 and so, for n large enough
we have that u, (y) > 0. By the non-degeneracy of u,, there is a point z, € B/, (y)
such that u,(z,) > w("/2). Up to a subsequence z, converges to some z € B/, (y).
By the uniform convergence of u,, we have

up(z) = ngngo un(zn) = w(7/2),
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which proves that
luollLoe(B,(x)) = w(7/2) forevery x € Q,,NBgr andevery r <R/2.

We can now prove the local Hausdorff convergence of €2,,, to €2,,. Let  C Bg be
a given compact set and &/ C Bp be an open set containing . Let § > 0 be the
distance from K to the boundary of ¢/. We reason by contradiction. Indeed, suppose
that there is ¢ > 0 such that distx g4 (Qun, QMO) > ¢. Then, up to extracting a
subsequence, we can assume that one of the following does hold:

(1) There is a sequence (x,), such that
Xp € Qu, NK and dist(x,, Q2,, NU) > &.
(2) There is a sequence (x;), such that

Xp € Qu NK and dist (x,, 2, NU) > &.

Moreover, we can assume that 0 < ¢ < §.

Suppose that (1) holds. Since x,, € €2, we have that there is y, € Bep(x,) C U
such that u,(y,) > w(¢/2). On the other hand, (1) implies that uo(y,) = 0, in
contradiction with the uniform convergence of u, to ug.

Suppose that (2) holds. By the non-degeneracy of up we have that there is
Yn € Bep(xy) C U such that uo(y,) > w(¢/4). On the other hand u,(y,) = 0,
in contradiction with the uniform convergence of u,, to uy. m]

Lemma 6.6 (Hausdorff Convergence of the Zero Level Sets) Let Br be the ball
of radius R in R?. Let u, : Byg — R be a sequence of continuous non-negative
functions such that:

(a) u, converges uniformly in Bap to the continuous non-negative function
uo : Bop — R;
(b) u,(0) = 0 and u, satisfies the following uniform growth condition:

uy(x) > a)(dist (x, {u, = O}OBQR)) forevery xNBgr andevery n €N,

where w : [0,+00) — [0,400) is a strictly increasing function such that
w(0) = 0.

Then the sequence of closed sets {u, = 0} converges locally Hausdorff in Bg to
{up = 0}.
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Proof Let K C Bg be a compact set and let &/ C Bg be an open set containing K.
Let § > 0 be the distance from K to the boundary /. We reason by contradiction
and we suppose that there is ¢ € (0, §) such that

dist g4 ({un = 0}, fuo = 0}) > ¢.

Then, up to a subsequence, we have one of the following possibilities:

(1) There is a sequence (x,), such that
xXn €{up, =0}NK and dist(x,, {up =0} NU) > &.
(2) There is a sequence (x;), such that

xp € {ug=0}NK and dist(x,, {u, =0}NU) > ¢.

Suppose first that (1) holds. Up to extracting a subsequence, we can suppose that
Xy, converges to xg € /. By the uniform convergence of u,, and the continuity of u,
we have

Un(x0) < tn (Xn) + |10 (xn) — un (xn)| + 1o (x0) — 1o (xn)| + |un (x0) — uo(xo)| — 0.

Passing to the limit as n — oo, we get that ug(xo) = 0, which is a contradiction
since

dist (xo, {uo = 0} NU) > lim dist (xn, {ug = 0} NU) > &.
n—0o0

Suppose now that (2) holds. Now, let y, be the point in Bog N {u, = 0} that
realizes the distance from x, to this set. There are two possibilities:

* vy, € Bop \ U. In this case, we have |x,, — y,| > 8.
* yp € U. Then, we have dist(x,, {u, =0} NU) = |x, — yu| > &.

In both cases, we have that |x, — y,| > ¢. By the uniform growth condition (b), we
have

un(xn) = w(xp — ynl) > w(e),

which is a contradiction with the uniform convergence of u;, to u. m]
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Lemma 6.7 (Hausdorff Convergence of the Free Boundaries) Let Bg be the ball
of radius R in R?. Let u, : Byp — R be a sequence of continuous non-negative
functions and ug : Bog — R be a continuous non-negative function such that:

(a) the sequence 2, converges locally Hausdorffin Bg to Q,;
(b) the sequence {u,, = 0} converges locally Hausdorff in Bg to {ug = 0}.

Then, 982y, converges locally Hausdorffin Bg to 092,,.
Proof Let K C Bg be a fixed compact set and i/ C Bpg be a given open set. Let
8 > 0 be the distance between X and dU{. Let ¢ € (0, §) be fixed.

Let xo € 92, N K. By the Hausdorff convergence of €2,,, and {u, = 0}, we get
that, for n large enough, there are points

Yn € Qu, NU and n €{u, =0}NU,
such that
[xo — ynl < & and |xo — znl < &.

Since u, is continuous, there is a point w, on the segment [y,,z,] such that
w, € 982y, . Moreover, by construction w, € B¢(xo) C U. Since xo is arbitrary, we

get that

max dist (x, 982, NU) < ¢.
X €38N K

Conversely, let x, € 3€2,, N K be fixed. Using again the Hausdorff convergence of
Q,, and {u, = 0}, we get that, for n large enough, there are points

Yo € Qo N U and z0€{uo=0}NU,
such that
[xn — yo|l < & and [xn, — zo| < &.

Now, by the continuity of u(, we get that there is a point wy on the segment [y, zo]
such that wo € 982, N Be(x,). Since x, is arbitrary, we get

max dist (x,9R,, NU) < ¢,
x€d,,NK

which concludes the proof. O
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6.3 Proof of Proposition 6.2

By the local Lipschitz continuity of u, we have that for any fixed R > 0, the
Sequence U, = Uy, is uniformly bounded in H Y(Bg). Thus, applying Lemma 6.3,
we get at once the claims (i), (ii) and (iv) of Proposition 6.2. We notice that the fact
that the blow-up limit is non-trivial (u9 = 0) follows by the non-degeneracy of u,
which assures that for every n > N and every R > 0, there is a point x, € Bg
such that u, ., (x,) > K, where « is a constant that depends only on A and the
dimension d. The Hausdorff convergence of the free boundary (Proposition 6.2
(iii)) follows by Lemma 6.5; Lemma 6.6 and finally, by Lemma 6.7. Notice that
the non-degeneracy condition of Lemma 6.5 follows by Proposition 4.1, while the
uniform growth condition of Lemma 6.6 is a consequence of the following lemma
(Lemma 6.8).

Lemma 6.8 Letu : Bop — R be a continuous non-negative function such that:

(1) u(0) =0;

(2) u satisfies the following non-degeneracy condition:
lullpoe (B, (x)) = kr forevery x € Q,NBg andevery r e (0,R),

for some given constant k > 0;
(3) u is harmonic in 2, N Bop.

Then, u satisfies the following growth condition:
u(x) > sz+1dist (x,{u =0}N Byg) forevery x € Bp.
Proof Suppose that xg € 2, N Bg and let yg € €2, N Byg be such that
r = |xo — yo| = dist (xo, {u = 0} N BaRr).

Then, the non-degeneracy of u implies that there is a point zg € B, (xo) at which

()>
uz K .
0_2

Now, since u is harmonic in €2,,, we get

K wg rit!
u(x)dx = [Baluzo) = 1
Bra(z0)
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Since u is non-negative and harmonic in B, (x() , we have that

(x0) 1 ) dx > 1 () dx > Kk wg rd*! K

u(xg) = u(x)dx > u(x)dx > = r,
|Br| JB, (xo) [Brl J Br o (z0) wqrd 24+l 2d+l

which concludes the proof. O

As an immediate corollary, we obtain the following well-known result (see for
instance [3]), which we give here for the sake of completeness.

Corollary 6.9 Suppose that u is a (non-negative) minimizer of Fx in the ball
Bor C R? such that u(0) = 0. Then, there are constants C1 and C», depending
only on A and d, such that the following inequality does hold:

Cidist (x,{u =0}NBr) <u(x) < Codist(x,{u =0}NByg) forevery x € Bg.

Proof The first inequality follows by Lemma 6.8, while the second one is due to
the Lipschitz continuity of u (see Theorem 3.1). O

6.4 Regular and Singular Parts of the Free Boundary

In this section, we define the regular and the singular parts of the free boundary.

We notice that we will use exactly the same definition of regular and singular parts in
Theorems 1.2, 1.4, 1.9 and 1.10.

Let D be a bounded open set in R? and let u : D — R be a non-negative
continuous function (in particular, one can take u to be a minimizer of F in D).
Let x( be a fixed point on the free boundary 92, N D, where 2, = {u > 0}.

Definition 6.10 (Decomposition of the Free Boundary) We say that xp is a
regular point if there exists a blow-up limit u#¢ of u at xop (see Definition 6.1) of
the form

up(x) = VA (x-v)y+ forevery x € R,
for some unit vector v € R?. We will denote the set of all regular points
xo € 32, N D by Reg(9$2,), and we define the singular part of the free boundary
as
Sing(0€2,) = (082, N D) \ Reg(92,).
In Chap. 8, we will prove that Reg(d2,) is an open subset of 32, and is a C1¢-

regular surface in R?. In this section, we will prove that the reduced boundary 3*<2,,
is actually a subset of the regular part Reg(d€2,) and (as a consequence) that the
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singular set is small. Precisely, we will show that
HIY (Sing(9S2)) = 0.

We start with the following lemma.

Lemma 6.11 Let D be a bounded open set in RY and u be a minimizer of Fy in
D. Let xy € 02, N D be a free boundary point, for which there exists a unit vector
v € RY and a vanishing sequence r, — 0 such that

lg, - 1u, in Bg forevery R >0, (6.10)

where Q, == rln (—x0+Qu) and H, = {x € R? : x-v > 0}. Then, xo € Reg(dQ,).

Proof Let u,, be the blow-up sequence

1
Up(X) 1= lyyr, (X) = , u(xg + rpx).
n

Notice that €2, = {u, > 0}. By Proposition 6.2, we have that, up to a subsequence
and for every R > 0, u,, converges locally uniformly in Bg and strongly in H' to a
function u, which is a non-negative Lipschitz continuous global minimizer of F in
R?. Moreover, we have that the sequence of characteristic functions 1g, converges
in LI(BR) to Jlguo. In particular, this implies that €2,, = H, almost everywhere.
Now, the minimality of ug and the fact that |{ug = 0} N H,| = 0 implies that uq is
harmonic in H,. By the maximum principle, we get that 2,,, = H,. Thus, ug is C*
smooth up to the boundary d H, (where it vanishes).
We will next prove that

Vuo=+~Av on 9H,.

Indeed, suppose that this is not the case. Then, there are two possibilities:

(1) thereis a point y € d H, such that Vug = Av for some A > \/A;
(2) thereis a point y € d H, such that Vug = Bv for some 0 < B < VA.

Suppose that (1) holds. Let 4, g be the radial solution from Proposition 2.15, where
r is large enough and R = R(r) is uniquely determined by r. Recall that:

r <R, lim [R—(+1)]=0,  {h.r >0} =Bz,
r—>00

h,gr=1 on B, and |[Vhy rl =1+0(1) on Bpr)\ B,.
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Moreover, the function VA h, g is a local minimizer of F in R4 \ B,.Lety, € R4
be such that the ball B (y,) is contained in H,, and is tangentto d H, at y. Letr > 0
be fixed and such that

A
2JVA

Then, there is ¢ > 0 small enough, for which the function

1
|Vhr,R| < ) +

h(x) := VA hyg(x + €v)

satisfies the following conditions:

* the support of h is not entirely contained in H,, that is, {h > 0} N{up = 0} # B;
o h>u only in a small neighborhood of y, precisely, {h > uo} C By (y).

Next, we notice that both h and uq are minimizers of F in B := By, (y). Since, by
construction ug > h on d B, we get that

Fa(h, B) < Fa(uo A h, B) and  Fa(uo, B) < Fa(uoV h,B).  (6.11)
On the other hand,
Fa(h, B) + Fp(uo, B) = Fa(uo Ah, B) + Faluo V h, B),

which means that both the inequalities in (6.11) are equalities and that both the
functions 1 A up and hv ug are minimizers of 7, in B. For instance, this means that
h v ug is harmonic in the set {# > 0} N B, which is impossible since by construction
hv ug is not C! (for instance, the gradient is not continuous on the segment [y, y,]).
Thus, (1) cannot happen. By the same argument, also (2) cannot happen, which
means that

|Vugl = A on 9H,.

Now, by the unique continuation principle we have that uo(x) = v/A (x - v) on H,.
Indeed, the function i(, defined as

io(x) =up(x) in H, and  do(x)=+A(x-v) on RY\ H,,

is harmonic in the entire space R¢ and so, it should coincide everywhere with the
function x — +/A (x - v). This concludes the proof. |

Proposition 6.12 (The Singular Set Is Negligible) Let D be a bounded open set
in R? and u € H' (D) be a minimizer of Fa in D. Then, H‘I’I(Sing(aﬂu)) =0.
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Proof By Proposition 5.3, ,, has locally finite perimeter in D. Let 3*2,, be the
reduced boundary of €2,. It is well-known (see for instance [43, Theorem 5.15])
that, for every xo € 8%, there is a unit vector v € R such that the property (6.10)
does hold. Thus, by Lemma 6.11, we have that 0*Q, C Reg(9$2,). On the other
hand, by the Second Theorem of Federer (see [43]), we have that

H (N D)\ (P U Ua*Q,)) =o. (6.12)

Recall that, by Lemma 5.1, there are no points of density 1 and O on the free
boundary, that is,

@2, ND)N (P ue®) =g
Thus, by (6.12)
HITH (B3R N D)\ 9*Qy,) = 0.
Now, by the definition of the singular part, we have
Sing(9€2,) = (02, N D) \ Reg(92,) C (32, N D)\ 8%,

which concludes the proof. O
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Chapter 7 )
Improvement of Flatness Sheiie

In this chapter, we will prove that the regular part of the free boundary Reg(9€2,)
(defined in Sect. 6.4) is C1# regular, for every « € (0, 1/2). We will first show that
the minimizers of F are viscosity solutions of an overdetermined boundary value
problem. Precisely, we will prove the following result.

Proposition 7.1 (Local Minimizers Are Viscosity Solutions) Let D be a bounded
open set of R? and let u € H'(D) be a minimizer of Fa in D. Then, u is a viscosity
solution of

Au=0 in S,  |Vul=+vA on 89, ND, (7.1)

in the sense of Definition 7.6.

The rest of the section is dedicated to the De Silva improvement of flatness
theorem [23]. Precisely, we will prove that the (viscosity) solutions to (7.1) have
C1 regular free boundary. The proof follows step-by-step (sometimes with minor
modifications) the original proof of De Silva [23].

Without loss of generality, we can assume that A = 1. This is due to the
following remark, which is an immediate consequence of the definition of a
viscosity solution (Definition 7.6).

Remark 7.2 The continuous non-negative function ¥ : By — R is a viscosity
solution to (7.1), for some A > 0, if and only if the function v := A uis a
viscosity solution to

Av=0 in £, |[Vv|=1 on 0Q,ND. (7.2)

As a consequence, it is sufficient to give the notion of flatness in the case A = 1.
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90 7 Improvement of Flatness

Definition 7.3 (Flatness) Let # : By — R be a given function. Let ¢ > 0 be a
fixed real number and v € R? a unit vector. We say that

u is e—flat, in the direction v, in By,
if
x-v—g)y <ux)<(x-v+e), for every x € Bj.

Theorem 7.4 (Improvement of Flatness for Viscosity Solutions, De Silva [23])
There are dimensional constants Co > 0, g9 > 0, o € (0,1) and ro > 0 such that
the following holds:

Ifu : By — R be a continuous function such that:

(a) u is non-negative and 0 € 9<2,,;
(b) u is a viscosity solution to

Au=0 in Q,NBy,
[Vul=1 on 9Q,NB;
(c) thereis ¢ € (0, e0] such that u is e-flat in By, in the direction of the unit vector
v e RY
Then, there is a unit vector v € 9B; C R? such thar:

(i) [v—v|] < Cog;
(ii) the function uy, : By — R is oe-flat in By, in the direction v, where we recall

1
that uyy(x) =  u(rox).
ro
Precisely, for any g > 0, we may take
Co=Cy, g0 =ro and o = Cyro,

where Cy is a dimensional constant.

From the improvement of flatness (Theorem 7.4) we will deduce the regularity
of the free boundary (see Chap. 8). The section is organized as follows:

* In Sect.7.1 we give the definition of a viscosity solution and we prove Propo-
sition 7.1 using as competitors the radial solutions from the Propositions 2.15
and 2.16.
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e In order to prove Theorem 7.4, we will reason by contradiction. This means
that we will need a compactness result for a sequence of viscosity solutions
uy : By — R which are g,-flat in B; (¢, being an infinitesimal sequence). This
will be the aim of Sects. 7.2 and 7.3. In Sect. 7.2, we will prove the so-called
Partial Harnack inequality (see Theorem 7.7), which we will use in Sect.7.3 to
obtain the compactness result (Lemma 7.14).

* Section 7.4 is dedicated to the proof of Theorem 7.4.

* Sections 8.1 and 8.2 are dedicated to the proof of Theorem 8.1, which is based on
a classical argument and is well-known to be a consequence of the improvement
of flatness Theorem 7.4.

7.1 The Optimality Condition on the Free Boundary

In this section, we give the definition of a viscosity solution and we prove
Proposition 7.1.

Definition 7.5 Suppose that @ C R¢ is an open set and that u is a continuous
function, defined on the closure 2. Let xo € €. We say that the function
¢ € C®(R?) touches u from below (resp. from above) at xq in 2 if:

e u(xo) = ¢(xo0);
* there is a neighborhood N (xg) C R? of xo such that u(x) > ¢(x)
(resp. u(x) < ¢(x)), for every x € N (xp) N Q.

Definition 7.6 (Viscosity Solutions) Let D C R be an open set, A > 0 and
u: D — R be a continuous function. We say that u is a viscosity solution of the
problem

Au=0 in Q, |Vu|=A on 9Q,ND,

if for every xg € 2, N D and ¢ € C*°(D), we have
e ifxp e Q, ={u > 0}and

— if ¢ touches u from below at xq in €2, then A¢ (xg) < 0;
— if ¢ touches u from above at xq in €2, then A¢(xg) > 0;

e ifxg € 02, N D and

— if ¢ touches u from below at xq in €2,,, then |V (xg)| < A;
— if ¢ touches u from above at xq in 2, then |V (xg)| > A.
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Proof of Proposition 7.1 Suppose that xo € 2, and that ¢ € C°°(D) touches u
from below in x¢. Since u is harmonic (and smooth) in the (open) set €2,,, we get that
A¢(xp) > 0. The case when ¢ touches u from above at xg € 2, is analogous. Let
now xo € 9€2,. Suppose that ¢ touches u from below at xo and that [V (xg)| > 1.
We assume that xo = 0 and we set

1
IVo(0)| =a and v= V¢(0)e€dB,
a
we get that, for some p > 0 small enough,
14+a
ulx) > ¢y (x) > ) (x-v)4 for every X € By.

Let now » > 0 be large enough such that the radial solution u, from Lemma 2.15
satisfies

u=1 in By, u,=0 in RI\Bg, |Vu,|< Z;L“ in Bg\ B,
Let i, be the following translation of u,
e (x) == u,(x — (R —&)v).
Choosing ¢ small enough we can suppose that i (0) > 0 but
Ue(x) < ! —;a (x-v)y for every x€dB,.
Thus,
UeVU=1u and g Au=1u, on 9B,.
Now, since both i, and u are both minimizers in B,, we get
Fa(ide, By) < Fa(ile Au, By) and Fa(u, Bp) < Fa(ie Vu, Bp).
On the other hand, we have
Fa(is, Bp) + Fa(u, Bp) = Fa(ie Au, By) + Fa(lis V u, Bp),
which gives that

Fa(le, By) = Falile Nu,By) and Fa(u, Bp) = Fallie Vu,B,).
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Now, we define the function

- . in RY\B,,
vs: ~ .
ugs Au in By,

and we set vy (x) = ¢ (x + (R — &)v). Thus, we get that F (v, RY) = Fa (u,, RY),

but v, # u,, which is a contradiction with Lemma 2.15. The case when ¢ touches
u from above is analogous and follows by Lemma 2.16. O

7.2 Partial Harnack Inequality

In this section we prove a weak version of Theorem 7.4. We will assume that u
satisfies the conditions (a), (b) and (c) of Theorem 7.4, which means, in particular,
that u is e-flat in some direction v:

x-v—8&)y <ulx)<@x-v+e)y forevery x € Bj.

Then, we will prove that the flatness of u is improved in some smaller ball B,.
Precisely, we will show that

(x-v—(l—c)s)+gu(x)g(x-wr(l—c)e)+ forevery x € B,, (7.3)

for some dimensional constant ¢ € (0, 1). There are two main differences with
respect to Theorem 7.4:

* The flatness might not really be improved in the sense of Theorem 7.4 and
Fig.7.1. Indeed, (7.3) only implies that the rescaled function

1
ur: By > R, u,(x) = u(rx),
r
is (1 —c¢) f —flat in Bj. Since the constants ¢ and r are small, we might have
e
(I-¢c) =>e,
r

which means that u, might not be flatter than u.

Fig. 7.1 Improvement of

flatness in the ball B;. For
simplicity, we set r := rg ‘l‘
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 The flatness direction does not change (v' = v). Notice that, without changing
the direction, the improvement of flatness (in the sense of Theorem 7.4) should
not hold. In fact, the function u(x) = x;r is e-flat in the direction v (whenever
v —eq| = ¢),butforany r > 0, u,(x) = u(x) = xj, thus u, cannot be more
than e-flat in the direction v (the improvement is only possible if we are allowed
to replace v by a vector, which is closer to ey).

The main result of this section is the following.

Theorem 7.7 (Partial Boundary Harnack) There are dimensional constants
g > 0and c € (0,1) such that for every viscosity solution u of (1.2) in By C R?
such that 0 € Q, we have the following property:

If there are two real numbers ag < bo such that

|bg —apl < & and  (xg+ao)+ <u(x) < (xa +bo)+ on B,
then there are real numbers a1 and by such that ay < a1 < b1 < by,
|br—ai| < (1—=c)|ao—bo| and (xg+a)+ <u(x) < (xg+b1)+ on  Bipy.

Proof Since 0 € 2, we have that ay > —1/10. We consider two cases:

1. Suppose that |ap| < 1/10. Then applying Lemma 7.10 we have the claim.
2. Suppose that ap > 1/10. Then u is harmonic in B; N {xg > —1/10} (and so, in the
ball Bi) and the claim follows by Lemma 7.9.

O

We next prove the two main results: Lemmas 7.9 and 7.10. Section 7.2.1 is dedicated
to the proof of Lemma 7.9, which is a consequence of the classical Harnack
inequality for harmonic functions stated in Lemma 7.8. Section 7.2.2 is dedicated to
the boundary version of the Harnack inequality (Lemma 7.10), which is due to De
Silva [23].

7.2.1 Interior Harnack Inequality

Lemma 7.8 (Harnack Inequality) There is a dimensional constant Cyy such that
forevery h : By (xg) = R, a non-negative harmonic function in the ball By, (xo) C
RY, the following (Harnack) inequality does hold

max h < Cy min h. (7.4)
By (x0) By (x0)
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In particular, we have

h(xo) < Cy Bm(ixn) h.
r (X0

Proof The proof is an immediate consequence of the mean-value property. O

Lemma 7.9 (Improvement of Flatness at Fixed Scale) Let Cyy > 1 be the

dimensional constant from the Harnack inequality (7.4) and let cyy = (2Cq.[)71.
Suppose that u : By — R is a harmonic function for which there are a constant
& > 0.and a linear function £ : R — R such that

L(x) <u(x) <l(x)+e  forevery x € By,.

Then at least one of the following does hold :
(i) €£(x)+cye <ulx) <L€(x)+e forevery x € By;
(ii) £(x) <u(x) <€(x)+ (1 —cy)e forevery x € B,.

Proof We consider two cases.
Case 1. Suppose that u(0) > £(0) + ¢/2. Then the function 4 := u — £ is harmonic
and non-negative in By,. Then, by the Harnack inequality (7.4), we have

S <h©) =0y min h,

which means that

&

— 0>
! T~ 2Cy

in B,

and so (i) holds.
Case 2. Suppose that u(0) < £(0)+¢/2. Then the function s := £+ & —u is harmonic
and non-negative in By,. Then, by the Harnack inequality (7.4), we have

S <h©) =0y min h,

which means that

&
L+e—u> in By,
+ M_ZC’H r

and so (ii) holds. |
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7.2.2 Partial Harnack Inequality at the Free Boundary

Lemma 7.10 (Improving the Flatness at Fixed Scale; De Silva [23]) There are
dimensional constants € > 0 and c € (0, 1), for which the following does hold.
Suppose that u : By — R is a continuous non-negative function and a viscosity
solution of (7.2) in By C RY. Then, we have the following property:
If there are real constants ¢ and o, 0 < ¢ < € and |o| < 1/10, such that

(xg+0)y <ulx)<@xg+o+ey  forevery xe€ By,

then at least one of the following does hold :

(i) (xg+o0+ce)y Sux)<(xg+o+ey forevery x € By,
(ii) (xg+o0)y ux)<(xg+o+1—c)e)y forevery x € Bipy.

Proof We set

_ ed _ -1
X = s and c= (20d - (4/3)d) ,

and consider the function w : R? — R, defined as (see Fig.7.2):

w(x) =1 for x € Bijy(X),
w(x) =0 for x € R\ By (%),
ww) =¢ (v = #7 = (7)),

for every x € Byu(X) \ Bijx(X).

The set, where the function w is not constantly vanishing, is precisely the ball
Bs,(x) (see Fig.7.2). Moreover, on the annulus B/, (X) \ Bij(x), the function w
has the following properties :

wl) Aw(x) =2dé|x — %@ > 24 (43) > 0.

(w2) 9y,w > Cy > 0 on the half-space {x; < 1/10}. Here, C,, > 0 is an (explicit)
constant depending only on the dimension.

Following the notation from [23] we set p(x) = x4 + o. Similarly to what we
did in the proof of Lemma 7.9, we consider two cases.
Case 1. Suppose that u(x) > p(x) + ¢/2.

Since the function # — p is harmonic and non-negative in the ball Bi/o(x), we

can apply the Harnack inequality (7.4). Thus, setting ¢y := (ZCH)_l we get

u(x) — p(x) = cye in  Bip(X).
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Fig. 7.2 The function w

Aw >0 in B:s/4(f) \ Bl/m(f)

w =1 in Bij(T)

We now consider the family of functions
v (x) = p(x) + cyew(x) — cye + cyet.

We will prove that for every ¢ € [0, 1), we have u(x) > v;(x) in B;. We notice that,
for ¢t < 1 the function v, has the following properties:

(v1) vi(x) < p(x) < u(x) on By \ Bsu(x) (since the support of w is precisely
Bys(¥)),

(v2) vi(x) < u(x)in Bip(x) (by the choice of the constant cy),

(v3) Av;(x) > 0 on the blue annulus B/ (x) \ Bi/(x) (follows from (w1)),

(v4) |Vuel(x) = O ve(x) > 1+ c96Cy, > 1 0n (B3/4()E) \ Bl/zo(i)) N{xg < 1/10}.

Suppose (by absurd) that, for some ¢ € [0, 1), the function # — v; has local minimum

in By in a point x € B;. By (v3) and the fact that u is a viscosity solution we have

that x ¢ QN (33/4(32) \ Bl/zo(x)>. By (v4) we have that x ¢ 9, N (33/4(32) \
Bl/zo(x)) andx ¢ (31\QM)O<B3/4()E)\B1/2O()E)>. Thus we getx ¢ By (¥)\Bijao ().
By (v1) and (v2) we conclude that

min {u(x) —v;(x)} >0  whenever <.
X€B)
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Thus, we obtain that # > v{ on By, i.e.
u(x) > p(x) + cyew(x) on Bj.
Now since w is strictly positive on the ball Bi,, we get that
u(x) > p(x) +cqe on  Bipy,
which proves that the property (i) holds.
Case 2. Suppose that u(x) < p(x) + ¢/2.
Since the function p + & — u is harmonic and non-negative in the ball Bijo(x),
we can apply the Harnack inequality, thus obtaining that for a dimensional constant
cy > 0 we have
p+e—u>cye in Bim(x).
We now consider the family of functions
v (x) = p(x) + & —cyew(x) + cye — eut,
and, reasoning as in the previous case, we get that
v ()T > ux) for every t €[0,1).
In particular, since w is strictly positive on the ball Bi/y, we get that
u@) < (p() + (1 —ca)e), on Bipm,

which concludes the proof. O

7.3 Convergence of Flat Solutions

In this subsection we prove the compactness result that we will need in the proof of
Theorem 7.4. The proof is entirely based on Theorem 7.7, from which we know that
any (continuous, non-negative) viscosity solution u : By — R of (7.2) satisfies the
following condition.

