Sriram Sankaranarayanan

Natasha Sharygina (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems

29th International Conference, TACAS 2023
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Paris, France, April 22-27, 2023

Proceedings, Part Il

Zbart Il
ETAPS

EUROP ANJOINT CONFERENCES ON
THEORY & PRACTICE OF SOFTWARE

LNCS 13994 | ARCoSS

Lecture Notes in Computer Science 13994

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA Bernhard Steffen @, Germany
Wen Gao, China Moti Yung®, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen®, University of Dortmund, Germany

Deng Xiaotie, Peking University, Beijing, China

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Sriram Sankaranarayanan -
Natasha Sharygina
Editors

Tools and Algorithms
for the Construction
and Analysis of Systems

29th International Conference, TACAS 2023
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Paris, France, April 22-27, 2023

Proceedings, Part II

@ Springer

Editors

Sriram Sankaranarayanan Natasha Sharygina
University of Colorado University of Lugano
Boulder, CO, USA Lugano, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-30819-2 ISBN 978-3-031-30820-8 (eBook)

https://doi.org/10.1007/978-3-031-30820-8

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7315-4340
https://orcid.org/0000-0002-8872-4913
https://doi.org/10.1007/978-3-031-30820-8
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 26th ETAPS! ETAPS 2023 took place in Paris, the beautiful capital of
France. ETAPS 2023 was the 26th instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference established
in 1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronized conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attracted many researchers from all over the globe.

ETAPS 2023 received 361 submissions in total, 124 of which were accepted,
yielding an overall acceptance rate of 34.3%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2023 featured the unifying invited speakers Véronique Cortier (CNRS,
LORIA laboratory, France) and Thomas A. Henzinger (Institute of Science and
Technology, Austria) and the conference-specific invited speakers Mooly Sagiv (Tel
Aviv University, Israel) for ESOP and Sven Apel (Saarland University, Germany) for
FASE. Invited tutorials were provided by Ana-Lucia Varbanescu (University of
Twente and University of Amsterdam, The Netherlands) on heterogeneous computing
and Joost-Pieter Katoen (RWTH Aachen, Germany and University of Twente, The
Netherlands) on probabilistic programming.

As part of the programme we had the second edition of TOOLympics, an event to
celebrate the achievements of the various competitions or comparative evaluations in
the field of ETAPS.

ETAPS 2023 was organized jointly by Sorbonne Universit¢é and Université
Sorbonne Paris Nord. Sorbonne Universit¢é (SU) is a multidisciplinary,
research-intensive and worldclass academic institution. It was created in 2018 as the
merge of two first-class research-intensive universities, UPMC (Université Pierre and
Marie Curie) and Paris-Sorbonne. SU has three faculties: humanities, medicine, and
55,600 students (4,700 PhD students; 10,200 international students), 6,400 teachers,
professor-researchers and 3,600 administrative and technical staff members. Université
Sorbonne Paris Nord is one of the thirteen universities that succeeded the University of
Paris in 1968. It is a major teaching and research center located in the north of Paris. It
has five campuses, spread over the two departments of Seine-Saint-Denis and Val

vi ETAPS Foreword

d’Qise: Villetaneuse, Bobigny, Saint-Denis, the Plaine Saint-Denis and Argenteuil. The
university has more than 25,000 students in different fields, such as health, medicine,
languages, humanities, and science. The local organization team consisted of Fabrice
Kordon (general co-chair), Laure Petrucci (general co-chair), Benedikt Bollig (work-
shops), Stefan Haar (workshops), Etienne André (proceedings and tutorials), Céline
Ghibaudo (sponsoring), Denis Poitrenaud (web), Stefan Schwoon (web), Benoit Barbot
(publicity), Nathalie Sznajder (publicity), Anne-Marie Reytier (communication),
Héléne Pétridis (finance) and Véronique Criart (finance).

ETAPS 2023 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), EASST
(European Association of Software Science and Technology), Lip6 (Laboratoire
d'Informatique de Paris 6), LIPN (Laboratoire d'informatique de Paris Nord), Sorbonne
Université, Université Sorbonne Paris Nord, CNRS (Centre national de la recherche
scientifique), CEA (Commissariat a 1'énergie atomique et aux énergies alternatives),
LMF (Laboratoire méthodes formelles), and Inria (Institut national de recherche en
informatique et en automatique).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns (Saar-
briicken), Marieke Huisman (Twente, chair), Jan Kofron (Prague), Barbara Konig
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Inria), Jan Kfetinsky (Munich),
and Lenore Zuck (Chicago).

Other members of the steering committee are: Dirk Beyer (Munich), Luis Caires
(Lisboa), Ana Cavalcanti (York), Bernd Finkbeiner (Saarland), Reiko Heckel
(Leicester), Joost-Pieter Katoen (Aachen and Twente), Naoki Kobayashi (Tokyo),
Fabrice Kordon (Paris), Laura Kovacs (Vienna), Orna Kupferman (Jerusalem), Leen
Lambers (Cottbus), Tiziana Margaria (Limerick), Andrzej Murawski (Oxford), Laure
Petrucci (Paris), Elizabeth Polgreen (Edinburgh), Peter Ryan (Luxembourg), Sriram
Sankaranarayanan (Boulder), Don Sannella (Edinburgh), Natasha Sharygina (Lugano),
Pawel Sobocinski (Tallinn), Sebastidn Uchitel (London and Buenos Aires), Andrzej
Wasowski (Copenhagen), Stephanie Weirich (Pennsylvania), Thomas Wies (New
York), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer-Verlag GmbH for their
support. I hope you all enjoyed ETAPS 2023.

Finally, a big thanks to Laure and Fabrice and their local organization team for all
their enormous efforts to make ETAPS a fantastic event.

April 2023 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President

Preface

We are pleased to present the proceedings of TACAS 2023, the 29th edition of the
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems held as part of the 26th European Joint Conferences on Theory and Practice of
Software (ETAPS 2023), April 24-28, 2023 in Paris, France. TACAS brings together a
community of researchers, developers, and end-users who are broadly interested in
rigorous algorithmic techniques for the construction and analysis of systems. The
conference is a venue that interleaves various disciplines including formal verification
of software and hardware systems, static analysis, program synthesis, verification of
machine learning/autonomous systems, probabilistic programming, SAT/SMT solving,
constraint solving, static analysis, automated theorem proving and Cyber-Physical
Systems.
There were five submission categories for TACAS 2023:

1. Regular research papers advancing the theoretical foundations for the construc-
tion and analysis of systems.

2. Case study papers describing the application of state-of-the-art research techniques
on real-world applications.

3. Regular tool papers presenting a new tool, a new tool component, or novel
extensions to an existing tool of interest to the community.

4. Tool demonstration papers focusing on the usage aspects of tools.

5. SV-COMP competition tool papers organized as a separate conference track.

Regular research, case study, and regular tool papers were restricted to a total of
sixteen pages, and tool demonstration papers to six pages, exclusive of references.

This year 169 papers were submitted to TACAS, consisting of 119 regular research
papers, 34 regular tool and case study papers, and 16 tool demonstration papers. Each
paper was reviewed by three Program Committee (PC) members, who made use of sub-
reviewers. As a result, the PC accepted in total 62 papers, among which there were 45
regular papers, 11 regular tool/case-study papers and 6 tool demonstration papers. The
PC members were pleasantly surprised by an unusually large number of strong sub-
missions. Almost all accepted papers had either all positive reviews or a “championing”
program committee member who argued in favor of accepting the paper. Furthermore,
all accepted papers had a positive average score. One paper was accepted conditionally
and successfully “shepherded” by the PC.

Similarly to previous years, it was possible to submit an artifact alongside a paper,
which was mandatory for regular tool and tool demonstration papers. An artifact might
consist of tools, models, proofs, or other data required for validation of the results

viii Preface

of the paper. The Artifact Evaluation Committee (AEC) reviewed the artifacts based on
their documentation, ease of use, and, most importantly, whether the results presented
in the corresponding paper could be accurately reproduced. The evaluation was carried
out using a standardized virtual machine to ensure consistency of the results, except for
4 artifacts that had special hardware or software requirements. The evaluation had two
rounds. The first round was carried out in parallel with the work of the PC and
evaluated the artifacts for all the submitted regular tool and tool demo papers. The
judgment of the AEC was communicated to the PC and weighed in their discussion
(the PC rejected a total of 4 papers in this phase). The second round took place after the
paper acceptance notifications were sent out so the authors of accepted research and
case-study papers could submit their artifacts. In both rounds, the AEC provided 3
reviews per artifact and communicated with the authors to resolve apparent technical
issues. In total, 69 artifacts were submitted (51 in the first round and 18 in the second),
and the AEC evaluated a total of 64 artifacts regarding their availability, functionality,
and/or reusability. Finally, among the 62 accepted papers, the AEC awarded 32
functional badges, 21 reusable badges, and 33 available badges. Such badges appear on
the first page of each paper to certify the properties of each artifact.

As a separate conference track, TACAS 2023 hosted the 12th Competition on
Software Verification (SV-COMP 2023). SV-COMP is the annual comparative eval-
uation of tools for automatic software verification and witness validation. The TACAS
proceedings contain a selection of 13 short papers that describe participating verifi-
cation systems and a report presenting the results of the competition. These papers were
reviewed by a separate program committee (the competition jury); each of the papers
was assessed by at least three reviewers. A total of 52 verification systems were
systematically evaluated, with 34 developer teams from ten countries, including five
submissions from industry. Two sessions in the TACAS program were reserved for the
competition: presentations by the competition chair and the participating development
teams in the first session and an open community meeting in the second session.

We would like to thank all the people who helped to make TACAS 2023 successful.
First, we would like to thank the authors for submitting their papers to TACAS 2023.
The PC members and additional reviewers did a great job in reviewing papers: they
contributed informed and detailed reports and engaged in the PC discussions. We also
thank the steering committee, and especially its chair, Joost-Pieter Katoen, for his
valuable advice. Lastly, we would like to thank the overall organization team of
ETAPS 2023.

April 2023 Sriram Sankaranarayanan
Natasha Sharygina

Grigory Fedyukovich

Sergio Mover

Dirk Beyer

Organization

Program Committee Chairs

Sriram Sankaranarayanan

Natasha Sharygina

Program Committee

Christel Baier
Haniel Barbosa
Ezio Bartocci

Dirk Beyer

Armin Biere
Nikolaj Bjerner
Roderick Bloem
Ahmed Bouajjani
Hana Chockler
Alessandro Cimatti
Rance Cleaveland
Javier Esparza
Chuchu Fan
Grigory Fedyukovich
Bernd Finkbeiner

Martin Frinzle

Khalil Ghorbal

Laure Gonnord

Orna Grumberg

Kim Guldstrand Larsen
Arie Gurfinkel

Ranjit Jhala

Laura Kovacs
Alexander Kulikov

Bettina Konighofer
Wenchao Li
Sergio Mover
Peter Miiller
Kedar Namjoshi
Aina Niemetz
Corina Pasareanu
Nir Piterman

University of Colorado Boulder, USA
University of Lugano, Switzerland

TU Dresden, Germany

Universidade Federal de Minas Gerais, Brazil

TU Wien, Austria

LMU Munich, Germany

Freiburg, Germany

Microsoft, USA

Graz University of Technology, Austria

IRIF, Université Paris Cité, France

King’s College London, UK

Fondazione Bruno Kessler, Italy

University of Maryland, USA

TU Munich, Germany

MIT, USA

Florida State University, USA

CISPA Helmholtz Center for Information Security,
Germany

Carl von Ossietzky Universitit Oldenburg, Germany

Inria, France

Grenoble-INP/LCIS, France

Technion - Israel Institute of Technology, Israel

Aalborg University, Denmark

University of Waterloo, Canada

University of California, San Diego, USA

TU Wien, Austria

St. Petersburg Department of Steklov Institute of
Mathematics, Russia

Graz University of Technology, Austria

Boston University, USA

Ecole Polytechnique, France

ETH Zurich, Switzerland

Nokia Bell Labs, USA

Stanford University, USA

CMU, NASA, KBR, USA

University of Gothenburg, Sweden

X Organization

Philipp Ruemmer
Krishna S.
Cesar Sanchez
Sharon Shoham
Fabio Somenzi
Cesare Tinelli
Stavros Tripakis
Frits Vaandrager
Yakir Vizel
Tomas Vojnar
Naijun Zhan
Lijun Zhang
Florian Zuleger

University of Regensburg, Germany
Indian Institute of Technology Bombay, India
IMDEA Software Institute, Spain

Tel Aviv University, Israel

University of Colorado Boulder, USA
University of Towa, USA

Northeastern University, USA

Radboud University, Netherlands
Technion, Israel

Bmo University of Technology, Czechia
Chinese Academy of Sciences, China
Chinese Academy of Sciences, China
Vienna University of Technology, Austria

Artifact Evaluation Committee Chairs

Grigory Fedyukovich
Sergio Mover

Florida State University, USA
Ecole Polytechnique, France

Artifact Evaluation Committee

Timothy A. Thijm
Leonardo Alt

Pedro H. A. de Amorim
Martin Blicha
Alexander Bork
Priyanka Darke
Emanuele De Angelis
Jip J. Dekker

Zafer Esen

Aleksandr Fedchin
Hadar Frenkel

Pamina Georgiou
Thomas Mgller Grosen
Ahmed Irfan

Martin Jonas

Dongjoo Kim

Satoshi Kura

Denis Mazzucato
Baoluo Meng

Federico Mora

Dmitry Mordvinov

Srinidhi Nagendra
Andres Noetzli

Princeton University, USA

Ethereum Foundation, Germany

Cornell University, USA

University of Lugano, Switzerland

RWTH Aachen, Germany

Tata Consultancy Services, India

IASI-CNR, Rome, Italy

Monash University, Australia

Uppsala University, Sweden

Tufts University, USA

CISPA - Helmholtz Center for Information Security,
Germany

Vienna University of Technology, Austria

Aalborg University, Denmark

SRI International, USA

Fondazione Bruno Kessler, Italy

Seoul National University, South Korea

National Institute of Informatics, Japan

Ecole Normale Superieure, France

GE Global Research, USA

University of California, Berkeley, USA

Saint-Petersburg State University, JetBrains
Research, Russia

Chennai Mathematical Institute, India

Stanford University, USA

Jifi Pavela

Sumanth Prabhu

Felipe R. Monteiro

Olli Saarikivi

Saeid Tizpaz Niari

Hari Govind Vediramana
Krishnan

Jingbo Wang

Anton Xue

Hansol Yoon

Organization

FIT VUT, Czechia

TRDDC, India

Amazon Web Services, USA
Microsoft Research, USA

University of Texas at El Paso, USA
University of Waterloo, Canada

University of Southern California, USA
University of Pennsylvania, USA
Republic of Korea Air Force, South Korea

Program Committee and Jury—SV-COMP

Dirk Beyer (Chair)
Viktor Malik (2LS)
Lei Bu (BRICK)
Marek Chalupa (Bubaak)
Michael Tautschnig (CBMC)
Henrik Wachowitz
(CPAchecker)
Hernan Ponce de Ledn
(Dartagnan)
Fei He (Deagle)
Fatimah Aljaafari (EBF)
Rafael Sa Menezes
(ESBMC-kind)
Martin Spiessl (Frama-C-SV)
Falk Howar
(GDart, GDart-LLVM)
Simmo Saan (Goblint)
William Leeson
(Graves-CPA, Graves-Par)
Soha Hussein (Java-Ranger)
Peter Schrammel (JBMC)
Gidon Ernst (Korn)
Tong Wu (LF-checker)
Vesal Vojdani (Locksmith)
Lei Bu (MLB)
Raphaél Monat (Mopsa)
Cedric Richter (PeSCo-CPA)
Jie Su (PIChecker)
Marek Trtik (Symbiotic)
Levente Bajczi (Theta)

LMU Munich, Germany

TU Brno, Czechia

Nanjing University, China

ISTA, Austria

Queen Mary University London, UK
LMU Munich, Germany

Huawei Dresden Research, Germany

Tsinghua University, China
University of Manchester, UK
University of Manchester, UK

LMU Munich, Germany
TU Dortmund, Germany

University of Tartu, Estonia
University of Virginia, USA

University of Minnesota, USA
University of Sussex/Diffblue, UK
LMU Munich, Germany

University of Manchester, UK
University of Tartu, Estonia
Nanjing University, China

Inria and University of Lille, France
University of Oldenburg, Germany
Xidian University, China

Masaryk University, Brno, Czechia

xi

Budapest University of Technology and Economics,

Hungary

xii Organization

Matthias Heizmann
(UAutomizer)

Dominik Klumpp
(UGemCutter)

Frank Schiissele (UKojak)

Daniel Dietsch (UTaipan)

Priyanka Darke
(VeriAbs, VeriAbsL)

Raveendra Kumar M.
(VeriFuzz)

HaiPeng Qu (VeriOover)

Steering Committee

Dirk Beyer

Rance Cleaveland

Holger Hermanns
Joost-Pieter Katoen (Chair)

Kim G. Larsen
Bernhard Steffen

Additional Reviewers

Abd Alrahman, Yehia
Ahmad, H. M. Sabbir
An, Jie

Asarin, Eugene
Azzopardi, Shaun
Bacci, Giorgio

Baier, Daniel
Balakrishnan, Gogul
Balasubramanian, A. R.
Baumeister, Jan
Becchi, Anna

Ben Shimon, Yoav
Berger, Guillaume
Beutner, Raven

Bily, Aurel

Blicha, Martin
Bombardelli, Alberto
Brieger, Marvin
Brizzio, Matias
Bunk, Thomas
Caillaud, Benoit
Cano Cérdoba, Filip

University of Freiburg, Germany
University of Freiburg, Germany

University of Freiburg, Germany
University of Freiburg, Germany
Tata Consultancy Services, India

Tata Consultancy Services, India

Ocean University of China, China

LMU Munich, Germany

University of Maryland, USA

Universitdt des Saarlandes, Germany

RWTH Aachen, Germany and Universiteit Twente,
Netherlands

Aalborg University, Denmark

Technische Universitdt Dortmund, Germany

Ceresa, Martin
Ceska, Milan
Chen, Mingshuai
Chen, Xin

Chen, Yilei
Chiari, Michele
Czerner, Philipp
Dardinier, Thibault
Dawson, Charles
De Masellis, Riccardo
Debrestian, Darin
Di Stefano, Luca
Egolf, Derek
Elad, Neta
Elashkin, Andrey
Esen, Zafer
Fazekas, Katalin
Feng, Shenghua
Ferres, Bruno
Fiedor, Jan
Fleury, Mathias
Fontaine, Pascal

Frenkel, Eden
Frenkel, Hadar
Froleyks, Nils

Fu, Feisi
Garcia-Contreras, Isabel
Garg, Kunal
Georgiou, Pamina
Gianola, Alessandro
Gigerl, Barbara
Goorden, Martijn
Gorostiaga, Felipe
Goyal, Srajan
Griggio, Alberto
Grosen, Thomas Megller
Gstrein, Bernhard
Gupta, Ashutosh
Habermehl, Peter
Hader, Thomas
Hadzic, Vedad
Hagemann, Willem
Hamza, Ameer
Haring, Johannes
Hausmann, Daniel
Havlena, Vojtéch
Hermo, Montserrat
Holik, Lukas
Hozzova, Petra
Huang, Chao
Huang, Chengchao
Hyvérinen, Antti
Itzhaky, Shachar
Jacobs, Swen
Jaeger, Manfred
Jansen, David N.
Jensen, Nicolaj Osterby
Jha, Prabhat

Jonas, Martin
Junges, Sebastian
Kaki, Gowtham
Kaufmann, Daniela
Kenison, George
Kettl, Matthias
Khalimov, Ayrat
Kifetew, Fitsum
Kiourti, Panagiota
Kliippelholz, Sascha

Organization

Kroger, Paul

Kifer, Nikolai

Lal, Akash

Larrauri, Alberto
Larraz, Daniel

Lazic, Marijana

Le, Nham

Lee, Nian-Ze

Lengal, Ondrej

Li, Renjue

Lidell, David

Liu, Jiaxiang
Lopez-Miguel, Ignacio D.
Luttenberger, Michael
Macias, Fernando
Maderbacher, Benedikt
McClurg, Jedidiah
Meng, Yue

Metzger, Niklas
Michelland, Sebastien
Monniaux, David
Moosbrugger, Marcel
Nadel, Alexander
Nam, Seunghyeon
Nesterini, Eleonora
Neufeld, Emery
Nickovic, Dejan
Noetzli, Andres
Oliveira Da Costa, Ana
Otoni, Rodrigo
Parthasarathy, Gaurav
Paxian, Tobias
Pluska, Alexander
Poli, Federico
Pontiggia, Francesco
Prandi, Davide
Pranger, Stefan
Preiner, Mathias
Radanne, Gabriel
Rakow, Astrid
Rappoport, Omer
Rauh, Andreas
Rawson, Michael
Rebola Pardo, Adrian
Reynolds, Andrew
Riley, Daniel

Xiii

Xiv Organization

Rodriguez, Andoni
Rogalewicz, Adam
Roman Calvo, Enrique
Rubio, Rubén
Rutledge, Kwesi
Sallinger, Sarah
Sankaranarayanan, Sriram
Schlichtkrull, Anders
Schoisswohl, Johannes
Schultz, William
Schupp, Stefan
Schwammberger, Maike
Sextl, Florian

Siber, Julian

So, Oswin

Sogokon, Andrew
Spiessl, Martin

Steen, Alexander

Su, Yusen

Susi, Angelo

Sic¢, Juraj

Tappler, Martin
Thibault, Joan

Ting, Gan

Treml, Lilly Maria
Trivedi, Ashutosh

Turrini, Andrea
Varanasi, Sarat Chandra
Vediramana Krishnan, Hari Govind
Visconti, Ennio
Wachowitz, Henrik
Wand, Michael
Wardega, Kacper
Weininger, Maximilian
Wendler, Philipp
Wienhoft, Patrick

Wu, Hao

Wu, Haoze

Xue, Anton

Yadav, Drishti

Yang, Pengfei

Yang, Ruixiao

Yu, Chenning

Yu, Mingxin

Zavalia, Lucas

Zhan, Bohua

Zhang, Hanwei

Zhang, Songyuan
Zhou, Weichao

Zhou, Yuhao
Zimmermann, Martin
Zlatkin, Ilia

Contents — Part 11

Tool Demos

EVA: a Tool for the Compositional Verification of AUTOSAR Models. 3
Alessandro Cimatti, Luca Cristoforetti, Alberto Griggio,
Stefano Tonetta, Sara Corfini, Marco Di Natale, and Florian Barrau

WASIM: A Word-level Abstract Symbolic Simulation Framework for
Hardware Formal Verification. 11
Wenji Fang and Hongce Zhang

Multiparty Session Typing in Java, Deductively 19
Jelle Bouma, Stijn de Gouw, and Sung-Shik Jongmans

PyLTA: A Verification Tool for Parameterized Distributed Algorithms 28
Bastien Thomas and Ocan Sankur

FuzzBtor2: A Random Generator of Word-Level Model Checking
Problems in BTOR2 Format. 36
Shengping Xiao, Chengyu Zhang, Jianwen Li, and Geguang Pu

Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit. 44
W. J. Fokkink, M. A. Goorden, D. Hendriks, D. A. van Beek,
A. T. Hofkamp, F. F. H. Reijnen, L. F. P. Etman, L. Moormann,
J. M. van de Mortel-Fronczak, M. A. Reniers, J. E. Rooda,
L. J. van der Sanden, R. R. H. Schiffelers, S. B. Thuijsman,
J. J. Verbakel, and J. A. Vogel

Combinatorial Optimization/Theorem Proving

New Core-Guided and Hitting Set Algorithms for Multi-Objective
Combinatorial Optimizationttt i 55
Jodo Cortes, Inés Lynce, and Vasco Manquinho

Verified reductions for optimization. 74
Alexander Bentkamp, Ramon Fernandez Mir, and Jeremy Avigad

Specifying and Verifying Higher-order Rust Iterators. 93
Xavier Denis and Jacques-Henri Jourdan

Xvi Contents — Part II

Extending a High-Performance Prover to Higher-Order Logic. 111
Petar Vukmirovi¢, Jasmin Blanchette, and Stephan Schulz

Tools (Regular Papers)

The WhyRel Prototype for Modular Relational Verification of Pointer
Programs 133
Ramana Nagasamudram, Anindya Banerjee, and David A. Naumann

Bridging Hardware and Software Analysis with BTor2C:
A Word-Level-Circuit-to-C Translator 152
Dirk Beyer, Po-Chun Chien, and Nian-Ze Lee

CoPTIC: Constraint Programming Translated Into C 173
Martin Mariusz Lester

Acacia-Bonsai: A Modern Implementation of Downset-Based LTL
Realizabilityo 192
Michaél Cadilhac and Guillermo A. Pérez

Synthesis

Computing Adequately Permissive Assumptions for Synthesis 211
Ashwani Anand, Kaushik Mallik, Satya Prakash Nayak,
and Anne-Kathrin Schmuck

Verification-guided Programmatic Controller Synthesis 229
Yuning Wang and He Zhu

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications. . . . 251
Philippe Heim and Rayna Dimitrova

Lockstep Composition for Unbalanced Loops. 270
Ameer Hamza and Grigory Fedyukovich

Synthesis of Distributed Agreement-Based Systems with Efficiently-

Decidable Verification. 289
Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni,
and Roopsha Samanta

LTL Reactive Synthesis with a Few Hints 309
Mrudula Balachander, Emmanuel Filiot, and Jean-Frangois Raskin

Contents — Part II

Timed Automata Verification and Synthesis via Finite Automata Learning. . . .

Ocan Sankur

Graphs/Probabilistic Systems

A Truly Symbolic Linear-Time Algorithm for SCC Decomposition.

Casper Abild Larsen, Simon Meldahl Schmidt, Jesper Steensgaard,
Anna Blume Jakobsen, Jaco van de Pol, and Andreas Pavlogiannis

Transforming Quantified Boolean Formulas Using Biclique Covers.

Oliver Kullmann and Ankit Shukla

Certificates for Probabilistic Pushdown Automata via Optimistic Value

Tteration. e

Tobias Winkler and Joost-Pieter Katoen

Probabilistic Program Verification via Inductive Synthesis of Inductive

Invariants. e

Kevin Batz, Mingshuai Chen, Sebastian Junges,
Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja

Runtime Monitoring/Program Analysis

Industrial-Strength Controlled Concurrency Testing for C# Programs with

COYOTE .« e e e e e e

Pantazis Deligiannis, Aditya Senthilnathan, Fahad Nayyar,
Chris Lovett, and Akash Lal

Context-Sensitive Meta-Constraint Systems for Explainable Program

ANalysis. . ..o

Kalmer Apinis and Vesal Vojdani

Explainable Online Monitoring of Metric Temporal Logic

Leonardo Lima, Andrei Herasimau, Martin Raszyk, Dmitriy Traytel,
and Simon Yuan

12th Competition on Software Verification — SV-COMP 2023

Competition on Software Verification and Witness Validation:

SV-COMP 2023 e

Dirk Beyer

Xvii

329

Xviil Contents — Part 11

SymBioTic-WitcH 2: More Efficient Algorithm and Witness Refutation
(Competition Contribution).t tie 523
Paulina Ayaziova and Jan Strejcek

2LS: Arrays and Loop Unwinding (Competition Contribution) 529
Viktor Malik, FrantisSek Necas, Peter Schrammel, and Tomads Vojnar

BuBaak: Runtime Monitoring of Program Verifiers
(Competition Contribution).ttt 535
Marek Chalupa and Thomas A. Henzinger

EBF 4.2: Black-Box Cooperative Verification for Concurrent Programs
(Competition Contribution).t 541
Fatimah Aljaafari, Fedor Shmarov, Edoardo Manino, Rafael Menezes,
and Lucas C. Cordeiro

GosLINT: Autotuning Thread-Modular Abstract Interpretation

(Competition Contribution).t 547
Simmo Saan, Michael Schwarz, Julian Erhard, Manuel Pietsch,
Helmut Seidl, Sarah Tilscher, and Vesal Vojdani

Java Ranger: Supporting String and Array Operations in Java Ranger

(Competition Contribution).ottt 553
Soha Hussein, Qiuchen Yan, Stephen McCamant, Vaibhav Sharma,
and Michael W. Whalen

Korn—-Software Verification with Horn Clauses (Competition
Contribution) e 559
Gidon Ernst

Mopsa-C: Modular Domains and Relational Abstract Interpretation
for C Programs (Competition Contribution) 565
Raphaél Monat, Abdelraouf Ouadjaout, and Antoine Miné

PIChecker: A POR and Interpolation based Verifier for Concurrent

Programs (Competition Contribution). 571
Jie Su, Zuchao Yang, Hengrui Xing, Jiyu Yang, Cong Tian,
and Zhenhua Duan

Ultimate Taipan and Race Detection in Ultimate (Competition

Contribution) e 577
Matthias Heizmann, Max Barth, Daniel Dietsch, Leonard Fichtner,
Jochen Hoenicke, Dominik Klumpp, Mehdi Naouar, Tanja Schindler,
Frank Schiissele, and Andreas Podelski

Contents — Part II

Ultimate Taipan and Race Detection in Ultimate (Competition

Contribution)

Daniel Dietsch, Matthias Heizmann, Dominik Klumpp, Frank Schiissele,
and Andreas Podelski

VeriAbsL: Scalable Verification by Abstraction and Strategy Prediction

(Competition Contribution).ottt e

Priyanka Darke, Bharti Chimdyalwar, Sakshi Agrawal,
Shrawan Kumar, R Venkatesh, and Supratik Chakraborty

VeriFuzz 1.4: Checking for (Non-)termination (Competition Contribution)

Ravindra Metta, Prasanth Yeduru, Hrishikesh Karmarkar,
and Raveendra Kumar Medicherla

Author Index e

Xix

594

Contents — Part 1

Invited Talk

A Learner-Verifier Framework for Neural Network Controllers and

Certificates of Stochastic Systems

Krishnendu Chatterjee, Thomas A. Henzinger, Mathias Lechner,
and Dorde Zikeli¢

Model Checking

Bounded Model Checking for Asynchronous Hyperproperties.

Tzu-Han Hsu, Borzoo Bonakdarpour, Bernd Finkbeiner,
and César Sanchez

Model Checking Linear Dynamical Systems under Floating-point

Rounding.

Engel Lefaucheux, Joél Ouaknine, David Purser, and Mohammadamin

Sharifi

Efficient Loop Conditions for Bounded Model Checking Hyperproperties

Tzu-Han Hsu, César Sanchez, Sarai Sheinvald,
and Borzoo Bonakdarpour

Reconciling Preemption Bounding with DPOR.

lason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis

Optimal Stateless Model Checking for Causal Consistency.

Parosh Abdulla, Mohamed Faouzi Atig, S. Krishna, Ashutosh Gupta,
and Omkar Tuppe

Symbolic Model Checking for TLA+ Made Faster

Rodrigo Otoni, Igor Konnov, Jure Kukovec, Patrick Eugster,
and Natasha Sharygina

AutoHyper: Explicit-State Model Checking for HyperLTL

Raven Beutner and Bernd Finkbeiner

66

Xxii Contents — Part I
Machine Learning/Neural Networks

Feature Necessity & Relevancy in ML Classifier Explanations 167
Xuanxiang Huang, Martin C. Cooper, Antonio Morgado, Jordi Planes,
and Joao Marques-Silva

Towards Formal XAI: Formally Approximate Minimal Explanations of
Neural Networks.o 187
Shahaf Bassan and Guy Katz

OccRog: Efficient SMT-Based Occlusion Robustness Verification of Deep
Neural Networks.o 208
Xingwu Guo, Ziwei Zhou, Yueling Zhang, Guy Katz, and Min Zhang

Neural Network-Guided Synthesis of Recursive List Functions. 227
Naoki Kobayashi and Minchao Wu

Automata

Modular Mix-and-Match Complementation of Biichi Automata. 249
Vojtech Havlena, Ondrej Lengal, Yong Li, Barbora Smahlikova,
and Andrea Turrini

Validating Streaming JSON Documents with Learned VPAs 271
Véronique Bruyere, Guillermo A. Pérez, and Gaétan Staquet

Antichains Algorithms for the Inclusion Problem Between w-VPL 290
Kyveli Doveri, Pierre Ganty, and Luka HadZi-Doki¢

Stack-Aware Hyperproperties 308
Ali Bajwa, Minjian Zhang, Rohit Chadha, and Mahesh Viswanathan

Proofs

Propositional Proof Skeletons. 329
Joseph E. Reeves, Benjamin Kiesl-Reiter, and Marijn J. H. Heule

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers. 348
Dawn Michaelson, Dominik Schreiber, Marijn J. H. Heule,
Benjamin Kiesl-Reiter, and Michael W. Whalen

CaARcARA: An efficient proof checker and elaborator for SMT proofs in the
Alethe format. 367
Bruno Andreotti, Hanna Lachnitt, and Haniel Barbosa

Contents — Part [

Constraint Solving/Blockchain

The Packing Chromatic Number of the Infinite Square Grid is 15.........

Bernardo Subercaseaux and Marijn J. H. Heule

Active Learning for SAT Solver Benchmarking

Tobias Fuchs, Jakob Bach, and Markus Iser

ParaQooBa: A Fast and Flexible Framework for Parallel and Distributed

QBF Solving

Maximilian Heisinger, Martina Seidl, and Armin Biere

Inferring Needless Write Memory Accesses on Ethereum Bytecode.

Elvira Albert, Jesus Correas, Pablo Gordillo, Guillermo Romdadn-Diez,
and Albert Rubio

Markov Chains/Stochastic Control

A Practitioner’s Guide to MDP Model Checking Algorithms

Arnd Hartmanns, Sebastian Junges, Tim Quatmann,
and Maximilian Weininger

Correct Approximation of Stationary Distributions

Tobias Meggendorfer

Robust Almost-Sure Reachability in Multi-Environment MDPs.

Marck van der Vegt, Nils Jansen, and Sebastian Junges

Mungojerrie: Linear-Time Objectives in Model-Free Reinforcement

Learning

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi,
Ashutosh Trivedi, and Dominik Wojtczak

Verification

A Formal CHERI-C Semantics for Verification.

Seung Hoon Park, Rekha Pai, and Tom Melham

Automated Verification for Real-Time Systems: via Implicit Clocks and an

Extended Antimirov Algorithm.

Yahui Song and Wei-Ngan Chin

XXiii

XXV Contents — Part 1

Parameterized Verification under TSO with Data Types. 588
Parosh Aziz Abdulla, Mohamad Faouzi Atig, Florian Furbach,
Adwait A. Godbole, Yacoub G. Hendi, Shankara N. Krishna,
and Stephan Spengler

Verifying Learning-Based Robotic Navigation Systems 607
Guy Amir, Davide Corsi, Raz Yerushalmi, Luca Marzari, David Harel,
Alessandro Farinelli, and Guy Katz

Make Flows Small Again: Revisiting the Flow Framework 628
Roland Meyer, Thomas Wies, and Sebastian Wolff

ALASCA: Reasoning in Quantified Linear Arithmetic. 647
Konstantin Korovin, Laura Kovdcs, Giles Reger, Johannes Schoisswohl,
and Andrei Voronkov

A Matrix-Based Approach to Parity Games 666
Saksham Aggarwal, Alejandro Stuckey de la Banda, Luke Yang,

and Julian Gutierrez

A GPU Tree Database for Many-Core Explicit State Space Exploration. 684
Anton Wijs and Muhammad Osama

Author Index e 705

Tool Demos

Check for
updates

EVA: a Tool for the Compositional Verification of
AUTOSAR Models

Alessandro Cimatti'(®, Luca Cristoforetti'@, Alberto Griggio!(®,
Stefano Tonetta! (@), Sara Corfini?®™(, Marco Di Natale?*,
and Florian Barrau?®

! Fondazione Bruno Kessler, Trento, Italy
2 Huawei Pisa Research Center, Pisa, Italy
s.corfini@huawei.com
3 Huawei Grenoble Research Center, Grenoble, France
4 Scuola Superiore Sant’Anna, Pisa, Italy

Abstract. We present EVA, a framework for the integration of modern
verification tools in the context of AUTOSAR, a widely-used open stan-
dard for the development of automotive software systems. Our framework
enables the automatic end-to-end verification of system-level properties
using a compositional approach. It combines software model checking
techniques for the verification of software components at the code level
with a contract-based analysis for verifying their correct composition. In
this paper, we present the tool through its application on a representa-
tive automotive case study, discussing the main functionalities provided
and the results obtained.

1 Introduction

AUTOSAR [1] is a worldwide consortium of car manufacturers and component
or service providers in the automotive domain, with the main goal of provid-
ing a standardized software architecture for the development and execution of
software components. One of the fundamental challenges in designing software
for the AUTOSAR platform is ensuring safety. To this end, the application of
formal methods — and in particular automatic (or semi-automatic) techniques
based on model checking and theorem proving — is receiving significant interest
as a complement to more traditional V&V techniques. In this paper we present
EVA, a framework for the integration of modern verification tools in the con-
text of AUTOSAR. EVA adopts a model-based compositional verification that
founds on the contract-based methodology in [8]. The tool allows the automatic
end-to-end verification of system-level properties, and combines software model
checking techniques for the verification of software components at the code level
with a contract-based analysis for verifying their correct composition. EVA also
implements all the features that are required for usability in a typical industrial
context, including a front-end integrated in a standard AUTOSAR development
environment [2] with a user-friendly (formal) property editor, the automatic
generation of code stubs and other views and forms to help the user manage
verification in an AUTOSAR environment.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 3-10, 2023.
https://doi.org/10.1007/978-3-031-30820-8_1

https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-8519-6342
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0001-9091-7899
http://orcid.org/0000-0003-1715-3882
http://orcid.org/0000-0002-5878-777X
mailto:s.corfini@huawei.com
https://doi.org/10.1007/978-3-031-30820-8_1
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_1&domain=pdf

4 A. Cimatti et al.

AUTOSL

BrakeCommand CruiseControl

RBrakeCommand

BrakeS: 1
I:b [aXeSensor” isarakeSensor1Valid
BrakePedalPosition1 Brake » Brake (EleL[Um
IsBrakeSensorValid -:—[}
Set Active
BrakePedalPosition CCActive) i >
BrakeS: r2 .
I}I—E:ra eSenso > IsBrakeSensor2Valid Commands RIS
q Increment
BrakePedalPosition2 CCTargetSpeed § TargetSpeed >
Decrement
o

Fig. 1. BrakeCommand and CruiseControl components.

We present EVA through its application on a representative case study, which
describes a simplified active safety automotive system containing some of the
typical safety functions available in the modern vehicles (such as lane departure
warning, cruise control and a fault-tolerant brake pedal system). The example
is meant to show the potential of the tool as a driver for a more widespread
adoption of formal methods and contract-based verification in the industrial au-
tomotive context. Specifically, we introduce the case study in §2 and we describe
the typical verification workflow followed by a user of EVA in §3. Finally, in §4
we discuss the main verification results obtained.

2 A Case Study for Verification in AUTOSAR

AUTOSAR defines the reference architecture for the development of automotive
systems and provides the language (meta-model) for describing their architec-
tural models. An AUTOSAR application consists of a hierarchy of components
connected through ports. Provide ports represent output ports and require ports
correspond to the input ports. Connectors represent data flow from one port to
another. An AUTOSAR port can be classified as sender-receiver or client-server
and sender-receiver communications can be queued or non-queued (i.e., with no
buffering and the receiver always accesses the last sent data). In this paper we
assume that all ports are sender-receiver and non-queued.

An atomic software component consists of a set of runnables. A runnable
is a sequence of operations started by the Run-Time Environment (RTE). The
runnable is configured so that is triggered by an event that can be timing, data
sent or received, operation invoked, return of a server call, mode switching or
external events. A special init event is used for runnables that are executed when
the RTE starts and initializes the software components.

We illustrate the basic notions above by means of a simple but representa-
tive case study, that we shall use to present the main features of EVA. Figure
1 overviews (a section of) the architecture of the sample application. It collects
22 atomic components (including sensors, controllers and actuators) plus one

EVA 5

composite component (AUTOSL) that represents the whole system, and imple-
ments some of the typical safety functions available in the modern vehicles such
as autonomous emergency braking, lane departure warning, crash preparation
and cruise control. We implemented (the runnables of) 9 components, 7 have
been coded manually and 2 have been generated from a Simulink model using
the Embedded Coder Support Package for AUTOSAR. The other components
are considered as stubs because their data come from lower levels (hardware
sensors) and we assume that the values they provide are correct.

The case study considers various safety properties, both at the level of the
whole system and at the level of the implementation of individual components
or runnables. As an example, we describe here two properties, a system-level
one and a component-level one, both concerning the behaviour of the cruise
controller. Specifically, the cruise controller is expected to react to a brake input
by disengaging itself within two execution steps. At the implementation level,
the requirement relates the input and output ports of the CruiseControl periodic
runnable, stating that whenever the CruiseControl CCActive port is true and the
Brake input port is true, then the CCActive output port must become false in at
most two steps. At the system level, instead, the same requirement relates the
behaviour of the components BrakeCommand and CruiseControl, stating that the
cruise control shall be disengaged if the user brakes, even when one of the two
brake pedal sensors is faulty.

3 EVA Verification Workflow

EVA integrates the verification engines Kratos2 [6] and OCRA [5] into an analysis
AUTOSAR toolchain. The ultimate goal is to automate the verification of formal
properties (contracts) on AUTOSAR models. In its default configuration, EVA
uses a portfolio of different state-of-the-art SAT- and SMT-based symbolic model
checking algorithms (implemented in Kratos2 and OCRA) which include differ-
ent variants of bit-level IC3 [10,12], IC3 with implicit abstraction [7], bounded
model checking [3] and K-induction [11].

The typical workflow of the tool is sketched in Figure 2. At the beginning,
the user creates an analysis project providing as input the AUTOSAR config-
uration of the system. The tool transforms the AUTOSAR configuration into
an internal set of analysis models. Since the AUTOSAR standard deals neither
with requirements nor with formal properties and their verification, EVA adopts
the extended AUTOSAR metamodel defined in [4] to support such concepts.

The user then completes the configuration of the system and provides:

source code: the user imports into the analysis project the source code of the
runnables and associates each runnable with its source files.

requirements: the user defines the (informal) properties of the system and
their relationships. Specifically, the user can assign a requirement to a com-
ponent, or to the system (modeled by a composite component) and refine
it into other requirements. Considering the following examples of informal

6 A. Cimatti et al.

N " Create
AUTOSAR Configuration { Analysis Project >

v

Shared
Analysis Models

)

Import
Code Files
Add
Requirements

Formal Requirements

Source Code

Create
Functional Verification
Analysis

Create
Coverage Set Generation
Analysis

Local Local
Analysis Models Analysis Models

Coverage Generation Functional Verification

C Unit Tests Counterexample ‘

Apply Changes
Change Configuration

Fig. 2. The analysis workflow.

Contract Verified

requirements for the case study of §2:

If the user brakes, the cruise control shall disengage within 2 steps (1)
The signals of the brake pedal sensors shall be merged (2)

Even if at most one brake pedal sensor is faulty (3)
if the user brakes, the cruise control shall disengage

(1) and (2) are component-level requirements assigned to CruiseControl and
BrakeCommand respectively, while (3) is a system-level requirement assigned
to the composite AUTOSL and refined by (1) and (2).

contracts: the user formalizes the requirements into contracts. Precisely, a con-
tract consists of (optional) assumptions (properties that shall be satisfied by
the environment) and assertions (properties that the owner of the contract
shall satisfy), expressed as formulas in Linear Temporal Logic (LTL) with
some metric extensions (interpreted over discrete time). The user can assign

EVA 7

a contract either to a runnable or to a (composite) component.

in the future within [2,2] (4)
it shall always_be that
(CCActive and Brake is_greater_than 0) implies
in the future within [0,2] (not next(CCActive))
holds_true

Contract (4) is the formal representation of requirement (1) and it is assigned
to the periodic runnable of the CruiseControl component®. It is worth noting
that EVA provides a smart contract editor that assists the user with context
completion, syntax highlighting and error detection. Also, to aid readability
of contracts, EVA uses some syntactic sugar to represent temporal operators,
such as in the future for F' or it shall always_be for G.

The user can create a new functional verification analysis, allowing to perform:

code verification: the user can check whether (the source code of) a runnable
satisfies one of the contracts assigned to it. Let us consider again the periodic
runnable of the CruiseControl component. The user can run code verification
to check whether that runnable satisfies its assigned contract (4).

compositional verification: the user can check whether a contract assigned
to a (composite) component is correctly refined by the contracts of the sub-
components. Intuitively, the user can run compositional verification to check
whether the system-level contract derived from requirement (3) and assigned
to the composite AUTOSL, is refined by the contracts derived from require-
ments (1) and (2) and assigned to the runnables of components CruiseControl
and BrakeCommand.

The result of both analyses can be that the contract is verified or violated. In
case of contract violation, EVA returns a counterexample (and the corresponding
test case, if the performed analysis is code verification). The user can fix the code
or change the system configuration (refine requirements or scheduling runnables)
and then execute the analysis again. The user can optionally apply local changes
to the shared analysis models (typically after a contract has been verified).

In addition to the main features above, two further analyses are provided:

contract validation: the user can verify the consistency (and absence of logical
contradictions) of the contracts of a component and of its sub-components.

coverage set generation: it combines model checking and random simulation
to automatically generate unit tests (using the CUnit [9] framework) trying
to cover all the branches of the C code of a given runnable.

4 Experimental Evaluation

In order to evaluate the effectiveness and performance of EVA, we applied it to
the verification of all the 43 requirements (10 system-level, 33 component-level)

5 We omit the contracts derived from (2) and (3) for lack of space (their formalization
shall be included in the artifact accompanying this submission).

8 A. Cimatti et al.

of the case-study application described in §2. Due to lack of space, we cannot
report the results in detail and we shall limit our analysis to some qualitative
considerations about the overall performance of EVA and the usefulness of the
produced outputs. Full details on the obtained results will be included in the
submitted artifact.

Performance considerations. We verified all the requirements on a PC run-
ning Ubuntu Linux 20.04, with a 2.6 GHz Intel Core 17-66000U CPU and 20 Gb
of RAM. EVA was able to successfully perform 42 out of 43 verification tasks
within the timeout (set to 1 hour), requiring less than one second in nearly half
of the cases for component-level properties, and requiring less than one minute
for all the remaining component-level tasks except one. For such problems, the
main bottlenecks identified during the case study involved the use of complex
floating-point operations, which are still handled inefficiently by the verification
backend. Also the verification of the 10 system-level properties could be com-
pleted relatively efficiently, with EVA requiring less than one minute in 7 cases,
and approximately 30 minutes for the hardest one. In this case, the main factor
affecting performance (besides the expected ones such as the number of involved
contracts and their complexity and length) are the constraints on the compo-
sition of components defined in the input model. In particular, performance is
affected significantly in cases in which the contract under analysis involves peri-
odic components with very different activation periods. The presence of periods
that range from few milliseconds to seconds poses a conceptual /theoretical chal-
lenge because the reasoner must explore a large number of small steps of the
more frequent tasks for each step of the slow ones. Optimizations targeting this
issue are left as research directions for future works.

Issues discovered. During verification, several counterexamples have been dis-
covered. Most of them turned out to be due to incorrect formalizations of re-
quirements or missing environment assumptions, which could be easily fixed by
examining the produced counterexamples. The analyses however revealed also
a number of real bugs in the implementations of some of the software compo-
nents as well as two issues due to wrong scheduling of components. The first
was caused by a mismatch between the Simulink description of the CruiseCon-
trol periodic runnable and its C implementation in the AUTOSAR application.
Specifically, the mismatch was due to different assumptions about the rate of
execution of the step of the cruise control with respect to the rate of the change
of the inputs, which caused the input values to be read only at even steps of the
cruise controller. The second issue regarded the scheduling of the BrakeCommand
runnable, which was set to be executed only upon changes in the input pedal
positions. A counterexample in the contract refinement showed that the validity
of these input signals could change value without the BrakeCommand running
so that the pedal position was not propagated to the CruiseControl. The model
was fixed by adding a trigger of the BrakeCommand also associated to the valid
signal of the pedal positions. In both cases, the bugs could be fixed by analyzing
the counterexamples generated by EVA.

5

EVA 9

Data Availability Statement

The artifact described in the paper is not publicly available due to internal policy.
Any requests can be directed to the corresponding author.

References

N

11.

12.

https://www.autosar.org

Artop: The AUTOSAR Tool Platform, http://www.artop.org

Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) 5" International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 1579,
pp. 193-207. Springer (1999)

Cimatti, A., Corfini, S., Cristoforetti, L., Di Natale, M., Griggio, A., Puri, S.,
Tonetta, S.: A Comprehensive Framework for the Analysis of Automotive Systems.
In: Syriani, E., Sahraoui, H.A., Bencomo, N., Wimmer, M. (eds.) ACM/IEEE 25"
International Conference on Model Driven Engineering Languages and Systems
(MODELS). pp. 379-389. ACM (2022)

Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A Tool for Checking the Refine-
ment of Temporal Contracts. In: Denney, E., Bultan, T., Zeller, A. (eds.) 281"
IEEE/ACM International Conference on Automated Software Engineering (ASE).
pp. 702-705. IEEE (2013)

Cimatti, A., Griggio, A., Micheli, A., Narasamdya, 1., Roveri, M.: Kratos - A Soft-
ware Model Checker for SystemC. In: Gopalakrishnan, G., Qadeer, S. (eds.) 2374
International Conference on Computer Aided Verification (CAV). LNCS, vol. 6806,
pp. 310-316. Springer (2011)

Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state Invariant Checking
with IC3 and Predicate Abstraction. Formal Methods in System Design 49(3),
190-218 (2016)

Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Science of Computer Programming 97, 333-348 (2015)
CUnit: A Unit Testing Framework for C, cunit.sourceforge.net

. Griggio, A., Roveri, M.: Comparing Different Variants of the ic3 Algorithm for

Hardware Model Checking. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 35(6), 1026-1039 (2016)

Sheeran, M., Singh, S., Stalmarck, G.: Checking Safety Properties Using Induction
and a SAT-Solver. In: Hunt, W.A., Johnson, S.D. (eds.) 3"¢ International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD). LNCS, vol. 1954,
pp. 108-125. Springer (2000)

Vizel, Y., Gurfinkel, A.: Interpolating Property Directed Reachability. In: Biere,
A., Bloem, R. (eds.) 26" International Conference on Computer Aided Verification
(CAV). LNCS, vol. 8559, pp. 260-276. Springer (2014)

https://www.autosar.org
http://www.artop.org
cunit.sourceforge.net

10 A. Cimatti et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

WASIM: A Word-level Abstract Symbolic
Simulation Framework for Hardware Formal
Verification*

@ and Hongce Zhang!2

Wenji Fang!
! The Hong Kong University of Science and Technology (Guangzhou),
Guangzhou, China
wfang838Q@connect.hkust-gz.edu.cn
2 The Hong Kong University of Science and Technology,
Hong Kong, China
hongcezh@ust.hk

Abstract. This paper demonstrates the design and usage of WASIM,
a word-level abstract symbolic simulation framework with pluggable ab-
straction/refinement functions. WASIM is useful in the formal verifica-
tion of functional properties on register-transfer level (RTL) hardware
designs. Users can control the symbolic simulation process and tune the
level of abstraction by interacting with WASIM through its Python API.
WASIM can be used to directly check formal properties on symbolic
traces or to extract useful fragments from symbolic representations to
construct safe inductive invariants as a correctness certificate. We demon-
strate the utility of WASIM on the verification of two pipelined hardware
designs. WASIM and the case studies are available under open-source li-
cense at: [9].

Keywords: Formal verification - symbolic simulation - abstraction re-
finement.

1 Introduction

Formal property verification (FPV) plays an essential role in hardware verifica-
tion. Symbolic simulation is one of the model checking techniques used for FPV.
It explores all paths of the design circuit simultaneously with symbolic values to
work around the state explosion problem [6].

In this paper, we present WASIM, a word-level abstract symbolic simula-
tion framework with customizable abstraction/refinement functions. In the prac-
tice of hardware formal verification, we consider the guidance from human ver-
ification engineers as the key to scaling formal techniques up for industrial-
size designs. Therefore, in WASIM, we emphasize easy user-interaction that al-
lows engineers to freely control the simulation process and plug-in their own

* The work has been supported in part by Guangdong Basic and Applied Basic
Research Fund no. 2022A1515110178; by Guangzhou-HKUST(GZ) Joint Funding
Scheme no. SL2022A03J01288; and by Guangzhou Basic Research Project no.
SL2022A04J00615.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 11-18, 2023.
https://doi.org/10.1007/978-3-031-30820-8_2

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-8380-9395
http://orcid.org/0000-0003-4001-264X
mailto:wfang838@connect.hkust-gz.edu.cn
mailto:hongcezh@ust.hk
https://doi.org/10.1007/978-3-031-30820-8_2
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_2&domain=pdf

12 W. Fang and H. Zhang

design-specific abstraction functions. WASIM can also ensure its trustworthi-
ness through a certificate (an inductive invariant) constructed from the traces
of symbolic simulation.

WASIM

! 1 B i o 1
! User Interface i / Input Processing \ FV Application !
! i Yosys | | \ I |
! RTL Design Y Btor ﬂ Formal Property I
! (Verilog) | Raser Traces of Verification !
I ! Abstract States —
| User Input ! I }
: Script |] !
\ | . |
: r A \: Slnulatoy State Representation - @@ }
I - - ! @ « SMT formulas @ b
I+ Simulation Control !

: « Abstraction Function |) i)

I| + State Extraction & Manipulation : Symbolic Si on Abstraction Reflnemen_t

L | « substituti « concrete-abstract mapping

\ @ Z

I

oy __

ification

Fig. 1. Workflow of WASIM

Figure 1 demonstrates the workflow of WASIM. We highlight some of its
features below:

1. WASIM has a full support for synthesizable Verilog through the integration
with Yosys [17].

2. WASIM provides a set of Python API for rich user interactions.

3. WASIM performs symbolic simulation at the word level. It supports cus-
tomizable abstraction refinement functions and has built-in state simplifica-
tion functions to scale up for larger designs.

4. Users may freely extract symbolic state representations for various use cases
(e.g., formal property verification).

The remainder of this paper is organized as follows. The next section demon-
strates the functionalities of WASIM, followed by a short presentation of user
interface in Sect. 3. Sect. 4 reports the results on case studies. Sect. 5 discusses
related work. Finally, Sect. 6 concludes the paper.

2 WASIM Functionalities

The WASIM framework is built on top of PySMT [11], a unified interface for
multiple SMT solvers. The functionalities are described below.

2.1 Input Processing.

The input Verilog circuits are initially processed by the open-source synthesis
suite Yosys and transformed into the Btor2 format [15], an efficient word-level
representation for a state transition system (STS). WASIM consumes Btor2 with
a parser modified from CoSA (CoreIR Symbolic Analyzer) [14].

WASIM: A Word-level Abstract Symbolic Simulation Framework 13

2.2 Representing Simulation States using SMT formulas.

The state in WASIM is represented using SMT formulas, with one for each state
variable assignment. There are also assumptions (SMT formulas) associated with
each state. The assumptions capture the additional constraints on a symbolic
trace, for example, certain input combinations will never happen. The state is
reachable (realizable) if all assumptions are satisfiable. The state representation
may also include undetermined values (‘X’ values). We keep a special set of SMT
variables to represent the ‘X’ values.

2.3 Symbolic Simulation.

Symbolic simulation is mainly achieved through substitution. Variables in the
transition function of an STS are substituted by variable assignments from the
previous cycle. Unassigned input or unknown state variables are replaced by ‘X’
values. WASIM can explore either the state in the next one cycle (single-step
simulation) or traverse a set of states until no new (abstract) states are found
(multi-step simulation). Expression simplification and abstraction are used in
WASIM to reduce the size of the state representation.

2.4 Expression Simplification.

Expression simplification reduces the size of an SMT formula in the state repre-
sentation through the combination of various techniques. The built-in rewriting
functionality in SMT solvers serves as the ‘X’-agnostic simplification step. After
this first step, WASIM proceeds with ‘X’-aware simplification that checks if any
‘X’ value can be reduced given the state assumptions. For example, an ‘X’ is re-
ducible if it resides in the unreachable branch of an ITE (if-then-else) operator.
WASIM traverses the abstract syntax tree of SMT expressions and heuristically
guess-and-check reducible ‘X’ values. When confirmed, WASIM further rewrites
the expression to syntactically eliminate the ‘X’ values. We design several pat-
terns for common rewriting. For the most general case, WASIM will fall back to
query the CVC5 [2] SyGusS solver [1] to synthesize a new expression without ‘X’.

2.5 Abstraction Refinement.

We allow users to define abstraction functions that map a concrete state into
an abstract domain. A simple example of such abstraction is to leave out cer-
tain registers in the symbolic state representation by replacing them with ‘X’
values. The abstraction could be design-specific — engineers familiar with the
hardware microarchitecture may have better ideas on which registers to omit.
Therefore, we give such freedom to the WASIM users and allow them to spec-
ify their own abstraction functions. Abstraction is also essential to the efficient
state traversal because it is almost impossible to traverse the concrete state
space of a large hardware design. When it is hard to pre-determine the best ab-
straction function, users can specify a refinement function and perform dynamic
abstraction-refinement during symbolic simulation. An example of abstraction
refinement function is demonstrated below in Sect. 3.2

14 W. Fang and H. Zhang

3 User Interface

WASIM provides a Python interface to control the simulation, apply abstraction
or refinement and manipulate the symbolic expressions in state representations.

3.1 Simulation Process Control.

WASIM provides a single-step simulation function sim one step for forward
symbolic simulation of one clock cycle. Users can perform bounded-step simula-
tion by using the function in a range-based loop.

On the other hand, there is often the need for unbounded simulation. WASIM
provides an unbounded simulation function traverse all states. Asits name
suggests, this function instructs the simulator to search for all symbolic states
that are reachable from the current state. Users may optionally provide a termi-
nation condition and the simulator will only search for reachable states before
the condition becomes true. This is useful, for example, when searching for all
symbolic states when an instruction is stalled in a certain pipeline stage.

3.2 Customizable Abstraction/Refinement Function.

Users may provide a callable Python object as the abstraction/refinement func-
tion. The abstraction function should transfer one symbolic state to its counter-
part in the abstract domain, while the refinement function returns a list of states.

Here we give an example of user-specified dynamic abstraction refinement
during symbolic simulation. In microprocessor verification, we can use symbolic
simulation to check that the arithmetic processing pipeline is functionally correct
by computing the output symbolic state from symbolic pipeline inputs. There
are external signals coming into the pipeline that only affect latency rather
than the arithmetic function. Abstraction can be applied to omit all external
signals, however, the final abstract symbolic state might become too coarse.
A refinement function can lazily bring back the external signals and branch the
execution based on certain signal combinations, until the final symbolic states are
sufficiently accurate to check for functional correctness. This example will require
the simulator to have a pluggable interface for abstraction/refinement functions.

3.3 Symbolic State Extraction and Manipulation.

In order to use the result of symbolic simulation, WASIM allows users to freely
extract and manipulate the symbolic expressions in a state representation. Sim-
ulation traces are available as Python lists. Users can collect all states in any
simulation step and obtain the expressions of arbitrary state variable assignment.
By checking the satisfiability of the conjunction of all variable assignments, the
assumptions, and the negated property, users can check for property violations
on a symbolic state. WASIM can also evaluate arbitrary functions over state
variables given the variable assignment. This is useful to compute the symbolic
value of wires in Verilog. Finally, users may re-assign an intermediate state and
restart the simulation from that point.

WASIM: A Word-level Abstract Symbolic Simulation Framework 15

Symbolic state extraction and manipulation enable two use cases: formal
property verification and inductive invariant construction. Users can
achieve formal property verification by checking the violation of properties on
all abstract simulation states extracted from symbolic state traversal. Fragments
of expressions in symbolic states are also helpful in the construction of inductive
invariants, which could serve as the certificate for the abstract state traversal.
For example,

(sv1 = expri) A (svg = expra) A ...

indicates that the STS resides in one (abstract) symbolic state where svq, svg, ...
are the state variables, and expry, exprs, ... are the symbolic expressions in state
representation. By taking the disjunction of all such formulas of all reachable
abstract symbolic states, we cover the whole abstract state space and therefore,
the disjunction will constitute an inductive invariant for this STS. To certify a
specific safety property is valid, one can build from this inductive invariant with
additional expression fragments to create a safe inductive invariant.

4 Case Studies

We demonstrate the usage of WASIM with two verification case studies on
pipelined hardware designs. The design statistics are shown in Table 1, including
the number of state bits and logic gates.

Designs under verification. The first design is a simple arithmetic pipeline
with two variants implemented with or without external stall signals. They share
the same datapath that performs a multiply-accumulate (MAC) operation. The
second design is a simple 3-stage pipeline that resembles the backend of a pro-
cessor core. It contains data forwarding logic and the control logic to handle
external stall signals. Verification in this case study checks if these hardware
designs are implemented with the correct functions. Despite the relatively small
size, some are already nontrivial for a symbolic model checker.

Users’ input. For simple MAC without stall signals, users only need to provide
a simulation script with bounded simulation steps. For all other designs, certain
stages may be stalled by external signals for a period of time. The simulation
script instructs the simulator to case-split based on the value of external stall
signals and symbolically explore all stalled states in each step. The abstraction
function only keeps the concrete representation in the downstream of the stalled
stage, therefore, there are only a small number of stalled states in the abstract
domain. Finally, users may check the given properties are valid on every sym-
bolic path and the symbolic expressions in the state representations are used
to construct parts of inductive invariants. The inductive invariants are further
checked to ensure the correctness of simulation process given the user-provided
abstraction functions.

Results of the experiment. In the experiments, we compare with the IC3/PDR
symbolic model checking method implemented in Berkeley-ABC. The last three
columns in Table 1 are the time of symbolic simulation, the time of checking

16 W. Fang and H. Zhang

Table 1. Experimental Results

Design Statistics I1C3/PDR WASIM
Design name #. state bit #. logic gate Time Simulation-time FPV-time Inv-time

simple MAC no stall 27 180 0.03s 0.02 0.3s 0.09s
simple MAC + stall 27 234 0.03s 11min26s 1s 7s

3-stage-pipe-ADD 3153 1min57s 0.3s 2s
3-stage-pipe-NAND 2187 1minb7s 0.3s 2s

3-stage-pipe-SET 199 2681 >T72hr 1min21s 0.2s 0.8s

3-stage-pipe-NOP 2421 58s 0.1s 1s

functional properties on all traces and the time for checking the validity of in-
ductive invariants. Results show that for the 3-stage-pipe-* problems, with
proper guidance from a human verification engineer, symbolic simulation can
outperform autonomous model checking with order-of-magnitude speed-up. The
results are obtained on a server running Ubuntu 20.04 with a 2.9 GHz Intel
Xeon(R) Platinum 8375C CPU and 128G RAM.

5 Related Works

Apart from WASIM, VosslI [16] is another tool for hardware symbolic simula-
tion which implements the symbolic trajectory evaluation (STE) method [12,13].
VosslI is mainly on the bit level using binary decision diagrams (BDDs) as the
state representation. Several extensions to the original STE method have been
proposed so far. For example, generalized STE (GSTE) enables unbounded prop-
erty verification using assertion graphs [18], and the word-level STE (WSTE)
achieves a higher level of abstraction with word-level variables in bit-fields [7].
These extensions are typically only available in a commercial STE implementa-
tion. Moreover, users must be fluent in a domain-specific functional programming
language named f1 in order to use Vossll.

On the other hand, tools based on symbolic model checking are broadly avail-
able for hardware formal verification, for example, Berkeley-ABC [5], which is a
powerful open-source tool implementing a collection of various model checking
algorithms [3,4,8]. Unlike symbolic simulation, symbolic model checking runs au-
tonomously to prove or falsify given properties without user interactions. How-
ever, without proper human guidance, model checking tools may suffer more
from the scalability problem.

6 Conclusions

In this paper, we present the design and usage of WASIM, a word-level abstract
symbolic simulation framework. WASIM is featured with a Python user interface
and pluggable abstraction/refinement functions to facilitate human verification
engineers to bring in their insights to better scale formal methods for hardware
designs. Applications of WASIM include formal property verification and induc-
tive invariant generation. Our case studies show that this strategy can be helpful
for some problems that are hard for autonomous model checking.

WASIM: A Word-level Abstract Symbolic Simulation Framework 17

Data Availability Statement

The data that support the findings of this study are openly available in WASIM:
A Word-level Abstract Symbolic Simulation Framework for Hardware Formal
Verification at https://doi.org/10.5281/zenodo.7247147, reference number
[10]. The authors confirm that the data supporting the findings of this study are
available within the article and its supplementary materials.

References

10.

11.

12.

13.

. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A.,

Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. FM-
CAD 2013 Formal Methods in Computer—Aided Design p. 1

. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., et al.. CVC5: A versatile and

industrial-strength SMT solver. In: Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2022, Held as Part of ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 13243, pp. 415-442. Springer (2022). https://doi.org/10.1007/978-3-030-99524-
9_24, https://doi.org/10.1007/978-3-030-99524-9_24

Bradley, A.R.: Sat-based model checking without unrolling. In: International Work-
shop on Verification, Model Checking, and Abstract Interpretation. pp. 70-87.
Springer (2011)

Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of counterex-
amples to induction. In: Formal Methods in Computer Aided Design (FMCAD’07).
pp. 173-180. IEEE (2007)

Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: International Conference on Computer Aided Verification. pp. 24-40.
Springer (2010)

Bryant, R.E.: Symbolic simulation-techniques and applications. In: 27th
ACM/IEEE Design Automation Conference. pp. 517-521. IEEE (1990)
Chakraborty, S., Khasidashvili, Z., Seger, C.J.H., Gajavelly, R., Haldankar, T.,
Chhatani, D., Mistry, R.: Word-level symbolic trajectory evaluation. In: Interna-
tional Conference on Computer Aided Verification. pp. 128-143. Springer (2015)
Eén, N., Mishchenko, A., Brayton, R.: Efficient implementation of property di-
rected reachability. In: 2011 Formal Methods in Computer-Aided Design (FM-
CAD). pp. 125-134. IEEE (2011)

. Fang, W., Zhang, H.: tacas23-wasim (2022), https://github.com/fangwenji/

tacas23-wasim

Fang, W., Zhang, H.: WASIM: A word-level abstract symbolic simulation frame-
work for hardware formal verification (artifact) (2022), https://doi.org/10.
5281/zenodo . 7247147

Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT workshop. vol. 2015 (2015)

Hazelhurst, S., Seger, C.J.H.: Symbolic trajectory evaluation. Formal hardware
verification pp. 3-78 (1997)

Kaivola, R., Ghughal, E., et al.: Replacing testing with formal verification in intel ®
core™ {7 processor execution engine validation. In: International Conference on
Computer Aided Verification. pp. 414-429. Springer (2009)

https://doi.org/10.5281/zenodo.7247147
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://github.com/fangwenji/tacas23-wasim
https://github.com/fangwenji/tacas23-wasim
https://doi.org/10.5281/zenodo.7247147
https://doi.org/10.5281/zenodo.7247147

18

14.

15.

16.

17.
18.

W. Fang and H. Zhang

Mattarei, C., Mann, M., Barrett, C., Daly, R.G., Huff, D., Hanrahan, P.: CoSA:
Integrated verification for agile hardware design. In: 2018 Formal Methods in Com-
puter Aided Design (FMCAD). pp. 1-5. IEEE (2018)

Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, btormc and boolector 3.0. In:
International Conference on Computer Aided Verification. pp. 587-595. Springer
(2018)

Seger, C.J.: The Vossll hardware verification suite (2020), https://github.com/
TeamVoss/VossII

Wolf, C.: Yosys open synthesis suite (2016), https://github.com/YosysHQ/yosys
Yang, J., Seger, C.J.: Introduction to generalized symbolic trajectory evaluation.
IEEE transactions on very large scale integration (VLSI) systems 11(3), 345-353
(2003)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/TeamVoss/VossII
https://github.com/TeamVoss/VossII
https://github.com/YosysHQ/yosys
http://creativecommons.org/licenses/by/4.0/

N Check for
updates

Multiparty Session Typing in Java, Deductively

Jelle Bouma!, Stijn de Gouw', and Sung-Shik Jongmans'-2®)
! Open University of the Netherlands, Heerlen, the Netherlands

ssj@ou.nl
2 Centrum Wiskunde & Informatica (CWT), Amsterdam, the Netherlands

Abstract. Multiparty session typing (MPST) is a method to automat-
ically prove safety and liveness of protocol implementations relative to
specifications. We present BGJ: a new tool to apply the MPST method in
combination with Java. The checks performed using our tool are purely
static (all errors are reported early at compile-time) and resource-efficient
(near-zero cost abstractions at run-time), thereby addressing two issues
of existing tools. BGJ is built using VerCors, but our approach is general.

1 Introduction

Construction and analysis of distributed systems is hard. One of the challenges is
this: given a specification S of the roles and the protocols an implementation Z of
processes and communication sessions should fulfil, can we prove that Z is safe
and live relative to 8?7 Safety means “bad” communication actions never happen:
if a channel action happens in Z, then it is allowed by S. Liveness means “good”
communication actions eventually happen (communication deadlock freedom).

Multiparty session typing (MPST) [14,15] is a method to automatically prove
safety and liveness of protocol implementations. The idea is shown in Figure 1:

1. First, a protocol among roles ry,...,7, is implemented as a session of pro-
cesses Py, ..., P, (concrete), while it is specified as a global type G (abstract).
The global type models the behaviour of all processes together (e.g., “first,
a number from Alice to Bob; next, a boolean from Bob to Carol”).

2. Next, G is decomposed into local types Lq,...,L, by projecting G onto
every role. Each local type models the behaviour of one process alone (e.g.,
for Bob, “first, he receives from Alice; next, he sends to Carol”).

3. Last, absence of communication errors is verified by type-checking every pro-
cess P; against its local type L;. MPST theory assures that well-typedness
at compile-time implies safety and liveness at run-time.

The following simple example demonstrates global types and local types in Scrib-
ble notation [28], as used in the Scribble tool [16,17] for the MPST method.

Ezample 1. The Adder protocol [12] consists of two roles: Client (C) and Server
(8). Client either asks Server to add two numbers (Add-message with two Int-
payloads) or tells Server goodbye (Bye-message). In the former case, Server tells
Client the result (Res-message). This is repeated until Server is told goodbye.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 19-27, 2023.
https://doi.org/10.1007/978-3-031-30820-8 _3

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
mailto:ssj@ou.nl
https://doi.org/10.1007/978-3-031-30820-8_3
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_3&domain=pdf

20 J. Bouma et al.

global type G c 5] C S C S

L T ByeO T+ Add(1, 2) T S addd, 2) 5
projection %\ - - : Res(3) : : Res(3) :
local types Li Lo -+ L, |__ByeO ! | Add(2, 3),!

- - Res(5

type check T T T ! es(5) !
processes P, Py -+ P, . Bye() q

Fig.1: MPST method Fig. 2: Example runs of Adder

1 global Adder(role C, role S) { 1 local Adder(role C, role S) at C {

2 gheidee at @ { Forcoresooos 2 choice at C {

3 Add (Int, Int) from C to S; : 3 Add (Int, Int) to S; // send

4 Res (Int) from S to C; | 4 Res (Int) from S; // receive
5 do Adder(C, S); // recur --7 5 do Adder(C, S);

6 } or { 6 } or {

7 Bye() from C to S; } } 7 Bye() to S; } } // send

Fig. 3: Global type for Adder Fig. 4: Local type for Client in Adder
interpret

project
global | (auto) []gcal | (auto) pro-
types DFAs APIs cesses

Fig. 5: Workflow of API-generation-based tools for the MPST method

encode use
(auto) (manual)

Figure 2 shows three example runs as sequence diagrams. Figure 3 shows the
global type. Notation “m(t1,...,t,) from p to ¢’ specifies the communication of
a message of type m with payloads of types t1,...,t, from role p to role gq. No-
tation “choice at r { G1 } or --- or { Gy }’ specifies a choice among branches
G1,...,GE made by role 7. Figure 4 shows the local type for Client. The notation
for local types resembles the notation for global types, except that communica-
tions are broken up into sends (“m(ti,...,t,) to ¢”) and receives (“from p”’). O

A premier approach to apply the MPST method in combination with main-
stream programming languages is based on API generation (Figure 5); it is
used in the majority of MPST tools, including Scribble [16,17], its extensions
[32,5,25,22,8,23,9,27,35], StMungo [21], vScr [34], mpstpp [20], and Pompset [6].
The main ideas, first conceived by Deniélou/Hu/Yoshida and pursued in Scrib-
ble, follow two insights: (a) local types can be interpreted as deterministic finite
automata (DFA) [10,11], where every transition models a send/receive action;
(b) DFAs can be encoded as object-oriented application programming interfaces
(API) [16,17], where classes and methods model states and transitions.

Ezample 2. Figure 6 shows the DFA and a Java API for Client in Adder (Ex-
ample 1), in the style of Scribble. Transition labels of the form ¢!m(¢q,...,t,)
and p?m(ty,...,t,) in the DFA specify the send to ¢ and the receive from p of a
message of type m with payloads of types t1,...,t,. Classes Statel, State2, and
State3 in the API correspond to states 1, 2, and 3 of the DFA; the methods of
class Statei in the API correspond to the transitions from state ¢ in the DFA.
Figure 7 shows a process for Client, using the Java API. The idea is to write
method client that consumes an “initial state object” s1 as input and produces

Multiparty Session Typing in Java, Deductively 21

class UseOnce { // superclass
boolean b = false;
void use() { if (b) throw new RuntimeException(); b = true; } }

S!Bye()

class Statel extends UseOnce { // subclass
State2 sendAddToS(int x, int y) { use(); ... }
State3 sendByeToS () { use(O; ... } 1}

S?Res (Int)

© 0 N s W N e

class State2 extends UseOnce { // subclass

10 Statel recvResFromS(int[] buff) { use(); ... } }
11

12 class State3 extends UseOnce { }

S!Add(Int,Int)

Fig.6: DFA and Java API for Client in Adder (Scribble-style)

a “final state object” s3 as output. First, the only communication actions that
can be performed, are those for which s1 has a method. When called, the com-
munication action is performed and a fresh “successor state object” s2 (line 4)
or s3 (line 8) is returned. Next, the only communication actions that can be
performed, are those for which s2 or s3 has a method. And so on. By using state
objects in this way, a run of method client simulates a run of the DFA. O

However, existing API-generation- : State3 client(Statel si1) {
. int = 1; int = 2;
based tools that follow Example 2 in e (s o ;n< oot
MPST practice, do not fully meet the State2 s2 = si.sendAddToS(x, y);
int [] buff = new int[1];

2
3
4
. . 5

promise Of MPST theor , 11 two ways: 6 sl = s2.recvResFromS (buff);
7 x = y; y = buff [0]; }
8 State3 s3 = sl.sendByeToS();
9 return s3; }

1. Mixed static/dynamic checks:
To ensure safety and liveness, ev-
ery non-final state object must be
used linearly (exactly one method
call). However, the type systems of most mainstream programming languages
are too weak to check linear usage statically. Instead, dynamic checks are
needed (e.g., method use in Figure 6). As a result, MPST practice is weaker
than MPST theory: in MPST practice, some errors are reported late at run-
time, whereas in MPST theory, all errors are reported early at compile-time.

2. Resource-inefficient checks: Every time when a communication action is
performed, a fresh state object is created. This costs time (allocation; garbage
collection) and space. As a result, MPST practice is costlier at run-time than
MPST theory: in MPST practice, API-encodings of DFA-interpretations of
local types have a real footprint (proportionate to the number of communica-
tion actions), whereas in MPST theory, local types are zero cost abstractions.

Fig. 7: Process for Client in Adder

In this paper, we present BGJ: a new API-generation-based tool to apply the
MPST method in combination with Java. The checks performed using BGJ are
purely static (all errors are reported early at compile-time) and resource-efficient
(near-zero cost abstractions at run-time), thereby addressing the issues above.
Instead of building a new static analyser from scratch, we leverage a state-of-the-
art deductive verifier for Java, namely VerCors [2]. Under active development for
years, VerCors has been used in industrial case studies, too [26,18,30]. We note
that our approach is generic, though, while our current tool is VerCors-specific.

22 J. Bouma et al.

1 class DFA { 12 //@ context Perm(state, write);
2 int state; 13 //@ requires state == 1;

3 //@ ensures Perm(state, write); 14 //@ ensures state == 3;

4 //@ ensures state == 1; 15 void sendByeToS () {

5 DFA() { state = 1; } 16 state = 3; ... }

6 17

7 //@ context Perm(state, write); 18 //@ context Perm(state, write);
8 //@ requires state == 1; 19 //@ requires state == 2;

9 //@ ensures state == 2; 20 //@ ensures state == 1;

10 void sendAddToS(int x, int y) { 21 int recvResFromS () {

11 state = 2; ... } 22 state = 1; ... } }

Fig.8: Java API for Client in Adder (BGJ-style)

2 Usage: BGJ in a Nutshell
BGJ follows the same workflow as in Figure 5. We explain the steps below.

Steps 1-3: global types; local types; DFAs. First, the programmer manually
writes a global type in Scribble notation (e.g., Figure 3). Next, BGJ automati-
cally projects the global type to local types, and it automatically interprets the
local types as DFAs. This is standard and as usual [16,17].

Step 4: APIs. Next, BGJ automatically encodes the DFAs as APIs. Our ap-
proach is to encode a DFA of n states as an API of a single class instead of n
classes (Figure 6). At run-time, only one instance of this class is created (“near-
zero cost abstraction”); this instance allows any number of usages (method calls).
To be able to check that these usages are proper, a key novelty of our approach
is that BGJ also generates annotations for method contracts, Hoare-logic-style.

Ezample 3. Figure 8 shows the Java API for Client in Adder (Example 1), gener-
ated using BGJ (cf. Figure 6). Field state of class DFA identifies the current state;
the methods of class DFA correspond to transitions. The annotations (“//@ ...”)
define for each method: a precondition (“requires”; what must be true before a
call?), a postcondition (“ensures”; what will be true after?), and a method in-
variant (“context”; read /write permissions for which fields are needed?). O

Step 5: processes. Last’ the pro- 1 //@ context Perm(a.state, write)
. 2 //@ requires a.state == 1;
grammer manually writes processes

3 //@ ensures a.state =
using the APIs and automatically ver- 4 void client(DFA a) {

. . . 5 int x = 1; int y = 2;
ifies proper usage with VerCors (i.e., , /¢ loop_imvariant a.state == 1;
methods are called only if the precon- 7 while (x + y <(100>){

. .sendAddToS (x, y);
ditions hold). These checks are purely . : ze;; v =oa.}1{‘ec§ResFromS(); 3
static. If successful, safety relative to 10 a.sendByeToS(O; }
the global type and liveness (com-
munication deadlock freedom) are as-

sured; else, a bug is found (“all errors are reported early at compile-time”).

33

Fig.9: Process for Client in Adder

Ezample 4. Figure 9 shows a process for Client in Adder (Example 1), using the
Java API in Figure 8. It resembles Figure 7, except that method client and the

Multiparty Session Typing in Java, Deductively 23

loop are annotated with a simple contract and invariant. Using VerCors, we can
verify that the methods are called only if the preconditions hold. Conversely, if
we duplicate line 8, then VerCors reports an error: consecutively sending two
Add-messages is forbidden. This can be detected only dynamically in Figure 7
(i.e., a RuntimeException would be thrown in UseOnce of Figure 6). O

3 Implementation

BGJ is implemented in Java. It reuses the front-end of Scribble for global types,
local types, and DFAs in steps 1-3 and, thus, supports the same features (in-
cluding input branching). The encoder of DFAs as APIs in step 4 is new. It
generates two versions of every API: concrete (e.g., Figure 8) and abstract (e.g.,
Figure 8 without “...”). The concrete API is for running a process. The abstract
API, which omits all verification-irrelevant details, is for verifying a process.® At
run-time, TCP is used to transport messages between processes.

Besides the APIs, BGJ also generates “skeletons” of process code. These
skeletons represent the basic control flow (adapted from the DFAs) with send. ..
and recv... method calls in the right places (guaranteed to pass verification).
The skeletons can subsequently be filled in with the actual computations.

4 Preliminary Evaluation

We obtained first practical experience with BGJ to study its two improvements.
Regarding “all errors are reported early at compile-time”, we investigated how
much time the verification step of VerCors takes for eight example protocols in
Scribble’s repository [13]. Figure 10 shows the results, averaged over thirty runs,
using generated skeletons as process code. A preliminary conclusion is that the
extra time can be low enough (worth the effort*) for our approach to be feasible.

Regarding “near-zero cost abstractions at run-time”, we investigated run-time
overhead of a Scribble-based process (e.g., Figure 6) vs. a BGJ-based process
(e.g., Figure 8) for Client in Adder. We factored out code common to both ver-
sions (e.g., actual transport of messages over the wire), to be able to specifically
measure the impact of the differences (methodology of Castro et al. [5]). Av-
eraged over thirty runs, the Scribble-based process and the BGJ-based process

3 The generated annotations are compatible with VerCors 1.0 and above; VerCors can

be used as-is. A limitation of our approach is that VerCors supports only a subset
of Java. This affects the set of Java features supported for processes.
Usage of BGJ requires two kinds of effort. First, a method in hand-written process
code needs to be annotated if the body uses a generated API. All the other code—
typically the vast majority of the program (e.g., business logic, database access)—can
be tagged to be skipped by VerCors. The few annotations to be added, are only about
the state of the DFA at the beginning/ending of a method (pre/postconditions), or
at the beginning of each iteration (loop invariants). This is similar to the effort of
manually tracking state types when using the existing Scribble. Second, the validity
of the annotations need to be checked by VerCors. This is fully automated.

J. Bouma et al.

protocol #roles time q;;’;ees protocol F#roles time #';‘:lzs
Adder 2 151 7.6 HTTP 2 40.0 20.0
Booking 3 243 8.1 Negotiate 2 172 8.6
BuyerBrokerSupplier 4 304 7.6 SMTP 2 24.7 124
Fibonacci 2 149 75 TwoBuyer 3 22.8 7.6

Fig.10: Time of VerCors (in seconds)

completed 23! (Integer.MAX_VALUE) iterations in 5221ms and 974ms, respectively.
Our preliminary conclusion is that our approach is indeed more resource-efficient.

5 Conclusion

Related work. The combination of the MPST method and deductive verifica-
tion is largely unexplored territory. The only other work, by Lopez et al. [24],
uses deductive verifier VCC [7] to statically check safety and liveness of C+MPI
protocol implementations relative to MPST-based specifications. Their approach
is very different from ours, though, as it is not based on API generation.

The approach of encoding DFAs of n states as APIs of a single class was
recently studied by Cledou et al. [6], by leveraging advanced features of the
type system of Scala 3. Their approach does not address the issues in Section 1,
though, whereas our approach does. Previous attempts to address the issue of
“mixed static/dynamic checks” either target a programming language with a
stronger type system (Rust) [22,8,23,9], or adopt callback-style APIs in the spe-
cific context of event-based programming [35,34]. In contrast, our approach does
not rely on (the strength of) the type system of the targeted programming lan-
guage, and it supports traditional procedural/object-oriented programming.

Closest to BGJ is StMungo [21]: the approaches of both tools are similar, but
the underlying static analysis techniques differ. BGJ leverages method contracts
and deductive verification, while StMungo is based on typestate [33]. A key
advantage of using deductive verification is that it immediately opens the door
to reasoning about functional correctness (next paragraph).

Future work. There are two next steps. First, now that we have the infras-
tructure to combine the MPST method and deductive verification, we are keen
to explore their further integration to reason about functional correctness of dis-
tributed systems. VerCors is based on concurrent separation logic [29,4], so key
capabilities to reason about concurrency are already in place. This is connected
to work in which separation logic is used to control I/O operations (e.g., Pen-
ninckx et al. [31]). Second, while the usage of deductive verification is central to
BGJ, our approach does not crucially depend on VerCors: we chose it because it
is a fully automated, well-supported deductive verifier for Java, but other tools
(e.g., KeY [1], VeriFast [19]) offer opportunities worth investigating, too.

Multiparty Session Typing in Java, Deductively 25

Data Availability Statement

The artifact is available on Zenodo [3]. It contains: (a) our tool and its dependen-
cies; (b) material to replicate the example in Section 2; (c¢) material to replicate
the experiments in Section 4.

References

10.

11.

12.

13.

14.

. Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Schmitt, P.H., Ulbrich, M. (eds.):

Deductive Software Verification - The KeY Book - From Theory to Practice, Lec-
ture Notes in Computer Science, vol. 10001. Springer (2016)

Blom, S., Huisman, M.: The vercors tool for verification of concurrent programs. In:
FM. Lecture Notes in Computer Science, vol. 8442, pp. 127-131. Springer (2014)

. Bouma, J., de Gouw, S., Jongmans, S.: Multiparty session typing in java, deduc-

tively (artifact) (2023). https://doi.org/10.5281 /zenodo.7559175

. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.

375(1-3), 227-270 (2007)

Castro-Perez, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint APIs for
dynamically-instantiated communication structures. Proc. ACM Program. Lang.
3(POPL), 29:1-29:30 (2019)

Cledou, G., Edixhoven, L., Jongmans, S., Proenga, J.: API generation for mul-
tiparty session types, revisited and revised using scala 3. In: ECOOP. LIPIcs,
vol. 222, pp. 27:1-27:28. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2022)
Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C.
In: TPHOLs. Lecture Notes in Computer Science, vol. 5674, pp. 23—42. Springer
(2009)

Cutner, Z., Yoshida, N.: Safe session-based asynchronous coordination in rust. In:
COORDINATION. Lecture Notes in Computer Science, vol. 12717, pp. 80-89.
Springer (2021)

Cutner, Z., Yoshida, N., Vassor, M.: Deadlock-free asynchronous message reorder-
ing in rust with multiparty session types. In: PPoPP. pp. 246-261. ACM (2022)
Deniélou, P., Yoshida, N.: Multiparty session types meet communicating automata.
In: ESOP. Lecture Notes in Computer Science, vol. 7211, pp. 194-213. Springer
(2012)

Deniélou, P.; Yoshida, N.: Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In: ICALP (2). Lecture
Notes in Computer Science, vol. 7966, pp. 174-186. Springer (2013)

GitHub, Inc: scribble-java/adder.scr at 02dbf9abd9993b17c¢809aa610311452ec4cT6
3bc - scribble/scribble-java, accessed 22 January 2023, https://github.com/scribbl
e/scribble-java/blob/02dbf9abd9993b17c¢809aa610311452ec4c763be/scribble-dem
os/scrib/tutorial /src/tutorial /adder /Adder.scr

GitHub, Inc: scribble-java/scribble-demos/scrib at ccb0e48d69c6e3088¢e74
6138099c3183calac79b - scribble/scribble-java, accessed 22 January 2023,
https://github.com/scribble/scribble-java/tree/ccb0e48d69c6e3088¢746138099¢
3183calac79b/scribble-demos/scrib

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273-284. ACM (2008)

https://doi.org/10.5281/zenodo.7559175
https://doi.org/10.5281/zenodo.7559175
https://github.com/scribble/scribble-java/blob/02dbf9abd9993b17c809aa610311452ec4c763bc/scribble-demos/scrib/tutorial/src/tutorial/adder/Adder.scr
https://github.com/scribble/scribble-java/blob/02dbf9abd9993b17c809aa610311452ec4c763bc/scribble-demos/scrib/tutorial/src/tutorial/adder/Adder.scr
https://github.com/scribble/scribble-java/blob/02dbf9abd9993b17c809aa610311452ec4c763bc/scribble-demos/scrib/tutorial/src/tutorial/adder/Adder.scr
https://github.com/scribble/scribble-java/tree/ccb0e48d69c6e3088e746138099c3183ca1ac79b/scribble-demos/scrib
https://github.com/scribble/scribble-java/tree/ccb0e48d69c6e3088e746138099c3183ca1ac79b/scribble-demos/scrib

26

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

J. Bouma et al.

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1-9:67 (2016)

Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: FASE. Lecture Notes in Computer Science, vol. 9633, pp. 401-418. Springer
(2016)

Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
FASE. Lecture Notes in Computer Science, vol. 10202, pp. 116-133. Springer (2017)
Huisman, M., Monti, R.E.: On the industrial application of critical software verifi-
cation with vercors. In: ISoOLA (3). Lecture Notes in Computer Science, vol. 12478,
pp. 273-292. Springer (2020)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for C and java. In: NASA
Formal Methods. Lecture Notes in Computer Science, vol. 6617, pp. 41-55. Springer
2011

F]ongrians, S., Yoshida, N.: Exploring type-level bisimilarity towards more expres-
sive multiparty session types. In: ESOP. Lecture Notes in Computer Science, vol.
12075, pp. 251-279. Springer (2020)

Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
mungo and stmungo: A session type toolchain for java. Sci. Comput. Program.
155, 52-75 (2018)

Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty session types
in Rust. In: COORDINATION. Lecture Notes in Computer Science, vol. 12134,
pp. 127-136. Springer (2020)

Lagaillardie, N., Neykova, R., Yoshida, N.: Stay safe under panic: Affine rust pro-
gramming with multiparty session types. In: ECOOP. LIPIcs, vol. 222, pp. 4:1—
4:29. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik (2022)

Lopez, H.A., Marques, E.R.B., Martins, F., Ng, N., Santos, C., Vasconcelos, V.T.,
Yoshida, N.: Protocol-based verification of message-passing parallel programs. In:
OOPSLA. pp. 280-298. ACM (2015)

Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Communication-safe web programming
in typescript with routed multiparty session types. In: CC. pp. 94-106. ACM (2021)
Monti, R.E., Rubbens, R., Huisman, M.: On deductive verification of an indus-
trial concurrent software component with vercors. In: ISoLA (1). Lecture Notes in
Computer Science, vol. 13701, pp. 517-534. Springer (2022)

Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: CC. pp.
128-138. ACM (2018)

Neykova, R., Yoshida, N.: Featherweight scribble. In: Models, Languages, and Tools
for Concurrent and Distributed Programming. Lecture Notes in Computer Science,
vol. 11665, pp. 236-259. Springer (2019)

O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1-3), 271-307 (2007)

Oortwijn, W., Huisman, M.: Formal verification of an industrial safety-critical traf-
fic tunnel control system. In: IFM. Lecture Notes in Computer Science, vol. 11918,
pp. 418-436. Springer (2019)

Penninckx, W., Jacobs, B., Piessens, F.: Sound, modular and compositional ver-
ification of the input/output behavior of programs. In: ESOP. Lecture Notes in
Computer Science, vol. 9032, pp. 158-182. Springer (2015)

Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP. LIPIcs, vol. 74, pp. 24:1—
24:31. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2017)

Multiparty Session Typing in Java, Deductively 27

33. Strom, R.E.; Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Trans. Software Eng. 12(1), 157-171 (1986)

34. Yoshida, N., Zhou, F., Ferreira, F.: Communicating finite state machines and an
extensible toolchain for multiparty session types. In: FCT. Lecture Notes in Com-
puter Science, vol. 12867, pp. 18-35. Springer (2021)

35. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4(OOPSLA), 148:1-
148:30 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Check for
updates

PyLTA: A Verification Tool for Parameterized
Distributed Algorithms

Bastien Thomas and Ocan Sankur®)

Univ Rennes, Inria, CNRS, Rennes, France
ocan.sankur@irisa.fr

Abstract. We present the tool PyLTA, which can model check param-
eterized distributed algorithms against LTL specifications. The param-
eters typically include the number of processes and a bound on faulty
processes, and the considered algorithms are round-based and either syn-
chronous or asynchronous.

1 Introduction

Distributed algorithms — algorithms that run on multiple communicating pro-
cesses — are used in many domains including scientific computing, telecom-
munications and the Blockchain. Standard distributed algorithms typically per-
form relatively simple tasks such as consensus or leader election[17], but com-
plexity arises from the lack of reliability of the network: some processes may
crash, communications may be lost, faulty processes may send arbitrary mes-
sages (Byzantine faults)...In this setting, various automated verification tech-
niques have been developped in order to provide guarantees on the executions
of such algorithms. Notably, parameterised verification attempts to verify these
algorithms for every possible number of processes and faults at once [4].

Threshold automata [14] (TA) are a formalism based on counter abstrac-
tion [18] that model asynchronous distributed algorithms with parameterised
number of processes under crash and Byzantine faults. Verification can be per-
formed using a complete encoding to SMT formulas [13]. The decidabililty of
generalisations of these models was studied in [16] while [1] focuses on the com-
plexity of the underlying problems. These algorithms were implemented in the
Byzantine model checker ByMC [15]. However, algorithms based on threshold
automata require bounding the diameter of the underlying transition system,
either in the asynchronous case with bounded protocols (with only finitely many
exchanged messages) in [14], or with unbounded messages but in the synchronous
case, and for reachability properties only [20]. These techniques are therefore in-
complete for threshold automata where such a bound does not exist.

In this article, we introduce PyLTA, a tool for fully verifying parameterised
distributed algorithms both in the synchronous and asynchronous cases, with-
out bounding the diameter of the state space or the number of exchanged mes-
sages. It is based on layered threshold automata (LTA), a formalism developped
in [3] which can be thought of as some form of infinitely repeating threshold
automata. These generalise the synchronous TAs used in [20] and can handle

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 28-35, 2023.
https://doi.org/10.1007/978-3-031-30820-8_4

https://eapls.org/pages/artifact_badges/
mailto:ocan.sankur@irisa.fr
https://doi.org/10.1007/978-3-031-30820-8_4
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_4&domain=pdf

PyLTA: A Verification Tool for Parameterized Distributed Algorithms 29

both synchronous and asynchronous communication by exploiting some notions
similar to commaunication closure [8]. This allows us to verify any LTL formula,
including liveness properties, even on algorithms where processes may send un-
boundedly many messages (unlike [14] where only finite TAs and a fragment of
LTL was considered).

Concretely, PyLTA takes as input the LTA description of a parameterised
distributed algorithm as well as an LTL specification. It then verifies the spec-
ification under all parameter valuations, or finds a counterexample disproving
the specification. The tool is meant to provide support for distributed algorithm
designers. In fact, distributed algorithm design is not a single step process. In
practice, the implemented versions of an algorithm often contain additional fea-
tures or optimizations, and PyLTA can be used to automatically check these
variants for counterexamples.

2 Modeling Distributed Algorithms

In order to illustrate the capabilities of PyLTA, we use the Phase King algorithm
(Algorithm 1) [2]. In general, the algorithms that can be handled by PyLTA
exhibit the following characteristics:

1. They are parameterized: in Algorithm 1, n denotes the number of pro-
cesses and t a bound on the number of Byzantine faults. PyLTA verifies the
algorithm for all the valuations of these parameters at once.

2. They can exchange messages in an unbounded domain: the indices 2¢
and 27+ 1 in Algorithm 1 are not bounded by a constant.

3. They can be synchronous or asynchronous but must ensure commaunica-
tion closure: sent and received messages are tagged with indices (2¢ and 2i+1
in Algorithm 1) that can only increase with time. As noted in [8], commu-
nication closure appears both in synchronous and asynchronous algorithms
in the literature.

4. The algorithms should use threshold conditions. This means that the condi-
tions in branches on the algorithms should be arithmetic formulas comparing
numbers of received messages and the values of parameters (see line 10).

Under these conditions, algorithms can be encoded in an LTA. The last two
conditions can often be worked around. For example, we will show along this
article how Algorithm 1 can be verified despite the fact that the condition on
line 6 is not ameanable to counter abstraction as it uses the identity of processes
which is lost in the abstraction.

Algorithm 1 uses the parameters n, and ¢ with the condition ¢ < 7. We intro-
duce an additional paramter f < ¢ which is the actual number of faulty processes:
the algorithm does not have access to f, but it is used during verification. Com-
munication closure yields a layered structure of our models: a layer indexed by
£ € IN models the portion of the program that deals with messages tagged with
£. In Algorithm 1, the layer ¢ = 2¢ corresponds to lines 3-5, while layer £ =27 + 1
corresponds to lines 6-12.

30 Bastien Thomas and Ocan Sankur

=

Process PhaseKing(n,t,id, v):

Data: n processes, t < 7 Byzantine faults, id € {0...n -1}, v e {0,1}.
2 for i=0 to t do // Start of layer (=2
3 broadcast (2i,v) // State a,, ve{0,1}
4 ng < number of messages (2i,0) received
5 ny < number of messages (27,1) received// Start of layer £=2i+1
6 if ¢ ==id then // Current process is king
7 if ng>ny then v« 0 // State ko
8 else v<1 // State ki
9 broadcast (2i + 1,v)
10 else if ng > g +t then v <0 // State by
11 else if n; > 5 +¢ then v« 1 // State b
12 else v« v" where (2i + 1,v") is the king’s message // State by
13 end
14 return v;

Algorithm 1: The Phase King algorithm [2] is a synchronous algorithm that
solves binary consensus under ¢ < 7 Byzantine faults. It executes ¢+1 rounds,
and each round 7 € {0. ..t} is further decomposed into two layers (for round 4,
the layers are named 2¢ and 2i+1). In layer 2i, the processes broadcast their
preferences v, and in layer 2i+1, they update v either to the majority if it is
strong enough, or to the preference of the process with id 7, which is the king
of the round 1.

We use counter abstraction to model executions of the algorithm, meaning
that we define a counter storing the number of processes at each state of the
algorithm. Here, our approach differs from other works on threshold automata
because we count the number of processes that have been through the state
instead of those that are currently in it. It follows that the number of messages m
sent during the execution can be accurately deduced from these counter values
as the number of processes at states where messages m have been sent. The
downside of counter abstraction is that the identities of the processes are lost.
Notably, the condition on line 6 needs to be abstracted with a non deterministic
choice.

=0 (=1 (=2 (=3 (=4
ki:0 ﬁ\\

x2 |b1:0] x3 a1:3/ 1|

ao: 2] x2 W\]aozl//)(,:o\ ao: 0
ko:0 ko:0

Parameter values: n:5,¢t:1,f:1

[\]

Fig. 1: A configuration of the Phase King algorithm (Algorithm 1).

PyLTA: A Verification Tool for Parameterized Distributed Algorithms 31

Configurations. PyLTA verifies properties on all reachable configurations. A con-
figuration can be interpreted as a record of events that occured during an exe-
cution. An example is depicted in Fig. 1 which we now explain.

The configuration contains an instantiation of the parameter values (given on
the bottom of the figure). Moreover, for each layer index, it specifies the number
of correct (i.e. non-faulty) processes that were at a given state at that layer; as
well as the number of correct processes that moved from one state to another
between consecutive layers.

In Fig. 1, initially, 2 correct processes are at state aj, and 2 are at ag, for a
parameter valuation n =5,¢t =1, f = 1. Recall that layers 2¢ and 2i+ 1 correspond
to round i, and that the meaning of the states are given in Algorithm 1; in
particular, a, is the first line of an iteration where variable v has value z. All
4 correct processes go to b, at layer 1, which means that the Byzantine process
was king at round 0. Then three of them go to a; at layer 3, and one of them
goes to ag, etc. This models the situation where the Byzantine process sent a
message (2 x 0+ 1,1) to the latter process but (2 x 0+ 1,0) to the others. In
the next layer, a correct process is king with value 1 (state k), and one correct
process has received a majority of value 1 (state b1), but not all correct processes
have arrived to layer 4 yet. This configurations thus represents a finite prefix of
an execution. When needed, LTL fairness assumptions can ensure that we only
consider infinite configurations.

3 Input Format and Usage

The input format is based on layered threshold automata (LTA) defined in [3],
which we illustrate on the running example. An input file needs to define three
elements: parameters, states and guards.

