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ETAPS Foreword

Welcome to the 26th ETAPS! ETAPS 2023 took place in Paris, the beautiful capital of
France. ETAPS 2023 was the 26th instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference established
in 1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronized conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attracted many researchers from all over the globe.

ETAPS 2023 received 361 submissions in total, 124 of which were accepted,
yielding an overall acceptance rate of 34.3%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2023 featured the unifying invited speakers Véronique Cortier (CNRS,
LORIA laboratory, France) and Thomas A. Henzinger (Institute of Science and
Technology, Austria) and the conference-specific invited speakers Mooly Sagiv (Tel
Aviv University, Israel) for ESOP and Sven Apel (Saarland University, Germany) for
FASE. Invited tutorials were provided by Ana-Lucia Varbanescu (University of
Twente and University of Amsterdam, The Netherlands) on heterogeneous computing
and Joost-Pieter Katoen (RWTH Aachen, Germany and University of Twente, The
Netherlands) on probabilistic programming.

As part of the programme we had the second edition of TOOLympics, an event to
celebrate the achievements of the various competitions or comparative evaluations in
the field of ETAPS.

ETAPS 2023 was organized jointly by Sorbonne Université and Université
Sorbonne Paris Nord. Sorbonne Université (SU) is a multidisciplinary,
research-intensive and worldclass academic institution. It was created in 2018 as the
merge of two first-class research-intensive universities, UPMC (Université Pierre and
Marie Curie) and Paris-Sorbonne. SU has three faculties: humanities, medicine, and
55,600 students (4,700 PhD students; 10,200 international students), 6,400 teachers,
professor-researchers and 3,600 administrative and technical staff members. Université
Sorbonne Paris Nord is one of the thirteen universities that succeeded the University of
Paris in 1968. It is a major teaching and research center located in the north of Paris. It
has five campuses, spread over the two departments of Seine-Saint-Denis and Val
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d’Oise: Villetaneuse, Bobigny, Saint-Denis, the Plaine Saint-Denis and Argenteuil. The
university has more than 25,000 students in different fields, such as health, medicine,
languages, humanities, and science. The local organization team consisted of Fabrice
Kordon (general co-chair), Laure Petrucci (general co-chair), Benedikt Bollig (work-
shops), Stefan Haar (workshops), Étienne André (proceedings and tutorials), Céline
Ghibaudo (sponsoring), Denis Poitrenaud (web), Stefan Schwoon (web), Benoît Barbot
(publicity), Nathalie Sznajder (publicity), Anne-Marie Reytier (communication),
Hélène Pétridis (finance) and Véronique Criart (finance).

ETAPS 2023 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), EASST
(European Association of Software Science and Technology), Lip6 (Laboratoire
d'Informatique de Paris 6), LIPN (Laboratoire d'informatique de Paris Nord), Sorbonne
Université, Université Sorbonne Paris Nord, CNRS (Centre national de la recherche
scientifique), CEA (Commissariat à l'énergie atomique et aux énergies alternatives),
LMF (Laboratoire méthodes formelles), and Inria (Institut national de recherche en
informatique et en automatique).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns (Saar-
brücken), Marieke Huisman (Twente, chair), Jan Kofroň (Prague), Barbara König
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Inria), Jan Křetínský (Munich),
and Lenore Zuck (Chicago).

Other members of the steering committee are: Dirk Beyer (Munich), Luís Caires
(Lisboa), Ana Cavalcanti (York), Bernd Finkbeiner (Saarland), Reiko Heckel
(Leicester), Joost-Pieter Katoen (Aachen and Twente), Naoki Kobayashi (Tokyo),
Fabrice Kordon (Paris), Laura Kovács (Vienna), Orna Kupferman (Jerusalem), Leen
Lambers (Cottbus), Tiziana Margaria (Limerick), Andrzej Murawski (Oxford), Laure
Petrucci (Paris), Elizabeth Polgreen (Edinburgh), Peter Ryan (Luxembourg), Sriram
Sankaranarayanan (Boulder), Don Sannella (Edinburgh), Natasha Sharygina (Lugano),
Pawel Sobocinski (Tallinn), Sebastián Uchitel (London and Buenos Aires), Andrzej
Wasowski (Copenhagen), Stephanie Weirich (Pennsylvania), Thomas Wies (New
York), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer-Verlag GmbH for their
support. I hope you all enjoyed ETAPS 2023.

Finally, a big thanks to Laure and Fabrice and their local organization team for all
their enormous efforts to make ETAPS a fantastic event.

April 2023 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President



Preface

We are pleased to present the proceedings of TACAS 2023, the 29th edition of the
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems held as part of the 26th European Joint Conferences on Theory and Practice of
Software (ETAPS 2023), April 24–28, 2023 in Paris, France. TACAS brings together a
community of researchers, developers, and end-users who are broadly interested in
rigorous algorithmic techniques for the construction and analysis of systems. The
conference is a venue that interleaves various disciplines including formal verification
of software and hardware systems, static analysis, program synthesis, verification of
machine learning/autonomous systems, probabilistic programming, SAT/SMT solving,
constraint solving, static analysis, automated theorem proving and Cyber-Physical
Systems.

There were five submission categories for TACAS 2023:

1. Regular research papers advancing the theoretical foundations for the construc-
tion and analysis of systems.

2. Case study papers describing the application of state-of-the-art research techniques
on real-world applications.

3. Regular tool papers presenting a new tool, a new tool component, or novel
extensions to an existing tool of interest to the community.

4. Tool demonstration papers focusing on the usage aspects of tools.
5. SV-COMP competition tool papers organized as a separate conference track.

Regular research, case study, and regular tool papers were restricted to a total of
sixteen pages, and tool demonstration papers to six pages, exclusive of references.

This year 169 papers were submitted to TACAS, consisting of 119 regular research
papers, 34 regular tool and case study papers, and 16 tool demonstration papers. Each
paper was reviewed by three Program Committee (PC) members, who made use of sub-
reviewers. As a result, the PC accepted in total 62 papers, among which there were 45
regular papers, 11 regular tool/case-study papers and 6 tool demonstration papers. The
PC members were pleasantly surprised by an unusually large number of strong sub-
missions. Almost all accepted papers had either all positive reviews or a “championing”
program committee member who argued in favor of accepting the paper. Furthermore,
all accepted papers had a positive average score. One paper was accepted conditionally
and successfully “shepherded” by the PC.

Similarly to previous years, it was possible to submit an artifact alongside a paper,
which was mandatory for regular tool and tool demonstration papers. An artifact might
consist of tools, models, proofs, or other data required for validation of the results



of the paper. The Artifact Evaluation Committee (AEC) reviewed the artifacts based on
their documentation, ease of use, and, most importantly, whether the results presented
in the corresponding paper could be accurately reproduced. The evaluation was carried
out using a standardized virtual machine to ensure consistency of the results, except for
4 artifacts that had special hardware or software requirements. The evaluation had two
rounds. The first round was carried out in parallel with the work of the PC and
evaluated the artifacts for all the submitted regular tool and tool demo papers. The
judgment of the AEC was communicated to the PC and weighed in their discussion
(the PC rejected a total of 4 papers in this phase). The second round took place after the
paper acceptance notifications were sent out so the authors of accepted research and
case-study papers could submit their artifacts. In both rounds, the AEC provided 3
reviews per artifact and communicated with the authors to resolve apparent technical
issues. In total, 69 artifacts were submitted (51 in the first round and 18 in the second),
and the AEC evaluated a total of 64 artifacts regarding their availability, functionality,
and/or reusability. Finally, among the 62 accepted papers, the AEC awarded 32
functional badges, 21 reusable badges, and 33 available badges. Such badges appear on
the first page of each paper to certify the properties of each artifact.

As a separate conference track, TACAS 2023 hosted the 12th Competition on
Software Verification (SV-COMP 2023). SV-COMP is the annual comparative eval-
uation of tools for automatic software verification and witness validation. The TACAS
proceedings contain a selection of 13 short papers that describe participating verifi-
cation systems and a report presenting the results of the competition. These papers were
reviewed by a separate program committee (the competition jury); each of the papers
was assessed by at least three reviewers. A total of 52 verification systems were
systematically evaluated, with 34 developer teams from ten countries, including five
submissions from industry. Two sessions in the TACAS program were reserved for the
competition: presentations by the competition chair and the participating development
teams in the first session and an open community meeting in the second session.

We would like to thank all the people who helped to make TACAS 2023 successful.
First, we would like to thank the authors for submitting their papers to TACAS 2023.
The PC members and additional reviewers did a great job in reviewing papers: they
contributed informed and detailed reports and engaged in the PC discussions. We also
thank the steering committee, and especially its chair, Joost-Pieter Katoen, for his
valuable advice. Lastly, we would like to thank the overall organization team of
ETAPS 2023.

April 2023 Sriram Sankaranarayanan
Natasha Sharygina

Grigory Fedyukovich
Sergio Mover

Dirk Beyer

viii Preface
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Abstract. We present EVA, a framework for the integration of modern
verification tools in the context of AUTOSAR, a widely-used open stan-
dard for the development of automotive software systems. Our framework
enables the automatic end-to-end verification of system-level properties
using a compositional approach. It combines software model checking
techniques for the verification of software components at the code level
with a contract-based analysis for verifying their correct composition. In
this paper, we present the tool through its application on a representa-
tive automotive case study, discussing the main functionalities provided
and the results obtained.

1 Introduction

AUTOSAR [1] is a worldwide consortium of car manufacturers and component
or service providers in the automotive domain, with the main goal of provid-
ing a standardized software architecture for the development and execution of
software components. One of the fundamental challenges in designing software
for the AUTOSAR platform is ensuring safety. To this end, the application of
formal methods – and in particular automatic (or semi-automatic) techniques
based on model checking and theorem proving – is receiving significant interest
as a complement to more traditional V&V techniques. In this paper we present
EVA, a framework for the integration of modern verification tools in the con-
text of AUTOSAR. EVA adopts a model-based compositional verification that
founds on the contract-based methodology in [8]. The tool allows the automatic
end-to-end verification of system-level properties, and combines software model
checking techniques for the verification of software components at the code level
with a contract-based analysis for verifying their correct composition. EVA also
implements all the features that are required for usability in a typical industrial
context, including a front-end integrated in a standard AUTOSAR development
environment [2] with a user-friendly (formal) property editor, the automatic
generation of code stubs and other views and forms to help the user manage
verification in an AUTOSAR environment.

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 3–10, 2023.
https://doi.org/10.1007/978-3-031-30820-8 1

https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-8519-6342
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0001-9091-7899
http://orcid.org/0000-0003-1715-3882
http://orcid.org/0000-0002-5878-777X
mailto:s.corfini@huawei.com
https://doi.org/10.1007/978-3-031-30820-8_1
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_1&domain=pdf


A. Cimatti et al.

AUTOSL

BrakeCommand CruiseControl

CC_Init

CC_Run

RBrakeCommand

Brake

Commands

Key

Active

TargetSpeed

Set
Resume
Increment
Decrement

CCActive

CCTargetSpeed

Brake

Key

BrakeSensor1
IsBrakeSensor1Valid
BrakePedalPosition1

BrakeSensor2
IsBrakeSensor2Valid
BrakePedalPosition2

IsBrakeSensorValid
BrakePedalPosition

Brake

Fig. 1. BrakeCommand and CruiseControl components.

We present EVA through its application on a representative case study, which
describes a simplified active safety automotive system containing some of the
typical safety functions available in the modern vehicles (such as lane departure
warning, cruise control and a fault-tolerant brake pedal system). The example
is meant to show the potential of the tool as a driver for a more widespread
adoption of formal methods and contract-based verification in the industrial au-
tomotive context. Specifically, we introduce the case study in §2 and we describe
the typical verification workflow followed by a user of EVA in §3. Finally, in §4
we discuss the main verification results obtained.

2 A Case Study for Verification in AUTOSAR

AUTOSAR defines the reference architecture for the development of automotive
systems and provides the language (meta-model) for describing their architec-
tural models. An AUTOSAR application consists of a hierarchy of components
connected through ports. Provide ports represent output ports and require ports
correspond to the input ports. Connectors represent data flow from one port to
another. An AUTOSAR port can be classified as sender-receiver or client-server
and sender-receiver communications can be queued or non-queued (i.e., with no
buffering and the receiver always accesses the last sent data). In this paper we
assume that all ports are sender-receiver and non-queued.

An atomic software component consists of a set of runnables. A runnable
is a sequence of operations started by the Run-Time Environment (RTE). The
runnable is configured so that is triggered by an event that can be timing, data
sent or received, operation invoked, return of a server call, mode switching or
external events. A special init event is used for runnables that are executed when
the RTE starts and initializes the software components.

We illustrate the basic notions above by means of a simple but representa-
tive case study, that we shall use to present the main features of EVA. Figure
1 overviews (a section of) the architecture of the sample application. It collects
22 atomic components (including sensors, controllers and actuators) plus one
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composite component (AUTOSL) that represents the whole system, and imple-
ments some of the typical safety functions available in the modern vehicles such
as autonomous emergency braking, lane departure warning, crash preparation
and cruise control. We implemented (the runnables of) 9 components, 7 have
been coded manually and 2 have been generated from a Simulink model using
the Embedded Coder Support Package for AUTOSAR. The other components
are considered as stubs because their data come from lower levels (hardware
sensors) and we assume that the values they provide are correct.

The case study considers various safety properties, both at the level of the
whole system and at the level of the implementation of individual components
or runnables. As an example, we describe here two properties, a system-level
one and a component-level one, both concerning the behaviour of the cruise
controller. Specifically, the cruise controller is expected to react to a brake input
by disengaging itself within two execution steps. At the implementation level,
the requirement relates the input and output ports of the CruiseControl periodic
runnable, stating that whenever the CruiseControl CCActive port is true and the
Brake input port is true, then the CCActive output port must become false in at
most two steps. At the system level, instead, the same requirement relates the
behaviour of the components BrakeCommand and CruiseControl, stating that the
cruise control shall be disengaged if the user brakes, even when one of the two
brake pedal sensors is faulty.

3 EVA Verification Workflow

EVA integrates the verification engines Kratos2 [6] and OCRA [5] into an analysis
AUTOSAR toolchain. The ultimate goal is to automate the verification of formal
properties (contracts) on AUTOSAR models. In its default configuration, EVA
uses a portfolio of different state-of-the-art SAT- and SMT-based symbolic model
checking algorithms (implemented in Kratos2 and OCRA) which include differ-
ent variants of bit-level IC3 [10,12], IC3 with implicit abstraction [7], bounded
model checking [3] and K-induction [11].

The typical workflow of the tool is sketched in Figure 2. At the beginning,
the user creates an analysis project providing as input the AUTOSAR config-
uration of the system. The tool transforms the AUTOSAR configuration into
an internal set of analysis models. Since the AUTOSAR standard deals neither
with requirements nor with formal properties and their verification, EVA adopts
the extended AUTOSAR metamodel defined in [4] to support such concepts.

The user then completes the configuration of the system and provides:

source code: the user imports into the analysis project the source code of the
runnables and associates each runnable with its source files.

requirements: the user defines the (informal) properties of the system and
their relationships. Specifically, the user can assign a requirement to a com-
ponent, or to the system (modeled by a composite component) and refine
it into other requirements. Considering the following examples of informal
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Fig. 2. The analysis workflow.

requirements for the case study of §2:

If the user brakes, the cruise control shall disengage within 2 steps (1)

The signals of the brake pedal sensors shall be merged (2)

Even if at most one brake pedal sensor is faulty (3)
if the user brakes, the cruise control shall disengage

(1) and (2) are component-level requirements assigned to CruiseControl and
BrakeCommand respectively, while (3) is a system-level requirement assigned
to the composite AUTOSL and refined by (1) and (2).

contracts: the user formalizes the requirements into contracts. Precisely, a con-
tract consists of (optional) assumptions (properties that shall be satisfied by
the environment) and assertions (properties that the owner of the contract
shall satisfy), expressed as formulas in Linear Temporal Logic (LTL) with
some metric extensions (interpreted over discrete time). The user can assign
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a contract either to a runnable or to a (composite) component.

in the future within [2,2] (4)
it shall always be that

(CCActive and Brake is greater than 0) implies
in the future within [0,2] (not next(CCActive))

holds true

Contract (4) is the formal representation of requirement (1) and it is assigned
to the periodic runnable of the CruiseControl component5. It is worth noting
that EVA provides a smart contract editor that assists the user with context
completion, syntax highlighting and error detection. Also, to aid readability
of contracts, EVA uses some syntactic sugar to represent temporal operators,
such as in the future for F or it shall always be for G.

The user can create a new functional verification analysis, allowing to perform:

code verification: the user can check whether (the source code of) a runnable
satisfies one of the contracts assigned to it. Let us consider again the periodic
runnable of the CruiseControl component. The user can run code verification
to check whether that runnable satisfies its assigned contract (4).

compositional verification: the user can check whether a contract assigned
to a (composite) component is correctly refined by the contracts of the sub-
components. Intuitively, the user can run compositional verification to check
whether the system-level contract derived from requirement (3) and assigned
to the composite AUTOSL, is refined by the contracts derived from require-
ments (1) and (2) and assigned to the runnables of components CruiseControl
and BrakeCommand.

The result of both analyses can be that the contract is verified or violated. In
case of contract violation, EVA returns a counterexample (and the corresponding
test case, if the performed analysis is code verification). The user can fix the code
or change the system configuration (refine requirements or scheduling runnables)
and then execute the analysis again. The user can optionally apply local changes
to the shared analysis models (typically after a contract has been verified).

In addition to the main features above, two further analyses are provided:

contract validation: the user can verify the consistency (and absence of logical
contradictions) of the contracts of a component and of its sub-components.

coverage set generation: it combines model checking and random simulation
to automatically generate unit tests (using the CUnit [9] framework) trying
to cover all the branches of the C code of a given runnable.

4 Experimental Evaluation

In order to evaluate the effectiveness and performance of EVA, we applied it to
the verification of all the 43 requirements (10 system-level, 33 component-level)

5 We omit the contracts derived from (2) and (3) for lack of space (their formalization
shall be included in the artifact accompanying this submission).
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of the case-study application described in §2. Due to lack of space, we cannot
report the results in detail and we shall limit our analysis to some qualitative
considerations about the overall performance of EVA and the usefulness of the
produced outputs. Full details on the obtained results will be included in the
submitted artifact.

Performance considerations. We verified all the requirements on a PC run-
ning Ubuntu Linux 20.04, with a 2.6 GHz Intel Core I7-66000U CPU and 20 Gb
of RAM. EVA was able to successfully perform 42 out of 43 verification tasks
within the timeout (set to 1 hour), requiring less than one second in nearly half
of the cases for component-level properties, and requiring less than one minute
for all the remaining component-level tasks except one. For such problems, the
main bottlenecks identified during the case study involved the use of complex
floating-point operations, which are still handled inefficiently by the verification
backend. Also the verification of the 10 system-level properties could be com-
pleted relatively efficiently, with EVA requiring less than one minute in 7 cases,
and approximately 30 minutes for the hardest one. In this case, the main factor
affecting performance (besides the expected ones such as the number of involved
contracts and their complexity and length) are the constraints on the compo-
sition of components defined in the input model. In particular, performance is
affected significantly in cases in which the contract under analysis involves peri-
odic components with very different activation periods. The presence of periods
that range from few milliseconds to seconds poses a conceptual/theoretical chal-
lenge because the reasoner must explore a large number of small steps of the
more frequent tasks for each step of the slow ones. Optimizations targeting this
issue are left as research directions for future works.

Issues discovered. During verification, several counterexamples have been dis-
covered. Most of them turned out to be due to incorrect formalizations of re-
quirements or missing environment assumptions, which could be easily fixed by
examining the produced counterexamples. The analyses however revealed also
a number of real bugs in the implementations of some of the software compo-
nents as well as two issues due to wrong scheduling of components. The first
was caused by a mismatch between the Simulink description of the CruiseCon-
trol periodic runnable and its C implementation in the AUTOSAR application.
Specifically, the mismatch was due to different assumptions about the rate of
execution of the step of the cruise control with respect to the rate of the change
of the inputs, which caused the input values to be read only at even steps of the
cruise controller. The second issue regarded the scheduling of the BrakeCommand
runnable, which was set to be executed only upon changes in the input pedal
positions. A counterexample in the contract refinement showed that the validity
of these input signals could change value without the BrakeCommand running
so that the pedal position was not propagated to the CruiseControl. The model
was fixed by adding a trigger of the BrakeCommand also associated to the valid
signal of the pedal positions. In both cases, the bugs could be fixed by analyzing
the counterexamples generated by EVA.
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5 Data Availability Statement

The artifact described in the paper is not publicly available due to internal policy.
Any requests can be directed to the corresponding author.
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Abstract. This paper demonstrates the design and usage of WASIM,
a word-level abstract symbolic simulation framework with pluggable ab-
straction/refinement functions. WASIM is useful in the formal verifica-
tion of functional properties on register-transfer level (RTL) hardware
designs. Users can control the symbolic simulation process and tune the
level of abstraction by interacting with WASIM through its Python API.
WASIM can be used to directly check formal properties on symbolic
traces or to extract useful fragments from symbolic representations to
construct safe inductive invariants as a correctness certificate. We demon-
strate the utility of WASIM on the verification of two pipelined hardware
designs. WASIM and the case studies are available under open-source li-
cense at: [9].

Keywords: Formal verification · symbolic simulation · abstraction re-
finement.

1 Introduction

Formal property verification (FPV) plays an essential role in hardware verifica-
tion. Symbolic simulation is one of the model checking techniques used for FPV.
It explores all paths of the design circuit simultaneously with symbolic values to
work around the state explosion problem [6].

In this paper, we present WASIM, a word-level abstract symbolic simula-
tion framework with customizable abstraction/refinement functions. In the prac-
tice of hardware formal verification, we consider the guidance from human ver-
ification engineers as the key to scaling formal techniques up for industrial-
size designs. Therefore, in WASIM, we emphasize easy user-interaction that al-
lows engineers to freely control the simulation process and plug-in their own
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design-specific abstraction functions. WASIM can also ensure its trustworthi-
ness through a certificate (an inductive invariant) constructed from the traces
of symbolic simulation.

• Simulation Control
• Abstraction Function
• State Extraction & Manipulation

RTL Design
(Verilog)

User Input
Script

WASIM

User Interface

Traces of 
Abstract States

Formal Property 
Verification

Inductive Invariant

FV Application

Btor 
Parser STS

Input Processing

Simulator

Yosys

State Representation
• SMT formulas

Abstraction Refinement
• concrete-abstract mapping

State Simplification
• ‘X’- agnostic
• ‘X’- aware

Symbolic Simulation
• substitution

Fig. 1. Workflow of WASIM

Figure 1 demonstrates the workflow of WASIM. We highlight some of its
features below:

1. WASIM has a full support for synthesizable Verilog through the integration
with Yosys [17].

2. WASIM provides a set of Python API for rich user interactions.
3. WASIM performs symbolic simulation at the word level. It supports cus-

tomizable abstraction refinement functions and has built-in state simplifica-
tion functions to scale up for larger designs.

4. Users may freely extract symbolic state representations for various use cases
(e.g., formal property verification).

The remainder of this paper is organized as follows. The next section demon-
strates the functionalities of WASIM, followed by a short presentation of user
interface in Sect. 3. Sect. 4 reports the results on case studies. Sect. 5 discusses
related work. Finally, Sect. 6 concludes the paper.

2 WASIM Functionalities

The WASIM framework is built on top of PySMT [11], a unified interface for
multiple SMT solvers. The functionalities are described below.

2.1 Input Processing.

The input Verilog circuits are initially processed by the open-source synthesis
suite Yosys and transformed into the Btor2 format [15], an efficient word-level
representation for a state transition system (STS). WASIM consumes Btor2 with
a parser modified from CoSA (CoreIR Symbolic Analyzer) [14].
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2.2 Representing Simulation States using SMT formulas.

The state in WASIM is represented using SMT formulas, with one for each state
variable assignment. There are also assumptions (SMT formulas) associated with
each state. The assumptions capture the additional constraints on a symbolic
trace, for example, certain input combinations will never happen. The state is
reachable (realizable) if all assumptions are satisfiable. The state representation
may also include undetermined values (‘X’ values). We keep a special set of SMT
variables to represent the ‘X’ values.

2.3 Symbolic Simulation.

Symbolic simulation is mainly achieved through substitution. Variables in the
transition function of an STS are substituted by variable assignments from the
previous cycle. Unassigned input or unknown state variables are replaced by ‘X’
values. WASIM can explore either the state in the next one cycle (single-step
simulation) or traverse a set of states until no new (abstract) states are found
(multi-step simulation). Expression simplification and abstraction are used in
WASIM to reduce the size of the state representation.

2.4 Expression Simplification.

Expression simplification reduces the size of an SMT formula in the state repre-
sentation through the combination of various techniques. The built-in rewriting
functionality in SMT solvers serves as the ‘X’-agnostic simplification step. After
this first step, WASIM proceeds with ‘X’-aware simplification that checks if any
‘X’ value can be reduced given the state assumptions. For example, an ‘X’ is re-
ducible if it resides in the unreachable branch of an ITE (if-then-else) operator.
WASIM traverses the abstract syntax tree of SMT expressions and heuristically
guess-and-check reducible ‘X’ values. When confirmed, WASIM further rewrites
the expression to syntactically eliminate the ‘X’ values. We design several pat-
terns for common rewriting. For the most general case, WASIM will fall back to
query the CVC5 [2] SyGuS solver [1] to synthesize a new expression without ‘X’.

2.5 Abstraction Refinement.

We allow users to define abstraction functions that map a concrete state into
an abstract domain. A simple example of such abstraction is to leave out cer-
tain registers in the symbolic state representation by replacing them with ‘X’
values. The abstraction could be design-specific — engineers familiar with the
hardware microarchitecture may have better ideas on which registers to omit.
Therefore, we give such freedom to the WASIM users and allow them to spec-
ify their own abstraction functions. Abstraction is also essential to the efficient
state traversal because it is almost impossible to traverse the concrete state
space of a large hardware design. When it is hard to pre-determine the best ab-
straction function, users can specify a refinement function and perform dynamic
abstraction-refinement during symbolic simulation. An example of abstraction
refinement function is demonstrated below in Sect. 3.2
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3 User Interface

WASIM provides a Python interface to control the simulation, apply abstraction
or refinement and manipulate the symbolic expressions in state representations.

3.1 Simulation Process Control.

WASIM provides a single-step simulation function sim one step for forward
symbolic simulation of one clock cycle. Users can perform bounded-step simula-
tion by using the function in a range-based loop.

On the other hand, there is often the need for unbounded simulation. WASIM
provides an unbounded simulation function traverse all states. As its name
suggests, this function instructs the simulator to search for all symbolic states
that are reachable from the current state. Users may optionally provide a termi-
nation condition and the simulator will only search for reachable states before
the condition becomes true. This is useful, for example, when searching for all
symbolic states when an instruction is stalled in a certain pipeline stage.

3.2 Customizable Abstraction/Refinement Function.

Users may provide a callable Python object as the abstraction/refinement func-
tion. The abstraction function should transfer one symbolic state to its counter-
part in the abstract domain, while the refinement function returns a list of states.

Here we give an example of user-specified dynamic abstraction refinement
during symbolic simulation. In microprocessor verification, we can use symbolic
simulation to check that the arithmetic processing pipeline is functionally correct
by computing the output symbolic state from symbolic pipeline inputs. There
are external signals coming into the pipeline that only affect latency rather
than the arithmetic function. Abstraction can be applied to omit all external
signals, however, the final abstract symbolic state might become too coarse.
A refinement function can lazily bring back the external signals and branch the
execution based on certain signal combinations, until the final symbolic states are
sufficiently accurate to check for functional correctness. This example will require
the simulator to have a pluggable interface for abstraction/refinement functions.

3.3 Symbolic State Extraction and Manipulation.

In order to use the result of symbolic simulation, WASIM allows users to freely
extract and manipulate the symbolic expressions in a state representation. Sim-
ulation traces are available as Python lists. Users can collect all states in any
simulation step and obtain the expressions of arbitrary state variable assignment.
By checking the satisfiability of the conjunction of all variable assignments, the
assumptions, and the negated property, users can check for property violations
on a symbolic state. WASIM can also evaluate arbitrary functions over state
variables given the variable assignment. This is useful to compute the symbolic
value of wires in Verilog. Finally, users may re-assign an intermediate state and
restart the simulation from that point.
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Symbolic state extraction and manipulation enable two use cases: formal
property verification and inductive invariant construction. Users can
achieve formal property verification by checking the violation of properties on
all abstract simulation states extracted from symbolic state traversal. Fragments
of expressions in symbolic states are also helpful in the construction of inductive
invariants, which could serve as the certificate for the abstract state traversal.
For example,

(sv1 = expr1) ∧ (sv2 = expr2) ∧ ...

indicates that the STS resides in one (abstract) symbolic state where sv1, sv2, ...
are the state variables, and expr1, expr2, ... are the symbolic expressions in state
representation. By taking the disjunction of all such formulas of all reachable
abstract symbolic states, we cover the whole abstract state space and therefore,
the disjunction will constitute an inductive invariant for this STS. To certify a
specific safety property is valid, one can build from this inductive invariant with
additional expression fragments to create a safe inductive invariant.

4 Case Studies

We demonstrate the usage of WASIM with two verification case studies on
pipelined hardware designs. The design statistics are shown in Table 1, including
the number of state bits and logic gates.

Designs under verification. The first design is a simple arithmetic pipeline
with two variants implemented with or without external stall signals. They share
the same datapath that performs a multiply-accumulate (MAC) operation. The
second design is a simple 3-stage pipeline that resembles the backend of a pro-
cessor core. It contains data forwarding logic and the control logic to handle
external stall signals. Verification in this case study checks if these hardware
designs are implemented with the correct functions. Despite the relatively small
size, some are already nontrivial for a symbolic model checker.

Users’ input. For simple MAC without stall signals, users only need to provide
a simulation script with bounded simulation steps. For all other designs, certain
stages may be stalled by external signals for a period of time. The simulation
script instructs the simulator to case-split based on the value of external stall
signals and symbolically explore all stalled states in each step. The abstraction
function only keeps the concrete representation in the downstream of the stalled
stage, therefore, there are only a small number of stalled states in the abstract
domain. Finally, users may check the given properties are valid on every sym-
bolic path and the symbolic expressions in the state representations are used
to construct parts of inductive invariants. The inductive invariants are further
checked to ensure the correctness of simulation process given the user-provided
abstraction functions.

Results of the experiment. In the experiments, we compare with the IC3/PDR
symbolic model checking method implemented in Berkeley-ABC. The last three
columns in Table 1 are the time of symbolic simulation, the time of checking

15



W. Fang and H. Zhang

Table 1. Experimental Results

Design Statistics IC3/PDR WASIM

Design name #. state bit #. logic gate Time Simulation-time FPV-time Inv-time

simple MAC no stall 27 180 0.03s 0.02 0.3s 0.09s
simple MAC + stall 27 234 0.03s 11min26s 1s 7s

3-stage-pipe-ADD

199

3153

>72hr

1min57s 0.3s 2s
3-stage-pipe-NAND 2187 1min57s 0.3s 2s
3-stage-pipe-SET 2681 1min21s 0.2s 0.8s
3-stage-pipe-NOP 2421 58s 0.1s 1s

functional properties on all traces and the time for checking the validity of in-
ductive invariants. Results show that for the 3-stage-pipe-* problems, with
proper guidance from a human verification engineer, symbolic simulation can
outperform autonomous model checking with order-of-magnitude speed-up. The
results are obtained on a server running Ubuntu 20.04 with a 2.9 GHz Intel
Xeon(R) Platinum 8375C CPU and 128G RAM.

5 Related Works

Apart from WASIM, VossII [16] is another tool for hardware symbolic simula-
tion which implements the symbolic trajectory evaluation (STE) method [12,13].
VossII is mainly on the bit level using binary decision diagrams (BDDs) as the
state representation. Several extensions to the original STE method have been
proposed so far. For example, generalized STE (GSTE) enables unbounded prop-
erty verification using assertion graphs [18], and the word-level STE (WSTE)
achieves a higher level of abstraction with word-level variables in bit-fields [7].
These extensions are typically only available in a commercial STE implementa-
tion. Moreover, users must be fluent in a domain-specific functional programming
language named fl in order to use VossII.

On the other hand, tools based on symbolic model checking are broadly avail-
able for hardware formal verification, for example, Berkeley-ABC [5], which is a
powerful open-source tool implementing a collection of various model checking
algorithms [3,4,8]. Unlike symbolic simulation, symbolic model checking runs au-
tonomously to prove or falsify given properties without user interactions. How-
ever, without proper human guidance, model checking tools may suffer more
from the scalability problem.

6 Conclusions

In this paper, we present the design and usage of WASIM, a word-level abstract
symbolic simulation framework. WASIM is featured with a Python user interface
and pluggable abstraction/refinement functions to facilitate human verification
engineers to bring in their insights to better scale formal methods for hardware
designs. Applications of WASIM include formal property verification and induc-
tive invariant generation. Our case studies show that this strategy can be helpful
for some problems that are hard for autonomous model checking.
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Data Availability Statement

The data that support the findings of this study are openly available in WASIM:
A Word-level Abstract Symbolic Simulation Framework for Hardware Formal
Verification at https://doi.org/10.5281/zenodo.7247147, reference number
[10]. The authors confirm that the data supporting the findings of this study are
available within the article and its supplementary materials.
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Abstract. Multiparty session typing (MPST) is a method to automat-
ically prove safety and liveness of protocol implementations relative to
specifications. We present BGJ: a new tool to apply the MPST method in
combination with Java. The checks performed using our tool are purely
static (all errors are reported early at compile-time) and resource-efficient
(near-zero cost abstractions at run-time), thereby addressing two issues
of existing tools. BGJ is built using VerCors, but our approach is general.

1 Introduction

Construction and analysis of distributed systems is hard. One of the challenges is
this: given a specification S of the roles and the protocols an implementation I of
processes and communication sessions should fulfil, can we prove that I is safe
and live relative to S? Safety means “bad” communication actions never happen:
if a channel action happens in I, then it is allowed by S. Liveness means “good”
communication actions eventually happen (communication deadlock freedom).
Multiparty session typing (MPST) [14,15] is a method to automatically prove
safety and liveness of protocol implementations. The idea is shown in Figure 1:

1. First, a protocol among roles r1, . . . , rn is implemented as a session of pro-
cesses P1, . . . , Pn (concrete), while it is specified as a global type G (abstract).
The global type models the behaviour of all processes together (e.g., “first,
a number from Alice to Bob; next, a boolean from Bob to Carol”).

2. Next, G is decomposed into local types L1, . . . , Ln by projecting G onto
every role. Each local type models the behaviour of one process alone (e.g.,
for Bob, “first, he receives from Alice; next, he sends to Carol”).

3. Last, absence of communication errors is verified by type-checking every pro-
cess Pi against its local type Li. MPST theory assures that well-typedness
at compile-time implies safety and liveness at run-time.

The following simple example demonstrates global types and local types in Scrib-
ble notation [28], as used in the Scribble tool [16,17] for the MPST method.

Example 1. The Adder protocol [12] consists of two roles: Client (C) and Server
(S). Client either asks Server to add two numbers (Add-message with two Int-
payloads) or tells Server goodbye (Bye-message). In the former case, Server tells
Client the result (Res-message). This is repeated until Server is told goodbye.

© The Author(s) 2023
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G

L1 L2 · · · Ln

P1 P2 · · · Pn

global type
projection
local types
type check
processes

Fig. 1: MPST method
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Bye()

C S
Add(1, 2)

Res(3)

Bye()

C S
Add(1, 2)

Res(3)

Add(2, 3)

Res(5)

Bye()

Fig. 2: Example runs of Adder

1 global Adder(role C, role S) {
2 choice at C {
3 Add(Int , Int) from C to S;
4 Res(Int) from S to C;
5 do Adder(C, S); // recur
6 } or {
7 Bye() from C to S; } }

Fig. 3: Global type for Adder

1 local Adder(role C, role S) at C {
2 choice at C {
3 Add(Int , Int) to S; // send
4 Res(Int) from S; // receive
5 do Adder(C, S);
6 } or {
7 Bye() to S; } } // send

Fig. 4: Local type for Client in Adder

global
type

local
types DFAs APIs pro-

cesses

project
(auto)

interpret
(auto)

encode
(auto)

use
(manual)

Fig. 5: Workflow of API-generation-based tools for the MPST method

Figure 2 shows three example runs as sequence diagrams. Figure 3 shows the
global type. Notation “m(t1, . . . , tn) from p to q” specifies the communication of
a message of type m with payloads of types t1, . . . , tn from role p to role q. No-
tation “choice at r { G1 } or · · · or { Gk }” specifies a choice among branches
G1, . . . , Gk made by role r. Figure 4 shows the local type for Client. The notation
for local types resembles the notation for global types, except that communica-
tions are broken up into sends (“m(t1, . . . , tn) to q”) and receives (“from p”). ut

A premier approach to apply the MPST method in combination with main-
stream programming languages is based on API generation (Figure 5); it is
used in the majority of MPST tools, including Scribble [16,17], its extensions
[32,5,25,22,8,23,9,27,35], StMungo [21], νScr [34], mpstpp [20], and Pompset [6].
The main ideas, first conceived by Deniélou/Hu/Yoshida and pursued in Scrib-
ble, follow two insights: (a) local types can be interpreted as deterministic finite
automata (DFA) [10,11], where every transition models a send/receive action;
(b) DFAs can be encoded as object-oriented application programming interfaces
(API) [16,17], where classes and methods model states and transitions.

Example 2. Figure 6 shows the DFA and a Java API for Client in Adder (Ex-
ample 1), in the style of Scribble. Transition labels of the form q !m(t1, . . . , tn)
and p?m(t1, . . . , tn) in the DFA specify the send to q and the receive from p of a
message of type m with payloads of types t1, . . . , tn. Classes State1, State2, and
State3 in the API correspond to states 1, 2, and 3 of the DFA; the methods of
class Statei in the API correspond to the transitions from state i in the DFA.

Figure 7 shows a process for Client, using the Java API. The idea is to write
method client that consumes an “initial state object” s1 as input and produces
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1 class UseOnce { // superclass
2 boolean b = false;
3 void use() { if (b) throw new RuntimeException (); b = true; } }
4

5 class State1 extends UseOnce { // subclass
6 State2 sendAddToS(int x, int y) { use (); ... }
7 State3 sendByeToS () { use (); ... } }
8

9 class State2 extends UseOnce { // subclass
10 State1 recvResFromS(int[] buff) { use(); ... } }
11

12 class State3 extends UseOnce { }

1 2

3

S !Add(Int,Int)

S?Res(Int)

S !Bye()

Fig. 6: DFA and Java API for Client in Adder (Scribble-style)

a “final state object” s3 as output. First, the only communication actions that
can be performed, are those for which s1 has a method. When called, the com-
munication action is performed and a fresh “successor state object” s2 (line 4)
or s3 (line 8) is returned. Next, the only communication actions that can be
performed, are those for which s2 or s3 has a method. And so on. By using state
objects in this way, a run of method client simulates a run of the DFA. ut

1 State3 client(State1 s1) {
2 int x = 1; int y = 2;
3 while (x + y < 100) {
4 State2 s2 = s1.sendAddToS(x, y);
5 int[] buff = new int [1];
6 s1 = s2.recvResFromS(buff);
7 x = y; y = buff [0]; }
8 State3 s3 = s1.sendByeToS ();
9 return s3; }

Fig. 7: Process for Client in Adder

However, existing API-generation-
based tools that follow Example 2 in
MPST practice, do not fully meet the
promise of MPST theory, in two ways:

1. Mixed static/dynamic checks:
To ensure safety and liveness, ev-
ery non-final state object must be
used linearly (exactly one method
call). However, the type systems of most mainstream programming languages
are too weak to check linear usage statically. Instead, dynamic checks are
needed (e.g., method use in Figure 6). As a result, MPST practice is weaker
than MPST theory: in MPST practice, some errors are reported late at run-
time, whereas in MPST theory, all errors are reported early at compile-time.

2. Resource-inefficient checks: Every time when a communication action is
performed, a fresh state object is created. This costs time (allocation; garbage
collection) and space. As a result, MPST practice is costlier at run-time than
MPST theory: in MPST practice, API-encodings of DFA-interpretations of
local types have a real footprint (proportionate to the number of communica-
tion actions), whereas in MPST theory, local types are zero cost abstractions.

In this paper, we present BGJ : a new API-generation-based tool to apply the
MPST method in combination with Java. The checks performed using BGJ are
purely static (all errors are reported early at compile-time) and resource-efficient
(near-zero cost abstractions at run-time), thereby addressing the issues above.
Instead of building a new static analyser from scratch, we leverage a state-of-the-
art deductive verifier for Java, namely VerCors [2]. Under active development for
years, VerCors has been used in industrial case studies, too [26,18,30]. We note
that our approach is generic, though, while our current tool is VerCors-specific.
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1 class DFA {
2 int state;
3 //@ ensures Perm(state , write );
4 //@ ensures state == 1;
5 DFA() { state = 1; }
6

7 //@ context Perm(state , write );
8 //@ requires state == 1;
9 //@ ensures state == 2;

10 void sendAddToS(int x, int y) {
11 state = 2; ... }

12 //@ context Perm(state , write );
13 //@ requires state == 1;
14 //@ ensures state == 3;
15 void sendByeToS () {
16 state = 3; ... }
17

18 //@ context Perm(state , write );
19 //@ requires state == 2;
20 //@ ensures state == 1;
21 int recvResFromS () {
22 state = 1; ... } }

Fig. 8: Java API for Client in Adder (BGJ-style)

2 Usage: BGJ in a Nutshell

BGJ follows the same workflow as in Figure 5. We explain the steps below.

Steps 1-3: global types; local types; DFAs. First, the programmer manually
writes a global type in Scribble notation (e.g., Figure 3). Next, BGJ automati-
cally projects the global type to local types, and it automatically interprets the
local types as DFAs. This is standard and as usual [16,17].

Step 4: APIs. Next, BGJ automatically encodes the DFAs as APIs. Our ap-
proach is to encode a DFA of n states as an API of a single class instead of n
classes (Figure 6). At run-time, only one instance of this class is created (“near-
zero cost abstraction”); this instance allows any number of usages (method calls).
To be able to check that these usages are proper, a key novelty of our approach
is that BGJ also generates annotations for method contracts, Hoare-logic-style.

Example 3. Figure 8 shows the Java API for Client in Adder (Example 1), gener-
ated using BGJ (cf. Figure 6). Field state of class DFA identifies the current state;
the methods of class DFA correspond to transitions. The annotations (“//@ ...”)
define for each method: a precondition (“requires”; what must be true before a
call?), a postcondition (“ensures”; what will be true after?), and a method in-
variant (“context”; read/write permissions for which fields are needed?). ut

1 //@ context Perm(a.state , write)
2 //@ requires a.state == 1;
3 //@ ensures a.state == 3;
4 void client(DFA a) {
5 int x = 1; int y = 2;
6 //@ loop_invariant a.state == 1;
7 while (x + y < 100) {
8 a.sendAddToS(x, y);
9 x = y; y = a.recvResFromS (); }
10 a.sendByeToS (); }

Fig. 9: Process for Client in Adder

Step 5: processes. Last, the pro-
grammer manually writes processes
using the APIs and automatically ver-
ifies proper usage with VerCors (i.e.,
methods are called only if the precon-
ditions hold). These checks are purely
static. If successful, safety relative to
the global type and liveness (com-
munication deadlock freedom) are as-
sured; else, a bug is found (“all errors are reported early at compile-time”).