Condition 7.11 (Partial Improvement of Flatness) There are constants ¢ > 0
and ¢ € (0, 1) such that the following holds. If xo € 2, By(x9) C By and ap < by
are such that

|bo — apl <ré and (xg +ao)+ <u(x) < (xqg+bo)+ on Br(xp),
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then there are real numbers a1 and by such that ay < a1 < b1 < by,

|by—ayi| < (1=c)lag—bo| and (xg+ap)+ < ux) < (xg+b1)+ on  Brj(xp).

Remark 7.12 We notice that if u : Bj — R is a continuous non-negative function
on By, then, for any a < b and any set E C Bj, the inequality

(g +a)s <u(x) < (g +b)+ on E,
is equivalent to
Xgt+a<ulx)<xg+b on EN,,

Thus, an equivalent way to state Condition 7.11 is the following. The non-negative
function u : By — R satisfies Condition 7.11, if and only if, the following holds.

If xo € Qy, Br(x0) C B and ag < bg are such that

|bo — apl < ré and Xg+ap <u(x) <xqg+by on B,(x0) N2y,
then there are real numbers a; and b; such that ag < a; < by < by,
|y —arl < (1 —c)lag —bol and xg+ap <u(x) <xg+by on  Brylxg) NQy.
The constants & and c are the same as in Condition 7.11.
Lemma 7.13 Suppose that the continuous non-negative function u : By — R

satisfies Condition 7.11 with constants ¢ and g. Suppose that 0 € Q,, and that there
are two real numbers aog < bg such that

g
£ = |bo—a0|<2 and Xg+ag<ulx)<xg+by on BN,

Then, setting

- u(x) — xq
ulx) = for every x € Q2,NBy,
£
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for every xo € Bij, N Qy, we have the uniform estimate
lia(x) — it(xg)| < Clx — xol” for every x e, N (Bl/z(.xo) \ Bg/g(xo)),

where C is a numerical constant and y depends only on c.

Proof Letn > 0 be such that

1 1 e 1
2(1/20)'”r S 2(1/20)".

1
Letrj = 5 (1/20)”. Then, we have

& < érj for every j=0,1,...,n.

Thus, for every xo € By/2 N €2, we can apply the (partial) improvement of flatness

in B,j (xp), forevery j =0, 1,...,n. Thus, we get that there are
ap<ay<--<aj<--<a<b,<---<bj<---<b<b

such that

lbj—ajl < (1—c)’ |ag—bol and (xg+aj)+ <ulx) < (xg+bj)+ on By (xo),

which implies that
Xg+aj <u(lx)<x4+bj on B,j(xo) Ny,

and so,

|(u(x) = x4) —aj| < (1 —c)e for x € By (x0) N Q.
The triangular inequality implies that

lii(x) — i(xg)| <2(1 —¢)/ for every x € By;(xo) N2y,
which gives the claim by choosing j such that

ri+l < |x —xo|l <rj,

and setting y to be such that (1/20)" =1 —c. O
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Lemma 7.14 (Compactness for Flat Sequences) Lete > 0andc € (0, 1) be fixed
constants. Suppose that uy : By — R is a sequence of continuous non-negative
functions such that

(a) ug satisfies Condition 7.11 in By with constants & and c.
(b) uyg is ex-flat in By, that is,

Xg— &k Sup(x) <xqg+er in B NQy.
(c) lim & = 0.
k—00

Then there is a Holder continuous function o : ByN{xg >0} - Randa
subsequence of

. up(x) — x,
ir(x) = K zk d, ug : By N Q2 — R,

that we still denote by uy such that the following claims do hold.

(i) Forevery§ > 0, ity converges uniformly to i on the set By, N {xq > 8}.
(ii) The sequence of graphs

Tk = {(nii(x)) © x € Ry N By} € R
converges in the Hausdorff distance (in R4*1) to the graph
I'={(x,i(x)) : x € By N{xg > 0}}.
Proof We first prove (i). For every y € Bi, N Q,, we have that
Xd — &k Sup(x) < xq+ep forevery x € Bip(y) N Qy,.
Thus, by Lemma 7.13 we have that i1y satisfies

ldr(x) —ar(»)| < Clx —y|” forevery x € Bip(y) N, suchthat [x —y|

%

which, since y is arbitrary, gives

v

lig(x) — g ()| < Clx —y|¥ forevery x,y € BNy, suchthat |x—y|
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Since, for e < 8, we have that {x; > 8} N B} C 2, N By, we get that the sequence
i 2 {xqg = 6} N Bi, — R satisfies :

* ik is equi-bounded on {x; > 8} N By,

_ (Xxq — &x) — xq < up(x) — xq < (xq +&r) — x4 _

&k &k &k

-1 L

e 1 satisfies

£
0sc (ﬁk; Agpr(x0) N {xg = 8} N Bl/z) <2CrY for every r> _k ,
g
where, for any set £ C ,,,, we define:

osc (lig; E) := sup ty — inf iy,
E E

and, forevery O < r < R, Ag(xp) is the annulus

AR (x0) = Br(xo) \ Br(x0).

Thus, by the Ascoli-Arzela Theorem, there is a subsequence converging uniformly
on the set {xy > &} N Bi, to a Holder continuous function

u : {-xd > 8} N Bl/2 - [_l’ 1]’

satisfying
la(x) —a(y)| < Clx —y|¥ for every X,y € By, N {xqg > 6}.

The above argument does not depend on § > 0. Thus, the function & can be defined
on the entire half-ball {x; > 0} N Bij,. Moreover, the constants C and y do not
depend on the choice of § > 0. This implies that we can extend & to a Holder
continuous function

u: {xg =0}N By, — [—1,1].
still satisfying the uniform continuity estimate

li(x) —i(y)| < Clx — y|” for every x,y € BipNixqg > 0}.

We now prove (ii). Suppose that x = (x,#(x)) € I'. Forevery § > 0, there is a point
y € By N {xg > §/2} such that |[x — y| < §. (Notice that, if x € B, N {xqg > 9/2},
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then we can simply take y = x.) Then, setting ¥ = (y, u(y)), we have the estimate
=517 = lx =y +la() — a(y)? < 8% + %67,

On the other hand, for every k such that ¢, < §, we have

dist(, Te) < 1a(y) — x| < 1@ — il oo (By ynixg=5/2))-
Thus, we finally obtain the estimate

dist(%, ) < (82 + C26%) ™ + 1t — gl o8, s xa>020)
Let now % = (xk,ik(xx)) € Tk Let k be such that e/z < /2. Let
Yk € {xqg > 8} N By, be such that /2 < |xx — yi| < 28 and let 5 = (yx, ik (yr)).
Then, we have

[T = Jel? = b — il + ik o) — i )] < 48° +4C25%

Reasoning as above, we get

dist(. T) < 2(82 + C26%) " + lit — digl| L8, (s> 9))-

Now, since § is arbitrary and itx converges to i uniformly on {xg > 3/2} N Bi),, we
get that

lim disty (T, T') = 0.
k— 00

7.4 Improvement of Flatness: Proof of Theorem 7.4

In this subsection, we prove Theorem 7.4. Since, we will reason by contradiction,
we will first study the limits of the sequences of (flat) viscosity solutions to (7.2) in
Bj.

Lemma 7.15 (The Linearized Problem) Suppose thatuy : By — R is a sequence
of continuous non-negative functions such that:

(a) foreveryk, uy is a viscosity solution of

Aug=0 in Qu,NB, |[Vur|=1 on 0, NB. (7.5)
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(b) forevery k, uy is ex-flat in B} in the sense that
(xa — k)4 < ur(x) < (xg+ &)+ in By
(c) lim & = 0.
k— 00
Then, up to extracting a subsequence, the sequence of functions

~ ~ Up(x) — X
ug : BNy, — R, ug(x) = g zk ‘,

converges (in the sense of Lemma 7.14 (i) and (ii)) to a Hélder continuous function
u: Bl/zﬂ{xd >0} — R.

Moreover, we have that

(i) u is a viscosity solution to

ou

Au=0 in BipN{xg > 0},
0xy

=0 on By,N{xg =0}, (7.6)

in the sense that

* i is harmonic in Bij, N {xg > 0},
» If P is a polynomial touching u from below (above) in a point

P P
x0 € By, N {xq =0}, then (x0) <0 (xg) > 0).
0xg dxg

(ii) u € C°°(Bl/2 N{xqg > O}) and is a classical solution of (7.6).

Proof The existence of the limit function # follows by Lemma 7.14.

We first prove (i). Suppose that P is a polynomial touching u strictly from below
in a point xg € Bi, N {xg > 0}. Then there exists a sequence of points x; € €2,
such that P touches i from below in x; and x; — xg as k — 00. We consider two
cases:

(1) Suppose that xo € {x; > 0}. Then there is some § > 0 such that x; € {x; > §},
for every k large enough. Thus, x; € €,, for k large enough and so, since
iy is harmonic in €,,, AP (xx) > 0. Passing to the limit as k — oo we get
AP (xp) > 0.

(2) Suppose that xo € {x; = 0}. We suppose without loss of generality that xo = 0.
We consider the family of polynomials

1
P:(x) = P(x) + 8)65 — &X4.
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In a sufficiently small neighborhood of zero, we have that P; still touches i
(strictly) from below in 0. Moreover,

apP

P,
AP, >0 in aneighborhood of zero, ) = 0) —e.
BXd axd

P,
Thus it is sufficient to show that for every ¢ > 0, we have 5 ¢ 0) < 0. Let
Xd

now ¢ > 0 be fixed. Consider the sequence of points x; € €,, such that P
touches i1y from below in x; and x; — xg as k — o00. Since A P.(xx) > 0 and
ity is harmonic in €2, we have that necessarily x; € 9. By the definition of
iy = ”ke_kx‘f we get that the polynomial Q(x) = & Ps(x) + x4 touches uy from
below in xi. Since uy is a viscosity solution of (7.5), we get that
2
1= 1VO@OP = (1 et () = 14260 (xo) + ¢ ~
dxq 0xg

0P,
oy (xk)

JdP,
Thus, we have 5 ¢ (0) < 0, which concludes the proof after letting ¢ — 1.
Xd

We now prove (ii). We write R? 5 x = (x’,x4) with x’ € R?"! and x4 € R. We
consider the function w : RY — R defined by i and its reflexion:

(1) !ﬁ(x’,xdx if xq 2 0,

a(x’,—xgq), if x4 <0.

We will prove that w is harmonic on R?. Suppose that P is a polynomial touching
w strictly from below in a point xg € {x; = 0}. Since w is harmonic on {x; # 0}
it is sufficient to prove that AP (xg) < 0. We first notice that since w(x’, xg) =
w(x’, —x4) then also the polynomial P(x’, —x4) touches w strictly from below in
xp and, as a consequence, so does the polynomial

P(x' P/, —
Q(x/,Xd) — (X ,.Xd) + (X 5 -xd),
2
which satisfies
0
AQ =AP and Q:O on {xg =0}.
0xy

Consider the polynomial

Qe(x) =0) +ex-eq.
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Then Q. touches w from below in a point x, and we have that x, — xp as ¢ — 0.
We notice that necessarily x, € {xg; > 0}. Moreover, we can rule out the case
xe € {xg = 0} since by the hypothesis on i we have that in this case we should have

Qe 90

9
0> 5 (xe) = aXd(xe)Jre:s,

Xd

which is impossible. Thus x; € {x; > 0} and since # is harmonic in {x; > 0} we
get that

0= AQ:(xe) = AQ(xe).

Passing to the limit as ¢ — 0, we obtain that AQ(x9) < 0, which concludes the
proof. O

Lemma 7.16 (First and Second Order Estimates for Harmonic Functions)
Suppose that h : Bg — R is a bounded harmonic function in Br. Then

Cq
IVAllL(Bg,) = I Al Loe(BR) (7.7)
and
Ci, »
|h(x) = h(0) — x - VA(0)| < R IxI?|lkllLoo(Bgy ~ forevery  x € Brp,
(7.8)

where Cy is a dimensional constant.

Proof Let xo € Bsry. Since h is harmonic in Bry(xo), we have that also 9;/ is
harmonic in the same ball Bry,(xo), we have

d

4 44
0ih(xg) = / oih(x)dx = / div X dx,
Wd Rd BR/4 (x0) wd Rd BR/4(XO)
where X = (0,...,hA,...,0) is the vector with the only non-zero component being

the ith one, which is precisely /. Now, the divergence theorem gives

dih(xo) = « XdHI ! = « () (x) dHI!
ihxo) = v = v (R (x) A (),
wd R JaBg,(x0) wd R JaBg,(xo)

which implies that

4d
19ihL* (Bagy) = Il (B)»
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and so, we obtain (7.7). Now, by the same argument, we get that

2
10 hllLoe (B, < ANl Lo (Bg)-
/ R2

Let now x € Bry, and set
f@) = h(xt) for every t €[0,1].

Then, we have

1
h(X)—h(O)—x-Vh(O)=f(1)—f(0)—f’(0)=/0 (1= f"@®)dr.

Since
d
@) =x-Vhxt)y and f'(0) =Y xix;d;h(xr),
ij=1
and
d t
x - Vh(xt) = Z / xix;8;jh(sx) ds,
. 0
i,j=1

we get precisely (7.8).

107

O

Proof of Theorem 7.4 We fix Cp and ro to be dimensional constant which will be
chosen later. In order to prove that g( exists we reason by contradiction. Let &, — 0
and letu, : By — R be a sequence of continuous functions satisfying the conditions
(a), (b) and (c) with g,. Without loss of generality, we may suppose that, for any n €
N, u, is €, flat in B; in the same direction e;. Finally, we assume by contradiction

that, there are no n € N and a unit vector v satisfying the following conditions:
@) v —eq| < Coe;
(i1) the function (uy),, : Bi — R is oe-flatin By, in the direction v.

By Lemma 7.14 we can suppose that the sequence

_un(x)—xd for x € BINQy,,

converges (in the sense of Lemma 7.14 (i) and (ii)) in By, to a smooth (C*°(B1),))

function

i:Bipnixg >0} — [—1,1]
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that satisfies (7.6). We notice that

- ou
u(0) =0 and 0) =0.
0xg
We set
R du s . ’a_ d—1
PIRES 5 (0), forevery i=1,...,d—1; V= (v,...,vg—1) € R,
X;
and we re-write (7.8) as
v/-)c/—4Cd|x|2 <iu(x) < 1/~x/—i-4Cd|x|2 for every x=,xg) € By,N{xg > 0}.

We now fix r < 1/4. Since the graph I';, of ii,, converges in the Hausdorff distance
to the graph I' of & (see Lemma 7.14 (ii)), we have that for n large enough

Voox = 8Car? <iip(x) <V x4 8Cyr? for every x=',xq) € B-NQy,.

(7.9)
Using the definition of i, we can rewrite (7.9) as
xg + eV - X' — £,8Car? < up(x) < xg+ eV - x4+ £,8Cqr?, (7.10)

which holds for every x = (x',x4) € Br N Q,,,.
We define the new flatness direction v as follows:

= (e, 1) € RY.
J1+ 2"

By definition, we have that |[v| = 1. We next estimate the distance between v and
eq. Since both v and e, are unit vectors, we have

1
v—eq?=2(1—v-eq)=2(1- .
V14 2v|2

Notice that the following elementary inequality holds:

1
1-— <2X for ever —1h <X <12, (7.11)
V1I+X Y / /

In order to apply this inequality to X = £%|v’|2, we first check that 82|1/|2 <1/2.In
fact, by the definition of v" and (7.7), we have the estimate |v'| < 2Cy. Thus, for n
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large enough, we have that 8,2l|1)/ |> < 1/2 and so, we can estimate
v —eq|® < 2]v'|%e2 < 8Cle2,

which proves that v satisfies (i), once we choose Cy = 4Cy.
Using again the inequality (7.11) and the fact that

O<u, <ée,+r in B,

which follows by the non-negativity and the ¢,-flatness of u,,, we get that

2.2 Un .
n—8C e, (r +e,) < < uy, in B,.
V1422

Thus, dividing (7.10) by /1 4 £2[v/|2, we get that
X-v— Cd(ei(r +en) + ear?) < up(x) < x v+ Caepr?,

for every x = (x’,x4) € B, N Qu,, Cq being a dimensional constant. Choosing rg
small enough and g < rg, we get that

XV —¢enrgo < up(x) < x-v4euroo for every x =, xq) € B, N Qy,,

and so the vector v satisfies (i) and (ii), in contradiction with the initial assumption.
O
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Chapter 8 )
Regularity of the Flat Free Boundaries Shethie

This chapter is dedicated to the regularity of the flat free boundaries. In particular,
we will show how the improvement of flatness (proved in previous section) implies
the C'“ regularity of the free boundary (see Fig. 8.1). The results of this section are
based on classical arguments and are well-known to the specialists in the field. The
main result of the chapter is the following.

Theorem 8.1 (¢-Regularity for Viscosity Solutions)
There are dimensional constants € > 0 and § > 0 such that the following holds:
Suppose that u : By — R satisfies the following conditions:

(a) u is a non-negative continuous function and a viscosity solution of (7.1) in By,
(b) u is e-flat in By, that is,

(xg — &)y <ulx) <(xg+8&)+ for every X € Bj.
Then, there is a > 0 such that the free boundary K2, is C\* regular in the cylinder
Bj x (=8, 8). Precisely, there is a function g : By — (—8,8) such that:
(i) gis cle regular in the (d — 1)-dimensional ball Bg c Ri-1;
(ii) the set 2, N (Bg x (—$, 8)) is the supergraph of g, that is,

Q, N (B x (=8,8)) = {x = (x",xq) € By x (=8,8) : xa > g(x")}.

Moreover, g (and so, 3$2,) is CY* regular, for any o € (0, 1/2).
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Fig. 8.1 A flat free boundary

Proof The existence of a function g : By C R?~!, which is C* regular, for some
o > 0, for which (ii) holds, is a consequence of:

* Theorem 7.4, in which we show that the improvement of flatness (Condition 8.3)
holds for viscosity solutions (with constants ¢ = Cyk);

* Lemma 8.4, in which we show that the improvement of flatness implies the
uniqueness of the blow-up limit and the decay of the blow-up sequence:

lurxy — tixgllLooep)y < Car?  forevery r <1/2 andevery xg € Bip,
(8.1)

where y is such that k¥ = o;
* Proposition 8.6, in which we show that if (8.1) holds, then 9€2,, is cle regular in

_ v
By, where o = Ly

In particular, we notice that by choosing « small enough, we can take y as close to
1 (and so, « as close to 1/2) as we want. |

As a consequence, we obtain the regularity of the free boundary for minimizers of
Fa.

Corollary 8.2 (Regularity of Reg(3$2,)) Let D be a bounded open set in R and
letu : D — R be a (non-negative) minimizer of Fp in D. Then, every regular point
x0 € Reg(dQy) C D has a neighborhood U such that 32, N U is a CY* regular
manifold, for every o € (0,1/2).

Proof Notice that, up to replacing u(x) by v(x) = A~"2u(x), we may assume that
A = 1. By the definition of Reg(0€2,) (see Sect. 6.4), there is a sequence r, — 0
such that the blow-up sequence u,, x, converges uniformly (in Bp) to a function
uop - RY — R of the form

uo(x) = (x- V)4
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for some unit vector v € R?. Then, by Proposition 6.2, for n large enough, we have
7, xg — uollLoB)) < €,
Urpxog >0 In {x-v > ¢} and Urpg =0 In {x-v<—e}
This means that u,, v, is 2¢-flatin By, that is,
(x -V — 2£)+ < Up,x(x) < (x -V 4+ 2£)+ for every X € By.

Now, taking & small enough and applying Theorem 7.4, Proposition 7.1 and
Theorem 8.1, we get the claim. m|

This chapter is organized as follows.

In Sect. 8.1, we prove that the improvement of flatness (Condition 8.3) implies
the uniqueness of the blow-up limit and gives a (polynomial) rate of convergence of
the blow-ups in L*°(By).

In Sect. 8.2, we prove that the uniqueness of the blow-up limit and the polynomial
rate of convergence of the blow-up sequence imply the regularity of the free
boundary. We notice that the uniqueness of the blow-up limit and the rate of
convergence of the blow-up sequence can be obtained also by different arguments,
for instance, via an epiperimetric inequality. In fact, the result of this section can
be used also in combination with Theorem 12.1, which is an alternative way to the
regularity of the free boundary.

8.1 Improvement of Flatness, Uniqueness of the Blow-Up
Limit and Rate of Convergence of the Blow-Up Sequence

Condition 8.3 (Improvement of Flatness) Letr u : By — R be a non-negative
function. There are constants k € (0,1), 0 € (0,1), Co > 0and ey > 0 such that:

For every xo € 02, N B, r < dist(xg,dB1) and ¢ € (0, o] satisfying
(x-v—g)y < Urxy = (x-v+e)y in By,
there is V € 0 B| such that

|9 —v| < Coe and (x-f)—as)Jrfu,(,,xOg(x-D—}—os)Jr in Bj.

Lemma 8.4 (Uniqueness of the Blow-Up Limit) Suppose thatu : By — Risa
continuous non-negative function satisfying Condition 8.3. Then, there are constant
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&1 >0,y > 0and Cy > 0 (depending on ¢y, k, o and Cq) such that if
(x-v—eDtr <u=<@x-v+tep)t in By,
for some v € 3By, then for every xo € 02, N By, there is a unique unit vector
Vg, € B C RY
such that
llttrxo — UxollLoosy < C1r? for every r<1p,
where the function u, is defined as
Uy (x) = (Vyo - X))+ for every x € R%.
Precisely, we can take y, €1 and Cy as follows:

€0

81: 9
4

C 1
kY =0 and C = (Z/K)y <1 + ! 0 + >€().
-0 K

Proof Lete; = 0. Notice that if u is £;-flat in By, then
Uij,x, 18 o-flat in By,

for every xo € 9€2, N Biy.
Let xo € 082, N By, be fixed,

K}’l

n = ) and Up 1= Ur, xo-

By the improvement of flatness, there is a sequence of unit vectors v, € dBj such
that

(x-vy—e00™), <up < (x-vy,+eo"), in By,

+ +

and
[V — Vnr1] < Cogpo” for every n e N.

In particular, for every 1 < n < m, we have

m—1 m—1 00 Coe
0
Vn =Vl < D Ik =il £ Y Coeot <eCo Y ot = Lo
— O
k=n k=n k=n
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This implies that there is a vector vy, € 9 By such that

. - Coeo
Voo = lim v, and |Vn—Voo|§Z|Vk—Vk+1|§ o".
n—o00 1—0
k=n
Thus,
n Co n
|x - Voo — (x - vy £ ego”)| < [ 1+ : £00 forevery  x € By,
— 0

which implies that

C
[(x - Voo) b —up(x)| < (1 + 1 0 )eoa” for every x € By.
— O
Now, we set
up(x) = (x - Voo) +-
Let r < 1/2 be arbitrary and let n € N be such that

1 1
Fntl = 2/{’”rl <r< 2/{" = rp.

Then, there is p € («, 1] such that r = pr,,. Since u,, , satisfies

(x - vn —£00™) | <y, xg(¥) < (x-vp+e00”),  in Bi,

we get that u, y, = Up, x, satisfies

€0, €0, .
(x-vn—pa)Jrfu,’xof(x-vn—i— 0)+ in B,
which implies that
) €0
letr, xo — trxollLoo(my) < p o' < . a",
and finally gives that

ltr xg — wollLoo(By) < <1 + |
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Since k¥ = o, we get that

1 (Kn+1))/ < 1 (ZV)V — (Z/K)Vry’

o <™ <
- KY KY

from which, we deduce

Co

lur xo — uolloomy < ()" <1 + o

1
+ )eor”,
K

which concludes the proof. O

8.2 Regularity of the One-Phase Free Boundaries

Condition 8.5 (Uniqueness of the Blow-Up Limit and Rate of Convergence of
the Blow-Up Sequence) The function u : By — R satisfies this condition if it is
non-negative and if there are constants C1 > 0 and y > 0 such that, for every
x0 € 082, N By, there is a unique function uy, : By — R such that:

(i) there is vy, € 0B such that uy,(x) = (Vy, - X)4 for every x € By;

(i1) Nurxo — txollLoosy) < Cir? foreveryr < 1/2.

Proposition 8.6 (The Condition 8.5 Implies the Regularity of 0<2,) Let u :
B1 — R be a non-negative function such that:

(a) uis Lipschitz continuous on By and L = ||Vu/| By,

(b) u is non-degenerate in the sense that there is a constant n > 0 such that

if yo€QuNaBiy, then |ullpe(s, vy =nr, forevery r e (0,1/2).

(c) u satisfies Condition 8.5 for some y > 0 and C1 > 0.

Then, there is p > 0 such that 02, is a cle manifold in B,, where o := liy.
Precisely, there are p > 0 and a C"*-regular function g B;) — (—p, p) such

that, up to a rotation of the coordinate system of R%, we have

(B, x (=p,p)) NQu = {(x',1) € B, x (—p, p) : gx') <1},
(B, x (—p, ) \ Qu = {(x',1) € B, x (=p, p) : g(x") > 1},
(B, x (=p,p)) N 3R, = {(x".1) € B, x (—p,p) : gx) =1}.
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Lemma 8.7 (Flatness of the Free Boundary 092,) Let u : By — R be a non-
negative function such that

(a) u satisfies the Condition 8.5 with constants C1 and y .
(b) u is non-degenerate, that is, there is a constant n > 0 such that

if yo€Q,NaBip, then |ullpe(s, vy =nr, forevery r e (0,1/2).

Then, there are constants C > 0 and ro > 0 such that, for every xo € 982, N By,
we have

QyorNBI D{x €B : x-vy >Cr’}

and  Qyyr N{x € By : x - vy, < —CrV’} =0, (8.2)

foreveryr € (0,r9), where Qy,r 1= {Uy, > 0}.

Proof In order to prove the first part of (8.2), we notice that
lur g — ttxollLoo(my) < Cir?
implies that

Up xo(x) > (x S Vyxp — Clry) for every x € By.

+

This gives the first inclusion of (8.2) for any constant C > Cj. In order to prove the
second inclusion in (8.2), we suppose that there is a point y € By such that

Urxo(y) >0 and Yy < —Cr’.

This implies that § := y/2 € By, is such that
5 ~ 1
u2r,x0(y) >0 and Yy < _2Cr}/

The non-degeneracy of u now implies that

1
lu2r xollLoo(B,(5)) = 1 P where  p = 2CrV.

Notice that ux, = 0 on B,(y). On the other hand, choosing rg such that
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we get that p < 1/2 and so B,(y) C Bj. Thus, we have that
n. .y 14
2Cr < llu2r xg — uxollLoosy) < C1(2r)7,
which is a contradiction, if we choose
2
c> (i,
n

which concludes the proof by taking
C= (1~|—2/n)C1 and rozinf{l/z,ny}.
0O

Lemma 8.8 (Oscillation of v) Let u : By — R be a Lipschitz continuous function
and let L = ||Vullp~(,). Suppose that u satisfies the Condition 8.5 with the
constants C1 and y. Then, there are constants R € (0, 1), a and C such that

[Vxo — Vyol < Clxo — yol® for every X0, Yo € 02, N By . (8.3)

Precisely, one can take

C=2/d+2(L+2C), a= 7 and ~ R=2"C),

T4y

Proof Leta := 1J’;V.Let X0, 0 € BRN 3K, and r := |xg — yo|' ™. Then, for every
x € Bj, we have

30 () = ttyo,r ()| = i|”(x0+VX) —uyo+rx) <L R Pl Lixo - wol?,
which gives that
ltxg.r — UygrllLoocs) < Llxo — yol*.
On the other hand, Condition 8.5 gives that
luxg,r — tixyllLooenyy < Cir? and it yo,r — thyollLooBy) < Crr?.

We notice that in order to apply Condition 8.5 we need that 7 < 1/2and R < 1/2. We
choose R such that (2R)!~® < 1/2. Thus, by the triangular inequality and the fact
that r¥ = |xg — yo|%, we obtain

lluxy — typllzoe ) < (L +2C1)lx0 — yol®.
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The conclusion now follows by a general argument. Indeed, for any v1, v; € R, we
have

wg \2 12
() o=t = ([ o —vn w2
d+2 5

12 12
< (/B o ~x)+—(v2'x)+\2dx> +( [0 —<v2~x)_\2dx)
1 1

1/2
1
=2 (/ (v - x)4 — (2 vx)+|2dx> <201 - x4 — W2 -1 lL2m),
B
which implies that

lvp — va] <2vd +2 (v - )4 — (V2 - V)4 llL2o8))-

Applying the above estimate to v = vy, and v2 = v, we get (8.3). a

Proof of Proposition 8.6 We first notice that, for every ¢ > 0, there exists R > 0
such that, for xg € 02, N B we have

{u > 0 on C;F(XO, on) N Bg(xo), (8.4)

u =0 on C; (x0,vx,) N Br(xp),
where for a vector v € d By, we denote by Cj (x0,v) and C_ (x0, v) the cones
CE(xo,v) 1= !x €R? : +v.(x —xp) > €lx —x0|}

(see Fig. 8.2).