In PyLTA, the set of parameters are declared as follows.

PARAMETERS: n, t, f
PARAMETER_RELATION: 4%t < n

The second line declares a constraint on these parameters, here 4t < n, which is
a necessary condition for the correctness of Algorithm 1.

As in our running example, the input format assumes that the states of the
considered systems belong to layers. The following line defines two consecutive
layers A, B, and specifies after layer B, we come back to layer A and loop.

LAYERS: A, B, A

In other terms, this results in the sequence of layers A, B, A, B,.... One can
also specify lasso-shaped sequences; for instance, LAYERS: A, B, B would yield
the sequence A, B, B, B,

States can be declared by specifying the name of the layer and the name of
the state separated by a period as below.

STATES: A.0, A.1
STATES: B.kO, B.0O, B.u, B.1, B.kil

32 Bastien Thomas and Ocan Sankur

For instance, the first line defines the states ag and a; in Figure 1, and the second
line is the rest of the states.

Transitions are defined by distinguishing cases for each state using guards.
In Algorithm 1, a process needs to receive more than 5 +¢ messages (2i,1) in
order to move from state a; (line 3) to by (line 11). These messages can either
come from processes in state a; or from Byzantine processes. In PyLTA, this
condition is called the guard from a; to b; and it is expressed with the formula
2(ay + f) > n+ 2t. State names correspond to the number of correct processes
that have been at that state, so transitions are declared as follows.

FORMULA Afull: A.O + A1 + f == n
CASE A.1:
IF Afull & 2*x(A.1 + f) >= n THEN B.kil
IF Afull & 2%(A.1 + f) >= n + 2%t THEN B.1

The formula Afull is used to enforce synchrony: no process can take a tran-
sition before every message was received. We present the other transitions for
Algorithm 1 in Table 1. Note that Afull or an equivalent Bfull should also be
added each time in order to avoid considering asynchronous executions.

The following instruction is used to declare an LTL specification to be verified
on the configurations:

WITH
A.initial: A.0 + A.1 + f ==
A.one0: A.O > O
B.not_two_kings: B.kO + B.kl <=1
VERIFY: (A.initial & ! A.one0 & G(B -> B.not_two_kings)) -> G(A -> ! A.one0)

The instructions between WITH and VERIFY define predicates at given layers,
which can be used in the subsequent LTL formula. Here, A.oneO holds when
at least one process is in state A.0; and B.not_two_kings is used to prevent
executions where more than one king is present in a round. These predicates can
then be used as propositions of the LTL formula that will be verified.

A layer type name (A or B) inside a formula indicates a predicate that only
holds in the corresponding layers. An interpretation of the formula can therefore

Table 1: The guards of the transitions for Algorithm 1. The table on the left is
for transitions leaving states of layers ¢ = 2¢, and the table on the right is for
those with layer ¢ = 2i + 1. Each cell is the guard of the transition from the state
of the row to the state of the column.

0=2i+1[ao | a1
0=2i[ko bo by by k1 'ZO true | false
ao |2(ao + f)[2(a0 + f)] 2a0 < n + 2t |2(a1 + f)[2(a1 + f) o — —
b |ki=0lko =0
a1 >n >n+2t ([AN2a1 <n+2t| >n+2t >n b
k1 false | true
1

PyLTA: A Verification Tool for Parameterized Distributed Algorithms 33

be the following: “if there are n processes, and no process in A.0, and there is
always at most one non-Byzantine king in layers of type B, then at all layers of
type A, there is no process in A.0.”

4 Tool Overview and Usage

PyLTA is written in Python. In addition to counter abstraction and predicate
abstraction, PyLTA performs counter-example guided abstraction refinement [6].
Since we are working in an unbounded domain due to parameters, the tool uses
an SMT solver to check the realizability of the traces, and refine the abstrac-
tion using interpolants produced by the solver [12]. The current version uses
MathSAT [5] via PySMT [11]. We use Lark[19] for parsing.

The LTL specification is first negated, and then converted into a Biichi au-
tomaton using Spot [10]. The product between this automaton and the predicate
abstraction is then built dynamically. We check the language emptiness of the
resulting product automaton; if it is empty, then the specification holds. Oth-
erwise, the abstract counterexample is checked for realizability using the SMT
solver, and either the counterexample is confirmed, or the abstraction is refined.

We run PyLTA on an input file as follows.

python -m pylta [input_file]
The output on the file corresponding to our running example is the following:

VERIFYING R.initial & ! R.one0 & G (B -> B.not_two_kings) ...
Formula is Valid

More details such as the abstract counter examples encountered and the added
predicates can be obtained by adding a -v flag. In this case, a single refinement
was necessary, which added the predicate B.k0 + B.0 + B.u <= 0.

The verification algorithm does not require user interaction since abstrac-
tions are refined automatically. However, any predicate defined in the VERIFY
instruction is used in the predicate abstraction, even if it does not appear in
the formula. This behaviour provides a way to manually add predicates in order
to help with the verification. The tool is distributed under the GNU GPL 3.0
licence and is available at https://gitlab.com/BastienT/pylta.

5 Conclusion

We have presented PyLTA, a tool for verifying parameterised distributed algo-
rithms. Despite the undecidability barrier even in simple versions of the problem
[20], PyLTA is able to verify complex properties on distributed algorithms, and
unlike previous works, makes no assumptions on bounds on the state space or ex-
changed messages. As future work, one might explore the use of implicit predicate
abstraction [21] to speed up the verification process. Another direction would be
to integrate well ordered functions providing termination arguments [7] as used
in [9] which could extend the usability of PyLTA.

https://gitlab.com/BastienT/pylta

34

Bastien Thomas and Ocan Sankur

References

1.

10.

11.

12.

A. R. Balasubramanian, Javier Esparza, and Marijana Lazi¢. Complexity of verifi-
cation and synthesis of threshold automata. In Proceedings of the 18th International
Symposium on Automated Technology for Verification and Analysis (ATVA’20),
volume 12302 of Lecture Notes in Computer Science, pages 144-160. Springer,
2020.

Piotr Berman and Juan A. Garay. Cloture votes: n/4-resilient distributed consensus
in t+1 rounds. Mathematical Systems Theory, 26(1):3-19, 1993.

Nathalie Bertrand, Bastien Thomas, and Josef Widder. Guard automata for the
verification of safety and liveness of distributed algorithms. In Serge Haddad and
Daniele Varacca, editors, 32nd International Conference on Concurrency Theory,
CONCUR 2021, August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs,
pages 15:1-15:17. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.
Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Hel-
mut Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2015.
Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebas-
tiani. The MathSAT5 SMT Solver. In Nir Piterman and Scott Smolka, editors,
Proceedings of TACAS, volume 7795 of LNCS. Springer, 2013.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM, 50(5):752-794, sep 2003.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for
systems code. In Michael I. Schwartzbach and Thomas Ball, editors, Proceedings of
the ACM SIGPLAN 2006 Conference on Programming Language Design and Im-
plementation, Ottawa, Ontario, Canada, June 11-14, 2006, pages 415-426. ACM,
2006.

Andrei Damian, Cezara Dragoi, Alexandru Militaru, and Josef Widder.
Communication-closed asynchronous protocols. In Proceedings of the 31st Inter-
national Conference on Computer Aided Verification (CAV’19), volume 11562 of
Lecture Notes in Computer Science, pages 344-363. Springer, 2019.

Jakub Daniel, Alessandro Cimatti, Alberto Griggio, Stefano Tonetta, and Sergio
Mover. Infinite-state liveness-to-safety via implicit abstraction and well-founded
relations. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Ver-
ification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I, volume 9779 of Lecture Notes in Computer Sci-
ence, pages 271-291. Springer, 2016.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 — a framework for LTL
and w-automata manipulation. In Proceedings of the 14th International Sympo-
stum on Automated Technology for Verification and Analysis (ATVA’16), volume
9938 of Lecture Notes in Computer Science, pages 122—-129. Springer, October 2016.
Marco Gario and Andrea Micheli. Pysmt: a solver-agnostic library for fast proto-
typing of smt-based algorithms. In SMT Workshop 2015, 2015.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
Abstractions from proofs. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 04, page 232-244,
New York, NY, USA, 2004. Association for Computing Machinery.

13.

14.

15.

16.

17.
18.

19.
20.

21.

PyLTA: A Verification Tool for Parameterized Distributed Algorithms 35

Igor Konnov, Marijana Lazi¢, Helmut Veith, and Josef Widder. A short counterex-
ample property for safety and liveness verification of fault-tolerant distributed al-
gorithms. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL’17), pages 719-734, 2017.

Igor Konnov, Helmut Veith, and Josef Widder. On the completeness of bounded
model checking for threshold-based distributed algorithms: Reachability. Informa-
tion and Computation, 252:95-109, 2017.

Igor Konnov and Josef Widder. Bymc: Byzantine model checker. In Tiziana Mar-
garia and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation. Distributed Systems - 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part III, volume
11246 of Lecture Notes in Computer Science, pages 327-342. Springer, 2018.

Jure Kukovec, Igor Konnov, and Josef Widder. Reachability in parameterized
systems: All flavors of threshold automata. In Proceedings of the 29th International
Conference on Concurrency Theory (CONCUR’18), volume 118 of LIPIcs, pages
19:1-19:17, 2018.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Amir Pnueli, Jessie Xu, and Lenore D. Zuck. Liveness with (0, 1, infty)-counter
abstraction. In Proceedings of the 14th International Conference on Computer
Aided Verification, CAV ’02, page 107-122, Berlin, Heidelberg, 2002. Springer-
Verlag.

Erez Shinan. Lark. https://github.com/lark-parser/lark/, 2018-2022.

Ilina Stoilkovska, Igor Konnov, Josef Widder, and Florian Zuleger. Verifying safety
of synchronous fault-tolerant algorithms by bounded model checking. In Proceed-
ings of the 25th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’19), volume 11428 of Lecture Notes in
Computer Science, pages 357-374, 2019.

Stefano Tonetta. Abstract model checking without computing the abstraction.
In Ana Cavalcanti and Dennis Dams, editors, F'M 2009: Formal Methods, Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings,
volume 5850 of Lecture Notes in Computer Science, pages 89-105. Springer, 2009.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://github.com/lark-parser/lark/
http://creativecommons.org/licenses/by/4.0/

7 6‘?
(g 6)
\ @ y

Model Checking Problems in BTOR2 Format*

Check for
updates

Shengping Xiao', Chengyu Zhang?, Jianwen Li'®) and Geguang Pu'3®
! East China Normal University, Shanghai, China
spxiao@stu.ecnu.edu.cn, {jwli,ggpul}@sei.ecnu.edu.cn
2 ETH Zurich, Zurich, Switzerland
chengyu.zhang@inf.ethz.ch
3 Shanghai Trusted Industrial Control Platform Co., Ltd, Shanghai, China

Abstract. We present FuzzBtor2, a fuzzer to generate random word-
level model checking problems in BTOR2 format. BTOR2 is one of the
mainstream input formats for word-level hardware model checking and
was used in the most recent hardware model checking competition. Com-
pared to bit-level one, word-level model checking is a more complex re-
search field at an earlier stage of development. Therefore, it is neces-
sary to develop a tool that can produce a large number of test cases
in BTOR2 format to test either existing or under-developed word-level
model checkers. To evaluate the practicality of FuzzBtor2, we tested the
state-of-the-art word-level model checkers AVR and Pono with the gener-
ated benchmarks. Experimental results show that both tools are buggy
and not mature enough, which reflects the practical value of FuzzBtor2.

1 Introduction

Model checking plays an influential role in modern hardware design [4]. Its
great success is inseparable from propositional methods such as Binary Deci-
sion Diagrams (BDDs) [10] and Boolean SATisfiability (SAT) solver [14]. Since
BMC [6] was introduced, influential hardware model checking methods such as
IMC [20], IC3 [9], and CAR [18] are all SAT-based. At the same time, many
important efforts have been made to apply SAT-based model checking tech-
niques to word-level verification tasks whose background theory are first-order
logic [7,23,11,19,16]. These works all rely on more expressive reasoning tech-
niques, i.e., Satisfiability Modulo Theories (SMT) [3] solvers. As the performance
of the SMT solvers continues to improve [1,22], word-level hardware model check-
ing has become a promising research area. Word-level reasoning is more powerful
and opens up many possibilities for simplification [5]. It is strong evidence that a

* Jianwen Li is supported by National Natural Science Foundation of China
(Grant #U21B2015 and #62002118) and Shanghai Pujiang Talent Plan (Grant
#20PJ1403500). Geguang Pu is supported by National Key Research and Develop-
ment Program (Grant #2020AAA0107800), and Shanghai Collaborative Innovation
Center of Trusted Industry Internet Software.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 36-43, 2023.
https://doi.org/10.1007/978-3-031-30820-8_5

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30820-8_5
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_5&domain=pdf

FuzzBtor2: A Fuzzer for Word-Level Model Checking Problems 37

word-level model checker, AVR [17], achieved the best results in the most recent
hardware model checking competition [2].

Implementing word-level reasoning tools such as SMT solvers and word-level
model checkers is much more complex and difficult than bit-level tools. For word-
level model checking, which is a developing and immature area, it is an urgent
requirement to obtain a large number of diverse benchmarks that can be used
for bug finding and performance evaluation. Responding to this requirement, we
present FuzzBtor2, a fuzzing tool that can generate random word-level model
checking problems. We choose BTOR2 [21] as the format of output files, which is
simple, line-based, and easy to parse. BTOR2 is also the current official format
for the hardware model checking competition [2]. Most of mainstream word-level
model checkers support BTOR2 format directly (AVR and Pono [19]) or indirectly
(nuXmv [11] and IC3ia [13]). To evaluate whether FuzzBtor2 is practical, we
test two state-of-the-art word-level model checkers AVR and Pono that can read
BTOR2 files directly via BTOR2 files generated by FuzzBtor2, and generated test
cases trigger various errors of both checkers. We expect that FuzzBtor2 becomes
infrastructure for the development of word-level model checkers.

2 Word-Level Model Checking and BTOR2 Format

We assume that the reader is familiar with standard first-order logic terminol-
ogy [3]. Words generally refer to terms with bit-vector ranges, optionally com-
bined with other theories. The background theory of BTOR2 is the Quantifier-
Free theory of Bit Vectors with Arrays extension (QF _ABYV), by which almost
all computer system information can be encoded. And the invariant property is
(one of) the most important property classes to verify.
A model checking problem consists of a transition system and a property to

verify. A transition system is a tuple S = (V,I,T) where

— V and V"’ are sets of variables in the present state and next state respectively;

— I is a set of formulas corresponding to the set of initial states;

— T is a set of formulas over V U V' for the transition relation.
Given a transition system S = (V,I,T), its state space is the set of possible
variable assignments. I and T" determine the reachable state space of S. The bad
property is represented by a formula =P over V. A model checking problem can
be defined as follows: either prove that P holds for any reachable states of S, or
disprove P by producing a counterexample. In the former, the system is safe, and
in the latter, the system is unsafe. There are input variables in some transition
systems, which can be modeled as state variables whose corresponding next
states are unconstrained. Assume that a BTOR2 file includes n, state variables,
n. constraints, and n, bad properties. Its initial state space consists of ny init-
formulas. The transition relation consists of n, next-formulas and n. constraint-
formulas. And the bad property consists of n; bad-formulas. The sorts of init-
formulas and next-formulas should be consistent with the corresponding state
variables, and constraint-formulas and bad-formulas are Boolean sort.

38 S. Xiao et al.

3 The FuzzBtor2 Tool

FuzzBtor2 is an open-source software consisting of approximately 2400 lines of
C++11 code. FuzzBtor2 does not rely on specific libraries and it is self-contained.
In this section we introduce the usage and architecture of FuzzBtor2. The tool
is available at https://github.com/CoriolisSP/FuzzBtor2.

3.1 Usage

The command to execute FuzzBtor2 in Linux systems is . /fuzzbtor [options].
We present the usage and features of FuzzBtor2 along with the options here.

--seed INT This option is used to set the seed for the random number gen-
erator. Keeping other options, we could generate different test cases by changing
the value of the random number seed. The default seed is 0.

--to-vmt Verification Modulo Theories (VMT) [12], which is an extension
of SMT-L1B2 [3], is also used to represent symbolic transition systems and the
properties to verify. vmt-tools [15] is a tool suite for VMT format, and it provides
a translator from BTOR2 to VMT. However, vmt-tools supports only a subset
of operators in BTOR2. By this option, the generated BTOR2 files only include
the operators supported by vmt-tools, so that they can be translated into VMT
format to test model checkers that take VMT files as input (e.g., IC3ia [13]).

--bv-states INT, --arr-states IN'T These options specify the numbers of
bit-vector and array state variables. The default values are 2 and 0 respectively.

--max-inputs INT This option specifies the maximum number of input
variables in the generated BTOR2 file. The actual number of input variables in
the generated file may be smaller than the maximum. The default value is 1.

--bad-properties INT, --constraints INT These two options specify the
numbers of bad properties and constraints in the generated BTOR?2 file, and the
default values are 1 and 0 respectively. The fuzzer currently does not support
generating liveness properties and fairness constraints.

--max-depth INT A word-level model checking problem consisting of a
transition system and properties to verify is essentially a set of first-order logic
formulas. And formulas are represented by syntax trees in FuzzBtor2, so a word-
level model checking problem corresponds to a set of syntax trees. This option
specifies the maximum depth of these syntax trees. The default value is 4.

--candidate-sizes RANGE|SET FuzzBtor2 can get a set of positive in-
tegers from this option, which is used to specify sorts of variables. All sizes of
indexes of array variables, elements of array variables, and sizes of bit-vector
variables are in the set. The default set is {s € Z | 1 < s < 8}. Note that it does
not allow to define a specific sort directly.

3.2 Architecture

The architecture of FuzzBtor2 consists of preprocessor, generator, and printer.
Users of FuzzBtor2 only specify some arguments on the command line, and no
other input is given. From command line arguments, the preprocessor sorts out

https://github.com/CoriolisSP/FuzzBtor2

FuzzBtor2: A Fuzzer for Word-Level Model Checking Problems 39

Algorithm 1: GenerateSyntaxTree

Input: A sort s of bit-vector or array, and a depth denoted by d
Output: A syntax tree of sort s with depth d

1 if d =1 then

2 leafType = DecideLeafType () // Decide the type of leaf node.
3 if leafType = constant then

4 L return a constant

5 else if s € candidateSort then

6 if leafType = input then

7 if there exists an input variable of sort s then

8 L return an existing input variable

9 if existInputNum < MazInputNum then

10 L return an new input variable
11 else if leafType = state then

L // Similar to the case of input variables, omitted here.

12 | return NULL // Construction fails.

13 op := DecideOperator(s)

14 (n,depths, sorts) == DecideInformation0fSubtrees(op,d)

15 tree = NewTree (op)

16 fori=1...ndo

17 subT'ree := GenerateSyntaxTree (sorts[i, depths[i]) // Recursion.
18 if subTree = NULL then

19 L return NULL

20 else
21 L tree.AddSubTree (subTree)

'

22 return tree

the information required by the generator and saves it as a configuration. Ac-
cording to the configuration, the generator constructs some syntax trees that
satisfy requirements of the number and sorts as stated in Sec. 2. These syn-
tax trees encode a set of first-order logic formulas, which essentially is a model
checking problem independent of the BTOR2 format. At last, the printer outputs
syntax trees constructed by the generator in BTOR2 format.

The generator is the key component of FuzzBtor2. The generator constructs
a syntax tree recursively, that is, a syntax tree with a depth greater than 1
consists of sub-syntax trees, operators, and some possible parameters (only for
indexed operators). When the recursive process reaches the base case, i.e., a
leaf node of the syntax tree, it randomly decides to return a (state or input)
variable or a constant based on a certain probability. Due to the limitation of
the number and sort of variables, if the generator chooses to return a variable, it
may encounter a situation where the required leaf node cannot be constructed.
Therefore, FuzzBtor2 does not guarantee that the BTOR2 file can be successfully
generated, and some parameters would cause the construction to fail. The overall
process of constructing a syntax tree is described in Algorithm 1.

40 S. Xiao et al.

4 Experimental Evaluation

Tested Tools. In order to evaluate whether FuzzBtor2 is practical, we choose
two state-of-the-art word-level model checkers AVR [17] and Pono [19] as tested
tools. Both checkers can take BTOR2 as direct input format, and won the first and
third place respectively in the 2020 Hardware Model Checking Competition [2].

Table 1: Overall results.

Safe Unsafe Uniquely Solved|Error Timeout
AVR (BV+ABV) |16 (11+5) |24 (11+13) |22 (1349) 157 (78479) |1 (0+1)
Pono (BV+ABV) |44 (20+24) |27 (13414) |53 (24-+29) 127 (67+60) |0

Table 2: Classification and statistics of error messages. The first type of error
message of Pono has been confirmed by its developers.

BV|ABV |Error Message

50 |47 |avr_word netlist.cpp:912: static Inst* Oplnst::create(Oplnst::OpType,
InstL, int, bool, Inst*, SORT): Assertion ‘0’ failed.

20 [10 |reach y2.cpp:7367:void y2::iy2 APl:inst2yices(Inst¥*, bool): Assertion
‘0" failed.

1 3 reach _util.cpp:5785: void reach::Reach::check correctness(): Assertion

AVR ‘0’ failed.

0 |1 reach y2.cpp:5365: virtual bool _y2::y2 API::get assignment (Inst*,
int&): Assertion ‘e->get sort_type() == bvtype’ failed.

2 |3 reach y2.cpp:7102: void _y2::y2 APl::inst2yices(Inst*, bool): Assertion
‘res 1= -1’ failed.

0 |5 reach y2.cpp:7113: void _y2::y2 APl::inst2yices(Inst*, bool): Assertion
‘res I= -1' failed.

1 13 Error: signal 11: build/bin/reach

0 |1 reach y2.cpp:1784: void _y2::iy2 APl::add gate constraint (y2_expr
&, y2 expr_ptr, std:string, Inst*, bool, bool): Assertion ‘rhs !=
Y2 INVALID EXPR’ failed.

0 |1 reach _y2.cpp:6695: void _y2::y2 APl::inst2yices(Inst*, bool): Assertion
‘0’ failed.

0 |1 reach y2.cpp:6002: y2 expr_ptr_y2:y2 APl::create _y2 number
(Numlnst*): Assertion ‘num->get num() == 0’ failed.

4 |3 reach coi.cpp:943: bool reach::Reach::find from minset2 (Solver¥,
Inst*, InstS&, InstS&, std:set<std:: cxxll:basic_string<char>
>&): Assertion ‘ufType != "0"" failed.

0 |1 reach _util.cpp:5758: void reach::Reach::check correctness(): Assertion
‘0" failed.

50 |43 |[boolector] boolector slice: 'upper’ must not be < 'lower’

2 |2 Segmentation fault (core dumped)

Pono 77 free(): invalid pointer Aborted (core dumped)

4 1[5 vector:: M range check: n (which is 0) >= this->size() (which is 0)

2 |2 double free or corruption (out) Aborted (core dumped)

2 |1 [boolector] boolector _slice: "'upper’ must not be >= width of "exp’

Experimental Setups. We run FuzzBtor2 repeatedly with different parameters
to generate a total of 200 test cases, in which 100 cases are array-free, i.e.,

FuzzBtor2: A Fuzzer for Word-Level Model Checking Problems 41

without array variables (BV), and 100 cases include array variables (ABV). The
command of FuzzBtor2 used for the former purpose is fuzzbtor2 --seed i --max-
depth 4 --constraints 1 --bv-states 3 --arr-states 0 --max-inputs 3 --candidate-sizes
1..8. To generate BTOR2 models with array variables, the command is fuzzbtor2
--seed i --max-depth 4 --constraints 1 --bv-states 2 --arr-states 1 --max-inputs 3 --
candidate-sizes 1..8. And i takes the value from 0 to 99. For every tested checker,
the timeout to solve each instance is set to one hour.

Correctness. We use catbtor provided by btor2tools* [21] to verify the correct-
ness of outputs of FuzzBtor2. All BTOR2 files generated by FuzzBtor2 pass the
check of catbtor, which means all BTOR2 models generated by FuzzBtor2 are
legal in syntax. Moreover, neither of the two tested tools (AVR or Pono) returns
error messages that are relevant to the syntax issue of input BTOR2 files.
Results. We perform 200 calls to FuzzBtor2 and we get 100 BV test cases and 98
ABV test cases. Two calls for ABV test cases fail due to the situation discussed in
sec. 3.2. The file sizes of the generated test cases are not large, with a maximum
of 58 lines, a minimum of 22 lines, and an average of 39.2 lines. We use the
generated 198 test cases to find bugs of AVR and Pono. All solving processes
return results immediately, regardless of success or failure, except a situation
where AVR timeouts on an ABV case. Table 1 presents overall statistical results.
Neither AVR or Pono performs very well, since most of the test cases (157 vs.
127) trigger their bugs. And Table 2 presents the classification and statistics of
error messages returned by tested tools. We encounter 12 and 6 different types of
error messages for AVR and Pono respectively. It can be seen from Table 2 that
ABV test cases trigger more types of errors than BV, which matches the fact
that more code is covered in the process of solving a case in more complex theory.
Considering both two tables, AVR performs worse than Pono in the experiments,
where AVR solves fewer test cases and returns more types of error messages.
Besides, the case where AVR timeouts is solved (Safe) by Pono, and is a BTOR2
file with only 43 lines, so we speculate that a performance issue occurs in AVR.

5 Conclusion

We have presented FuzzBtor2, an open-source tool for the generation of ran-
dom BTOR2 files, by which the generated test cases can trigger various errors
of state-of-the-art word-level model checkers. Several future works are being
considered. First, if easy-to-trigger bugs of the tested tools are fixed, we could
generate BTOR2 files of larger size and filter out benchmarks that can be used for
performance evaluation through experiments. Second, there are some keywords
(output, fair, and justice) of BTOR2 that are not supported by current FuzzBtor2,
and we can extend the functionality of FuzzBtor2 to support them in future ver-
sions. Finally, as stated in sec. 3.2, the set of syntax trees constructed by the
generator of FuzzBtor2 is essentially a model checking problem, independent of
BTOR2 format. Therefore, it would be useful to print model checking problems
randomly generated in other formats such as SMv [8] and VMT [12].

4 https://github.com/boolector/btor2tools

https://github.com/boolector/btor2tools

42

S. Xiao et al.

Data-Availability Statement The artifact that supports the experimental
results is available in Zenodo with the identifier https://doi.org/10.5281/
zenodo . 7234681 [24].

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

International satisfiability modulo theories competition, https://smt-comp.
github.io/previous.html

Hardware model checking competition 2020 (2020), http://fmv. jku.at/hwmcc20/
Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6.
Tech. rep., Department of Computer Science, The University of Iowa (2017),
www.SMT-LIB.org

Bernardini, A., Ecker, W., Schlichtmann, U.: Where formal verification can help
in functional safety analysis. In: 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). pp. 1-8. ACM (2016)

Biere, A.: Tutorial on world-level model checking. In: 2020 Formal Methods in
Computer Aided Design. IEEE, Haifa, Israel (2020)

Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model check-
ing using sat procedures instead of bdds. In: Proceedings of the 36th annual
ACM/IEEE Design Automation Conference. pp. 317-320 (1999)

Bjesse, P.: Word level bitwidth reduction for unbounded hardware model checking.
Formal Methods in System Design 35(1), 56-72 (2009)

Bozzano, M., Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A.,
Micheli, A., Mover, S., Roveri, M., Tonetta, S.: nuXmv 2.0. 0 user manual (2019)
Bradley, A.R.: Sat-based model checking without unrolling. In: International Work-
shop on Verification, Model Checking, and Abstract Interpretation. pp. 70-87.
Springer (2011)

Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on 100, 677-691 (1986)

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In: Proc.
26th Int. Conf. on Computer Aided Verification. pp. 334-342. Springer, Vienna,
Austria (2014)

Cimatti, A., Griggio, A., Tonetta, S.: The vmt-lib language and tools. arXiv
preprint arXiv:2109.12821 (2021)

Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: Infinite-state liveness-
to-safety via implicit abstraction and well-founded relations. In: Proc. 28th Int.
Conf. on Computer Aided Verification. pp. 271-291. Springer (2016)

Eén, N., Sorensson, N.: An extensible sat-solver. In: International conference on
theory and applications of satisfiability testing. pp. 502-518. Springer (2003)
Embedded Systems Unit, Digital Industry Center, Fondazione Bruno
Kessler: vmt-tools (2022), http://es-static.fbk.eu/people/griggio/ic3ia/
vmt-tools-latest.tar.gz

Goel, A., Sakallah, K.: Model checking of verilog rtl using ic3 with syntax-guided
abstraction. In: NASA Formal Methods Symposium. pp. 166-185. Springer (2019)
Goel, A., Sakallah, K.: Avr: Abstractly verifying reachability. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 413-422. Springer (2020)
Li, J., Zhu, S., Zhang, Y., Pu, G., Vardi, M.Y.: Safety model checking with
complementary approximations. In: 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). pp. 95-100. IEEE (2017)

https://doi.org/10.5281/zenodo.7234681
https://doi.org/10.5281/zenodo.7234681
https://smt-comp.github.io/previous.html
https://smt-comp.github.io/previous.html
http://fmv.jku.at/hwmcc20/
www.SMT-LIB.org
http://es-static.fbk.eu/people/griggio/ic3ia/vmt-tools-latest.tar.gz
http://es-static.fbk.eu/people/griggio/ic3ia/vmt-tools-latest.tar.gz

19.

20.

21.

22.

23.

24.

FuzzBtor2: A Fuzzer for Word-Level Model Checking Problems 43

Mann, M., Irfan, A., Lonsing, F., Yang, Y., Zhang, H., Brown, K., Gupta, A.,
Barrett, C.: Pono: a flexible and extensible smt-based model checker. In: Proc.
33th Int. Conf. on Computer Aided Verification. pp. 461-474. Springer (2021)
McMillan, K.L.: Interpolation and sat-based model checking. In: International Con-
ference on Computer Aided Verification. pp. 1-13. Springer (2003)

Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , btormc and boolector 3.0.
In: Proc. 30th Int. Conf. on Computer Aided Verification. LNCS, vol. 10981, pp.
587-595. Springer, Oxford, UK (2018)

Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.:
The smt competition 2015-2018. Journal on Satisfiability, Boolean Modeling and
Computation 11(1), 221-259 (2019)

Welp, T., Kuehlmann, A.: Qf bv model checking with property directed reacha-
bility. In: 2013 Design, Automation & Test in Europe Conference & Exhibition
(DATE). pp. 791-796. IEEE (2013)

Xiao, S.: Artifact — FuzzBtor2: A Random Generator of Word-Level Model Check-
ing Problems in Btor2 Format (2022). https://doi.org/10.5281/zenodo . 7234681

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.7234681
https://doi.org/10.5281/zenodo.7234681
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Eclipse ESCET™: The Eclipse Supervisory
Control Engineering Toolkit

W.J. Fokkink!»2®) M.A. Goorden®*, D. Hendriks®%, D.A. van Beek®,
A.T. Hofkamp!, F.F.H. Reijnen”, L.F.P. Etman', L. Moormann®,
J.M. van de Mortel-Fronczak!, M.A. Reniers', J.E. Rooda!, L.J. van der
Sanden®, R.R.H. Schiffelers®, S.B. Thuijsman’, J.J. Verbakel®, J.A. Vogel*

! Eindhoven University of Technology, Eindhoven, The Netherlands
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
w.j.fokkink@vu.nl
3 Aalborg University, Aalborg, Denmark
1 Rijkswaterstaat, Utrecht, The Netherlands

5 TNO-ESI, Eindhoven, The Netherlands
5 Radboud University, Nijmegen, The Netherlands
" Vanderlande Industries, Veghel, The Netherlands

8 ASML, Veldhoven, The Netherlands

Abstract. The Eclipse Supervisory Control Engineering Toolkit (ES-
CETTM) is an open-source project to provide a model-based approach
and toolkit for developing supervisory controllers , targeting their entire
engineering process. It supports synthesis-based engineering of supervisory
controllers for discrete-event systems, combining model-based engineer-
ing with computer-aided design to automatically generate correct-by-
construction controllers. At its heart is supervisory controller synthesis, a
formal technique for the automatic derivation of supervisory controllers
from the unrestricted system behavior and system requirements. Vital
for the future development of these techniques and tools is the ESCET
project’s open environment, allowing industry and academia to collabo-
rate on creating an industrial-strength toolkit. We report on some crucial
developments of the toolkit in the context of research projects with Rijks-
waterstaat and ASML that have considerably improved its capability to
deal with the complexity of real-life systems as well as its usability.

1 Introduction

A supervisory controller, supervisor for short, coordinates the behavior of a cyber-
physical system according to discrete-event observations of its system behavior.
Based on such observations, the supervisor decides which events the system can
safely perform and which events must be disabled, because they would lead to
violations of requirements or to a blocking state. Engineering of supervisors is a
challenging task, due to the high complexity of real-life discrete-event systems.
Supervisory control theory [21] underpins a model-based technique for auto-
matically deriving a model of a supervisor from models of the uncontrolled system
behavior and the system’s requirements, such as functional or safety-related re-
quirements that intend to rule out all undesired behavior. This is achieved by

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 44-52, 2023.
https://doi.org/10.1007/978-3-031-30820-8__6

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30820-8_6
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_6&domain=pdf

Eclipse ESCET™!: The Eclipse Supervisory Control Engineering Toolkit 45

disabling controllable (output) events, such as starting a motor. Supervisors exert
no control over uncontrollable (input) events, such as sensor reports.

The Eclipse Supervisory Control Engineering Toolkit (ESCET ™ pronounced
¢sét) project,'? provides a model-based approach and toolkit for the development
of supervisors. It targets the entire engineering process for the development
of supervisors, including modeling, synthesis, simulation-based validation and
visualization, formal verification, real-time testing, and code generation. This
entire process is supported by CIF [1],% featuring an automata-based modeling
language for convenient specification of large-scale systems, and tools that support
synthesis-based engineering (SBE). SBE is an engineering approach to design and
implement supervisors that combines model-based engineering with computer-
aided design to produce correct-by-construction controllers, by automating the
engineering process as much as possible. While not detailed further in this paper,
the ESCET project also comprises Chi [28], a hybrid language and toolset for
modeling and simulation, developed by the same research group that developed
CIF, and the ToolDef scripting language for the definition and execution of
model-based toolchains, useful for combining different ESCET tools.*

The ESCET project, an Eclipse Foundation open-source project since 2020,
builds upon decades of research and tool development at Eindhoven University
of Technology. Vital for the evolvement from an academic into an industrially
applicable toolkit are the years-long ongoing research collaborations with industry,
including Rijkswaterstaat [7], ASML [27], and Vanderlande [29]. Rijkswaterstaat,
part of the Dutch Ministry of Infrastructure and Water Management, is responsi-
ble for infrastructure in the Netherlands, including roads, bridges, tunnels, and
waterway locks. ASML is an innovation leader in the semiconductor industry, pro-
viding chipmakers with all they need to mass produce patterns on silicon through
lithography. Vanderlande is a market leader in logistic process automation for
the warehousing, airport and parcel sectors. The quality of supervisory control
software for such systems impacts their availability and reliability. Synthesis-
based engineering allows for automation, modularization, and standardization,
increasing quality and evolvability and decreasing life-cycle costs.

With the move to the Eclipse Foundation, and supported by the Eclipse Foun-
dation’s principles of transparency, openness, meritocracy and vendor-neutrality,
the ESCET project aims to be an open environment and a growing community.
It allows interested parties, such as academic and applied research institutes,
industrial partners and tool vendors, to collaborate on and profit from further
tool development for the model-based construction of supervisors. Furthermore,
the project’s open nature allows any vendor to develop commercial tool support.

We report on some crucial developments of the toolkit that have considerably
improved its capability to deal with the complexity of real-life systems as well as
its usability, as shown by the case studies reported in Section 5.

! See https://eclipse.org/escet.

2 ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.
3 See https://eclipse.org/escet /cif.

* See https://eclipse.org/escet/chi and https://eclipse.org/escet /tooldef.

https://eclipse.org/escet
https://eclipse.org/escet/cif
https://eclipse.org/escet/chi
https://eclipse.org/escet/tooldef

46 W. J. Fokkink et al.

2 Supervisory Controller Synthesis

Figure 1 depicts the general system struc- N
ture for supervisory control. A cyber- | Human operator / Larger system
physical system consists of mechanical - T i <
components to be controlled. Actuators)
drive their operation, while sensors indi- (Graphical user) interface

cate their status. Resource control pro-) i d
vides low-level control, often offering N
more abstract actuator and sensor signals Supervisory controller(s)

for higher levels of control to use. Super- T i g
visors ensure actuator signals at lower A
layers (the plant) that would violate re- Resource controller(s)
quirements are disabled. Large systems T g

tems, and supervisors can be present at

each level, coordinating lower-level sub- 7
systems (only a single layer is depicted).

A (sub)system is often controlled by a [
human operator through a graphical user
interface, or part of a larger system to Fig. 1. Structure of supervisory control.
which it is connected by an interface.

Supervisory controller synthesis [21,33] automatically generates a correct-by-
construction supervisor model for a discrete-event system, given precise descrip-
tions of the behavior of the plant components as well as the (safety) requirements
for the overall plant behavior. These can be specified conveniently as extended fi-
nite automata (EFAs), i.e., automata with variables, guards and updates, possibly
carrying invariants that restrict the state space [13].

Synthesis considers the synchronous product of the plant automata together
with the requirement automata. That is, these automata synchronize on shared
events, meaning these events must be executed simultaneously. If an event is
missing in the local state of any plant automaton, or is restricted by a plant
invariant, it is absent from the overall system state, and it is considered physically
impossible. If, on the other hand, an event is missing only in the states of
requirement automata, or is restricted by a requirement invariant, it is physically
possible but must be disabled by the synthesized supervisor to ensure safety.

Controllable events (such as output signals to actuators) can be prevented
by a supervisor, but uncontrollable events (such as input signals from sensors)
cannot. To ensure controllability, if an uncontrollable event must be prevented,
the supervisor makes the system state where it occurs unreachable by disabling
all controllable events leading to it. Moreover, if an uncontrollable event leads to
such a state, the origin state of this event must be made unreachable too.

If safety of, for instance, a drawbridge is ensured by forcing it to remain raised
forever, it is useless for road traffic. Therefore states of the plant and requirement
EFAs can be marked, for instance states where the bridge deck is lowered, the
barriers are open, and the signals are green. A marked state in the synchronous

may be divided into (layers of) subsys-
[Actuators] [Sensors]

Mechanical components]

Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit 47

product means all individual plant components are in a marked local state, in this
case allowing traffic to proceed over the bridge. The supervisor must guarantee
that the plant can always reach a marked state, by disabling (events leading to)
states that violate this property. Such a supervisor is said to be nonblocking.
Supervisory controller synthesis ensures safety, controllability and nonblock-
ingness of a system with respect to its requirements, accounting for all possible
behavior, also disabling events that lead to problems such as blocking behavior
or requirement violations much later in the system’s execution. It does so by
restricting as little behavior as possible, thus ensuring mazrimal permissiveness.
Next to ESCET toolkit, other supervisory controller synthesis tools include
DESTool [16], DESUMA [25], Supremica [12], and TCT [6]. For a comparison
between these tools see [24]. The ESCET toolkit can be used to specify various
different models during the entire development process, including simulation
models, as it has a rich set of concepts. This prevents having to use multiple
languages. It has a strong focus on industrial application, with, e.g., modeling
convenience, efficient algorithms, and checking for common mistakes.

3 Synthesis-based Engineering Process

Figure 2 shows ESCET’s synthesis-based engineering process. It starts with a
model-based specification, consisting of plant and requirement models, modeled
as EFAs and/or invariants. To these models, supervisory controller synthesis is
applied, resulting in a model of the supervisor. The ESCET toolkit supports
synthesis both with its own synthesis tools, and by a transformation to Supremica.

Synthesis ensures that all specified requirements are satisfied by the syn-
thesized supervisor. Verification, such as model checking, supported through
transformations to UPPAAL [2] and mCRL2 [3], can be used to check other
requirements not yet supported by synthesis, including liveness guarantees or
timing requirements. Validation, supported by ESCET’s automated or inter-
active simulation and visualization, helps to determine whether the specified
requirements, and thus the supervisor, achieve the desired system behavior.

An implementation of the controller can be obtained automatically from a
model of the supervisor, by generating code for its control software. The ESCET
toolkit supports code generation for multiple languages and platforms, including
Java, C, Simulink, and PLC code (IEC standard 61131-3) for multiple vendors.

e N

Specification

P Validation and
verification
Plant model(s) Supervisory
controller) Code

Requirement synthesis Supervisory | generation] Controller.

model(s) ——>| controller implementation
model (control software)

Fig. 2. Simplified representation of ESCET’s synthesis-based engineering process.

48 W. J. Fokkink et al.

4 Technical Improvements

We describe recent improvements and novel techniques that have been vital
in making supervisory controller synthesis applicable to industrial-size cyber-
physical systems. Some have already been integrated into the ESCET toolkit,
while others are being integrated or are planned to be integrated.

Symbolic synthesis The ESCET toolkit is based on the symbolic supervisory
controller synthesis algorithm from Ouedraogo et al. [19]. It iteratively strengthens
guard predicates on transitions so that forbidden states become unreachable
in the controlled plant. This represents a major step forward for the industrial
applicability of supervisory controller synthesis, by allowing for synthesis of plants
and requirements intuitively modeled as EFAs.

The use of EFAs also opens up the possibility to extract and represent the
synthesized supervisor more compactly and intuitively [15]. The ESCET toolkit
represents the supervisor model as the collection of the provided plant and
requirement models together with the addition of a single EFA containing a
strengthened guard for each controllable event.

BDD Data Structure The Binary Decision Diagram (BDD) data structure allows
to efficiently and symbolically represent and manipulate predicates representing
(parts of) state spaces [14]. Its use in ESCET’s symbolic supervisory controller
synthesis algorithm leads to major reductions of state space representations and
computation times, which is essential for scalability.

Vital to the memory and running time characteristics of Reduced Ordered
BDD representations and manipulations, as used by the ESCET toolkit, is the
ordering of the Boolean variables [30]. Heuristic variable ordering algorithms
that exploit the inherent structure of the system modeled as EFAs are able to
significantly reduce the synthesis effort [11], especially for larger inputs, making
synthesis applicable to more complex systems.

Multilevel Synthesis Contrary to monolithic synthesis, where only a single su-
pervisor is synthesized, with multilevel synthesis [10] the plant components and
requirements are grouped together into a hierarchical structure, and a separate
supervisor is synthesized for each group. This allows to distribute the control
problem over multiple cooperating supervisors, which together are significantly
smaller than one monolithic supervisor. By encoding relations between plant
components and requirements in a design structure matrix [5], and algorithmically
reordering its rows and columns to place tightly coupled plant components side by
side [32], a suitable multilevel structure can be obtained. Compared to monolithic
synthesis, this can for certain systems substantially reduce synthesis effort [8],
enabling synthesis for much larger variants of such systems.

Avoiding Nonblockingness Checks Although the local supervisors in multilevel
synthesis are nonblocking, the overall supervisor may not be. A global nonblock-
ingness check can be used to guarantee that all local supervisors can reach a
marked state at the same moment in time, but is often expensive, nullifying
much of the gains obtained through applying multilevel synthesis. However, in a

Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit 49

dependency graph that encodes which plant components by means of require-
ments depend on state of other plant components to perform certain events, plant
components do not give rise to blocking behavior if they are not part of an infi-
nite path [9]. For certain systems, using such graphs, the global nonblockingness
checks may be skipped entirely, or may be reduced to consider less subsystems.

Symmetry Reduction Real-life systems tend to contain a significant number of
similar components, that for instance only differ by the instantiation of some of the
parameters or their physical locations within the overall system. Such symmetries
can be exploited to reduce the number of plant and requirement automata needed
in the synthesis process, further reducing the synthesis effort [18].

5 Case Studies and Applications

Rijkswaterstaat Initially the collaboration with Rijkswaterstaat focused on gener-
ating control software with supervisory controller synthesis for bridges, waterway
locks, and storm surge barriers. Notable case studies are the Algera complex,
comprising a bascule bridge, a waterway lock and two storm surge barriers in
the river Hollandse IJssel [22], and the Oisterwijksebaanbrug, a rotating bridge
in Tilburg [23]. For the latter, a fault-tolerant controller was synthesized, from
which PLC code was generated, which passed the regular site acceptance test.
Recent case studies target road tunnels, notably the Eerste Heinenoord
tunnel [18] and the Swalmen tunnel [17], and roadside systems [31]. For the
Swalmen tunnel, a digital twin, a 3D digital copy of a physical system, was
conveniently constructed from the plant and requirement models. Combined with
visualization, this allows simulation of the system in a setting close to real life.

ASML A prominent result of the collaboration with ASML is the use of the
ESCET toolkit in a toolkit from another Eclipse Foundation open-source project,
the Eclipse Logistic Specification and Analysis Toolkit (LSATT™) [26]. The LSAT
toolkit is used at ASML to create fully calibrated models of subsystems of a
wafer scanner, responsible for transporting wafers in and out of the scanner and
performing preprocessing steps before the wafer is being exposed on the wafer
stage subsystem. The LSAT toolkit exploits ESCET’s supervisory controller
synthesis to compute valid orderings of logistics activities, while maintaining the
maximum freedom to subsequently perform scheduling on the synthesis result to
compute a supervisor that optimizes productivity [20].

6 Conclusions

The ESCET project and toolkit support synthesis-based engineering to efficiently
generate high-quality correct-by-construction supervisors. The toolkit is being
applied to complex industrial systems in different domains. The project’s open
environment enables effective collaboration between industry, researchers and tool
vendors. Owing to positive experiences with the ESCET toolkit, Rijkswaterstaat
is seriously considering whether its document-based development process for
control software could be adapted to one based on SBE with the ESCET toolkit.

50 W. J. Fokkink et al.
7 Data-Availability Statement

The artifact that supports this paper is available at Zenodo under identifier
doi:10.5281/zenodo.7296616 [4]. It contains Eclipse ESCET v0.7 for Linux. How-
ever, the authors prefer that the Eclipse ESCET toolkit is downloaded directly
from the Eclipse Foundation, where the latest version of the toolkit is available
for multiple platforms.®

References

1. van Beek, D.A., Fokkink, W.J., Hendriks, D., Hofkamp, A.T., Markovski, J.,
van de Mortel-Fronczak, J.M., Reniers, M.A.: CIF 3: Model-based engineering of
supervisory controllers. In: Proc. 20th Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). LNCS, vol. 8413, pp. 575-580.
Springer (2014). https://doi.org/10.1007/978-3-642-54862-8 48

2. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: Proc. 3rd Conference on the Quantitative Evaluation
of Systems (QEST). pp. 125-126. IEEE (2006). https://doi.org/10.1109/QEST.
2006.59

3. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W.,; Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing
concurrent systems - Improvements in expressivity and usability. In: Proc. 25th
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 11428, pp. 21-39. Springer (2019). https://doi.org/10.1007/
978-3-030-17465-1_ 2

4. Eclipse Foundation: Eclipse ESCET v0.7 for Linux (2022). https://doi.org/10.5281/
zenodo.7296616

5. Eppinger, S.D., Browning, T.R.: Design Structure Matrix Methods and Applications.
MIT Press (2012)

6. Feng, L., Wonham, W.M.: TCT: A computation tool for supervisory control syn-
thesis. In: Proc. 8th Workshop on Discrete Event Systems (WODES). pp. 388-389.
IEEE (2006). https://doi.org/10.1109/WODES.2006.382399

7. Fokkink, W.J., Goorden, M.A., van de Mortel-Fronczak, J.M., Reijnen, F.F.H.,
Rooda, J.E.: Supervisor synthesis: Bridging theory and practice. Computer 55(10),
48-54 (2022). https://doi.org/10.1109/MC.2021.3134934

8. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fokkink, W.J.,
Rooda, J.E.: Structuring multilevel discrete-event systems with dependence struc-
ture matrices. IEEE Transactions on Automatic Control 65(4), 1625-1639 (2020).
https://doi.org/10.1109/TAC.2019.2928119

9. Goorden, M.A., van de Mortel-Fronczak, J.M., Reniers, M.A., Fabian, M., Fokkink,
W.J., Rooda, J.E.: Model properties for efficient synthesis of nonblocking modular
supervisors. Control Engineering Practice 112, 104830 (2021). https://doi.org/10.
1016/j.conengprac.2021.104830

10. Komenda, J., Masopust, T., van Schuppen, J.H.: Control of an engineering-
structured multilevel discrete-event system. In: Proc. 13th Workshop on Discrete
Event Systems (WODES). pp. 103-108. IEEE (2016). https://doi.org/10.1109/
WODES.2016.7497833

5 See https://eclipse.org/escet/download.html.

https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.5281/zenodo.7296616
https://doi.org/10.5281/zenodo.7296616
https://doi.org/10.5281/zenodo.7296616
https://doi.org/10.5281/zenodo.7296616
https://doi.org/10.1109/WODES.2006.382399
https://doi.org/10.1109/WODES.2006.382399
https://doi.org/10.1109/MC.2021.3134934
https://doi.org/10.1109/MC.2021.3134934
https://doi.org/10.1109/TAC.2019.2928119
https://doi.org/10.1109/TAC.2019.2928119
https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/10.1016/j.conengprac.2021.104830
https://doi.org/10.1109/WODES.2016.7497833
https://doi.org/10.1109/WODES.2016.7497833
https://doi.org/10.1109/WODES.2016.7497833
https://doi.org/10.1109/WODES.2016.7497833
https://eclipse.org/escet/download.html

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Eclipse ESCET™: The Eclipse Supervisory Control Engineering Toolkit 51

Lousberg, S., Thuijsman, S.B., Reniers, M.A.: DSM-based variable ordering heuris-
tic for reduced computational effort of symbolic supervisor synthesis. IFAC-
PapersOnLine 53(4), 429-436 (2020). https://doi.org/10.1016/j.ifacol.2021.04.058
Malik, R., Akesson, K., Flordal, H., Fabian, M.: Supremica—An efficient tool for
large-scale discrete event systems. IFAC-PapersOnLine 50(1), 5794-5799 (2017).
https://doi.org/10.1016/j.ifacol.2017.08.427

Markovski, J., van Beek, D., Theunissen, R., Jacobs, K., Rooda, J.: A state-
based framework for supervisory control synthesis and verification. In: Proc. 49th
IEEE Conference on Decision and Control (CDC). pp. 3481-3486 (2010). https:
//doi.org/10.1109/CDC.2010.5717095

McMillan, K.L.: Symbolic Model Checking. Springer (1993). https://doi.org/10.
1007/978-1-4615-3190-6

Miremadi, S., Akesson, K., Lennartson, B.: Extraction and representation of a
supervisor using guards in extended finite automata. In: Proc. 9th Workshop on
Discrete Event Systems (WODES). pp. 193-199. IEEE (2008). https://doi.org/10.
1109/WODES.2008.4605944

Moor, T., Schmidt, K., Perk, S.: libFAUDES — An open source C++ library for dis-
crete event systems. In: Proc. 9th Workshop on Discrete Event Systems (WODES).
pp. 125-130. IEEE (2008). https://doi.org/10.1109/WODZES.2008.4605933
Moormann, L., van Hegelsom, J., Maessen, P., van de Mortel-Fronczak, J.M.,
Fokkink, W.J., Rooda, J.E.: Advantages of using digital twins in the validation of
road tunnel supervisory controllers. In: Proc. ITA/AITES World Tunnel Congress
(WTC). pp. 573-578 (2022)

Moormann, L., van de Mortel-Fronczak, J.M., Fokkink, W.J., Maessen, P., Rooda,
J.E.: Supervisory control synthesis for large-scale systems with isomorphisms. Con-
trol Engineering Practice 115, 104902 (2021). https://doi.org/10.1016/j.conengprac.
2021.104902

Ouedraogo, L., Kumar, R., Malik, R., Akesson, K.: Nonblocking and safe control of
discrete-event systems modeled as extended finite automata. IEEE Transactions
on Automation Science and Engineering 8(3), 560-569 (2011). https://doi.org/10.
1109/TASE.2011.2124457

van Putten, B.J.C., van der Sanden, L.J., Reniers, M.A., Voeten, J.P.M., Schiffelers,
R.R.H.: Supervisor synthesis and throughput optimization of partially-controllable
manufacturing systems. Discrete Event Dynamic Systems 31, 103-135 (2021).
https://doi.org/10.1007/s10626-020-00325-x

Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization 25(1), 206-230 (1987).
https://doi.org/10.1137,/0325013

Reijnen, F.F.H., Goorden, M.A., van de Mortel-Fronczak, J.M., Rooda, J.E.: Mod-
eling for supervisor synthesis - a lock-bridge combination case study. Discret. Event
Dyn. Syst. 30(3), 499-532 (2020). https://doi.org/10.1007/s10626-020-00314-0
Reijnen, F.F.H., Leliveld, E.B., van de Mortel-Fronczak, J.M., van Dinther, J.,
Rooda, J.E., Fokkink, W.J.: Synthesized fault-tolerant supervisory controllers, with
an application to a rotating bridge. Computers in Industry 130, 103473 (2021).
https://doi.org/10.1016/j.compind.2021.103473

Reniers, M.A., van de Mortel-Fronczak, J.M.: An engineering perspective on model-
based design of supervisors. IFAC-PapersOnLine 51(7), 257-264 (2018). https:
//doi.org/10.1016 /j.ifacol.2018.06.310

Ricker, L., Lafortune, S., Genc, S.: DESUMA: A tool integrating GIDDES and
UMDES. In: Proc. 8th Workshop on Discrete Event Systems (WODES). pp. 392-393.
IEEE (2006). https://doi.org/10.1109/WODES.2006.382402

https://doi.org/10.1016/j.ifacol.2021.04.058
https://doi.org/10.1016/j.ifacol.2021.04.058
https://doi.org/10.1016/j.ifacol.2017.08.427
https://doi.org/10.1016/j.ifacol.2017.08.427
https://doi.org/10.1109/CDC.2010.5717095
https://doi.org/10.1109/CDC.2010.5717095
https://doi.org/10.1109/CDC.2010.5717095
https://doi.org/10.1109/CDC.2010.5717095
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1109/WODES.2008.4605944
https://doi.org/10.1109/WODES.2008.4605944
https://doi.org/10.1109/WODES.2008.4605944
https://doi.org/10.1109/WODES.2008.4605944
https://doi.org/10.1109/WODES.2008.4605933
https://doi.org/10.1109/WODES.2008.4605933
https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1016/j.conengprac.2021.104902
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1109/TASE.2011.2124457
https://doi.org/10.1007/s10626-020-00325-x
https://doi.org/10.1007/s10626-020-00325-x
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
https://doi.org/10.1007/s10626-020-00314-0
https://doi.org/10.1007/s10626-020-00314-0
https://doi.org/10.1016/j.compind.2021.103473
https://doi.org/10.1016/j.compind.2021.103473
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1109/WODES.2006.382402
https://doi.org/10.1109/WODES.2006.382402

52

26.

27.

28.

29.

30.

31.

32.

33.

W. J. Fokkink et al.

van der Sanden, L.J., Blankenstein, Y., Schiffelers, R.R.H., Voeten, J.P.M.: LSAT:
Specification and analysis of product logistics in flexible manufacturing systems. In:
Proc. 17th Conference on Automation Science and Engineering (CASE). pp. 1-8.
IEEE (2021). https://doi.org/10.1109/CASE49439.2021.9551412

van der Sanden, L.J., Reniers, M.A., Geilen, M.C.W., Basten, T., Jacobs, J.,
Voeten, J.P.M., Schiffelers, R.R.H.: Modular model-based supervisory controller
design for wafer logistics in lithography machines. In: Proc. 18th Conference on
Model Driven Engineering Languages and Systems (MODELS). pp. 416-425. IEEE
(2015). https://doi.org/10.1109/MODELS.2015.7338273

Schiffelers, R.R.H., van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E.: A hybrid
language for modeling, simulation and verification. IFAC Proceedings Volumes
36(6), 199-204 (2003). https://doi.org/10.1016,/S1474-6670(17)36431-5

Swartjes, L., van Beek, D.A., Fokkink, W.J., van Eekelen, J.A.W.M.: Model-based
design of supervisory controllers for baggage handling systems. Simul. Model. Pract.
Theory 78, 28-50 (2017). https://doi.org/10.1016/j.simpat.2017.08.005
Thuijsman, S.B., Hendriks, D., Theunissen, R., Reniers, M.A., Schiffelers, R.R.H.:
Computational effort of bdd-based supervisor synthesis of extended finite automata.
In: Proc. 15th International Conference on Automation Science and Engineering
(CASE). pp. 486-493 (2019). https://doi.org/10.1109/COASE.2019.8843327
Verbakel, J.J., Vos de Wael, M.E.W., van de Mortel-Fronczak, J.M., Fokkink, W.J.,
Rooda, J.E.: A configurator for supervisory controllers of roadside systems. In: Proc.
17th Conference on Automation Science and Engineering (CASE). pp. 784-791.
IEEE (2021). https://doi.org/10.1109/CASE49439.2021.9551485

Wilschut, T., Etman, L.F.P., Rooda, J.E., Adan, I.J.B.F.: Multilevel flow-based
Markov clustering for design structure matrices. Journal of Mechanical Design
139(12) (2017). https://doi.org/10.1115/1.4037626

Wonham, W.M., Cai, K., Rudie, K.: Supervisory control of discrete-event systems:
A brief history. Annual Reviews in Control 45, 250-256 (2018). https://doi.org/10.
1016/j.arcontrol.2018.03.002

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/CASE49439.2021.9551412
https://doi.org/10.1109/CASE49439.2021.9551412
https://doi.org/10.1109/MODELS.2015.7338273
https://doi.org/10.1109/MODELS.2015.7338273
https://doi.org/10.1016/S1474-6670(17)36431-5
https://doi.org/10.1016/S1474-6670(17)36431-5
https://doi.org/10.1016/j.simpat.2017.08.005
https://doi.org/10.1016/j.simpat.2017.08.005
https://doi.org/10.1109/COASE.2019.8843327
https://doi.org/10.1109/COASE.2019.8843327
https://doi.org/10.1109/CASE49439.2021.9551485
https://doi.org/10.1109/CASE49439.2021.9551485
https://doi.org/10.1115/1.4037626
https://doi.org/10.1115/1.4037626
https://doi.org/10.1016/j.arcontrol.2018.03.002
https://doi.org/10.1016/j.arcontrol.2018.03.002
https://doi.org/10.1016/j.arcontrol.2018.03.002
https://doi.org/10.1016/j.arcontrol.2018.03.002
http://creativecommons.org/licenses/by/4.0/

Combinatorial Optimization/Theorem
Proving

®

Check for
updates

New Core-Guided and Hitting Set Algorithms
for Multi-Objective Combinatorial Optimization

Joao Cortes @, Inés Lynce ®, and
Vasco Manquinho®9

INESC-ID - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
{joao.o.cortes,ines.lynce,vasco.manquinho}@tecnico.ulisboa.pt

Abstract. In the last decade, numerous algorithms for single-objective
Boolean optimization have been proposed that rely on the iterative usage
of a highly effective Propositional Satisfiability (SAT) solver. But the use
of SAT solvers in Multi-Objective Combinatorial Optimization (MOCO)
algorithms is still scarce. Due to this shortage of efficient tools for MOCO,
many real-world applications formulated as multi-objective are simplified
to single-objective, using either a linear combination or a lexicographic
ordering of the objective functions to optimize.

In this paper, we extend the state of the art of MOCO solvers with
two novel unsatisfiability-based algorithms. The first is a core-guided
MOCO solver. The second is a hitting set-based MOCO solver. Experi-
mental results in several sets of benchmark instances show that our new
unsatisfiability-based algorithms can outperform state-of-the-art SAT-
based algorithms for MOCO.

1 Introduction

Whenever facing a decision, there is often a set of objectives to optimize. For
instance, when making a vacation plan with multiple destinations, one wants to
minimize both the time spent in airports and the money spent on plane tickets.
However, seldom can one obtain a solution that optimizes all objectives at once.
It is usually the case that decreasing the value of an objective results in increasing
the value of another. This occurs in many application domains [17,22,32].

In order to deal with multi-objective problems, we usually cast them into
single-objective ones. For example, this can be achieved by defining a linear
combination of the objective functions. Other option is to define a lexicographic
order of the objectives [24], but this may result in unbalanced solutions where
the first function is minimized while the remaining ones have a very high value.

In the multi-objective scenario, we are looking for Pareto-optimal solutions,
i.e. all solutions for which decreasing the value of one objective function increases
the value of another. After determining the set of all such solutions, known as
Pareto front, one can select a representative subset and present it to the user [9].

Frameworks based on stochastic search have been developed to approximate
the Pareto front of Multi-Objective Combinatorial Optimization (MOCQO) prob-
lems [6,33]. Several algorithms were also proposed based on iterative calls to

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 55-73, 2023.
https://doi.org/10.1007/978-3-031-30820-8_7

http://orcid.org/0000-0003-4833-8054
http://orcid.org/0000-0003-4868-415X
http://orcid.org/0000-0002-4205-2189
https://doi.org/10.1007/978-3-031-30820-8_7
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_7&domain=pdf

56 J. Cortes et al.

a satisfiability checker, such as the Opportunistic Improvement Algorithm [8],
among others [16]. Additionally, the Guided-Improvement Algorithm (GIA) [26]
is implemented in the optimization engine of Satisfiability Modulo Theories
(SMT) solver Z3 for finding Pareto optimal solutions of SMT formulas. New
algorithms have also been proposed based on the enumeration of Minimal Cor-
rection Subsets (MCSs) [30] or P-minimal models [28]. A common thread to
these algorithms is that they follow a SAT-UNSAT approach. A path diversi-
fication method has also been proposed where unsatisfiable cores are identified
in order to cut the path generation procedure [31]. More recently, Maximum
Satisfiability (MaxSAT) approaches have been used for MOCO [12,10], but the
proposed algorithms are limited to two objective functions.

In this paper, we propose two new algorithms for MOCO. The first algorithm
is a core-guided approach that relies on encodings of the objective functions to
effectively cut the search space in each SAT call. Additionally, we also propose
a hitting set-based approach where the previous core-guided algorithm is used
to enumerate a multi-objective hitting set. Note that these are the first algo-
rithms for MOCO that take full advantage of unsatisfiable core identification
over several objectives, as well as the first MOCO algorithm based on an hit-
ting set approach, taking advantage of the duality between Pareto-MCSs [30]
and unsatisfiable cores over several objectives. Experimental results show that
the new algorithms proposed in this paper are complementary to the existing
SAT-based algorithms for MOCO, thus extending the state-of-the-art tools for
MOCO based on SAT technology.

The paper is organized as follows. Section 2 defines the MOCO problem and
the standard notation used in the remainder of the paper. Next, Sections 3 and 4
describe the new core-guided and hitting set-based algorithms for MOCO. Exper-
imental results and comparisons with other SAT-based algorithms are provided
in Section 5. Finally, conclusions are presented in Section 6.

2 Preliminaries

We start with the definitions that fall in the SAT domain. Next, we introduce
the definitions specific to solving the MOCO problem.

Definition 1 (Boolean Satisfiability problem (SAT)). Consider a set of
Boolean variables V- = {x1,...,x,}. A literal is either a variable x; € V or its
negation —x; = T;. A clause is a set of literals. A Conjunctive Normal Form
(CNF) formula ¢ is a set of clauses. A model v is a set of literals, such that if
x; € v, then T; € v and vice versa.

The truth value of ¢, denoted by v(¢), is a function of v, and is defined
recursively by the following rules. First, the truth value of a literal is covered
byv(x;)) =T, ifax; € v, v(z) = L, if T € v and v(—x;) = —w(z;). Secondly,
a clause ¢ is true iff it contains at least one literal assigned to true. Finally,
formula ¢ is true iff it contains only true clauses,

v(g)= N\ vie), vie)=\/v(D). (1)

cEp lec

New Core-Guided and Hitting Set Algorithms for MOCO 57

The model v satisfies the formula ¢ iff v(¢) is true. In that case, v is (¢-)feasible.
Given a CNF formula ¢, the SAT problem is to decide if there is any model
v that satisfies it or prove that no such model exists.

Our algorithms require a SAT solver to be used as an Oracle. If the formula
is satisfiable, then it returns a satisfiable assignment. Otherwise, the SAT solver
returns with an explanation of unsatisfiability, called a core.

Definition 2 (Core k). Given a CNF formula ¢, we say a formula k is an
unsatisfiable core of ¢ iff Kk C ¢ and Kk F L.

Definition 3 (SAT solver). Let ¢ be a CNF formula and o a conjunction of
unit clauses. We call ¢ the main formula and o the assumptions. A SAT solver
solves the CNF" instance of the working formula w = ¢ U a, i.e. decides on the
satisfiability of w.

A query to the solver is denoted by ¢-SAT(«). The value returned is a pair
(v, k), containing a feasible model v and a core of assumptions k, i.e. a subset
of the assumptions « contained in some core of w. If the working formula w is
not satisfiable, v does not exist, and the call returns (0, o). If w is satisfiable, the
call returns (e,0).

Definition 4 (Relaxing/Tightening a formula). Given ¢, a formula ¢ is a
relaxation of ¢ iff ¢ F . We also say ¢ relaxes ¢. Conversely, ¢ tightens .

Next we review Pseudo-Boolean formulas and optimization and define the
MOCO problem.

Definition 5 (Pseudo-Boolean function, clause, formula (PB)). To any
linear function {0,1}" — N, given by

g(@) = glz1...wp) =) wir; w €N, w, €V, 2)

we call an (integer linear) PB function. Expressions like g(x) > k, 1€ {<
,>,=}, are called PB clauses. A PB formula is a set of PB clauses. For some
model v : V. — {0,1}, let & be the Boolean tuple v(V) = (v(z1),...,v(zn))-
Given a formula ¢, a model v is said (¢-)feasible if it satisfies every clause in .
The set of Boolean tuples Z(¢) = {x = v(V) € {0,1}" : v(¢)} is called feasible
space of the formula ¢, and its elements x are called feasible points. Any subset
of the feasible space is called a ¢-feasible set.

Definition 6 (Pseudo-Boolean Optimization (PBO)). Let ¢ be a PB for-
mula, and f be a PB function. Then, minimize the value of the objective f over
the feasible space Z(¢) the formula ¢. That is,

find argmin f. (3)
z€Z(9)

! We may use a PB formula (Definition 5) and assume it is translated to CNF.

58 J. Cortes et al.

Multi-objective optimization generalizes PBO and builds upon a criterion of
comparison (or order) of tuples of numbers. The most celebrated one is called
Pareto order or dominance.

Definition 7 (Pareto partial order (<)). Let Y be some subset of N". For
any y,y' €Y,
y=y = Viy, <y
y=y = y2yry#y.
We say y dominates y' iff y < y’. We say y strictly-dominates vy’ iff y < y'.
Given a tuple of objective functions sharing a common domain X, we can

compare two elements x,x’ € X by comparing the corresponding tuples in the
objective space.

Definition 8 (Pareto Dominance (<)). Let F': X — Y C N” be a multi-
objective function, mapping the decision space X into the objective space Y.
For any z,x' € X,

x <z < F(z)=<F(z),

x 3z < F(z)=XF(z).

We say © dominates &’ iff € < x’. We say x strictly-dominates =’ iff x < x’.

Contrary to the single-objective case, the consequence of this comparison
criterion is that many different good solutions are mapped to different points
in the objective space. Therefore, the solution to the problem is actually a set
called Pareto front.

Definition 9 (Fronts). Given a a multi-objective function F : X — Y and a
feasible space Z C X, the Pareto front of Z is a subset P C Z containing all
elements that are not strictly-dominated,

P={xeZ:fr'€Z 2 <x}.
We call img-front to the subset Y C'Y which is the image of P by F,

Y =imgfront, F={yeY :3x € P:y=F(x)}.

Finally, we call arg-front of Z, or sumply front of Z, to any subset Z of the
Pareto Front P which is mapped by F into Y in a one-to-one fashion

Z = frontz F.

Definition 10 (Multi-Objective Combinatorial Optimization (MOCO)).
Let F: X — Y C N” be a multi-objective PB function, mapping the decision
space X C {0,1}" into the objective space Y. Let Z C X be the feasible space
of some PB formula ¢, with variables in V. Then,

find front ;) F. (4)
An instance will be denoted by the triple (¢, V, F).

New Core-Guided and Hitting Set Algorithms for MOCO 59

Because the solutions of the problems are sets, bounds are now bound sets
(Definition 13). In the single objective case, a bound is a value [such that
Yy = f(x) : I <y, or equivalently, Ay = f(z) : I > y. This equivalence is broken
by the generalization. Each of the previous defining properties of a lower bound
gives rise to a differently flavoured comparison of sets (Definitions 11 and 12).

Definition 11 (Set coverage). Let A and B be subsets of some decision space
X, equipped with a multi-objective function F. Then, A covers B iff every element
of B is dominated by some element of A, i.e. Vb € B,da € A :a < b, and A
strictly covers B iff Vb € B,Ja € A:a < b.

Definition 12 (Set non-inferiority). Let A and B be subsets of some decision
space X, equipped with a multi-objective function F'. Then A is non-inferior to B
iff there is no element of B that strictly-dominates an element of A, Va € A,b €
B :—=(a>=1b), and A is strictly non-inferior to B iff Va € A,b € B : =(a = D).

Note that in the single objective case, non-inferiority and coverage are the
same. The next definition correctly generalizes the notion of lower bound.

Definition 13 (Bound sets). L C X is a (strictly) lower bound set of Z C X
iff L (strictly) covers and is (strictly) non-inferior to Z. If L is a lower bound
set of Z, we say L X Z. If it is a strictly lower bound set, we say L < Z.

One way to generate a lower bound set of some Pareto front is to solve a
related problem, where the formula is replaced by a relaxed version (Definition 4).

In our approach, we embed dominance relations into CNF formulas. We are
interested in removing from the feasible space solutions that are dominated by
some other known feasible solution. In order to do this, we make use of unary
counters [3,13,14] that have been used to implement efficient PB satisfiability
solvers.

Definition 14 (Unary Counter). Let f; : {0,1}" — N be a PB function and
set V' be an ordered set of variables that parametrize the domain of f;,

V={z1,...,x.}, fi(x) = fi(x1,...,20) (5)

Consider the CNF formula (E with variables VU O, where ONV = (and O
contains one variable o; 1, for each value k € N : 3z : k = f;(x). The elements

of O are the order variables. We call the tuple <fi, V, 0, $> an unary counter of
fi iff all feasible models v of(g satisfy

file) >k = o0;%, x=v(V). (6)

3 Core-Guided Algorithm

Although core-guided algorithms for Maximum Satisfiability were initially pro-
posed more than a decade ago [7,23,21,2,1], there is no such algorithm for MOCO.
Hence, our goal is to take advantage of unsatisfiable cores identified by a SAT
solver in order to lazily expand the allowed search space.

60 J. Cortes et al.
fo Point is
¥ optimal;

feasible,
not generated,

o & (non-feasible)
fence bound.

[)
O

Region is
fenced;

1
A 3 dominated;

N fenced and
A= A ¥ dominated.
= 1

Fig. 1: Hlustration of a run of Core-Guided (Algorithm 1) in the objective space.
The img-front is the set {1,2,3}. The fence bound X\ gets updated at each iter-
ation of the while loop at line 6, starting at A and ending at (2. The arrows are
guided by the core & (line 19). The green shading represents the evolution of the
fence. Darker regions have been fenced for longer. The blue regions are blocked
by optimal points. Darker regions are dominated by more points. We will be
done in 7 iterations. After verifying that A is not feasible, we are instructed by
the cores k to move along the diagonal twice. We find point 1 fenced. Therefore
the associated « is copied into I and the dominated region is blocked. We ex-
tend A twice, and find point 2. After moving once more, we find part of the fence
blocked, and the point branded with 7 is never generated. The next movement
stations A at 2. Point 3 is found. The Oracle acknowledges we are done, by
returning £ = () (line 15): she knows that no movement of A\ will extend I.

3.1 Algorithm Description

Algorithm 1 presents the pseudo-code for an exact core-guided algorithm for
MOCO. Figure 1 illustrates an abstract execution of the algorithm.

Let (¢, V, F) be a MOCO instance. Recall that ¢ denotes the set of PB
constraints, V' is the set of variables and F denotes the list of m objective
functions. First, the algorithm starts by building a working formula with the
problem constraints and an unary counter for each objective function (lines 3-
4). This is accomplished by the call to EncodeOrder . Next, a vector X of size m
is initialized with the lower bound of each objective function (line 5), assumed
to be 0 for simplicity.

At each iteration of the main loop, the assumptions « are assembled from or-
der variables o, chosen with the value of A in mind (line 7). The call to next (i, A)?
returns the next smallest value belonging to the image of the objective i. Given
the semantics of the order variables o; j, (Definition 14), the tuple A fences the
search space, i.e. v satisfies v only if the corresponding tuple satisfies F'(x) < .

2 May be replaced by A; + 1.

New Core-Guided and Hitting Set Algorithms for MOCO 61

Algorithm 1: Core-Guided MOCO solver
Input: (¢, V, F) // MOCO instance
Output: fronty F' // one arg-front

1 m <« |F|

2 1+ 0

(5, {0i},<;<,n) < EncodeOrder(F, V)

p—oUQ

A+ (0,0,...,0) // initialize fence

while true do

o {{_‘Oi,next(i,)\)} 1€l m}

(v, K) < ¢-SAT(a)

while v # () do

10 xz+vV)

11 I+ I\{z'el:z=<z'}u{z}

12 B { \% ﬁoz’,fm)}
=1

13 (E — 5U B // block dominated
14 (v, k) + ¢-SAT(ax)

© 0 N O oA W

15 if kK = (then // if fence exhausted,
16 ‘ return [

17 else

18 foreach {-o0;1} € x do // expand fence
19 L | Xk

If the SAT call (line 10) returns a solution (i.e. v # (}), = is stored in and all
dominated solutions are removed from I (line 11). Moreover, one can readily
block all feasible solutions dominated by @ using a single clause (line 13) [28].

Usually, there are several feasible fenced solutions. This occurs because the
algorithm may increase multiple entries of A at once. In any case, the inner while
loop (lines 9-14) collects all such solutions.

When the working formula 5 becomes unsatisfiable, the SAT solver provides
a core k. If k is empty (line 15), then the unsatisfiability does not depend on
the assumptions, i.e. it does not depend on temporary bounds imposed on the
objective functions. At that point, we can conclude that no more solutions exist
that are both satisfiable and not dominated by an element of I. As a result, the
algorithm can safely terminate (line 16). Otherwise, the literals in x denote a
subset of the fence walls \; that may be too restrictive, in the sense that unless
we increment them (line 19) no new non-dominated solutions can be found.

3.2 Algorithm Properties

Lemma 1. The img-front Y of I U Z(¢)(Definition 9) is not changed by the
inner loop (lines 9-14).

62 J. Cortes et al.

Proof. Consider some particular iteration of the internal loop. Line 11 and line
13 remove all elements of I U Z(¢) that are dominated by the feasible point .
Line 11 filters the explicit set I, line 13 filters the implicit set Z (). Solutions
that are strictly dominated by = cannot be mapped into an element of Y. The
other solutions x’ that are filtered out must attain the same objective vector
attained by @, F(2’) = F(x). Because x is also inserted at line 11, removing «’
will not disturb Y.

Lemma 2. At the start of each iteration of the external loop (lines 6-19), every
solution in I is optimal, and no two elements of I attain the same objective
vector.

Proof. We prove this by contradiction. Assume that there is a non-optimal so-
lution @ € I at the start of the external loop (line 6). In the first iteration, this
does not occur because I is empty. Hence, this can only occur if the inner loop
(lines 9-14) finishes with a non-optimal solution x € I.

The inner loop (lines 9-14) enumerates solutions inside the fence defined by A.
We know that F(x) < X because it is inside the fence and the entries of A never
decrease. If = is non-optimal, then there must be an optimal solution x’ such
that F(x’) < F(z)(=2 A). Hence, &’ is also inside the fence. As a result, ' must
be found before the inner loop finishes, since at each iteration only dominated
solutions are blocked (line 13). If @ is found before ', then x is excluded from
I (line 11) when &’ is found. Otherwise, if ' is found first, then « is not found
by the SAT solver (blocked at line 13) because it is dominated by @’. Therefore,
we cannot have a non-optimal solution @ € I at the end of the inner loop or at
the start of each iteration of the external loop (lines 6-19). Furthermore, no two
elements of I attain the same objective vector since when a solution @ is found,
all other solutions &’ such that F(x) = F(x') are also blocked (line 13).

Lemma 2 establishes a weaker form of anytime optimality. The elements of
the incumbent list I are not necessarily optimal at anytime, but they are optimal
immediately after completing the inner loop. It is easy enough to make it anytime
optimal. This could be achieved if the algorithm refrains from adding solutions
directly to I in the inner loop and maintain a secondary list, where it stores the
solutions that are still not necessarily optimal. This list takes the role of I inside
the inner loop. After completing the inner loop, all elements of the secondary
list are optimal, and can be safely transferred to the main list I.

Proposition 1. Algorithm 1 is sound.

Proof. If the algorlthm returns, Z (q/)/\a) (). Because & is empty, no core of the
unsatisfiable formula d) A « intersects «, and qb is also unsatisfiable, Z (¢) = 0.
Using Lemma 1 both at the end and at the start of the course of the algorithm,
the img-front of I is the img-front of Z(¢), with ¢ given by line 4. Because the
order variables are only restricted by the unary counter formula, the img-front
of Z(¢) is the img-front of Z(¢). Therefore I must contain an arg-front of the
problem. Using Lemma 2, every element of I is optimal, and there is no pair

New Core-Guided and Hitting Set Algorithms for MOCO 63

x,x’ € I such that F(x) = F(2'). Therefore, I is an arg-front of the MOCO
instance.

Proposition 2. Algorithm 1 is complete.

Proof. The inner loop will always come to fruition, because in the worst case it
will generate every feasible solution dominated by the current A once, and the
feasible space is finite.

If the algorithm does not return for some particular instance, then k is never
empty. In that case, every iteration of the external loop starting at line 6 will
increase at least one of the entries of A\. Eventually, one entry ¢ must achieve
the upper limit of f;, and the order variable retrieved by o; x,+1 Wwill not exist.
Because the evolution of \; is monotonous, the assumptions will contain at most
m — 1 variables, from that point on. By the same token, the assumptions a will
eventually be empty, and so must be k C «, contradicting the assumption that
the algorithm never terminates.

4 Hitting Set-based Algorithm

This section proposes a MOCO solver based on the enumeration of hitting sets.
The main idea is to compute a sequence of relaxations i of the formula ¢,
and solve the corresponding problems. The front T of the relaxed problem gets
incrementally closer to the desired front Z, and will eventually reach it.

4.1 Algorithm Description

Algorithm 2 contains the pseudo-code for our hitting set-based algorithm for
MOCO. Figure 2 illustrates an abstract execution of the algorithm.

The algorithm starts by setting the relazed formula 1 to empty (line 1).
The main loop that starts at line 2 hones the relaxation until we get the desired
result. At each iteration, we solve the current relaxed formula 1) at line 4. This is
accomplished by using some MOCO solver. Because this amounts to computing
a lower bound set, the Core-Guided algorithm, previously described, is a good
choice for the task. We anticipate that it performs well for problems whose front
is in the vicinity of the origin, given that by construction, the focus of its search
is biased to that region. Notice that the first relaxation’s arg-front is the set
that contains the origin only (assuming all literals in the objective functions are
positive). We expect that the first few relaxations will stay close to it.

Next, for each element x in T (the Pareto-front of 1)), we check the ¢-
feasibility of v : v(V) = x, using the assumptions mechanism, and return a
(possibly empty) core of assumptions . The assumptions o, built at line 6 are
a set of unit clauses whose polarity is inherited from v,

l/(xi) — T; € «, ﬂu(l‘i) == -x; € Q. (7)

Assuming ¢ is satisfiable, the returned core x will be void iff ay A ¢ is satis-
fiable. In this case, & corresponds to an optimal solution.

64 J. Cortes et al.

Algorithm 2: Hitting-Sets MOCO solver

Input: (¢, V, F) // MOCO instance
Output: frontyg F' // one arg-front
19+ 0 // relaxed formula 1)
2 while true do
3 A«
4 T + fronty F // use auxiliar solver
5 foreach € T do // diagnose T
6 az — {{l},lev:v(V)=a}
7 (o, k) + ¢-SAT(avz)
8 if k # () then
9 | A«rUA
10 if A =10 then // it T is fine
11 L return T
12 foreach x € A do
13 | ¢y u{-l{i} €r} // tighten 1

The diagnosis A is central for the algorithm. Intuitively, it reports if and
why the relaxed problem’s solution is different from the true Pareto solution.
We add every non-empty & to the diagnosis A (line 9). In the end, A is empty iff
every element of the relaxed front T is ¢-feasible. At that point, we have found
a ¢-feasible lower bound set. All such sets are arg-fronts, and so the algorithm
terminates (line 11). Otherwise, if A is not empty, then the found cores are
added to the relaxed formula ¢ (line 13). This step ensures all tentative points
produced in line 4 hit all previously found unsatisfiable cores, and that the
algorithm advances in a monotonous fashion towards the solution.

4.2 Algorithm Properties

Given a MOCO instance (¢, V,F), the formula ¢ encodes the feasible space
Z implicitly, which in turn defines the desired front Z. This is a many to one
correspondence, in the sense that there are many different values of ¢ that encode
the same Pareto front. It may happen that some of the counterpart instances
are easier to solve than the original one, which begs the question: given ¢, can
we effectively find a simpler formula v with the same Pareto front? This is
the motto of the proposed algorithm. It is done by iteratively honing a relazed
formula (Definition 4).

The main idea is to compute a sequence of relaxations that get incrementally
tighter. In that case, the corresponding front T gets incrementally closer to the
desired front Z,

¢ = Vn - e = Y1, (8)
Z - T,

Y
.
&l
=

New Core-Guided and Hitting Set Algorithms for MOCO 65

fe
o
o
1 o~ 3 Point is
B ¥ optimal;
o ©
feasible,
o
not generated;
o
2 ® non-feasible.
&
B J 3 ~
A

fi

Fig. 2: Illustration of a run of the Hitting-Sets (Algorithm 2) in the objective
space. The Pareto front is the set {1,2,3}, and the feasible solutions are marked
by o. For each iteration of the main while loop at line 2 we get a narrower
lower bound T (line 4), culminating in the solution. We are done in 3 iterations,
marked by A, B and ¢ . The shading represents the number of iterations whose
freshly found points dominate the region. The lighter tone was painted by A,
the darker one by all three. We start with the empty formula (line 1) and get A.
Because the only point in A is not feasible, we tighten the relaxation (line 13).
Iteration B generates one feasible point, 1, which is therefore optimal. Note that
the region dominated by 1 can be pruned from now on. The other point is used
to tighten the formula once more. Lastly, the lower bound contains the feasible
points 2 and 3 in addition to 1, which was already found, and the algorithm
stops.

where Z is one of the desired arg-fronts, and T; is an arg-front of ;.

Lemma 3. Consider some multi-objective function F : X — Y. Let Z,T be
subsets of X, such that T'C Z. Then, any arg-front of T' is a lower bound set of
any arg-front of Z (Definition 13), i.e. T C Z = T < Z.

Lemma 3 is true because optimizing over a superset of some feasible space
always returns a (non-strict) lower bound set. In a sense, the optimization can
only be more extreme when applied to the superset. In particular, the feasible
space of a relaxed formula is a superset of the original one. This is why the chain
of < relations in Equation (9) is correct.

Lemma 4. Let ¢ be a formula, Z C X be its feasible space and F : X — Y
be some multi-objective function. Let L be a lower bound set of the Pareto front
of Z. Then, any element x € L that is feasible belongs to the Pareto front,
LNZ CP. If all elements x € L are feasible, then L is an arg-front.

Lemma 4 implies that every lower bound set with only feasible elements
must be itself an arg-front (this is an exact analogy with the single-objective

66 J. Cortes et al.

case, where lower bound set is replaced by infimum and arg-front by arg-min.)
By construction of the diagnosis A, this is equivalent to the condition used in
Algorithm 2 to decide if it can terminate.

To ensure the sequence gets to Z in a finite number of steps, we need more
than a string of relaxations. Each entry v’ must be strictly tighter than the
predecessor .

Lemma 5. Consider Algorithm 2. Let v be the relazed formula at some itera-
tion, and 1)’ be the relazed formula at the next iteration. Then,

1. % relazes ', i.e. ' F1;
2. Both v and ¢’ relax ¢, i.e. pE Y, P EY';
3. ' does not relaz v, i.e. Y #Y';

Proof. Each statement will be proven in turn.

The first is true because ¥ C ¢, by construction (line 13).

We prove the second by induction on the number of iterations. Initially, ¢
is empty. Therefore, 1 relaxes any formula, in particular ¢. Assume ¢ F ¢ for
some iteration. Consider one of the clauses —x added at line 13. We know that
¢ A k is unsatisfiable. Therefore, p Ak EF L = —(¢AK)E T <<= ¢F -k
Given the assumption ¢ F i, we get ¢ E ¥ A k. Repeating the process for the
other added clauses —k;, we get ¢ E Y A =K1 ... A=K, =

Assume 1)’ is a relaxation of 1. Then, any 1)-feasible model v is also 1)'-
feasible. We will prove there is at least one model that violates this. To start,
note that it only makes sense to consider 1)’ if there is some non-empty core
k in the diagnosis A; otherwise, the algorithm would have terminated before
updating v into ¢’. Let x be one element of A, generated at line 7 while 1 is
current. Consider the Boolean tuple & € T used to build the assumptions of the
query that generated k. Let v : v(V) = . The model v is -feasible, because
it is part of the arg-front of ¢). The model v satisfies k because k C g and the
way g is constructed (line 6, Equation (7)). Therefore, v does not satisfy —x.
Because —x C 9)’, v cannot satisfy 1)’, i.e. there is at least one 1-feasible model
that is not v’-feasible.

Proposition 3. Algorithm 2 is sound.

Proof. By Lemma 5, ¢ relaxes ¢ and therefore T solves a relaxation of the
original problem. By Lemma 3, it is a lower bound set of Z. When the algorithm
returns, all elements of T are feasible. By Lemma 4, T' must be an arg-front.

Proposition 4. Algorithm 2 is complete.

Proof. Assume Algorithm 2 never ends, implying T is never completely feasible
(i.e. T ¢ Z). The number of relaxed feasible spaces T is finite. If Algorithm 2
does not end, it will enumerate all of them, never repeating any: at any iteration,
the updated relaxed formula effectively blocks the reappearance of any feasible
space seen before, because by Lemma 5 the updated value v’ strictly tightens .
Then, this sequence is necessarily finite, and so must be the number of iterations.
But in that case, Algorithm 2 must end, and we have a contradiction.

New Core-Guided and Hitting Set Algorithms for MOCO 67

Consider the sequence whose entries are the value of F(T) computed at the
beginning of each iteration of the main loop at line 2. The last element of this
sequence is the solution. It may happen that for some i, the entries indexed
by i and ¢ + 1 are the same. Therefore, the sequence may include blocks of
contiguous entries that share the same value. In the worst case scenario, there
are many different arg-fronts for the same img-front, and the algorithm ends
up enumerating all of them without any movement in the objective space. We
expect the algorithm will be effective whenever a few of the relaxed problems
are enough to get to the full solution. Otherwise, we can end up solving an
exponential number of problems.

5 Experimental Results

This section evaluates the performance of the algorithms proposed 3 in Sections 3
and 4. These algorithms are compared against other SAT-based MOCO solvers.

5.1 Algorithms and Implementation

The Core-Guided algorithm proposed in Algorithm 1 uses the selection delim-
iter encoding [14] that has been shown to be more compact. Next, the selection
delimiter encoding is extended to produce a unary encoding for each objec-
tive function. Additionally, an order encoding [29] is also used. We refer the
interested reader to the literature for further details on this and other encod-
ings [27,13,14,15]. Observe that any unary encoding from PB into CNF can be
used.

The Hitting-Sets algorithm implements Algorithm 2. This hitting set-based
approach uses Algorithm 1 to find the relaxed arg-front (line 4 of Algorithm 2).

The P-Minimal algorithm implements a SAT-UNSAT approach based on
the enumeration of P-Minimal models [28]. This algorithm is implemented with
the same PB to CNF encoding as the Core-Guided. Finally, the ParetoMCS is
based on the stratified enumeration of Minimal Correction Subsets. We used the
publicly available implementation of ParetoMCS*.

5.2 Experimental Setup and Benchmark Sets

The following MOCO problems are considered: the multi-objective Development
Assurance Level (DAL) Problem [5], the multi-objective Flying Tourist Problem
(FTP) [22], the multi-objective Set Covering (SC) Problem [4,28] and the multi-
objective Package Upgradeability (PU) Problem [11]. All instances are publicly
available from previous research work or were generated from real-world data.
The DAL benchmark set (95 instances) encodes different levels of rigor in
the development of a software or hardware component of an aircraft. The de-
velopment assurance level defines the assurance activities aimed at eliminating

3 Available at https://gitlab.inesc-id.pt/u001810/moco
4 https://gitlab.ow2.org/sat4j/moco

https://gitlab.inesc-id.pt/u001810/moco
https://gitlab.ow2.org/sat4j/moco

68 J. Cortes et al.

design and coding errors that could affect the safety of an aircraft. The goal is to
allocate the smallest DAL to functions to decrease the development costs [18].

The FTP benchmark set (129 instances) encodes the problem of a tourist
that is searching for a flight travel route to visit n cities. The tourist defines her
home city, the start and end of the route. She specifies the number of days d; to
be spent on each city ¢; (1 < i < n) and also a time window for the complete
trip. The problem is to find the route that minimizes the time spent on flights
and the sum of the prices of the tickets®.

The SC benchmark set (60 instances) is a generalization of the set covering
problem and was used in previous research work [28]. Let X be some ground set
and A a cover of X. Each element in A has an associated cost tuple. The goal
is to find a cover of X contained in A that Pareto-optimizes the overall cost.

The PU benchmark set (687 instances) were generated from the Package
Upgradeability benchmarks [19] from the Mancoosi International Solver Com-
petition [20]. The packup tool [25] was used to generate these benchmarks that
contain between two and five objectives to optimize.

All results were obtained on an Intel Xeon Silver 4110 CPU @ 2.10GHz, with
64 GB of RAM. Each tool was executed on each instance with a time limit of 1
hour and 10 GB of RAM memory limit.

5.3 Results and Analysis

Table 1 shows the number of instances whose Pareto front is completely enumer-
ated, for each algorithm and benchmark set. Overall, the new unsatisfiability-
based algorithms proposed in the paper completely solve more instances than
the ParetoMCS and the P-Minimal algorithms. Note that the ParetoMCS is
the one that solves fewer instances since it needs to enumerate all MCSs. The
Core-Guided and Hitting-Sets converge faster to the Pareto front due to their
UNSAT-SAT approach, while the P-Minimal is slower to converge. Overall, the
Core-Guided algorithm is able to solve more instances than the other algorithms.

All tested algorithms are exact, but in some cases only an approximation
of the Pareto front could be found within the time limit. However, the partial
solution that is returned may still be valuable. In order to evaluate the quality
of the approximations provided by each tool, we use the Hypervolume (HV) [34]
indicator. HV is a metric that measures the volume of the objective space dom-
inated by a set of points in the objective space, up to a given reference point.
The coordinates of the reference point chosen are the maximal values of each
objective. Regions that are not dominated by a reference front are discarded (we
combined the results for each algorithm in order to produce the reference front).
Larger values are preferred. A normalization procedure is carried out so that the
values of HV are always between 0 and 1.

Figure 3 shows a cactus plot of the HV for all tools on each benchmark set.
The P-Minimal provides better quality approximations of the Pareto front in the
DAL (Figure 3a) and PU (Figure 3d) benchmarks since it uses a SAT-UNSAT

5 Instances generated from flights in Europe between October and December 2019.

New Core-Guided and Hitting Set Algorithms for MOCO 69

Table 1: Number of MOCO instances whose complete solution is found and
certified per algorithm and benchmark set. Best results are in bold.

Algorithm Benchmark Set ‘ Total

DAL FTP SC PU
95 129 60 687| 971

ParetoMCS 24 76 0 279| 379
P-Minimal 47 76 17 473| 613
Core-Guided 58 76 26497 657
Hitting-Sets 47 76 29 392| 544

approach. Hence, it is faster to find an approximation to the Pareto front. More-
over, since some of the instances in these sets have higher optimal values on
the objective functions, the Core-Guided and Hitting-Sets take many interac-
tions until they reach the feasible part of the search space. Despite performing
an unsatisfiability-based search, Core-Guided and Hitting-Sets algorithms are
still able to provide good quality solutions since when these algorithms find solu-
tions, these are in the Pareto front. Moreover, observe that even in these sets of
instances, Core-Guided is still able to find all the Pareto front in more instances.

The ParetoMCS is able to provide good quality approximations in the FTP
(Figure 3b) and PU (Figure 3d) benchmarks. Note that ParetoMCS does not use
an explicit representation of the objective functions. The FTP instances have
several large coefficients in the objective functions, but the representation used
in Core-Guided is still effective for these instances. Observe that the performance
of both algorithms is similar in the FTP dataset.

The Hitting-Sets finds poor approximations for all datasets. A common
feature of this algorithm is the need to enumerate many hitting sets before
being able to find feasible solutions. Hence, in several instances it is unable to
provide good approximations. However, it is still able to prove optimality for
more instances in the SC benchmark set than the P-Minimal algorithm.

Overall, the Core-Guided is the best performing algorithm being able to find
the complete Pareto frontier in more instances. This is due to the fact that in
many cases, it does not need to relax all variables to find solutions in the Pareto
front. Moreover, when evaluating the quality of the approximations, it is still
able to outperform the other approaches on the FTP and SC benchmark sets,
despite applying an unsatisfiability-based approach.

6 Conclusions

This paper proposes two new algorithms for Multi-Objective Combinatorial Op-
timization (MOCQO). The first is a core-guided approach, while the second is

70 J. Cortes et al.

DAL FTP
HV HV

0.500 |-

0100} W o P-—minimal [
0.050f freces) B
e} ParetoMCS 097f

il

.....
IIIIIIIIII
it
1t
it

© P—minimal

ParetoMCS
& sl ~&- Hitting—sets & & Hitting—sets
ol gﬁ i ossf 7 -0 Core—Guided
0005F ol [-0 Core—Guided 9&1 f&gj
0.95
S Lg g &8
L . . . rank L rank
20 40 60 80 40 60 80 100 120
(a) DAL instances (b) FTP instances
sc
HV HY
_______ 1
o9 o eeeeeeer Y 0.500
ol . g
! ~o- P—minimal 0.100}
=
o7 " &M ParetoMCS 0.050 5 ~o- P—minimal
<§55><> < Hitting—sets iy ParetoMCS
Res ol 0.010 \‘ .

! cooo -0 Core—Guided 0.005 £ <~ Hitting—sets
Py -~ Core—Guided
<o

1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 rank " ‘0‘0 260 3‘00 460 50‘0 560 70‘0"6"K
(c) SC instances (d) PU instances

Fig.3: Comparison of the HV results for each set of instances. Each series is
sorted independently, smaller values first. Vertical scale is logarithmical.

based on the enumeration of hitting sets. These are the first SAT-based algo-
rithms that fully integrate these strategies into a MOCO solver.

Experimental results on different sets of benchmark instances show that the
new core-guided approach results in a robust algorithm that outperforms other
SAT-based algorithms for MOCO. Using unary counters to express Pareto dom-
inance in CNF proved to be an effective way to harness the power of SAT solvers
in solving MOCO. The ability to express concepts related to dominance makes
the algorithms conceptually simple.

Overall, the new algorithms are able to completely enumerate the Pareto
front for more instances than previous SAT-based approaches. Moreover, despite
following an unsatisfiability-based approach, the newly proposed algorithms are
also able to provide good quality approximations even when they are unable to
completely enumerate the Pareto front. Hence, these new unsatisfiability-based
algorithms extend the state of the art for MOCO solvers by complementing and
improving upon the existing tools based on queries to SAT Oracles.

Acknowledgements This work was supported by Portuguese national funds
through FCT under projects UIDB/50021/2020, PTDC/CCI-COM/2156/2021,
2022.03537.PTDC and project ANT 045917 funded by FEDER and FCT.

New Core-Guided and Hitting Set Algorithms for MOCO 71

References

10.

11.

12.

13.

. Ansétegui, C., Bonet, M.L., Gabas, J., Levy, J.: Improving WPM2 for (weighted)

partial maxsat. In: International Conference Principles and Practice of Constraint
Programming. LNCS, vol. 8124, pp. 117-132. Springer (2013), https://doi.org/
10.1007/978-3-642-40627-0_12

Ansétegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through
satisfiability testing. In: International Conference Theory and Applications of
Satisfiability Testing. LNCS, vol. 5584, pp. 427-440. Springer (2009), https:
//doi.org/10.1007/978-3-642-02777-2_39

Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Rossi, F. (ed.) International Conference on Principles and Practice of
Constraint Programming (CP). Lecture Notes in Computer Science, vol. 2833, pp.
108-122. Springer (2003), https://doi.org/10.1007/978-3-540-45193-8_8
Bergman, D., Ciré, A.A.: Multiobjective optimization by decision diagrams. In:
International Conference on Principles and Practice of Constraint Programming
(CP). LNCS, vol. 9892, pp. 86-95. Springer (2016), https://doi.org/10.1007/
978-3-319-44953-1_6

Bieber, P., Delmas, R., Seguin, C.: Dalculus - theory and tool for develop-
ment assurance level allocation. In: International Conference on Computer Safety,
Reliability, and Security. LNCS, vol. 6894, pp. 43-56. Springer (2011), https:
//doi.org/10.1007/978-3-642-24270-0_4

. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated

Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II. In: Interna-
tional Conference on Parallel Problem Solving from Nature. pp. 849-858. Springer
(2000)

Fu, Z., Malik, S.: Extracting logic circuit structure from conjunctive normal form
descriptions. In: International Conference on VLSI Design. pp. 37-42. IEEE Com-
puter Society (2007), https://doi.org/10.1109/VLSID.2007.81

Gavanelli, M.: An algorithm for multi-criteria optimization in csps. In: European
Conference on Artificial Intelligence. pp. 136-140. IOS Press (2002)

Guerreiro, A.P., Manquinho, V.M., Figueira, J.R.: Exact hypervolume subset selec-
tion through incremental computations. Comput. Oper. Res. 136, 105471 (2021),
https://doi.org/10.1016/j.cor.2021.105471

Jabs, C., Berg, J., Niskanen, A., Jarvisalo, M.: Maxsat-based bi-objective boolean
optimization. In: International Conference on Theory and Applications of Satisfia-
bility Testing. LIPIcs, vol. 236, pp. 12:1-12:23. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik (2022), https://doi.org/10.4230/LIPIcs.SAT.2022.12

Janota, M., Lynce, 1., Manquinho, V.M., Marques-Silva, J.: Packup: Tools for
package upgradability solving. J. Satisf. Boolean Model. Comput. 8(1/2), 89-94
(2012), https://doi.org/10.3233/sat190090

Janota, M., Morgado, A., Santos, J.F., Manquinho, V.M.: The seesaw algorithm:
Function optimization using implicit hitting sets. In: International Conference on
Principles and Practice of Constraint Programming. LIPIcs, vol. 210, pp. 31:1—
31:16. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2021), https://doi.
org/10.4230/LIPIcs.CP.2021.31

Joshi, S., Martins, R., Manquinho, V.M.: Generalized totalizer encoding for pseudo-
boolean constraints. In: International Conference Principles and Practice of Con-
straint Programming. LNCS, vol. 9255, pp. 200-209. Springer (2015), https:
//doi.org/10.1007/978-3-319-23219-5_15

https://doi.org/10.1007/978-3-642-40627-0_12
https://doi.org/10.1007/978-3-642-40627-0_12
https://doi.org/10.1007/978-3-642-02777-2_39
https://doi.org/10.1007/978-3-642-02777-2_39
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-319-44953-1_6
https://doi.org/10.1007/978-3-319-44953-1_6
https://doi.org/10.1007/978-3-642-24270-0_4
https://doi.org/10.1007/978-3-642-24270-0_4
https://doi.org/10.1109/VLSID.2007.81
https://doi.org/10.1016/j.cor.2021.105471
https://doi.org/10.4230/LIPIcs.SAT.2022.12
https://doi.org/10.3233/sat190090
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/978-3-319-23219-5_15

72

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Cortes et al.