Example 4. Figure 9 shows a process for Client in Adder (Example 1), using the
Java API in Figure 8. It resembles Figure 7, except that method client and the
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loop are annotated with a simple contract and invariant. Using VerCors, we can
verify that the methods are called only if the preconditions hold. Conversely, if
we duplicate line 8, then VerCors reports an error: consecutively sending two
Add-messages is forbidden. This can be detected only dynamically in Figure 7
(i.e., a RuntimeException would be thrown in UseOnce of Figure 6). ut

3 Implementation

BGJ is implemented in Java. It reuses the front-end of Scribble for global types,
local types, and DFAs in steps 1-3 and, thus, supports the same features (in-
cluding input branching). The encoder of DFAs as APIs in step 4 is new. It
generates two versions of every API: concrete (e.g., Figure 8) and abstract (e.g.,
Figure 8 without “...”). The concrete API is for running a process. The abstract
API, which omits all verification-irrelevant details, is for verifying a process.3 At
run-time, TCP is used to transport messages between processes.

Besides the APIs, BGJ also generates “skeletons” of process code. These
skeletons represent the basic control flow (adapted from the DFAs) with send...
and recv... method calls in the right places (guaranteed to pass verification).
The skeletons can subsequently be filled in with the actual computations.

4 Preliminary Evaluation

We obtained first practical experience with BGJ to study its two improvements.
Regarding “all errors are reported early at compile-time”, we investigated how
much time the verification step of VerCors takes for eight example protocols in
Scribble’s repository [13]. Figure 10 shows the results, averaged over thirty runs,
using generated skeletons as process code. A preliminary conclusion is that the
extra time can be low enough (worth the effort4) for our approach to be feasible.

Regarding “near-zero cost abstractions at run-time”, we investigated run-time
overhead of a Scribble-based process (e.g., Figure 6) vs. a BGJ-based process
(e.g., Figure 8) for Client in Adder. We factored out code common to both ver-
sions (e.g., actual transport of messages over the wire), to be able to specifically
measure the impact of the differences (methodology of Castro et al. [5]). Av-
eraged over thirty runs, the Scribble-based process and the BGJ-based process
3 The generated annotations are compatible with VerCors 1.0 and above; VerCors can
be used as-is. A limitation of our approach is that VerCors supports only a subset
of Java. This affects the set of Java features supported for processes.

4 Usage of BGJ requires two kinds of effort. First, a method in hand-written process
code needs to be annotated if the body uses a generated API. All the other code—
typically the vast majority of the program (e.g., business logic, database access)—can
be tagged to be skipped by VerCors. The few annotations to be added, are only about
the state of the DFA at the beginning/ending of a method (pre/postconditions), or
at the beginning of each iteration (loop invariants). This is similar to the effort of
manually tracking state types when using the existing Scribble. Second, the validity
of the annotations need to be checked by VerCors. This is fully automated.
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protocol #roles time time
#roles

Adder 2 15.1 7.6
Booking 3 24.3 8.1
BuyerBrokerSupplier 4 30.4 7.6
Fibonacci 2 14.9 7.5

protocol #roles time time
#roles

HTTP 2 40.0 20.0
Negotiate 2 17.2 8.6
SMTP 2 24.7 12.4
TwoBuyer 3 22.8 7.6

Fig. 10: Time of VerCors (in seconds)

completed 231 (Integer.MAX_VALUE) iterations in 5221ms and 974ms, respectively.
Our preliminary conclusion is that our approach is indeed more resource-efficient.

5 Conclusion

Related work. The combination of the MPST method and deductive verifica-
tion is largely unexplored territory. The only other work, by López et al. [24],
uses deductive verifier VCC [7] to statically check safety and liveness of C+MPI
protocol implementations relative to MPST-based specifications. Their approach
is very different from ours, though, as it is not based on API generation.

The approach of encoding DFAs of n states as APIs of a single class was
recently studied by Cledou et al. [6], by leveraging advanced features of the
type system of Scala 3. Their approach does not address the issues in Section 1,
though, whereas our approach does. Previous attempts to address the issue of
“mixed static/dynamic checks” either target a programming language with a
stronger type system (Rust) [22,8,23,9], or adopt callback-style APIs in the spe-
cific context of event-based programming [35,34]. In contrast, our approach does
not rely on (the strength of) the type system of the targeted programming lan-
guage, and it supports traditional procedural/object-oriented programming.

Closest to BGJ is StMungo [21]: the approaches of both tools are similar, but
the underlying static analysis techniques differ. BGJ leverages method contracts
and deductive verification, while StMungo is based on typestate [33]. A key
advantage of using deductive verification is that it immediately opens the door
to reasoning about functional correctness (next paragraph).

Future work. There are two next steps. First, now that we have the infras-
tructure to combine the MPST method and deductive verification, we are keen
to explore their further integration to reason about functional correctness of dis-
tributed systems. VerCors is based on concurrent separation logic [29,4], so key
capabilities to reason about concurrency are already in place. This is connected
to work in which separation logic is used to control I/O operations (e.g., Pen-
ninckx et al. [31]). Second, while the usage of deductive verification is central to
BGJ, our approach does not crucially depend on VerCors: we chose it because it
is a fully automated, well-supported deductive verifier for Java, but other tools
(e.g., KeY [1], VeriFast [19]) offer opportunities worth investigating, too.
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Data Availability Statement

The artifact is available on Zenodo [3]. It contains: (a) our tool and its dependen-
cies; (b) material to replicate the example in Section 2; (c) material to replicate
the experiments in Section 4.
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Abstract. We present the tool PyLTA, which can model check param-
eterized distributed algorithms against LTL specifications. The param-
eters typically include the number of processes and a bound on faulty
processes, and the considered algorithms are round-based and either syn-
chronous or asynchronous.

1 Introduction

Distributed algorithms — algorithms that run on multiple communicating pro-
cesses — are used in many domains including scientific computing, telecom-
munications and the Blockchain. Standard distributed algorithms typically per-
form relatively simple tasks such as consensus or leader election[17], but com-
plexity arises from the lack of reliability of the network: some processes may
crash, communications may be lost, faulty processes may send arbitrary mes-
sages (Byzantine faults). . . In this setting, various automated verification tech-
niques have been developped in order to provide guarantees on the executions
of such algorithms. Notably, parameterised verification attempts to verify these
algorithms for every possible number of processes and faults at once [4].

Threshold automata [14] (TA) are a formalism based on counter abstrac-
tion [18] that model asynchronous distributed algorithms with parameterised
number of processes under crash and Byzantine faults. Verification can be per-
formed using a complete encoding to SMT formulas [13]. The decidabililty of
generalisations of these models was studied in [16] while [1] focuses on the com-
plexity of the underlying problems. These algorithms were implemented in the
Byzantine model checker ByMC [15]. However, algorithms based on threshold
automata require bounding the diameter of the underlying transition system,
either in the asynchronous case with bounded protocols (with only finitely many
exchanged messages) in [14], or with unbounded messages but in the synchronous
case, and for reachability properties only [20]. These techniques are therefore in-
complete for threshold automata where such a bound does not exist.

In this article, we introduce PyLTA, a tool for fully verifying parameterised
distributed algorithms both in the synchronous and asynchronous cases, with-
out bounding the diameter of the state space or the number of exchanged mes-
sages. It is based on layered threshold automata (LTA), a formalism developped
in [3] which can be thought of as some form of infinitely repeating threshold
automata. These generalise the synchronous TAs used in [20] and can handle
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both synchronous and asynchronous communication by exploiting some notions
similar to communication closure [8]. This allows us to verify any LTL formula,
including liveness properties, even on algorithms where processes may send un-
boundedly many messages (unlike [14] where only finite TAs and a fragment of
LTL was considered).

Concretely, PyLTA takes as input the LTA description of a parameterised
distributed algorithm as well as an LTL specification. It then verifies the spec-
ification under all parameter valuations, or finds a counterexample disproving
the specification. The tool is meant to provide support for distributed algorithm
designers. In fact, distributed algorithm design is not a single step process. In
practice, the implemented versions of an algorithm often contain additional fea-
tures or optimizations, and PyLTA can be used to automatically check these
variants for counterexamples.

2 Modeling Distributed Algorithms

In order to illustrate the capabilities of PyLTA, we use the Phase King algorithm
(Algorithm 1) [2]. In general, the algorithms that can be handled by PyLTA
exhibit the following characteristics:

1. They are parameterized: in Algorithm 1, n denotes the number of pro-
cesses and t a bound on the number of Byzantine faults. PyLTA verifies the
algorithm for all the valuations of these parameters at once.

2. They can exchange messages in an unbounded domain: the indices 2i
and 2i + 1 in Algorithm 1 are not bounded by a constant.

3. They can be synchronous or asynchronous but must ensure communica-
tion closure: sent and received messages are tagged with indices (2i and 2i+1
in Algorithm 1) that can only increase with time. As noted in [8], commu-
nication closure appears both in synchronous and asynchronous algorithms
in the literature.

4. The algorithms should use threshold conditions. This means that the condi-
tions in branches on the algorithms should be arithmetic formulas comparing
numbers of received messages and the values of parameters (see line 10).

Under these conditions, algorithms can be encoded in an LTA. The last two
conditions can often be worked around. For example, we will show along this
article how Algorithm 1 can be verified despite the fact that the condition on
line 6 is not ameanable to counter abstraction as it uses the identity of processes
which is lost in the abstraction.

Algorithm 1 uses the parameters n, and t with the condition t < n
4

. We intro-
duce an additional paramter f ≤ t which is the actual number of faulty processes:
the algorithm does not have access to f , but it is used during verification. Com-
munication closure yields a layered structure of our models: a layer indexed by
` ∈ N models the portion of the program that deals with messages tagged with
`. In Algorithm 1, the layer ` = 2i corresponds to lines 3-5, while layer ` = 2i + 1
corresponds to lines 6-12.
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1 Process PhaseKing(n, t, id, v):
Data: n processes, t < n

4
Byzantine faults, id ∈ {0 . . . n − 1}, v ∈ {0,1}.

2 for i = 0 to t do // Start of layer ` = 2i
3 broadcast (2i, v) // State av, v ∈ {0,1}
4 n0 ← number of messages (2i,0) received
5 n1 ← number of messages (2i,1) received// Start of layer ` = 2i + 1
6 if i == id then // Current process is king

7 if n0 ≥ n1 then v ← 0 // State k0
8 else v ← 1 // State k1
9 broadcast (2i + 1, v)

10 else if n0 >
n
2
+ t then v ← 0 // State b0

11 else if n1 >
n
2
+ t then v ← 1 // State b1

12 else v ← v′ where (2i + 1, v′) is the king’s message // State b?
13 end
14 return v;

Algorithm 1: The Phase King algorithm [2] is a synchronous algorithm that
solves binary consensus under t < n

4
Byzantine faults. It executes t+1 rounds,

and each round i ∈ {0 . . . t} is further decomposed into two layers (for round i,
the layers are named 2i and 2i+1). In layer 2i, the processes broadcast their
preferences v, and in layer 2i+1, they update v either to the majority if it is
strong enough, or to the preference of the process with id i, which is the king
of the round i.

We use counter abstraction to model executions of the algorithm, meaning
that we define a counter storing the number of processes at each state of the
algorithm. Here, our approach differs from other works on threshold automata
because we count the number of processes that have been through the state
instead of those that are currently in it. It follows that the number of messages m
sent during the execution can be accurately deduced from these counter values
as the number of processes at states where messages m have been sent. The
downside of counter abstraction is that the identities of the processes are lost.
Notably, the condition on line 6 needs to be abstracted with a non deterministic
choice.

Parameter values: n ∶ 5, t ∶ 1, f ∶ 1

` = 0 ` = 1 ` = 2 ` = 3 ` = 4 ⋯

⋯

⋯a0 ∶ 2

a1 ∶ 2

k0 ∶ 0

b0 ∶ 0

b? ∶ 4

b1 ∶ 0

k1 ∶ 0

a0 ∶ 1

a1 ∶ 3

k0 ∶ 0

b0 ∶ 0

b? ∶ 2

b1 ∶ 1

k1 ∶ 1

a0 ∶ 0

a1 ∶ 2

×2

×2 ×3

Fig. 1: A configuration of the Phase King algorithm (Algorithm 1).
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Configurations. PyLTA verifies properties on all reachable configurations. A con-
figuration can be interpreted as a record of events that occured during an exe-
cution. An example is depicted in Fig. 1 which we now explain.

The configuration contains an instantiation of the parameter values (given on
the bottom of the figure). Moreover, for each layer index, it specifies the number
of correct (i.e. non-faulty) processes that were at a given state at that layer; as
well as the number of correct processes that moved from one state to another
between consecutive layers.

In Fig. 1, initially, 2 correct processes are at state a1, and 2 are at a0, for a
parameter valuation n = 5, t = 1, f = 1. Recall that layers 2i and 2i+1 correspond
to round i, and that the meaning of the states are given in Algorithm 1; in
particular, ax is the first line of an iteration where variable v has value x. All
4 correct processes go to b? at layer 1, which means that the Byzantine process
was king at round 0. Then three of them go to a1 at layer 3, and one of them
goes to a0, etc. This models the situation where the Byzantine process sent a
message (2 × 0 + 1,1) to the latter process but (2 × 0 + 1,0) to the others. In
the next layer, a correct process is king with value 1 (state k1), and one correct
process has received a majority of value 1 (state b1), but not all correct processes
have arrived to layer 4 yet. This configurations thus represents a finite prefix of
an execution. When needed, LTL fairness assumptions can ensure that we only
consider infinite configurations.

3 Input Format and Usage

The input format is based on layered threshold automata (LTA) defined in [3],
which we illustrate on the running example. An input file needs to define three
elements: parameters, states and guards.

In PyLTA, the set of parameters are declared as follows.

PARAMETERS: n, t, f

PARAMETER_RELATION: 4*t < n

The second line declares a constraint on these parameters, here 4t < n, which is
a necessary condition for the correctness of Algorithm 1.

As in our running example, the input format assumes that the states of the
considered systems belong to layers. The following line defines two consecutive
layers A, B, and specifies after layer B, we come back to layer A and loop.

LAYERS: A, B, A

In other terms, this results in the sequence of layers A, B, A, B,.... One can
also specify lasso-shaped sequences; for instance, LAYERS: A, B, B would yield
the sequence A, B, B, B, ....

States can be declared by specifying the name of the layer and the name of
the state separated by a period as below.

STATES: A.0, A.1

STATES: B.k0, B.0, B.u, B.1, B.k1
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For instance, the first line defines the states a0 and a1 in Figure 1, and the second
line is the rest of the states.

Transitions are defined by distinguishing cases for each state using guards.
In Algorithm 1, a process needs to receive more than n

2
+ t messages (2i,1) in

order to move from state a1 (line 3) to b1 (line 11). These messages can either
come from processes in state a1 or from Byzantine processes. In PyLTA, this
condition is called the guard from a1 to b1 and it is expressed with the formula
2(a1 + f) > n + 2t. State names correspond to the number of correct processes
that have been at that state, so transitions are declared as follows.

FORMULA Afull: A.0 + A.1 + f == n

CASE A.1:

IF Afull & 2*(A.1 + f) >= n THEN B.k1

IF Afull & 2*(A.1 + f) >= n + 2*t THEN B.1

...

The formula Afull is used to enforce synchrony: no process can take a tran-
sition before every message was received. We present the other transitions for
Algorithm 1 in Table 1. Note that Afull or an equivalent Bfull should also be
added each time in order to avoid considering asynchronous executions.

The following instruction is used to declare an LTL specification to be verified
on the configurations:

WITH

A.initial: A.0 + A.1 + f == n

A.one0: A.0 > 0

B.not_two_kings: B.k0 + B.k1 <= 1

VERIFY: (A.initial & ! A.one0 & G(B -> B.not_two_kings)) -> G(A -> ! A.one0)

The instructions between WITH and VERIFY define predicates at given layers,
which can be used in the subsequent LTL formula. Here, A.one0 holds when
at least one process is in state A.0; and B.not_two_kings is used to prevent
executions where more than one king is present in a round. These predicates can
then be used as propositions of the LTL formula that will be verified.

A layer type name (A or B) inside a formula indicates a predicate that only
holds in the corresponding layers. An interpretation of the formula can therefore

Table 1: The guards of the transitions for Algorithm 1. The table on the left is
for transitions leaving states of layers ` = 2i, and the table on the right is for
those with layer ` = 2i+1. Each cell is the guard of the transition from the state
of the row to the state of the column.

` = 2i k0 b0 b? b1 k1
a0 2(a0 + f) 2(a0 + f) 2a0 ≤ n + 2t 2(a1 + f) 2(a1 + f)
a1 ≥ n ≥ n + 2t ∧2a1 ≤ n + 2t ≥ n + 2t ≥ n

` = 2i + 1 a0 a1

k0 true false
b0
b? k1 = 0 k0 = 0

b1 false true
k1
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be the following: “if there are n processes, and no process in A.0, and there is
always at most one non-Byzantine king in layers of type B, then at all layers of
type A, there is no process in A.0.”

4 Tool Overview and Usage

PyLTA is written in Python. In addition to counter abstraction and predicate
abstraction, PyLTA performs counter-example guided abstraction refinement [6].
Since we are working in an unbounded domain due to parameters, the tool uses
an SMT solver to check the realizability of the traces, and refine the abstrac-
tion using interpolants produced by the solver [12]. The current version uses
MathSAT [5] via PySMT [11]. We use Lark[19] for parsing.

The LTL specification is first negated, and then converted into a Büchi au-
tomaton using Spot [10]. The product between this automaton and the predicate
abstraction is then built dynamically. We check the language emptiness of the
resulting product automaton; if it is empty, then the specification holds. Oth-
erwise, the abstract counterexample is checked for realizability using the SMT
solver, and either the counterexample is confirmed, or the abstraction is refined.

We run PyLTA on an input file as follows.

python -m pylta [input_file]

The output on the file corresponding to our running example is the following:

VERIFYING R.initial & ! R.one0 & G (B -> B.not_two_kings) ...

Formula is Valid

More details such as the abstract counter examples encountered and the added
predicates can be obtained by adding a -v flag. In this case, a single refinement
was necessary, which added the predicate B.k0 + B.0 + B.u <= 0.

The verification algorithm does not require user interaction since abstrac-
tions are refined automatically. However, any predicate defined in the VERIFY

instruction is used in the predicate abstraction, even if it does not appear in
the formula. This behaviour provides a way to manually add predicates in order
to help with the verification. The tool is distributed under the GNU GPL 3.0
licence and is available at https://gitlab.com/BastienT/pylta.

5 Conclusion

We have presented PyLTA, a tool for verifying parameterised distributed algo-
rithms. Despite the undecidability barrier even in simple versions of the problem
[20], PyLTA is able to verify complex properties on distributed algorithms, and
unlike previous works, makes no assumptions on bounds on the state space or ex-
changed messages. As future work, one might explore the use of implicit predicate
abstraction [21] to speed up the verification process. Another direction would be
to integrate well ordered functions providing termination arguments [7] as used
in [9] which could extend the usability of PyLTA.
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Abstract. We present FuzzBtor2, a fuzzer to generate random word-
level model checking problems in Btor2 format. Btor2 is one of the
mainstream input formats for word-level hardware model checking and
was used in the most recent hardware model checking competition. Com-
pared to bit-level one, word-level model checking is a more complex re-
search field at an earlier stage of development. Therefore, it is neces-
sary to develop a tool that can produce a large number of test cases
in Btor2 format to test either existing or under-developed word-level
model checkers. To evaluate the practicality of FuzzBtor2, we tested the
state-of-the-art word-level model checkers AVR and Pono with the gener-
ated benchmarks. Experimental results show that both tools are buggy
and not mature enough, which reflects the practical value of FuzzBtor2.

1 Introduction

Model checking plays an influential role in modern hardware design [4]. Its
great success is inseparable from propositional methods such as Binary Deci-
sion Diagrams (BDDs) [10] and Boolean SATisfiability (SAT) solver [14]. Since
BMC [6] was introduced, influential hardware model checking methods such as
IMC [20], IC3 [9], and CAR [18] are all SAT-based. At the same time, many
important efforts have been made to apply SAT-based model checking tech-
niques to word-level verification tasks whose background theory are first-order
logic [7,23,11,19,16]. These works all rely on more expressive reasoning tech-
niques, i.e., Satisfiability Modulo Theories (SMT) [3] solvers. As the performance
of the SMT solvers continues to improve [1,22], word-level hardware model check-
ing has become a promising research area. Word-level reasoning is more powerful
and opens up many possibilities for simplification [5]. It is strong evidence that a
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word-level model checker, AVR [17], achieved the best results in the most recent
hardware model checking competition [2].

Implementing word-level reasoning tools such as SMT solvers and word-level
model checkers is much more complex and difficult than bit-level tools. For word-
level model checking, which is a developing and immature area, it is an urgent
requirement to obtain a large number of diverse benchmarks that can be used
for bug finding and performance evaluation. Responding to this requirement, we
present FuzzBtor2, a fuzzing tool that can generate random word-level model
checking problems. We choose Btor2 [21] as the format of output files, which is
simple, line-based, and easy to parse. Btor2 is also the current official format
for the hardware model checking competition [2]. Most of mainstream word-level
model checkers support Btor2 format directly (AVR and Pono [19]) or indirectly
(nuXmv [11] and IC3ia [13]). To evaluate whether FuzzBtor2 is practical, we
test two state-of-the-art word-level model checkers AVR and Pono that can read
Btor2 files directly via Btor2 files generated by FuzzBtor2, and generated test
cases trigger various errors of both checkers. We expect that FuzzBtor2 becomes
infrastructure for the development of word-level model checkers.

2 Word-Level Model Checking and Btor2 Format

We assume that the reader is familiar with standard first-order logic terminol-
ogy [3]. Words generally refer to terms with bit-vector ranges, optionally com-
bined with other theories. The background theory of Btor2 is the Quantifier-
Free theory of Bit Vectors with Arrays extension (QF_ABV), by which almost
all computer system information can be encoded. And the invariant property is
(one of) the most important property classes to verify.

A model checking problem consists of a transition system and a property to
verify. A transition system is a tuple S = (V, I, T ) where
– V and V ′ are sets of variables in the present state and next state respectively;
– I is a set of formulas corresponding to the set of initial states;
– T is a set of formulas over V ∪ V ′ for the transition relation.

Given a transition system S = (V, I, T ), its state space is the set of possible
variable assignments. I and T determine the reachable state space of S. The bad
property is represented by a formula ¬P over V . A model checking problem can
be defined as follows: either prove that P holds for any reachable states of S, or
disprove P by producing a counterexample. In the former, the system is safe, and
in the latter, the system is unsafe. There are input variables in some transition
systems, which can be modeled as state variables whose corresponding next
states are unconstrained. Assume that a Btor2 file includes ns state variables,
nc constraints, and nb bad properties. Its initial state space consists of ns init-
formulas. The transition relation consists of ns next-formulas and nc constraint-
formulas. And the bad property consists of nb bad-formulas. The sorts of init-
formulas and next-formulas should be consistent with the corresponding state
variables, and constraint-formulas and bad-formulas are Boolean sort.
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3 The FuzzBtor2 Tool

FuzzBtor2 is an open-source software consisting of approximately 2400 lines of
C++11 code. FuzzBtor2 does not rely on specific libraries and it is self-contained.
In this section we introduce the usage and architecture of FuzzBtor2. The tool
is available at https://github.com/CoriolisSP/FuzzBtor2.

3.1 Usage

The command to execute FuzzBtor2 in Linux systems is ./fuzzbtor [options].
We present the usage and features of FuzzBtor2 along with the options here.

--seed INT This option is used to set the seed for the random number gen-
erator. Keeping other options, we could generate different test cases by changing
the value of the random number seed. The default seed is 0.

--to-vmt Verification Modulo Theories (Vmt) [12], which is an extension
of Smt-Lib2 [3], is also used to represent symbolic transition systems and the
properties to verify. vmt-tools [15] is a tool suite for Vmt format, and it provides
a translator from Btor2 to Vmt. However, vmt-tools supports only a subset
of operators in Btor2. By this option, the generated Btor2 files only include
the operators supported by vmt-tools, so that they can be translated into Vmt
format to test model checkers that take Vmt files as input (e.g., IC3ia [13]).

--bv-states INT, --arr-states INT These options specify the numbers of
bit-vector and array state variables. The default values are 2 and 0 respectively.

--max-inputs INT This option specifies the maximum number of input
variables in the generated Btor2 file. The actual number of input variables in
the generated file may be smaller than the maximum. The default value is 1.

--bad-properties INT, --constraints INT These two options specify the
numbers of bad properties and constraints in the generated Btor2 file, and the
default values are 1 and 0 respectively. The fuzzer currently does not support
generating liveness properties and fairness constraints.

--max-depth INT A word-level model checking problem consisting of a
transition system and properties to verify is essentially a set of first-order logic
formulas. And formulas are represented by syntax trees in FuzzBtor2, so a word-
level model checking problem corresponds to a set of syntax trees. This option
specifies the maximum depth of these syntax trees. The default value is 4.

--candidate-sizes RANGE|SET FuzzBtor2 can get a set of positive in-
tegers from this option, which is used to specify sorts of variables. All sizes of
indexes of array variables, elements of array variables, and sizes of bit-vector
variables are in the set. The default set is {s ∈ Z | 1 ≤ s ≤ 8}. Note that it does
not allow to define a specific sort directly.

3.2 Architecture

The architecture of FuzzBtor2 consists of preprocessor, generator, and printer.
Users of FuzzBtor2 only specify some arguments on the command line, and no
other input is given. From command line arguments, the preprocessor sorts out
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Algorithm 1: GenerateSyntaxTree
Input: A sort s of bit-vector or array, and a depth denoted by d
Output: A syntax tree of sort s with depth d

1 if d = 1 then
2 leafType := DecideLeafType() // Decide the type of leaf node.
3 if leafType = constant then
4 return a constant

5 else if s ∈ candidateSort then
6 if leafType = input then
7 if there exists an input variable of sort s then
8 return an existing input variable

9 if existInputNum < MaxInputNum then
10 return an new input variable

11 else if leafType = state then
// Similar to the case of input variables, omitted here.

12 return NULL // Construction fails.

13 op := DecideOperator(s)
14 〈n, depths, sorts〉 := DecideInformationOfSubtrees(op,d)
15 tree := NewTree(op)
16 for i = 1 . . . n do
17 subTree := GenerateSyntaxTree(sorts[i], depths[i]) // Recursion.
18 if subTree = NULL then
19 return NULL

20 else
21 tree.AddSubTree(subTree)

22 return tree

the information required by the generator and saves it as a configuration. Ac-
cording to the configuration, the generator constructs some syntax trees that
satisfy requirements of the number and sorts as stated in Sec. 2. These syn-
tax trees encode a set of first-order logic formulas, which essentially is a model
checking problem independent of the Btor2 format. At last, the printer outputs
syntax trees constructed by the generator in Btor2 format.

The generator is the key component of FuzzBtor2. The generator constructs
a syntax tree recursively, that is, a syntax tree with a depth greater than 1
consists of sub-syntax trees, operators, and some possible parameters (only for
indexed operators). When the recursive process reaches the base case, i.e., a
leaf node of the syntax tree, it randomly decides to return a (state or input)
variable or a constant based on a certain probability. Due to the limitation of
the number and sort of variables, if the generator chooses to return a variable, it
may encounter a situation where the required leaf node cannot be constructed.
Therefore, FuzzBtor2 does not guarantee that the Btor2 file can be successfully
generated, and some parameters would cause the construction to fail. The overall
process of constructing a syntax tree is described in Algorithm 1.
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4 Experimental Evaluation

Tested Tools. In order to evaluate whether FuzzBtor2 is practical, we choose
two state-of-the-art word-level model checkers AVR [17] and Pono [19] as tested
tools. Both checkers can take Btor2 as direct input format, and won the first and
third place respectively in the 2020 Hardware Model Checking Competition [2].

Table 1: Overall results.
Safe Unsafe Uniquely Solved Error Timeout

AVR (BV+ABV) 16 (11+5) 24 (11+13) 22 (13+9) 157 (78+79) 1 (0+1)
Pono (BV+ABV) 44 (20+24) 27 (13+14) 53 (24+29) 127 (67+60) 0

Table 2: Classification and statistics of error messages. The first type of error
message of Pono has been confirmed by its developers.

BV ABV Error Message

AVR

50 47 avr_word_netlist.cpp:912: static Inst* OpInst::create(OpInst::OpType,
InstL, int, bool, Inst*, SORT): Assertion ‘0’ failed.

20 10 reach_y2.cpp:7367: void _y2::y2_API::inst2yices(Inst*, bool): Assertion
‘0’ failed.

1 3 reach_util.cpp:5785: void reach::Reach::check_correctness(): Assertion
‘0’ failed.

0 1 reach_y2.cpp:5365: virtual bool _y2::y2_API::get_assignment (Inst*,
int&): Assertion ‘e->get_sort_type() == bvtype’ failed.

2 3 reach_y2.cpp:7102: void _y2::y2_API::inst2yices(Inst*, bool): Assertion
‘res != -1’ failed.

0 5 reach_y2.cpp:7113: void _y2::y2_API::inst2yices(Inst*, bool): Assertion
‘res != -1’ failed.

1 3 Error: signal 11: build/bin/reach
0 1 reach_y2.cpp:1784: void _y2::y2_API::add_gate_constraint (y2_expr

&, y2_expr_ptr, std::string, Inst*, bool, bool): Assertion ‘rhs !=
Y2_INVALID_EXPR’ failed.

0 1 reach_y2.cpp:6695: void _y2::y2_API::inst2yices(Inst*, bool): Assertion
‘0’ failed.

0 1 reach_y2.cpp:6002: y2_expr_ptr_y2::y2_API::create_y2_number
(NumInst*): Assertion ‘num->get_num() == 0’ failed.

4 3 reach_coi.cpp:943: bool reach::Reach::find_from_minset2 (Solver*,
Inst*, InstS&, InstS&, std::set<std::__cxx11::basic_string<char>
>&): Assertion ‘ufType != "0"’ failed.

0 1 reach_util.cpp:5758: void reach::Reach::check_correctness(): Assertion
‘0’ failed.

Pono

50 43 [boolector] boolector_slice: ’upper’ must not be < ’lower’
2 2 Segmentation fault (core dumped)
7 7 free(): invalid pointer Aborted (core dumped)
4 5 vector::_M_range_check: _n (which is 0) >= this->size() (which is 0)
2 2 double free or corruption (out) Aborted (core dumped)
2 1 [boolector] boolector_slice: ’upper’ must not be >= width of ’exp’

Experimental Setups. We run FuzzBtor2 repeatedly with different parameters
to generate a total of 200 test cases, in which 100 cases are array-free, i.e.,
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without array variables (BV), and 100 cases include array variables (ABV). The
command of FuzzBtor2 used for the former purpose is fuzzbtor2 --seed i --max-
depth 4 --constraints 1 --bv-states 3 --arr-states 0 --max-inputs 3 --candidate-sizes
1..8. To generate Btor2 models with array variables, the command is fuzzbtor2
--seed i --max-depth 4 --constraints 1 --bv-states 2 --arr-states 1 --max-inputs 3 --
candidate-sizes 1..8. And i takes the value from 0 to 99. For every tested checker,
the timeout to solve each instance is set to one hour.
Correctness. We use catbtor provided by btor2tools4 [21] to verify the correct-
ness of outputs of FuzzBtor2. All Btor2 files generated by FuzzBtor2 pass the
check of catbtor, which means all Btor2 models generated by FuzzBtor2 are
legal in syntax. Moreover, neither of the two tested tools (AVR or Pono) returns
error messages that are relevant to the syntax issue of input Btor2 files.
Results.We perform 200 calls to FuzzBtor2 and we get 100 BV test cases and 98
ABV test cases. Two calls for ABV test cases fail due to the situation discussed in
sec. 3.2. The file sizes of the generated test cases are not large, with a maximum
of 58 lines, a minimum of 22 lines, and an average of 39.2 lines. We use the
generated 198 test cases to find bugs of AVR and Pono. All solving processes
return results immediately, regardless of success or failure, except a situation
where AVR timeouts on an ABV case. Table 1 presents overall statistical results.
Neither AVR or Pono performs very well, since most of the test cases (157 vs.
127) trigger their bugs. And Table 2 presents the classification and statistics of
error messages returned by tested tools. We encounter 12 and 6 different types of
error messages for AVR and Pono respectively. It can be seen from Table 2 that
ABV test cases trigger more types of errors than BV, which matches the fact
that more code is covered in the process of solving a case in more complex theory.
Considering both two tables, AVR performs worse than Pono in the experiments,
where AVR solves fewer test cases and returns more types of error messages.
Besides, the case where AVR timeouts is solved (Safe) by Pono, and is a Btor2
file with only 43 lines, so we speculate that a performance issue occurs in AVR.

5 Conclusion

We have presented FuzzBtor2, an open-source tool for the generation of ran-
dom Btor2 files, by which the generated test cases can trigger various errors
of state-of-the-art word-level model checkers. Several future works are being
considered. First, if easy-to-trigger bugs of the tested tools are fixed, we could
generate Btor2 files of larger size and filter out benchmarks that can be used for
performance evaluation through experiments. Second, there are some keywords
(output, fair, and justice) of Btor2 that are not supported by current FuzzBtor2,
and we can extend the functionality of FuzzBtor2 to support them in future ver-
sions. Finally, as stated in sec. 3.2, the set of syntax trees constructed by the
generator of FuzzBtor2 is essentially a model checking problem, independent of
Btor2 format. Therefore, it would be useful to print model checking problems
randomly generated in other formats such as Smv [8] and Vmt [12].
4 https://github.com/boolector/btor2tools
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Data-Availability Statement The artifact that supports the experimental
results is available in Zenodo with the identifier https://doi.org/10.5281/
zenodo.7234681 [24].
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Abstract. The Eclipse Supervisory Control Engineering Toolkit (ES-
CETTM) is an open-source project to provide a model-based approach
and toolkit for developing supervisory controllers , targeting their entire
engineering process. It supports synthesis-based engineering of supervisory
controllers for discrete-event systems, combining model-based engineer-
ing with computer-aided design to automatically generate correct-by-
construction controllers. At its heart is supervisory controller synthesis, a
formal technique for the automatic derivation of supervisory controllers
from the unrestricted system behavior and system requirements. Vital
for the future development of these techniques and tools is the ESCET
project’s open environment, allowing industry and academia to collabo-
rate on creating an industrial-strength toolkit. We report on some crucial
developments of the toolkit in the context of research projects with Rijks-
waterstaat and ASML that have considerably improved its capability to
deal with the complexity of real-life systems as well as its usability.

1 Introduction

A supervisory controller, supervisor for short, coordinates the behavior of a cyber-
physical system according to discrete-event observations of its system behavior.
Based on such observations, the supervisor decides which events the system can
safely perform and which events must be disabled, because they would lead to
violations of requirements or to a blocking state. Engineering of supervisors is a
challenging task, due to the high complexity of real-life discrete-event systems.

Supervisory control theory [21] underpins a model-based technique for auto-
matically deriving a model of a supervisor from models of the uncontrolled system
behavior and the system’s requirements, such as functional or safety-related re-
quirements that intend to rule out all undesired behavior. This is achieved by
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disabling controllable (output) events, such as starting a motor. Supervisors exert
no control over uncontrollable (input) events, such as sensor reports.

The Eclipse Supervisory Control Engineering Toolkit (ESCETTM, pronounced
èsèt) project,12 provides a model-based approach and toolkit for the development
of supervisors. It targets the entire engineering process for the development
of supervisors, including modeling, synthesis, simulation-based validation and
visualization, formal verification, real-time testing, and code generation. This
entire process is supported by CIF [1],3 featuring an automata-based modeling
language for convenient specification of large-scale systems, and tools that support
synthesis-based engineering (SBE). SBE is an engineering approach to design and
implement supervisors that combines model-based engineering with computer-
aided design to produce correct-by-construction controllers, by automating the
engineering process as much as possible. While not detailed further in this paper,
the ESCET project also comprises Chi [28], a hybrid language and toolset for
modeling and simulation, developed by the same research group that developed
CIF, and the ToolDef scripting language for the definition and execution of
model-based toolchains, useful for combining different ESCET tools.4

The ESCET project, an Eclipse Foundation open-source project since 2020,
builds upon decades of research and tool development at Eindhoven University
of Technology. Vital for the evolvement from an academic into an industrially
applicable toolkit are the years-long ongoing research collaborations with industry,
including Rijkswaterstaat [7], ASML [27], and Vanderlande [29]. Rijkswaterstaat,
part of the Dutch Ministry of Infrastructure and Water Management, is responsi-
ble for infrastructure in the Netherlands, including roads, bridges, tunnels, and
waterway locks. ASML is an innovation leader in the semiconductor industry, pro-
viding chipmakers with all they need to mass produce patterns on silicon through
lithography. Vanderlande is a market leader in logistic process automation for
the warehousing, airport and parcel sectors. The quality of supervisory control
software for such systems impacts their availability and reliability. Synthesis-
based engineering allows for automation, modularization, and standardization,
increasing quality and evolvability and decreasing life-cycle costs.

With the move to the Eclipse Foundation, and supported by the Eclipse Foun-
dation’s principles of transparency, openness, meritocracy and vendor-neutrality,
the ESCET project aims to be an open environment and a growing community.
It allows interested parties, such as academic and applied research institutes,
industrial partners and tool vendors, to collaborate on and profit from further
tool development for the model-based construction of supervisors. Furthermore,
the project’s open nature allows any vendor to develop commercial tool support.

We report on some crucial developments of the toolkit that have considerably
improved its capability to deal with the complexity of real-life systems as well as
its usability, as shown by the case studies reported in Section 5.

1 See https://eclipse.org/escet.
2 ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.
3 See https://eclipse.org/escet/cif.
4 See https://eclipse.org/escet/chi and https://eclipse.org/escet/tooldef.
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2 Supervisory Controller Synthesis

Human operator / Larger system

(Graphical user) interface

Supervisory controller(s)

Resource controller(s)

Actuators Sensors

Mechanical components

Fig. 1. Structure of supervisory control.

Figure 1 depicts the general system struc-
ture for supervisory control. A cyber-
physical system consists of mechanical
components to be controlled. Actuators
drive their operation, while sensors indi-
cate their status. Resource control pro-
vides low-level control, often offering
more abstract actuator and sensor signals
for higher levels of control to use. Super-
visors ensure actuator signals at lower
layers (the plant) that would violate re-
quirements are disabled. Large systems
may be divided into (layers of) subsys-
tems, and supervisors can be present at
each level, coordinating lower-level sub-
systems (only a single layer is depicted).
A (sub)system is often controlled by a
human operator through a graphical user
interface, or part of a larger system to
which it is connected by an interface.

Supervisory controller synthesis [21,33] automatically generates a correct-by-
construction supervisor model for a discrete-event system, given precise descrip-
tions of the behavior of the plant components as well as the (safety) requirements
for the overall plant behavior. These can be specified conveniently as extended fi-
nite automata (EFAs), i.e., automata with variables, guards and updates, possibly
carrying invariants that restrict the state space [13].

Synthesis considers the synchronous product of the plant automata together
with the requirement automata. That is, these automata synchronize on shared
events, meaning these events must be executed simultaneously. If an event is
missing in the local state of any plant automaton, or is restricted by a plant
invariant, it is absent from the overall system state, and it is considered physically
impossible. If, on the other hand, an event is missing only in the states of
requirement automata, or is restricted by a requirement invariant, it is physically
possible but must be disabled by the synthesized supervisor to ensure safety.

Controllable events (such as output signals to actuators) can be prevented
by a supervisor, but uncontrollable events (such as input signals from sensors)
cannot. To ensure controllability, if an uncontrollable event must be prevented,
the supervisor makes the system state where it occurs unreachable by disabling
all controllable events leading to it. Moreover, if an uncontrollable event leads to
such a state, the origin state of this event must be made unreachable too.

If safety of, for instance, a drawbridge is ensured by forcing it to remain raised
forever, it is useless for road traffic. Therefore states of the plant and requirement
EFAs can be marked, for instance states where the bridge deck is lowered, the
barriers are open, and the signals are green. A marked state in the synchronous
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product means all individual plant components are in a marked local state, in this
case allowing traffic to proceed over the bridge. The supervisor must guarantee
that the plant can always reach a marked state, by disabling (events leading to)
states that violate this property. Such a supervisor is said to be nonblocking.

Supervisory controller synthesis ensures safety, controllability and nonblock-
ingness of a system with respect to its requirements, accounting for all possible
behavior, also disabling events that lead to problems such as blocking behavior
or requirement violations much later in the system’s execution. It does so by
restricting as little behavior as possible, thus ensuring maximal permissiveness.

Next to ESCET toolkit, other supervisory controller synthesis tools include
DESTool [16], DESUMA [25], Supremica [12], and TCT [6]. For a comparison
between these tools see [24]. The ESCET toolkit can be used to specify various
different models during the entire development process, including simulation
models, as it has a rich set of concepts. This prevents having to use multiple
languages. It has a strong focus on industrial application, with, e.g., modeling
convenience, efficient algorithms, and checking for common mistakes.

3 Synthesis-based Engineering Process

Figure 2 shows ESCET’s synthesis-based engineering process. It starts with a
model-based specification, consisting of plant and requirement models, modeled
as EFAs and/or invariants. To these models, supervisory controller synthesis is
applied, resulting in a model of the supervisor. The ESCET toolkit supports
synthesis both with its own synthesis tools, and by a transformation to Supremica.

Synthesis ensures that all specified requirements are satisfied by the syn-
thesized supervisor. Verification, such as model checking, supported through
transformations to UPPAAL [2] and mCRL2 [3], can be used to check other
requirements not yet supported by synthesis, including liveness guarantees or
timing requirements. Validation, supported by ESCET’s automated or inter-
active simulation and visualization, helps to determine whether the specified
requirements, and thus the supervisor, achieve the desired system behavior.

An implementation of the controller can be obtained automatically from a
model of the supervisor, by generating code for its control software. The ESCET
toolkit supports code generation for multiple languages and platforms, including
Java, C, Simulink, and PLC code (IEC standard 61131-3) for multiple vendors.

Plant model(s)

Requirement
model(s)

Supervisory
controller
model

Controller
implementation
(control software)

Specification

Supervisory
controller
synthesis

Code
generation

Validation and
verification

Fig. 2. Simplified representation of ESCET’s synthesis-based engineering process.
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4 Technical Improvements

We describe recent improvements and novel techniques that have been vital
in making supervisory controller synthesis applicable to industrial-size cyber-
physical systems. Some have already been integrated into the ESCET toolkit,
while others are being integrated or are planned to be integrated.

Symbolic synthesis The ESCET toolkit is based on the symbolic supervisory
controller synthesis algorithm from Ouedraogo et al. [19]. It iteratively strengthens
guard predicates on transitions so that forbidden states become unreachable
in the controlled plant. This represents a major step forward for the industrial
applicability of supervisory controller synthesis, by allowing for synthesis of plants
and requirements intuitively modeled as EFAs.

The use of EFAs also opens up the possibility to extract and represent the
synthesized supervisor more compactly and intuitively [15]. The ESCET toolkit
represents the supervisor model as the collection of the provided plant and
requirement models together with the addition of a single EFA containing a
strengthened guard for each controllable event.

BDD Data Structure The Binary Decision Diagram (BDD) data structure allows
to efficiently and symbolically represent and manipulate predicates representing
(parts of) state spaces [14]. Its use in ESCET’s symbolic supervisory controller
synthesis algorithm leads to major reductions of state space representations and
computation times, which is essential for scalability.

Vital to the memory and running time characteristics of Reduced Ordered
BDD representations and manipulations, as used by the ESCET toolkit, is the
ordering of the Boolean variables [30]. Heuristic variable ordering algorithms
that exploit the inherent structure of the system modeled as EFAs are able to
significantly reduce the synthesis effort [11], especially for larger inputs, making
synthesis applicable to more complex systems.