Indeed, the flatness estimate (8.2) implies (8.4) by taking R such that CRY < ¢,
where C and y are the constants from Lemma 8.7.

Let vy be the normal vector at the origin 0 € 9€2,,. Without loss of generality we
can suppose that vy = e4. In particular, if ug(x) = (x - vp)+ is the blow-up limit in

Fig. 8.2 The sets CX(xo, )
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zero, then
Quy = {uo > 0} = {(x',xq) € RIx R : xg > 0}.
Lete € (0,1) and R > 0 be as in (8.4) and set
,o:R\/l—g2 and ¢ =¢R.
Letx' € B;,. Then, by (8.4), we have:
 the vertical section
S¥ = {(x',1) € Bg : u(x',1) > 0}
contains the segment
{(x',t) € B : t > €eR};
* the closed set
S i={(x"s1) € Bg : u(x,1) =0}
contains the segment
{(x',t) € Bg : t < —¢&R}.
This implies that the function
g(x'):=inf{r e R:u(x',T) > Oforevery T € (1,p)},

is well defined for x” € B, (see Fig. 8.3).
Let 8 < p. Let x|, € By and let 7y := g(x;). By definition, we have

X0 = (x(/),t()) € 02, N Bg.

Fig. 8.3 Graphicality of the
free boundary
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Moreover, by construction, we have

—elxgl < g(xg) < elxgl.
Thus,

Ixol < 8v/1 4+ 62 < &/28.
We next claim that, for § small enough, we have that

u > 0 on C5 (xo, eq) N Br(xo) and  u =0 on C5, (x0,eq) N Br(xo).
(8.5)

Indeed, applying (8.4) for the point x(, we have
u >0 on C;r(xo, Vxo) N Br(x0) and u =0 on C; (xq,Vx,) N Br(x0),
s0, it is sufficient to prove that
Ci(xo, eq) C CE(x0, vny)-
Let x € C5 (xo, eq). Then,

Vxg - (X = X0) = eq - (x — x0) + (vxy — €a) - (x — X0)

> 2¢lx — xo| — C(v28)"|x — x0| > &lx — xol,

where:

* for the first inequality we used the definition of Czﬂ; (x0,eq) and the following
estimate, which is a consequence of Lemma 8.8:

[vxg — €al < Clxol* =< C(\/ZS)O‘;

 for the second in equality, we choose § such that C (\/ 2 8)“ <e.

This proves (8.5). As a consequence, we obtain that the sections Si/ and Sg/ are
segments:

(B} x (=8,8)) N Q= {(',1) € B} x (=8,8) : gx') <1},
(B x (=8,8)) \ Qu = {(x/,1) € B} x (=8,8) : gx') =1},

and so, the free boundary is precisely the graph of g, that is,

(B} x (=8,8)) N 8% = {(x',1) € B} x (—8,8) : gx') =1}.
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We next prove that the function g : By — R is Lipschitz continuous on Bj. Also
this follows by the uniform cone condition (8.5). Indeed, let

xj,x5 € By, x1=(x{,g(x})) and x3 = (x},g(x})).
Since x| ¢ C;; (x2, e4), we have that
g(x)) — g(x) = (x1 — x2) - eq < 2elx1 — x2| < 2e|xy — x3| + 2elg(x]) — g(x))!.
Analogously, x» ¢ C;; (x1, eq) implies that
g(x)) — g(xp) < 2elx] — x5 + 2elg(x}) — g(x)l,
and the two estimates give
(1 —2¢) [g(x]) — g(xy)| < 2elx| — x5,
and finally, choosing ¢ < 1/4, we get
lg(x}) — g(x))] < delx] — x3,
which concludes the proof of the Lipschitz continuity of g.

We will next show that g is differentiable. Indeed, let x, € Bj. Now, the
improvement of flatness at xo = (x(), g(x(,)) implies that

—Clx — x0|"™ < (x — x0) - vy, < Clx — x0/'77,

forany x = (x', g(x")) with x” € By. For the sake of simplicity, we set v := vy, and
v=(,vg) € R x R. Since

(x = x0) - vxy = (¥ = x0) -V + (8(x") — g(x()) vas

we get that
!

v C
g(x)) — g(x{) — (x" — x{) - N &) — x|

This implies that g is differentiable at x|, and that Vg(x;) = 1‘)’; Finally, the «-
Holder continuity of Vg : By — R~ follows by the y-Holder continuity of the



8.2 Regularity of the One-Phase Free Boundaries 123

map x > vy. Indeed, for any x,y" € Bj, x = (x’,g(x")) and y = (', g()")) we
have that

oy — vy < Jx — y|* < (1 +e)*x" —y'|°,

which implies the Holder continuity of all the components of the map By > x
v, € R? and thus, of the gradient Vg. This concludes the proof of Proposition 8.6.
O
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Chapter 9 )
The Weiss Monotonicity Formula Shethie
and Its Consequences

This chapter is dedicated to the monotonicity formula for the boundary adjusted
energy introduced by Weiss in [52]. Precisely, for every A > 0 and every
u e Hl(Bl) we define

Wa) = | |Vul*dx — f u> dH + A0 N By,
B 0B
where we recall that 2, := {« > 0}. In particular, we have
Wo(u) = |Vu|2dx—/ wdH! and Wa(u) = Wou)+A|QuNBi|.
B 0B

This chapter is organized as follows:

In Sect. 9.1 we prove several preliminary results for the Weiss’ boundary adjusted
energy, which hold for a general Sobolev function u defined on an open set D C R?.
In particular, in Lemma 9.1 we prove that the function (xo,7) = Wa (ux,,) is
continuous (where it is defined), where we recall that u,, ,(x) := iu(xo + rx); in
Lemma 9.2, we compute the derivative of W (uy, ) with respect to r and we prove
that

d d 1
Wa (”xo,r) = (WA (Zxo,r) — Wa (uxo,r)) + D(”xo,r)7
ar r r
where zy,, is the one-homogeneous extension defined in Lemma 9.2 while the
deviation D(uy, ) is defined as

2 d—1
Dltryy) = f - Vit — gy, P dH,
0B
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and measures at what extent the function is not one-homogeneous (see Lemma 9.3)
and controls the oscillation of « from scale to scale, which is measured by the norm
luxgr — Uxosllz2(op,)- Finally, in Proposition 9.4, as a direct consequence of the
Weiss formula (Lemma 9.2), we obtain that, if # is a (local) minimizer of F, in D,
then the Weiss energy W (u,, ) is monotone increasing in r.

In Sect. 9.2 we introduce the notion of stationary free boundary, that is, the free
boundary 92, N D of a function u : D — R, which is stationary for the functional
Fa with respect to internal perturbations with vector fields compactly supported in
D. In Lemma 9.5, we compute the variation of the energy F with respect to a
compactly supported vector field £ € C°(D; R%), which is simply defined as

ad
8Fa(u, D = F, ,D),
AW D)ET = | | Fa(ur. D)
where u; : D — R is defined through the identity u,;(x + t£(x)) = u(x). We say
that a function is stationary (see Definition 9.7), if the first variation is zero with
respect to any vector field, that is, if

SFa(u,D)E]=0  forevery & e CX(D;RY).

In Lemma 9.6 we show that if u is a minimizer of F, in D, then it is stationary
in D. Then, in Lemma 9.8, we prove that every stationary function satisfies an
equipartition-of-the-energy identity; in Lemma 9.9, we prove that the equipartition
of the energy is sufficient for the monotonicity of the Weiss energy. In particular, the
monotonicity formula holds for stationary free boundaries. The result of Sect. 9.2
are fundamental for the proof of Theorem 1.9, but we do not need them in the proof
of Theorem 1.4, where we can use directly Proposition 9.4.

In Sect.9.3 we give the sufficient conditions for the homogeneity of the blow-
up limits of a function u : D — R (Lemma 9.10). We then apply this result
to minimizers of F (Proposition 9.12), but we will also use it in the context of
Theorem 1.9. This is why the exposition contains the intermediate Lemma 9.11.

In Sect. 9.4 we prove that the only one-homogeneous global solutions in dimen-
sion two are the half-plane solutions (see Proposition 9.13). In particular, this means
that d* > 3.

In Sect.9.5 we give another proof of the fact that the minimizers of F, are
viscosity solutions (Proposition 7.1). Our main result is Proposition 9.18, which
applies to minimizers of F4, but also in the context of Theorem 1.9.

Finally, in Sect. 9.6, we use the Weiss monotonicity formula to relate the energy
density

lim W(uy,r),
r—0
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of a minimizer u of F4, to the Lebesgue density

li |2, N By (xo)|
m
r—0 | Br|

bl

of the set 2,, at every point of the free boundary xo € 0, (Lemma 9.20).
Moreover, we characterize the regular part of the free boundary Reg(9€2,) in terms
of the energy and the Lebesgue densities (Lemma 9.22). We will not use the results
from Sect. 9.6 in the proofs of Theorems 1.2, 1.4, 1.9 and 1.10, but they remain
an interesting application of the monotonicity formula and the homogeneity of the
blow-up limits and were used, for instance, in the analysis of the vectorial free
boundaries (see [41]).

9.1 The Weiss Boundary Adjusted Energy

Letu € H'(B,(xp)) be a given function on the ball B, (xg) C R? and consider the
rescaling

1
Urxo € H'(By) where Ur o (X) = ru(xo—l-rx).

We notice that the different terms of the energy W, have the following scaling
properties:

1
/ |Vitr|? dx = d/ Vul? dx .
By r By (x0)
1
2 d—1 2 gasd—1
u-  dH = / u“dH
/HBI o it JoB, (xo)

1
and |{Mx0,r>0}ﬂ31|=rd|{u>0}ﬂBr(X0)|-

Thus, we have

1

1 2
WA(”XOJ‘) = rd/ |Vl/l| dx_rd+1

A
/ W dH '+ [ > 0} B, (o).
Br (x0) 3B, (x0) r

In particular, since u is a Sobolev function, the function (xq,7) = Wa (uy,,) is
continuous, where it is defined. We give the precise statement in the following
lemma.

Lemma 9.1 (Continuity of the Function (xo,r) +— W (uy,,)) Let D be a
bounded open set in R? and let u € HY (D). Let § > 0 and let Ds be the set

Ds:={x € D : dist(x,0D) < §}.
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Then, the function
®, : Ds x (0,8) - R, D, (x0,7) := WA(uxo,r),

Is continuous.

Proof The continuity of the terms

>

1 1
(x0,7) d / |Vu|2 dx and (x0,7) d |{u > 0} N B, (xp)
r By (x0) r

follows by the fact that if £ : D — R is a function in L' (D), then the map

(x0,7) = f(x)dx,
By (x0)

is continuous, which in turn follows by the dominated convergence theorem. In
order to prove the continuity of the function

1
r 9B (x0)

we consider the sequence to (x,,r,) € Ds x (0, ) converging to a point (xg, 79) €
Ds x (0,8). We first notice that reasoning as above, we have

nlin;o ||V”x,,,r,,||L2(Bl) = ||V”X0Jo”L2(Bl) and

nlin;o ”uann”Lz(Bl) = ””xO”O”Lz(Bl)'

Next, we notice that uy, ,, converges weakly in H 1(31) to Uy, . In fact, for any
¢ € C°(B)) we have

lim V¢ -Vuy, ,, dx = lim / Vo (x) - Vu(x, +ryx)dx
n— 00 Bl

n—0oo Bl

= lim v¢(y:x”)~w(y)dy

n—00 Bl

=/Bl vo(” ) V) dy

1o
:/ Vé - Vuy ,, dx.
By
Now, since the norm of uy, ,, converges to the norm of u,, ,,, we get that

Usprn = Uxoro strongly in H' (B1).
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By the trace inequality, we have that
Ux,ry = Uxo.ro strongly in L2(3B1),

which concludes the proof. O

Lemma 9.2 (Derivative of the Weiss’ Energy) Let D be a bounded open set in RY
and letu € Hl(D). Let xo € D and & = dist(xp, d D). Then, the function ®,(xo, -)
is differentiable almost everywhere on (0,8) and for (almost) every r € (0,6), we
have

d d
97 Wa (”xo,r) = , (WA (Zxo,r) — Wa (”xo,r))

1 _
+ / %+ Vg, — ttxgr | dH, 9.1)
r Jap,

where zy, : B — R is the one-homogeneous extension of uy, , in By:

Zxo,r(x) = |x| Uxo,r (x/|x|) .

Proof Without loss of generality we can assume xg = 0. We recall that u, := ug,.
We first notice that the function r +— |2, N B,| is differentiable almost
everywhere and that for almost every r € (0, §) we have

d

1 d 1 B
ar <rd|Q” nB,|) == 41N Bl+  HT(QuNDB)),

which can be written as

d

1 d d
. (rdmmBA) = =1, MBIl + 192, N By, 9.2)

In fact, we have

d

1 —1
1 r
|QZ,mBl|=/ del(szurmaBl)sd*Idszde*I(szurmaBl)z J HI=1(Q, NIB,).
0

Thus, (9.2) implies that it is sufficient to prove (9.1) in the case A = 0.
As above, we notice that the function r — / |Vu |2 dx is differentiable almost-

B,
everywhere and that we have

G 1 2 d 2 1 2 d—1
ar <rd Br|Vu| dx)z_rdﬂ /Br|Vu| dx~|—rd /aBrIVul dH

d 1
=- 1/ |Vu|®dx + / [Vu, > dH4 . (9.3)
rd+t Jp, r Jap,
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In order to deal with the boundary term, we first compute

0 1 2 d—1 _ 9 / 2 d—1
9r <rd—1 /SB, u (x)dH (x)) = o " u(ry)-dH* " (y)

=2 / u(ry)y - Vu(ry) dH = (y)
0B
= Zr/ uy (x - Vu,) d’del(x)
dB;

Thus, we have

0 1 2 qd—1)_ 2 2 d—1 2 d—1
ar (rd+1 /{’Bru aH T pd+2 aBru dH +r 9B, r (¥ - Vur) dHT

9.4)
Now, we notice that for every r such that u, = z, € H 1(831), we can write

the function z, : By — R in polar coordinates p € (0,1], 8 € S9-1 a5
z+(p,0) = pz,(1,0) and we have

Wo(z,)zf |Vz,|2dx—/ 2dH!
B 0B

1
:/ rd_ldr/ (zf(l,@) + |ngr|2) do —/ Z%(l,@) do
0 sd-1 sd—1
1 d—1
= Voz,|* d6 — 2(1,0) do
d Ld—l Voarl d Ld—l & (1.9)

1 d—1
_ Vil — (- Vu)?) and—! — / 2 gagd—1
J /BBI <| Uy (x - Vu,) ) H i )i, u; dH
9.5)

Now, putting together (9.3), (9.4) and (9.5), we get that

ad d 1 _
WO(”xo,r) = (WO(Zxo,r) - WO(”xo,r)) + / |x . V”xo,r - ”xo,rlz de 1,
ar r r Jop,

which concludes the proof. O

‘We now define the deviation D as

D(@) = f Ve — $2dHI,
0B
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Thus, (9.1) can be written as

d d 1
97 WA(”xo,r) = r (WA(Zxo,r) — Wa (uxo,r)) + rD(uXOJ’)'

In the next lemma we show that the deviation D(u,, ) controls the oscillation of u.

Lemma 9.3 (The Deviation Controls the Oscillation of the Blow-Up Sequence)
Let D be a bounded open set in R? and let u € H' (D). Let xo € D and
8 = dist(xo, d D). Then, for almost every 0 <r < R < §, we have

1 R
2
lltx0,R — ”xo,r”Lz(aBl) = , /r D(utxy.s) ds.

In particular, if D(ux,s) = 0 for every s € (0,6), then the function uy,s : By — R
is one-homogeneous, that is

u(xo +rx) =ru(xo+x) forevery |x| <8 andevery r <1.
Proof We set for simplicity, xo = 0 and u, := uy,,. For any x € 9By, we have

u(Rx) _ u(rx) /R (x - (Vu)(sx) _ u(sx))

R r s s2

R
ds:f s(x-Vus(x)—us(x))ds.

Integrating over the sphere d By and using the Cauchy-Schwarz inequality, we obtain

2

R
/ |uR—ur|2d7-[d*1 < / (f |x-VuS—uS|ds) dHe!
0B 0B r S
R R
< / (/ szds) (/ |x - Vug — uS|2ds> dHd!
0B r r
11 R
= (r — R)/'j D(l/l_&)ds

which concludes the proof. O
We conclude this subsection with the following proposition.

Proposition 9.4 (Weiss Monotonicity Formula) Let D be a bounded open set
in R and let u € HY(D) be a minimizer of Fp in D. Let xo € D and
8y, = dist(xg,dD). Then the function r — W (uy,,) is non-decreasing on the
interval (0, 8,).
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Proof By Lemma 9.2 we have that

0 d
oy Waltn) = (Wa (zxor) — Wa (o).

Now, since i, - is a minimizer of F in B; and since by definition z,,, = Uy, on

0
dB1, we get that 9 Wa (x,,-) = 0, which concludes the proof. O
r

9.2 Stationary Free Boundaries

In this section we introduce the notion of a stationary free boundary (Definition 9.7)
and we prove a monotonicity formula for the Weiss energy (Proposition 9.9).

Lemma 9.5 (First Variation of the Energy) Suppose that D C R? is a bounded
open set and that u € HY(D). Let & € CX(D; R?) be a given vector field with
compact support in D and let V; be the diffeomorphism

U (x) =x +t&(x) forevery x € D.

Then,

(i) fort small enough, V; : D — D is a diffeomorphism and setting ®; := llJt_l,
the function u, = u o ®, is well-defined and belongs to H'(D);

(ii) the functiont — / [Vu, |2 dx is differentiable at t = 0 and
D

a .
ot IZOA|VM[|2dx:A(—2VMDévu+|vu|2dlvé)d‘x’

(iii) the function t — |2y, N D| is differentiable at t = 0 and

9
‘ 1Qu, N D =/ dive dx.
Jat lr=0 Q.ND

(iv) if Q is open, if 32, is a C? regular in D and if u € C*(Q,), then

el
ot

/|w|2dx=—/ £-v|VulPdH™" and
1=0Jp Elo

9
Q. ND|= cvdHIT,
3[ t:Ol e | Aﬂllé v H

where v(x) is the exterior normal to 0S2 at the point x € 0S2.
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Proof The first claim follows by the fact that £ is smooth and compactly supported
in D. Thus, we start directly by proving (ii). We use the conventions

X1 du [Of] 01Dy --- 01Dy
x=|:1, Vu= , &= : , D& = ,
X4 Ooqu (OF] 0gP1 - 94Dy

for general u : R — R and ® : RY — R?, so that
V(o ®)(x) = DP(x)Vu(d(x)).

In our case u; = u o ®,, by the change of variables y = ®,;(x) (thus, x = V,(y)),
we get

[ P ds = [ (Do onTu)) - (Do) Vum) ldet D )] dy
D D
= /D Vuy) - ([Der (W ()] D8 (W; (1)) Va(y) Idet D1 ()] dy
= [ vu)- ([Pwi)] T [Dwi)] ) Yt et D)1y
We now notice that

DV, =1d+tDé,  [DV,]'=Id—tDé+o(t), detDV,=1+1divEé+o(r),

and we calculate
/ Vi, 2 dx = / \Vu|? dx + t/ (|W|2divg —2Vu- DE w)dx T o),
D D D

which concludes the proof of (ii).
In order to prove (iii), we notice that

xe€Q, & u(x)>0 & di(x) € Q.

This means that ]191‘[ = lg, o ®;, and so, we can compute
[€2,| = / Lo, (®:(x))dx = / Lo, (y)ldet DV (y)|dy
D D
= / (1+1divE(y) + o)) dy = |l +t/ divé dx + o(t),
Q Qy

which proves (iii).



134 9 The Weiss Monotonicity Formula and Its Consequences

We now prove (iv). Assume that u is C? in the open set £2,. Then, setting & =
(&1,...,&4) and using the convention for summation over the repeating indices, we
compute

|Vul>dive — 2Vu D& - Vu = dju du d; & — 20;u d;& dju

= Qu QudjE; — 20 (du & dju) + 20;juk;dju
+ 20;&; 9jju

= Qjudjud;&; —20;(%;u; dju) +20;jué; dju

= Qu dudjE; — 20 (du& dju) + 8 (djuk dju)
— 0ju 0;& dju

= —20;(Qu & dju) + 3;(u&;j du)

= div (|Vul* — 2(£ - Vu)Vu).

Integrating by parts we obtain

f div (|W|2g — 2 - W)w) dx
QI.‘

=[ (|Vu|2(g V) = 2(€ - Vu)(Vu - v)) dme1.
02y,
Since u = 0 on 92, and positive in 2, we have that Vu = v|Vu|. Thus,

/ div (|W|2g (- W)w) dx = —/ (Va2 (& - v) dHIL,
Qu 0

Qu

which proves the first part of the claim (iv). The second part of (iv) follows by a
simple integration by parts in €2,,. O

As a consequence of Lemma 9.5 we obtain that for every A € R, u € H'(D)
and vector field £ € C°(D; R?) we can define the first variation of Fa at u in the
direction § as

8Fa(u, D)[E] := f (—2w - DE Vu + |Vu2divE + A mdivg) dx.  (9.6)
D

Lemma 9.6 (The Minimizers have Zero First Variation) Let D be a bounded
open set in R? and let u € H'(D) be a minimizer of Fy in D. Then,
8FA(u,D)E] =0 for every vector field & € CZ(D; Rd).

If, moreover, 092, is C? smooth in D, then

IVul=+vA  on  3Q,ND. 9.7)



9.2 Stationary Free Boundaries 135

Proof The first part of the statement follows directly by Lemma 9.5. In order to
prove the second part, we notice that in the case when 92, is smooth, we have

8F(u, D)[§] = / (A = 1Vul?)§-vani,
A2y

for every vector field £ € C°(D; R?). This implies (9.7). |

Definition 9.7 (Stationary Free Boundaries) Let D C R be a bounded open set
andu € H'(D) be a non-negative function such that

8§Fa(u,D)[E]=0 for every vector field IS Cfo (D; [Rd).

Then, we say that the function « and the free boundary 02, are stationary for Fx.
As a consequence of Lemma 9.6 we obtain the following.

Lemma 9.8 (Equipartition of the Energy) Suppose that D is a bounded open set
in R? and u € H'(D) is a non-negative function which is stationary for F (in the
sense of Definition 9.7). Then, for every xo € D and every 0 < r < dist(xp,0D),
we have

1 _
Wa(zxor) = Walinr) = fa X - Vi, — ttxgr | dHOY, 9.8)
-

where we recall that uy, (x) = iu(xo + rx) and that zy, , is the one-homogeneous
extension of uy, , in By, that is, 2y, (x) = |x|uxy,r (X/\x\).

Proof Without loss of generality, we assume that xo = 0. For every ¢ > 0, we
consider a function ¢, € C2°(B,) such that

) 1
¢ =1 1n Bg_g),, Ve (x) = T,

X .
+o(e) in B, \ B(l—s)r .
& |x|

Taking the vector field &; (x) = x¢,(x) we get that
divée(x) = dpe(x) + x - Vo (x),

Dé;(x) = ¢ (x)Id + x @ Ve (x).
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Thus, the stationarity of u impies that
0 = 6Fa(u, D)[E] = / (—2w - DEVu + |VulPdive + A 119“divg) dx

D

= / (_2¢8\W|2 —2(x - Vu) (Ve - Vi) + (dpe + x - Vo) (IVul* + A 119“)) dx
D

1 2
:/ ((d—Z)\Vu|2 +dA]19u)¢8dx+ / 2<x .w> — |Vu® - Alg, | dx,
r € Br\B(l—s)r |X‘

which passing to the limit as ¢ — 0 implies that

d—2) |Vu|2dx+dA|QuﬂBr|=r/ (lVTu|2—|Vvu|2+A]lszu)de_l.

B, 3B,
9.9
Since Au = 0 on 2, we have that
2/ |Vul>dx = 2/ div(uVu)dx = 2/ u(v - Vu)dH4",
B, B 9B,
which together with (9.9) implies (9.8). |

Proposition 9.9 (Monotonicity Formula for Stationary Free Boundaries) Sup-
pose that D is a bounded open set in R and u € H'(D) is a non-negative
function which is stationary for Fx (in the sense of Definition 9.7). Let xo € D
and 8, = dist (xg, d D). Then the function r — W (uy,,) is non-decreasing on the
interval (0, 8x,) and we have

G 2 . 2 gqsd—1
Wa (uxo,r) > |x - Vuxo,r uxo,rl dH . (9.10)
or r Jos,

Proof By Lemmas 9.8 and 9.2 we obtain precisely (9.10). O

9.3 Homogeneity of the Blow-Up Limits

In this section, we use the Weiss’ monotonicity formula to prove that the blow-
up limits of # are one-homogeneous functions. The most general result is given in
Lemma 9.10. We then prove the homogeneity of the blow-up limits of stationary
functions (Lemma 9.11) and the homogeneity of the blow-up limits of minimizers
of Fp (Proposition 9.12).
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Lemma 9.10 Suppose that D is a bounded open set in R¢ and u € H'(D) is a
non-negative function. Let xo € D and 8y, = dist(xo,dD). Let r, — 0 be an
infinitesimal sequence and let u, = u,, x, € H'(By). Suppose that

(a) the limit
L = lim Wp (u, x),
r—0
exists and is finite;
(b) u, converges strongly in Hl(Bl) to a function us, € Hl(Bl);

(c¢) 1q,, converges strongly in Ll(Bl) tolg,. ;
(d) u is stationary for Fp in By.

Then u is one-homogeneous.

Proof Without loss of generality, we suppose that xo = 0 and we write u, y, = u,.
We set for simplicity v := uso. By the hypothesis (a), we have that,

L = lim W (usr,) for every s<0<I1.
n—o0
On the other hand, the strong convergence of u, and 1, implies that

hm WA(ugrn) - WA(US)’
n—o0

1
where we recall that vg(x) = v(sx). This implies that
s

Wa(vs) = L for every s €(0,1],

and, by Proposition 9.9, we obtain that

d 2
0= Wa = . [ lxeVu - P et
as N 9B
which, by Lemma 9.3, gives that v is one-homogeneous. O

Lemma 9.11 (Homogeneity of the Blow-Up Limits) Suppose that D is a bounded
open set in R? and u € H'(D) is a non-negative function which is stationary for
Fa (in the sense of Definition 9.7). Let xo € D N 9R2,, r, — 0 be an infinitesimal
sequence and U, 1= Uy, x, € Hl(Bl). Suppose that

(a) u, converges strongly in HY(B)) 10 a function us, € H'(B));
(b) 1g,, converges strongly in L'(B)) to 1q,,,-

Then u is one-homogeneous.
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Proof Since u is stationary, Lemma 9.9 implies that the function r = Wy (uy, ) is
non-decreasing in . Thus, the limit

L = 1im Wa (ux,,) = inf Wa (uy,,),
r—0 r>0

does exist and so the hypothesis (a) of Lemma 9.10 is fulfilled. Now, the strong
convergence of u, and 1g, to u and 1g,  in By, and the definition of the first
variation 8 F 5 (-, D) imply that u« is also stationary in Bj. Thus, hypothesis (d) of
Lemma 9.10 is also fulfilled and, so the claim follows by Lemma 9.10. O

Proposition 9.12 (Homogeneity of the Blow-Up Limits) Suppose that D is a
bounded open set in R? and u € H'(D) is a non-negative function and a local
minimizer of Fa in D. Let xo € D. Then every blow-up limit ug € BU,(xo) is
one-homogeneous.

Proof By Lemma 9.6, every minimizer of F, is stationary for 5. Moreover, by
Proposition 6.2, we have that the conditions (a) and (b) of Lemma 9.11 are fulfilled.
This concludes the proof. O

9.4 Regularity of the Free Boundaries in Dimension Two

The main result of this section is the following.

Proposition 9.13 (One-Homogeneous Global Minimizers in Dimension Two)
Let z : R — R be a one-homogeneous global minimizer of Fa in R% Then,
there is v € R? such that

z(x) = VA (x -v); forevery x € R2.
In particular, we obtain that the critical dimension d* is at least 3 (see Defini-

tion 1.5).
The proof of Proposition 9.13 is based on the following lemma.

Lemma 9.14 Let 7z € HZLC(Rd) be a continuous and non-negative one-
homogeneous function in RY. Then,

Az=0 in
if and only if, the trace c = z|yp, € H'(dBy) is such that

—Asc = (d — 1)c inthe(open)set 2.NIB;.
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Proof The proof follows simply by writing the Laplacian in polar coordinates. In
fact, we have that z(r,0) = rc(6) and

Az(r,0) = 0y,2(r,0) + d . 18,z(r,9) + r12 Asz(r,0)
1
= ((d = 1) c(®) + Asc(9)),

which concludes the proof of Lemma 9.14. O

Proof of Proposition 9.13 Let z(r,0) = rc(0) and let Q. C S! be the set {¢ > 0}.
Since c is continuous (see Sect. 3), we have that 2, is open and so it is a countable
union of disjoint arcs (which we identify with segments on the real line). Notice
that Q. # S! since z(0) = 0 and z minimizes locally F (the local minimizers
cannot have isolated zeros, for instance, by the density estimates from Sect.5.1).