Karpinski, M., Piotréw, M.: Encoding cardinality constraints using multiway merge
selection networks. Constraints 24(3-4), 234-251 (2019), https://doi.org/10.
1007/s10601-019-09302-0

Karpinski, M., Piotréw, M.: Incremental encoding of pseudo-boolean goal functions
based on comparator networks. In: International Conference on Theory and Appli-
cations of Satisfiability Testing. LNCS, vol. 12178, pp. 519-535. Springer (2020),
https://doi.org/10.1007/978-3-030-51825-7_36

Legriel, J., Guernic, C.L., Cotton, S., Maler, O.: Approximating the pareto front
of multi-criteria optimization problems. In: Esparza, J., Majumdar, R. (eds.) In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems, (TACAS), Held as Part of the Joint European Conferences on Theory
and Practice of Software (ETAPS). Lecture Notes in Computer Science, vol. 6015,
pp. 69-83. Springer (2010), https://doi.org/10.1007/978-3-642-12002-2_6
Li, R., Zheng, Q., Li, X., Yan, Z.: Multi-objective optimization for rebalancing
virtual machine placement. Future Gener. Comput. Syst. 105, 824-842 (2020),
https://doi.org/10.1016/j.future.2017.08.027

Development Assurance Level Benchmark Set from the LION Challenge. https:
//www.1ifl.fr/LION9/challenge.php

Benchmarks from the Mancoosi International Solver Competition 2011. http://
data.mancoosi.org/misc2011/problems/

Mancoosi international solver competition 2011. https://www.mancoosi.org/
misc-2011/index.html

Manquinho, V.M., Silva, J.P.M., Planes, J.: Algorithms for weighted boolean opti-
mization. In: International Conference on Theory and Applications of Satisfiabil-
ity Testing. LNCS, vol. 5584, pp. 495-508. Springer (2009), https://doi.org/10.
1007/978-3-642-02777-2_45

Marques, R., Russo, L.M.S., Roma, N.: Flying tourist problem: Flight time and
cost minimization in complex routes. Expert Syst. Appl. 130, 172-187 (2019),
https://doi.org/10.1016/j.eswa.2019.04.024

Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satis-
fiability. CoRR abs/0712.1097 (2007), http://arxiv.org/abs/0712.1097
Marques-Silva, J., Argelich, J., Graga, A., Lynce, I.: Boolean lexicographic opti-
mization: Algorithms & applications. Ann. Math. Artif. Intell. 62, 317-343 (07
2011). https://doi.org/10.1007/s10472-011-9233-2

packup package upgradeability solver webpage. http://sat.inesc-id.pt/$\
sim$mikolas/sw/packup/

Rayside, D., Estler, H.C., Jackson, D.: The guided improvement algorithm for ex-
act, general-purpose, many-objective combinatorial optimization. Tech. Rep. Tech-
nical Report MIT-CSAIL-TR~2009-033, MIT Massachusetts Institute of Technol-
ogy (2009)

Roussel, O., Manquinho, V.M.: Pseudo-boolean and cardinality constraints.
In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, pp. 695-733. I0S Press (2009), https://doi.org/10.3233/
978-1-58603-929-5-695

Soh, T., Banbara, M., Tamura, N., Berre, D.L.: Solving multiobjective dis-
crete optimization problems with propositional minimal model generation. In:
International Conference Principles and Practice of Constraint Programming.
LNCS, vol. 10416, pp. 596-614. Springer (2017), https://doi.org/10.1007/
978-3-319-66158-2_38

https://doi.org/10.1007/s10601-019-09302-0
https://doi.org/10.1007/s10601-019-09302-0
https://doi.org/10.1007/978-3-030-51825-7_36
https://doi.org/10.1007/978-3-642-12002-2_6
https://doi.org/10.1016/j.future.2017.08.027
https://www.lifl.fr/LION9/challenge.php
https://www.lifl.fr/LION9/challenge.php
http://data.mancoosi.org/misc2011/problems/
http://data.mancoosi.org/misc2011/problems/
https://www.mancoosi.org/misc-2011/index.html
https://www.mancoosi.org/misc-2011/index.html
https://doi.org/10.1007/978-3-642-02777-2_45
https://doi.org/10.1007/978-3-642-02777-2_45
https://doi.org/10.1016/j.eswa.2019.04.024
http://arxiv.org/abs/0712.1097
https://doi.org/10.1007/s10472-011-9233-2
https://doi.org/10.1007/s10472-011-9233-2
http://sat.inesc-id.pt/$\sim $mikolas/sw/packup/
http://sat.inesc-id.pt/$\sim $mikolas/sw/packup/
https://doi.org/10.3233/978-1-58603-929-5-695
https://doi.org/10.3233/978-1-58603-929-5-695
https://doi.org/10.1007/978-3-319-66158-2_38
https://doi.org/10.1007/978-3-319-66158-2_38

29.

30.

31.

32.

33.

34.

New Core-Guided and Hitting Set Algorithms for MOCO 73

Tamura, N., Banbara, M.: Sugar: A CSP to SAT translator based on order encod-
ing. Proceedings of the Second International CSP Solver Competition pp. 65—69
(2008)

Terra-Neves, M., Lynce, 1., Manquinho, V.M.: Introducing pareto minimal correc-
tion subsets. In: International Conference on Theory and Applications of Satisfia-
bility Testing. LNCS, vol. 10491, pp. 195-211. Springer (2017), https://doi.org/
10.1007/978-3-319-66263-3_13

Tian, N., Ouyang, D., Wang, Y., Hou, Y., Zhang, L.: Core-guided method for
constraint-based multi-objective combinatorial optimization. Appl. Intell. 51(6),
3865-3879 (2021), https://doi.org/10.1007/s10489-020-01998-5

Yuan, Y., Banzhaf, W..: ARJA: automated repair of java programs via multi-
objective genetic programming. IEEE Trans. Software Eng. 46(10), 1040-1067
(2020), https://doi.org/10.1109/TSE.2018. 2874648

Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712-731
(2007)

Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. Ph.D. thesis, University of Zurich, Ziirich, Switzerland (1999)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-66263-3_13
https://doi.org/10.1007/978-3-319-66263-3_13
https://doi.org/10.1007/s10489-020-01998-5
https://doi.org/10.1109/TSE.2018.2874648
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Verified Reductions for Optimization

1,2()

Alexander Bentkamp , Ramon Fernandez Mir>®, and Jeremy Avigad*

! Heinrich-Heine-Universitét Diisseldorf, Diisseldorf, Germany
bentkamp@gmail.com
2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
3 School of Informatics, University of Edinburgh, Edinburgh, UK
4 Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Numerical and symbolic methods for optimization are used
extensively in engineering, industry, and finance. Various methods are
used to reduce problems of interest to ones that are amenable to solution
by these methods. We develop a framework for designing and applying
such reductions, using the Lean programming language and interactive
proof assistant. Formal verification makes the process more reliable, and
the availability of an interactive framework and ambient mathematical
library provides a robust environment for constructing the reductions
and reasoning about them.

Keywords: convex optimization - formal verification - interactive theo-
rem proving - disciplined convex programming

1 Introduction

Optimization problems and constraint satisfaction problems are ubiquitous in en-
gineering, industry, and finance. These include the problem of finding an element
of R" satisfying a finite set of constraints or determining that the constraints
are unsatisfiable; the problem of bounding the value of an objective function
over a domain defined by such a set of constraints; and the problem of finding
a value of the domain that maximizes (or minimizes) the value of an objective
function. Linear programming, revolutionized by Dantzig’s introduction of the
simplex algorithm in 1947, deals with the case in which the constraints and objec-
tive function are linear. The development of interior point methods in the 1980s
allows for the efficient solution of problems defined by convex constraints and ob-
jective functions, which gives rise to the field of convex programming [10,36,43].
Today there are numerous back-end solvers for convex optimization problems,
including MOSEK [30], SeDuMi [41], and Gurobi [23]. They employ a variety of
methods, each with its own particular strengths and weaknesses. (See [1, Section
1.2] for an overview.)

Using such software requires interpreting the problem one wants to solve in
terms of one or more associated optimization problems. Often, this is straight-
forward; proving the safety of an engineered system might require showing that
a certain quantity remains within specified bounds, and an industrial prob-
lem might require determining optimal or near-optimal allocation of certain

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 74-92, 2023.
https://doi.org/10.1007/978-3-031-30820-8 &

http://orcid.org/0000-0002-7158-3595
http://orcid.org/0000-0001-7242-5532
http://orcid.org/0000-0003-1275-315X
https://doi.org/10.1007/978-3-031-30820-8_8
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_8&domain=pdf

Verified Reductions for Optimization 75

resources. Other applications are less immediate. For example, proving an inter-
esting mathematical theorem may require a lemma that bounds some quantity
of interest (e.g. [4]). Once one has formulated the relevant optimization prob-
lems, one has to transform them into ones that the available software can solve,
and one has to ensure that the conditions under which the software is designed
to work correctly have been met. Mathematical knowledge and domain-specific
expertise are often needed to transform a problem to match an efficient convex
programming paradigm. A number of modeling packages then provide front ends
that apply further transformations so that the resulting problem conforms to a
back-end solver’s input specification [15,20,26,17,42]. The transformed problem
is sent to the back-end solver and the solver produces a response, which then
has to be reinterpreted in terms of the original problem.

Our goal here is to develop ways of using formal methods to make the pas-
sage from an initial mathematical problem to the use of a back-end solver more
efficient and reliable. Expressing a mathematical problem in a computational
proof assistant provides clarity by endowing claims with a precise semantics,
and having a formal library at hand enables users to draw on a body of mathe-
matical facts and reasoning procedures. These make it possible to verify math-
ematical claims with respect to the primitives and rules of a formal axiomatic
foundation, providing strong guarantees as to their correctness. Complete for-
malization places a high burden on practitioners and often imposes a standard
that is higher than users want or need, but verification is not an all-or-nothing
affair: users should have the freedom to decide which results they are willing to
trust and which ones ought to be formally verified.

With respect to the use of optimization software, the soundness of the soft-
ware itself is one possible concern. Checking the correctness of a solution to a
satisfaction problem is easy in principle: one simply plugs the result into the
constraints and checks that they hold. Verifying the correctness of a bounding
problem or optimization problem is often almost as easy, in principle, since the
results are often underwritten by the existence of suitable certificates that are
output by the optimization tools. In practice, these tasks are made more difficult
by the fact that floating point calculation can introduce numerical errors that
bear on the correctness of the solution.

Here, instead, we focus on the task of manipulating a problem and reducing
it to a form that a back-end solver can handle. Performing such transformations
in a proof assistant offers strong guarantees that the results are correct and
have the intended meaning, and it enables users to perform the transformations
interactively or partially, and thus introspect and explore the results of indi-
vidual transformation steps. Moreover, in constructing and reasoning about the
transformations, users can take advantage of an ambient mathematical library,
including a database of functions and their properties.

In Section 3, we describe the process that CVXPY and other systems use
to transform optimization problems expressed in the disciplined convex program
(DCP) framework to conic form problems that can be sent to solvers like MOSEK
[30]. In Section 4, we explain how our implementation in the Lean programming

76 A. Bentkamp et al.

language and proof assistant [33,32] augments that algorithm so that it at the
same time produces a formal proof that the resulting reduction is correct. DCP
relies on a library of basic atoms that serve as building blocks for reductions,
and in Section 5, we explain how our implementation makes it possible to add
new atoms in a verified way. In Section 6, we provide an example of the way that
one can further leverage the power of an interactive theorem prover to justify
the reduction of a problem that lies outside the DCP framework to one that lies
within, using the mathematical library to verify its correctness. In Section 7, we
describe our interface between Lean and an external solver, which transforms an
exact symbolic representation of a problem into a floating point approximation.
Related work is described in Section 8 and conclusions are presented in Section 9.

We have implemented these methods in a prototype, CvxLean.® We offer
more information about the implementation in Section 9. A preliminary work-
shop paper [6] described our initial plans for this project and the reduction
framework presented here in Section 2.

2 Optimization Problems and Reductions

The general structure of a minimization problem is expressed in Lean 4 as follows:

structure Minimization (D R : Type) :=
(objFun : D — R)
(constraints : D — Prop)

Here the data type D is the domain of the problem and R is the data type in which
the objective function takes its values. The field objFun represents the objective
function and constraints is a predicate on D, which, in Lean, is represented
as a function from D to propositions: for every value a of the domain D, the
proposition constraints a, which says that the constraints hold of a, is either
true or false. The domain D is often R™ or a space of matrices, but it can also
be something more exotic, like a space of functions. The data type R is typically
the real numbers, but in full generality it can be any type that supports an
ordering. A maximization problem is represented as a minimization problem for
the negation of the objective function.

A feasible point for the minimization problem p is an element point of D
satisfying p.constraints. Lean’s foundational framework allows us to package
the data point with the condition that it satisfies those constraints:

structure FeasPoint {D R : Type} [Preorder R] (p : Minimization D R) :=
(point : D)
(feasibility : p.constraints point)

The curly and square brackets denote parameters that can generally be inferred
automatically. A solution to the minimization problem p is a feasible point,
denoted point, such that for every feasible point y the value of the objective
function at point is smaller than or equal to the value at y.

 https://github.com/verified-optimization/CvxLean

https://github.com/verified-optimization/CvxLean

Verified Reductions for Optimization 77

structure Solution {D R : Type} [Preorder R] (p : Minimization D R) :=
(point : D)
(feasibility : p.constraints point)
(optimality : V y : FeasPoint p, p.objFun point < p.objFun y.point)

Feasibility and bounding problems can also be expressed in these terms. If the
objective function is constant (e.g. the constant zero function), a solution to the
optimization problem is simply a feasible point. Given a domain, an objective
function, and constraints, the value b is a strict lower bound on the value of the
objective function over the domain if and only if the feasibility problem obtained
by adding the inequality objFun x < b to the constraints has no solution.

Lean 4 allows us to implement convenient syntax for defining optimization
problems. For example, the following specifies the problem of maximizing v/z —y
subject to the constraints y = 2z — 3 and z? < 2:

optimization (x y : R)
maximize sqrt (x - y)
subject to

cl : y=2%x - 3
c2 : x2 <2
c3:0<x-y

The third condition, c3, ensures that the objective function makes sense and is
concave on the domain determined by the constraints. In some frameworks, like
CVXPY, this constraint is seen as implicit in the use of the expression sqrt (x
- y), but we currently make it explicit in CvxLean. Problems can also depend
on parameters and background conditions. For example, we can replace c1 above
by y = axx - 3 for a parameter a, and we can replace the objective function by
b * sqrt (x - y) with the background assumption 0 < b.

In Section 6, we will consider the covariance estimation for Gaussian vari-
ables, which can be expressed as follows, for a tuple of sample values y:

optimization (R : Matrix (Fin n) (Fin n) R)
maximize ([] i, gaussianPdf R (y i))
subject to

c_pos_def : R.posDef

Here Matrix (Fin n) (Fin n) Ris Lean’s representation of the data type of nxn
matrices over the reals, gaussianPdf is the Gaussian probability density function
defined in Section 6, and the constraint R.posDef specifies that R ranges over
positive definite matrices.

If p and q are problems, a reduction from p to q is a function mapping any
solution to q to a solution to p. The existence of such a reduction means that
to solve p it suffices to solve q. If p is a feasibility problem, it means that the
feasibility of q implies the feasibility of p, and, conversely, that the infeasibility
of p implies the infeasibility of q. We can now easily describe what we are after:
we are looking for a system that helps a user reduce a problem p to a problem q
that can be solved by an external solver. (For a bounding problem g, the goal is
to show that the constraints with the negated bound are infeasible by finding a

78 A. Bentkamp et al.

reduction from an infeasible problem p.) At the same time, we wish to verify the
correctness of the reduction, either automatically or with user interaction. This
will ensure that the results from the external solver really address the problem
that the user is interested in solving.

This notion of a reduction is quite general, and is not restricted to any par-
ticular kind of constraint or objective function. In the sections that follow, we
explain how the notion can be applied to convex programming.

3 Reduction to Conic Form

Disciplined Convex Programming (DCP) is a framework for writing constraints
and objective functions in such a way that they can automatically be transformed
into problems that can be handled by particular back-end solvers. It aims to be
flexible enough to express optimization problems in a natural way but restrictive
enough to ensure that problems can be transformed to meet the requirements
of the solvers. To start with, the framework guarantees that expressions satisfy
the relevant curvature constraints [1,21], assigning a role to each expression:

Constant expressions and variables are affine.

— An expression f(expry,...,expr,) is affine if f is an affine function and for
each i, expr; is affine.
— An expression f(expry,...,expr,) is convex if f is convex and for each 4, one

of the following conditions holds:
e f is increasing in its ith argument and expr; is convex.
e f is decreasing in its ith argument and expr; is concave.
e expr, is affine.
— The previous statement holds with “convex” and “concave” switched.

An affine expression is both convex and concave. Some functions f come with
side conditions on the range of arguments for which such curvature properties are
valid; e.g. f(x) = +/z is concave and increasing on the domain {x € R | z > 0}.

A minimization problem is amenable to the DCP reduction if, following the
rules above, its objective function is convex and the expressions occurring in
its constraints are concave or convex, depending on the type of constraint. For
example, maximizing /= — y requires minimizing —/z — y, and the DCP rules
tell us that the latter is a convex function of x and y on the domain where
x —y > 0, because x — y is affine, /- is concave and increasing in its argument,
and negation is affine and decreasing in its argument.

CvxLean registers the properties of atomic functions f(@) in a library of
atoms. Each such function f is registered with a formal representation expr;(a)
using expressions, like x * log x or log (det A), that can refer to arbitrary func-
tions defined in Lean’s library. The atom also registers the relevant properties of
f. The curvature of f, curvy, has one of the values convex, concave, or affine, and
the monotonicity of the function in each of its arguments is tagged as increasing,
decreasing, or neither. CvxLean also allows the value auxiliary, which indicates an
expression that serves as a fixed parameter in the sense that it is independent

Verified Reductions for Optimization 79

of the variables in the optimization problem. Atoms can also come with back-
ground conditions bcondsy(a), which are independent of the domain variables,
and variable conditions vcondsy(a), which constrain the domain on which the
properties hold. Notably, the atoms also include proofs of properties that are
needed to justify the DCP reduction.

By storing additional information with each atom, a DCP framework can
use the compositional representation of expressions to represent a problem in a
form appropriate to a back-end solver. For example, solvers like MOSEK expect
problems to be posed in a certain conic form [30]. To that end, CVXPY stores
a graph implementation for each atomic function f, which is a representation
of f as the solution to a conic optimization problem. By definition, the graph
implementation of an atomic function f is an optimization problem in conic
form, given by a list of variables v, an objective function obj;(Z,v), and a list
of constraints constr¢(z,v), such that the optimal value of the objective under
the constraints is equal to f(Z) for all Z in the domain of validity. For example,
for any x > 0, the concave function /= can be characterized as the maximum
value of the objective function obj(x,t) = t satisfying the constraint constr(x,t)
given by t? < x. Once again, a notable feature of CvxLean is that that the atom
comes equipped with a formal proof of this fact.

The idea is that we can reduce a problem to the required form by iteratively
replacing each application of an atomic function by an equivalent characteri-
zation in terms of the graph implementation. For example, we can replace a
subexpression /T — y by a new variable ¢ and add the constraint t? < x — y,
provided that the form of the resulting problem ensures that, for any optimal
solution to the constraints, ¢ will actually be equal to \/x —y. Given a well-
formed DCP minimization problem, CvxLean must perform the reduction and
construct a formal proof of the associated claims. In this section we describe
the reduction, and in the next section we describe the proofs. A more formal
description of both are given in an extended version of this paper [7].

Let e be a well-formed DCP expression. CvxLean associates to each such
expression a tree 1" whose leaves are expressions that are affine with respect to
the variables of the optimization problem. For example, this is the tree associated
with the expression -sqrt (x - y):

neg (affine, in the role of convex)
‘ decreasing
sqrt (concave)
‘ increasing
sub (affine, in the role of concave)

increasin/ Necreasing

X y

Alternatively, we could use a single leaf for x - y. Denoting the variables of the
optimization problem by ¢, we can recursively assign to each node n a subexpres-

80 A. Bentkamp et al.

sion oexpr,, () of e that corresponds to the subtree with root n. In the example
above, the subexpressions are x, y, x - y, sqrt (x - y), and -sqrt (x - y). To
each internal node, we assign a curvature, convex, concave, or affine, subject to
the rules of DCP. An expression that is affine can be viewed as either convex
or concave. Equalities and inequalities are also atoms; for example, e; < es
describes a convex set if and only if e; is convex and es is concave. A formaliza-
tion of the DCP rules allows us to recursively construct formal proofs of these
curvature claims, modulo the conditions and assumptions of the problem. We
elaborate on this process in the next section.

Now consider a well-formed DCP minimization problem with objective func-
tion o and constraints cq,...,c,. We call these expressions the components of
the problem. Recall the following example from the previous section, recast as a
minimization problem:

optimization (x y : R)
minimize -sqrt (x - y)
subject to

cl : y=2%x - 3
c2 : x”2< 2
c3:0<x-y

Here the components are -sqrt (x - y),y = 2*x - 3,x"2 < 2,and 0 < x - y.

First, we assign to each component ¢ an atom tree T, as described above. If
y are the variables of the original problem, the variables of the reduced problem
are yU z, where Z is a collection of variables consisting of a fresh set of variables
for the graph implementation at each internal node of each tree, for those atoms
whose graph implementations introduce new variables. To each node n of each
atom tree, we assign an expression rexpr, (7, Z) in the language of the reduced
problem representing the expression oexpr, (7) in the original problem. At the
leaves, rexpr,, (7, Z) is the same as oexpr, (7). At internal nodes we use the ob-
jective function of the corresponding atom’s graph implementation, applied to
the interpretation of the arguments. The objective of the reduced problem is the
expression assigned to the root of Tj,.

As far as the constraints of the reduced problem, recall that each internal
node of the original problem corresponds to an atom, which has a graph imple-
mentation. The graph implementation, in turn, is given by a list of variables v,
an objective function obj;(a,v), and a list of constraints constr(a, v). These con-
straints, applied to the expressions representing the arguments, are part of the
reduced problem. Moreover, the constraints of the original problem, expressed in
terms of the reduced problem, are also constraints of the reduced problem, with
one exception. Recall that atoms can impose conditions vcondss (@), which are
assumed to be among the constraints of the original problem and to be implied
by the graph implementation. For example, the condition 0 < x is required to
characterize /7 as the maximum value of a value ¢ satisfying t~2 < x, but, con-
versely, the existence of a t satisfying t~2 < x implies 0 < x. So a constraint
0 < x that is present in the original problem to justify the use of sqrt x can be
dropped from the reduced problem.

Verified Reductions for Optimization 81

In the example above, there is a tree corresponding to each of the compo-
nents -sqrt (x - y), x°2 < 2,0 < x - y, and y = 2%x - 3. As n ranges over
the nodes of these trees, oexpr,, (x,y) ranges over all the subexpressions of these
components, namely, x, y, x - y, sqrt (x - y), -sqrt (x - y), x72, 2, x"2 < 2,
and so on. The only atoms whose graph implementations introduce extra vari-
ables are the square root and the square. Thus, CvxLean introduces the variable
t.0, corresponding to the expression sqrt (x - y), and the variable t.1, corre-
sponding to the expression x~2. The values of rexpr, (z,y,to,t1) corresponding
to some of the expressions above are as follows:

oexpr,, (z,y) H X -y ‘ sqrt (x - y) ‘ -sqrt (x - y) ‘ X2
rexpr,, (z,y, to, t1) H X -y ‘ t.0 ‘ -t.0 ‘ t.1

The constraints c1 and c2 of the original problem translate to cone constraints
c1’ and c2’ on the new variables, the constraint c¢3 is implied by the graph
representation of x~2, and the graph representations of sqrt (x - y) and x~2
become new cone constraints c4’ and c¢5°. Thus the reduced problem is as follows:

optimization (x y t.0 t.1 : R)
maximize t.0

subject to
cl’ : zeroCone (2*x - 3 - y) --2%¥x - 3 -y =0
c2’ : posOrthCone (2 - t.1) --2-t.12>0
c4’ : rotatedSoCone 0.5 (x - y) !'[t.0] --x -y > t.0"2
c5’ : rotatedSoCone t.1 0.5 ![x] --t.1 > x72

Here, !'[t.0] and ![x] denote singleton vectors and the meaning of the cone
constraints is annotated in the comments. For a description of the relevant conic
forms, see the MOSEK modeling cookbook [31].

4 Verifying the Reduction

The reduction described in the previous section is essentially the same as the
one carried out by CVXPY. The novelty of CvxLean is that it provides a formal
justification that the reduction is correct. The goal of this section is to explain
how we manage to construct a formal proof of that claim. In fact, given a problem
P with an objective function f, CvxLean constructs a new problem) with an
objective g, together with the following additional pieces of data:

— a function ¢ from the domain of P to the domain of @ such that for any
feasible point x of P, ¢(z) is a feasible point of @ with g(¢(z)) < f(z)

— a function ¢ from the domain of @) to the domain of P such that for any
feasible point y of @, ¥ (y) is a feasible point of P with f(¥(y)) < g(y).

These conditions guarantee that if y is a solution to @ then ¢ (y) is a solution
to P, because for any feasible point = of P we have

fb(y) < gy) < glp(z)) < f(2).

82 A. Bentkamp et al.

This shows that 1 is a reduction of P to (), and the argument with P and @)
swapped shows that ¢ is a reduction of Q) to P. Moreover, whenever y is a solution
to @, instantiating x to ¥(y) in the chain of inequalities implies f(1(y)) = g(y).
Similarly, when « is a solution to P, we have g(¢(x)) = f(z). So the conditions
above imply that P has a solution if and only if @) has a solution, and when they
do, the minimum values of the objective functions coincide. Below, we will refer
to the data (p,1)) as a strong equivalence between the two problems.

To construct and verify such a strong equivalence between the original prob-
lem and the result of applying the transformation described in Section 3, we need
to store additional information with each atom. Specifically, for each atomic func-
tion f(a), that atom must provide solutions sol¢(a) to the graph implementation
variables v, as well as formal proofs of the following facts:

— The function f(a) satisfies the graph implementation: for each a satisfying
the conditions vconds (@), we have:
e solution feasibility: sol;(a) satisfies the constraints constr¢(a,sols(a))
e solution correctness: we have obj,(a,sols(a)) = expr(a) , where expr ;(a)
is the expression representing f.

— The function f(a) is the optimal solution to the graph implementation, in
the following sense. Write @’ A @ to express the assumptions that a; > a;
for increasing arguments to f, a; < a; for decreasing arguments, and a, and
a; are syntactically identical for other arguments. If f is convex and a A @,
we require obj;(a,v) > expr;(a’) for any v such that constry(a,v) holds. If f
is concave and @’ A a, we require obj(a,v) < expr,(a’) for any v such that
constr¢(a, v) holds. For affine atoms, we require both.

Finally, as noted in the previous section, the graph implementation implies the
conditions needed for the reduction. Under the assumptions on @ and @’ in the
second case above, we also require a proof of vcondsy(a’). We refer to this as
condition elimination.

For a concrete example, consider the atom for the concave function /a. In
that case, vconds(a) is the requirement a > 0, and expr(a), the Lean representa-
tion of the function, is given by Lean’s sqrt function. The graph implementation
adds a new variable v. The only constraint constr(a,v) is v* < a, and the ob-
jective function is obj(a,v) = v. The solution function sol(a) returns /a when
a is nonnegative and an arbitrary value otherwise. The atom for /- stores Lean
proofs of all of the following:

solution feasibility: V a, 0 < a — (sqrt a)"2 < a
solution correctness: V a, 0 < a — sqrt a = sqrt a
— optimality: Vv a a’, a < a> - v'2 < a = v < sqrt a’

— condition elimination: V v a a’>, a < a’ - v'2<a — 0 < a’.

More precisely, the atom stores the representation of the graph of the square
root function as a cone constraint, and the properties above are expressed in
those terms. These properties entail that sqrt is concave, but we do not need to
prove concavity explicitly.

Verified Reductions for Optimization 83

Let the variables ¢ range over the domain of the original problem, P, and
let the variables 7, Z be the augmented list of variables in the reduced problem,
Q. We wish to construct a strong equivalence between P and). To that end,
we need to define a forward map ¢ and a reverse map . The definition of ¥ is
easy: we simply project each tuple 7, Z to §. The definition of the forward map,
, is more involved, since we have to map each tuple 7 of values to an expanded
tuple 7, z. The values of § remain unchanged, so the challenge is to define, for
each new variable z, an expression interp,(y) to interpret it.

Recall that for each subexpression oexpr,, () in the original problem, corre-
sponding to a node n, there is an expression rexpr,, (g, w) involving new vari-
ables from the reduced problem. Suppose a node n corresponds to an expres-
sion f(uy,...,u,) in the original problem, and the graph implementation of f
introduces new variables . For each v;, we need to devise an interpretation
interp, (g). To start with, soly provides a solution to v; in terms of the argu-
ments u1, ..., Uu,. For each of these arguments, rexpr provides a representation in
terms of the variables ¥ and other new variables. Composing these, we get an ex-
pression e(y, w1, . .., wg) for v; in terms of the variables y of the original problem
and new variables w, ..., w,. Recursively, we find interpretations interp,, () of
each wy, and define interp, (y) to be e(y, interp,, (¥),...,interp,, (¥)). In other
words, we read off the interpretation of each new variable of the reduced problem
from the intended solution to the graph equation, which may, in turn, require
the interpretation of other new variables that were previously introduced.

In the end, the forward map ¢ is the function that maps the variables 7 in the
original problem to the tuple (g,interp, (),...,interp, (¥)), where z1,...,2m
are the new variables. To show that (p,) is a strong equivalence, we must show
that for any feasible point § of the original problem, (%) is a feasible point of the
reduced problem. This follows from the solution correctness requirement above.
We also need to show that if f() is the objective function of the original problem
and ¢(7,z) is the objective function of the reduced problem, g(p(7)) < (7).
In fact, the solution correctness requirement enables us to prove the stronger
property g((g)) = f(7). Finally, we need to show that for any feasible point g, z
of the reduced problem, the tuple 3 is a feasible point of the original problem and
f(@) < g(g,z). To do that, we recursively use the optimality requirement to show
rexpr,,(y, Z) > oexpr,,(y) whenever the node n marks a convex expression or an
affine expression in the role of a convex expression, and rexpr,, (7, Z) < oexpr,, (¥)
whenever the node n marks a concave expression or an affine expression in the
role of a concave expression.

A proof that the maps ¢ and 1 constructed above form a strong equivalence
can be found in the extended version of this paper [7], but it is helpful to
work through the example from Section 3 to get a sense of what the proof
means. For this example, the forward map is ¢(z,y) = (z,y, /T — y,2%) and the
reverse map is ¥ (z,y,to,t1) = (z,y). Assuming that (z,y) is a solution to the
original problem, the fact that ¢(z,y) satisfies c1’ follows from c1, the fact that
it satisfies c2 follows from c2, the fact that it satisfies c4’ and c¢5° follows from
the fact that \/z —y and z? are correct solutions to the graph implementation

84 A. Bentkamp et al.

constraints. In this direction, g(¢(x,y)) = —vz —y = f(z,y). In the other
direction, assuming that (z,y,to,t1) is a solution to the reduced problem, the
fact that (x,y) satisfies c1 follows from c1’, that fact that it satisfies c2 follows
from c2’ and c5’, and the fact that is satisfies c¢3 follows from c4’. Here we

have f(1(z,y,to,t1)) = —v/x —y and g(x,y,to,t1) = —to, and the fact that the
former is less than or equal to the latter follows from c4°.

5 Adding Atoms

One important advantage to using an interactive theorem prover as a basis for
solving optimization problems is that it is possible to extend the atom library in
a verified way. In a system like CVXPY, one declares a new atom with its graph
implementation on the basis of one’s background knowledge or a pen-and-paper
proof that the graph implementation is correct and that the function described
has the relevant properties over the specified domain. In CvxLean, we have
implemented syntax with which any user can declare a new atom in Lean and
provide formal proofs of these facts. The declaration can be made in any Lean
file, and it becomes available in any file that imports that one as a dependency.
Lean has a build system and package manager that handles dependencies on
external repositories, allowing a community of users to share such mathematical
and computational content.

For example, the declaration of the atom for the logarithm looks as follows:

declare_atom log [concave] (x : R)+ : log x :=
conditions (cond : 0 < x)
implementationVars (t : R)
implementationObjective t
implementationConstraints (c_exp : expCone t 1 x)
solution (t := log x)
solutionEqualsAtom by ...
feasibility (c_exp : by ...)
optimality by ...
conditionElimination (cond : by ...)

The ellipses indicate places that are filled by formal proofs. Proof assistants
like Lean allow users to write such proofs interactively in an environment that
displays proof obligations, the local context, and error messages, all while the
user types. For example, placing the cursor at the beginning of the optimality
block displays the following goal:

xt: R
c_exp : expCone t 1 x
FY (@G :R,zx<y—>t<logy

In other words, given real values x and ¢ and the relevant constraint in terms of
the exponential cone, we need to prove that for every y > x, we have t < log(y).

For the example we present in the next section, we had to implement the
log-determinant atom [10, Example 9.5], whose arguments consist of a natural

Verified Reductions for Optimization 85

number n and a matrix A € R™*"™. This function is represented in Lean by the
atom expression expr;,, 4o, = log (det A), where the parameter n is implicit in
the type of A. The curvature is specified to be concave, the monotonicity in n
is auxiliary because we do not support the occurrence of optimization variables
in this argument, and the monotonicity in A is neither because the value of
log(det A) is neither guaranteed to increase nor guaranteed to decrease as A
increases. (The relevant order here on matrices is elementwise comparison.) The
correctness of the reduction requires the assumption that A is positive definite.
Following CVXPY, we used the following graph implementation:

maximize Z t;

i
over teR™, Y ¢ R™*"
subject to (t,1,y) € expcone

(ZT i) positive semidefinite
Here y is the diagonal of Y; Z is obtained from Y by setting all entries below
the diagonal to 0; and D is obtained from Y by setting all entries off the diag-
onal to 0. Here, saying that the tuple (¢,1,y) is in the exponential cone means
that e¥" > t; for each ¢. Our implementation in CvxLean required proving that
this graph implementation is correct. To do so, we formalized an argument in
the MOSEK documentation.® This, in turn, required proving properties of the
Schur complement, triangular matrices, Gram-Schmidt orthogonalization, and
LDL factorization. Moreover, the argument uses the subadditivity of the de-
terminant function, for which we followed an argument by Andreas Thom on
MathOverflow.”

6 User-defined Reductions

An even more important advantage of using an interactive proof assistant as a
framework for convex optimization is that, with enough work, users can carry out
any reduction that can be expressed and justified in precise mathematical terms.
As a simple example, DCP cannot handle an expression of the form exp(x)exp(y)
in a problem, requiring us instead to write it as exp(z + y). But in CvxLean,
we have the freedom to express the problem in the first form if we prefer to and
then verify that the trivial reduction is justified:

reduction red/prob :
optimization (x y : R)
maximize x + y
subject to

5 https://docs.mosek.com/modeling- cookbook/sdo.html#log-determinant
" https://mathoverflow.net/questions/65424/determinant-of - sum-of -positiv
e-definite-matrices/65430#65430

https://docs.mosek.com/modeling-cookbook/sdo.html#log-determinant
https://mathoverflow.net/questions/65424/determinant-of-sum-of-positive-definite-matrices/65430#65430
https://mathoverflow.net/questions/65424/determinant-of-sum-of-positive-definite-matrices/65430#65430

86 A. Bentkamp et al.

h : (exp x) * (exp y) < 10 := by
conv_constr => rw [<-Real.exp_add]

Here the expression rw [<Real.exp_add] supplies the short formal proof that
exp(z + y) can be replaced by exp(x)ezp(y).

Of course, this functionality becomes more important as the reductions be-
come more involved. As a more substantial example, we have implemented a
reduction needed to solve the the covariance estimation problem for Gaussian
variables [10, pp. 355]. In this problem, we are given N samples y;,...,yny € R"
drawn from a Gaussian distribution with zero mean and unknown covariance
matrix R. We assume that the Gaussian distribution is nondegenerate, so R is
positive definite and the distribution has density function

pr(y) = (27) 72 det(R)~"? exp(—yT R™1y/2).

We want to estimate the covariance matrix R using maximum likelihood estima-
tion, i.e., we want to find the covariance matrix that maximizes the likelihood
of observing yi,...ynx. The maximum likelihood estimate for R is the solution
to the following problem:

N
maximize HpR(yk) over R subject to R positive definite.
k=1

As stated, this problem has a simple analytic solution, namely, the sample co-
variance of y1,...,yn, but the problem becomes more interesting when one adds
additional constraints, for example, upper and lower matrix bounds on R, or
constraints on the condition number of R (see [10]). We can easily reduce the
problem to maximizing the logarithm of the objective function above, but that is
not a concave function of R. It is, however, a concave function of S = R™!, and
common constraints on R translate to convex constraints on S. We can therefore
reduce the problem above to the following:

N
maximize log(det(S)) — ZykTSyk over S subject to S positive definite,
k=1

possibly with additional constraints on S. We express the sum using the sample
covariance Y = % ch\[:l ykyg and the trace operator:

maximize log(det(S)) — N -tr(Y'ST) over S
subject to S positive definite

The problem can then be solved using disciplined convex programming. The
constraint that S is positive definite is eliminated while applying the graph
implementation of log(det(S)).

We have formalized these facts in Lean and used them to justify the reduc-
tion. An example with an additional sparsity constraints on R can be found in
CvxLean/Examples in our repository.

Verified Reductions for Optimization 87
7 Connecting Lean to a Conic Optimization Solver

Once a problem has been reduced to conic form, it can be sent to an external
back-end solver. At this point, we must pass from the realm of precise symbolic
representations and formal mathematical objects to the realm of numeric compu-
tation with floating point representations. We traverse our symbolic expressions,
replacing functions on the reals from Lean’s mathematical library with corre-
sponding numeric functions on floats, for example associating the floating point
exponential function Float.exp to the real exponential function Real.exp. Our
implementation makes it easy to declare such associations with the following
syntax: addRealToFloat : Real.exp := Float.exp.

This is one area where more verification is possible. We could use verified
libraries for floating point arithmetic [2,9,19,44], we could use dual certificates
to verify the results of the external solver, and we could carry out formal sensi-
tivity analysis to manage and bound errors. Our current implementation is only
designed to verify correctness up to the point where the problem is sent to the
back-end solver, and to facilitate the last step, albeit in an unverified way.

We have implemented a solve command in CvxLean which takes a an opti-
mization problem prob in DCP form and carries out the following steps:

1. It applies the dcp procedure to obtain a reduced problem, prob.reduced, and
a reduction red : Solution prob.reduced -> Solution prob.

2. It carries out the translation to floats, traversing each expression and apply-
ing the registered translations.

3. It extracts the numerical data from the problem. At this point, we have
scalars, arrays and matrices associated to every type of constraint.

4. Tt writes the problem to an external file in the conic benchmark format.®

5. It calls MOSEK and receives a status code in return, together with a solution,
if MOSEK succeeds in finding one. The problem status is added to the
environment and if it is infeasible or ill-posed, we stop.

6. Otherwise, the solve command interprets the solution so that it matches the
shape of the variables of prob.reduced. It also expresses these values as Lean
reals, resulting in an approximate solution p to prob.reduced. It declares a
corresponding Solution to prob.reduced, using a placeholder for the proofs
of feasibility and optimality (since we simply trust the solver here).

7. It then uses the reduction from prob to prod.reduced, again reinterpreted in
terms of floats, to compute an approximate solution to prob.

Finally, the results are added to the Lean environment. In the following example,
the command solve sol results in the creation of new Lean objects sol.reduced,
sol.status, sol.value, and sol.solution. The first of these represents the conic-
form problem that is sent to the back-end solver, while the remaining three
comprise the resulting solution.

noncomputable def sol :=

8 https://docs.mosek.com/latest/rmosek/cbf-format .html

https://docs.mosek.com/latest/rmosek/cbf-format.html

88 A. Bentkamp et al.

optimization (x y : R)
maximize sqrt (x - y)
subject to

cl : y=2*%x - 3
c2 : x”2 < 2
c3:0<x-y

solve sol

#print sol.reduced -- shows the reduced problem
#eval sol.status -- "PRIMAL_AND_DUAL_FEASIBLE"
#eval sol.value -- 2.101003

#eval sol.solution -- (-1.414214, -5.828427)

8 Related Work

Our work builds on decades of research on convex optimization [10,36,39,43],
and most directly on the CVX family and disciplined convex programming
[15,17,20,21,42]. Other popular packages include Yalmip [26].

Formal methods have been used to solve bounding problems [18,38], con-
straint satisfaction problems [16], and optimization problems [25]. This litera-
ture is too broad to survey here, but [14] surveys some of the methods that
are used in connection with the verification of cyber-physical systems. Proof
assistants in particular have been used to verify bounds in various ways. Some
approaches use certificates from numerical packages; Harrison [24] uses certifi-
cates from semidefinite programming in HOL Light, and Magron et al. [27] and
Martin-Dorel and Roux [28] use similar certificates in Coq. Solovyev and Hales
use a combination of symbolic and numeric methods in HOL Light [40]. Other
approaches have focused on verifying symbolic and numeric algorithms instead.
For example, Mufioz, Narkawicz, and Dutle [34] verify a decision procedure for
univariate real arithmetic in PVS and Cordwell, Tan, and Platzer [13] verify an-
other one in Isabelle. Narkawicz and Mutioz [35] have devised a verified numeric
algorithm to find bounds and global optima. Cohen et al. [11,12] have devel-
oped a framework for verifying optimization algorithms using the ANSI/ISO C
Specification Language (ACSL) [5].

Although the notion of a convex set has been formalized in a number of
theorem provers, we do not know of any full development of convex analysis.
The Isabelle [37] HOL-Analysis library includes properties of convex sets and
functions, including Carathéodory’s theorem on convex hulls, Radon’s theorem,
and Helly’s theorem, as well as properties of convex sets and functions on normed
spaces and Euclidean spaces. A theory of lower semicontinuous functions by
Grechuk [22] in the Archive of Formal Proofs [§] includes properties of convex
functions. Lean’s mathlib [29] includes a number of fundamental results, including
a formalization of the Riesz extension theorem by Kudryashov and Dupuis and a
formalization of Jensen’s inequality by Kudryashov. Allamigeon and Katz have
formalized a theory of convex polyhedra in Coq with an eye towards applications

Verified Reductions for Optimization 89

to linear optimization [3]. We do not know of any project that has formalized
the notion of a reduction between optimization problems.

9 Conclusions

We have argued that formal methods can bring additional reliability and interac-
tive computational support to the practice of convex optimization. The success
of our prototype shows that it is possible to carry out and verify reductions using
a synergistic combination of automation and user interaction.

The implementation of CvxLean is currently spread between two versions of
Lean [32,33]. Lean 3 has a formal library, mathlib [29], which comprises close to
a million lines of code and covers substantial portions of algebra, linear algebra,
topology, measure theory, and analysis. Lean 4 is a performant programming
language as well as a proof assistant, but its language is not backward compatible
with that of Lean 3. All of the substantial programming tasks described here
have been carried out in Lean 4, but we rely on a binary translation of the Lean 3
library and some additional results proved there. This arrangement is not ideal,
but a source-level port of the Lean 3 library is already underway, and we expect
to move the development entirely to Lean 4 in the near future.

There is still a lot to do. We have implemented and verified all the atoms
needed for the examples presented in this paper, but these are still only a frac-
tion of the atoms that are found in CVXPY. The DCP transformation currently
leaves any side conditions that it cannot prove for the user to fill in, and special-
purpose tactics, i.e. small-scale automation, could help dispel proof obligations
like monotonicity. Textbooks often provide standard methods and tricks for car-
rying out reductions (e.g. [10, Section 4.1.3]), and these should also be supported
by tactics in CvxLean. Our project, as well as Lean’s library, would benefit from
more formal definitions and theorems in convex analysis and optimization. We
need to implement more efficient means of extracting numeric values for the back-
end solver, and it would be nice to verify more of the numeric computations and
claims. Finally, and most importantly, we need to work out more examples like
the ones presented here to ensure that the system is robust and flexible enough
to join the ranks of conventional optimization systems like CVXPY.

Acknowledgements Seulkee Baek did some preliminary experiments on connect-
ing Lean 3 to external optimization solvers. Mario Carneiro and Gabriel Ebner
advised us on how to formalize optimization problems and on Lean 4 metapro-
gramming. Steven Diamond helped us understand the world of convex opti-
mization. We also had helpful discussions with Geir Dullerud, Paul Jackson,
Florian Jarre, John Miller, Balasubramanian Narasimhan, Ivan Papusha, and
Ufuk Topcu. Diamond, Jackson, and Parth Nobel provided helpful feedback on
a draft of this paper. This work has been partially supported by the Hoskinson
Center for Formal Mathematics at Carnegie Mellon University. Bentkamp has
received funding from a Chinese Academy of Sciences President’s International
Fellowship for Postdoctoral Researchers (grant No. 2021PT0015). We thank the
anonymous reviewers for their corrections and suggestions.

90

A. Bentkamp et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex
optimization problems. J. Control and Decision 5(1), 42-60 (2018)

Akbarpour, B., Abdel-Hamid, A.T., Tahar, S., Harrison, J.: Verifying a synthe-
sized implementation of IEEE-754 floating-point exponential function using HOL.
Comput. J. 53(4), 465-488 (2010). https://doi.org/10.1093/comjnl/bxp023
Allamigeon, X., Katz, R.D.: A formalization of convex polyhedra based on the
simplex method. J. Autom. Reason. 63(2), 323-345 (2019)

Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite
programming. J. Amer. Math. Soc. 21(3), 909-924 (2008). https://doi.org/10
.1090/80894-0347-07-00589-9

Baudin, P., Cuoq, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: Acsl: ANSI / ISO c specification language (2020), https://frama-c.com/html
/acsl.html, version 1.17

Bentkamp, A., Avigad, J.: Verified optimization (work in progress) (2022), Formal
Mathematics for Mathematicians (FMM) workshop, 2021

Bentkamp, A., Fernandez Mir, R., Avigad, J.: Verified reductions for optimization
(2023), https://arxiv.org/abs/2301.09347

Blanchette, J.C., Haslbeck, M.W., Matichuk, D., Nipkow, T.: Mining the archive of
formal proofs. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
Intelligent Computer Mathematics (CICM) 2015. pp. 3-17. Springer (2015)
Boldo, S., Filliatre, J.: Formal verification of floating-point programs. In: 18th
IEEE Symposium on Computer Arithmetic (ARITH-18) 2007, 25-27 June 2007,
Montpellier, France. pp. 187-194. IEEE Computer Society (2007). https://doi.
org/10.1109/ARITH.2007 .20

Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2014), https://web.stanford.edu/ boyd/cvxbook/

Cohen, R., Davy, G., Feron, E., Garoche, P.L.: Formal verification for embed-
ded implementation of convex optimization algorithms. IFAC-PapersOnLine 50(1),
5867-5874 (2017), 20th IFAC World Congress

Cohen, R., Feron, E., Garoche, P.: Verification and validation of convex optimiza-
tion algorithms for model predictive control. Journal of Aerospace Information
Systems 17(5), 257-270 (2020)

Cordwell, K., Tan, Y.K., Platzer, A.: A verified decision procedure for univariate
real arithmetic with the BKR algorithm. In: Cohen, L., Kaliszyk, C. (eds.) In-
teractive Theorem Proving (ITP) 2021. LIPIcs, vol. 193, pp. 14:1-14:20. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2021)

Deshmukh, J.V., Sankaranarayanan, S.: Formal techniques for verification and test-
ing of cyber-physical systems. In: Al Faruque, M.A., Canedo, A. (eds.) Design
Automation of Cyber-Physical Systems. pp. 69-105. Springer, Cham (2019)
Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for con-
vex optimization. J. Machine Learning Research 17(83), 1-5 (2016)

Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure. J.
Satisf. Boolean Model. Comput. 1(3-4), 209-236 (2007). https://doi.org/10.3
233/sat190012

Fu, A., Narasimhan, B., Boyd, S.: CVXR: An R package for disciplined convex
optimization. Journal of Statistical Software 94(14), 1-34 (2020)

https://doi.org/10.1093/comjnl/bxp023
https://doi.org/10.1093/comjnl/bxp023
https://doi.org/10.1090/S0894-0347-07-00589-9
https://doi.org/10.1090/S0894-0347-07-00589-9
https://doi.org/10.1090/S0894-0347-07-00589-9
https://doi.org/10.1090/S0894-0347-07-00589-9
https://frama-c.com/html/acsl.html
https://frama-c.com/html/acsl.html
https://arxiv.org/abs/2301.09347
https://doi.org/10.1109/ARITH.2007.20
https://doi.org/10.1109/ARITH.2007.20
https://doi.org/10.1109/ARITH.2007.20
https://doi.org/10.1109/ARITH.2007.20
https://web.stanford.edu/~boyd/cvxbook/
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Verified Reductions for Optimization 91

Gao, S., Avigad, J., Clarke, E.M.: é-complete decision procedures for satisfiability
over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated Reasoning
(IJCAR) 2012. pp. 286-300. Springer (2012)

Goodloe, A., Muiioz, C.A., Kirchner, F., Correnson, L.: Verification of numerical
programs: From real numbers to floating point numbers. In: Brat, G., Rungta,
N., Venet, A. (eds.) NASA Formal Methods (NFM) 2013. pp. 441-446. Springer
(2013). https://doi.org/10.1007/978-3-642-38088-4_31

Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx (Mar 2014)

Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Global optimiza-
tion, pp. 155-210. Springer (2006)

Grechuk, B.: Lower semicontinuous functions. Archive of Formal Proofs (Jan 2011),
https://isa-afp.org/entries/Lower_Semicontinuous.html, Formal proof de-
velopment

Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022), https:
//www . gurobi.com

Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider,
K., Brandt, J. (eds.) Theorem Proving in Higher Order Logics (TPHOLs) 2007.
pp. 102-118. Springer (2007)

Kong, S., Solar-Lezama, A., Gao, S.: Delta-decision procedures for exists-forall
problems over the reals. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided
Verification (CAV) 2018, Part II. pp. 219-235. Springer (2018)

Lofberg, J.: Yalmip : A toolbox for modeling and optimization in matlab. In:
Computer Aided Control System Design (CACSD) 2004. pp. 284-289 (2004)
Magron, V., Allamigeon, X., Gaubert, S., Werner, B.: Formal proofs for nonlinear
optimization. J. Formaliz. Reason. 8(1), 1-24 (2015). https://doi.org/10.6092/
issn.1972-5787/4319

Martin-Dorel, E., Roux, P.: A reflexive tactic for polynomial positivity using
numerical solvers and floating-point computations. In: Bertot, Y., Vafeiadis, V.
(eds.) Certified Programs and Proofs (CPP) 2017. pp. 90-99. ACM (2017). https:
//doi.org/10.1145/3018610.3018622

Mathlib Community: The Lean mathematical library. In: Blanchette, J., Hritcu,
C. (eds.) Certified Programs and Proofs (CPP) 2020. pp. 367-381. ACM (2020)
MOSEK ApS: Introducing the MOSEK Optimization Suite (2022), https://docs
.mosek.com/latest/intro

MOSEK ApS: MOSEK Modeling Cookbook (2022), https://docs.mosek.com/m
odeling-cookbook

de Moura, L., Ullrich, S.: The Lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) Automated Deduction (CADE) 2021. pp. 625—
635. Springer (2021). https://doi.org/10.1007/978-3-030-79876-5_37

de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) Con-
ference on Automated Deduction (CADE) 2015. pp. 378-388. Springer (2015)
Muinoz, C.A., Narkawicz, A.J., Dutle, A.: A decision procedure for univariate poly-
nomial systems based on root counting and interval subdivision. J. Formaliz. Rea-
son. 11(1), 19-41 (2018). https://doi.org/10.6092/issn.1972-5787/8212
Narkawicz, A., Munoz, C.A.: A formally verified generic branching algorithm for
global optimization. In: Cohen, E., Rybalchenko, A. (eds.) Verified Software: The-
ories, Tools, Experiments (VSTTE) 2013. pp. 326-343. Springer (2013)

Nesterov, Y.: Lectures on convex optimization. Springer, Cham (2018). https:
//doi.org/10.1007/978-3-319-91578-4, second edition

https://doi.org/10.1007/978-3-642-38088-4_31
https://doi.org/10.1007/978-3-642-38088-4_31
http://cvxr.com/cvx
https://isa-afp.org/entries/Lower_Semicontinuous.html
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.6092/issn.1972-5787/4319
https://doi.org/10.6092/issn.1972-5787/4319
https://doi.org/10.6092/issn.1972-5787/4319
https://doi.org/10.6092/issn.1972-5787/4319
https://doi.org/10.1145/3018610.3018622
https://doi.org/10.1145/3018610.3018622
https://doi.org/10.1145/3018610.3018622
https://doi.org/10.1145/3018610.3018622
https://docs.mosek.com/latest/intro
https://docs.mosek.com/latest/intro
https://docs.mosek.com/modeling-cookbook
https://docs.mosek.com/modeling-cookbook
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.6092/issn.1972-5787/8212
https://doi.org/10.6092/issn.1972-5787/8212
https://doi.org/10.1007/978-3-319-91578-4
https://doi.org/10.1007/978-3-319-91578-4
https://doi.org/10.1007/978-3-319-91578-4
https://doi.org/10.1007/978-3-319-91578-4

92

37.

38.

39.

40.

41.

42.

43.

44.

A. Bentkamp et al.

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Springer (2002)

Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst.
6(1), 8 (2007). https://doi.org/10.1145/1210268.1210276

Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton, N.J.
(1970)

Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with Taylor
interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NASA Formal
Methods (NFM) 2013. pp. 383-397. Springer (2013)

Sturm, J.F.: Using Sedumi 1.02, a Matlab toolbox for optimization over symmetric
cones. Optimization methods and software 11(1-4), 625-653 (1999)

Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex opti-
mization in Julia. SC14 Workshop on High Performance Technical Computing in
Dynamic Languages (2014)

Vishnoi, N.: Algorithms for Convex Optimization. Cambridge University Press
(2021)

Yu, L.: A formal model of IEEE floating point arithmetic. Archive of Formal Proofs
(July 2013), https://www.isa-afp.org/entries/IEEE_Floating Point.shtml

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/1210268.1210276
https://doi.org/10.1145/1210268.1210276
https://www.isa-afp.org/entries/IEEE_Floating_Point.shtml
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Iterators

Xavier Denis® and Jacques-Henri Jourdan®

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles,
91190, Gif-sur-Yvette, France
jacques-henri. jourdan@cnrs.fr

Abstract. In Rust, programs are often written using iterators, but these
pose problems for verification: they are non-deterministic, infinite, and
often higher-order, effectful and built using adapters. We present a gen-
eral framework for specifying and reasoning with Rust iterators in first-
order logic. Our approach is capable of addressing the challenges set out
above, which we demonstrate by verifying real Rust iterators, including
a higher-order, effectful Map. Using the CREUSOT verification platform,
we evaluate our framework on clients of iterators, showing it leads to
efficient verification of complex functional properties.

Keywords: Rust - Deductive verification - Iterators - Closures

1 Introduction

The Rust language aims to empower systems software programmers by offering
them safe and powerful linguistic abstractions to solve their problems. The most
notorious of these abstractions, Rust’s borrowing mechanism, enables safe usage
of pointers without a garbage collector or performance penalty. A close second is
perhaps Rust’s iterator system, through which Rust provides composable mech-
anisms to express the traversal and modification of collections. Iterators also
underlie Rust’s for loop syntax, and are thus the primary manner Rust devel-
opers write loops or interact with data structures. It is therefore essential for a
verification tool for Rust to provide good support for iterators.

Rust iterators generate sequences of values. Most importantly, they are
objects providing a method fn next(&mut self) -> Option<Self::Item>. This
method takes a mutable reference (&mut self) to the iterator, allowing it to
change its internal state, and optionally returns a value of type Self::Item, the
type of the values generated by the iterator. If, instead of returning such a value,
the iterator returns None, it means iteration has finished for now, though it
may resume again later. Rust’s for loops are just syntactic sugar for repeatedly
calling next at the beginning of each iteration, until such a call returns None.
For example, the following two pieces of code present a Rust loop for iterating
over integers between 0 (included) and n (excluded), using a range iterator:

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 93-110, 2023.
https://doi.org/10.1007 /978-3-031-30820-8 _9

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-2530-8418
http://orcid.org/0000-0002-9781-7097
https://doi.org/10.1007/978-3-031-30820-8_9
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_9&domain=pdf

94 X. Denis and J. -H. Jourdan

let mut iter = 0..n;
loop { match iter.next() {

for i in 0..n { <body> } None => break,
Some (i) => <body>
} 3

The piece of code on the left-hand side uses an idiomatic for loop, while the
other shows its desugared version.

Iterators present unique challenges for verification tools: indeed, because the
use of iterators is pervasive in Rust, it is necessary to allow verification of code
using iterators with as little interaction as possible. In particular, most common
patterns such as iterating over integers in a given range or reading the elements
of a vector should not need any annotation other than the loop invariants the
user would write if not using iterators. On the other hand, Rust’s iterator library
is complex, with many features representing as many challenges for verification:
iterators can be built from various data structures and modified through iter-
ator adapters, which make it possible to create iterators from simpler ones, by,
e.g., skipping the first few elements or applying a given function to each of the
elements.

Consider the example below:

let mut cnt = 0;
let w = vec![1,2,3].iter() .map(lx|{cnt += 1; x + 1}).collect();
assert_eq! (w, vec![2,3,4]); assert_eq!(cnt, 3);

On line 2, quite a lot happens at once. First, we produce an iterator over the
elements of the vector vec![1,2,3] with the syntax .iter(), which we transform
through a call to map. The method map is an iterator adapter: it returns a new
iterator that calls the given closure on each of the elements generated by the
underlying iterator, and forwards the value returned by the closure. Interestingly,
the closure we pass to map captures mutable state: it modifies the variable cnt.
Finally, the method collect gathers the elements generated into a new vector w.

We aim at requiring only lightweight annotations for verifying this kind of
code: the appeal of iterator chains like on line 2 are the ergonomics, they are com-
pact and highly-readable. For verification of iterator-based code to be successful,
it must preserve this ergonomics. However, despite its apparent simplicity, this
piece of code is challenging to verify: it combines higher-order functions and mu-
table state, uses potentially overflowing integers, and assertions on line 3 check
full functional behavior.

More generally, to support iterators, a verification tool for Rust needs to pro-
vide a specification scheme that both provides good ergonomics and overcomes
the following technical challenges:

— Strong Automation: for verification to be used, it must require little to no
user interaction and lead to good verification performance.

— Interruptibility: iterators can produce infinite sequences of values and can
be interrupted before completion, thus specification and verification must
happen as the iterator is used, and not at completion.

Specifying and Verifying Higher-order Rust Iterators 95

— Non-Determinism: iterators can feature both specification or implementa-
tion non-determinism, so the sequence of known values might not be known
in advance to the verifier. For example, the order of elements generated by
an iterator over a hash table may be left unspecified for a client.

— Compositionality: iterators can be consumed by adapters, so their specifi-
cations need to follow a general pattern which make them composable. For
example, the specification of a adapter such as skip(n), which skips the first
n elements of a given iterator, should accept the specification of any iterator,
and provide a sound and useful specification for the combined iterator.

— Higher-Order € Effects: some iterator adapters, such as map, are higher-order,
they take a closure as parameter. To verify programs using these adapters,
a verification tool should overcome the challenges of higher-order functions,
which potentially capture mutable state.

1.1 Contributions

In order to reach this goal, we propose a new specification scheme for iterators
in Rust. Our contributions can be summarized as follows:

— In Section 3, we provide a general specification scheme for Rust iterators
in first-order logic. It supports possibly non-deterministic, infinite and in-
terruptible iterators. It is inspired by Fillidtre and Pereira’s specification of
iterators in Why3 [5], but it is adapted to our style of specification using a
prophetic mutable value semantics [13] for Rust. This style of specification
is particularly well suited to handle mutable values (of which iterators are
an instance), by leveraging the non-aliasing guarantees provided by Rust’s
type system.

— In Section 4.1, we show that this scheme can be trivially instantiated for
basic iterators such as a range of integers.

— In Section 4.2, we show how this scheme can be instantiated to give full
functional specification to mutating iterators. These iterators allow to mutate
the content of a data structure by iterating over mutable references pointing
to the content of the data structure.

— In Section 4.3, we show that our specification scheme is composable, so that
it can be used to specify iterator adapters transforming arbitrary iterators
into more complex ones. We give two examples: take, which truncates an
iterator to at most a given number of elements, and skip, which skips a
given number of elements at the beginning of iteration.

— To support higher-order iterator adapters, we provide a specification mecha-
nism for closures in Section 5. This mechanism distinguishes the three kinds
of closures of Rust (Fn, FnMut and FnOnce), and allows specifying the side ef-
fects a closure may have on its environment by making explicit the effect of a
call on the state of the closure. It allows reducing the verification conditions
for closures to first-order logic, enabling usage of off-the-shelf automation.

— In Section 6, we explain how we can combine the techniques presented in
previous sections to specify higher-order iterator adapters, by taking map as

96 X. Denis and J. -H. Jourdan

an example. This provides a way to verify the functional correctness of pro-
grams using higher-order iterators, while requiring lightweight annotations.

— We provide a freely available! implementation of our proposal in
CREUSOT [4]. This tool is a state-of-the-art verification platform for safe
Rust code, allowing users to verify programs by adding contracts to their
functions. This implementation extends CREUSOT’s handling of for loops to
benefit from structural invariants provided by the specification of iterators.
We evaluate it in Section 7 on several benchmarks.

2 Specifications in Rust Programs

Before explaining the specification of iterators, we introduce the style of specifi-
cation we use in this paper. One important aspect of specifications of imperative
programs is their memory model, that is the way they handle pointers and mu-
tations performed through them. Following previous work [7, 8, 4], we choose
to leverage the non-aliasing guarantees of Rust’s type system. Because of the
non-aliasing guarantees, a given memory location can be mutated through at
most one reference at a given point in time, excluding all “spooky actions at
a distance” that are customary with pointer aliasing. Therefore, it is possible
to give a mutable value semantics [13] to Rust programs, meaning that, even
though Rust programs can perform mutation of memory, they can be reasoned
about in a purely applicative manner. As a result, the Rust type Box<T> of
heap-allocated pointers, and the Rust type &T of read-only references are simply
modeled by wrappers over values of type T in our specifications. As shown in
previous work [4, 7, 8], this interpretation of Rust programs is key to verifying
complex Rust programs, because it avoids the use of any kind of separation logic
or dynamic frames, which are challenging to automate.

The handling of mutable references &mut T requires caution. Such references
represent the temporary borrow of ownership of a memory location, so that
mutations through such a reference will be observed by the initial owner once
the borrow ends. To correctly model the propagation of mutations from the
mutable reference to the borrowed variable, this style of specification models a
mutable reference r: &mut T as a pair of a current value *r of type T (representing
the current value pointed to by the reference) and of a prophecy ~r, representing
the value the reference will point to when the borrow ends.

This prophetic interpretation makes it possible to give precise specifications
to functions that manipulate mutable references. For example, the function push
adding a new element at the end of a vector in place can be specified as follows:

#[ensures(@-self == (@*self).concat(Seq::singleton(v)))]
fn push(&mut self, v: T);

Here, we use the operator @ to refer to the model of a vector, i.e., the mathemat-
ical sequence of its elements. The postcondition thus ensures that the content of

! https://github.com /xldenis/creusot /

https://github.com/xldenis/creusot/

Specifying and Verifying Higher-order Rust Iterators 97

the final vector pointed to by self, denoted by ~self, is modeled by the sequence
of elements of the initial vector *self, concatenated with the new element v.

We sometimes use purely mathematical functions and predicates, annotated
with the #[logic] and #[predicate] attributes.

We use Rust traits to give composable specifications to iterators. They are
analogous to Haskell’s typeclasses, enabling ad-hoc polymorphism. For example,
an order relation can be specified as a trait containing both a mathematical order
relation with its laws (reflexivity, antisymmetry and transitivity), and a program
function specified as returning the value prescribed by the logical predicate.

To aid in specification and verification of code, we use ghost code, code which
exists only during verification and has no influence on runtime behavior.

3 Reasoning on Iteration

In this section, we present the general mechanism we use to specify iterators
(Section 3.1), and how this kind of specification is used in a for loop (Section 3.2).

3.1 Specifying Iterators

In Rust, the mechanism of iterators is captured by a trait named Iterator, whose
simplified definition can be given as:

trait Iterator { type Item; fn next(&mut self) -> Option<Self::Item>; }

This trait describes the interface an iterator should implement: an iterator
should give a type Item of generated elements, and should implement a method
next which optionally returns the next generated element, and possibly mu-
tates in place the internal state of the iterator through the mutable reference
&mut self.

As can be seen in Figure 1, we extend? the iterator trait with the purely
logical predicates produces and completed. We require that any implementation
of this trait satisfies the laws produces_refl and produces_trans: such laws are
lemmas stated as specifications of purely logical functions (i.e., the preconditions
should imply the postconditions). The next method is then specified thanks to
the two predicates. Any implementation of the Iterator trait needs to give a
logical definition of produces and completed predicates, prove the laws, give a
program definition for next and finally prove that it satisfies its specification.

Iterators are specified as state machines: a value of an iterator type is seen
as a state; produces(a, s,b) defines the transition relation (noted a ~> b), and
the predicate completed (noted completed(-)) give the set of final states. The
completed predicate takes a mutable reference &mut self, which allows us to

2 In our implementation, to keep better compatibility with existing Rust code, we
choose to define the iterator specification as a sub-trait of the Iterator trait from
Rust’s standard library, and to give the specification of next using CREUSOT’s
extern_spec! mechanism. For simplicity, we present it here as a unique trait: the
main idea of the specification is the same.

98 X. Denis and J. -H. Jourdan

trait Iterator {

type Item;
#[predicate] fn completed(&mut self) -> bool;
#[predicate] fn produces(self, visited: Seq<Self::Item>, _: Self)

-> bool;
#[law] // I.e., Va,a~>a
#[ensures (a.produces (Seq: :EMPTY, a))]
fn produces_refl(a: Self);

#[law] //I.e.,Vabc,a&b/\b«%céawc
#[requires(a.produces(ab, b) 88 b.produces(bc, c))]
#[ensures (a.produces (ab.concat(be), c))]
fn produces_trans(a: Self, ab: Seq<Self::Item>,

b: Self, bc: Seq<Self::Item>, c: Self);

#[ensures (match result {

None => self.completed(),

Some (v) => (*self).produces(Seq::singleton(v), ~self)})]
fn next(&mut self) -> Option<Self::Item>;

Fig. 1. Iterator trait extended with specification.

specify mutations that happen when an iterator returns None®. This added ex-
pressivity in the specification allows us to express properties of unfused iterators
which may intermittently produce None during iteration. The produces transi-
tion relation is annotated with sequences of generated values rather than with
unique values so that a user can reason about interesting properties of sequences
as a whole rather than directly reasoning about the notion of transitive closure,
which automated solvers do not handle well. The price to pay is the laws of
reflexivity and transitivity which the implementers have to prove.

3.2 Structural Invariant of for Loops

Part of the appeal of for loops is the structure they provide over the looping
process. When a programmer sees a for, they can conclude that the body will be
executed once for each element in the iterator. Unlike with while loops, it is not
possible to decrement the loop index or otherwise perform unpredictable looping
patterns. This informal reasoning can be formalized as a loop invariant, provided
structurally by the for loop itself. The iterator at the i-th iteration is the result
of calling next exactly ¢ times on some initial state. In our formalism, given an
initial iterator state initial and a current iterator state iter, we can state this

3 The predicate completed does not perform any side effects; it should rather be seen
as a two-state predicate.

Specifying and Verifying Higher-order Rust Iterators 99

invariant as dp, initial % iter. This invariant holds for any for loop over
any iterator: it can be derived from the laws produces_refl and produces_trans.

When using our extension to CREUSOT, every for loop benefits from this
structural invariant: we change the way these loops are desugared into the more
primitive loop construct, by adding ghost variables init_iter and produced and
the new invariant init_iter.produces(produced, iter). More precisely, a simple
for loop for x in iter {<body>} is desugared into:

let init_iter = ghost! { iter };
let mut produced = ghost! { Seq::EMPTY };
#[invariant (structural, init_iter.produces(produced, iter))]
loop { match iter.next() {
None => break,
Some (x) => {
produced = ghost! { produced.concat(Seq::singleton(x)) };
<body> },
3

Interestingly, the ghost variable produced can be referred to in a user invariant
to relate the state of the loop with the iteration state. In the piece of code in
Figure 2, we use a variable count to count the number of elements generated by
an iterator, and use such an invariant to verify its intended meaning.

let mut count = 0;

#[invariant (count_is_n, @count == produced.len())]
for i in 0..n { count += 1; assert!(0 <= i && i < n); }
assert!(n < 0 || count == n);

Fig. 2. A simple for loop using ranges.

4 Examples of Specifications of Simple Iterators

In Section 3, we have presented a general framework to specify iterators and use
them in for loops. In this section, we present several simple examples of iterators
defined in this framework.

4.1 The Range Iterator

We start with a simple Range iterator, whose purpose is to iterate over the
integers in a given range. The notation a..b used idiomatically in Rust is a
syntactic sugar for this kind of iterators. The original definition from the Rust
standard library is generic over the type of integers used, but, for the sake of
simplicity, we use a monomorphic version here:

struct Range { start: usize, end: usize }

100 X. Denis and J. -H. Jourdan

If self.start > self.end, the next method returns None. Otherwise, it increments
self.start and returns the initial value of Some (self.start). Note that the upper
bound of the range, end, is excluded in the iteration.

In order to instantiate our iterator specification scheme with Range, we use
the produces and completed predicates defined by:

r~s1' & |u| =1.start — r.start A r.end = 7’.end
A v| > 0= r'.start < r’.end
AYi€0,|v] — 1], v[i] = r.start +¢
completed(r) = xr="r A (*r).end > (*r).start

Transitivity and reflexivity are easily verified.

Rust’s standard library also contains ranges whose upper bound is included
rather than excluded, and ranges without an upper bound. They can all be
specified using similar techniques.

Note that with these definitions, the structural invariant of for loops directly
implies that the loop index (the last produced value) is in the range. In addition,
if the range is non-empty, one can deduce that the last iterated value is end — 1.
These two properties usually require an additional invariant if the loop is encoded
using the while construct. For an illustration consider Figure 2.

4.2 IterMut: Mutating Iteration Over a Vector

Our approach to iterators can be used to iterate over elements of a vector. But
instead of presenting the simple case of a read-only vector iterator, we study a
more general iterator, IterMut, permitting to both read and write vector elements
while iterating; the simpler case of the read-only iterator uses the same ideas.

This iterator produces mutable references for each element of a vector in turn.
The state of this iterator is a mutable reference to the slice (i.e., a fragment of
a vector) of elements that remain to be iterated:

struct IterMut<’a, T> { inner: &’a mut [T] }

To define the production relation of IterMut, we use a helper function tr,
which transposes a mutable reference to a slice into a sequence of mutable ref-
erences to its elements. Its defining property is:

[tr(s)| = |s| A Vi€ |0,]|s| — 1], tr(*s)[i] = *s[i] A tr("s)[i] = "s]i]

With the help of tr, the produces and completed relations of IterMut are
simple to express:

it ~ it £ tr(it.inner) = v - tr(it’.inner)

L

completed|(it) *r="rA|xr| =0

It means that the iterator it produces a sequence of mutable references, which
must be the initial segment of t¢r(it.inner), into a final state ¢’ such that

Specifying and Verifying Higher-order Rust Iterators 101

tr(it.inner) is the sequence of mutable references that are left to be generated.
Such an iterator is completed when the inner slice is empty.

This compact specification is enough to reason about mutating through the
returned pointers as in the following example:

#[invariant (all_zero, forall<i: Int> 0 <= 1 8 i < produced.len()
==> @~produced[i] == 0)]

for x in v.iter_mut() { *x = 0; }

assert!{ forall<i: Int> 0 <= i && i < (@v).len() ==> @(@"v)[i] == 0 }

That is, we are able to prove with a simple loop invariant that this loop sets to
0 all the elements of the vector.

The reasoning that occurs to prove this program is as follows. First, at the
end of a loop iteration, we know that the final value of the borrow x is equal to
0 since we have just written 0 and this value will not change since x goes out
of scope. Together with the invariant of the preceding iteration, this is enough
to prove that the invariant is maintained. Second, after the loop has executed,
the final iterator state is empty, so we know produced contains the complete
sequence of borrows to elements of v. But, thanks to the loop invariant, the
prophetic value of each of these borrows is 0. So we can deduce that the final
content of v is a sequence of zeros.

4.3 Iterator Adapters

Because all iterators implement the same trait Iterator which gives them a spec-
ification, we can easily build adapters which wrap and transform the behavior
of an iterator.

It is important to note that, following Rust’s standard library, these adapters
are generic over the type of the underlying iterator; individual values of a type
cannot have different predicates. While the verification tool cannot know the
concrete definitions of produces or completed for the wrapped iterator, it knows
it must satisfy the Iterator trait interface.

The simplest example is Take<I> (where I is another iterator), which trun-
cates an iterator to produce at most n elements. The state of Take<I> is a record
with two fields: a counter n for the remaining elements to take and an iterator
iter to take from. The specification predicates of Take<I> are defined as follows:

[>

it ~it’ 2 it.iter ~> it’.iter Ait.n = it'.n + |y
(*it).n = 0 A *it = ~it
V (*it).n > 0 A (xit).n = ("it).n+ 1 A completed(it.iter)

(1>

completed(it)

The subtle definition here is that of completed(it): if the counter is 0, then next
does nothing. But, following Rust’s implementation, if the counter is not 0, then
it is first decremented even if the call to the underlying iterator returns None.
Again, when instantiated to a specific underlying iterator type, we can substi-
tute the definitions of (~) and completed(—) for the underlying iterator, to get

102 X. Denis and J. -H. Jourdan

a concrete definition of these predicates for Take<I>, which are easier to handle
by automated solvers.

Another adapter is Skip<I>, whose goal is to skip the first n elements of an
iterator. Similarly to Take<I>, the state is a record with two fields: a number n
of elements to skip and an underlying iterator iter.

The ~ relation of Skip<I> is defined as follows:

it~itl A2 v=enit=it

Vit'n=0Av| >0A3w, |w| =itnAititer 5 it iter

The first disjunct is needed to ensure reflexivity of (~). The second disjunct
describes what happens after a non-empty sequence of calls. If we produced
some sequence of elements v, then we must have been able to skip n elements
first, which we existentially quantify over.

If the Skip<I> iterator is completed, the underlying iterator has also com-
pleted, but potentially after having generated some skipped elements that we
existentially quantify over:

completed(it) = Fwi, (“it)n = 0A |w| < (xit).n
A (xit).iter ~5 *i A completed(i) A ~i = (“it).iter

Using Skip<I> and Take<I> we are able to prove an algebraic property of
iterators: if we take n elements and then skip n elements from that iterator, we
must necessarily get the empty iterator.

assert! (iter.take(n) .skip(n) .next().is_none())

This property is easy to prove from the composition of both production relations.

5 Closures in Rust

Unlike traditional functional languages, Rust has no function type for closures.
Two closures, even with identical bodies, are not of the same type: closures are
each given a unique, anonymous type representing the captured environment.
This design is motivated by the need to fully resolve closures during compilation:
the compiler is always able to identify exactly which piece of code is used at
every call site. To abstract over closures and write higher-order functions, Rust
provides three traits that the closure type may implement: FnOnce, FnMut, and Fn.
They describe the different ways a closure’s environment can be passed during a
call: by ownership, by mutable reference or by immutable reference. The compiler
automatically provides the relevant instances when a user writes a closure.

Traditionally, verifying higher-order code with mutable state has needed
seperation logic or dynamic frames, but because of Rust’s mutable value seman-
tics we can avoid these tools. Instead, we provide a specification for higher-order
functions in first-order logic, which generates simple verification conditions (see
code of Section 7). Specifically, we extend FnOnce, FnMut, and Fn with logical
predicates that capture the pre- and post- conditions of closures. We begin by
considering the simplest case, FnOnce:

Specifying and Verifying Higher-order Rust Iterators 103

pub trait FnOnce<Args> {
#[predicate] fn precondition(self, a: Args) -> bool;
#[predicate] fn postcondition_once(self, a: Args, res: Self::Qutput)
-> bool;
#[requires(self.precondition(args))]
#[ensures(self.postcondition_once(args, result))]
fn call_once(self, args: Args) -> Self::Output;
}

The predicates precondition and postcondition_once refer to the specification
added to the call_once method used to call the closure.

A call to a FnOnce closure consumes it. On the other hand, FnMut allows a
mutable closure to be called multiple times. Here is our extended FnMut trait:

pub trait FnMut<Args> : FnOnce<Args> {
#[predicate] fn unnest(self, _: Self) -> bool;
#[ensures (self.unnest (self))]
#[law] fn unnest_refl(self);
#[requires(self.unnest(b) & b.unnest(c))]
#[ensures (self.unnest(c))]
#[law] fn unnest_trans(self, b: Self, c: Self);
#[predicate] fn postcondition_mut(&mut self, _: Args, _: Self::Output)
-> bool;
#[requires ((*self).precondition(arg))]
#[ensures (self.postcondition_mut (arg, result))]
fn call_mut (&mut self, arg: Args) -> Self::Output;
[...17%

Because every FnMut closure is also an FnOnce closure, we can reuse the precon-
dition predicate to specify call_mut. However, we need a new predicate for the
richer postconditions that become possible: since the closure is called using a
mutable borrow, the postcondition specify changes made to captured variables.

Rust compiles closures via closure conversion, the state of each closure be-
comes a struct holding references to all captured variables. However, this struct
can only be modified in a restricted fashion: we can only mutate the values
pointed by the captures, and not the captures themselves. In particular, this
means the prophecies of captures remain constant. We capture this property in
an unnesting predicate F: :unnest(a, b). It expresses that the prophecies in the
state of type F have not changed from a to b. This property is both reflexive and
transitive which we capture via laws. The unnesting predicate is essential to link
the states of a closure throughout repeated calls. Without it we would lose track
of the contained prophecies.

In addition to these predicates, our FnMut trait contains laws we elided:
unnest is implied by postcondition_mut, and postcondition_mut is linked to the
postcondition predicate of the FnOnce trait.

Finally, Fn imposes that the closure is immutable. Each call upholds the
postcondition and leaves the state intact. Again, in the following, we elided laws
relating postcondition, postcondition_mut and postcondition_once:

pub trait Fn<Args> : FnMut<Args> {

104 X. Denis and J. -H. Jourdan

#[predicate] fn postcondition(&self, _: Args, _: Self::Output) -> bool;

#[requires ((*self).precondition(arg))]

#[ensures (self.postcondition(arg, result))]

fn call(&self, arg: Args) -> Self::Qutput;
[...17%

6 A Higher-order Iterator Adapter: Map

The challenge with the specification of Map is proving the preconditions of the
closure being called. Map treats the closure opaquely, it cannot tell what the
concrete pre- and post- conditions are, the justification for the precondition must
come from elsewhere. To help work through this, we use a thought experiment
where we see Map implemented as a loop with a yield instruction to generate
elements, in the style of e.g., Python generators:

fn map<I : Iterator, B, F: FnMut(I::Item) -> B>(iter: I, func: F) {
for a in iter { yield (£)(a) }
}

To verify it, we need f.precondition(a) to be true at each iteration, so we need
an invariant which implies it. This exposes the key property that must be true
of our closure: the postcondition at iteration n must be able to establish the
precondition for iteration n + 1. In the vocabulary of iterators:

s-e1-e2 .
loard

it i' Npre(*xf,e1) Apost(f,e1,r) = pre("f,es)

This expresses that if we eventually produce an element e; which satisfies the
precondition of the initial closure *f, then combined with the postcondition of
f, we must be able to establish the precondition for the final closure ~ f with the
following element e;. Quantifying over a prefix s in the iteration from a known
initial state ¢ ensures this property holds for all possible subsequent iterations.

To encode this property in Map, we use a type invariant, which allows specify-
ing a property that values of a type must uphold. Values of type Map are records
with two fields: field func contains the closure state, and field iter contains the
underlying iterator. The invariant states that (1) the precondition for the next
call will be verified; (2) the preservation property above holds for the current
state it; (3) these two invariants are reestablished if the underlying iterator re-
turns None (this is usually trivial since the underlying iterator often is fused: it
cannot generate new elements once it returns None); and (4) the type invariant
of the underlying iterator holds.

These invariants are initially required as a precondition of the map method
used to create the Map iterator. In order to be tackled by automated solvers, this
verification condition need to be unfolded: it is therefore crucial that closures
and their pre- and post- conditions are statically resolved thanks to the unique
anonymous closure types in Rust.

Specifying and Verifying Higher-order Rust Iterators 105

The specification predicates for Map can now be stated:

>

F' fs, |V = |fs| = |v| Adt.iter % it iter
A (it.func = *fs[0] A “fs[0] = *fs[1] A .. A "fs[n] = it’.func)
AYi € [0,|v] — 1], pre(xfs[i], v'[i]) A post(fs[i],v'[i],v[i])

A unnest(it.func, it’.func)

it ~> it!

completed(it) = completed(it.iter) A (*it).func = (“it).func

In ~, we quantify existentially over two pieces of information: the sequence
of values v’ produced by the underlying iterator and the sequence of mutable
references of states fs that the closure traverses. We require that fs forms a
chain, the final state of each element being the same as the current value of the
following one. Finally, we require the closure pre- and post- conditions for every
iteration, and that the first and last state are related by the unnesting relation.
The definition of completed(—), on the other hand, straightforwardly states that
the underlying iterator is completed.

Interestingly, the user of this specification can use the precondition of the
closure to encode closure invariants that she wishes to maintain along the iter-
ation (as with loop invariants). This specification for Map allows us to specify
many use cases, so long as the supplied closure is “history-free”: its specifica-
tion does not depend on the sequence of previously generated values, like in
x.map(la : u32| a + 5). While this is certainly the most common usage of map,
we sometimes need a more powerful specification.

Extending Map With Ghost Information. If we attempt to use the previous spec-
ification of Map to verify the counter example of Section 1, we will rapidly en-
counter an issue: to establish that cnt properly counts the number of iterations
would require a (manual) induction on the iterated sequence. While the prior
specification allows the closure to specify the impact of an immediate call, it has
no way of reasoning on the position in the iteration. In our prior thought exper-
iment using a generator, we have no way of writing an invariant which depends
on produced, as we allowed for usual for loops.

To make the verification of this kind of code simpler, we extend the signature
of Map to provide to the closure the sequence of elements generated by the under-
lying iterator since the creation of the mapping iterator object. This information
does not change the behavior of the program: we make it ghost, so it can only
be used in specifications.

The extended version, MapExt, is thus given an additional ghost field,
produced, containing this sequence. The relation (~) is extended to account
for this ghost information, by adding a conjunct stating that it’.produced =
it.produced-v’ and passing the additional ghost parameter it.produced-v’[0..i—1]
to the pre- and post- conditions. The completed() relation is extended by adding
the conjunct (“it).produced = ¢ (the produced field is reset when the iterator
returns None). The type invariants are adapted accordingly.

106 X. Denis and J. -H. Jourdan

This extra information avoids the need for an explicit induction after the
fact to establish that we have properly counted the number of iterations: the
postcondition of the last call to next is enough. This mechanism is useful in a
wide variety of situations, beyond reasoning on the length of the sequence.

7 Evaluation

In this section we measure the performance of both the proofs of iterators and
their clients, using the CREUSOT [4] tool for verification of Rust programs. It
allows for verification of Rust programs, and requires some annotations to ver-
ify the functional correctness of Rust programs. Verification is performed by
translating annotated Rust code into a pure, first-order functional program.
Then, CREUSOT uses Why3 [15] to generate verification conditions, which are
discharged using automated solvers such as CVC5, Z3 or Alt-Ergo.

The results in Figure 3, were gathered using a Macbook Pro with an M1 Pro
CPU and 32 GB of RAM, running macOS 12.2. Why3 was limited to using four
provers simultaneously among 73 4.11.2, CVC5 1.0.2, and Alt-Ergo 2.4.1.

WHY3 supports proof transformations: manual tactics which can be used in
combination with automated solvers. Because we wish to obtain ergonomic spec-
ifications which work well with automation, we minimize their use. Nevertheless,
certain complex proofs required minor manual work, which we clearly indicate.

Iterator LOC Spec Time Fully auto. Benchmark LOC Spec Time Fully auto.

Range 13 39 0.40 v all_zero 5 3 043 v
IterMut 12 34 0.61 v skip_take 3 2 0.40 v
Map 23 46 0.89 X counter 12 4 055 v
MapExt 42 115 1.06 X concat_vec 3 3 041 v
Skip<I> 20 53 0.51 X decuple_range 9 3 0.64 v
Take<I> 17 43 0.40 v hillel 89 109 0.86 v
Fuse 29 51 0.52 X knights_tour 89 55 1.15 v

Fig. 3. Selected evaluation results. “LOC” counts the lines of program code, while
“Spec” counts specification code and assertions. “T'ime” measures in seconds the time
taken to solve the proofs. “Fully auto.” determines whether manual tactics were used.

The left table in Figure 3 contains a selection of the iterators and adapters we
have verified. The Range, IterMut, Skip and Take iterators are implementations
of the iterators described in Sections 4.1 to 4.3. The Fuse adapter is responsible
for transforming any iterator into a fused one, which will always return None after
the first, never resuming iteration. Two versions of Map are provided, the first is
the standard library Map, which is restricted to closures whose preconditions are
‘history-free’, the version in MapExt is provided with ghost information about
previous calls as explained in Section 6.

Some manual proof steps were required to prove several iterators. For
Skip<I> and Fuse, the manual tactics consist only of telling Why3 to access

Specifying and Verifying Higher-order Rust Iterators 107

lemmas about sequences. For Map and MapExt, tactics were used to instanti-
ate quantifiers within the production relation. We think that the use of ghost
variables and of the SMT theory of sequences could lift the use of manual tactics.
We also verified several clients of iterators, sometimes featuring combina-
tions of several iterators. The example decuple_range maps a Range, multiply-
ing elements by 10, collecting the results into a vector and verifying functional
correctness; counter is an annotated version of the example in the introduction,
verifying that we can use mutable state to count the elements of an iterator;
concat_vec uses extend to append an iterator to the end of a vector; all_zero
uses IterMut to zero every cell of a vector; take_skip checks that if we truncate
an iterator to the first n elements and then skip them, the resulting iterator
must be empty. We have larger scale examples where iterators are used in the
context of a larger verified development: hillel is a port of a prior CREUSOT
solution to Hillel Wayne’s verification challenges [16]; knights_tour is the same
for the Knight’s Tour problem. In both of these cases, updating the code to use
for-loops and iterators actually reduced the number of lines of specification.
Because our lines of specification include the assertions which test functional
properties, we believe the resulting overhead is reasonable, especially in our client
examples. Additionally, our specifications for iterators seem to have low impact
on verification times. We compared hillel and knights_tour with alternative
versions that only differ by using traditional while loops instead of iterators,
verification times are 0.91 and 1.14 respectively. This provides evidence that
integrating our iterators does not cause prohibitive increases in verification time.

8 Related and Future Work

RUSTHORN [7] and RUSTHORNBELT [8] show how the non-aliasing guarantees
of Rust can be used for reducing the verification of Rust programs into the proof
of first-order logic formulas. These works serve as theoretical foundations for
CREUSOT [4], which we use to evaluate our specification scheme for iterators.

PRUSTI [1] is a semi-automatic verifier for Rust built on the Viper [10] sep-
aration logic verification platform. PRUSTI models mutable borrowing and own-
ership using separation logic permissions, unlike our choice of using a prophetic
mutable value semantics. This leads to differences in the specification languages:
whereas Creusot uses the ~ operator to reason about borrows, PRUSTI uses a
notion called pledges. Pledges are assertions which must be true at the end of
a specific lifetime. At the time of writing, pledges are not fully first-class in
PRUSTI’s specification logic: they are used through a kind of postcondition. In
particular a ghost predicate like produces cannot contain a pledge. The ~ oper-
ator can be used anywhere in specifications, which allows us to give a natural
specification to mutating iterators like IterMut (Section 4.2).

The verification of higher-order programs has been studied by Régis-Gianas
and Pottier [14], who verify them using higher-order logic. PRUSTI supports
closures by modeling them in Viper’s separation logic [17]. Like our approach,
PruUSTI transforms specifications of higher-order programs into first-order ver-

108 X. Denis and J. -H. Jourdan

ification conditions, but in separation logic. They introduce several constructs
to specify closures: history invariants, specification entailment, and call descrip-
tions. We instead enable users to refer to pre- and post- conditions of closures
via a trait. While we not have the constructs PRUSTI provides primitively for
closures, we believe these constructs can be encoded using our primitives, at the
cost of lower ergonomics. Our approach is more expressive: unlike PRUSTI’s call
descriptions, we can distinguish the order of calls (see Section 6). Also, Prusti’s
approach for borrows makes it difficult to handle iterators such as IterMut.

Like us, AENEAS [6] verifies Rust programs by translation to a functional
language, and targets traditional proof assistants such as CoqQ, or F*. They
use a technique called backward functions to interpret mutable borrows. To our
knowledge, AENEAS supports neither closures nor iterators.

The formalization of iterators is a well-studied subject with implementations
in a variety of imperative and functional languages: WhyML [5], Eiffel [11],
Java [9], and OCaml [12]. Of particular relevance is the approach developed
by Filliatre and Pereira [5], which specifies iterators in WhyML using a ghost
field visited : seq ’a and two predicates permitted : cursor ’a -> bool and
completed : cursor ’a -> bool where cursor ’a is an iterator for values of type
’a. This work leverages Why3’s regions system to distinguish individual cursors
over time. In contrast, in our context, we lose object identity: there is no way to
identify that two iterator values are two successive states of the same iterator.
We thus generalize this approach to our setting by explicitly providing pre- and
post- states in produces. Our work is also more expressive: we specify and verify
higher-order iterators using potentially mutable closures, which are ruled out
by Why3’s region system. The framework of iteration described by Polikarpova,
Tschannen, and Furia [11] is limited to finite, deterministic iteration: the user
must provide up front the sequence of abstract values the iterator will produce.
Pottier [12] presents an implementation of iterators for a hash map written in
OCaml. They do this by working in the separation logic CEML [2], utilizing Coq’s
powerful but manual reasoning mechanisms for theorem proving. While Pottier
does not provide a general specification of iterators (cascades) with mutable
state, CFML should permit it, though usage may require a challenging proof.

Future Work. While we have specified and proved key iterators, many more
remain. The filter adapter is interesting as each call to next may make an
unbounded number of steps with the underlying iterator using the provided mu-
table closure. Rust provides a hierarchy of traits that further refine iterators like
DoubleEndedIterator, and ExactSizeIterator. The recent integration of gemeric
associated types enables new, more flexible forms of iteration like lending itera-
tors. We believe these would naturally integrate into our framework, but remain
to be done. Finally, while we believe we have developed a correct, and simple
approach to specify closures, the ergonomics leave much room for improvement.
Improving this will help make our specifications more concise and user-friendly.
In particular, we would like to explore automatic inference of pre- and post-
conditions of simple closures.

Specifying and Verifying Higher-order Rust Iterators 109

Data availability

The implementation of Creusot and the examples that we used to evaluate our
methodology in Section 7 form an artifact available [3] on Zenodo with DOI
10.5281/zenodo.7305463.

References

1

2]
13l

4]

[5]

(6]

7]

18]

19]

[10]

[11]

[12]
[13]

[14]

Vytautas Astrauskas et al. “The Prusti Project: Formal Verification for
Rust”. In: NASA Formal Methods. Vol. 13260. LNCS. 2022. por: 10.1007/
978-3-031-06773-0_5.

Arthur Charguéraud. “Characteristic formulae for the verification of im-
perative programs”. In: ICFP. 2011. por: 10.1145/2034773.2034828.
Xavier Denis and Jacques-Henri Jourdan. Artifact for Paper "Specifying
and Verifying Higher-order Rust Iterators”. DOI: 10.5281 /zenodo.7305463.
Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. “Creusot: A
Foundry for the Deductive Verication of Rust Programs”. In: ICFEM.
Vol. 13478. LNCS. 2022. por: 10.1007/978-3-031-17244-1 6.
Jean-Christophe Fillidtre and Méario Pereira. “A Modular Way to Reason
About Iteration”. In: NASA Formal Methods. Vol. 9690. LNCS. 2016. DOTI:
10.1007/978-3-319-40648-0 24.

Son Ho and Jonathan Protzenko. “ Aeneas: Rust Verification by Functional
Translation”. In: ICFP. 2022. por: 10.1145/3547647.

Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. “RustHorn:
CHC-based verification for Rust programs”. In: TOPLAS 43.4 (2021),
pp. 1-54. por: 10.1145/3462205.

Yusuke Matsushita et al. “RustHornBelt: A Semantic Foundation for Func-
tional Verification of Rust Programs with Unsafe Code”. In: PLDI. 2022.
DOI: 10.1145/3519939.3523704.

Jodo Mota, Marco Giunti, and Anténio Ravara. On Using VeriFast, Ver-
Cors, Plural, and KeY to Check Object Usage. 2022. URL: http://arxiv.
org/abs/2209.05136.

Peter Miiller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A
Verification Infrastructure for Permission-Based Reasoning”. In: VMCAL
Vol. 9583. LNCS. 2016. por: 10.1007/978-3-662-49122-5 2.

Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. “A Fully Verified
Container Library”. In: Formal Aspects of Computing 30.5 (2018). DOTI:
10.1007/s00165-017-0435-1.

Frangois Pottier. “Verifying a Hash Table and Its Iterators in Higher-Order
Separation Logic”. In: CPP. 2017. por: 10.1145/3018610.3018624.
Dimitri Racordon et al. “Implementation Strategies for Mutable Value Se-
mantics.” In: J. Object Technol. 21.2 (2022), pp. 2-1.

Yann Régis-Gianas and Francois Pottier. “A Hoare Logic for Call-by-Value
Functional Programs”. In: MPC. Vol. 5133. LNCS. 2008.

https://doi.org/10.5281/zenodo.7305463
https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.5281/zenodo.7305463
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-319-40648-0_24
https://doi.org/10.1145/3547647
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3519939.3523704
http://arxiv.org/abs/2209.05136
http://arxiv.org/abs/2209.05136
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1145/3018610.3018624

110
[15]

[16]

[17]

X. Denis and J. -H. Jourdan

The Why3 development team. The WhyS verification platform. URL: https:
//why3.Iri.fr/.

The Great Theorem Prover Showdown. Hillel Wayne. Apr. 25, 2018. URL:
https://www.hillelwayne.com /post /theorem- prover-showdown,/ (visited
on 10/14/2022).

Fabian Wolff et al. “Modular Specification and Verification of Closures in
Rust”. In: OOPSLA. 2021. por: 10.1145/3485522.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://why3.lri.fr/
https://why3.lri.fr/
https://www.hillelwayne.com/post/theorem-prover-showdown/
https://doi.org/10.1145/3485522
http://creativecommons.org/licenses/by/4.0/

,/S/;\V\\
S AR
7))

Extending a High-Performance Prover to
Higher-Order Logic

Check for
updates

1

Petar Vukmirovi¢!@®, Jasmin Blanchette!:2(®)@®, and Stephan Schulz?

! Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
petar.vukmirovic2@gmail.com, j.c.blanchette@vu.nl
2 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
3 DHBW Stuttgart, Stuttgart, Germany
stephan.schulz@dhbw-stuttgart.de

Abstract. Most users of proof assistants want more proof automation.
Some proof assistants discharge goals by translating them to first-order
logic and invoking an efficient prover on them, but much is lost in
translation. Instead, we propose to extend first-order provers with native
support for higher-order features. Building on our extension of E to A-free
higher-order logic, we extend E to full higher-order logic. The result is
the strongest prover on benchmarks exported from a proof assistant.

1 Introduction

In the last few decades, proof assistants have become indispensable tools for
developing trustworthy formal proofs. They are used both in academia to verify
mathematical theories [17] and in industry to verify the correctness of hardware
[21] and software [16,22,24]. However, due to the lack of strong built-in proof
automation, proving seemingly simple goals can be a tedious manual task. To
mitigate this, many proof assistants include a subsystem such as CoqgHammer,
HOL(y)Hammer, or Sledgehammer [9] that translates higher-order goals to
first-order logic and passes them to efficient first-order automatic provers. If a
first-order prover succeeds, the proof is reconstructed and the goal is closed.

Unfortunately, the translation of higher-order constructs is clumsy and leads
to poor performance on goals that require higher-order reasoning. Using native
higher-order provers such as Satallax [10] as backends is not always a good solution
because they are much less efficient than their first-order counterparts [37]. To
bridge this gap, in 2016 we proposed to develop a new generation of higher-
order provers that extend the arguably most successful first-order calculus,
superposition, to higher-order logic, starting from a position of strength.

Our research has focused on three milestones: supporting A-free higher-order
logic, adding A-terms, and adding first-class Boolean terms. In 2019, we extended
the state-of-the-art first-order prover E [32] with a A-free superposition calculus
[42], obtaining a version of E called Ehoh, as a stepping stone towards full
higher-order logic. Together with Bentkamp, Tourret, and Waldmann, we have
since developed calculi, called \-superposition, corresponding to the other two
milestones [5,4] and implemented them in the experimental superposition prover

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 111-129, 2023.
https://doi.org/10.1007/978-3-031-30820-8 10

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0001-7049-6847
http://orcid.org/0000-0002-8367-0936
http://orcid.org/0000-0001-6262-8555
https://doi.org/10.1007/978-3-031-30820-8_10
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_10&domain=pdf

112 P. Vukmirovi¢ et al.

Zipperposition [14]. This OCaml prover is not nearly as efficient as E. Nevertheless,
it has won the higher-order division of the CASC prover competition [39] in 2020,
2021, and 2022, ending nearly a decade of Satallax domination.

We now fulfill a four-year-old promise: We present the extension of Ehoh to
full higher-order logic (Sect. 2) based on incomplete variants of A-superposition.
We call this prover AE. In AE’s implementation, we used the extensive experience
with Zipperposition to choose a set of effective rules that could easily be retrofitted
into an originally first-order prover. Another guiding principle was gracefulness:
Our changes should not impact the strong first-order performance of E and Ehoh.