Multilevel Synthesis Contrary to monolithic synthesis, where only a single su-
pervisor is synthesized, with multilevel synthesis [10] the plant components and
requirements are grouped together into a hierarchical structure, and a separate
supervisor is synthesized for each group. This allows to distribute the control
problem over multiple cooperating supervisors, which together are significantly
smaller than one monolithic supervisor. By encoding relations between plant
components and requirements in a design structure matrix [5], and algorithmically
reordering its rows and columns to place tightly coupled plant components side by
side [32], a suitable multilevel structure can be obtained. Compared to monolithic
synthesis, this can for certain systems substantially reduce synthesis effort [8],
enabling synthesis for much larger variants of such systems.

Avoiding Nonblockingness Checks Although the local supervisors in multilevel
synthesis are nonblocking, the overall supervisor may not be. A global nonblock-
ingness check can be used to guarantee that all local supervisors can reach a
marked state at the same moment in time, but is often expensive, nullifying
much of the gains obtained through applying multilevel synthesis. However, in a
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dependency graph that encodes which plant components by means of require-
ments depend on state of other plant components to perform certain events, plant
components do not give rise to blocking behavior if they are not part of an infi-
nite path [9]. For certain systems, using such graphs, the global nonblockingness
checks may be skipped entirely, or may be reduced to consider less subsystems.
Symmetry Reduction Real-life systems tend to contain a significant number of
similar components, that for instance only differ by the instantiation of some of the
parameters or their physical locations within the overall system. Such symmetries
can be exploited to reduce the number of plant and requirement automata needed
in the synthesis process, further reducing the synthesis effort [18].

5 Case Studies and Applications

Rijkswaterstaat Initially the collaboration with Rijkswaterstaat focused on gener-
ating control software with supervisory controller synthesis for bridges, waterway
locks, and storm surge barriers. Notable case studies are the Algera complex,
comprising a bascule bridge, a waterway lock and two storm surge barriers in
the river Hollandse IJssel [22], and the Oisterwijksebaanbrug, a rotating bridge
in Tilburg [23]. For the latter, a fault-tolerant controller was synthesized, from
which PLC code was generated, which passed the regular site acceptance test.

Recent case studies target road tunnels, notably the Eerste Heinenoord
tunnel [18] and the Swalmen tunnel [17], and roadside systems [31]. For the
Swalmen tunnel, a digital twin, a 3D digital copy of a physical system, was
conveniently constructed from the plant and requirement models. Combined with
visualization, this allows simulation of the system in a setting close to real life.
ASML A prominent result of the collaboration with ASML is the use of the
ESCET toolkit in a toolkit from another Eclipse Foundation open-source project,
the Eclipse Logistic Specification and Analysis Toolkit (LSATTM) [26]. The LSAT
toolkit is used at ASML to create fully calibrated models of subsystems of a
wafer scanner, responsible for transporting wafers in and out of the scanner and
performing preprocessing steps before the wafer is being exposed on the wafer
stage subsystem. The LSAT toolkit exploits ESCET’s supervisory controller
synthesis to compute valid orderings of logistics activities, while maintaining the
maximum freedom to subsequently perform scheduling on the synthesis result to
compute a supervisor that optimizes productivity [20].

6 Conclusions

The ESCET project and toolkit support synthesis-based engineering to efficiently
generate high-quality correct-by-construction supervisors. The toolkit is being
applied to complex industrial systems in different domains. The project’s open
environment enables effective collaboration between industry, researchers and tool
vendors. Owing to positive experiences with the ESCET toolkit, Rijkswaterstaat
is seriously considering whether its document-based development process for
control software could be adapted to one based on SBE with the ESCET toolkit.
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7 Data-Availability Statement

The artifact that supports this paper is available at Zenodo under identifier
doi:10.5281/zenodo.7296616 [4]. It contains Eclipse ESCET v0.7 for Linux. How-
ever, the authors prefer that the Eclipse ESCET toolkit is downloaded directly
from the Eclipse Foundation, where the latest version of the toolkit is available
for multiple platforms.5
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Abstract. In the last decade, numerous algorithms for single-objective
Boolean optimization have been proposed that rely on the iterative usage
of a highly effective Propositional Satisfiability (SAT) solver. But the use
of SAT solvers in Multi-Objective Combinatorial Optimization (MOCO)
algorithms is still scarce. Due to this shortage of efficient tools for MOCO,
many real-world applications formulated as multi-objective are simplified
to single-objective, using either a linear combination or a lexicographic
ordering of the objective functions to optimize.
In this paper, we extend the state of the art of MOCO solvers with
two novel unsatisfiability-based algorithms. The first is a core-guided
MOCO solver. The second is a hitting set-based MOCO solver. Experi-
mental results in several sets of benchmark instances show that our new
unsatisfiability-based algorithms can outperform state-of-the-art SAT-
based algorithms for MOCO.

1 Introduction

Whenever facing a decision, there is often a set of objectives to optimize. For
instance, when making a vacation plan with multiple destinations, one wants to
minimize both the time spent in airports and the money spent on plane tickets.
However, seldom can one obtain a solution that optimizes all objectives at once.
It is usually the case that decreasing the value of an objective results in increasing
the value of another. This occurs in many application domains [17,22,32].

In order to deal with multi-objective problems, we usually cast them into
single-objective ones. For example, this can be achieved by defining a linear
combination of the objective functions. Other option is to define a lexicographic
order of the objectives [24], but this may result in unbalanced solutions where
the first function is minimized while the remaining ones have a very high value.

In the multi-objective scenario, we are looking for Pareto-optimal solutions,
i.e. all solutions for which decreasing the value of one objective function increases
the value of another. After determining the set of all such solutions, known as
Pareto front, one can select a representative subset and present it to the user [9].

Frameworks based on stochastic search have been developed to approximate
the Pareto front of Multi-Objective Combinatorial Optimization (MOCO) prob-
lems [6,33]. Several algorithms were also proposed based on iterative calls to
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a satisfiability checker, such as the Opportunistic Improvement Algorithm [8],
among others [16]. Additionally, the Guided-Improvement Algorithm (GIA) [26]
is implemented in the optimization engine of Satisfiability Modulo Theories
(SMT) solver Z3 for finding Pareto optimal solutions of SMT formulas. New
algorithms have also been proposed based on the enumeration of Minimal Cor-
rection Subsets (MCSs) [30] or P -minimal models [28]. A common thread to
these algorithms is that they follow a SAT-UNSAT approach. A path diversi-
fication method has also been proposed where unsatisfiable cores are identified
in order to cut the path generation procedure [31]. More recently, Maximum
Satisfiability (MaxSAT) approaches have been used for MOCO [12,10], but the
proposed algorithms are limited to two objective functions.

In this paper, we propose two new algorithms for MOCO. The first algorithm
is a core-guided approach that relies on encodings of the objective functions to
effectively cut the search space in each SAT call. Additionally, we also propose
a hitting set-based approach where the previous core-guided algorithm is used
to enumerate a multi-objective hitting set. Note that these are the first algo-
rithms for MOCO that take full advantage of unsatisfiable core identification
over several objectives, as well as the first MOCO algorithm based on an hit-
ting set approach, taking advantage of the duality between Pareto-MCSs [30]
and unsatisfiable cores over several objectives. Experimental results show that
the new algorithms proposed in this paper are complementary to the existing
SAT-based algorithms for MOCO, thus extending the state-of-the-art tools for
MOCO based on SAT technology.

The paper is organized as follows. Section 2 defines the MOCO problem and
the standard notation used in the remainder of the paper. Next, Sections 3 and 4
describe the new core-guided and hitting set-based algorithms for MOCO. Exper-
imental results and comparisons with other SAT-based algorithms are provided
in Section 5. Finally, conclusions are presented in Section 6.

2 Preliminaries

We start with the definitions that fall in the SAT domain. Next, we introduce
the definitions specific to solving the MOCO problem.

Definition 1 (Boolean Satisfiability problem (SAT)). Consider a set of
Boolean variables V = {x1, . . . , xn}. A literal is either a variable xi ∈ V or its
negation ¬xi ≡ x̄i. A clause is a set of literals. A Conjunctive Normal Form
(CNF) formula φ is a set of clauses. A model ν is a set of literals, such that if
xi ∈ ν, then x̄i 6∈ ν and vice versa.

The truth value of φ, denoted by ν(φ), is a function of ν, and is defined
recursively by the following rules. First, the truth value of a literal is covered
by ν(xi) = >, if xi ∈ ν, ν(xi) = ⊥, if x̄i ∈ ν and ν(¬xi) = ¬ν(xi). Secondly,
a clause c is true iff it contains at least one literal assigned to true. Finally,
formula φ is true iff it contains only true clauses,

ν(φ) ≡
∧
c∈φ

ν(c), ν(c) ≡
∨
l∈c

ν(l). (1)

56



New Core-Guided and Hitting Set Algorithms for MOCO

The model ν satisfies the formula φ iff ν(φ) is true. In that case, ν is (φ-)feasible.
Given a CNF formula φ, the SAT problem is to decide if there is any model

ν that satisfies it or prove that no such model exists.

Our algorithms require a SAT solver to be used as an Oracle. If the formula
is satisfiable, then it returns a satisfiable assignment. Otherwise, the SAT solver
returns with an explanation of unsatisfiability, called a core.

Definition 2 (Core κ). Given a CNF formula φ, we say a formula κ is an
unsatisfiable core of φ iff κ ⊆ φ and κ � ⊥.

Definition 3 (SAT solver). Let φ be a CNF formula and α a conjunction of
unit clauses. We call φ the main formula and α the assumptions. A SAT solver
solves the CNF1 instance of the working formula ω = φ ∪ α, i.e. decides on the
satisfiability of ω.

A query to the solver is denoted by φ-SAT(α). The value returned is a pair
(ν, κ), containing a feasible model ν and a core of assumptions κ, i.e. a subset
of the assumptions α contained in some core of ω. If the working formula ω is
not satisfiable, ν does not exist, and the call returns (∅, •). If ω is satisfiable, the
call returns (•, ∅).

Definition 4 (Relaxing/Tightening a formula). Given φ, a formula ψ is a
relaxation of φ iff φ � ψ. We also say ψ relaxes φ. Conversely, φ tightens ψ.

Next we review Pseudo-Boolean formulas and optimization and define the
MOCO problem.

Definition 5 (Pseudo-Boolean function, clause, formula (PB)). To any
linear function {0, 1}n → N, given by

g(x) = g(x1 . . . xn) =
∑
i

wixi wi ∈ N, xi ∈ V, (2)

we call an (integer linear) PB function. Expressions like g(x) ./ k, ./ ∈ {≤
,≥,=}, are called PB clauses. A PB formula is a set of PB clauses. For some
model ν : V → {0, 1}, let x be the Boolean tuple ν(V ) ≡ (ν(x1), . . . , ν(xn)).
Given a formula φ, a model ν is said (φ-)feasible if it satisfies every clause in φ.
The set of Boolean tuples Z(φ) = {x = ν(V ) ∈ {0, 1}n : ν(φ)} is called feasible
space of the formula φ, and its elements x are called feasible points. Any subset
of the feasible space is called a φ-feasible set.

Definition 6 (Pseudo-Boolean Optimization (PBO)). Let φ be a PB for-
mula, and f be a PB function. Then, minimize the value of the objective f over
the feasible space Z(φ) the formula φ. That is,

find arg min
x∈Z(φ)

f. (3)

1 We may use a PB formula (Definition 5) and assume it is translated to CNF.
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Multi-objective optimization generalizes PBO and builds upon a criterion of
comparison (or order) of tuples of numbers. The most celebrated one is called
Pareto order or dominance.

Definition 7 (Pareto partial order (≺)). Let Y be some subset of Nn. For
any y,y′ ∈ Y ,

y � y′ ⇐⇒ ∀i,yi ≤ y′i,

y ≺ y′ ⇐⇒ y � y′ ∧ y 6= y′.

We say y dominates y′ iff y � y′. We say y strictly-dominates y′ iff y ≺ y′.

Given a tuple of objective functions sharing a common domain X, we can
compare two elements x,x′ ∈ X by comparing the corresponding tuples in the
objective space.

Definition 8 (Pareto Dominance (≺)). Let F : X → Y ⊆ Nn be a multi-
objective function, mapping the decision space X into the objective space Y .
For any x,x′ ∈ X,

x ≺ x′ ⇐⇒ F (x) ≺ F (x′),

x � x′ ⇐⇒ F (x) � F (x′).

We say x dominates x′ iff x � x′. We say x strictly-dominates x′ iff x ≺ x′.

Contrary to the single-objective case, the consequence of this comparison
criterion is that many different good solutions are mapped to different points
in the objective space. Therefore, the solution to the problem is actually a set
called Pareto front.

Definition 9 (Fronts). Given a a multi-objective function F : X → Y and a
feasible space Z ⊆ X, the Pareto front of Z is a subset P ⊆ Z containing all
elements that are not strictly-dominated,

P = {x ∈ Z : 6 ∃x′ ∈ Z : x′ ≺ x} .

We call img-front to the subset Y ⊆ Y which is the image of P by F ,

Y ≡ img frontZ F = {y ∈ Y : ∃x ∈ P : y = F (x)} .

Finally, we call arg-front of Z, or simply front of Z, to any subset Z of the
Pareto Front P which is mapped by F into Y in a one-to-one fashion

Z = frontZ F.

Definition 10 (Multi-Objective Combinatorial Optimization (MOCO)).
Let F : X → Y ⊆ Nn be a multi-objective PB function, mapping the decision
space X ⊆ {0, 1}n into the objective space Y . Let Z ⊆ X be the feasible space
of some PB formula φ, with variables in V . Then,

find frontZ(φ) F. (4)

An instance will be denoted by the triple 〈φ, V, F 〉.

58



New Core-Guided and Hitting Set Algorithms for MOCO

Because the solutions of the problems are sets, bounds are now bound sets
(Definition 13). In the single objective case, a bound is a value l such that
∀y = f(x) : l ≤ y, or equivalently, 6 ∃y = f(x) : l > y. This equivalence is broken
by the generalization. Each of the previous defining properties of a lower bound
gives rise to a differently flavoured comparison of sets (Definitions 11 and 12).

Definition 11 (Set coverage). Let A and B be subsets of some decision space
X, equipped with a multi-objective function F . Then, A coversB iff every element
of B is dominated by some element of A, i.e. ∀b ∈ B, ∃a ∈ A : a � b, and A
strictly covers B iff ∀b ∈ B, ∃a ∈ A : a ≺ b.

Definition 12 (Set non-inferiority). Let A and B be subsets of some decision
space X, equipped with a multi-objective function F . Then A is non-inferior to B
iff there is no element of B that strictly-dominates an element of A, ∀a ∈ A, b ∈
B : ¬(a � b), and A is strictly non-inferior to B iff ∀a ∈ A, b ∈ B : ¬(a � b).

Note that in the single objective case, non-inferiority and coverage are the
same. The next definition correctly generalizes the notion of lower bound.

Definition 13 (Bound sets). L ⊆ X is a (strictly) lower bound set of Z ⊆ X
iff L (strictly) covers and is (strictly) non-inferior to Z. If L is a lower bound
set of Z, we say L � Z. If it is a strictly lower bound set, we say L ≺ Z.

One way to generate a lower bound set of some Pareto front is to solve a
related problem, where the formula is replaced by a relaxed version (Definition 4).

In our approach, we embed dominance relations into CNF formulas. We are
interested in removing from the feasible space solutions that are dominated by
some other known feasible solution. In order to do this, we make use of unary
counters [3,13,14] that have been used to implement efficient PB satisfiability
solvers.

Definition 14 (Unary Counter). Let fi : {0, 1}n → N be a PB function and
set V be an ordered set of variables that parametrize the domain of fi,

V = {x1, . . . , xn} , fi(x) = fi(x1, . . . , xn) (5)

Consider the CNF formula φ̃ with variables V ∪ O, where O ∩ V = ∅ and O
contains one variable oi,k for each value k ∈ N : ∃x : k = fi(x). The elements

of O are the order variables. We call the tuple
〈
fi, V,O, φ̃

〉
an unary counter of

fi iff all feasible models ν of φ̃ satisfy

fi(x) ≥ k =⇒ oi,k, x = ν(V ). (6)

3 Core-Guided Algorithm

Although core-guided algorithms for Maximum Satisfiability were initially pro-
posed more than a decade ago [7,23,21,2,1], there is no such algorithm for MOCO.
Hence, our goal is to take advantage of unsatisfiable cores identified by a SAT
solver in order to lazily expand the allowed search space.
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Fig. 1: Illustration of a run of Core-Guided (Algorithm 1) in the objective space.
The img-front is the set {1, 2, 3}. The fence bound λ gets updated at each iter-
ation of the while loop at line 6, starting at A and ending at Ω. The arrows are
guided by the core κ (line 19). The green shading represents the evolution of the
fence. Darker regions have been fenced for longer. The blue regions are blocked
by optimal points. Darker regions are dominated by more points. We will be
done in 7 iterations. After verifying that A is not feasible, we are instructed by
the cores k to move along the diagonal twice. We find point 1 fenced. Therefore
the associated x is copied into I and the dominated region is blocked. We ex-
tend λ twice, and find point 2. After moving once more, we find part of the fence
blocked, and the point branded with i is never generated. The next movement
stations λ at Ω. Point 3 is found. The Oracle acknowledges we are done, by
returning κ = ∅ (line 15): she knows that no movement of λ will extend I.

3.1 Algorithm Description

Algorithm 1 presents the pseudo-code for an exact core-guided algorithm for
MOCO. Figure 1 illustrates an abstract execution of the algorithm.

Let 〈φ, V, F 〉 be a MOCO instance. Recall that φ denotes the set of PB
constraints, V is the set of variables and F denotes the list of m objective
functions. First, the algorithm starts by building a working formula with the
problem constraints and an unary counter for each objective function (lines 3-
4). This is accomplished by the call to EncodeOrder . Next, a vector λ of size m
is initialized with the lower bound of each objective function (line 5), assumed
to be 0 for simplicity.

At each iteration of the main loop, the assumptions α are assembled from or-
der variables o, chosen with the value of λ in mind (line 7). The call to next(i, λ)2

returns the next smallest value belonging to the image of the objective i. Given
the semantics of the order variables oi,k (Definition 14), the tuple λ fences the
search space, i.e. ν satisfies α only if the corresponding tuple x satisfies F (x) � λ.

2 May be replaced by λi + 1.
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Algorithm 1: Core-Guided MOCO solver

Input: 〈φ, V, F 〉 // MOCO instance

Output: frontφ F // one arg-front

1 m← |F |
2 I ← ∅
3 (φ̃, {Oi}1≤i≤m)← EncodeOrder(F, V )

4 φ̃← φ̃ ∪ φ
5 λ← 〈0, 0, . . . , 0〉 // initialize fence

6 while true do
7 α←

{{
¬oi,next(i,λ)

}
: i ∈ 1 . . .m

}
8 (ν, κ)← φ̃-SAT(α)
9 while ν 6= ∅ do

10 x← ν(V )
11 I ← I \ {x′ ∈ I : x � x′} ∪ {x}

12 β ←
{
m∨
i=1

¬oi,fi(x)

}
13 φ̃← φ̃ ∪ β // block dominated

14 (ν, κ)← φ̃-SAT(α)

15 if κ = ∅ then // if fence exhausted,

16 return I
17 else
18 foreach {¬oi,k} ∈ κ do // expand fence

19 λi ← k

If the SAT call (line 10) returns a solution (i.e. ν 6= ∅), x is stored in and all
dominated solutions are removed from I (line 11). Moreover, one can readily
block all feasible solutions dominated by x using a single clause (line 13) [28].

Usually, there are several feasible fenced solutions. This occurs because the
algorithm may increase multiple entries of λ at once. In any case, the inner while
loop (lines 9-14) collects all such solutions.

When the working formula φ̃ becomes unsatisfiable, the SAT solver provides
a core κ. If κ is empty (line 15), then the unsatisfiability does not depend on
the assumptions, i.e. it does not depend on temporary bounds imposed on the
objective functions. At that point, we can conclude that no more solutions exist
that are both satisfiable and not dominated by an element of I. As a result, the
algorithm can safely terminate (line 16). Otherwise, the literals in κ denote a
subset of the fence walls λi that may be too restrictive, in the sense that unless
we increment them (line 19) no new non-dominated solutions can be found.

3.2 Algorithm Properties

Lemma 1. The img-front Y of I ∪ Z(φ̃)(Definition 9) is not changed by the
inner loop (lines 9-14).
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Proof. Consider some particular iteration of the internal loop. Line 11 and line
13 remove all elements of I ∪ Z(φ̃) that are dominated by the feasible point x.

Line 11 filters the explicit set I, line 13 filters the implicit set Z(φ̃). Solutions
that are strictly dominated by x cannot be mapped into an element of Y . The
other solutions x′ that are filtered out must attain the same objective vector
attained by x, F (x′) = F (x). Because x is also inserted at line 11, removing x′

will not disturb Y .

Lemma 2. At the start of each iteration of the external loop (lines 6-19), every
solution in I is optimal, and no two elements of I attain the same objective
vector.

Proof. We prove this by contradiction. Assume that there is a non-optimal so-
lution x ∈ I at the start of the external loop (line 6). In the first iteration, this
does not occur because I is empty. Hence, this can only occur if the inner loop
(lines 9-14) finishes with a non-optimal solution x ∈ I.

The inner loop (lines 9-14) enumerates solutions inside the fence defined by λ.
We know that F (x) � λ because it is inside the fence and the entries of λ never
decrease. If x is non-optimal, then there must be an optimal solution x′ such
that F (x′) ≺ F (x)(� λ). Hence, x′ is also inside the fence. As a result, x′ must
be found before the inner loop finishes, since at each iteration only dominated
solutions are blocked (line 13). If x is found before x′, then x is excluded from
I (line 11) when x′ is found. Otherwise, if x′ is found first, then x is not found
by the SAT solver (blocked at line 13) because it is dominated by x′. Therefore,
we cannot have a non-optimal solution x ∈ I at the end of the inner loop or at
the start of each iteration of the external loop (lines 6-19). Furthermore, no two
elements of I attain the same objective vector since when a solution x is found,
all other solutions x′ such that F (x) = F (x′) are also blocked (line 13).

Lemma 2 establishes a weaker form of anytime optimality. The elements of
the incumbent list I are not necessarily optimal at anytime, but they are optimal
immediately after completing the inner loop. It is easy enough to make it anytime
optimal. This could be achieved if the algorithm refrains from adding solutions
directly to I in the inner loop and maintain a secondary list, where it stores the
solutions that are still not necessarily optimal. This list takes the role of I inside
the inner loop. After completing the inner loop, all elements of the secondary
list are optimal, and can be safely transferred to the main list I.

Proposition 1. Algorithm 1 is sound.

Proof. If the algorithm returns, Z(φ̃∧α) = ∅. Because κ is empty, no core of the

unsatisfiable formula φ̃ ∧ α intersects α, and φ̃ is also unsatisfiable, Z(φ̃) = ∅.
Using Lemma 1 both at the end and at the start of the course of the algorithm,
the img-front of I is the img-front of Z(φ̃), with φ̃ given by line 4. Because the
order variables are only restricted by the unary counter formula, the img-front
of Z(φ̃) is the img-front of Z(φ). Therefore I must contain an arg-front of the
problem. Using Lemma 2, every element of I is optimal, and there is no pair
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x,x′ ∈ I such that F (x) = F (x′). Therefore, I is an arg-front of the MOCO
instance.

Proposition 2. Algorithm 1 is complete.

Proof. The inner loop will always come to fruition, because in the worst case it
will generate every feasible solution dominated by the current λ once, and the
feasible space is finite.

If the algorithm does not return for some particular instance, then κ is never
empty. In that case, every iteration of the external loop starting at line 6 will
increase at least one of the entries of λ. Eventually, one entry i must achieve
the upper limit of fi, and the order variable retrieved by oi,λi+1 will not exist.
Because the evolution of λi is monotonous, the assumptions will contain at most
m− 1 variables, from that point on. By the same token, the assumptions α will
eventually be empty, and so must be κ ⊆ α, contradicting the assumption that
the algorithm never terminates.

4 Hitting Set-based Algorithm

This section proposes a MOCO solver based on the enumeration of hitting sets.
The main idea is to compute a sequence of relaxations ψ of the formula φ,
and solve the corresponding problems. The front T of the relaxed problem gets
incrementally closer to the desired front Z, and will eventually reach it.

4.1 Algorithm Description

Algorithm 2 contains the pseudo-code for our hitting set-based algorithm for
MOCO. Figure 2 illustrates an abstract execution of the algorithm.

The algorithm starts by setting the relaxed formula ψ to empty (line 1).
The main loop that starts at line 2 hones the relaxation until we get the desired
result. At each iteration, we solve the current relaxed formula ψ at line 4. This is
accomplished by using some MOCO solver. Because this amounts to computing
a lower bound set, the Core-Guided algorithm, previously described, is a good
choice for the task. We anticipate that it performs well for problems whose front
is in the vicinity of the origin, given that by construction, the focus of its search
is biased to that region. Notice that the first relaxation’s arg-front is the set
that contains the origin only (assuming all literals in the objective functions are
positive). We expect that the first few relaxations will stay close to it.

Next, for each element x in T (the Pareto-front of ψ), we check the φ-
feasibility of ν : ν(V ) = x, using the assumptions mechanism, and return a
(possibly empty) core of assumptions κ. The assumptions αx built at line 6 are
a set of unit clauses whose polarity is inherited from ν,

ν(xi) =⇒ xi ∈ α, ¬ν(xi) =⇒ ¬xi ∈ α. (7)

Assuming φ is satisfiable, the returned core κ will be void iff αx ∧ φ is satis-
fiable. In this case, x corresponds to an optimal solution.
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Algorithm 2: Hitting-Sets MOCO solver

Input: 〈φ, V, F 〉 // MOCO instance

Output: frontφ F // one arg-front

1 ψ ← ∅ // relaxed formula ψ
2 while true do
3 ∆← ∅
4 T ← frontψ F // use auxiliar solver

5 foreach x ∈ T do // diagnose T
6 αx ← {{l} , l ∈ ν : ν(V ) = x}
7 (•, κ)← φ-SAT(αx)
8 if κ 6= ∅ then
9 ∆← κ ∪∆

10 if ∆ = ∅ then // if T is fine

11 return T

12 foreach κ ∈ ∆ do
13 ψ ← ψ ∪ {¬l, {l} ∈ κ} // tighten ψ

The diagnosis ∆ is central for the algorithm. Intuitively, it reports if and
why the relaxed problem’s solution is different from the true Pareto solution.
We add every non-empty κ to the diagnosis ∆ (line 9). In the end, ∆ is empty iff
every element of the relaxed front T is φ-feasible. At that point, we have found
a φ-feasible lower bound set. All such sets are arg-fronts, and so the algorithm
terminates (line 11). Otherwise, if ∆ is not empty, then the found cores are
added to the relaxed formula ψ (line 13). This step ensures all tentative points
produced in line 4 hit all previously found unsatisfiable cores, and that the
algorithm advances in a monotonous fashion towards the solution.

4.2 Algorithm Properties

Given a MOCO instance 〈φ, V, F 〉, the formula φ encodes the feasible space
Z implicitly, which in turn defines the desired front Z. This is a many to one
correspondence, in the sense that there are many different values of ψ that encode
the same Pareto front. It may happen that some of the counterpart instances
are easier to solve than the original one, which begs the question: given φ, can
we effectively find a simpler formula ψ with the same Pareto front? This is
the motto of the proposed algorithm. It is done by iteratively honing a relaxed
formula (Definition 4).

The main idea is to compute a sequence of relaxations that get incrementally
tighter. In that case, the corresponding front T gets incrementally closer to the
desired front Z,

φ =⇒ ψn =⇒ . . . =⇒ ψ1, (8)

Z � Tn � . . . � T 1, (9)
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Fig. 2: Illustration of a run of the Hitting-Sets (Algorithm 2) in the objective
space. The Pareto front is the set {1, 2, 3}, and the feasible solutions are marked
by . For each iteration of the main while loop at line 2 we get a narrower
lower bound T (line 4), culminating in the solution. We are done in 3 iterations,
marked by A, B and . The shading represents the number of iterations whose
freshly found points dominate the region. The lighter tone was painted by A,
the darker one by all three. We start with the empty formula (line 1) and get A.
Because the only point in A is not feasible, we tighten the relaxation (line 13).
Iteration B generates one feasible point, 1, which is therefore optimal. Note that
the region dominated by 1 can be pruned from now on. The other point is used
to tighten the formula once more. Lastly, the lower bound contains the feasible
points 2 and 3 in addition to 1, which was already found, and the algorithm
stops.

where Z is one of the desired arg-fronts, and T i is an arg-front of ψi.

Lemma 3. Consider some multi-objective function F : X → Y . Let Z, T be
subsets of X, such that T ⊆ Z. Then, any arg-front of T is a lower bound set of
any arg-front of Z (Definition 13), i.e. T ⊆ Z =⇒ T � Z.

Lemma 3 is true because optimizing over a superset of some feasible space
always returns a (non-strict) lower bound set. In a sense, the optimization can
only be more extreme when applied to the superset. In particular, the feasible
space of a relaxed formula is a superset of the original one. This is why the chain
of � relations in Equation (9) is correct.

Lemma 4. Let φ be a formula, Z ⊆ X be its feasible space and F : X → Y
be some multi-objective function. Let L be a lower bound set of the Pareto front
of Z. Then, any element x ∈ L that is feasible belongs to the Pareto front,
L ∩ Z ⊆ P . If all elements x ∈ L are feasible, then L is an arg-front.

Lemma 4 implies that every lower bound set with only feasible elements
must be itself an arg-front (this is an exact analogy with the single-objective
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case, where lower bound set is replaced by infimum and arg-front by arg-min.)
By construction of the diagnosis ∆, this is equivalent to the condition used in
Algorithm 2 to decide if it can terminate.

To ensure the sequence gets to Z in a finite number of steps, we need more
than a string of relaxations. Each entry ψ′ must be strictly tighter than the
predecessor ψ.

Lemma 5. Consider Algorithm 2. Let ψ be the relaxed formula at some itera-
tion, and ψ′ be the relaxed formula at the next iteration. Then,

1. ψ relaxes ψ′, i.e. ψ′ � ψ;
2. Both ψ and ψ′ relax φ, i.e. φ � ψ, φ � ψ′;
3. ψ′ does not relax ψ, i.e. ψ 6� ψ′;

Proof. Each statement will be proven in turn.
The first is true because ψ ⊆ ψ′, by construction (line 13).
We prove the second by induction on the number of iterations. Initially, ψ

is empty. Therefore, ψ relaxes any formula, in particular φ. Assume φ � ψ for
some iteration. Consider one of the clauses ¬κ added at line 13. We know that
φ ∧ κ is unsatisfiable. Therefore, φ ∧ κ � ⊥ =⇒ ¬(φ ∧ κ) � > ⇐⇒ φ � ¬κ.
Given the assumption φ � ψ, we get φ � ψ ∧ ¬κ. Repeating the process for the
other added clauses ¬κi, we get φ � ψ ∧ ¬κ1 . . . ∧ ¬κn ≡ ψ′.

Assume ψ′ is a relaxation of ψ. Then, any ψ-feasible model ν is also ψ′-
feasible. We will prove there is at least one model that violates this. To start,
note that it only makes sense to consider ψ′ if there is some non-empty core
κ in the diagnosis ∆; otherwise, the algorithm would have terminated before
updating ψ into ψ′. Let κ be one element of ∆, generated at line 7 while ψ is
current. Consider the Boolean tuple x ∈ T used to build the assumptions of the
query that generated κ. Let ν : ν(V ) = x. The model ν is ψ-feasible, because
it is part of the arg-front of ψ. The model ν satisfies κ because κ ⊆ αx and the
way αx is constructed (line 6, Equation (7)). Therefore, ν does not satisfy ¬κ.
Because ¬κ ⊆ ψ′, ν cannot satisfy ψ′, i.e. there is at least one ψ-feasible model
that is not ψ′-feasible.

Proposition 3. Algorithm 2 is sound.

Proof. By Lemma 5, ψ relaxes φ and therefore T solves a relaxation of the
original problem. By Lemma 3, it is a lower bound set of Z. When the algorithm
returns, all elements of T are feasible. By Lemma 4, T must be an arg-front.

Proposition 4. Algorithm 2 is complete.

Proof. Assume Algorithm 2 never ends, implying T is never completely feasible
(i.e. T * Z). The number of relaxed feasible spaces T is finite. If Algorithm 2
does not end, it will enumerate all of them, never repeating any: at any iteration,
the updated relaxed formula effectively blocks the reappearance of any feasible
space seen before, because by Lemma 5 the updated value ψ′ strictly tightens ψ.
Then, this sequence is necessarily finite, and so must be the number of iterations.
But in that case, Algorithm 2 must end, and we have a contradiction.
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Consider the sequence whose entries are the value of F (T ) computed at the
beginning of each iteration of the main loop at line 2. The last element of this
sequence is the solution. It may happen that for some i, the entries indexed
by i and i + 1 are the same. Therefore, the sequence may include blocks of
contiguous entries that share the same value. In the worst case scenario, there
are many different arg-fronts for the same img-front, and the algorithm ends
up enumerating all of them without any movement in the objective space. We
expect the algorithm will be effective whenever a few of the relaxed problems
are enough to get to the full solution. Otherwise, we can end up solving an
exponential number of problems.

5 Experimental Results

This section evaluates the performance of the algorithms proposed 3 in Sections 3
and 4. These algorithms are compared against other SAT-based MOCO solvers.

5.1 Algorithms and Implementation

The Core-Guided algorithm proposed in Algorithm 1 uses the selection delim-
iter encoding [14] that has been shown to be more compact. Next, the selection
delimiter encoding is extended to produce a unary encoding for each objec-
tive function. Additionally, an order encoding [29] is also used. We refer the
interested reader to the literature for further details on this and other encod-
ings [27,13,14,15]. Observe that any unary encoding from PB into CNF can be
used.

The Hitting-Sets algorithm implements Algorithm 2. This hitting set-based
approach uses Algorithm 1 to find the relaxed arg-front (line 4 of Algorithm 2).

The P-Minimal algorithm implements a SAT-UNSAT approach based on
the enumeration of P -Minimal models [28]. This algorithm is implemented with
the same PB to CNF encoding as the Core-Guided. Finally, the ParetoMCS is
based on the stratified enumeration of Minimal Correction Subsets. We used the
publicly available implementation of ParetoMCS4.

5.2 Experimental Setup and Benchmark Sets

The following MOCO problems are considered: the multi-objective Development
Assurance Level (DAL) Problem [5], the multi-objective Flying Tourist Problem
(FTP) [22], the multi-objective Set Covering (SC) Problem [4,28] and the multi-
objective Package Upgradeability (PU) Problem [11]. All instances are publicly
available from previous research work or were generated from real-world data.

The DAL benchmark set (95 instances) encodes different levels of rigor in
the development of a software or hardware component of an aircraft. The de-
velopment assurance level defines the assurance activities aimed at eliminating

3 Available at https://gitlab.inesc-id.pt/u001810/moco
4 https://gitlab.ow2.org/sat4j/moco
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design and coding errors that could affect the safety of an aircraft. The goal is to
allocate the smallest DAL to functions to decrease the development costs [18].

The FTP benchmark set (129 instances) encodes the problem of a tourist
that is searching for a flight travel route to visit n cities. The tourist defines her
home city, the start and end of the route. She specifies the number of days di to
be spent on each city ci (1 ≤ i ≤ n) and also a time window for the complete
trip. The problem is to find the route that minimizes the time spent on flights
and the sum of the prices of the tickets5.

The SC benchmark set (60 instances) is a generalization of the set covering
problem and was used in previous research work [28]. Let X be some ground set
and A a cover of X. Each element in A has an associated cost tuple. The goal
is to find a cover of X contained in A that Pareto-optimizes the overall cost.

The PU benchmark set (687 instances) were generated from the Package
Upgradeability benchmarks [19] from the Mancoosi International Solver Com-
petition [20]. The packup tool [25] was used to generate these benchmarks that
contain between two and five objectives to optimize.

All results were obtained on an Intel Xeon Silver 4110 CPU @ 2.10GHz, with
64 GB of RAM. Each tool was executed on each instance with a time limit of 1
hour and 10 GB of RAM memory limit.

5.3 Results and Analysis

Table 1 shows the number of instances whose Pareto front is completely enumer-
ated, for each algorithm and benchmark set. Overall, the new unsatisfiability-
based algorithms proposed in the paper completely solve more instances than
the ParetoMCS and the P-Minimal algorithms. Note that the ParetoMCS is
the one that solves fewer instances since it needs to enumerate all MCSs. The
Core-Guided and Hitting-Sets converge faster to the Pareto front due to their
UNSAT-SAT approach, while the P-Minimal is slower to converge. Overall, the
Core-Guided algorithm is able to solve more instances than the other algorithms.

All tested algorithms are exact, but in some cases only an approximation
of the Pareto front could be found within the time limit. However, the partial
solution that is returned may still be valuable. In order to evaluate the quality
of the approximations provided by each tool, we use the Hypervolume (HV) [34]
indicator. HV is a metric that measures the volume of the objective space dom-
inated by a set of points in the objective space, up to a given reference point.
The coordinates of the reference point chosen are the maximal values of each
objective. Regions that are not dominated by a reference front are discarded (we
combined the results for each algorithm in order to produce the reference front).
Larger values are preferred. A normalization procedure is carried out so that the
values of HV are always between 0 and 1.

Figure 3 shows a cactus plot of the HV for all tools on each benchmark set.
The P-Minimal provides better quality approximations of the Pareto front in the
DAL (Figure 3a) and PU (Figure 3d) benchmarks since it uses a SAT-UNSAT

5 Instances generated from flights in Europe between October and December 2019.
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Table 1: Number of MOCO instances whose complete solution is found and
certified per algorithm and benchmark set. Best results are in bold.

Algorithm Benchmark Set Total

DAL FTP SC PU
95 129 60 687 971

ParetoMCS 24 76 0 279 379
P-Minimal 47 76 17 473 613
Core-Guided 58 76 26 497 657
Hitting-Sets 47 76 29 392 544

approach. Hence, it is faster to find an approximation to the Pareto front. More-
over, since some of the instances in these sets have higher optimal values on
the objective functions, the Core-Guided and Hitting-Sets take many interac-
tions until they reach the feasible part of the search space. Despite performing
an unsatisfiability-based search, Core-Guided and Hitting-Sets algorithms are
still able to provide good quality solutions since when these algorithms find solu-
tions, these are in the Pareto front. Moreover, observe that even in these sets of
instances, Core-Guided is still able to find all the Pareto front in more instances.

The ParetoMCS is able to provide good quality approximations in the FTP
(Figure 3b) and PU (Figure 3d) benchmarks. Note that ParetoMCS does not use
an explicit representation of the objective functions. The FTP instances have
several large coefficients in the objective functions, but the representation used
in Core-Guided is still effective for these instances. Observe that the performance
of both algorithms is similar in the FTP dataset.

The Hitting-Sets finds poor approximations for all datasets. A common
feature of this algorithm is the need to enumerate many hitting sets before
being able to find feasible solutions. Hence, in several instances it is unable to
provide good approximations. However, it is still able to prove optimality for
more instances in the SC benchmark set than the P-Minimal algorithm.

Overall, the Core-Guided is the best performing algorithm being able to find
the complete Pareto frontier in more instances. This is due to the fact that in
many cases, it does not need to relax all variables to find solutions in the Pareto
front. Moreover, when evaluating the quality of the approximations, it is still
able to outperform the other approaches on the FTP and SC benchmark sets,
despite applying an unsatisfiability-based approach.

6 Conclusions

This paper proposes two new algorithms for Multi-Objective Combinatorial Op-
timization (MOCO). The first is a core-guided approach, while the second is

69



J. Cortes et al.

20 40 60 80

rank

0.005

0.010

0.050

0.100

0.500

1

HV

DAL

P-minimal

ParetoMCS

Hitting-sets

Core-Guided

(a) DAL instances

40 60 80 100 120

rank

0.95

0.96

0.97

0.98

0.99

1.00

HV

FTP

P-minimal

ParetoMCS

Hitting-sets

Core-Guided

(b) FTP instances

10 20 30 40 50 60

rank

0.6

0.7

0.8

0.9

HV

SC

P-minimal

ParetoMCS

Hitting-sets

Core-Guided

(c) SC instances

100 200 300 400 500 600 700
rank

0.005

0.010

0.050

0.100

0.500

1

HV

P-minimal

ParetoMCS

Hitting-sets

Core-Guided

(d) PU instances

Fig. 3: Comparison of the HV results for each set of instances. Each series is
sorted independently, smaller values first. Vertical scale is logarithmical.

based on the enumeration of hitting sets. These are the first SAT-based algo-
rithms that fully integrate these strategies into a MOCO solver.

Experimental results on different sets of benchmark instances show that the
new core-guided approach results in a robust algorithm that outperforms other
SAT-based algorithms for MOCO. Using unary counters to express Pareto dom-
inance in CNF proved to be an effective way to harness the power of SAT solvers
in solving MOCO. The ability to express concepts related to dominance makes
the algorithms conceptually simple.

Overall, the new algorithms are able to completely enumerate the Pareto
front for more instances than previous SAT-based approaches. Moreover, despite
following an unsatisfiability-based approach, the newly proposed algorithms are
also able to provide good quality approximations even when they are unable to
completely enumerate the Pareto front. Hence, these new unsatisfiability-based
algorithms extend the state of the art for MOCO solvers by complementing and
improving upon the existing tools based on queries to SAT Oracles.
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Abstract. Numerical and symbolic methods for optimization are used
extensively in engineering, industry, and finance. Various methods are
used to reduce problems of interest to ones that are amenable to solution
by these methods. We develop a framework for designing and applying
such reductions, using the Lean programming language and interactive
proof assistant. Formal verification makes the process more reliable, and
the availability of an interactive framework and ambient mathematical
library provides a robust environment for constructing the reductions
and reasoning about them.

Keywords: convex optimization · formal verification · interactive theo-
rem proving · disciplined convex programming

1 Introduction

Optimization problems and constraint satisfaction problems are ubiquitous in en-
gineering, industry, and finance. These include the problem of finding an element
of Rn satisfying a finite set of constraints or determining that the constraints
are unsatisfiable; the problem of bounding the value of an objective function
over a domain defined by such a set of constraints; and the problem of finding
a value of the domain that maximizes (or minimizes) the value of an objective
function. Linear programming, revolutionized by Dantzig’s introduction of the
simplex algorithm in 1947, deals with the case in which the constraints and objec-
tive function are linear. The development of interior point methods in the 1980s
allows for the efficient solution of problems defined by convex constraints and ob-
jective functions, which gives rise to the field of convex programming [10,36,43].
Today there are numerous back-end solvers for convex optimization problems,
including MOSEK [30], SeDuMi [41], and Gurobi [23]. They employ a variety of
methods, each with its own particular strengths and weaknesses. (See [1, Section
1.2] for an overview.)

Using such software requires interpreting the problem one wants to solve in
terms of one or more associated optimization problems. Often, this is straight-
forward; proving the safety of an engineered system might require showing that
a certain quantity remains within specified bounds, and an industrial prob-
lem might require determining optimal or near-optimal allocation of certain
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resources. Other applications are less immediate. For example, proving an inter-
esting mathematical theorem may require a lemma that bounds some quantity
of interest (e.g. [4]). Once one has formulated the relevant optimization prob-
lems, one has to transform them into ones that the available software can solve,
and one has to ensure that the conditions under which the software is designed
to work correctly have been met. Mathematical knowledge and domain-specific
expertise are often needed to transform a problem to match an efficient convex
programming paradigm. A number of modeling packages then provide front ends
that apply further transformations so that the resulting problem conforms to a
back-end solver’s input specification [15,20,26,17,42]. The transformed problem
is sent to the back-end solver and the solver produces a response, which then
has to be reinterpreted in terms of the original problem.