Now, Lemma 9.14 implies that on each arc Z C 2., the trace c is a solution of the
PDE

—"®)=c@®) in T, c>0 in I, c=0 on 0dI.

Thus, up to a translation Z = (0, ) and c(#) is a multiple of sin 6 on Z. Thus, Q. is
a union of disjoint arcs, each one of length . Thus, these arcs can be at most two.
Now, by Lemma 2.9 and the fact that 0 € 9<2;, we get that |2, N By| < |Bj| =&
and so, H!'(Q.) < 2. This means that Q. is an arc of length 7 and that z is of the
form z(x) = a (x - v), for some constant @ > 0. Since z is a local minimizer in R¢
and 02, is smooth, Lemma 6.11 implies thata = /A, which concludes the proof.

O

9.5 The Optimality Condition on the Free Boundary:
A Monotonicity Formula Approach

The aim of this subsection is to give an alternative proof to the fact that the (local)
minimizers of F are viscosity solutions to the problem

Au=0 in €, [Vul =~vA on 99,.

The main result of the subsection is Proposition 9.18, which can be applied not
only to minimizers, but also to measure constrained minimizers (see Theorem 1.9
and Sect. 11). It can also be applied to a large class of problems in which a
monotonicity formula does hold. In fact, the proof is quite robust and can be applied
to almost-minimizers (see for instance [46]) and to vectorial problems (see [41]),
for which the construction of competitors is typically more involved. The proof of
Proposition 9.18 is based on the following two lemmas. Before we give the two
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statements, we recall that, for any d > 2, we identify the (d — 1)-dimensional
sphere S?~! with the boundary of the unit ball 3 B in R. In particular, we will use
the notation

§flfl = {x = (X1,...,Xq) €90B; C R? - Xq > O}.

Lemma 9.15 Suppose that c € H' (S~ is a continuous non-negative and non-
constantly-vanishing function, satisfying the following conditions:

(a) Q¢ C Si_l, where as usual Q. := {c > 0};
(b) Asc+ (d—1)c=0in Q..

Then, Q. = Si_l and there is a constant a > 0 such that

c(x) =a(x -eq)+ for every x € 0B;.

Lemma 9.16 Suppose that c € H'(S?™") is a continuous non-negative function,
satisfying the following conditions:

(a) ST'Cc Q. ={c>0)
(b) Asc+ (d —1)c=0in .

Then, c is given by one of the following functions:

(i) c(x) =a(x -eq)y+, where o > 0 is a positive constant;
(ii) c(x) =a(x-eq)+ + B(x -eq)—, wherea > 0 and B > 0.

In the proofs of Lemmas 9.15 and 9.16 we will use the following well-known
result, whose proof we the leave to the reader.

Lemma 9.17 (Variational Characterization of the Principal Eigenvalue) Let
Q c S9! be a connected open subset of the unit sphere. Let ¢ € HOI(Q) be a
given non-zero function. Then, the following are equivalent:

(i) ¢ >0inQ, / $>d0 = 1, and there is A > 0 for which ¢ solves the PDE
Q

—Asp=xrp in Q

in the usual weak sense:
/ Voo - Vondo = )\f ¢ndo forevery n e HJ(Q);
Q Q

(ii) ¢ is the unique (up to a sign) solution of the variational problem

min!/ Vour2d : ¥ e HL(S), / wzdezl}.
Q Q
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Proof of Lemma 9.15 Since the linear functions are one-homogeneous and har-
monic in R?, we have that the function

$100) = (0 - eq)+,
defined on the sphere solves the equation

—Aspr=(d— ¢ in ST

-1
In particular, setting oy = < / ¢% d@) , we get that oz is the unique
Sd—1

minimizer of
d—1 =min{/ Vowl2do : ¢ e HY(ST, / W2 do = 1}.
si! si!

On the other hand, ¢ € H(} (§flfl) and solves the equation —Asc = (d — 1)c in Q..
Thus,

f |V9c|2d9=/ |V9c|2d9=(d—1)/ c2d9=(d—1)/ 2 do,
S Q. Q. st

which means that (up to a multiplicative constant) ¢ is a solution of the same
problem. Thus, the uniqueness of ¢ gives the claim. O

Proof of Lemma 9.16 Let Q. be the connected component of €2 containing §i‘1;
and let ¢ be the restriction of ¢ to Q.. Thus, Q. = {¢ > 0} and ¢ solves the PDE

—AsT=(d—-1)T in Q..
Thus, ¢ is the unique minimizer of
d—1= min{ /~ \Vour2do : ¥ e HL (S, /~ W2 do = 1}.
Q. Q.
Thus, reasoning as in the proof of Lemma 9.15, we get that Q. = S‘f;l and that
there is a constant @ > 0 such that
cO) =a - eq)+.
\ye now consider two cases. If €2, has only one connected component, then 2, =
Q. and ¢ = ¢, which concludes the proof. If Q. has more than one connected

components, then 2. \ Q. is non-empty and is contained in the half-sphere

S = {x:=(x1,...,xa) € 3B CR? : x4 <O}
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Thus, applying Lemma 9.15, we get that the restriction of ¢ on 2.\ €. should be of
the form B(6 - e4)—, for some positive constant B, which concludes the proof. m]

Proposition 9.18 Suppose that D C R? is a bounded open set and that u € H' (D)
is a continuous non-negative function such that:

(a) u is harmonicin Q, = {u > 0}.
(b) 2, satisfies the upper density bound

. |Qu N B, (x0)|
lim su <

1 for every xp € 02, N D.
r—0 | By |

(c) For every xo € D N 0K, and every infinitesimal sequence r, — 0, there is a
subsequence (that we still denote by r,) such that the blow-up sequence u,, x,
converges uniformly in By to a blow-up limit uy : By — R (ug € BU, (xp)).

(d) Every blow-up limit BU,(xg) > ug : By — R is a one-homogeneous non-
identically-zero function, which is stationary for the functional F .

Then u satisfies the optimality condition
|Vu| = VA on a2, ND,

in viscosity sense.

Proof Suppose first that the function ¢ touches u from below in xg € 92, and
assume that xo = 0. Consider the blow-up sequences

1 1
up(x) = - u(ryx) and on(x) = , O (rnx),

n n

as r, — 0, the condition (c) implies that, up to a subsequence, we have
up = lim wu,(x) and @o = lim @,(x), 9.11)
n—00 n—oo

the convergence being uniform in Bj. In particular, since u,, are harmonic in €2,,,,
the uniform convergence of u, to 1o implies that also ug is harmonic on €2,.

Notice that, as ¢ is smooth, we have go(x) = £ - x, where the vector £ € R?
is precisely the gradient V(0). Without loss of generality we may assume that
& = Aegy for some constant A > 0, thus

Vo) =[Vpo(0)| =A  and  ¢o(x) = Axq. 9.12)

Moreover, we can assume that A > 0 since otherwise the inequality |Vg| < VA
holds trivially.

Now, since ug > ¢p, we obtain that up > 0 on the set {x; > 0}. Thus, ug
is a 1-homogeneous harmonic function on the cone {ug > 0} D {x; > 0}. By
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Lemma 9.16, there are only two possibilities:
up(x) = owc;lr or up(x) = aex;r + Bx, .

The second case is ruled out since it contradicts (b). Thus,

up(x) = owcir for every x € Bj. (9.13)

Now, the stationarity of u¢ (condition (d)) and Lemma 9.5 imply that & = +/A. By
the inequality u#g > ¢p, we get that VA > A.

Suppose now that ¢ touches u from above at a point xo and assume that xo = 0.
Again, we consider the blow-up limits Uy and ¢q defined in (9.11) and we assume
that ¢g is given by (9.12). Since u is not identically zero (assumption (d)), we get
that a > 0. Since ug < @o we have that the set {9 > 0} is contained in the half-
space {xy; > 0}. By the one-homogeneity of up and Lemma 9.15 we obtain that
necessarily {ug > 0} = {xg > 0}. Thus, ug is of the form (9.13) for some « > 0.
Now, the stationarity of 1o implies that necessarily o« = +/A and, since ug < @, we
get that [Vp(0)| = A > /A, which concludes the proof. |

9.6 Energy and Lebesgue Densities

In this section, we prove that if u is a (local) minimizer of Fp, then at every
boundary point xo € 0€2, the Lebesgue density of the set €2, is well-defined.
Moreover, we characterize the regular part of the free boundary in terms of the
Lebesgue density. Most of the ideas in this section come from [41], where we used
a similar characterization of the regular part of the vectorial free boundaries. In
the case of the one-phase problem, we will not use this result in the proofs of
neither of the Theorems 1.2, 1.4, 1.9 nor 1.10; we give it here only for the sake
of completeness. The precise statement is the following:

Proposition 9.19 Suppose that D C R? is a bounded open set and that u € H' (D)
is a non-negative function, a local minimizer of Fx in D. Then, the limit

Q,NB
lin}) S B r|(x0)| exists, for every xg € 02, N D. 9.14)
r— r

Thus, we can write

,np=|J e nbD. (9.15)

ysy<l
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The regular and the singular parts of the free boundary are given by

Reg (02,) N D = 91(41/2) NnD and Sing (0Q2,) N D = U Qiy) AD.
1
,<y<l

(9.16)

Moreover, for every y € [1/2,1), we have
Ql(,y) NnD= {x €90Q,ND : |, NBi| =wgy, forevery uge BZ/{u(x)}. 9.17)

Proof The claims (9.14), (9.15) and (9.17) follow directly by Lemma 9.20 below.
The claim (9.16), follows by Lemma 9.22. |

Lemma 9.20 (Energy and Lebesgue Densities) Suppose that D C R? is a
bounded open set and that u € H'(D) is a continuous non-negative function such
that:

(a) For every xo € D and every infinitesimal sequence r, — 0, there is a
subsequence (that we still denote by ry, ) such that:
* Uy = Uy, x, COnverges strongly in Hl(Bl) to a function ug : By — R;
* lg,, convergesin L2(B1) to ]IQMO.
(As usual, we say that ug is a blow-up limit of u, and we note uy € BU, (xp).)
(b) Every blow-up limit BU,(xo) > ug : By — R is a one-homogeneous non-
identically-zero function such that Aug = 0 in ,, N B.
(c) For every xo € 082, N D, the limit

O(u, xp) := 111’1%) Wa (”r,xo) 5
r—

does exist.

Then, for every xo € 9$2, N D, we have that

[€2, N By (xp)]

O (u, = lim
d (” XO) ’1—>0 |Br|

Aw
Moreover, for every ug € BU, (xo), we have that

1, NBIl 1

1
O (u, xp) =
d | B1| Aw

%% .
Ao : A (o)

Proof We first notice that (b) implies that

Wa (o) = AlSuy, N Bl
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Let xo € 92, N D and the infinitesimal sequence r, — 0 be given. Then, by (a), up
to a subsequence, iy, x, converges to a blow-up limit ug. Using (c) and then again
(a), we get

lim Wx (”r,xo) = lim Wx (ur,,,xo) = Wa (uo).
r—0 n—>oo

On the other hand, the strong H 1 (B1) convergence of u,, x, to ug implies that
lim WO(”r,,,xo) = Wo(ug) = 0.
n—o0

Then, we have

|Qu N Brn (x0)|

[ . .
|24, N B = A nlggo Wa(ur, x) = nll)n;o ‘{”r,,,xo > 01N Bl‘ = nll)n;o rﬁ

which concludes the proof. O
In the proof of Lemma 9.22, we will use the following result.

Theorem 9.21 (The Spherical Caps Minimize 1| on the Sphere) For any (quasi-
Jopen spherical set @ C S~ we define the first eigenvalue 11 () as

Q) = inf{/Q|V9c|2d9 : /ch(e)d9=1,ceH(}(Q)].

For every open set Q@ C S~ such that H4~(Q) < éda)d we have that
M) = 1S,
. Lo . . d—1
with equality if and only if, up to a rotation, Q2 = S5 .

Lemma 9.22 (Characterization of the Regular Part of the Free Boundary)
Suppose that D C R¢ is a bounded open set and that u € H'(D) is as in
Lemma 9.20. Then,

. |Qu N B, (x0)| 1

lim > for every x0 €0, ND. (9.18)
r—0 | Br| 2

Moreover,

[€2,, N By (x0)] 1
im =,
0 (B 2
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if and only if, every blow-up limit ug € BU, (xo) is of the form

up(x) = (v-x)4+ for some v e RY. (9.19)
In particular, if u is a minimizer of Fp in D, then Reg(02,) = Qf,l/z) in D.
Proof Suppose that xo € 92, N D and let

. 1824 N By (x0)]
y = lim
r—0 | Br|

Let r, — 0 be an infinitesimal sequence. Then, by the assumption Lemma 5.1 (a),
up to extracting a subsequence, we can suppose that u,, x, converges to a blow-up
limit ug : R? — R. By the hypothesis Lemma 5.1 (b), we get that u is one-
homogeneous and harmonic in €2,, N B;. This implies that, on the sphere 9 By, ug
solves the PDE

Asug =(d —Dup in £, NIB;.
Thus, Theorem 9.21 implies that

d
1@, N 0By > ‘2"",

which by the homogeneity of ug gives that
w4
|Qu0 N Bll > 2 .

Now, the convergence of 2 to €2, implies that

urn,z\'()

. |QumBrn(‘x0)| . |Q“rn,x0 mBl| |QuomB1| 1
y = lim = lim = P
n—00 |Br, | n—00 |B1] |Bi] 2

which concludes the proof of the lower bound (9.18). In the case of equality y = 1/2,
we have that ug ‘ - is precisely the first eigenvalue on the half-sphere S;ﬁl, whose
1

one-homogeneous extension is precisely (9.19). O



9.6 Energy and Lebesgue Densities 147
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Chapter 10 )
Dimension of the Singular Set s

In this chapter, we prove Theorem 1.4. As in the original work of Weiss (see
[52]), we will use the so-called Federer’s dimension reduction principle, which first
appeared in [32].

This chapter is organized as follows.

e In Sect.10.1 we give the definitions of the Hausdorff measure and Hausdorff
dimension; we also state and prove the main properties of the Hausdorff measure,
which we will need for the proof of Theorem 1.4.

e In Sect. 10.2 we give a general result for the convergence of the singular sets of
a sequence of functions.

e In Sect. 10.3 we study the structure of the singular set of the one-homogeneous
global minimizers of Fx.

e Finally, in Sect. 10.4, we use the results of the previous subsections (Lem-
mas 10.7 and 10.12) to prove Theorem 1.4.

10.1 Hausdorff Measure and Hausdorff Dimension

In this section we define the notions of Hausdorff measure and Hausdorff dimension
and we also give their main properties. For more details, we refer to the book [31].
We recall that, for every s > 0, § € (0, +0c] and every set E C [Rd,

o0
H3(E) == C; inf ’Z (diam Uj)s . for every family of sets {Uj}j‘;1
j=1

o
such that £ C U Uj anddiamU; < g, forevery j > 1},
j=1
(10.1)
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where, for any s € (0, +00), the constant w; is defined as

T s /2
Wy :

+00
= where I'(s) :=/ et dx.
Fes2+1) 0

Definition 10.1 (Hausdorff Measure) For any s > 0, H*(E) denotes the s-
dimensional Hausdorff measure of a set E C R? and is defined as:

HY(E) := lim Hi(E) = sup H3(E).
§—04 5>0

Remark 10.2 The constant in (10.1) is chosen in such a way that we have

H(B,) =B/ =war” and  H'T'(3B,) = dwgr?™".

Definition 10.3 The Hausdorff dimension of a set E C RY is defined as
dimy E :=inf{s > 0 : H'(E) =0}.

The following elementary properties of the Hausdorff measure are an immediate
consequence of the definitions of H°, H3 and HZ,.

Proposition 10.4 (Properties of the Hausdorff Measure)

(i) Foreverys > 0and$ € (0,00], the set functionals H® and Hy are translation
invariant and increasing with respect to the set inclusion. Moreover, we have

H'(rE) = PH(E) and M (rE) =r"H(E) forany ECRY and r>0.
(ii) The function § — Hj is non-decreasing in 8. In particular, we have
HY(E) < H3(E) < HY(E) forany E C R? andany §>O0.
(iii) Givens > 0 and E C R?, we have that
H(E)=0 ifandonlyif HL(E)=0.
(iv) Given a sequence of sets E; C R s >0and$ ¢ (0, +00] we have that
00 00
’Hg(E)§ZH§(Ej) where E = UE/'
j=1 j=1

In particular, H*(E) = 0 if and only if H*(E ;) = 0, for every j > 1.
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Lemma 10.5 (Existence of Points of Positive Density) Lets > 0 andlet K C R4
be a given set. If H*(K) > 0, then there is a point xo € K such that

H5 (K N By (x0)) o

lim sup ) (10.2)
r—0 rs
Proof Suppose that (10.2) does not hold. Then, we have
H (K N B (x
lim sup ( ) r 0)) = (10.3)
r—0 rs
Let K5 C K be the set
Kse={xe K : H'(KNB,(x)) <er’ forevery r <Sé}.
By (10.3), we have that
U Kse = U Ksy, =K for every fixed e > 0. (10.4)

§>0

Let now 8 and ¢ be fixed and let {U;};>1 be a family of sets of diameter diam U; <
such that K5 . C U U;. Then, the subadditivity of Hj gives that

i

Hj(Kse) < Y H3(Ui N Kse) < Y H (Ui N Kse)
i=1 i=1

o0

<Y H'WUNK) < Z diam U;)’,

where the last inequality holds since the set U; N K is contained in a ball of radius
ri = diamU; < 4.

Taking the infimum over all coverings C; with sets of diameter less than or equal to
3, we get that

2¢
H5(Kse) < £ 'H(;(Ka e)s

and so, for & small enough, H3(Ks.) = 0, which implies that H*(Ks.) = 0.
Finally, (10.4) and the subadditivity of #* imply that #*(K) = 0, which is a
contradiction. |
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Lemma 10.6 (Dimension Reduction: Lemma I) Lets > 0. Let E C R be a
given setandlet E = E x R C R If H*(E) = 0, then also H*T'(E) = 0.

Proof We will prove that HHI(E x [0,T]) = O for every T > 0. In fact, this
implies that H*+!(E x [~T, T]) = 0 and since

E = U E x[-T,T),
T>0

we get HSTH(E) = 0.
Since H*(E) = 0, for every ¢ > 0, there is a family of balls B;I, (x;) C RI-1
such that

o0
Ec|JB.(x) and ) ri<e.
i>1 i=1

Let now T be fixed. For every i € N, we consider the point x; x € R4 of coordinates
Xikx = (xi, kri),fork =0,1,...,K;, where K; := [T/r;] + 1 and the family of balls
By, (x; x). Notice that

X' x[0,T1C | JBo,(xig)  forevery  x' e BJ(x) CRI™".
k

Thus, the family of balls { By, (x; x)}i x is a covering of E x [0, T']. We now estimate,

oo K; oo K;
HEHE X [0.T]) =YY @)t =213 3t
i=1 k=1 i=1 k=1
oo ]

) . 2T
2A+1 E (Kl 1)}’;—’_1 < 2&+1 E r;“f‘l’
: : ri
i=1 i=1

where the last inequality follows by the fact that, for T’ large enough,

T 2T
Ki+l= +2=< .

ri ri
Thus, we get
o0
HIT(E x [0,T]) < 2° 2T Z r$ <2527,
i=1

which concludes the proof. O
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10.2 Convergence of the Singular Sets

In this section we will prove a general result (Lemma 10.7) for the convergence
of the singular sets, which applies both to minimizers of 74 (Theorem 1.4) and to
measure-constrained minimizers (Theorem 1.9). Recall that, if D C R? is an open
set, u : D — R a given (continuous and non-negative) function, then for every ball
B (x9) C D, we define

1
Uxg,r - B — R, uxo,r(x) = ru(xo—i-rx).

We say that a boundary point xg € 9€2, N D is regular (and we write xo €
Reg(0€2,)), if there is a sequence r;, — 0 such that

nlingo luxg,r, —hollLos) =0,
where for simplicity we set
hy (x) =\/A(x-v)+,
and we recall that

g,y — o ||Loo(31) = flu(x) — hy(x — x0) L2 (B, (x0))-
We say that a point xg is singular if it is not regular, that is, if

xo € Sing(9€2,) := (02, N D) \ Reg(9$2,).

Lemma 10.7 (Convergence of the Singular Sets) Suppose that D C R? is a
bounded open set. Let u, : D — R be a sequence of continuous non-negative
functions satisfying the following conditions:

(a) Uniform s-regularity. There are constants ¢ > 0 and R > 0 such that the
following holds:
ifneN, xg € 90R,, NDandr € (0, R) are such that B, (xo) C D and

lun — hy (- — x0) LB, (xo)) < €r forsome v € 3By,
then 382y, = Reg (0€2,,,) in Brj(x0).
(b) Uniform non-degeneracy. There are constants k > 0 and ro > 0 such that

the following holds: if n € N, xo € 0, N D and r € (0,r9) are such that
B, (x0) C D, then

lunllLoe(B, (o)) = K7 -
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(c) Uniform convergence. The sequence u, converges locally uniformly in D to a
(continuous and non-negative) function ug : D — R.

Then, for every compact set K C D, the following claim does hold:

For every open set U C D containing Sing (0€2,,) N K,
there exists ng € N such that: (10.5)
Sing (082,,) N K C U forevery n > ny.

In particular, for every s > 0,

Hgo(Sing (082,45) N K) > lim sup’H,éo(Sing (082,,) N K) (10.6)

n—oo

Proof The semicontinuity of the Hausdorff measure (10.6) follows by (10.5) and
the definition of H} . Thus, it is sufficient to prove (10.5). Arguing by contradiction,
we suppose that there are a compact set K C D and an open set U C D such that

Sing (02,,) N K C U,
but (up to extracting a subsequence of u,) there is a sequence
X, € Sing (382,,) N K N (RY\ U).
Up to extracting a further sequence we may assume that there is a point xgp such that

x0€KNM®\U) and xp= lim x,.

n—oo

We claim that xo € 0€,,. Indeed, the uniform convergence of u, implies that
uop(xp) = 0. On the other hand, the non-degeneracy hypothesis (b) implies that,
for every r > 0 small enough,

luoll Lo (B, (xg)) = 1£nigf(|lun|le(Br(xo)) — lun — uO”LOO(Br(xo)))

o r
= Hmiinf flun | Lo (B (e)) Z K -

which gives that xo € 9€2,,.

Now, we notice that, since U contains Sing(9€2,,) N K and xo ¢ U, we have
that

X0 € Reg(092y,).
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By definition of Reg(92,,), there is a sequence r, — 0 and a unit vector v € 9B
such that

1
Tim_ N lluo — hy (- — x0) | LB, (x)) = O-

In particular, there exists r € (0, R) such that B, (x9) C D and

e
luo(x) — Ay (- — x0) I Lo(B, (xp)) =< N

By the continuity of ug and h,, we get that, for n large enough,

2¢e
luo — Ay (- — X)L (B, (x0)) < 37

Since, u, converges to ug locally uniformly in D, we get that, for n large enough,

lup — By — xp) Lo (B, () < €T -

Thus, (a) implies that x, € Reg (9€2,,), in contradiction with the initial assumption.
O

10.3 Dimension Reduction

In this section, we study the singularities of the global one-homogeneous minimizers
of F. In particular, we prove Theorem 1.4 in the case when u is one-homogeneous.
This (significant) simplification is essential for the proof of Theorem 1.4 since
we already know that the blow-up limits of a local minimizer are global one-
homogeneous minimizers and we will prove (see Lemma 10.7) that the dimension of
the singular set of a blow-up limit does not decrease if we choose the free boundary
point to have non-zero Hausdorff density (see Lemma 10.5).

Remark 10.8 (The Singular Set of a One-Homogeneous Function Is a Cone)
Suppose that z : RY — R is a non-negative one-homogeneous local minimizer
of Fa in R?. Then, for any singular free boundary point xo € Sing (3%2;) \ {0},
we have that {txg : r € R} C Sing (3€2;). This claim follows by the fact that
Reg (0€2,) is a cone. and that

Sing (092;) = 32, \ Reg (9L2,).

Lemma 10.9 (Blow-Up Limits of One-Homogeneous Functions) Lefz : R — R
be a one-homogeneous locally Lipschitz continuous function. Let 0 # xo € 0€2;.
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Let r, — 0 and z,, x, be a a blow-up sequence converging locally uniformly to a
function zg : RY — R. Then 7 is invariant in the direction xo, that is,

z0(x +txp) = zo(x) forevery x € R andevery te€R.

Proof Lett € R be fixed. Then, we have

. . 1
z0(x +1xp) = nlggo Ty (X +1x0) = nlggo . 2(x0 4 ra(x + 1x0))
n

14+tr, 1

. 'n .
= lim z(xo x) = lim  z(xo+rux) = zo0(x),
n—00 'n ( 1+4+1tr, ) n—00 ry, ( n )

where the third inequality follows by the homogeneity of z and the fourth inequality
follows by the Lipschitz continuity of z. Precisely, setting L = [|Vz|l Lo (B (xy))> WE
have

1+4+1r, Tn 1 ‘
‘ 'n Z(X() + 1+1try x) rn Z(XO + rnx)
<tlel(xo+ " x)+ ! 2o+ " x)—z(xo~|—rnX)‘
- 14+1tr, Tn 14+1tr,
trnL|x| 1 tr2Lx|
L4tr, 1y l4tr,’
which converges to zero as n — 00. O

Lemma 10.10 (Translation Invariant Global Minimizers) Ler u : R4~! — R
be a non-negative function, u € HZLC(R‘I*) and let ii : RY — R be the function
defined by

i(x) =ux’) forevery x=(x',xq) € R?.

Then, u a local minimizer of F in R4~V if and only if ii a local minimizer of Fa in
R4,

Proof Suppose first that & is not a local minimizer of F4. Then, there is a function
7 : RY — R such that # = 7 outside the cylinder Cg := By x (=R, R) C RI-I xR
and such that Fp (,Cg) > FA(V,CRr).

fA(u,BR/)=/ Ve ul? dx’ + A | By N {u > 0}
BI

R

1

1
— 712 i — i
= r ([CR |Vi|*dx 4+ A |Cr N (it > 0}|) = ZRIA(M,CR)
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1 1
> 2RfA(v,CR) R (/CR| V| dx+A|CRﬂ{v>O}|>

1

>
= 2R ) &

R
f (/ |vxlﬁ<x’,xd>|2dx/+A|B;m{6<-,xd)>0}|> dxq
By

2/ Ve 5, )2 dx’ + A | B N {5(,1) > 0}
B/

R

E

for some t € (—R, R), which exists due to the mean-value theorem. Thus, also u is
not a local minimizer of Fx.

Conversely, suppose that u is not a local minimizer of F,. Then, there is a
function v : R — R such that u = v outside a ball B;e c R4 and
Fa(u, By) > Fa(v, By). We now define the function

0(x', xq) = v(x") s (xa),

where for any r > 0, we define the function ¢; : R — [0, 1] as

1 if |xg| <t,

0 if |xg| >t41,

Xg+t+1 if —t—1<x4<-t,
xg—t if t<x5<t+1.

e (xgq) ==

Then,
~12 2 2
|va| =< |Vx’ U| +v ﬂcR,tH\cR,t’

|Cry+1 N {D > 0} =2(t + )| B N {v > 0}

5

where Cg; := B;e X (—t,t). Thus, we have

FaGCros = [ IV5Pdx -+ AlCrisr 015 > 0]

Crit1

< 2tFa(v, By) +2f v dx' +2|By N {v > 0}].
B/

R

Choosing ¢ large enough, we have that

2tFa(v, Bp) + 2/ v dx' +2| By N {v > 0}| < 2tFa(u, By).
By
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Since,
Fa,Cruv1) = 2(t + DFa(u, Bp),
we get that
FA@,Cry41) < Fa(,Cri+1),
which concludes the proof. O

Lemma 10.11 (Singular One-Homogeneous Global Minimizers in R?") Ler z :
R? — R be a non-negative one-homogeneous local minimizer of Fa in R . Then,
one of the following does hold:

(1) z(x) = VA (x - v) for some v € R4 (in this case Sing (02;) = 0);
(2) Sing (0€2;) = {0}.

In other words,
Sing (02;) \ {0} = 4.

In particular, this means that dimy Sing (9€2;) = 0.

Proof Suppose that there is a point xo € R? \ {0} such that xo € Sing (9<2;). Then,
by Remark 10.8 we have that tx¢p € Sing (9€2;) for every ¢ € R. In particular, we
can suppose that |xg| = 1 and, without loss of generality, we set xo = e4. Let now zg
be a blow-up limit of z at xo. Then, z( is a one-homogeneous local minimizer of F .
Moreover, by Lemma 10.9 we have that zo(x’, 1) = zo(x’,0) for every x’ € R4~
Now, Lemma 10.10 implies that the function z6 = z0(-,0) : RI-! - Ris still a
local minimizer of F,. Moreover, the origin 0' € R?~! is a singular point for 92 %
in contradiction with the definition of d*. a

Lemma 10.12 (Dimension Reduction: Lemma II) Suppose that d > d* and that
z : RY — R is a non-negative one-homogeneous local minimizer of Fy in R
Then,

HI=FS (Sing (992,)) =0 forevery s> 0.