One of the main challenges we faced was retrofitting A-terms in Ehoh’s
term representation (Sect. 3). Furthermore, Ehoh’s inference engine assumes
that inferences compute a most general unifier. We implemented a higher-order
unification procedure [41] that can return multiple unifiers (Sect. 4) and integrated
it in the inference engine. Finally, we extended and adapted the superposition
rule, resulting in an incomplete, pragmatic variant of A-superposition (Sect. 5).

We evaluated AE on a selection of proof assistants benchmarks as well as
all higher-order theorems in the TPTP library [38] (Sect. 6). AE outperformed
all other higher-order provers on the proof assistant benchmarks; on the TPTP
benchmarks, it ended up second only to the cooperative version of Zipperposition,
which employs Ehoh as a backend. An arguably fairer comparison without the
backend puts AE in first place for both benchmark suites. We also compared the
performance of AE with E on first-order problems and found that no overhead
has been introduced by the extension to higher-order logic.

AE is part of the E prover’s development repository and will be part of E 3.0.
It can be enabled by passing the option --enable-ho to the configure script.
E and AE’s source code is freely available online.!

2 Logic

Our target logic is monomorphic classical higher-order logic with Hilbert choice.
The following text is partly based on Vukmirovi¢ et al. [40, Sect. 2].

Terms s,t,u,v are inductively defined as free variables F, X, ..., bound vari-
ables x,vy, z,..., constants f, g,a,b, ..., applications st, and A-abstractions Ax. s.
Bound variables may be loose (e.g., y in Az.ya) [27].

We let st, stand for sty ... t, and A\T,. s for A\z;....Az,.s. Every S-normal
term can be written as \Z,,. st,, where s is not an application; we call s the
head of the term. If s is a free variable, we call the term flex; otherwise, the
term is rigid. A term of type o, where o is the distinguished Boolean type, is
called a formula. A term whose type is of the form 7y — -+ — 7,, = o is called a
predicate. Logical symbols are part of the signature and may thus occur within
terms. We write them in bold: L, T, AV, =, <.V, 3, =.

On top of the terms, we define some clausal structure. This structure is needed
by A-superposition. A literal [is an equation s & t or a disequation s % ¢. A clause
is a finite multiset of literals, interpreted and written disjunctively: I; V «-- V [,,.

! https://github.com/eprover/eprover.git

https://github.com/eprover/eprover.git

Extending a High-Performance Prover to Higher-Order Logic 113

3 Terms

E is designed around perfect term sharing [25], a principle that we kept in Ehoh
and AE: Any two structurally identical terms are guaranteed to be the same
object in memory. This is achieved through term cells, which represent individual
terms. Each cell has (among other fields) (1) £_code, an integer corresponding to
the symbol at the head of the term (negative if the head is a free variable, positive
otherwise); (2) num_args, corresponding to the number of arguments applied to
the head; and (3) args, an array of size num_args of pointers to argument terms.
We use the notation f(sq,...,s,) to denote a cell whose f_code corresponds to
f, num_args equals n, and args points to the cells for sq,... s,.

Like Leo-IIT [33, Sect. 4.8], Ehoh represents A-free higher-order terms using a
flattened, spine notation [12]. Thus, the terms f, f a, and fab are represented by
the cells f, f(a), and f(a,b). To ensure that free variables are perfectly shared,
Ehoh treats applied free variables differently: Arguments are not applied directly
to a free variable, but using a distinguished symbol @ of variable arity. For
example, the term X ab is represented by the cell @(X, a,b). This ensures that
two different occurrences of the free variable X correspond to the same object,
which makes substitutions more efficient [42].

Representation of A-Terms. To support full higher-order logic, Ehoh’s A-free
cell data structure must be extended to support the A binder. We use the locally
nameless representation [13]: De Bruijn indices represent (possibly loose) bound
variables, whereas we keep the current representation for free variables.

Extending the term representation of Ehoh with a new term kind involves
intricate manipulation of the cell data structure. De Bruijn indices must be
represented like other cells with either a negative or a positive £_code, but the
code must clearly identify that the cell is a De Bruijn index.

Apart from during S-reduction, De Bruijn indices mostly behave like constants.
Therefore, we choose to represent De Bruijn indices using positive f_codes: The
De Bruijn index ¢ will have £_code i. To ensure that De Bruijn indices are not
mistaken for function symbols, we use the cell’s properties bitfield, which holds
precomputed properties. We introduce the property IsDBVar to denote that the
cell represents a De Bruijn index. De Bruijn indices are systematically created
through a dedicated function that sets the IsDBVar property. When given the
same De Bruijn index and type, this function always returns the same object.
Finally, we guard all the functions and macros that manipulate function codes
to check if the property IsDBVar is set. To ensure perfect sharing of De Bruijn
indices, arguments to De Bruijn indices are applied like for free variables, using @.

Extending cells to support A-abstraction is easier. Each A-abstraction has the
distinguished function code LAM as the head symbol and two arguments: (1) a
De Bruijn index 0 of the type of the abstracted variable; (2) the body of the
M-abstraction. Consider the term Az. \y. f x x, where both x and y have the type ¢.
This term is represented as AAf11 in locally nameless representation, where
bold numbers represent De Bruijn indices. In AE, the same term is represented
by the cell LAM(0,LAM(0,f(1,1))), where all De Bruijn variables have type ¢.

114 P. Vukmirovi¢ et al.

The first argument of LAM is redundant, since it can be deduced from the
type of the A-abstraction. However, basic A-term manipulation operations often
require access to this term. We store it explicitly to avoid creating it repeatedly.

Efficient S-Reduction. Terms are stored in Sn-reduced form. As these two
reductions are performed very often, they ought to be efficient. Ehoh performs
B-reduction by reducing the leftmost outermost S-redex first. To represent [-
redexes, E uses the @ symbol. Thus, the term (Az. Ay. (xy))fa is represented
by @(LAM(0,LAM(0,@(1,0))),f,a). Another option would have been to add argu-
ments applied to A-terms directly to the A representation (as in LAM(0, LAM(O,
@(1,0)),f,a)), but this would break the invariant that LAM has two arguments.
Furthermore, replacing free variables with A-abstractions (e.g., replacing X with
Az.z in @(X,a)) would require additional normalization.

A term can be S-reduced as follows: When a cell @ LAM(0, s), t) is encountered,
the field binding (normally used to record the substitution for a free variable)
of the cell 0 is set to ¢. Then s is traversed to instantiate every loose occurrence
of 0 in s with binding, whose loose De Bruijn indices are shifted by the number
of X\ binders above the occurrence of 0 in s [20]. Next, this procedure is applied
to the resulting term and its subterms, in leftmost outermost fashion.

AE’s B-normalization works in this way, but it features a few optimizations.
First, given a term of the form (\Z,. s)t,, AE, like Leo-III [34], replaces the
bound variables x; with ¢; in parallel. Avoiding the construction of intermediate
terms reduces the number of recursive function calls and calls to the cell allocator.

Second, in line with the gracefulness principle, we want AE to incur little (or
no) overhead on first-order problems and to excel on higher-order problems with
a large first-order component. If S-reduction is implemented naively, finding a 8-
redex involves traversing the entire term. On purely first-order terms, S-reduction
is then a waste of time. To avoid this, we use Ehoh’s perfectly shared terms and
their properties field. We introduce the property HasBetaReducibleSubterm,
which is set if a cell is g-reducible. Whenever a new cell that contains a (-
reducible term as a direct subterm is shared, the property is set. Setting of
the property is inductively continued when further superterms are shared. For
example, in the term t = fa (g((Ax. z) a)), the cells for (Az.x)a, g ((Az.x)a), and
t itself have the property HasBetaReducibleSubterm set. When it needs to find
B-reducible subterms, A\E will visit only the cells with this property set. This
further means that on first-order subterms, a single bit masking operation is
enough to determine that no subterm should be visited.

Along similar lines, we introduce a property HasDBSubterm that caches
whether the cell contains a De Bruijn subterm. This makes instantiating De Bruijn
indices during S-normalization faster, since only the subterms that contain De
Bruijn indices must be visited. Similarly, some other operations such as shifting
De Bruijn indices or determining whether a term is closed (i.e., it contains no
loose bound variables) can be sped up or even avoided if the term is first-order.

Efficient n-Reduction. The term Az.sx is n-reduced to s whenever = does
not occur unbound in s. Observing that a term cannot be n-reduced if it contains

Extending a High-Performance Prover to Higher-Order Logic 115

no A-abstractions, we introduce a property HasLambda that notes the presence of
A’s in a term. Only terms with \’s are visited during n-reduction.

AE performs parallel n-reduction: It recognizes terms of the form AZ,,. s Z,,
such that none of the z; occurs unbound in s. If done naively, reducing terms
of this kind requires up to m traversals of s to check if each x; occurs in s. In
AE, exactly one traversal of s is required. More precisely, when n-reducing a cell
LAM(0, s), AE considers all X binders in s as well. In general, the cell will be of the
form LAM(O, ...,LAM(0,?)...), where ¢ is not a A-abstraction, and [is the number
of LAM symbols above t. Then A\E breaks the body ¢t down into a decomposition
w(n —1) ... 10 where u is not of the form ... n; such a decomposition is unique.
If n = 0, the cell is not n-reducible. Otherwise, u is traversed to determine the
minimal index j of a loose De Bruijn index, taking 7 = oo if no such index
exists. AE can then remove the £ = min{j, [, n} rightmost outermost A binders in
LAM(O,...,LAM(0,¢t)...) and replace ¢ by the variant of u(n —1) ... (k+1)k
obtained by shifting the loose De Bruijn indices down by k.

To illustrate this convoluted De Bruijn arithmetic, we consider the term
Az. \y. Az.fxxyz. This term is represented by the cell LAM(0,LAM(0,LAM(O,
f(2,2,1,0)))). AE splits f(2,2,1,0) into two parts: u = f 2 and the arguments
2,1,0. Since the minimal index in « is 2, we can omit the De Bruijn indices 1
and 0 and their A binders, yielding the n-reduced cell LAM(0, f(0,0)).

Parallel n-reduction both speeds up 7n-reduction and avoids creating interme-
diate terms. For finding the minimal loose De Bruijn index, optimizations such
as the HasDBSubterm property are used.

Representation of Boolean Terms. E and Ehoh represent Boolean terms
using cells whose f_codes are reserved for logical symbols. Quantified formulas
are represented by cells in which the first argument is the quantified variable
and the second one is the body of the quantified formula. For example, the
term Vz. px corresponds to the cell V(X, p(X)), where X is a free variable. This
representation is convenient for parsing and clausification, which is what E and
Ehoh use it for, but in full higher-order logic, it is problematic during proof
search: Booleans can occur as subterms in clauses, as in q(X) V p(V(X, r(X))),
and instantiating X in the first literal should not affect X in the second literal.

To avoid this issue, in AE we use A binders to represent quantified formulas, as
is customary in higher-order logic [1, §51|. Thus, Vz. s is represented by V (Az. s).
Quantifiers are then unary symbols that do not directly bind the variables. Since
AE represents bound variables using De Bruijn indices, this solves all a-conversion
issues. However, this solution is incompatible with thousands of decades-old lines
of clausification code that assumes E’s representation of quantifiers. Therefore,
AE converts quantified formulas only after clausification, for Boolean terms that
occur in a higher-order context (e.g., as argument to a function symbol).

New Term Orders. The A-superposition calculus is parameterized by a term
order that is used to break symmetries in the search space. We implemented the
versions of the Knuth-Bendix order (KBO) and lexicographic path order (LPO)
for higher-order terms described by Bentkamp et al. [4]. These orders encode

116 P. Vukmirovi¢ et al.

A-terms as first-order terms and then invoke the standard KBO or LPO. For
efficiency, we implemented separate KBO and LPO functions that compute the
order directly, intertwining the encoding and the order computation.

Ehoh cells contain a binding field that can be used to store the substitution
for a free variable. Substitutions can then be applied by following the binding
pointers, replacing each free variable with its instance. Thus, when Ehoh needs
to perform a KBO or LPO comparison of an instantiated term, it needs only
follow the binding pointers. In full higher-order logic, however, instantiating a
variable can trigger a chain of f#rn-reductions, changing the shape of the term
dramatically. To prevent this, AE computes the #7n-reduced instances of the terms
before comparing them using KBO or LPO.

4 Unification, Matching, and Term Indexing

Standard superposition crucially depends on the concept of a most general unifier
(MGU). In higher-order logic, the concept is replaced by that of a complete
set of unifiers (CSU), which may be infinite. Vukmirovi¢ et al. [41] designed
an efficient procedure to enumerate a CSU for a term pair. It is implemented
in Zipperposition, together with some extensions to term indexing. In AE, we
further improve the performance of this procedure by implementing a terminating,
incomplete variant. We also introduce a new indexing data structure.

The Unification Procedure. The unification procedure works by maintaining
a list of unification pairs to be solved. After choosing a pair, it first normalizes
it by S-reducing and instantiating the heads of both terms in the pair. Then, if
either head is a variable, it computes an appropriate binding for this variable,
thereby approximating the solution.

Unlike in first-order and A-free higher-order unification, in the full higher-order
case there may be many bindings that lead to a solution. To reduce this mostly
blind guessing of bindings, the procedure features support for oracles [41]. These
are procedures that solve the unification problem for a subclass of higher-order
terms on which unification is decidable and, for AE, unary. Oracles help increase
performance, avoid nontermination, and avoid redundant bindings.

Vukmirovié¢ et al. described their procedure as a transition system. In AE, the
procedure is implemented nonrecursively, and the unifiers are enumerated using
an iterator object that encapsulates the state of the unifier search. The iterator
consists of five fields: (1) constraints, which holds the unification constraints;
(2) bt_state, a stack that contains information necessary to backtrack to a
previous state; (3) branch_ iter, which stores how far we are in exploring different
possibilities from the current search node; (4) steps, which remembers how many
different unification bindings (such as imitation, projection, and identification)
are applied; and (5) subst, a stack storing the variables bound so far.

The iterator is initialized to hold the original problem in constraints, and all
other fields are initially empty. The unifiers are retrieved one by one by calling
the function FORWARDITER. It returns TRUE if the iterator made progress, in

Extending a High-Performance Prover to Higher-Order Logic 117

which case the unifier can be read via the iterator’s subst field. Otherwise, no
more unifiers can be found, and the iterator is no longer valid. The function’s
pseudocode is given below, including two auxiliary functions:

function NORMALIZEHEAD(t) is

if t.head = @ A t.args[0].is_lambda() then
reduce the top-level S-redex in t
return NORMALIZEHEAD(t)

else if t.head.is_var() A t.head.binding # NIL then
t.head < t.head.binding
return NORMALIZEHEAD ()

else
return ¢

function BACKTRACKITER(iter) is
if dter.bt_state.empty() then
clear all fields in iter
return FALSE

else
pop (constraints, branch_iter, steps, subst) from iter.bt _state

set the corresponding fields of iter
return TRUE

function FORWARDITER(iter) is
forward < —iter.constraints.empty() V BACKTRACKITER (iter)
while forward A — iter.constraints.empty() do
(lhs, Ths) < pop pair from iter.constraints
lhs <~ NORMALIZEHEAD(lhs)
rhs <~ NORMALIZEHEAD(7hs)
normalize and discard the A\ prefixes of [hs and rhs

if —lhs.head.is_var() A rhs.head.is _wvar() then
swap lhs and rhs
if lhs.head.is _wvar() then
oracle _res < FIXPOINT(lhs, rhs, iter.subst)
if oracle res = NOTINFRAGMENT then
oracle _res < PATTERN(lhs, rhs, iter.subst)

if oracle res = NOTUNIFIABLE then
forward <~ BACKTRACKITER(ITER)
else if oracle res = NOTINFRAGMENT then
n_steps,n__branch__iter,n_binding <
NEXTBINDING (lhs, rhs, iter.steps, iter.branch_iter)
if n_branch_iter # BINDEND then
push pair (lhs,rhs) back to iter.constraints
push quadruple (iter.constraints, n__branch_iter,
iter.steps, iter.subst) onto iter.bt _state
extend iter.subst with n_ binding

118 P. Vukmirovi¢ et al.

tter.steps <— n__steps
iter.branch__iter <— BINDBEGIN
else if lhs.head = rhs.head then
create constraint pairs of arguments of lhs and rhs
and push them to iter.constraints
iter.branch _iter < BINDBEGIN
else if [hs.head = rhs.head then
create constraint pairs of arguments of lhs and rhs
and push them to iter.constraints
else
forward < BACKTRACKITER(iter)
return forward

FORWARDITER begins by backtracking if the previous attempt was successful
(i.e., all constraints were solved). If it finds a state from which it can continue,
it takes term pairs from constraints until there are no more constraints or it is
determined that no unifier exists. The terms are normalized by instantiating the
head variable with its binding and reducing the potential top-level S-redex that
might appear. This instantiation and reduction process is repeated until there are
no more top-level S-redexes and the head is not a variable bound to some term.
Then the term with shorter A prefix is expanded (only on the top level) so that
both A prefixes have the same length. Finally, the \ prefix is ignored, and we focus
only on the body. In this way, we avoid fully substituting and normalizing terms
and perform just enough operations to determine the next step of the procedure.

If either term of the constraint is flex, we first invoke oracles to solve the con-
straint. AE implements the most efficient oracles implemented in Zipperposition:
fixpoint and pattern [41, Sect. 6]. An oracle can return three results: (1) there
is an MGU for the pair (UNIFIABLE), which is recorded in subst, and the next
pair in constraints is tried; (2) no MGU exists for the pair (NOTUNIFIABLE),
which causes the iterator to backtrack; (3) if the pairs do not belong to the
subclass that oracle can solve (NOTINFRAGMENT), we generate possible variable
bindings—that is, we guess the approximate form of the solution.

AE has a dedicated module that generates bindings (NEXTBINDING). This
module is given the current constraint and the values of branch_iter and steps,
and it either returns the next binding and the new values of branch_iter and
steps or reports that all different variable bindings are exhausted. The bindings
that AE’s unification procedure creates are imitation, Huet-style projection,
identification, and elimination (one argument at a time) [41, Sect. 3]. A limit
on the total number of applied binding rules can be set, as well as a limit on
the number of individual rule applications. The binding module checks whether
limits are reached using the iterator’s steps field.

Computing bindings is the only point in the procedure where the search
tree branches and different possibilities are explored. Thus, when AE follows the
branch indicated by the binding module, it records the state to which it needs
to return should the followed branch be backtracked. The state consists of the
values of constraints, steps, and subst before the branch is followed and the value

Extending a High-Performance Prover to Higher-Order Logic 119

of branch _iter that points past the followed branch. The values of branch _iter
are either BINDBEGIN, which denotes that no binding was created, intermediate
values that NEXTBINDING uses to remember how far through bindings it is, and
BINDEND, which indicates that all bindings are exhausted.

If all bindings are exhausted, the procedure checks whether the pair is flex—flex
and both sides have the same head. If so, the pair is decomposed and constraints
are derived from the pair’s arguments; otherwise, the iterator backtracks. If
the pair is rigid—rigid, for unification to succeed, the heads of both sides must
be the same. Unification then continues with new constraints derived from the
arguments. Otherwise, the iterator must be backtracked.

Matching. In E, the matching algorithm is mostly used inside simplification rules
such as demodulation and subsumption [29]. As these rules must be efficiently
performed, using a complex matching algorithm is not viable. Instead, we provide
a matching algorithm for the pattern class of terms [27] to complement Ehoh’s
A-free higher-order matching algorithm [42, Sect. 4]. A term is a pattern if each
of its free variables either has no arguments (as in first-order logic) or is applied
to distinct De Bruijn indices.

To help determine whether to use the pattern or A-free algorithm, we introduce
a cached property HasNonPatternVar, which is set for terms of the form X s,
where n > 0 and either there exists some s; that is not a De Bruijn index or
there exist indices i < j such that s; = s; is a De Bruijn index. This property is
propagated to the superterms when they are perfectly shared. This allows later
checks if a term belongs to the pattern class to be performed in constant time.

We modify the A-free higher-order matching algorithm to treat \ prefixes as
above in the unification procedure—by bringing the prefixes to the same length
and ignoring them afterwards. This ensures that the algorithm will never try to
match a free variable with a A-abstraction, making sure that [-redexes never
appear. We also modify the algorithm to ensure that free variables are never
bound to terms that have loose bound variables. This algorithm cannot find
many complex matching substitutions (matchers), but it can efficiently determine
whether two terms are variable renamings of each other or whether a simple
matcher can be used, as in the case of (X (Az.xz)b,f (Az.x)b), where X > f is
usually the desired matcher. If this algorithm does not find a matcher and both
terms are patterns, pattern matching is tried.

Indexing. E, like other modern theorem provers, efficiently retrieves unifiable or
matchable pairs of terms using indexing data structures. To find terms unifiable
with a query term or instances of a query term, it uses fingerprint indexing [30].
Vukmirovié¢ et al. extended this data structure to support full higher-order terms
in Zipperposition [41, Sect. 6]. We use the same approach in AE, and we extend
feature vector indices [31] in the same way.

E uses perfect discrimination trees [26] to find generalizations of the query
term (i.e., terms of which the query term is an instance). This data structure
is a trie that indexes terms by representing them in a serialized, flattened form.
The left branch from the root in Figure 1 shows how the first-order terms fa X

120 P. Vukmirovié¢ et al.
/\
(2)

[\
® @ ()

<
o

Fig. 1. First-order, A-free higher-order, and higher-order pattern terms in a perfect
discrimination tree

and faa are stored. In Ehoh, this data structure is extended to support partial
application and applied variables [42].

In AE, we extend this structure to support A-abstractions and the higher-order
pattern matching algorithm. To this end, we change the way in which terms
are serialized. First, we require that all terms are fully n-expanded (except for
arguments of variables applied in patterns). Then, when the term is serialized,
we use a single node for applied variable terms X §,,, instead of a node for X
followed by nodes for the arguments s,,. We serialize the A-abstraction Az. s using
a dedicated node LAM,, where T is the type of x, followed by the serialization
of s. Other than these changes, serialization remains as in Ehoh, following the
gracefulness principle. Figure 1 shows how g (X ab)c and h (Az. \y. X yx) are
serialized. Since the terms are stored in serialized form, it is hard to manipulate A
prefixes of stored terms during matching. Performing n-expansion when serializing
terms ensures that matchable terms have A prefixes of the same length.

We have dedicated separate nodes for applied variables because access to
arguments of applied variables is necessary for the pattern matching algorithm.
Even though arguments can be obtained by querying the arity n of the variable
and taking the next n arguments in the serialization, this is both inefficient and
inelegant. As for De Bruijn indices, we treat them the same as function symbols.

Following the notation from the extension of perfect discrimination trees to
A-free higher-order logic [42], we now describe how enumeration of generalizations
is performed. To traverse the tree, AE begins at the root node and maintains two
stacks: term_stack and term_proc, where term_stack contains the subterms of
the query term that have to be matched, and term_proc contains processed terms
that are used to backtrack to previous states. Initially, term_stack contains the
query term, the current matching substitution o is empty, and the successor node
is chosen among the child nodes as follows:

A. If the node is labeled with a symbol £ (where ¢ is either a De Bruijn index
or a constant) and the top item ¢ of term_stack is of the form £ ¢, replace
t by n new items tq,...,t,, and push ¢t onto term_proc.

Extending a High-Performance Prover to Higher-Order Logic 121

B. If the node is labeled with a symbol LAM, and the top item ¢ of term_stack
is of the form Az.s and the type of x is 7, replace ¢ by s, and push ¢ onto
term_proc.

C. If the node is labeled with a possibly applied variable X 3,, (where n > 0),
and the top item of term_stack is ¢, the matching algorithm described above
is run on X §,, and t. The algorithm takes into account ¢ built so far and
extends it if necessary. If the algorithm succeeds, pop ¢ from term_stack,
push it onto term_proc, and save the original value of ¢ in the node.

Backtracking works in the opposite direction: If the current node is labeled
with a De Bruijn index or function symbol node of arity n, pop n terms from
term_stack and move the top of term_proc to term_stack. If the node is
labeled with LAM,, pop the top of term_stack and move the top of term_proc
to term_stack. Finally, if the node is labeled with a possibly applied variable,
move the top of the term_proc to term_stack and restore the value of o.

As an example of how finding a generalization works, when looking for
generalizations of g (fab) c in the tree of Figure 1, the following states of stacks
and substitutions emerge, from left to right:

€ g g.(Xab) g.(Xab).c
term_stack [g(fab)c] [fab,c] [c] I
term_proc I [g(fab)c] [fab,g(fab)c] [c,fab,g(fab)c]
o 0 0 {X —f} {X — f}

5 Preprocessing, Calculus, and Extensions

Ehoh’s simple A-free higher-order calculus performed well on Sledgehammer prob-
lems and formed a promising stepping stone to full higher-order logic [42]. When
implementing support for full higher-order logic, we were guided by efficiency and
gracefulness with respect to Ehoh’s calculus rather than completeness. Whereas
Zipperposition provides both complete and incomplete modes, AE only offers
incomplete modes.

Preprocessing. Our experience with Zipperposition showed the importance
of flexibility in preprocessing the higher-order problems [40]. Therefore, we
implemented a flexible preprocessing module in AE.

To maintain compatibility with Ehoh, AE can optionally transform all A-
abstractions into named functions. This process is called A-lifting [19]. AE also
removes all occurrences of Boolean subterms (other than L, T, and free variables)
in higher-order contexts using a FOOL-like transformation [23]. For example, the
formula f(p A q) &= a becomes (pAq—=f(T)=a)A(-(pAq)—=f(L)=a).

Many TPTP problems use the definition role to identify the definitions of
symbols. AE can treat definition axioms as rewrite rules, and replace all occur-
rences of defined symbols during preprocessing. Furthermore, during SInE [18§]
axiom selection, it can always include the defined symbol in the trigger relation.

122 P. Vukmirovi¢ et al.

Calculus. AE implements the same superposition calculus as Ehoh with three
important changes. First, wherever Ehoh requires the MGU of terms, AE enu-
merates unifiers from a finite subset of the CSU, as explained in Sect. 4. Second,
AE uses versions of the KBO and LPO orders designed for A-terms.

The third difference is more subtle. One of the main features of Ehoh is
prefix optimization [42, Sect. 1]: a method that, given a demodulator s = ¢,
makes it possible to replace both applied and unapplied occurrences of s by ¢ by
traversing only the first-order subterms of a rewritable term. In a A-free setting,
this optimization is useful, but in the presence of 8n-normalization, the shapes
of terms can change drastically, making it much harder to track prefixes of terms.
This is why we disable the prefix optimization in AE. To compensate for losing
this optimization, we introduce the argument congruence rule AC in AE and
enable positive and negative functional extensionality (PE and NE) by default:

s~tVvC stvC sX~tXv(C
AC — — NE
sX=tXVvC s(sk X)#t(skX)vC s=tvC

PE

AC and NE assume that s and t are of function type. In NE, X denotes all
the free variables occurring in s and ¢, and sk is a fresh Skolem symbol of the
appropriate type. PE has a side condition that X may not occur in s, ¢, or C.

Saturation. E’s saturation procedure assumes that each attempt to perform an
inference will either result in a single clause or fail due to one of the inference
side conditions. Unification procedures that produce multiple substitutions break
this invariant, and the saturation procedure needed to be adjusted.

For Zipperposition, Vukmirovi¢ et al. developed a variant of the saturation
procedure that interleaves computing unifiers and scheduling inferences to be
performed [40]. Since completeness was not a design goal for AE, we did not
implement this version of the saturation procedure. Instead, in places where
previously a single unifier was expected, A\E consumes all elements of the iterator
used for enumerating a unifier, converting them into clauses.

Reasoning about Formulas. Even though most of the Boolean structure is
removed during preprocessing, formulas can reappear at the top level of clauses
during saturation. For example, after instantiating X with Az. A\y. z Ay, the clause
XpqVa=bbecomes (pAq)Va=b. AE converts every clause of the form
o V C, where ¢ has a logic symbol as its head, or it is a (dis)equation between
two formulas different than T, to an explicitly quantified formula. Then, the
clausification algorithm is invoked on the formula to restore the clausal structure.
Zipperposition features more dynamic clausification modes, but for simplicity we
decided not to implement them in A\E.

The A-superposition calculus for full higher-order logic [4] includes many rules
that act on Boolean subterms, which are necessary for completeness. Other than
Boolean simplification rules, which use simple tautologies such as pA T ¢ p to
simplify terms, we have implemented none of the Boolean rules of this calculus in
AE. First, we have observed that complicated rules such as FLUIDBOOLHOIST and

Extending a High-Performance Prover to Higher-Order Logic 123

FLUIDLOOBHOIST are hardly ever useful in practice and usually only contribute
to an uncontrolled increase in the proof state size. Second, simpler rules such as
BOOLHOIST can usually be simulated by pragmatic rules that perform Boolean
extensionality reasoning, described below.

To make up for excluding Boolean rules, we use an incomplete, but more
easily controllable and intuitive rule, called primitive instantiation. This rule
instantiates free predicate variables with approximations of formulas that are
ground instances of this variable. We use the approximations described by
Vukmirovié and Nummelin [43, Sect. 3.3].

AE’s handling of the Hilbert choice operator is inspired by Leo-IIT’s [35]. AE
recognizes clauses of the form — P X V P (f P), which essentially denote that f is
a choice symbol. Then, when subterm f s is found during saturation, s is used to
instantiate the choice axiom for f. Similarly, Leibniz equality [43] is eliminated
by recognizing clauses of the form = Pa V Pb VvV C. These clauses are then
instantiated with P +— Az.x ~ a and P +— Az.x % b, which resultsin a~b Vv C.

Finally, AE treats induction axioms specially. Like Zipperposition [40, Sect. 4],
it abstracts literals from the goal clauses and instantiates induction axioms with
these abstractions. Since Zipperposition supports dynamic calculus-level clausifi-
cation, induction axioms are instantiated during saturation, when the axioms are
processed. In AE; this instantiation is performed immediately after clausification.
After \E has collected all the abstractions, it traverses the clauses and instantiates
those that have applied variable of the same type as the abstraction.

Extensionality. \E takes a pragmatic approach to reasoning about functional
and Boolean extensionality: It uses abstracting rules [5] which simulate basic
superposition calculus rules but do not require unifiability of the partner terms
in the inference. More precisely, assume a core inference needs to be performed
between two [S-reduced terms w and v, such that they can be represented as
u=C[s1,...,8,] and v = C[ty,...,t,], where C is the most general “green” [5]
common context of u and v, not all of s; and t; are free variables, and for at
least one i, s; # t;, s; and t; are not possibly applied free variables, and they
are of Boolean or function type. Then, the conclusion is formed by taking the
conclusion D of the core inference rule (which would be created if s and t are
unifiable) and adding literals s; # t1 V -+ V s, % ty,.

These rules are particularly useful because AE has no rules that dynamically
process Booleans in FOOL-like fashion, such as BOOLHOIST. For example, given
the clauses f (pAq) &~ a and g (f p) % b, the abstracting version of the superposition
rule would result in ga 22 b V (pA q) % p. In this way, the Boolean structure
bubbles up to the top level and is further processed by clausification. We noticed
that this alleviates the need for the other Boolean rules in practice.

6 Evaluation

We now try to answer two questions about AE: How does AE compare against
other higher-order provers (including Ehoh)? Does \E introduce any overhead

124 P. Vukmirovi¢ et al.

compared with Ehoh? To answer these questions, we ran provers on problems from
the TPTP library [38] and on benchmarks generated by Sledgehammer (SH) [28].
The experiments were carried out on StarExec Miami [36] nodes equipped with
Intel Xeon E5-2620 v4 CPU clocked at 2.10 GHz. For the TPTP part, we used
the CASC 20212 time limits: 120 s wall-clock and 960 s CPU. For SH benchmarks
and to answer the other question, we used Sledgehammer’s default time limit:
30 s wall-clock and CPU. The raw evaluation data is available online.?

Comparison with Other Provers. To answer the first question, we let \E
compete with the top contenders in the higher-order division of CASC 2021: cvch
0.0.7 [2], Ehoh 2.7 [42], Leo-III 1.6.6 [35], Vampire 4.6 [8], and Zipperposition
2.1 [40]. We also included Satallax 3.5 [10]. We used all 2899 higher-order the-
orems in TPTP 7.5.0 as well as 5000 SH higher-order benchmarks originating
from the Seventeen benchmark suite [15]. On SH benchmarks, cveb, Ehoh, AE,
Vampire, and Zipperposition were run using custom schedules provided by their
developers, optimized for single-core usage and low timeouts. Otherwise, we used
the corresponding CASC configurations.

Although it internally does not support A-abstractions, Ehoh 2.7 can parse
full higher-order logic using A-lifting. We included two versions of Zipperposition:
coop uses Ehoh 2.7 as a backend to finish proof attempts, whereas uncoop does
not. Both Ehoh and AE were run in the automatic scheduling mode. Compared
with Ehoh, AE features a redesigned module for automatic scheduling, it can
exploit multiple CPU cores, and its heuristics have been more extensively trained
on higher-order problems.

The results are shown in Figure 2. A\E dramatically improves E’s higher-order
reasoning capabilities compared with Ehoh. It solves 20% more TPTP benchmarks
and 7% more SH benchmarks. The reason for the higher performance increase
for TPTP is likely that TPTP benchmarks tend to require more higher-order
reasoning than SH benchmarks, which often have a large first-order component
and for which Ehoh was already very successful.

AE was envisioned as an efficient backend to proof assistants. As such, it excels
on SH benchmarks, outperforming the competition. On TPTP, it outperforms
all higher-order provers other than Zipperposition-coop. If Zipperposition’s Ehoh
backend is disabled, \E outperforms Zipperposition by a wide margin. This
comparison is arguably fairer; after all, AE does not use an older version of
Zipperposition as a backend. These results suggest that AE already implements
most of the necessary features for a high-performance higher-order prover but
could benefit from the kind of fine-tuning that Zipperposition underwent in the
last four years.

Remarkably, the raw evaluation data reveals thats AE solves 181 SH problems
and 24 TPTP problems that Zipperposition-coop does not. The lower number
of uniquely solved TPTP problems is likely because Zipperposition was heavily
optimized on the TPTP.

2 http://wuw.tptp.org/CASC/28/
3 https://doi.org/10.5281/zenodo . 6389849

http://www.tptp.org/CASC/28/
https://doi.org/10.5281/zenodo.6389849

Extending a High-Performance Prover to Higher-Order Logic 125

TPTP SH
cved 1931 2577 TPTP
Ehoh 2105 2611
AE 2533 2804 Ehoh FO 535
Leo-I11 2282 1601 Ehoh HO 538
Satallax 2320 1719 AE FO 537
Vampire 92203 2240 AE HO 541
Zipperposition-coop 2583 2754

Fig. 3. Evaluation of AE’s

Zipperposition-uncoop 2483 2181 overhead

Fig. 2. Comparison of higher-order provers

Comparison with the First-Order E. Both Ehoh and AE can be compiled
in a mode that disables most of the higher-order reasoning. This mode is designed
for users that are interested only in E’s first-order capabilities and care a lot
about performance. To answer the second evaluation question, about assessing
overhead of AE, we chose all the 1138 unique problems used at CASC from 2019
to 2021 in the first-order theorem division and ran Ehoh and AE both in this
first-order (FO) mode and in higher-order (HO) mode.

We fixed a single configuration of options, because Ehoh’s and AE’s automatic
scheduling methods could select different configurations and we would not be
measuring the overhead but the quality of the chosen configurations. We chose
the boa configuration [42, Sect. 7], which is the configuration most often used by
E 2.2 in its automatic scheduling mode. The results are shown in Figure 3.

Counterintuitively, the higher-order versions of both provers outperform
the first-order counterparts. However, the difference is so small that it can be
attributed to the changes to memory layout that affect the order in which clauses
are chosen. Similar effects are visible when comparing the first-order versions.

CASC Results. \E also took part in CASC 2022. In the TPTP higher-order
division, AE finished second, after Zipperposition, as expected. In the Sledge-
hammer division, AE tied with Ehoh for first place, a disappointment. The likely
explanation is that AE used a wrong configuration in this division, as we found
out afterwards. We expect better performance at CASC 2023.

7 Discussion and Related Work

On the trajectory to AE, we developed, together with colleagues, three super-
position calculi: for A-free higher-order logic [6], for a higher-order logic with
A-abstraction but no Booleans [5], and for full higher-order logic [5]. These mile-
stones allowed us to carefully estimate how the increased reasoning capabilities
of each calculus influence its performance.

Extending first-order provers with higher-order reasoning capabilities has
been attempted by other researchers as well. Barbosa et al. extended the SMT

126 P. Vukmirovi¢ et al.

solvers CVC4 (now cveb) and veriT to higher-order logic in an incomplete way [3].
Bhayat and Reger first extended Vampire to higher-order logic using combinatory
unification [8], an incomplete approach, before they designed and implemented a
complete higher-order superposition calculus based on SKBCI combinators [7].
The advantage is that combinators can be supported as a thin layer on top
of A\-free terms. This calculus is also implemented in Zipperposition. However,
in informal experiments, we found that A-superposition performs substantially
better, corroborating the CASC results, so we decided to make a more profound
change to Ehoh and implement A-superposition.

Possibly the only actively maintained higher-order provers built from the
bottom up as higher-order provers are Leo-III [35] and Satallax’s [10] successor
Lash [11]. A further overview of other traditional higher-order provers and the
calculi they are based on can be found in the paper about Ehoh [42, Sect. 9].

8 Conclusion

In 2019, the reviewers of our Ehoh paper [42] were skeptical that extending Ehoh
with support for full higher-order logic would be feasible. One of them wrote:

A potential criticism could be that this step from E to Ehoh is just
extending FOL by those aspects of HOL that are easily in reach with
rather straightforward extensions (none of the extensions is indeed very
complicated), and that the difficult challenges of fully supporting HOL
have yet to be confronted.

We ended up addressing the theoretical “difficult challenges” in other work
with colleagues. In this paper, we faced the practical challenges pertaining to
the extension of Ehoh’s data structures and algorithms to support full higher-
order logic and demonstrated that such an extension is possible. Our evaluation
shows that this extension makes AE the best higher-order prover on benchmarks
coming from interactive theorem proving practice, which was our goal. AE lags
slightly behind Zipperposition on TPTP problems. One reason might be that
Zipperposition does not assume a clausal structure and can perform subtle
formula-level inferences. It would be useful to implement the same features in
AE. We have also only started tuning AE’s heuristics on higher-order problems.

Acknowledgment. Ahmed Bhayat and Martin Suda provided Vampire configurations
optimized for Sledgehammer. Andrew Reynolds did the same for cvch. Jannis Limperg
helped us debug the submission artifact. Simon Cruanes, Wan Fokkink, Mark Summer-
field, and the anonymous reviewers suggested several textual improvements. We thank
them all.

This research has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant
agreement No. 713999, Matryoshka). Vukmirovié¢ and Blanchette have received funding
from the Netherlands Organization for Scientific Research (NWO) under the Vidi
program (project No. 016.Vidi.189.037, Lean Forward).

Extending a High-Performance Prover to Higher-Order Logic 127

References

10.

11.

12.

13.

14.

15.

16.

17.

Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof (2nd Ed.), Applied Logic, vol. 27. Springer (2002)

Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,
Mohamed, A., Mohamed, M., Niemetz, A., N6tzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvch: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol.
13243, pp. 415-442. Springer (2022)

Barbosa, H., Reynolds, A., El Ouraoui, D., Tinelli, C., Barrett, C.W.: Extending
SMT solvers to higher-order logic. In: CADE. LNCS, vol. 11716, pp. 35-54. Springer
(2019)

Bentkamp, A., Blanchette, J., Tourret, S., Vukmirovi¢, P.: Superposition for full
higher-order logic. In: Platzer, A., Sutcliffe, G. (eds.) CADE. LNCS, vol. 12699, pp.
396-412. Springer (2021)

Bentkamp, A., Blanchette, J., Tourret, S., Vukmirovi¢, P., Waldmann, U.: Super-
position with lambdas. J. Autom. Reason. 65(7), 893-940 (2021)

Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for
lambda-free higher-order logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR. LNCS, vol. 10900, pp. 28-46. Springer (2018)

Bhayat, A., Reger, G.: Restricted combinatory unification. In: Fontaine, P. (ed.)
CADE. LNCS, vol. 11716, pp. 74-93. Springer (2019)

Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order
logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR (1). LNCS, vol. 12166,
pp. 278-296. Springer (2020)

. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.

J. Formaliz. Reason. 9(1), 101-148 (2016)

Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 111-117. Springer (2012)
Brown, C.E., Kaliszyk, C.: Lash 1.0 (system description). In: Blanchette, J., Kovacs,
L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385, pp. 350-358. Springer
(2022)

Cervesato, 1., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639688
(2003)

Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49(3),
363-408 (2012)

Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induction,
and Beyond. PhD thesis, Ecole Polytechnique (2015)

Desharnais, M., Vukmirovi¢, P., Blanchette, J., Wenzel, M.: Seventeen provers
under the hammer. In: Andronick, J., de Moura, L. (eds.) ITP. LIPIcs, vol. 237, pp.
8:1-8:18. Schloss Dagstuhl (2022)

Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjéberg, V., Costanzo, D.: CertiKOS:
An extensible architecture for building certified concurrent OS kernels. In: Keeton,
K., Roscoe, T. (eds.) OSDI. pp. 653-669. USENIX Association (2016)

Hales, T.C., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk,
C., Magron, V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S.,
Pleso, J., Rute, J., Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu,
K.K., Zumkeller, R.: A formal proof of the Kepler conjecture. CoORR abs/1501.02155
(2015)

128

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

P. Vukmirovi¢ et al.

Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjgrner, N.,
Sofronie-Stokkermans, V. (eds.) CADE. LNCS, vol. 6803, pp. 299-314. Springer
2011

(Hughz:s, R.J.M.: Super combinators: A new implementation method for applicative
languages. In: Park, D.M.R., Friedman, D.P., Wise, D.S.; Jr., G.L.S. (eds.) LFP.
pp. 1-10. ACM (1982)

Kamareddine, F.: Reviewing the classical and the de Bruijn notation for A-calculus
and pure type systems. J. Log. Comput. 11(3), 363-394 (2001)

Kern, C., Greenstreet, M.R.: Formal verification in hardware design: A survey.
ACM Trans. Design Autom. Electr. Syst. 4(2), 123-193 (1999)

Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.:
seL4: Formal verification of an operating-system kernel. Commun. ACM 53(6),
107-115 (2010)

Kotelnikov, E., Kovéacs, L., Suda, M., Voronkov, A.: A clausal normal form trans-
lation for FOOL. In: Benzmiiller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI EPiC,
vol. 41, pp. 53-71. EasyChair (2016)

Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107-115
(2009)

Léchner, B., Schulz, S.: An evaluation of shared rewriting. In: de Nivelle, H., Schulz,
S. (eds.) IWIL. pp. 33-48. Max-Planck-Institut fiir Informatik (2001)

McCune, W.: Experiments with discrimination-tree indexing and path indexing for
term retrieval. J. Autom. Reason. 9(2), 147-167 (1992)

Nipkow, T.: Functional unification of higher-order patterns. In: Best, E. (ed.) LICS.
pp. 64-74. IEEE Computer Society (1993)

Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: Sutcliffe,
G., Schulz, S., Ternovska, E. (eds.) IWIL. EPiC, vol. 2, pp. 1-11. EasyChair (2012)
Schulz, S.: E—a brainiac theorem prover. AI Commun. 15(2-3), 111-126 (2002)
Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 477-483. Springer (2012)
Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics—
Essays in Memory of William W. McCune. LNCS, vol. 7788, pp. 45—67. Springer
(2013)

Schulz, S., Cruanes, S., Vukmirovi¢, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE. LNCS, vol. 11716, pp. 495-507. Springer (2019)

Steen, A.: Extensional paramodulation for higher-order logic and its effective
implementation leo-iii. Kiinstliche Intell. 34(1), 105-108 (2020)

Steen, A., Benzmiiller, C.: There is no best \beta -normalization strategy for
higher-order reasoners. In: Davis, M., Fehnker, A., Mclver, A., Voronkov, A. (eds.)
LPAR-20 2015. LNCS, vol. 9450, pp. 329-339. Springer (2015)

Steen, A., Benzmiiller, C.: Extensional higher-order paramodulation in Leo-III. J.
Autom. Reason. 65(6), 775-807 (2021)

Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR. LNCS,
vol. 8562, pp. 367-373. Springer (2014)

Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledge-
hammer test bench. J. Applied Logic 11(1), 91-102 (2013)

Sutcliffe, G.: The TPTP problem library and associated infrastructure—from CNF
to THO, TPTP v6.4.0. J. Autom. Reason. 59(4), 483-502 (2017)

39.

40.

41.

42.

43.

Extending a High-Performance Prover to Higher-Order Logic 129

Sutcliffe, G.: The 10th IJCAR automated theorem proving system competition—
CASC-J10. AT Commun. 34(2), 163-177 (2021)

Vukmirovié, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret,
S.: Making higher-order superposition work. In: Platzer, A., Sutcliffe, G. (eds.)
CADE. LNCS, vol. 12699, pp. 415-432. Springer (2021)

Vukmirovi¢, P., Bentkamp, A., Nummelin, V.: Efficient full higher-order unification.
In: Ariola, Z.M. (ed.) FSCD. LIPIcs, vol. 167, pp. 5:1-5:17. Schloss Dagstuhl (2020)
Vukmirovié, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac
prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS.
LNCS, vol. 11427, pp. 192-210. Springer (2019)

Vukmirovié¢, P., Nummelin, V.: Boolean reasoning in a higher-order superposition
prover. In: Fontaine, P., Korovin, K., Kotsireas, 1.S., Riimmer, P., Tourret, S. (eds.)
PAAR-+SC?. CEUR Workshop Proceedings, vol. 2752, pp. 148-166. CEUR-WS.org
(2020)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Tools (Regular Papers)

Check for
updates

The WhyRel Prototype for Modular Relational
Verification of Pointer Programs

Ramana Nagasamudram®®) | Anindya Banerjee?, and David A. Naumann’

! Stevens Institute of Technology, Hoboken, USA
{rnagasam,dnaumann}@stevens.edu

2 IMDEA Software Institute, Madrid, Spain
anindya.banerjee@imdea.org

Abstract. Verifying relations between programs arises as a task in
various verification contexts such as optimizing transformations, relating
new versions of programs with older versions (regression verification),
and noninterference. However, relational verification for programs acting
on dynamically allocated mutable state is not well supported by existing
tools, which provide a high level of automation at the cost of restricting the
programs considered. Auto-active tools, on the other hand, require more
user interaction but enable verification of a broader class of programs.
This article presents WhyRel, a tool for the auto-active verification
of relational properties of pointer programs based on relational region
logic. WhyRel is evaluated through verification case studies, relying on
SMT solvers orchestrated by the Why3 platform on which it builds.
Case studies include establishing representation independence of ADTs,
showing noninterference, and challenge problems from recent literature.

Keywords: local reasoning - relational verification - auto-active verifica-
tion - data abstraction.

1 Introduction

Relational properties encompass conditional equivalence of programs (as in re-
gression verification [28]), noninterference (in which a program is related to itself
via a low-indistinguishability relation), and other requirements such as sensitiv-
ity [6]. The problem we address concerns tooling for the modular verification of
relational properties of heap-manipulating programs, including programs that
act on differing data representations involving dynamically allocated pointer
structures.

Modular reasoning about pointer programs is enabled through local reasoning
using frame conditions, procedural abstraction (i.e., reasoning under hypotheses
about procedures a program invokes), and data abstraction, requiring state-based
encapsulation. For establishing properties of ADTs such as representation inde-
pendence, encapsulation plays a crucial role, permitting implementations to rely
on invariants about private state hidden from clients. Relational verification also
involves a kind of compositionality, the alignment of intermediate execution steps,
which enables use of simpler relational invariants and specs (see e.g. [29,17,25]).

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 133-151, 2023.
https://doi.org/10.1007/978-3-031-30820-8 11

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30820-8_11
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_11&domain=pdf

134 R. Nagasamudram et al.

We aim for auto-active verification [19], accessible to developers, as promoted
by tools such as Dafny and Why3. Users are expected to provide specifications,
annotations such as loop invariants and assertions, and, for relational verification,
alignment hints. The idea is to minimize or eliminate the need for users to
manually invoke tactics for proof search.

Automated inference of specs, loop invariants, or program alignments facili-
tates automated verification, and is implemented in some tools. But in the current
state of the art these techniques are restricted to specs and invariants of limited
forms (e.g., only linear arithmetic) and seldom support dynamically allocated
objects. So inference is beyond the scope of this paper.

What is in scope is use of strong encapsulation, to hide information in the
sense that method specs used by clients do not expose internal representation
details, and to enable verification of modular correctness of a client, in the
sense that its behavior is independent from internal representations. Achieving
strong encapsulation for pointer programs, without undue restriction on data and
control structure, is technically challenging. Auto-active tools rely on extensive
axiomatization for the generation of wverification conditions (VCs); for high
assurance the VCs should be justified with respect to a definitional operational
semantics of programs and specs.

In this article, we describe WhyRel, a prototype for auto-active verification
of relational properties of pointer programs. Source programs are written in an
imperative language with support for shared mutable objects (but no subtyping),
dynamic allocation, and encapsulation. The assertion language is first-order and,
for expressing relational properties, includes constructs that relate values of
variables and pointer structures between two programs. WhyRel is based on
relational region logic [1], a relational extension of region logic [4,2]. Region
logic provides a flexible approach to local reasoning through the use of dynamic
frame conditions [15] which capture footprints of commands acting on the heap.
Verification involves reasoning explicitly about regions of memory and changes
to them as computation proceeds; flexibility comes from being able to express
notions such as parthood and separation in the same first-order setting.

Encapsulation is specified using a kind of dynamic frame, called a dynamic
boundary: a footprint that captures a module’s internal locations. Enforcing
encapsulation is then a matter of ensuring that clients don’t directly modify or
update locations in a module’s boundary. There are detailed soundness proofs
for the relational logic [1], of which our prototype is a faithful implementation.

WhyRel is built on top of the Why3 platform? for deductive program verifi-
cation which provides infrastructure for verifying programs written in WhyML,
a subset of ML [7] with support for ghost code and nondeterministic choice. The
assertion language is a polymorphic first-order logic extended with support for
algebraic data types and recursively and inductively defined predicates [11]. Why3
generates VCs for WhyML which can then be discharged using a wide array of
theorem provers, from interactive proof assistants such as Coq and Isabelle, to
first-order theorem provers and SMT solvers such as Vampire, Alt-Ergo and Z3.

3 The Why3 distribution can be found at: https://why3.1ri.fr/.

https://why3.lri.fr/

The WhyRel Prototype for Relational Verification 135

Primarily, WhyRel is used as a front end to Why3. Users provide programs,
specs, annotations, and for relational verification, relational specs and alignment
specified using a specialized syntax for product programs. WhyRel translates
source programs into WhyML, performing significant encoding so as to faithfully
capture the heap model and fine-grained framing formalized in relational region
logic. VCs pertinent to this logic are introduced as intermediate assertions and
lemmas for the user to establish. Verification is done using facilities provided by
Why3 and the primary mode of interaction is through an IDE for viewing and
discharging verification conditions.

Our approach is evaluated through a number of case studies performed in
WhyRel, for which we rely entirely on SMT solvers to discharge proof obligations.
The primary contribution is the development of a tool for relational verification of
heap manipulating programs which has been applied to challenging case studies.
Examples formalized demonstrate the effectiveness of relational region logic for
alignment, for expressing heap relations, and for relational reasoning that exploits
encapsulation.

Organization. Sec. 2 highlights aspects of specifying programs and relational
properties in WhyRel using a stack ADT example. Sec. 3 discusses examples of
program alignment. Sec. 4 gives an overview of the design of WhyRel and Sec. 5
provides highlights on experience using the tool. Sec. 6 discusses related work
and Sec. 7 concludes.

2 A tour of WhyRel

Programs and specifications. WhyRel provides a lightweight module system to
organize definitions, programs, and specs. Developments are structured into
interfaces and modules that implement interfaces. In addition, for relational
verification, WhyRel introduces the notion of a bimodule, described later, to
relate method implementations between two (unary) modules.

We’ll walk through aspects of specification in WhyRel using the STACK interface
shown in Fig. 1, which describes a stack of boxed integers with push and pop
operations. The interface starts by declaring global variables, pool and capacity,
and client-visible fields of the Cell and Stack classes. Variable pool has type rgn,
where a region is a set of references, and is used to describe objects notionally
owned by modules implementing the stack interface; capacity has type int and
describes an upper bound on the size of a stack. The Cell class for boxed integers
is declared with a single field, val, storing an int. The Stack class is declared with
three fields: rep of type region keeps track of objects used to represent the stack,
size of type int stores the number of elements in the stack, and the ghost field
abs of type intlist (list of mathematical integers) keeps track of an abstraction
of the stack, used in specs. Class definitions can be refined later by modules
implementing the interface: e.g., a module using a linked-list implementation
might extend the Stack class with a field head storing a reference to the list.

Heap encapsulation is supported at the granularity of modules through the use
of dynamic module boundaries which describe locations internal to a module. A

136 R. Nagasamudram et al.

interface STACK =
public pool:rgn /# rgn: a set of references #/ public capacity:int
class Cell {val:int} class Stack {rep:rgn; size:int; ghost abs:intlist}

/* encapsulated locations */
boundary {capacity, pool, pool‘any, pool‘rep‘any}

public invariant stkPub = V s: Stack € pool. 0 < s.size < capacity
A (V t: Stack € pool. s # t = s.rep N t.rep C {null}) A ...

meth Cell(self: Cell) : unit ... meth getVal(self: Cell) : int ...
meth Stack(self: Stack) : unit ensures {self € pool} ...

meth push(self: Stack, k: int) : unit
requires {self € pool A self.size < capacity}
ensures {self.abs = cons(k,old(self.abs)) A ...}
/* allowed heap effects of implementations */

effects {rw {self}‘any, self.rep‘any, alloc; rd self,capacity}

meth pop(self: Stack) : Cell
requires {self € pool A self.size > 0}
ensures {self.size = old(self.size)-1}
ensures {result.val = hd(self.abs) A self.abs = tl(old(self.abs))}

Fig. 1: WhyRel interface for the Stack ADT

location is either a variable or a heap location o.f, where o is an object reference
and f is its field. In WhyRel, module boundaries are specified in interfaces and
clients are enforced to not directly read or write locations described by the
boundary except through the use of module methods. For our stack example,
the dynamic boundary is capacity, pool, pool‘any, pool‘rep‘any; expressed
using image expressions and the any datagroup. Given a region G and a field f of
class type, the image expression G*f denotes the region containing the locations
o.f of all non-null references o in GG, where f is a valid field of o. If f is of type
region, G f is the union of the collection of reference sets o.f for all o in G. For f
of primitive type, such as int or intlist, G*f is the empty region. The datagroup
any is used to abstract from concrete field names: the expression pool any is
syntactic sugar for pool ¢val,...,pool ‘abs. Intuitively, the dynamic boundary in
Fig. 1 says that clients may not directly read or write capacity, pool, any fields
of objects in pool, and any fields of objects in the rep of any Stack in pool.

While encapsulation is specified at the level of modules, separation or locality
at finer granularities can be specified using module invariants. The stack interface
defines a public invariant stkPub which asserts that the rep fields of all Stack
objects in pool are disjoint. This idiom can be used to ensure that modifying one
object has no effect on any locations in the representation of another. Clients
can rely on public invariants during verification, but modules implementing
the interface must ensure they are preserved by module methods. Additionally,
modules may define private invariants that capture conditions on internal state;
provided these refer only to encapsulated locations, i.e., the designated boundary
frames these invariants, clients are exempt from reasoning about them [14].

The WhyRel Prototype for Relational Verification 137

module Client =
meth prog (n: int) : int
requires { 0 < n < capacity A ... }
effects { rw alloc, pool, pool‘any, pool‘rep‘any; rd n, capacity }
= var i: int in var c: Cell in
var stk: Stack in stk := new Stack; Stack(stk);
while (i < n) do push(stk,i); i: —i+1 done; i := 0;
while (i < n) do c: -pop(stk), result:=result+getVal(c); i:=i+1 done;

meth prog (n: int|n: int) : (intlint) /# Relational spec for prog */
requires { n = n A Both(0 < n < capacity A ...) }
ensures { result = result }

Fig. 2: Example client for STACK and relational spec for equivalence

Finally, the STACK interface defines specs for initializers (methods Cell and
Stack) and public specs for client-visible methods getVal, push, and pop. Notice
that the stack initializer ensures self is added to the boundary (through post
self € pool) and stack operations require self to be part of the boundary
(through pre self € pool). Specs for push and pop are standard, using “old”
expressions to precisely capture field updates. WhyRel’s assertion language
is first-order and includes constructs such as the points-to assertion z.f = e
and operations on regions such as subset and membership. In addition to pre-
and post-conditions, each method is annotated with a frame condition in an
effects clause that serves to constrain heap effects of implementations. Allowable
effects are expressed using read/write (rw) or read (rd) of locations or location
sets, described by regions. For example, the effects clause for push says that
implementations may read/write any field of self and any field of any objects
in self.rep. The distinguished variable alloc is used to indicate that push may
dynamically allocate objects.

In our development, we build two modules that implement the interface in
Fig. 1: one using arrays, ArrayStack and another using linked-lists, ListStack.
Both rely on private invariants on encapsulated state that capture constraints on
their pointer representations and its relation to abs, the mathematical abstraction
of stack objects. The private invariant of ListStack, for example, says that Cell
values in the linked-list of any Stack in pool are in correspondence with values
stored in abs.

Example client, equivalence spec, and verification. We now turn attention to
an example client, prog, shown in Fig. 2. This program computes the sum
2T o, albeit in a roundabout fashion, using a stack. The frame condition of prog
mentions the boundary for STACK, but this is fine since the client respects WhyRel’s
encapsulation discipline, modifying encapsulated locations solely through calls to
methods declared in the STACK interface. For this client, our goal is to establish
equivalence when linked against either implementations of STACK. Let the left
program be the client linked against ArrayStack, and the right the client linked
against ListStackEquivalence is expressed using the relational spec shown in
Fig. 2. For brevity, we omit frame conditions when describing relational specs.

138 R. Nagasamudram et al.

meth prog (n: int | n: int) : (int | int)
= var i: int | i: int in var c: Cell | c: Cell in
var stk: Stack in | stk := new Stack |; | Stack(stk) |;
while (i < n) | (i < n) do | push(stk,i) |; | i:=i+1 | domne; | i:=0 |;
while (i < n) | (i < n) do | c:=pop(stk) |;
| result:=result+getVal(c) |; | i:=i+1 | done;

Fig. 3: Alignment for example stack client

This relational spec relates two versions of prog; the notation (n:int | n:int)
is used to declare that both versions expect n as argument. The pre-relation
requires equality of inputs: n = n says that the value of n on the left is equal to
the value of n on the right. We use (=), instead of (=) to distinguish between
values on the left and the right?. The relational spec requires the two states
being related to satisfy the unary precondition for the client, as indicated by
Both(...). The post-relation, result = result, asserts equality on returned
values. In WhyRel, relational specs capture a VV termination-insensitive property:
terminating executions of the programs being related, when started in states related
by the pre-relation, will result in states related by the post-relation.

WhyRel supports two approaches to verifying relational properties. The first
reduces to proving functional properties of the programs involved. For instance,
equivalence of the client when linked against the two stack implementations
is immediate if we prove that prog indeed computes the sum of the first n
nonnegative integers.

However, this approach neither lends well to more complicated programs
and relational properties, nor does it allow us to exploit similarities between
related programs or reason modularly using relational specs. The alternative is to
prove the relational property using a convenient alignment of the two programs.
Alignments are represented syntactically in WhyRel using biprograms which pair
points of interest between two programs so that their effects can be reasoned
about in tandem. If the chosen alignment is adequate in the sense of capturing all
pairs of executions of the related programs, relational properties of the alignment
entail the corresponding relation between the underlying programs.

The biprogram for prog is shown in Fig. 3. The alignment it captures is
maximal: every control point in one version of the client is paired with itself in
the other version. The construct (C|C”) pairs a command C' on the left with a
command C’ on the right, and the sync form |C] is syntactic sugar for (C|C);
e.g., the biprogram for prog aligns the two allocations using |stk := new Stack].
Further, this biprogram aligns both loops in lockstep, indicated using the syntax
while ele’ do ... done. This alignment pairs a loop iteration on the left with a
loop iteration on the right and requires the loop guards be in agreement: here,
that i < n on the left is true just when i < n on the right is. Calls to stack
operations are aligned in the loop body using the sync construct to facilitate

4 Note in particular that « = y is not the same as y = z

The WhyRel Prototype for Relational Verification 139

bimodule REL_STACK (ArrayStack | ListStack) =
coupling stackCoupling = V s: Stack € pool | s: Stack € pool.
s = s = s.abs = s.abs A ...

meth Stack(self: Stack | self: Stack) : (unit | unit)
ensures {self = self A ...} = /¥ biprogram for Stack */
meth push(self: Stack | self: Stack) : (unit | unit)
requires {self = self A ... }
ensures {self.abs = self.abs A ... } = /* biprogram for push */
meth pop(self:Stack | self:Stack) : (Cell | Cell)
requires {self = self A Both (self € pool) A Both (self.size > 0)}
ensures {... A result.val = result.val} = /# biprogram for pop */

Fig. 4: Bimodule for Stack; excerpts

modular verification of relational properties by indicating that relational specs
for push and pop are to be used.

To prove the spec (in Fig. 2) about the biprogram in Fig. 3 we reason as
follows: after allocation stk on both sides is initialized to be the empty stack.
The first lockstep aligned loop which pushes integers from 0,...,n maintains
as invariant equality on i and on the mathematical abstractions the two stacks
represent, i.e., i = i A stk.abs = stk.abs. The second lockstep aligned loop
which pops the stacks and increments result maintains as invariant agreement on
the stack abstractions and result, the key conjunct being result = result. This
is sufficient to establish the desired post-relation. Importantly, the loop invariants
are simple to prove—they only contain equalities between variables—and we
don’t have to reason about the exact contents of the two stacks involved.

Relational specs for Stack and verification. The reasoning described above relies on
knowing the method implementations in ArrayStack and ListStack are equivalent.
We need relational specs for push which state that given related inputs, the
contents represented by the two stacks are the same; and for pop, which state
that given related inputs, the values of the returned Cells are the same.

Fig. 4 shows a bimodule, REL_STACK, relating the two implementations of STACK.
It includes relational specs for the stack operations along with biprograms used
for verification. The bimodule maintains a coupling relation which relates data
representations used by the two stack implementations. Concretely, the coupling
here states that related stacks in pool represent the same abstraction. Note that
quantifiers in relation formulas bind pairs of variables; and the equality s = s in
stackCoupling is not strict pointer equality, but indicates correspondence. Strict
pointer equality is too strong as it would not allow for modeling allocation as
a nondeterministic operation or permit differing allocation patterns between
programs being related. Behind the scenes, WhyRel maintains a partial bijection
7 between allocated references in the two states being related. The relation x = vy,
where x and y are pointers, states that x in the left state is in correspondence
with y in the right state w.r.t 7, i.e., 7(x) = y.

The relational spec for the initializer Stack ensures self = self, which is
required in the specs for push and pop. Like other invariants, coupling relations

140 R. Nagasamudram et al.

meth mult(n: int, m: int) = meth mult(n:int, m:int) =
i :=0; i:=0;
while (i < n) do j:=0; while (i < n) do
while (j < m) do result := result+m;
result := result+l; j := j+1 i= i+l
done; i := i+1 done; done;

Fig. 5: Two versions of a simple multiplication routine

are meant to be framed by the boundary and are required to be preserved by
module methods being related. Encapsulation allows for coupling relations to be
hidden so that clients are exempt from reasoning about them.

The steps taken to complete the Stack development and verify equivalence of
two versions of its client are as follows: (i) build the STACK interface in WhyRel,
with public invariants clients can rely on and a boundary that designates encap-
sulated locations; (ii) develop two modules refining this interface, ArrayStack and
ListStack, and verify that their implementations conform to STACK interface specs,
relying on any private invariants that capture conditions on encapsulated state;
(iii) provide a bimodule relating the two stack modules and prove equivalence
of stack operations, relying on a coupling relation that captures relationships
between pointer structures used by the two modules; (iv) verify the client with
respect to specs given in STACK and prove it respects WhyRel’s encapsulation
regime; and finally (v) develop a bimodule for the client and verify equivalence
using relational specs for stack methods.

3 Patterns of alignment

Well chosen alignments help decompose relational verification, allowing for the
use of simple relational assertions and loop invariants. In this section, we’ll look
at examples of biprograms that capture alignments that aren’t maximal, unlike
the STACK client example in Sec. 2. We don’t formalize the syntax of biprograms
here, but we show representative examples. When discussing examples, we’ll omit
frame conditions and other aspects orthogonal to alignment.

Differing control structures. Churchill et al. [8] develop a technique for proving
equivalence of programs using state-dependent alignments of program traces.
They identify a challenging problem for equivalence checking, shown in Fig. 5,
which compares two procedures for multiplication with different control flow.
For automated approaches to relational verification, their example is challenging
because of the need to align an unbounded number m of loop iterations on the
left with a single iteration on the right.

To prove equivalence, we verify the biprogram shown in Fig. 6 with re-
spect to a relational spec with pre-relation n = n A m = m and post-relation
result = result; i.e., agreement on inputs results in agreement of outputs. Un-
like the stack client biprogram shown in Fig. 3, the alignment embodied here is
not maximal—indeed, such alignment would not be possible due to the differing

The WhyRel Prototype for Relational Verification 141

meth mult(n: int, m: int | n: int, m: int) : (int | int) =
[i:=0 J;
while (i < n) | (i < n) do dinvariant { i = i A result = result }
(j :=0; while (j < m) do result := result+l; j := j+1 done
| result := result+m);
assert { (result = old(result)+m{ };
| i := i+1 | done;

Fig. 6: Biprogram for example in Fig. 5

meth sumpub (1: List | 1: List) : int =

meth sumpub (1: List) : int = | pi=l.head |; | s:=0 |;

p:=l.head; s:=0;

while (p # null) do while (p # null) | (p # null)
if p.pub then (- ppub { |} = p.pub) do
s:=s+p.val (if p.pub then s:=s+p.val end;
end; p:=p.nxt
p:=p.nxt | if p.pub then s:=s+p.val end;
done; p:=p.nxt)

result:=s; done; | result:=s |;

Fig. 7: Summing up public elements of a linked list: program and alignment

control structure. Similarities are still exploited by aligning the outer loops in
lockstep and the left inner loop with the assignment to result on the right.

A simple relational loop invariant which asserts agreement on i and result is
sufficient for proving equivalence. To show this is invariant, we need to establish
that the inner loop on the left has the effect of incrementing result by m, thereby
maintaining equality on result after the inner loop. In Fig. 6 this is indicated by
the assertion after the left inner loop. The notation (P{ (resp.) P)) is used to
state that the unary formula P holds in the left (and resp. right) state.

Conditionally aligned loops. Examples so far have concerned lockstep aligned
loops, requiring a one-to-one correspondence between loop iterations. However,
this condition is often too restrictive. WhyRel provides for other patterns of loop
alignment, including those that account for conditions on data values. Consider for
example the program shown in Fig. 7 which traverses a linked list and computes
the sum of all elements marked public, indicated in each element’s pub field. The
program satisfies the following noninterference property, with relational spec:
meth sumpub(l: List | 1: List) : (int | int)

requires { Both(listpub(l,xs)) A xs = xs }
ensures { result = result }

Here 1istpub(1,xs) is a predicate which asserts that the sequence of public values
reachable from the list pointer 1 is realized in xs, a mathematical list of integers.
Intuitively, this specification captures the property that the result of sumpub does
not depend on the values of nonpublic elements in the input list 1. Showing
the program computes exactly the sum of public elements: result = sum(xs)
would imply the desired noninterference property. However, to showcase support

142 R. Nagasamudram et al.

WhyRel offers for non-lockstep alignments, we’ll establish noninterference by
conditionally aligning the loops in the two copies of sumpub (see Fig. 7).

The alignment is as follows: if p is a nonpublic node on one side, perform a
loop iteration on that side, pausing the iteration on the other; and if p on both
sides is public, perform lockstep iterations of both loops. This has the effect
of incrementing s exactly when both sides are visiting public nodes, the values
of which are guaranteed to be the same by the relational precondition. The
biprogram expresses this alignment through the use of additional annotations,
called alignment guards which are general relation formulas and express conditions
that lead to left-only, right-only, or lockstep iterations. The left alignment guard
{— p.pub{ indicates that left-only loop iterations are to be performed when p on
the left is not public. The right alignment guard expresses a similar condition
when p on the right is not public. Iterations proceed in lockstep when both
alignment guards are false, i.e., when Both(p.pub) is true.

This biprogram maintains 3 xs|xs. Both(listpub(p,xs)) A xs=xs A s=s as
loop invariant, which implies the desired post-relation. This invariant states
that p on both sides points to the same sequence of public values as captured
by listpub(p,xs) and that there is agreement on the sum s computed so far.
During verification, we must establish that left-only, right-only, and lockstep
iterations of the aligned loops preserve this invariant. Due to the alignment, the
value of s is only updated during lockstep iterations and its straightforward to
show preservation. For one-sided iterations, reasoning relies on knowing that the
sequence of public values pointed to by p remains the same.

4 Encoding and design

We implement WhyRel in OCaml, relying on a library provided by Why3 for
constructing WhyML parse trees. Source programs are parsed and typechecked
before being translated to WhyML. Prior to translation, WhyRel performs a
variety of checks and transformations: primary among these is a check that clients
respect encapsulation and that any biprograms provided by users are adequate.
Proof obligations pertinent to relational region logic are generated in the form of
intermediate assertions in WhyML programs and lemmas for the user to prove.
In this section, we provide an overview of some aspects of our implementation,
focusing on the translation to WhyML.

Encoding program states. References are represented using an abstract WhyML
type reference with a distinguished element, null. The only operation supported
on reference values is equality; WhyRel does not deal with pointer-arithmetic.
Regions are encoded as ghost state, using a library for mathematical sets provided
by Why3. Set operations on regions are inherently supported, and we axiomatize
image expressions: for each field f, WhyRel generates a Why3 function symbol
img_f along with an axiom that captures the meaning of G*f.

Program states are encoded using WhyML records. An example is shown in
Fig. 8. The state type includes at least two mutable components called alloct

The WhyRel Prototype for Relational Verification 143

type reftype = Cell | Node (*class names*)
type heap = {
mutable val: map reference int;
mutable ghost rep : map reference Rgn.t;
mutable curr: map reference reference;
mutable nxt: map reference reference }
type state = {
mutable alloct: map reference reftype;

/% class defs */
class Cell {

val: int;

ghost rep: rgn; }

class Node { mutable heap: heap;

curr: Cell; mutable ghost pool: rgn }

nxt: Node; } invariant {—(Map.mem null alloct) A ...}
/* global wars */ (* aziomatization of ¢ ‘nat *)
public pool : rgn function img_nxt : state — Rgn.t — Rgn.t

axiom img_nxt_ax : Vs, r, p.
Rgn.mem p (img_nxt s r) < 3 q.
s.alloct[q] = Node A Rgn.mem q r
A p = s.head.nxt[q]

Fig. 8: State encoding: WhyRel source on left, encoding in WhyML on right.

and heap. The component alloct stores a map from references to object types
and keeps track of allocated objects; heap is itself a record with one mutable
component per field in the source program that stores a map from references to
values. The set of values includes references, Why3 mathematical types such as
arrays and lists, regions, and primitive types such as int and bool. In addition,
the state type contains one mutable field per global variable in the source
program, storing a value of the appropriate type. The state type is annotated
with a WhyML invariant that captures well-formedness. This invariant includes
conditions such as null never being allocated, no dangling references, and typing
constraints: for example, the nxt field of a Node is itself a Node.

Translating unary programs and effects. WhyRel translates unary programs into
WhyML functions that act on our encoding of states. Commands that modify the
heap are modeled as updates to an explicit state parameter, and local variables,
parameters, and the distinguished result variable are encoded using WhyML
reference cells. Object parameters are modeled using the reference type and
a typing assumption. Translation of control flow statements is straightforward.
For programs with loops, WhyRel additionally adds a diverges clause to the
generated WhyML function: this indicates that the function may potentially
diverge, avoiding generation of VCs for proving termination. While Why3 supports
reasoning about total correctness, we're only concerned with partial correctness.
Fig. 9 shows an example translation.

Translation of frame conditions requires care given our encoding of states. As
an example, the writes for method m shown in Fig. 9 would include rw {c}‘val
due to the write to, and read of, field val of object c. Correspondingly, in the
Why3 translation, component val of s.heap is updated; so specifying the function
in Why3 requires adding writes {s.heap.val} as annotation. However, this isn’t
the granularity we want since it implies the field val of any reference can be

144 R. Nagasamudram et al.

let m (s:state) (c:reference) (i:int)
: int diverges

requires { s.alloct[c] = Cell }
meth m.(c: Cell, i: int) : int _ i:guijzzili: i.l;:;pévail}l[c] =20}
requires { c.val > 0 } let ¢ = ref c in
= while (i > 0) do let i = ref i in
invariant { c.val > 0} while ('i > 0) do
?'Yfl.:; c.val+i; invariant { s.heap.val[!c] > 0 }
doie; . (¥ c.val := c.val + 1 *)

s.heap.val < Map.add !c

result := c.val (s.heap.val[!c]+!i) s.heap.val;
i=ti-1
done;
result := s.heap.val[!c]; !result

Fig.9: Program translation example: WhyRel program on the left, WhyML
translation on the right; frame conditions omitted.

written. Hence, WhyRel generates an additional postcondition for method m:
wr_framed_val (old s) s (Rgn.singleton c), where

predicate wr_framed_val (s: state) (t: state) (r: rgn) = V p: reference.
s.alloct[p] = Cell A p ¢ r = s.heap.vallp] = t.heap.vallp]

With this postcondition, callers of m (in WhyML) can rely on knowing that the
val fields of only references in {c} are modified.

Biprograms. WhyRel translates biprograms into product programs; specifically,
WhyML functions that act on a pair of states®. Before translation, it performs an
adequacy check to ensure the biprogram is well-formed. Recall that adequacy here
means that all computations of the underlying unary programs are covered by
their aligned biprogram. Adequacy ensures that a relational judgment about the
biprogram entails the expected relation between the underlying unary programs.
The check WhyRel performs is syntactic and defined using projection operations

on biprograms. Given a biprogram C'C, the left projection CC' (and resp. the right

projection CC') extracts the unary program on the left (and resp. the right). As
an example, the left projection of |c.f:=g|; (x:=c.f | skip) is c.f:=g; x:=c.f
and its right projection is c.f:=g. For adequacy, given unary programs C and
C’ and their aligned biprogram CC, it suffices to check whether CC' = C and
cec = 1.

Translation of biprograms is described in Fig. 10. The translation function
B takes a biprogram and a pair of contexts (I7,I}.) to a WhyML program. In
addition to mapping WhyRel identifiers to WhyML identifiers, contexts store
information about the state parameters on which the generated WhyML program

5 In reality, generated WhyML functions act on a pair of states and a bijective renaming
of references allocated in these states. This is to cater for relation formulas such
as x = y where x and y are references. However, this additional parameter is not
important to our discussion here, so we avoid mentioning it.

The WhyRel Prototype for Relational Verification 145

Blcic (L, I)

Bl|mx1y) |](I1, I)
B[[c]](13, I7)

Blc; ¢ (I, I+)

Blvar x:T|x:T’ in CC|(I3,I})

ULel(1); Ule ()
apply(D(m), [I1.st; I.st; E[x](1); E[y] (1))
Blcic](Iy, I)
BICl(F, v); BIe*) (T, T3)
let x; = def(T) in let z, = def(T’) in
Blec)([1i | = : @, [I [x = a])
B[if EIE’ then CC else DD|([3,[) = assert {E[E]|(I7) = E[E’](I™)};
if E[E](I7) then B[CC] else B[DD]
while E[E](I7) do
invariant {E[E]([7) = E[E’[(I7)}
Blcc) (L3, I7)

IR | | T |

I

B[while E|E’ do DD](I3, 1)

Blwhile EIE’. PI|P do DD](I},I,) =
while (E[E](I7) V E[E’](I)) do invariant {A}
if (E[E)(IV) A F[P)(I}, I)) then U[CC)(I}) B
else if (E[E’] (L) A F[P'|(I3, I7)) then U[CC](I) else B[cC] (L7,)

where A= (E[E}(I) A F[PY(IL, W) v (E[E'NT) A F[P YL, W) v
(RELENIY) A=E[EN(I7)) V (E[EN(T) A ELET(IT))

Fig. 10: Translation of biprograms, excerpts

acts. Similar to B, the function U translates unary programs to WhyML programs,
&, expressions to WhyML expressions, and F, a restricted set of relation formulas
to WhyML expressions. Biprograms don’t require the underlying unary programs
to act on a disjoint set of variables; however, this means that WhyRel has to
perform appropriate renaming during translation. Renaming is manifest in the
translation of variable blocks (var x:T|x:T’ in CC), where the context I (and
resp. I) is extended, [I] | x : x;], mapping x to a renamed copy z; (and resp. I
is extended with the binding x : x,.).

In translating (C|C"), the unary translations of C' and C’ are sequentially
composed. Syncs |C] are handled similarly, as syntactic sugar for (C|C), except
for the case of method calls. Procedure-modular reasoning about relational
properties is enabled by aligning method calls which indicates that the relational
spec associated with the method is to be exploited. WhyRel will translate these
to calls to the appropriate WhyML product program, using a global method
context (@ in Fig. 10). Since translated product programs act on pairs of states,
the generated WhyML call takes I7.st and I;..st, names for left and right state
parameters, as additional arguments.

Product constructions for control flow statements require generating additional
proof obligations. For aligned conditionals, WhyRel introduces an assertion that
the guards are in agreement. Lockstep aligned loops are dealt with similarly;
guard agreement must be invariant. For conditionally aligned loops, the generated
loop body captures the pattern indicated by the alignment guards P|P’: if the
left (resp. right) guard is true and P (resp. P’) holds, perform a left-only (resp.
right-only) iteration; otherwise, perform a lockstep iteration. Adequacy is ensured

146 R. Nagasamudram et al.

by requiring the condition A to be invariant. This condition states that until
both sides terminate, the loop can perform a lockstep or a one-sided iteration.
In relational region logic, the alignment guards P and P’ can be any relational
formula. However, the encoding of conditionally aligned loops is in terms of a
conditional that branches on these alignment guards. In Why3, this only works if
P and P’ are restricted; for example, to not contain quantifiers. WhyRel supports
alignment guards that include agreement formulas, one-sided points-to assertions,
one-sided boolean expressions, and the usual boolean connectives.

Proof obligations for encapsulation. To ensure sound encapsulation, WhyRel
performs an analysis on source programs. This analysis includes two parts: a static
check to ensure client programs don’t directly write to variables in a module’s
boundary; and the generation of intermediate assertions that express disjointness
between the footprints of client heap updates and regions demarcated by module
boundaries. For modules with public/private invariants, WhyRel additionally
generates a lemma which states that the module’s boundary frames the invariant,
i.e., the invariant only depends on locations expressed by the boundary. The
same is done with coupling relations, for which we need to consider boundaries
of both modules being related. A technical condition of relational region logic
requiring boundaries grow monotonically as computation proceeds is also ensured
by introducing appropriate postconditions in generated programs.

5 Evaluation

We evaluate WhyRel via a series a case studies, representative of the challenge
problems highlighted at the outset of this article. Examples include representation
independence, optimizations such as loop tiling [5], and others from recent
literature on relational verification (including [9] and [21]). Some, like those
described in Sec. 3, deal with reasoning in terms of varying alignments including
data-dependent ones. Our representation independence examples include showing
equivalence of Dijkstra’s single-source shortest-paths algorithm linked against
two implementations of priority queues, which requires reasoning about fine-
grained couplings between pointer structures; and Kruskal’s minimum spanning
tree algorithm linked against different modules implementing union-find, which
requires couplings equating the partitions represented by the two versions. For
all examples, VCs are discharged using the SMT solvers Alt-Ergo, CVC4, and
Z3. Replaying proofs of most developments using Why3’s saved sessions feature
takes less than 30 minutes on a machine with an Intel Core i5-6500 processor
and 32 gigabytes of RAM.

A primary goal of this work is to investigate whether verifying relational
properties of heap manipulating programs can be performed in a manner tractable
to SMT-based automation, and for the most part, we believe WhyRel provides a
promising answer. The tool serves as an implementation of relational region logic
and demonstrates that even its additional proof obligations for encapsulation can
be encoded using first-order assertions. In fact, exploration of case studies using
WhyRel was instrumental in designing proof rules of relational region logic.

The WhyRel Prototype for Relational Verification 147

Reasoning about heap effects a la region logic is generally simple and VCs
get discharged quickly using SMT. However, technical lemmas WhyRel generates
which pertain to showing that module boundaries frame private invariants and
couplings require considerable manual effort to prove. These lemmas usually in-
volve reasoning about image expressions, which involve existentials and nontrivial
set operations on regions. Given our encoding of states and regions, SMT solvers
seem to have difficulties solving these goals. Manual effort involves applying a
series of Why3 transformations (or proof tactics) and introducing intermediate
assertions. We conjecture that the issue can be mitigated by using specialized
solvers [23] or different heap encodings [24].

Another issue with our encoding of typed program states is the generation of
a large number of VCs related to well-formedness of states. These account for
a substantial fraction of proof replay time. Why3 programs act directly on our
minimally-typed state representation and each heap update needs to preserve
an invariant that specifies constraints on the types of allocated references (see
Fig. 8). Using Why3’s support for module abstraction [12] may ameliorate this
issue. An alternative is to use assumptions, which can be justified by correctness
of the WhyRel type checker and translator.5

Apart from these challenges related to verification, we note that specs in
region logic tend to be verbose when compared to other formalisms such as
separation logic [4].

6 Related work

WhyRel is closely modeled on relational region logic, developed in [1]. That paper
provides a high-level overview of WhyRel, using a small set of examples verified
in the tool to motivate aspects of the formal logic; but it doesn’t give a full
presentation of the tool or go into details about the encoding. The paper provides
comprehensive soundness proofs of the logic and shows how the VCs WhyRel
generates and the checks it performs correspond closely to obligations of relational
proof rules. The paper builds on a line of work on region logic [4,2,3]. The VERL
tool implements an early version of unary region logic without encapsulation and
was used to evaluate a decision procedure for regions [23].

For local reasoning about pointer programs, separation logic is an effective
and elegant formalism. For relational verification, ReLoC [13], based on the Iris
separation logic and built in the Coq proof assistant supports, apart from many
others, language features such as dynamic allocation and concurrency. However,
we are unaware of auto-active relational verifiers based on separation logic.

Alignments for relational verification have been explored in various contexts.
In WhyRel, the biprogram syntax captures alignment based on control flow, but
also caters to data-dependent alignment of loops through the use of alignment
guards (as discussed in Sec. 3). Churchill et al. [8] develop a technique for
equivalence checking by using data dependent alignments represented by control

5 The Boogie verification language provides “free requires” and “free ensures”’ syntax
for just such assumptions.

148 R. Nagasamudram et al.

flow automata which they use to prove correctness of a benchmark of vectorizing
compiler transformations and hand-optimized code. Unno et al. [30] address a wide
range of relational problems including k-safety and co-termination, expressing
alignments and invariants as constraint satisfaction problems they solve using a
CEGIS-like technique. Their work is applied to benchmarks proposed by Shemer
et al. [25] who develop a technique for equivalence and regression verification.
Both the above works represent alignments as transition systems and perform
inference of relational invariants and alignment conditions. Inference relies on
solvers and therefore programs need to be restricted so they are amenable to these
solvers. A promising approach by Barthe et al. [6] reduces relational verification
to proving formulas in trace logic, a multi-sorted first-order logic using first-
order provers. In trace logic, conditions can be expressed on traces including
relationships between different time points without recourse to alignment per se.
Sousa and Dillig develop Descartes [26] for reasoning about k-safety properties
of Java programs automatically using implicit product constructions and in a
logic they term Cartesian Hoare logic. Their work is furthered by Pick et al. [22]
who develop novel techniques for detecting alignments. The REFINITY [27]
workbench based on the interactive KeY tool can be used to reason about
transformations of Java programs; heap reasoning relies on dynamic frames and
relational verification proceeds by considering abstract programs. Other related
tools include SymDiff [18] which is based on Boogie and can modularly reason
about program differences in a language-agnostic way, and LLRéve [16] for regres-
sion verification of C programs. Eilers et al. [10] develop an encoding of product
programs for noninterference that facilitates procedure-modular reasoning. They
verify a large collection of benchmark examples using the VIPER toolchain.

7 Conclusion

In this paper we present WhyRel, a prototype for relational verification of pointer
programs that supports dynamic framing and state-based encapsulation. The
tool faithfully implements relational region logic and demonstrates how its proof
obligations, including those related to encapsulation, can be encoded in a first-
order setting. We’ve performed a number of representative examples in WhyRel
leveraging support Why3 provides for SMT, and believe these demonstrate the
amenability of region logic, and its relational variant, to automation.

Acknowledgments We thank the anonymous TACAS reviewers and artifact
evaluators for their thorough feedback and suggestions which have led to major
improvements in this paper. We thank Seyed Mohammad Nikouei who built an
initial version of WhyRel which helped guide the design of the current version.
Nagasamudram and Naumann were partially supported by NSF award 1718713.
Banerjee’s research was based on work supported by the NSF, while working
at the Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this article are those of the authors and do not necessarily reflect
the views of the NSF.

The WhyRel Prototype for Relational Verification 149

Data Availability Statement Sources for WhyRel and all examples performed
using the tool are available in Zenodo with the identifier https://doi.org/10.
5281/zenodo. 7308342 [20].

References

10.

11.

12.

13.

14.

15.

. Banerjee, A., Nagasamudram, R., Naumann, D.A., Nikouei, M.: A relational

program logic with data abstraction and dynamic framing. ACM Transactions
on Programming Languages and Systems 44(4), 25:1-25:136 (2022). https:
//doi.org/10.1145/3551497

. Banerjee, A., Naumann, D.A.: Local reasoning for global invariants, part II: Dynamic

boundaries. Journal of the ACM 60(3), 19:1-19:73 (2013). https://doi.org/10.
1145/2485981

. Banerjee, A., Naumann, D.A., Nikouei, M.: A logical analysis of framing for specifi-

cations with pure method calls. ACM Transactions on Programming Languages
and Systems 40(2), 6:1-6:90 (2018)

. Banerjee, A., Naumann, D.A., Rosenberg, S.: Local reasoning for global invariants,

part I: Region logic. Journal of the ACM 60(3), 18:1-18:56 (2013). https://doi.
org/10.1145/2485982

. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: Asymmetric product programs

for relational program verification. In: Logical Foundations of Computer Science,
International Symposium. Lecture Notes in Computer Science, vol. 7734, pp. 2943
(2013)

. Barthe, G., Eilers, R., Georgiou, P., Gleiss, B., Kovéacs, L., Maffei, M.: Verifying

relational properties using trace logic. In: Formal Methods in Computer Aided
Design. pp. 170-178 (2019). https://doi.org/10.23919/FMCAD.2019.8894277

. Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of

provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. pp. 53—64 (2011)

. Churchill, B.R., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment for

equivalence checking. In: ACM Conf. on Program. Lang. Design and Implementation.
pp. 1027-1040 (2019)

. Eilers, M., Miiller, P., Hitz, S.: Modular product programs. In: Programming

Languages and Systems, European Symposium on Programming. pp. 502-529
(2018)

Eilers, M., Miiller, P., Hitz, S.: Modular product programs. ACM Trans. Program.
Lang. Syst. 42(1), 3:1-3:37 (2020). https://doi.org/10.1145/3324783

Filliatre, J.C.: One Logic To Use Them All. In: CADE. Springer (2013)

Filliatre, J.C., Paskevich, A.: Abstraction and genericity in Why3. In: Leveraging
Applications of Formal Methods, Verification and Validation: Verification Principles.
pp. 122-142. Springer International Publishing (2020)

Frumin, D., Krebbers, R., Birkedal, L.: ReLoC: A mechanised relational logic
for fine-grained concurrency. In: IEEE Symp. on Logic in Computer Science. pp.
442-451 (2018)

Hoare, C.A.R.: Proofs of correctness of data representations. Acta Informatica 1,
271-281 (1972). https://doi.org/10.1007/BF00289507

Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In: Formal Methods. Lecture Notes in Computer Science,
vol. 4085, pp. 268-283 (2006). https://doi.org/10.1007/11813040_19

https://doi.org/10.5281/zenodo.7308342
https://doi.org/10.5281/zenodo.7308342
https://doi.org/10.1145/3551497
https://doi.org/10.1145/3551497
https://doi.org/10.1145/3551497
https://doi.org/10.1145/3551497
https://doi.org/10.1145/2485981
https://doi.org/10.1145/2485981
https://doi.org/10.1145/2485981
https://doi.org/10.1145/2485981
https://doi.org/10.1145/2485982
https://doi.org/10.1145/2485982
https://doi.org/10.1145/2485982
https://doi.org/10.1145/2485982
https://doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.1145/3324783
https://doi.org/10.1145/3324783
https://doi.org/10.1007/BF00289507
https://doi.org/10.1007/BF00289507
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19

150

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

R. Nagasamudram et al.

Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR: Combining static verification and dynamic analysis. J. Automated Reasoning
60, 337-363 (2018)

Kovacs, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for the
verification of 2-hypersafety properties. In: ACM CCS (2013)

Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebélo, H.: SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In: Computer Aided Verification.
pp. 712-717 (2012). https://doi.org/10.1007/978-3-642-31424-7_54

Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Ball, T., Shankar,
N., Zuck, L. (eds.) Usable Verification Workshop (2010), http://fm.csl.sri.com/
UV10/submissions/uv2010_submission_20.pdf

Nagasamudram, R., Banerjee, A., Naumann, D.A.: The WhyRel Prototype for
Modular Relational Verification of Pointer Programs (Nov 2022). https://doi.
org/10.5281/zenodo . 7308342

Naumann, D.A.: Thirty-seven years of relational Hoare logic: Remarks on its
principles and history. In: 9th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISOLA), Part II. Lecture Notes
in Computer Science, vol. 12477, pp. 93-116 (2020), https://doi.org/10.1007/
978-3-030-61470-6_7, extended version at https://arxiv.org/abs/2007.06421.
Pick, L., Fedyukovich, G., Gupta, A.: Exploiting synchrony and symmetry in
relational verification. In: Computer Aided Verification. pp. 164-182 (2018)
Rosenberg, S., Banerjee, A., Naumann, D.A.: Decision procedures for region logic.
In: Int’l Conf. on Verification, Model Checking, and Abstract Interpretation. Lecture
Notes in Computer Science, vol. 7148, pp. 379-395 (2012)

Schmid, G.S., Kuncak, V.: Proving and disproving programs with shared mutable
data. CoRR abs/2103.07699 (2021), https://arxiv.org/abs/2103.07699
Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composition.
In: Computer Aided Verification. pp. 161-179 (2019)

Sousa, M., Dillig, I.: Cartesian Hoare Logic for verifying k-safety properties. In:
ACM Conf. on Program. Lang. Design and Implementation. pp. 57-69 (2016)
Steinhofel, D.: REFINITY to model and prove program transformation rules. In:
Asian Symposium on Programming Languages and Systems APLAS. Lecture Notes
in Computer Science, vol. 12470, pp. 311-319 (2020). https://doi.org/10.1007/
978-3-030-64437-6_16

Strichman, O., Godlin, B.: Regression verification - a practical way to verify
programs. In: Verified Software: Theories, Tools, Experiments (VSTTE), pp. 496
501 (2008)

Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Static
Analysis Symposium (SAS). Lecture Notes in Computer Science, vol. 3672, pp.
352-367 (2005)

Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
Computer Aided Verification. Lecture Notes in Computer Science, vol. 12759, pp.
742-766. Springer (2021). https://doi.org/10.1007/978-3-030-81685-8_35

https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-31424-7_54
http://fm.csl.sri.com/UV10/submissions/uv2010_submission_20.pdf
http://fm.csl.sri.com/UV10/submissions/uv2010_submission_20.pdf
https://doi.org/10.5281/zenodo.7308342
https://doi.org/10.5281/zenodo.7308342
https://doi.org/10.5281/zenodo.7308342
https://doi.org/10.5281/zenodo.7308342
https://doi.org/10.1007/978-3-030-61470-6_7
https://doi.org/10.1007/978-3-030-61470-6_7
https://arxiv.org/abs/2007.06421
https://arxiv.org/abs/2103.07699
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-81685-8_35
https://doi.org/10.1007/978-3-030-81685-8_35

The WhyRel Prototype for Relational Verification 151

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Check for
updates

Bridging Hardware and Software Analysis with
BTOR2C: A Word-Level-Circuit-to-C Translator

Dirk Beyer™, Po-Chun Chien™, and Nian-Ze Lee

LMU Munich, Munich, Germany

Abstract. Across the broad research field concerned with the analysis of
computational systems, research endeavors are often categorized by the
respective models under investigation. Algorithms and tools are usually
developed for a specific model, hindering their applications to similar
problems originating from other computational systems. A prominent
example of such a situation is the area of formal verification and testing
for hardware and software systems. The two research communities share
common theoretical foundations and solving methods, including satisfia-
bility, interpolation, and abstraction refinement. Nevertheless, it is often
demanding for one community to benefit from the advancements of the
other, as analyzers typically assume a particular input format. To bridge
the gap between the hardware and software analysis, we propose Bror2C,
a translator from word-level sequential circuits to C programs. We choose
the Bror2 language as the input format for its simplicity and bit-precise
semantics. It can be deemed as an intermediate representation tailored for
analysis. Given a Bror2 circuit, Bror2C generates a behaviorally equivalent
program in the language C, supported by many static program analyzers.
We demonstrate the use cases of Bror2C by translating the benchmark set
from the Hardware Model Checking Competitions into C programs and
analyze them by tools from the Intl. Competitions on Software Verification
and Testing. Our results show that software analyzers can complement
hardware verifiers for enhanced quality assurance: For example, the soft-
ware verifier VeriAss with Bror2C as preprocessor found more bugs than
the best hardware verifiers ABC and AVR in our experiment.

Keywords: Hardware compilation - Word-level circuit - Intermediate
representation - Formal verification - Testing - Bror2 - SMT - SAT

1 Introduction

Computational systems have become more and more ubiquitous in our daily life
and manifest themselves in various contexts, including VLSI circuits, software
programs, and cyber-physical systems. To construct reliable systems, quality
assurance has become an indispensable research topic. Numerous endeavors
have been invested for different computational systems. Because of the ever-
increasing system complexity and applications in safety-critical missions, it is of
vital importance to take advantage of all available solutions for different types
of systems to guarantee the quality and correctness.

© The Author(s) 2023

S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 152-172, 2023.
https://doi.org/10.1007/978-3-031-30820-8 12

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30820-8_12
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_12&domain=pdf
https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0001-5139-5178
https://orcid.org/0000-0002-8096-5595

Bridging Hardware and Software Analysis with BTor2C 153

Formal verification and testing are two active fields of research to analyze and
assure the quality of computational systems. The former decides with mathematical
rigorousness whether a system conforms to a specification. The latter aims at
generating input patterns and executing a system on a test suite to observe
irregular output responses. Studies for formal verification or testing usually focus
on a specific computational model, especially a sequential circuit (hardware) or a
program (software). Tool competitions are also established based on modeling
languages for input instances, such as the language Brtor2 [64] used in the
Hardware Model Checking Competitions (HWMCC) [28,29], or the language C
assumed by the Competitions on Software Verification (SV-COMP) |11, 14] and
Testing (Test-Comp) [12,13]. Unfortunately, such distinction erects a barrier
between the two closely related research communities.

1.1 Our Motivations and Contributions

For the hardware community to easily benefit from state-of-the-art software-
analysis techniques, we aim at developing a lightweight yet effective translation
flow to bridge the gap between hardware and software analysis. There have been
several attempts [48,62] to compile hardware designs into software, mostly using
the language Verilog as the input format. Verilog is a general-purpose hardware
description language, and thus, a comprehensive frontend for Verilog requires
tremendous engineering effort. Moreover, Verilog has rather complicated syntax
and semantics, which might increase the burden on the translation flow.

To address the complexity in the frontend design, we resort to the language
Bror2 [64], proposed recently to model word-level sequential circuits. A suite
Bror2TootLs [63] of utility tools is also provided for conveniently parsing, simu-
lating, and bit-blasting (to the bit-level format Aiger [26]) BTor2 circuits. We
emphasize the following two benefits of using BTor2 as the translation fron-
tend over Verilog. First, Bror2 provides simple yet sufficient operations over
bit-vectors and arrays. The simplicity makes it an appropriate intermediate repre-
sentation for formal verification and testing, as the operations are suitable for
the underlying satisfiability solvers. Second, BTor2 is the input format used in
the HWMCC. Many hardware model checkers support this format, and a large
collection of benchmarking tasks is available for empirical evaluation. In practice,
a Verilog circuit can be translated to Bror2 via Yosys [70], an open-source
Verilog synthesis tool. Therefore, using Bror2 as frontend does not restrict the
applicability of the translation flow.

Having settled down the frontend choice, our next question is: Should we make
software analyzers support Bror2, or should we implement a standalone translator
that does the job for all tools? We take the latter approach such that any software
analyzer (from 76 available [25]) can in principle be used for hardware analysis.
As opposed to using Verilog as frontend, the simplicity of the Bror2 language
helps to generate C programs suitable for the backend analysis, as will be shown
in Sect. 5 via comparison with the Verilog-to-C translator v2c [62].

Once a handy translator is viable, we are enthusiastic about empirically
comparing hardware and software analyzers on a large scale. Similar experiments
have been carried out for bounded [60] and unbounded [61] formal verification on a

http://fmv.jku.at/hwmcc20/
https://sv-comp.sosy-lab.org/2022/
https://test-comp.sosy-lab.org/2022/

154 D. Beyer, P.-C. Chien, and N.-Z. Lee

Bit-Level Analyzer

Bror2AIGER [64]

Yosvys [70]

Word-Level Analyzer

‘
1
|
|

Our Contribution 3
1

|
Software Analyzer 3
2 <

‘ Essuc [43] ‘ ‘CPACUEUKER [20]‘ ‘ FuSEBMC [3]

Fig. 1: Software analysis made readily available for hardware designs

small set of circuits. By building a translator on top of the Bror2 language, more
than a thousand benchmarking tasks from the HWMCC are at our immediate
disposal. To draw a more reliable conclusion on the performance comparison of
state-of-the-art hardware and software analyzers, we evaluate bit-level and word-
level hardware model checkers from HWMCC, software verifiers from SV-COMP,
and software testers from Test-Comp, on the HWMCC benchmark set.

Our contributions in this paper are summarized below:

Novelty. (1) To bridge the gap between hardware and software analysis, we
design and implement BTor2C, the first hardware-to-software compiler taking
the format Bror2 [64] as input. Specifically, Bror2C accepts a BTor2 circuit and
produces a behaviorally equivalent C program. Given a Verilog design, Bror2C
(with the help of Yosys) makes off-the-shelf software verifiers and testers readily
available for its analysis. In addition to bit-level and word-level analyzers, hardware
developers will be equipped with more tool choices to perfect their designs, as
shown in Fig. 1. (2) Bror2C makes it easy to construct new hardware analyzers by
prepending the translator in front of any software analyzer. (3) Applying Bror2C
to the HWMCC benchmark set, we submitted 1224 new tasks' to sv-benchmarks,
the benchmark collection used by many researchers, including SV-COMP and
Test-Comp. Developers of software analyzers can now assess their tools using
the hardware-analysis counterparts as a new baseline.