Our goal here is to develop ways of using formal methods to make the pas-
sage from an initial mathematical problem to the use of a back-end solver more
efficient and reliable. Expressing a mathematical problem in a computational
proof assistant provides clarity by endowing claims with a precise semantics,
and having a formal library at hand enables users to draw on a body of mathe-
matical facts and reasoning procedures. These make it possible to verify math-
ematical claims with respect to the primitives and rules of a formal axiomatic
foundation, providing strong guarantees as to their correctness. Complete for-
malization places a high burden on practitioners and often imposes a standard
that is higher than users want or need, but verification is not an all-or-nothing
affair: users should have the freedom to decide which results they are willing to
trust and which ones ought to be formally verified.

With respect to the use of optimization software, the soundness of the soft-
ware itself is one possible concern. Checking the correctness of a solution to a
satisfaction problem is easy in principle: one simply plugs the result into the
constraints and checks that they hold. Verifying the correctness of a bounding
problem or optimization problem is often almost as easy, in principle, since the
results are often underwritten by the existence of suitable certificates that are
output by the optimization tools. In practice, these tasks are made more difficult
by the fact that floating point calculation can introduce numerical errors that
bear on the correctness of the solution.

Here, instead, we focus on the task of manipulating a problem and reducing
it to a form that a back-end solver can handle. Performing such transformations
in a proof assistant offers strong guarantees that the results are correct and
have the intended meaning, and it enables users to perform the transformations
interactively or partially, and thus introspect and explore the results of indi-
vidual transformation steps. Moreover, in constructing and reasoning about the
transformations, users can take advantage of an ambient mathematical library,
including a database of functions and their properties.

In Section 3, we describe the process that CVXPY and other systems use
to transform optimization problems expressed in the disciplined convex program
(DCP) framework to conic form problems that can be sent to solvers like MOSEK
[30]. In Section 4, we explain how our implementation in the Lean programming
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language and proof assistant [33,32] augments that algorithm so that it at the
same time produces a formal proof that the resulting reduction is correct. DCP
relies on a library of basic atoms that serve as building blocks for reductions,
and in Section 5, we explain how our implementation makes it possible to add
new atoms in a verified way. In Section 6, we provide an example of the way that
one can further leverage the power of an interactive theorem prover to justify
the reduction of a problem that lies outside the DCP framework to one that lies
within, using the mathematical library to verify its correctness. In Section 7, we
describe our interface between Lean and an external solver, which transforms an
exact symbolic representation of a problem into a floating point approximation.
Related work is described in Section 8 and conclusions are presented in Section 9.

We have implemented these methods in a prototype, CvxLean.5 We offer
more information about the implementation in Section 9. A preliminary work-
shop paper [6] described our initial plans for this project and the reduction
framework presented here in Section 2.

2 Optimization Problems and Reductions

The general structure of a minimization problem is expressed in Lean 4 as follows:

structure Minimization (D R : Type) :=
(objFun : D → R)
(constraints : D → Prop)

Here the data type D is the domain of the problem and R is the data type in which
the objective function takes its values. The field objFun represents the objective
function and constraints is a predicate on D, which, in Lean, is represented
as a function from D to propositions: for every value a of the domain D, the
proposition constraints a, which says that the constraints hold of a, is either
true or false. The domain D is often Rn or a space of matrices, but it can also
be something more exotic, like a space of functions. The data type R is typically
the real numbers, but in full generality it can be any type that supports an
ordering. A maximization problem is represented as a minimization problem for
the negation of the objective function.

A feasible point for the minimization problem p is an element point of D
satisfying p.constraints. Lean’s foundational framework allows us to package
the data point with the condition that it satisfies those constraints:

structure FeasPoint {D R : Type} [Preorder R] (p : Minimization D R) :=
(point : D)
(feasibility : p.constraints point)

The curly and square brackets denote parameters that can generally be inferred
automatically. A solution to the minimization problem p is a feasible point,
denoted point, such that for every feasible point y the value of the objective
function at point is smaller than or equal to the value at y.
5 https://github.com/verified-optimization/CvxLean
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structure Solution {D R : Type} [Preorder R] (p : Minimization D R) :=
(point : D)
(feasibility : p.constraints point)
(optimality : ∀ y : FeasPoint p, p.objFun point ≤ p.objFun y.point)

Feasibility and bounding problems can also be expressed in these terms. If the
objective function is constant (e.g. the constant zero function), a solution to the
optimization problem is simply a feasible point. Given a domain, an objective
function, and constraints, the value b is a strict lower bound on the value of the
objective function over the domain if and only if the feasibility problem obtained
by adding the inequality objFun x ≤ b to the constraints has no solution.

Lean 4 allows us to implement convenient syntax for defining optimization
problems. For example, the following specifies the problem of maximizing

√
x− y

subject to the constraints y = 2x− 3 and x2 ≤ 2:

optimization (x y : R)
maximize sqrt (x - y)
subject to

c1 : y = 2*x - 3
c2 : x^2 ≤ 2
c3 : 0 ≤ x - y

The third condition, c3, ensures that the objective function makes sense and is
concave on the domain determined by the constraints. In some frameworks, like
CVXPY, this constraint is seen as implicit in the use of the expression sqrt (x
- y), but we currently make it explicit in CvxLean. Problems can also depend
on parameters and background conditions. For example, we can replace c1 above
by y = a*x - 3 for a parameter a, and we can replace the objective function by
b * sqrt (x - y) with the background assumption 0 < b.

In Section 6, we will consider the covariance estimation for Gaussian vari-
ables, which can be expressed as follows, for a tuple of sample values y:

optimization (R : Matrix (Fin n) (Fin n) R)
maximize (

∏
i, gaussianPdf R (y i))

subject to
c_pos_def : R.posDef

Here Matrix (Fin n) (Fin n) R is Lean’s representation of the data type of n×n
matrices over the reals, gaussianPdf is the Gaussian probability density function
defined in Section 6, and the constraint R.posDef specifies that R ranges over
positive definite matrices.

If p and q are problems, a reduction from p to q is a function mapping any
solution to q to a solution to p. The existence of such a reduction means that
to solve p it suffices to solve q. If p is a feasibility problem, it means that the
feasibility of q implies the feasibility of p, and, conversely, that the infeasibility
of p implies the infeasibility of q. We can now easily describe what we are after:
we are looking for a system that helps a user reduce a problem p to a problem q
that can be solved by an external solver. (For a bounding problem q, the goal is
to show that the constraints with the negated bound are infeasible by finding a
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reduction from an infeasible problem p.) At the same time, we wish to verify the
correctness of the reduction, either automatically or with user interaction. This
will ensure that the results from the external solver really address the problem
that the user is interested in solving.

This notion of a reduction is quite general, and is not restricted to any par-
ticular kind of constraint or objective function. In the sections that follow, we
explain how the notion can be applied to convex programming.

3 Reduction to Conic Form

Disciplined Convex Programming (DCP) is a framework for writing constraints
and objective functions in such a way that they can automatically be transformed
into problems that can be handled by particular back-end solvers. It aims to be
flexible enough to express optimization problems in a natural way but restrictive
enough to ensure that problems can be transformed to meet the requirements
of the solvers. To start with, the framework guarantees that expressions satisfy
the relevant curvature constraints [1,21], assigning a role to each expression:

– Constant expressions and variables are affine.
– An expression f(expr1, . . . , exprn) is affine if f is an affine function and for

each i, expri is affine.
– An expression f(expr1, . . . , exprn) is convex if f is convex and for each i, one

of the following conditions holds:
• f is increasing in its ith argument and expri is convex.
• f is decreasing in its ith argument and expri is concave.
• expri is affine.

– The previous statement holds with “convex” and “concave” switched.

An affine expression is both convex and concave. Some functions f come with
side conditions on the range of arguments for which such curvature properties are
valid; e.g. f(x) =

√
x is concave and increasing on the domain {x ∈ R | x ≥ 0}.

A minimization problem is amenable to the DCP reduction if, following the
rules above, its objective function is convex and the expressions occurring in
its constraints are concave or convex, depending on the type of constraint. For
example, maximizing

√
x− y requires minimizing −

√
x− y, and the DCP rules

tell us that the latter is a convex function of x and y on the domain where
x− y ≥ 0, because x− y is affine,

√
· is concave and increasing in its argument,

and negation is affine and decreasing in its argument.
CvxLean registers the properties of atomic functions f(ā) in a library of

atoms. Each such function f is registered with a formal representation exprf (ā)
using expressions, like x * log x or log (det A), that can refer to arbitrary func-
tions defined in Lean’s library. The atom also registers the relevant properties of
f . The curvature of f , curvf , has one of the values convex, concave, or affine, and
the monotonicity of the function in each of its arguments is tagged as increasing,
decreasing, or neither. CvxLean also allows the value auxiliary, which indicates an
expression that serves as a fixed parameter in the sense that it is independent
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of the variables in the optimization problem. Atoms can also come with back-
ground conditions bcondsf (ā), which are independent of the domain variables,
and variable conditions vcondsf (ā), which constrain the domain on which the
properties hold. Notably, the atoms also include proofs of properties that are
needed to justify the DCP reduction.

By storing additional information with each atom, a DCP framework can
use the compositional representation of expressions to represent a problem in a
form appropriate to a back-end solver. For example, solvers like MOSEK expect
problems to be posed in a certain conic form [30]. To that end, CVXPY stores
a graph implementation for each atomic function f , which is a representation
of f as the solution to a conic optimization problem. By definition, the graph
implementation of an atomic function f is an optimization problem in conic
form, given by a list of variables v̄, an objective function objf (x̄, v̄), and a list
of constraints constrf (x̄, v̄), such that the optimal value of the objective under
the constraints is equal to f(x̄) for all x̄ in the domain of validity. For example,
for any x ≥ 0, the concave function

√
x can be characterized as the maximum

value of the objective function obj(x, t) = t satisfying the constraint constr(x, t)
given by t2 ≤ x. Once again, a notable feature of CvxLean is that that the atom
comes equipped with a formal proof of this fact.

The idea is that we can reduce a problem to the required form by iteratively
replacing each application of an atomic function by an equivalent characteri-
zation in terms of the graph implementation. For example, we can replace a
subexpression

√
x− y by a new variable t and add the constraint t2 ≤ x − y,

provided that the form of the resulting problem ensures that, for any optimal
solution to the constraints, t will actually be equal to

√
x− y. Given a well-

formed DCP minimization problem, CvxLean must perform the reduction and
construct a formal proof of the associated claims. In this section we describe
the reduction, and in the next section we describe the proofs. A more formal
description of both are given in an extended version of this paper [7].

Let e be a well-formed DCP expression. CvxLean associates to each such
expression a tree T whose leaves are expressions that are affine with respect to
the variables of the optimization problem. For example, this is the tree associated
with the expression -sqrt (x - y):

neg (affine, in the role of convex)

sqrt (concave)

sub (affine, in the role of concave)

x

increasing
y

decreasing

increasing

decreasing

Alternatively, we could use a single leaf for x - y. Denoting the variables of the
optimization problem by ȳ, we can recursively assign to each node n a subexpres-
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sion oexprn(ȳ) of e that corresponds to the subtree with root n. In the example
above, the subexpressions are x, y, x - y, sqrt (x - y), and -sqrt (x - y). To
each internal node, we assign a curvature, convex, concave, or affine, subject to
the rules of DCP. An expression that is affine can be viewed as either convex
or concave. Equalities and inequalities are also atoms; for example, e1 ≤ e2
describes a convex set if and only if e1 is convex and e2 is concave. A formaliza-
tion of the DCP rules allows us to recursively construct formal proofs of these
curvature claims, modulo the conditions and assumptions of the problem. We
elaborate on this process in the next section.

Now consider a well-formed DCP minimization problem with objective func-
tion o and constraints c1, . . . , cn. We call these expressions the components of
the problem. Recall the following example from the previous section, recast as a
minimization problem:

optimization (x y : R)
minimize -sqrt (x - y)
subject to

c1 : y = 2*x - 3
c2 : x^2 ≤ 2
c3 : 0 ≤ x - y

Here the components are -sqrt (x - y), y = 2*x - 3, x^2 ≤ 2, and 0 ≤ x - y.
First, we assign to each component c an atom tree Tc as described above. If

ȳ are the variables of the original problem, the variables of the reduced problem
are ȳ ∪ z̄, where z̄ is a collection of variables consisting of a fresh set of variables
for the graph implementation at each internal node of each tree, for those atoms
whose graph implementations introduce new variables. To each node n of each
atom tree, we assign an expression rexprn(ȳ, z̄) in the language of the reduced
problem representing the expression oexprn(ȳ) in the original problem. At the
leaves, rexprn(ȳ, z̄) is the same as oexprn(ȳ). At internal nodes we use the ob-
jective function of the corresponding atom’s graph implementation, applied to
the interpretation of the arguments. The objective of the reduced problem is the
expression assigned to the root of To.

As far as the constraints of the reduced problem, recall that each internal
node of the original problem corresponds to an atom, which has a graph imple-
mentation. The graph implementation, in turn, is given by a list of variables v̄,
an objective function objf (ā, v̄), and a list of constraints constrf (ā, v̄). These con-
straints, applied to the expressions representing the arguments, are part of the
reduced problem. Moreover, the constraints of the original problem, expressed in
terms of the reduced problem, are also constraints of the reduced problem, with
one exception. Recall that atoms can impose conditions vcondsf (ā), which are
assumed to be among the constraints of the original problem and to be implied
by the graph implementation. For example, the condition 0 ≤ x is required to
characterize

√
x as the maximum value of a value t satisfying t^2 ≤ x, but, con-

versely, the existence of a t satisfying t^2 ≤ x implies 0 ≤ x. So a constraint
0 ≤ x that is present in the original problem to justify the use of sqrt x can be
dropped from the reduced problem.
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In the example above, there is a tree corresponding to each of the compo-
nents -sqrt (x - y), x^2 ≤ 2, 0 ≤ x - y, and y = 2*x - 3. As n ranges over
the nodes of these trees, oexprn(x, y) ranges over all the subexpressions of these
components, namely, x, y, x - y, sqrt (x - y), -sqrt (x - y), x^2, 2, x^2 ≤ 2,
and so on. The only atoms whose graph implementations introduce extra vari-
ables are the square root and the square. Thus, CvxLean introduces the variable
t.0, corresponding to the expression sqrt (x - y), and the variable t.1, corre-
sponding to the expression x^2. The values of rexprn(x, y, t0, t1) corresponding
to some of the expressions above are as follows:

oexprn(x, y) x - y sqrt (x - y) -sqrt (x - y) x^2
rexprn(x, y, t0, t1) x - y t.0 -t.0 t.1

The constraints c1 and c2 of the original problem translate to cone constraints
c1’ and c2’ on the new variables, the constraint c3 is implied by the graph
representation of x^2, and the graph representations of sqrt (x - y) and x^2
become new cone constraints c4’ and c5’. Thus the reduced problem is as follows:

optimization (x y t.0 t.1 : R)
maximize t.0
subject to

c1’ : zeroCone (2*x - 3 - y) -- 2*x - 3 - y = 0
c2’ : posOrthCone (2 - t.1) -- 2 - t.1 ≥ 0
c4’ : rotatedSoCone 0.5 (x - y) ![t.0] -- x - y ≥ t.0^2
c5’ : rotatedSoCone t.1 0.5 ![x] -- t.1 ≥ x^2

Here, ![t.0] and ![x] denote singleton vectors and the meaning of the cone
constraints is annotated in the comments. For a description of the relevant conic
forms, see the MOSEK modeling cookbook [31].

4 Verifying the Reduction

The reduction described in the previous section is essentially the same as the
one carried out by CVXPY. The novelty of CvxLean is that it provides a formal
justification that the reduction is correct. The goal of this section is to explain
how we manage to construct a formal proof of that claim. In fact, given a problem
P with an objective function f , CvxLean constructs a new problem Q with an
objective g, together with the following additional pieces of data:

– a function ϕ from the domain of P to the domain of Q such that for any
feasible point x of P , ϕ(x) is a feasible point of Q with g(ϕ(x)) ≤ f(x)

– a function ψ from the domain of Q to the domain of P such that for any
feasible point y of Q, ψ(y) is a feasible point of P with f(ψ(y)) ≤ g(y).

These conditions guarantee that if y is a solution to Q then ψ(y) is a solution
to P , because for any feasible point x of P we have

f(ψ(y)) ≤ g(y) ≤ g(ϕ(x)) ≤ f(x).
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This shows that ψ is a reduction of P to Q, and the argument with P and Q
swapped shows that ϕ is a reduction ofQ to P . Moreover, whenever y is a solution
to Q, instantiating x to ψ(y) in the chain of inequalities implies f(ψ(y)) = g(y).
Similarly, when x is a solution to P , we have g(ϕ(x)) = f(x). So the conditions
above imply that P has a solution if and only if Q has a solution, and when they
do, the minimum values of the objective functions coincide. Below, we will refer
to the data (ϕ,ψ) as a strong equivalence between the two problems.

To construct and verify such a strong equivalence between the original prob-
lem and the result of applying the transformation described in Section 3, we need
to store additional information with each atom. Specifically, for each atomic func-
tion f(ā), that atom must provide solutions solf (ā) to the graph implementation
variables v̄, as well as formal proofs of the following facts:

– The function f(ā) satisfies the graph implementation: for each ā satisfying
the conditions vcondsf (ā), we have:
• solution feasibility: solf (ā) satisfies the constraints constrf (ā, solf (ā))
• solution correctness: we have objf (ā, solf (ā)) = exprf (ā) , where exprf (ā)

is the expression representing f .
– The function f(ā) is the optimal solution to the graph implementation, in

the following sense. Write ā′ 4 ā to express the assumptions that a′i ≥ ai
for increasing arguments to f , a′i ≤ ai for decreasing arguments, and a′i and
ai are syntactically identical for other arguments. If f is convex and ā 4 ā′,
we require objf (ā, v̄) ≥ exprf (ā′) for any v̄ such that constrf (ā, v̄) holds. If f
is concave and ā′ 4 ā, we require objf (ā, v̄) ≤ exprf (ā′) for any v̄ such that
constrf (ā, v̄) holds. For affine atoms, we require both.

Finally, as noted in the previous section, the graph implementation implies the
conditions needed for the reduction. Under the assumptions on ā and ā′ in the
second case above, we also require a proof of vcondsf (ā′). We refer to this as
condition elimination.

For a concrete example, consider the atom for the concave function
√
a. In

that case, vconds(a) is the requirement a ≥ 0, and expr(a), the Lean representa-
tion of the function, is given by Lean’s sqrt function. The graph implementation
adds a new variable v. The only constraint constr(a, v) is v2 ≤ a, and the ob-
jective function is obj(a, v) = v. The solution function sol(a) returns

√
a when

a is nonnegative and an arbitrary value otherwise. The atom for
√
· stores Lean

proofs of all of the following:

– solution feasibility: ∀ a, 0 ≤ a → (sqrt a)^2 ≤ a
– solution correctness: ∀ a, 0 ≤ a → sqrt a = sqrt a
– optimality: ∀ v a a’, a ≤ a’ → v^2 ≤ a → v ≤ sqrt a’
– condition elimination: ∀ v a a’, a ≤ a’ → v^2 ≤ a → 0 ≤ a’.

More precisely, the atom stores the representation of the graph of the square
root function as a cone constraint, and the properties above are expressed in
those terms. These properties entail that sqrt is concave, but we do not need to
prove concavity explicitly.
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Let the variables ȳ range over the domain of the original problem, P , and
let the variables ȳ, z̄ be the augmented list of variables in the reduced problem,
Q. We wish to construct a strong equivalence between P and Q. To that end,
we need to define a forward map ϕ and a reverse map ψ. The definition of ψ is
easy: we simply project each tuple ȳ, z̄ to ȳ. The definition of the forward map,
ϕ, is more involved, since we have to map each tuple ȳ of values to an expanded
tuple ȳ, z̄. The values of ȳ remain unchanged, so the challenge is to define, for
each new variable z, an expression interpz(ȳ) to interpret it.

Recall that for each subexpression oexprn(ȳ) in the original problem, corre-
sponding to a node n, there is an expression rexprn(ȳ, w̄) involving new vari-
ables from the reduced problem. Suppose a node n corresponds to an expres-
sion f(u1, . . . , un) in the original problem, and the graph implementation of f
introduces new variables v̄. For each vj , we need to devise an interpretation
interpvj (ȳ). To start with, solf provides a solution to vj in terms of the argu-
ments u1, . . . , un. For each of these arguments, rexpr provides a representation in
terms of the variables ȳ and other new variables. Composing these, we get an ex-
pression e(ȳ, w1, . . . , w`) for vj in terms of the variables ȳ of the original problem
and new variables w1, . . . , w`. Recursively, we find interpretations interpwk

(ȳ) of
each wk, and define interpvj (ȳ) to be e(ȳ, interpw1

(ȳ), . . . , interpw`
(ȳ)). In other

words, we read off the interpretation of each new variable of the reduced problem
from the intended solution to the graph equation, which may, in turn, require
the interpretation of other new variables that were previously introduced.

In the end, the forward map ϕ is the function that maps the variables ȳ in the
original problem to the tuple (ȳ, interpz1(ȳ), . . . , interpzm(ȳ)), where z1, . . . , zm
are the new variables. To show that (ϕ,ψ) is a strong equivalence, we must show
that for any feasible point ȳ of the original problem, ϕ(ȳ) is a feasible point of the
reduced problem. This follows from the solution correctness requirement above.
We also need to show that if f(ȳ) is the objective function of the original problem
and g(ȳ, z̄) is the objective function of the reduced problem, g(ϕ(ȳ)) ≤ f(ȳ).
In fact, the solution correctness requirement enables us to prove the stronger
property g(ϕ(ȳ)) = f(ȳ). Finally, we need to show that for any feasible point ȳ, z̄
of the reduced problem, the tuple ȳ is a feasible point of the original problem and
f(ȳ) ≤ g(ȳ, z̄). To do that, we recursively use the optimality requirement to show
rexprn(ȳ, z̄) ≥ oexprn(ȳ) whenever the node n marks a convex expression or an
affine expression in the role of a convex expression, and rexprn(ȳ, z̄) ≤ oexprn(ȳ)
whenever the node n marks a concave expression or an affine expression in the
role of a concave expression.

A proof that the maps ϕ and ψ constructed above form a strong equivalence
can be found in the extended version of this paper [7], but it is helpful to
work through the example from Section 3 to get a sense of what the proof
means. For this example, the forward map is ϕ(x, y) = (x, y,

√
x− y, x2) and the

reverse map is ψ(x, y, t0, t1) = (x, y). Assuming that (x, y) is a solution to the
original problem, the fact that ϕ(x, y) satisfies c1’ follows from c1, the fact that
it satisfies c2’ follows from c2, the fact that it satisfies c4’ and c5’ follows from
the fact that

√
x− y and x2 are correct solutions to the graph implementation
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constraints. In this direction, g(ϕ(x, y)) = −
√
x− y = f(x, y). In the other

direction, assuming that (x, y, t0, t1) is a solution to the reduced problem, the
fact that (x, y) satisfies c1 follows from c1’, that fact that it satisfies c2 follows
from c2’ and c5’, and the fact that is satisfies c3 follows from c4’. Here we
have f(ψ(x, y, t0, t1)) = −

√
x− y and g(x, y, t0, t1) = −t0, and the fact that the

former is less than or equal to the latter follows from c4’.

5 Adding Atoms

One important advantage to using an interactive theorem prover as a basis for
solving optimization problems is that it is possible to extend the atom library in
a verified way. In a system like CVXPY, one declares a new atom with its graph
implementation on the basis of one’s background knowledge or a pen-and-paper
proof that the graph implementation is correct and that the function described
has the relevant properties over the specified domain. In CvxLean, we have
implemented syntax with which any user can declare a new atom in Lean and
provide formal proofs of these facts. The declaration can be made in any Lean
file, and it becomes available in any file that imports that one as a dependency.
Lean has a build system and package manager that handles dependencies on
external repositories, allowing a community of users to share such mathematical
and computational content.

For example, the declaration of the atom for the logarithm looks as follows:

declare_atom log [concave] (x : R)+ : log x :=
conditions (cond : 0 < x)
implementationVars (t : R)
implementationObjective t
implementationConstraints (c_exp : expCone t 1 x)
solution (t := log x)
solutionEqualsAtom by . . .

feasibility (c_exp : by . . .)
optimality by . . .

conditionElimination (cond : by . . .)

The ellipses indicate places that are filled by formal proofs. Proof assistants
like Lean allow users to write such proofs interactively in an environment that
displays proof obligations, the local context, and error messages, all while the
user types. For example, placing the cursor at the beginning of the optimality
block displays the following goal:

x t : R
c_exp : expCone t 1 x
` ∀ (y : R), x ≤ y → t ≤ log y

In other words, given real values x and t and the relevant constraint in terms of
the exponential cone, we need to prove that for every y ≥ x, we have t ≤ log(y).

For the example we present in the next section, we had to implement the
log-determinant atom [10, Example 9.5], whose arguments consist of a natural
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number n and a matrix A ∈ Rn×n. This function is represented in Lean by the
atom expression exprlog-det = log (det A), where the parameter n is implicit in
the type of A. The curvature is specified to be concave, the monotonicity in n
is auxiliary because we do not support the occurrence of optimization variables
in this argument, and the monotonicity in A is neither because the value of
log(detA) is neither guaranteed to increase nor guaranteed to decrease as A
increases. (The relevant order here on matrices is elementwise comparison.) The
correctness of the reduction requires the assumption that A is positive definite.
Following CVXPY, we used the following graph implementation:

maximize
∑
i

ti

over t ∈ Rn, Y ∈ Rn×n

subject to (t, 1, y) ∈ expcone(
D Z
ZT A

)
positive semidefinite

Here y is the diagonal of Y ; Z is obtained from Y by setting all entries below
the diagonal to 0; and D is obtained from Y by setting all entries off the diag-
onal to 0. Here, saying that the tuple (t, 1, y) is in the exponential cone means
that eyi ≥ ti for each i. Our implementation in CvxLean required proving that
this graph implementation is correct. To do so, we formalized an argument in
the MOSEK documentation.6 This, in turn, required proving properties of the
Schur complement, triangular matrices, Gram-Schmidt orthogonalization, and
LDL factorization. Moreover, the argument uses the subadditivity of the de-
terminant function, for which we followed an argument by Andreas Thom on
MathOverflow.7

6 User-defined Reductions

An even more important advantage of using an interactive proof assistant as a
framework for convex optimization is that, with enough work, users can carry out
any reduction that can be expressed and justified in precise mathematical terms.
As a simple example, DCP cannot handle an expression of the form exp(x)exp(y)
in a problem, requiring us instead to write it as exp(x + y). But in CvxLean,
we have the freedom to express the problem in the first form if we prefer to and
then verify that the trivial reduction is justified:

reduction red/prob :
optimization (x y : R)

maximize x + y
subject to

6 https://docs.mosek.com/modeling-cookbook/sdo.html#log-determinant
7 https://mathoverflow.net/questions/65424/determinant-of-sum-of-positiv
e-definite-matrices/65430#65430
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h : (exp x) * (exp y) ≤ 10 := by
conv_constr => rw [←Real.exp_add]

Here the expression rw [←Real.exp_add] supplies the short formal proof that
exp(x+ y) can be replaced by exp(x)exp(y).

Of course, this functionality becomes more important as the reductions be-
come more involved. As a more substantial example, we have implemented a
reduction needed to solve the the covariance estimation problem for Gaussian
variables [10, pp. 355]. In this problem, we are given N samples y1, . . . , yN ∈ Rn

drawn from a Gaussian distribution with zero mean and unknown covariance
matrix R. We assume that the Gaussian distribution is nondegenerate, so R is
positive definite and the distribution has density function

pR(y) = (2π)−
n/2 det(R)−

1/2 exp(−yTR−1y/2).

We want to estimate the covariance matrix R using maximum likelihood estima-
tion, i.e., we want to find the covariance matrix that maximizes the likelihood
of observing y1, . . . yN . The maximum likelihood estimate for R is the solution
to the following problem:

maximize
N∏

k=1

pR(yk) over R subject to R positive definite.

As stated, this problem has a simple analytic solution, namely, the sample co-
variance of y1, . . . , yn, but the problem becomes more interesting when one adds
additional constraints, for example, upper and lower matrix bounds on R, or
constraints on the condition number of R (see [10]). We can easily reduce the
problem to maximizing the logarithm of the objective function above, but that is
not a concave function of R. It is, however, a concave function of S = R−1, and
common constraints on R translate to convex constraints on S. We can therefore
reduce the problem above to the following:

maximize log(det(S))−
N∑

k=1

yTk Syk over S subject to S positive definite,

possibly with additional constraints on S. We express the sum using the sample
covariance Y = 1

N

∑N
k=1 yky

T
k and the trace operator:

maximize log(det(S))−N · tr(Y ST ) over S

subject to S positive definite

The problem can then be solved using disciplined convex programming. The
constraint that S is positive definite is eliminated while applying the graph
implementation of log(det(S)).

We have formalized these facts in Lean and used them to justify the reduc-
tion. An example with an additional sparsity constraints on R can be found in
CvxLean/Examples in our repository.
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7 Connecting Lean to a Conic Optimization Solver

Once a problem has been reduced to conic form, it can be sent to an external
back-end solver. At this point, we must pass from the realm of precise symbolic
representations and formal mathematical objects to the realm of numeric compu-
tation with floating point representations. We traverse our symbolic expressions,
replacing functions on the reals from Lean’s mathematical library with corre-
sponding numeric functions on floats, for example associating the floating point
exponential function Float.exp to the real exponential function Real.exp. Our
implementation makes it easy to declare such associations with the following
syntax: addRealToFloat : Real.exp := Float.exp.

This is one area where more verification is possible. We could use verified
libraries for floating point arithmetic [2,9,19,44], we could use dual certificates
to verify the results of the external solver, and we could carry out formal sensi-
tivity analysis to manage and bound errors. Our current implementation is only
designed to verify correctness up to the point where the problem is sent to the
back-end solver, and to facilitate the last step, albeit in an unverified way.

We have implemented a solve command in CvxLean which takes a an opti-
mization problem prob in DCP form and carries out the following steps:

1. It applies the dcp procedure to obtain a reduced problem, prob.reduced, and
a reduction red : Solution prob.reduced -> Solution prob.

2. It carries out the translation to floats, traversing each expression and apply-
ing the registered translations.

3. It extracts the numerical data from the problem. At this point, we have
scalars, arrays and matrices associated to every type of constraint.

4. It writes the problem to an external file in the conic benchmark format.8

5. It calls MOSEK and receives a status code in return, together with a solution,
if MOSEK succeeds in finding one. The problem status is added to the
environment and if it is infeasible or ill-posed, we stop.

6. Otherwise, the solve command interprets the solution so that it matches the
shape of the variables of prob.reduced. It also expresses these values as Lean
reals, resulting in an approximate solution p to prob.reduced. It declares a
corresponding Solution to prob.reduced, using a placeholder for the proofs
of feasibility and optimality (since we simply trust the solver here).

7. It then uses the reduction from prob to prod.reduced, again reinterpreted in
terms of floats, to compute an approximate solution to prob.

Finally, the results are added to the Lean environment. In the following example,
the command solve so1 results in the creation of new Lean objects so1.reduced,
so1.status, so1.value, and so1.solution. The first of these represents the conic-
form problem that is sent to the back-end solver, while the remaining three
comprise the resulting solution.

noncomputable def so1 :=

8 https://docs.mosek.com/latest/rmosek/cbf-format.html
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optimization (x y : R)
maximize sqrt (x - y)
subject to

c1 : y = 2*x - 3
c2 : x^2 ≤ 2
c3 : 0 ≤ x - y

solve so1
#print so1.reduced -- shows the reduced problem
#eval so1.status -- "PRIMAL_AND_DUAL_FEASIBLE"
#eval so1.value -- 2.101003
#eval so1.solution -- (-1.414214, -5.828427)

8 Related Work

Our work builds on decades of research on convex optimization [10,36,39,43],
and most directly on the CVX family and disciplined convex programming
[15,17,20,21,42]. Other popular packages include Yalmip [26].

Formal methods have been used to solve bounding problems [18,38], con-
straint satisfaction problems [16], and optimization problems [25]. This litera-
ture is too broad to survey here, but [14] surveys some of the methods that
are used in connection with the verification of cyber-physical systems. Proof
assistants in particular have been used to verify bounds in various ways. Some
approaches use certificates from numerical packages; Harrison [24] uses certifi-
cates from semidefinite programming in HOL Light, and Magron et al. [27] and
Martin-Dorel and Roux [28] use similar certificates in Coq. Solovyev and Hales
use a combination of symbolic and numeric methods in HOL Light [40]. Other
approaches have focused on verifying symbolic and numeric algorithms instead.
For example, Muñoz, Narkawicz, and Dutle [34] verify a decision procedure for
univariate real arithmetic in PVS and Cordwell, Tan, and Platzer [13] verify an-
other one in Isabelle. Narkawicz and Muñoz [35] have devised a verified numeric
algorithm to find bounds and global optima. Cohen et al. [11,12] have devel-
oped a framework for verifying optimization algorithms using the ANSI/ISO C
Specification Language (ACSL) [5].

Although the notion of a convex set has been formalized in a number of
theorem provers, we do not know of any full development of convex analysis.
The Isabelle [37] HOL-Analysis library includes properties of convex sets and
functions, including Carathéodory’s theorem on convex hulls, Radon’s theorem,
and Helly’s theorem, as well as properties of convex sets and functions on normed
spaces and Euclidean spaces. A theory of lower semicontinuous functions by
Grechuk [22] in the Archive of Formal Proofs [8] includes properties of convex
functions. Lean’s mathlib [29] includes a number of fundamental results, including
a formalization of the Riesz extension theorem by Kudryashov and Dupuis and a
formalization of Jensen’s inequality by Kudryashov. Allamigeon and Katz have
formalized a theory of convex polyhedra in Coq with an eye towards applications
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to linear optimization [3]. We do not know of any project that has formalized
the notion of a reduction between optimization problems.

9 Conclusions

We have argued that formal methods can bring additional reliability and interac-
tive computational support to the practice of convex optimization. The success
of our prototype shows that it is possible to carry out and verify reductions using
a synergistic combination of automation and user interaction.

The implementation of CvxLean is currently spread between two versions of
Lean [32,33]. Lean 3 has a formal library, mathlib [29], which comprises close to
a million lines of code and covers substantial portions of algebra, linear algebra,
topology, measure theory, and analysis. Lean 4 is a performant programming
language as well as a proof assistant, but its language is not backward compatible
with that of Lean 3. All of the substantial programming tasks described here
have been carried out in Lean 4, but we rely on a binary translation of the Lean 3
library and some additional results proved there. This arrangement is not ideal,
but a source-level port of the Lean 3 library is already underway, and we expect
to move the development entirely to Lean 4 in the near future.

There is still a lot to do. We have implemented and verified all the atoms
needed for the examples presented in this paper, but these are still only a frac-
tion of the atoms that are found in CVXPY. The DCP transformation currently
leaves any side conditions that it cannot prove for the user to fill in, and special-
purpose tactics, i.e. small-scale automation, could help dispel proof obligations
like monotonicity. Textbooks often provide standard methods and tricks for car-
rying out reductions (e.g. [10, Section 4.1.3]), and these should also be supported
by tactics in CvxLean. Our project, as well as Lean’s library, would benefit from
more formal definitions and theorems in convex analysis and optimization. We
need to implement more efficient means of extracting numeric values for the back-
end solver, and it would be nice to verify more of the numeric computations and
claims. Finally, and most importantly, we need to work out more examples like
the ones presented here to ensure that the system is robust and flexible enough
to join the ranks of conventional optimization systems like CVXPY.
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Abstract. In Rust, programs are often written using iterators, but these
pose problems for verification: they are non-deterministic, infinite, and
often higher-order, effectful and built using adapters. We present a gen-
eral framework for specifying and reasoning with Rust iterators in first-
order logic. Our approach is capable of addressing the challenges set out
above, which we demonstrate by verifying real Rust iterators, including
a higher-order, effectful Map. Using the Creusot verification platform,
we evaluate our framework on clients of iterators, showing it leads to
efficient verification of complex functional properties.

Keywords: Rust · Deductive verification · Iterators · Closures

1 Introduction

The Rust language aims to empower systems software programmers by offering
them safe and powerful linguistic abstractions to solve their problems. The most
notorious of these abstractions, Rust’s borrowing mechanism, enables safe usage
of pointers without a garbage collector or performance penalty. A close second is
perhaps Rust’s iterator system, through which Rust provides composable mech-
anisms to express the traversal and modification of collections. Iterators also
underlie Rust’s for loop syntax, and are thus the primary manner Rust devel-
opers write loops or interact with data structures. It is therefore essential for a
verification tool for Rust to provide good support for iterators.

Rust iterators generate sequences of values. Most importantly, they are
objects providing a method fn next(&mut self) -> Option<Self::Item>. This
method takes a mutable reference (&mut self) to the iterator, allowing it to
change its internal state, and optionally returns a value of type Self::Item, the
type of the values generated by the iterator. If, instead of returning such a value,
the iterator returns None, it means iteration has finished for now, though it
may resume again later. Rust’s for loops are just syntactic sugar for repeatedly
calling next at the beginning of each iteration, until such a call returns None.
For example, the following two pieces of code present a Rust loop for iterating
over integers between 0 (included) and n (excluded), using a range iterator:
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for i in 0..n { <body> }

let mut iter = 0..n;
loop { match iter.next() {

None => break,
Some(i) => <body>

} }

The piece of code on the left-hand side uses an idiomatic for loop, while the
other shows its desugared version.

Iterators present unique challenges for verification tools: indeed, because the
use of iterators is pervasive in Rust, it is necessary to allow verification of code
using iterators with as little interaction as possible. In particular, most common
patterns such as iterating over integers in a given range or reading the elements
of a vector should not need any annotation other than the loop invariants the
user would write if not using iterators. On the other hand, Rust’s iterator library
is complex, with many features representing as many challenges for verification:
iterators can be built from various data structures and modified through iter-
ator adapters, which make it possible to create iterators from simpler ones, by,
e.g., skipping the first few elements or applying a given function to each of the
elements.

Consider the example below:

1 let mut cnt = 0;
2 let w = vec![1,2,3].iter().map(|x|{cnt += 1; x + 1}).collect();
3 assert_eq!(w, vec![2,3,4]); assert_eq!(cnt, 3);

On line 2, quite a lot happens at once. First, we produce an iterator over the
elements of the vector vec![1,2,3] with the syntax .iter(), which we transform
through a call to map. The method map is an iterator adapter : it returns a new
iterator that calls the given closure on each of the elements generated by the
underlying iterator, and forwards the value returned by the closure. Interestingly,
the closure we pass to map captures mutable state : it modifies the variable cnt.
Finally, the method collect gathers the elements generated into a new vector w.

We aim at requiring only lightweight annotations for verifying this kind of
code: the appeal of iterator chains like on line 2 are the ergonomics, they are com-
pact and highly-readable. For verification of iterator-based code to be successful,
it must preserve this ergonomics. However, despite its apparent simplicity, this
piece of code is challenging to verify: it combines higher-order functions and mu-
table state, uses potentially overflowing integers, and assertions on line 3 check
full functional behavior.

More generally, to support iterators, a verification tool for Rust needs to pro-
vide a specification scheme that both provides good ergonomics and overcomes
the following technical challenges:

– Strong Automation: for verification to be used, it must require little to no
user interaction and lead to good verification performance.

– Interruptibility : iterators can produce infinite sequences of values and can
be interrupted before completion, thus specification and verification must
happen as the iterator is used, and not at completion.
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– Non-Determinism : iterators can feature both specification or implementa-
tion non-determinism, so the sequence of known values might not be known
in advance to the verifier. For example, the order of elements generated by
an iterator over a hash table may be left unspecified for a client.

– Compositionality : iterators can be consumed by adapters, so their specifi-
cations need to follow a general pattern which make them composable. For
example, the specification of a adapter such as skip(n), which skips the first
n elements of a given iterator, should accept the specification of any iterator,
and provide a sound and useful specification for the combined iterator.

– Higher-Order & Effects : some iterator adapters, such as map, are higher-order,
they take a closure as parameter. To verify programs using these adapters,
a verification tool should overcome the challenges of higher-order functions,
which potentially capture mutable state.

1.1 Contributions

In order to reach this goal, we propose a new specification scheme for iterators
in Rust. Our contributions can be summarized as follows:

– In Section 3, we provide a general specification scheme for Rust iterators
in first-order logic. It supports possibly non-deterministic, infinite and in-
terruptible iterators. It is inspired by Filliâtre and Pereira’s specification of
iterators in Why3 [5], but it is adapted to our style of specification using a
prophetic mutable value semantics [13] for Rust. This style of specification
is particularly well suited to handle mutable values (of which iterators are
an instance), by leveraging the non-aliasing guarantees provided by Rust’s
type system.

– In Section 4.1, we show that this scheme can be trivially instantiated for
basic iterators such as a range of integers.

– In Section 4.2, we show how this scheme can be instantiated to give full
functional specification to mutating iterators. These iterators allow to mutate
the content of a data structure by iterating over mutable references pointing
to the content of the data structure.

– In Section 4.3, we show that our specification scheme is composable, so that
it can be used to specify iterator adapters transforming arbitrary iterators
into more complex ones. We give two examples: take, which truncates an
iterator to at most a given number of elements, and skip, which skips a
given number of elements at the beginning of iteration.

– To support higher-order iterator adapters, we provide a specification mecha-
nism for closures in Section 5. This mechanism distinguishes the three kinds
of closures of Rust (Fn, FnMut and FnOnce), and allows specifying the side ef-
fects a closure may have on its environment by making explicit the effect of a
call on the state of the closure. It allows reducing the verification conditions
for closures to first-order logic, enabling usage of off-the-shelf automation.

– In Section 6, we explain how we can combine the techniques presented in
previous sections to specify higher-order iterator adapters, by taking map as
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an example. This provides a way to verify the functional correctness of pro-
grams using higher-order iterators, while requiring lightweight annotations.

– We provide a freely available1 implementation of our proposal in
Creusot [4]. This tool is a state-of-the-art verification platform for safe
Rust code, allowing users to verify programs by adding contracts to their
functions. This implementation extends Creusot’s handling of for loops to
benefit from structural invariants provided by the specification of iterators.
We evaluate it in Section 7 on several benchmarks.

2 Specifications in Rust Programs

Before explaining the specification of iterators, we introduce the style of specifi-
cation we use in this paper. One important aspect of specifications of imperative
programs is their memory model, that is the way they handle pointers and mu-
tations performed through them. Following previous work [7, 8, 4], we choose
to leverage the non-aliasing guarantees of Rust’s type system. Because of the
non-aliasing guarantees, a given memory location can be mutated through at
most one reference at a given point in time, excluding all “spooky actions at
a distance” that are customary with pointer aliasing. Therefore, it is possible
to give a mutable value semantics [13] to Rust programs, meaning that, even
though Rust programs can perform mutation of memory, they can be reasoned
about in a purely applicative manner. As a result, the Rust type Box<T> of
heap-allocated pointers, and the Rust type &T of read-only references are simply
modeled by wrappers over values of type T in our specifications. As shown in
previous work [4, 7, 8], this interpretation of Rust programs is key to verifying
complex Rust programs, because it avoids the use of any kind of separation logic
or dynamic frames, which are challenging to automate.

The handling of mutable references &mut T requires caution. Such references
represent the temporary borrow of ownership of a memory location, so that
mutations through such a reference will be observed by the initial owner once
the borrow ends. To correctly model the propagation of mutations from the
mutable reference to the borrowed variable, this style of specification models a
mutable reference r: &mut T as a pair of a current value *r of type T (representing
the current value pointed to by the reference) and of a prophecy ^r, representing
the value the reference will point to when the borrow ends.