Proof Let s > 0 be fixed. The claim in the case d = d* follows by Lemma 10.11.
We will prove the claim by induction. Indeed, suppose that the claim holds in
dimensiond — 1, withd — 1 > d*, andletz : R — R bea non-negative one-
homogeneous local minimizer. If such that H¢~¢"*(Sing (9Q2;)) > 0, then, by
Lemma 10.5, there is a point xo € Sing (9€2;), a constant ¢ > 0 and a sequence
rn — 0 such that

HI~IH (Sing (020) N By, (x0)) = er ™ forevery  neN,
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which can be re-written as
HI=H (Sing (8Q,,) N\ B1) =& forevery neN, (10.7)

where we have set z,,(x) := rln z(xo + rpx).

Without loss of generality, we can assume that xo = e4. Now, up to a
subsequence, z, converges to a blow-up limit zyp of z. By Lemma 10.9 and
Lemma 10.10, we have that:

(1) zo(x', xq) = zo(x’,0) for every x’ € R?~! and every x4 € R;
2) 16 = z0(-,0) : R = Ris one-homogeneous local minimizer of F, in
RI-1,

By hypothesis, we have that
M= (Sing (992,)) = 0.
The translation invariance of zo now implies that
Sing (9€2,,) = Sing (8916) xR,
so, Lemma 10.6 gives
HI=FS (Sing (3€2,)) = 0,

which is a contradiction with (10.6) of Lemma 10.7 and (10.7). |

10.4 Proof of Theorem 1.4

In this section, we will give an estimate on the dimension of the singular set. The
result is more general and applies to different situations, for instance to almost-
minimizers and measure-constrained minimizers.

Proposition 10.13 (Dimension of the Singular Set) Ler D C R? be a bounded
open set and u : D — R a continuous non-negative function. Let the regular and
singular sets Reg(02,) and Sing(9K2,,) of the free boundary 02, N D be defined as
in the beginning of Sect. 10.2. Suppose that u satisfies the following hypotheses:

(a) e-regularity. There are constants ¢ > 0 and R > 0 such that the following
holds:
Ifxg € 02, N D andr € (0, R) are such that B,(x9) C D and
lla(x) — VA ((x —x0) V)4 llLe(B,(xo)) < &r forsome v e dB;, (10.8)

then 32, = Reg (082,,) in Brp(xo).



160 10 Dimension of the Singular Set

(b) Non-degeneracy. There are constants k > 0 and ry > 0 such that the following
holds: ifn e N, xo € 32, N D and r € (0,r9) are such that B, (xo) C D, then

lullLoo(B, (xo)) = K7 -

(c) Convergence of the blow-up sequences. Every blow-up sequence

1
urmx()(x) = r u(x0+rn-x),
n

with xo € 92, N D and r, — 0, admits a subsequence that converges locally
uniformly to a blow-up limit ug : RY — R.

(d) Homogeneity and minimality of the blow-up limits. Every blow-up limit of u
is a one-homogeneous global minimizer of Fx in RY.

Then,

(i) ifd < d*, then Sing (0S2,,) is empty;
(ii) ifd = d*, then Sing (0S2,) is locally finite;
(iii) ifd > d*, then dimy Sing (02,) < d — d*.

Proof Suppose first thatd < d*. Let xg € 92,ND and letr, — 0 be a infinitesimal
sequence such that u,, v, converges locally uniformly to a blow-up limit uo (such
a sequence exists by the hypothesis (b)). By (c), ug is a one-homogeneous local
minimizer of F, in RY. By definition of d*, we get that Sing (0924,) = 9. This
means that every blow-up limit of ug is of the form /A (x - v),, for some v € 3 Bj.
In particular, it holds for every blow-up limit in zero. Since u( is one-homogeneous,
the blow-up of ug in zero is ug itself and so,

up(x) = VA (x-v)+ for some v € 0Bj.
Thus, for n large enough, we get that
17,0 (X) — VA (x - V)tllLes) < ¢,

which, by the definition of u,, x, gives precisely (10.8). Thus, by (a), we get that
xo is a regular point, xo € Reg(9€2,). Since x( is arbitrary, we conclude that
Sing (0€2,) = 0.

Let now d = d*. Suppose by contradiction that there is a sequence of points
Xn € Sing (0€2,) converging to a point xg € DNSing (9€2,). Letr, := |x, —xp|. Up
to extracting a subsequence, we can assume that the blow-up sequence u, = u,, x,
converges to a blow-up limit ug : R? — R. By (c), ug is a one-homogeneous local
minimizer of F» in R?. On the other hand, notice that for every n > 0 the point
& = x”;x" € 0B is a singular point for u,. Up to extracting a subsequence, we
may assume that &, converges to a point £y € dB;. By Lemma 10.7, we get that
&o € Sing (3€2,,), in contradiction with Lemma 10.11.
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Finally, we consider the case d > d*. Let s > 0 be fixed We will
prove that HA—d" s (Sing (39,,)) = 0. Suppose that this is not the case and

Hd_d*H(Sing (39,,)) > 0. By Lemma 10.5 we have that there is a point
xp € Sing (9€2,) and a sequence r;, — 0 such that

HITFS (Sing (92,) N By, (x0)) > erd =47+,
Taking, u, = u,, x,, we get that
HA=4H (Sing (9K2u,) N B1) = ¢.

Using (b), we can suppose that, up to extracting a subsequence, u, converges to a
blow-up limit ug. By (c), up is a one-homogeneous minimizer of F in R?. Now,
Lemma 10.7, we get that H4—4"+s (Sing (0€24,) N B1) > ¢, which is in contradiction
with Lemma 10.12. |
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Chapter 11 )
Regularity of the Free Boundary Shethie
for Measure Constrained Minimizers

Let D be a connected bounded open set in R? and let v € H'(D) be a given non-
negative function. This chapter is dedicated to the problem

min{fo(u,D) L ue H'(D), u—ve H(D), |9, N D| = m} (11.1)

where m € (0, |D]) is a fixed constant and we recall that
Fo(u,D) = / |Vul?dx.
D

In this chapter, we give the main steps of the proof of Theorem 1.9.

e Section 11.1. Existence of minimizers.
In this section, we prove that (11.1) admits a solution and that every solution is a
non-negative subharmonic function (see Proposition 11.1).

e Section 11.2. Euler-Lagrange equations.
In this section, we prove that if u is a solution to (11.1), then there exists a
Lagrange multiplier A > 0 such that the first variation of F, vanishes, that is,

0FA(u,D)[E] =0 forevery & e CSO(D;[R”Z).

» Section 11.3. Strict positivity of the Lagrange multiplier.
In this section we prove that A > 0.

* Section 11.4. Convergence of the Lagrange multipliers.
In this section, we prove a technical lemma, that we will use several times in
the next section. Roughly speaing, we show that if u, is a sequence of solutions
converging to a solution u, then also the sequence of Lagrange multipliers
converge to the Lagrange multipliers of u.

* Section 11.5. Almost optimality of u at small scales.
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In this section, we show that if u is a solution to (11.1), then it minimizes J
in every ball B,, up to an error that depends on the radius r and vanishes as
r — 0. At this point, the regularity of the free boundary (Theorem 1.9) follows
by the same arguments that we used for Theorem 1.2 and Theorem 1.4, the
necessary modifications being pointed out in the sketch of the proof given in the
introduction.

11.1 Ecxistence of Minimizers

In this section we prove that there is a solution to the problem (11.1). This follows
by a standard argument which can be divided in two steps. We will first show that
there is a solution u to the auxiliary problem

min{fo(u,D) cue H(D), u—ve H\(D), |9 nD| < m} (11.2)
where for simplicity we set
Q,:“:Qu+ = {u > 0}.

Then we will prove that the constraint is saturated, that is, every solution u of (11.2)
is such that [2,,| = |Q;}| = m. We give the details in the following proposition.

Proposition 11.1 (Existence of Minimizers) Let D be a connected bounded open
setinR9, v e Hl(D) be a non-negative function and 0 < m < |D|. Then,

(i) there is a solution to the variational problem (11.1);
(i) the function u € HY(D) is a solution to (11.1) if and only if it is a solution
to (11.2);
(iii) every solution (to (11.1) and (11.2)) is a non-negative subharmonic function in
D and, in particular, is defined at every point of D.

Proof We will proceed in several steps.

Step 1. There is a solution to the auxiliary problem (11.2). This follows by a direct
argument. Indeed, let u#,, be a minimizing sequence for (11.2), that is, u, — v €
HJ (D), |Qf N D| <mand

lim Fo(un, D) = inf’}'o(u,D) cue H(D), u—v e H\(D), |27 ND| < m]
n—0o0

Then, up to a subsequence, u, converges weakly in H'(D), strongly in L>(D) and
pointwise a.e. in D to a function us, € HI(D) such that uso — v € HO1 (D). Then,
we have

Fo(oo, D) < liminf Fo(u,, D),
n—oo
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and, by the pointwise convergence of u,, to Uqc,

L{us>0y < liminf1y,, -0 and {ueo > 0}] < liminf [{u, > 0}| < m,
n—00 n—00

which means that 1 is a solution to (11.2).

Step 2. Every solution u to (11.2) is non-negative. Indeed, this follows simply by the
fact that if © = uy — u_ is a solution to (11.2), then the function u still satisfies
the constraints uy — v € H(}(Q) and |2, | < m, and we have

Folu, D) = Fouy, D) + Fo(u—, D) < Fo(uy, D),

with an equality if and only if u_ = 0.
Step 3. Every solution u to (11.2) is subharmonic. This follows by the fact that

Folu, D) < Fole, D),

for every ¢ < u with the same boundary values as u. In particular, this means that u
is defined pointwise. In fact, we simply consider the representative of u defined as

u(xp) := lim u(x)dx = lim udH?.
r=~>0.J B, (xp) r=0J3 B, (x0)

Step 4. Every solution u to (11.2) satisfies the condition |$2,| = m. Indeed, suppose
that this is not the case. Let ro > 0 be such that | B,,| < m — |2,|. Take xo € D and
r < min {ro, dist(xg, 3D)}. Let & be the harmonic extension of u in B, (xg), that is,
h is a solution of the PDE

Ah=0 in B, (xp), h=u on 3B (xp).
Then, let i be the competitor defined as
W=h in B, (xp), “=u in D\ By(xo).

Then, |27| < m and so, the optimality of u gives
Oz}'o(u,D)—}'o(ﬁ,D)zf |Vh|2dx—/ |Vu|2dx=/ IV(u—h)|?dx,
By (x0) By (x0) By (x0)

which means that 2 = u in B, (xo). In particular, we get that the set {u > 0} is open:
if u(xg) > 0, then fBr(XO) u(x)dx > 0 for some r small enough, but then u > 0
in B, (xg) because it coincides with its (non-zero) harmonic extension. On the other
hand {# > 0} is also closed. Indeed, if there is a sequence of points x, converging
to xp such that u(x,) > 0, then the harmonic extension of u in B, (xg) is non-zero,
so it is strictly positive, and so, u(xg) > 0. Since D is connected, this means that
{u > 0} = D, which is a contradiction with the fact that |2,,| < m < |D|.
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Step 5.u € H' (D) is a solution to (11.2) if and only if it is a solution to (11.1). This
is a trivial consequence of Step 4. O

In the rest of this section, without loss of generality, we will only consider
functions u € H'(D), which are non-negative and satisfy the following optimality
condition:

v—u € Hj(D),

Fo(u, D) < Fo(v, D) forevery ve H'(D) such that
|Qu| = |Qv|

(11.3)

11.2 Euler-Lagrange Equation

In this section, we will prove the existence of a Lagrange multiplier for functions
satisfying (11.3). We will follow step-by-step the proof from [46]. Our main result
is the following.

Proposition 11.2 (Euler-Lagrange Equation) Ler D C R? be a connected
bounded open set and let the non-negative function u : D — R be a solution
of (11.3). Then, there is a constant Ay, > 0 such that

8Fo(u, D)[E]T+ A, / divEdx =0  forevery & € CX(D; RY).  (11.4)
Qy

We start with the following lemma.

Lemma 11.3 (Variation of the Measure) Let D be a connected open set in R4
and let Q C D be a Lebesgue measurable set such that 0 < |2| < |D|. Then, there
is a smooth vector field &€ € C°(D; R?) such that

/ divEdx = 1.
Q
Proof Assume, by contradiction, that we have
/ divEdx =0 for every & e CX(D; [Rd). (11.5)
Q

In particular, for every ball B, (xo) C D, we may choose & to be the vector field

£(x) = (x — x0)¢¢ (x),
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where

1
O<¢o<1 and Vool < P
£

in  B,(xp),

¢ =1 in Byu—g(xo0) and ¢: =0 on 9B,(xp).

By (11.5), we have

0= / divédx = / (d(l)g(x) + (x — xp) - V(j)s(x)) dx.
Q Q
Passing to the limit as ¢ — 0, we obtain
d|2N By (x0)| — pHIH (2N 3B, (x0)) = 0.

In particular, we get that

3 (1920 B,(x0)l
-0,
ap p?

which means that the function p — p~4|Q N B, (xp)| is constant. In particular,
if xo € B, is a point of zero Lebesgue density for €2, then 2 has zero Lebesgue
measure in a neighborhood of x¢. Precisely, setting r(x) := dist (x, R?\ D) we
have that

If x0eQ©®, then [N By (x0)=0. (11.6)

Now, notice that (11.6) is both an open and a closed subset of D. Since, by
hypothesis, D is connected, we have that QO = D or QO = ¢, which concludes
the proof. O

Proof of Proposition 11.2 Let & € C(D; R%). Using the notations from
Lemma 9.5, for any (small enough) € R, we set

U, = Id + 1€, O =" and u =uoy,.

By Lemma 9.5, we have that

|Qut|=|Qu|—|—t/ divEdx +o(t)  and

u

Folur, D) = Fo(u, D) +t §Fo(u, D)[§] + o(2).
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Now, let the vector field & € C2°(D; R?) be such that

/ divégdx = 1.
Qll

We are now going to prove that (11.4) holds with
Ay = —8Fo(u, D)[o].

We fix £ € C°(D; [Rd) and we consider two cases.

Case 1. divédx = 0.
QL{
Let & := & — n&y , where n > 0 is a real constant. Then, we have

/ divé  dx = —n.

u

Setting u; = u o ®,, where &; := (Id + tsl)_l, we have that, for r > 0 small
enough,

u, € HY(D)  and || < |Qul.
By Proposition 11.1 (see Step 5 of the proof), we have that
Fo(u, D) < Fo(us, D).

Taking the derivative at ¢ = 0, we obtain

8Fo(u, D)[51] = 0,
which can be re-written as

8Fo(u, D)[§] = néFo(u, D)[S0].

Since 7 is arbitrary, we can deduce that

8Fo(u, D)[§] = 0.
Finally, repeating the same argument for —& instead of &, we obtain that

8Fo(u, D)[§] =0,

which concludes the proof of (11.4) in this case.
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Case 2. / div&dx #0.

Leté :=& — 50/ div& dx. Then / div&; dx = 0 and, by Case 1, we obtain

u u

0 = 68Fo(u, D)[52] = 8Fo(u, D)[§] — 8 Fo(u, D)[So]/ divé dx

Qy

= 6Fo(u, D)[E] + Ay / divé dx,

u

which concludes the proof of (11.4).

It only remains to prove that A, > 0. Indeed, let u; = u o &;, where &, =
(Id —t&)~'. Fort > 0 small enough, we have that |€2,,| < |€2,]. We reason as in
Case 1. By Proposition 11.1, we get that Fo(u, D) < Fo(us, D). Then, taking the
derivative at t = 0, we deduce

Ay = 8Fo(u, D)[—&] > 0.

The strict positivity of A, is more involved and follows by Proposition 11.4, which
we prove in the next subsection. O

11.3 Strict Positivity of the Lagrange Multiplier

In this section we prove that the Lagrange multiplier from Proposition 11.2 is strictly
positive. Precisely, we will show that a function, which is critical for the functional
Fo has a monotone Almgren frequency function N (r). Now, the monotonicity of
the frequency function implies that u cannot decay too fast around the free boundary
points. On the other hand, if u# is harmonic in €2,, then we can use a Caccioppoli
inequality to show that if the Lebesgue density of €2, is too small, then the decay
of u on the balls of radius r should be very fast. The combination of these two
estimates implies that the Lebesgue density of €2, should be bounded from below at
every point of D. In particular, there cannot be points of zero Lebesgue density for
2, in D. The results from this subsection come directly from [46], but this unique-
continuation argument goes back to the work of Garofalo and Lin [34]. The main
result of this subsection is the following.

Proposition 11.4 Let D be a connected open set in RY. Suppose that u € H' (D)
is a non-identically-zero function such that

(a) u is a solution of the equation

Au=0 in Q,={u+#0}
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(b) u satisfies the extremality condition
SFo)El =0 forevery &eCX(D;RY),

where § Fo(u)[&] is the first variation of Fy in the direction & and is given by

SFow)[£] := / [2w . DE(Vu) — |Vu|2div§] dx. (11.7)

D
Then, |D \ 4| = 0.

Remark 11.5 1t is sufficient to prove Proposition 11.4 in the case u > 0. In fact, if
u : D — R satisfies the hypotheses (a) and (b) above, then the function |u| : D — R
satisfies the same hypotheses.

In the proof of Proposition 11.4 we will use the following Faber-Krahn-type
inequality, which was first proved in [10] (we report here the original proof).

Lemma 11.6 (A Faber-Krahn Inequality, [10]) There is a dimensional constant
C4 > 0 such that for every ball B, C R¢ and every function v € H'(B,) satisfying

|2y N By - 1 ,
B — 2
we have the inequality
Q, N B\
/ vzdxder2<| v ") [Vu|?dx, (11.8)
: |B| B,

where we recall that 2, = {v # 0}.
Proof We first notice that:

* We can assume that v is non-negative in B,. In fact, for every v € H 1(B,), we
have that [v| € H'(B,) and the following identities do hold:

Q= Q. V=P? and |Vv]? = V]|

e We can assume that » = 1. Indeed, setting v, (x) = v(rx), we have that

1, N B,| = r?|Q,, N By, /vzdxzrd/ vt dx,
r B

f|Vv|2dx=rd*2 Vo, | dx .
B, B

We now proceed with the proof of (11.8) in the case r = 1 and v > 0 on B;.
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Step 1. We claim that there is a dimensional constant Cjs, > 0 such that
_ 1
1Q1"7" < Cisp Per(2;B,) forevery QC B, with |Q]< JIBl (119)

where Per(€2; B,) is the relative perimeter in the sense of De Giorgi. The claim
follows by a standard compactness argument.

Step 2. Letn € N and let D,, = {x - vi > 0} N {x - v» > 0} be the unbounded
domain formed by the intersection of the two hyperplanes {x - v = 0} and {x - v2 =
0} forming (an interior) angle 27/». We claim that, for every 2 C Bj satisfying
2] < ‘”2" , there is a radius p > 0 such that

|B, N Dy| =12 and Per(B, N Dy; D) < Per(82; By). (11.10)

Indeed, for every €2, there is a unique p > 0 such that |B, N D,| = |2|. We set
Q* := B, N D,. Then, we have

_(d—1 1/a
@ = i 2 gy = M
P d p

Va Per(Q*; Dy,).
@y

1 /,1
@y

Now, the isoperimetric inequality (11.9) implies

l/d
Per(Q:D) > C:1Q“" W = ¢ jor @ = ¢ ) " o Per(@:D,).

iso 1
d

Taking n large enough, such that n'/¢ > Cj, dw:l./d, we get P(Q;D) >
Per(2*; Dy,), which proves (11.10).

Step 3. For every non-negative function v € H'(B;) we define the symmetrized
function v, € H! (D,,) obtained through the symmetrization of each level of v, that
is,

{ve >t} ={v>1t}* for every t>0.

We claim that

/vidxzf vdx  and f |Vv*|2dx§/ IVvl?dx.  (11.11)
D, B D, By

The first part of (11.11) follows by the area formula

o o0
/ vfdxzf 11{vx >t}|dt=/ t|{v>t}|dt=/ v dx,
n 0 0 B
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while for the second part we will use the co-area formula. Indeed, setting

f@) = {v >t} = [{v" > 1},

we have

+00
/ |Vv|2dx=/ (/ |Vv|d’H,d_1)dt
By 0 {v=t}
. /+oo</ |Vv|_1d7‘[d_1)71<7'ld_1({v ZI}QD))2dt
0 {v=t}
+0o0 2
=/ O (T (=10 B)) ar
0

> /m Lf o) (H"*l({v* =1}n Dn))zdt
0
- /Om (/{U*:t} Vo, | de—l)fl(Hd—l({v* =N Dn)>2dt

—+00
=/ (/ |Vv*|d7-l,1)dt=/ IV, |2 dx,
0 {U*=l‘} n

where the first inequality follows by Cauchy-Schwartz and the second one is a
consequence of (11.10).

Step 4. We claim that there is a constant C,, > 0, depending only on d and n,
such that

f v2dx < Cyp |{ve > 0}|2/‘f/ IVue|>dx . (11.12)

n n

Let 7, : RY — R be the radially decreasing function defined by

Vs (x) = v (y),

where y € D, is any point such that |[x| = |y|. By the classical Faber-Krahn
inequality in R?, there is a dimensional constant C, such that

/ 2 dx < Cq |{is > 0}|2/‘f/ Vi dx .
R4 R4
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which gives that
/ v2dx < Cqn|fv, > 0}|2/‘f/ Vo, |2 dx,

which is precisely (11.12). This, together with (11.11), concludes the proof. O

In the next lemma, we prove that the Almgren frequency function is monotone.
This is a classical result, which was first proved by Almgren [2].

Lemma 11.7 (Almgren Monotonicity Formula) Letu € H'(Bg). Forr € (0, R],
we define

H(r)::/ u>dMHY and D(r)::/ [Vul?dx,
JdB,

r

and, if H(r) # 0, we define the Almgren frequency function

rD(r)

N(r) := Hoy

Suppose that u is a solution of the equation
Au=0 in Q,={u#0}
and satisfies the extremality condition
8Fo)§1=0 forevery & e CZ(Br:RY),

where §Fo(u)[&] is given by (11.7). If, moreover, H > 0 on the interval (a,b) C
(0, R), then the frequency function N is non-decreasing on (a,b).

Proof We first calculate the derivative of H
d—1 d
H'(r) = H(r)+r"" / w?(rx) dH ™ (x)
r Br 9B

d—1 9 d—1
= H(r)+2/ wlamd- = H(r)+2/ \Vul? dx,
r 9B, on r B,

which we rewrite as

H'(r) = . H(r)+2D(r). (11.13)
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Next, we notice that the extremality condition § Fo(u) = O gives that the following
equipartition of the energy does hold:

9 2
0:—(d—2)/ |Vu|2dx—|—r/ |Vu|2de*1—2r/ < ”) dH4,
B, 3B, 3B, \0n

which can be rewritten as

2
—(d—-2)D(r)+rD'(r) = 2r/ <8u> dHIL
0B, on

We now compute the derivative of N.

D@)H(r)+rD' (r)H(r) —rD@)H'(r)

N = H2(r)

D(H(r) +rD' (H () — rD(r) (d;l H(r) + 2D(r))

H2(r)
_ —d=2)D(r)H(r) + rD'(r)H(r) — 2r D*(r)
B H(r)
_2r du\? d—1 2
= 120) (H(r) /BB, <8n> dH ™ —D=(r)|. (11.14)

Notice that, since u is harmonic in £2,, we have

9
D(r):/ |Vu|2dx=f w andT,
B, 3B,

on
and so, by the Cauchy-Schwarz inequality and (11.14) we obtain N'(r) > 0. O

Remark 11.8 (The Derivative of In H) Notice that, by (11.13), we get that

d Hr)\| _,N()
dr [log<rd_l>:|_2 . (11.15)

We are now in position to prove Proposition 11.4.

Proof of Proposition 11.4 Let xo = 0 € D. We set H(r), D(r) and N(r) to be
as in Lemma 11.7 and Remark 11.8. Let ro > 0 be such that B, (xo) C D and
H(rg) > 0. Since u € H' (D), there is some ¢ > 0 such that H > 0 on the interval
(ro — &,r9). Then, the function r + N(r) is non-decreasing in r and so

N(r) < N(rp) forevery ro—e <r <ry.
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By (11.15), we have

d [log<H(r)>i| _ NG 2N(r0)’ (1116

dr rd—1 ro - r

and integrating we get

H H
log ( rd(r(i)>—log (rd(rl)) < log (r’f)) 2N (ro) for every ro—e < r <rg.
0

This means that, for every ¢ > 0, H is bounded from below by a positive constant

on the interval [ro — &, rp]. In particular, H > 0 on (0, r¢]. Thus, we can take & = ry.
Let now, r € (0, ro/2]. Integrating the inequality (11.16) from r to 2r, we get

< H(Q2r)
lo

H(r) ) <(d—1)log2+2log2 N(rp).

This implies that

H(Q2r) < 29714V g () for every 0<r< "20.

Integrating once more in » we get
/ u?dx < 2d—14N“0>/ Wrdx  forevery 0 <r< rz" (11.17)
By, r

We next prove a Caccioppoli inequality for u in the ball By,. Indeed, let ¢ €
CSO(R“') be a cut-off function such that

¢=1 in B, ¢=0 on Rd\Bzr, 0<¢ =<1 and |Ve| <2/ in By\B,.

Since, u is harmonic in €2,, the following Caccioppoli inequality does hold:

/ |Vu|2dx§/ |V(u¢)|2dx=/ (u2|V¢|2+Vu~V(u¢2)> dx
By By By,

4
=/ u2|V¢|2dx—/ u¢2Audx=/ u2|V¢|2dx§ 2/ u? dx.
By, By, By, r By,

On the other hand, by Lemma 11.6, there is a dimensional constant C; > 0 such
that:

2/a

Q. NB Q, N B 1

/uzdngdr2(| " r|) / |Vu|2dx whenever IS r|§ .
X | By X |By| 2
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This, together with the Caccioppoli and the doubling inequality (11.17), gives that

2/d
/ uzdx<C,1<|QumBr|> 4N(r°)/ u®dx.
B, - | By | B,

Since, / u?dx > 0, we get that there is a dimensional constant Cy4 such that
B,

1 1 Qu.NB
min{ _, < 12 a for every O<r< ro'
27 Cy2Nwod | By | 2

In particular, we have a lower density bound for €2, at every point of D, which
implies that | D \ €,| = 0 and concludes the proof. O

11.4 Convergence of the Lagrange Multipliers

In this section we prove that the Lagrange multipliers, associated to the solutions of
variational problems with measure constraint in a fixed connected open set D C R?,
are continuous with respect to variations of the constraint. This fact will be used
several times in the proof of the optimality of the blow-up limits. In the next Lemma,
which comes directly from [46], we will use the notation

§Vol (Q)[£] :=f div € dx,
Q

for every Lebesgue measurable set @ C R? and every vector field £ € C o0 (R4, RY).

Lemma 11.9 (Convergence of the Lagrange Multipliers) Let D be a connected
bounded open set in RY and let u € HO1 (D) be a non-negative function for
which (11.3) does hold. Let A, be the Lagrange multiplier from (11.4) in D.
Let B C D be a connected bounded open set such that0) < m = |Q,NB| < |B|.
Let (my),>1 be a sequence such that nli>nolo m, = m and let u, € H'(B) be a

solution (which exists due to Proposition 11.1) to the problem

min !]—"o(v,B) cve H'(B), v—u e H (B), Q] = mn} (11.18)
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Then, we have:

(i) for every n, there is a Lagrange multiplier A, > 0 for which

8Fo(tn, B)E]+ Ay, 6Vl (,,)[E] =0  forevery & € CP(B;RY),
(11.19)

(ii) for every n, there is a vector field &, € C°(B; R?) such that
8Fo(upn, B)[E1]+ Ay, =0 and Vol (2, )[&]1=1. (11.20)

(iii) u, converges strongly in HO1 (D) and pointwise almost everywhere to a function
Uso, Which is a solution to the problem

min{}'o(v,B) cve H'(B), v—u e H\(B), || = m}; (11.21)

(iv) the sequence of characteristic functions 1gq, ~converges to lgq, = pointwise

almost everywhere and strongly in L*(D);
(v) lim Ay, = Ay, where Ay, > 0is the Lagrange multiplier of u in B, that
n—oo

is,

8 F0 (oo, BYE] + Ay 8VOl (. )E1=0  forevery &€ CX(B;RY),
(11.22)

(vi) Suppose that B # D and that there is a connected component C of D \ B such
that

0<1|Q,NC|<|C|,

then Ay, = Ay.