Significance. (1) We conduct a large-scale evaluation involving hardware model
checkers, software verifiers, and software testers on the HWMCC benchmark set.
Our results show that software-analysis techniques can complement hardware
model checkers. (2) The proposed lightweight translator makes software analyzers
more accessible to the entire research community, as BTor2 can be used as an
intermediate representation for analysis, not limited to hardware designs.

1.2 Example

Figure 2 illustrates the proposed translator BTor2C on an example. A circuit
whose state is a bit-vector of width 3 is given in Bror2 format in Fig. 2a. The

1 Some tasks used in this paper were excluded due to license issues.

https://github.com/Boolector/btor2tools
https://www.sosy-lab.org/research/btor2c/
https://github.com/Boolector/btor2tools
https://www.iso.org/standard/74528.html
http://fmv.jku.at/aiger/
https://yosyshq.net/yosys/
https://doi.org/10.1109/IEEESTD.2006.99495
https://cpachecker.sosy-lab.org/
http://www.esbmc.org/
https://github.com/kaled-alshmrany/FuSeBMC
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

Bridging Hardware and Software Analysis with BTorR2C 155

1 extern void abort (void);

2 extern unsigned char nondet_uchar();

3 wvoid main() {

4 typedef unsigned char SORT_I1;
typedef unsigned char SORT_11;

¢ const SORT_1 var_2 = 0b000;

7 const SORT_1 var_7 = 0b001;

8 const SORT_1 var_10 = 0blll;

9 SORT_1 input_5;

10 SORT_1 state_3 = var_2;

1 sort bitvec 3 1 for (;;) {
2 zero 1 12 input_5 = nondet_uchar();
3 state 1 13 input_5 = input_5 & O0blll;
4 init 1 3 2 14 SORT_11 var_12 = state_3 == var_10;
) 15 SORT_11 bad_13 = var_12;
5 input 1 16 if (bad_13) {
6 add 1 35 17 ERROR: abort () ;
7 one 1 18 }
8 sub 1 6 7 19 SORT_1 var_6 = state_3 + input_5;
9 next 1 3 8 20 var_6 = var_6 & 0blll;
21 SORT_1 var_8 = var_6 — var_T7;
10 ones 1
X 22 var_8 = var_8 & 0bll1l;
11 sort bitvec 1 _
23 state_3 = var_8;
12 eq 11 3 10 o)
13 bad 12 25}
(a) Bror2 circuit (b) C program (simplified for demo)

Fig.2: An example BTor2 circuit (a) and its translated C program (b)

bit-vector is initialized to 0 (lines 2-4). In every iteration, the value of the bit-
vector will be incremented by the value of the external input (lines 5-6) and
then decremented by 1 (lines 7-8). The circuit reaches a bad state (i.e., violates
the safety property) if the value of the bit-vector equals 0b111 (lines 12-13).
The translated C program is shown in Fig. 2b. BTor2C first looks for the sorts
used in the input Bror2 file. In this example, bit-vectors of 3 bits and 1 bit are
used, and BTor2C encodes them with the shortest possible unsigned integer type
unsigned char (lines 4-5). After sort declarations, Bror2C defines constants,
declares inputs, and initializes circuit states (lines 6-10). An infinite loop is created
to simulate the behavior of a sequential circuit. At the beginning of the loop, the
safety property is evaluated. If the property is violated (namely, variable bad_13
evaluates to true), the program reaches the error location at line 17. Otherwise,
the next-state value (stored in variable var_8) is computed and assigned to
the current state (lines 19-23), and another loop iteration follows. After the
translation, we can apply software verifiers to the translated program in Fig. 2b
to check whether the circuit in Fig. 2a conforms to the specified safety property.

2 Related Work

2.1 Compiling Hardware to Software

Several research efforts [48, 68] have been invested into representing a circuit as
a program, whose primary goal is to accelerate hardware simulation. The most
related work to ours is the Verilog-to-C translator v2c [62], used to translate hard-
ware circuits into software programs for bounded [60] and unbounded [61] formal
verification. Unlike v2c, our translator uses as frontend the Bror2 language, which

156 D. Beyer, P.-C. Chien, and N.-Z. Lee

is simple to parse and suitable for analysis. In Sect. 5, we compare the performance
of software analyzers on C programs generated by v2c and our tool Bror2C.

2.2 Compiling Hardware to Intermediate Representation

Another line of research related to our work is the compilation of hardware to
an intermediate representation that eases the burden of analysis. The motivation
of these works is to interface real-world designs and problems described in a
more abstract language with tools that use a primitive model representation. Our
tool BTor2C shares a similar spirit because it interfaces problems in hardware
analysis with software techniques. Among other tools, VEriLoG2SMV [51] and
VER2SMV [59] translate a Verilog circuit into SMV format [34, 56|, which can be
verified by tools like Nuxmv [33]. QuTERTL [71] translates a register-transfer-level
hardware design (usually in Verilog or VHDL) to BTOR [31], an earlier version
of Bror2. EBMC [55] generates SMT formulas in SMT-LIB 2 format [8], which
encode the bounded model checking or k-induction problems of a Verilog circuit.
Yosys [70], which translates a Verilog circuit into the Aicer or Bror2 formats,
also serves the same purpose. Recently, there has been an interest to develop
an intermediate language for the model-checking research community [67]. The
project aims at providing an expressive frontend language as well as an efficient
interface with backend model checkers.

3 Background

3.1 The BTOR2 Language

BToR2 is a bit-precise modeling language for word-level sequential circuits. It
can be seen as a generalization of the bit-level Aiger format [26]. The essential
ingredients of BTor2 relevant to our discussion in Sect. 4 will be introduced below.
For the complete syntax, please refer to the Bror2 publication [64].

Each line in a Bror2 file starts with a unique number, used by other lines to
identify the entity defined in this line. Such an entity can be either a sort or a node.
A sort is either a bit-vector type of an arbitrary width w, denoted by BY, or an
array type. An array type whose indices and elements are bit-vector types Z and &,
respectively, is denoted by AT €. A node can be an input, a state, or a result of an
operator over other inputs, states, or results. Inputs are external stimuli given to
the BTor2 circuit. Memory elements of the circuit are modeled by states. Usually,
inputs have bit-vector types, and states can be of either bit-vector or array types.

Operators are the building blocks of a Bror2 circuit. They take arguments
of the prescribed types and guarantee a specific type for the result. The general
signature for a BTor2 operator is as follows: <node id> <op> <sort id0> <node
id1> [<node id2 [node id3]>], which defines a node to be the computation
result of the operator op on node id1 and optionally id2 and id3. The result
will have type 1d0 and can be accessed by id. The operators in BTor2 will be
introduced later in Sect. 4 alongside the translation process of Bror2C.

BTor2 also provides constructs like init, next, and bad to describe the
safety-reachability problem for sequential circuits. Initial and bad states can be
defined by init and bad, respectively. The transition from one state to another

Bridging Hardware and Software Analysis with BTor2C 157

is captured by next. In the following, we briefly recap sequential circuits and
their model-checking formulation.

3.2 Sequential Circuits and Hardware Model Checking

A sequential circuit is a computational model widely used in the design and
analysis of hardware. It consists of a combinational circuit and memory elements.
The combinational circuit is in charge of the computation, and the memory
elements store the circuit’s state. The combinational circuit is a directed acyclic
graph whose vertices are logic gates and edges are wires connecting the gates.
If the output pin of gate u is connected to an input pin of gate v, we say that
u is a fan-in of v, and v is a fan-out of u.

The computation of sequential circuits is segmented into consecutive time
frames. Before the first time frame starts, the memory elements are typically
reset (described by init). At the beginning of each time frame, the combinational
circuit reads the values stored in the memory elements and receives stimuli from
the environment. The former is called the current state of the circuit, and the
latter is called the external input in this time frame. Propagating the current state
and external input through its logic gates, the combinational circuit computes
the output response and the new values to be stored in the memory elements
(namely, next-state values, described by next). At the end of the time frame,
the next-state values are saved into the memory elements, which become the
current state for the next time frame.

The model-checking problem of reachability safety for hardware is formulated
as follows: Given a sequential circuit and a safety property (usually encoded as an
output of the sequential circuit’s combinational part, described by bad), decide
whether the safety property holds on all executions of the sequential circuit. If the
property does not hold on some execution, a hardware model checker generates
an input sequence to trigger the output, and the sequential circuit is deemed
unsafe with respect to the property. Otherwise, the sequential circuit is considered
safe, and a model checker might additionally generate (an overapproximation
of) the set of reachable states as correctness witness.

3.3 Software Model Checking

The reachability-safety problem for software is formulated similarly as hardware
model checking. Given a program and a safety property (usually labeled as an
error location in the program), determine whether there is an executable program
path that reaches the error location. Although, unlike hardware, software model
checking is in general undecidable, many research efforts have been invested
into automated solutions to this problem [10, 19, 53], including predicate abstrac-
tion [5,42, 47, 50], counterexample-guided abstraction refinement (CEGAR) [6, 36],
and interpolation [49,58]. The verification of industry-scale software such as
operating-systems code [4, 7,23, 32,37, 54] is made feasible together by these so-
lutions and the advances in SMT solving [9]. It is our research enthusiasm to
explore how these concepts work on hardware.

158 D. Beyer, P.-C. Chien, and N.-Z. Lee

4 Translating BTOR2 to C

This section describes the proposed translator Bror2C?, implemented in the
language C with approximately 1600 lines of code. We first describe the general
idea of using C programs to simulate sequential circuits, whose behavior is
intrinsically concurrent. The implementations of various BTor2 operators and
optimizations in BTor2C are discussed later.

4.1 Simulating Sequential Circuits with C Programs

Sequential circuits work in a concurrent manner: The external input and current
state propagate in parallel through the combinational circuitry to produce circuit
outputs and next-state values. In contrast, the C programming language is
imperative, and hence C programs are generally executed line-by-line.

To capture the behavior of sequen-

tial circuits in the context of reacha- void main() {

bility safety, Bror2C generates C pro- // befine sorts and constants
. . . // Initialize states

grams with the generic single-loop pro- for (i) |

gram in Fig. 3 as a template. In the /% Evaluate safety property

generic program, the sorts and con- if (bad) {

ERROR: abort();
}box/
// Compute and assign next states

stants used in the sequential circuit

are defined at the beginning of the

main () function. Second, the program }
initializes the circuit’s states. An end- }

less loop is then used to mimic the)) o
state-transition behavior of the circuit 18- 3: A generic program to imitate se-

throughout time frames: When a loop quential circuits for reachability safety
iteration begins, the safety property is evaluated over the current state and exter-
nal input. If the property is violated, the program exits with an error. Otherwise,
the next-state values are computed and stored into the state variables. This
generic program reflects the reachability safety for sequential circuits.

The commented blocks in the generic program have to be replaced by C
instructions to encode the concurrent computation of the sequential circuit.
BTor2C assigns every node in the input BTor2 circuit a unique variable in the
translated C program. Nodes used for state initialization, state transition, or
safety properties, are specified by keywords init, next, or bad, respectively. For
such a node, a backward depth-first traversal is applied to collect its transitive
fan-in cone to avoid irrelevant signals regarding model checking. Multiple bad
keywords in a BTor2 file are translated to multiple error labels in the C program.

4.2 Variable Naming

We use the unique identification numbers for lines in a BTor2 file to name their
corresponding variables in the translated C program. Suppose the unique ID of
a line is n. If the line defines a sort, it is named SORT_n in the C file. If the line
defines a state or an input, it is named state_n or input_n, respectively. If the
line defines a node used for state initialization, transition, or property evaluation,

2 nttps://gitlab.com/sosy-lab/software/btor2c

https://gitlab.com/sosy-lab/software/btor2c

Bridging Hardware and Software Analysis with BTor2C 159

it is named init_n, next_n, or bad_n, respectively, to honor the keywords init,
next, or bad. For the rest of the nodes, we name their variables var_n in the C file.

4.3 Expressing BTOR2 Sorts in C

The language BTor2 supports two sorts: bit-vectors and arrays. Whenever possible,
BTor2C represents a bit-vector type B* by the shortest unsigned-integer type
whose number of bits is greater than or equal to w. For example, a B> type with
sort ID n is encoded by typedef SORT_n unsigned charj;, and a B%0 type with
sort ID m is encoded by typedef SORT_m unsigned int;. A BTor2 bit-vector
type can have an arbitrary width. If a Bror2 circuit uses a bit-vector type longer
than 64 bits, Bror2C cannot translate it to a C program, because no C type can
accommodate the bit-vector®. The missing capability to handle bit-vectors longer
than 64 bits is a restriction of Bror2C, but the sacrifice is worthy: By encoding
bit-vectors with integer variables, native C operators can be directly applied to
implement BTor2 operators, which greatly simplify the analysis of translated
programs. As can be seen in Sect. 5, the state-of-the-art software verifiers and
testers have a decent performance on the translated programs. In practice, only
20 % of the collected Bror2 benchmarking circuits have bit-vectors longer than
64 bits, so we consider the restriction acceptable.

For BTor2 arrays, Bror2C represents them by static arrays. Suppose the sort
ID for an array type AZ7¢ is n. Let its index type Z be B* and element type &£
be encoded by SORT_m. Then AZ7¢ is encoded by the following C instruction:
typedef SORT_m SORT_n[l << w];, which means SORT_n is an array with 2%
objects of type SORT_m.

4.4 Implementing BTOR2 Operators in C

The language BTor2 provides various operations, most of which can be easily
implemented by the corresponding C operators. Recall that we extend to the next
unsigned-integer type to encode a bit-vector type B*. As a result, there might be
some spare most-significant bits (MSBs) in an unsigned-integer variable. Normally,
these bits have to be set to zeros (namely, the computation result is modulo 2%)
after each operation to guarantee the precision. Later in Sect. 4.5, we discuss the
possibility of performing the modulo operation to results lazily only when needed,
instead of applying it eagerly after each operator. Such laziness helps to generate
shorter C programs and provides an opportunity for software analyzers to work
more efficiently. In the evaluation, we will also compare the effects of these two
translation schemes. Next, we follow the order of Table 1 in the Bror2 paper [64]
to introduce the BTor2 operators and their implementations in C.

Indexed Operators. Unsigned- and signed-extension operators uext and sext
can be implemented by type casting during the variable assignment. The bit-
slicing operator slice is implemented by first right-shifting the number of sliced
least-significant bits and masking the spare MSBs to zeros.

3 We stick to the ISO C18 standard [52]; GNU C offers an unsigned __int128 type,
but not every software analyzer supports it. Recently, there is a proposal to support
arbitrary-width integers in ISO C23, which will further simplify the translation.

160 D. Beyer, P.-C. Chien, and N.-Z. Lee

Unary Operators. The bitwise negation operator not is implemented by its
counterpart ~ in C. The arithmetic operators inc, dec, and neg are implemented
using the ++, ——, and — operators in C. The reduction operator redand (resp.
redor) is implemented by comparing the operand to 2¥ — 1 (resp. 0) for an
operand of type B™. As there is no native support in C to compute the sum of all
bits modulo 2 (parity) in an integer variable, the reduction operator redxor is
implemented by repeatedly shifting and XOR-ing the variable with itself, such
that the result will end up in the least-significant bit.

Binary Operators. For bit-vectors, the (in)equality operators eq, neq, gt, gte,
1t, and lte are implemented by the corresponding C operators. For arrays,
the equality operator is implemented by looping the two input arrays to find a
different element. Bitwise operators and, or, and xor* and arithmetic operators
add, mul, div, rem (remainder), and sub are all supported in C and can be directly
implemented using the respective C operators. In the language BTor2, the result of
division-by-zero is defined to be the maximum number of the operands’ sort. Our
translation takes this specification into account to generate equivalent C programs.
Otherwise, division-by-zero would be considered as undefined behavior in C.

Shifting operators s11 (logical left shift) and srl (logical right shift) are
implemented by the left- and right-shifting operators in C, respectively. According
to the ISO C18 standard [52], the result of right-shifting a negative value is
implementation-defined. Therefore, to ensure the intended behavior of the arith-
metic right-shift operator sra, we always pad ones directly to the resulting value
if the given operand is negative (i.e., MSB equals 1). In this way, we do not have
to assume any specific implementation of the software verifiers.

Concatenating and rotating operators concat, rol (rotating left), and ror
(rotating right), are not natively supported in C. We implemented them by shifting
and bitwise disjunction. For example, in order to concatenate node n; of type
B2 and node ny of type B, we use var_1 << 5 | var_2, assuming var_1 and
var_2 are of type unsigned char.

The read operator for array types, which takes an array and an index, is
simply implemented by C’s syntax to access an array.

Ternary Operators. The if-then-else operator ite works both for bit-vectors
and arrays. It is implemented by the ternary operator expl ? exp2 : exp3in C.

The write operator takes an array, an index for where to write, an element
for what to write, and returns an updated array. It is implemented using the
standard syntax in C to modify the content of an array.

Note that in a Bror2 file, a line with operator write essentially creates a
new copy of the original array with one updated element. The original array is
not replaced, because it might also be referred to by other lines. In principle, if
no lines access the original array after a write operation, the operation could
modify the element in place without allocating a new array. For now, Bror2C
always copies a new array during a write operation for simplicity.

4 The operators nand, nor, and xnor are implemented with the bitwise NOT operator.

Bridging Hardware and Software Analysis with BToOr2C 161

4.5 Applying Modulo Operations Lazily

Observe that there are some operators that can work correctly without precise
operand values, which offers us the opportunity to apply modulo operations lazily
and save some computations in translated programs. For instance, consider the
addition operator. If a; = ay (mod n) and by = by (mod n), we conclude that
a1+ by = ag + ba (mod n) according to modular arithmetic. In other words, the
addition operator does not need precise operands and works correctly for modular
numbers (i.e., equivalence classes modulo n). By contrast, other operators might
yield different results for modular numbers. For example, a + kn > b does not
guarantee ¢ > b when k > 0. Therefore, performing the modulo operation to
the result of an operator is only necessary where the result is used in another
operator that requires precise operand values.

BTor2C provides an option for the lazy application of modulo operations. If
the option is turned on, BTor2C analyzes whether the precise value is required
for each node by looking at the node’s fan-outs. If any of its fan-outs needs the
precise computation result of the node, the modulo operation will be applied to
it. Otherwise, the modulo operation will be skipped, and the result could be a
modular number of the precise value. Operators that require precise operand values
mainly include inequalities as well as indices for reading and writing arrays. As an
example, if we enable the lazy behavior to translate the BTor2 circuit in Fig. 2a,
the modulo operations in line 13 and line 20 of the program in Fig. 2b can be
omitted, because input_5 and var_6 are used only in addition and subtraction,
which do not need precise operand values.

4.6 Discussion

Correctness of the Translation. As will be seen in Sect. 5, the reliability of
BTor2C is empirically validated over a large input set: Most software verifiers
obtain consistent answers on the translated C programs as the hardware verifiers.
For Bror2 models that violate the safety property, the violation witness generated
by software verifiers can be transformed to that of the original BTor2 circuit as
a certificate of the translation process. The Bror2TooLs utility suite offers a
simulator to check the transformed witness against the Bror2 model.

Limitations. The current version of Bror2C has no support yet for the translation
of fairness constraints (keyword fair), liveness properties (keyword justice),
and overflow detection (keywords addo, divo, mulo, and subo). In our evaluation,
only supported keywords appear in the collected BTor2 circuits.

5 Evaluation

We evaluate the claims presented in Sect. 1.1 using the following research questions:

RQ1: How do software analyzers perform on hardware-verification tasks?
RQ2: Can software analyzers complement hardware model checkers?

e RQ3: What is the effect of the optimization in Sect. 4.5 on the verification of
the translated C programs?

RQ4: How effective is the proposed translator BTor2C in comparison with
the Verilog-to-C translator v2c [62]7

162 D. Beyer, P.-C. Chien, and N.-Z. Lee

To answer the above research questions, we evaluated the state of the art of
hardware and software analyzers over a large benchmark set consisting of more
than thousand hardware-verification tasks.

5.1 Benchmark Set

We collected hardware-verification tasks in both Bror2 and Verilog formats
from various sources, including the benchmark suites used in the 2019 and 2020
Hardware Model Checking Competitions [29] and the explicit-state model-checking
tasks derived from the BEEM project [65]. The whole benchmark set as well as a
complete list of sources are available in the reproduction artifact [16] of this paper.
We also contributed a set of verification tasks to the sv-benchmarks collection, the
largest freely available benchmark set of the verification and testing community.

As the proposed translator Bror2C uses BTor2 as frontend, we translated
tasks in Verilog to Bror2 with Yosys [70]. An aggregate of 1912 Bror2 tasks were
collected. We excluded 414 tasks with bit-vectors longer than 64 bits, because
BTor2C cannot translate these tasks into standard ISO C18 programs. Out
of the remaining 1498 BTor2 tasks, 1341 use only bit-vector sorts, and the
remaining 157 tasks manipulate both bit-vector and array sorts. The bit-vector
category contains 473 unsafe tasks (with a known specification violation) and
868 safe tasks (for which the specification is satisfied). The array category contains
17 unsafe and 140 safe tasks.

We translated the remaining 1498 Bror2 tasks into C programs by the
proposed tool Bror2C (tag tacas23-camera), assuming the LP64 data model.
The 1341 tasks in the bit-vector category are also translated to Aicer by the
translator Bror2AIGER, which is provided in the Bror2TooLs utility suite. The
original Bror2 models as well as the translated C programs and AIGER circuits
are available in the reproduction package [16] and online®.

Unfortunately, Bror2AIGER does not translate Bror2 circuits with array
sorts to AiGer. In our benchmark set, translating a Bror2 file to either a C
program or an AIGER circuit took less than a second. Therefore, we ignore the
translation time in the run-time of compared tools. An input task with the required
format is directly given to each tool. To facilitate the comparison with v2c, we
additionally gathered 22 C programs translated by v2c from its repository®.

5.2 State-of-the-Art Hardware and Software Analysis

To adequately reflect the state of the art of hardware and software analysis,
we evaluated the most competitive tools from the Hardware Model Checking
Competitions and Competitions on Software Verification and Testing. A wide
range of analysis techniques implemented in these tools were investigated in our
experiment. Due to space limitation, Sect. 5.4 will show the best configuration
of each tool on our benchmark set.

Hardware Model Checkers. For hardware analysis, we selected the state-of-the-
art bit-level model checker ABC [30] (commit a9237£57) and AVR. [46] version 2.1,

® https://gitlab.com/sosy-1lab/research/data/word-1level-hwmc-benchmarks
5 https://github.com/rajdeep87/verilog-c
" https://github.com/berkeley-abc/abc

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/software/btor2c/-/tree/tacas23-camera
https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks
https://github.com/rajdeep87/verilog-c
https://github.com/berkeley-abc/abc

Bridging Hardware and Software Analysis with BTor2C 163

a word-level hardware model checker that won HWMCC 2020. The former takes
AIGER circuits as input, and the latter directly consumes Bror2 models. We eval-
uated the implementations of bounded model checking (BMC) [27] and property
directed reachability (PDR) [41,45] in both ABC and AVR. Interpolation-based
model checking (IMC) [57] in ABC and k-induction (KI) [69] in AVR were
also assessed.

Software Analyzers. For software verifiers, we enrolled the first, second, and
fourth ranked verifiers VEriABs [2], CPAcHECKER [20], and EsBmc [43] of category
ReachSafety in SV-COMP 2022. The 3rd ranked verifier PESCo [66] was omitted
because it selects algorithms from the CPAcHECKER framework. All verifiers
were downloaded from the archiving repository® of the competition. (For Espmc,
the performance of an earlier version in SV-COMP 2021 was better than the
latest version on our benchmark set, so we used the older version instead.) We
tried the implementations of loop abstraction (LA) [38] in VERIABS; predicate
abstraction (PA) [18,50], Impact [24, 58], and IMC [21] in CPAcHECKER; BMC
and KI [17,18,39,44] in both CPAcuecker and EsBMmc.

For software testers, the overall winner FUSEBMC [3] of Test-Comp 2022,
which implements fuzz testing (fuzzing), was picked. We also experimented with
other testers from the competition, but they failed to generate test suites on
our benchmark set. FUSEBMC was downloaded from the archiving repository®”
of the competition.

In the following discussion, we use (tool)-{algorithm) to denote the implemen-
tation of a specific algorithm in a particular tool. For example, AVR-KI refers
to the k-induction implementation in AVR.

5.3 Experimental Setup

All experiments were conducted on machines running Ubuntu 22.04 (64 bit), each
with a 3.4 GHz CPU (Intel Xeon E3-1230 v5) with 8 processing units and 33 GB
of RAM. Each task was limited to 2 CPU cores, 15 min of CPU time, and 15 GB
of RAM. We used BencuExec!? [22] to ensure reliable resource measurement
and reproducible results.

5.4 Results

RQ1: Solving HW-Verification Tasks with SW Analyzers. To study the
performance of software analyzers on hardware-verification tasks, we compared
the selected software tools against the state-of-the-art hardware model checkers.
The results are summarized in Table 1.

Note that some software verifiers are good at finding bugs in these tasks.
VERIABS found most correct alarms in the experiment, and Esemc also detected
more bugs than AVR. By contrast, hardware model checkers were better at
computing correctness proofs. Even the best software configuration CPACHECKER-
PA for proving correctness only achieved fewer than a half of the proofs for

8 https://gitlab.com/sosy-1lab/sv-comp/archives-2022/-/tree/svcomp22
% https://gitlab.com/sosy-1lab/test-comp/archives-2022/-/tree/testcomp22
10 nttps://github. com/sosy-1lab/benchexec

https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22
https://gitlab.com/sosy-lab/test-comp/archives-2022/-/tree/testcomp22
https://github.com/sosy-lab/benchexec

164 D. Beyer, P.-C. Chien, and N.-Z. Lee

Table 1: Summary of the results for hardware and software verifiers (suffixes -e
and -[stand for applying modulo operations eagerly or lazily, respectively)

Tool ABC AVR CPACHECKER EsBMC VERIABS
Algorithm PDR PDR | Pred. Abs. k-Induction Loop Abs.
Input Tasks | Aicer Bror2 | C-e C-l C-e C-l C-e C-l
Correct results 1498 | 862 736 | 274 280 401 410 392 393
BV proofs 868 | 524 458 | 188 189 88 93 53 49
BV alarms 473 | 338 233 86 91 311 315 337 342
Array proofs 140 — 45 0 0 0 0 0 0
Array alarms 17 - 0 0 0 2 2 2 2
Wrong proofs 0 0 0 0 0 0 2 2
Wrong alarms 0 0 0 0 0 0 1 1
Timeouts 479 559 924 922 554 551 1049 1042
Out of memory 0 3 9 7 543 537 3 4
Other inconclusive 0 200 | 291 289 0 0 51 56

1000

"
I"'
g
-~
10 o 1]
. : I
01w i i
| | | |
0 100 200 300 400 500 0 100 200 300
(a) Proofs (b) Alarms
®— ABC-PDR - f- - AVR-PDR —.sk-.- CPAGHECKER-PA z-Axis: n-th fastest correct result
<ps EsBMC-KI —@— VERIABS-LA y-AxiS: CPU time (S)

Fig. 4: Quantile plots for all correct proofs and alarms of bit-vector tasks

bit-vector tasks. In the array category, AVR delivered 45 correct proofs, whereas
the software verifiers cannot solve any of them. Our results may inspire tool
developers to investigate and alleviate the performance difference. Since we
have contributed a category ReachSafety-Hardware of verification tasks to the
common benchmark collection, the 2023 competition results of SV-COMP include
evaluations of all participating tools on those new tasks.

The quantile plots of correct proofs and alarms for bit-vector tasks are shown
in Fig. 4a and Fig. 4b, respectively. A data point (z,y) in the plots indicates
that there are x tasks correctly solvable by the respective tool within a CPU
time of y seconds. In our experiments, ABC is the most efficient and effective
tool in producing proofs, and VErIABs is the best for bug hunting. While the
number of alarms found by EsBmc is more than AVR and close to ABC, it spent
more time in finding bugs in general.

In our evaluation, we observe that PDR is the most competitive algorithm for
both hardware model checkers, whereas software verifiers show diverse strengths in
different approaches. To account for the difference in algorithms, we also compare
implementations of the same algorithm in various analyzers.

BMC is one of the most popular formal approaches to detect errors. It is
implemented by most of the evaluated tools. Software testers are also able to

https://github.com/berkeley-abc/abc
https://github.com/aman-goel/avr
https://cpachecker.sosy-lab.org/
http://www.esbmc.org/
http://fmv.jku.at/aiger/
https://github.com/Boolector/btor2tools

Bridging Hardware and Software Analysis with BTor2C 165

1000
@ e ABC-BMC
& 10 - |- - AVR-BMC
.E “_.:' .- CPACHECKER-BMC
= :,: s EsBMCc-BMC
Ay ' —e— FuSEBMC
© 01§ .

0 100 200 300
n-th fastest correct result

Fig.5: Quantile plot comparing bug hunting (with BMC) on bit-vector tasks

1000 —rrrromm—rrrrem I
flo safe 10000 Lo safe
[| x unsafe [|* unsafe
100 £ t
= g £) I
f 5 1000 E
> =4
2 z
N 100 ¢
s
[° 5 SO S
01 oo GG N 0 F ik st il
0.1 1 10 100 1000 10 100 1000 10000
Essmc-KI (s) Essmc-KI (MB)

Fig. 6: CPU time (left) and memory (right) consumption of AVR-KI and EsBmc-KI

hunt bugs, and hence we include FUSEBMC, a derivative of Esemc that combines
BMC and fuzzing, into the comparison. Figure 5 shows the quantile plot of
correct alarms for unsafe bit-vector tasks. Note that the performance of BMC
implementations in software verifiers are close to those in hardware verifiers.
However, FuSEBMC performed not as well as other competitors, indicating that
fuzzing might not be fruitful for our benchmark set.

We also performed a head-to-head comparison of the k-induction implemen-
tations in AVR and EsBmc over the bit-vector and array tasks. Both tools rely
on SMT solving for formula reasoning, so the confounding variables are fewer
than other combinations. Figure 6 shows the scatter plots for the CPU time
and memory usage of AVR and EsBmc to produce correct results. A data point
(z,y) in the plots indicates the existence of a task correctly solved by both tools,
for which EsBmc took x units of the computing resource and AVR took y units.
AVR was often more efficient than Essmc, but the latter solved 13 tasks that
the former cannot solve.

RQ2: Complementing HW Model Checkers with SW Analyzers. Over-
all, hardware model checkers performed better than software analyzers on our
benchmark set, which is expected since they have been heavily optimized for
hardware-verification tasks. However, comparing the results of the tools for Table 1,
we observed 43 tasks that were uniquely solved by software verifiers. Interestingly,
39 of these uniquely solved tasks have a violated property. Combining BMC with
loop unwinding heuristics, e.g., the technique implemented in VeriABs [2], is
helpful to find bugs in these tasks. This phenomenon demonstrates that software-

166 D. Beyer, P.-C. Chien, and N.-Z. Lee

Table 2: Results for 22 programs generated by Bror2C and v2c¢

Tool CPACHECKER EsBMC VERIABS
Algorithm Pred. Abs. k-Induction Loop Abs.
translated by BTOR2C v2c BTOR2C v2c BTOR2C v2c
Correct results 15 11 16 13 12 7
proofs 13 8 11 11 7 3
alarms 2 3 5 2 5 4
Wrong results 0 0 0 1 0 0
Errors & Unknown 7 11 6 8 10 15

analysis techniques are able to complement hardware model checkers, which is
facilitated by the proposed Bror2C translator. Some potential reasons affecting
the effectiveness and efficiency of software analyzers will be discussed in Sect. 5.5.

RQ3: Optimization in BTor2C. Section 4.5 presented an optimization tech-
nique that performs modulo operations to intermediate results lazily, in order
to generate shorter C programs. To assess whether this technique benefits the
downstream software analysis, we compared the performance of the selected soft-
ware verifiers, CPACHECKER, EsBMmc, and VERIABS, on C programs translated by
Bror2C with or without this optimization (namely, applying modulo operations
lazily or eagerly, respectively).

The results of the best-performing algorithm for each tool in terms of the
number of correct answers are summarized in Table 1, whose right panel also
shows the results of the verifiers on these 2 sets of C programs. (CPACHECKER-
BMC actually solved more tasks than CPACHECKER-PA, but it was mainly for
bug hunting. Therefore, we reported the second best configuration, predicate
abstraction, for CPAcueckeR.) If modulo operations are applied lazily instead
of eagerly, the numbers of overall correct results are increased by roughly 2.2 %
for both CPAcuEckEr and Essmc, and by 0.3 % for VeriAss. Although VERIABS
found 4 fewer correct proofs if modulo operations are applied lazily, it reported
5 more correct alarms. Therefore, we conclude that generating shorter C programs
by reducing modulo operations is an effective optimization in Bror2C. From now
on, Bror2C enables this optimization by default.

RQ4: Comparison with v2c. BTor2C is a lightweight tool, whose compiled
binary is smaller than 0.25 MB. By contrast, the precompiled v2c executable
downloaded from its web archive!! is 5.7 MB. While such difference is negligible
given the capability of modern computers, we believe that a simple frontend
language benefits tool implementation.

Besides implementation complexity, we also investigated the efficiency of
the translation process. As mentioned in Sect. 5.1, BTor2C took less than a
second to translate any BTor2 model in the benchmark set. Unfortunately,
neither the v2c executable in the archive was runnable, nor was its source code
compilable!'?. Therefore, we were not able to directly compare the translation
efficiency of BTor2C and v2c.

" https://www.cs.ox.ac.uk/people/rajdeep.mukherjee/tacas16_v2c.tar.gz
2 https://github.com/rajdeep87/verilog-c/issues/6

https://cpachecker.sosy-lab.org/
http://www.esbmc.org/
https://www.sosy-lab.org/research/btor2c/
http://www.cprover.org/hardware/v2c/
https://www.sosy-lab.org/research/btor2c/
http://www.cprover.org/hardware/v2c/
https://www.sosy-lab.org/research/btor2c/
http://www.cprover.org/hardware/v2c/
https://www.cs.ox.ac.uk/people/rajdeep.mukherjee/tacas16_v2c.tar.gz
https://github.com/rajdeep87/verilog-c/issues/6

Bridging Hardware and Software Analysis with BTOR2C 167

As an alternative, we collected 22 C programs from v2c¢’s benchmark repository
and manually adapted them to the syntax rules used in SV-COMP. The original
Verilog circuits of these C programs were translated to Bror2 by Yosys and
further translated by BTor2C into another set of C programs. We compare the
performance of the evaluated software verifiers on these two sets of 22 verification
tasks in Table 2. Observe that the three verifiers produced more correct results on
the C programs generated by Bror2C, showing the benefit of using Yosys +BTor2
as frontend in the translation flow.

5.5 Discussion

From the experimental results shown above, we observe a notable performance
difference between software and hardware analyzers. There are several possibilities
to explain this outcome: First, the tasks were encoded in different formats for
software and hardware analyzers. Bror2C encoded bit-vectors with unsigned
integer types, which may contain some spare bits that complicate software analysis.
Second, each analyzer uses a different backend logical solver. ABC encodes queries
in propositional logic and uses SAT solving, while other tools resort to first-
order formulas and SMT solving. (In our experiments, AVR used Yices2 [40],
CPAcHECKER used MATHSATS5 [35] for predicate abstraction and BooLEcTOR3 [64]
for BMC, and EsBMmc used BoorecTor3.) The ability of solvers may affect the
analyzers’ performance. Third, the internal modeling used by the analyzers varies.
Software verifiers typically represent a program as a control-flow graph, which
might be unnecessarily complex when the problem at hand is merely a state-
transition system. Despite the above reasons, software verifiers were able to solve
43 tasks that the considered hardware model checkers cannot solve.

6 Conclusion

Assuring the correctness of computational systems is challenging yet imperative.
Therefore, we should embrace every opportunity to analyze our systems by remov-
ing the barriers between research communities. We implemented the lightweight
and open-source tool BTor2C for translating sequential Bror2 circuits to C
programs, to enable the application of off-the-shelf software analyzers to hardware
designs. We conducted a large-scale experiment including more than thousand ver-
ification tasks. State-of-the-art bit-level and word-level model checkers as well as
software verifiers and testers were evaluated empirically. Thanks to the simplicity
of the Bror2 language, software analyzers performed decently on the translated
programs and complemented the hardware model checkers by detecting more
bugs and uniquely solving 43 tasks in our experiment. Our translator Bror2C
demonstrates a new spectrum of analysis options to hardware developers and
verification engineers. The translator also simplifies the construction of a new
set of hardware analyzers, because any software analyzer can now be used to
solve hardware-verification tasks, with Bror2C as preprocessing. In the future,
we wish to bridge the gap from the other direction. That is, we aim at translating
programs into circuits and apply hardware analyzers to solve software problems.

168 D. Beyer, P.-C. Chien, and N.-Z. Lee

Data-Availability Statement. To enhance the verifiability and transparency
of the results reported in this paper, all used software, verification tasks, and raw
experimental results are available in a supplemental reproduction package [16]. A
previous version [15] of the reproduction package was reviewed by the Artifact
Evaluation Committee. The updated version [16] fixes issues found by reviewers of
the paper and the artifact. For convenient browsing of the data, interactive result
tables are also available at https://www.sosy-1lab.org/research/btor2c/.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) — 378803395 (ConVeY).

Acknowledgements. We thank the SV-COMP community and an anonymous
reviewer for pointing out the division-by-zero issue.

References

1. IEEE Standard for Verilog Hardware Description Language (2006). https://doi.
org/10.1109/IEEESTD.2006.99495

2. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: VERIABs: Verification by abstraction and test generation. In:
Proc. ASE. pp. 1138-1141 (2019). https://doi.org/10.1109/ASE.2019.00121

3. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSEBMC:
An energy-efficient test generator for finding security vulnerabilities in C pro-
grams. In: Proc. TAP. pp. 85-105. Springer (2021). https://doi.org/10.1007/
978-3-030-79379-1_6

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Proc. IFM. pp. 1-20.
LNCS 2999, Springer (2004). https://doi.org/10.1007/978-3-540-24756-2_1

5. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: Proc. PLDI. pp. 203-213. ACM (2001). https:
//doi.org/10.1145/378795.378846

6. Ball, T., Rajamani, S.K.: Boolean programs: A model and process for software anal-
ysis. Tech. Rep. MSR Tech. Rep. 2000-14, Microsoft Research (2000), https://www.
microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf

7. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: Proc. POPL. pp. 1-3. ACM (2002). https://doi.org/10.1145/503272.
503274

8. Barrett, C., Stump, A., Tinelliy C.: The SMT-LIB Standard: Version 2.0.
Tech. rep., University of Iowa (2010), https://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.0-r10.12.21.pdf

9. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model Check-
ing, pp. 305-343. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_
11

10. Beckert, B., Hahnle, R.: Reasoning and verification: State of the art and current
trends. IEEE Intelligent Systems 29(1), 20-29 (2014). https://doi.org/10.1109/
MIS.2014.3

11. Beyer, D.: 11th Intl. Competition on Software Verification (SV-COMP 2022). https:
//sv-comp.sosy-lab.org/2022/, accessed: 2023-01-29

12. Beyer, D.: 4th Intl. Competition on Software Testing (Test-Comp 2022). https:
//test-comp.sosy-1lab.org/2022/, accessed: 2023-01-29

https://www.sosy-lab.org/research/btor2c/
http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/378795.378846
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2000-14.pdf
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1109/MIS.2014.3
https://sv-comp.sosy-lab.org/2022/
https://sv-comp.sosy-lab.org/2022/
https://test-comp.sosy-lab.org/2022/
https://test-comp.sosy-lab.org/2022/

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Bridging Hardware and Software Analysis with BTor2C 169

Beyer, D.: Advances in automatic software testing: Test-Comp 2022. In: Proc.
FASE. pp. 321-335. LNCS 13241, Springer (2022). https://doi.org/10.1007/
978-3-030-99429-7_18

Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc.
TACAS (2). pp. 375-402. LNCS 13244, Springer (2022). https://doi.org/10.1007/
978-3-030-99527-0_20

Beyer, D., Chien, P.C., Lee, N.Z.: Reproduction package for TACAS 2023 submission
‘Bridging hardware and software analysis with BTor2C: A word-level-circuit-to-C
translator’. Zenodo (2022). https://doi.org/10.5281/zenodo.7303732

Beyer, D., Chien, P.C., Lee, N.Z.: Reproduction package for TACAS 2023 article
‘Bridging hardware and software analysis with BTor2C: A word-level-circuit-to-C
translator’. Zenodo (2023). https://doi.org/10.5281/zenodo.7551707

Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Proc. CAV. pp. 622-640. LNCS 9206, Springer (2015). https://doi.
org/10.1007/978-3-319-21690-4_42

Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software veri-
fication. J. Autom. Reasoning 60(3), 299-335 (2018). https://doi.org/10.1007/
s10817-017-9432-6

Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493-540. Springer (2018). https:
//doi.org/10.1007/978-3-319-10575-8_16

Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable software
verification. In: Proc. CAV. pp. 184-190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model checking
revisited: Adoption to software verification. arXiv/CoRR 2208(05046) (July 2022).
https://doi.org/10.48550/arXiv.2208.05046

Beyer, D., Lowe, S., Wendler, P.: Reliable benchmarking: Requirements and solutions.
Int. J. Softw. Tools Technol. Transfer 21(1), 1-29 (2019). https://doi.org/10.
1007/s10009-017-0469-y

Beyer, D., Petrenko, A.K.: Linux driver verification. In: Proc. ISoLA. pp. 1-6.
LNCS 7610, Springer (2012). https://doi.org/10.1007/978-3-642-34032-1_1
Beyer, D., Wendler, P.: Algorithms for software model checking: Predi-
cate abstraction vs. ImpacT. In: Proc. FMCAD. pp. 106-113. FMCAD
(2012), https://www.sosy-1lab.org/research/pub/2012-FMCAD.Algorithms_for_
Software_Model_Checking.pdf

Beyer, D., Podelski, A.: Software model checking: 20 years and beyond. In: Principles
of Systems Design. pp. 554-582. LNCS 13660, Springer (2022). https://doi.org/
10.1007/978-3-031-22337-2_27

Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler University
(2007). https://doi.org/10.35011/fmvtr.2007-1

Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. TACAS. pp. 193-207. LNCS 1579, Springer (1999). https://doi.
org/10.1007/3-540-49059-0_14

Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Proc. FMCAD. p. 9. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.
8102233

Biere, A., Froleyks, N., Preiner, M.: 11th Hardware Model Checking Competition
(HWMCC 2020). http://fmv. jku.at/hwmcc20/, accessed: 2023-01-29

https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99429-7_18
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.7303732
https://doi.org/10.5281/zenodo.7551707
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/s10817-017-9432-6
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.48550/arXiv.2208.05046
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-642-34032-1_1
https://www.sosy-lab.org/research/pub/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
https://www.sosy-lab.org/research/pub/2012-FMCAD.Algorithms_for_Software_Model_Checking.pdf
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.1007/978-3-031-22337-2_27
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
http://fmv.jku.at/hwmcc20/

170

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

D. Beyer, P.-C. Chien, and N.-Z. Lee

Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Proc. CAV. pp. 24-40. LNCS 6174, Springer (2010). https://doi.org/10.
1007/978-3-642-14295-6_5

Brummayer, R., Biere, A., Lonsing, F.: Btor: Bit-precise modelling of word-level
problems for model checking. In: Proc. SMT/BPR. pp. 33-38. ACM (2008). https:
//doi.org/10.1145/1512464.1512472

Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P.W., Papakonstantinou, 1., Purbrick, J., Rodriguez, D.: Moving fast with software
verification. In: Proc. NFM. pp. 3-11. LNCS 9058, Springer (2015). https://doi.
org/10.1007/978-3-319-17524-9_1

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The NuxMVv symbolic model checker. In:
Proc. CAV. pp. 334-342. LNCS 8559, Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_22

Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An open-source tool for symbolic
model checking. In: Proc. CAV. pp. 359-364. LNCS 2404, Springer (2002). https:
//doi.org/10.1007/3-540-45657-0_29

Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MATHSATS5 SMT
solver. In: Proc. TACAS. pp. 93-107. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_7

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752-794 (2003).
https://doi.org/10.1145/876638.876643

Cook, B.: Formal reasoning about the security of Amazon web services. In: Proc.
CAV (2). pp. 38-47. LNCS 10981, Springer (2018). https://doi.org/10.1007/
978-3-319-96145-3_3

Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-
approximating loops to prove properties using bounded model checking. In: Proc.
DATE. pp. 1407-1412. IEEE (2015). https://doi.org/10.7873/DATE.2015.0245
Donaldson, A.F., Haller, L., Kroning, D., Riimmer, P.: Software verification using
k-induction. In: Proc. SAS. pp. 351-368. LNCS 6887, Springer (2011). https:
//doi.org/10.1007/978-3-642-23702-7_26

Dutertre, B.: Y1CES 2.2. In: Proc. CAV. pp. 737-744. LNCS 8559, Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_49

Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Proc. FMCAD. pp. 125-134. FMCAD Inc. (2011), http:
//dl.acm.org/citation.cfm?id=2157675

Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Proc.
POPL. pp. 191-202. ACM (2002). https://doi.org/10.1145/503272.503291
Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: An industrial-strength C model checker. In: Proc. ASE. pp. 888—891.
ACM (2018). https://doi.org/10.1145/3238147.3240481

Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97-114 (February 2017). https://doi.org/10.1007/s10009-015-0407-9

Goel, A., Sakallah, K.: Model checking of Verilog RTL using IC3 with syntax-guided
abstraction. In: Proc. NFM. pp. 166-185. Springer (2019). https://doi.org/10.
1007/978-3-030-20652-9_11

https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/1512464.1512472
https://doi.org/10.1145/1512464.1512472
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.7873/DATE.2015.0245
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-319-08867-9_49
http://dl.acm.org/citation.cfm?id=2157675
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1145/503272.503291
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.1007/978-3-030-20652-9_11

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Bridging Hardware and Software Analysis with BTor2C 171

Goel, A., Sakallah, K.: AVR: Abstractly verifying reachability. In: Proc.
TACAS. pp. 413-422. LNCS 12078, Springer (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

Graf, S., Saidi, H.: Construction of abstract state graphs with Pvs. In: Proc. CAV. pp.
72-83. LNCS 1254, Springer (1997). https://doi.org/10.1007/3-540-63166-6_10
Greaves, D.J.: A Verilog to C compiler. In: Proc. RSP. pp. 122-127. IEEE (2000).
https://doi.org/10.1109/IWRSP.2000.855208

Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. POPL. pp. 232-244. ACM (2004). https://doi.org/10.1145/
964001.964021

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL. pp. 58-70. ACM (2002). https://doi.org/10.1145/503272.503279

Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: VERILOG2SMV:
A tool for word-level verification. In: Proc. DATE. pp. 1156-1159 (2016), https:
//ieeexplore.ieee.org/document /7459485

ISO/IEC JTC1/SC22: ISO/IEC 9899-2018: Information technology — Program-
ming Languages — C. International Organization for Standardization (2018),
https://www.iso.org/standard/74528.html

Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434. 1592438

Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165-176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

Kroening, D., Purandare, M.: EBMC. http://www.cprover.org/ebmc/, accessed:
2023-01-29

McMillan, K.L.: Symbolic Model Checking. Springer (1993). https://doi.org/10.
1007/978-1-4615-3190-6

McMillan, K.L.: Interpolation and SAT-based model checking. In: Proc. CAV. pp. 1-
13. LNCS 2725, Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_1
McMillan, K.L.: Lazy abstraction with interpolants. In: Proc. CAV. pp. 123-136.
LNCS 4144, Springer (2006). https://doi.org/10.1007/11817963_14

Minhas, M., Hasan, O., Saghar, K.: VER2SMV: A tool for automatic Verilog to
SMV translation for verifying digital circuits. In: Proc. ICEET. pp. 1-5 (2018).
https://doi.org/10.1109/ICEET1.2018.8338617

Mukherjee, R., Kroening, D., Melham, T.: Hardware verification using software
analyzers. In: Proc. ISVLSI. pp. 7-12. IEEE (2015). https://doi.org/10.1109/
ISVLSI.2015.107

Mukherjee, R., Schrammel, P.; Kroening, D., Melham, T.: Unbounded safety verifi-
cation for hardware using software analyzers. In: Proc. DATE. pp. 1152-1155. IEEE
(2016), https://ieeexplore.ieee.org/document /7459484

Mukherjee, R., Tautschnig, M., Kroening, D.: v2c: A Verilog to C translator. In:
Proc. TACAS. pp. 580-586. LNCS 9636, Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_38

Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Source-code repository of BTOR2,
BTorMC, and BOOLECTOR 3.0. https://github.com/Boolector/btor2tools, ac-
cessed: 2023-01-29

Niemetz, A., Preiner, M., Wolf, C., Biere, A.: BTor2, BTorRMC, and BOOLECTOR
3.0. In: Proc. CAV. pp. 587-595. LNCS 10981, Springer (2018). https://doi.org/
10.1007/978-3-319-96145-3_32

https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1109/IWRSP.2000.855208
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/503272.503279
https://ieeexplore.ieee.org/document/7459485
https://ieeexplore.ieee.org/document/7459485
https://www.iso.org/standard/74528.html
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-642-11486-1_14
http://www.cprover.org/ebmc/
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1109/ICEET1.2018.8338617
https://doi.org/10.1109/ISVLSI.2015.107
https://doi.org/10.1109/ISVLSI.2015.107
https://ieeexplore.ieee.org/document/7459484
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-662-49674-9_38
https://github.com/Boolector/btor2tools
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32

172

65.

66.

67.

68.

69.

70.

71.

D. Beyer, P.-C. Chien, and N.-Z. Lee

Pelanek, R.: BEEM: Benchmarks for explicit model checkers. In: Proc. SPIN. pp. 263—
267. LNCS 4595, Springer (2007). https://doi.org/10.1007/978-3-540-73370-6_
17

Richter, C., Hiillermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153-186
(2020). https://doi.org/10.1007/s10515-020-00270-x

Rozier, K.Y., Shankar, N.; Tinelli, C., Vardi, M.: An open-source, state-of-the-art
symbolic model-checking framework for the model-checking research community.
https://www.aere.iastate.edu/modelchecker/, accessed: 2023-01-29

Snyder, W.: Verilator. https://www.veripool.org/verilator/, accessed: 2023-01-
29

Wahl, T.: The k-induction principle (2013), http://www.ccs.neu.edu/home/wahl/
Publications/k-induction.pdf

Wolf, C.: Yosys open synthesis suite. https://yosyshq.net/yosys/, accessed: 2023-
01-29

Yeh, H., Wu, C., Huang, C.R.: QuteRTL: Towards an open source framework for
RTL design synthesis and verification. In: Proc. TACAS. pp. 377-391. LNCS 7214,
Springer (2012). https://doi.org/10.1007/978-3-642-28756-5_26

Open Access. This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.

0/),

which permits use, sharing, adaptation, distribution, and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/s10515-020-00270-x
https://www.aere.iastate.edu/modelchecker/
https://www.veripool.org/verilator/
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
https://yosyshq.net/yosys/
https://doi.org/10.1007/978-3-642-28756-5_26
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Check for
updates

CoPTIC: Constraint Programming
Translated Into C

Martin Mariusz Lester ®9

University of Reading, Reading, United Kingdom
m.lester@reading.ac.uk

Abstract. Constraint programming systems allow a diverse range of
problems to be modelled and solved. Most systems require the user to
learn a new constraint programming language, which presents a barrier to
novice and casual users. To address this problem, we present the CoPTIC
constraint programming system, which allows the user to write a model
in the well-known programming language C, augmented with a simple
API to support using a guess-and-check paradigm. The resulting model
is at most as complex as an ordinary C program that uses naive brute
force to solve the same problem.

CoPTIC uses the bounded model checker CBMC to translate the model
into a SAT instance, which is solved using the SAT solver CaDiCaL. We
show that, while this is less efficient than a direct translation from a
dedicated constraint language into SAT, performance remains adequate
for casual users. CoPTIC supports constraint satisfaction and optimisation
problems, as well as enumeration of multiple solutions. After a solution
has been found, CoPTIC allows the model to be run with the solution;
this makes it easy to debug a model, or to print the solution in any
desired format.

Keywords: constraint programming - bounded model checking - C pro-
gramming language

1 Introduction

Constraint programming is a form of declarative programming. A constraint pro-
gram or model typically declares some variables and asserts a certain relationship
that must hold between them. A constraint solver automatically finds values of
the variables that satisfy the constraints.

There is a broad body of research in constraint programming, which explores
different kinds of constraints, different languages for expressing them, and different
methods for solving them. If you know you are likely to become a frequent user
of constraint programming, it is relatively easy to take advantage of this. After
making the effort to learn a standardised constraint language, such as MiniZinc,
you have easy access to a range of common constraints and solvers.

But what if you are a casual user, who encounters a single problem that is
too complex or time-consuming to solve by hand, but might be easy with the

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 173-191, 2023.
https://doi.org/10.1007/978-3-031-30820-8 13

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-2323-1771
https://doi.org/10.1007/978-3-031-30820-8_13
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_13&domain=pdf

174 M. M. Lester

assistance of a computer? You may be tempted to prototype a solution using a
simple technique such as brute force or backtracking search. This may well work,
but it is easy to make an error when writing such a program. Or the problem
may turn out to be computationally harder than expected. Alternatively, you
may try to learn a constraint programming language, but if the effort required is
high and the process is error-prone, you may be deterred. Furthermore, if you
do not need to use the language again for months or years, you may well have
forgotten it by then, meaning that much of the effort is wasted.

To meet the needs of this kind of user, we introduce the CoPTIC (Constraint
Programming Translated Into C) system for constraint programming. CoPTIC
reduces the effort needed to write a model by allowing the user to write it in a
declarative style as a C program. It achieves this by using the existing program
verification tool CBMC, which in turn uses a SAT solver.

In outline, the C program must first declare all variables in the constraint
problem and assign them a nondeterministic value. Next, it assumes that all of
the constraints hold; paths where they do not hold should be ignored. Finally, it
asserts false; that is, it is an error if the program reaches its end.

We can pass the program to CBMC and ask it to verify that the assertion
cannot be violated. CBMC tries to find a resolution of the nondeterminism that
leads to an assertion violation; it does this by encoding the problem as a SAT
instance and solving it with a SAT solver. It reports back a counterexample trace
to the verification problem. By construction, the values of the variables in this
trace satisfy the constraints.

This idea is fairly straightforward for someone familiar with CBMC to apply
in an ad-hoc way to a particular problem. However, a usable constraint pro-
gramming system needs more than this. The contributions of this paper are the
implementation, description and experimental evaluation of the CoPTIC system,
which automates and extends the process outlined above.

We illustrate how to write constraint models in the guess-and-check paradigm
outlined above with examples and explain how CoPTIC solves these models using
CBMC in Section 2. We show how CoPTIC makes it easy for a user to:

— import constraint data from an external source, such as a JSON or CSV file;

— solve constraint satisfaction and optimisation problems;

— enumerate distinct solutions to a problem;

— export a solution in a suitable format; and

— maintain consistency between the constraints, validation and output as the
model evolves by keeping the whole model in a single file written in one
programming language.

In particular, CoPTIC reads resolved nondeterministic choices from CBMC’s
counterexample trace and constructs a C function that replays them when the
program is compiled and run with an ordinary compiler. A similar construction
has been used by Beyer and others to produce tests from verification witnesses [3],
but CoPTIC uses it to display the solution to the constraint model.

We discuss debugging constraint models, efficiency of the SAT encoding and
some other practical considerations in Section 3. Next, we evaluate CoPTIC

CoPTIC: Constraint Programming Translated Into C 175

empirically on problems from CSPLib in Section 4, considering both solver
performance and the size of the models. The software artifact accompanying this
paper [15] contains the source code for CoPTIC, which is released under the MIT
License, as well as the models and scripts needed to reproduce our experiments.
In Section 5 we discuss related work in constraint programming and automated
verification, before concluding in Section 6.

2 The Guess-and-Check Paradigm

CoPTIC constraint models are C programs that mix the language’s conventional
imperative style with a declarative guess-and-check paradigm. To illustrate how
the system is used and how it works, we now consider some worked examples.
First, we will see that the code in the CoPTIC models is similar to a naive
attempt to solve the problems using brute force or backtracking search (but often
faster in execution). We argue that this makes the system easy to learn and to use
for programmers with little knowledge or experience of constraint programming.
Then we will see how to extend the approach to solution enumeration and
optimisation.

Many finite-domain constraint problems are in the complexity class NP. NP
problems can be characterised as those that:

1. have a certificate verifiable in deterministic polynomial-time; or
2. can be translated into SAT in polynomial-time.

CoPTIC exploits this equivalence constructively. Given a guess-and-check pro-
gram that verifies a certificate, we can view CoPTIC as compiling the program
into SAT with CBMC, which executes the nondeterministic program with a
SAT solver. CoPTIC extracts the certificate, hard-codes it into the program to
make it deterministic, then compiles it with a normal compiler and executes it
deterministically.

2.1 Constraint Satisfaction: Magic Square

Let us consider the well-known problem of finding a normal 3 x 3 magic square.
A normal n x n magic square is an n x n grid of integers from 1 to n?, where
every row, every column and both diagonals have the same sum.

Suppose we try to solve this problem using brute force. We write the simple
program shown on the left side of Figure 1, which iterates through all possible
assignments of integers to each grid cell. The program checks each assignment to
see if it meets all the required constraints. As soon as one does, it prints it out
and terminates.

We are pleased to see that, after a few minutes, the program finds a solution.
Next we try with a larger square. We will be dismayed, as the running time of
the program increases drastically.

How could we solve this problem more efficiently? The right side of Figure 1
shows the program adapted for use with CoPTIC. The program begins by

176 M. M. Lester

#define N 3
#define MAX (N * N)
#define TARGET ((((N*N)+1)*N)/2)

#include <stdio.h>

int main() {
int grid[N][NJ];

for (int x = 0; x < N; x++) {
for (int y = 0; y < N; y++) {
gridl[x] [yl = 1;
}
}
int ok;

do { // Try all cell values.

grid[0] [0]++;
int x 0;
int y 03
while (grid[x][y]l > MAX) {
grid[x] [yl = 1;
if (++x == N) {
X 0;
yt+;

}

grid[x] [yl++;

// Until we find a

// valid magic square.

ok 1;

// Check
for (int
for (int
for (int
for (int

cells all different.
x = 0; x < N; x++) {
y 0; y < N; y++) {
x2 0; x2 < N; x2++) A
y2 0; y2 < Nj; y2++) A
((x==x2) && (y==y2)) ||
(grid [x][y]t=grid [x2][y2]1);
}rr}

// Check column sums correct.

for (int x = 0; x < N; x++) {
int sum = 0;
for (int y = 0; y < N; y++) {
sum += grid[x][y];
¥
(sum == TARGET);

}

// 3 similar checks omitted.
} while (!ok);

// Print out the solution.
for (int y = 0; y < N; y++) {
for (int x 0; x < N; x++) {
printf ("%d ", grid[x][yl);

printf ("\n");
}

Fig. 1. Left: A brute force program to find a magic square. Right: A CoPTIC model to

#define N 3
#define MAX (N * N)
#define TARGET ((((N*N)+1)*N)/2)
#include "coptic.h"
int main() {

int grid[N][N];

for (int x = 0;

x < N; x++) {
for (int y 0; y < N; y++) {
grid[x][y] = GUESS_INT();
CHECK (grid[x] [yl > 0 &&
grid[x] [y] <= MAX);

No need to search for the right
cell values explicitly. CBMC’s
embedded SAT solver will find
them for us.

When using CBMC, we will roughly
set the following macros:
GUESS_INT() -> nondet_int ()
CHECK (X) -> assume (X)

SATISFY () -> assert (0)

OUTPUT (X) -> {32

// Check
for (int
for (int

cells all different.
x = 0; x < N; x++) {

y 0; y < N; y++) {
for (int x2 = 0; x2 < N; x2++) {
for (int y2 = 0; y2 < N; y2++) {
(((x==x2) && (y==y2))
(grid[x]1[ylt=grid[x2]1[y21));

I
3

}}
// Check column sums correct.
for (int x 0; x < N; x++) {
int sum
for (int y
sum += grid

0

0; y < N; y++) {
[x]10yl;
}

(sum TARGET) ;

}

// 3 similar checks omitted.
SATISFY();

(
for (int y = 0;
for (int x 0
printf ("%d ",

< N y++) {
x < N; x++) {
gridlx][yl);

y

printf ("\n");
}

solve the same problem. Note the absence of code for explicit search.

CoPTIC: Constraint Programming Translated Into C 177

trace trace.h Sample replay
CBMC » log.txt >l ! .
o " | extractor peinesrep 0 - fynction:
\/—
A When verified with CBMC: i int replay_int O {
GUESS() - nondet() static int q = 0;
CHECK(X) - assume(X) switch (q++) {
SATISFY() - assert(0) i ;
OUTPUT(X) — { } i case 0:
| ’ return 4;
case 1:
model.c COptIC.h data.h | input filter return 3;
case 2:
— —_— return 2;
When compiled with gcc: 1 case 3:
‘ eusss()’i replagy() ’ return 4;
CHECK(X) - assert(X) // ...
SATISFY() - { } .
OUTPUT(X) — {X} default:
abort ();

}
_/—

Fig. 2. The architecture of the CoPTIC system. Solid arrows indicate data flow. Dashed
arrows indicate inclusion of a C header file.

including the coptic.h header file. Now, instead of iterating through each
possible assignment explicitly, the program GUFESSes the values of the grid cells.
The checks are much the same as before, but use CoPTIC’s CHECK macro. The
call to SATISFY indicates that we want to find any solution that satisfies all the
constraints, while the code in the OUTPUT block is run only when a solution is
found. We run the modified program with CoPTIC and are once again pleased
as it finds a solution in a few seconds.

2.2 CoPTIC Architecture

Now let us consider how CoPTIC produces the solution. Figure 2 shows the
architecture of the system. After using the C compiler gec to syntax-check
and type-check the program (not shown), it runs the bounded model-checker
CBMC on the program, asking it to verify absence of assertion violations. CBMC
transforms the problem of finding an assertion violation in the program into a
giant SAT instance and attempts to solve it using a SAT solver.

The header file coptic.h supplies definitions of GUESS, CHECK, SATISF'Y
and OUTPUT that behave as follows: GUESS tells CBMC to pick a value
nondeterministically and log it. CHECK takes a condition and tells CBMC to
ignore program paths where the condition is false. SATISF'Y violates a trivial
assertion; this tells CBMC to report failed verification and an accompanying
program trace if there is a program path that reaches the assertion. OUTPUT
takes a block and ignores it.

If the SAT instance is unsatisfiable, the solver reports this to CBMC. Then
CBMC reports to CoPTIC that program verification was successful, as no asser-
tion violation could be found. CoPTIC in turn reports that the constraints in
the model were unsatisfiable.

178 M. M. Lester

Conversely, if the SAT instance is satisfiable, the solver reports a satisfying
assignment to CBMC. CBMC converts this into a trace of steps of execution
through the program that lead to the assertion violation. It reports to CoPTIC
that program verification was unsuccessful and logs the trace that led to the
assertion violation. Now CoPTIC can report that the constraints in the model
are satisfiable, but it still has to show how.

To do this, it reads the nondeterministically GUFESSed values from the log
and writes a C header file containing a stateful replay function that, on each
successive call, returns these values in the same order. It compiles the model with
gce, but uses a preprocessor macro to set a flag that changes the behaviour of
coptic.h. Now GUESS calls the replay function, CHECK becomes a run-time
assertion, SATISF'Y does nothing and OUTPUT executes the supplied block.

Finally, CoPTIC runs the compiled model. The replay function provides the
variable values that satisfy the constraints in the model, the run-time assertions
pass and the OUTPUT code prints the solution. Because the OUTPUT code
can be arbitrary C code, it is easy to format the solution and display it in any
reasonable format.

Many constraint models represent not just a single problem, but a family
of similar instances. For example, instances for our magic square model might
involve completing partially filled magic squares of different sizes. In this case,
CoPTIC allows instance data to be imported from an external source, such as
a JSON or CSV file. To achieve this, the user needs to specify a filter program
that translates the instance data into definitions in a C header file; coptic.h
will then include this header file. The filter can be written in any language and
the CoPTIC distribution includes some examples.

2.3 Planning: Knight’s Tour

In the magic square example, the CoPTIC model began by guessing all the values
in the square and the rest of the program was deterministic. However, this need
not be the case, and we can often express a model more naturally or succinctly
by mixing declarative and imperative programming. This is particularly useful
for planning problems.

To demonstrate the flexibility of this approach, let us consider another well-
known problem: finding a knight’s tour on a chessboard. An open knight’s tour
is a sequence of moves made by a knight on a chessboard that visits each square
exactly once. The top of Figure 3 shows a simple program to find a knight’s
tour on a 5 X 5 board using a recursive implementation of a backtracking search.
Most of the implementation’s complexity comes from using recursion to manage
backtracking and from enumerating all the possible moves of a knight from a
particular square.

The bottom of Figure 3 shows how we can remove this complexity in a
CoPTIC model. Instead of using recursion and backtracking, we now use a simple
loop that nondeterministically guesses the next move at each step. Instead of
enumerating possible moves explicitly, we guess a position where the z-ordinate
differs by 2 and the y-ordinate differs by 1 or vice versa.

CoPTIC: Constraint Programming Translated Into C

#define M 5
#define N 5

#include <stdio.h>

int board[M][N] = {0};

int search(int x, int y, int d);
int search(int x, int y, int d) {

if (x <0 |l x> M ||l y <0 ||l y > N || board[x][y]l) {
return 0; // Check the square is on the board and unvisited.

}
d--; // Stop when all squares visited.
if (d == 0) {
printf ("(%d,%d)\n", x, y);
return 1;
}

board[x][y]l = 1; // Don’t visit this square again.
|l search(x+2, y-1, d) || // Try all valid
search(x-2, y+1, d) || search(x+2, y+1, d) || // knight’s moves
search(x-1, y-2, d) || search(x+1, y-2, d) || // in sequence.
search(x-1, y+2, d) || search(x+1, y+2, d)) {
printf ("(%d,%d)\n", x, y); // Unwind recursion on success,
return 1; // printing moves in reverse.

if (search(x-2, y-1, d)

}
board[x][y]l = 0; // Backtrack on failure.

return O;

int main() {
search (0, 0, (MxN)); // Start the search, beginning in a corner.

179

#define M 5
#define N 5

#include "coptic.h"

int main() {
int board[M][N] = {0};
int x0 = 0; // Begin in a corner.
int y0O = 0;
printf ("(0,0)\n");

for (int d = 1; d < M*N; d++) { // Find a sequence of M*N moves.
int x = GUESS_INT(); // Pick the next move.
int y = GUESS_INT();
// Check the square is on the board and unvisited.

CHECK(!(x < 0 ||l x >> M || y <0 ||l y > N || board[x][yl));
CHECK ((abs (x-x0) == 2 && abs(y-y0) == 1) || // Check it’s a valid
(abs(x-x0) == 1 && abs(y-yO0) 2)); // knight’s move.
board[x][y] = 1; // Don’t visit this square again.
OUTPUT (
printf ("(%d,%d)\n", x, y); // Print the move.
)
x0 = x; // The square we picked becomes the new position.
yo = y;
}
SATISFY();

Fig. 3. Top: A backtracking program to find an open Knight’s Tour (with moves listed
in reverse order). Bottom: A CoPTIC model to solve the same problem (with moves

listed in order).

180 M. M. Lester

#include "coptic.h" // Trie generated for this model:
int main() { void trie(int x) {

int x = GUESS_INT(); switch (_trie) {

// (x-2)(x-5) = x"2 - 7x + 10 case O:

CHECK ((x*x) - (7*x) + 10 == 0); switch (x) {

DECLARE (x); case 5: _trie = 1; break;

ENUMERATE () ; case 2: _trie = 2; break;

OUTPUT (printf ("%d\n", x);) default: _trie = -1; break;
} }

break;

// Rough definitions when using CBMC: default: _trie = -1; break;
// DECLARE(X) -> log(X); trie(X) }
// ENUMERATE() -> assert(_trie==1leaf); |}

Fig. 4. A CoPTIC model to enumerate integer solutions to a quadratic equation.

Knight’s Tour can be solved efficiently using a program implementing back-
tracking search with the additional heuristic of preferring the move that leaves
fewest options for the following move. Our CoPTIC model cannot compete with
this in speed of execution (or with a custom encoding in SAT [21]), but it has
the advantages that it is shorter and does not require specialist knowledge of the
problem, so is significantly easier to implement.

2.4 Enumeration: Integer Quadratics

Next we turn our attention to constraint problems that require not only satisfying
a set of constraints, but also finding an optimal solution (as measured by some
objective function) or enumerating all solutions. Both of these involve making
multiple calls to CBMC.

For solution enumeration, we consider the example of finding integer solutions
to an equation. Figure 4 shows a CoPTIC model to find all integer solutions
to a quadratic equation. This model introduces ENUMERATE, which instructs
CoPTIC to enumerate all solutions.

This is not as straightforward as it might first seem. While CBMC generates
a SAT instance and some SAT solvers support an option that enumerates all
solutions to an instance, this would not help much here, as a model may guess
and check auxiliary values that do not contribute to the solution, and these
need not be unique. So we need a way for a model to indicate which values are
significant, in the sense that a difference in one of these values is sufficient to
make a solution distinct; this is what DECLARE does.

We also need a way, within the C program, to assume that one of these values
is different. In this case, we could use a single assumption to check z is not equal
to the solution already found. But in general, a solution may comprise multiple
values and we cannot simply check all of them at once, as they might not all be
in scope simultaneously. (Consider the Knight’s Tour model, where the variable
holding the current position is overwritten on each iteration of the loop.) The
solution CoPTIC adopts is to construct a trie of DECLAREd values for each
solution, then within the model to trace progress through the trie as the program

CoPTIC: Constraint Programming Translated Into C 181

#define ORDER 4
#define BETTER(A,B) (A < B)

#include "coptic.h"

int main() {
int a[ORDER];

al[0] = 0;
for (int n = 1; n < ORDER; n++) {
aln] = GUESS_INT();
CHECK (al[n] > aln-11);
// DECLARE(al[nl);
OUTPUT (printf ("%d ", alnl);)
}
QUTPUT (printf ("\n");)

for (int i1 = 0; i1l < ORDER; il++) {
for (int j1 = i1+1; j1 < ORDER; j1++) {
for (int i2 = 0; i2 < ORDER; i2++) {
for (int j2 = i2+1; j2 < ORDER; j2++) {
CHECK (((i1==i2)&&(j1==3j2)) || (aljil-ali1l!=alj2]-ali2]1));
}
} // Rough definition when using CBMC on 1st run:
} // OPTIMIZE(X) -> log(X); assert(0)
¥ // Rough definition when using CBMC on 2nd run:
// OPTIMIZE(X) -> log(X); assert (!BETTER(X, BEST))
OPTIMIZE (a[ORDER-1]); // where BEST is best objective found so far.

Fig. 5. A CoPTIC model for finding an optimal Golomb ruler.

executes. Finally, ENUMERATE asserts that the current trie node is terminal;
if it is not, then the solution is novel. This approach is not very efficient, as each
use of DECLARE (after any loops have been unrolled) leads to another copy
of the trie’s “next node” function in CBMC’s SAT encoding. But it does work
even when there are multiple paths through a program and when the number of
DECLAREA values varies between solutions. For situations where the number
of values is constant and they are all available at a single point in the program,
CoPTIC supports a form of DECLARE with multiple arguments.

One usually considers the problem of finding solutions to polynomial equations
in the context of real numbers, not integers. So one might wonder whether CoPTIC
supports GUESSing values of types other than int. Indeed it does: all primitive
C types are supported. However, while (in contrast to many other constraint
solvers) floating point types are supported, CBMC’s implementation depends on
an encoding in SAT, which does not perform very well.

2.5 Optimisation: Golomb Rulers

Finally, to illustrate optimisation, we consider the Golomb ruler problem of finding
a sequence of n increasing integers, starting from 0, such that the differences
between all pairs taken from the sequence are unique. For a given n, an optimal
Golomb ruler minimises the last number in the sequence. For n = 4, the only
optimal solution is 0, 1,4, 6.

182 M. M. Lester

Figure 5 shows a CoPTIC model for finding an optimal Golomb ruler. The
model guesses a sequence of n integers and checks that the sequence is increasing,
and that all differences between pairs are unique. (Ignore the commented line for
the moment.) Instead of calling SATISFY, this model calls OPTIMIZE with the
last element of the sequence, which is our objective that we wish to minimise.

When CoPTIC passes this model to CBMC, it uses an implementation of
OPTIMIZE that does two things. Firstly, it logs the objective, so that CoPTIC
can read it afterwards. Secondly, if it has already found a feasible value of the
objective, it asserts that the objective is not BETTER than that previously found.
CoPTIC calls CBMC repeatedly until it is unable to find a better objective, at
which point, the best found so far must be optimal.

By allowing BETTER to be defined as part of the model, CoPTIC supports
not only maximisation and minimisation of numerical objectives, but also more
complex objectives, such as lexicographic minimisation of a pair of values.

Returning to the problem of finding an optimal Golomb Ruler, for n = 7, there
are multiple solutions. We can use CoPTIC to find them all by uncommenting
the DECLARE line and replacing OPTIMIZE with ENUMERATE OPTIMAL.
CoPTIC treats ENUMERATE OPTIMAL the same as OPTIMIZE until it has
found an optimal solution, after which it behaves as ENUMERATE with the
extra restriction that solutions must be optimal.

3 Practical Considerations

Now that we have seen how the guess-and-check paradigm is used for modelling
and how it is implemented by CoPTIC for constraint satisfaction, optimisation
and enumeration, we turn our attention to some practical details of usability and
performance.

3.1 Debugging Constraint Models

In program verification, a common concern is not only whether a program meets
its specification, but also whether the specification is correct. In constraint
programming, a similar concern applies. It is easy to under-specify a model,
resulting in solutions to the model that are not solutions to the intended problem.
In this case, a useful approach is to add extra logging to the model as OUTPUT.
It is also easy to over-specify a model, resulting in a model with no solutions,
even though the intended problem has solutions. This is harder to diagnose, but
one helpful method is to comment out CHECK s until the model has a solution.

Another important concern in verification is whether the verification tool has
accurately modelled the behaviour of the program being verified. Similarly, in
constraint programming, we may worry whether the solution found by a solver
really does satisfy the constraints. CoPTIC addresses this by turning CHECKs
into assertions when running the model with nondeterminism resolved. On the
occasions when the compiled program does violate one of these assertions, we
have usually found that it results from an erroneous out-of-bounds array access

CoPTIC: Constraint Programming Translated Into C 183

in the model, which is undefined behaviour. A particular problem that results
from CBMC’s bit-level modelling of two’s complement integer arithmetic is
that CoPTIC may find solutions to a model that involve very large integers
that overflow when added together, leading to an erroneous negative objective
value. This is usually easy to avoid by CHECKing an upper bound on GUESSed
integers in the model. It may also improve performance, especially for optimisation
problems, where it may reduce the number of calls to CBMC.

CoPTIC keeps all files it produces during solution in a temporary directory.
This includes log files from CBMC, header files for replaying nondeterminism,
and output from the compiled programs (of which there may be several in the
case of optimisation or enumeration). In the event of any problems, this makes it
easy for a user to examine exactly what has happened.

One occasional problem is that CBMC is unable to translate the model
into a SAT instance. General program verification is undecidable, so there are
necessarily limits to the kinds of programs CBMC can handle. For example, it
may be unable to infer a bound on the number of executions of a loop. In this
case, CoPTIC will hang and CBMC'’s log file will show the loop in question being
unrolled repeatedly, so the cause will be clear. However, we recommend that it is
best to avoid this problem in the first place by using simple for loops with obvious
statically computable bounds wherever possible. We also suggest that, while
use of arrays, functions and structs is fine, unbounded recursion, heap memory
allocation and pointer arithmetic should be avoided. CBMC should always be
able to handle programs satisfying these restrictions.

3.2 Performance

CoPTIC’s target audience is casual users of constraint programming. Therefore
performance need not be outstanding, but it should still be acceptable. In
constraint programming, performance often depends more on modelling decisions
than on the efficiency of the solver, so an important factor in this regard is that
different ways of modelling a problem should be easily expressible. We argue that
CoPTIC’s ability to mix imperative with declarative programming helps here.

Clearly there will be some overhead introduced by CBMC’s translation into
SAT, when compared with a translation from a dedicated constraint programming
language directly into SAT. An obvious example might be use of fixed bit-width
integers in the C program that are larger than necessary for the range of values
taken by a variable in the model. But if these wasted high bits do not materially
participate in any constraints, they will rarely lead to a conflict during SAT
solving, so the SAT solver may be able to ignore them much of the time.

CBMC aims for bit-precise verification of C programs running on conventional
microprocessors, so it uses a two’s complement encoding for integers. This is
acceptable, but Zhou and Kjellerstrand found that a sign-magnitude encoding
worked better when developing PicatSAT [23]. Furthermore, for many problems
where variables range over small domains, a one-hot encoding works better than
a binary encoding.

184 M. M. Lester

4 Evaluation on CSPLib Problems

We claim that CoPTIC is easy to write models in and that its performance is
adequate for many problems. To evaluate these claims empirically, we developed
and benchmarked CoPTIC models for problems from CSPLib [12].

CSPLib is “a library of test problems for constraint solvers” expressed in
natural language. The problems are drawn from a variety of domains, including
operations research, combinatorial mathematics and puzzle games. Most problems
include sample models written in constraint programming languages, such as
MiniZinc or FEssence. Some problems consist of a single instance; some consist
of several similar instances. Some problems are constraint satisfaction problems;
some are optimisation problems. CSPLib now contains 95 problems and has
served as a focus for research in constraint programming over the past two
decades [13]. For our evaluation, we restrict our attention to the 14 problems
in the original 1999 release. This gives us a reasonable sample of the different
kinds of problem, although there are no solution enumeration problems; see the
artifact for some examples of enumeration [15].

For each CSPLib problem, we wrote a CoPTIC model. Where present in
CSPLib, we also selected a MiniZinc model and an Essence model for the
same instance. Where a problem included several instances, we picked one we
considered to be representative. Mostly, we chose the example given in the
problem specification, but in some cases these were very easy, so we chose harder
instances to make the differences in performance clearer. For problem 6, we chose
the largest instance listed as having multiple solutions. For problem 10, we used
the hardest instance solved using SAT by Triska and Musliu [19]. For problems
12 and 13, we picked the hardest instances in CSPLib.

To benchmark performance, we ran our models using CoPTIC and recorded
time taken to solve them. We measured times with two different builds of CBMC
5.57.0: one using MiniSat 2.2.1 as the solver (the standard configuration) and the
other using CaDiCalL 1.4.1 (a supported compile-time option). For comparison,
we also ran the MiniZinc models and the Essence models using SAT-based solvers.
Note that, while these models encode the same problem, they may do so with
quite different formalisations, which can have a big impact on solution time. This
is fine for our purposes, as in evaluating the whole CoPTIC system, the ease with
which we can write good models is at least as important as the speed of solution.

To run the MiniZinc models, we used MiniZinc 2.6.3 to convert them into
FlatZinc, then PicatSAT in Picat 3.3#3 to solve them. PicatSAT uses the SAT
solver Kissat 1.0.3. PicatSAT won 2nd place in the Free track of the MiniZinc
Challenge 2022; Kissat won the Main track of the SAT Competition 2020. We
also benchmarked a version of PicatSAT patched to use CaDiCal. 1.4.1.

To run the Essence models, we used Conjure 2.3.0 to compile to EssencePrime,
then SavileRow 1.9.1 to solve using CaDiCaL 1.4.1 as the SAT solver (instead of
the shipped solver CaDiCaL 1.3.0).

Table 1 shows our results. All benchmarks were run on a Debian Linux 10
machine with a 3.4 GHz Intel Core i5-7500 CPU and 64 GB of RAM, using a
time limit of 1 hour. It is clear that dedicated constraint modelling languages

CoPTIC: Constraint Programming Translated Into C 185

Table 1. Solution times for different CSPLib problem instances with different models
and solvers. All values are times rounded to the nearest second. The time limit was
1 hour of CPU time. Times are from a single run; problems 4 and 10 showed some
variation on repetition.

CoPTIC CoPTIC Essence MiniZinc MiniZinc

Instance (MiniSat) (CaDiCaL) (CaDiCaL) (CaDiCaL) (Kissat)

1 sample 0 0 3 0 0
2 catfood 3 3563 324 timeout 23 16
3 QG4, non-ID 0 0 2 0 0
4 sample 28 99
5n=17 118 74 4
6 n=11 timeout 2718 memout 582 699
7n=12 1 1 2 0 0
8 sample 1 1 6 0 0
9 n=21, size=112 78 9 timeout
10 g=8, s=4, w=7 63 93 30 timeout timeout
11 sample 163 31
12 soccer player 6 7 memout 0 0
13 Ian10 18 25 7
14 sample 9 7 0 0

and solvers generally perform better than CoPTIC, as one would expect. But
the majority of problems are still solvable within a reasonable amount of time.
Therefore this is not a problem for our intended user, who would normally be
happy to trade an increase in solution time for a decrease in time and effort
needed to learn how to write a model. In fact, comparing directly with just the
Essence models or just the MiniZinc models, we see that the CoPTIC models led
to more solutions within our time limit, although this is somewhat dependent on
our choice of time limit and hardness of problem instances.

Using CBMC built with CaDiCaL rather than MiniSat slows down some
models, but mostly results in more consistent performance. CaDiCal is much
better at proving unsatisfiability, which makes a big difference for the optimisation
problems (2, 5 and 6), where unsatisfiability demonstrates optimality.

During our benchmarking, we discovered that there were some errors in the
Essence models in CSPLib. The model for problem 2 (template design) omits
the limit on the total number of designs in a template, so the solution it gives
is infeasible. We fixed the model by adding the missing constraint. The model
for problem 8 (vessel loading) has a subtle error resulting from the semantics
of evaluating a function outside its defined domain, so it can never be solved.
We fixed the model by changing a guard in an implication. We also found that
the EssencePrime solver SavileRow ran out of memory very quickly on some
problems; we suspect this is a bug in the translation to SAT.

It is difficult to evaluate ease of writing models quantitatively, although
perhaps this could be done through a controlled trial with undergraduate students.
But what we can do is measure the size of the models we produced in terms

186 M. M. Lester

Table 2. Number of lines of code and resulting SAT instance sizes (thousands of
variables/clauses) for modelling different CSPLib problems in different languages. Blank
lines, comments, input data and formatting are excluded from SLoC totals.

CSPLib Problem SLoC Instance size (kvars/kclauses)
Name C. Ess. MZ CoPTIC Essence MiniZinc
1 Car Sequencing 22 15 34 4/ 17 29 / 145 0/ 2
2 Template Design 27 12 60 13/ 54 / 3/ 25
3 Quasigroup Existence 35 8 44 11/ 38 1/ 4 1/ 9
4 Mystery Shopper 44 90 / 134 / /

5 Low Autocorrelation 18 4 74 / 361 2/ 53 /
6 Golomb Rulers 21 10 12 85/ 360 / 10/ 87
7 All Interval 23 7 19 27/ 77 2/ 6 0/ 4
8 Vessel Loading 33 32 33 24 / 109 8/ 47 1/ 5
9 Perfect Square 26 12 23/ 89 174 /1046 /
10 Social Golfers 38 8 33 175/ 480 41/ 153 366 / 4541
11 ACC Basketball 146 84 / 755 / /
12 Nonograms 49 52 84 102/ 317 / 5/ 18
13 Progressive Party 56 14 78 / 251 6/ 43 /
14 Solitaire Battleships 119 85 94 / 403 / 6/ 46

of source lines of code (SLoC). While there are many criticisms of SLoC, it is
widely used as a metric to estimate the amount of effort needed to develop a
program. Table 2 shows the size of our CoPTIC models, compared with the
MiniZinc and Essence models. As is conventional, we do not count blank lines or
comments. We have also chosen not to count lines used for any input data or for
formatting output. For input data, this is because the formats are very similar,
but conventions on line breaks may differ between them, so it is not meaningful
to compare them. For formatting, Essence does not appear to support custom
formatting in the models, so including formatting code would inflate the line
counts for CoPTIC and MiniZinc. Furthermore, for some problems, the output
format may differ significantly between the CoPTIC and MiniZinc models. For
example, output for a problem involving laying out rectangles in a grid could
consist of co-ordinates of the rectangles or a rendering in ASCII art.

Again, it is clear that models written in the dedicated modelling languages
tend to be smaller, as one would expect, However, the CoPTIC models are of
similar size to and occasionally smaller than the MiniZinc models. The Essence
models are particularly succinct because they include more complex, higher-
level modelling constructs. For example, in the model for the Progressive Party
problem, one of the constraints is encoded in the Essence model using universal
quantification, function preimage and function composition, while the CoPTIC
model expresses the same constraint using a for loop and nested array lookup.
From the perspective of a casual user, while the latter is more verbose, it may be
easier to write and comprehend.

CoPTIC: Constraint Programming Translated Into C 187

Table 2 also shows the number of variables and clauses in the SAT instances
generated from each model. While this is a poor metric of the difficulty of a SAT
instance, it is useful here in demonstrating the extra overhead introduced by
using CoPTIC, compared with a dedicated modelling language and encoding.

5 Related Work

The key underlying technology in CoPTIC is the bounded model checker CBMC [7],
which in turn relies on the SAT solvers MiniSat and CaDiCaL. In typical op-
eration, CBMC aims to verify the universally quantified property that, for all
paths of execution of a C program, there is no assertion violation. It does this by
using a SAT solver to solve the existential problem of finding a path containing
an assertion violation. If the SAT solver finds a path, CBMC reports failed
verification with the path as a counterexample; if not, CBMC reports successful
verification. In CoPTIC, we typically use CBMC to solve the existential problem
of finding values of variables that satisfy constraints.

In the field of automated verification, bounded model checkers have been
successful because of their ability to verify (or find bugs in) large programs with
bit-level accuracy and minimal user annotation. Other successful bounded model
checkers include SMACK [18], which uses the LLVM toolchain with Boogie as
the solver, and ESBMC (8], which uses SMT solvers rather than a SAT solver.

Most modern SAT solvers use a variant of Conflict-Driven Clause Learning
(CDCL). MiniSat [9] won the SAT Race 2006. Because of its good performance
and publicly available, easily editable source code, it became the default choice
for developers of applications that needed a SAT solver. The more modern solver
CaDiCaL [4] won several tracks in the 2017 and 2018 competitions and has since
also become a popular choice. The recent editions of the SAT Competition have
been dominated by Kissat, Biere’s rewrite of CaDiCal in C.

Constraint programming encompasses a wide range of modelling languages
and solution techniques. Because the ability of a technique to handle a problem
efficiently depends significantly on how the problem is expressed, modelling of
constraint problems, including the choice of modelling language, remains a big
concern. Significant milestones in modelling include the release of CSPLib in
1999 [12] and the MiniZinc modelling language in 2007 [17]. Whilst MiniZinc is the
most broadly supported language and has a long-running associated competition,
there are many others, including Essence [11] (which supports higher-level types,
such as functions), Picat [24] (which adopts a logic programming paradigm) and
XCSP3 [1] (which aims to be a kind of intermediate language).

There are several constraint programming toolkits such as Gecode [6] that
provide an API through which a constraint solver can be invoked from within a
C program. However, these either require that the constraints be written in a
separate modelling language, or that the model be built through a sequence of
API calls that resembles a transliteration of a constraint program written in the
solver’s native language. The system closest to ours is CoJava [5], which adopts
a similar guess-and-check paradigm in Java; there is a custom translation into

188 M. M. Lester

MiniZinc [10]. As it does not use an existing, well-tested verification tool, there
may be concerns about the correctness of its translation.

The main techniques implemented in general-purpose constraint solvers are
backtracking search and local search, both of which can be improved by good
choice of heuristics and constraint propagation. However, in recent years, transla-
tion into SAT has become a leading technique for solving constraint problems.
PicatSAT [22] won the main tracks in the XCSP3 Competition 2019 and 2022,
and has ranked highly in every MiniZinc Challenge since 2016.

The idea of solving a constraint problem by translating it into C and using a C
program verification tool, such as CBMC, is not new, but CoPTIC automates part
of this process. Verma and Yap translated XCSP3 problems into C programs [20]
and used them to benchmark symbolic execution tools such as KLEE. Lester
used a similar translation as the basis for Exchequer [2], which won the Mini
Solver track in the XCSP3 Competition 2022. Lester has also shown how to
solve the planning problem of completing an interactive fiction game by applying
CBMC to a modified version of the source code [14]. Meanwhile, in the SAT
Competition 2022, Manthey submitted a set of benchmarks based around using
CBMC to solve the puzzle Summle [16].

6 Conclusion

We have presented the CoPTIC system for constraint programming, which allows
a user to write constraint models in C and solve them by translation to SAT
using the bounded model checker CBMC. Our system is freely available online
and easy to install, with only standard dependencies. CoPTIC supports not only
constraint satisfaction problems, but also optimisation and enumeration.

These features make CoPTIC an attractive system for casual users of con-
straint programming. In time, it may serve as a gateway language for some to
learn dedicated constraint programming languages. As well as being a useful
system in its own right, CoPTIC showcases the power of automated verification
tools and SAT solvers, which have advanced massively in the last two decades.

In many cases, a CoPTIC model for solving a problem will perform better
than a C program that uses brute force or heuristic search. Even when it does
not, we should recall that in the world of programming, it is received wisdom
that “premature optimisation is the root of all evil”, as it wastes development
effort and increases the risk of introducing bugs. Thus the CoPTIC approach is
still preferable, as it reduces development effort.

This argument also applies at the meta level. For occasional users of constraint
programming, it is better to write constraint programs in a language one already
knows than to expend time and effort learning a dedicated constraint programming
language, even if the dedicated language ultimately allows one to write more
succinct models and supports more efficient solvers. For regular users of constraint
programming, the dedicated language is a clear winner, but for casual users,
CoPTIC achieves an acceptable balance of ease of learning, ease of use and
performance.

CoPTIC: Constraint Programming Translated Into C 189

Data Availability Statement

The source code and constraint models that support the findings of this study
are available in Zenodo: https://doi.org/10.5281/zenodo.7313351 [15]. The
constraint models were derived from CSPLib: https://www.csplib.org/.

References

1. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C., Roussel, O.: Xcsp3 and
its ecosystem. Constraints An Int. J. 25(1-2), 47-69 (2020). https://doi.org/10.
1007/s10601-019-09307-9, https://doi.org/10.1007/s10601-019-09307-9

2. Audemard, G., Lecoutre, C., Lonca, E.: Proceedings of the 2022 XCSP3 competition.
CoRR abs/2209.00917 (2022). https://doi.org/10.48550/arXiv.2209.00917,
https://doi.org/10.48550/arXiv.2209.00917

3. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses -
execution-based validation of verification results. In: Dubois, C., Wolff, B. (eds.)
Tests and Proofs - 12th International Conference, TAPQSTAF 2018, Toulouse,
France, June 27-29, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10889, pp. 3-23. Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_
1, https://doi.org/10.1007/978-3-319-92994-1_1

4. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCal, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Jarvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 — Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51-53. University of Helsinki (2020),
https://helda.helsinki.fi/handle/10138/318450

5. Brodsky, A., Nash, H.: Cojava: Optimization modeling by nondeterministic simula-
tion. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming
- CP 2006, 12th International Conference, CP 2006, Nantes, France, September
25-29, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4204, pp. 91—
106. Springer (2006). https://doi.org/10.1007/11889205_9, https://doi.org/
10.1007/11889205_9

6. Cipriano, R., Dovier, A., Mauro, J.: Compiling and executing declarative modeling
languages to gecode. In: de la Banda, M.G., Pontelli, E. (eds.) Logic Programming,
24th International Conference, ICLP 2008, Udine, Italy, December 9-13 2008,
Proceedings. Lecture Notes in Computer Science, vol. 5366, pp. 744-748. Springer
(2008). https://doi.org/10.1007/978-3-540-89982-2_69, https://doi.org/10.
1007/978-3-540-89982-2_69

7. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings. Lecture Notes in Com-
puter Science, vol. 2988, pp. 168—-176. Springer (2004). https://doi.org/10.1007/
978-3-540-24730-2_15, https://doi.org/10.1007/978-3-540-24730-2_15

8. Cordeiro, L.C., Fischer, B., Marques-Silva, J.: Smt-based bounded model check-
ing for embedded ANSI-C software. IEEE Trans. Software Eng. 38(4), 957-974
(2012). https://doi.org/10.1109/TSE.2011.59, https://doi.org/10.1109/TSE.
2011.59

https://doi.org/10.5281/zenodo.7313351
https://www.csplib.org/
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.48550/arXiv.2209.00917
https://doi.org/10.48550/arXiv.2209.00917
https://doi.org/10.48550/arXiv.2209.00917
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://helda.helsinki.fi/handle/10138/318450
https://doi.org/10.1007/11889205_9
https://doi.org/10.1007/11889205_9
https://doi.org/10.1007/11889205_9
https://doi.org/10.1007/11889205_9
https://doi.org/10.1007/978-3-540-89982-2_69
https://doi.org/10.1007/978-3-540-89982-2_69
https://doi.org/10.1007/978-3-540-89982-2_69
https://doi.org/10.1007/978-3-540-89982-2_69
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59

190

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. M. Lester

Eén, N., Sorensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502-518. Springer
(2003). https://doi.org/10.1007/978-3-540-24605-3_37, https://doi.org/10.
1007/978-3-540-24605-3_37

Francis, K., Brand, S., Stuckey, P.J.: Optimisation modelling for software developers.
In: Milano, M. (ed.) Principles and Practice of Constraint Programming - 18th
International Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7514, pp. 274-289. Springer
(2012). https://doi.org/10.1007/978-3-642-33558-7_22, https://doi.org/10.
1007/978-3-642-33558-7_22

Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The design of
ESSENCE: A constraint language for specifying combinatorial problems. In: Veloso,
M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, January 6-12, 2007. pp. 80-87 (2007),
http://ijcai.org/Proceedings/07/Papers/011.pdf

Gent, I.P., Walsh, T.: Cspyj,: A benchmark library for constraints. In: Jaffar,
J. (ed.) Principles and Practice of Constraint Programming - CP’99, 5th In-
ternational Conference, Alexandria, Virginia, USA, October 11-14, 1999, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1713, pp. 480-481. Springer
(1999). https://doi.org/10.1007/978-3-540-48085-3_36, https://doi.org/10.
1007/978-3-540-48085-3_36

Gent, I.P., Walsh, T.: Csplib: Twenty years on. CoRR abs/1909.13430 (2019),
http://arxiv.org/abs/1909.13430

Lester, M.M.: Solving interactive fiction games via partial evaluation and bounded
model checking. CoRR abs/2012.15365 (2020), https://arxiv.org/abs/2012.
15365

Lester, M.M.: CoPTIC: Constraint programming translated into C (Nov 2022).
https://doi.org/10.5281/zenodo.7313351, https://doi.org/10.5281/zenodo.
7313351

Manthey, N.: Solving summle.net with SAT. In: Balyo, T., Heule, M., Iser, M.,
Jarvisalo, M., Suda, M. (eds.) Proc. of SAT Competition 2022 — Solver and Bench-
mark Descriptions. Department of Computer Science Report Series B, vol. B-2022-1,
pp. 70-71. University of Helsinki (2022), http://hdl.handle.net/10138/318450

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard CP modelling language. In: Bessiere, C. (ed.) Principles
and Practice of Constraint Programming - CP 2007, 13th International Con-
ference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4741, pp. 529-543. Springer (2007).
https://doi.org/10.1007/978-3-540-74970-7_38, https://doi.org/10.1007/
978-3-540-74970-7_38

Rakamaric, Z., Emmi, M.: SMACK: decoupling source language details from verifier
implementations. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8559, pp. 106-113. Springer (2014). https://doi.org/10.
1007/978-3-319-08867-9_7, https://doi.org/10.1007/978-3-319-08867-9_7

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-33558-7_22
https://doi.org/10.1007/978-3-642-33558-7_22
https://doi.org/10.1007/978-3-642-33558-7_22
https://doi.org/10.1007/978-3-642-33558-7_22
http://ijcai.org/Proceedings/07/Papers/011.pdf
https://doi.org/10.1007/978-3-540-48085-3_36
https://doi.org/10.1007/978-3-540-48085-3_36
https://doi.org/10.1007/978-3-540-48085-3_36
https://doi.org/10.1007/978-3-540-48085-3_36
http://arxiv.org/abs/1909.13430
https://arxiv.org/abs/2012.15365
https://arxiv.org/abs/2012.15365
https://doi.org/10.5281/zenodo.7313351
https://doi.org/10.5281/zenodo.7313351
https://doi.org/10.5281/zenodo.7313351
https://doi.org/10.5281/zenodo.7313351
http://hdl.handle.net/10138/318450
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7

19.

20.

21.

22.

23.

24.

CoPTIC: Constraint Programming Translated Into C 191

Triska, M., Musliu, N.: An improved SAT formulation for the social golfer
problem. Ann. Oper. Res. 194(1), 427-438 (2012). https://doi.org/10.1007/
s10479-010-0702-5, https://doi.org/10.1007/s10479-010-0702-5

Verma, S., Yap, R.H.C.: Benchmarking symbolic execution using constraint prob-
lems - initial results. In: 31st IEEE International Conference on Tools with Artifi-
cial Intelligence, ICTAI 2019, Portland, OR, USA, November 4-6, 2019. pp. 1-9.
IEEE (2019). https://doi.org/10.1109/ICTAI.2019.00010, https://doi.org/
10.1109/ICTAI.2019.00010

Zhou, N.: In pursuit of an efficient SAT encoding for the hamiltonian cycle prob-
lem. In: Simonis, H. (ed.) Principles and Practice of Constraint Programming
- 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, Septem-
ber 7-11, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12333,
pp. 585-602. Springer (2020). https://doi.org/10.1007/978-3-030-58475-7_34,
https://doi.org/10.1007/978-3-030-58475-7_34

Zhou, N., Kjellerstrand, H.: The picat-sat compiler. In: Gavanelli, M., Reppy,
J.H. (eds.) Practical Aspects of Declarative Languages - 18th International
Symposium, PADL 2016, St. Petersburg, FL, USA, January 18-19, 2016. Pro-
ceedings. Lecture Notes in Computer Science, vol. 9585, pp. 48-62. Springer
(2016). https://doi.org/10.1007/978-3-319-28228-2_4, https://doi.org/10.
1007/978-3-319-28228-2_4

Zhou, N., Kjellerstrand, H.: Optimizing SAT encodings for arithmetic constraints.
In: Beck, J.C. (ed.) Principles and Practice of Constraint Programming - 23rd
International Conference, CP 2017, Melbourne, VIC, Australia, August 28 -
September 1, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10416,
pp. 671-686. Springer (2017). https://doi.org/10.1007/978-3-319-66158-2_43,
https://doi.org/10.1007/978-3-319-66158-2_43

Zhou, N., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with
Picat. Springer Briefs in Intelligent Systems, Springer (2015). https://doi.org/
10.1007/978-3-319-25883-6, https://doi.org/10.1007/978-3-319-25883-6

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1109/ICTAI.2019.00010
https://doi.org/10.1109/ICTAI.2019.00010
https://doi.org/10.1109/ICTAI.2019.00010
https://doi.org/10.1109/ICTAI.2019.00010
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6
http://creativecommons.org/licenses/by/4.0/

Check for
updates

Acacia-Bonsai: A Modern Implementation of
Downset-Based LTL Realizability

Michaél Cadilhac!®)® and Guillermo A. Pérez?