This prophetic interpretation makes it possible to give precise specifications
to functions that manipulate mutable references. For example, the function push
adding a new element at the end of a vector in place can be specified as follows:

#[ensures(@^self == (@*self).concat(Seq::singleton(v)))]
fn push(&mut self, v: T);

Here, we use the operator @ to refer to the model of a vector, i.e., the mathemat-
ical sequence of its elements. The postcondition thus ensures that the content of

1 https://github.com/xldenis/creusot/
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the final vector pointed to by self, denoted by ^self, is modeled by the sequence
of elements of the initial vector *self, concatenated with the new element v.

We sometimes use purely mathematical functions and predicates, annotated
with the #[logic] and #[predicate] attributes.

We use Rust traits to give composable specifications to iterators. They are
analogous to Haskell’s typeclasses, enabling ad-hoc polymorphism. For example,
an order relation can be specified as a trait containing both a mathematical order
relation with its laws (reflexivity, antisymmetry and transitivity), and a program
function specified as returning the value prescribed by the logical predicate.

To aid in specification and verification of code, we use ghost code, code which
exists only during verification and has no influence on runtime behavior.

3 Reasoning on Iteration

In this section, we present the general mechanism we use to specify iterators
(Section 3.1), and how this kind of specification is used in a for loop (Section 3.2).

3.1 Specifying Iterators

In Rust, the mechanism of iterators is captured by a trait named Iterator, whose
simplified definition can be given as:

trait Iterator { type Item; fn next(&mut self) -> Option<Self::Item>; }

This trait describes the interface an iterator should implement: an iterator
should give a type Item of generated elements, and should implement a method
next which optionally returns the next generated element, and possibly mu-
tates in place the internal state of the iterator through the mutable reference
&mut self.

As can be seen in Figure 1, we extend2 the iterator trait with the purely
logical predicates produces and completed. We require that any implementation
of this trait satisfies the laws produces_refl and produces_trans: such laws are
lemmas stated as specifications of purely logical functions (i.e., the preconditions
should imply the postconditions). The next method is then specified thanks to
the two predicates. Any implementation of the Iterator trait needs to give a
logical definition of produces and completed predicates, prove the laws, give a
program definition for next and finally prove that it satisfies its specification.

Iterators are specified as state machines : a value of an iterator type is seen
as a state; produces(a, s, b) defines the transition relation (noted a

s
 b), and

the predicate completed (noted completed(·)) give the set of final states. The
completed predicate takes a mutable reference &mut self, which allows us to
2 In our implementation, to keep better compatibility with existing Rust code, we
choose to define the iterator specification as a sub-trait of the Iterator trait from
Rust’s standard library, and to give the specification of next using Creusot’s
extern_spec! mechanism. For simplicity, we present it here as a unique trait: the
main idea of the specification is the same.
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1 trait Iterator {
2 type Item;
3 #[predicate] fn completed(&mut self) -> bool;
4 #[predicate] fn produces(self, visited: Seq<Self::Item>, _: Self)
5 -> bool;
6 #[law] // I.e., ∀ a, a ε

 a
7 #[ensures(a.produces(Seq::EMPTY, a))]
8 fn produces_refl(a: Self);
9

10 #[law] // I.e., ∀ a b c, a
v
 b ∧ b

w
 c⇒ a

v·w
 c

11 #[requires(a.produces(ab, b) && b.produces(bc, c))]
12 #[ensures(a.produces(ab.concat(bc), c))]
13 fn produces_trans(a: Self, ab: Seq<Self::Item>,
14 b: Self, bc: Seq<Self::Item>, c: Self);
15
16 #[ensures(match result {
17 None => self.completed(),
18 Some(v) => (*self).produces(Seq::singleton(v), ^self)})]
19 fn next(&mut self) -> Option<Self::Item>;
20 }

Fig. 1. Iterator trait extended with specification.

specify mutations that happen when an iterator returns None3. This added ex-
pressivity in the specification allows us to express properties of unfused iterators
which may intermittently produce None during iteration. The produces transi-
tion relation is annotated with sequences of generated values rather than with
unique values so that a user can reason about interesting properties of sequences
as a whole rather than directly reasoning about the notion of transitive closure,
which automated solvers do not handle well. The price to pay is the laws of
reflexivity and transitivity which the implementers have to prove.

3.2 Structural Invariant of for Loops

Part of the appeal of for loops is the structure they provide over the looping
process. When a programmer sees a for, they can conclude that the body will be
executed once for each element in the iterator. Unlike with while loops, it is not
possible to decrement the loop index or otherwise perform unpredictable looping
patterns. This informal reasoning can be formalized as a loop invariant, provided
structurally by the for loop itself. The iterator at the i-th iteration is the result
of calling next exactly i times on some initial state. In our formalism, given an
initial iterator state initial and a current iterator state iter, we can state this

3 The predicate completed does not perform any side effects; it should rather be seen
as a two-state predicate.
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invariant as ∃ p, initial p
 iter. This invariant holds for any for loop over

any iterator: it can be derived from the laws produces_refl and produces_trans.
When using our extension to Creusot, every for loop benefits from this

structural invariant: we change the way these loops are desugared into the more
primitive loop construct, by adding ghost variables init_iter and produced and
the new invariant init_iter.produces(produced, iter). More precisely, a simple
for loop for x in iter {<body>} is desugared into:

let init_iter = ghost! { iter };
let mut produced = ghost! { Seq::EMPTY };
#[invariant(structural, init_iter.produces(produced, iter))]
loop { match iter.next() {

None => break,
Some(x) => {

produced = ghost! { produced.concat(Seq::singleton(x)) };
<body> },

} }

Interestingly, the ghost variable produced can be referred to in a user invariant
to relate the state of the loop with the iteration state. In the piece of code in
Figure 2, we use a variable count to count the number of elements generated by
an iterator, and use such an invariant to verify its intended meaning.

let mut count = 0;
#[invariant(count_is_n, @count == produced.len())]
for i in 0..n { count += 1; assert!(0 <= i && i < n); }
assert!(n < 0 || count == n);

Fig. 2. A simple for loop using ranges.

4 Examples of Specifications of Simple Iterators

In Section 3, we have presented a general framework to specify iterators and use
them in for loops. In this section, we present several simple examples of iterators
defined in this framework.

4.1 The Range Iterator

We start with a simple Range iterator, whose purpose is to iterate over the
integers in a given range. The notation a..b used idiomatically in Rust is a
syntactic sugar for this kind of iterators. The original definition from the Rust
standard library is generic over the type of integers used, but, for the sake of
simplicity, we use a monomorphic version here:

struct Range { start: usize, end: usize }
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If self.start ≥ self.end, the nextmethod returns None. Otherwise, it increments
self.start and returns the initial value of Some(self.start). Note that the upper
bound of the range, end, is excluded in the iteration.

In order to instantiate our iterator specification scheme with Range, we use
the produces and completed predicates defined by:

r
v
 r′ , |v| = r′.start− r.start ∧ r.end = r′.end

∧ |v| > 0⇒ r′.start ≤ r′.end

∧ ∀ i ∈ [0, |v| − 1], v[i] = r.start+ i

completed(r) , *r = ˆr ∧ (*r).end ≥ (*r).start

Transitivity and reflexivity are easily verified.
Rust’s standard library also contains ranges whose upper bound is included

rather than excluded, and ranges without an upper bound. They can all be
specified using similar techniques.

Note that with these definitions, the structural invariant of for loops directly
implies that the loop index (the last produced value) is in the range. In addition,
if the range is non-empty, one can deduce that the last iterated value is end− 1.
These two properties usually require an additional invariant if the loop is encoded
using the while construct. For an illustration consider Figure 2.

4.2 IterMut: Mutating Iteration Over a Vector

Our approach to iterators can be used to iterate over elements of a vector. But
instead of presenting the simple case of a read-only vector iterator, we study a
more general iterator, IterMut, permitting to both read and write vector elements
while iterating; the simpler case of the read-only iterator uses the same ideas.

This iterator produces mutable references for each element of a vector in turn.
The state of this iterator is a mutable reference to the slice (i.e., a fragment of
a vector) of elements that remain to be iterated:

struct IterMut<’a, T> { inner: &’a mut [T] }

To define the production relation of IterMut, we use a helper function tr,
which transposes a mutable reference to a slice into a sequence of mutable ref-
erences to its elements. Its defining property is:

|tr(s)| = |s| ∧ ∀ i ∈ [0, |s| − 1], tr(*s)[i] = *s[i] ∧ tr(ˆs)[i] = ˆs[i]

With the help of tr, the produces and completed relations of IterMut are
simple to express:

it
v
 it′ , tr(it.inner) = v · tr(it′.inner)

completed(it) , *r = ˆr ∧ |*r| = 0

It means that the iterator it produces a sequence of mutable references, which
must be the initial segment of tr(it.inner), into a final state it′ such that
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tr(it.inner) is the sequence of mutable references that are left to be generated.
Such an iterator is completed when the inner slice is empty.

This compact specification is enough to reason about mutating through the
returned pointers as in the following example:

#[invariant(all_zero, forall<i: Int> 0 <= i && i < produced.len()
==> @^produced[i] == 0)]

for x in v.iter_mut() { *x = 0; }
assert!{ forall<i: Int> 0 <= i && i < (@v).len() ==> @(@^v)[i] == 0 }

That is, we are able to prove with a simple loop invariant that this loop sets to
0 all the elements of the vector.

The reasoning that occurs to prove this program is as follows. First, at the
end of a loop iteration, we know that the final value of the borrow x is equal to
0 since we have just written 0 and this value will not change since x goes out
of scope. Together with the invariant of the preceding iteration, this is enough
to prove that the invariant is maintained. Second, after the loop has executed,
the final iterator state is empty, so we know produced contains the complete
sequence of borrows to elements of v. But, thanks to the loop invariant, the
prophetic value of each of these borrows is 0. So we can deduce that the final
content of v is a sequence of zeros.

4.3 Iterator Adapters

Because all iterators implement the same trait Iterator which gives them a spec-
ification, we can easily build adapters which wrap and transform the behavior
of an iterator.

It is important to note that, following Rust’s standard library, these adapters
are generic over the type of the underlying iterator; individual values of a type
cannot have different predicates. While the verification tool cannot know the
concrete definitions of produces or completed for the wrapped iterator, it knows
it must satisfy the Iterator trait interface.

The simplest example is Take<I> (where I is another iterator), which trun-
cates an iterator to produce at most n elements. The state of Take<I> is a record
with two fields: a counter n for the remaining elements to take and an iterator
iter to take from. The specification predicates of Take<I> are defined as follows:

it
v
 it′ , it.iter v

 it′.iter ∧ it.n = it′.n+ |v|
completed(it) , (*it).n = 0 ∧ *it = ˆit

∨ (*it).n > 0 ∧ (*it).n = (ˆit).n+ 1 ∧ completed(it.iter)

The subtle definition here is that of completed(it): if the counter is 0, then next
does nothing. But, following Rust’s implementation, if the counter is not 0, then
it is first decremented even if the call to the underlying iterator returns None.

Again, when instantiated to a specific underlying iterator type, we can substi-
tute the definitions of ( ) and completed(−) for the underlying iterator, to get
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a concrete definition of these predicates for Take<I>, which are easier to handle
by automated solvers.

Another adapter is Skip<I>, whose goal is to skip the first n elements of an
iterator. Similarly to Take<I>, the state is a record with two fields: a number n
of elements to skip and an underlying iterator iter.

The  relation of Skip<I> is defined as follows:

it
v
 it′ , v = ε ∧ it = it′

∨ it′.n = 0 ∧ |v| > 0 ∧ ∃w, |w| = it.n ∧ it.iter w·v
 it′.iter

The first disjunct is needed to ensure reflexivity of ( ). The second disjunct
describes what happens after a non-empty sequence of calls. If we produced
some sequence of elements v, then we must have been able to skip n elements
first, which we existentially quantify over.

If the Skip<I> iterator is completed, the underlying iterator has also com-
pleted, but potentially after having generated some skipped elements that we
existentially quantify over:

completed(it) , ∃w i, (ˆit).n = 0 ∧ |w| ≤ (*it).n

∧ (*it).iter w
 *i ∧ completed(i) ∧ ˆi = (ˆit).iter

Using Skip<I> and Take<I> we are able to prove an algebraic property of
iterators: if we take n elements and then skip n elements from that iterator, we
must necessarily get the empty iterator.

assert!(iter.take(n).skip(n).next().is_none())

This property is easy to prove from the composition of both production relations.

5 Closures in Rust

Unlike traditional functional languages, Rust has no function type for closures.
Two closures, even with identical bodies, are not of the same type: closures are
each given a unique, anonymous type representing the captured environment.
This design is motivated by the need to fully resolve closures during compilation:
the compiler is always able to identify exactly which piece of code is used at
every call site. To abstract over closures and write higher-order functions, Rust
provides three traits that the closure type may implement: FnOnce, FnMut, and Fn.
They describe the different ways a closure’s environment can be passed during a
call: by ownership, by mutable reference or by immutable reference. The compiler
automatically provides the relevant instances when a user writes a closure.

Traditionally, verifying higher-order code with mutable state has needed
seperation logic or dynamic frames, but because of Rust’s mutable value seman-
tics we can avoid these tools. Instead, we provide a specification for higher-order
functions in first-order logic, which generates simple verification conditions (see
code of Section 7). Specifically, we extend FnOnce, FnMut, and Fn with logical
predicates that capture the pre- and post- conditions of closures. We begin by
considering the simplest case, FnOnce:
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pub trait FnOnce<Args> {
#[predicate] fn precondition(self, a: Args) -> bool;
#[predicate] fn postcondition_once(self, a: Args, res: Self::Output)

-> bool;
#[requires(self.precondition(args))]
#[ensures(self.postcondition_once(args, result))]
fn call_once(self, args: Args) -> Self::Output;

}

The predicates precondition and postcondition_once refer to the specification
added to the call_once method used to call the closure.

A call to a FnOnce closure consumes it. On the other hand, FnMut allows a
mutable closure to be called multiple times. Here is our extended FnMut trait:

pub trait FnMut<Args> : FnOnce<Args> {
#[predicate] fn unnest(self, _: Self) -> bool;
#[ensures(self.unnest(self))]
#[law] fn unnest_refl(self);
#[requires(self.unnest(b) && b.unnest(c))]
#[ensures(self.unnest(c))]
#[law] fn unnest_trans(self, b: Self, c: Self);
#[predicate] fn postcondition_mut(&mut self, _: Args, _: Self::Output)

-> bool;
#[requires((*self).precondition(arg))]
#[ensures(self.postcondition_mut(arg, result))]
fn call_mut(&mut self, arg: Args) -> Self::Output;

[...] }

Because every FnMut closure is also an FnOnce closure, we can reuse the precon-
dition predicate to specify call_mut. However, we need a new predicate for the
richer postconditions that become possible: since the closure is called using a
mutable borrow, the postcondition specify changes made to captured variables.

Rust compiles closures via closure conversion, the state of each closure be-
comes a struct holding references to all captured variables. However, this struct
can only be modified in a restricted fashion: we can only mutate the values
pointed by the captures, and not the captures themselves. In particular, this
means the prophecies of captures remain constant. We capture this property in
an unnesting predicate F::unnest(a, b). It expresses that the prophecies in the
state of type F have not changed from a to b. This property is both reflexive and
transitive which we capture via laws. The unnesting predicate is essential to link
the states of a closure throughout repeated calls. Without it we would lose track
of the contained prophecies.

In addition to these predicates, our FnMut trait contains laws we elided:
unnest is implied by postcondition_mut, and postcondition_mut is linked to the
postcondition predicate of the FnOnce trait.

Finally, Fn imposes that the closure is immutable. Each call upholds the
postcondition and leaves the state intact. Again, in the following, we elided laws
relating postcondition, postcondition_mut and postcondition_once:

pub trait Fn<Args> : FnMut<Args> {
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#[predicate] fn postcondition(&self, _: Args, _: Self::Output) -> bool;

#[requires((*self).precondition(arg))]
#[ensures(self.postcondition(arg, result))]
fn call(&self, arg: Args) -> Self::Output;

[...] }

6 A Higher-order Iterator Adapter: Map

The challenge with the specification of Map is proving the preconditions of the
closure being called. Map treats the closure opaquely, it cannot tell what the
concrete pre- and post- conditions are, the justification for the precondition must
come from elsewhere. To help work through this, we use a thought experiment
where we see Map implemented as a loop with a yield instruction to generate
elements, in the style of e.g., Python generators:

fn map<I : Iterator, B, F: FnMut(I::Item) -> B>(iter: I, func: F) {
for a in iter { yield (f)(a) }

}

To verify it, we need f.precondition(a) to be true at each iteration, so we need
an invariant which implies it. This exposes the key property that must be true
of our closure: the postcondition at iteration n must be able to establish the
precondition for iteration n+ 1. In the vocabulary of iterators:

it
s·e1·e2 i′ ∧ pre(*f, e1) ∧ post(f, e1, r)⇒ pre(ˆf, e2)

This expresses that if we eventually produce an element e1 which satisfies the
precondition of the initial closure *f , then combined with the postcondition of
f , we must be able to establish the precondition for the final closure ˆf with the
following element e2. Quantifying over a prefix s in the iteration from a known
initial state i ensures this property holds for all possible subsequent iterations.

To encode this property in Map, we use a type invariant, which allows specify-
ing a property that values of a type must uphold. Values of type Map are records
with two fields: field func contains the closure state, and field iter contains the
underlying iterator. The invariant states that (1) the precondition for the next
call will be verified; (2) the preservation property above holds for the current
state it; (3) these two invariants are reestablished if the underlying iterator re-
turns None (this is usually trivial since the underlying iterator often is fused: it
cannot generate new elements once it returns None); and (4) the type invariant
of the underlying iterator holds.

These invariants are initially required as a precondition of the map method
used to create the Map iterator. In order to be tackled by automated solvers, this
verification condition need to be unfolded: it is therefore crucial that closures
and their pre- and post- conditions are statically resolved thanks to the unique
anonymous closure types in Rust.
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The specification predicates for Map can now be stated:

it
v
 it′ , ∃v′ fs , |v′| = |fs | = |v| ∧ it.iter v′

 it′.iter

∧ (it.func = *fs [0] ∧ ˆfs [0] = *fs [1] ∧ .. ∧ ˆfs [n] = it′.func)

∧ ∀ i ∈ [0, |v| − 1], pre(*fs [i], v′[i]) ∧ post(fs [i], v′[i], v[i])

∧ unnest(it.func, it′.func)

completed(it) , completed(it.iter) ∧ (*it).func = (ˆit).func

In  , we quantify existentially over two pieces of information: the sequence
of values v′ produced by the underlying iterator and the sequence of mutable
references of states fs that the closure traverses. We require that fs forms a
chain, the final state of each element being the same as the current value of the
following one. Finally, we require the closure pre- and post- conditions for every
iteration, and that the first and last state are related by the unnesting relation.
The definition of completed(−), on the other hand, straightforwardly states that
the underlying iterator is completed.

Interestingly, the user of this specification can use the precondition of the
closure to encode closure invariants that she wishes to maintain along the iter-
ation (as with loop invariants). This specification for Map allows us to specify
many use cases, so long as the supplied closure is “history-free”: its specifica-
tion does not depend on the sequence of previously generated values, like in
x.map(|a : u32| a + 5). While this is certainly the most common usage of map,
we sometimes need a more powerful specification.

Extending Map With Ghost Information. If we attempt to use the previous spec-
ification of Map to verify the counter example of Section 1, we will rapidly en-
counter an issue: to establish that cnt properly counts the number of iterations
would require a (manual) induction on the iterated sequence. While the prior
specification allows the closure to specify the impact of an immediate call, it has
no way of reasoning on the position in the iteration. In our prior thought exper-
iment using a generator, we have no way of writing an invariant which depends
on produced, as we allowed for usual for loops.

To make the verification of this kind of code simpler, we extend the signature
of Map to provide to the closure the sequence of elements generated by the under-
lying iterator since the creation of the mapping iterator object. This information
does not change the behavior of the program: we make it ghost, so it can only
be used in specifications.

The extended version, MapExt, is thus given an additional ghost field,
produced, containing this sequence. The relation ( ) is extended to account
for this ghost information, by adding a conjunct stating that it′.produced =
it.produced·v′ and passing the additional ghost parameter it.produced·v′[0..i−1]
to the pre- and post- conditions. The completed() relation is extended by adding
the conjunct (ˆit).produced = ε (the produced field is reset when the iterator
returns None). The type invariants are adapted accordingly.
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This extra information avoids the need for an explicit induction after the
fact to establish that we have properly counted the number of iterations: the
postcondition of the last call to next is enough. This mechanism is useful in a
wide variety of situations, beyond reasoning on the length of the sequence.

7 Evaluation

In this section we measure the performance of both the proofs of iterators and
their clients, using the Creusot [4] tool for verification of Rust programs. It
allows for verification of Rust programs, and requires some annotations to ver-
ify the functional correctness of Rust programs. Verification is performed by
translating annotated Rust code into a pure, first-order functional program.
Then, Creusot uses Why3 [15] to generate verification conditions, which are
discharged using automated solvers such as CVC5, Z3 or Alt-Ergo.

The results in Figure 3, were gathered using a Macbook Pro with an M1 Pro
CPU and 32 GB of RAM, running macOS 12.2. Why3 was limited to using four
provers simultaneously among Z3 4.11.2, CVC5 1.0.2, and Alt-Ergo 2.4.1.

Why3 supports proof transformations : manual tactics which can be used in
combination with automated solvers. Because we wish to obtain ergonomic spec-
ifications which work well with automation, we minimize their use. Nevertheless,
certain complex proofs required minor manual work, which we clearly indicate.

Iterator LOC Spec Time Fully auto.
Range 13 39 0.40 X
IterMut 12 34 0.61 X
Map 23 46 0.89 7

MapExt 42 115 1.06 7

Skip<I> 20 53 0.51 7

Take<I> 17 43 0.40 X
Fuse 29 51 0.52 7

Benchmark LOC Spec Time Fully auto.
all_zero 5 3 0.43 X
skip_take 3 2 0.40 X
counter 12 4 0.55 X
concat_vec 3 3 0.41 X
decuple_range 9 3 0.64 X
hillel 89 109 0.86 X
knights_tour 89 55 1.15 X

Fig. 3. Selected evaluation results. “LOC” counts the lines of program code, while
“Spec” counts specification code and assertions. “Time” measures in seconds the time
taken to solve the proofs. “Fully auto.” determines whether manual tactics were used.

The left table in Figure 3 contains a selection of the iterators and adapters we
have verified. The Range, IterMut, Skip and Take iterators are implementations
of the iterators described in Sections 4.1 to 4.3. The Fuse adapter is responsible
for transforming any iterator into a fused one, which will always return None after
the first, never resuming iteration. Two versions of Map are provided, the first is
the standard library Map, which is restricted to closures whose preconditions are
‘history-free’, the version in MapExt is provided with ghost information about
previous calls as explained in Section 6.

Some manual proof steps were required to prove several iterators. For
Skip<I> and Fuse, the manual tactics consist only of telling Why3 to access
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lemmas about sequences. For Map and MapExt, tactics were used to instanti-
ate quantifiers within the production relation. We think that the use of ghost
variables and of the SMT theory of sequences could lift the use of manual tactics.

We also verified several clients of iterators, sometimes featuring combina-
tions of several iterators. The example decuple_range maps a Range, multiply-
ing elements by 10, collecting the results into a vector and verifying functional
correctness; counter is an annotated version of the example in the introduction,
verifying that we can use mutable state to count the elements of an iterator;
concat_vec uses extend to append an iterator to the end of a vector; all_zero
uses IterMut to zero every cell of a vector; take_skip checks that if we truncate
an iterator to the first n elements and then skip them, the resulting iterator
must be empty. We have larger scale examples where iterators are used in the
context of a larger verified development: hillel is a port of a prior Creusot
solution to Hillel Wayne’s verification challenges [16]; knights_tour is the same
for the Knight’s Tour problem. In both of these cases, updating the code to use
for-loops and iterators actually reduced the number of lines of specification.

Because our lines of specification include the assertions which test functional
properties, we believe the resulting overhead is reasonable, especially in our client
examples. Additionally, our specifications for iterators seem to have low impact
on verification times. We compared hillel and knights_tour with alternative
versions that only differ by using traditional while loops instead of iterators,
verification times are 0.91 and 1.14 respectively. This provides evidence that
integrating our iterators does not cause prohibitive increases in verification time.

8 Related and Future Work

RustHorn [7] and RustHornBelt [8] show how the non-aliasing guarantees
of Rust can be used for reducing the verification of Rust programs into the proof
of first-order logic formulas. These works serve as theoretical foundations for
Creusot [4], which we use to evaluate our specification scheme for iterators.

Prusti [1] is a semi-automatic verifier for Rust built on the Viper [10] sep-
aration logic verification platform. Prusti models mutable borrowing and own-
ership using separation logic permissions, unlike our choice of using a prophetic
mutable value semantics. This leads to differences in the specification languages:
whereas Creusot uses the ^ operator to reason about borrows, Prusti uses a
notion called pledges. Pledges are assertions which must be true at the end of
a specific lifetime. At the time of writing, pledges are not fully first-class in
Prusti’s specification logic: they are used through a kind of postcondition. In
particular a ghost predicate like produces cannot contain a pledge. The ^ oper-
ator can be used anywhere in specifications, which allows us to give a natural
specification to mutating iterators like IterMut (Section 4.2).

The verification of higher-order programs has been studied by Régis-Gianas
and Pottier [14], who verify them using higher-order logic. Prusti supports
closures by modeling them in Viper’s separation logic [17]. Like our approach,
Prusti transforms specifications of higher-order programs into first-order ver-
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ification conditions, but in separation logic. They introduce several constructs
to specify closures: history invariants, specification entailment, and call descrip-
tions. We instead enable users to refer to pre- and post- conditions of closures
via a trait. While we not have the constructs Prusti provides primitively for
closures, we believe these constructs can be encoded using our primitives, at the
cost of lower ergonomics. Our approach is more expressive: unlike Prusti’s call
descriptions, we can distinguish the order of calls (see Section 6). Also, Prusti’s
approach for borrows makes it difficult to handle iterators such as IterMut.

Like us, Aeneas [6] verifies Rust programs by translation to a functional
language, and targets traditional proof assistants such as Coq, or F∗. They
use a technique called backward functions to interpret mutable borrows. To our
knowledge, Aeneas supports neither closures nor iterators.

The formalization of iterators is a well-studied subject with implementations
in a variety of imperative and functional languages: WhyML [5], Eiffel [11],
Java [9], and OCaml [12]. Of particular relevance is the approach developed
by Filliâtre and Pereira [5], which specifies iterators in WhyML using a ghost
field visited : seq ’a and two predicates permitted : cursor ’a -> bool and
completed : cursor ’a -> bool where cursor ’a is an iterator for values of type
’a. This work leverages Why3’s regions system to distinguish individual cursors
over time. In contrast, in our context, we lose object identity : there is no way to
identify that two iterator values are two successive states of the same iterator.
We thus generalize this approach to our setting by explicitly providing pre- and
post- states in produces. Our work is also more expressive: we specify and verify
higher-order iterators using potentially mutable closures, which are ruled out
by Why3’s region system. The framework of iteration described by Polikarpova,
Tschannen, and Furia [11] is limited to finite, deterministic iteration: the user
must provide up front the sequence of abstract values the iterator will produce.
Pottier [12] presents an implementation of iterators for a hash map written in
OCaml. They do this by working in the separation logic CFML [2], utilizing Coq’s
powerful but manual reasoning mechanisms for theorem proving. While Pottier
does not provide a general specification of iterators (cascades) with mutable
state, CFML should permit it, though usage may require a challenging proof.

Future Work. While we have specified and proved key iterators, many more
remain. The filter adapter is interesting as each call to next may make an
unbounded number of steps with the underlying iterator using the provided mu-
table closure. Rust provides a hierarchy of traits that further refine iterators like
DoubleEndedIterator, and ExactSizeIterator. The recent integration of generic
associated types enables new, more flexible forms of iteration like lending itera-
tors. We believe these would naturally integrate into our framework, but remain
to be done. Finally, while we believe we have developed a correct, and simple
approach to specify closures, the ergonomics leave much room for improvement.
Improving this will help make our specifications more concise and user-friendly.
In particular, we would like to explore automatic inference of pre- and post-
conditions of simple closures.
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Data availability

The implementation of Creusot and the examples that we used to evaluate our
methodology in Section 7 form an artifact available [3] on Zenodo with DOI
10.5281/zenodo.7305463.
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Abstract. Most users of proof assistants want more proof automation.
Some proof assistants discharge goals by translating them to first-order
logic and invoking an efficient prover on them, but much is lost in
translation. Instead, we propose to extend first-order provers with native
support for higher-order features. Building on our extension of E to λ-free
higher-order logic, we extend E to full higher-order logic. The result is
the strongest prover on benchmarks exported from a proof assistant.

1 Introduction

In the last few decades, proof assistants have become indispensable tools for
developing trustworthy formal proofs. They are used both in academia to verify
mathematical theories [17] and in industry to verify the correctness of hardware
[21] and software [16,22,24]. However, due to the lack of strong built-in proof
automation, proving seemingly simple goals can be a tedious manual task. To
mitigate this, many proof assistants include a subsystem such as CoqHammer,
HOL(y)Hammer, or Sledgehammer [9] that translates higher-order goals to
first-order logic and passes them to efficient first-order automatic provers. If a
first-order prover succeeds, the proof is reconstructed and the goal is closed.

Unfortunately, the translation of higher-order constructs is clumsy and leads
to poor performance on goals that require higher-order reasoning. Using native
higher-order provers such as Satallax [10] as backends is not always a good solution
because they are much less efficient than their first-order counterparts [37]. To
bridge this gap, in 2016 we proposed to develop a new generation of higher-
order provers that extend the arguably most successful first-order calculus,
superposition, to higher-order logic, starting from a position of strength.

Our research has focused on three milestones: supporting λ-free higher-order
logic, adding λ-terms, and adding first-class Boolean terms. In 2019, we extended
the state-of-the-art first-order prover E [32] with a λ-free superposition calculus
[42], obtaining a version of E called Ehoh, as a stepping stone towards full
higher-order logic. Together with Bentkamp, Tourret, and Waldmann, we have
since developed calculi, called λ-superposition, corresponding to the other two
milestones [5,4] and implemented them in the experimental superposition prover
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Zipperposition [14]. This OCaml prover is not nearly as efficient as E. Nevertheless,
it has won the higher-order division of the CASC prover competition [39] in 2020,
2021, and 2022, ending nearly a decade of Satallax domination.

We now fulfill a four-year-old promise: We present the extension of Ehoh to
full higher-order logic (Sect. 2) based on incomplete variants of λ-superposition.
We call this prover λE. In λE’s implementation, we used the extensive experience
with Zipperposition to choose a set of effective rules that could easily be retrofitted
into an originally first-order prover. Another guiding principle was gracefulness :
Our changes should not impact the strong first-order performance of E and Ehoh.

One of the main challenges we faced was retrofitting λ-terms in Ehoh’s
term representation (Sect. 3). Furthermore, Ehoh’s inference engine assumes
that inferences compute a most general unifier. We implemented a higher-order
unification procedure [41] that can return multiple unifiers (Sect. 4) and integrated
it in the inference engine. Finally, we extended and adapted the superposition
rule, resulting in an incomplete, pragmatic variant of λ-superposition (Sect. 5).

We evaluated λE on a selection of proof assistants benchmarks as well as
all higher-order theorems in the TPTP library [38] (Sect. 6). λE outperformed
all other higher-order provers on the proof assistant benchmarks; on the TPTP
benchmarks, it ended up second only to the cooperative version of Zipperposition,
which employs Ehoh as a backend. An arguably fairer comparison without the
backend puts λE in first place for both benchmark suites. We also compared the
performance of λE with E on first-order problems and found that no overhead
has been introduced by the extension to higher-order logic.

λE is part of the E prover’s development repository and will be part of E 3.0.
It can be enabled by passing the option --enable-ho to the configure script.
E and λE’s source code is freely available online.1

2 Logic

Our target logic is monomorphic classical higher-order logic with Hilbert choice.
The following text is partly based on Vukmirović et al. [40, Sect. 2].

Terms s, t, u, v are inductively defined as free variables F,X, . . ., bound vari-
ables x, y, z, . . . , constants f, g, a, b, . . . , applications s t, and λ-abstractions λx. s.
Bound variables may be loose (e.g., y in λx. y a) [27].

We let s tn stand for s t1 . . . tn and λxn. s for λx1. . . . λxn. s. Every β-normal
term can be written as λxm. s tn, where s is not an application; we call s the
head of the term. If s is a free variable, we call the term flex ; otherwise, the
term is rigid. A term of type o, where o is the distinguished Boolean type, is
called a formula. A term whose type is of the form τ1 → · · · → τn → o is called a
predicate. Logical symbols are part of the signature and may thus occur within
terms. We write them in bold: ⊥⊥⊥,>>>,¬¬¬,∧∧∧,∨∨∨,→→→,↔↔↔,∀∀∀,∃∃∃,≈≈≈.

On top of the terms, we define some clausal structure. This structure is needed
by λ-superposition. A literal l is an equation s ≈ t or a disequation s 6≈ t. A clause
is a finite multiset of literals, interpreted and written disjunctively: l1 ∨ · · · ∨ ln.
1 https://github.com/eprover/eprover.git
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3 Terms

E is designed around perfect term sharing [25], a principle that we kept in Ehoh
and λE: Any two structurally identical terms are guaranteed to be the same
object in memory. This is achieved through term cells, which represent individual
terms. Each cell has (among other fields) (1) f_code, an integer corresponding to
the symbol at the head of the term (negative if the head is a free variable, positive
otherwise); (2) num_args, corresponding to the number of arguments applied to
the head; and (3) args, an array of size num_args of pointers to argument terms.
We use the notation f(s1, . . . , sn) to denote a cell whose f_code corresponds to
f, num_args equals n, and args points to the cells for s1, . . . sn.

Like Leo-III [33, Sect. 4.8], Ehoh represents λ-free higher-order terms using a
flattened, spine notation [12]. Thus, the terms f, f a, and f a b are represented by
the cells f, f(a), and f(a, b). To ensure that free variables are perfectly shared,
Ehoh treats applied free variables differently: Arguments are not applied directly
to a free variable, but using a distinguished symbol @ of variable arity. For
example, the term X a b is represented by the cell @(X, a, b). This ensures that
two different occurrences of the free variable X correspond to the same object,
which makes substitutions more efficient [42].

Representation of λλλ-Terms. To support full higher-order logic, Ehoh’s λ-free
cell data structure must be extended to support the λ binder. We use the locally
nameless representation [13]: De Bruijn indices represent (possibly loose) bound
variables, whereas we keep the current representation for free variables.

Extending the term representation of Ehoh with a new term kind involves
intricate manipulation of the cell data structure. De Bruijn indices must be
represented like other cells with either a negative or a positive f_code, but the
code must clearly identify that the cell is a De Bruijn index.

Apart from during β-reduction, De Bruijn indices mostly behave like constants.
Therefore, we choose to represent De Bruijn indices using positive f_codes: The
De Bruijn index i will have f_code i. To ensure that De Bruijn indices are not
mistaken for function symbols, we use the cell’s properties bitfield, which holds
precomputed properties. We introduce the property IsDBVar to denote that the
cell represents a De Bruijn index. De Bruijn indices are systematically created
through a dedicated function that sets the IsDBVar property. When given the
same De Bruijn index and type, this function always returns the same object.
Finally, we guard all the functions and macros that manipulate function codes
to check if the property IsDBVar is set. To ensure perfect sharing of De Bruijn
indices, arguments to De Bruijn indices are applied like for free variables, using @.

Extending cells to support λ-abstraction is easier. Each λ-abstraction has the
distinguished function code LAM as the head symbol and two arguments: (1) a
De Bruijn index 0 of the type of the abstracted variable; (2) the body of the
λ-abstraction. Consider the term λx. λy. f xx, where both x and y have the type ι.
This term is represented as λλ f 11 in locally nameless representation, where
bold numbers represent De Bruijn indices. In λE, the same term is represented
by the cell LAM(0, LAM(0, f(1,1))), where all De Bruijn variables have type ι.
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The first argument of LAM is redundant, since it can be deduced from the
type of the λ-abstraction. However, basic λ-term manipulation operations often
require access to this term. We store it explicitly to avoid creating it repeatedly.

Efficient βββ-Reduction. Terms are stored in βη-reduced form. As these two
reductions are performed very often, they ought to be efficient. Ehoh performs
β-reduction by reducing the leftmost outermost β-redex first. To represent β-
redexes, E uses the @ symbol. Thus, the term (λx. λy. (x y)) f a is represented
by @(LAM(0, LAM(0, @(1,0))), f, a). Another option would have been to add argu-
ments applied to λ-terms directly to the λ representation (as in LAM(0, LAM(0,
@(1,0)), f, a)), but this would break the invariant that LAM has two arguments.
Furthermore, replacing free variables with λ-abstractions (e.g., replacing X with
λx. x in @(X, a)) would require additional normalization.

A term can be β-reduced as follows: When a cell @(LAM(0, s), t) is encountered,
the field binding (normally used to record the substitution for a free variable)
of the cell 0 is set to t. Then s is traversed to instantiate every loose occurrence
of 0 in s with binding, whose loose De Bruijn indices are shifted by the number
of λ binders above the occurrence of 0 in s [20]. Next, this procedure is applied
to the resulting term and its subterms, in leftmost outermost fashion.

λE’s β-normalization works in this way, but it features a few optimizations.
First, given a term of the form (λxn. s) tn, λE, like Leo-III [34], replaces the
bound variables xi with ti in parallel. Avoiding the construction of intermediate
terms reduces the number of recursive function calls and calls to the cell allocator.

Second, in line with the gracefulness principle, we want λE to incur little (or
no) overhead on first-order problems and to excel on higher-order problems with
a large first-order component. If β-reduction is implemented naively, finding a β-
redex involves traversing the entire term. On purely first-order terms, β-reduction
is then a waste of time. To avoid this, we use Ehoh’s perfectly shared terms and
their properties field. We introduce the property HasBetaReducibleSubterm,
which is set if a cell is β-reducible. Whenever a new cell that contains a β-
reducible term as a direct subterm is shared, the property is set. Setting of
the property is inductively continued when further superterms are shared. For
example, in the term t = f a (g((λx. x) a)), the cells for (λx. x) a, g ((λx. x) a), and
t itself have the property HasBetaReducibleSubterm set. When it needs to find
β-reducible subterms, λE will visit only the cells with this property set. This
further means that on first-order subterms, a single bit masking operation is
enough to determine that no subterm should be visited.

Along similar lines, we introduce a property HasDBSubterm that caches
whether the cell contains a De Bruijn subterm. This makes instantiating De Bruijn
indices during β-normalization faster, since only the subterms that contain De
Bruijn indices must be visited. Similarly, some other operations such as shifting
De Bruijn indices or determining whether a term is closed (i.e., it contains no
loose bound variables) can be sped up or even avoided if the term is first-order.

Efficient ηηη-Reduction. The term λx. s x is η-reduced to s whenever x does
not occur unbound in s. Observing that a term cannot be η-reduced if it contains
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no λ-abstractions, we introduce a property HasLambda that notes the presence of
λ’s in a term. Only terms with λ’s are visited during η-reduction.

λE performs parallel η-reduction: It recognizes terms of the form λxm. s xm
such that none of the xi occurs unbound in s. If done naively, reducing terms
of this kind requires up to m traversals of s to check if each xi occurs in s. In
λE, exactly one traversal of s is required. More precisely, when η-reducing a cell
LAM(0, s), λE considers all λ binders in s as well. In general, the cell will be of the
form LAM(0, . . . , LAM(0, t) . . .), where t is not a λ-abstraction, and l is the number
of LAM symbols above t. Then λE breaks the body t down into a decomposition
u (n − 1) . . . 10 where u is not of the form . . . n ; such a decomposition is unique.
If n = 0, the cell is not η-reducible. Otherwise, u is traversed to determine the
minimal index j of a loose De Bruijn index, taking j = ∞ if no such index
exists. λE can then remove the k = min{j, l, n} rightmost outermost λ binders in
LAM(0, . . . , LAM(0, t) . . .) and replace t by the variant of u (n − 1) . . . (k + 1) k
obtained by shifting the loose De Bruijn indices down by k.

To illustrate this convoluted De Bruijn arithmetic, we consider the term
λx. λy. λz. f xx y z. This term is represented by the cell LAM(0, LAM(0, LAM(0,
f(2,2,1,0)))). λE splits f(2,2,1,0) into two parts: u = f 2 and the arguments
2,1,0. Since the minimal index in u is 2, we can omit the De Bruijn indices 1
and 0 and their λ binders, yielding the η-reduced cell LAM(0, f(0,0)).

Parallel η-reduction both speeds up η-reduction and avoids creating interme-
diate terms. For finding the minimal loose De Bruijn index, optimizations such
as the HasDBSubterm property are used.

Representation of Boolean Terms. E and Ehoh represent Boolean terms
using cells whose f_codes are reserved for logical symbols. Quantified formulas
are represented by cells in which the first argument is the quantified variable
and the second one is the body of the quantified formula. For example, the
term ∀∀∀x. px corresponds to the cell ∀∀∀(X, p(X)), where X is a free variable. This
representation is convenient for parsing and clausification, which is what E and
Ehoh use it for, but in full higher-order logic, it is problematic during proof
search: Booleans can occur as subterms in clauses, as in q(X) ∨ p(∀∀∀(X, r(X))),
and instantiating X in the first literal should not affect X in the second literal.

To avoid this issue, in λE we use λ binders to represent quantified formulas, as
is customary in higher-order logic [1, §51]. Thus, ∀∀∀x. s is represented by ∀∀∀ (λx. s).
Quantifiers are then unary symbols that do not directly bind the variables. Since
λE represents bound variables using De Bruijn indices, this solves all α-conversion
issues. However, this solution is incompatible with thousands of decades-old lines
of clausification code that assumes E’s representation of quantifiers. Therefore,
λE converts quantified formulas only after clausification, for Boolean terms that
occur in a higher-order context (e.g., as argument to a function symbol).

New Term Orders. The λ-superposition calculus is parameterized by a term
order that is used to break symmetries in the search space. We implemented the
versions of the Knuth–Bendix order (KBO) and lexicographic path order (LPO)
for higher-order terms described by Bentkamp et al. [4]. These orders encode
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λ-terms as first-order terms and then invoke the standard KBO or LPO. For
efficiency, we implemented separate KBO and LPO functions that compute the
order directly, intertwining the encoding and the order computation.

Ehoh cells contain a binding field that can be used to store the substitution
for a free variable. Substitutions can then be applied by following the binding
pointers, replacing each free variable with its instance. Thus, when Ehoh needs
to perform a KBO or LPO comparison of an instantiated term, it needs only
follow the binding pointers. In full higher-order logic, however, instantiating a
variable can trigger a chain of βη-reductions, changing the shape of the term
dramatically. To prevent this, λE computes the βη-reduced instances of the terms
before comparing them using KBO or LPO.

4 Unification, Matching, and Term Indexing

Standard superposition crucially depends on the concept of a most general unifier
(MGU). In higher-order logic, the concept is replaced by that of a complete
set of unifiers (CSU), which may be infinite. Vukmirović et al. [41] designed
an efficient procedure to enumerate a CSU for a term pair. It is implemented
in Zipperposition, together with some extensions to term indexing. In λE, we
further improve the performance of this procedure by implementing a terminating,
incomplete variant. We also introduce a new indexing data structure.