Proof The existence of a solution u, follows from Proposition 11.1. The existence
of a Lagrange multiplier A,, and a vector field &, € CC°°(B;[Rd) with the
properties (11.20) follows by Proposition 11.2. Let & € C2°(B; R?) be a vector
field such that

8Fo(u,B)[E] + Ay =0  and Vol (Q)[&] = 1.

Setting u; := u o (Id + &)~ !, we get that, for # small enough, u, —u € H(}(D).
Moreover, to every n large enough, we can associate a unique #, € R such that

u—u, € Hy(B)  and  |Qu,| = my = |Qu, |

Thus, we can use u;, as a test function in (11.18). Thus, there is a constant C
depending only on u and & such that, for every n large enough (say n > ng for
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some ng € N), we have
fO(”n,B) S ]:()(M[’Z,B) S C

Then the sequence (u;),>; is uniformly bounded in H I(B) and so, up to a
subsequence, u, converges weakly in H', strongly in L? and pointwise almost
everywhere to a function u, € H 1(B) such that us, — u € H(} (B). In particular,
the pointwise convergence of u, to u, implies that

Lo, <liminflg, .

Uoo

Thus, we get that
Q.| <liminfm, =m,
and so, the minimality of u# implies that
Fo(u, B) < Fo(uoo, B).
On the other hand, the weak H! convergence of u,, gives that

Fo(uso, B) < liminf Fo(uy, B) < liminf Fo(u,,, B) = Fo(u, B),
n—o0 n—o0

so, we get Fo(ieo, B) = Fo(u, B). Thus, us is a solution to (11.21) and |2, | =
m. Moreover, using again the optimality of u, and the fact that u;, converges to u,
we obtain

lim sup Fo(un, B) <limsup Fo(u;,, B) =Fo(u, B) < Fo(uso, B) <liminf Fo(u,, B),
n—oo

n—oQ n— o0

which gives that

lim Fo(up, B) = Fo(uoso, B).
n—oo

Since u, converges strongly in L?(B) and weakly in H'(B) to u«o, we get that the
convergence of u, to uxo is strong in H'(B).

We next prove (iv). We will first show that 1, convergence strongly in L*(B)
tolg,,. -

Indeed, we first notice that, up to a subsequence, there is h € L2(B) such that
Ig,, — h weakly in L*(B). On the other hand, the pointwise convergence of u,, to
U implies that

1g,, = 1}112101(1)f 1q,,-
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Thus, for any non-negative function ¢ € L?(B), the Fatou Lemma implies that

/ lg, ¢dx < / liminflg, ¢dx < liminf/ 1g,, dx =/ hodx,

B B B B

which yields 1, =~ < h. In particular,
”h”LZ(B) |Q |

On the other hand, the weak L? convergence of 1gq,, to h gives that

2
||h||L2(B) = llm my = m.

< Tims
= 1}112101? ” ]lQu ||L2(B)
As a consequence,
2 1 2 _
”h”LZ(B) - nll)nolo ”JlQu,, ||L2(B) =m,

which implies that 1, converges to & strongly in L%(B). Now, since

]19,400 < h and ”h”LZ(B) |Q | m,

we get that h = 1g from which we conclude that 1g, converges to 1g,
strongly in L?(B), and so, up to a subsequence Ig,, convergesto lg, ~pointwise

almost everywhere.

oo ? in

We now prove (v). We first notice that u and u . are both solutions of (11.21). By
Proposition 11.2, there is a Lagrange multiplier Ao := Ay, > 0 such that (11.22)
does hold. Moreover, by (iii) and (iv), we get that, for every fixed £ € C2°(B; R4 ),

8F0(uoe, BYIE] = lim 8Fo(un, B)[§]

6Vol (2u,)[€] = lim 5Vol (S, [E].

Now, choosing any & € C2°(B; R?) such that

/ divédx #0,
Q

Uoo

and using (11.22) and (11.19) we get that A, converges to Axo.
We prove the last claim (vi). Indeed, since

Fo(u, B) = Fo(uco, B) and [Qus| =182, N B =m,
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we get that the function

~ Uso In B
u .=
u in D\B,

is in H'(D) and is a solution to the problem
min{fo(v, D) : ve H\(D), v—ue H\(D), |9 = |Qu|}.
In particular, ¥ is a critical point of F4, in the entire D, that is,
8Fo(l, D)[E] + Aood VOl (2)[E]1 =0 for every & € CXX(D; RY).

On the other hand, in the connected component C, we have that # = u and so, there
is a vector field £) € C°(C; R?) such that § Vol (Q,)[5)] = 8Vol (Qp)[£)] = 1. This
implies that

Aoe = AoodVol (Q0)[Eg] = —8Fo(u, D)[£]
= —8Fo(u, D)[§)] = AudVol (Qu)[E] = Au,

which concludes the proof. O

11.5 Almost Optimality of z at Small Scales

Let D C R? be a connected bounded open set and u : D — R be a non-negative
function satisfying (11.3). In this section, we will prove the following result, which
is analogous to the results of Briangon [5], Briangon-Lamboley [6], and the more
recent [46], which are all dedicated to different (and technically more involved) free
boundary problems arising in Shape Optimization.

Proposition 11.10 Ler D be a connected bounded open set in RY and let u e
H'(D) be a non-negative function satisfying (11.3). Let A > 0 be the corresponding
Lagrange multiplier, that is, A is such that §FA(u, D) = 0. Let B C D be a ball
such that:

* 0<|Q,NB| <|B|;
* D\ B is connected:
s 0<|Q,ND\B|<|D\B|.
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Then, for every ¢ > 0, there exists r > 0 such that u satisfies the following optimality
conditions in every B, (xo) C B:

v—u € H} (Br(x0)),
1] < ISl

Fat+e, D) < Fpaqe(v, D) forevery v e Hl(D) such that

(11.23)

v—u € H} (Br(x0)),
1] > |2

Fpa—eW,D) < Fp_g(v,D) forevery v e Hl(D) such that

(11.24)

Remark 11.11 An immediate consequence of the inwards (11.24) and the out-
wards (11.23) optimality is that u satisfies the following almost-minimality con-
dition:

Fa(u, D) < Fa(v, D) + €| B,| forevery v € HY(D)

such that v — u € H{ (B, (x0)).

In order to prove Proposition 11.10 we will use the contradiction argument of
Briangon [5]. The proof presented here follows step-by-step the exposition from
[46] and uses only the existence of a Lagrange multiplier, variations with respect
to smooth vector fields and elementary variational arguments. Roughly speaking,
the main idea is to replace the localization condition u — v € H(} (By) in (11.24)
and (11.23) by a bound on the measure of Q,, [2,] < |,| + &, for which the
passages to the limit are somehow easier. Proposition 11.10 is a direct consequence
of Proposition 11.16

Remark 11.12 We notice that we work in the ball B C D only because of the fact
that we will use several times the convergence of the Lagrange multipliers associated
to solutions of auxiliary problems. Indeed, in order to assure the convergence of
these Lagrange multipliers to A (the Lagrange multiplier of the solution u), we
need to work strictly inside the domain D (see Lemma 11.9, claim (vi)).

Definition 11.13 (Upper and Lower Lagrange Multipliers) We fix u, D and B
to be as in Proposition 11.10. We set m := |2, N B|. For any constant § > 0, we
define the upper Lagrange multiplier ©4 () as follows:

M4 (8) = inf {p, >0 for which (11.25) does hold } , Where
u—v e H}(B),

m<|Q|<m+5$§.

(11.25)

Fu(u,B) < Fu(v,B) forevery ve HI(B) such that
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Analogously, we define the lower Lagrange multiplier p— (8):

n—(8) =sup {u >0 for which (11.26) does hold }, ~ where

1 u—veHl(B),
Fu,B) < Fy(v,B) forevery ve€ H (B) suchthat
m—238 =< |Q|<m.

(11.26)
Lemma 11.14 Suppose that D is a connected bounded open set in R? and that
u € H'(D) is a given non-negative function such that:
(a) u#0and|D\ Q,| > 0;
(b) u is stationary for F, that is,

8§Fa(u,D)[E]=0 for every IS C?O(D; [Rd).

Then, we have the following claims:

(i) Suppose that there are § > 0 and pu > 0 such that u satisfies (11.25). Then,
A <.

(ii) Suppose that there are § > 0 and pu > 0 such that u satisfies (11.26). Then,
A > .

Proof Let us first prove claim (i). By Lemma 11.3 and the hypothesis (a), we get
that there is a vector field £ € C°(D; R4 ) such that

d
§Vol (2,)[5] = d

Q. =1,
tt:Ol u,|

where u; = uo (Id+1t£)~". Since for r small enough, we have that |Q2,| <[, | <
|€2,] + &, the minimality of u gives that

]:M(M’D) S ]:,LL(MI, D)

Thus, taking the derivative at r = 0, we get that

d d d
0< F ,D) = F, , D — A Qul=u—A,
= dtli—o p,(ut ) di o A(us, D) + (0 )dt t:()l u;| n

which proves (i). The proof of (ii) is analogous. O
As an immediate corollary, we obtain the following lemma.

Lemma 11.15 (u— < A, < u4) Let D be a connected bounded open set in R4
andu € H'(D) be a non-negative function such that (11.3) holds. Let m = |Q2,|
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and Ay > 0 be the Lagrange multiplier of u in D, that is,
8Fo(u, D)E] + AuSVol (Q)[E]  forevery & € CZ(D;RY).
Let B, (14(8) and ju—(8) be as in Definition 11.13. Then, for every § > 0, we have

Ho(8) < Ay < 111(9).

Notice that we still might have u_(§) = 0 and 4 () = +oo. In Proposi-
tion 11.16 below we will prove that this cannot occur.

Proposition 11.16 (Convergence of the Upper and the Lower Lagrange Mul-
tipliers) Let D be a connected bounded open set in RY. Let u € H'(D) be
a non-negative function satisfying the minimality condition (11.3) in D and let
Ay > 0 be the Lagrange multiplier of u in D, given by Proposition 11.2. Let B C D
be as in Proposition 11.10. Then, we have

li 8) = lim u_(8) = A,.
52})/”() ag})u() u

Proof We will work only in the ball B. The presence of the larger domain D is only
necessary to assure the convergence of the Lagrange multipliers (see Lemma 11.9)
for the different auxiliary problems that we will use below. We will proceed in three
steps.

Step 1 We will first prove that 4 (8) < +o0, for every § > 0. This is equivalent
to prove that there is some © > 0, for which the minimality condition (11.25) is
satisfied. Assume, by contradiction, that for every n > 0, there exists some function
u, € H'(B) such that

Fu(lu,, B) < F,(u,B), un—ueH(}(B) and m < |Qu,| <m+434.
Thus, if v, is a solution of the auxiliary problem

min {Fo(v, B) +n(|Q| —m), : ve HY(B), v—u € Hy(B), || <m+ 6},
(11.27)

then, we have that

Fo(vn, B) < Fo(vn, B) +n(|Qu,| —m) | < Fn(un, B) +n(|Qu,| —m) (11.28)

+
< Fo(u, B) +n(|Qu| —m) . = Fou, B).

Thus, by Proposition 11.1 (Step 5 of the proof), we obtain |€2,,| > m. Thus, we
may assume

m < |Qy,| <m+$§ for every neN.
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Using again (11.28), we obtain
Fo(vn, B) +n(|,| —m) < Fo(u, B),

which, in particular, implies that

1
|y, —m < Fo(u, B) and lim |€2,,| = m.
n n—00
Now, notice that, setting m,, := |€2,, |, we have that v, is a solution of

min {Fo(v, B) : ve H'(B), v—u € Hy(B), || = m,}.
In particular, there is a Lagrange multiplier A,, such that
8F0(un, B)[E]+ Ay, 8Vol (2,,)[E1 =0 forevery & € C°(B; R%),
and a vector field &, € C2°(B; R?) such that
Vol (2,,)[£,] = 1.

We set v/, = vy 0 (Id+1&,)~". Choosing ¢ > 0 small enough and n € N big enough,
we get

1
vl —ueH{(B) and m<|Qu|<m+ Folu,B) <m+3.
n n

Then, by (11.27), we have

Folun, BY+n (120, — m) < Fo(vh, B) +n(12u | — m)
= Fo(vn, B) +t 6Fp(vn, B)[&n] +n(|9vn| + ¢ 8Vol (R2,)[En] — m) +o(t)
= Fo(vn, B) —tAy, +n(|Qv,,| +1t— m) +o(1),

which implies n < A,,. On the other hand, Lemma 11.9 implies that

lim Ay, = Ay <00,
n—o0

which is a contradiction. This concludes the proof of Step 1.
Step 2 In this step, we prove that alin}) H+(8) = Ay.

Let §, be an infinitesimal decreasing sequence. We will prove that
Jm gy 6n) = Au.
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Fix ¢ € (0, A,) and set o, to be

0 <o = puy(8n) —& < p14:(8n).

We will show that, for n big enough, o, < A,. Letu, € Hl(B) be solution to the
auxiliary problem

min !FO(U,B)+05”(|QU| —m), :veH'(B), v—u e H)(D), || < m—l—Sn}.
(11.29)

We consider two cases:
Case 1 (of Step 2). Suppose that |2,,,,| < m. Then, the optimality of u gives

]:0(”’ B) S -7:0(”}1, B)
On the other hand, the optimality of u, gives

Fo(u, B) +an(|Qu| - m) = Fo(u, B) +an(|9u| - m)+ < Fo(un, B) +an(|Qun| - m)+

< Fo(v, B) + o (|Q0] —m) . = Fo(v, B) + o (|Q0] —m),

for every v € Hl(B) such that u — v € HOI(B) and m < |Qy| < m + §,, which
contradicts the definition of p4 (6,).

Case 2 (of Step 2). Suppose that m < |2,| < m + 8,. Notice that, setting m,, :=
|24, |, the solution u, to (11.29) is also a solution to the problem

min!]—"o(v,B) cve H'(B), v—ue H\(B), || =m,,}.
By Proposition 11.2, there is a Lagrange multiplier A,, > 0 such that
8Fo(un, B)[E] + Ay, 8V01 (2,,)[E1=0 forevery & € C°(By; RY),
and a vector field &, € C°(B,; R?) such that § Vol (2,,)[:] = 1.
We set u!, :== u, 0 (Id+1&,)~". By the minimality of u,,, for t < 0 small enough,

we have

Foun, B)+an(|Qu,| —m) < Foul, B) + an(IQu;ll —m)
= Fo(un, B) +t 8 Fo(un, B)[En] + an (1Qu,, | + 1 8Vol (Qu,)[En] — m) + o(1)

= Fo(un, B) — tAu,, +an(|9un| +1t— m) +o(1),
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from which we deduce that A,, > o;,. Now, by Lemma 11.9 we get that
lim 4 (8,) =¢e+ lim ap <e 4+ lim Ay, =+ A,
n—00 n—o00 n—o00

Since A, < u4(8,) and € > 0 is arbitrary, we get the claim of Step 2.
Step 3 In this last step we will prove that alin}) u—(8) = Ay.

It is sufficient to show that, for aby decreasing infinitesimal sequence 6, — 0, we
have

Ay = lim p_(8,),
n—00

Precisely, we will show that for any fixed constant ¢ > 0, we have A, — ¢ <
lim w_(8,).
n—>oo

Let 8, := n—(8,) + € and u,, be a solution of the problem
minl]:o(v,B)+/3n(|§2v|—(m—8n))+ cve H'(B), v—u € H.(B), |0 < m]

We consider three cases:

Case I (of Step 3). Suppose that |2,,,,| = m.

By the minimality of u, we have that Fo(u, B) < Fo(u,, B). Now, the minimality
of u,, gives that, for every v € H'(B) such that v — u € H(}(B) and m — §, <
|2y < m, we have

Fo(u, B) + BulQul < Folun, B) + Bul€u,| = Fo(v, B) + BalS2,

which contradicts the definition of u_(8,).
Case 2 (of Step 3). Suppose that |2, < m — 8.
Then we have

Fo(un, B) < Fo(un +to, B),

for every ¢ € C2°(B) with sufficiently small compact support. This implies that u,,
is harmonic in B. By the strong maximum principle, we obtain that either u, = 0
or u, > 01in B, which is impossible for n large enough.

Case 3 (of Step 3). Suppose that m — §,, < |2y, | < m.

We set m,, := |2, |. Then, u, is a solution to the problem

min !]—"o(v,B) cve H'(B), v—uc H.(B). || = m,,}.
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By Proposition 11.2, there is a Lagrange multiplier A,, > 0 such that
8Fo(un, B)[E] + Ay, 8V0l (£2,)[]1 =0 forevery & € CX°(B; RY),

and a vector field &, € C°(B; [Rd) such that 6 Vol (€2,,)[&,] = 1.
We set u!, := uy o (Id +1&,)~'. Lett > 0 be small enough. Then u/, is such that

uhy—veHy(B) and  |Qu,|=my < |Qu|=mu+1+o00) <m.
Thus, by the minimality of u,,, we get

Folttn, B)+Bn (19, — (m — 8,)) < Foluly, B) + Bu(1Qu: | — (m — 8,))
< Fo(uy, B) + 1 8Fo(un, B)[&,]
+ Bu (1, | + 1 VoI (Ru,)[E,] — (m — 8,)) + 0(2)
= Fo(un, B) — Myt + Bu(IQu,| + 1 — (m — 8,)) + 0(1),

which implies that
Ay, < Bn=pn—(8,) +e.

Finally, by Lemma 11.9, we get

IA

Ay, = lim A, Iim pn_(6,) +¢,
n—od n—o0

which concludes the proof. O
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Chapter 12 )
An Epiperimetric Inequality Approach Shethie
to the Regularity of the One-Phase Free
Boundaries

Throughout this chapter, we will use the notation

Wo(u)=/ |Vu|2dx—/ u?dne! and W) = Wo) + |{u > 0} N By,
B 0B

where B is the unit ball in R?, d > 2 and u € H'(By).

The aim of this chapter is to prove an epiperimetric inequality for the energy W
in dimension two. As a consequence, we will obtain the C* regularity of the one-
phase free boundaries in dimension two (see Proposition 12.13). Our main result is
the following.

Theorem 12.1 (Epiperimetric Inequality for the Flat Free Boundaries) There
are constants 89 > 0 and ¢ > 0 such that: if c € H"(dB1) is a non-negative
function on the boundary of the disk B; C R? and

=38 <H'(fe>0)NaB1) <7+,
then, there exists a (non-negative) function h € HY(By) such that h = ¢ on 3B and
T b4
Wy -7 <a-a(wo =), (12.1)

z € H'(By) being the one-homogeneous extension of ¢ in By, that is,

z(x) = |x[c (¥/ix]) .

Remark 12.2 On the figures in this section, we will use the following convention:

+ M is the support Q, = {h > 0} of the competitor ;
. is the support 2; = {z > 0} of the one-homogeneous function z;
o / isthe boundary 0€2;
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+ / is the boundary 9%2;
 / is the common boundary 92, N 9<2;.

In Theorem 12.1 the main assumption on the trace c is that the set 2, C 9B
is close to the half-sphere. In [49, Theorem 1] the epiperimetric inequality was
proved under the different assumption that the trace is non-degenerate. In fact,
the epiperimetric inequality (12.1) holds without any assumption on the trace
c: 3By — R orits free boundary 92, C 9 Bj. Indeed, in the Appendix, we will
prove the following result, which covers both Theorem 12.1 and [49, Theorem 1].

Theorem 12.3 (Epiperimetric Inequality) There is a constant ¢ > 0 such that: If
c € H'(3By) is a non-negative function on the boundary of the disk By C R? then,
there exists a (non-negative) function h € H'(By) such that (12.1) holds and h = ¢
on dB;.

Remark 12.4 (The Epiperimetric Inequality in Dimension d > 2) In higher
dimension, the epiperimetric inequality for the one-phase energy is still an open
problem. We expect that it will still be true under the assumption that the spherical
set Q. is close to the half-sphere with respect to the Hausdorff distance. Indeed, it is
an immediate consequence from the results in [29] that the epiperimetric inequality
holds when the free boundary Q. is a C>* regular graph (in the sphere) over the
equator.

We stress that in higher dimension the epiperimetric inequality can hold only under
some additional assumption on the distance from the trace to the half-plane solution.
Indeed, if this was not the case (and so, the epiperimetric inequality was true in
dimension d without any assumption on the trace), then the singular set would be
empty in any dimension. This is due to the following remark.

Remark 12.5 (The Epiperimetric Inequality Implies Regularity in Any Dimension)
We claim that if « is a local minimizer of F, in a neighborhood of xy and

Wtrag) = 5 = =) (Wera) = ). (12.2)

holds, for every r > 0, then x¢ is a regular point. This is due to the following facts:

* A point xg € 92, is regular, of and only if, the Lebesgue density of €2, at xg is
precisely equal to 1/2 (see Lemma 9.22).
* There are no points of Lebesgue density smaller than 1/2 (Lemma 9.22).
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* The function r — W (u, ,,) is non-decreasing and the limit
lim W (uy )
r—0
is precisely the Lebesgue density of €2, at xo (see Lemma 9.20); in particular
Wy xy) — @df2 >0 for every r>0.

* Suppose that the epiperimetric inequality (12.2) holds for every r > 0. Then, by
the Weiss formula (Lemma 9.2) we obtain the following bound on the energy

Wy x,) — @af2 < Cr?,

for some o > 0 depending on ¢ (this was proved in (12.28), which is the first
step of the proof of Lemma 12.14). Since W (u, x,) — ‘”2" is non-negative, we get
that
. wq
}E}I%) W(”r,xo) = 2
In particular, x¢ is a point of Lebesgue density 1/2 and so, it should be a regular
point, as mentioned in the first bullet above.

As a consequence of Remark 12.5 at the singular points of the free boundary (12.2)
cannot hold, which means that in higher dimension the epiperimetric inequality can
only be true under the additional assumption that the trace on 9 B; is close (in some
sense) to a half-plane solution.

In this chapter, we will prove Theorem 12.1 and we will show that it implies the
regularity of the free boundary (Proposition 12.13). The proof of Theorem 12.1 will
be a consequence of the following two lemmas. The first one (Lemma 12.6) is based
on a PDE argument which does not depend on the geometry of the free boundary;
this lemma is proved in Sect. 12.5 and holds in any dimension d > 2. The second
lemma (Lemma 12.7) reflects the interaction of the free boundary with the Dirichlet
energy; we prove it in Sect. 12.3.3 and the proof strongly uses the fact that we work
in dimension two, even if the main idea can be used also in dimension d > 2.
Precisely, we use the Slicing Lemma (Lemma 12.10) to write the total energy as an
integral of an energy defined on the spheres d B,. Then, we prove the epiperimetric
inequality by writing the second order expansion of the spherical energy for sets
which are graphs over the equator (that is, arcs of length close to ).

Lemma 12.6 Let 0 B1 be the unit sphere in dimension d > 2. For every k > 0,
there are constants p € (0,1), ¢ € (0,1) and a > 1, depending only on k and d
such that:

Ify € H'(3B)) satisfies the inequality

f Vo PdHt > d—1+x0) [ yRani,
0B 0B
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then, we have
Wohp) = (1 —e)Wo(z)  and  W(hp) = (1 —¢e)W(2), (12.3)
where in polar coordinates the functions z, h, : By — R are given by

V()

200) =ry(©)  and  hy(r.6) = (max{r —p,0)" T .

Precisely, we can take

3
K
8_'0_<32d2(2/<+1)) '

Lemma 12.7 (Epiperimetric Inequality for Principal Modes: The Flat Free
Boundary Case) Letr By be the unit ball in R2. There are constants 8¢ > 0 and
& > 0 such that the following holds.

If the continuous non-negative functionc : 9B — R, ¢ € H (3 By), is a multiple
of the first eigenfunction on {c > 0} C dB; and

m =80 <H'(fe > 0N IB1) <7 + o,
then, there exists a (non-negative) function h € HY(By) such that h = ¢ on 3By and

W (h) — ’; =1-o) (W@ - ’;)

z € H'(By) being the one-homogeneous extension of ¢ in By. Moreover; if we
assume that the function c is of the form

0
c(0) =c; Sin( T:_ 5)]1(0”%)(9) for some c1 >0 andsome & € (—do,d0),
b4

then the one-homogeneous extension is given by z(r,0) = r c¢(0) and the competitor
h can be chosen as (the support of h is illustrated on Fig. 12.1)

h(r,0)=cr sin( ) Lox4:0))(0), where t(r) = (1 -3 - r)s)S.

T
T +t(r)
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Fig. 12.1 The positivity sets 4 i
), and 2. Here, the trace ¢
is a multiple of the first
eigenfunction on the arc

0,7 +6),18] <80 (8 <0on
the left and § > O on the
right); the competitor is
obtained by moving the free
boundary 9€2, towards the
line {x; = 0}

12.1 Preliminary Results

In this section we prove several preliminary results that we will use in the proof of
Theorem 12.1 (and also in the proof of Theorem 12.3).
This section is organized as follows:

e InLemmas 12.8 and 12.9 we discuss the scale-invariance and the decomposition
of the energy in orthogonal directions; both these results are implicitly contained
in [49].

e The Slicing Lemma (Lemma 12.10) shows how to disintegrate the energy along
the different spheres dB,, 0 < r < 1. This result appeared for the first time
in [29] and was crucial for the analysis of the free boundary around isolated
singularities. We will use it in the proof of Lemma 12.7 (Sect. 12.3) and also in
Sect. 12.2.

We start with the following result, which states that once we have a competitor
for z in By, then we can rescale it and use it in any ball B, (o < 1) by attaching it
toz at dB,.

Lemma 12.8 (Scaling) Suppose that z : By — R, z(r,0) = rc(@) is a one-
homogeneous function and that h € H'(By) is such that h = ¢ = z on dB.
For every p € (0, 1), we set

2(r,0) if relpll],

hy(r,0) = !
ph(/p,0) if rel0,pl]

then, we have

W(hy) — W(2) = o/ (W(h) — W(2)).
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Proof We first compute

|Vhy|?dx —/ IVz|? dx

o B,

Wolh) — Wo(@) = [ (WhoPax— [ vaax = [
B B B
= p (/B Vi dx —fB |Vz|2dx> = o (Wo(h) — Wo ().

1 1

On the other hand, for the measure term, we have

[{hp > 0y N Bi| — I{z > 0} N By| = |{h, > 0}y N B,| — [{z > 0} N B,|
= p(Ith > 0y N B1| — {z > 0} N B1]),

which concludes the proof. O

Lemma 12.9 (Decomposition of the Energy) Suppose that the functions hy, hy €
Hl(Bl) are such that, for every r € (0, 1], we have

f Vohi(r,0) - Voha(r,0) do =/ hi(r,0)ha(r,0)do = 0.
sd-1 S§d-1

Then
Wo(h1 + ha) = Wo(h1) + Wo(h2).

Proof The claim follows directly from the definition of Wy and the formula
1
|Vh|*dx = / ri=Ldr / (18,11 + r=2|Vgh|?) do,
B 0 dB

which holds for any h € H'(By). O

Lemma 12.10 (Slicing Lemma) Ler By be the unit ball in R2. Let ¢ : (0,1] x
S' — R be afunction such that ¢ € H'((0, 11x SY). Then, setting ¢ (r,0) = ¢-(9),
we have

1 1
Wo(rg:(8)) = /0 Fo@r)rdr + fo fg (o tr @)’ rar,

and

1 1
W(rdy ) = / Fgo) rdr + / / (e @) Fr, (12.4)
0 0 S
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where, for any ¢ € HI(SI), we set
_ 2_ 42 1 _ 1 1
Fo(¢) —/51 (1000’ ~¢?) dH'  and  F(@) = Fo@)+H' (¢ > 04nS").
Proof Let ¢ :]0,1] x dB; — R. Then,
! 2 2 2
Wo(rér (9)) =f0 /§1 ((@r +ror00) + (909r) )derdr—/gl 91(0) o
1
= / / (67 +ror @) + 2,80 + (999)*) do rar - / ¢7(6)do
0 Js! st
Integrating by parts, we get that
1 1
f r2d,(¢}) dr = ¢ — 2/ ¢ rdr,
0 0
which implies that
1 1 5
Wo(ré: (6)) = / Fol@r) rdr + f fg (@91 @) rdr.
0 0
In order to prove (12.4), it is sufficient to notice that
1
l{h > 0}N By| = / H'({¢r > 0N S rdr,
0

where h(r,0) = r¢,(0). |
Remark 12.11 (The Energy of a One-Homogeneous Function) As an immediate

consequence of Lemma 12.10, we get that if ¢ € H1(3B1) and z : B — Ris
the one homogeneous extension of ¢ in By, thatis, z(r,0) = rc(6), then

Wo(z) = ;fo(C) and  W(2) = ;f(C)-
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12.2 Homogeneity Improvement of the Higher Modes: Proof
of Lemma 12.6

Let p € (0, 1) be fixed. We will first compute the energy of /. For this purpose, we
will use the Slicing Lemma; for every r € [p, 1], we set

0.(0) (max{r — p,0})* ()

I =p)
and we compute
Fon= "7 5 d
o(¢r) = P2(1 — py o(¥)  an
2(r P2
f 10,6, |2 d6 = (a—1+ ) p)2af w2 do.
Integrating in r, we obtain
1 1
/ Fo(p)ri=tar = -7:0(1#))2& (r — p)**r®dr
P
o T [ e, o] Fo()
T (L=p) ), T 2a+d—2(1—p)

(12.5)

We now compute

1 1 2 (r — )20—2
// |8r¢r|2derd“dr=/ («=1+7) U anige [ y2an
o Jsd-1 0 r/ re(l —p)=® sd-1

2 ! 2 P 2a+d—3 2
< —1 —d do.
= (l—p)h/p ((“ ) +r2)r " JorV

Integrating in r € [p, 1] and using that > 1 and d > 2, we get
1 2 2 2
1Y 2a+d—3 (-1 1Y
—1? Ta=3gr <
/p <(“ ) +r2>r " atd—2 " 2atd—4

1 9 ?
§2<((x—1) —l—a_l).
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Together with the inequality

1
wrdo < Fo(y),
§d—l K

which we have by hypothesis, this implies

! 2 d+1 1 2 P 1
/ /d 1 [0r¢r|”dOrT dr < (1 — py2e <(Ot— D+ o 1) K]"o(lﬂ)-
p _
(12.6)

Furthermore, it is immediate to check that for every o <2 and p < ; we have

1 1 1
(1 — p)2a < (1 — py <14 128p and (1 — p)2a < 16.