! DePaul University, Chicago, USA
michael@cadilhac.name
2 University of Antwerp — Flanders Make, Antwerp, Belgium
guillermo.perez@uantwerp.be

Abstract. We describe our implementation of downset-manipulating al-
gorithms used to solve the realizability problem for linear temporal logic
(LTL). These algorithms were introduced by Filiot et al. in the 2010s
and implemented in the tools Acacia and Acacia+ in C and Python.
We identify degrees of freedom in the original algorithms and provide
a complete rewriting of Acacia in C+4-20 articulated around genericity
and leveraging modern techniques for better performance. These tech-
niques include compile-time specialization of the algorithms, the use of
SIMD registers to store vectors, and several preprocessing steps, some
relying on efficient Binary Decision Diagram (BDD) libraries. We also
explore different data structures to store downsets. The resulting tool is
competitive against comparable modern tools.

Keywords: LTL synthesis - C++ - downset - antichains - SIMD - BDD

1 Introduction

Nowadays, hardware and software systems are everywhere around us. One way
to ensure their correct functioning is to automatically synthesize them from a
formal specification. This has two advantages over alternatives such as testing
and model checking: the design part of the program-development process can be
completely bypassed and the synthesized program is correct by construction.

In this work we are interested in synthesizing reactive systems [17]. These
maintain a continuous interaction with their environment. Examples of reac-
tive systems include communication, network, and multimedia protocols as well
as operating systems. For the specification, we consider linear temporal logic
(LTL) [27]. LTL allows to naturally specify time dependence among events that
make up the formal specification of a system. The popularity of LTL as a formal
specification language extends to, amongst others, AI [15,8,16], hybrid systems
and control [6], software engineering [21], and bio-informatics [1].

The classical doubly-exponential-time synthesis algorithm can be decom-
posed into three steps: 1. compile the LTL formula into an automaton of ex-
ponential size [32], 2. determinize the automaton [29,26] incurring a second ex-
ponential blowup, and 3. determine the winner of a two-player zero-sum game

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 192-207, 2023.
https://doi.org/10.1007/978-3-031-30820-8_14

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0001-9828-9129
http://orcid.org/0000-0002-1200-4952
https://doi.org/10.1007/978-3-031-30820-8_14
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_14&domain=pdf

Acacia-Bonsai: Downset-Based LTL Realizability 193

played on the latter automaton [28]. Most alternative approaches focus on avoid-
ing the determinization step of the algorithm. This has motivated the develop-
ment of so-called Safra-less approaches, e.g., [20,11,10,31]. Worth mentioning
are the on-the-fly game construction implemented in the Strix tool [24] and the
downset-based (or “antichain-based”) on-the-fly bounded determinization de-
scribed in [13] and implemented in Acacia+ [5]. Both avoid constructing the
doubly-exponential deterministic automaton. Acacia+ was not ranked in recent
editions of SYNTCOMP [18] (see http://www.syntcomp.org/) since it is no
longer maintained despite remaining one of the main references for new ad-
vancements in the field (see, e.g., [12,33,30,22,2]).

Contribution. We present the Acacia approach to solving the problem at hand
and propose a new implementation that allows for a variety of optimization steps.
For now, we have focused on (Biichi automata) realizability, i.e., the decision
problem which takes as input an automaton compiled from the LTL formula
and asks whether a controller satisfying it exists. In our tool, we compile the
input LTL formula into an automaton using Spot [9]. We entirely specialize
our presentation on the technical problem at hand and strive to distillate the
algorithmic essence of the Acacia approach in that context. The main algorithm
is presented in Section 3.4 and the different implementation options are listed in
Section 4. Benchmarks are included in Section 6.

All benchmarks were executed on the revision of the software that can be
found at: https://github.com/gaperez64/acacia-bonsai/tree/SYNTCOMP22.

2 Preliminaries

Throughout this paper, we assume the existence of two alphabets, I and O;
although these stand for input and output, the actual definitions of these two
terms is slightly more complex: An input (resp. output) is a boolean combination
of symbols of I (resp. O) and it is pure if it is a conjunction in which all the
symbols in I (resp. O) appear exactly once; e.g., with I = {41, 2}, the expressions
T (true), L (false), and (i; V i2) are inputs, and (i1 A —ig) is a pure input.
Similarly, an 70 is a boolean combination of symbols of I U O, and it is pure if
it is a conjunction in which all the symbols in I U O appear exactly once. We
use i,j to denote inputs and x,y for I0s. Two IOs = and y are compatible if
T ANy # L.

A Biichi automaton A is a tuple (@, qo,9, B) with @ a set of states, go the
initial state, d the transition relation that uses IOs as labels, and B C @ the
set of Biichi states. The actual semantics of this automaton will not be relevant
to our exposition, we simply note that these automata are usually defined to
recognize infinite sequences of pure 10s. We assume, throughout this paper, the
existence of some automaton A.

We will be interested in valuations of the states of A that encode the number
of visits to Biichi states—again, we do not go into details here. We will simply
speak of vectors over A for elements in Z%, mapping states to integers. We

http://www.syntcomp.org/
https://github.com/gaperez64/acacia-bonsai/tree/SYNTCOMP22

194 M. Cadilhac and G. A. Pérez

will write ¢’ for such vectors, and v, for its value for state g. In practice, these
vectors will range into a finite subset of Z, with —1 as an implicit minimum
value (meaning that (—1) — 1 is still —1) and an upper bound provided by the
problem.

For a vector ¥ over A and an 10 z, we define a function that takes one
step back in the automaton, decreasing components that have seen Biichi states.
Write x5(q) for the function mapping a state g to 1 if ¢ € B, and 0 otherwise.
We then define bwd(7, z) as the vector over A that maps each state p € @ to:

G o (v xpld)
z compatible with y
and we generalize this to sets: bwd(S,z) = {bwd(¢,z) | ¥ € S}. For a set S of
vectors over A and a (possibly nonpure) input ¢, define:

CPre;(S)=5SnN U bwd(S, z) .
z pure 10
x compatible with 4

It can be proved that iterating CPre with any possible pure input stabilizes
to a fixed point that is independent from the order in which the inputs are
selected. We define CPre*(S) to be that set.

All the sets that we manipulate will be downsets: we say that a vector @
dominates another vector ¢ if for all ¢ € @, uy > v4, and we say that a set
is a downset if @ € S and @ dominates ¢ implies that ¥ € S. This allows to
implement these sets by keeping only dominating elements, which form, as they
are pairwise nondominating, an antichain. In practice, it may be interesting to
keep more elements than just the dominating ones or even to keep all of the
elements to avoid the cost of computing domination.

Finally, we define Safe; as the downset {i | i < &k}, i.e., all vectors with
values bounded by k. We are now equipped to define the computational problem
we focus on:

BackwardRealizability
— Given: A Biichi automaton A and an integer k > 0,
— Question: Is there a ¥ € CPre*(Safe;) with vg, > 07

We note, for completeness, that (for sufficiently large values of k) this problem
is equivalent to deciding the realizability problem associated with A: the question
has a positive answer if and only if the output player wins the Gale-Stewart game
with payoff set the complement of the language of A.

3 Realizability algorithm

The problem admits a natural algorithmic solution: start with the initial set, pick
an input 4, apply CPre; on the set, and iterate until all inputs induce no change
to the set, then check whether this set contains a vector that maps ¢y to 0. We
first introduce some degrees of freedom in this approach, then present a slight
twist on that solution that will serve as a canvas for the different optimizations.

Acacia-Bonsai: Downset-Based LTL Realizability 195

3.1 Boolean states

This opportunity for optimization was identified in [4] and implemented in Aca-
cia+, we simply introduce it in a more general setting and succinctly present
the original idea when we mention how it can be implemented in Section 4.2.
We start with an example. Consider the Biichi automaton from Figure 1 with

q0.q1 € B.

Fig. 1. Small automaton with qo,q1 € B.

Recall that we are interested in whether the initial state can carry a non-
negative value, after CPre has stabilized. In that sense, the crucial information
associated with g is boolean in nature: is its value positive or —17 Even fur-
ther, this same remark can be applied to ¢; since g; being valued 6 or 7 is not
important to the valuation of gy. Hence the set of states may be partitioned into
integer-valued states and boolean-valued ones. Naturally, detecting which states
can be made boolean comes at a cost and not doing it is a valid option.

3.2 Actions

For each 10 z, we will have to compute bwd(¥,x) oftentimes. This requires to
refer to the underlying Biichi automaton and checking for each transition therein
whether x is compatible with the condition. It may be preferable to precompute,
for each x, what are the relevant pairs (p, ¢) for which = can go from p to q. We
call the set of such pairs the io-action of x and denote it io-act(z); in symbols:

io-act(z) = {(p,q) | (3(p,y,q) €)]z is compatible with y]} .

Further, as we will be computing CPre;(S) for inputs ¢, we abstract in a
similar way the information required for this computation. We use the term
input-action for the set of io-actions of I0s compatible with ¢ and denote it
i~act(4); in symbols:

iract(i) = U io-act(x) .
z an 10
compatible with ¢

In other words, actions contain exactly the information necessary to compute
CPre. Note that from an implementation point of view, we do not require that the
actions be precomputed. Indeed, when iterating through pairs (p, ¢) € io-act(x),
the underlying implementation can choose to go back to the automaton.

196 M. Cadilhac and G. A. Pérez

3.3 Sufficient inputs

As we consider the transitions of the Biichi automaton as being labeled by
boolean expressions, it becomes more apparent that some pure IOs can be re-
dundant. For instance, consider a Biichi automaton with I = {i}, O = {01, 02},
but the only transitions compatible with ¢ are labeled (i Ao1) and (i A—o1). Pure
I0s compatible with the first label will be (i A 01 A 02) and (i A 01 A —03), but
certainly, these two 10s have the same io-actions, and optimally, we would only
consider (i A o1). However, we should not consider (¢ A 02), as it induces an io-
action that is not induced by a pure I0. We will thus allow our main algorithm
to select certain inputs and IOs and introduce the following notion:

Definition 1. An IO (resp. input) is valid if there exists any pure IO (resp.
input) with the same io-action (resp. input-action). A set X of valid 10s is
sufficient if it represents all the possible io-actions of pure 10s: {io-act(z) | x €
X} = {io-act(z) | = is a pure IO}. A sufficient set of inputs is defined similarly
with input-actions.

3.4 Algorithm
We solve BackwardRealizability by computing CPre* explicitly:

Algorithm 1 Main algorithm

Input: A Biichi automaton A, an integer k > 0
Output: Whether (3¢ € CPre* (Safey))[vg, > 0]

1 Possibly remove some useless states in A

2 Split states of A into boolean and nonboolean

3 Let Downset be a type for downsets using a vector type that possibly has a boolean
part

4 Let S = Safey, of type Downset

5 Compute a sufficient set E of inputs

6 Compute the input-actions of

7 while true do

8 Pick an input-action a of
9 if no action is returned then
10 L return whether a vector in S maps go to a nonnegative value

11 S < CPreq(S)

Our algorithm requires that the “input-action picker” used in line 8 decides
whether we have reached a fixed point. As the picker could check whether S has
changed, this is without loss of generality.

The computation of CPre, is the intuitive one, optimizations therein coming
from the internal representation of actions. That is, it is implemented by iterating
through all io-actions compatible with a, applying bwd on S for each of them,
taking the union over all these applications, and finally intersecting the result
with S.

Acacia-Bonsai: Downset-Based LTL Realizability 197
4 The many options at every line

The main computational costs of the algorithm are in finding input-actions and
computing CPre,. For the former, reducing the number of candidates is crucial
(by considering a good set of sufficient inputs). For the latter, reducing the size
of the automaton (hence the dimension of the vectors) and providing efficient
data types for downsets is key. Additionally, for the “input-action picker” to
return an input that will make progress, it has to explore S in some way — this
can again be a costly operation that would be sped up by better data structures
for downsets. Let us now review these potential optimizations line by line.

4.1 Preprocessing of the automaton (line 1)

In this step, one can provide a heuristic that removes certain states that do not
contribute to the computation. We provide an optional step that detects surely
losing states, as presented in [14].

4.2 Boolean states (line 2)

We provide an implementation of the detection of boolean states, in addition to
an option to not detect them. Our implementation is based on the concept of
bounded state, as presented in [4]. A state is bounded if it cannot be reached from
a Biichi state that lies in a nontrivial strongly connected component. This can
be detected in several ways, although it is not an intrinsically costly operation.

4.3 Vectors and downsets (line 3)

The most basic data structure in the main algorithm is that of a vector used to
give a value to the states. We provide a handful of different vector classes:

— Standard C++ vector and array types (std::vector,
std::array). Note that arrays are of fixed size; our implementation pre-
compiles arrays of different sizes (up to 300 by default), and defaults to
vectors if more entries are needed.

— Vectors and arrays backed by SIMD? registers. This makes use of the type
std: :experimental::simd and leverages modern CPU optimizations.

Additionally, all these implementations can be glued to an array of booleans
(std::bitset) to provide a type that combines boolean and integer values.
These types can optionally expose an integer that is compatible with the partial
order (here, the sum of all the elements in the vector: if @ dominates ¥, then
the sum of the elements in @ is larger than that of ¥). This value can help the
downset implementations in sorting the vectors.

Downset types are built on top of a vector type. We provide:

3 SIMD: Single Instruction Multiple Data, a set of CPU instructions & registers to
compute component-wise operations on fixed-size vectors.

198 M. Cadilhac and G. A. Pérez

— Implementations using sets or vectors of vectors, either containing only the
dominating vectors, or containing explicitly all the vectors;

— An implementation that relies on k-d trees, a space-partitioning data struc-

ture for organizing points in a k-dimensional space; [3]

Implementations that store the vectors in specific bins depending on the

information exposed by the vector type.

4.4 Selecting sufficient inputs (line 5)

Recall our discussion on sufficient inputs of Section 3.3. We introduce the notion
of terminal 10 following the intuition that there is no restriction of the IO that
would lead to a more specific action:

Definition 2. An IO x is said to be terminal if for every compatible 10 vy,
we have io-act(x) C io-act(y). An input i is said to be terminal if for every
compatible input j we have i-act(i) C i-act(j).

Our approaches to input selection focus on efficiently searching for a sufficient
set of terminal I0s and inputs. The key property of terminal inputs is that they
are automatically valid, while still being more general than pure inputs.

Proposition 1. Any pure I0 and any input is terminal. Any terminal 10 and
any terminal input is valid.

Proof. Any pure 10 is terminal. Consider a pure IO z and a compatible 10 y. If
(p,q) € io-act(x), then there is a transition (p, z, ¢) € ¢ such that x is compatible
with z, and thus x A z = z. Consequently, z A z Ay =x Ay # L, hence y and 2
are compatible and (p, ¢) € io-act(y). This shows that io-act(x) C io-act(y) and
that x is terminal.

Any pure input is terminal. Consider now a pure input 7 and a compatible
input j. Let io-act(x) € i-act(:). It holds that x is compatible with 4, hence
1Az # L. Since i is pure, i A j =14, thus i A j Ax # L, and z is also compatible
with j, implying that io-act(z) € i-act(j). This shows that i-act(i) C i-act(j)
and that ¢ is terminal.

Any terminal 10 and input is valid. We prove the case for inputs, the 10
case being similar. Let ¢ be a terminal input and j be a compatible pure input
(at least one exists), then i-act(:) C i-act(j). Since j is pure, it is also terminal,
hence i-act(j) C i-act(¢). Hence i-act(i) = i-act(j) and ¢ is valid. O

We present a simple algorithm for computing a sufficient set of terminal IOs.
This is done by iteratively refining a set P of terminal 1Os, starting by assuming
that {T} is such a set and using any counterexample to split the IOs:

Acacia-Bonsai: Downset-Based LTL Realizability 199

Algorithm 2 Computing a sufficient set of terminal IOs

Input: A Biichi automaton A
Output: A sufficient set of terminal 10s
P+ {T}
for every label z in the automaton do
for every element y in P do
if t Ay # L then
Delete y from P
Insert x Ay in P
if -z Ay # L then insert -z Ay in P

return P

We provide 3 implementations of input selection:
— No precomputation, i.e., return pure inputs/IOs;
— Applying Algorithm 2 twice: for IOs and inputs;
— Use a pure BDD approach to do the previous algorithm; this relies on extra
variables to have the loop “for every element y in P” iterate only over
elements y that satisfy z Ay # L.

4.5 Precomputing actions (line 6)

Since computing CPre; for an input i requires to go through i-act(i), possibly
going back to the automaton and iterating through all transitions, it may be ben-
eficial to precompute this set. We provide this step as an optional optimization
that is intertwined with the computation of a sufficient set of IOs; for instance,
rather than iterating through labels in Algorithm 2, one could iterate through
all transitions, and store the set of transitions that are compatible with each
terminal IO on the fly.

4.6 Main loop: Picking input-actions (line 8)

We provide several implementations of the input-action picker:

— Return each input-action in turn, until no change has occurred to .S while
going through all possible input-actions;

— Search for an input-action that is certain to change S. This is based on the
concept of critical input as presented in [4]. This is reliant on how input-
actions are ordered themselves, so we provide multiple options (using a pri-
ority queue to prefer inputs that were recently returned, randomize part of
the array of input-actions, and randomize the whole array).

4.7 When are we done?

The main algorithm answers either “yes, the formula is realizable” or “don’t
know.” Indeed, for the value of k to provide an exact value, it has to be very large

200 M. Cadilhac and G. A. Pérez

and reaching a fixed point in the computation becomes impossible in practice.
However, it is not necessary to restart the whole algorithm with larger values of
k in order to converge towards the correct answer: one can just increase all the
components of all the vectors in S (our main set), and go back to the main loop.
There are thus two parameters that can be adjusted: the starting value of k and
the increment to S each time the loop is restarted.

5 Checking unrealizability of LTL specifications

As mentioned in the preliminaries, for large values of k the BackwardRealiz-
ability problem is equivalent to a non-zero sum game whose payoff set is the
complement of the language of the given automaton. More precisely, for small
values of k, a negative answer for the BackwardRealizability problem does
not imply that the output player does not win the game. Instead, if one is inter-
ested in whether the output player wins, a property known as determinacy [23]
can be leveraged to instead ask whether a complementary property holds: does
the input player win the game?

We thus need to build an automaton B for which a positive answer to the
BackwardRealizability translates to the previous property. To do so, we can
consider the negation of the input formula, —¢, and inverse the roles of the play-
ers, that is, swap the inputs and outputs. However, to make sure the semantics
of the game is preserved, we also need to have the input player play first, and
the output player react to the input player’s move. To do so, we simply need to
have the outputs moved one step forward (in the future, in the LTL sense). This
can be done directly on the input formula, by putting an X (neXt) operator on
each output. This can however make the formula much more complex.

We propose an alternative to this: Obtain the automaton for —¢, then push
the outputs one state forward. This means that a transition (p, (¢,0),¢q) is trans-
lated to a transition (p, %, ¢), and the output o should be fired from g¢. In practice,
we would need to remember that output, and this would require the construction
to consider every state (g, 0), augmenting the number of states tremendously. Al-
gorithm 3 for this task, however, tries to minimize the number of states (g, 0)
necessary by considering nonpure outputs that maximally correspond to a pure
input compatible with the original transition label.

Algorithm 3 Modifying A so that the outputs are shifted forward
Input: A Biichi automaton A with initial state go and transition set §
Output: The states S and transitions A of the Biichi automaton B
S,V {(qo, T)}

A+~ {}

Acacia-Bonsai: Downset-Based LTL Realizability 201

while V' is nonempty do

Pop (p,0) from V

for every (p,z,q) € 6 do

Yy

while y # 1 do // Iterating through z’s minterms focusing on inputs
Let ¢ be a pure input compatible with y
o < 3I.xzAi // Extract nonpure output compatible with 4
Add ({p,0),0Ai,{g,0")) to A
If (g,0’) is not in S, add it to S and V/
Yy<—yAN—i

return S, A

6 Benchmarks

6.1 Protocol

For the past few years, the yardstick of performance for synthesis tools is the
SYNTCOMP competition [19]. The organizers provide a bank of nearly a thou-
sand LTL formulas, and candidate tools are run with a time limit of one hour
on each of them. The tool that solves the most instances in this timeframe wins
the competition.

To benchmark our tool, we relied on the 930 LTL formulas that were used in
the 2021 SYNTCOMP competition, of which about 60% are realizable. Notably,
864 of all the tests were solved in less than 20 seconds by some tool during the
competition, and among the 66 tests left out, 50 were not solved by any tool.
This showcases a usual trend of synthesis tools: either they solve an instance fast,
or they are unlikely to solve it at all. To better focus on the fine performance
differences between the tools, we set a timeout of 60 seconds for all tests.

We compared Acacia-Bonsai against itself using different choices of options,
and against Acacia+ [5], Strix [24], and ltlsynt [9,25]. The benchmarks were
completed on a Linux computer with the following specifications:

— CPU: Intel® Core™ i7-8700 CPU @ 3.20GHz. This CPU has 6 hyper-
threaded cores, meaning that 12 threads can run concurrently. It supports
Intel® AVX2, meaning that it has SIMD registers of up to 256 bits.

— Memory: The CPU has 12 MiB of cache, the computer has 16 GiB of DDR4-
2666 RAM.

We present some of these results in the form of survival plots (also called
cactus plots). They indicate how many instances can be solved within a set
time, where the time limit is for each instance. As a rule of thumb, the lower
the curve, the better. Since the tool tend to solve a lot of instances under one
second, we elected to present these graphics with a logarithmic y-axis.

6.2 Results

The options of Acacia-Bonsai. We compared 25 different configurations of Acacia-
Bonsai, in order to single out the best combination of options. We elected to

202 M. Cadilhac and G. A. Pérez

start with some sensible defaults and test each parameter by diverging from the
defaults by a single option each time.

— Preprocessing of the automaton (Section 4.1). This has little impact, al-
though a handful of tests saw an important boost. Overall, the performance
was slightly worse with automaton preprocessing, owing to the cost of com-
puting the surely loosing states. We elected to deactivate this option in our
best configuration, as this allowed four more tests to pass.

— Boolean states (Section 4.2). This step allowed solving about 5% more tests
when activated, globally.

— Vectors and downsets (Section 4.3). Despite a wealth of different implemen-
tations, only the k-d tree implementation really stands out, in that it solves
5% fewer tests than the rest. The impact on using SIMD vectors and tailor-
ing downset algorithms to leverage SIMD operations appears to be minimal.
This is likely caused by two factors: 1. The increasing ability for modern
compilers to automatically identify where SIMD instructions can benefit
performances; 2. The relative uselessness of pointwise vector operations in
the task at hand.

— Precomputing a sufficient set of inputs and 10 (Section 4.4). Computing that
set using Algorithm 2 turned out to offer the best performance, solving 23
more tests than using the pure inputs/IOs. The pure BDD approach for this
step was slightly more costly.

— Picking input-actions (Section 4.6). The approaches performed equivalently,
with a slight edge for the choice of critical inputs without randomizing or
priority queue.

— Initial value and increments of k (Section 4.7). We compared several combi-
nations, which had little impact on overall performance, with the best one
solving 3 more tests than the worst.

— Unrealizability (Section 5). The following figure shows how the formula-
based and the automaton-based approaches to unrealizability compare. We
only show the unrealizable tests and add the configuration we use in practice:
start two threads, one for each option, and stop as soon as one returns.

JL 7

o
10" 31—~ Automaton-based o 'y
—— Combined & &

,, f

100

—o— Formula-based

CPU time (s)

1071

0 50 100 150 200 250 300
instances

Fig. 2. Reducing unrealizability to realizability. Timeout set at 20 seconds.

Acacia-Bonsai: Downset-Based LTL Realizability 203

Despite the automaton-based approach showing better overall results, we
note that this approach provides a larger automaton than the formula-based
approach in about 99.5% of the tests. Additionally, the automaton-based
approach offers better performances even when looking at the running time
without the formula-to-automaton part of the process. This seems to indi-
cate that the automaton that is produced is somewhat simpler for the main
algorithm.

Acacia-Bonsai and foes. The following plot shows the performance of the tools
together. Within our parameters, Acacia-Bonsai solves 699 tests, while Acacia+
solves 560, ltlsynt 703, and Strix 770.

—o— Acacia-Bonsai

—&— Acacia+

—— ltlsynt

10! | —— Strix £ /
» Y N

e
/--“

CPU time (s)

N

10!

1072+ T
0 100 200 300 400 500 600 700 800
instances

Fig. 3. Survival plot for SYNTCOMP tools and Acacia-Bonsai

Instances solved by one tool but not the other. To better understand the intrinsic
algorithmic competitiveness of the different tools, we study which instances were
solved by our tool but not the others, and conversely:

— ltlsynt. This tool solves 4 more instances than Acacia-Bonsai overall. Tt
solves 61 instances on which Acacia-Bonsai times out, with less than a third
of them being unrealizable instances. It would be interesting to implement,
within Itlsynt, the unrealizability techniques we describe in Section 5.

— Striz. 'This tool solves 71 more instances than Acacia-Bonsai overall. Tt
solves 124 instances on which Acacia-Bonsai times out, 58% of which are
unrealizable. For 90% of these 124 instances, Strix answers in less than 2
seconds. Conversely, of the instances on which Acacia-Bonsai answers while
Strix times out, three quarters are solved within two seconds. This naturally
hints at the possibility of combining the approaches of the two tools, using
parallelization.

204 M. Cadilhac and G. A. Pérez

7 Conclusion

We provided multiple degrees of freedom in the main algorithm for downset-
based LTL realizability and implemented options for each of these degrees. In
this paper, we presented the main ideas behind these. Experiments show that
this careful reimplementation surpasses the performance of the original Acacia+,
making Acacia-Bonsai competitive against modern LTL realizability tools. Along
with implementing some optimizations present in previous implementations, we
introduced several new ones: reduction of the input-output alphabet, alternative
antichain data structures, different strategies for input-picking, and constructing
a “shifted automaton” to test unrealizability.

A somewhat disappointing conclusion of our experiments concerns code that
makes explicit use of SIMD registers, i.e., large CPU registers that support point-
wise vector operations. Our experiments indicate that downset-based algorithms
and downset data structures are not able to take full advantage of SIMD. In the
future, we plan on investigating data structures for downsets that delay some
of their computations in order to better leverage vectorized operations. Such
a data structure would not provide better theoretical performances, but would
potentially outperform our other data structures.

One surprise that prompts for further investigation is brought by our ap-
proach to unrealizability (Section 5): we provided two options for processing the
input LTL formula into an automaton that expresses a realizable game iff the
original formula was unrealizable. Although one option consistently produces
larger automata than the other, it appears that the downset-based realizability
algorithm performs better on the larger automata. A close study of the resulting
automata may help in identifying salient features of automata that are easier for
the Acacia algorithm.

Lastly, we should note that this reimplementation of Acacia+ is not complete,
since a few options of Acacia+ have not yet been included in Acacia-Bonsai yet.
One such option consists in decomposing LTL formulas that are conjunctions
of subformulas into smaller instances of the realizability problem. We plan on
implementing this before the next edition of SYNTCOMP.

Acknowledgements. We would like to thank Véronique Bruyere for recom-
mending the use of k-d trees as a data structure to store and manipulate downsets
as well as Clément Tamines for useful conversations on these and alternative data
structures. This research was partially funded by the FWO GO030020N project
“SAILor”.

Data-Availability Statement The software presented in this article and the

analysed dataset are available as [7]. In addition, the version under study is

tagged in the GitHub repository of this software as:
https://github.com/gaperez64/acacia-bonsai/tree/TACAS23

https://github.com/gaperez64/acacia-bonsai/tree/TACAS23

Acacia-Bonsai: Downset-Based LTL Realizability 205

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Ahmed, Z., Benqué, D., Berezin, S., Dahl, A.C.E., Fisher, J., Hall, B.A., Ishtiaq,
S., Nanavati, J., Piterman, N., Riechert, M., Skoblov, N.: Bringing LTL model
checking to biologists. In: VMCALI. Lecture Notes in Computer Science, vol. 10145,
pp. 1-13. Springer (2017)

Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid compositional reasoning
for reactive synthesis from finite-horizon specifications. In: AAAI pp. 9766-9774.
AAAT Press (2020)

de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational
geometry: algorithms and applications, 3rd Edition. Springer (2008), https://
www.worldcat.org/oclc/227584184

Bohy, A.: Antichain based algorithms for the synthesis of reactive systems. Ph.D.
thesis, University of Mons (2014)

Bohy, A., Bruyere, V., Filiot, E., Jin, N., Raskin, J.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV. LNCS, vol. 7358, pp. 652—
657. Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_45

Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree
approach to data classification using signal temporal logic. In: HSCC. pp. 1-10.
ACM (2016)

Cadilhac, M., Pérez, G.A.: Acacia-Bonsai (TACAS’23 version) (Nov 2022).
https://doi.org/10.5281/zenodo.7296659

Camacho, A., Mcllraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS. pp. 621-630. AAAI Press (2019)

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A framework for LTL and w-automata manipulation. In: ATVA. Lecture
Notes in Computer Science, vol. 9938, pp. 122-129 (2016)

Esparza, J., Kretinsky, J., Raskin, J., Sickert, S.: From LTL and limit-deterministic
biichi automata to deterministic parity automata. In: TACAS (1). Lecture Notes
in Computer Science, vol. 10205, pp. 426—442 (2017)

Esparza, J., Kretinsky, J., Sickert, S.: From LTL to deterministic automata -
A Safraless compositional approach. Formal Methods Syst. Des. 49(3), 219-271
(2016). https://doi.org/10.1007/s10703-016-0259-2

Faymonville, P., Finkbeiner, B., Rabe, M.N.,; Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) TACAS. LNCS, vol. 10205, pp. 354—
370 (2017). https://doi.org/10.1007/978-3-662-54577-5_20

Filiot, E., Jin, N., Raskin, J.: An antichain algorithm for LTL realizability. In:
CAV. Lecture Notes in Computer Science, vol. 5643, pp. 263-277. Springer (2009)
Geeraerts, G., Goossens, J., Stainer, A.: Synthesising succinct strategies in safety
and reachability games. In: Ouaknine, J., Potapov, 1., Worrell, J. (eds.) RP. LNCS,
vol. 8762, pp. 98—111. Springer (2014). https://doi.org/10.1007/978-3-319-11439-
2.8

Giacomo, G.D., Vardi, M.Y.: LTLy and LDL; synthesis under partial observability.
In: IJCAL pp. 1044-1050. IJCAI/AAAI Press (2016)

Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.J.: Automated temporal equi-
librium analysis: Verification and synthesis of multi-player games. Artif. Intell.
287, 103353 (2020). https://doi.org/10.1016/j.artint.2020.103353

Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.)
Logics and Models of Concurrent Systems - Conference proceedings, Colle-sur-
Loup (near Nice), France, 8-19 October 1984. NATO ASI Series, vol. 13, pp. 477—
498. Springer (1984). https://doi.org/10.1007/978-3-642-82453-1_17

https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.5281/zenodo.7296659
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-11439-2_8
https://doi.org/10.1007/978-3-319-11439-2_8
https://doi.org/10.1016/j.artint.2020.103353
https://doi.org/10.1007/978-3-642-82453-1_17

206

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

M. Cadilhac and G. A. Pérez

Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Faymonville, P.,
Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T., Pérez, G.A., Raskin, J.,
Sankur, O., Tentrup, L.: The 4th reactive synthesis competition (SYNTCOMP
2017): Benchmarks, participants & results. In: SYNT@QCAV. EPTCS, vol. 260, pp.
116-143 (2017)

Jacobs, S., Pérez, G.A., Abraham, R., Bruyere, V., Cadilhac, M., Colange, M.,
Delfosse, C., van Dijk, T., Duret-Lutz, A., Faymonville, P., Finkbeiner, B., Khal-
imov, A., Klein, F., Luttenberger, M., Meyer, K.J., Michaud, T., Pommellet, A.,
Renkin, F., Schlehuber-Caissier, P., Sakr, M., Sickert, S., Staquet, G., Tamines, C.,
Tentrup, L., Walker, A.: The reactive synthesis competition (SYNTCOMP): 2018-
2021. CoRR abs/2206.00251 (2022). https://doi.org/10.48550 /arXiv.2206.00251
Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
CAV. Lecture Notes in Computer Science, vol. 4144, pp. 31-44. Springer (2006)
Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T). In:
ASE. pp. 81-92. IEEE Computer Society (2015)

Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1-2), 3-36 (2020).
https://doi.org/10.1007 /s00236-019-00349-3

Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363-371 (1975),
http://www. jstor.org/stable/1971035

Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: CAV (1). Lecture Notes in Computer Science, vol. 10981, pp. 578-586.
Springer (2018)

Michaud, T., Colange, M.: Reactive synthesis from LTL specification with Spot.
In: Proceedings of the 7th Workshop on Synthesis, SYNTQCAV 2018. Electronic
Proceedings in Theoretical Computer Science (2018)

Piterman, N.: From nondeterministic Biichi and Streett automata to de-
terministic parity automata. Log. Methods Comput. Sci. 3(3) (2007).
https://doi.org/10.2168/LMCS-3(3:5)2007

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977. pp. 46-57. IEEE Computer Society (1977).
https://doi.org/10.1109/SFCS.1977.32

Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989. pp. 179-190. ACM Press
(1989). https://doi.org/10.1145/75277.75293

Safra, S.: On the complexity of omega-automata. In: 29th Annual Sym-
posium on Foundations of Computer Science, White Plains, New York,
USA, 24-26 October 1988. pp. 319-327. IEEE Computer Society (1988).
https://doi.org/10.1109/SFCS.1988.21948

Shi, Y., Xiao, S., Li, J., Guo, J., Pu, G.: Sat-based automata construction
for LTL over finite traces. In: 27th Asia-Pacific Software Engineering Confer-
ence, APSEC 2020, Singapore, December 1-4, 2020. pp. 1-10. IEEE (2020).
https://doi.org/10.1109/APSEC51365.2020.00008

Tomita, T., Ueno, A., Shimakawa, M., Hagihara, S., Yonezaki, N.: Safraless
LTL synthesis considering maximal realizability. Acta Informatica 54(7), 655-692
(2017). https://doi.org/10.1007/s00236-016-0280-3

https://doi.org/10.48550/arXiv.2206.00251
https://doi.org/10.1007/s00236-019-00349-3
http://www.jstor.org/stable/1971035
https://doi.org/10.2168/LMCS-3(3:5)2007
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/APSEC51365.2020.00008
https://doi.org/10.1007/s00236-016-0280-3

Acacia-Bonsai: Downset-Based LTL Realizability 207

32. Vardi, M.Y., Wolper, P.: Automata theoretic techniques for modal logics of pro-
grams (extended abstract). In: DeMillo, R.A. (ed.) Proceedings of the 16th Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1984, Washington,
DC, USA. pp. 446-456. ACM (1984). https://doi.org/10.1145/800057.808711

33. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to safety
LTL synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) HVC. LNCS, vol. 10629,
pp. 147-162. Springer (2017). https://doi.org/10.1007/978-3-319-70389-3_10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/800057.808711
https://doi.org/10.1007/978-3-319-70389-3_10
http://creativecommons.org/licenses/by/4.0/

Synthesis

®

Check for
updates

Computing Adequately Permissive Assumptions
for Synthesis *

Ashwani Anand', Kaushik Mallik?, Satya Prakash Nayak!'®),
and Anne-Kathrin Schmuck!

! Max Planck Institute for Software Systems, Kaiserslautern, Germany
{ashwani, sanayak,akschmuck}@mpi-sws.org
2 Institute of Science and Technology Austria, Klosterneuburg, Austria
kaushik.mallik@ist.ac.at

Abstract. We automatically compute a new class of environment as-
sumptions in two-player turn-based finite graph games which character-
ize an “adequate cooperation” needed from the environment to allow the
system player to win. Given an w-regular winning condition & for the
system player, we compute an w-regular assumption ¥ for the environ-
ment player, such that (i) every environment strategy compliant with
¥ allows the system to fulfill ¢ (sufficiency), (ii) ¥ can be fulfilled by
the environment for every strategy of the system (implementability), and
(iii) ¥ does not prevent any cooperative strategy choice (permissiveness).
For parity games, which are canonical representations of w-regular games,
we present a polynomial-time algorithm for the symbolic computation of
adequately permissive assumptions and show that our algorithm runs
faster and produces better assumptions than existing approaches—both
theoretically and empirically. To the best of our knowledge, for w-regular
games, we provide the first algorithm to compute sufficient and imple-
mentable environment assumptions that are also permissive.

Keywords: Synthesis - Two-player Games - Parity - Permissiveness.

1 Introduction

Two-player w-regular games on finite graphs are the core algorithmic components
in many important problems of computer science and cyber-physical system
design. Examples include the synthesis of programs which react to environment
inputs, modal p-calculus model checking, correct-by-design controller synthesis
for cyber-physical systems, and supervisory control of autonomous systems.
These problems can be ultimately reduced to an abstract two-player game
between an environment player and a system player, respectively capturing the
external unpredictable influences and the system under design, while the game
captures the non-trivial interplay between these two parts. A solution of the

* S. P. Nayak and A.-K. Schmuck are supported by the DFG project 389792660 TRR
248-CPEC. A. Anand and A.-K. Schmuck are supported by the DFG project SCHM
3541/1-1. K. Mallik is supported by the ERC project ERC-2020-AdG 101020093.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 211-228, 2023.
https://doi.org/10.1007/978-3-031-30820-8 15

https://doi.org/10.1007/978-3-031-30820-8_15
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_15&domain=pdf

212 A. Anand et al.

game is a set of decisions the system player needs to make to satisfy a given
w-regular temporal property over the states of the game, which is then used to
design the sought system or its controller.

Traditionally, two-player games over graphs are solved in a zero-sum fashion,
i.e., assuming that the environment will behave arbitrarily and possibly adversar-
ially. Although this approach results in robust system designs, it usually makes
the environment too powerful to allow an implementation for the system to ex-
ist. However in reality, many of the outlined application areas actually account
for some cooperation of system components, especially if they are co-designed.
In this scenario it is useful to understand how the environment (i.e., other pro-
cesses) needs to cooperate to allow for an implementation to exist. This can be
formalized by environment assumptions, which are w-regular temporal proper-
ties that restrict the moves of the environment player in a synthesis game. Such
assumptions can then be used as additional specifications in other components’
synthesis problems to enforce the necessary cooperation (possibly in addition to
other local requirements) or can be used to verify existing implementations.

For the reasons outlined above, the automatic computation of assumptions
has received significant attention in the reactive synthesis community. It has
been used in two-player games [8,6], both in the context of monolithic system
design [11,19] as well as distributed system design [18,13].

All these works emphasize two desired properties of assumptions. They should
be (i) sufficient, i.e., enable the system to win if the environment obeys its as-
sumption and (ii) implementable, i.e., prevent the system from falsifying the
assumption to vacuously win the game by not even respecting the original spec-
ification. In this paper, we claim that there is an important third property —
permissiveness, i.e. the assumption retains all cooperatively winning plays in the
game. This notion is crucial in the setting of distributed synthesis, as here as-
sumptions are generated before the implementation of every component is fixed.
Therefore, assumptions need to retain all feasible ways of cooperation to allow
for a distributed implementation to be discovered in a decentralized manner.

While the class of assumptions considered in this paper is motivated by
their use for distributed synthesis, this paper focuses only on their formalization
and computation, i.e., given a two-player game over a finite graph and an w-
regular winning condition & for the system player, we automatically compute an
adequately permissive w-reqular assumption ¥ for the environment player that
formalizes the above intuition by being (i) sufficient, (ii) implementable, and
(iii) permissive. The main observation that we exploit is that such adequately
permissive assumptions (APA for short) can be constructed from three simple
templates which can be directly extracted from a cooperative synthesis game
leading to a polynomial-time algorithm for their computation. By observing page
constrains, we postpone the very interesting but largely orthogonal problem of
contract-based distributed synthesis using APAs to future work.

To appreciate the simplicity of the assumption templates we use, consider the
game graphs depicted in Fig. 1 where the system and the environment player
control the circle and square vertices, respectively. Given the specification @ =

Computing Adequately Permissive Assumptions for Synthesis 213

(a) (b) (c) @

€1
€2

€1
€1
& D=0 7]
Fig. 1: Game graphs with environment (squares) and system (circles) vertices.

OO{p} (which requires the play to eventually only see vertex p), the system
player can win the game in Fig. 1 (a) by requiring the environment to fully disable
edge e;. This introduces the first template type—a safety template—on e;. On
the other hand, the game in Fig. 1 (b) only requires that e is taken finitely often.
This is captured by our second template type—a co-liveness template—on e;.
Finally, consider the game in Fig. 1 (c) with the specification & = OO{p}, i.e.
vertex p should be seen infinitely often. Here, the system player wins if whenever
the source vertices of edges e; and e; are seen infinitely often, also one of these
edges is taken infinitely often. This is captured by our third template type—a
live group template—on the edge-group {ey,ea}.

Contribution. The main contribution of this paper is to show that APAs can
always be composed from the three outlined assumption templates and can be
computed in polynomial time.

Using a set of benchmark examples taken from SYNTCOMP [1] and a pro-
totype implementation of our algorithm in our new tool SIMPA, we empirically
show that our algorithm is both faster and produces more desirable solutions
than existing approaches. In addition, we apply SIMPA to the well known 2-
client arbiter synthesis benchmark from [21], which is known to only allow for
an implementation of the arbiter if the clients’ moves are suitably restricted. We
show that applying SIMPA to the unconstrained arbiter synthesis problem yields
assumptions on the clients which are less restrictive but conceptually similar to
the ones typically used in the literature.

Related Work. The problem of automatically computing environment assump-
tions for synthesis was already addressed by Chatterjee et al. [8]. However, their
class of assumptions does in general not allow to construct permissive assump-
tions. Further, computing their assumptions is an NP-hard problem, while our
algorithm computes APAs in O(n*)-time for a parity game with n vertices. The
difference in the complexity arises because Chatterjee et al. require minimality
of the assumptions. On the other hand, we trade minimality for permissiveness
which allows us to utilize cooperative games, which are easier to solve.

When considering cooperative solutions of non-zerosum games, related works
either fix strategies for both players [7,14], assume a particularly rational behav-
ior of the environment [4] or restrict themselves to safety assumptions [18]. In
contrast, we do not make any assumption on how the environment chooses its
strategy. Finally, in the context of specification-repair in zerosum games multiple
automated methods for repairing environment models exist, e.g., [22,15,16,20,8].
Unfortunately, all of these methods fail to provide permissiveness. A recent work
by Cavezza et al. [6] computes a minimally restrictive set of assumptions but only

214 A. Anand et al.

for GR(1) specifications, which are a strict subclass of the problem considered
in our work. To the best of our knowledge, we propose the first fully automated
algorithm for computing permissive assumptions for general w-regular games.

2 Preliminaries

Notation. We use N to denote the set of natural numbers including zero.
Given two natural numbers a,b € N with a < b, we use [a;b] to denote the
set {n € N|a<n<b}. For any given set [a;b], we write i Egyen [a;b] and
i €oad [a;b] as short hand for i € [a;0] N {0,2,4,...} and i € [a;0] N {1,3,5,...}
respectively. Given two sets A and B, a relation R C A x B, and an element
a € A, we write R(a) to denote the set {b € B | (a,b) € R}.

Languages. Let X be a finite alphabet. The notations X* and X“ denote the
set of finite and infinite words over X, respectively, and 2> is equal to X* U X¥.
For any word w € X°°, w; denotes the i-th symbol in w. Given two words u € X*
and v € X°°, the concatenation of v and v is written as the word wv.

Game graphs. A game graph is a tuple G = (V, E) where (V, E) is a finite
directed graph with vertices V and edges E, and V = V° & V! be a partition
of V. Without loss of generality, we assume that for every v € V there exists
v’ € V st. (v,v") € E. For the purpose of this paper, the system and the
environment players will be denoted by Player 0 and Player 1, respectively. A
play is a finite or infinite sequence of vertices p = vyvy1 ... € V. A play prefic
P = vov1 - - - Vg is a finite play.

Winning conditions. Given a game graph G, we consider winning conditions
specified using a formula & in linear temporal logic (LTL) over the vertex set V,
that is, we consider LTL formulas whose atomic propositions are sets of vertices
V. In this case the set of desired infinite plays is given by the semantics of &
over GG, which is an w-regular language £(®) C V. Every game graph with an
arbitrary w-regular set of desired infinite plays can be reduced to a game graph
(possibly with an extended set of vertices) with an LTL winning condition, as
above. The standard definitions of w-regular languages and LTL are omitted for
brevity and can be found in standard textbooks [3].

Games and strategies. A two-player (turn-based) game is a pair G = (G, ®)
where G is a game graph and @ is a winning condition over G. A strategy of
Player i, i € {0,1}, is a partial function 7*: V*V? — V such that for every
pv € V*V? for which 7 is defined, it holds that 7¢(pv) € E(v). Given a strategy
7', we say that the play p = vovy ... is compliant with 7 if vi_; € V? implies
v = T (vg...vp_1) for all k € dom(p). We refer to a play compliant with 7! and
a play compliant with both 7° and 7! as a 7-play and a 7°7'-play, respectively.
We collect all plays compliant with 7%, and compliant with both 7° and 7! in
the sets £(7?) and L(7°7!), respectively.

Winning. Given a game G = (G,®), a strategy = is (surely) winning for
Player i if L(7) C L(®), i.e., a Player 0 strategy 7° is winning if for every
Player 1 strategy w! it holds that £(7%7!) C L(®). Similarly, a fixed strategy

Computing Adequately Permissive Assumptions for Synthesis 215

profile (7%, 7!) is cooperatively winning if L(n%7!) C L(P). We say that a ver-
tex v € V is winning for Player i (resp. cooperatively winning) if there exists a
winning strategy ¢ (resp. a cooperatively winning strategy profile (7%, 71)) s.t.
7l(v) is defined. We collect all winning vertices of Player i in the Player i win-
ning region ()@ C V and all cooperatively winning vertices in the cooperative
winning region {0, 1)@. We note that {i)® C (0, 1)® for both i € {0,1}.

3 Adequately Permissive Assumptions for Synthesis

Given a two-player game G, the goal of this paper is to compute assumptions on
Player 1 (i.e., the environment), such that both players cooperate just enough
to fulfill @ while retaining all possible cooperative strategy choices. Towards a
formalization of this intuition, we define winning under assumptions.

Definition 1. Let G = (G = (V,E),®) be a game and ¥ be an LTL formula
over V. Then a Player 0 strategy n° is winning in G under assumption ¥, if for
every Player 1 strategy ' s.t. L(m') C L(W) it holds that L(7°7t!) C L(P). We
denote by (0)),P the set of vertices from which such a Player 0 strategy exists.

We remark that the 'winning-under-assumption’ strategies 7° from Def. 1
satisfy two simple but interesting properties — anti-monotonicity (if 7° is win-
ning under an assumption, then it is so under every stronger assumption), and
conjunctivity (if 7° is winning under two different assumptions, then it is so un-
der their conjunction). However, it does not satisfy disjunctivity (see [2, Sec. 3.1]
for an example). In addition, we remark that the definition of ’winning-under-
assumption’ in terms of plays (rather than strategies) might seem more natural
to some readers. We refer these readers to the full version of the paper [2, Sec.
3.1] for an in-depth discussion on the differences of these definitions.

We now see that the assumption ¥ introduced in Def. 1 weakens the strategy
choices of the environment player (Player 1). We call assumptions sufficient if
this weakening is strong enough to allow Player 0 to win from every vertex in
the cooperative winning region.

Definition 2. An assumption ¥ is sufficient for (G, ®) if (0)),® 2 (0,1)®.

Unfortunately, sufficient assumptions can be abused to change the given syn-
thesis problem in an unintended way. Consider for instance the game in Fig. 2
(left) with @ = O00{vo} and ¥ = OOe;. Here, there is no strategy 7! for Player 1
such that £(7!) C L(¥) as the system can always falsify the assumption by sim-
ply not choosing e; infinitely often in v;. Therefore, any Player 0 strategy is
winning under assumption even if @ is violated. The assumption ¥, however,
is trivially sufficient, as (0));,® = V. In order to prevent sufficient assumptions
to be falsifiable and thereby enabling vacuous winning, we define the notion of
implementability, which ensures that ¥ solely restricts Player 1 moves.

Definition 3. An assumption ¥ is implementable for (G, ®) if (1)@ =V.

216 A. Anand et al.

ROQ BQ O

Fig. 2: Two-player games with Player 1 (squares) and Player 0 (circles) vertices.

A sufficient and implementable assumption ensures that the cooperative win-
ning region of the original game coincides with the winning region under that
assumption, i.e., {(0),P = (0,1)P. However, all cooperative strategy choices
of both players might still not be retained, which is ensured by the notion of
PETMISSIVENESS.

Definition 4. An assumption ¥ is permissive for (G, ®) if L(P) C L(V).

This notion of permissiveness is motivated by the intended use of assump-
tions for compositional synthesis. In the simplest scenario of two interacting
processes, two synthesis tasks—one for each process—are considered in parallel.
Here, generated assumptions in one synthesis task are used as additional speci-
fications in the other synthesis problem. Therefore, permissiveness is crucial to
not “skip” over possible cooperative solutions—each synthesis task needs to keep
all allowed strategy choices for both players intact to allow for compositional
reasoning. This scenario is illustrated in the following example to motivate the
considered class of assumptions. Formalizing assumption-based compositional
synthesis in general is however out of the scope of this paper.

Ezample 1. Consider the (non-zerosum) two-player game in Fig. 2 (middle)
with two different specifications for both players, namely &g = OO{vy,v2}
and @7 = QOU{v;}. Now consider two candidate assumptions ¥, = OO-e; and
¥y = (O0v; = Oez) on Player 1. Notice that both assumptions are suffi-
cient and implementable for (G, @y). However, ¥ does not allow the play {v;}*
and hence is not permissive whereas W is permissive for (G,®g). As a conse-
quence, there is no way Player 1 can satisfy both her objective @; and the
assumption ¥} even if Player 0 cooperates, since £(®1) N L(¥}) = (. However,
under the assumption ¥, on Player 1 and assumption ¥; = ¢l—e3 on Player 0
(which is sufficient and implementable for (G, @) if we interchange the vertices
of the players), they can satisfy both their own objectives and the assumptions
on themselves. Therefore, they can collectively satisfy both their objectives.

We also remark that for this example, the algorithm in [9] outputs ¥ as the
desired assumption for game (G, @) and their used assumption formalism is not
rich enough to capture assumption ¥y. This shows that the assumption type we
are interested in is not computable by the algorithm from [9].

Definition 5. An assumption ¥ is called adequately permissive (an APA for
short) for (G, ®) if it is sufficient, implementable and permissive.

4 Computing Adequately Permissive Assumptions (APA)

In this section, we present our algorithm to compute adequately permissive as-
sumptions (APA for short) for parity games, which are canonical representations

Computing Adequately Permissive Assumptions for Synthesis 217

of w-regular games. For a gradual exposition of the topic, we first present algo-
rithms for simpler winning conditions, namely safety (Sec. 4.2), Biichi (Sec. 4.3),
and Co-Biichi (Sec. 4.4), which are used as building blocks while presenting the
algorithm for parity games (Sec. 4.5). All proofs omitted can be found in the full
version [2]. Let us first introduce some preliminaries.

4.1 Preliminaries

We use symbolic fixpoint algorithms expressed in the p-calculus [17] to compute
the winning regions and to generate assumptions in simple post-processing steps.
Set Transformers. Let G = (V = VoW V! E) be a game graph, U C V be a
subset of vertices, and a € {0, 1} be the player index. Then we define two types
of predecessor operators:

preq(U) = {veV|Juel. (v,u) € E} (1)
cprel(U) ={veVe|vepreg(U)}U{ve VI~ |V(v,u) e E.uec U} (2)
cprels' (U) = cpret(U)UU (3)
cprely (U) = cpred, (cprels' ™ (U)) U cprels' ™ (U) with i > 1 (4)

The predecessor operator preg(U) computes the set of vertices with at least one
successor in U. The controllable predecessor operators cprel (U) and cpreg’(U)
compute the set of vertices from which Player a can force visiting U in at most
one and i steps respectively. In the following, we introduce the attractor operator
attrg (U) that computes the set of vertices from which Player a can force at least
a single visit to U in finitely many but nonzero® steps:

attrg; (U) = (U;», cpre™* (U))\U (5)
When clear from the context, we drop the subscript G from these operators.
Fixpoint Algorithms in the p-calculus. p-calculus [17] offers a succinct
representation of symbolic algorithms (i.e., algorithms manipulating sets of ver-
tices instead of individual vertices) over a game graph G. The formulas of the
p-calculus, interpreted over a 2-player game graph G, are given by the grammar

p=p|X|[oUd|dN¢|pre(d)| uX.¢ | vX.¢

where p ranges over subsets of V', X ranges over a set of formal variables, pre
ranges over monotone set transformers in {pre, cpre®, attr®}, and p and v denote,
respectively, the least and the greatest fixed point of the functional defined as
X — ¢(X). Since the operations U,N, and the set transformers pre are all
monotonic, the fixed points are guaranteed to exist, due to the Knaster-Tarski
Theorem [5]. We omit the (standard) semantics of formulas (see [17]).

A p-calculus formula evaluates to a set of vertices over GG, and the set can be
computed by induction over the structure of the formula, where the fixed points
are evaluated by iteration. The reader may note that pre, cpre and attr can be
computed in time polynomial in number of vertices.

3 In existing literature, usually U C attr®(U), i.e., attr®(U) contains vertices from
which U is visited in zero steps. We exclude U from attr®(U) for a technical reason.

218 A. Anand et al.

4.2 Safety Games

A safety game is a game G = (G, ®) with @ := OU for some U C V, and a play
fulfills @ if it never leaves U. APAs for safety games disallow every Player 1
move that leaves the cooperative winning region in G w.r.t. Safety(U). This is
formalized in the following theorem.

Theorem 1. Let G = (G = (V, E),0U) be a safety game, Z* = vY.U N pre(Y),
and S ={(u,v) e E| (ue VINZ*)A(v¢ Z*)}. Then Z* = (0,1)00U and *

Q/UNSAFE(S) =0 /\eES e, (6)

is an APA for the game G. We denote by UNSAFEA(G,U) the algorithm com-
puting S as above, which runs in time O(n?), where n = |V|.

We call the LTL formula in (6) a safety template and assumptions that solely
use this template safety assumptions.

4.3 Live Group Assumptions for Biichi Games

Biichi games. A Biichi game is a game G = (G, ®) where & = OOU for some
U C V. Intuitively, a play is winning for a Biichi game if it visits the vertex set
U infinitely often. We first recall that the cooperative winning region (0, 1)00U
can be computed by a two-nested symbolic fixpoint algorithm [10]

BucHI(G,U) :=vY.uX. (UNpre(Y)) U (pre(X)). (7)

Live group templates. Given the standard algorithm in (7), the set X? com-

puted in the i-th iteration of the fixpoint variable X in the last iteration of Y
actually carries a lot of information to construct a very useful assumption for
the Biichi game G. To see this, recall that X i contains all vertices which have an
edge to vertices which can reach U in at most ¢ — 1 steps [10, sec. 3.2]. Hence,
for all Player 1 vertices in X\ X~! we need to assume that Player 1 always
eventually makes progress towards U by moving to X¢. This can be formalized
by a so called live group template.

Definition 6. Let G = (V, E) be a game graph. Then a live group H = {ej}j>0
is a set of edges e; = (s;,t;) with source vertices src(H) := {s;},.,. Given a set
of live groups H® = {H;},~, we define a live group template as

WLIVE(HZ) = /\ DOSTC(Hz) - DOHl (8)

i>0
4 We use e = (u,v) in LTL formulas as a syntactic sugar for « A Qu, where O is the
LTL next operator. A set of edges B = {ei}ie[o;k], when used as atomic proposition,

is a syntactic sugar for vie[0~k] €;.

Computing Adequately Permissive Assumptions for Synthesis 219

The live group template says that if some vertex from the source of a live group is
visited infinitely often, then some edge from this group should be taken infinitely
often. We will use this template to give the assumptions for Biichi games.

Remark 1. Note that the assumptions computed by Chatterjee et al. [8] uses live
edges, i.e., singleton live groups, and hence, they are less expressive. In particular,
there are instances of Biichi games, where the permissive assumptions can not
be expressed using live edges but they can be using live groups, e.g., in Fig. 1 (¢)
the live edge assumption OOe; A OOes is sufficient but not permissive, whereas
the live group assumption OCsrc(H) = OOH with H = {e1,e2} is an APA.

In the context of the fixpoint computation of (7), we can construct live groups
H = {H;},~, where each H; contains all edges of Player 1 which originate in
X%\ X! and end in X*~!. Then the live group assumption in (8) precisely
captures the intuition that, in order to visit U infinitely often, Player 1 should
take edges in H; infinitely often if vertices in src(H;) are seen infinitely often.
Unfortunately, it turns out that this live group assumption is not permissive.
The reason is that it restricts Player 1 also on those vertices from which she will
anyway go towards U. For example, consider the game in Fig. 2 (right). Here
defining live groups through computations of (10), will mark e; as a live group,
but then (vav1v9)¥ will be in £(®) but not in the language of the assumption.
Here the permissive assumption would be ¥ = TRUE.

Accelerated fixpoint computation. In order to provide permissiveness, we
use a slightly modified fixpoint algorithm that computes the same set Z* but
allows us to extract permissive assumptions directly from the fixpoint computa-
tions. Towards this goal, we introduce the together predecessor operator.

tpreq(U) = attr (U) U cpreg; (attrs (U) U U). (9)

Intuitively, tpre adds all vertices from which Player 0 does not need any cooper-
ation to reach U in every iteration of the fixpoint computation. The interesting
observation we make is that substituting the inner pre operator in (7) by tpre
does not change the computed set but only accelerates the computation. This is
formalized in the next proposition and visualized in Fig. 3.

Proposition 1. Let G = (G,00U) be a Biichi game and
TBUcCHI(G,U) = vY.uX. (UNpre(Y)) U (tpre(X)). (10)
Then TBUCHI(G,U) = BUcHI(G,U) = (0, 1)00U.
Prop. 1 follows from the correctness proof of (7) by using the observation

that for all U C V we have uX. U U pre(X) = uX. U U tpre(X).

Computing live group assumptions. Intuitively, the operator tpre; com-
putes the union of (i) the set of vertices from which Player 0 can reach U in
a finite number of steps with no cooperation from Player 1 and (ii) the set of
Player 1 vertices from which Player 0 can reach U with at most one-time coop-
eration from Player 1. Looking at Fig. 3, case (i) is indicated by the dotted line,

220 A. Anand et al.

Fig. 3: Computation of uX. UUpre(X) (left) and pX. UUtpre(X) (right). Each colored
region describes one iteration over X. The dotted region on the right is added by the
attr part of tpre, and this allows only the vertex vs to be in front({vi}). Each set of
the same colored edges defines a live transition group.

while case (ii) corresponds to the last added Player 1 vertex (e.g., vs). Hence,
we need to capture the cooperation needed by Player 1 only from the vertices
added last, which we call the frontier of U in G and are formalized as follows:

front(U) := tpreq(U) \ attr&(U). (11)

It is easy to see that, indeed front(U) C V1, as whenever v € front(U) N VO,
then it would have been the case that v € attr% (U) via (10).

Defining live groups based on frontiers instead of all elements in X*? indeed
yields the desired permissive assumption for Biichi games. By observing that we
additionally need to ensure that Player 1 never leaves the cooperative winning
region by a simple safety assumption, we get the following result, which is the
main contribution of this section.

Theorem 2. Let G = (G = (V,E),® =00U) be a Biichi game with Z* =
TBUCHI(G,U) and H® = {H;},5, s-t.

0 # H; := (front(X") x (XN front(X%))) N E, (12)

where X* is the set computed in the i-th iteration of the computation over X
and in the last iteration of the computation over Y in TBUCHI. Then ¥ =
Wonsars(S) A Wi (HY) is an APA for G, where S = UNSAFEA(G,U). We write
LIVEA(G,U) to denote the algorithm to construct live groups H® as above, which
runs in time O(n3), where n = |V|.

In fact, there is a faster algorithm for computation of APAs for Biichi games,
that runs in time linear in the size of the graph, which we present in the full
version [2]. We chose to present the p-calculus based algorithm here, because it
provides more insights into the nature of live groups.

4.4 Co-Liveness Assumptions in Co-Biichi Games

A co-Biichi game is the dual of a Biichi game, where a winning play should visit
a designated set of vertices only finitely many times. Formally, a co-Biichi game

Computing Adequately Permissive Assumptions for Synthesis 221

is a tuple G = (G, ®) where & = QU for some U C V. The standard symbolic
algorithm to compute the cooperative winning region is as follows:

CoBUCHI(G,U) := pX.vY. (UnNpre(Y)) U (pre(X)). (13)

As before, the sets X obtained in the i-th computation of X during the evalua-
tion of (13) carry essential information for constructing assumptions. Intuitively,
X! gives precisely the set of vertices from which the play can stay in U with
Player 1’s cooperation and we would like an assumption to capture the fact
that we do not want Player 1 to go further away from X' infinitely often. This
observation is naturally described by so called co-liveness templates.

Definition 7. Let G = (V, E) be a game graph and D CV XV a set of edges.
Then a co-liveness template over G w.r.t. D is defined by the LTL formula

WCOLIVE(D) = o0 /\eeD -e. (14)

The assumptions employing co-liveness templates will be called co-liveness
assumptions. With this, we can state the main result of this section.

Theorem 3. Let G = (G = (V,E),00U), Z* = CoBUcHI(G,U) and
D=([(X'nVY)x(Z*\XY] U[Uis1(XnVYH x (Z*\X"H])NE, (15)

where X' is the set computed in the i-th iteration of fixzpoint variable X in
CoBUCHI. Then ¥ = Wynsars(S) A Yeorve(D) is an APA for G, where S =
UNSAFEA (G, U). We write COLIVEA(G,U) to denote the algorithm construct-
ing co-live edges D as above which runs in time O(n3), where n = |V|.

We observe that X is a subset of U such that if a play reaches X!, Player 0
and Player 1 can cooperatively keep the play in X'. To do so, we ensure via the
definition of D in (15) that Player 1 can only leave X' finitely often. Moreover,
with the other co-live edges in D, we ensure that Player 1 can only go away from
X! finitely often, and hence if Player 0 plays their strategy to reach X' and
then stay there, the play will be winning. The permissiveness of the assumption
comes from the observation that if co-liveness is violated, then Player 1 takes
a co-live edge infinitely often, and hence leaves X' infinitely often, implying
leaving U infinitely often.

We again present a faster algorithm that runs in time linear in size of the
graph for computation of APAs for co-Biichi games in the full version [2].

4.5 APA Assumptions for Parity Games

Parity games. Let G = (V, E) be a game graph, and C = {Cy,...,Ci} be a
set of subsets of vertices which form a partition of V. Then the game G = (G, ®)
is called a parity game if

® = Parity(C) = Ve 00 B0C = Vet BOC5- (16)

222 A. Anand et al.

The set C' is called the priority set and a vertex v in the set C;, for i € [1;k],
is said to have priority i. An infinite play p is winning for & = Parity(C) if the
highest priority appearing infinitely often along p is even.

Conditional live group templates. As seen in the previous sections, for games
with simple winning conditions which require visiting a fixed set of edges in-
finitely or only finitely often, a single assumption (conjoined with a simple safety
assumption) suffices to characterize APAs, as there is just one way to win. How-
ever, in general parity games, there are usually multiple ways of winning: for
example, in parity games with priorities {0, 1,2}, a play will be winning if either
(i) it only infinitely often sees vertices of priority 0, or (ii) it sees priority 1 in-
finitely often but also sees priority 2 infinitely often. Intuitively, winning option
(i) requires the use of co-liveness assumptions as in Sec. 4.4. However, winning
option (ii) actually requires the live group assumptions discussed in Sec. 4.3 to
be conditional on whether certain states with priority 1 have actually been vis-
ited infinitely often. This is formalized by generalizing live group templates to
conditional live group templates.

Definition 8. Let G = (V, E) be a game graph. Then a conditional live group
over G is a pair (R, H"), where R CV and H* is a live group. Given a set of
conditional live groups H¢, a conditional live group template is the LTL formula

Weonn (H') = /\(R,H‘)EHL’ (DOR = WLWE(HZ)) . (17)

Again, the assumptions employing conditional live group templates will be
called conditional live group assumptions. With the generalization of live group
assumptions to conditional live group assumptions, we actually have all the
ingredients to define an APA for parity games as a conjunction

U= WUNSAFE(S) A WCOLIVE(D) A WCOND (,H[) (18)

of a safety, a co-liveness, and a conditional live group assumptions. Intuitively,
we use (i) a safety assumption to prevent Player 1 to leave the cooperative win-
ning region, (ii) a co-live assumption for each winning option that requires seeing
a particular odd priority only finitely often, and (iii) a conditional live group as-
sumption for each winning option that requires seeing an even priority infinitely
often if certain odd priority have been seen infinitely often. The remainder of
this section gives an algorithm (Alg. 1) to compute the actual safety, co-live
and conditional live group sets S, D and H’, respectively, and proves that the
resulting assumption ¥ (as in (18)) is actually an APA for the parity game G.

Computing APAs. The computation of unsafe, co-live, and conditional live
group sets S, D, and H’ to make ¥ in (18) an APA is formalized in Alg. 1.
Alg. 1 utilizes the standard fixpoint algorithm PARITY(G,C) [12] to compute
the cooperative winning region for a parity game G, defined as

PARITY(G, C) =7Xg - vXo ,qu I/X(). Uie[O;d](Ci N pre(XZ-)), (19)

where 7 is v if d is even, and pu otherwise. In addition, Alg. 1 involves the
algorithms UNSAFEA (Thm. 1), LivEA (Thm. 2), and COLIVEA (Thm. 3) to

Computing Adequately Permissive Assumptions for Synthesis 223

Algorithm 1 PARITYASSUMPTION

Input: G = (V,E), C:V — {0,1,...}
Output: ¥
1: Z* « PariTy(G, O)

: S < UnsareA(G, Z")

PG+ Glgx, C+ Clg=

1 (D, H%) «ComputeSETS((G, C), 0, 0)
: return S, D, H*

d + max{i | C; # 0}
if d is odd then

2

3

4

5

6: procedure CompuTeSETS((G, C), D, H)
7

8

9 Woa < Parity(Gly\c,, C)

10: D + D U CoLiveA(G, W_4)

11: else

12: Wy + BUcHI(G, Cg), Wog + V \ Wy

13: for all odd ¢ € [0;d] do

14: Hz <~ ’Hz U (WgncCs, LIVEA(G‘Wd7 Ciz1UCiq43---U Cd))
15: if d > 0 then

16: G+ Glw_, »Co+ CoUCq, Ca + 0

17: CompuTeSETS((G, C), D, HY)

18: else

19: return (D, H%)

Fig. 4: A parity game, where a vertex with priority ¢ has label ¢;. The dotted edges are
the unsafe edges, the dashed edges are the co-live edges, and every similarly colored
vertex-edge pair forms a conditional live group.

compute safety, live group, and co-liveness assumptions in an iterative manner.
In addition, G|y = (U, U°, U E') st. U° .= VONU, U! = V! NU, and
E' = EN (U x U) denotes the restriction of a game graph G = (V7 Vo vt E)
to a subset of its vertices U C V. Further, C|y denotes the restriction of the
priority set C from V to U C V.

We illustrate the steps of Alg. 1 by an example depicted in Fig. 4. In line 1,
we compute the cooperative winning region Z* of the entire game, to find that
the parity condition cannot be satisfied from vertex v; even with cooperation,
ie, Z* ={v1,...,v6}. So we put the edge (vg,v7) in a safety template, restrict
the game to G = G|z~ and run COMPUTESETS on the new restricted game.

In the new game G the highest priority is odd (d = 5), hence we execute
lines 9-10. Now a play would be winning only if eventually the play does not see
vs any more. Hence, in step 9, we find the region W_5 = {v1,...,v4,v6} of the
restricted graph G|y ¢, (only containing nodes v; with priority C(v;) < 5)) from
where we can satisfy the parity condition without seeing vs. We then make sure
that we do not leave W_g5 to visit vs in the game G infinitely often by executing
COLIVEA (G, W_5) in line 10, making the edges (vs,v5) and (vg, v5) co-live.

Once we restrict a play from visiting v5 infinitely often, we only need to focus
on satisfying parity without visiting vs within W_s5. This observation allows us

224 A. Anand et al.

to further restrict our computation to the game G = G|w_, in line 16, where we
also update the priorities to only range from 0 to 4. In our example this step
does not change anything. We then re-execute COMPUTESETS on this game.

In the restricted graph, the highest priority is 4 which is even, hence we
execute lines 12-14. One way of winning in this game is to visit Cy infinitely
often, so we compute the respective cooperative winning region Wy in line 12.
In our example we have Wy = W_5 = {v1,...,v4,v6}. Now, to ensure that from
the vertices from which we can cooperatively see 4, we actually win, we have
to make sure that every time a lower odd priority vertex is visited infinitely
often, a higher priority is also visited. This can be ensured by conditional live
group fairness as computed in line 14. For every odd priority ¢ < 4, (i.e, for
i =1 and ¢ = 3) we have to make sure that either 2 or 4 (if ¢ = 1) or 4 (if
i = 3) is visited infinitely often. The resulting live groups H¢ = (R;, Hf) collect
all vertices in W, with priority 7 in R; and all live groups allowing to see even
priorities j with ¢ < j < 4 in H, where the latter is computed using the fixed-
point algorithm LIVEA to compute live groups. The resulting live groups for
i =1 (blue) and i = 3 (red) are depicted in Fig. 4 and given by ({v1}, {(v1,v2)})
and ({vs}, {(ve,v4)}, {(v1,v2)}), respectively.

At this point we have W_, = (), making the game graph computed in line 16
empty, and the algorithm eventually terminates after iteratively removing all
priorities from C' by running COMPUTESETS (without any computations, as G
is empty) for priorities 3, 2 and 1. In a different game graph, the reasoning done
for priorities 5 and 4 above can be repeated for lower priorities if there are other
parts of the game graph not contained in Wy, from where the game can be won
by seeing priority 2 infinitely often. The main insight into the correctness of the
outlined algorithm is that all computed assumptions can be conjoined to obtain
an APA for the original parity game.

With Alg. 1 in place, we now state the main result of the entire paper.

Theorem 4. Let G = (G, Parity(C)) be a parity game such that (S, D, H*) =
PARITYASSUMPTION(G, C). Then ¥ = Wyysnre(S) A Yeorve(D) A Woonn (HY) is
an APA for G. Moreover, Alg. 1 terminates in time O(n*), where n = |V|.

5 Experimental Evaluation

We have developed a C-+-+-based prototype tool SIMPA® computing Sufficient,
Implementable and Permissive Assumptions for Biichi, co-Biichi, and parity
games. We first compare SIMPA against the closest related tool GIST [9] in
Sec. 5.1. We then show that SIMPA gives small and meaningful assumptions for
the well-known 2-client arbiter synthesis problem from [21] in Sec. 5.2.

5 Repository URL: https://gitlab.mpi-sws.org/kmallik/simpa

https://gitlab.mpi-sws.org/kmallik/simpa

Computing Adequately Permissive Assumptions for Synthesis 225

10000 e s SIMPA [GIST
1000 AR <= Mean-time 64.8s| 1079.0s
g 100 ,';' * %o | Non-timeout
= 10 :3;" - . 64.8s| 209.2s
g ;. Teot . | mean-time
01 .E}'- | Timeouts (1hr) 0(0%)[59(26%)
' No assumption
0.01 §§%%- p
L generated 0(0%)| 20(9%)
0.01 041 1 10 100
SImPA () Faster 230(100%)| 0(0%)

Fig.5: Running times of SIMPA Table 1: Summary of the experimental re-
vs GIST (in seconds, log-scale) sults

5.1 Performance Evaluation

We compare the effectiveness of our tool against a re-implementation of GIST [9],
which is not available anymore 6. GIST originally computes assumptions only
enabling a particular initial vertex to become winning for Player 0. However, for
the experiments, we run GIST until one of the cooperatively winning vertices
is not winning anymore. Since GIST starts with a maximal assumption and
shrinks it until a fixed initial vertex is not winning anymore, our modification
makes GIST faster as the modified termination condition is satisfied earlier.
Owing to the non-dependence of our tool and dependence of GIST on a fixed
vertex, this modification allows a fair comparison.

We compared the performance and the quality of the assumptions computed
by SIMPA and GIST on a set of parity games collected from the SYNTCOMP
benchmark suite [1], with a timeout of one hour per game. All the experiments
were performed on a computer equipped with Intel(R) Core(TM) i5-10600T
CPU @ 2.40GHz and 32 GiB RAM.

We provide all details of the experimental results in the full version [2] and
summarize them in Table 1. In addition, Fig. 5 shows a scatter plot, where
every instance of the benchmarks is depicted as a point, where the X and the
Y coordinates represent the running time for SIMPA and GIST (in seconds),
respectively. We see that SIMPA is computationally much faster than GIST in
every instance (all dots lie above the lower red line) — most times by one (above
the middle green line) and many times even by two (above the upper orange
line) orders of magnitude.

Moreover, in some experiments, GIST fails to compute a sufficient assumption
(in the sense of Def. 2), whereas SIMPA successfully computes an APA (see the
row labeled ‘no assumption generated’ in Table 1). This is not surprising, as
the class of assumptions used by GIST are only unsafe edges and live edges
(i.e., singleton live groups) which are not expressive enough to provide sufficient
assumptions for all parity games (see Fig. 1(b) for a simple example where there
is no sufficient assumption that can be expressed using live edges). Furthermore,

5 The link provided in the paper is broken, and the authors informed us that the
implementation is not available.

226 A. Anand et al.

T1T29192
mT. @

sl Yo

r1T2GT e e TiT2 T1T29192
F1F> — 9192 Flee
T1T2 — -
L2 l"'lTZ L7 ' N

T1T29192
s

71729192
Fi1 Fy

Jr1729192 e

T1T29192 o

T1Tr2g9192
T @

T1r29192
e @

FiFs — 193 FiFy —gige
T ~ il i
¥ 172 9192 9192
___________________________________ r1T2d192 @ ﬁrzglﬁw | __!
1 Fo — g1g2 F1F> —g1g2
T T
A\ A\

Fig. 6: Illustration of a relevant part of the game graph for the 2-client arbiter. Rect-
angles and circles represent Player 1 and Player 0 vertices, respectively. The labels
of the Player 0 states indicate the current status of the request and grant bits, and
in addition, remember if a request is currently pending using the atomic propositions
Fy, F5. The double-lined vertices are Biichi vertices, i.e., ones with no pending requests.

we note that in all cases where the assumptions computed by GIST are actually
APAs, SIMPA computes the same assumptions orders of magnitudes faster.

5.2 2-Client Arbiter Example

We consider the 2-client arbiter example from the work by Piterman et al. [21],
where clients ¢ € {1,2} (Player 1) can request or free a shared resource by
setting the input variables r; to true or false, and the arbiter (Player 0) can set
the output variables g; to true or false to grant or withdraw the shared resource
to/from client i. The game graph for this example is implicitly given as part
of the specification (as this is a GR(1) synthesis problem [21]). The goal of the
arbiter is to ensure that always eventually the requests are granted. This can be
depicted by a Biichi game, part of which is presented in Fig. 6. It is known that
Player 0 can not win the game without constraining moves of Player 1.

Running SIMPA (took 0.01s) on this example yields two live groups (edges
of one live group are indicated by thick red arrows in Fig. 6) that ensures that
the play eventually moves to vertices where the Player 0 can force a visit to
a Biichi vertex. These assumptions are similar to the ones used to restrict the
clients’ behavior in [21], but are more permissive. Furthermore, running GIST
(took 6.44s) yields several live edges (e.g., @— @, @— @), which again is less
permissive than ours. It turns out that an APA for this example will unavoidably
require live groups — singleton live edges, as computed by GIST, will not suffice.
For a detailed discussion, we refer the reader to the full version [2].

Computing Adequately Permissive Assumptions for Synthesis 227

References

The reactive synthesis competition. http://www.syntcomp.org

2. Anand, A., Mallik, K., Nayak, S.P., Schmuck, A.K.: Computing adequately per-

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

missive assumptions for synthesis (2023), https://arxiv.org/abs/2301.07563
Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
Brenguier, R., Raskin, J.F., Sankur, O.: Assume-admissible synthesis. Acta Infor-
matica (2017)

Bronistaw Knaster, A.T.: Un théoréme sur les fonctions d’ensembles. Annales de
la Société polonaise de mathématique 6 (1928)

Cavezza, D.G., Alrajeh, D., Gyorgy, A.: Minimal assumptions refinement for real-
izable specifications. In: Formal Methods in Software Engineering (2020)
Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: TACAS (2007)
Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: CONCUR (2008)

Chatterjee, K., Henzinger, T.A., Jobstmann, B., Radhakrishna, A.: Gist: A solver
for probabilistic games. In: CAV (2010)

Chatterjee, K., Henzinger, T.A., Piterman, N.: Algorithms for biichi games (2008),
https://arxiv.org/abs/0805.2620

Chatterjee, K., Horn, F., Léding, C.: Obliging games. In: International Conference
on Concurrency Theory. pp. 284-296. Springer (2010)

Emerson, E., Jutla, C.: Tree automata, pu-calculus and determinacy. In: FOCS
(1991)

Finkbeiner, B., Metzger, N., Moses, Y.: Information flow guided synthesis. In: Pro-
ceedings of 34th International Conference on Computer Aided Verification (CAV
22) (2022)

Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: TACAS (2010)
Gaaloul, K., Menghi, C., Nejati, S., Briand, L., Parache, Y.I.: Combining ge-
netic programming and model checking to generate environment assumptions. TSE
(2021)

Gaaloul, K., Menghi, C., Nejati, S., Briand, L.C., Wolfe, D.: Mining assumptions
for software components using machine learning. In: ESEC/FSE (2020)

Kozen, D.: Results on the propositional p-calculus. In: ICALP. Springer (1982)
Majumdar, R., Mallik, K., Schmuck, A.K., Zufferey, D.: Assume-guarantee dis-
tributed synthesis. IEEE TCAD (2020)

Majumdar, R., Piterman, N., Schmuck, A.K.: Environmentally-friendly gr (1) syn-
thesis. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 229-246. Springer (2019)

Maoz, S., Ringert, J.O., Shalom, R.: Symbolic repairs for GR(1) specifications. In:
ICSE (2019)

Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Proceedings
of the 7th International Conference on Verification, Model Checking, and Abstract
Interpretation. p. 364-380. VMCAT’06, Springer-Verlag, Berlin, Heidelberg (2006)
Schmelter, D., Greenyer, J., Holtmann, J.: Toward learning realizable scenario-
based, formal requirements specifications. In: REW (2017)

http://www.syntcomp.org
https://arxiv.org/abs/2301.07563
https://arxiv.org/abs/0805.2620

228 A. Anand et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Check for
updates

Verification-guided Programmatic Controller
Synthesis

Yuning Wang and He Zhu®9

Rutgers University, New Brunswick NJ, USA
{yw895,hz375}@cs.rutgers.edu

Abstract. We present a verification-based learning framework VEL that
synthesizes safe programmatic controllers for environments with contin-
uous state and action spaces. The key idea is the integration of pro-
gram reasoning techniques into controller training loops. VEL performs
abstraction-based program verification to reason about a programmatic
controller and its environment as a closed-loop system. Based on a novel
verification-guided synthesis loop for training, VEL minimizes the amount
of safety violation in the proof space of the system, which approximates
the worst-case safety loss, using gradient-descent style optimization. Ex-
perimental results demonstrate the substantial benefits of leveraging ver-
ification feedback for synthesizing provably correct controllers.

1 Introduction

Controller search is commonly used to govern cyber-physical systems such as
autonomous vehicles, where high assurance is particularly important. Reinforce-
ment Learning (RL) of neural network controllers is a promising approach for
controller search [19]. State-of-the-art RL algorithms can learn motor skills au-
tonomously through trial and error in simulated or even unknown environments,
thus avoiding tedious manual engineering. However, well-trained neural network
controllers may still be unsafe since the RL algorithms do not provide any formal
guarantees on safety. A learned controller may fail occasionally but catastroph-
ically, and debugging these failures can be challenging [46].

Guaranteeing the correctness of an RL controller is therefore important.
Principally, given an environment model, the correctness of a controller can
be verified by reachability analysis over a closed-loop system that combines the
environment model and the controller. Indeed, the use of formal verification
techniques to aid the design of reliable learning-enabled autonomous systems
has risen rapidly over the last few years [43,28,41,18,17]. A natural extended
question is that in case verification fails, can we exploit verification feedback in
the form of counterexamples to synthesize a verifiably correct controller? This
turns out to be a very challenging task due to the following reasons.

Verification Scalability. A counterexample-guided controller synthesizer has
to iteratively conduct reachability analysis and controller optimization as each

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 229-250, 2023.
https://doi.org/10.1007/978-3-031-30820-8 __ 16

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0001-9606-150X
https://doi.org/10.1007/978-3-031-30820-8_16
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_16&domain=pdf

230 Y. Wang and H. Zhu

rias

abstract]
Safety lgss

if 28.33x1 + 4.23z> + 4.16 > 0
then 6.7921 — 8.56x2 + 0.35
else 11.01z; — 13.50z2 + 8.71

x1

(a) Oscillator Programmatic Controller (b) Oscillator Reachability Analysis

Fig.1: An oscillator programmatic controller and its reachability analysis. In
Fig. 1b, the red region represents the oscillator unsafe set (—03,—0.25) x
(0.2,0.35), and the blue region depicts the target set [—0.05,0.05] x [-0.05, 0.05].
The initial state set of oscillator is [—0.51, —0.49] x [0.49, 0.51].

iteration may discover a new counterexample. However, repeatedly calculating
the reachable set of a nonlinear system controlled by a neural network controller
over a long horizon is computationally challenging. For example, consider de-
signing a controller for the Van der Pol’s oscillator system [49]. The oscillator
is a 2-dimensional non-linear system whose state transition can be expressed by
the following ordinary differential equations:

35'1 = T2 .13'2 = (1—1‘%)%‘2—371 +u (1)

where (21, 22) is the system state variables and w is the control action variable.
A feedback controller 7(z1, z2) measures the current system state and then ma-
nipulates the control input u as needed to drive the system toward its target.
The initial set of the control system is (x1,z3) € [-0.51, —0.49] x [0.49,0.51]. As
depicted in Fig. 1b, the controlled system is expected to reach the target region
in blue while avoiding the obstacle region in red within 120 timesteps (i.e. con-
trol steps). In our experience, even for this simple example, using Verisig [28]
and ReachNN* [18] (two state-of-the-art verification tools for neural network
controlled systems) to calculate the reachable set of a simple 2-layer neural net-
work feedback controller my (1, z2) costs more than 100s each. It is even more
a costly process to repeatedly conduct reachability analysis of a complex neural
network controller in a counterexample-guided learning loop.

Recently, programmatic controllers emerge as a promising solution to address
the lack of interpretability problem in deep reinforcement learning [47,27,44,38|
by training controllers as programs. A programmatic controller to control the
oscillator environment learned by a programmatic reinforcement learning algo-
rithm [38] is depicted in Fig. la. We depict the decision boundary of the pro-
gram’s conditional statement (28.33z; + 4.23zo + 4.16 = 0) in solid dash
in Fig. 1b. The program can be interpreted as a decomposition of the reach-
avoid learning problem into two sub-problems — the linear controller in the else
branch of the program first pushes the system away from the obstacle and next
the linear controller in the then branch takes over to make the system reach the

Verification-guided Programmatic Controller Synthesis 231

target. As we show in this paper, the compact and structured representation of
a programmatic controller lends itself amenable to off-the-shelf hybrid or con-
tinuous system reachability tools e.g. [10,20]. Compared with verifying a deep
neural network controller, reasoning about a programmatic controller is more
feasible. However, the question remains when verification fails — rather than re-
training a new controller, how can we leverage verification feedback to construct
a verifiably correct controller?

Proof Space Optimization. The other main challenge of verification-guided
controller synthesis is that when verification fails, the counterexample path
may provide little help or even be spurious due to estimated approximation
errors. This is because reachability analyses typically overapproximate the true
reachable sets using a computationally convenient representation such as poly-
topes [20] or Taylor models [10]. This overapproximation leads to quick error
accumulation over time, known as the wrapping effect. Even a well-trained con-
troller may fail verification because of approximation errors. For example, we
adapted a state-of-the-art reachability analyzer Flow* [10] to conduct reachabil-
ity analysis of the closed-loop system combined by the programmatic controller
in Fig. 1a and the oscillator environment (Equation 1) to compute a reachable
state set between each time interval within the episode horizon (the controller
is applied to generate a control action at the start of each time interval). The
result is depicted in Fig. 1b. Although the programmatic controller empirically
succeeds reaching the goal on extensive test simulations, the reachability analysis
cannot determine whether the target region can always be reached as it computes
a larger reachable region that keeps expansion, which may be an overestimation
caused by over-approximation.

We hypothesize that verification failures can be caused by (1) true counterex-
ample of unsafe states, (2) states caused by approximate errors, and (3) states
in between the time interval of each control step (RL algorithms only sample
states at the start and the end of a time interval). The latter two kinds of states
cannot be observed by an RL algorithm during training in the concrete system
state space. Thus, counterexample-guided controller synthesis may not work well
if counterexamples are in the form of paths within the concrete state space.

To address this challenge, we propose synthesizing controllers in the proof
space of a reachability analyzer. Controller synthesis in the proof space is critical
to learning a verified controller because it can leverage verification feedback on
either true unsafe counterexample states or approximation errors introduced by
the verification procedure for searching a provably correct controller. A coun-
terexample detected by a reachability analyzer is a symbolic rollout of abstract
states of the closed-loop system that combines a (fixed) environment model and
a (parameterized) programmatic controller. An abstract state (e.g. depicted as
a green region in Fig. 1b) at a timestep over-approximates the set of concrete
states reachable during the time interval of the timestep. VEL quantifies the
safety and reachability property violation by the abstract states, e.g. there is
an abstract loss between the approximative abstract state and the target region
at the last control step. The loss approximates the worst-case reachability loss

232 Y. Wang and H. Zhu

of any concrete state subsumed by the abstraction. We introduce lightweight
gradient-descent style optimization algorithms to optimize controller parame-
ters to effectively minimize the amount of correctness property violation to zero
to refute any verification counterexamples.

Contributions. The main contribution of this paper is twofold. First, we
present an efficient controller synthesis approach that integrates formal veri-
fication within a programmatic controller learning loop. Second, instead of syn-
thesizing a programmatic controller from concrete state and action samples, we
optimize the controller using symbolic rollouts with abstract states obtained by
reachability analysis in the verification proof space. We implement the proposed
ideas in a tool called VEL and present a detailed experimental study over a
range of reinforcement learning systems. Our experiments demonstrate the ben-
efits of integrating formal verification as part of the training objective and using
verification feedback for controller synthesis.

2 Problem Setup

Environment Models. An environment is a structure M°[] = (S, 4, F : {S x
A— S}, R:{SxA— R},) where S is an infinite set of continuous real-vector
environment states which are valuations of the state variables x1,xo,...,x, of
dimension n (S C R™); and A is a set of continuous real-vector control actions
which are valuations of the action variables ui,us,...,u,, of dimension m. F
is a state transition function that emits the next environment state given a
current state s and an agent action a. We assume that F' is defined by an
ordinary differential equation (ODE) in the form of & = f(z,) and the function
f: R™xR™ — R™ is Lipschitz continuous in = and continuous in u. R(s, a) is the
immediate reward after transition from an environment state s € S with action
a € A. An environment M°[-] is parameterized with an (unknown) controller.

Controllers. An agent uses a controller to interact with an environment M?[-].
We explicitly model the deployment of a (learned) controller 7 : {S — A} in
M?[] as a closed-loop system M?[r]. The controller 7 determines which action
the agent ought to take in a given environment state. Specifically, it is invoked
every § time period at a timestep. m reads the environment state s; = s(id)
at time ¢ = i (i = 0,1,2,...) or timestep ¢, and computes a control action
as a; = a(id) = m(s(id)). Then the environment evolves following the ODE
& = f(x,a(id)) within the time period [id, (i + 1)d] and obtain the state s; 41 =
s((¢+1)d) at the next timestep ¢ + 1. In the oscillator example from Sec. 1, the
duration ¢ of a timestep is 0.05s and the time horizon is 6s (i.e. 120 timesteps).

For environment simulation, given a set of initial states Sy, we assume the
existence of a flow function® ¢(sg,t) : So x RT — S that maps some initial state
S0 to the environment state ¢(sg,t) at time ¢ where ¢(sg,0) = so. We note that
¢ is the solution of the ODE & = f(z,a(id)) in the state transition function F
during the time period [id, (i + 1)d] and a(id) = 7(d(s0,i9)).

! ¢ may be implemented using scipy.integrate.odeint (or scipy.integrate.solve ivp).

Verification-guided Programmatic Controller Synthesis 233

Reinforcement Learning (RL). Given a set of initial states Sy and a time
horizon T'§ (T > 0) with J as the duration of a timestep, a T-timestep rollout ¢
of a controller 7 is denoted as (¢ = so, ag, $1,...,S7) ~ 7™ where s; = s(id) and
a; = a(id) are the environment state and the action taken at timestep ¢ such
that so € Sp, si+1 = F(si,ai), and a; = 7(s;). The aggregate reward of 7 is

T
JR(TO = E((:so,ao,...,sT)N'n'[Z BtR<Siaai)] (2)

t=0

where (8 is the reward discount factor (0 < 8 < 1). Controller search via RL
aims to produce a controller 7 that maximizes J(r).

Controller Correctness Specification. A correctness specification of a con-
troller is a logical formula specifying whether any rollout ¢ of the controller
accomplishes the task without violating safety properties and reachability prop-
erties. To define safety and reachability over rollouts, the user first specifies a
set of atomic predicates over environment states s.

Definition 1 (Predicates). A predicate ¢ is a quantifier-free Boolean combi-
nations of linear inequalities over the environment state variables x:

(@) =Py leNe|loV e
(P) ::= A-2 <b where A € RI*l b e R;

A state s € S satisfies a preciate ¢, denoted as s |= @, iff p(s) is true.
The correctness requirement of a controller goes beyond from predicates over
environment states s to specifications over controller rollouts (.

Definition 2 (Rollout Specifications). The syntaz of our correctness speci-
fications for RL controllers is defined as:

Y = 1 reach @) ensuring Qs

In a rollout specification, @1 reach @1 enforces reachability - the controlled agent
should eventually reach some goal states evaluated true by the predicate o1 from
an initial state that satisfies p;. For instance, the agent should achieve some goals
from an initial state. The constraint ensuring @o additionally enforces safety -
any rollout of the controller should only visit safe states evaluated true by the
predicate @o. For example, the agent should remain within a safety boundary or
avoid any obstacles throughout a rollout. Formally, the semantics of a rollout
specification 1 is defined as follows:

[er reach 1 ensuring w2](Co.r) = wi(sr) A (V0 <i<T. pa(s;))

where (o.7 = S0, S1,--.,ST 1S a rollout such that sg € pr and T > 0 denotes the
total number of timesteps. Our specification implicitly requires that if the target
region is reached before the T timestep of a rollout, the controlled agent does not
leave the target region at the end of the rollout.

234 Y. Wang and H. Zhu

Given a time horizon T6 (T > 0), a controller 7 is correct for an environment
M?[-] with respect to a rollout specification 1 ::= (1 reach ¢; ensuring gs iff for
any rollout Co.z = s, 81, ..87_1,s7 of M?[x] such that o1 (so) holds, [¥](Co.7)
is true. Notice that this definition does not consider any states of the continuous
environment occurring within the time period of a timestep.

Example 1 Continue the oscillator example. Assume an oscillator initial state
is from x1,x9 € [—0.51, —0.49] x [0.49,0.51]. Specify the initial state constraint:

or(r1,22) = —0.51 < a3 < —0.49 A 0.49 < 25 < 0.51

The unsafe set of oscillator is (—03,—0.25) x (0.2,0.35) (depicted as the red
region in Fig. 1b). The safety psafe of the system is specified as:

Ysafe(1,22) =21 < =03V > —-0.25V ey <02V >0.35

For this example, the target region is [—0.05,0.05] x [—0.05,0.05] (the blue region
in Fig. 1b). The reachability of the system @ eqcn is specified as:

Preach(1,22) = —0.05 < 21 < 0.05 A —0.05 < 25 < 0.05

The target region should be eventually reached by the end of a control episode
while avoiding the unsafe state region. We express the rollout specification as:

wi(z1,x2) reach Qreen(T1,T2) ensuring @sqpe(r1, x2)

The following specification formulates that a desired controller stabilizes the os-
cillator around the target region over an infinite time horizon:

Creach(T1,22) Teach Preach(®1,T2) ensuring Qafe(r1,r2)

3 Programmatic Controllers

Programmatic controllers have emerged as a promising solution to address the
lack of interpretability in deep reinforcement learning [47,38,27,8] by learning
controllers as programs. This paper focuses on programmatic controllers struc-
tured as differentiable programs [38].

Our programmatic controllers follow the high-level context-free grammar de-
picted in Fig. 2 where F is the start symbol, 6 represents real-valued parameters
of the program. The nonterminals E and B stand for program expressions that
evaluate to action values in R™ and Booleans, respectively, where m is the action
dimension size, 1 € R and 6, € R™. We represent a state input to a program-

matic controller as s = {x1 : 1,23 : Va,...,x,} where n is the state dimension
size and v; = s[z;] is the value of z; in s. As usual, the unbounded variables in
X = [x1,29,...,2,] are assumed to be input variables (i.e., state variables). C

is a low-level affine controller that can be invoked by a programmatic controller
where 03,0, € R™ 04 € R™™ are controller parameters. Notice that C' can be
as simple as some (learned) constants 6.

Verification-guided Programmatic Controller Synthesis 235

E == C|if B then C else E
B =040 - x>0
C :::93+94‘X|95

Fig.2: A context-free grammar for programmatic controllers.

The semantics of a programmatic controller in F is mostly standard and
given by a function [E](s), defined for each language construct. For example,
[x:](s) = s|z;] reads the value of a variable z; in a state s. A controller may use an
if-then-else branching construct. To avoid discontinuities for differentiability,
we interpret its semantics in terms of a smooth approximation:

[i£ B then C else E](s) = o([B](s)) - [C](s) + (1 — o([BI())) - [E](s) (3)

where o is the sigmoid function. Thus, any controller programmed in this gram-
mar is a differentiable program. During execution, a programmatic controller
invokes a set of low-level affine controllers under different environment condi-
tions, according to the activation of the B conditions in the program.

Programmatic Reinforcement Learning. We use the programmatic rein-
forcement learning algorithm [38] to learn a programmatic controller. Compared
with other programmatic reinforcement learning approaches [27,47], this algo-
rithm stands out by jointly learning both program structures and program pa-
rameters. Empirical results show that learned programmatic controllers achieve
comparable or even better reward performance than deep neural networks [38].

4 Proof Space Optimization

The main challenge of using a verification procedure to guide controller synthe-
sis is that verifiers are in general incomplete. When verification fails, it does not
necessarily mean the system under verification has a true counterexample as the
verifier may introduce states caused by over-approximation errors, commonly
seen in reachability analysis. Even a well-trained controller may fail verifica-
tion because of approximation errors. In our context, for soundness, reachability
analysis of continuous or hybrid systems additionally takes environment states
in between the time interval of a timestep into account. Both of these kinds
of states cannot be observed by RL agents during training in the concrete state
space, which renders the importance of controller optimization in the proof space
of verification. In the following, Sec. 4.1 defines a verification procedure for en-
vironment models governed by programmatic controllers. Sec. 4.2 encodes veri-
fication feedback as a loss function of controller parameters over the verification
proof space. Finally, Sec. 4.3 defines an optimization procedure that iteratively
minimizes the loss function for correct-by-construction controller synthesis.

236 Y. Wang and H. Zhu

4.1 Controller Verification

We formalize controller synthesis as a verification-based controller optimization
problem. A synthesized controller 7 is certified by a formal verifier against an
environment model M?[-] and a rollout specification 1 (Definition 2). The verifier
returns true if 7 can be verified correct.

Reinforcement learning algorithms typically discretize a continuous envi-
ronment model M?[-] to sample environment states every ¢ time period (as a
timestep) for controller learning (Sec. 2). For soundness, in verification our ap-
proach instead considers all states reachable by the original continuous system.
Formally, given a set of initial states Sy, we use S; (i > 0) to represent the set
of reachable concrete states during the time interval of [(¢ — 1)d, id]:

S; = {o(s0,1) | Vso € So, ¥t € [(i — 1)d, 0]}

where ¢ is the flow function for environment state transition defined in Sec. 2.
Our algorithm uses abstract interpretation to soundly approximate the set of
reachable states S; at each time step by reachability analysis.

Definition 3 (Symbolic Rollouts). Given an environment model M°[r] =
(S, A, F,R,) deployed with a controller w, a set of initial states Sy, and an
abstract domain D, a symbolic rollout of M°[x] over D is (P = SP,SP,...
where SP = a(Sy) is the abstraction of the initial states Sy in D. Each symbolic
state SP = FP[r] (521) over-approzimates S; - the set of reachable states from
the initial state So during the time interval [(i — 1)d,id] of the timestep i. FP is
an abstract transformer for M°|n]’s state transition function F.

Our implementation of the abstract interpreter F'P is based on Flow* [10], a
reachability analyzer for continuous or hybrid systems, where the abstract do-
main D is Taylor Model (TM) flowpipes. Formally, for reachability computation
at each timestep ¢ (where i > 0), we firstly use Flow™ to evaluate the TM flow-
pipe S;_; for the reachable set of states at time ¢t = (i — 1)é. To obtain a TM
representation for the output set of the programmatic controller at timestep i,
we use TM arithmetic to evaluate a TM flowpipe A;_; for [«](s) for all states
s € S;_1. Here [n] encodes the semantics of = (Equation 3). For example, the
semantics of the oscillator controller in Fig. 1a is:

0(28.3321 + 4.23z5 + 4.16) x (6.79z; — 8.56z5 + 0.35)
+ (1-0(28.3321 + 4.23z, + 4.16)) x (11.01z; — 13.50z, + 8.71)

where the sigmoid function ¢ can be handled by TM arithmetic. The resulting
TM representation A;_; can be viewed as an overapproximation of the con-
troller’s output at timestep ¢. Finally, we use Flow* to construct the TM flow-
pipe overapproximation SP for all reachable states during the time period at
timestep i by reachability analysis over the ODE dynamics of the transition
function & = f(z,a) for § time period with initial state #(0) € S;_; and the
control action a € /Ali_l.

Verification-guided Programmatic Controller Synthesis 237

Verification Procedure. Given a closed-loop system M?9[r], a time horizon
T6 (T > 0), and a rollout specification 1 ::= [reach ¢; ensuring @], we
obtain the symbolic rollout of M°[r] as (P = SP,SP,...,SE where ST is the
abstraction of all states in ¢; in the abstract domain D. For formal verification,
we extend the semantics definition of the rollout specification [¢] over concrete
rollouts (Definition 2) to support symbolic rollouts. Formally, [4](¢r) holds iff:

Vs € 4(ST). ¢1(s) [\ YO<i<T, s€4(SP). pa(s)

where 7 is the concretization function of the abstract domain D. The closed-
loop system M?[r] satisfies 1, denoted as M°[r] = 4, iff [/](¢Dr) holds. The
abstract domain D is the proof space of controller verification.