The Unification Procedure. The unification procedure works by maintaining
a list of unification pairs to be solved. After choosing a pair, it first normalizes
it by β-reducing and instantiating the heads of both terms in the pair. Then, if
either head is a variable, it computes an appropriate binding for this variable,
thereby approximating the solution.

Unlike in first-order and λ-free higher-order unification, in the full higher-order
case there may be many bindings that lead to a solution. To reduce this mostly
blind guessing of bindings, the procedure features support for oracles [41]. These
are procedures that solve the unification problem for a subclass of higher-order
terms on which unification is decidable and, for λE, unary. Oracles help increase
performance, avoid nontermination, and avoid redundant bindings.

Vukmirović et al. described their procedure as a transition system. In λE, the
procedure is implemented nonrecursively, and the unifiers are enumerated using
an iterator object that encapsulates the state of the unifier search. The iterator
consists of five fields: (1) constraints, which holds the unification constraints;
(2) bt_state, a stack that contains information necessary to backtrack to a
previous state; (3) branch_iter, which stores how far we are in exploring different
possibilities from the current search node; (4) steps, which remembers how many
different unification bindings (such as imitation, projection, and identification)
are applied; and (5) subst, a stack storing the variables bound so far.

The iterator is initialized to hold the original problem in constraints , and all
other fields are initially empty. The unifiers are retrieved one by one by calling
the function ForwardIter. It returns True if the iterator made progress, in
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which case the unifier can be read via the iterator’s subst field. Otherwise, no
more unifiers can be found, and the iterator is no longer valid. The function’s
pseudocode is given below, including two auxiliary functions:

function NormalizeHead(t) is
if t .head = @ ∧ t .args [0].is_lambda() then

reduce the top-level β-redex in t
return NormalizeHead(t)

else if t .head .is_var() ∧ t .head .binding 6= Nil then
t .head ← t .head .binding
return NormalizeHead(t)

else
return t

function BacktrackIter(iter) is
if iter .bt_state.empty() then

clear all fields in iter
return False

else
pop (constraints , branch_iter , steps , subst) from iter .bt_state
set the corresponding fields of iter
return True

function ForwardIter(iter) is
forward ← ¬ iter .constraints .empty() ∨BacktrackIter(iter)
while forward ∧ ¬ iter .constraints .empty() do
(lhs , rhs)← pop pair from iter .constraints
lhs ← NormalizeHead(lhs)
rhs ← NormalizeHead(rhs)
normalize and discard the λ prefixes of lhs and rhs

if ¬lhs .head .is_var() ∧ rhs .head .is_var() then
swap lhs and rhs

if lhs .head .is_var() then
oracle_res ← Fixpoint(lhs , rhs , iter .subst)

if oracle_res = NotInFragment then
oracle_res ← Pattern(lhs , rhs , iter .subst)

if oracle_res = NotUnifiable then
forward ← BacktrackIter(iter)

else if oracle_res = NotInFragment then
n_steps ,n_branch_iter ,n_binding ←

NextBinding(lhs , rhs , iter .steps , iter .branch_iter)

if n_branch_iter 6= BindEnd then
push pair (lhs,rhs) back to iter .constraints
push quadruple (iter .constraints ,n_branch_iter ,
iter .steps , iter .subst) onto iter .bt_state

extend iter .subst with n_binding
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iter .steps ← n_steps
iter .branch_iter ← BindBegin

else if lhs .head = rhs .head then
create constraint pairs of arguments of lhs and rhs

and push them to iter .constraints
iter .branch_iter ← BindBegin

else if lhs .head = rhs .head then
create constraint pairs of arguments of lhs and rhs

and push them to iter .constraints
else
forward ← BacktrackIter(iter)

return forward

ForwardIter begins by backtracking if the previous attempt was successful
(i.e., all constraints were solved). If it finds a state from which it can continue,
it takes term pairs from constraints until there are no more constraints or it is
determined that no unifier exists. The terms are normalized by instantiating the
head variable with its binding and reducing the potential top-level β-redex that
might appear. This instantiation and reduction process is repeated until there are
no more top-level β-redexes and the head is not a variable bound to some term.
Then the term with shorter λ prefix is expanded (only on the top level) so that
both λ prefixes have the same length. Finally, the λ prefix is ignored, and we focus
only on the body. In this way, we avoid fully substituting and normalizing terms
and perform just enough operations to determine the next step of the procedure.

If either term of the constraint is flex, we first invoke oracles to solve the con-
straint. λE implements the most efficient oracles implemented in Zipperposition:
fixpoint and pattern [41, Sect. 6]. An oracle can return three results: (1) there
is an MGU for the pair (Unifiable), which is recorded in subst, and the next
pair in constraints is tried; (2) no MGU exists for the pair (NotUnifiable),
which causes the iterator to backtrack; (3) if the pairs do not belong to the
subclass that oracle can solve (NotInFragment), we generate possible variable
bindings—that is, we guess the approximate form of the solution.

λE has a dedicated module that generates bindings (NextBinding). This
module is given the current constraint and the values of branch_iter and steps,
and it either returns the next binding and the new values of branch_iter and
steps or reports that all different variable bindings are exhausted. The bindings
that λE’s unification procedure creates are imitation, Huet-style projection,
identification, and elimination (one argument at a time) [41, Sect. 3]. A limit
on the total number of applied binding rules can be set, as well as a limit on
the number of individual rule applications. The binding module checks whether
limits are reached using the iterator’s steps field.

Computing bindings is the only point in the procedure where the search
tree branches and different possibilities are explored. Thus, when λE follows the
branch indicated by the binding module, it records the state to which it needs
to return should the followed branch be backtracked. The state consists of the
values of constraints , steps , and subst before the branch is followed and the value
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of branch_iter that points past the followed branch. The values of branch_iter
are either BindBegin, which denotes that no binding was created, intermediate
values that NextBinding uses to remember how far through bindings it is, and
BindEnd, which indicates that all bindings are exhausted.

If all bindings are exhausted, the procedure checks whether the pair is flex–flex
and both sides have the same head. If so, the pair is decomposed and constraints
are derived from the pair’s arguments; otherwise, the iterator backtracks. If
the pair is rigid–rigid, for unification to succeed, the heads of both sides must
be the same. Unification then continues with new constraints derived from the
arguments. Otherwise, the iterator must be backtracked.

Matching. In E, the matching algorithm is mostly used inside simplification rules
such as demodulation and subsumption [29]. As these rules must be efficiently
performed, using a complex matching algorithm is not viable. Instead, we provide
a matching algorithm for the pattern class of terms [27] to complement Ehoh’s
λ-free higher-order matching algorithm [42, Sect. 4]. A term is a pattern if each
of its free variables either has no arguments (as in first-order logic) or is applied
to distinct De Bruijn indices.

To help determine whether to use the pattern or λ-free algorithm, we introduce
a cached property HasNonPatternVar, which is set for terms of the form X sn
where n > 0 and either there exists some si that is not a De Bruijn index or
there exist indices i < j such that si = sj is a De Bruijn index. This property is
propagated to the superterms when they are perfectly shared. This allows later
checks if a term belongs to the pattern class to be performed in constant time.

We modify the λ-free higher-order matching algorithm to treat λ prefixes as
above in the unification procedure—by bringing the prefixes to the same length
and ignoring them afterwards. This ensures that the algorithm will never try to
match a free variable with a λ-abstraction, making sure that β-redexes never
appear. We also modify the algorithm to ensure that free variables are never
bound to terms that have loose bound variables. This algorithm cannot find
many complex matching substitutions (matchers), but it can efficiently determine
whether two terms are variable renamings of each other or whether a simple
matcher can be used, as in the case of (X (λx. x) b, f (λx. x) b), where X 7→ f is
usually the desired matcher. If this algorithm does not find a matcher and both
terms are patterns, pattern matching is tried.

Indexing. E, like other modern theorem provers, efficiently retrieves unifiable or
matchable pairs of terms using indexing data structures. To find terms unifiable
with a query term or instances of a query term, it uses fingerprint indexing [30].
Vukmirović et al. extended this data structure to support full higher-order terms
in Zipperposition [41, Sect. 6]. We use the same approach in λE, and we extend
feature vector indices [31] in the same way.

E uses perfect discrimination trees [26] to find generalizations of the query
term (i.e., terms of which the query term is an instance). This data structure
is a trie that indexes terms by representing them in a serialized, flattened form.
The left branch from the root in Figure 1 shows how the first-order terms f aX
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Fig. 1. First-order, λ-free higher-order, and higher-order pattern terms in a perfect
discrimination tree

and f a a are stored. In Ehoh, this data structure is extended to support partial
application and applied variables [42].

In λE, we extend this structure to support λ-abstractions and the higher-order
pattern matching algorithm. To this end, we change the way in which terms
are serialized. First, we require that all terms are fully η-expanded (except for
arguments of variables applied in patterns). Then, when the term is serialized,
we use a single node for applied variable terms X sn, instead of a node for X
followed by nodes for the arguments sn. We serialize the λ-abstraction λx. s using
a dedicated node LAMτ , where τ is the type of x, followed by the serialization
of s. Other than these changes, serialization remains as in Ehoh, following the
gracefulness principle. Figure 1 shows how g (X a b) c and h (λx. λy.X y x) are
serialized. Since the terms are stored in serialized form, it is hard to manipulate λ
prefixes of stored terms during matching. Performing η-expansion when serializing
terms ensures that matchable terms have λ prefixes of the same length.

We have dedicated separate nodes for applied variables because access to
arguments of applied variables is necessary for the pattern matching algorithm.
Even though arguments can be obtained by querying the arity n of the variable
and taking the next n arguments in the serialization, this is both inefficient and
inelegant. As for De Bruijn indices, we treat them the same as function symbols.

Following the notation from the extension of perfect discrimination trees to
λ-free higher-order logic [42], we now describe how enumeration of generalizations
is performed. To traverse the tree, λE begins at the root node and maintains two
stacks: term_stack and term_proc, where term_stack contains the subterms of
the query term that have to be matched, and term_proc contains processed terms
that are used to backtrack to previous states. Initially, term_stack contains the
query term, the current matching substitution σ is empty, and the successor node
is chosen among the child nodes as follows:

A. If the node is labeled with a symbol ξ (where ξ is either a De Bruijn index
or a constant) and the top item t of term_stack is of the form ξ tn, replace
t by n new items t1, . . . , tn, and push t onto term_proc.
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B. If the node is labeled with a symbol LAMτ and the top item t of term_stack
is of the form λx. s and the type of x is τ , replace t by s, and push t onto
term_proc.

C. If the node is labeled with a possibly applied variable X sn (where n ≥ 0),
and the top item of term_stack is t, the matching algorithm described above
is run on X sn and t. The algorithm takes into account σ built so far and
extends it if necessary. If the algorithm succeeds, pop t from term_stack,
push it onto term_proc, and save the original value of σ in the node.

Backtracking works in the opposite direction: If the current node is labeled
with a De Bruijn index or function symbol node of arity n, pop n terms from
term_stack and move the top of term_proc to term_stack. If the node is
labeled with LAMτ , pop the top of term_stack and move the top of term_proc
to term_stack. Finally, if the node is labeled with a possibly applied variable,
move the top of the term_proc to term_stack and restore the value of σ.

As an example of how finding a generalization works, when looking for
generalizations of g (f a b) c in the tree of Figure 1, the following states of stacks
and substitutions emerge, from left to right:

ε g g.(X a b) g.(X a b).c

term_stack [g (f a b) c] [f a b, c] [c] []
term_proc [] [g (f a b) c] [f a b, g (f a b) c] [c, f a b, g (f a b) c]
σ ∅ ∅ {X 7→ f} {X 7→ f}

5 Preprocessing, Calculus, and Extensions

Ehoh’s simple λ-free higher-order calculus performed well on Sledgehammer prob-
lems and formed a promising stepping stone to full higher-order logic [42]. When
implementing support for full higher-order logic, we were guided by efficiency and
gracefulness with respect to Ehoh’s calculus rather than completeness. Whereas
Zipperposition provides both complete and incomplete modes, λE only offers
incomplete modes.

Preprocessing. Our experience with Zipperposition showed the importance
of flexibility in preprocessing the higher-order problems [40]. Therefore, we
implemented a flexible preprocessing module in λE.

To maintain compatibility with Ehoh, λE can optionally transform all λ-
abstractions into named functions. This process is called λ-lifting [19]. λE also
removes all occurrences of Boolean subterms (other than ⊥⊥⊥,>>>, and free variables)
in higher-order contexts using a FOOL-like transformation [23]. For example, the
formula f(p∧∧∧ q) ≈≈≈ a becomes (p∧∧∧ q→→→ f(>>>) ≈≈≈ a)∧∧∧ (¬¬¬ (p∧∧∧ q)→→→ f(⊥⊥⊥) ≈≈≈ a).

Many TPTP problems use the definition role to identify the definitions of
symbols. λE can treat definition axioms as rewrite rules, and replace all occur-
rences of defined symbols during preprocessing. Furthermore, during SInE [18]
axiom selection, it can always include the defined symbol in the trigger relation.
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Calculus. λE implements the same superposition calculus as Ehoh with three
important changes. First, wherever Ehoh requires the MGU of terms, λE enu-
merates unifiers from a finite subset of the CSU, as explained in Sect. 4. Second,
λE uses versions of the KBO and LPO orders designed for λ-terms.

The third difference is more subtle. One of the main features of Ehoh is
prefix optimization [42, Sect. 1]: a method that, given a demodulator s ≈ t,
makes it possible to replace both applied and unapplied occurrences of s by t by
traversing only the first-order subterms of a rewritable term. In a λ-free setting,
this optimization is useful, but in the presence of βη-normalization, the shapes
of terms can change drastically, making it much harder to track prefixes of terms.
This is why we disable the prefix optimization in λE. To compensate for losing
this optimization, we introduce the argument congruence rule AC in λE and
enable positive and negative functional extensionality (PE and NE) by default:

s ≈ t ∨ C
AC

sX ≈ tX ∨ C

s 6≈ t ∨ C
NE

s (sk X) 6≈ t (sk X) ∨ C
s X ≈ t X ∨ C

PE
s ≈ t ∨ C

AC and NE assume that s and t are of function type. In NE, X denotes all
the free variables occurring in s and t, and sk is a fresh Skolem symbol of the
appropriate type. PE has a side condition that X may not occur in s, t, or C.

Saturation. E’s saturation procedure assumes that each attempt to perform an
inference will either result in a single clause or fail due to one of the inference
side conditions. Unification procedures that produce multiple substitutions break
this invariant, and the saturation procedure needed to be adjusted.

For Zipperposition, Vukmirović et al. developed a variant of the saturation
procedure that interleaves computing unifiers and scheduling inferences to be
performed [40]. Since completeness was not a design goal for λE, we did not
implement this version of the saturation procedure. Instead, in places where
previously a single unifier was expected, λE consumes all elements of the iterator
used for enumerating a unifier, converting them into clauses.

Reasoning about Formulas. Even though most of the Boolean structure is
removed during preprocessing, formulas can reappear at the top level of clauses
during saturation. For example, after instantiating X with λx. λy. x∧∧∧y, the clause
X p q ∨ a ≈ b becomes (p ∧∧∧ q) ∨ a ≈ b. λE converts every clause of the form
ϕ ∨ C, where ϕ has a logic symbol as its head, or it is a (dis)equation between
two formulas different than >>>, to an explicitly quantified formula. Then, the
clausification algorithm is invoked on the formula to restore the clausal structure.
Zipperposition features more dynamic clausification modes, but for simplicity we
decided not to implement them in λE.

The λ-superposition calculus for full higher-order logic [4] includes many rules
that act on Boolean subterms, which are necessary for completeness. Other than
Boolean simplification rules, which use simple tautologies such as p∧∧∧>>>↔↔↔ p to
simplify terms, we have implemented none of the Boolean rules of this calculus in
λE. First, we have observed that complicated rules such as FluidBoolHoist and
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FluidLoobHoist are hardly ever useful in practice and usually only contribute
to an uncontrolled increase in the proof state size. Second, simpler rules such as
BoolHoist can usually be simulated by pragmatic rules that perform Boolean
extensionality reasoning, described below.

To make up for excluding Boolean rules, we use an incomplete, but more
easily controllable and intuitive rule, called primitive instantiation. This rule
instantiates free predicate variables with approximations of formulas that are
ground instances of this variable. We use the approximations described by
Vukmirović and Nummelin [43, Sect. 3.3].

λE’s handling of the Hilbert choice operator is inspired by Leo-III’s [35]. λE
recognizes clauses of the form ¬P X ∨ P (f P ), which essentially denote that f is
a choice symbol. Then, when subterm f s is found during saturation, s is used to
instantiate the choice axiom for f. Similarly, Leibniz equality [43] is eliminated
by recognizing clauses of the form ¬P a ∨ P b ∨ C. These clauses are then
instantiated with P 7→ λx. x ≈ a and P 7→ λx. x 6≈ b, which results in a ≈ b ∨ C.

Finally, λE treats induction axioms specially. Like Zipperposition [40, Sect. 4],
it abstracts literals from the goal clauses and instantiates induction axioms with
these abstractions. Since Zipperposition supports dynamic calculus-level clausifi-
cation, induction axioms are instantiated during saturation, when the axioms are
processed. In λE, this instantiation is performed immediately after clausification.
After λE has collected all the abstractions, it traverses the clauses and instantiates
those that have applied variable of the same type as the abstraction.

Extensionality. λE takes a pragmatic approach to reasoning about functional
and Boolean extensionality: It uses abstracting rules [5] which simulate basic
superposition calculus rules but do not require unifiability of the partner terms
in the inference. More precisely, assume a core inference needs to be performed
between two β-reduced terms u and v, such that they can be represented as
u = C[s1, . . . , sn] and v = C[t1, . . . , tn], where C is the most general “green” [5]
common context of u and v, not all of si and tj are free variables, and for at
least one i, si 6= ti, si and ti are not possibly applied free variables, and they
are of Boolean or function type. Then, the conclusion is formed by taking the
conclusion D of the core inference rule (which would be created if s and t are
unifiable) and adding literals s1 6≈ t1 ∨ · · · ∨ sn 6≈ tn.

These rules are particularly useful because λE has no rules that dynamically
process Booleans in FOOL-like fashion, such as BoolHoist. For example, given
the clauses f (p∧∧∧q) ≈ a and g (f p) 6≈ b, the abstracting version of the superposition
rule would result in g a 6≈ b ∨ (p ∧∧∧ q) 6≈ p. In this way, the Boolean structure
bubbles up to the top level and is further processed by clausification. We noticed
that this alleviates the need for the other Boolean rules in practice.

6 Evaluation

We now try to answer two questions about λE: How does λE compare against
other higher-order provers (including Ehoh)? Does λE introduce any overhead
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compared with Ehoh? To answer these questions, we ran provers on problems from
the TPTP library [38] and on benchmarks generated by Sledgehammer (SH) [28].
The experiments were carried out on StarExec Miami [36] nodes equipped with
Intel Xeon E5-2620 v4 CPU clocked at 2.10 GHz. For the TPTP part, we used
the CASC 20212 time limits: 120 s wall-clock and 960 s CPU. For SH benchmarks
and to answer the other question, we used Sledgehammer’s default time limit:
30 s wall-clock and CPU. The raw evaluation data is available online.3

Comparison with Other Provers. To answer the first question, we let λE
compete with the top contenders in the higher-order division of CASC 2021: cvc5
0.0.7 [2], Ehoh 2.7 [42], Leo-III 1.6.6 [35], Vampire 4.6 [8], and Zipperposition
2.1 [40]. We also included Satallax 3.5 [10]. We used all 2899 higher-order the-
orems in TPTP 7.5.0 as well as 5000 SH higher-order benchmarks originating
from the Seventeen benchmark suite [15]. On SH benchmarks, cvc5, Ehoh, λE,
Vampire, and Zipperposition were run using custom schedules provided by their
developers, optimized for single-core usage and low timeouts. Otherwise, we used
the corresponding CASC configurations.

Although it internally does not support λ-abstractions, Ehoh 2.7 can parse
full higher-order logic using λ-lifting. We included two versions of Zipperposition:
coop uses Ehoh 2.7 as a backend to finish proof attempts, whereas uncoop does
not. Both Ehoh and λE were run in the automatic scheduling mode. Compared
with Ehoh, λE features a redesigned module for automatic scheduling, it can
exploit multiple CPU cores, and its heuristics have been more extensively trained
on higher-order problems.

The results are shown in Figure 2. λE dramatically improves E’s higher-order
reasoning capabilities compared with Ehoh. It solves 20% more TPTP benchmarks
and 7% more SH benchmarks. The reason for the higher performance increase
for TPTP is likely that TPTP benchmarks tend to require more higher-order
reasoning than SH benchmarks, which often have a large first-order component
and for which Ehoh was already very successful.

λE was envisioned as an efficient backend to proof assistants. As such, it excels
on SH benchmarks, outperforming the competition. On TPTP, it outperforms
all higher-order provers other than Zipperposition-coop. If Zipperposition’s Ehoh
backend is disabled, λE outperforms Zipperposition by a wide margin. This
comparison is arguably fairer; after all, λE does not use an older version of
Zipperposition as a backend. These results suggest that λE already implements
most of the necessary features for a high-performance higher-order prover but
could benefit from the kind of fine-tuning that Zipperposition underwent in the
last four years.

Remarkably, the raw evaluation data reveals thats λE solves 181 SH problems
and 24 TPTP problems that Zipperposition-coop does not. The lower number
of uniquely solved TPTP problems is likely because Zipperposition was heavily
optimized on the TPTP.

2 http://www.tptp.org/CASC/28/
3 https://doi.org/10.5281/zenodo.6389849
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TPTP SH

cvc5 1931 2577
Ehoh 2105 2611
λE 2533 2804
Leo-III 2282 1601
Satallax 2320 1719
Vampire 2203 2240
Zipperposition-coop 2583 2754
Zipperposition-uncoop 2483 2181

Fig. 2. Comparison of higher-order provers

TPTP

Ehoh FO 535
Ehoh HO 538
λE FO 537
λE HO 541

Fig. 3. Evaluation of λE’s
overhead

Comparison with the First-Order E. Both Ehoh and λE can be compiled
in a mode that disables most of the higher-order reasoning. This mode is designed
for users that are interested only in E’s first-order capabilities and care a lot
about performance. To answer the second evaluation question, about assessing
overhead of λE, we chose all the 1138 unique problems used at CASC from 2019
to 2021 in the first-order theorem division and ran Ehoh and λE both in this
first-order (FO) mode and in higher-order (HO) mode.

We fixed a single configuration of options, because Ehoh’s and λE’s automatic
scheduling methods could select different configurations and we would not be
measuring the overhead but the quality of the chosen configurations. We chose
the boa configuration [42, Sect. 7], which is the configuration most often used by
E 2.2 in its automatic scheduling mode. The results are shown in Figure 3.

Counterintuitively, the higher-order versions of both provers outperform
the first-order counterparts. However, the difference is so small that it can be
attributed to the changes to memory layout that affect the order in which clauses
are chosen. Similar effects are visible when comparing the first-order versions.

CASC Results. λE also took part in CASC 2022. In the TPTP higher-order
division, λE finished second, after Zipperposition, as expected. In the Sledge-
hammer division, λE tied with Ehoh for first place, a disappointment. The likely
explanation is that λE used a wrong configuration in this division, as we found
out afterwards. We expect better performance at CASC 2023.

7 Discussion and Related Work

On the trajectory to λE, we developed, together with colleagues, three super-
position calculi: for λ-free higher-order logic [6], for a higher-order logic with
λ-abstraction but no Booleans [5], and for full higher-order logic [5]. These mile-
stones allowed us to carefully estimate how the increased reasoning capabilities
of each calculus influence its performance.

Extending first-order provers with higher-order reasoning capabilities has
been attempted by other researchers as well. Barbosa et al. extended the SMT
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solvers CVC4 (now cvc5) and veriT to higher-order logic in an incomplete way [3].
Bhayat and Reger first extended Vampire to higher-order logic using combinatory
unification [8], an incomplete approach, before they designed and implemented a
complete higher-order superposition calculus based on SKBCI combinators [7].
The advantage is that combinators can be supported as a thin layer on top
of λ-free terms. This calculus is also implemented in Zipperposition. However,
in informal experiments, we found that λ-superposition performs substantially
better, corroborating the CASC results, so we decided to make a more profound
change to Ehoh and implement λ-superposition.

Possibly the only actively maintained higher-order provers built from the
bottom up as higher-order provers are Leo-III [35] and Satallax’s [10] successor
Lash [11]. A further overview of other traditional higher-order provers and the
calculi they are based on can be found in the paper about Ehoh [42, Sect. 9].

8 Conclusion

In 2019, the reviewers of our Ehoh paper [42] were skeptical that extending Ehoh
with support for full higher-order logic would be feasible. One of them wrote:

A potential criticism could be that this step from E to Ehoh is just
extending FOL by those aspects of HOL that are easily in reach with
rather straightforward extensions (none of the extensions is indeed very
complicated), and that the difficult challenges of fully supporting HOL
have yet to be confronted.

We ended up addressing the theoretical “difficult challenges” in other work
with colleagues. In this paper, we faced the practical challenges pertaining to
the extension of Ehoh’s data structures and algorithms to support full higher-
order logic and demonstrated that such an extension is possible. Our evaluation
shows that this extension makes λE the best higher-order prover on benchmarks
coming from interactive theorem proving practice, which was our goal. λE lags
slightly behind Zipperposition on TPTP problems. One reason might be that
Zipperposition does not assume a clausal structure and can perform subtle
formula-level inferences. It would be useful to implement the same features in
λE. We have also only started tuning λE’s heuristics on higher-order problems.
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Abstract. Verifying relations between programs arises as a task in
various verification contexts such as optimizing transformations, relating
new versions of programs with older versions (regression verification),
and noninterference. However, relational verification for programs acting
on dynamically allocated mutable state is not well supported by existing
tools, which provide a high level of automation at the cost of restricting the
programs considered. Auto-active tools, on the other hand, require more
user interaction but enable verification of a broader class of programs.
This article presents WhyRel, a tool for the auto-active verification
of relational properties of pointer programs based on relational region
logic. WhyRel is evaluated through verification case studies, relying on
SMT solvers orchestrated by the Why3 platform on which it builds.
Case studies include establishing representation independence of ADTs,
showing noninterference, and challenge problems from recent literature.

Keywords: local reasoning · relational verification · auto-active verifica-
tion · data abstraction.

1 Introduction

Relational properties encompass conditional equivalence of programs (as in re-
gression verification [28]), noninterference (in which a program is related to itself
via a low-indistinguishability relation), and other requirements such as sensitiv-
ity [6]. The problem we address concerns tooling for the modular verification of
relational properties of heap-manipulating programs, including programs that
act on differing data representations involving dynamically allocated pointer
structures.

Modular reasoning about pointer programs is enabled through local reasoning
using frame conditions, procedural abstraction (i.e., reasoning under hypotheses
about procedures a program invokes), and data abstraction, requiring state-based
encapsulation. For establishing properties of ADTs such as representation inde-
pendence, encapsulation plays a crucial role, permitting implementations to rely
on invariants about private state hidden from clients. Relational verification also
involves a kind of compositionality, the alignment of intermediate execution steps,
which enables use of simpler relational invariants and specs (see e.g. [29,17,25]).
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We aim for auto-active verification [19], accessible to developers, as promoted
by tools such as Dafny and Why3. Users are expected to provide specifications,
annotations such as loop invariants and assertions, and, for relational verification,
alignment hints. The idea is to minimize or eliminate the need for users to
manually invoke tactics for proof search.

Automated inference of specs, loop invariants, or program alignments facili-
tates automated verification, and is implemented in some tools. But in the current
state of the art these techniques are restricted to specs and invariants of limited
forms (e.g., only linear arithmetic) and seldom support dynamically allocated
objects. So inference is beyond the scope of this paper.

What is in scope is use of strong encapsulation, to hide information in the
sense that method specs used by clients do not expose internal representation
details, and to enable verification of modular correctness of a client, in the
sense that its behavior is independent from internal representations. Achieving
strong encapsulation for pointer programs, without undue restriction on data and
control structure, is technically challenging. Auto-active tools rely on extensive
axiomatization for the generation of verification conditions (VCs); for high
assurance the VCs should be justified with respect to a definitional operational
semantics of programs and specs.

In this article, we describe WhyRel, a prototype for auto-active verification
of relational properties of pointer programs. Source programs are written in an
imperative language with support for shared mutable objects (but no subtyping),
dynamic allocation, and encapsulation. The assertion language is first-order and,
for expressing relational properties, includes constructs that relate values of
variables and pointer structures between two programs. WhyRel is based on
relational region logic [1], a relational extension of region logic [4,2]. Region
logic provides a flexible approach to local reasoning through the use of dynamic
frame conditions [15] which capture footprints of commands acting on the heap.
Verification involves reasoning explicitly about regions of memory and changes
to them as computation proceeds; flexibility comes from being able to express
notions such as parthood and separation in the same first-order setting.

Encapsulation is specified using a kind of dynamic frame, called a dynamic
boundary : a footprint that captures a module’s internal locations. Enforcing
encapsulation is then a matter of ensuring that clients don’t directly modify or
update locations in a module’s boundary. There are detailed soundness proofs
for the relational logic [1], of which our prototype is a faithful implementation.

WhyRel is built on top of the Why3 platform3 for deductive program verifi-
cation which provides infrastructure for verifying programs written in WhyML,
a subset of ML [7] with support for ghost code and nondeterministic choice. The
assertion language is a polymorphic first-order logic extended with support for
algebraic data types and recursively and inductively defined predicates [11]. Why3
generates VCs for WhyML which can then be discharged using a wide array of
theorem provers, from interactive proof assistants such as Coq and Isabelle, to
first-order theorem provers and SMT solvers such as Vampire, Alt-Ergo and Z3.

3 The Why3 distribution can be found at: https://why3.lri.fr/.
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Primarily, WhyRel is used as a front end to Why3. Users provide programs,
specs, annotations, and for relational verification, relational specs and alignment
specified using a specialized syntax for product programs. WhyRel translates
source programs into WhyML, performing significant encoding so as to faithfully
capture the heap model and fine-grained framing formalized in relational region
logic. VCs pertinent to this logic are introduced as intermediate assertions and
lemmas for the user to establish. Verification is done using facilities provided by
Why3 and the primary mode of interaction is through an IDE for viewing and
discharging verification conditions.

Our approach is evaluated through a number of case studies performed in
WhyRel, for which we rely entirely on SMT solvers to discharge proof obligations.
The primary contribution is the development of a tool for relational verification of
heap manipulating programs which has been applied to challenging case studies.
Examples formalized demonstrate the effectiveness of relational region logic for
alignment, for expressing heap relations, and for relational reasoning that exploits
encapsulation.

Organization. Sec. 2 highlights aspects of specifying programs and relational
properties in WhyRel using a stack ADT example. Sec. 3 discusses examples of
program alignment. Sec. 4 gives an overview of the design of WhyRel and Sec. 5
provides highlights on experience using the tool. Sec. 6 discusses related work
and Sec. 7 concludes.

2 A tour of WhyRel

Programs and specifications. WhyRel provides a lightweight module system to
organize definitions, programs, and specs. Developments are structured into
interfaces and modules that implement interfaces. In addition, for relational
verification, WhyRel introduces the notion of a bimodule, described later, to
relate method implementations between two (unary) modules.

We’ll walk through aspects of specification in WhyRel using the STACK interface
shown in Fig. 1, which describes a stack of boxed integers with push and pop
operations. The interface starts by declaring global variables, pool and capacity,
and client-visible fields of the Cell and Stack classes. Variable pool has type rgn,
where a region is a set of references, and is used to describe objects notionally
owned by modules implementing the stack interface; capacity has type int and
describes an upper bound on the size of a stack. The Cell class for boxed integers
is declared with a single field, val, storing an int. The Stack class is declared with
three fields: rep of type region keeps track of objects used to represent the stack,
size of type int stores the number of elements in the stack, and the ghost field
abs of type intlist (list of mathematical integers) keeps track of an abstraction
of the stack, used in specs. Class definitions can be refined later by modules
implementing the interface: e.g., a module using a linked-list implementation
might extend the Stack class with a field head storing a reference to the list.

Heap encapsulation is supported at the granularity of modules through the use
of dynamic module boundaries which describe locations internal to a module. A
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interface STACK =
public pool:rgn /* rgn: a set of references */ public capacity:int
class Cell {val:int} class Stack {rep:rgn; size:int; ghost abs:intlist}

/* encapsulated locations */
boundary {capacity, pool, pool‘any, pool‘rep‘any}
public invariant stkPub = ∀ s: Stack ∈ pool. 0 ≤ s.size ≤ capacity
∧ (∀ t: Stack ∈ pool. s 6= t ⇒ s.rep ∩ t.rep ⊆ {null}) ∧ ...

meth Cell(self: Cell) : unit ... meth getVal(self: Cell) : int ...
meth Stack(self: Stack) : unit ensures {self ∈ pool} ...

meth push(self: Stack, k: int) : unit
requires {self ∈ pool ∧ self.size < capacity}
ensures {self.abs = cons(k,old(self.abs)) ∧ ...}
/* allowed heap effects of implementations */
effects {rw {self}‘any, self.rep‘any, alloc; rd self,capacity}

meth pop(self: Stack) : Cell
requires {self ∈ pool ∧ self.size > 0}
ensures {self.size = old(self.size)-1}
ensures {result.val = hd(self.abs) ∧ self.abs = tl(old(self.abs))}

Fig. 1: WhyRel interface for the Stack ADT

location is either a variable or a heap location o.f , where o is an object reference
and f is its field. In WhyRel, module boundaries are specified in interfaces and
clients are enforced to not directly read or write locations described by the
boundary except through the use of module methods. For our stack example,
the dynamic boundary is capacity, pool, pool‘any, pool‘rep‘any; expressed
using image expressions and the any datagroup. Given a region G and a field f of
class type, the image expression G‘f denotes the region containing the locations
o.f of all non-null references o in G, where f is a valid field of o. If f is of type
region, G‘f is the union of the collection of reference sets o.f for all o in G. For f
of primitive type, such as int or intlist, G‘f is the empty region. The datagroup
any is used to abstract from concrete field names: the expression pool‘any is
syntactic sugar for pool‘val,. . . ,pool‘abs. Intuitively, the dynamic boundary in
Fig. 1 says that clients may not directly read or write capacity, pool, any fields
of objects in pool, and any fields of objects in the rep of any Stack in pool.

While encapsulation is specified at the level of modules, separation or locality
at finer granularities can be specified using module invariants. The stack interface
defines a public invariant stkPub which asserts that the rep fields of all Stack
objects in pool are disjoint. This idiom can be used to ensure that modifying one
object has no effect on any locations in the representation of another. Clients
can rely on public invariants during verification, but modules implementing
the interface must ensure they are preserved by module methods. Additionally,
modules may define private invariants that capture conditions on internal state;
provided these refer only to encapsulated locations, i.e., the designated boundary
frames these invariants, clients are exempt from reasoning about them [14].
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module Client =
meth prog (n: int) : int

requires { 0 ≤ n < capacity ∧ ... }
effects { rw alloc, pool, pool‘any, pool‘rep‘any; rd n, capacity }

= var i: int in var c: Cell in
var stk: Stack in stk := new Stack; Stack(stk);
while (i < n) do push(stk,i); i:=i+1 done; i := 0;
while (i < n) do c:=pop(stk); result:=result+getVal(c); i:=i+1 done;

meth prog (n: int|n: int) : (int|int) /* Relational spec for prog */
requires { n =̈ n ∧ Both(0 ≤ n < capacity ∧ ... ) }
ensures { result =̈ result }

Fig. 2: Example client for STACK and relational spec for equivalence

Finally, the STACK interface defines specs for initializers (methods Cell and
Stack) and public specs for client-visible methods getVal, push, and pop. Notice
that the stack initializer ensures self is added to the boundary (through post
self ∈ pool) and stack operations require self to be part of the boundary
(through pre self ∈ pool). Specs for push and pop are standard, using “old”
expressions to precisely capture field updates. WhyRel’s assertion language
is first-order and includes constructs such as the points-to assertion x.f = e
and operations on regions such as subset and membership. In addition to pre-
and post-conditions, each method is annotated with a frame condition in an
effects clause that serves to constrain heap effects of implementations. Allowable
effects are expressed using read/write (rw) or read (rd) of locations or location
sets, described by regions. For example, the effects clause for push says that
implementations may read/write any field of self and any field of any objects
in self.rep. The distinguished variable alloc is used to indicate that push may
dynamically allocate objects.

In our development, we build two modules that implement the interface in
Fig. 1: one using arrays, ArrayStack and another using linked-lists, ListStack.
Both rely on private invariants on encapsulated state that capture constraints on
their pointer representations and its relation to abs, the mathematical abstraction
of stack objects. The private invariant of ListStack, for example, says that Cell
values in the linked-list of any Stack in pool are in correspondence with values
stored in abs.

Example client, equivalence spec, and verification. We now turn attention to
an example client, prog, shown in Fig. 2. This program computes the sum
Σn

i=0i, albeit in a roundabout fashion, using a stack. The frame condition of prog
mentions the boundary for STACK, but this is fine since the client respects WhyRel’s
encapsulation discipline, modifying encapsulated locations solely through calls to
methods declared in the STACK interface. For this client, our goal is to establish
equivalence when linked against either implementations of STACK. Let the left
program be the client linked against ArrayStack, and the right the client linked
against ListStackEquivalence is expressed using the relational spec shown in
Fig. 2. For brevity, we omit frame conditions when describing relational specs.
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meth prog (n: int | n: int) : (int | int)
= var i: int | i: int in var c: Cell | c: Cell in

var stk: Stack in b stk := new Stack c; b Stack(stk) c;
while (i < n) | (i < n) do b push(stk,i) c; b i:=i+1 c done; b i:=0 c;
while (i < n) | (i < n) do b c:=pop(stk) c;
b result:=result+getVal(c) c; b i:=i+1 c done;

Fig. 3: Alignment for example stack client

This relational spec relates two versions of prog; the notation (n:int | n:int)
is used to declare that both versions expect n as argument. The pre-relation
requires equality of inputs: n =̈ n says that the value of n on the left is equal to
the value of n on the right. We use (=̈), instead of (=) to distinguish between
values on the left and the right4. The relational spec requires the two states
being related to satisfy the unary precondition for the client, as indicated by
Both(...). The post-relation, result =̈ result, asserts equality on returned
values. In WhyRel, relational specs capture a ∀∀ termination-insensitive property:
terminating executions of the programs being related, when started in states related
by the pre-relation, will result in states related by the post-relation.

WhyRel supports two approaches to verifying relational properties. The first
reduces to proving functional properties of the programs involved. For instance,
equivalence of the client when linked against the two stack implementations
is immediate if we prove that prog indeed computes the sum of the first n
nonnegative integers.

However, this approach neither lends well to more complicated programs
and relational properties, nor does it allow us to exploit similarities between
related programs or reason modularly using relational specs. The alternative is to
prove the relational property using a convenient alignment of the two programs.
Alignments are represented syntactically in WhyRel using biprograms which pair
points of interest between two programs so that their effects can be reasoned
about in tandem. If the chosen alignment is adequate in the sense of capturing all
pairs of executions of the related programs, relational properties of the alignment
entail the corresponding relation between the underlying programs.

The biprogram for prog is shown in Fig. 3. The alignment it captures is
maximal: every control point in one version of the client is paired with itself in
the other version. The construct (C|C ′) pairs a command C on the left with a
command C ′ on the right, and the sync form bCc is syntactic sugar for (C|C);
e.g., the biprogram for prog aligns the two allocations using bstk := new Stackc.
Further, this biprogram aligns both loops in lockstep, indicated using the syntax
while e|e’ do ... done. This alignment pairs a loop iteration on the left with a
loop iteration on the right and requires the loop guards be in agreement: here,
that i < n on the left is true just when i < n on the right is. Calls to stack
operations are aligned in the loop body using the sync construct to facilitate

4 Note in particular that x =̈ y is not the same as y =̈ x
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bimodule REL_STACK (ArrayStack | ListStack) =
coupling stackCoupling = ∀ s: Stack ∈ pool | s: Stack ∈ pool.

s =̈ s ⇒ s.abs =̈ s.abs ∧ ...

meth Stack(self: Stack | self: Stack) : (unit | unit)
ensures {self =̈ self ∧ ...} = /* biprogram for Stack */

meth push(self: Stack | self: Stack) : (unit | unit)
requires {self =̈ self ∧ ... }
ensures {self.abs =̈ self.abs ∧ ... } = /* biprogram for push */

meth pop(self:Stack | self:Stack) : (Cell | Cell)
requires {self =̈ self ∧ Both (self ∈ pool) ∧ Both (self.size > 0)}
ensures {... ∧ result.val =̈ result.val} = /* biprogram for pop */

Fig. 4: Bimodule for Stack; excerpts

modular verification of relational properties by indicating that relational specs
for push and pop are to be used.

To prove the spec (in Fig. 2) about the biprogram in Fig. 3 we reason as
follows: after allocation stk on both sides is initialized to be the empty stack.
The first lockstep aligned loop which pushes integers from 0, . . . , n maintains
as invariant equality on i and on the mathematical abstractions the two stacks
represent, i.e., i =̈ i ∧ stk.abs =̈ stk.abs. The second lockstep aligned loop
which pops the stacks and increments result maintains as invariant agreement on
the stack abstractions and result, the key conjunct being result =̈ result. This
is sufficient to establish the desired post-relation. Importantly, the loop invariants
are simple to prove—they only contain equalities between variables—and we
don’t have to reason about the exact contents of the two stacks involved.

Relational specs for Stack and verification. The reasoning described above relies on
knowing the method implementations in ArrayStack and ListStack are equivalent.
We need relational specs for push which state that given related inputs, the
contents represented by the two stacks are the same; and for pop, which state
that given related inputs, the values of the returned Cells are the same.

Fig. 4 shows a bimodule, REL_STACK, relating the two implementations of STACK.
It includes relational specs for the stack operations along with biprograms used
for verification. The bimodule maintains a coupling relation which relates data
representations used by the two stack implementations. Concretely, the coupling
here states that related stacks in pool represent the same abstraction. Note that
quantifiers in relation formulas bind pairs of variables; and the equality s =̈ s in
stackCoupling is not strict pointer equality, but indicates correspondence. Strict
pointer equality is too strong as it would not allow for modeling allocation as
a nondeterministic operation or permit differing allocation patterns between
programs being related. Behind the scenes, WhyRel maintains a partial bijection
π between allocated references in the two states being related. The relation x =̈ y,
where x and y are pointers, states that x in the left state is in correspondence
with y in the right state w.r.t π, i.e., π(x) = y.

The relational spec for the initializer Stack ensures self =̈ self, which is
required in the specs for push and pop. Like other invariants, coupling relations
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meth mult(n: int, m: int) =
i := 0;
while (i < n) do j:=0;

while (j < m) do
result := result+1; j := j+1

done; i := i+1 done;

meth mult(n:int, m:int) =
i := 0;
while (i < n) do

result := result+m;
i := i+1

done;

Fig. 5: Two versions of a simple multiplication routine

are meant to be framed by the boundary and are required to be preserved by
module methods being related. Encapsulation allows for coupling relations to be
hidden so that clients are exempt from reasoning about them.

The steps taken to complete the Stack development and verify equivalence of
two versions of its client are as follows: (i) build the STACK interface in WhyRel,
with public invariants clients can rely on and a boundary that designates encap-
sulated locations; (ii) develop two modules refining this interface, ArrayStack and
ListStack, and verify that their implementations conform to STACK interface specs,
relying on any private invariants that capture conditions on encapsulated state;
(iii) provide a bimodule relating the two stack modules and prove equivalence
of stack operations, relying on a coupling relation that captures relationships
between pointer structures used by the two modules; (iv) verify the client with
respect to specs given in STACK and prove it respects WhyRel’s encapsulation
regime; and finally (v) develop a bimodule for the client and verify equivalence
using relational specs for stack methods.