In particular,

_ —2a
(1=p)=™ _ 14128

< 64p.
detd—2 " 2a+d—2=2a+d—2 O

which, together with (12.5) implies:

1 1
d—1
/,, Folg) ritdr < (m _D+4d + 64,0) Fo(y). (12.7)

Analogously, from (12.6), we deduce
2

! 16
/ f 10,12 d6 ri T dr < ((a 24 7
o sd—1 K o —

We are now in position to estimate the difference Wo(h,) — Wo(z). First of all, we
set

1) Foyr). (12.8)

S =a—1.

Using the identity (see Remark 12.11)

1
Wo(z) = d]:o(llf),
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and the inequalities (12.7) and (12.8), we estimate

d 16d 2
Wo(h,) — Wo(z) < <25+d +64d p + . <52+ ‘; ) - 1) Wo(2)
28 16d 2
<(-"" +64dp+ 2+ )) woca). (12.9)
d K k)
We now choose
p=08" and /2 !

T 30422+ )

Substituting in (12.9), we obtain
26 32d
Wo(h,) — Wo(z) < (— p + 64d87* + ) 52) Wo(2)
<34 4 4+ 32d(2 + /x)8 Wo(z) < —dWo(z).

In particular, the first inequality in (12.3) holds for any ¢ < é/4. In order to prove
the second inequality in (12.3), we notice that, by the definition of 4, we have

[{h, > 0} N Bi| = (1 — p)|{z > 0} N By|.
Thus,
W(he) — W(z2) = Wo(hy) — Wo(2) + |{h, > 0} N By | — |[{z > 0} N By
< —2Wo(z) —pliz> 01N By
Choosing
g =87
we have that ¢ < ¢/4 and so, we obtain
W(hp) = W(z) = —eW(2),

which concludes the proof of (12.3). O
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12.3 Epiperimetric Inequality for the Principal Modes: Proof
of Lemma 12.7

We suppose that the spherical set {c¢ > 0} is the arc (0, 7 + §), where § € R (and it
might change sign). We recall that in Lemma 12.7 we assume that |§| < . Then,
we can write the trace c in the following form

c(@) =c1¢9s(@) where c¢1 >0 and ¢s5(0) = sin( 9—:8) for 6 €[0,7 4 §].
s
Next, for every t € R, we define the function ¢; : S! > Ras
. O
¢:(0) = sm( ~|—t> for 6 e€[0,7+1], ¢ (0) =0 for 6 ¢[0,7+1¢].
T
Then set
@ = f@ (1969 @) — 62(©)) 4 +H' (19, > 0D — 7
9B,
and
g() = / |0:65¢ (0)]* 0.
JdB
We consider the function
t(r) = (1 -3 — r)s)S,
and define the competitor 45 as

hs(r,0) = rdy (), (12.10)

which we will use in both Lemmas 12.7 and A.2.
We will show that for & > 0 and § > 0 small enough, we have

W(cihs) — ’; <a- s)(W(clza) - Z) (12.11)

where z; is the one-homogeneous extension of ¢s in Bj

25(r,0) = ros5(0). (12.12)
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12.3.1 Reduction to the Case ¢c1 = 1

Let hs and zs be defined by (12.10) and (12.12). We claim that if, for some § > 0
and ¢ > 0, we have

W (hs) — ’2’ = (1 -o)(Wezs) - ’;) (12.13)

then (12.11) does hold for every ¢; > 0.
Indeed, using the homogeneity of Wy, we get that

Wo(c1zs) = c;Wo(zs)  and  Wolcihs) = ¢ Wo(hs).
On the other hand, we have that

1
[{u >0} N By | =/ H!'({u > 0N 3B,)dr,
0

for every (continuous) function u : By — R. Thus,

1

1
{zs >0}ﬂBl|=/ H! ({5 >0}maB,)dr=/ H' ({¢s > 0y N 3By) rdr
0 0

1
= 3).
,T+9)
The analogous computation for the competitor s;s gives
1 1
|{hs > 0} N By | =/ H' ({¢r(ry > 0} N 3By) rdr =/ (7w +t(r) rdr.
0 0
Putting together these computations, we obtain

(Weerhy =7 ) = =) (Werzo) =7 ) = [(Wnp) = ) =1 =e) (W) = 7 )]

1 1
+(1—cf)</ t(r)rdr—(l—s)f srdr
0 0

= c% [(W(ha) - Z) —(1-e (W(Za) - ;)] <0,

where we used that the function #(r) is chosen in such a way that, for any § and ¢,
we have

1 1
/(t(r)—(1—8)8)rdr:8/ (1 =3(1 —r)e) — (1 —&))rdr
0 0

1
= 55/ (3r* —2r)dr = 0.
0
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The rest of Sect. 12.3 is dedicated to the proof of (12.13).

12.3.2 An Estimate on the Energy Gain

The Slicing Lemma (Lemma 12.10) implies that

1 1 1
W(h5)=/0 f(t(r))rdr—i—/o 11’ (>t (r)r¥dr  and W(za)=2f(8).

1
We first notice that the error term / |t/ (r)|2g(t r) r3dr is lower order. Precisely,
0

we have

1 1
/ (NPt () r dr = 965 f (1 =r)?g@(r)ridr < Ce?8,
0 0
where C is a universal numerical constant. Thus, we get
(W) =7 ) =1 =e) (W) = 7 ) < F(&) +Ce52, (12.14)

where we have set

1
Ft) == / (S =30 =ney) = A =e)f@®))rdr. (12.15)
0

We will show that F is always negative in a neighborhoods of ¢ = 0. First of all, we
notice that the function f can be explicitly computed.

12.3.3 Computation of f

We now compute

o= [T (T s (T o
= n;—t foﬂ ((nzt)zcosze —sinze)de—i-t
UG

—n (1 A ;t/n)z 1) +t/n)
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T 1 7 X? T

where we set for simplicity X = #/x. In particular, this implies that

1
fO) =f'0)=0 and ffoy=_.
b4
Moreover, we have that

1]?
<

n N for every —lp<t<lp.
b4

l‘2
o1

12.3.4 Conclusion of the Proof of Lemma 12.7

= “14+X)= = 2 _
2\1+X 214+ X 2 14+ X

(12.16)

(12.17)

Notice that, by using (12.16) and taking the derivative under the sign of the integral,

we get that
F(0) = F'(0) =0.

Moreover, for the second derivative, we obtain
! 2
F"(0) = f”(O)/ ((1 —3(1 — r)e) - (- s))r dr
0

1
B f"(O)f ( —6(1 —r)e+9(1 —r)e* + g)r dr
0

1
= f(0) f (= 5re+6r% + 901 —r)%e?r) dr = —Co " (0),
0

where we have set

C, = 8(1 - 326).

Thus, the second order Taylor expansion of F in zero is given by

1 C
FO)+ F'(O)t + _F"O)*=—-_° 1
2 27

We will next show that

C
‘F(t) +
2w

<P for every —lp<t<lIp.

(12.18)
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Indeed, using (12.17) we can compute

=

1 2
/ (f(a =30 =rer) - tz 1O (1 =301 = re))rdr
0

1 [2 B
[ (ro=" rr)rar

|t ! 3 ! |t
<, /(1—3(1—r)8)rdr+(1—8)/ rdr) <,
T 0 0 T

which gives (12.18).
Now, using (12.14), we estimate

C
‘F(r) + 2
2

+ (1 —e¢)

(wans) - Z) —(—e) (W) - 7;) < F(8) + Ce282

1 3¢\ €
<— (1= )52 53 + Ce282
< 2ﬂ( S ) 582+ 181+ Ce

< 1(1 38)8+5 +Ce?) 82
=\ 2/ 7% ’

where C is the numerical constant from (12.14) and we recall that, by hypothesis,
18] < do.

‘We now choose ¢ and 6.

1 3 1
We set e = 16 8p. In particular, if 0 < §p < ,then 1 — ¢ >, and so
48 2 2

1,3
— (1= 7)5 + 80+ Ce? < 260+ 8 + Ce? < —80 +2567°C8,
g

. This means that in the end, choosing

1
which is negative, whenever §p <
256m2C

1

5o = mi :
0 mm{48n 25672C

} and & = 1678y,

(12.13) holds for every § such that |§] < §p. This concludes the proof of
Lemma 12.7. O
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12.4 Proof of Theorem 12.1

Since ¢ € H'(dB;), we have that ¢ is continuous and so, the set {¢ > 0} is a
countable union of disjoint intervals (arcs), that is,

fe>0=Jz

jzl1

where, by hypothesis, we have

n_SOSZ|Ij| <7 + do,
j=1

where |Z;| = HY(T ;) denotes the length of the interval Z;. Now, we consider two
cases:

Case 1. There is one interval, say Z, of length |Z1| > & — §¢. See Fig. 12.2.
Case 2. All the intervals are shorter than w — &g, that is, |Z;| < m — 8o, for every
j = 1. See Fig. 12.3.

We first notice that if ¢ € HO1 (Z;), then

7T2
/ |Voo|* do > 2/ $* do.
; 1Zj1° Jz;

J

In particular, if |Z;| < m — §o, then

/ Vo> db > (1+ 80)[ #* do.
Z; ) Jz

J

Thus, if we are in Case 2, then the epiperimetric inequality is an immediate
consequence of Lemma 12.6 with « = do/x.

Fig. 12.2 The supports of
the one homogeneous
extension z (in red) and the
competitor £ (in blue); the
trace c falls in Case 1; the
length of Z; is smaller than
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Fig. 12.3 The supports of the
one homogeneous extension z
(in red) and the competitor &
(in blue) in Case 2

i 0
\
\ : - !
Suppose that we are in Case 1. Let {¢;};>1 be a complete orthonormal system

of eigenfunctions on the interval Z;. For every j > 1, we set c; to be the Fourier
coefficient

¢ :=/ c(0);(9) do.
0B

Then, we can decompose the trace ¢ as

c(0) = c191(0) + Y1 (0) + ¥2(0),

where

o]

Y1(0) =) c;p;(0),

j=2
and v, is the restriction of ¢ on the set U Z;. We first claim that, for i = 1,2, we

j=2
have

f IVouri|*do > (1 + K)/ W2 do, (12.19)
s! sl
where ¥ > 0 is a constant depending only on &y. Indeed, since v, is supported on

U Z; and since |Z;| < 280, for j > 2, we have that
jz2

7'[2
/51 Vo2l do > i /Sl W3 db. (12.20)
0
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On the other hand, v/ contains only higher modes on the interval Z;. Thus,

472

2
rto02 wido. (12.21)

/ Vo1 |?d6 >
7

Now, choosing §p small enough (for instance, o < 7/3), (12.20) and (12.21)
imply (12.19). Let now p > 0 and &y > 0 be the constants from Lemma 12.6
corresponding to the constant « from (12.19). Let hy, and hy, be the competitors
from Lemma 12.6 associated to the traces ¥; and v, respectively. Thus, we have

Wo(hy,) < (1 —ey)Wolzy,) and W(hy,) < (1 —ey)W(zy,), (12.22)

where zy, (r,0) 1= 2 (0).
Let & be the competitor from Lemma 12.7, associated to the trace c1¢1, and let

2(r,0) :=rc191(0).
We set

z(r,0) if re[p,1],

hy(r,0) =13 " .
ph(/p,0) if rel0,p]

Thus, Lemmas 12.7 and 2.3 imply that
~ 14 ~ I 4
Whp)—_ <(1— p”’s)(W(z) - ) (12.23)
2 2
¢ being the constant from Lemma 12.7. We now define the competitor & : By — R

as:

* h=zif W(z) < /2, where z = Z + zy, + zy, is the I-homogeneous extension
of ¢;

o h =274 hy + hy, if W) > 7/2,but W(2) < 7/2;

o h=h+hy, +hy, if W) > 7/2and WE) > 72

The first case is trivial and the second one follows directly by (12.22). We will prove

the epiperimetric inequality in the most interesting third case. We first notice that
the decomposition lemma (Lemma 12.9) implies that

W(z) = W(@) + Wolzy,) + W(zy,),
and

W(h) = W(h,) + Wolhy,) + W(hy,),
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where in the second decomposition, we use the fact that 4y, = hy, = 0in B, and
that i = 7 outside B,. Now, setting

£ = min{pd§,8¢},

the epiperimetric inequality (12.1) follows by (12.22) and (12.23). |

12.5 Epiperimetric Inequality and Regularity of the Free
Boundary

In this section we will show how the epiperimetric inequality (12.1) implies the C1*
regularity of the free boundary. The main result of this section is Proposition 12.13,
which we prove under the following assumption.

Condition 12.12 (Epiperimetric Inequality in Dimension d > 2) We say that the
epiperimetric inequality holds in dimension d if there are constants 84 > 0 and
gq > 0 such that, for every non-negative one-homogeneous function z € H'(By),
which is §q-flat in the ball By in some direction v € d By, that is

(x-v—=3d)+ <z(x) <(x-v+4+3684)+ forevery x € By,

there exists a non-negative function h : By — R such that z = h on d B| and

W (h) — a;d <(- 8d)<W(Z) - “;") (12.24)

Proposition 12.13 (¢-Regularity via Epiperimetric Inequality) Suppose that the
epiperimetric inequality holds in dimension d (that is, Condition 12.12 holds). Then,
there is a constant € > 0 such that ifu : By — R is a non-negative minimizer of Fi
in By and is e-flat in By in some direction v € 9 By

x-v—e)tr<ux)<x-v+e)s forevery x € By,

then the free boundary K2, is C'* regular in By,

Proof The claim is a consequence of Lemma 12.18, Lemma 12.14 and the results
of the previous sections. By Condition 12.12 and Lemma 12.18, we have that the
epiperimetric inequality (12.24) holds whenever

lur — Ryl 2o\ B))

is small enough for some half-plane solution 4,,.
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Using this, together with the Weiss’ monotonicity formula (Lemma 9.2), we get
that the energy

Ew) = W) — ";"

satisfies the hypotheses of Lemma 12.14. Thus, we obtain the uniqueness of the
blow-up limit and the decay of the blow-up sequences at every point of the free
boundary in Bi,, that is, for every xo € By, there is a function uy, : RY — R such
that

Uy, = lim u, y, and ey g — ”xo||L2(aBl) =0.
r—0

Moreover, uy, is a global minimizer of F; in R4 (Proposition 6.2) and is one-
homogeneous (Proposition 9.12). Using again Lemma 12.14 (see the energy-decay
estimate (12.28) in the first step of the proof), we get that

fim (Wi =) =0

Thus, the strong convergence of the blow-up sequence u, y, (Proposition 6.2)
implies that

wq .
= }E}}) Wurx,) = Wiuy).

By Lemma 9.22, we get that u,, is a half-plane solution. Thus, by Proposition 8.6,
we get that the free boundary is a C regular in B /2. O

The idea that a purely variational inequality as (12.1) encodes the local behavior
of the free boundary goes back to Reifenberg [45] who proved the regularity of
the area-minimizing surfaces via an epiperimetric inequality for the area functional.
Weiss was the first to prove an epiperimetric inequality in the context of a free
boundary problem; in [53] he proved such an inequality for the obstacle problem
and recovered the C* regularity of the (regular part of the) free boundary in any
dimension, which was first proved by Caffarelli [11]. In [49], together with Luca
Spolaor, we proved for the first time an epiperimetric inequality for the one-phase
problem; in this case the interaction between the geometry of the free boundary
and the Dirichlet energy functional is very strong and induced us to introduce the
different constructive approach, which was the core of the previous section. In all
these different contexts, once we have the epiperimetric inequality, we can obtain
the regularity of the free boundary essentially by the same argument that we will
describe in this section. The key result of this subsection is Lemma 12.14, which we
attribute to Reifenberg, who was also the first to relate the variational epiperimetric
inequality to the regularity of the local behavior of the free boundary (or area-
minimizing surface).
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Vocabulary and Notations We recall that, forany u : By — Randr < 1, we use
the notation u, to indicate the one-homogeneous rescaling of u

ur(x) = iu(rx).

Then, if £ : H'(B;) — R is a given energy (for instance, £(u) = Wi (u) — a;d ),

we will use the following terminology:

e By variation of the energy we mean the variation, with respect to r, of the
energy £ of the rescaling u,. In other words, the variation of the energy is simply

Bar Euy).
* The energy deficit of a function v : By — R is the difference
) — E),
where u : B; — R is a minimizer of £ among all functions such that # = v on

0Bj.
¢ The deviation of a function u : By — R (from being one-homogeneous) is

D(u) :=/ Ix - Vu(x) — u(x) > dH " (x).
dB;

We notice that a function

ue HY(B)) is one-homogeneous

< D(u;) =0 foralmost-every r € (0,1).

Lemma 12.14 (Reifenberg [45]) Suppose that the function u € H 1(31) and the
energy functional £ : H'(B1) — R are such that:

(i) Minimality. u, € H'(B1) minimizes £ in By, for every 0 < r < 1, that is,
E(uy) < &) forevery ve Hl(Bl), v=u, on 0JBj.

(ii) The variation of the energy controls the deviation. The function r — &(u,)
is non-negative, differentiable and there is a constant C3 > 0 such that

a C
5 Euy) > 2D(u,) for every O<r<l,
r r
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where D is given by
D(u) :=[ Ix - Vu(x) — u() > dH ™ (x).
dB

(iii) The variation of the energy controls the energy deficit of the homogeneous
extension. There is a constant C3 > 0 such that

0 C
3 E(u,) > 3 (8(1,) — E(M,)) for every O0<r<l,
r r

where z, : Bi — R is the one-homogeneous extension of the trace u,|yp,, that
is,

2r(x) = |xur (/1x1).

(iv) Epiperimetric inequality. There is a one-homogeneous function b : R — R
such that, if u, is close to b in B> \ By, then an epiperimetric inequality holds
in By. Precisely, there are constants ¢ > 0 and §4 > 0 such that:

For every r € (0,1/2] satisfying
lu, — b”Lz(Bz\Bl) <44, (12.25)
there is a function h, € H'(B) such that h, = u, = z, on 3By and
Ehy) < (1 —€)&(z). (12.26)
Under the hypotheses (1), (i), (iii) and (iv), there is § > 0 such that, if u satisfies
VE@) + llut = bll 2,3, < 8
then there is a unique ugy € H'(B1) such that

lur —uoll 2055, < CrY for every 0<r<lp, (12.27)

where the constants y and C can be chosen as

1
y = 28C3 and C = 44.

Remark 12.15 1f the epiperimetric inequality (12.26) holds without the closeness
assumption (12.25), then the Step 4 of the proof of Lemma 12.14 can be omitted.
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Remark 12.16 The energy to which we will apply Lemma 12.14 is the Weiss’
boundary adjusted energy

Eu) =Wiu) = /

|Vu|2dx—/ u? dH 4+ [{u > 0} N By
B 0B

In this case, both (ii) and (iii) are implied by the Weiss’ formula (Lemma 9.2).

Remark 12.17 In our case, the function b from assumption (iv) is the half-plane
solution b(x) = (x - v)4+ for some v € d B;. Notice, that this does not mean that the
blow-up limit u#¢ of u, is equal to b. In fact, it may happen that the blow-up limit
is another half-plane solution b(x) = (x - )4, with b, which is close to v. More
generally, this lemma can be applied to situations in which ug is not just a rotation
of b, but is a completely different function. This happens for instance at isolated
singularities in higher dimension (see [29]).

Proof of Lemma 12.14 Let now 0 < p < 1/2 be the smallest non-negative number
such that

lue, — b||L2(BZ\Bl) < 44 for every r € (p,1/2],

and so, we can apply the epiperimetric inequality (12.26) for every u, with r €
(p, 1/2]. Notice that, since b is 1-homogeneous, a simple change of variables gives
that

=~ — bl

2
llur = blI72 g\, L2(By,\B,)'

Thus, by choosing § < 491254, we get that

_d+2 d+2
lur =bll2gy\gy =7 2 lu = DbllL2y,\5,) =47 llu = ll2s\8y)4)>
for every 1/8 <r < 1/2. Thus, p < 1/8.
We divide the proof in several steps.

Step 1: The Epiperimetric Inequality Implies the Decay of the Energy
Letr € (p, 1/2]. By (iii), (iv) and the minimality of u, (assumption (i)), we have

v

C
(66D — )

ad
arg(ur)

v

CE (g(hr) +e&(zr) — 5(14,)) = Sf3 Eur).
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1
Setting y = 28C3, we get that

d (Eur) > 0.
or\ r¥ )~

and so,

Euy) <4 Ewp) r¥ for every r € (p,1/2].

Step 2: The Energy Controls the Deviation We set
e(r)=&w,) and  f(r) =Du,).

By (ii), we get that

r) <
rity Fry = ar \ rY rity = or \ rv

Cs e'(r) _ B (e(r)>+ e(r) - B <e(r)
rY

which implies that for every p < r1 < rp < 1/2, we have the estimate

nEE) e el
C e dr < Y — r +47e(1/2)(r)
< e(rf) +4e(f)r) <247e(/2)r) .
.

2

(12.28)

) Ly A ey I,

Step 3: The Deviation Controls the Oscillation of the Blow-up Sequence u,

Let x € 0By be fixed. Then, we have

a

97 (”r (x)) =

or r r r2

0 <u(rx)) _ x-Vu(rx) 3 u(rx) 1

Integrating in r, we get that, forevery 0 < r; <rp <1,

r

ity (6) =ty ()] < /

r

Integrating in x € 9By, and taking p < r| < rp < 1/2, we obtain

2 21 2
/ |ur2 —ur1| d’Hdil =< / (/ [x - Vi, —ul dl”) d,Hdil
9B 9By o r

2 2
< / (/ rrl dt) (/ r x YV, —up? dr
dB; r r

i i |x -Vu,(x) — u,(x)| dr.

= (x - Vup(x) — u,(x)).

) d,Hd—l
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- ! (r!—r?)(/zr*‘*yfmdr)
y r
1,1 8e(1/2)
< yrg Czwe(l/z)rg =6 . (12.29)

Step 4: The Blow-up Sequence Remains Close to b
Taking rp € (1/4,1/2) and r; = r € (p,r2) in (12.29), we get

8e(l/2)
lur = bllp29m,) < Nur —urll2op,) + lur, — bllp2ge) < \/ e + llur, = bll2amy)-
Now, since
1/2
/ |u—b|2dx=/ / lu—bl>dHi " dr
Bl/z\Bl/4 /4 JOB;

1/ 1/2
= [/4 1My = blI3a g, dt = 47D [/4 ity = b3 5, 1

we can choose rp € (1/4,1/2) such that
d+1 2 2
4+ / = b2 dx = llur, = 122,
Bl/z\Bl/4

On the other hand, taking 1 = r € (p,2/2), we obtain

2 2
|u —b|2dx=/ / |u —b|2dH‘1*1dt:/ 1wy — b)? dt
/Bz\Bl ' v Jos, 1 " L3B1)

2
<+l /1 s = Bl g,

8e(l/2)
< pd+2 (\/ JC + llur, — b”L2(831)>

8e(l/2)
d+2 A1y,
<2 (\/ G + 27w = bl L2y )\

2

2
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This implies that if # = u is such that

8e(l/2)
d+2 d+1
2 (\/ )/Cz +2 ”M _b||L2(B|/2\Bl/4) < 54,

then p = 0, that is, the epiperimetric inequality (12.26) can be applied to every
r e (0,1].

Step 5: Conclusion As a consequence of the previous step, the decay esti-
mate (12.29) holds on the whole interval (0, 1]:

8e(l) ,
ey, —ur, ||L2(331) < Gy ry for every 0<ri<rp<lp  (12.30)

Thus, there is ug € L?(3B;), which is the strong L%(9 By)-limit of the blow-up
sequence u;

lim u, = ug.
r—0

Finally, taking r, = r € (0, 1) and passing to the limit as r; — 0 in (12.30), we
obtain (12.27). This concludes the proof.

O

In order to prove Proposition 12.13 under the Condition 12.12 we will need the
following lemma.

Lemma 12.18 For every ¢ > 0 there is § > 0 such that the following holds.
Ifu : By — R is a (non-negative) minimizer of F1 in By satisfying

lu —hollz2p,\By) <6 for some v € 0By,

where h,, is the half-plane solution h, (x) = (x - V)4,
then u is e-flat in the direction v in the ball By, that is,

x-v—etr<ux)<@x-v+e for every x € Bj. (12.31)
Proof We will first prove that there is & > 0 such that u is e-flat on 9 B3),, that is,
x-v—e)tr<ux)<x-v+e for every X € dB3. (12.32)
From this, we will deduce that u is e-flat in Bj.

In order to prove (12.32), we start by noticing that that, since # minimizes
in By, it is L-Lipschitz continuous in By, for some L > 1 depending only on the
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dimension (see Theorem 3.1). Then, also the function
up —hy: By, — R

is (2L)-Lipschitz continuous. Thus, there is a dimensional constant C4 such that

2

d 2
— < i+2 — d+2 < dy2
lup = hollLoe(By,\Bsyy) < CaL a2 |lup hv||L2(37/4\BS/4) < Cgqddt2.

We now choose § > 0 such that
Ca8d2 < e, (12.33)

Thus,

lup = hollLoe(By,\Bs;y) < /2 (12.34)
Now, using (12.34), we obtain the estimate from below

(x-v—¢6)y <u(x) forevery x € Bys\ Bsp,
while from above we only have
ux) <(x-v+e)y forevery x ef{x-v=>—¢2}N (B7/4 \ Bs/4).

Indeed, if x - v > —¢/2, then

: if v >0,
u(x) < efa+hy(x) =2+ (xv)4 < x-v+ey if x-v=>
eo<(x-v+e)r if 0=x-v>—¢p.
Thus, in order to prove that (12.32) it is sufficient to show that
u=0  ontheset  {x-v<—¢2}N3IBy. (12.35)

On the other hand, u is also non-degenerate in the annulus A := By, \ Bsj, that is,
there is a dimensional constant 0 < « < 1 such that (see Proposition 4.1)

x€eANR, = ||u||L°°(Br(X0)) > kr for every r < l/4,
Suppose by absurd that there is a point

X0 € QN {x-v < —¢2}NIB3,.
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Then, taking » = ¢/2, we get that there is
Yo € By (x0) C {x-v <0} N By, \ Bsjs

such that
1
|u(yo) — hy(x0)| = u(yo) = H ke
If we choose § such that
2 1
Cyéd+2 < 2/<s, (12.36)

then we reach a contradiction. Notice that, since k < 1, (12.36) implies (12.33).
This concludes the proof of (12.32). The conclusion now follows by Proposi-
tion 12.19. O

12.6 Comparison with Half-Plane Solutions

In this subsection, we prove the following result, which we use in the proof of
Lemma 12.18; but is also of general interest.

Proposition 12.19 Let D C RY be a bounded open set and letu : D — R be a
non-negative continuous function and a minimizer of the functional F in D. Let
c € R be a constant, v € RY be a unit vector and

h(x):x/A(x-v+c)+

be a half-plane solution. Then, the following claims do hold.

(i) Ifu <hondD, thenu <hin D.
(ii) Ifu > hon oD, thenu > h in D.

Remark 12.20 Up to replacing u and h by A~"?u and A~"/*h (which are minimiz-
ers of F1 in D), we may assume that A = 1.

We will give two different proofs to Proposition 12.19. The first one is more natural,
but is based on the notion of viscosity solution and so it requires the results from
Sect.7.1. The second proof is direct and is based on a purely variational argument
in the spirit of Lemma 2.13.
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Proof I of Proposition 12.19 By Proposition 7.1, u is a viscosity solution (see
Definition 7.6) of

Au=0 in Q.ND, |Vul=1 on 9Q,ND.