Example 2 To verify the closed-loop system composed by the oscillator ODE
in Fq. 1 and the learned controller in Fig. 1a, we have conducted reachability
analysis to overapproximate the reachable state set during the time period of
each timestep within the episode horizon. The result of the TM flowpipes are
depicted as a sequence of green regions in Fig. 1b. The verification procedure
cannot guarantee that the target be reached eventually due to the approximation
errors.

4.2 Correctness Property Loss in the Proof Space

To facilitate controller optimization in the presence of verification failures, our
approach measures the amount of correctness property violation as verification
feedback. To this end, we firstly define correct property violation over the con-
crete environment state space and then lift this definition to the proof space of
controller verification.

We note that a controller rollout that fails correctness property verification
violates desired properties at some states. The following definition characterizes
a correctness loss function to quantify the correctness property violation of a
state.

Definition 4 (State Correctness Loss Function). For a predicate ¢ over
states s € S, we define a non-negative loss function L(s,) such that L(s,p) =0
iff s satisfies @, i.e. s = . We define L(s,p) recursively, based on the possible
shapes of ¢ (Definition 1):

— L(s,A-x <b) :=max(A-s—1,0)
— L(s,901 A p2) :=max(L(s, ¢1), L(s, p2))
— L(s, 1V ¢2) = min(L(s, 1), L(s, ¢2))
Notice that L(s, 1 N\ w2) = 0 iff L(s,1) =0 and L(s,p2) = 0, and similarly
L(p1 V) =0 iff L(p1) =0 or L(pz) = 0.
Our objective is to use verification feedback to improve controller safety. To

this end, we lift the correctness loss function over concrete states (Definition 4)
to an abstract correctness loss function over abstract states.

238 Y. Wang and H. Zhu

Definition 5 (Abstract State Correctness Loss Function). Given an ab-
stract state ST and a predicate o, we define an abstract correctness loss function:
Lp(SP,) = max L(s,
(57, ¢) e (s:)
where ~y is the concretization function of the abstract domain D. The abstract
correctness loss function applies vy to obtain all concrete states represented by
an abstract state ST . It measures the worst-case correctness loss of ¢ among all
concrete states subsumed by ST. Given an abstract domain D, we can usually
approzimate the concretization of an abstract state v(ST) with a tight interval
v1(SP). As exemplified in Fig. 1b, it is straightforward to represent Taylor model

flowpipes as intervals in Flow*. Based on the possible shape of ¢, we redefine
Lp(SP,p) as:

— Lp(SP, Az <b) := maxe.,(sp) (max(A- s —b,0))

— Lp(SP, 1 A p2) :=max(Lp(SP, 1), Lp(ST, ¢2))
— Lp(SP, 1V @2) :=min(Lp(SP, ¢1), Lp(SP, ¢2))

Theorem 1 (Abstract State Correctness Loss Function Soundness).
Given an abstract state S and a predicate p, we have:

Lp(SP,0) =0 = Vs e1(SP) s = o.

We further lift the definition of the correctness loss function over abstract
states (Definition 5) to a correctness loss function over symbolic rollouts.

Definition 6 (Symbolic Rollout Correctness Loss). Given a rollout speci-
fication ¢ := @ reach p1 ensuring p2 and a symbolic rollout (Pr = ST, ..., SR
where ST is the abstraction of all states in g in the abstract domain D, we de-
fine an abstract safety loss function Lp(Co.r,) measuring the degree to which
the rollout specification is violated:

Lp(or, 1 meach g1 ensuring pa) = max(Lp(ST,¢1), OlgixT(ﬁD(S?ﬂ%)))

Definition 6 enables a quantitative metric for the correctness loss of a con-
troller in the verification proof space. Given a closed loop system M?° [7], a
time horizon T¢, a rollout specification 1, and the corresponding symbolic
rollout (P, of M?[x], the correctness loss of M?[r] with respect to 1, de-
noted as Lp(M?[x],v), is defined over the symbolic rollout i.e. Lp(M?®[r], 1))
= ‘CD(C(?T7 ¥).

Example 3 In Fig. 1b, there is a correctness loss (depicted as a red arrow)
between the abstract state at the last timestep of the oscillator symbolic rollout
and the desired reachable region Yreqer, defined in Example 1. We characterize
it as an abstract state correctness loss. The whole symbolic rollout has the same
correctness loss with respect to the rollout specification defined in Fxample 1.

Theorem 2 (Symbolic Rollout Correctness Soundness). Given an envi-
ronment M°[-] deployed with a controller © and a rollout specification 1, we
have

Lo(M°[r],¢) =0 = M’[n] = .

Verification-guided Programmatic Controller Synthesis 239

Algorithm 1 VEL: Verification-based learning framework for controller syn-
thesis. In line 8, wy is a Gaussian noise and v is a small positive real number.

Require: Environment model M 5H, rollout specification), initial controller gy
trained using the programmatic RL algorithm [38].
Ensure: Optimized controller my such that M®[mg] = 9.

1: procedure VEL

2 0 < all parameters in my for optimization

3 while true do

4: {p (—LD(Ma[Trg],’QZ))

5: if /p =0 then

6 Dump 79 to a verified controller list

7 end if s s

8 Volp %Zg:1 Lp(M°[motvw,]s w);ﬁv(M [Wefuwklyw)wk

9: 0 < 0 —n-VoLp where 7 is a learning rate
10: end while
11: end procedure

4.3 Controller Synthesis

The unique feature of our controller synthesis algorithm is that it leverages
verification feedback on either true unsafe states or overapproximation errors
introduced by verification to search for a provably correct controller.

Controller Synthesis in the Proof Space. We deem a programmatic con-
troller 7 with trainable parameters 6 (e.g. from the grammar in Fig. 2) as my.
Given a closed-loop system M?®[my], the correctness loss function Lp (MO [mg], 1))
is essentially a function of mp’s parameters 6. To reduce the correctness loss
of my over the proof space D, we leverage a gradient-descent style optimiza-
tion to update 6 by taking steps proportional to the negative of the gradient of
Lp(M?®[ry],4) at 0. As opposed to standard gradient descent optimization, we
optimize my based on symbolic rollouts in the proof space D, favouring the ab-
stract interpreter (i.e. Flow*) directly for verification-guided controller updates.

Black-box Gradient Estimation. Directly deriving the gradients of Lp, how-
ever, requires the controller verification procedure be differentiable, which is
not supported by reachability analyzers such as Flow*. To overcome this chal-
lenge, our algorithm effectively estimates the gradients of Lp based on random
search [34]. Given a closed-loop environment M?®[my], at each training iteration,
we obtain perturbed systems M°[mgy,.,] and M°[my_,.] where we add sampled
Gaussian noise w to the current controller my’s parameters 6 in both directions
and v is a small positive real number. By evaluating the abstract correctness
losses of the symbolic rollouts of M°[mgy,.] and M®[my_,.], we update @ with
a finite difference approximation along an unbiased estimator of the gradient:

1 N E (A]\Jé[7r uwk]v d))*‘c (Mé[ﬂ- —uwk]vw)
V()L:D(—N];(L as ” L g)

Wk

240 Y. Wang and H. Zhu

We update controller parameters 6 as follows where 7 is a learning rate:
0—0—n-Volp

Our high-level controller synthesis algorithm is depicted in Algorithm. 1. The
algorithm takes as input an environment model M?°[], a rollout specification 1,
and a programmatic controller 7 learned using the programmatic reinforcement
learning technique [38]. When verification fails (line 4), it uses the correctness
loss of the symbolic rollout of M?[x] for optimization (line 8-9). The algorithm
repeatedly performs the gradient-based update until a verified controller is syn-
thesized. As the controller verification procedure is undecidable in general, it is
possible that Algorithm 1 converges with a nonzero correctness loss. Our empir-
ical results in Sec. 5 demonstrate that the algorithm works well in practice.

5 Experimental Results

We have implemented the verification-guided controller synthesis technique in
Algorithm 1 in a tool called VEL (VErification-based Learning) [50]. Given an
environment and a rollout specification ¢ (Definition 2), VEL uses the program-
matic reinforcement learning algorithm [38] to learn a programmatic controller
m. The controller 7 is trained to satisfy the safety and reachability requirements
as set by 9. We do so by shaping a reward function that is consistent with) -
this function rewards actions leading to goal states and penalizes actions leading
to unsafe states. As the RL algorithm does not provide any correctness guaran-
tees and the verification procedure may introduce large approximation errors,
even well-trained controllers may fail verification. In case of verification failures,
VEL applies Algorithm 1 to optimize 7 based on the verification feedback.

We evaluated VEL on several nonlinear continuous or hybrid systems taken
from the literature. These are problems that are widely used for evaluating state-
of-the-art verification tools for learning-enabled cyber-physical systems. Bench-
marks B1 - B5 were introduced by [18]; adaptive cruise control (ACC) was pre-
sented in [43]; mountain car (MC) and quadrotor with model-predictive control
(QMPC) were introduced by [28]; Pedulum and CartPole were taken from [29];
Tora and Unicyclecar were presented in the ARCH-COMP21 competition on
formal verification of Artificial Intelligence and Neural Network Control Sys-
tems (AINNCS). We present the dynamics and the detailed description of each
benchmark in [50]. The rollout specifications (Definition 2) are depicted in Ta-
ble 1. The specifications define for each benchmark the initial states, the goal
regions to reach, and the safety properties describing the safety boundary or
the obstacles to avoid. On three benchmarks we verify the controller correctness
over an infinite horizon. For the classic control problem Pendulum, to verify
that the pendulum does not fall in an infinite time horizon, the rollout spec-
ification requires that any rollout starting from the region x1,z9 € [—0.1,0.1]
(representing pendulum angle and angular velocity) eventually turns back to it
and any rollout states must be safe (including those that temporarily leave this
region). Similarly, Tora models a moving cart attached to a wall with a spring.

Verification-guided Programmatic Controller Synthesis 241

Table 1: Benchmark Rollout Specifications (7 represents True).

Tasks Rollout Specifications
z1 € [.8,.9] Az2 € [.5,.6] reach x1 € [0, .2] A z2 € [.05,.3]
B ensuring x1,z2 € [—1.5,1.5]
z1 € [7,.9] ANzo € [.7,.9] reach x1 € [—.3, 1] A x2 € [-.35,.5]
By ensuring x1,22 € [—1.5,1.5]
Bs z1 € [.8,.9] Azg € [4,.5] reach z1 € [0,.2] A zg € [.05,.3] ensuring T
xr1,x3 € [.25, .27] Nzx2 € [.08, .1]

By reach z1 € [—.3,.1] Axs € [—.35,.5] ensuring T

x1 € [.38, 4] Ay € [45, 47 Axs € [.25,.27]
Bs reach 21 € [0,.2] A z2 € [.05,.3] ensuring T

z1 € [-.51, —49] A z2 € [49,.51] reach z1,x2 € [—.05,.05]
ensuring z1 < —3Vz; > —25Vae <.2Vaxy > .35,
x1,x2 € [—.05,.05] reach x1,x2 € [—.05,.05]

Oscillatorins ensuring 1 < —3Vzx1 > —25V2e <.2Vas > .35
z1 € [90,110] A 2 € [32,32.05] A z4 € [10,11] A zs € [30, 30.05]
ACC reach —x1 + x4 — 102 < 0 ensuring —z;1 + 14 - 22+ x4+ 10 <0

MountainCar| x; € [—.6, —.4] reach z; > .45 ensuring z1 < .15V zg > .25V z2 > .02

025 <z <.05A0<zy <.025 reach T

QMPC ensuring —.32 < x1, 22,23 < .32
Pendulum;¢ x1, T2 € [—.1,.1] reach x1,z2 € [—.1,.1] ensuring z1,x2 € [-5, 5]
Z1,%2,x3, x4 € [—.05,.05] reach T
CartPole ensuring x1 € [—2.4,2.4] Axp € [—.21, .21]

21 €195,955] Azs € [-4.5, —4.45] Aas € [2.1, 2.11] A x4 € [L.5, 1.51] reach
UnicycleCar | z1 € [—.6,.6] Az2 € [—.2,.2] Azs € [—.06,.06] A z4 € [—.3,.3] ensuring T

xr1 € [—.777 —.75] Nx2 € [—.457 —.43] Nx3 € [.51, .54] Nzxy € [—.3, —.28]
Tora reach z1 € [—.1,.2] Az2 € [-.9, .6] ensuring x1,x2,x3, 24 € [—1.5,1.5]

Z1,T2,T3,xs € [—.1,.1] reach x1,x2, x3, 24 € [—.1, 1]

Tora;ns ensuring x1, 2, T3, x4 € [—1.5,1.5]

On Tora;,e, we prove that the controller for the arm of the cart connecting to
the spring can stabilize the cart over an infinite horizon while maintain safety
around the origin. On Oscillator;ye, we verify that the controller can stabilize
the oscillator around a target region over an infinite horizon while the process
of reaching the target region from the initial states is safe.

The experimental results are given in Table 2. VEL synthesized provably
correct programmatic controllers for all the benchmarks. Table 2 shows the total
time spent on each benchmark (T.T) as well as the verification time of the final
controller (V.T). Half of the benchmarks can be directly verified with the initial
programmatic controller (in Table 2, T.T for these benchmarks is empty as
they only need one pass of verification in V.T). The other half must go through
the verification-guided controller learning loop due to approximation errors in
verification although these controllers achieved satisfactory test performance. We
depict the learning performance of VEL on these benchmarks in Fig. 3 averaged
over 5 random seeds. The results show that VEL can robustly and reliably reduce
the correctness loss over symbolic rollouts (i.e. the verification feedback) to zero.

242 Y. Wang and H. Zhu

Table 2: Experiment Results. Depth shows the height of the abstract syntax tree
of a programmatic controller. T.T shows the overall execution time of VEL in-
cluding both the time for reachability analysis and verification-guided controller
synthesis. V.T measures only the verification time for the final controller. If a
controller can be verified directly without verification-guided optimization, the
value of T.T is empty. The execution times for ReachNN* and Verisig measure
the cost of verifying a neural network controlled system (NNCS). The notation
of the size (n X k) indicates a neural network (with sigmoid activations) with n
hidden layers and k neurons per layer. If a property could not be verified, it is
marked as Unknown. N/A means that the tool is not applicable to a benchmark.

VEL (ours) NNCS
Task Depth| V.T | T.T Size |ReachNN™| Verisig
Bi 2 27.32s | 86.57s || 2 x 20 69s 49s
B 2 0.25s - 2 x 20 32s Unknown
Bs 2 1.96s - 2 x 20 130s 47s
By 2 0.63s - 2 x 20 20s 12s
Bs 2 0.64s | 2.01s (|3 x 100 31s 196s
Oscillatoriqs 2 1.74s | 25.72s || 2 x 20 | Unknown |Unknown
ACC 3 5.56s [196.03s|| 3 x 20 | Unknown | 1512s
MountainCar|| 3 |233.45s| - 2x16| N/A 52s
QMPC 5 2.21s | 16.54s || 2 x 20 N/A 697s
Pendulum;p¢ 2 0.95s - 3 x 64 57s Unknown
CartPole 3 8.97s - 2 x 64 | Unknown |Unknown
Unicycle 3 0.75s | 16.52s |3 x 20| N/A |Unknown
Tora 2 3.71s - 3 x 20 | Unknown 83s
Torains 2 0.86s |150.86s|| 3 x 20 | Unknown |Unknown

Table 2 also shows the results of verifying the benchmarks as neural net-
work controlled systems (NNCS) using two state-of-the-art verification tools
ReachNN* [18] and Verisig [28] where the controllers are trained as neural net-
works. We note that VEL is designed for programmatic controllers and uniquely
has a verification-guided learning loop. Here our intention is not to compare
the tools’ performance. Instead, Table 2 demonstrates that integrating verifica-
tion in training loops for programmatic controllers is more tractable than for
neural network controllers. It shows that programmatic controller verification
(column V.T) has a much lower computation cost compared to verifying neu-
ral network controllers using ReachNN* and Verisig except for MountainCar?.
When ReachNN* and Verisig produces Unknown, the tools are not able to verify
the rollout specification due to the large estimated approximation errors in ver-
ification. On Tora, ReachNN* spent over 13000s to produce imprecise flowpipes
with large approximation errors that cannot be used for verification. In this case,
repeatedly conducting neural network controller verification in a learning loop is

2 MountainCar is a hybrid system model. VEL is not yet optimized for hybrid system
verification.

Verification-guided Programmatic Controller Synthesis 243

81 Unicycle Car Qupc

bstract |

002

Oscillatori,s Acc Torais
035 0035

0030

abstract loss

£ oons

1o 0010

Fig. 3: Learning Performance of Verification-guided Controller Synthesis on B1,
UnicycleCar, QMPC, Oscillator, ACC, and Tora;,s. The y-axis records the cor-
rectness loss of symbolic rollouts over abstract states. The results are averaged
over 5 random seeds. VEL reliably reduces the symbolic rollout correctness loss
to zero across the learning loop iterations (the x axis) for each benchmark.

computationally infeasible. On the other hand, VEL makes verification-guided
controller synthesis feasible as evidenced in Table 2 and Fig. 3. It efficiently uses
the programmatic controller verification feedback to reduce the correctness loss
over the abstraction of controller reachable states to 0 in the verification proof
space (even if the abstraction may introduce approximation errors).

6 Related Work

Robust Machine Learning. Our work on using abstract interpretation [14]
for controller synthesis is inspired by the recent advances in verifying neural
network robustness, e.g. [23,5,40,51]. These approaches apply abstract inter-
pretation to relax nonlinearity of activation functions in neural networks into
convex representations, based on linear approximation [52,51,39,40,55] or in-
terval approximation [26,35]. Since the abstractions are differentiable, neural
networks can be optimized toward tighter concertized bounds to improve veri-
fied robustness [35,7,55,48,33]. Principally, abstract interpretation can be used to
verify the reachability properties of nonlinear dynamics systems [30,37,4]. Recent
work [43,28,41,18,17,29,13] has already achieved initial results about verifying
neural network controlled autonomous systems by conducting reachability anal-
ysis. However, these approaches do not attempt to leverage verification feedback
for controller synthesis within a learning loop partially because of the high com-

244 Y. Wang and H. Zhu

putation demand of repeatedly verifying neural network controllers. VEL demon-
strates the substantial benefits of using verification feedback in a proof space for
learning correct-by-construction programmatic controllers. Related works [25,16)
conduct trajectory planning from temporal logic specifications but do not pro-
vide formal correctness guarantees. Extending VEL to support richer logic spec-
ifications is left for future work.

Safe Reinforcement Learning. Safe reinforcement learning is a fundamental
problem in machine learning [36,45]. Most safe RL algorithms form a constraint
optimization problem by specifying safety constraints as cost functions in addi-
tion to reward functions [1,9,15,31,42,54,53]. Their goal is to train a controller
that maximizes the accumulated reward and bound the aggregate safety violation
under a threshold. However, aggregate safety costs do not support reachability
constraints in the Safe RL context. In contrast, VEL ensures that a learned con-
troller be formally verified correct and can better handle reachability constraints
beyond safety. Model-based safe learning is combined with formal verification
in [22] where an environment model is updated as learning progresses to take
into account the deviations between the model and the actual system behavior.
We leave combing VEL and model-based learning in future work.

Safe Shielding. The general idea of shielding is to use a backup controller to
enforce the safety of a deep neural network controller [3]. The backup controller
is less performant than the neural controller but is safe by construction using
formal methods. The backup controller runs in tandem with the neural controller.
Whenever the neural controller is about to leave the provably safe state space
governed by the backup controller, the backup controller overrides the potentially
unsafe neural actions to enforce the neural controller to stay within the certified
safe space [2,11,21,22,24,56,6,32]. In contrast, VEL directly integrates formal
verification into controller learning loops to ensure that learned controllers are
correct-by-construction and hence eliminates the need for shielding.

7 Conclusion

We present VEL that bridges formal verification and synthesis for learning
correct-by-construction programmatic controllers. VEL integrates formal veri-
fication into a controller learning loop to enable counterexample-guided con-
troller optimization. VEL encodes verification feedback as a loss function of the
parameters of a programmatic controller over the verification proof space. Its
optimization procedure iteratively reduces both controller correctness violation
by true counterexamples and overapproximation errors caused by abstraction.
Our experiments demonstrate that controller updates based on verification feed-
back can lead to provably correct programmatic controllers. For future work,
we plan to extend VEL to support controller safety during exploration in noisy
environments. When a worst-case environment model is provided, this can be
achieved by repeatedly leveraging the verification feedback on safety violation to
project a controller back onto the verified safe space [12] after each reinforcement
learning step taken on the parameter space of the controller.

Verification-guided Programmatic Controller Synthesis 245

Data-Availability Statement VEL is available at the repository [50]. The in-
structions for reproducing our experiment results are included in this repository.

Acknowledgments This work was supported in part by NSF CCF-2007799
and NSF CCF-2124155.

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017.
Proceedings of Machine Learning Research, vol. 70, pp. 22-31. PMLR (2017)

2. Akametalu, A.K., Kaynama, S., Fisac, J.F., Zeilinger, M.N., Gillula, J.H., Tom-
lin, C.J.: Reachability-based safe learning with gaussian processes. In: 53rd IEEE
Conference on Decision and Control, CDC 2014, Los Angeles, CA, USA, December
15-17, 2014. pp. 1424-1431. IEEE (2014)

3. Alshiekh, M., Bloem, R., Ehlers, R., Kénighofer, B., Niekum, S., Topcu, U.: Safe re-
inforcement learning via shielding. In: Mcllraith, S.A., Weinberger, K.Q. (eds.) Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018. pp. 2669-2678. AAAI Press
(2018)

4. Althoff, M.: An introduction to cora 2015. In: Proc. of the Workshop on Applied
Verification for Continuous and Hybrid Systems (2015)

5. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction:
a synergistic approach for analyzing neural network robustness. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 731-744
(2019)

6. Anderson, G., Verma, A., Dillig, I., Chaudhuri, S.: Neurosymbolic reinforcement
learning with formally verified exploration. In: Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual (2020)

7. Balunovic, M., Vechev, M.T.: Adversarial training and provable defenses: Bridging
the gap. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020)

8. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via pol-
icy extraction. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada. pp. 2499-2509 (2018)

9. Berkenkamp, F., Turchetta, M., Schoellig, A.P., Krause, A.: Safe model-based re-
inforcement learning with stability guarantees. In: Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA. pp. 908-918 (2017)

246

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Y. Wang and H. Zhu

Chen, X., Abrahém, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification
- 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings. Lecture Notes in Computer Science, vol. 8044, pp. 258-263.
Springer (2013)

Chow, Y., Nachum, O., Duénez-Guzméan, E.A., Ghavamzadeh, M.: A lyapunov-
based approach to safe reinforcement learning. In: Bengio, S., Wallach, H.M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada. pp. 8103-8112 (2018)

Chow, Y., Nachum, O., Faust, A., Duéniez-Guzman, E.A., Ghavamzadeh, M.: Safe
policy learning for continuous control. In: Kober, J., Ramos, F., Tomlin, C.J.
(eds.) 4th Conference on Robot Learning, CoRL 2020, 16-18 November 2020, Vir-
tual Event / Cambridge, MA, USA. Proceedings of Machine Learning Research,
vol. 155, pp. 801-821. PMLR (2020)

Christakis, M., Eniser, H.F., Hermanns, H., Hoffmann, J., Kothari, Y., Li, J.,
Navas, J.A., Wiistholz, V.: Automated safety verification of programs invoking
neural networks. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification
- 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 12759, pp. 201-224.
Springer (2021)

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977. pp. 238-252 (1977)

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., Tassa, Y.: Safe
exploration in continuous action spaces. CoRR abs/1801.08757 (2018)

Dawson, C., Fan, C.: Robust counterexample-guided optimization for planning
from differentiable temporal logic. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems, IROS 2022, Kyoto, Japan, October 23-27, 2022. pp.
7205-7212. IEEE (2022)

Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Ozay, N., Prabhakar,
P. (eds.) Proceedings of the 22nd ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18,
2019. pp. 157-168. ACM (2019)

Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: Reachnn*: A tool for reachability
analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.)
Automated Technology for Verification and Analysis - 18th International Sym-
posium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings. Lecture
Notes in Computer Science, vol. 12302, pp. 537-542. Springer (2020)
Frangois-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An
introduction to deep reinforcement learning. Foundations and Trends®) in Machine
Learning 11(3-4), 219-354 (2018)

Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado,
R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid sys-
tems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Verification-guided Programmatic Controller Synthesis 247

Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 379-395. Springer
(2011)

Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: Mcllraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. pp. 6485-6492.
AAAT Press (2018)

Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Vojnar,
T., Zhang, L. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 25th International Conference, TACAS 2019, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 11427, pp. 413-430. Springer (2019)

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21-23 May 2018, San Francisco, California, USA. pp. 3-18 (2018)
Gillula, J.H., Tomlin, C.J.: Guaranteed safe online learning via reachability: track-
ing a ground target using a quadrotor. In: IEEE International Conference on
Robotics and Automation, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota,
USA. pp. 2723-2730. IEEE (2012)

Gilpin, Y., Kurtz, V., Lin, H.: A smooth robustness measure of signal temporal
logic for symbolic control. IEEE Control. Syst. Lett. 5(1), 241-246 (2021)

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arand-
jelovic, R., Mann, T.A., Kohli, P.: On the effectiveness of interval bound propaga-
tion for training verifiably robust models. CoRR abs/1810.12715 (2018)

Inala, J.P., Bastani, O., Tavares, Z., Solar-Lezama, A.: Synthesizing programmatic
policies that inductively generalize. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net (2020)

Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, 1.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Ozay, N., Prab-
hakar, P. (eds.) Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, April
16-18, 2019. pp. 169-178. ACM (2019)

Jin, P., Tian, J., Zhi, D., Wen, X., Zhang, M.: Trainify: A cegar-driven training and
verification framework for safe deep reinforcement learning. In: Shoham, S., Vizel,
Y. (eds.) Computer Aided Verification - 34th International Conference, CAV 2022,
Haifa, Israel, August 7-10, 2022, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 13371, pp. 193-218. Springer (2022)

Koller, T., Berkenkamp, F., Turchetta, M., Krause, A.: Learning-based model pre-
dictive control for safe exploration. In: 57th IEEE Conference on Decision and
Control, CDC 2018, Miami, FL, USA, December 17-19, 2018. pp. 6059-6066. IEEE
(2018)

Le, H.M., Voloshin, C., Yue, Y.: Batch policy learning under constraints. In: Chaud-
huri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA.
Proceedings of Machine Learning Research, vol. 97, pp. 3703-3712. PMLR (2019)
Li, S., Bastani, O.: Robust model predictive shielding for safe reinforcement learn-
ing with stochastic dynamics. In: 2020 IEEE International Conference on Robotics

248

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Y. Wang and H. Zhu

and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020. pp. 7166—
7172 (2020)

Lin, X., Zhu, H., Samanta, R., Jagannathan, S.: Art: Abstraction refinement-guided
training for provably correct neural networks. In: 2020 Formal Methods in Com-
puter Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020. pp. 148—
157. IEEE (2020)

Mania, H., Guy, A., Recht, B.: Simple random search of static linear policies is com-
petitive for reinforcement learning. In: Bengio, S., Wallach, H.M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada. pp. 1805-1814
2018

1(\/[irm2m, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Dy, J.G., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmaéssan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80, pp. 3575-3583. PMLR (2018)

Moldovan, T.M., Abbeel, P.: Safe exploration in markov decision processes. In:
Proceedings of the 29th International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress (2012)
Oulamara, M., Venet, A.J.: Abstract interpretation with higher-dimensional ellip-
soids and conic extrapolation. In: Kroening, D., Pasareanu, C.S. (eds.) Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 9206, pp. 415-430. Springer (2015)

Qiu, W., Zhu, H.: Programmatic reinforcement learning without oracles. In: The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net (2022)

Singh, G., Gehr, T., Mirman, M., Piischel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada. pp. 10825-10836 (2018)
Singh, G., Gehr, T., Piischel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1-41:30 (2019)

Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Ozay, N., Prabhakar, P. (eds.) Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and Control,
HSCC 2019, Montreal, QC, Canada, April 16-18, 2019. pp. 147-156. ACM (2019)
Tessler, C., Mankowitz, D.J., Mannor, S.: Reward constrained policy optimization.
In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019)

Tran, H., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xiang, W., Bak, S.,
Johnson, T.T.: NNV: the neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 12224, pp. 3-17. Springer (2020)

Trivedi, D., Zhang, J., Sun, S.H., Lim, J.J.: Learning to synthesize programs as in-
terpretable and generalizable policies. In: Beygelzimer, A., Dauphin, Y., Liang, P.,
Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021)

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Verification-guided Programmatic Controller Synthesis 249

Turchetta, M., Berkenkamp, F., Krause, A.: Safe exploration in finite markov deci-
sion processes with gaussian processes. In: Lee, D.D., Sugiyama, M., von Luxburg,
U., Guyon, L., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain. pp. 43054313 (2016)

Uesato, J., Kumar, A., Szepesvari, C., Erez, T., Ruderman, A., Anderson, K.,
Dvijotham, K.D., Heess, N., Kohli, P.: Rigorous agent evaluation: An adversar-
ial approach to uncover catastrophic failures. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net (2019)

Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically
interpretable reinforcement learning. In: Dy, J.G., Krause, A. (eds.) Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmaéssan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80, pp. 5052-5061. PMLR (2018)

Wang, S., Chen, Y., Abdou, A., Jana, S.: Mixtrain: Scalable training of formally
robust neural networks. CoRR abs/1811.02625 (2018)

Wang, Y., Huang, C., Wang, Z., Wang, Z., Zhu, Q.: Design-while-verify: correct-
by-construction control learning with verification in the loop. In: Oshana, R. (ed.)
DAC ’22: 59th ACM/IEEE Design Automation Conference, San Francisco, Cali-
fornia, USA, July 10 - 14, 2022. pp. 925-930. ACM (2022)

Wang, Y., Zhu, H.: VEL: Verification-guided Programmatic Controller
Synthesis. https://doi.org/10.5281 /zenodo.7574512, https://github.com/
RU-Automated-Reasoning-Group/VEL

Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D.S.,
Dhillon, I.S.: Towards fast computation of certified robustness for relu networks.
In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsméssan, Stockholm, Sweden, July
10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5273-5282.
PMLR (2018)

Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: Dy, J.G., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmaéssan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine
Learning Research, vol. 80, pp. 5283-5292. PMLR, (2018)

Yang, C., Chaudhuri, S.: Safe neurosymbolic learning with differentiable symbolic
execution. In: The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net (2022)

Yang, T., Rosca, J., Narasimhan, K., Ramadge, P.J.: Projection-based constrained
policy optimization. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net (2020)
Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R., Li, B., Boning, D.S., Hsieh,
C.: Towards stable and efficient training of verifiably robust neural networks. In: 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net (2020)

Zhu, H., Xiong, Z., Magill, S., Jagannathan, S.: An inductive synthesis frame-
work for verifiable reinforcement learning. In: McKinley, K.S., Fisher, K. (eds.)
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp.
686-701. ACM (2019)

https://doi.org/10.5281/zenodo.7574512
https://github.com/RU-Automated-Reasoning-Group/VEL
https://github.com/RU-Automated-Reasoning-Group/VEL

250 Y. Wang and H. Zhu

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Check for
updates

Taming Large Bounds in Synthesis from
Bounded-Liveness Specifications *

Philippe Heim®® and Rayna Dimitrova

CISPA Helmholtz Center for Information Security, Saarbriicken, Germany
{philippe.heim, dimitrova}@cispa.de

Abstract Automatic synthesis from temporal logic specifications is an
attractive alternative to manual system design, due to its ability to gen-
erate correct-by-construction implementations from high-level specifica-
tions. Due to the high complexity of the synthesis problem, significant
research efforts have been directed at developing practically efficient ap-
proaches for restricted specification language fragments. In this paper we
focus on the Safety LTL fragment of Linear Temporal Logic (LTL) syn-
tactically extended with bounded temporal operators. We propose a new
synthesis approach with the primary motivation to solve efficiently the
synthesis problem for specifications with bounded temporal operators, in
particular those with large bounds. The experimental evaluation of our
method shows that for this type of specifications it outperforms state-of-
art synthesis tools, demonstrating that it is a promising approach to ef-
ficiently treating quantitative timing constraints in safety specifications.

1 Introduction

Reactive synthesis [8] has the goal of automatically generating an implementa-
tion from a formal specification that describes the desired behavior of a reactive
system. The system requirements are typically specified using temporal logics
such as Linear Temporal Logic (LTL). Temporal logics are expressive, high-level
specification languages capable of describing rich properties, such as, for exam-
ple, robotic missions [16]. Specifications of reactive systems often include require-
ments of the form “something good eventually happens”. These can be expressed
in LTL via the temporal operators U (“until”) and & (“eventually”). “Eventu-
ally” is an abstraction for the existence of some unknown time point in the future
of a system execution when some property holds true. While this abstraction is
useful for avoiding over-specification, there are many situations in which there are
practical bounds on the time within which a requirement must be met. In such
cases, it is vital that the synthesis procedure checks if the timing requirements
are realizable, and synthesizes an implementation that adheres to these bounds.

As a simple example, consider a specification of the desired behavior of a
controller for the front door of an office building. Our specification states that the

* Philippe Heim carried out this work as PhD candidate at Saarland University, Ger-
many.

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 251-269, 2023.
https://doi.org/10.1007/978-3-031-30820-8_17

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-5433-8133
https://doi.org/10.1007/978-3-031-30820-8_17
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_17&domain=pdf

252 P. Heim and R. Dimitrova

door must always be locked at night, and unlocked otherwise. It also stipulates
that in the event of a fire the door should eventually open. Formulated like
this, the specification is realizable. However, in case of a fire during night the
synthesized implementation will only open the door at the start of the day.
Clearly, this is not the behavior we intended! We can specify the actual desired
behavior in LTL by using the temporal operator O (“next”), which allows us
to state that a property should hold at the next time step. However, we would
need to use nested O operators in order to express the required time bounds.
This can quickly become inconvenient, especially if we need to specify various
different time bounds, some of them large. This modeling inconvenience and the
increase of specification size are easily avoided by adding bounded versions of
the temporal operators as syntactic sugar, without increasing expressiveness.

Due to their practical significance, fragments of LTL in which the formu-
las (in negation normal form) include only bounded versions of the U and
operators have attracted considerable attention. The most prominent such frag-
ment is Safety LTL the until-free fragment of LTL in negated normal form.
Since Safety LTL is a syntactic fragment of LTL, it can express bounded live-
ness properties only via nested next operators. Another notable example is the
logic Extended Bounded Response LTL (LTLgggr) [9], which is a fragment of
LTL that includes bounded temporal operators as well as unbounded universal
temporal operators (i.e., “globally” and “release”). While every LTLggg formula
can be expressed in Safety LTL, one significant advantage of LTLgggr is that
the bounds of the temporal operators are represented in binary, which allows for
exponentially more succinct formulas. However, in the course of the synthesis
procedure presented in [9] these bounds are expanded into nested “next” opera-
tors. Keeping bounds symbolic is identified in [9] as an interesting direction for
future developments. Indeed, in many practically relevant cases large bounds are
unavoidable due to requirements on the same system across different time-scales.

In this paper we address this challenge by proposing a synthesis procedure
for an extension of Safety LTL with bounded operators. We develop dedicated
techniques for handling the temporal bounds symbolically and efficiently.

Contribution. We propose a synthesis method for specifications expressed in
a fragment of LTL which is a syntactic extension of Safety LTL with bounded
temporal operators. The distinguishing characteristic of our method is a re-
duction to a dedicated game model, called countdown-timer games in which
the temporal operators’ bounds are treated symbolically via the introduction of
timers. Further features of the translation are techniques for on-the-fly prun-
ing of edges in the constructed game and reduction of the number of introduced
timers. We present an abstraction-based method for solving the resulting games.
We have developed a prototype implementation of our approach, and the exper-
imental evaluation demonstrates that it is indeed capable of handling efficiently
safety specifications with large bounds. We demonstrate that on a set of bench-
marks featuring bounded temporal operators with large bounds, our technique
outperforms state-of-the-art tools for LTLggr and LTL synthesis.

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 253

Related Work. The synthesis problem for Safety LTL has attracted significant
interest due to its algorithmic simplicity compared to general LTL synthesis [25].
For instance, the symbolic approach presented in [25] is shown to outperform
the state-of-the-art LTL synthesis tools at the time. For LTLgggr, [9] proposes a
synthesis algorithm based on a fully symbolic translation to deterministic safety
automata. A key difference between our approach and the above techniques
is that our countdown-timer game construction does not expand upfront the
bounded temporal operators, but treats them symbolically instead. Furthermore,
the authors of [25] point out that for large Safety LTL formulas the construction
of the deterministic safety automaton presents a performance bottleneck. Our
safety game constriction makes use of pruning in order to alleviate this problem
by eliminating on-the-fly parts of the game graph that need not be explored.

Parameterized temporal logics, such as PLTL [1] enable the specification of
parametric lower and upper bounds on the satisfaction time of the “globally”
operator and the wait time of “eventually”. In the logic PROMPT-LTL [17], only
eventualities are parameterized by upper bounds. The bounds of the temporal
operators in these logics are unknown parameters, while in the case that we
consider, the bounds are given integer constants. The goal of our work is to
develop a synthesis method that treats constant bounds efficiently.

In the real-time setting, temporal logics that allow for limiting the time scope
of temporal operators have been extensively studied. Notable logics are Metric
Temporal Logic (MTL) [15], and its fragment Metric Interval Temporal Logic
(MITL) [2]. Compared to the untimed setting, synthesis from real-time logic
specifications poses additional challenges. Controller synthesis is undecidable for
MTL [4], for MITL [5,11], and even for the safety fragment of MTL [5]. Decidabil-
ity is regained by fixing the resources (clocks and guards) of the controller [5,12].
The key challenge stems from the fact that synthesis requires deterministic au-
tomata, and it is not generally possible to construct deterministic timed au-
tomata for MITL. To circumvent this problem, the assumption of bounded vari-
ability is commonly made. Under this assumption, [20] proposes a synthesis algo-
rithm for bounded response properties, and a translation from MTL to determin-
istic timed automata is presented in [23]. With respect to tool support, sound
but incomplete synthesis methods for fragments of MTL have been proposed
in [6] and [18], and implemented in toolchains that employ UPPAAL-TIGA [3]
for timed games solving. A tool for MTL controller synthesis via translation to
alternating timed automata was presented in [14]. In the case when the real-time
synthesis problem is given as a timed game and the specification is a state-based
winning condition, the problem of computing a control strategy is decidable [21].
Efficient on-the-fly algorithms for timed games have been developed [7], and suc-
cessfully implemented in UPPAAL-TIGA [3] and UPPAAL-STRATEGO [10].Since
we are interested in discrete-time systems, we circumvent the additional chal-
lenges present in the dense-time setting by remaining the realm of discrete time
and focusing on efficiently treating quantitative timing constraints there.

254 P. Heim and R. Dimitrova
2 Preliminaries

Reactive Synthesis Let Z be a finite set of uncontrollable environment input
Boolean propositions and O be a finite set of controllable output Boolean propo-
sitions. A reactive system is a tuple (C, cg,7y) where C' is a set of control states,
co € C the initial control state, and v : C x 2T — C x 29 is the transition
function. A specification is a language £ C (2ZUO)W of infinite words over ZUO.
A system (C,cq,7y) realizes a specification L if for all infinite sequences of
environment inputs ¢ € (21)“) it yields an output sequence o € (20)“) defined
by (ct41,0:) = (e, i) for t € N, such that ¢ Uo € L. Reactive synthesis is the
problem of finding a realizing implementation for a given specification.

Safety LTL with Bounded Liveness Operators We consider specifications
expressed using temporal logic, more concretely, in a fragment of LTL [24], which
we denote by SafeLTLy. The fragment SafeLTLp is a syntactic extension of
Safety LTL [25] and defined by the following grammar:

o, :=ap|-oap | A | V| Ohnje| Onje | eWnly [¢ Wi

for ap € ZUO and n € N. SafeLTLy extends Safety LTL by bounded operators
with bounds encoded in binary. While all bounded operators have equivalent
Safety LTL formulas (e.g. Olnfe = Vigpo.ny O%) these have exponentially
larger encoding. The constants T (true), L (false), the “globally” operator (J and
“bounded until” U[n] can be derived as T :=aV —a, L :=aA—-a,Odp:= W L,
On)e == eWin]L, and pU[n]y = (@ Wn]yp) A O[njy, respectively.

The satisfaction of a formula @ € SafeLTLy by infinite word w = wowy ... €
(QIUO)w at time point k € N is denoted as w Fj @ and is defined follows:

wEL a S a € wy wEp a4 & a g wg
wFEE o NP & (wEr o) ANwFL) wkr VY e (wFg)V (wFg v)
w Fp Onjp & i <n. wEgy; @ w F On]y & w i ¢

wEr eWnl o (Vi <naw Fry @) V(3] < naw Fryp Y AV < jaw Eigy @)
wEr WY & (Viaw Feys @) V (Fjw Fryj ¥ AV < jaw Ergs @).

The language of & € SafeLTLy is defined as £(9) := {w € (27Y9)* | w o o}
Two-Player Safety Games The synthesis problem for temporal logic specifi-
cations can be solved by translating the specification into a two-player game be-
tween the system and the environment, and then solving the game to determine
the winning player. If the system wins, an implementation can be extracted.

A game structure is a tuple G = (S, Sp,Z, O, p), where S is a set of states,

So C S is a set of initial states, Z and O are sets of propositions as defined
earlier, and p : S x 27 x 2© — S is a transition function. A game on G is played
by two players, the system and the environment. In a given state s € S, the
environment chooses some input ¢ C Z, then the system chooses some output
0 C O, and these choices determine the next state s’ := p(s, 4, 0). The game then
continues from s’. The resulting infinite sequence m = sg, s1, S2, ... of states is
called a play. Formally, a play is a sequence m = sg, S1, S2,... € S“ such that

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 255

so € So and for every t € N, s;41 = p(st,1,0). A system strategy is a function
o : 8T x 2% — 29 An environment strategy is a function w : ST — 2. Given
a state s € 9, a system strategy o and an environment strategy m, we denote
with Outcome(s, 7, o) the unique play sg, $1, S2, . .. such that sg = s, and for all
kEeN, spr1 = p(Skyir,0((S0,81 .-, Sk),1k)), where i, = 7((S0, 81 ..., 5k))-

A safety game is a tuple (G, UNSAFE) where UNSAFE C S are unsafe
states. The system wins the safety game if it has a strategy o such that for all
environment strategies m, so € Sp,k € N, it holds that Outcome(so,7,0)r &
UNSAFE. Such strategy is called a winning strategy for the system. Intuitively,
the system has to avoid the unsafe states no matter what the environment does.
The environment wins if it can enforce a visit to UNSAFE, i.e., when there exist
environment strategy 7w and sg € Sy such that for every system strategy o there
exists k € N such that Outcome(sg,m, o) € UNSAFE.

3 SafeLTLg Synthesis with Countdown-Timer Games

SafeLTLg Synthesis We consider the realizability and synthesis problems for
the fragment SafeLTL . We focus on the challenge of handling efficiently specifi-
cations with large bounds in the bounded temporal operators, and propose a new
synthesis method towards achieving this goal. The proposed approach proceeds
in two stages. In the first stage, the given SafeLTL; formula is transformed into
a kind of safety game, in which bounds are treated symbolically. We term these
games countdown-timer games, introduced later in this section. The second stage
of our synthesis algorithm is the solving of the generated countdown-timer game
in order to determine the winning player and answer the realizability question.
We propose in Section 5 a method that employs symbolic representation and
approximations in order to efficiently solve such games in practice.

Countdown-Timer Games Intuitively, countdown-timer games are like safety
games but with additional countdown-timers. Countdown-timers are discrete
timers that always start with an assigned duration and are decremented by
one with every transition in the game. Once a timer reaches zero it times out,
and the transition relation of the countdown-timer game may depend on this
information for determining the successor state. A countdown-timer can be reset
to the duration associated with it. In addition, countdown-timers with the same
duration can swap their values, which we will later use when generating timer-
games to avoid unnecessary blowup in the number of timers.

Definition 1 (Countdown-Timer Games). A countdown-timer game struc-
ture is a tuple Gy = (T,d, L, Lo, Z,0,8) where T is a finite set of countdown
timers, d : T — N associates a duration with each timer, L is a finite set of
game locations, Lo C L is the set of initial locations, I, O are finite sets of
uncontrollable environment input propositions and controllable system proposi-
tions, respectively, and § : L x 27 x 20 x 2T — L x & is the transition relation.
E:=T = (TU{RESET?}) is the set of effects where for all e € £

1. for allt € T either e(t) = RESET, ore(t) € T and d(e(t)) = d(t) and,

256 P. Heim and R. Dimitrova

2. fort1,ta € T with t1 # to we have e(t1) # e(tz) or e(t1) = e(te) = RESET.
A countdown-timer game is a pair (G, UNSAFE) where UNSAFE; C L is a
set of unsafe locations.

The effects £ capture the resets and remapping of timers that can occur upon
transitions. Condition (1) states that each timer is either reset or remapped to
a timer with the same duration. Condition (2) requires the remapping to be
injective, i.e. no two timers are mapped to the same timer. When timers are not
reset and not remapped to other timers, they are simply mapped to themselves.

The semantics of a countdown-timer game is the safety game generated by
explicitly expanding the possible valuations of the timers. Intuitively, each state
of the game structure is a pair s = (I,v) of a location I € L and a timer
valuation v. Initially, each timer ¢ is set to its associated duration d(t). The
transition relation updates the values of the timers by first decrementing them
and then applying the effect e of the corresponding transition in Gp. The relevant
transition in G is determined by the location [, the input and output sets i and
o, and the set of timers whose value has become 0 after the decrementation.

Definition 2 (Countdown-Timer Games Semantics). In the context of
Definition 1, let V := {v : T — N |Vt € T. v(t) < d(t)} be the space of all
possible timer valuations. Let G = (L x V, Ly x {A\t.d(t)},Z,0,p) be a game
structure where p((1,v),4,0) := trans(l, step(v), i, 0) with

step(v) := M. max{0,v(t) — 1}

(l, " {v(e(t» ife(t) e T)
trans(l,v,1,0) := T d(®) if e(t) = RESET)’
where (I',e) := 6(l,4,0,{t € T | v(t) = 0}).

The semantics of the countdown-timer game (G, UNSAFEY) is the safety game
(G, UNSAFE, x V). The system (environment) wins the countdown-timer game
if and only if it wins the safety game representing its semantics.

4 Countdown-Timer Game Construction

We now present the first phase of our synthesis algorithm, namely the translation
of a SafeLTLy formula to a countdown-timer game. Our construction is based on
expansion rules. For example, the formula $[50]a is equivalent to a VO O[49]a. If
a is true, then the whole formula is true. Otherwise, in the next step <[49]a has
to hold. Interpreted as a state of a safety game, <[50]a has a transition to T on
a =T and to $[49]a on a = L. This can be repeated on [49]a and so on. Once
we reach [0]a we expand it to a VO L, and hence, a = L leads to L which is
the unsafe state. This construction works for safety formulas, as rejection can be
decided with a finite prefix. As we show later, generating a game structure in this
way has the advantage that it can be pruned using information from the formula.

However, this explicit expansion yields a sequence of formulas that is linear
in the bound, and hence, exponential in the description of the formula. Instead

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 257

of explicit bounds, we use countdown-timers representing multiple values. In the
above example, we do not generate all the expansions [50]a, ..., &[0]a, but
instead a timer ¢ with duration 51 to represent all expansions from 50 to 0 in
the single location a V Oft]a. If ¢ times out, [t] has reached the end of the
expansion and is transformed to L. Hence, instead of having <[50]a, ..., O[0]a,
T and L as states of a safety game we only have locations a V Oltla, T and L
in a countdown-timer game. We now describe this construction formally.

4.1 Construction of a Countdown-Timer Game from SafeLTLg

The locations of the generated countdown-timer games are SafeLTLy formulas
with, additionally, timers as bounds of the temporal operators. We denote the
set of these formulas as SafeLTL;. Given a set of timers 7, the grammar of
SafeLTLY; is the grammar of SafeLTLy but in $[n), O[n), and W[n] we have
n € NUT. For ¢ € SafeLTL';, Timers(¢) C T denotes all timers appearing in ¢.

Game Structure Let @ be a SafeLTLy formula over input propositions 7

and output propositions 0. We construct a countdown-timer game structure
(T,d,L, Loy, Z,0,0) as follows. The set of timers

T = {t| Old],O[d — 1], or W[d — 1] occurs in ¢,0 < i < d}

consists of timers t¢ with index i and durations d(t¢) := d for 0 < i < d. The
duration of a timer determines the bounds of the temporal operators in @ for
which it can be used, and the indices are used for distinguishing multiple timers
of the same duration (introduced at different points of the expansion).

Let L := PositiveBooleanCombinations(cl(®)) (i.e., built from cl(P) using
A, V) be the set of locations, where ¢l is the closure operator defined as:

c(l) ={,T, 1} L € {ap, ~ap}
clp o) = cle)Ucy) o€ {A,V}
cl(Oln]p) = cl(p) U{O[t}] | 0 <i <n}

cl(Olnlp) = clp) U{O[t; w0 < i <n+1}

A(pWInli) = cl() U el() U {p W] | 0 < <n+ 1)

cleWy) = cllp) U cl(y) U{p Wi}

Intuitively, the closure contains all possible temporal-operator sub-formulas and
literals that can appear during expansion. The locations L then represent the
expanded formulas, which, intuitively, correspond to the current obligations of
the system. Thus, the initial location will correspond to obligation &. Note that
L C SafeLTL;. We apply simplifications to the generated formulas to ensure
that L is finite. Since by definition cl(®) is finite, we can ensure that |L| < 2/¢H®),

In the construction of the initial location and the transition function we
use two helper functions, introEzp : SafeLTLﬁg — SafeLTL%, which performs
expansion and introduces new timers, and opt : SafeLTLtB — L, which performs
simplifications that ensure that L is finite. We let Ly := {opt(introEzp(®))} and

5(p,i,0,T) := (opt(introEzp(y)), e) where (e, 1) := squeeze(to(T, tree(yp,i,0))).

258 P. Heim and R. Dimitrova

Here, we use the additional functions tree : SafeLTL% x 2T x 20 — SaﬁeLTL'jg7
which performs the input and outputs choices, to : 27 x SafeLTL — Safe TL',
which handles time-outs, and squeeze : SafeLTL'; — & x SafeLTL;, which deter-
mines remapping and reset of timers. Below, we describe these functions in detail.
Remark: Note that for O[b] we use timers of duration b, while for <[b] and
W[b] we use timers of duration b+ 1. The reason for this is that for the latter we
consider the last step as part of the timing as this simplifies the game structure.
Before describing the functions, we illustrate them on a simple example.

Ezample 1. Let T = {r}, O = {g}, and consider the SafeLTLy formula & =
(O[100]~g) A O[10](r — <[100]g). P states that the system should not give a
grant during the first 100 steps, and, if at step 10 there is a request, then a grant
should be given within the following 100 steps. We show how to construct the
initial location and some of the transitions in a countdown-timer game for @.
Initial state o = opt(introEzp(P))

The initial state is computed from @ by expanding the formula and introduc-
ing any necessary timers. This is done by the function introFEzp. The subformula
[[100]~g expands to —g A O[t{°]~g, reflecting the semantics of the operator
0O[100]. This introduces the timer t3°! with duration 101 and index 0. The sub-
formula O[10](r — <[100]g) expands to O[ti°](r — <[100]g), which introduces
the timer 0 for O[10]. The durations 101 and 10 of the timers correspond to
the respective bounds in [J[100] and O[10], and the index 0 is the smallest index
of a currently unused timer of the respective duration. No timer is introduced
at this step for &[100] as it is guarded by a O operator. Thus, the initial state
is the expanded formula oo = —g A ([@[t3%]—g) A O[t{%](r — O[100]g).
Determining transition §(@o, 0, {g},0) = (¢1,€1)

We apply tree(yo, 0, {g}) which computes the effect of the input () and output
{g} on the formula in the current step, and thus substitutes g with T in . This
results in tree(po, 0, {g}) = L, meaning that this transition leads to location L.
Determining transition 6(po, 0,0, {t3°}) = (p2.€2)

Again, we first compute tree(po,?,0) = (@[t]=g) A Ots°](r — [100]g),
which now substitutes L for g. To the result we apply the function to that
handles time-outs, here {¢}°}, which means that the timer ¢}" times out at the
current step. As a result, the subformula O[t}°](r — <[100]g) is replaced by
r — <[100]g, meaning that the formula r — <[100]g becomes part of the
obligation at the next step, since the timer ¢}° has run out. Thus, we obtain
to({1°), (I ~9) AOIO)(r — ©[100])) = (IR] ~g)A(r — O[100]g). After
that, we apply function squeeze that takes care of timers that might have become
unused upon time-out. This is reflected in the effect es that resets all timers that
do not appear in the current formula. Thus, in ey the timer 3 that just timed
out is mapped to RESET, and the timer t}% that is still present is mapped to
itself. The final step is to apply function introExzp that performs expansion on
the current formula and introduces any new timers that might be needed. The
subformula O[t}%1]—g expands to =g A O[t"!]—g. The subformula r — <[100]g
expands to r — (g V O[ti%]g), which introduces the timer ¢1°! for <[100]. Note

that since the formula already contains the timer ¢}°! of duration 101, the newly

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 259

introduced timer ¢}°! has index 1. The functions to and squeeze ensure that the
order between the indices of timers of the same duration represents the order in
which these timers will time out. After computing introExp((O[t{°]—g) A (r —

O[100]g)) we obtain @ = =g A ([t]=g) A (1 = (g vV O[t1°]g)).

Construction We construct the sets of locations, timers, and transitions, by
exploring the reachable parts of L from Ly. We describe several pruning mech-
anisms that we use in order to maintain the set of reachable locations small.

Construction Invariants. To ensure correctness and keep the game generation
efficient, we maintain the following invariants for each reachable location:

1. For every reachable location ¢ we have (1.a) all literals and bounded opera-
tors not guarded by a “next” operator appear on the Boolean top-level, and
(1.b) all bounded operators at the top-level are instantiated with a timer.

2. For every duration d, the values of the timers are ordered by index, i.e. tg <
td<.. .t? = ...t% = d. The order is strict for timers whose value is not d.

3. In location ¢, for any d and i > 0, if t¢ € Timers(y), then t¢ | € Timers().

Invariant (1) is needed for correctness, and for ensuring that all literals that
are relevant in the current step are considered, and that all relevant bounded op-
erators are tracked by timers. Invariant (2) ensures that we never need more than
the available d timers. This holds since the timers are strictly ordered when run-
ning, and once we would introduce tg 15 tg would have timed out. Furthermore,
ordering the timers reduces the possible combinations of time-outs. Invariant (3)
prevents having unused timers that are between used ones according to the above
order, thus reducing the possible combinations of equivalent locations.

Function tree: Selection of Inputs and Outputs. The function tree(yp,i,0) com-
putes the effect of the input ¢ and output o on the formula in the current step.
With invariant (1) it suffices to consider literals on the Boolean top-level, i.e.
literals that are not sub-formulas of a temporal operator. When assigning the
literals in ¢ according to ¢ and o, we prune and select some “obvious choices”
which can immediately be decided, using the fact that we are generating a game.
This pruning is an important part of our approach, as in practice it can prune a
significant portion of the possible locations. Function tree applies recursively a
set of rules. We now describe these rules in the order in which they are applied
in each recursion step. Figure 1 provides a formal description.

1. With top-level disjunct ¢ that is output literal, the system wins by making
the formula T. The opposite choice for the system can be safely pruned.

2. With top-level conjunct w that is input literal, the environment wins by
making the formula L. The opposite choice can be safely pruned.

3. If an output proposition appears either with only positive or with only neg-
ative polarity, it suffices for the system to pick the literal with the respective
polarity, as for the other choice the generated formula is subsumed.

4. If an input proposition appears either with only positive polarity or only neg-
ative polarity, it suffices to consider the case where the environment picks the
negated literal, as this case is strictly more difficult to realize (i.e. one formula
implies the other) and every strategy for this case works also for the other.

260 P. Heim and R. Dimitrova

tree(cV ,4,0) := [c € 0] (1)

tree(u A, i,0) = L (2)
. tree(®[c/T]r) ifceo

tree(, i, 0) 1= {L fedo c € ActL(v), —c & ActL(v) (3)

tree(v, 1, 0) := tree(y[u/L]r) u € ActL(y),—u & ActL(v)) (4)

tree(2,1,0) := Y[u/[u € i]|r u, —u € ActL(v) (5)

tree(1,1,0) := [c/[c € o]]r ¢, ¢ € ActL(v)) (6)

Figure1: Let w € Z and ¢ € O. For simplicity of the presentation we leave out
the commutative and associative cases and negative literals. ActL()) denotes
the set of literals appearing in the Boolean top-level of ¢. The formula ¢[ap/v]T
is obtained from ¢ by replacing ap by v € {T, L} for all occurrences of ap at
the Boolean top-level, but only there. After each replacement we simplify the
formula by doing constant folding. [z € X[is T ifz € X and L if z ¢ X.

5. If no “early decision” or “worst case-decision” can be made, we apply the
environment choice, as the environment moves first in the game.
6. If no environment choices are left, we generate the branching for the system.

Function to: Handling Time-out. A consequence of invariant (2) is that only
timers with index 0, i.e., of the form ¢Z, can time out since the timers are ordered.
In addition, timers that do not appear inside a formula should not time out (this
is enforced by squeeze) as we show later. Note that this does not apply to timers
with duration 1 as these time out immediately. We direct impossible time-outs to
T since they do not occur. Hence, to(T,¢) := T if for some t¢ € T we have that
i#0,0ord>1andt¢ ¢ Timers(p). Otherwise, to(T,) is defined by applying
the following transformations on all subformulas of ¢ and timing out timers
t € T: We transform Oty ~ L, O[t] ~ 1, and ¢ W[t]yp ~> T. After applying
to we do constant folding as parts of the formula may become irrelevant.

Function squeeze: Determining remapping and reset of timers. When applying
the functions tree and to some timers might become unused. Hence, we have to
ensure that invariant (3) holds and, as stated in the previous paragraph, reset
all timers that do not appear in the formula. We define squeeze(p) := (e,) as
follows: For each duration d, let tfj € Timers(y) with indices ig < i1 < iz < ...
be the remaining timers with sorted indices 7;. Then set e(t?) = ti if 4, exists
and e(t‘J’»l) := RESET otherwise. 1 is obtained by replacing the timers tfj by t?.
Function introExp: Fxpansion and Timer Introduction. The function introEzp
performs the formula expansion and introduces new timers if necessary. The
expansion guarantees that invariant (1) holds afterwards. When introducing
new timers, invariant (2) and invariant (3) have also to be maintained. This
is achieved by assigning for each bound b with associated duration d, the timer
with the next unused index, i.e. t§ & Timers(p) where tg,...,t9 | € Timers(y).
Let I(d) := max{i | t? € Timers(¢)} + 1 be the next unused index. In addition,
as timers t¢ with i > d do not exist by invariant (2), expansions generating

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 261

them are redirected to T. Hence, we define introEzp(p) := rd(iE1(p)) where
rd(p) := T if for some i > d we have t¢ € Timers(¢), and rd(¢) = ¢ otherwise.
The function iF; performing the expansion is defined by

iEr(1) =1 iEr(p o) :=iEi(p) o iE(y)
iB1(Onl) = iEi(p) v Ot} e iB1(Oltlp) = iEr(p) VOltly
iE1(Oln]p) =Olt},le iE1(Olt]p) =0Oltle
iE1(pWn]y) :=iE1(¢) V iE (o)A iEr(pWItY) :=1iE1(¢) ViE(p)
(P WIETEL 1v) N WIHY)

Er(pWy) = iBr(Y) ViBi(p) A W)

where [€ {ap,—ap},0€ {A,V},ne€NandteT.

Function opt: Formula Simplification. The function opt ensures that the con-
structed set of locations L is finite, by simplifying the formulas in order to avoid
introducing infinitely many logically equivalent formulas. Since we must main-
tain the invariants, the simplification does not guarantee uniqueness modulo
equivalence. Nevertheless, it ensures finiteness of L and performs optimizations.

Definition of UNSAFE and Correctness To complete the construction of
the countdown-timer game, we define the set of unsafe locations as UNSAFE [, =
{L}. The proof of the correctness theorem below is given in the full version [13].

Theorem 1. Let @ € SafeLTLy and G be the countdown-timer game structure
constructed from @ as described above. Then there exists a system realizing L(P)
if and only if the system wins in the countdown-timer game (G, UNSAFEL).

We augment the construction with several extensions to improve its efficiency
and expand its scope. For instance, we combine explicit expansion with timer-
based implicit expansion, which allows us to handle directly operators like single
O. We also use approximation to handle simple assumptions of the form Jv
where 1 is fully bounded, i.e., without W. Details can be found in the full
version [13].

5 Solving Countdown-Timer Games

We now describe the second phase of our synthesis algorithm, namely the solv-
ing of the countdown-timer game generated from the SafeLTLy specification.
In a countdown-timer game, the durations of the timers, which correspond to
the bounds of the temporal operators in the specification, are encoded in binary.
Hence, the set V of timer valuations and thus also the safety game defined in
Section 3 grow exponentially in the size of the countdown-timer game. Since our
goal is to efficiently solve countdown-timer games with large durations, explic-
itly constructing and solving the semantic safety game is not desired. We note,
however, that in the worst case it is not possible to avoid this blowup. This is
stated in the next theorem, the proof of which is given in the full version [13].

262 P. Heim and R. Dimitrova

Theorem 2. Solving countdown-timer games is EXPTIME-complete.

This means that solving countdown-timer games efficiently requires an ap-
proach that manipulates sets of timer valuations symbolically, in order to avoid,
if possible, explicit enumeration. We propose a symbolic algorithm for solving
countdown-timer games that additionally employs an iteratively refined approx-
imation. The method is applicable to generic symbolic representations of the set
of timer valuations. We present an instantiation of the method with a represen-
tation composed of intervals of timer values and partial orders on timers.

Symbolic Game Solving The standard way to solve a safety game is to com-
pute the set of states from which the environment can enforce reaching an unsafe
state, and check if it intersects with the set of initial states. If this is the case,
then the environment wins the game, and otherwise the system wins.

For a game (G, UNSAFE) with G = (S, S0,Z, O, p), the set of states from
which the environment can enforce reaching UNSAFE is called environment
attractor and is defined as AttrEq(UNSAFE) = {s € S | 37 : env. strategy.Vo :
sys. strategy.3k € N. Outcome(s, 7,0), € UNSAFE}. The environment wins the
safety game if and only if AttrEq(UNSAFE) N Sy # 0.

We solve the countdown-timer game by computing a symbolic representation
of the attractor of the environment player to the unsafe locations. We assume
a symbolic representation Rep of the space of timer valuations 2V. For each
R € Rep we denote with [R] C V the subset of V represented by R. We represent
subsets of the state space L x V of the semantic safety game using functions from
L — Rep where U € (L — Rep) represents {(I,v) | v € [U(D]}.

The symbolic enforceable predecessor for the environment CPreE gy : (L —
Rep) — (L — Rep) is defined as follows. For U € (L — Rep), we let

CPreE symp(U) := AL U ﬂ U symTrans(6(l,4,0,T),T,U), where
iCToCOTCT

symTrans((I',€), T,U) := inc(eff TO(T, remap(e, eff Reset(e,U(I')))))

is the symbolic backward application of transition 6(I,4,0,T') to the target set
[U(1")]. The operations that symTrans requires, from last to first, are as follows.

— inc : Rep — Rep performs the backward increment of the timers, formally,
[inc(R)] = { . v(¢t) +1 €V |v e [R]}.

— effTO : 27 x Rep — Rep models the effect of time-outs: [effTO(T, R)] =
{ve[R]|VteT.teT —-vt)=0)A(t&T —v(t) €[1,d®)])}.

— remap : € X Rep — Rep models the effect of remapping: [remap(e, R)] =
{veV | e[R]Vt €T st. e L(t) is defined. v(t) = v'(e~1(t))}.

— effReset : £x Rep — Rep models the effect of timer resets: [effReset(e, R)] =
{v e [R] |Vt e T.e(t)=RESET — v(t) = d(t)}. Note that e~1(¢), the
timer mapped to t by effect e is unique, since the effect is injective for values
different from RESET, and can thus be inverted if defined.

We also require that we can preform set operations U, N, and equality checking
between elements of Rep, in order to perform the computation.

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 263

We employ the symbolic enforceable predecessor operator CPrek symp to com-
pute a symbolic representation of the environment attractor AttrEgyms as fol-

lows. We set AttrEgymb := (M. ifl € UNSAFE, then V esle §)), and then for
n € N we let AttrEZ;nlLb = AUrEg, ., U CPreE symp(AttrES,, ;).

Proposition 1. If (Gr, UNSAFE}) is a countdown-timer game with Gp =
(T,d,L,Lo,Z,0,0) and the safety game (G, UNSAFE;, x V) with G = (L x
V,Lo x {\t.d(t)},Z,0,p) is its semantics, then for the symbolic attractor com-
puted above it holds [AttrE symp(1)] = {v € V | (,v) € AttrE¢} for everyl € L.

Approximation of Timer Valuations As the symbolically represented state-
space described above might still lead to exploring a large number of sets, we
perform an over- and under-approximation of the attractor of explored states.

We use a threshold k € N to control the precision of the abstraction. In-
tuitively, when approximating for ¢ € 7 we would like to treat exactly timer
values at the “border”, i.e. timer values in [0, k] and [d(t) — k, d(¢)], since these
matter for timeouts and resets. Our approximations over : Rep — Rep and
under : Rep — Rep treat the intermediate values [k, d(t) — k] like a single value-
block. The over-approximation over(R) adds all intermediate values if one value
from R is inside [k, d(t) — k] and the under-approximation under(R) removes all
intermediate values if one value from R is not inside. Formally:

approwy (t,1) := (I 1 [k, d(t) — K] # 0) A ([k,d(t) — k] £ I)

o v(t) U lk,d(t) — k] if approz;(t,v(t))
[over(R)] =4 At o(t) otherwisek v € [R]
e\ ad(t) —) approz, (&, ()
[under(R)] = ¢ At. o(t) Otherwisek v € [R]

The attractor computation is now done as follows: We start with k£ := 1. For
the current £ we compute the environment attractor once using under- and
once using over-approximation at each symbolic state in the computation. If the
environment wins in the under-approximation, it wins the concrete game. If the
system wins in the over-approximation, it wins the concrete game. If neither
holds, we set k := 2 - k and repeat. This always terminates since for k > d(t)/2
the approximations become exact, and hence, one player wins for sure.

FEzample 2. Consider a countdown-timer game, some transitions of which are
depicted in Fig. 2a. From the depicted transitions, only the transition from I to

0 @Q?tmo ot 2 3 |4 LI |
e ™ T {1} {1}, 13,997][. .. [{1}, [3, 997], {999}

(a) Countdown-timer game,
UNSAFE; = {l}. (b) Sets during approximate attractor computation.

Figure 2: Example demonstrating the effect of approximation of timer valuations.

264 P. Heim and R. Dimitrova

1 has a non-empty time-out set, {¢t{°°°}. Since the timer ¢3°°° has duration 1000,
computing AttrE yms for the locations I and Iy precisely would require 1000
iterations. Employing over-approximation with threshold k = 3, on the other
hand, reaches a fixed point in 7 iterations, as shown in Fig. 2b. This is helpful in
cases like the one in the game in Fig. 2a, where the choice of transition in location
l is controlled by the system (via the output o). Here, the overapproximation
allows the solving algorithm to quickly determine that the choice of transition
to Iy is loosing, while the system can win via the alternative transition.

Symbolic Representation using Boxes As a symbolic domain we chose
an interval representation augmented with partial orders over timers Rep :=
gPartialOrder(T)x2™ where Rec :={ i€ (T = NxN) |Vt € T, (a,b) =i(t).0 <
a < b <d(t)} are the intervals in the form of a hyper-cube. Intuitively, we have a
set of partial-orders and for each of them we have a set of hyper-cubes. Formally:

[r]:= | ({v €V |Vt ~t) €p:u(ta) ~u(t2)} N)\t.[r(t)l,r(t)g]>

(»,C)ER reC

where r(t); is the i-th projection of r(t). It remains to define the necessary op-
erations: inc, effReset, eff TO, and remap are mostly straightforward according
to their definition, as they can be performed by modifying and inspecting all
intervals individually or just reordering timers. Additionally, effReset uses the
partial order to derive bounds on timers that are in relation with a timer that
is reset. effTO refines the partial order, since on time-out T', all timers in T" are
smaller than 7T\T. Also the approximations can be performed point-wise on the
intervals, as an approximate interval is again an interval.

We chose this domain since it is simple, and, at the same time, due to the use
of partial orders, well suited for the type of problem we are solving. Our solving
algorithm is generic and can accommodate other, more sophisticated domains.

6 Evaluation

We implemented! and evaluated our approach. We compare our prototype im-
plementation to ebr-1tl-synth introduced in [9] which performs synthesis for
LTLggr. We also compare to the state-of-the-art LTL synthesis tool strix ver-
sion 21.0.0 [19,22]. In the following, we present the benchmarks we used, the
experiments, and the results. We ran all experiments on an Intel Core i7-1165G7
processor with 16GB RAM and a single core available. All times are wall-clock
times. A detailed description of the benchmarks is given in the full version [13].

Bounded Response Benchmarks In our first set of experiments we evaluate the
tools on LTLggr formulas from [9], and on 23 SYNTCOMP 2021 benchmarks?
that fall into LTLggr and are used for a similar comparison in [9]. Figure 3 and

1 Available at: https://github.com/phheim/lisynt
2 https://github.com/SYNTCOMP/benchmarks

https://github.com/phheim/lisynt
https://github.com/SYNTCOMP/benchmarks

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 265

10* []

— 104 _|| — our tool
E, ol | —— ebr
g 10 102 1| —— strix
=
100 L ! ! ! | 10° .
0 200 400 600 800
Accumulated Instances Accumulated Instances

Figure 3: Execution times in mil- Figure4: Execution times in milliseconds on

liseconds on the benchmarks [9]. the LTLggr SYNTCOMP benchmarks.

Figure 4 show the runtimes with a time-out of one minute, respectively. Unfortu-
nately, for roughly half of the benchmarks from [9] strix did not accept the input
formula for being too long, since the bounded operators must be expanded explic-
itly upon input. We therefore left strix out for this comparison. Figure 3 shows
that on the benchmarks from [9] both our implementation and ebr-1tl-synth
have roughly the same runtime, ignoring different startup times. Figure 4 shows
that on the selected SYNTCOMP benchmarks all three tools are comparable.

These experiments evaluate our implementation on relevant benchmarks that
are partially not designed in the spirit of the problem that our approach targets.
The results show that our implementation is comparable to existing tools.

Adaption of Real-Time Benchmarks In our second set of experiments, we took
MTL synthesis problems from [14] and adapted them to SafeLTL 5 formulas. The

Name |L| |T| TGen| & Win.| 75||7strix Name |L| |T| Tgen| k Win.| 75||7strix
Clean(1) 8 20.01| 1 S [0.01f| 3.56 Clean g (1) 3 2 0.02/512 E |0.07|| 1.61
Clean(2) 16 3 0.02/ 1 S [0.03|| 7.99 Clean g (2) 3 2 0.02(512 E [0.07| 2.63
Clean(3) 41 4 0.06] 8 S [0.33|| 21.4 Clean g (3) 3 2 0.02(512 E [0.07| 4.99
Clean(4) [123 5 0.22| 8 S [1.45|| 97.3 Clean g (4) 3 2 0.02(512 E [0.07| 5.64
Cleanc(1)] 10 4 0.03] 1 S |0.05]] 189 Cleany(1)| 23 4 0.07] 1 S [0.12]] TO
Cleanc(2)| 22 5 0.08{16 S 617|| TO Cleann (2) 32 4 0.10 1 S |0.27|| TO
Cleanc(3)| 61 6 0.32| - - TO|l TO Cleann (3) 48 4 0.15| 8 S |7.47|| TO
Cleanc(4)|205 7 1.30| - - TO|l TO Cleann (4) 75 4 0.26] 8 S [13.7|| TO
Coffee(1) 14 4 0.03] 1 S [0.04|| TO Coffee-(1)] 46 6 0.16] 1 S [0.88 F
Coffec(2) | 44 5 0.12| 2 S |0.33] TO Coffee(2)| 151 7059 1 S |5.51| F
Coffee(3) [175 6 0.55| 2 S [3.53|| TO Coﬁeec(B) 613 8 2.73 1 S |62.9 F
Coffee(4) [418 7 1.34| 2 S [10.2|| TO Coffee(4)|1634 9682 1 S |191]] F
conv-belt 9 30011 S |0.02 F rail(4,8) 647 7 2.53 1 S |3.96|| TO
robo-cam 22 50.04/ 1 S |0.19 F rail(8,8) 647 7 2.60 1 S |4.03|| TO
rail(2,2) 647 6 2.60| 1 S [3.93|| TO rail(1,1,1) (3111 7 27.8 - - TO|| TO
rail(2,4) 647 6 2.58 1 S |4.05|| TO rail(2,1,1) (9179 9 89.1 1 S 220|| TO
rail(2,8) 647 6 2.62| 1 S |8.97|| TO rail(2,2,2) (9179 9 93.7] 1 S 225|| TO
rail(4,4) [647 7267/ 1 S |4.10|| TO

Table 1: Results on the office-robot and adapted real-time benchmarks. |L| and
|T| are the numbers of locations and timers in the generated countdown-timer
game. Tgen 18 the runtime of the game generation in seconds. k is the approxima-
tion threshold on which the solving terminated. Win. shows whether the system
(S) or the environment (E) wins. 7y is the total runtime including the game gen-
eration and solving, where TO means a time-out after 15 minutes. 7Tgrix is the
runtime of strix. For some benchmarks strix rejects the input for being too
long (F) which is due to expanding the bounded operators when using strix.

266 P. Heim and R. Dimitrova

benchmarks include a conveyor belt (conv-belt), a robot camera (robo-cam), and
several parametrized instances of a multiple railroad-crossings controller (rail).
We discretized the real-time bounds. The benchmarks use up to 19 propositions
and 16 bounded operators, and bounds between 60 and 4000. Detailed results
can be found in Table 1. ebr-1t1l-synth was not applicable to these benchmarks
as we had to use assumptions (which cannot be captured by the specifications
in the LTLgggr fragment) to model the timed environment.

These experiments show that SafeLTLy can express interesting requirements
from the real-time domain by appropriate discretization. We did not compare
directly to the tool in [14], as the underlying modeling formalism is different,
and hence we adapted the benchmarks. However, a superficial comparison of our
results to those in [14] shows that our tool compares well (and is in some cases
better). Furthermore, on these benchmarks our tool clearly outperforms strix.

Office Robot Benchmarks Our last set of experiments considers benchmarks we
created ourselves. They consists of a number of specifications describing tasks for
a robot in an office building with four rooms. The benchmarks are parametrized
by the number of rooms that have to be serviced. They use up to 11 propositions
and 14 bounded temporal operators, and bounds between 10 and 21600. Detailed
results can be found in Table 1. ebr-1tl-synth was either not applicable due
to use of assumptions (4 benchmarks) or timed out (25 benchmarks).

The results show that SafeLTLy can express meaningful synthesis tasks, and
that our approach is viable for solving them. Furthermore, they show that our
method indeed fulfills its purpose: for specifications requiring large bounds in the
temporal operators our method clearly outperforms the state-of-the-art tools.

Owverall Analysis Table 1 shows that the countdown-timer game generation is very
efficient compared to the solving. As we expect to be able to improve the solving
by more sophisticated symbolic techniques, we expect the countdown-timer game
based approach to be viable for even more complex properties. In most cases
the solver terminated with a low approximation threshold, which shows the
usefulness of approximation. In our experience, without approximation solving
the benchmarks with large bounds becomes infeasible with our current technique.

7 Conclusion

We presented a new synthesis approach for specifications expressed in an exten-
sion of Safety LTL with bounded temporal operators. A distinguishing feature
of our method is that it is specifically targeted at efficiently solving the synthesis
problem for specifications with bounded temporal operators, in particular those
with large bounds. Our evaluation results show that our technique performs very
well on a range of benchmarks featuring such timing requirements. The key to
this success is a novel translation to a safety game with symbolically represented
bounds, whose efficiency is due to the use of effective pruning techniques. We
observe that our method for solving the generated game is viable, as shown by
the evaluation. However, it has potential for further improvement by employing
more performant symbolic representations and abstraction techniques.

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 267

Data-Availability Statement

The datasets generated during and/or analysed during the current study are
available in the Zenodo repository,
https://doi.org/10.5281/zenodo.7505914.

References

1. Alur, R., Etessami, K., Torre, S.L., Peled, D.A.: Parametric temporal logic for
”model measuring”. ACM Trans. Comput. Log. 2(3), 388—407 (2001). https://
doi.org/10.1145/377978.377990, https://doi.org/10.1145/377978.377990

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116-146 (1996). https://doi.org/10.1145/227595.227602, https://doi.
org/10.1145/227595.227602

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
Uppaal-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) Com-
puter Aided Verification, 19th International Conference, CAV 2007, Berlin, Ger-
many, July 3-7, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4590,
pp. 121-125. Springer (2007). https://doi.org/10.1007/978-3-540-73368-3_
14, https://doi.org/10.1007/978-3-540-73368-3_14

4. Bouyer, P., Bozzelli, L., Chevalier, F.: Controller synthesis for MTL specifica-
tions. In: Baier, C., Hermanns, H. (eds.) CONCUR, 2006 - Concurrency Theory,
17th International Conference, CONCUR 2006, Bonn, Germany, August 27-30,
2006, Proceedings. Lecture Notes in Computer Science, vol. 4137, pp. 450—464.
Springer (2006). https://doi.org/10.1007/11817949_30, https://doi.org/10.
1007/11817949_30

5. Brihaye, T., Estiévenart, M., Geeraerts, G., Ho, H., Monmege, B., Sznajder, N.:
Real-time synthesis is hard! In: Franzle, M., Markey, N. (eds.) Formal Model-
ing and Analysis of Timed Systems - 14th International Conference, FORMATS
2016, Quebec, QC, Canada, August 24-26, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9884, pp. 105-120. Springer (2016). https://doi.org/10.
1007/978-3-319-44878-7_7, https://doi.org/10.1007/978-3-319-44878-7_7

6. Bulychev, P.E., David, A., Larsen, K.G., Li, G.: Efficient controller synthesis for a
fragment of mtly . Acta Informatica 51(3-4), 165-192 (2014). https://doi.org/
10.1007/s00236-013-0189-2, https://doi.org/10.1007/s00236-013-0189-z

7. Cassez, F.: Efficient on-the-fly algorithms for partially observable timed games.
In: Raskin, J., Thiagarajan, P.S. (eds.) Formal Modeling and Analysis of Timed
Systems, 5th International Conference, FORMATS 2007, Salzburg, Austria, Oc-
tober 3-5, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4763, pp.
5-24. Springer (2007). https://doi.org/10.1007/978-3-540-75454-1_3, https:
//doi.org/10.1007/978-3-540-75454-1_3

8. Church, A.: Logic, arithmetic and automata. In: International congress of mathe-
maticians. pp. 23-35 (1962)

9. Cimatti, A., Geatti, L., Gigante, N., Montanari, A., Tonetta, S.: Re-
active synthesis from extended bounded response LTL specifications. In:
2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa,
Israel, September 21-24, 2020. pp. 83-92. IEEE (2020). https://doi.
org/10.34727/2020/isbn.978-3-85448-042-6_15, https://doi.org/10.34727/
2020/isbn.978-3-85448-042-6_15

https://doi.org/10.5281/zenodo.7505914
https://doi.org/10.1145/377978.377990
https://doi.org/10.1145/377978.377990
https://doi.org/10.1145/377978.377990
https://doi.org/10.1145/377978.377990
https://doi.org/10.1145/377978.377990
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/11817949_30
https://doi.org/10.1007/11817949_30
https://doi.org/10.1007/11817949_30
https://doi.org/10.1007/11817949_30
https://doi.org/10.1007/978-3-319-44878-7_7
https://doi.org/10.1007/978-3-319-44878-7_7
https://doi.org/10.1007/978-3-319-44878-7_7
https://doi.org/10.1007/978-3-319-44878-7_7
https://doi.org/10.1007/978-3-319-44878-7_7
https://doi.org/10.1007/s00236-013-0189-z
https://doi.org/10.1007/s00236-013-0189-z
https://doi.org/10.1007/s00236-013-0189-z
https://doi.org/10.1007/s00236-013-0189-z
https://doi.org/10.1007/s00236-013-0189-z
https://doi.org/10.1007/978-3-540-75454-1_3
https://doi.org/10.1007/978-3-540-75454-1_3
https://doi.org/10.1007/978-3-540-75454-1_3
https://doi.org/10.1007/978-3-540-75454-1_3
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_15
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_15
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_15
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_15
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_15
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_15

268

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. Heim and R. Dimitrova

David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
stratego. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems - 21st International Conference, TACAS 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. Lecture Notes in Com-
puter Science, vol. 9035, pp. 206-211. Springer (2015). https://doi.org/10.1007/
978-3-662-46681-0_16, https://doi.org/10.1007/978-3-662-46681-0_16
Doyen, L., Geeraerts, G., Raskin, J., Reichert, J.: Realizability of real-time logics.
In: Ouaknine, J., Vaandrager, F.W. (eds.) Formal Modeling and Analysis of Timed
Systems, 7th International Conference, FORMATS 2009, Budapest, Hungary,
September 14-16, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5813,
pp. 133-148. Springer (2009). https://doi.org/10.1007/978-3-642-04368-0_
12, https://doi.org/10.1007/978-3-642-04368-0_12

D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications.
In: Alt, H., Ferreira, A. (eds.) STACS 2002, 19th Annual Symposium on The-
oretical Aspects of Computer Science, Antibes - Juan les Pins, France, March
14-16, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2285, pp.
571-582. Springer (2002). https://doi.org/10.1007/3-540-45841-7_47, https:
//doi.org/10.1007/3-540-45841-7_47

Heim, P., Dimitrova, R.: Taming large bounds in synthesis from bounded-
liveness specifications (full version) (2023). https://doi.org/10.48550/ARXIV.
2301.10032, https://arxiv.org/abs/2301.10032

Hofmann, T., Schupp, S.: Tacos: A tool for MTL controller synthesis. In: Ca-
linescu, R., Pasareanu, C.S. (eds.) Software Engineering and Formal Methods
- 19th International Conference, SEFM 2021, Virtual Event, December 6-10,
2021, Proceedings. Lecture Notes in Computer Science, vol. 13085, pp. 372—
379. Springer (2021). https://doi.org/10.1007/978-3-030-92124-8_21, https:
//doi.org/10.1007/978-3-030-92124-8_21

Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255-299 (1990). https://doi.org/10.1007/BF01995674, https:
//doi.org/10.1007/BF01995674

Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive
mission and motion planning. IEEE Trans. Robotics 25(6), 1370-1381 (2009).
https://doi.org/10.1109/TR0.2009.2030225, https://doi.org/10.1109/TRO.
2009.2030225

Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness.
Formal Methods Syst. Des. 34(2), 83-103 (2009). https://doi.org/10.1007/
s$10703-009-0067-z, https://doi.org/10.1007/s10703-009-0067-z

Li, G., Jensen, P.G., Larsen, K.G., Legay, A., Poulsen, D.B.: Practical con-
troller synthesis for mtly . In: Erdogmus, H., Havelund, K. (eds.) Proceed-
ings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017. pp. 102—
111. ACM (2017). https://doi.org/10.1145/3092282.3092303, https://doi.
org/10.1145/3092282.3092303

Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive sys-
tems from LTL specifications via parity games. Acta Informatica 57(1-2), 3-36
(2020). https://doi.org/10.1007/s00236-019-00349-3, https://doi.org/10.
1007/s00236-019-00349-3

Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-
response properties. In: Damm, W., Hermanns, H. (eds.) Computer Aided Ver-

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-642-04368-0_12
https://doi.org/10.1007/978-3-642-04368-0_12
https://doi.org/10.1007/978-3-642-04368-0_12
https://doi.org/10.1007/978-3-642-04368-0_12
https://doi.org/10.1007/978-3-642-04368-0_12
https://doi.org/10.1007/3-540-45841-7_47
https://doi.org/10.1007/3-540-45841-7_47
https://doi.org/10.1007/3-540-45841-7_47
https://doi.org/10.1007/3-540-45841-7_47
https://doi.org/10.48550/ARXIV.2301.10032
https://doi.org/10.48550/ARXIV.2301.10032
https://doi.org/10.48550/ARXIV.2301.10032
https://doi.org/10.48550/ARXIV.2301.10032
https://arxiv.org/abs/2301.10032
https://doi.org/10.1007/978-3-030-92124-8_21
https://doi.org/10.1007/978-3-030-92124-8_21
https://doi.org/10.1007/978-3-030-92124-8_21
https://doi.org/10.1007/978-3-030-92124-8_21
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1145/3092282.3092303
https://doi.org/10.1145/3092282.3092303
https://doi.org/10.1145/3092282.3092303
https://doi.org/10.1145/3092282.3092303
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3

21.

22.

23.

24.

25.

Taming Large Bounds in Synthesis from Bounded-Liveness Specifications 269

ification, 19th International Conference, CAV 2007, Berlin, Germany, July 3-
7, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4590, pp. 95—
107. Springer (2007). https://doi.org/10.1007/978-3-540-73368-3_12, https:
//doi.org/10.1007/978-3-540-73368-3_12

Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers
for timed systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.)
STACS 95, 12th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Munich, Germany, March 2-4, 1995, Proceedings. Lecture Notes in Com-
puter Science, vol. 900, pp. 229-242. Springer (1995). https://doi.org/10.1007/
3-540-59042-0_76, https://doi.org/10.1007/3-540-59042-0_76

Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification -
30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10981, pp. 578-586. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3_31, https://doi.org/10.1007/
978-3-319-96145-3_31

Nickovic, D., Piterman, N.: From mtl to deterministic timed automata. In: Chatter-
jee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed Systems -
8th International Conference, FORMATS 2010, Klosterneuburg, Austria, Septem-
ber 8-10, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6246, pp. 152—
167. Springer (2010). https://doi.org/10.1007/978-3-642-15297-9_13, https:
//doi.org/10.1007/978-3-642-15297-9_13

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. pp. 46-57. IEEE Computer Society (1977). https://doi.org/
10.1109/8FCS.1977.32, https://doi.org/10.1109/SFCS.1977 .32

Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: A symbolic approach to safety
LTL synthesis. In: Strichman, O., Tzoref-Brill, R. (eds.) Hardware and Software:
Verification and Testing - 13th International Haifa Verification Conference, HVC
2017, Haifa, Israel, November 13-15, 2017, Proceedings. Lecture Notes in Computer
Science, vol. 10629, pp. 147-162. Springer (2017). https://doi.org/10.1007/
978-3-319-70389-3_10, https://doi.org/10.1007/978-3-319-70389-3_10

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-73368-3_12
https://doi.org/10.1007/978-3-540-73368-3_12
https://doi.org/10.1007/978-3-540-73368-3_12
https://doi.org/10.1007/978-3-540-73368-3_12
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10
https://doi.org/10.1007/978-3-319-70389-3_10
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Lockstep Composition for Unbalanced Loops

Ameer Hamza® and Grigory Fedyukovich®)
Florida State University, Tallahassee, FL, USA,
ahamza@fsu.edu, grigory@cs.fsu.edu

Abstract. Equivalence checking of two programs is often reduced to
the safety verification of a so-called product program that aligns the
programs in lockstep. However, this strategy is not applicable when pro-
grams have arbitrary loop structures, e.g., the numbers of loops vary. We
introduce an automatic iterative abstraction-refinement-based technique
for checking equivalence of a single-loop program and a program which
has a series of consecutive loops. Our approach decomposes the single
loop into a sequence of separate loops thus reducing the main problem
to a series of equivalence-checking problems for pairs of loops. Since due
to the decomposition, these problems become abstract, our approach it-
eratively refines the decomposed loops and lifts useful information across
them. Our second contribution is a procedure for the alignment of loops
with counters and explicit bounds that cannot be composed in lockstep.
We have implemented the approach and successfully evaluated it on two
suites, one with benchmarks containing different numbers of loops and
the other containing benchmarks that need alignment.

1 Introduction

To gain performance benefits, optimizing compilers perform program transfor-
mations such as loop peeling, loop unrolling, and loop unswitching. The reliance
on many transformations lowers the trust in the computation and motivates us
to use automated SMT-based verification to verify equivalence of the program
before and after the transformation. Specifically, one should prove that for any
equal inputs to both programs, their outputs are equal too. The problem is of-
ten reduced to construction of a product program by aligning (or merging) the
instructions in lockstep and then determining if the product program meets a
safety specification represented by the original relational specification. While ef-
fective for many pairs of programs that are relatively close to each other, this
strategy may be insufficient for pairs of loopy programs with arbitrary control
flow. We target the verification of pairs of programs in which the source program
has a single loop, and the target program has a sequence of non-nested loops.
Such programs have been extensively studied in the literature [4,23,31] but still
are challenging for automated reasoning.

Before proving equivalence, our approach decomposes the loop in the source
program into multiple loops such that the structure of this new program exactly
matches the one in the target program. With two structurally similar programs

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 270-288, 2023.
https://doi.org/10.1007/978-3-031-30820-8_18

http://orcid.org/0000-0001-7341-0412
http://orcid.org/0000-0003-1727-4043
https://doi.org/10.1007/978-3-031-30820-8_18
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_18&domain=pdf

Lockstep Composition for Unbalanced Loops 271

at hand, our approach targets pairs of loops and creates a lockstep composition
for each pair. This lets us break our equivalence checking problem into smaller
isolated problems, and if each such problem is successfully solved, then the given
programs are indeed equivalent. An obvious downside of decomposition is the
loss of context: if a program property is defined before the first loop, it may
not be available for the second and later loops. For that reason, we have to
refine the decomposition by extracting the requested properties in the previously
considered pairs of loops and pulling them to the currently-considered loops.
Technically, this process is driven by counterexamples.

Moreover, when attempting to create a lockstep composition for loops that
have different numbers of iterations, we might need to align them. When our
method can compute an exact number of iterations of both the source and the
target, it rearranges the control flow in the source by grouping the iterations in
the loop, and extracting selected iterations to either before the loop or after. Such
rearranging helps with programs where the number of iterations of one loop is a
multiple of other, or is off by few iterations, which is common for optimizations
including loop vectorization and loop peeling.

We implemented our equivalence checking algorithm, along with the algo-
rithms to refine and align the loops, in a tool called ALIEN. On many commonly
used public benchmarks [23], ALIEN is an order of magnitude faster than the
most recent (to our knowledge) state-of-the-art tool COUNTER [14]. ALIEN can
prove equivalence of pairs of user-written programs and it is not bound to any
particular compiler unlike many related tools based on translation validation.

We proceed with an overview of the related work in Sect. 2 and a motivating
example in Sect. 3. Then, we formally introduce our problem in Sect. 4. The
main ingredients of our algorithm are then discussed in Sect. 5, and in Sect. 6.
The evaluation is reported in Sect. 7, and conclusion in Sect. 8.

2 Related Work

Relational verification aims at analyzing two different programs or two execu-
tions of the same program. This research field has been extensively studied,
but since it reduces to safety verification, it is known to be undecidable in gen-
eral. Relational verification has applications in checking program equivalence,
information-flow leakage, incremental verification, etc. To reduce to safety, it is
a common practice to convert the programs into a product. The product can be
used for relational verification tasks by providing appropriate relational precon-
dition and postcondition. This research trend is pioneered by Barthe et al. [3]
who used product programs in Hoare-style proving. More recently, there has
been a rise of automated product construction techniques. e.g., [7,16,25,26].
Creating product program requires that the two programs can be composed
in some way, which is usually assumed to be trivial (e.g., lockstep), or provided
to the verifier in some form. However, it is not always possible to get the triv-
ial composition. The technique presented by Strichman et al. [36] extends the
work of Godlin et al. [12] and it attempts to prove equivalence of two recursive
functions having different base-cases and no lockstep composition, by creating

272 A. Hamza and G. Fedyukovich

an alignment between them. However, the alignment is done using unrolling fac-
tors, which are manually provided by the user, for both programs. The technique
presented in [34] targets self-composition. It computes a scheduler for an asyn-
chronous execution of both programs using counterexamples and a selection of
predicates (e.g., from the user). A more recent work [38] is also a scheduler-driven
but mainly targets mutual termination rather than full functional equivalence.

Translation validation techniques, [9, 17,20, 22,27, 28, 32, 35, 39], relate the
source programs with their compiler outputs to check equivalence. However, it
is usually the case that the compiler provides the manner of composition. Many
data-driven techniques for proving equivalence, like [5,33], rely on finding a trace
alignment between concrete executions of the programs. Such techniques might
perform inefficiently when sufficient number of execution traces are not available.
They might also require a lot of time for the data runs. The work in [22] performs
bounded translation validation at the level of LLVM intermediate representation.
The technique looks for a subset of behaviors of the source program in the target
to infer equivalence. As the technique is bounded, it may not be sound.

The work by Gupta et al. [14] presents a counterexample-guided algorithm
for translation validation of given programs. It explores the space of potential
products to find a bisimulation relation between intermediate program locations
of the two programs. and prove it via the generation of strong enough inductive
invariants. Again, while making the approach flexible, reliance on counterex-
amples makes it slower, and as we will see from our evaluation (Sect. 7), this
approach does not scale well in the cases an alignment needs larger unrollings.

Many techniques use relational verification for regression verification, where
two versions of a program are compared for equivalence checking [1,2,11,13,
15, 19, 24, 30, 36, 37]. Such techniques usually assume that two programs are
closely related, hence the analysis is usually reduced by either pruning out or
abstracting common parts of the programs. Many techniques simplify the process
of equivalence checking. Some assume a static relationship between the number
of iterations of two loops, in order to prove equivalence [6,11,21,29,33]. Other
techniques create finite unrollings of loops and prove equivalence until a certain
bound, e.g., [1,18,22,30]. Our work makes an attempt to relax such assumptions.

3 Illustration on Example

Fig. 1 gives two C programs, the source program contains a single loop and the
optimized target programs contains two sequential loops. Our approach aims at
proving the equivalence of the source and the target, that is, if variables are
initially given equal values (b = d, M = X, K = Y), then their values at the
end are equal toothen outputs are equal too to, i.e., a = ¢, b = d. A lockstep
composition on the programs in Fig. 1 is challenging to construct: 1) it is difficult
to compare one loop with two sequential loops, and 2) there are different numbers
of iterations taken by programs.

Our method decomposes the source loop into two loops to make it easier to cre-
ate a product program. It creates two copies of the loop in the source with the same

Lockstep Composition for Unbalanced Loops 273

1 int M = nondet(), K = nondet(), 1 int X = nondet(), Y = nondet(),
2 ¢ =1, d = 2*%X+1;
2 a =0, N = 2xM+1+K, b = 2*M+1;
3 assume(X >= 0 && Y >= 0);
3 assume(M >= 0 && K >= 0);)
X 4 while(c < 2%X+1) c+=2;
4 while(a !'= N) { 5 while(c != 2%xX+1+Y) {
5 b= (a>Db) ? b+ 1 : b; :
6 d++;
6 a+t+;
7} Toer
8 }
Fig. 1: Source (left) and target (right) programs.
1 int M = nondet(), K = nondet(), 1 int M = nondet(), K = nondet(),
2 a =0, N = 2xM+1+K, b = 2*M+1; 2 a =0, N = 2xM+1+K, b = 2*xM+1;
3 assume(M >= 0 && K >= 0); 3 assume(M >= 0 && K >= 0);
4 while(a '= N && a < 2xM+1) { 4 b= (a > b) 27 b+ 1 : b; at+;
5 b= (a>Db) ?7 b+ 1 : b; 5 while(a != N && a < 2xM+1) {
6 at+; 6 b= (a > Db) 2 b+ 1 : b; at+;
7} 7 b= (a > Db) 7 b+ 1 : b; at+;
8 while(a !'= N) { 8 }
9 b= (a>Db) 2?b +1: b; 9 assume(N == 2*xM+1+K && b == 2*M+1);
10 at++; 10 while(a != N) {
11 3} 11 b= (a>Db) 2b+ 1 : b; a++; }

Fig. 2: Decomposed (left) and refined (right) source programs.

loop body but different loop guards, shown in Fig 2 (left). Specifically, it uses the
loop guard for the first loop in the target program, i.e. ¢ < 2*X+1, to create a < 2xM+1
and add it to the guard of the first source loop. It then checks the equivalence of
pairs of loops from the decomposed source and the target. However, the first pair
of loops (lines 4-7 in the decomposed source, line 4 in the target) is not in lockstep,
as for each iteration of the target, the source is expected to iterate twice. Thus, we
attempt to construct a lockstep composition by grouping two iterations of the first
loop in the decomposed source. However, this results in some residual iterations to
be processed before the loop in the decomposed source. After conducting an analy-
sis on the initial states of both loops and the body of the source loop, our approach
moves one iteration to before the loop in the source. This is sufficient to complete
the lockstep composition and prove that the first pair of loops are equivalent.

Similarly, the approach considers the second pair of loops (lines 8-11 in the
decomposed source, lines 5-8 in the target). To prove that the loops are in lock-
step and for equivalence we are missing the information that N = 2xM+1+K and
b = 2*M+1, which is available at the beginning of the program, but not in the
middle of it. We say that these equalities refine the composition of the second
loops, and they are added as an assumption before the start of the second loop
(the refined source program is given in Fig. 2 (right)). The refinement makes it
possible to both create the lockstep composition and prove the equivalence of
both pairs of loops. The analysis terminates with the verdict that both programs
are equivalent.

4 Preliminaries

We follow the Satisfiability Modulo Theories (SMT) background and notation
to present the contributions. The goal of SMT is either to find an assignment
to variables of a first-order logic formula that makes it true (written m = ¢,

274 A. Hamza and G. Fedyukovich

where m is a model, and ¢ is a formula), or prove its non-existence (also called
unsatisfiability, denoted ¢ = L). For formulas ¢, 9, if every model of ¢ satisfies
1, we say that ¢ is logically stronger than ¢ (written ¢ =). We write ite
for an if-then-else.

4.1 Constrained Horn Clauses

Throughout the paper, we use the notion of Constrained Horn Clauses (CHC's)
as a mean to represent the programs containing arbitrary number of loops.

Definition 1. A Constrained Horn Clause C over a set of uninterpreted relation
symbols R is a (universally quantified, implicitly) formula in first-order logic that
has the form of one of the three implications (namely a fact, an inductive clause
and a query, respectively):

(V1) = Li(V1) Li(Vi) Ao o ALn(Va) A(Va, ..., Vag1) = Log1(Vas1)
Ll(Vl)/\.../\Lk(Vk)/\Tr(Vl,...,Vk) = L
where for all 4, L; € R are uninterpreted predicate symbols, V; are implicitly

quantified vectors of variables, and some L; and L; might be the same. All
formulas ¢, 1, m are fully interpreted.

Throughout, we assume that each single loop is represented by two CHCs, e.g.:
Init(V) = L(V) LVYAGTr(V, V") = L(V")

where, Init represents the initial state of the loop, GTr(V,V’) represents one
iteration of the loop, which we call a guarded transition. For convenience, we split
GTr(V,V’) to Tr(V,V') AG(V), where G encodes a guard over the variables at
the beginning of transition, and 77 has no additional guard.