3 Patterns of alignment

Well chosen alignments help decompose relational verification, allowing for the
use of simple relational assertions and loop invariants. In this section, we’ll look
at examples of biprograms that capture alignments that aren’t maximal, unlike
the STACK client example in Sec. 2. We don’t formalize the syntax of biprograms
here, but we show representative examples. When discussing examples, we’ll omit
frame conditions and other aspects orthogonal to alignment.

Differing control structures. Churchill et al. [8] develop a technique for proving
equivalence of programs using state-dependent alignments of program traces.
They identify a challenging problem for equivalence checking, shown in Fig. 5,
which compares two procedures for multiplication with different control flow.
For automated approaches to relational verification, their example is challenging
because of the need to align an unbounded number m of loop iterations on the
left with a single iteration on the right.

To prove equivalence, we verify the biprogram shown in Fig. 6 with re-
spect to a relational spec with pre-relation n =̈ n ∧ m =̈ m and post-relation
result =̈ result; i.e., agreement on inputs results in agreement of outputs. Un-
like the stack client biprogram shown in Fig. 3, the alignment embodied here is
not maximal—indeed, such alignment would not be possible due to the differing
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meth mult(n: int, m: int | n: int, m: int) : (int | int) =
b i := 0 c;
while (i < n) | (i < n) do invariant { i =̈ i ∧ result =̈ result }

( j := 0; while (j < m) do result := result+1; j := j+1 done
| result := result+m );
assert { 〈[result = old(result)+m〈] };
b i := i+1 c done;

Fig. 6: Biprogram for example in Fig. 5

meth sumpub (l: List) : int =
p:=l.head; s:=0;
while (p 6= null) do

if p.pub then
s:=s+p.val

end;
p:=p.nxt

done;
result:=s;

meth sumpub (l: List | l: List) : int =
b p:=l.head c; b s:=0 c;
while (p 6= null) | (p 6= null) .
〈[ ¬ p.pub 〈] | [〉 ¬ p.pub ]〉 do
( if p.pub then s:=s+p.val end;

p:=p.nxt
| if p.pub then s:=s+p.val end;

p:=p.nxt)
done; b result:=s c;

Fig. 7: Summing up public elements of a linked list: program and alignment

control structure. Similarities are still exploited by aligning the outer loops in
lockstep and the left inner loop with the assignment to result on the right.

A simple relational loop invariant which asserts agreement on i and result is
sufficient for proving equivalence. To show this is invariant, we need to establish
that the inner loop on the left has the effect of incrementing result by m, thereby
maintaining equality on result after the inner loop. In Fig. 6 this is indicated by
the assertion after the left inner loop. The notation 〈[P 〈] (resp. [〉P ]〉) is used to
state that the unary formula P holds in the left (and resp. right) state.

Conditionally aligned loops. Examples so far have concerned lockstep aligned
loops, requiring a one-to-one correspondence between loop iterations. However,
this condition is often too restrictive. WhyRel provides for other patterns of loop
alignment, including those that account for conditions on data values. Consider for
example the program shown in Fig. 7 which traverses a linked list and computes
the sum of all elements marked public, indicated in each element’s pub field. The
program satisfies the following noninterference property, with relational spec:

meth sumpub(l: List | l: List) : (int | int)
requires { Both(listpub(l,xs)) ∧ xs =̈ xs }
ensures { result =̈ result }

Here listpub(l,xs) is a predicate which asserts that the sequence of public values
reachable from the list pointer l is realized in xs, a mathematical list of integers.
Intuitively, this specification captures the property that the result of sumpub does
not depend on the values of nonpublic elements in the input list l. Showing
the program computes exactly the sum of public elements: result = sum(xs)
would imply the desired noninterference property. However, to showcase support
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WhyRel offers for non-lockstep alignments, we’ll establish noninterference by
conditionally aligning the loops in the two copies of sumpub (see Fig. 7).

The alignment is as follows: if p is a nonpublic node on one side, perform a
loop iteration on that side, pausing the iteration on the other; and if p on both
sides is public, perform lockstep iterations of both loops. This has the effect
of incrementing s exactly when both sides are visiting public nodes, the values
of which are guaranteed to be the same by the relational precondition. The
biprogram expresses this alignment through the use of additional annotations,
called alignment guards which are general relation formulas and express conditions
that lead to left-only, right-only, or lockstep iterations. The left alignment guard
〈[¬ p.pub〈] indicates that left-only loop iterations are to be performed when p on
the left is not public. The right alignment guard expresses a similar condition
when p on the right is not public. Iterations proceed in lockstep when both
alignment guards are false, i.e., when Both(p.pub) is true.

This biprogram maintains ∃ xs|xs. Both(listpub(p,xs)) ∧ xs=̈xs ∧ s=̈s as
loop invariant, which implies the desired post-relation. This invariant states
that p on both sides points to the same sequence of public values as captured
by listpub(p,xs) and that there is agreement on the sum s computed so far.
During verification, we must establish that left-only, right-only, and lockstep
iterations of the aligned loops preserve this invariant. Due to the alignment, the
value of s is only updated during lockstep iterations and its straightforward to
show preservation. For one-sided iterations, reasoning relies on knowing that the
sequence of public values pointed to by p remains the same.

4 Encoding and design

We implement WhyRel in OCaml, relying on a library provided by Why3 for
constructing WhyML parse trees. Source programs are parsed and typechecked
before being translated to WhyML. Prior to translation, WhyRel performs a
variety of checks and transformations: primary among these is a check that clients
respect encapsulation and that any biprograms provided by users are adequate.
Proof obligations pertinent to relational region logic are generated in the form of
intermediate assertions in WhyML programs and lemmas for the user to prove.
In this section, we provide an overview of some aspects of our implementation,
focusing on the translation to WhyML.

Encoding program states. References are represented using an abstract WhyML
type reference with a distinguished element, null. The only operation supported
on reference values is equality; WhyRel does not deal with pointer-arithmetic.
Regions are encoded as ghost state, using a library for mathematical sets provided
by Why3. Set operations on regions are inherently supported, and we axiomatize
image expressions: for each field f , WhyRel generates a Why3 function symbol
img_f along with an axiom that captures the meaning of G‘f .

Program states are encoded using WhyML records. An example is shown in
Fig. 8. The state type includes at least two mutable components called alloct
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/* class defs */
class Cell {

val: int;
ghost rep: rgn; }

class Node {
curr: Cell;
nxt: Node; }

/* global vars */
public pool : rgn

type reftype = Cell | Node (*class names*)
type heap = {

mutable val: map reference int;
mutable ghost rep : map reference Rgn.t;
mutable curr: map reference reference;
mutable nxt: map reference reference }

type state = {
mutable alloct: map reference reftype;
mutable heap: heap;
mutable ghost pool: rgn }

invariant {¬(Map.mem null alloct) ∧ ...}

(* axiomatization of G‘nxt *)
function img_nxt : state → Rgn.t → Rgn.t
axiom img_nxt_ax : ∀ s, r, p.

Rgn.mem p (img_nxt s r) ⇔ ∃ q.
s.alloct[q] = Node ∧ Rgn.mem q r

∧ p = s.head.nxt[q]

Fig. 8: State encoding: WhyRel source on left, encoding in WhyML on right.

and heap. The component alloct stores a map from references to object types
and keeps track of allocated objects; heap is itself a record with one mutable
component per field in the source program that stores a map from references to
values. The set of values includes references, Why3 mathematical types such as
arrays and lists, regions, and primitive types such as int and bool. In addition,
the state type contains one mutable field per global variable in the source
program, storing a value of the appropriate type. The state type is annotated
with a WhyML invariant that captures well-formedness. This invariant includes
conditions such as null never being allocated, no dangling references, and typing
constraints: for example, the nxt field of a Node is itself a Node.

Translating unary programs and effects. WhyRel translates unary programs into
WhyML functions that act on our encoding of states. Commands that modify the
heap are modeled as updates to an explicit state parameter, and local variables,
parameters, and the distinguished result variable are encoded using WhyML
reference cells. Object parameters are modeled using the reference type and
a typing assumption. Translation of control flow statements is straightforward.
For programs with loops, WhyRel additionally adds a diverges clause to the
generated WhyML function: this indicates that the function may potentially
diverge, avoiding generation of VCs for proving termination. While Why3 supports
reasoning about total correctness, we’re only concerned with partial correctness.
Fig. 9 shows an example translation.

Translation of frame conditions requires care given our encoding of states. As
an example, the writes for method m shown in Fig. 9 would include rw {c}‘val
due to the write to, and read of, field val of object c. Correspondingly, in the
Why3 translation, component val of s.heap is updated; so specifying the function
in Why3 requires adding writes {s.heap.val} as annotation. However, this isn’t
the granularity we want since it implies the field val of any reference can be
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meth m (c: Cell, i: int) : int
requires { c.val ≥ 0 }

= while (i ≥ 0) do
invariant { c.val ≥ 0 }
c.val := c.val+i;
i := i-1

done;
result := c.val

let m (s:state) (c:reference) (i:int)
: int diverges
requires { s.alloct[c] = Cell }
requires { s.heap.val[c] ≥ 0 }

= let result = ref 0 in
let c = ref c in
let i = ref i in
while (!i ≥ 0) do

invariant { s.heap.val[!c] ≥ 0 }
(* c.val := c.val + i *)
s.heap.val ← Map.add !c

(s.heap.val[!c]+!i) s.heap.val;
i := !i-1

done;
result := s.heap.val[!c]; !result

Fig. 9: Program translation example: WhyRel program on the left, WhyML
translation on the right; frame conditions omitted.

written. Hence, WhyRel generates an additional postcondition for method m:
wr_framed_val (old s) s (Rgn.singleton c), where
predicate wr_framed_val (s: state) (t: state) (r: rgn) = ∀ p: reference.

s.alloct[p] = Cell ∧ p /∈ r ⇒ s.heap.val[p] = t.heap.val[p]

With this postcondition, callers of m (in WhyML) can rely on knowing that the
val fields of only references in {c} are modified.

Biprograms. WhyRel translates biprograms into product programs; specifically,
WhyML functions that act on a pair of states5. Before translation, it performs an
adequacy check to ensure the biprogram is well-formed. Recall that adequacy here
means that all computations of the underlying unary programs are covered by
their aligned biprogram. Adequacy ensures that a relational judgment about the
biprogram entails the expected relation between the underlying unary programs.
The check WhyRel performs is syntactic and defined using projection operations
on biprograms. Given a biprogram CC, the left projection

↼−
CC (and resp. the right

projection
−⇀
CC) extracts the unary program on the left (and resp. the right). As

an example, the left projection of bc.f:=gc; (x:=c.f | skip) is c.f:=g; x:=c.f
and its right projection is c.f:=g. For adequacy, given unary programs C and
C ′ and their aligned biprogram CC, it suffices to check whether

↼−
CC ≡ C and

−⇀
CC ≡ C ′ [1].

Translation of biprograms is described in Fig. 10. The translation function
B takes a biprogram and a pair of contexts (Γl, Γr) to a WhyML program. In
addition to mapping WhyRel identifiers to WhyML identifiers, contexts store
information about the state parameters on which the generated WhyML program
5 In reality, generated WhyML functions act on a pair of states and a bijective renaming
of references allocated in these states. This is to cater for relation formulas such
as x =̈ y where x and y are references. However, this additional parameter is not
important to our discussion here, so we avoid mentioning it.
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BJC|C’K(Γl, Γr) =̂ UJCK(Γl); UJC’K(Γr)
BJbm(x|y)cK(Γl, Γr) =̂ apply(Φ(m), [Γl.st;Γr.st; EJxK(Γl); EJyK(Γr)])
BJbCcK(Γl, Γr) =̂ BJC|CK(Γl, Γr)
BJC; C’K(Γl, Γr) =̂ BJCK(Γl, Γr); BJC’K(Γl, Γr)
BJvar x:T|x:T’ in CCK(Γl, Γr) =̂ let xl = def(T) in let xr = def(T’) in

BJCCK([Γl | x : xl], [Γr | x : xr])
BJif E|E’ then CC else DDK(Γl, Γr) =̂ assert {EJEK(Γl) = EJE’K(Γr)};

if EJEK(Γl) then BJCCK else BJDDK
BJwhile E|E’ do DDK(Γl, Γr) =̂ while EJEK(Γl) do

invariant {EJEK(Γl) = EJE’K(Γr)}
BJCCK(Γl, Γr)

BJwhile E|E’. P|P do DDK(Γl, Γr) =̂

while (EJEK(Γl) ∨ EJE’K(Γr)) do invariant {A}
if (EJEK(Γl) ∧ FJPK(Γl, Γr)) then UJ↼−CCK(Γl)

else if (EJE’K(Γr) ∧ FJP ′K(Γl, Γr)) then UJ−⇀CCK(Γr) else BJCCK(Γl, Γr)

where A ≡ (EJEK(Γl) ∧ FJPK(Γl, Γr)) ∨ (EJE′K(Γr) ∧ FJP ′K(Γl, Γr)) ∨
(¬EJEK(Γl) ∧ ¬EJE′K(Γr)) ∨ (EJEK(Γl) ∧ EJE′K(Γr))

Fig. 10: Translation of biprograms, excerpts

acts. Similar to B, the function U translates unary programs to WhyML programs,
E , expressions to WhyML expressions, and F , a restricted set of relation formulas
to WhyML expressions. Biprograms don’t require the underlying unary programs
to act on a disjoint set of variables; however, this means that WhyRel has to
perform appropriate renaming during translation. Renaming is manifest in the
translation of variable blocks (var x:T|x:T’ in CC), where the context Γl (and
resp. Γr) is extended, [Γl | x : xl], mapping x to a renamed copy xl (and resp. Γr

is extended with the binding x : xr).
In translating (C|C ′), the unary translations of C and C ′ are sequentially

composed. Syncs bCc are handled similarly, as syntactic sugar for (C|C), except
for the case of method calls. Procedure-modular reasoning about relational
properties is enabled by aligning method calls which indicates that the relational
spec associated with the method is to be exploited. WhyRel will translate these
to calls to the appropriate WhyML product program, using a global method
context (Φ in Fig. 10). Since translated product programs act on pairs of states,
the generated WhyML call takes Γl.st and Γr.st, names for left and right state
parameters, as additional arguments.

Product constructions for control flow statements require generating additional
proof obligations. For aligned conditionals, WhyRel introduces an assertion that
the guards are in agreement. Lockstep aligned loops are dealt with similarly;
guard agreement must be invariant. For conditionally aligned loops, the generated
loop body captures the pattern indicated by the alignment guards P |P ′: if the
left (resp. right) guard is true and P (resp. P ′) holds, perform a left-only (resp.
right-only) iteration; otherwise, perform a lockstep iteration. Adequacy is ensured
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by requiring the condition A to be invariant. This condition states that until
both sides terminate, the loop can perform a lockstep or a one-sided iteration.
In relational region logic, the alignment guards P and P ′ can be any relational
formula. However, the encoding of conditionally aligned loops is in terms of a
conditional that branches on these alignment guards. In Why3, this only works if
P and P ′ are restricted; for example, to not contain quantifiers. WhyRel supports
alignment guards that include agreement formulas, one-sided points-to assertions,
one-sided boolean expressions, and the usual boolean connectives.

Proof obligations for encapsulation. To ensure sound encapsulation, WhyRel
performs an analysis on source programs. This analysis includes two parts: a static
check to ensure client programs don’t directly write to variables in a module’s
boundary; and the generation of intermediate assertions that express disjointness
between the footprints of client heap updates and regions demarcated by module
boundaries. For modules with public/private invariants, WhyRel additionally
generates a lemma which states that the module’s boundary frames the invariant,
i.e., the invariant only depends on locations expressed by the boundary. The
same is done with coupling relations, for which we need to consider boundaries
of both modules being related. A technical condition of relational region logic
requiring boundaries grow monotonically as computation proceeds is also ensured
by introducing appropriate postconditions in generated programs.

5 Evaluation

We evaluate WhyRel via a series a case studies, representative of the challenge
problems highlighted at the outset of this article. Examples include representation
independence, optimizations such as loop tiling [5], and others from recent
literature on relational verification (including [9] and [21]). Some, like those
described in Sec. 3, deal with reasoning in terms of varying alignments including
data-dependent ones. Our representation independence examples include showing
equivalence of Dijkstra’s single-source shortest-paths algorithm linked against
two implementations of priority queues, which requires reasoning about fine-
grained couplings between pointer structures; and Kruskal’s minimum spanning
tree algorithm linked against different modules implementing union-find, which
requires couplings equating the partitions represented by the two versions. For
all examples, VCs are discharged using the SMT solvers Alt-Ergo, CVC4, and
Z3. Replaying proofs of most developments using Why3’s saved sessions feature
takes less than 30 minutes on a machine with an Intel Core i5-6500 processor
and 32 gigabytes of RAM.

A primary goal of this work is to investigate whether verifying relational
properties of heap manipulating programs can be performed in a manner tractable
to SMT-based automation, and for the most part, we believe WhyRel provides a
promising answer. The tool serves as an implementation of relational region logic
and demonstrates that even its additional proof obligations for encapsulation can
be encoded using first-order assertions. In fact, exploration of case studies using
WhyRel was instrumental in designing proof rules of relational region logic.
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Reasoning about heap effects à la region logic is generally simple and VCs
get discharged quickly using SMT. However, technical lemmas WhyRel generates
which pertain to showing that module boundaries frame private invariants and
couplings require considerable manual effort to prove. These lemmas usually in-
volve reasoning about image expressions, which involve existentials and nontrivial
set operations on regions. Given our encoding of states and regions, SMT solvers
seem to have difficulties solving these goals. Manual effort involves applying a
series of Why3 transformations (or proof tactics) and introducing intermediate
assertions. We conjecture that the issue can be mitigated by using specialized
solvers [23] or different heap encodings [24].

Another issue with our encoding of typed program states is the generation of
a large number of VCs related to well-formedness of states. These account for
a substantial fraction of proof replay time. Why3 programs act directly on our
minimally-typed state representation and each heap update needs to preserve
an invariant that specifies constraints on the types of allocated references (see
Fig. 8). Using Why3’s support for module abstraction [12] may ameliorate this
issue. An alternative is to use assumptions, which can be justified by correctness
of the WhyRel type checker and translator.6

Apart from these challenges related to verification, we note that specs in
region logic tend to be verbose when compared to other formalisms such as
separation logic [4].

6 Related work

WhyRel is closely modeled on relational region logic, developed in [1]. That paper
provides a high-level overview of WhyRel, using a small set of examples verified
in the tool to motivate aspects of the formal logic; but it doesn’t give a full
presentation of the tool or go into details about the encoding. The paper provides
comprehensive soundness proofs of the logic and shows how the VCs WhyRel
generates and the checks it performs correspond closely to obligations of relational
proof rules. The paper builds on a line of work on region logic [4,2,3]. The VERL
tool implements an early version of unary region logic without encapsulation and
was used to evaluate a decision procedure for regions [23].

For local reasoning about pointer programs, separation logic is an effective
and elegant formalism. For relational verification, ReLoC [13], based on the Iris
separation logic and built in the Coq proof assistant supports, apart from many
others, language features such as dynamic allocation and concurrency. However,
we are unaware of auto-active relational verifiers based on separation logic.

Alignments for relational verification have been explored in various contexts.
In WhyRel, the biprogram syntax captures alignment based on control flow, but
also caters to data-dependent alignment of loops through the use of alignment
guards (as discussed in Sec. 3). Churchill et al. [8] develop a technique for
equivalence checking by using data dependent alignments represented by control
6 The Boogie verification language provides “free requires” and “free ensures” syntax
for just such assumptions.
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flow automata which they use to prove correctness of a benchmark of vectorizing
compiler transformations and hand-optimized code. Unno et al. [30] address a wide
range of relational problems including k-safety and co-termination, expressing
alignments and invariants as constraint satisfaction problems they solve using a
CEGIS-like technique. Their work is applied to benchmarks proposed by Shemer
et al. [25] who develop a technique for equivalence and regression verification.
Both the above works represent alignments as transition systems and perform
inference of relational invariants and alignment conditions. Inference relies on
solvers and therefore programs need to be restricted so they are amenable to these
solvers. A promising approach by Barthe et al. [6] reduces relational verification
to proving formulas in trace logic, a multi-sorted first-order logic using first-
order provers. In trace logic, conditions can be expressed on traces including
relationships between different time points without recourse to alignment per se.

Sousa and Dillig develop Descartes [26] for reasoning about k-safety properties
of Java programs automatically using implicit product constructions and in a
logic they term Cartesian Hoare logic. Their work is furthered by Pick et al. [22]
who develop novel techniques for detecting alignments. The REFINITY [27]
workbench based on the interactive KeY tool can be used to reason about
transformations of Java programs; heap reasoning relies on dynamic frames and
relational verification proceeds by considering abstract programs. Other related
tools include SymDiff [18] which is based on Boogie and can modularly reason
about program differences in a language-agnostic way, and LLRêve [16] for regres-
sion verification of C programs. Eilers et al. [10] develop an encoding of product
programs for noninterference that facilitates procedure-modular reasoning. They
verify a large collection of benchmark examples using the VIPER toolchain.

7 Conclusion

In this paper we present WhyRel, a prototype for relational verification of pointer
programs that supports dynamic framing and state-based encapsulation. The
tool faithfully implements relational region logic and demonstrates how its proof
obligations, including those related to encapsulation, can be encoded in a first-
order setting. We’ve performed a number of representative examples in WhyRel
leveraging support Why3 provides for SMT, and believe these demonstrate the
amenability of region logic, and its relational variant, to automation.
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Bridging Hardware and Software Analysis with
Btor2C: A Word-Level-Circuit-to-C Translator

Dirk Beyer , Po-Chun Chien , and Nian-Ze Lee

LMU Munich, Munich, Germany

Abstract. Across the broad research field concerned with the analysis of
computational systems, research endeavors are often categorized by the
respective models under investigation. Algorithms and tools are usually
developed for a specific model, hindering their applications to similar
problems originating from other computational systems. A prominent
example of such a situation is the area of formal verification and testing
for hardware and software systems. The two research communities share
common theoretical foundations and solving methods, including satisfia-
bility, interpolation, and abstraction refinement. Nevertheless, it is often
demanding for one community to benefit from the advancements of the
other, as analyzers typically assume a particular input format. To bridge
the gap between the hardware and software analysis, we propose Btor2C,
a translator from word-level sequential circuits to C programs. We choose
the Btor2 language as the input format for its simplicity and bit-precise
semantics. It can be deemed as an intermediate representation tailored for
analysis. Given a Btor2 circuit, Btor2C generates a behaviorally equivalent
program in the language C, supported by many static program analyzers.
We demonstrate the use cases of Btor2C by translating the benchmark set
from the Hardware Model Checking Competitions into C programs and
analyze them by tools from the Intl. Competitions on Software Verification
and Testing. Our results show that software analyzers can complement
hardware verifiers for enhanced quality assurance: For example, the soft-
ware verifier VeriAbs with Btor2C as preprocessor found more bugs than
the best hardware verifiers ABC and AVR in our experiment.

Keywords: Hardware compilation · Word-level circuit · Intermediate
representation · Formal verification · Testing · Btor2 · SMT · SAT

1 Introduction

Computational systems have become more and more ubiquitous in our daily life
and manifest themselves in various contexts, including VLSI circuits, software
programs, and cyber-physical systems. To construct reliable systems, quality
assurance has become an indispensable research topic. Numerous endeavors
have been invested for different computational systems. Because of the ever-
increasing system complexity and applications in safety-critical missions, it is of
vital importance to take advantage of all available solutions for different types
of systems to guarantee the quality and correctness.
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Formal verification and testing are two active fields of research to analyze and
assure the quality of computational systems. The former decides with mathematical
rigorousness whether a system conforms to a specification. The latter aims at
generating input patterns and executing a system on a test suite to observe
irregular output responses. Studies for formal verification or testing usually focus
on a specific computational model, especially a sequential circuit (hardware) or a
program (software). Tool competitions are also established based on modeling
languages for input instances, such as the language Btor2 [64] used in the
Hardware Model Checking Competitions (HWMCC) [28, 29], or the language C
assumed by the Competitions on Software Verification (SV-COMP) [11, 14] and
Testing (Test-Comp) [12, 13]. Unfortunately, such distinction erects a barrier
between the two closely related research communities.

1.1 Our Motivations and Contributions
For the hardware community to easily benefit from state-of-the-art software-
analysis techniques, we aim at developing a lightweight yet effective translation
flow to bridge the gap between hardware and software analysis. There have been
several attempts [48, 62] to compile hardware designs into software, mostly using
the language Verilog as the input format. Verilog is a general-purpose hardware
description language, and thus, a comprehensive frontend for Verilog requires
tremendous engineering effort. Moreover, Verilog has rather complicated syntax
and semantics, which might increase the burden on the translation flow.

To address the complexity in the frontend design, we resort to the language
Btor2 [64], proposed recently to model word-level sequential circuits. A suite
Btor2Tools [63] of utility tools is also provided for conveniently parsing, simu-
lating, and bit-blasting (to the bit-level format Aiger [26]) Btor2 circuits. We
emphasize the following two benefits of using Btor2 as the translation fron-
tend over Verilog. First, Btor2 provides simple yet sufficient operations over
bit-vectors and arrays. The simplicity makes it an appropriate intermediate repre-
sentation for formal verification and testing, as the operations are suitable for
the underlying satisfiability solvers. Second, Btor2 is the input format used in
the HWMCC. Many hardware model checkers support this format, and a large
collection of benchmarking tasks is available for empirical evaluation. In practice,
a Verilog circuit can be translated to Btor2 via Yosys [70], an open-source
Verilog synthesis tool. Therefore, using Btor2 as frontend does not restrict the
applicability of the translation flow.

Having settled down the frontend choice, our next question is: Should we make
software analyzers support Btor2, or should we implement a standalone translator
that does the job for all tools? We take the latter approach such that any software
analyzer (from 76 available [25]) can in principle be used for hardware analysis.
As opposed to using Verilog as frontend, the simplicity of the Btor2 language
helps to generate C programs suitable for the backend analysis, as will be shown
in Sect. 5 via comparison with the Verilog-to-C translator v2c [62].

Once a handy translator is viable, we are enthusiastic about empirically
comparing hardware and software analyzers on a large scale. Similar experiments
have been carried out for bounded [60] and unbounded [61] formal verification on a
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Fig. 1: Software analysis made readily available for hardware designs

small set of circuits. By building a translator on top of the Btor2 language, more
than a thousand benchmarking tasks from the HWMCC are at our immediate
disposal. To draw a more reliable conclusion on the performance comparison of
state-of-the-art hardware and software analyzers, we evaluate bit-level and word-
level hardware model checkers from HWMCC, software verifiers from SV-COMP,
and software testers from Test-Comp, on the HWMCC benchmark set.

Our contributions in this paper are summarized below:

Novelty. (1) To bridge the gap between hardware and software analysis, we
design and implement Btor2C, the first hardware-to-software compiler taking
the format Btor2 [64] as input. Specifically, Btor2C accepts a Btor2 circuit and
produces a behaviorally equivalent C program. Given a Verilog design, Btor2C
(with the help of Yosys) makes off-the-shelf software verifiers and testers readily
available for its analysis. In addition to bit-level and word-level analyzers, hardware
developers will be equipped with more tool choices to perfect their designs, as
shown in Fig. 1. (2) Btor2C makes it easy to construct new hardware analyzers by
prepending the translator in front of any software analyzer. (3) Applying Btor2C
to the HWMCC benchmark set, we submitted 1224 new tasks1 to sv-benchmarks,
the benchmark collection used by many researchers, including SV-COMP and
Test-Comp. Developers of software analyzers can now assess their tools using
the hardware-analysis counterparts as a new baseline.

Significance. (1) We conduct a large-scale evaluation involving hardware model
checkers, software verifiers, and software testers on the HWMCC benchmark set.
Our results show that software-analysis techniques can complement hardware
model checkers. (2) The proposed lightweight translator makes software analyzers
more accessible to the entire research community, as Btor2 can be used as an
intermediate representation for analysis, not limited to hardware designs.

1.2 Example
Figure 2 illustrates the proposed translator Btor2C on an example. A circuit
whose state is a bit-vector of width 3 is given in Btor2 format in Fig. 2a. The
1 Some tasks used in this paper were excluded due to license issues.
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1 sort bitvec 3

2 zero 1

3 state 1

4 init 1 3 2

5 input 1

6 add 1 3 5

7 one 1

8 sub 1 6 7

9 next 1 3 8

10 ones 1

11 sort bitvec 1

12 eq 11 3 10

13 bad 12

(a) Btor2 circuit

1 extern void abort(void);

2 extern unsigned char nondet_uchar();

3 void main() {

4 typedef unsigned char SORT_1;

5 typedef unsigned char SORT_11;

6 const SORT_1 var_2 = 0b000;

7 const SORT_1 var_7 = 0b001;

8 const SORT_1 var_10 = 0b111;

9 SORT_1 input_5;

10 SORT_1 state_3 = var_2;

11 for (;;) {

12 input_5 = nondet_uchar();

13 input_5 = input_5 & 0b111;

14 SORT_11 var_12 = state_3 == var_10;

15 SORT_11 bad_13 = var_12;

16 if (bad_13) {

17 ERROR: abort();

18 }

19 SORT_1 var_6 = state_3 + input_5;

20 var_6 = var_6 & 0b111;

21 SORT_1 var_8 = var_6 − var_7;

22 var_8 = var_8 & 0b111;

23 state_3 = var_8;

24 }

25 }

(b) C program (simplified for demo)

Fig. 2: An example Btor2 circuit (a) and its translated C program (b)
bit-vector is initialized to 0 (lines 2-4). In every iteration, the value of the bit-
vector will be incremented by the value of the external input (lines 5-6) and
then decremented by 1 (lines 7-8). The circuit reaches a bad state (i.e., violates
the safety property) if the value of the bit-vector equals 0b111 (lines 12-13).
The translated C program is shown in Fig. 2b. Btor2C first looks for the sorts
used in the input Btor2 file. In this example, bit-vectors of 3 bits and 1 bit are
used, and Btor2C encodes them with the shortest possible unsigned integer type
unsigned char (lines 4-5). After sort declarations, Btor2C defines constants,
declares inputs, and initializes circuit states (lines 6-10). An infinite loop is created
to simulate the behavior of a sequential circuit. At the beginning of the loop, the
safety property is evaluated. If the property is violated (namely, variable bad_13

evaluates to true), the program reaches the error location at line 17. Otherwise,
the next-state value (stored in variable var_8) is computed and assigned to
the current state (lines 19-23), and another loop iteration follows. After the
translation, we can apply software verifiers to the translated program in Fig. 2b
to check whether the circuit in Fig. 2a conforms to the specified safety property.

2 Related Work

2.1 Compiling Hardware to Software

Several research efforts [48, 68] have been invested into representing a circuit as
a program, whose primary goal is to accelerate hardware simulation. The most
related work to ours is the Verilog-to-C translator v2c [62], used to translate hard-
ware circuits into software programs for bounded [60] and unbounded [61] formal
verification. Unlike v2c, our translator uses as frontend the Btor2 language, which
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is simple to parse and suitable for analysis. In Sect. 5, we compare the performance
of software analyzers on C programs generated by v2c and our tool Btor2C.

2.2 Compiling Hardware to Intermediate Representation
Another line of research related to our work is the compilation of hardware to
an intermediate representation that eases the burden of analysis. The motivation
of these works is to interface real-world designs and problems described in a
more abstract language with tools that use a primitive model representation. Our
tool Btor2C shares a similar spirit because it interfaces problems in hardware
analysis with software techniques. Among other tools, Verilog2SMV [51] and
Ver2Smv [59] translate a Verilog circuit into SMV format [34, 56], which can be
verified by tools like nuxmv [33]. QuteRTL [71] translates a register-transfer-level
hardware design (usually in Verilog or VHDL) to Btor [31], an earlier version
of Btor2. EBMC [55] generates SMT formulas in SMT-LIB 2 format [8], which
encode the bounded model checking or k -induction problems of a Verilog circuit.
Yosys [70], which translates a Verilog circuit into the Aiger or Btor2 formats,
also serves the same purpose. Recently, there has been an interest to develop
an intermediate language for the model-checking research community [67]. The
project aims at providing an expressive frontend language as well as an efficient
interface with backend model checkers.

3 Background

3.1 The Btor2 Language
Btor2 is a bit-precise modeling language for word-level sequential circuits. It
can be seen as a generalization of the bit-level Aiger format [26]. The essential
ingredients of Btor2 relevant to our discussion in Sect. 4 will be introduced below.
For the complete syntax, please refer to the Btor2 publication [64].

Each line in a Btor2 file starts with a unique number, used by other lines to
identify the entity defined in this line. Such an entity can be either a sort or a node.
A sort is either a bit-vector type of an arbitrary width w, denoted by Bw, or an
array type. An array type whose indices and elements are bit-vector types I and E ,
respectively, is denoted by AI→E . A node can be an input, a state, or a result of an
operator over other inputs, states, or results. Inputs are external stimuli given to
the Btor2 circuit. Memory elements of the circuit are modeled by states. Usually,
inputs have bit-vector types, and states can be of either bit-vector or array types.

Operators are the building blocks of a Btor2 circuit. They take arguments
of the prescribed types and guarantee a specific type for the result. The general
signature for a Btor2 operator is as follows: <node id> <op> <sort id0> <node
id1> [<node id2 [node id3]>], which defines a node to be the computation
result of the operator op on node id1 and optionally id2 and id3. The result
will have type id0 and can be accessed by id. The operators in Btor2 will be
introduced later in Sect. 4 alongside the translation process of Btor2C.

Btor2 also provides constructs like init, next, and bad to describe the
safety-reachability problem for sequential circuits. Initial and bad states can be
defined by init and bad, respectively. The transition from one state to another
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is captured by next. In the following, we briefly recap sequential circuits and
their model-checking formulation.

3.2 Sequential Circuits and Hardware Model Checking

A sequential circuit is a computational model widely used in the design and
analysis of hardware. It consists of a combinational circuit and memory elements.
The combinational circuit is in charge of the computation, and the memory
elements store the circuit’s state. The combinational circuit is a directed acyclic
graph whose vertices are logic gates and edges are wires connecting the gates.
If the output pin of gate u is connected to an input pin of gate v, we say that
u is a fan-in of v, and v is a fan-out of u.

The computation of sequential circuits is segmented into consecutive time
frames. Before the first time frame starts, the memory elements are typically
reset (described by init). At the beginning of each time frame, the combinational
circuit reads the values stored in the memory elements and receives stimuli from
the environment. The former is called the current state of the circuit, and the
latter is called the external input in this time frame. Propagating the current state
and external input through its logic gates, the combinational circuit computes
the output response and the new values to be stored in the memory elements
(namely, next-state values, described by next). At the end of the time frame,
the next-state values are saved into the memory elements, which become the
current state for the next time frame.

The model-checking problem of reachability safety for hardware is formulated
as follows: Given a sequential circuit and a safety property (usually encoded as an
output of the sequential circuit’s combinational part, described by bad), decide
whether the safety property holds on all executions of the sequential circuit. If the
property does not hold on some execution, a hardware model checker generates
an input sequence to trigger the output, and the sequential circuit is deemed
unsafe with respect to the property. Otherwise, the sequential circuit is considered
safe, and a model checker might additionally generate (an overapproximation
of) the set of reachable states as correctness witness.

3.3 Software Model Checking

The reachability-safety problem for software is formulated similarly as hardware
model checking. Given a program and a safety property (usually labeled as an
error location in the program), determine whether there is an executable program
path that reaches the error location. Although, unlike hardware, software model
checking is in general undecidable, many research efforts have been invested
into automated solutions to this problem [10, 19, 53], including predicate abstrac-
tion [5, 42, 47, 50], counterexample-guided abstraction refinement (CEGAR) [6, 36],
and interpolation [49, 58]. The verification of industry-scale software such as
operating-systems code [4, 7, 23, 32, 37, 54] is made feasible together by these so-
lutions and the advances in SMT solving [9]. It is our research enthusiasm to
explore how these concepts work on hardware.
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4 Translating Btor2 to C

This section describes the proposed translator Btor2C2, implemented in the
language C with approximately 1600 lines of code. We first describe the general
idea of using C programs to simulate sequential circuits, whose behavior is
intrinsically concurrent. The implementations of various Btor2 operators and
optimizations in Btor2C are discussed later.

4.1 Simulating Sequential Circuits with C Programs
Sequential circuits work in a concurrent manner: The external input and current
state propagate in parallel through the combinational circuitry to produce circuit
outputs and next-state values. In contrast, the C programming language is
imperative, and hence C programs are generally executed line-by-line.

void main() {

// Define sorts and constants

// Initialize states

for (;;) {

/∗ Evaluate safety property

if (bad) {

ERROR: abort();

} ∗/
// Compute and assign next states

}

}

Fig. 3: A generic program to imitate se-
quential circuits for reachability safety

To capture the behavior of sequen-
tial circuits in the context of reacha-
bility safety, Btor2C generates C pro-
grams with the generic single-loop pro-
gram in Fig. 3 as a template. In the
generic program, the sorts and con-
stants used in the sequential circuit
are defined at the beginning of the
main() function. Second, the program
initializes the circuit’s states. An end-
less loop is then used to mimic the
state-transition behavior of the circuit
throughout time frames: When a loop
iteration begins, the safety property is evaluated over the current state and exter-
nal input. If the property is violated, the program exits with an error. Otherwise,
the next-state values are computed and stored into the state variables. This
generic program reflects the reachability safety for sequential circuits.

The commented blocks in the generic program have to be replaced by C
instructions to encode the concurrent computation of the sequential circuit.
Btor2C assigns every node in the input Btor2 circuit a unique variable in the
translated C program. Nodes used for state initialization, state transition, or
safety properties, are specified by keywords init, next, or bad, respectively. For
such a node, a backward depth-first traversal is applied to collect its transitive
fan-in cone to avoid irrelevant signals regarding model checking. Multiple bad
keywords in a Btor2 file are translated to multiple error labels in the C program.

4.2 Variable Naming
We use the unique identification numbers for lines in a Btor2 file to name their
corresponding variables in the translated C program. Suppose the unique ID of
a line is n. If the line defines a sort, it is named SORT_n in the C file. If the line
defines a state or an input, it is named state_n or input_n, respectively. If the
line defines a node used for state initialization, transition, or property evaluation,
2 https://gitlab.com/sosy-lab/software/btor2c
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it is named init_n, next_n, or bad_n, respectively, to honor the keywords init,
next, or bad. For the rest of the nodes, we name their variables var_n in the C file.

4.3 Expressing Btor2 Sorts in C

The language Btor2 supports two sorts: bit-vectors and arrays. Whenever possible,
Btor2C represents a bit-vector type Bw by the shortest unsigned-integer type
whose number of bits is greater than or equal to w. For example, a B3 type with
sort ID n is encoded by typedef SORT_n unsigned char;, and a B20 type with
sort ID m is encoded by typedef SORT_m unsigned int;. A Btor2 bit-vector
type can have an arbitrary width. If a Btor2 circuit uses a bit-vector type longer
than 64 bits, Btor2C cannot translate it to a C program, because no C type can
accommodate the bit-vector3. The missing capability to handle bit-vectors longer
than 64 bits is a restriction of Btor2C, but the sacrifice is worthy: By encoding
bit-vectors with integer variables, native C operators can be directly applied to
implement Btor2 operators, which greatly simplify the analysis of translated
programs. As can be seen in Sect. 5, the state-of-the-art software verifiers and
testers have a decent performance on the translated programs. In practice, only
20% of the collected Btor2 benchmarking circuits have bit-vectors longer than
64 bits, so we consider the restriction acceptable.

For Btor2 arrays, Btor2C represents them by static arrays. Suppose the sort
ID for an array type AI→E is n. Let its index type I be Bw and element type E
be encoded by SORT_m. Then AI→E is encoded by the following C instruction:
typedef SORT_m SORT_n[1 << w];, which means SORT_n is an array with 2w

objects of type SORT_m.

4.4 Implementing Btor2 Operators in C

The language Btor2 provides various operations, most of which can be easily
implemented by the corresponding C operators. Recall that we extend to the next
unsigned-integer type to encode a bit-vector type Bw. As a result, there might be
some spare most-significant bits (MSBs) in an unsigned-integer variable. Normally,
these bits have to be set to zeros (namely, the computation result is modulo 2w)
after each operation to guarantee the precision. Later in Sect. 4.5, we discuss the
possibility of performing the modulo operation to results lazily only when needed,
instead of applying it eagerly after each operator. Such laziness helps to generate
shorter C programs and provides an opportunity for software analyzers to work
more efficiently. In the evaluation, we will also compare the effects of these two
translation schemes. Next, we follow the order of Table 1 in the Btor2 paper [64]
to introduce the Btor2 operators and their implementations in C.

Indexed Operators. Unsigned- and signed-extension operators uext and sext
can be implemented by type casting during the variable assignment. The bit-
slicing operator slice is implemented by first right-shifting the number of sliced
least-significant bits and masking the spare MSBs to zeros.

3 We stick to the ISO C18 standard [52]; GNU C offers an unsigned __int128 type,
but not every software analyzer supports it. Recently, there is a proposal to support
arbitrary-width integers in ISO C23, which will further simplify the translation.
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Unary Operators. The bitwise negation operator not is implemented by its
counterpart ~ in C. The arithmetic operators inc, dec, and neg are implemented
using the ++, −−, and − operators in C. The reduction operator redand (resp.
redor) is implemented by comparing the operand to 2w − 1 (resp. 0) for an
operand of type Bw. As there is no native support in C to compute the sum of all
bits modulo 2 (parity) in an integer variable, the reduction operator redxor is
implemented by repeatedly shifting and XOR-ing the variable with itself, such
that the result will end up in the least-significant bit.

Binary Operators. For bit-vectors, the (in)equality operators eq, neq, gt, gte,
lt, and lte are implemented by the corresponding C operators. For arrays,
the equality operator is implemented by looping the two input arrays to find a
different element. Bitwise operators and, or, and xor4 and arithmetic operators
add, mul, div, rem (remainder), and sub are all supported in C and can be directly
implemented using the respective C operators. In the language Btor2, the result of
division-by-zero is defined to be the maximum number of the operands’ sort. Our
translation takes this specification into account to generate equivalent C programs.
Otherwise, division-by-zero would be considered as undefined behavior in C.

Shifting operators sll (logical left shift) and srl (logical right shift) are
implemented by the left- and right-shifting operators in C, respectively. According
to the ISO C18 standard [52], the result of right-shifting a negative value is
implementation-defined. Therefore, to ensure the intended behavior of the arith-
metic right-shift operator sra, we always pad ones directly to the resulting value
if the given operand is negative (i.e., MSB equals 1). In this way, we do not have
to assume any specific implementation of the software verifiers.

Concatenating and rotating operators concat, rol (rotating left), and ror
(rotating right), are not natively supported in C. We implemented them by shifting
and bitwise disjunction. For example, in order to concatenate node n1 of type
B3 and node n2 of type B5, we use var_1 << 5 | var_2, assuming var_1 and
var_2 are of type unsigned char.

The read operator for array types, which takes an array and an index, is
simply implemented by C’s syntax to access an array.

Ternary Operators. The if-then-else operator ite works both for bit-vectors
and arrays. It is implemented by the ternary operator exp1 ? exp2 : exp3 in C.

The write operator takes an array, an index for where to write, an element
for what to write, and returns an updated array. It is implemented using the
standard syntax in C to modify the content of an array.

Note that in a Btor2 file, a line with operator write essentially creates a
new copy of the original array with one updated element. The original array is
not replaced, because it might also be referred to by other lines. In principle, if
no lines access the original array after a write operation, the operation could
modify the element in place without allocating a new array. For now, Btor2C
always copies a new array during a write operation for simplicity.