The conclusion now follows by Lemma 12.21 bellow. O

Proof II of Proposition 12.19 We only prove the first claim, the proof of the second

one being analogous. For every ¢ > 0, consider the half-plane solution
hx)=x-v+c+1)4.

Then, for every x € 9D N ,,, we have that A(x) > u(x) > 0 and so,

u(x) < h(x) < hy(x) —t.

Thus, we can apply Lemma 12.22 to # and h,, obtaining that u < h; in D. Since ¢
is arbitrary, we obtain claim (i). m]

Lemma 12.21 (Comparison of a Viscosity and a Half-Plane Solution) Let D be
a bounded open set in R? and let u : D — R be a non-negative continuous function
and a viscosity solution (see Definition 7.6) to

Au=0 in ,ND, [Vul=1 on 9, ND.
Let ¢ € R be a constant, v € RY be a unit vector and h(x) = (x -V 4+ c)+ be a

half-plane solution. Then, the following claims do hold.

(i) Ifu>hondD, thenu > hin D.
(ii) Ifu <honoD, thenu < h in D.

Proof We first prove (i). Let M = ||h|| Lo (D).
For any ¢ > 0, we define the real function f; : R — R as

fi(s) = (1 + 1) max{s, 0} + ¢ (max{s, 0})°,
for every s € R. Then, it is immediate to check that the function
v(x) = filx - v+c— MM+ i)

satisfies the following conditions:
(1) Av; > O in the set {v; > 0};

(2) |Vvs| > 1 on{v; > 0};
3) vi(x) < h(x) <u(x)forevery x € aD.
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Indeed, the first two conditions are immediate, since h is the positive part of an
affine function. In order to prove (3), we notice that the inequality is trivial whenever
x-v+c—MM+ 1)t <0.Thecasex -v+c— M(M+ 1)t > 0is a consequence
of the following estimate, which holds forany S :=x -v+c¢ > M(M + 1)t.

Fi(S = M(M +1)t) = (1+1)(S — M(M + Dt) +1(S — M(M + 1)1)?

<A +0(S— MM+ D))+ Mt(S— MM + 1)t)
=S+t<—M(M+l)+S—M(M+1)t+MS—M2(M+1)t>

<S+t(-MM+1D)+SM+1)) <S.

We next claim that v, < u on D. Indeed, suppose that this is not the case and let
T > 0 be the smallest real number such that (v; — T)4+ < u on D. Then, there is
xo € 2, such that v;(xg) — T = u(xp) and (v;(x) — T)4+ < u(x), for every other
x € D, that is, the test function (v; — T)4 touches from below u at xg. Since u is a
viscosity solution (see Definition 7.6 and Proposition 7.1) of

Au=0 in Q,ND, [Vul=1 on 0Q,ND,
we have that xo ¢ 02, N B3, and xo ¢ €2,. Then, the only possibility is that
xp € 3D, but this is also impossible since (v — T)+ < vy < u on dD. This proves
that v; < u on D. Now, letting ¢t — 0, we get that
u(x) >h(x) in D,
which concludes the proof of (i).

The proof of claim (ii) is analogous. We give the proof for the sake of
completeness. For any ¢ > 0, we define the real function

g:(s) = (1 — et) max{s,0} — et (max{s, 0})2 for every s eR,
where ¢ > (0 will be chosen below. We set
M, = diam (D) + |c| + [l Lo> (D) and My = ||hllLo(p).
The test function
wy(x) = g,(x -V +c+t)

satisfies the following conditions:

w; > 0 forevery 0 <t < M, and every s < My;

Aw; < 01in the open set {w; > 0};

|[Vw;| < 1 on the closed set {w; > 0};

wr(x) > h(x) > u(x) forevery x € dD and every t < M,,.

L=
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We start with (1,,). We notice that
g(s) = (1 — er) max{s, 0} — er (max{s,0})* = 1 — &(M, M, + M, M}).

Thus, in order to have (1), we choose

e < (MuMy, + M, M}) ™"

Again (2y) and (3,,) are trivial, while for (4,,) we will need the following estimate,
which holds for every S > 0 and ¢ > 0.

&S+ = —en(S+1)—et(S+1)
> (1 —en)(S+1)—erS(S+1)

=S+t<1—£S—8t—sS2—£St)

zs+t(1—e(5+t+52+ST)). (12.37)
In order to have (4,,), we choose

e < (My + M, + M} + MyM,) ™. (12.38)

We next complete the proof of (4,,). First, notice that the second inequality is always
true by hypothesis. Since w; > 0, the first inequality is trivial whenever x-v+c¢ < 0.
Thus, we only need to prove that w;(x) > h(x), whenever x - v + ¢ > 0. This
follows by (12.37) and the second bound on & (12.38). This concludes the proof of

(Tw) — (4u).
‘We now consider the set

Ii={rel0.M]: wzu on D}
We notice that I; is non-empty since M,, € I;. Let
T =inf].
If T > O, then there is a point xo € €2, such that wr touches u from above in x.
But this contradicts (2,) — (4). Indeed, (2,,) implies that xog ¢ 2, N D, (3y) gives

that xo ¢ 9€2, N D and (4,,) gives that xg ¢ dD. Thus, T = 0, which concludes the
proof. O
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Lemma 12.22 (Comparison of Minimizers) Let D be a bounded open set in R?
and u,v : D — R be continuous non-negative functions and minimizers of Fp in
D. Suppose that:

(a) u <vonaD;

(b) the above inequality is strict on the set Q, N0 D, thatis, min (v—u) =m > 0.
Q,NdD

Then, u < vin D.

Proof Let 2 :={x € D : u(x) > v(x)}. We will prove that 2 = @J. We first claim
that €2 is strictly contained in D, that is

a2NaD = 0.

Suppose that this is not the case. Then, there is a sequence x, € €2 converging to
some xo € dD. Since u and v are continuous, we get that

v(xg) — u(xg) = 0.
On the other hand, for every n € N, we have
u(xp) > v(xp) =0,
which gives that x, € €. Then, x, € €, and thus, xo € 9€,. This is a
contradiction with the assumption (b).
We will next prove that
Q,Nou >v}=Q,No{u >v}=40.
We consider the competitors
u Vv = max{u, v} and u A v = minf{u, v}.
Since
uvVv=v on 94D and uAv=u on 9D,
the minimality of # and v implies that
Fa(w,D) < Fpa(u Vv, D) and Fa(u,D) < Fa(u Av, D). (12.39)
On the other hand, we have

Faw Vv v,D)+ Fa(unv,D) = Fp(u, D)+ Fp(v, D).
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Thus, both inequalities in (12.39) are in fact equalities and so u A v is a minimizer
of F in D. Suppose that

X € 2, NI2.

Then, u(xp) = v(xp) > 0 and by the continuity of u and v, there is a ball B, (xo)
such that

B, (xg) C L, and B (x0) C Q.

Thus, both the functions u and u A v are positive and harmonic in B, (x¢). Thus, the
strong maximum principle implies that # = u A v in B,(xp). This is contradiction
with the assumption that xg € o{u > v}.

We are now in position to prove that 2 = . Indeed, suppose that this is not the
case. Then, for every xo € 9$2,, we have that u(xg) = 0. Thus, we consider the
function

u(x) if xe D\,
0 if xeQ.

u(x) =

Then, % = u on 3D and & € H'(D) (this follows, from instance from the facts that
u is Lipschitz continuous on the compact subsets of D and that Q@ C D). Thus, u is
an admissible competitor for u and we have

0> Fa(u, D) — Fa(i, D) = / Vuldx + A2 N Q.
Q

In particular,
1] = {u > v}l = [{u>v}N{u> 0} =[N, =0,

and so, 2 = @, which concludes the proof. m]
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Appendix A
The Epiperimetric Inequality
in Dimension Two

In this section we prove the general epiperimetric inequality, which was stated in
Theorem 12.3. We show that both the flatness condition from Theorem 12.1 and the
non-degeneracy assumption from [49] are unnecessary. We also give an estimate
on the H! norm of the competitor i, which is useful when one deals with almost-
minimizers of the one-phase problem (see for instance [50]).

Theorem A.1 (Epiperimetric Inequality) There is a constant ¢ > 0 such that: if
c € H'(3By) is a non-negative function on the boundary of the disk By C R? then,
there exists a (non-negative) function h € H'(By) such that h = ¢ on 9By and

Wh) —m < (1—e)(W() —n), (A.1)

z € HY(By) being the one-homogeneous extension of ¢ in By, that is, z(x) =
|x|c (x/1x]). Moreover, we can choose the competitor h such that

el sy < Clizli g,

where C is a universal numerical constant.

In order to prove Theorem 12.3, we will still use Lemma 12.6, Lemma 12.7 and
the results from Sect. 12.1. Moreover, we will need the following results:

Lemma A.2 (Epiperimetric Inequality for Principal Modes: Large Intervals)
Let By be the unit ball in R2. There is a constant ¢ > 0 such that: ifc:0B; - R,
c € HY(By), is a multiple of the first eigenfunction on {c > 0} C 3B and

7 <H'(c>0}Na3B)) < 2n,
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then, there exists a (non-negative) function h € Hl(Bl) such thath = c on d By and
Wh)—m <1 -8 (W) —n),
z € H'(By) being the one-homogeneous extension of ¢ in By.

Lemma A.3 (Homogeneity Improvement of the Large Cones) Let B be the unit
ball in R, d > 2. There exist dimensional constants ng > 0 and & > 0 such that: If
c € HY(3By) is non-negative and such that

1
H " ({c > 0} N 3By1) > 1 — 1o,
dwg

then we have
1) )
win - < -e (W - %),
2 2
where 7 is the one-homogeneous extension of ¢ in By, while h is given by hy or hy,

where

(i) h is the harmonic extension of ¢ in By;
(ii) hy : By — R is given by

ha(r,0) = (max{0,r — p})* (16_(9;)0[

>

where « > 1 and p € (0, 1) are dimensional constants.

In both cases, there is a dimensional constant C4 > 0 such that

WAl g1,y < Callclgiap,)-

A.1 Proof of Theorem 12.3

As in the proof of Theorem 12.1, we decompose the open set {c > 0} C 9B as a
countable union of disjoint arcs, that is,

e>0=Jz;.

j=l1
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Fig. A.1 The supports of the
one homogeneous extension z
(in red) and the competitor &
(in blue) in Case 3; the length
of the arc Z; is bigger than
T+ 8o

We recall that |Z;| denotes the length of the arc Z;. Let §o > 0 be a (small) constant
that will be chosen later. We consider four cases:
Case 1. There is one arc, say Z, which is big, that is,
m—38 <|Ii| <7 +do
while all the other arcs are small:

|Zj| <7 —8p forall j>2.

This is precisely Case 1 from the proof of Theorem 12.1 (Sect. 12.4, Fig. 12.2).
Case 2. All the arcs are small, that is,

|Zj| <m — 38 forall j=>1.
This is Case 2 from the proof of Theorem 12.1 (Sect. 12.4, Fig. 12.3).
Case 3 (Fig. A.1). The arc 7 is very big, that is,

7+ 60 < |Z1] < 27w — do.

As a consequence, the other arcs are small:

|Zj| <m — 3§ forall j=>2.
Case 4. The support of ¢ is very big, that is,

27 — 280 < H'(e > 0}) < 27.

In this case the competitor is given precisely by Lemma A.3.

Thus, it is sufficient to consider Case 3. We argue precisely as in the proof of
Case 1. Let {¢;} =1 be a complete orthonormal system of eigenfunctions on Z;, and
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let ¢; be the Fourier coefficient
Cj :=/ c(0)p;(0)do forevery j > 2.
0B

We decompose the trace ¢ as

c(0) = c191(0) + ¥1(0) + ¥2(0),

where

o]

Y1(0) =) c;p;(0),

j=2

and v is the restriction of ¢ on the set U Z;. Since vy is supported on U Z;j and
Jj=2 j=2
|Z;| < m — 8o, for j > 2, we have that

2

/|V01/f2|2d92 g w3 do.
sl (r —80)? Jst

For what concerns 1, since its Fourier expansion contains only higher modes on
7 and since |Z1| < 2w — §, we obtain

2

T
V2 de.
Qr —80)% Jg, !

/ Vo1 |*d6 =
7
Thus, there is ¥ depending only on §¢ such that

/§1 Vo> do > (1+/c)/§l vrdo  for  i=1,2.

Let p > 0 and &y > 0 be the constants from Lemma 12.6 corresponding to the
constant « from (12.19); let hy, and hy, be the competitors from Lemma 12.6
associated to the traces Y1 and vy, respectively. Thus, setting zy, (v, 0) := zy; (0),
we have

Wolhy,) < (1 — ey)Wolzy,) and Why,) < (1 —ep)W(zy,). (A2)

Let i be the competitor from Lemma A.3 with trace c1¢; and let Z(r,0) :=
rc1¢1(0). We set

z(r,0) if re[p,1],

hy(r,0) =1 " .
ph(/p,0) if rel0,p]
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Thus, Lemma 12.7 and Lemma 2.3 imply that
W(hp) —m < (1= p*&)(W(E) —7), (A3)

¢ being the constant from Lemma A.3. Finally, we define the competitor 2 : B; —
R as:

* h =zif W(z) < m, where z = Z + zy, + zy, is the 1-homogeneous extension
of ¢;

* h=Z4hy, +hy, if W) >m,but W) <m;

o h=h+hy +hy,if W) >xand WE) > 7.

Notice that the only non-trivial case is the third one: W(z) > 7 and W(z) > 7. By

the decomposition lemma (Lemma 12.9), we have

W(z) = W(@) + Wolzy,) + W(zy,),
and
W(h) = W(hy,) + Wolhy,) + W(hy,).
Setting
e = min{p9&, ey},

we obtain the epiperimetric inequality (A.1) as a consequence of (A.2) and (A.3).
This concludes the proof in Case 3. O

A.2 Proof of Lemma A.2

We will use the notations from Sect. 12.3 In this case, we have that § € (0, ). The
infinitesimal argument used in the proof of Lemma 12.7 cannot be applied here.
Thus, we directly compute F(8) (defined in (12.15)) by using the identity from
Sect. 12.3.3.

1 /)2 )2
F((S):/ ((I()/) =g ™ )rdr
0 1—}—1(")/71 1+5/71

M@+ = (1)1 - e)8? J
=) 73 (1 4+ 10)fx) (1 + /) rer
52

1
/ ((7, 4 8) (10))5)2 — (7 + 1) (1 — s)) rdr.
0

3
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Now, since 1(r)/s = 1 — 3(1 — r)e, we get that

(T +8) (0)s)> — (T +1(r)(1 — &)
= (@ +8)(1=3(1—=r)s)’ — (7 +8—3(1 —res) (1 —s)
=—e@+8)GB—6r)+9* (T +8)(1 —r)> +3(1 —r)es(l —¢)

< —e(m +8)(5 — 6r) + 18m&% +3(1 — r)es.

Thus, multiplying by r and integrating over [0, 1], we get

82 (1 , 1 82
F@) = ;|- e@+8+9me”+ ed)=—, (1~ 18).
Thus, using (12.14), we get
(W) =7 = =o) (W =7 ) = - O (1= 18— 22%Cs).
2 2/ = 2x2

Choosing ¢ > 0 small enough, we get (12.13). This concludes the proof of
Lemma A.2. O

A.3 Epiperimetric Inequality for Large Cones:
Proof of Lemma A.3

We write the trace ¢ in Fourier series on the sphere d By as

c(6) = codo + c1610) + Y _ cj¢j (0),

j=2
where:

e ¢y is the constant (dwg)~"2;
* ¢ : 0By — Ris an eigenfunction of the Laplacian on the sphere, the respective
eigenvalue being (d — 1) and / ¢% do =1;
0B
* ¢j, for j > 2 are eigenfunctions orthonormal in L2(8 By) with eigenvalues A ; >
2d on the sphere 0 B;.

We now set

Y(O) = cj¢j©).

j=2
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Since the Fourier expansion of ¥ contains only eigenfunctions associated to
eigenvalues > 2d, we get that

/ |Vowr|? do > Zd/ v do.
Sd—l Sd—l

Letk =d + 1 and p, & and «, be the constants from Lemma 12.6; let z,(r,0) =
ri{(0) and h, be the competitor from Lemma 12.6. We choose

0 = P and o = O.
We consider the functions

2(r,0) = corgo + c1r¢1(0) + 2, (r, 0)

hi(r,0) = codo + re1g1(0) + he(r,6).

r—p% codo+ r—p%

ho(r,0) =
20 = e (1—p)

c1¢10) + hi(r,0).

Step 1. We first calculate the terms

Wo(¢o), Wo(reo), Wo(réi(©)), Wo((r — p)igo) and  Wo((r — )% (6)).

Since ¢ is a constant, we have that

Woldo) =~ | ¢gdo = —1.
1

Since r¢1(0) is one homogeneous, we get

—1 d—1
¢t do = — :

1 d
Wo(rgo) = dfo(¢o) == . J
1

Analogously, we obtain

1 1
Wo(r¢1)=dfo(¢1)=d</ [Vo11>d6 — (d — 1) ¢%d9)=0,

0B 0B
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since ¢ is a (d — 1)-eigenfunction on the sphere. For the last two terms, we use the
formula

! d—1 2 20—2 42 r —p)™ 2
Wo((r—,o)i@(@)) 2/ ré=dr /;B (06 (r—p) “¢; + 2 [Vooi| )d@
1

o

—(-p> | ¢?do
9B;

1 2 2 2
< Vodil=do ) — (1 — p)™.
_2a+d_2<a +/aBl|9¢l| ) (I'=p)

[Vogol>do =0 and/ |Vop1|>do =d — 1, we get

Since 1 <a§2,/
dB;

0B
Wo((r—p)+¢g) <1=(1=p)**  and  Wo((r—p)561(0)) <2—(1—p)**.

Step 2. Consider the competitor 71. We set

n = ! H (e =0} N 3B,
dwy

and we calculate
W(h1) = W) < Wolh1) — Wo(z) + (1177 < Wo(hn) — Wo(2) + wan
= (cWo(@o) + T Wo(r1(©)) + Wolho))
— (A Wolrgo) + T Wolrén) + Woze) ) +@an
= e (Wo(@o) = Worgn)) + (Wo(he) — Wo(zo))
+0< —Cj — 8 Wo(zx) + wan.
Step 3. For the competitor /5 we calculate
W (h2) = W(2) = Wo(ha) = Wo(2) + [{ha > 0} Bi| = I{z > 0} N By|

=c} ( ! Wo((r — p)% ¢0) — Wo(r¢0)>
O\ = py ’

v W — 0%en) — Wolrén)
T (1 = py2a 0 P)y 91 0(rén
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+ (Wo(hk) - Wo(zx)) —{z > 0} N B,|
= (1 — p)2 (C(z) + C%) — e Wol(ze) — wap® (1 —1).

Now, since

lc1l = ‘/B c(@)p1db| < ||¢1||L°°(331)/B c(0)do < ||g1llL>@B)dwaco,
1 1

there is a dimensional constant C; > 0 such that
W(h3) — W) < Cacy— exWolz) — wap? (1 —1).

Step 4. Conclusion of the proof. We calculate the energy

wd 2 2 wd
W(z) — ) = cgWo(réo) + ciWo(rén) + Wo(ze) + , T @dn
d—1, |
== co+ Wolze) +wa (12 —1).
Since Wy(z,) > 0, for every ¢ € (0, &), we have that the inequality
2
_ % —Lla 1y _
+wan < e cg—wa(12—m) ), (A4)
d d
implies that
wq
W) - W) = —e (W - N )-
Analogously,
2 d d—1,
Cacy—wap” (1 —m) <¢ g 0~ (2=m ), (A.5)

implies that

W(hy) — W(z) < —¢ (W(z) - ";d)

Now, (A.4) is implied by

dwg(n +€) < cp. (A.6)
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while if we assume that no < 1/4, we get that (A.5) is implied by
Cacf < a;d (! —e).
Now, if both (A.6) and (A.7) were false, then we would have
dwi(n+e)Ca = Cach = ) (0 — &),
and finally

d_
E (p® —e(1 +2dCy)),

Finally, we notice that the choice

d d

and no = P
2dCy’°

&= p
4dCy + 2

makes (A.8) impossible and concludes the proof of Lemma A.3.

(A7)

(A.8)



Appendix B
Notations and Definitions

Euclidean Space, Topology and Distance

R | xy | dist(x,K) | distg(Ki,K2) | diamK | B.(x) | € | 99

* d is the dimension of the space.

* (Cy denotes a positive constant that depends only on the dimension;
C,4 may change from line to line and even within the same line.

* x = (x1,...,xq) denotes a generic point in R9: we will also write

x = (x',xq), where x’ = (x1,...,x4_1) is a point in R,

* We denote by x -y = Zf.l:l x;y; the scalar product of two vectors x =
(x1,...,xg)and y = (y1,...,Yyq) in [Rd; |x] = 4/x - x is the euclidean norm
of x in RY,

e The standard orthonormal basis of R? will be denoted by {e1,...,eq};

¢4 is the unit vector with coordinates (0, ...,0,1).

* By dist(x, K) we denote the euclidean distance from a point x € R? to a set

K c R4

dist(x, K) = min |x — y|.
yekK

o Given two sets K| and K, in RY, we denote by disty; (K1, K2) the Hausdorff
distance between K and K>, that is,

disty/ (K1, K2) := max { max dist(x, K»), max dist(y, Kl)].
xeK| yekK>
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o diam K stands for the diameter of a set K C R4
diam K :=sup{|lx —y| : x,y € K}.

* B (x) is the ball of radius r and center x; By is the ball of radius  and center 0.
+ For any set Q C R, we denote by Q its closure and by < its boundary;

Measure and Integration

121 | wa | Q9 | #H | K | HTU | dimy | [

* || is the Lebesgue measure of a (Lebesgue measurable) set 2 C R.

+ By wy we denote the Lebesgue measure of the unit ball in R?.

e Forany Q2 C RY and o € [0, 1], we define the set Q@ ag the set of points at
which 2 has Lebesgue density equal to «, that is,

QNB
Q@ — {xo cR? - lim | rol _ }
r—0 |B|

‘We recall that
e\e® =P\ =0 ad [@nQ® =0

e Foreverys > 0,8 € (0,+o00] and every set E C R4, we define
@ o0
HI(E) == 25 inf ’Z (diam Uj)s : for every family of sets {Uj}j‘;1
j=1

(o)
such that £ C U U; and diam U; < 8},
j=1

where, if s € N, then wjy is the measure of the unit ball in RY, and we recall that
ws can be defined for any s € (0, +00) as

72

T rea+D

[OX)

+00
where '(s) :=/ et dx.
0

e Forany s > 0, H*(E) denotes the s-dimensional Hausdorff measure of a set
ECRY.

H(E) = lim Hi(E) = sup H3(E).
§—0+ §>0
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For instance, we have
HYB,) = |B|=wgr? and  HYYOB,) = dwqr?!.
* The Hausdorff dimension of a set E C R? is defined as
dimy E = inf{s >0 : H(E)= 0}.
* By /Q ¢ dp we will indicate the mean value of the function ¢ on the set €2 with

1
respect to the measure u, that is, / ddu = / ¢du.
Q wn(€2) Jo
Perimeter and Reduced Boundary
0*Q | Per(Q) | Per(2;D)

+ Let Q C R be a Lebesgue measurable set in R?. We say that £ is a set of finite
perimeter (in the sense of De Giorgi) if

Per(Q) := sup{f divedyx : & € CLRERY, ] gy < 1} < +oo.
Q
Analogously, we define the relative perimeter of € in the open set D C R? as
Per(Q: D) := sup!/ divedx : £ € CH(D;RY), €] L~p) < 1}.
Q

+ Equivalently, @ C R is a set of finite perimeter if there is an R-valued Radon
measure (g such that

/V¢(x)dx=/ pdug  forevery ¢ e CLRY).
Q R4

With this notations, we have
Per(Q) = |ugl(®RY) and Per(§2; D) = |ual(D),
where by |u1| we denote the total variation of a measure u.
¢ The reduced boundary 9*<2 is defined as

B, .
0*Q = {x e R? : the limit vo(x) := lim na(B, () exists and |vq(x)| = 1};
r—0 |uq|(Br(x))
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v, is called a measure theoretic outer normal at x. The following are well-known
facts about the reduced boundary of a set of finite perimeter (we refer to the
recent book [43], which is an excellent introduction to this topic):

1. po =vo H4 N 9*Q;
2. 9*Q C QU
3. setting

1 y—x
Q= (Q—x):{ :yeQ],
r r

we have that the characteristic functions 1g,, converge (as r — 0) in
L}UC(Rd) to the characteristic function of the half-space { y € R . y -

va(x) < 0};
@) Hd-! (Rd (@D UQO U a*sz)) —0.

Unit Sphere and Polar Coordinates

S0 Ve | As | df

+ S 1 s the unit (d — 1)-dimensional sphere; we will indicate by 6 the points on
S~ and we will often identify S~! with 8 By, where By is the unit ball in R?;
we will sometimes use d6 to indicate the surface measure on the sphere, thus

/ $6)do, #(©)do and ¢dHI!
Sd—1 0B 0B

all denote the integral of the function ¢ : dB; — R on the unit sphere d By in
RY.
* For a function ¢ : dB1 — R, we denote by Vy¢ its gradient on the sphere 9 By .
* We denote by H ! (0 By) the Sobolev space of functions (on the sphere) which are
square integrable and have a square integrable gradient. Precisely, H'(9B) is
the closure of C°°(d By) with respect to the norm

1/2
161108 = (1813 05,y + 19661201 05,) -

* By As¢ we denote the (distributional) spherical Laplacian of a Sobolev function
¢ € H'(dB1); we have the following integration by parts formula

/ VAspdo = —/ Vo - Vo do forevery € H'(9B)).
0B 9B
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e Ifu: B — Ris a function expressed in polar coordinates as u = u(r, 0), then
IVul* = @-u)* + r 2| Voul?,
and
l—dq (.d—1 -2 d—1 1
Au=r Br(r 8ru) +r “Asu = 0,yu + oru + 5 Asu.
r r

Moreover, we recall that
R
/udx:// u(r,@)d@rdfldr.
Br 0 Jsd-!

Functions and Sets

uAv | uvv | oupy | ou_ | {wu>0 | QL | QF | Q | 1g

¢ Given two real-valued functions # and v defined on the same domain, we denote
by u A v and u V v the functions

(u Av)(x) = min{u(x), v(x)} and (u v v)(x) = max{u(x), v(x)}.
e uy =uv0andu_ = (—u)Vv0. Thus,wehaveu = u —u_ and |u| = u4+u_.
We do not distinguish between u. and u™, nor between u_ and u™ .

* By {# > 0} we mean the set {x € R? : u(x) > 0}; the sets {u = 0}, {u # 0}
and {# < 0} are defined analogously. For any u, we set

Q, = {u #0}, Qj:{u >0} and €, ={u <0}.
* By 1g we denote the characteristic functions of the set €2, that is,

1 if xeQ,

HQ(X)=: i
0 if x¢Q.
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urxy | Fa@,D) | Reg(@Q) | Sing(@,) | W) | Wo) | 8Fa(u,D)[§]

* Foranyr > 0and xg € R, we denote by u, x, and u, the functions
1 1
U xo(X) = . u(xg 4+ rx) and ur(x) = ru(rx).

* For any constant A > 0, open set D C R< and function u € H l(D), the one-
phase functional F (u, D) is defined as

]—"A(u,D)zf |Vul>dx + Al{u > 0} N D].
D

* The so-called regular part Reg(9€2,) of the free boundary 92, (see Sect. 6.4) is
defined as the set of points xo € 9€2,, for which there exist:

— an infinitesimal sequence r, — 0;
— a unit vector v € RY;

such that the blow-up sequence

1
u, : B > R, up(x) =  u(xg+ryx), (B.1)

I'n

converges uniformly in B; to a blow-up limit
hy:Bi > R,  hy(x)=+vAK-v),. (B.2)

* The singular part Sing(9€2,) of the free boundary 9€2, is defined simply as the
complementary of Reg(9€2,)

Sing(3Qu) = 9 \ Reg(3).

For some fine results on the structure of the singular set we refer to Sect. 10.

* By W, we denote the Weiss’ boundary adjusted energy (in the ball By), that is,
forevery u € H'(By), we set

Wo(u):/ |Vu\2dx—/ urdH' and Wy (w) = Wow)+Al{u > 0}NBy|.
B dB,

For the related Weiss monotonicity formula see Lemma 9.2. Only in Sect. 12 and
in the Appendix A, we use the shorter notation W := Wj.
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Let D be an open subset of R and u € H'(D) be non-negative. By
8F A (u, D)[£] we denote the first variation of the functional Fx (-, D) (calculated
at u) in the direction of the compactly supported smooth vector field § €

CX(D; RY). Precisely,

0
8FA(u, D)[§] =

w1 D),
at t:OJ:A(uo ! )

where W, (x) = x + t&(x).
Remark An explicit formula (9.6) for the first variation is given in Lemma 9.5.

Definition We say that u is stationary for F, in D (see Sect.9.5) if

8Fa(u,D)[E]=0 forevery & e C®(D;RY).
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