Definition 2. Given a set R of uninterpreted predicates and a set H of CHCs
over R, we say that H is satisfiable if there exists an interpretation for every
L € R that makes all implications in H valid.

Solutions for CHC systems are called inductive invariants. If a CHC system
is unsatisfiable, there exists a counterexample showing a bad state is reachable.

4.2 Relational Verification

The problems of equivalence checking and lockstep composability are the in-
stances of a more general problem of relational verification. In this section, we
introduce it in a simple case for two systems containing a single loop each.

Definition 3. Given two single-loop CHC systems over Ly; 5y € R with ini-

tial states Initg; oy and guarded transition bodies GTry oy, resp., a relational

precondition pre and a relational postcondition post, the problem of relational

verification can be formulated as the satisfiability of the following CHC system:

Inih(V) — Ll(V,V) [nitz(V) - LQ(V,V)

Li(Vo, VYA GTri(V, V') = Li(Vo, V") La(Vo,V) A GTra(V, V') = La(Vo, V')
p?”e(Vo, Wo) AN Ll(Vo, V) VAN LQ(WO, W)/\“pOSt(V, W) == 1

Lockstep Composition for Unbalanced Loops 275

Here, both loop systems are augmented with an additional variable (at the first
argument of Ly; 1) to keep track of the initial values of variables.

To solve the problem, formulated as a complex nonlinear CHC, we need to
find individual invariants for both loops, which is difficult [7,25]. Instead, we aim
at simplifying the problem for certain classes of programs. Specifically, it often
can be reduced to safety verification via so-called lockstep composition.

Definition 4 (Lockstep-composability). Given two single-loop CHC sys-
tems and a relational precondition pre, a lockstep composition exists if 1) the
following CHC system is satisfiable:

pre(Vl, Vz) A Im‘tl(Vl) AN]’I’L’itz(Vz) — L1,2 (Vl, VQ)
L1,2(V1,V2) A GT?"l(Vl,V/ﬂ A GTTQ(VQ,V,Q) — L1’2(V/1,V/2)
Llyz(Vl,Vg) A G1(V1) #* GQ(VQ) = L

where L1 2 € R is an uninterpreted predicate symbol, an interpretation of which
corresponds to a relational invariant, and G and Gy represent the loop guards
and 2) the body of the first CHC is satisfiable.

Intuitively, the first CHC constrains the values of input variables to be related
through pre (and also, pre should be consistent with both Init-s.). The second
CHC encodes a synchronous computation of both loops. The third CHC ensures
that inside the product loop both G; and G2 should be true, and outside the
loop both G and G4 should be false. This implies that the numbers of steps in
two lockstep-composable programs under some pre are the same.

The following lemma lets us reduce a relational verification problem to a
safety verification problem computed after merging the loops and then use ex-
isting invariant generation techniques for solving relational verification problems.
Note that due to the lockstep, both loop guards are always equal, so it is enough
to conjoin the negation of only one of the loop guards to the query.

Lemma 1. Given a relational verification problem over two systems over Ly 2y €
R representing single loops, pre, and post, if the systems are lockstep-composable
under pre, and the following CHC problem is satisfiable, then post holds at the
end of these loops.

pre(Vl, VQ) AN Im‘tl(Vl) A Inito (VQ) — L172 (Vl, VQ)
Ll,z(vl,VQ) A GTT1(V1,V/1) A GTT‘Q(VQ,VIQ) - L172(V/1,V/2)
L1,2(V1,V2) /\“Gl(%) /_‘pOSt(V17V2) = 1

The problem of proving program equivalence is a special case of the relational
verification problem where pre = post is a pairwise equality over V7 and V5.

5 Equivalence Checking for Unbalanced Loops

In this section, we present our novel equivalence checking algorithm designed for
the cases when the source and the target programs have different structures. We

276 A. Hamza and G. Fedyukovich

first describe a class of the input CHC systems that we target in Sect. 5.1. We
then provide a procedure to decompose the source such that we can break the
problem of equivalence checking under our limitations into a sequence of smaller
problems in Sect. 5.2. We then finalize our core abstraction-refinement schema
for equivalence checker in Sect. 5.3.

5.1 Input Limitations and Auxiliary Definitions

We support pairs of programs where the source contains a single loop, and the
target possibly contains an arbitrary number of sequential loops. A CHC system
of the latter sort that has n loops is called a flat n-sequence of loops further in
the paper. Here and throughout, we assume that Gg and G; encode the loop
guard for the source loop and the i** loop in the target, and that Trg and Tr;
encode respective loop bodies without the corresponding guards. Specifically,
the shape of a source program that we consider is defined over a single predicate
symbol S, and we thus refer to this system as S-system later in the text:

Inits(Vs) = S(Vs) S(Vs) ANGs(Vs) A TT’S(VS,V/S) — S(VIS)

The flat n-sequence is defined over n predicate symbols T7,...,T},, and is referred
to as T-system in the paper:

InitT(VT) - Tl(VT) Tl(VT)/\Gl(VT)/\ TT’l(VT,V,T) — Tl(V/T
Ti(Vr) A=G1(Vr) = Ta(Vr) Ta(Vr) AGe(Vr) A TTQ(VT,V,T) - TQ(V/T

~ —

Too1(Ve) A Gro1(Vr) = To(Ve) To(Vr) AGn(Vr) A Tro(Vr, V/T) - Tn(VIT)

There is one fact CHC, in which Initp represents the initial state of the program.
There are n inductive clauses, i.e., for each i € [1,n], the i*" inductive clause has
occurrence of symbol T; on both sides of the implication. There are also n — 1
non-inductive clauses that encode transitions between adjacent loops, so —G;
represents the condition when loop ¢ exits.

Example 1. The source in Fig. 1 is encoded to CHCs as follows:
a=0AN=2+sM+1+KAb=2sM+1AM>0AK >0 = S(a,b, M, K,N)
S(a,b,M,K,N)Aa# NAd =a+1Ab =ite(a>b,b+1,b) = S(a’,b',M,K,N)
Example 2. The CHC encoding of the target program in Fig 1 is given as:
c=1Ad=2sX+1AX>0AY >0 — T}
Ti(c,d, X, Y)Ac<2+X +1 Ac=c+2 = T}
Ti(c,d, X, Y)ANc>2xX+1 = T>
To(e,d, X,Y)ANc#2+X +14+Y A =c+1 Ad =d+1 = T

¢,d, X,Y)
d,d, X,Y)
¢,d, X,Y)
J.d,X,Y)

o~ o~ o~ —~

We introduce a concept needed for the presentation in the next section, where
by A[B/C], we denote expression A with all instances of C replaced by B:

Definition 5. Given a CHC system H over predicate symbols Ly,..., Ly, an
L;-projection of H (denoted H |;) is defined as {C[T/L;(-)] | C € H,j # i}.

Lockstep Composition for Unbalanced Loops 277

That is, our projection replaces all applications of all predicate symbols except
of L; by true. Clearly, some CHCs then can be simplified to true, and we assume
that they are removed from the projection.

Example 3. Let H be a T-system from Example 2, then H |2 has two CHCs:

c>2xX+1 = Ts(c,d, X,Y)
To(c,d, X, Y)ANc#2xX +1+Y A =c+1 Ad =d+1 = Te(d,d,X,Y)

5.2 Equivalence Checking by Decomposition

Our main insight on checking equivalence of a source loop and a flat n-sequence is
that if the source breaks into n distinct loop-chunks, and if each of these chunks
is equivalent to the corresponding loop from the n-sequence, then the actual
programs are equivalent too. We thus present a decomposition of the source into
a sequence of n new loops that gives us the basis for comparing the two CHC
systems. A decomposition of S-system into an n-flat sequence is done by:

1. introducing n fresh predicate symbols S, ..., Sy,

2. cloning the inductive CHC n times and replacing S with S; in each clone,

3. creating n — 1 non-inductive CHCs between S; and S;1, and

4. introducing additional guard predicates Pi,..., P,_1 to schedule chunks of
iterations of the S-loop to either of the new n loops. To sum up:

Inits(Vs) = S1(Vs)
S1(Vs) ANGs(Vs) A Pi(Vs) A Trs(Vs, V/s) = 5 (V’s)
S1(Vs) AN ﬁ(Gs(Vs) A P1(V5)) — Sz(Vs)

Sn(Vs) A\ Gs(Vs) A\ TTs(Vs,Vls) - Sn(V/s)

For any interpretation of Pi,..., P,_1, the CHC system constructed above is
equivalent to the S-system, for the following three reasons. First, no matter how
many iterations the first n — 1 loops conduct, all the remaining ones will be
conducted in the last loop. Second, all n loops still use the original guard G, and
if it is exceeded in some i*" loop, then all the remaining i+1'", ..., n*" loops will
be just skipped. Lastly, all these loops perform exactly the same operations as
the original loop since Trg is copied to all of them. We will instantiate all the P-
predicates on demand in our CounterExample Guided Abstraction Refinement
(CEGAR) loop.

The CEGAR loop for our equivalence checking problem is outlined in Alg. 1.
It begins with decomposing the S-system into a flat n-sequence, as defined
above. The P-predicates are created from G; guards in T-system by rewriting
T-variables to S-variables, i € [1,n — 1]:

Py(V) =3V .Gi(V') A pre(V, V)

278 A. Hamza and G. Fedyukovich

Algorithm 1: DECOMPOSEANDCHECK(S, T', Pre, Post)
Input: S-system, T-system, relational pre and post-conditions
Pre = (pre,, pre,, ..., pre,,) and Post = (post,, post,, ..., post,)
Output: res € (EQUIV, UNKNOWN)

1 S’ < DECOMPOSE(S, n);
2 fori<+ 1;i <n;i<+ i+1 do

3 S1<—S/ |1,T1<—T|1,

4 while true do

5 aligned < L; refined; 5 < L;

6 ST; < GETPRODUCT(S;, T3, pre;);

7 Let Init be the body of the fact CHC in ST};

8 res — CHECKSAT (Init);

9 if res then
10 (inv, cex) < CHECKSAT(ST; U{L A (Gs A P;) # G; = 1});
11 if —res V cex ¢ @ then
12 (aligned, S;) <= ALIGNCHCS(S;, T;, pre,);
13 if aligned then continue;

14 else
15 (inv, cex) <= CHECKSAT(ST; U {L A =G; A —post; => L});
16 if cex € @ then break;

17 (refined, S1,...,S;) + REFINE(S1,...,S;, cex);

18 (refinedy, Tu, ..., T;) < REFINE(TY, ..., T;, cex);

19 if —=(refined, V refined, V aligned) then return UNKNOWN;

20 return EQUIV;

Note that the relational precondition pre is assumed to be a conjunction of
equalities. This gives us two flat n-sequences, which lets us consider pairs of
loops (line 2) from both systems separately. Each such CHC system is created
by applying the projection from Def. 5. In a sense, this is an abstraction of the
original system since by isolating one loop (say, i*"), we lose the state computed
all the way from the entry to the program by iterating ¢ — 1 loops. Aiming to
check equivalence for each pair of projections, the algorithm first figures out
how/if a lockstep-composition is applicable. We write: res < CHECKSAT(fla)

to denote a satisfiability check for a (first order) formula fla, and we write:
(inv, cex) — CHECKSAT(ST; U{L A ... = 1})

to denote this check for the CHC-product ST; over predicate symbol L with
respect to the query written in {...}. The check returns either an inductive
invariant (i.e., an interpretation of L) or a counterexample. Before checking for
lockstep, the compatibility of the initial states needs to be checked, i.e., if the
body of the fact is satisfiable (line 8). If it succeeds, each check of the lockstep-
composability is reduced by Def. 4 to a CHC satisfiability check, and it uses both
guards in the CHC query (line 9). If either the initial-states check or the lockstep
check fails, the algorithm uses a method for alignment of projections discussed
in detail in Sect. 6. If aligned, we continue with the next iteration of the loop,
attempting to prove lockstep composition and equivalence of the projections.

Lockstep Composition for Unbalanced Loops 279

Algorithm 2: REFINE(Q, ..., @i, cex)
Input: Set of i CHC systems Q1,...,Q; over L; and counterexample cex
Output: res € ((L,-), (T, refined systems Q1,...,Q:))

1 if ¢ =1 then return(l,-);

2 while cex ¢ @ do

3 (inv, cex")y < CHECKSAT(Q;—1 U{L(V)A=Gi—1(V)A \ v=cez(v) = L});

veV

4 if cex’ € @ then

5 assert(inv ¢ 9);

6 Fact + {C € Q; | C has form Init(V) = L(V)};
7 Qi + Qi \ {Fact} U{Init(V) Ninv(V) = L(V)};
8 return(T,Q1,...,Q:);

9 else
10 (res,Q1,...,Qi—1) + REFINE(Q1,...,Qi—1, cezx');
11 if —res then return(l,-);

Example 4. Recall CHC systems defined in Examples 1 and 2. In the first
iteration, Alg. 1 considers the first pair of loops. The initial-states check at line 8
fails, and thus the loops are aligned at line 12 (to be explained in Example 8).

Whenever two CHC systems are in lockstep, the algorithm utilizes Lemma, 1
and checks the product system computed for two isolated loops (line 15) for
safety. The success of the check lets the algorithm to continue with the next
pair of loops. Otherwise, we receive a counterexample, which might be spuri-
ous because of the abstraction. Our refinement procedure then searches for a
strengthening of either of the CHC systems (lines 17-18), which is described in
more details in the next subsection. If it cannot refine further using the given
technique, it returns UNKNOWN (line 19).

5.3 Refinement

Due to the decomposition presented in the previous section, there could be sen-
sitive information that is available in the earlier parts of the programs, but
not in the later parts. Alg. 2 gives a refinement procedure needed to propagate
useful properties about the programs towards queries. Intuitively, we have to
strengthen our relational preconditions, thus improving the chances to prove the
safety of the i*® CHC product. Recall that in Alg. 1, refinement is invoked for
each counterexample which is technically an assignment to the variables at the
initial state of either of the programs being composed into the product CHC.
The key idea is to check if the counterexample is spurious by constructing a
scenario in which the i — 1*" system can eventually reproduce the values from
the counterexample at the end of its execution (line 3). This is reduced to a
satisfiability check of the corresponding CHC system w.r.t. the “negation” of
the counterexample. If it succeeds, then an inductive invariant can be used to
strengthen (line 7) the i** system. Otherwise, the algorithm might recursively
descend to refining the i — 1*" system via finding an invariant for the i — 274

280 A. Hamza and G. Fedyukovich

product, and so on (line 10). For this reason, the algorithm has the while-loop
(line 2) that lets to repeat the satisfiability check for some (already strengthened)
systems, and it continues till the current system has been refined.

Example 5. Continuing with Example 4, in the second iteration of Alg. 1, the
lockstep check! does not succeed:

a=cANb=dANM=XANY=KA(a=NVa>2«sM+1)Ac>2+X+1= La(V)
Lao(V)Aa# NAad =a+ 1A =ite(a>b,b+1,b)A
c#£ 24X +14+4Y A =c+1Ad =d+1 = Lo(V')
Lo(V)AN(@a# N)# (c#2xX+14+Y) = L

For the CHC system above, a counterexample could be cex = {a,c,b,d —
110, M, K — 50, N — 0, X,Y — 50} because we miss that N =2«M + 1+ K,
hence lockstep is not possible. Alg. 2 then confirms that this counterexample is
spurious by learning this inductive invariant. After adding it to the fact CHC
of S5 and recomputing the product system ST, it becomes satisfiable. We then
add the following query for equivalence check:

Lo(V)Ae=2«X4+14+Y A(a£cVbEdVMAXVK#Y) = 1

which fails because of missing invariant b = 2xM + 1. After adding it to the fact
CHC of S and recomputing the product CHC system, it becomes satisfiable.

As can be seen from this example, the refinement procedure is beneficial for
both the lockstep-composability and the equivalence checks in Alg. 1, thus the
inner loop in the algorithm can iterate multiple times before terminating with a
positive verdict. We note that inductive invariants are in general tricky for find-
ing. Thus, our approach has essential limitations and cannot prove equivalence
of programs that require complicated (e.g., quantified) inductive invariants.

6 Aligning Unbalanced Loops

In this section, we present an algorithm for creating alignment between two
single-loop CHC systems that have different number of loop iterations. Our
new method of alignment of an S-projection and a T-projection is based on
restructuring the former to become lockstep-composable with the latter. The
algorithm identifies if any iterations of the former have to be extracted and
placed before the loop and if any iterations have to be grouped and performed
at once. These numbers (called alignment bounds in the rest of the section) are
identified if exact loop bounds of both projections are computable.

6.1 Finding the Number of Iterations

We aim first at computing a function that returns the exact number of iterations
of a single loop in terms of input variables, based on the CHC representation.

! We abbreviate (a,b,M,K,N,c,d,X,Y) with V, and (a’,b',M,K,N,c',d’ . X,Y) with V',

Lockstep Composition for Unbalanced Loops 281

In the technique presented below, the input systems need to have a counter
variable that monotonically increments between two extremes that do not change
in the loop.? Focusing on a single-loop CHC system with initial states Init and
guarded transition body G A Tr where G encodes a guard over the variables
at the beginning of the transition, and 7r has no additional guard, we wish to
find the exact number of the iterations of the corresponding loop. In general, for
that, we could consider an augmented CHC system with a fresh decrementing
counter.

Definition 6. The exact number of iterations is an interpretation of the func-
tion symbol N that makes the augmented CHC system satisfiable:

mit(VYAj=N(V) = L(V,j)
LV, j)ANGV)ATr(V, V)N =5 -1 = L(V',j)
LIV,j) A=G(V)Aj#0 = L

For an arbitrary loop, finding N is difficult and often not possible (e.g., for
problems with nondeterminism in the loop). However, for some CHC systems
encoding range-based loops, i.e., that already have counters, we can attempt to
synthesize N from the information obtained from syntax of CHCs. Specifically,
we assume that formula Init has the form i = 8§(V') A Init'(V,4) for some variable
i and some function 8§, We also assume that the guard of the transition has
the form i < F(V) A G'(V,1) for some function F, and Tr has the form i’ =
i+ DA T (V,i, V' i) for some positive constant D > 0.

Definition 7. A range-based CHC system is the one that has the following form

Init'(V, iy Ni =8(V) = T(V,i)
TV,)Ni<FV)AN =i+DAGV,i) AT (V,i,V',i') = TV',i)

such that for some inductive invariant inv the following hold:

' (V,i,V',i') Nino(V, i) = §(V) = 8(V') (1)
'(V,i, V', iYANinw(V,i) = FV) =3V (2)
i< TV ANinw(V,i) = G'(V,q) (3)

To guarantee soundness of our construction, the constraints in the definition
above ensure that 8§ and F are the tightest bounds for the counter variable 7.
Specifically, (1) and (2) ensure that ¢ has the lower and the upper bound that
do not change throughout the execution, and (3) ensures that the loop does
not break before i exceeds F(V). An invariant inv could in simple cases be just
T but often it needs to bring important information from an initial state to an
arbitrary iteration. For instance, if a loop has two counters with their own upper
and lower bounds, then our analysis can proceed only when we can prove that

2 A similar technique for a decrementing counter is straightforward but omitted for
brevity of presentation.

282 A. Hamza and G. Fedyukovich

either of the counters exceeds its upper bound always faster than another does
so. Our running example makes another use of (3), to ensure that the residual
guard G'(V,14) is weaker than i < F(V) strengthened by the invariant.

Example 6. Recall the first loop of the decomposed source of Example 1. It has
the guard a # N Aa < 2«M +1. We can find invariant N = 2«xM +1+ KA K > 0.
Clearly, since N =2xM +1+ KANK >0Aa <2«M +1 = a # N, then
F(M) = 2% M + 1 satisfies (3). With no invariant, a < 2+M +1 =~ a # N.

Lemma 2. An integer function N computes the exact number of iterations for
a range-based CHC' system:

NE(F-8) div D+ (if (F—8) mod D=0) then 0 else 1)

In practice, the approach is limited to the invariant generation capabilities.
If a sufficient invariant for Def. 7 (and thus, Lemma 2) is found, the approach
proceeds to align loops. Otherwise, it returns UNKNOWN.

6.2 Identifying Unrolling Depths

If the numbers of iterations can be computed, the approach proceeds to finding
alignment bounds ¢ and m that define respectively the number of iterations to be
extracted and placed before the loop and the number of iterations to be grouped
and performed at once in the loop. These bounds are obtained from the following
ingredients:

1. functions Ng and N to compute the numbers of iterations of the S-projection
and the T-projection, respectively;

2. fresh integer variable vy to represent (a yet unknown) number of iterations
to be moved out of the loop in the S-projection,

3. fresh integer variable v, to represent (a yet unknown) number of iterations
to be grouped inside the loop for the S-projection.

Values ¢ and m can be directly taken from a satisfying assignment to variables
vy and vy, for the following SMT query. Intuitively, it equates the total numbers
of iterations in the S-projection and the T-projection:

Qs < Jup, vy Vs, Vi (ve > 0 A vy >0) A pre(Vs,Vr) =
Ns(Vs) — Vg = Um * NT(VT)

Thus, the SMT formula has the form of implication: if pre holds, then the
number of iterations of one program can be expressed over the number of iter-
ations of another program (and vice versa). If M |= Qgr, then ¢ = M(v;), and
m = M(vp).

Example 7. For the first projections in the decomposed source and the target,
we generate the following (simplified) SMT query:

Qs =3,V (Ve 20NV >0)AM=X = 2«sM+1—vy=v, %X

and the solver generates model M = {vp + 1,v,,, — 2}, and £ = 1, and m = 2.

Lockstep Composition for Unbalanced Loops 283

6.3 Rearrangement of the Source Projection

Finally, we present the restructuring of the S-projection based on two alignment
bounds, ¢ and m, computed in the previous section. The former represents the
number of iterations to be moved before the loop, and the latter represents the
number of iterations to make a batch inside the loop.?> We assume that an S-
projection is defined using the following two CHCs over a single predicate symbol
L: Inits(V) = L(V) and L(V)A GTr(V,V') = L(V').

We define an auxiliary predicate U(u,V,V’) that allows us to create an un-
rolling of arbitrary length: if u = 0, the result is the identity formula, otherwise
we create u unrollings of the system (GTrg conjoined u times), then define Im‘tg)
and GTr(Sm), as follows:

def

Uu,V,VY = ite(u=0, V' =V,
WV VS GTrs(V, VYA A GTrs(V™, V)
it (VY 3V nits (VY AUV, V)

def

GTrg" (V. V) EUm, Vv, V)
Finally, we are ready to define the aligned CHC product used in Alg. 1 (ALIGN-
CHCs(S,T, pre)).

Definition 8. Let S and T be two range-based CHC systems, as defined in
Def. 7. Let M |E Qs (Ns, N1, vp, v, pre), as defined in Sect. 6.2. Then, the
rearranged system Sg is defined as follows:

mit?" vy = L) Lv)A T vy = L)

Note that S* and T are in lockstep, and S* is equivalent to S, both by con-
struction. Thus, after such alignment, our Alg. 1 will proceed to checking the
equivalence of S and T by means of checking equivalence of S% and T.

Example 8. For the first projections in the decomposed source and the target,
the lockstep check does not succeed because the body of the fact is unsatisfiable:
a=cANb=dANM=XANY=KANa=0AN=2«xM+1+K ANb=2xM+1ANM > OA

K>0Ac=1Ad=2«X+1AX >0AY >0 = Li(a,b,M,K,N,c,d, X,Y)

With the bounds computed in Example 7, we compute the following product:

a=0AN=2«M+1+KANb=2«M+1AM >0ANK > 0A
a#NANa<2xsM+1Ad =a+1Ab =ite(a >b,b+1,b)A

c=1Ad=2+X4+1AX>0AY >0Nd =cAb =dAM=XAY =K
= Li(a,b',M,K,N,c,d, X,Y)
Li(a,b,M,K,N,c,d, X,Y)ANa#NAa <2xM+1Aa' =a+1 A b =ite(a>b,b+1,b)A
a #NAd <2«M+1Aa" = a' +1 AV = dte(a’ > b, ' +1,b)A
c<2xX+1 A =c+2 = Li(a",b",M,K,N,c,d, X,Y)

3 In practice, it could also be required to move some iterations to after the loop (and

our implementation supports it). Then, we split m into mi + mq heuristically and
move my iterations to before the loop, and ms to after the loop.

284 A. Hamza and G. Fedyukovich

7 Evaluation

We have implemented the algorithm for equivalence checking in a tool called
ALIEN? on top of the invariant synthesizer FREQHORN that supports integers
and arrays (over integers) [10]. ALIEN takes as input an S-system and a T-
system, automatically decomposes the former, creates a sequence of product
programs, and delegates the inductive invariant generation to FREQHORN. For
solving SMT queries, it uses Z3 [8]. We considered two benchmark suites:

— Test Suite of Vectorization Compilers (TSVC) [23], preprocessed in the way
suggested by [5]. TSVC has 152 benchmarks, and 48 of which are either
not vectorizable, contain floating point operations, intrinsic functions, or
need some extra processing like loop rerolling. We thus experimented on a
set of remaining 104 remaining benchmarks. We check equivalence of these
programs w.r.t. their optimized versions, both translated to CHCs.

— A subset of 24 multi-phase benchmarks taken from [4,31] in which the phases
can be “extracted” from the loops. The optimized versions of these bench-
marks have more than one loop, thus necessitating to use our decomposition.

We considered the state-of-the-art tools LLREVE [16], an equivalence checker
by Churchill et al. [5], COUNTER [14], and CHC-ProDUCT [25]. However, only
COUNTER was able to solve some of our benchmarks in reasonable time: Churchill
et al. report that the minimum time any benchmark takes to solve is around 2
hours, and it was largely outperformed by COUNTER in [14].

We thus evaluate our ALIEN against COUNTER for both benchmark suites. To
run COUNTER on a pair of manually provided C programs®, it was configured
to apply no optimization to any of the programs. For TSVC benchmarks, we
manually pass an unrolling factor 8 required by each benchmark (compare to
our approach in which the tool automatically identifies this number). For ALIEN,
we provide two CHC encodings of the program before and after the optimization.
We specified a timeout of 15 minutes for both tools.

ALIEN solved 103 out of 104 TSVC benchmarks. ALIEN times out on the
s279 benchmark because its invariant synthesizer struggles with finding a helper
invariant. Benchmark s113 requires the approach to automatically synthesize an
extra lemma (i.e., ¢nt>0), in addition to the variable equalities. ALIEN took 3.7
seconds to solve a benchmark on average: from 1.3 in the best case to 27.4 in
the worst case. Among all, 26 (resp. 2) benchmarks require moving iterations
before (resp. after) the loop. COUNTER proved equivalence for 15 benchmarks,
it failed to prove equivalence for 9 benchmarks, while the rest (81 benchmarks)
timed-out. Its minimum running time is 50.2 seconds, maximum 704 seconds
and average 117.4 seconds.

4 The tool and benchmarks are available at https://github.com/a-hamza-r/acval/
tree/equiv-check.

5 We consulted https://github.com/compilerai/counter to run tool in our setting. Note
that in their paper, the authors evaluated COUNTER only on compiler-optimized
targets. Our case study is different, and it shows that checking equivalence between
two arbitrary programs is a harder problem for COUNTER.

https://github.com/a-hamza-r/aeval/tree/equiv-check
https://github.com/a-hamza-r/aeval/tree/equiv-check
https://github.com/compilerai/counter

Lockstep Composition for Unbalanced Loops 285

120 30

100 25
80 20
60 15
40 10

20 5

1 2 5 10 25 50 100 200 400 900 1 2 5 10 25 50 100 200 400 900

Fig. 3: Cactus plots (left: for TSVC benchmarks, right: for multi-phase benchmarks)
comparing running times of ALIEN (blue line) and COUNTER (orange line).

For 24 multi-phase benchmarks, ALTEN proved all of them. COUNTER proved
equivalence for 5 benchmarks, it failed to prove equivalence for 3 benchmarks,
while the remaining benchmarks timed-out. The minimum, maximum and av-
erage times are 3.2, 32.6, and 11.5 seconds, respectively for ALIEN; and 43.8,
106.9, and 56.2 seconds respectively for COUNTER.

A larger picture on the experimental results is given in Fig. 3. The horizontal
axes in the cactus plots represent time limit (logarithmic scale), and the vertical
axes represent the numbers of benchmarks (linear scale) solved within the cor-
responding time limits. Intuitively, the plots demonstrate that COUNTER is an
order of magnitude slower than our novel approach.

8 Conclusion

We have presented a novel CEGAR-based approach for checking equivalence
of two programs containing possibly different number of loops. The technique
involves automatic decomposition of one of the programs to match the loops
structure of the other, so that the task of equivalence checking of two given
programs can be split into a sequence of tasks of equivalence checking of single
loops, each of which is solved easier. Since such decomposition comes at a cost of
possible loss of information, we developed a refinement schema that is intuitively
based on propagation of lemmas on demand. Moreover, in case we deal with
loops with provably-different number of iterations, our technique automatically
rearranges the iterations in the loops making them lockstep-composable for each
subtask. We developed the ALIEN tool and empirically demonstrated that our
approach to equivalence checking is more efficient than state-of-the-art on two
classes of public benchmarks. In future, it would be interesting to extend these
techniques to more general program structures, e.g., where both programs have
multiple and possibly nested loops.

Acknowledgments The work is supported in parts by a gift from Amazon Web
Services and by the National Science Foundation grant 2106949.

286

A. Hamza and G. Fedyukovich

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. D. Backes, S. Person, N. Rungta, and O. Tkachuk. Regression verification using
impact summaries. In SPIN, volume 7976 of LNCS, pages 99-116. Springer, 2013.
S. Badihi, F. Akinotcho, Y. Li, and J. Rubin. Ardiff: scaling program equivalence
checking via iterative abstraction and refinement of common code. In ESEC/FSE,
pages 13-24. ACM, 2020.

G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM, volume 6664 of LNCS, pages 200-214. Springer, 2011.

M. Blicha, G. Fedyukovich, A. E. J. Hyvérinen, and N. Sharygina. Transition Power
Abstractions for Deep Counterexample Detection. In D. Fisman and G. Rosu, edi-
tors, Tools and Algorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg, 2022.

B. R. Churchill, O. Padon, R. Sharma, and A. Aiken. Semantic program alignment
for equivalence checking. In PLDI, pages 1027-1040. ACM, 2019.

B. R. Churchill, R. Sharma, J. F. Bastien, and A. Aiken. Sound loop superopti-
mization for google native client. In ASPLOS, pages 313-326. ACM, 2017.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Relational Verification
Through Horn Clause Transformation. In SAS, volume 9837 of LNCS, pages 147—
169. Springer, 2016.

L. M. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In TACAS, volume
4963 of LNCS, pages 337-340. Springer, 2008.

S. Dutta, D. Sarkar, A. Rawat, and K. Singh. Validation of loop parallelization
and loop vectorization transformations. In ENASE, pages 195-202. SciTePress,
2016.

G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta. Quantified Invariants via
Syntax-Guided Synthesis. In CAV, Part I, volume 11561 of LNCS, pages 2569-277.
Springer, 2019.

D. Felsing, S. Grebing, V. Klebanov, P. Riimmer, and M. Ulbrich. Automating
regression verification. In ASE, pages 349-360. ACM, 2014.

B. Godlin and O. Strichman. Inference rules for proving the equivalence of recursive
procedures. Acta Informatica, 45(6):403-439, 2008.

B. Godlin and O. Strichman. Regression verification: proving the equivalence of
similar programs. Softw. Test. Verification Reliab., 23(3):241-258, 2013.

S. Gupta, A. Rose, and S. Bansal. Counterexample-guided correlation algorithm
for translation validation. Proc. ACM Program. Lang., 4(OOPSLA):221:1-221:29,
2020.

M. Jakobs. PEQCHECK: localized and context-aware checking of functional
equivalence. In S. Bliudze, S. Gnesi, N. Plat, and L. Semini, editors, 9th
IEEE/ACM International Conference on Formal Methods in Software Engineering,
FormaliSEQICSE 2021, Madrid, Spain, May 17-21, 2021, pages 130-140. IEEE,
2021.

V. Klebanov, P. Riimmer, and M. Ulbrich. Automating regression verification of
pointer programs by predicate abstraction. Formal Methods Syst. Des., 52(3):229—
259, 2018.

S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct using param-
eterized program equivalence. In PLDI, pages 327-337. ACM, 2009.

S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebélo. SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In CAV, volume 7358 of LNCS,
pages 712-717. Springer, 2012.

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Lockstep Composition for Unbalanced Loops 287

S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Differential assertion
checking. In FSE, pages 345-355. ACM, 2013.

J. P. Lim, V. Ganapathy, and S. Nagarakatte. Compiler optimizations with
retrofitting transformations: Is there a semantic mismatch? In PLAS@QCCS, pages
37-42. ACM, 2017.

J. P. Lim and S. Nagarakatte. Automatic equivalence checking for assembly im-
plementations of cryptography libraries. In CGO, pages 37-49. IEEE, 2019.

N. P. Lopes, J. Lee, C. Hur, Z. Liu, and J. Regehr. Alive2: bounded translation
validation for LLVM. In S. N. Freund and E. Yahav, editors, PLDI ’21: }2nd ACM
SIGPLAN PLDI, Virtual Event, Canada, June 20-25, 2021, pages 65—79. ACM,
2021.

S. Maleki, Y. Gao, M. J. Garzar, T. Wong, D. A. Padua, et al. An Evaluation of
Vectorizing Compilers. In 2011 PACT, pages 372-382. IEEE, 2011.

V. Malik and T. Vojnar. Automatically checking semantic equivalence between
versions of large-scale C projects. In 14th IEEE Conference on Software Testing,
Verification and Validation, ICST 2021, Porto de Galinhas, Brazil, April 12-16,
2021, pages 329-339. IEEE, 2021.

D. Mordvinov and G. Fedyukovich. Synchronizing Constrained Horn Clauses. In
LPAR, volume 46 of EPiC Series in Computing, pages 338-355. EasyChair, 2017.
D. Mordvinov and G. Fedyukovich. Property Directed Inference of Relational
Invariants. In FMCAD, pages 152-160. IEEE, 2019.

K. S. Namjoshi and A. Xue. A self-certifying compilation framework for webassem-
bly. In F. Henglein, S. Shoham, and Y. Vizel, editors, VMCAI - 22nd International
Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceed-
ings, volume 12597 of LNCS, pages 127-148. Springer, 2021.

G. C. Necula. Translation validation for an optimizing compiler. In PLDI, pages
83-94. ACM, 2000.

N. Partush and E. Yahav. Abstract semantic differencing for numerical programs.
In SAS, volume 7935 of LNCS, pages 238-258. Springer, 2013.

S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differential symbolic
execution. In FSE, pages 226-237. ACM, 2008.

D. Riley and G. Fedyukovich. Multi-phase invariant synthesis. In A. Roychoudhury,
C. Cadar, and M. Kim, editors, Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022, pages
607-619. ACM, 2022.

T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation for a verified
OS kernel. In PLDI, pages 471-482. ACM, 2013.

R. Sharma, E. Schkufza, B. R. Churchill, and A. Aiken. Data-driven Equivalence
Checking. In OOPSLA, pages 391-406. ACM, 2013.

R. Shemer, A. Gurfinkel, S. Shoham, and Y. Vizel. Property directed self compo-
sition. In CAV, Part I, volume 11561, pages 161-179. Springer, 2019.

M. Stepp, R. Tate, and S. Lerner. Equality-based translation validator for LLVM.
In CAV, volume 6806 of LNCS, pages 737—-742. Springer, 2011.

O. Strichman and M. Veitsman. Regression verification for unbalanced recursive
functions. In FM, volume 9995 of LNCS, pages 645-658, 2016.

A. Trostanetski, O. Grumberg, and D. Kroening. Modular demand-driven analysis
of semantic difference for program versions. In SAS, volume 10422 of LNCS, pages
405-427. Springer, 2017.

288 A. Hamza and G. Fedyukovich

38. H. Unno, T. Terauchi, and E. Koskinen. Constraint-based relational verification.
In A. Silva and K. R. M. Leino, editors, CAV - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, volume 12759 of
LNCS, pages 742-766. Springer, 2021.

39. A. Zaks and A. Pnueli. Covac: Compiler validation by program analysis of the
cross-product. In FM, volume 5014 of LNCS, pages 35-51. Springer, 2008.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Check for
updates

Synthesis of Distributed Agreement-Based
Systems with Efficiently-Decidable Verification

Nouraldin Jaber! ®) | Christopher Wagner!, Swen Jacobs?, Milind Kulkarni®,
and Roopsha Samanta!

! Purdue University, West Lafayette, USA
{njaber,wagne279,milind,roopsha}@purdue.edu
2 CISPA Helmholtz Center for Information Security, Saarbriicken, Germany
jacobs@cispa.de

Abstract. Distributed agreement-based (DAB) systems use common dis-
tributed agreement protocols such as leader election and consensus as
building blocks for their target functionality. While automated verifica-
tion for DAB systems is undecidable in general, recent work identifies a
large class of DAB systems for which verification is efficiently-decidable.
Unfortunately, the conditions characterizing such a class can be opaque
and non-intuitive, and can pose a significant challenge to system design-
ers trying to model their systems in this class.

In this paper, we present a synthesis-driven tool, CINNABAR, to help
system designers building DAB systems ensure that their intended de-
signs belong to an efficiently-decidable class. In particular, starting from
an initial sketch provided by the designer, CINNABAR generates sketch
completions using a counterexample-guided procedure. The core tech-
nique relies on compactly encoding root-causes of counterexamples to
varied properties such as efficient-decidability and safety. We demon-
strate CINNABAR'’s effectiveness by successfully and efficiently synthe-
sizing completions for a variety of interesting DAB systems including a
distributed key-value store and a distributed consortium system.

1 Introduction

Distributed system designers are increasingly embracing the incorporation of
formal verification techniques into their development pipelines [8,10,13,31]. The
formal methods community has been enthusiastically responding to this trend
with a wide array of modeling and verification frameworks for prevalent dis-
tributed systems [29,17,15,32]. A desirable workflow for a system designer using
one of these frameworks is to (1) provide a framework-specific model and speci-
fication of their system, and (2) automatically verify if the system model meets
its specification.

However, the problem of algorithmically checking if a distributed system
is correct for an arbitrary number of processes, i.e., the automated parameter-
ized wverification problem, is undecidable, even for finite-state processes [5,34].
To circumvent undecidability, the system designer must be involved, one way

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 289-308, 2023.
https://doi.org/10.1007/978-3-031-30820-8 19

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
https://doi.org/10.1007/978-3-031-30820-8_19
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_19&domain=pdf

290 N. Jaber et al.

or another, in the verification process. Fither the designer may choose a semi-
automated verification approach and use their expertise to “assist” the verifier
by providing inductive invariants [32,25,15,36]. Or, the designer may choose a
fully-automated verification approach that is only applicable to a restricted class
of system models [16,17,24,7] and use their expertise to ensure that the model
of their system belongs to the decidable class. This begs the question—for each
workflow, how can we further simplify the system designer’s task? While effec-
tive frameworks have been developed to aid the designer in discovering inductive
invariants for the first workflow (e.g., Ivy [29], 14 [26]), there has been little em-
phasis on aiding the designer to build decidability-compliant models of their
systems for the second workflow.

In this paper, we present a synthesis-driven approach to help system designers
using the second workflow to build models that are both decidability-compliant
and correct. Thus, our approach helps designers to construct models that be-
long to a decidable class for automated, parameterized verification, and can be
automatically verified to be safe for any number of processes.

In particular, we instantiate this approach in a tool, CINNABAR, that targets
an existing framework, QUICKSILVER, for modeling and automated verification
of distributed agreement-based (DAB) systems [17]. Such systems use agreement
protocols such as leader election and consensus as building blocks. QUICKSILVER
enables modular verification of DAB systems by providing a modeling language,
MERCURY, that allows designers to model verified agreement protocols using
inbuilt language primitives, and identifying a class of MERCURY models for which
the parameterized verification problem is efficiently decidable.

Unfortunately, this efficiently-decidable class of MERCURY models is char-
acterized using conditions that are rather opaque and non-intuitive, and can
pose a significant challenge to system designers trying to model their systems
in this class. The designer is responsible for understanding the conditions, and
manually modifying their system model to ensure it belongs to the efficiently-
decidable class of MERCURY. This process can be both tedious and error-prone,
even for experienced system designers.

CINNABAR demonstrates that synthesis can be used to automatically build
models of DAB systems that belong to the efficiently-decidable fragment of MER-
CURY and are correct.

Contributions. The key contributions of this paper are:

1. A synthesis-driven method for building efficiently-decidable, correct MER-
CURY models (Sec. 3). Starting from an initial sketch of the system design
provided by the designer, CINNABAR generates a sketch completion that (i)
belongs to the efficiently-decidable class of MERCURY and (ii) is correct.

2. A counterezample-guided synthesis procedure that leverages an efficient, ex-
tensible, multi-stage architecture (Sec. 4). We present a procedure that in-
volves a learner that proposes completions of the MERCURY sketch, and
a teacher that checks if the completed model belongs to the efficiently-
decidable class of MERCURY and is correct. To enable efficient synthesis
using this procedure, we propose an architecture that proceeds in stages.

CINNABAR 291

The initial stages focus on checking if a completed model is in the efficiently-
decidable class while the latter stages focus on checking if a completed model
is also correct. To enable efficiency, when a candidate completion fails at
any stage, the architecture helps the learner avoid “ similar” completions
by extracting a root-cause of the failure and encoding the root-cause as an
additional constraint for the learner. Each stage is equipped with a coun-
terexample extraction strategy tailored to the property checked in that stage.
The encoding procedure, on the other hand, is property-agnostic—it is able
to encode the root-cause of any failure regardless of the stage that extracts
it. The separation of the counterexample extractions and the encoding al-
lows the architecture to be extensible—one can add a new stage with a new
counterexample extraction strategy, and leverage the existing encoding.

3. The CINNABAR tool (Sec. 5). We develop a tool, CINNABAR, to help sys-
tem designers build MERCURY models of DAB systems. CINNABAR employs
QUICKSILVER as its teacher and the Z3 SMT solver as its learner. CINNABAR
is able to successfully and efliciently complete MERCURY sketches of various
interesting distributed agreement-based systems.

2 The MERCURY Parameterized Synthesis Problem
We first briefly review the syntax and semantics of MERCURY [17], a modeling

language for distributed systems that build on top of verified agreement protocols
such as leader election and consensus. Then, we formalize the synthesis problem.

2.1 Review: MERCURY Systems

MERCURY Process Definition. A MERCURY

process DistributedStore

system is composed of an arbitrary number of n variables
identical MERCURY system processes with pro- ev:::ngl’szl cmd
cess identifiers 1,...,n and one environment env rz doCmd : int[1,5]

s initial location Candidate
process. Tjh.e programmer spemﬁes a system pro o partitioncelocts (11, 1)
cess definition P that consists of (i) a set V of win: goto Leader
local variables with finite domains, (ii) a set E of lose: goto Replica

X location Leader
events used to communicate between processes, on recv(doCmd) do
and (iii) a set of locations that the processes can emd := dofnd.payld
if(ecmd = 3) goto Return

move between. Each event e in F incarnates an else goto RepCmd
acting action A(e) and a reacting action R(e)
(e.g., for a rendezvous event, the acting (resp.
reacting) action is the send (resp. receive) of that event). All processes start in
a location denoted initial. Each location contains a set of action handlers a
process in that location can execute. Each handler has an associated action, a
Boolean guard over the local variables, and a set of update statements. A partial
process definition is depicted on the right.

The language supports five different types of events, namely, broadcast, ren-
dezvous, partition, consensus, and internal. The synchronous broadcast (resp.

292 N. Jaber et al.

rendezvous) communication event type is denoted br (resp. rz) and indicates
an event where one process synchronously communicates with all other pro-
cesses (resp. another process). The agreement event type partition, denoted
partition, indicates an event where a set of processes agree to partition them-
selves into winners and losers. For instance, in the figure, partition<elect>
(A11,1) denotes a leader election round with identifier elect where A1l pro-
cesses elect 1 winning process that moves to the Leader location, while all other
losing processes move to the Replica location. The agreement event type con-
sensus, denoted consensus, indicates an event where a set of processes, each
proposing one value, reach consensus on a given set of decided values. For in-
stance, consensus<vcCmd>(All,1,cmd) denotes a consensus round with identi-
fier veCmd where A1l processes want to agree on 1 decided value from the set
of proposed values in the local variable cmd. Finally, the internal event indicates
an event where a process is performing its own internal computations. For a
communication event, the acting action is a send, while the reacting action is
a receive. For a partition event, the acting action is a win, while the reacting
action is a lose. Finally, for a consensus event, the acting action is proposing a
winning value, while the reacting action is proposing a losing value. We denote
by A(E) and R(FE) the set of all acting and reacting actions, respectively.

The updates in an action handler may contain send, assignment, goto, and /or
conditional statements. Assignment statements are of the form 1hs := rhs where
lhs is a local variable and rhs is an expression of the appropriate type. The goto
statement goto ¢ causes the process to switch to location ¢ (i.e., it can be thought
of as the assignment statement v;,. := £, where v, is a special “location vari-
able” that stores the current location of the process). The conditional statements
are of the expected form: if (cond) then...else.... We denote by H the set
of all handlers in the process, and for each handler h € H we denote its action,
guard, and updates as a(h), g(h), and u(h), respectively.

Local Semantics. The local semantics [P] of a process P is expressed as a
state-transition system (S, sg, E,T), where S is the set of local states, sq is the
initial state, E is the set of events, and T' C S x {A(E) U R(E)} x S is the set
of transitions of [P]. A state s € S is a valuation of the variables in V. We let
s(v) denote the value of the variable v in state s.

The set of action handlers associated with all acting and reacting actions of
all events induces the transitions in 7. In particular, a transition t = s — s’
based on action handler h over action a is in T iff the guard g(h) evaluates to
true in s and s’ is obtained by applying the updates u(h) to s.

Global Semantics. The global semantics [P, n] of a MERCURY system Pi||...
|| P]| Pe consisting of n identical processes P, ..., P, and an environment process
P, (with local state space S.) is expressed as a transition system (@, qo, F, R),
where Q = S™ x S, is the set of global states, qg is the initial global state, E is
the set of events, and R C @ X F x @Q is the set of global transitions of [P,n].
The set of events E induce the transitions in R. Asis the case for events, there
are five types of global transitions: broadcast, rendezvous, partition, consensus,
and internal. In particular, a transition » = ¢ < ¢’ for some broadcast event e

CINNABAR 293

is in R iff the send local transition g[i] Al), q[?]" is in T for some process P,
and the receive local transition g[j] Ble), qlj) is in T for every other process P;
with j # i. The remaining global transitions can be formalized similarly.

A trace of a MERCURY system is a sequence qg,q1, ... of global states such
that for every i > 0, the global transition ¢; — ¢i41 for some event e is in R. A
global state g is reachable if there is a trace that ends in it.

Permissible Safety Specifications. QUICKSILVER targets parameterized ver-
ification for a class of properties called permissible safety specifications that dis-
allow global states where m or more processes, for some fixed number m, are in
some subset of the local states. We denote by ¢,(n) the permissible safety spec-
ifications provided by the designer for a system with n processes. A MERCURY
system is safe if there are no reachable error states in its global semantics. We
denote that as [P,n] = ¢s(n).

The Efficiently-Decidable Fragment. QUICKSILVER identifies a fragment of
MERCURY for which the parameterized verification problem of a large class of
safety properties is efficiently-decidable. In particular, a pair (P, ¢) of a MERCURY
process P and a safety specification ¢ is in the efficiently-decidable fragment of
MERCURY if it satisfies phase-compatibility and cutoff-amenability conditions.
For such a pair, a cutoff number c of processes can be computed and the param-
eterized verification problem can be reduced to the verification of the cutoff-sized
system (i.e., Vn : [P,n] = ¢s(n) < [P,] = ¢s(c)).

During verification, QUICKSILVER computes a set of phases that an execution
of the system goes through. On a high level, the phase-compatibility conditions
ensure that the system moves between phases through “globally-synchronizing”
events (i.e., broadcast, partition, or consensus), and that all processes in the same
phase can participate in further globally-synchronizing events. This ensures that
the system’s ability to move between phases is independent of the number of
processes in the system. The cutoff-amenability conditions ensure that an error
state, where m processes are in a subset of the local states violating some safety
specification, is reachable in a system of any size iff it is reachable in a system
with exactly m processes. If any of these conditions fails, the designer must
modify the process definition manually and attempt the verification again. We
denote by [P] = ¢pc (resp. [P] & bca) that the MERCURY process P with local
semantics [P] satisfies phase-compatibility (resp. cutoff-amenability) conditions.

2.2 MERCURY Process Sketch

Let us extend MERCURY’s syntax to allow process sketches that can be com-
pleted by a synthesizer. In particular, we allow the process definition to include
a set of uninterpreted functions that can replace various expressions in MER-
CURY such as the Boolean expression cond in the if (cond) then ... else ...,
the target locations of goto statements, and the rhs of assignments. ® As is stan-
dard, each uninterpreted function f is equipped with a signature determining its

3 Such uninterpreted functions are sufficient to be a building block for more complex
expressions and statements (See, for instance, the SKETCH Language [33]).

294 N. Jaber et al.

Fup ¢s(n)
l Psk l
I Py TEACHER
complete
[P] ¥ ¢pc? Phase-

LEARNER
C [P] ¥ bea? Cutoff-
l—]encode extracty, amenability
P, c] ¥ c)?
11 =null? [Pnn] = l
¢s(n)?

fail success

Fig. 1: Overview of CINNABAR’s architecture.

list of named, typed parameters and its return type. A valid list of arguments
arg for some function f is a list of values with types that match the function’s
parameter list. Applying a function f to a valid list of arguments arg is denoted
by f(arg). Additionally, we define a function interpretation I(f) of an uninter-
preted function f as a mapping from every valid list of arguments of f to a valid
return value.

A MERCURY process definition P that contains one or more uninterpreted
functions is called a sketch, and is denoted Py;. We denote by F the set of
all uninterpreted functions in a sketch Py.. An interpretation I of the set Fi
of uninterpreted functions is then a mapping from every uninterpreted function
fsk € Fsi to some function interpretation I(fg).

For some process sketch Py, and some interpretation I of the set Fg of
uninterpreted functions in Py, we denote by P the interpreted process sketch
obtained by replacing every uninterpreted function fg; € Fg; in the sketch Py
with its function interpretation I(fs) according to the interpretation I.

2.3 Problem Definition

We now define the parameterized synthesis problem for MERCURY systems.

Definition 1 (MERCURY Parameterized Synthesis Problem (MPSP)).
Given a process sketch Pgy with a set of uninterpreted functions Fg, an environ-
ment process P., and permissible safety specification ¢s(n), find an interpretation
I of uninterpreted functions in Fy, such that the system Pr1||...||Prn||Pe is safe
for any number of processes, i.e., ¥n : [Pr,n] & ¢s(n).

3 Constraint-Based Synthesis for MERCURY Systems

Architecture. To solve MPSP, we propose a multi-stage, counterexample-based
architecture, shown in Fig. 1, with the following components:

CINNABAR 295

— LEARNER: a constraint-solver that accepts a set C' of constraints over the

uninterpreted functions F; and generates interpretations I satisfying these
constraints (i.e., I = C). Specifically, a constraint ¢ € C is a well-typed
Boolean formula over uninterpreted function applications.

TEACHER: a component capable of checking phase-compatibility, cutoff-
amenability, safety, and liveness* of MERCURY systems. We refer to these
four conditions as properties.

complete: a component that builds an interpreted process sketch Py from a
process sketch Py, and an interpretation I provided by the learner.
extracty,op: a property-specific component to extract a counterexample cez,
capturing the root cause of a violation, if the TEACHER determines that a
property prop from the above-mentioned properties is violated.

encode: a novel property-agnostic component that encodes counterexamples
generated by extract components into additional constraints for the learner.

Synthesis Procedure. CINNABAR
instantiates this architecture as shown
in Algo. 1. The algorithm starts

Algorithm 1: Solving MPSP.

1 procedure Synth(Ps, ¢s(n), ¢i(c))

with an empty set of constraints, C i Svl:ileg true do

(Line 2) over the set Fg, of uninter- | | ; _ interpret(Fur, C)
preted functions in the process sketch if 1 # null then

Py;. In each iteration, it checks if ¢ P; = complete(Pyy, I)
there exists an interpretation I of 7 [Pr] = buildLs(Pr)

the uninterpreted functions that sat- 8 cex, = £indPhCoCE([Pr])
isfies all the constraints collected so 9 if cex, # null then

far (Line 4). If such an interpretation 10 C'=C U~ encode(cezy)
is found, it is used to obtain an in- 11 Continue

terpreted process sketch Py (Line 6). 12 . B check cutoff-amenability
Then, the algorithm checks if the 12 ¢ = compCutoff (Pr, ds(n))

: . 14 [Pr, c] = buildGS(Pr,c)
system described by P; is phase- 15 cex, — £indSaCE([Pr, c], 6+(c))
compatible and cutoff-amenable. If 16 i csexs 2 nuil then7 Ve
so, a cutoff ¢ is computed (Line 13) . C = C U encode(cexs)
and the c-sized system is checked to ;g Continue
be safe. The cutoff-amenability stage 4 return Pr
is similar to phase-compatibility and 5, else
is hence omitted from the algorithm. o4 | return null

At any stage, if the process fails

to satisfy any of these properties (e.g., a counterexample cez, to phase-
compatibility is found on Line 8), the root-cause of the failure is extracted and
encoded into a constraint for the learner to rule out the failure (e.g., Line 10).

4 While MPSP targets permissible safety specifications, in order to improve the quality
of the interpreted process sketch Pr, we extend MERCURY with liveness specifica-
tions to help rule out trivial completions that are safe. We emphasize that such
specifications are only used as a tool to improve the quality of synthesis, and are
only guaranteed for the cutoff-sized system, as opposed to safety properties that are

guaranteed for any system size.

296 N. Jaber et al.

Note that these stages are checked sequentially due to the inherent depen-
dency between them: (i) the system can only be cutoff amenable if it is phase
compatible, and (ii) one can only check safety after a cutoff has been computed.

Lemma 1. Assuming that the teacher is sound and the learner is complete for
finite sets of interpretations, Algo. 1 for solving MPSP is sound and complete.

Proof. Soundness follows directly from the soundness of the teacher. Complete-
ness follows from that the encoding and extraction procedures ensure progress by
eliminating at least the current interpretation at each iteration, and the finite-
ness of the set of interpretations. Finiteness follows from (i) the finite number of
uninterpreted functions in a sketch Py, (ii) the finiteness of the domain of each
local variable, and (iii) the finiteness of the number of local variables in Pgy.

In the remainder of this section, we describe the property-agnostic encode
component in Algo. 1. In the following section, we describe our implementa-
tion of our synthesis procedure specialized to a QUICKSILVER-based teacher and
property-specific extraction procedures.

Property-Agnostic Counterexample Encoding Procedure

We first describe the necessary augmentation of local semantics with disabled
transitions needed for CINNABAR’s counterexample extraction and encoding.
While such transitions are not relevant when reasoning about a “concrete” pro-
cess definition (i.e., one with no uninterpreted functions), they are quite im-
portant when extracting an explanation for why some conditions (e.g., phase-
compatibility) fail to hold on [P].

Augmented Local Semantics of the MERCURY Process P1. We extend
the definition of the local semantics of a MERCURY interpreted process sketch Py
to be [Pr] = (S5, 80, E, T1, T#*) where Sy, so, E, and T; are defined as before
and T is the set of disabled transitions under the current interpretation I.
In particular, a disabled transition ¢t = s — 1 based on action handler h over
action a is in Tldis iff the guard g(h) evaluates to false in s. The symbol L here
indicates that no local state is reachable, since the guard is disabled.

Additionally, we say a transition t = s — s’ based on action handler h over
action a is a sketch transition if h contains no uninterpreted functions in its
guard or updates. A local state s € St is concrete if (i) s is the initial state sg, or
(ii) there exists a sketch transition s’ — s where s’ is concrete. In other words, a
local state s is concrete if there exists a path from the initial state sg to s that is
composed purely of sketch transitions and hence is always reachable regardless
of the interpretation we obtain from the learner.

We now formalize counterexamples for phase-compatibility and cutoff amenabil-
ity properties then present an encoding procedure for such counterexamples. The
encoding is ezact in the sense that a generated constraint ¢ corresponding to
some counterexample cex rules out exactly all interpretations I where an in-
terpreted process sketch P; exhibits cex (as opposed to an over-approximation

CINNABAR 297

where ¢ would rule out interpreted process sketches that do not exhibit cex, or
an under-approximation where ¢ would allow interpreted process sketches that
do exhibit cex). Additionally, the encoding is property-agnostic in the sense that
it can handle counterexamples for any property failure.

Counterexamples. Recall that a candidate process P; based on some process
sketch Py, and interpretation I has the local semantics [Pr] = (St, s0, E, Tr, T{%).
A counterexample cex to phase-compatibility (resp. cutoff-amenability) is a “sub-
set” of the local semantics [Pr] such that cex = ¢pe (resp. cex = ¢eq). We say
that cex is a subset of [Pr], denoted cex C [P;], when it has a subset of its
enabled and disabled transitions, i.e., cex = (Sr, so, E, Ty C Ty, Tj%s C T{),
Encoding Counterexamples. Let C be the set of all well-typed constraints that
the learner accepts. The encoding of counterexample cex = (St, so, F, 17, TI‘“S)
w.r.t. interpretation I is a formula (cex)); € C defined as:

feeah; = (N Geadi) A (A Caishs):

ten€TT tais €T

where (ten)); (resp. (tais) ;) is an encoding of an enabled (resp. disabled) local
transition. Note that ((cex)); is satisfied under interpretation I (i.e., I |= ((cex));)
and implies that cez C [P]. An encoding of some enabled transition t., = s — s’
based on action handler h over action a is defined as:

(s = sV =(shy A azshy A (s sa)y,
where:

1. the predicate ((s)),; indicating that the source state s is reachable from the
initial state so under interpretation I. If s is concrete, ((s)); is simply true
(i.e., s is always reachable regardless of I). Otherwise, {(s)); is defined as
follows. Let P be the set of all paths from the initial state sg to state s.
Then, (s); = V,ep{p);, where (p)); for some path p consisting of local
transitions ti,...,t; is defined as (t1); A ... A (ti));-

2. the predicate {a : s)); indicating that the process can perform action a

from state s. The predicate {(a : s)); is defined as follows: (a : s), =
(g(h)[s(V)/V] = true), where g(h)[s(V)/V] is the guard g(h) with each
local variable v € V replaced by its value s(v) in state s.
Ezample. Let uf(z,y) be an uninterpreted function over local int variables
x and y. Let the local state s := {v;,c = F,x = 1,y = 2}, and let the local
guard of action handler h over action a in location F be g = uf(z,y) >
7Vax =2 Then {a:s); = ((uf(s(z),s(y)) > 7V s(z) = 2) = true)) which
is ((uf(1,2) > 7V 1=2) = true) which simplifies to uf(1,2) > 7.

3. the predicate ((s" : s,a)); indicating that s goes to s’ on action a. The pred-
icate ((s" : s,a)); is defined as follows. Let u(h) denote the set of updates
of the form 1hs = rhs of handler h over action a. Then, (s’ : s,a); =
/\lhs::rhseu(h) S/(lhs) = rhs [S(V)/V]

Ezample. Let the set of updates have the single update = := uf(y, z) and
8,8 be {vpe = F,x = 1,y = 2,2 = 3} and {vjo =D,z = 5,y = 2,z = 3}.
Then (s’ : s,a)); is: s'(z) = uf(s(y), s(z)) which is uf(2,3) = 5.

298 N. Jaber et al.

An encoding of some disabled transition tgs = s 2y 1 in cex is defined as
(tais) = (sh; A (—a: s); where ((s)); is as before and the predicate {(—a : s));,
indicating that the process cannot perform action a from state s, is defined as
follows: ((—a : s); = (g(h)[s(V)/V] = false).

The intuition behind breaking a transition’s encoding to various predicates is
that some phase-compatibility conditions leave parts of a transition unspecified.
For instance, the predicate “the local state s can react to event e’ corresponds
to a local transition s — % % € T; with encoding (s)); A (R(e) : s);.

Finally, to rule out any interpretation I that exhibits cex, we add the con-
straint ¢ = —=({cex)); to the learner.

Encoding Counterexamples to Safety Properties. Similar to the local se-
mantics, we extend the definition of the global semantics [Pr,n] of a MER-
CURY system Pril|...||Prn||Pe to be [Pr,n] = (Qr,q,E, Rr, R{*), where
Qr, qo, E, and Ry are defined as before and R{* is the set of disabled global
transitions under the current interpretation I. Then, a counterexample cex
to safety is a “subset” of the global semantics [Pr,c] such that cex = ¢s(c).
Encoding of such a counterexample cex is formalized as before, with the en-
coding of an enabled global transition r in cex being a formula (cex)), € C
computed as follows. For some global transition r = ¢ < ¢/, we denote by

active(r) the local transitions that processes in ¢ locally use to end in ¢’. That

is, active(r) = {t € Ty | 3P : t = qi] 2 ¢ vt = qli] =% ¢/[i]} We then

define the encoding () as: (r); = Aseactiver) (6D 1-

Note that the predicates (q));, (e:q);, (¢’ : ¢,€));, and {(—e : g)); as well as
the encoding for the global disabled transitions can be defined similar to their
counterparts discussed earlier.

4 Counterexample Extraction

Our tool specializes the synthesis procedure in Algo. 1 by using QUICKSILVER
as the teacher to check phase-compatibility,
cutoff-amenability, and safety. For the Algorithm 2: Counterex-
remainder of this section, we will re- ample Extraction.

fer to phase-compatibility and cutoff- 1 procedure Extract(Pr,¢)

amenability conditions as local properties 2 | ¢’ = makeDNF(—¢)
and safety (and liveness) specifications as 3 |W =9
global properties. 4 | foreach c € cubes(¢’) do
.) 5 if [Pr] = ¢ then

Local Properties. Given a local property 4 cw = &
¢ expressed as first-order logic formulas foreach [€ literals(c) do
over the local semantics of a MERCURY g lw = witness(l)
process, CINNABAR extracts a counterex- 9 cw = cwU {lw}
ample cex according to Algo. 2. 10 W =W U{cw}

First, we negate the property and ex- 11 cex = pickMinimal(W)
press in disjunctive normal form (DNF): 12 | |return cex

CINNABAR 299

¢ = —¢ =cy Ve V..., where each cube ¢; = 11 Aly A ... is a conjunction of
literals (Line 2). Then, for each cube c satisfied under [P;] (Line 5), extract a
cube witness cw that is a subset of the local semantics [Pr] such that [Pr] &= cw
(Lines 7 - 9). This is done by extracting, for each literal [in ¢, a minimal subset
lw of [Pr] such that lw |= [(Line 8). We say lw is a minimal witness of [if any
strict subset of lw cannot be a witness for [(i.e., Viw' C lw : lw’ [). Finally
pick a minimal (in terms of size) cube witness of some cube ¢ as a cex (Line 11).
Since cex = ¢ and ¢ = ¢, we know that cex = —¢ (or equivalently, cex £ ¢).
In this work, we carefully analyzed the phase-compatibility and cutoff amenabil-

ity conditions and incorporated procedures to compute witnesses for their literals
(i.e., the witness calls on Line 8). We refer the interested reader to the extended
version [19] of this paper for complete details, and illustrate one such counterex-
ample extraction procedure using an example.

Ezxample. We present a simplified phase-compatibility condition and demonstrate
the above procedure on it. Let the set of broadcast, partition, and consensus
events be called the globally-synchronizing events, denoted Egiopa1. Let ph(s)
be the set of all “phases” containing local state s. The condition states that:
for each internal transition s — s’ that is accompanied by a reacting transition

R . .
s FOy o for some globally-synchronizing event £, and for each state ¢ in the
same phase as s, state t must have a reacting transition of event f. Formally:

Vf S Egloba17575/ S S :
/ ; R(D) R(£)
(s> eThs —>xeT)= (VX €ph(s),t€ X: It —>x€T).
This condition is an example of a local property ¢ we want to extract counterex-

amples for when it fails. The procedure is applied as follows:
Step (1): We first simplify ¢ to the following:

Vf € Eglobal,s,s',t €5, X €ph(s):
’ ; R(£) . R(f)
(s s eTNsS —>*x¢€ T/\mPhase(X,s,t)) = (Ht —x e T),
where inPhase(X, s,t) indicates that states s and ¢ are in phase X together.
We then obtain the negation —¢:

3f € Egiopar, s, 8',t € S, X € ph(s) :

s—)s’6T/\s’E(i)%*éT/\mPhase(X,s,t)/\—EltE(E)»*GT.

Step (2): The formula —¢ is in DNF, and there is a cube for each instantiation

of event £ € Fgopa1, states s,s",t € S, and phase X that satisfies the formula

—¢. There are 4 literals. The literals “s — s’ € T'” and “s’ LLSIN € T can be

. . . R(£)
witnessed by the corresponding transitions s — s’ and s’ L> *, respectively.
R
The literal “—3t ﬂ) x* € T 7 can be witnessed by the disabled transition

t E@% L. The witness for the literal inPhase(X, s,, sp) for some phase X and

300 N. Jaber et al.

local states s, and s; is more involved. It depends on the nature of that phase.
We analyzed the phase construction procedure given in [17] and distilled it as
follows. For each event e € Eg150a1, We define its source (resp. destination) set
to be the set of states in S from (resp. to) which there exists a transition in T’
labeled with an acting or reacting action of event e. Let corePhases be the set
of all source and destination sets of all globally-synchronizing actions. Then,
two states s, and s, are in the same phase if:
(a) they are part of some core phase, i.e., 3X € corePhases : sq, sy € X, or,
(b) they are in different core phases that are connected by an internal path,
i.e., 3A, B € corePhases : sq, s, € ANsp, s, € BAs) ~ s, where s/, ~ s},
is an internal path from s/, to sj.
If X is a core phase (i.e., case (A) holds), the counterexample extraction pro-
cedure returns the phase itself. Otherwise, case (B) holds and the two core
phases are recursively extracted as well as the internal path connecting them.
Step (3) The final step is to build a subset of the local semantics that include
the extracted witnesses for all 4 literals.

Global Properties. If a candidate process P; meets its phase-compatibility
and cutoff-amenability conditions, then it belongs to the efficiently-decidable
fragment of MERCURY, and a cutoff ¢ exists. It then remains to check if the
system Py 1||...||Prn]|Pe is safe (ie., [Pr,c] E ¢s(c)).

Safety properties ¢s(n) are specified by the system designer as (Boolean
combinations of) permissible safety specifications. Such properties are invariants
that must hold in every reachable state in [Py, c].

A counterexample cex C [Py, c] to a safety property ¢s(c) is a finite trace
from the initial state gop to an error state ¢.. Such traces are extracted while
constructing [Py, c].

5 Implementation and Evaluation

5.1 Implementation

Our tool, CINNABAR®, implements the architecture illustrated in Fig. 1. Addi-
tionally, it incorporates a liveness checker into the teacher. Liveness properties
¢1(c) ensure that the system makes progress and eventually reacts to various
events. We refer the interested reader to the extended version [19] for details on
specifying liveness properties as well as extracting and encoding counterexamples
to such properties.

5.2 Evaluation

In this section, we investigate CINNABAR’s performance. We study the impact
of CINNABAR’s counterexample extraction and encoding, as well as the choice of
uninterpreted functions, on performance. Finally, we examine how CINNABAR'’s
iterations are distributed across the different types of counterexamples.

5 CINNABAR is publicly available on Zenodo [18].

CINNABAR 301

1x108 23 TRTH FHE 23 £33

100000 g , / 4
10000 . N { A ! r¢

4

w»;},;f;/.;xwy//fﬁ

1000

o
S

=)

Synthesis Time (ms) (log scale)

INNABAR o
Enumeration <
Timed out

0.1

1234567 123456 1234567 1234567 1234567 12345678 123456 123456789 123456 1234567 12345678 12345678910
DLS DSN DSNR TOT RMP RMPR DRF CT™ DR SATS SATS2 DS

Fig. 2: CINNABAR'’s performance compared to enumeration-based synthesis. The
systems studied are: Distributed Store (DS), Consortium (CTM), Distributed
Lock Service (DLS), Distributed Register (DR), Two-Object Tracker (TOT),
Distributed Robot Flocking (DRF), variants Small Aircraft Transportation Sys-
tem Landing Protocol (SATS, SATS2), variants of Distributed Sensor Network
(DSN, DSNR), and variants of Robotics Motion Planner (RMP, RMPR). For
each benchmark, the i-th point denotes the average runtime for all variants with
1 uninterpreted functions.

Benchmarks. The benchmarks we use are process sketches based on the bench-
marks presented in [17]. We refer the reader to the extended version [19] for (i)
a description of each benchmark’s functionality, its safety and liveness speci-
fications, and the unspecified functionality in the sketch, and (ii) an example
MERCURY sketch and its completion.

Ezxperimental Setup. To ensure that our reported results are not dependent
on a particular choice of uninterpreted functions, we create a set of wvariants
for each benchmark as follows. For each benchmark, we first pick a set ue of
“candidate uninterpreted functions”, corresponding to expressions that a designer
might reasonably leave unspecified. Then, for each subset e in the set P(ue) of
all non-empty subsets of ue, we create a variant of the benchmark where the
uninterpreted functions in e are included in the sketch. We set a timeout of 15
minutes when running any variant and conduct our experiments on a MacBook
Pro with 2 GHz Quad-Core Intel Core i5 and 16 GB of RAM.

Effect of Countererample Extraction and Encoding. As our baseline,
we consider a synthesis loop where the learner enumerates interpretations un-
til a correct interpretation is found. If some interpreted process sketch Pj fails
a property at any stage, we add the constraint ¢ = —I to the learner. This
effectively eliminates one interpretation at a time, as opposed to all interpreta-
tions that exhibit the given counterexample at a time (as done by our encoder).
In Fig. 2, we present a comparison of CINNABAR’s runtime compared to this
enumeration-based baseline. We make the following observations. While the run-
times of both enumeration-based synthesis and CINNABAR grow exponentially
when increasing the number of uninterpreted functions, CINNABAR outperforms

302 N. Jaber et al.

1x10° :
100000 ee
10000 M

1000

o
S

-
ey poeid peedl ,.M”- Rt L) l‘éme Mgﬂ ,,MH Mm

=)

Synthesis Time (ms) (log scale)

0.1

1234567 123456 1234567 1234567 1234567 12345678 123456 123456789 123456 1234567 12345678 12345678910
DLS DSN DSNR TOT RMP RMPR DRF CT™ DR SATS SATS2 DS

Fig.3: Effect of the choice of uninterpreted functions on synthesis time. For
some benchmark and some number m of uninterpreted functions, the m-th box-
and-whiskers plot presents, from bottom to top, the minimum, first quartile,
median, third quartile, and maximum synthesis run time across the run times
of all variants of that benchmark with m uninterpreted functions.

enumeration-based synthesis in almost all scenarios. Only for variants with a
single uninterpreted function we observed cases where enumeration-based syn-
thesis found a correct solution faster than CINNABAR (e.g., as in DSNR with one
uninterpreted function). This is due to the additional time spent extracting and
encoding counterexamples. However, the value of the counterexample extraction
and encoding becomes clearly apparent with larger number of unspecified ex-
pressions as the number of interpretations grows much larger and it becomes
infeasible to just enumerate them. Furthermore, CINNABAR is able to perform
synthesis for any variant of our benchmarks in under 9 minutes.

Effect of the Choice of Uninterpreted Functions. In Fig. 3, for each bench-
mark, we examine the variation of synthesis runtime across variants with the
same number of uninterpreted functions. As shown in the figure, in some cases
(e.g., CTM and DS), the variation is more noticeable. The main factor contribut-
ing to this is that uninterpreted functions present different overhead on synthesis
based on their nature. For instance, an uninterpreted function corresponding to
a lhs of some assignment expression is more expensive to synthesize compared
to an uninterpreted function corresponding to a target of some goto statement,
as the latter has a smaller search space.

Counterexample Distribution on Iterations. In Fig. 4, we illustrate the
different types of counterexamples encountered throughout CINNABAR’s itera-
tions. We make the following observations. First, CINNABAR spends most of its
iterations ruling out phase-compatibility violations. This is expected as check-
ing phase-compatibility is the first stage in our synthesis loop. Since a phase-
compatible system moves in a structured way between its phases, this stage rules
out all arbitrary completions that prohibit processes from advancing through the
phases. Furthermore, there are fewer safety violations than any other type of vio-
lations. Once an interpreted process sketch is in the efficiently-decidable fragment

CINNABAR 303

Phase-compatibility
M cutoff-amenability

"'Tl": e e .-__ i W safety

h"“'i e R e T e

Fig.4: A property-based visualization of CINNABAR’s iterations for a represen-
tative subset of the variants. Each line corresponds a CINNABAR’s execution of
a synthesis variant of a benchmark. From left to right, each line starts with iter-
ation 1, ends with the iteration where a correct interpretation was found, and is
colored to indicate nature of violations encountered throughout the execution.
For instance, the line * WEEE would indicate that CINNABAR encountered a phase-
compatibility violation in iteration 1, then a cutoff-amenability in iteration 2,
., and finally was able to find a correct interpretation in iteration 6.

of MERCURY, it is more likely to be safe. There are two factors that contribute
to this: (i) phase-compatible systems move in a structured way and are more
likely to be “closer” to a correct version of the system, and (ii) because cutofi-
amenability depends on the safety specification, satisfying cutoff-amenability
means the interpreted process sketch is more likely to be correct with respect
to the safety property already. Finally, eliminating liveness violations ensures
that CINNABAR is able to synthesize higher-quality completions. As shown in
the figure, liveness violations are often encountered in the very first iteration, as
the SMT-based learner tends to favor interpretations with disabled guards that
trivially satisfy phase-compatibility, cutoff-amenability, and safety properties.

Usability. If CINNABAR fails to synthesize a correct completion, the designer
can replace existing expressions in the sketch with uninterpreted functions, al-
lowing CINNABAR to explore a larger set of possible candidate completions.

Finally, while the supported uninterpreted functions may not correspond to
large segments of the code or complex control-flow constructs, they are the main
“knobs” that the designer needs to turn to ensure that their systems belong to
the efficiently-decidable fragment of MERCURY.

6 Related Work

Aiding System Designers via Decidable Verification. Ivy [29] adopts an
interactive approach to aid the designer in searching for inductive invariants for
their systems. Ivy translates the system model and its invariant to EPR [30],
and looks for a counterexample-to-induction (CTI). The designer adjusts the
invariant to eliminate that CTI and Ivy starts over. 14 [26] builds on Ivy by first

304 N. Jaber et al.

considering a fixed system size, automatically generating a potential inductive
invariant, and using Ivy to check if that invariant is also valid for any system
size. The approach in [11] identifies a class of asynchronous systems that can be
reduced to an equivalent synchronized system modeled in the Heard-Of Model
[9]. The designer manually annotates the asynchronous system to facilitate the
reduction, and encodes the resulting Heard-Of model in the CL [14] logic which
has a semi-decision procedure. These approaches differ from ours in two ways.
First, the designer needs to manually provide/manipulate inductive invariants
and/or annotations to eventually enable decidable verification. Second, these
approaches are “verification only”: they require a fully-specified model that either
meets or violates its correctness properties and the designer is responsible for
adjusting the model if verification fails. CINNABAR, on the other hand, accepts
a sketch that is then completed to meet its properties.

Parameterized Synthesis. Jacobs and Bloem [20] introduced a general ap-
proach for parameterized synthesis based on cutoffs, where they use an underly-
ing fixed-size synthesis procedure that is required to guarantee that the condi-
tions for cutoffs are met by the synthesized implementation. Our approach can be
seen as an instantiation of this approach, as one of the stages in our multi-stage
counterexample-based loop ensures that cutoff-amenability conditions hold on
any candidate process. Other approaches that tackle the parameterized synthesis
problem without cutoff results are more specialized. For instance, the approach
in [24] adopts a CEGIS-based synthesis strategy where the designer provides a
threshold automaton with some parameters unspecified. Synthesis completes the
model and uses the parameterized model checker in [23] to check the system. A
similar idea, but based on the notion of well-structured transition systems, is
used for the automatic repair of parameterized systems in [21]. The approach
in [22] targets parameterized synthesis for self-stabilizing rings, and shows that
the problem is decidable even when the corresponding parameterized verifica-
tion problem is not. The designer provides a set of legitimate states and the size
of the template process, and the procedure yields a completed self-stabilizing
template. A similar approach for more general topologies is presented in [28§].
Bertrand et al. [6] target systems composed of an unbounded number of agents
that are fully specified and one underspecified controller process. The synthesis
goal is to synthesize a controller that controls all agents uniformly and guides
them to a specific desired state. Markgraf et al. [27] also target synthesis of con-
trollers by posing the problem as an infinite-duration 2-player game and utilize
regular model checking and the L* algorithm [4] to learn correct-by-design con-
trollers. These approaches are not applicable to our setup as they do not admit
distributed agreement-based systems (modeled in MERCURY).

Synthesis of Distributed Systems with a Fixed Number of Processes.
Various approaches focus on automated synthesis of distributed systems with a
fized number of processes [3,2,1,12,35]. While such approaches deploy a similar
counterexample-guided strategy to complete a user-provided sketch, they do
not provide parameterized correctness guarantees nor the necessary agreement
primitives needed to model distributed agreement-based systems.

CINNABAR 305

Data availability. The artifact and related data that support the findings of
this work are publicly available on Zenodo [18].

References

10.

11.

12.

. Alur, R., Martin, M., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.:

Synthesizing finite-state protocols from scenarios and requirements. In: Yahav,
E. (ed.) Hardware and Software: Verification and Testing. pp. 75-91. Springer
International Publishing, Cham (2014)

. Alur, R., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.: Automatic com-

pletion of distributed protocols with symmetry. In: Kroening, D., Pasiareanu, C.S.
(eds.) Computer Aided Verification. pp. 395-412. Springer International Publish-
ing, Cham (2015)

Alur, R., Tripakis, S.: Automatic synthesis of distributed protocols. SIGACT News
48(1), 55-90 (Mar 2017). https://doi.org/10.1145/3061640.3061652, https:
//doi.org/10.1145/3061640.3061652

Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87-106 (nov 1987). https://doi.org/10.1016/0890-5401(87)90052-6,
https://doi.org/10.1016/0890-5401(87)90052-6

Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state
concurrent systems. Information Processing Letters 22(6), 307-309 (1986).
https://doi.org/https://doi.org/10.1016/0020-0190(86)90071-2, https://
www.sciencedirect.com/science/article/pii/0020019086900712

Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H., Godbole, A.A.: Controlling
a population. arXiv preprint arXiv:1807.00893 (2018)

Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder,
J.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory, Morgan & Claypool Publishers (2015)

Bornholt, J., Joshi, R., Astrauskas, V., Cully, B., Kragl, B., Markle, S., Sauri, K.,
Schleit, D., Slatton, G., Tasiran, S., Van Geffen, J., Warfield, A.: Using lightweight
formal methods to validate a key-value storage node in amazon s3. In: Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
p- 836-850. SOSP ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3477132.3483540, https://doi.org/10.
1145/3477132.3483540

Charron-Bost, B., Schiper, A.: The Heard-of Model: Computing in Distributed
Systems with Benign Faults. Distributed Computing 22(1), 49-71 (2009). https:
//doi.org/10.1007/s00446-009-0084-6

Cook, B.: Formal reasoning about the security of amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) Computer Aided Verification. pp. 38-47. Springer
International Publishing, Cham (2018)

Damian, A., Dragoi, C., Militaru, A., Widder, J.: Communication-closed Asyn-
chronous Protocols. In: International Conference on Computer Aided Verification
(2019)

Damm, W., Finkbeiner, B.: Automatic Compositional Synthesis of Distributed
Systems. In: International Symposium on Formal Methods. pp. 179-193. Springer
(2014)

https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/https://doi.org/10.1016/0020-0190(86)90071-2
https://www.sciencedirect.com/science/article/pii/0020019086900712
https://www.sciencedirect.com/science/article/pii/0020019086900712
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6

306

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

N. Jaber et al.

Dill, D., Grieskamp, W., Park, J., Qadeer, S., Xu, M., Zhong, E.: Fast and reliable
formal verification of smart contracts with the move prover. In: Fisman, D., Rosu,
G. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
183-200. Springer International Publishing, Cham (2022)

Dragoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A Logic-based
Framework for Verifying Consensus Algorithms. In: International Conference on
Verification, Model Checking, and Abstract Interpretation. pp. 161-181. Springer
(2014)

Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts,
M.L., Setty, S., Zill, B.: Ironfleet: Proving practical distributed systems cor-
rect. In: Proceedings of the 25th Symposium on Operating Systems Princi-
ples. p. 1-17. SOSP ’15, Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2815400.2815428, https://doi.org/10.
1145/2815400.2815428

Jaber, N., Jacobs, S., Wagner, C., Kulkarni, M., Samanta, R.: Parameterized veri-
fication of systems with global synchronization and guards. In: Lahiri, S.K., Wang,
C. (eds.) Computer Aided Verification. pp. 299-323. Springer International Pub-
lishing, Cham (2020)

Jaber, N., Wagner, C., Jacobs, S., Kulkarni, M., Samanta, R.: Quicksilver: Mod-
eling and parameterized verification for distributed agreement-based systems.
Proc. ACM Program. Lang. 5(O0OPSLA) (oct 2021). https://doi.org/10.1145/
3485534, https://doi.org/10.1145/3485534

Jaber, N., Wagner, C., Jacobs, S., Kulkarni, M., Samanta, R.: Synthesis of Dis-
tributed Agreement-Based Systems with Efficiently-Decidable Verification (Arti-
fact) (Apr 2023). https://doi.org/10.5281/zenodo.7497463, https://doi.org/
10.5281/zenodo. 7497463

Jaber, N., Wagner, C., Jacobs, S., Kulkarni, M., Samanta, R.: Synthesis of dis-
tributed agreement-based systems with efficiently-decidable verification (extended
version) (2023). https://doi.org/10.48550/ARXIV.2208.12400, https://arxiv.
org/abs/2208.12400

Jacobs, S., Bloem, R.: Parameterized Synthesis. Logical Methods in Computer
Science 10(1) (2014)

Jacobs, S., Sakr, M., Volp, M.: Automatic repair and deadlock detection for pa-
rameterized systems. In: FMCAD 2022. pp. 225-234

Klinkhamer, A.P.,; Ebnenasir, A.: Synthesizing parameterized self-stabilizing rings
with constant-space processes. In: Dastani, M., Sirjani, M. (eds.) Fundamentals
of Software Engineering. pp. 100-115. Springer International Publishing, Cham
(2017)

Konnov, 1., Lazi¢, M., Veith, H., Widder, J.: A Short Counterexample Property
for Safety and Liveness Verification of Fault-tolerant Distributed Algorithms. ACM
SIGPLAN Notices 52(1), 719-734 (2017)

Lazic, M., Konnov, 1., Widder, J., Bloem, R.: Synthesis of Distributed Algorithms
with Parameterized Threshold Guards. In: Aspnes, J., Bessani, A., Felber, P.,
Leitao, J. (eds.) OPODIS. LIPIcs, vol. 95, pp. 32:1-32:20. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2017)

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning. pp. 348-370. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534
https://doi.org/10.1145/3485534
https://doi.org/10.5281/zenodo.7497463
https://doi.org/10.5281/zenodo.7497463
https://doi.org/10.5281/zenodo.7497463
https://doi.org/10.5281/zenodo.7497463
https://doi.org/10.48550/ARXIV.2208.12400
https://doi.org/10.48550/ARXIV.2208.12400
https://arxiv.org/abs/2208.12400
https://arxiv.org/abs/2208.12400

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

CINNABAR 307

Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: 14:
Incremental inference of inductive invariants for verification of distributed proto-
cols. In: Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples. p. 370-384. SOSP ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3341301.3359651, https://doi.org/10.
1145/3341301.3359651

Markgraf, O., Hong, C.D., Lin, A.W., Najib, M., Neider, D.: Parameterized syn-
thesis with safety properties. In: Oliveira, B.C.d.S. (ed.) Programming Languages
and Systems. pp. 273-292. Springer International Publishing, Cham (2020)
Mirzaie, N., Faghih, F., Jacobs, S., Bonakdarpour, B.: Parameterized synthesis of
self-stabilizing protocols in symmetric networks. Acta Informatica 57(1-2), 271-304
(2020)

Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety ver-
ification by interactive generalization. In: Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. p.
614-630. PLDI ’16, Association for Computing Machinery, New York, NY,
USA (2016). https://doi.org/10.1145/2908080.2908118, https://doi.org/10.
1145/2908080.2908118

Piskac, R., de Moura, L., Bjgrner, N.: Deciding Effectively Propositional Logic
Using DPLL and Substitution Sets. Journal of Automated Reasoning 44(4), 401—
424 (2010)

Reid, A., Flur, S., Church, L., de Haas, S., Johnson, M., Laurie, B.: Towards
making formal methods normal: meeting developers where they are. In: HATRA
2020: Human Aspects of Types and Reasoning Assistants (2020), https://arxiv.
org/abs/2010.16345

Sergey, 1., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. 2(POPL) (Dec 2017). https://doi.org/
10.1145/3158116, https://doi.org/10.1145/3158116

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
Sketching for Finite Programs. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems. pp.
404-415. ASPLOS XII, ACM (2006)

Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213-214 (Jul 1988). https://doi.org/10.1016/0020-0190(88)90211-6,
https://doi.org/10.1016/0020-0190(88)90211-6

Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M., Alur,
R.: TRANSIT: Specifying Protocols with Concolic Snippets. ACM SIGPLAN No-
tices 48(6), 287-296 (2013)

Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.: Verdi: A framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. p. 357-368. PLDI 15, Association for
Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/
2737924.2737958, https://doi.org/10.1145/2737924.2737958

https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://arxiv.org/abs/2010.16345
https://arxiv.org/abs/2010.16345
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1016/0020-0190(88)90211-6
https://doi.org/10.1016/0020-0190(88)90211-6
https://doi.org/10.1016/0020-0190(88)90211-6
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958

308 N. Jaber et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

LTL Reactive Synthesis with a Few Hints

Mrudula Balachander! ®9 Emmanuel Filiot, and Jean-Francois Raskin

Université libre de Bruxelles, Brussels, Belgium
mbalacha@ulb.be

Abstract. We study a variant of the problem of synthesizing Mealy ma-
chines that enforce LTL specifications against all possible behaviours of
the environment, including hostile ones. In the variant studied here, the
user provides the high level LTL specification ¢ of the system to design,
and a set F of examples of executions that the solution must produce.
Our synthesis algorithm first generalizes the user-provided examples in
FE using tailored extensions of automata learning algorithms, while pre-
serving realizability of . Second, it turns the (usually) incomplete Mealy
machine obtained by the learning phase into a complete Mealy machine
realizing . The examples are used to guide the synthesis procedure. We
prove learnability guarantees of our algorithm and prove that our prob-
lem, while generalizing the classical LTL synthesis problem, matches its
worst-case complexity. The additional cost of learning from E is even
polynomial in the size of E and in the size of a symbolic representation of
solutions that realize ¢, computed by the synthesis tool ACACIA-BONZALI.
We illustrate the practical interest of our approach on a set of examples.

1 Introduction

Reactive systems are notoriously difficult to design and even to specify cor-
rectly [1,13]. As a consequence, formal methods have emerged as useful tools to
help designers to built reactive systems that are correct. For instance, model-
checking asks the designer to provide a model, in the form of a Mealy machine
M, that describes the reactions of the system to events generated by its en-
vironment, together with a description of the core correctness properties that
must be enforced. Those properties are expressed in a logical formalism, typi-
cally as an LTL formula pcore. Then an algorithm decides if M = ¢coge, i.e.
if all executions of the system in its environment satisfy the specification. Auto-
matic reactive synthesis is more ambitious: it aims at automatically generating
a model from a high level description of the “what’ needs to be done instead of
the “how” it has to be done. Thus the user is only required to provide an LTL
specification ¢ and the algorithm automatically generates a Mealy machine M
such that M |= ¢ whenever ¢ is realizable. Unfortunately, it is most of the time
not sufficient to provide the core correctness properties pcore to obtain a Mealy
machine M that is useful in practice, as illustrated next.

Ezample 1. [Synthesis from pcore - Mutual exclusion] Let us consider the clas-
sical problem of mutual exclusion. In the simplest form of this problem, we
need to design an arbiter that receives requests from two processes, modeled

© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 309-328, 2023.
https://doi.org/10.1007/978-3-031-30820-8_-20

https://doi.org/10.1007/978-3-031-30820-8_20
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_20&domain=pdf

310 M. Balachander et al.

by two atomic propositions r; and ro controlled by the environment, and that
grants accesses to the critical section, modeled as two atomic propositions g¢;
and go controlled by the system. The core correctness properties (the what) are:
(i) mutual access, i.e. it is never the case that the access is granted to both
processes at the same time, (i¢) fairness, i.e. processes that have requested ac-
cess eventually get access to the critical section. These core correctness spec-
ifications for mutual exclusion (ME) are easily expressed in LTL as follows:
e = O(=g1 V —g2) AD(r1 = Og1) A O(rg — Og2). Indeed, this formula
expresses the core correctness properties that we would model check no matter
how M implements mutual exclusion, e.g. Peterson, Dedekker, Backery algo-
rithms, etc. Unfortunately, if we submit pM5.c to an LTL synthesis procedure,
implemented in tools like Acacia-Bonzal [11], BoSy [17], or STRIX [25], we
get the solution M depicted in 1-(left) (all three tools return this solution).
While this solution is perfectly correct and realizes the specification go%AOERE, the
solution ignores the inputs from the environment and grants access to the criti-
cal sections in a round robin fashion. Arguably, it may not be considered as an
efficient solution to the mutual exclusion problem. This illustrates the limits of
the synthesis algorithm to solve the design problem by providing only the core
correctness specification of the problem, i.e. the what, only. To produce useful
solutions to the mutual exclusion problem, more guidance must be provided.

!7"0/\!7"1/!90/\!91
Irg A Tl/!go N g1
To/\!Tl/go/\!gl

!To/!go N g1

true/lg1 A go

@ @ @
true/lgo A g1

Fig. 1: (Left) The solution of Strix to the mutual exclusion problem for high level
specification @E,;,. Edge labels are of the form ¢ /1 where ¢: Boolean formula
on input atomic propositions (Boolean variables controlled by environment) and
1: maximally consistent conjunction of literals over set of output propositions
(Boolean variables controlled by system). (Right) A natural solution that could
be drawn by hand, and is automatically produced by our learning/synthesis
algorithm for the same specification plus with two simple examples.

ToATl/!go N g1

Ir1/goNlg1 ro/!90 A g1

The main question is now: how should we specify these additional properties
2 Obviously, if we want to use the ”plain” LTL synthesis algorithm, there is no
choice: we need to reinforce the specification @L\:"OERE with additional lower level
properties M5, . Let us go back to our running example.

Ezample 2. [Synthesis from w%”éRE and cp',i"oEW] To avoid solutions with unsolicited
grants, we need to reinforce the core specification. The Strix online demo website
proposes to add the following 3 LTL formulas o5, to ¢¥5ge (see Full arbitrer
n = 2, at https://meyerphi.github.io/strix-demo/): (1) /\ie{l,2} O((g; A
O-ri) = 0791, (2) Nieqr2p B9 A O(=ri A mgs) = O(riR-gi)), and (3)
/\ie{l,Q}(TiR_‘gi)' Strix, on the specification pMEae A ©ME,, provides us with

LTL Reactive Synthesis with a Few Hints 311

a better solution, but it is more complex than needed (it has 9 states: refer [5])
and clearly does not look like an optimal solution to our mutual exclusion prob-
lem. E.g., the model of Fig. 1-(right) is arguably more natural. How can we get
this model without coding it into the LTL specification, which would diminish
greatly the interest of using a synthesis procedure in the first place?

In general, higher level properties are properties that need to be met by all
implementations, e.g. safety-critical properties. In contrast, lower level properties
are more about a specific implementation, its expected behaviour and efficiency.
At this point, it is legitimate to question the adequacy of LTL as a specification
language for lower level properties, and so as a way to guide the synthesis pro-
cedure towards relevant solutions to realize ¢core. In this paper, we introduce
an alternative to guide synthesis toward useful solutions that realize pcorg: we
propose to use examples of executions that illustrate behaviors of expected so-
lutions. We then restrict the search to solutions that gemeralize those examples.
Examples, or scenarios of executions, are accepted in requirement engineering
as an adequate tool to elicit requirements about complex systems [12]. For re-
active system design, examples are particularly well-suited as they are usually
much easier to formulate than full blown solutions, or even partial solutions. It
is because, when formulating examples, the user controls both the inputs and the
outputs, avoiding the main difficulty of reactive system design: having to cope
with all possible environment inputs. We illustrate this on our running example.

Ezample 3. [Synthesis from QDE/'OERE and examples] Let us keep, as the LTL speci-
fication, cpg"OERE only, and let us consider the following simple prefix of executions
that illustrate how solutions to mutual exclusion should behave:

(1) {lro, trat-{lgr, lga}#{ro, Ira}{gr, lga b # {1, 2} {191, 92}

(2) {r1,r2}{g1, g2} #{lr1, 2} {191, g2}

These trace prefixes prescribe reactions to typical fized finite input sequences: (1)
if there is no request initially, then no access is granted (note that this excludes
already the round robin solution), if process 1 and 2 request subsequently, process
1 is granted first and then process 2 is granted after, (2) if both process request
simultaneously, then process 1 is granted first and then process 2 is granted after.
Given those two simple traces together with pcorg, our algorithm generates the
solution of Fig. 1-(right). Arguably, the solution is now simple and natural.

Contributions First, we provide a synthesis algorithm SYNTHLEARN that,
given an LTL specification pcore and a finite set E of prefixes of executions,
returns a Mealy machine M such that M | @core, i.e. M realizes ¢core,
and E C Prefix(L(M)), i.e. M is compatible with the examples in E, if such
a machine M exists. It returns unrealizable otherwise. Additionally, we require
SYNTHLEARN to generalize the decisions illustrated in E. This learnability re-
quirement is usually formalized in automata learning with a completeness cri-
tertum that we adapt here as follows: for all specifications ¢core, and for all
Mealy machines M such that M = ¢cogre, there is a small set of examples E
(polynomial in |M|) such that L(SYNTHLEARN(pcore, E)) = L(M). We prove

312 M. Balachander et al.

this completeness result in Theorem 4 for safety specifications and extend it to
w-regular and LTL specifications in Section 4, by reduction to safety.

Second, we prove that the worst-case execution time of SYNTHLEARN is 2Ex-
PTIME (Theorem 7), and this is worst-case optimal as the plain LTL synthesis
problem (when E = (}) is already known to be 2EXPTIME-COMPLETE [27].
SYNTHLEARN first generalizes the examples provided by the user while main-
taining realizability of ¢core. This generalization leads to a Mealy machine with
possibly missing transitions (called a preMealy machine). Then, this preMealy
machine is extended into a (full) Mealy machine that realizes ¢core against
all behaviors of the environment. During the completion phase, SYNTHLEARN
reuses as much as possible decisions that have been generalized from the exam-
ples. The generalization phase is essential to get the most out of the examples.
Running classical synthesis algorithms on ¢core A ¢r, where ¢g is an LTL en-
coding of E, often leads to more complex machines that fail to generalize the
decisions taken along the examples in E. While the overall complexity of SYNTH-
LEARN is 2EXPTIME and optimal, we show that it is only polynomial in the size
of E' and in a well-chosen symbolic representation a set of Mealy machines that
realize pcoRre, see Theorem 6. This symbolic representation takes the form of an
antichain of functions and tends to be compact in practice [19]. It is computed
by default when ACACIA-BONZALI is solving the plain LTL synthesis problem
of wcore. So, generalizing examples while maintaining realizability only comes
at a marginal polynomial cost. We have implemented our synthesis algorithm
in a prototype, which uses ACACIA-BONZAI to compute the symbolic antichain
representation. We report on the results we obtain on several examples.

Related works Scenarios of executions have been advocated by researchers in
requirements engineering to elicit specifications, see e.g. [12,14] and references
therein. In [28], learning techniques are used to transform examples into LTL
formulas that generalize them. Those methods are complementary to our work,
as they can be used to obtain the high level specification ¢core-

In non-vacuous synthesis [8], examples are added automatically to an LTL
specification in order to force the synthesis procedure to generate solutions that
are non-vacuous in the sense of [23]. The examples are generated directly from the
syntax of the LTL specification and they cannot be proposed by the user. This
makes our approach and this approach orthogonal and complementary. Indeed,
we could use the examples generated automatically by the non-vacuous approach
and ask the user to validate them as desirable or not. Our method is more flexible,
it is semi-automatic and user centric: the user can provide any example he/she
likes and so it offers more flexibility to drive the synthesis procedure to solutions
that the user deems as interesting. Furthermore, our synthesis procedure is based
on learning algorithms, while the algorithm in [8] is based on constraint solving
and does not offer guarantees of generalization, unlike our algorithm (see Thm 4).

Supplementing the formal specification with additional user-provided infor-
mation is at the core of the syntaz-guided synthesis framework (SyGuS [3]),
implemented for instance in program by sketching [31]: in SyGuS, the specifica-
tion is a logical formula and candidate programs are syntactically restricted by a

LTL Reactive Synthesis with a Few Hints 313

user-provided grammar, to limit and guide the search. The search is done by us-
ing counter-example guided inductive synthesis techniques (CEGIS) which rely
on learning [32]. In contrast to our approach, examples are not user-provided
but automatically generated by model-checking the candidate programs against
the specification. The techniques are also orthogonal to ours: SyGuS targets pro-
grams syntactically defined by expressions over a decidable background theory,
and heavily relies on SAT/SMT solvers. Using examples to synthesise programs
(programming by example) has been for instance explored in the context of string
processing programs for spreadsheets, based on learning [30], and is a current
trend in AT (see for example [26] and the citations therein). However this ap-
proach only relies on examples and not on logical specifications.

[4] explores the use of formal specifications and scenarios to synthesize dis-
tributed protocols. Their approach also follows two phases: first, an incomplete
machine is built from the scenarios and second, it is turned into a complete one.
But there are two important differences with our work. First, their first phase
does not rely on learning techniques and does not try to generalize the provided
examples. Second, in their setting, all actions are controllable and there is no
adversarial environment, so they are solving a satisfiability problem and not a
realizability problem as in our case. Their problem is thus computationally less
demanding than the problem we solve: PSPACE versus 2EXPTIME for LTL specs.

The synthesis problem targeted in this paper extends the LTL synthesis
problem. Modern solutions for this problem use automata constructions that
avoid Safra’s construction as first proposed in [24], and simplified in [29,18], and
more recently in [16]. Efficient implementations of Safraless constructions are
available, see e.g. [9,17,25,15]. Several previous works have proposed alternative
approaches to improve on the quality of solutions that synthesis algorithms can
offer. A popular research direction, orthogonal and complementary to the one
proposed here, is to extend the formal specification with quantitative aspects,
see e.g. [6,10,22,2], and only synthesize solutions that are optimal.

The first phase of our algorithm is inspired by automata learning techniques
based on state merging algorithms like RPNTI [21,20]. Those learning algorithms
need to be modified carefully to generate partial solutions that preserve realiz-
ability of wcore. Proving completeness as well as termination of the completion
phase in this context requires particular care.

2 Preliminaries on the reactive synthesis problem

Words, languages and automata An alphabet is a finite set of symbols. A
word u (resp. w-word) over an alphabet X is a finite (resp. infinite sequence) of
symbols from Y. We write € for the empty word, and denote by |u| €