4 The operators nand, nor, and xnor are implemented with the bitwise NOT operator.
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4.5 Applying Modulo Operations Lazily
Observe that there are some operators that can work correctly without precise
operand values, which offers us the opportunity to apply modulo operations lazily
and save some computations in translated programs. For instance, consider the
addition operator. If a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n), we conclude that
a1 + b1 ≡ a2 + b2 (mod n) according to modular arithmetic. In other words, the
addition operator does not need precise operands and works correctly for modular
numbers (i.e., equivalence classes modulo n). By contrast, other operators might
yield different results for modular numbers. For example, a + kn > b does not
guarantee a > b when k > 0. Therefore, performing the modulo operation to
the result of an operator is only necessary where the result is used in another
operator that requires precise operand values.

Btor2C provides an option for the lazy application of modulo operations. If
the option is turned on, Btor2C analyzes whether the precise value is required
for each node by looking at the node’s fan-outs. If any of its fan-outs needs the
precise computation result of the node, the modulo operation will be applied to
it. Otherwise, the modulo operation will be skipped, and the result could be a
modular number of the precise value. Operators that require precise operand values
mainly include inequalities as well as indices for reading and writing arrays. As an
example, if we enable the lazy behavior to translate the Btor2 circuit in Fig. 2a,
the modulo operations in line 13 and line 20 of the program in Fig. 2b can be
omitted, because input_5 and var_6 are used only in addition and subtraction,
which do not need precise operand values.

4.6 Discussion
Correctness of the Translation. As will be seen in Sect. 5, the reliability of
Btor2C is empirically validated over a large input set: Most software verifiers
obtain consistent answers on the translated C programs as the hardware verifiers.
For Btor2 models that violate the safety property, the violation witness generated
by software verifiers can be transformed to that of the original Btor2 circuit as
a certificate of the translation process. The Btor2Tools utility suite offers a
simulator to check the transformed witness against the Btor2 model.

5 Evaluation
We evaluate the claims presented in Sect. 1.1 using the following research questions:

• RQ1: How do software analyzers perform on hardware-verification tasks?
• RQ2: Can software analyzers complement hardware model checkers?
• RQ3: What is the effect of the optimization in Sect. 4.5 on the verification of

the translated C programs?
• RQ4: How effective is the proposed translator Btor2C in comparison with

the Verilog-to-C translator v2c [62]?

Limitations. The current version of Btor2C has no support yet for the translation
of fairness constraints (keyword fair), liveness properties (keyword justice),
and overflow detection (keywords addo, divo, mulo, and subo). In our evaluation,
only supported keywords appear in the collected Btor2 circuits.
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To answer the above research questions, we evaluated the state of the art of
hardware and software analyzers over a large benchmark set consisting of more
than thousand hardware-verification tasks.

5.1 Benchmark Set
We collected hardware-verification tasks in both Btor2 and Verilog formats
from various sources, including the benchmark suites used in the 2019 and 2020
Hardware Model Checking Competitions [29] and the explicit-state model-checking
tasks derived from the BEEM project [65]. The whole benchmark set as well as a
complete list of sources are available in the reproduction artifact [16] of this paper.
We also contributed a set of verification tasks to the sv-benchmarks collection, the
largest freely available benchmark set of the verification and testing community.

As the proposed translator Btor2C uses Btor2 as frontend, we translated
tasks in Verilog to Btor2 with Yosys [70]. An aggregate of 1912 Btor2 tasks were
collected. We excluded 414 tasks with bit-vectors longer than 64 bits, because
Btor2C cannot translate these tasks into standard ISO C18 programs. Out
of the remaining 1498 Btor2 tasks, 1341 use only bit-vector sorts, and the
remaining 157 tasks manipulate both bit-vector and array sorts. The bit-vector
category contains 473 unsafe tasks (with a known specification violation) and
868 safe tasks (for which the specification is satisfied). The array category contains
17 unsafe and 140 safe tasks.

We translated the remaining 1498 Btor2 tasks into C programs by the
proposed tool Btor2C (tag tacas23-camera), assuming the LP64 data model.
The 1341 tasks in the bit-vector category are also translated to Aiger by the
translator Btor2AIGER, which is provided in the Btor2Tools utility suite. The
original Btor2 models as well as the translated C programs and Aiger circuits
are available in the reproduction package [16] and online5.

Unfortunately, Btor2AIGER does not translate Btor2 circuits with array
sorts to Aiger. In our benchmark set, translating a Btor2 file to either a C
program or an Aiger circuit took less than a second. Therefore, we ignore the
translation time in the run-time of compared tools. An input task with the required
format is directly given to each tool. To facilitate the comparison with v2c, we
additionally gathered 22 C programs translated by v2c from its repository6.

5.2 State-of-the-Art Hardware and Software Analysis
To adequately reflect the state of the art of hardware and software analysis,
we evaluated the most competitive tools from the Hardware Model Checking
Competitions and Competitions on Software Verification and Testing. A wide
range of analysis techniques implemented in these tools were investigated in our
experiment. Due to space limitation, Sect. 5.4 will show the best configuration
of each tool on our benchmark set.
Hardware Model Checkers. For hardware analysis, we selected the state-of-the-
art bit-level model checker ABC [30] (commit a9237f57) and AVR [46] version 2.1,
5 https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks
6 https://github.com/rajdeep87/verilog-c
7 https://github.com/berkeley-abc/abc
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a word-level hardware model checker that won HWMCC2020. The former takes
Aiger circuits as input, and the latter directly consumes Btor2 models. We eval-
uated the implementations of bounded model checking (BMC) [27] and property
directed reachability (PDR) [41, 45] in both ABC and AVR. Interpolation-based
model checking (IMC) [57] in ABC and k -induction (KI) [69] in AVR were
also assessed.

Software Analyzers. For software verifiers, we enrolled the first, second, and
fourth ranked verifiers VeriAbs [2], CPAchecker [20], and Esbmc [43] of category
ReachSafety in SV-COMP2022. The 3rd ranked verifier PeSCo [66] was omitted
because it selects algorithms from the CPAchecker framework. All verifiers
were downloaded from the archiving repository8 of the competition. (For Esbmc,
the performance of an earlier version in SV-COMP2021 was better than the
latest version on our benchmark set, so we used the older version instead.) We
tried the implementations of loop abstraction (LA) [38] in VeriAbs; predicate
abstraction (PA) [18, 50], Impact [24, 58], and IMC [21] in CPAchecker; BMC
and KI [17, 18, 39, 44] in both CPAchecker and Esbmc.

For software testers, the overall winner FuSeBMC [3] of Test-Comp2022,
which implements fuzz testing (fuzzing), was picked. We also experimented with
other testers from the competition, but they failed to generate test suites on
our benchmark set. FuSeBMC was downloaded from the archiving repository9
of the competition.

In the following discussion, we use 〈tool〉-〈algorithm〉 to denote the implemen-
tation of a specific algorithm in a particular tool. For example, AVR-KI refers
to the k -induction implementation in AVR.

5.3 Experimental Setup

All experiments were conducted on machines running Ubuntu 22.04 (64 bit), each
with a 3.4GHz CPU (Intel Xeon E3-1230 v5) with 8 processing units and 33GB
of RAM. Each task was limited to 2 CPU cores, 15min of CPU time, and 15GB
of RAM. We used BenchExec10 [22] to ensure reliable resource measurement
and reproducible results.

5.4 Results

RQ1: Solving HW-Verification Tasks with SW Analyzers. To study the
performance of software analyzers on hardware-verification tasks, we compared
the selected software tools against the state-of-the-art hardware model checkers.
The results are summarized in Table 1.

Note that some software verifiers are good at finding bugs in these tasks.
VeriAbs found most correct alarms in the experiment, and Esbmc also detected
more bugs than AVR. By contrast, hardware model checkers were better at
computing correctness proofs. Even the best software configuration CPAchecker-
PA for proving correctness only achieved fewer than a half of the proofs for

8 https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22
9 https://gitlab.com/sosy-lab/test-comp/archives-2022/-/tree/testcomp22

10 https://github.com/sosy-lab/benchexec
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Table 1: Summary of the results for hardware and software verifiers (suffixes -e
and -l stand for applying modulo operations eagerly or lazily, respectively)

Fig. 4: Quantile plots for all correct proofs and alarms of bit-vector tasks

bit-vector tasks. In the array category, AVR delivered 45 correct proofs, whereas
the software verifiers cannot solve any of them. Our results may inspire tool
developers to investigate and alleviate the performance difference. Since we
have contributed a category ReachSafety-Hardware of verification tasks to the
common benchmark collection, the 2023 competition results of SV-COMP include
evaluations of all participating tools on those new tasks.

The quantile plots of correct proofs and alarms for bit-vector tasks are shown
in Fig. 4a and Fig. 4b, respectively. A data point (x, y) in the plots indicates
that there are x tasks correctly solvable by the respective tool within a CPU
time of y seconds. In our experiments, ABC is the most efficient and effective
tool in producing proofs, and VeriAbs is the best for bug hunting. While the
number of alarms found by Esbmc is more than AVR and close to ABC, it spent
more time in finding bugs in general.

In our evaluation, we observe that PDR is the most competitive algorithm for
both hardware model checkers, whereas software verifiers show diverse strengths in
different approaches. To account for the difference in algorithms, we also compare
implementations of the same algorithm in various analyzers.

BMC is one of the most popular formal approaches to detect errors. It is
implemented by most of the evaluated tools. Software testers are also able to

Tool ABC AVR CPAchecker Esbmc VeriAbs
Algorithm PDR PDR Pred.Abs. k-Induction LoopAbs.
Input Tasks Aiger Btor2 C-e C-l C-e C-l C-e C-l

Correct results 1498 862 736 274 280 401 410 392 393
BV proofs 868 524 458 188 189 88 93 53 49
BV alarms 473 338 233 86 91 311 315 337 342
Array proofs 140 – 45 0 0 0 0 0 0
Array alarms 17 – 0 0 0 2 2 2 2

Wrong proofs 0 0 0 0 0 0 2 2
Wrong alarms 0 0 0 0 0 0 1 1
Timeouts 479 559 924 922 554 551 1049 1042
Out of memory 0 3 9 7 543 537 3 4
Other inconclusive 0 200 291 289 0 0 51 56
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hunt bugs, and hence we include FuSeBMC, a derivative of Esbmc that combines
BMC and fuzzing, into the comparison. Figure 5 shows the quantile plot of
correct alarms for unsafe bit-vector tasks. Note that the performance of BMC
implementations in software verifiers are close to those in hardware verifiers.
However, FuSeBMC performed not as well as other competitors, indicating that
fuzzing might not be fruitful for our benchmark set.

We also performed a head-to-head comparison of the k -induction implemen-
tations in AVR and Esbmc over the bit-vector and array tasks. Both tools rely
on SMT solving for formula reasoning, so the confounding variables are fewer
than other combinations. Figure 6 shows the scatter plots for the CPU time
and memory usage of AVR and Esbmc to produce correct results. A data point
(x, y) in the plots indicates the existence of a task correctly solved by both tools,
for which Esbmc took x units of the computing resource and AVR took y units.
AVR was often more efficient than Esbmc, but the latter solved 13 tasks that
the former cannot solve.

RQ2: Complementing HW Model Checkers with SW Analyzers. Over-
all, hardware model checkers performed better than software analyzers on our
benchmark set, which is expected since they have been heavily optimized for
hardware-verification tasks. However, comparing the results of the tools for Table 1,
we observed 43 tasks that were uniquely solved by software verifiers. Interestingly,
39 of these uniquely solved tasks have a violated property. Combining BMC with
loop unwinding heuristics, e.g., the technique implemented in VeriAbs [2], is
helpful to find bugs in these tasks. This phenomenon demonstrates that software-
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Table 2: Results for 22 programs generated by Btor2C and v2c

Tool CPAchecker Esbmc VeriAbs
Algorithm Pred.Abs. k-Induction LoopAbs.
translated by Btor2C v2c Btor2C v2c Btor2C v2c

Correct results 15 11 16 13 12 7
proofs 13 8 11 11 7 3
alarms 2 3 5 2 5 4

Wrong results 0 0 0 1 0 0
Errors & Unknown 7 11 6 8 10 15

analysis techniques are able to complement hardware model checkers, which is
facilitated by the proposed Btor2C translator. Some potential reasons affecting
the effectiveness and efficiency of software analyzers will be discussed in Sect. 5.5.

RQ3: Optimization in Btor2C. Section 4.5 presented an optimization tech-
nique that performs modulo operations to intermediate results lazily, in order
to generate shorter C programs. To assess whether this technique benefits the
downstream software analysis, we compared the performance of the selected soft-
ware verifiers, CPAchecker, Esbmc, and VeriAbs, on C programs translated by
Btor2C with or without this optimization (namely, applying modulo operations
lazily or eagerly, respectively).

The results of the best-performing algorithm for each tool in terms of the
number of correct answers are summarized in Table 1, whose right panel also
shows the results of the verifiers on these 2 sets of C programs. (CPAchecker-
BMC actually solved more tasks than CPAchecker-PA, but it was mainly for
bug hunting. Therefore, we reported the second best configuration, predicate
abstraction, for CPAchecker.) If modulo operations are applied lazily instead
of eagerly, the numbers of overall correct results are increased by roughly 2.2%
for both CPAchecker and Esbmc, and by 0.3% for VeriAbs. Although VeriAbs
found 4 fewer correct proofs if modulo operations are applied lazily, it reported
5 more correct alarms. Therefore, we conclude that generating shorter C programs
by reducing modulo operations is an effective optimization in Btor2C. From now
on, Btor2C enables this optimization by default.

RQ4: Comparison with v2c. Btor2C is a lightweight tool, whose compiled
binary is smaller than 0.25MB. By contrast, the precompiled v2c executable
downloaded from its web archive11 is 5.7MB. While such difference is negligible
given the capability of modern computers, we believe that a simple frontend
language benefits tool implementation.

Besides implementation complexity, we also investigated the efficiency of
the translation process. As mentioned in Sect. 5.1, Btor2C took less than a
second to translate any Btor2 model in the benchmark set. Unfortunately,
neither the v2c executable in the archive was runnable, nor was its source code
compilable12. Therefore, we were not able to directly compare the translation
efficiency of Btor2C and v2c.

11 https://www.cs.ox.ac.uk/people/rajdeep.mukherjee/tacas16_v2c.tar.gz
12 https://github.com/rajdeep87/verilog-c/issues/6
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As an alternative, we collected 22 C programs from v2c’s benchmark repository
and manually adapted them to the syntax rules used in SV-COMP. The original
Verilog circuits of these C programs were translated to Btor2 by Yosys and
further translated by Btor2C into another set of C programs. We compare the
performance of the evaluated software verifiers on these two sets of 22 verification
tasks in Table 2. Observe that the three verifiers produced more correct results on
the C programs generated by Btor2C, showing the benefit of using Yosys +Btor2
as frontend in the translation flow.

5.5 Discussion

From the experimental results shown above, we observe a notable performance
difference between software and hardware analyzers. There are several possibilities
to explain this outcome: First, the tasks were encoded in different formats for
software and hardware analyzers. Btor2C encoded bit-vectors with unsigned
integer types, which may contain some spare bits that complicate software analysis.
Second, each analyzer uses a different backend logical solver. ABC encodes queries
in propositional logic and uses SAT solving, while other tools resort to first-
order formulas and SMT solving. (In our experiments, AVR used Yices2 [40],
CPAchecker used MathSAT5 [35] for predicate abstraction and Boolector3 [64]
for BMC, and Esbmc used Boolector3.) The ability of solvers may affect the
analyzers’ performance. Third, the internal modeling used by the analyzers varies.
Software verifiers typically represent a program as a control-flow graph, which
might be unnecessarily complex when the problem at hand is merely a state-
transition system. Despite the above reasons, software verifiers were able to solve
43 tasks that the considered hardware model checkers cannot solve.

6 Conclusion

Assuring the correctness of computational systems is challenging yet imperative.
Therefore, we should embrace every opportunity to analyze our systems by remov-
ing the barriers between research communities. We implemented the lightweight
and open-source tool Btor2C for translating sequential Btor2 circuits to C
programs, to enable the application of off-the-shelf software analyzers to hardware
designs. We conducted a large-scale experiment including more than thousand ver-
ification tasks. State-of-the-art bit-level and word-level model checkers as well as
software verifiers and testers were evaluated empirically. Thanks to the simplicity
of the Btor2 language, software analyzers performed decently on the translated
programs and complemented the hardware model checkers by detecting more
bugs and uniquely solving 43 tasks in our experiment. Our translator Btor2C
demonstrates a new spectrum of analysis options to hardware developers and
verification engineers. The translator also simplifies the construction of a new
set of hardware analyzers, because any software analyzer can now be used to
solve hardware-verification tasks, with Btor2C as preprocessing. In the future,
we wish to bridge the gap from the other direction. That is, we aim at translating
programs into circuits and apply hardware analyzers to solve software problems.
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Abstract. Constraint programming systems allow a diverse range of
problems to be modelled and solved. Most systems require the user to
learn a new constraint programming language, which presents a barrier to
novice and casual users. To address this problem, we present the CoPTIC
constraint programming system, which allows the user to write a model
in the well-known programming language C, augmented with a simple
API to support using a guess-and-check paradigm. The resulting model
is at most as complex as an ordinary C program that uses naive brute
force to solve the same problem.
CoPTIC uses the bounded model checker CBMC to translate the model
into a SAT instance, which is solved using the SAT solver CaDiCaL. We
show that, while this is less efficient than a direct translation from a
dedicated constraint language into SAT, performance remains adequate
for casual users. CoPTIC supports constraint satisfaction and optimisation
problems, as well as enumeration of multiple solutions. After a solution
has been found, CoPTIC allows the model to be run with the solution;
this makes it easy to debug a model, or to print the solution in any
desired format.

Keywords: constraint programming · bounded model checking · C pro-
gramming language

1 Introduction

Constraint programming is a form of declarative programming. A constraint pro-
gram or model typically declares some variables and asserts a certain relationship
that must hold between them. A constraint solver automatically finds values of
the variables that satisfy the constraints.

There is a broad body of research in constraint programming, which explores
different kinds of constraints, different languages for expressing them, and different
methods for solving them. If you know you are likely to become a frequent user
of constraint programming, it is relatively easy to take advantage of this. After
making the effort to learn a standardised constraint language, such as MiniZinc,
you have easy access to a range of common constraints and solvers.

But what if you are a casual user, who encounters a single problem that is
too complex or time-consuming to solve by hand, but might be easy with the
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assistance of a computer? You may be tempted to prototype a solution using a
simple technique such as brute force or backtracking search. This may well work,
but it is easy to make an error when writing such a program. Or the problem
may turn out to be computationally harder than expected. Alternatively, you
may try to learn a constraint programming language, but if the effort required is
high and the process is error-prone, you may be deterred. Furthermore, if you
do not need to use the language again for months or years, you may well have
forgotten it by then, meaning that much of the effort is wasted.

To meet the needs of this kind of user, we introduce the CoPTIC (Constraint
Programming Translated Into C) system for constraint programming. CoPTIC
reduces the effort needed to write a model by allowing the user to write it in a
declarative style as a C program. It achieves this by using the existing program
verification tool CBMC, which in turn uses a SAT solver.

In outline, the C program must first declare all variables in the constraint
problem and assign them a nondeterministic value. Next, it assumes that all of
the constraints hold; paths where they do not hold should be ignored. Finally, it
asserts false; that is, it is an error if the program reaches its end.

We can pass the program to CBMC and ask it to verify that the assertion
cannot be violated. CBMC tries to find a resolution of the nondeterminism that
leads to an assertion violation; it does this by encoding the problem as a SAT
instance and solving it with a SAT solver. It reports back a counterexample trace
to the verification problem. By construction, the values of the variables in this
trace satisfy the constraints.

This idea is fairly straightforward for someone familiar with CBMC to apply
in an ad-hoc way to a particular problem. However, a usable constraint pro-
gramming system needs more than this. The contributions of this paper are the
implementation, description and experimental evaluation of the CoPTIC system,
which automates and extends the process outlined above.

We illustrate how to write constraint models in the guess-and-check paradigm
outlined above with examples and explain how CoPTIC solves these models using
CBMC in Section 2. We show how CoPTIC makes it easy for a user to:

– import constraint data from an external source, such as a JSON or CSV file;
– solve constraint satisfaction and optimisation problems;
– enumerate distinct solutions to a problem;
– export a solution in a suitable format; and
– maintain consistency between the constraints, validation and output as the

model evolves by keeping the whole model in a single file written in one
programming language.

In particular, CoPTIC reads resolved nondeterministic choices from CBMC’s
counterexample trace and constructs a C function that replays them when the
program is compiled and run with an ordinary compiler. A similar construction
has been used by Beyer and others to produce tests from verification witnesses [3],
but CoPTIC uses it to display the solution to the constraint model.

We discuss debugging constraint models, efficiency of the SAT encoding and
some other practical considerations in Section 3. Next, we evaluate CoPTIC
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empirically on problems from CSPLib in Section 4, considering both solver
performance and the size of the models. The software artifact accompanying this
paper [15] contains the source code for CoPTIC, which is released under the MIT
License, as well as the models and scripts needed to reproduce our experiments.
In Section 5 we discuss related work in constraint programming and automated
verification, before concluding in Section 6.

2 The Guess-and-Check Paradigm

CoPTIC constraint models are C programs that mix the language’s conventional
imperative style with a declarative guess-and-check paradigm. To illustrate how
the system is used and how it works, we now consider some worked examples.
First, we will see that the code in the CoPTIC models is similar to a naive
attempt to solve the problems using brute force or backtracking search (but often
faster in execution). We argue that this makes the system easy to learn and to use
for programmers with little knowledge or experience of constraint programming.
Then we will see how to extend the approach to solution enumeration and
optimisation.

Many finite-domain constraint problems are in the complexity class NP. NP
problems can be characterised as those that:

1. have a certificate verifiable in deterministic polynomial-time; or
2. can be translated into SAT in polynomial-time.

CoPTIC exploits this equivalence constructively. Given a guess-and-check pro-
gram that verifies a certificate, we can view CoPTIC as compiling the program
into SAT with CBMC, which executes the nondeterministic program with a
SAT solver. CoPTIC extracts the certificate, hard-codes it into the program to
make it deterministic, then compiles it with a normal compiler and executes it
deterministically.

2.1 Constraint Satisfaction: Magic Square

Let us consider the well-known problem of finding a normal 3× 3 magic square.
A normal n × n magic square is an n × n grid of integers from 1 to n2, where
every row, every column and both diagonals have the same sum.

Suppose we try to solve this problem using brute force. We write the simple
program shown on the left side of Figure 1, which iterates through all possible
assignments of integers to each grid cell. The program checks each assignment to
see if it meets all the required constraints. As soon as one does, it prints it out
and terminates.

We are pleased to see that, after a few minutes, the program finds a solution.
Next we try with a larger square. We will be dismayed, as the running time of
the program increases drastically.

How could we solve this problem more efficiently? The right side of Figure 1
shows the program adapted for use with CoPTIC. The program begins by
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#define N 3
#define MAX (N * N)
#define TARGET ((((N*N)+1)*N)/2)

#include <stdio.h>

int main() {
int grid[N][N];

for (int x = 0; x < N; x++) {
for (int y = 0; y < N; y++) {

grid[x][y] = 1;
}

}

int ok;
do { // Try all cell values.

grid[0][0]++;
int x = 0;
int y = 0;
while (grid[x][y] > MAX) {

grid[x][y] = 1;
if (++x == N) {

x = 0;
y++;

}
grid[x][y]++;

} // Until we find a
ok = 1; // valid magic square.

// Check cells all different.
for (int x = 0; x < N; x++) {
for (int y = 0; y < N; y++) {
for (int x2 = 0; x2 < N; x2++) {
for (int y2 = 0; y2 < N; y2++) {

ok &= ((x==x2) && (y==y2)) ||
(grid[x][y]!= grid[x2][y2]);

} } } }

// Check column sums correct.
for (int x = 0; x < N; x++) {

int sum = 0;
for (int y = 0; y < N; y++) {

sum += grid[x][y];
}
ok &= (sum == TARGET );

}

// 3 similar checks omitted.
} while (!ok);

// Print out the solution.
for (int y = 0; y < N; y++) {

for (int x = 0; x < N; x++) {
printf ("%d ", grid[x][y]);

}
printf ("\n");

}

}

#define N 3
#define MAX (N * N)
#define TARGET ((((N*N)+1)*N)/2)

#include "coptic.h"

int main() {
int grid[N][N];

for (int x = 0; x < N; x++) {
for (int y = 0; y < N; y++) {

grid[x][y] = GUESS_INT();
CHECK(grid[x][y] > 0 &&

grid[x][y] <= MAX);
}

}

// No need to search for the right
// cell values explicitly. CBMC ’s
// embedded SAT solver will find
// them for us.

// When using CBMC , we will roughly
// set the following macros:
// GUESS_INT () -> nondet_int ()
// CHECK(X) -> assume(X)
// SATISFY () -> assert (0)
// OUTPUT(X) -> { }

// Check cells all different.
for (int x = 0; x < N; x++) {
for (int y = 0; y < N; y++) {
for (int x2 = 0; x2 < N; x2++) {
for (int y2 = 0; y2 < N; y2++) {

CHECK(((x==x2) && (y==y2))
|| (grid[x][y]!= grid[x2][y2]));

} } } }

// Check column sums correct.
for (int x = 0; x < N; x++) {

int sum = 0;
for (int y = 0; y < N; y++) {

sum += grid[x][y];
}
CHECK(sum == TARGET );

}

// 3 similar checks omitted.
SATISFY();

OUTPUT(
for (int y = 0; y < N; y++) {

for (int x = 0; x < N; x++) {
printf ("%d ", grid[x][y]);

}
printf ("\n");

}
)

}

Fig. 1. Left: A brute force program to find a magic square. Right: A CoPTIC model to
solve the same problem. Note the absence of code for explicit search.
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model.c

trace.h
defines replay()

log.txt

data.csv

data.hcoptic.h input filter

trace
extractorCBMC

gcc model.o solution.txt

When verified with CBMC:
  GUESS() → nondet() 
 CHECK(X) → assume(X)
SATISFY() → assert(0)
OUTPUT(X) → { }      

When compiled with gcc:
  GUESS() → replay() 
 CHECK(X) → assert(X)
SATISFY() → { }      
OUTPUT(X) → {X}      

Sample replay
function:
int replay_int () {

static int q = 0;
switch (q++) {

case 0:
return 4;

case 1:
return 3;

case 2:
return 2;

case 3:
return 4;

// ...
default:

abort ();
}

}

Fig. 2. The architecture of the CoPTIC system. Solid arrows indicate data flow. Dashed
arrows indicate inclusion of a C header file.

including the coptic.h header file. Now, instead of iterating through each
possible assignment explicitly, the program GUESSes the values of the grid cells.
The checks are much the same as before, but use CoPTIC’s CHECK macro. The
call to SATISFY indicates that we want to find any solution that satisfies all the
constraints, while the code in the OUTPUT block is run only when a solution is
found. We run the modified program with CoPTIC and are once again pleased
as it finds a solution in a few seconds.

2.2 CoPTIC Architecture

Now let us consider how CoPTIC produces the solution. Figure 2 shows the
architecture of the system. After using the C compiler gcc to syntax-check
and type-check the program (not shown), it runs the bounded model-checker
CBMC on the program, asking it to verify absence of assertion violations. CBMC
transforms the problem of finding an assertion violation in the program into a
giant SAT instance and attempts to solve it using a SAT solver.

The header file coptic.h supplies definitions of GUESS, CHECK, SATISFY
and OUTPUT that behave as follows: GUESS tells CBMC to pick a value
nondeterministically and log it. CHECK takes a condition and tells CBMC to
ignore program paths where the condition is false. SATISFY violates a trivial
assertion; this tells CBMC to report failed verification and an accompanying
program trace if there is a program path that reaches the assertion. OUTPUT
takes a block and ignores it.

If the SAT instance is unsatisfiable, the solver reports this to CBMC. Then
CBMC reports to CoPTIC that program verification was successful, as no asser-
tion violation could be found. CoPTIC in turn reports that the constraints in
the model were unsatisfiable.
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Conversely, if the SAT instance is satisfiable, the solver reports a satisfying
assignment to CBMC. CBMC converts this into a trace of steps of execution
through the program that lead to the assertion violation. It reports to CoPTIC
that program verification was unsuccessful and logs the trace that led to the
assertion violation. Now CoPTIC can report that the constraints in the model
are satisfiable, but it still has to show how.

To do this, it reads the nondeterministically GUESSed values from the log
and writes a C header file containing a stateful replay function that, on each
successive call, returns these values in the same order. It compiles the model with
gcc, but uses a preprocessor macro to set a flag that changes the behaviour of
coptic.h. Now GUESS calls the replay function, CHECK becomes a run-time
assertion, SATISFY does nothing and OUTPUT executes the supplied block.

Finally, CoPTIC runs the compiled model. The replay function provides the
variable values that satisfy the constraints in the model, the run-time assertions
pass and the OUTPUT code prints the solution. Because the OUTPUT code
can be arbitrary C code, it is easy to format the solution and display it in any
reasonable format.

Many constraint models represent not just a single problem, but a family
of similar instances. For example, instances for our magic square model might
involve completing partially filled magic squares of different sizes. In this case,
CoPTIC allows instance data to be imported from an external source, such as
a JSON or CSV file. To achieve this, the user needs to specify a filter program
that translates the instance data into definitions in a C header file; coptic.h
will then include this header file. The filter can be written in any language and
the CoPTIC distribution includes some examples.

2.3 Planning: Knight’s Tour

In the magic square example, the CoPTIC model began by guessing all the values
in the square and the rest of the program was deterministic. However, this need
not be the case, and we can often express a model more naturally or succinctly
by mixing declarative and imperative programming. This is particularly useful
for planning problems.

To demonstrate the flexibility of this approach, let us consider another well-
known problem: finding a knight’s tour on a chessboard. An open knight’s tour
is a sequence of moves made by a knight on a chessboard that visits each square
exactly once. The top of Figure 3 shows a simple program to find a knight’s
tour on a 5× 5 board using a recursive implementation of a backtracking search.
Most of the implementation’s complexity comes from using recursion to manage
backtracking and from enumerating all the possible moves of a knight from a
particular square.

The bottom of Figure 3 shows how we can remove this complexity in a
CoPTIC model. Instead of using recursion and backtracking, we now use a simple
loop that nondeterministically guesses the next move at each step. Instead of
enumerating possible moves explicitly, we guess a position where the x-ordinate
differs by 2 and the y-ordinate differs by 1 or vice versa.
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#define M 5
#define N 5

#include <stdio.h>

int board[M][N] = {0};

int search(int x, int y, int d);

int search(int x, int y, int d) {
if (x < 0 || x >= M || y < 0 || y >= N || board[x][y]) {

return 0; // Check the square is on the board and unvisited.
}

d--; // Stop when all squares visited.
if (d == 0) {

printf ("(%d,%d)\n", x, y);
return 1;

}

board[x][y] = 1; // Don ’t visit this square again.

if (search(x-2, y-1, d) || search(x+2, y-1, d) || // Try all valid
search(x-2, y+1, d) || search(x+2, y+1, d) || // knight ’s moves
search(x-1, y-2, d) || search(x+1, y-2, d) || // in sequence.
search(x-1, y+2, d) || search(x+1, y+2, d)) {
printf ("(%d,%d)\n", x, y); // Unwind recursion on success ,
return 1; // printing moves in reverse.

}

board[x][y] = 0; // Backtrack on failure.
return 0;

}

int main() {
search(0, 0, (M*N)); // Start the search , beginning in a corner.

}

#define M 5
#define N 5

#include "coptic.h"

int main() {
int board[M][N] = {0};
int x0 = 0; // Begin in a corner.
int y0 = 0;
printf ("(0 ,0)\n");

for (int d = 1; d < M*N; d++) { // Find a sequence of M*N moves.
int x = GUESS_INT (); // Pick the next move.
int y = GUESS_INT ();
// Check the square is on the board and unvisited.
CHECK (!(x < 0 || x >= M || y < 0 || y >= N || board[x][y]));
CHECK ((abs(x-x0) == 2 && abs(y-y0) == 1) || // Check it’s a valid

(abs(x-x0) == 1 && abs(y-y0) == 2)); // knight ’s move.
board[x][y] = 1; // Don ’t visit this square again.
OUTPUT(

printf ("(%d,%d)\n", x, y); // Print the move.
)
x0 = x; // The square we picked becomes the new position.
y0 = y;

}

SATISFY ();
}

Fig. 3. Top: A backtracking program to find an open Knight’s Tour (with moves listed
in reverse order). Bottom: A CoPTIC model to solve the same problem (with moves
listed in order).
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#include "coptic.h"

int main() {
int x = GUESS_INT ();
// (x-2)(x-5) = x^2 - 7x + 10
CHECK ((x*x) - (7*x) + 10 == 0);
DECLARE(x);
ENUMERATE ();
OUTPUT(printf ("%d\n", x);)

}

// Rough definitions when using CBMC:
// DECLARE(X) -> log(X); trie(X)
// ENUMERATE () -> assert(_trie ==leaf);

// Trie generated for this model:

void trie(int x) {
switch (_trie) {

case 0:
switch (x) {

case 5: _trie = 1; break;
case 2: _trie = 2; break;
default: _trie = -1; break;

}
break;

default: _trie = -1; break;
}

}

Fig. 4. A CoPTIC model to enumerate integer solutions to a quadratic equation.

Knight’s Tour can be solved efficiently using a program implementing back-
tracking search with the additional heuristic of preferring the move that leaves
fewest options for the following move. Our CoPTIC model cannot compete with
this in speed of execution (or with a custom encoding in SAT [21]), but it has
the advantages that it is shorter and does not require specialist knowledge of the
problem, so is significantly easier to implement.

2.4 Enumeration: Integer Quadratics

Next we turn our attention to constraint problems that require not only satisfying
a set of constraints, but also finding an optimal solution (as measured by some
objective function) or enumerating all solutions. Both of these involve making
multiple calls to CBMC.

For solution enumeration, we consider the example of finding integer solutions
to an equation. Figure 4 shows a CoPTIC model to find all integer solutions
to a quadratic equation. This model introduces ENUMERATE, which instructs
CoPTIC to enumerate all solutions.

This is not as straightforward as it might first seem. While CBMC generates
a SAT instance and some SAT solvers support an option that enumerates all
solutions to an instance, this would not help much here, as a model may guess
and check auxiliary values that do not contribute to the solution, and these
need not be unique. So we need a way for a model to indicate which values are
significant, in the sense that a difference in one of these values is sufficient to
make a solution distinct; this is what DECLARE does.

We also need a way, within the C program, to assume that one of these values
is different. In this case, we could use a single assumption to check x is not equal
to the solution already found. But in general, a solution may comprise multiple
values and we cannot simply check all of them at once, as they might not all be
in scope simultaneously. (Consider the Knight’s Tour model, where the variable
holding the current position is overwritten on each iteration of the loop.) The
solution CoPTIC adopts is to construct a trie of DECLAREd values for each
solution, then within the model to trace progress through the trie as the program
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#define ORDER 4
#define BETTER(A,B) (A < B)

#include "coptic.h"

int main() {
int a[ORDER];

a[0] = 0;
for (int n = 1; n < ORDER; n++) {

a[n] = GUESS_INT ();
CHECK(a[n] > a[n-1]);
// DECLARE(a[n]);
OUTPUT(printf ("%d ", a[n]);)

}
OUTPUT(printf ("\n");)

for (int i1 = 0; i1 < ORDER; i1++) {
for (int j1 = i1+1; j1 < ORDER; j1++) {

for (int i2 = 0; i2 < ORDER; i2++) {
for (int j2 = i2+1; j2 < ORDER; j2++) {

CHECK (((i1==i2)&&(j1==j2)) || (a[j1]-a[i1]!=a[j2]-a[i2]));
}

} // Rough definition when using CBMC on 1st run:
} // OPTIMIZE(X) -> log(X); assert (0)

} // Rough definition when using CBMC on 2nd run:
// OPTIMIZE(X) -> log(X); assert (! BETTER(X, BEST))

OPTIMIZE(a[ORDER -1]); // where BEST is best objective found so far.
}

Fig. 5. A CoPTIC model for finding an optimal Golomb ruler.

executes. Finally, ENUMERATE asserts that the current trie node is terminal;
if it is not, then the solution is novel. This approach is not very efficient, as each
use of DECLARE (after any loops have been unrolled) leads to another copy
of the trie’s “next node” function in CBMC’s SAT encoding. But it does work
even when there are multiple paths through a program and when the number of
DECLAREd values varies between solutions. For situations where the number
of values is constant and they are all available at a single point in the program,
CoPTIC supports a form of DECLARE with multiple arguments.

One usually considers the problem of finding solutions to polynomial equations
in the context of real numbers, not integers. So one might wonder whether CoPTIC
supports GUESS ing values of types other than int. Indeed it does: all primitive
C types are supported. However, while (in contrast to many other constraint
solvers) floating point types are supported, CBMC’s implementation depends on
an encoding in SAT, which does not perform very well.

2.5 Optimisation: Golomb Rulers

Finally, to illustrate optimisation, we consider the Golomb ruler problem of finding
a sequence of n increasing integers, starting from 0, such that the differences
between all pairs taken from the sequence are unique. For a given n, an optimal
Golomb ruler minimises the last number in the sequence. For n = 4, the only
optimal solution is 0, 1, 4, 6.

181



M. M. Lester

Figure 5 shows a CoPTIC model for finding an optimal Golomb ruler. The
model guesses a sequence of n integers and checks that the sequence is increasing,
and that all differences between pairs are unique. (Ignore the commented line for
the moment.) Instead of calling SATISFY, this model calls OPTIMIZE with the
last element of the sequence, which is our objective that we wish to minimise.

When CoPTIC passes this model to CBMC, it uses an implementation of
OPTIMIZE that does two things. Firstly, it logs the objective, so that CoPTIC
can read it afterwards. Secondly, if it has already found a feasible value of the
objective, it asserts that the objective is not BETTER than that previously found.
CoPTIC calls CBMC repeatedly until it is unable to find a better objective, at
which point, the best found so far must be optimal.

By allowing BETTER to be defined as part of the model, CoPTIC supports
not only maximisation and minimisation of numerical objectives, but also more
complex objectives, such as lexicographic minimisation of a pair of values.

Returning to the problem of finding an optimal Golomb Ruler, for n = 7, there
are multiple solutions. We can use CoPTIC to find them all by uncommenting
the DECLARE line and replacing OPTIMIZE with ENUMERATE_OPTIMAL.
CoPTIC treats ENUMERATE_OPTIMAL the same as OPTIMIZE until it has
found an optimal solution, after which it behaves as ENUMERATE with the
extra restriction that solutions must be optimal.

3 Practical Considerations

Now that we have seen how the guess-and-check paradigm is used for modelling
and how it is implemented by CoPTIC for constraint satisfaction, optimisation
and enumeration, we turn our attention to some practical details of usability and
performance.

3.1 Debugging Constraint Models

In program verification, a common concern is not only whether a program meets
its specification, but also whether the specification is correct. In constraint
programming, a similar concern applies. It is easy to under-specify a model,
resulting in solutions to the model that are not solutions to the intended problem.
In this case, a useful approach is to add extra logging to the model as OUTPUT.
It is also easy to over-specify a model, resulting in a model with no solutions,
even though the intended problem has solutions. This is harder to diagnose, but
one helpful method is to comment out CHECK s until the model has a solution.

Another important concern in verification is whether the verification tool has
accurately modelled the behaviour of the program being verified. Similarly, in
constraint programming, we may worry whether the solution found by a solver
really does satisfy the constraints. CoPTIC addresses this by turning CHECK s
into assertions when running the model with nondeterminism resolved. On the
occasions when the compiled program does violate one of these assertions, we
have usually found that it results from an erroneous out-of-bounds array access
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in the model, which is undefined behaviour. A particular problem that results
from CBMC’s bit-level modelling of two’s complement integer arithmetic is
that CoPTIC may find solutions to a model that involve very large integers
that overflow when added together, leading to an erroneous negative objective
value. This is usually easy to avoid by CHECK ing an upper bound on GUESSed
integers in the model. It may also improve performance, especially for optimisation
problems, where it may reduce the number of calls to CBMC.

CoPTIC keeps all files it produces during solution in a temporary directory.
This includes log files from CBMC, header files for replaying nondeterminism,
and output from the compiled programs (of which there may be several in the
case of optimisation or enumeration). In the event of any problems, this makes it
easy for a user to examine exactly what has happened.

One occasional problem is that CBMC is unable to translate the model
into a SAT instance. General program verification is undecidable, so there are
necessarily limits to the kinds of programs CBMC can handle. For example, it
may be unable to infer a bound on the number of executions of a loop. In this
case, CoPTIC will hang and CBMC’s log file will show the loop in question being
unrolled repeatedly, so the cause will be clear. However, we recommend that it is
best to avoid this problem in the first place by using simple for loops with obvious
statically computable bounds wherever possible. We also suggest that, while
use of arrays, functions and structs is fine, unbounded recursion, heap memory
allocation and pointer arithmetic should be avoided. CBMC should always be
able to handle programs satisfying these restrictions.

3.2 Performance

CoPTIC’s target audience is casual users of constraint programming. Therefore
performance need not be outstanding, but it should still be acceptable. In
constraint programming, performance often depends more on modelling decisions
than on the efficiency of the solver, so an important factor in this regard is that
different ways of modelling a problem should be easily expressible. We argue that
CoPTIC’s ability to mix imperative with declarative programming helps here.

Clearly there will be some overhead introduced by CBMC’s translation into
SAT, when compared with a translation from a dedicated constraint programming
language directly into SAT. An obvious example might be use of fixed bit-width
integers in the C program that are larger than necessary for the range of values
taken by a variable in the model. But if these wasted high bits do not materially
participate in any constraints, they will rarely lead to a conflict during SAT
solving, so the SAT solver may be able to ignore them much of the time.

CBMC aims for bit-precise verification of C programs running on conventional
microprocessors, so it uses a two’s complement encoding for integers. This is
acceptable, but Zhou and Kjellerstrand found that a sign-magnitude encoding
worked better when developing PicatSAT [23]. Furthermore, for many problems
where variables range over small domains, a one-hot encoding works better than
a binary encoding.
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4 Evaluation on CSPLib Problems

We claim that CoPTIC is easy to write models in and that its performance is
adequate for many problems. To evaluate these claims empirically, we developed
and benchmarked CoPTIC models for problems from CSPLib [12].

CSPLib is “a library of test problems for constraint solvers” expressed in
natural language. The problems are drawn from a variety of domains, including
operations research, combinatorial mathematics and puzzle games. Most problems
include sample models written in constraint programming languages, such as
MiniZinc or Essence. Some problems consist of a single instance; some consist
of several similar instances. Some problems are constraint satisfaction problems;
some are optimisation problems. CSPLib now contains 95 problems and has
served as a focus for research in constraint programming over the past two
decades [13]. For our evaluation, we restrict our attention to the 14 problems
in the original 1999 release. This gives us a reasonable sample of the different
kinds of problem, although there are no solution enumeration problems; see the
artifact for some examples of enumeration [15].

For each CSPLib problem, we wrote a CoPTIC model. Where present in
CSPLib, we also selected a MiniZinc model and an Essence model for the
same instance. Where a problem included several instances, we picked one we
considered to be representative. Mostly, we chose the example given in the
problem specification, but in some cases these were very easy, so we chose harder
instances to make the differences in performance clearer. For problem 6, we chose
the largest instance listed as having multiple solutions. For problem 10, we used
the hardest instance solved using SAT by Triska and Musliu [19]. For problems
12 and 13, we picked the hardest instances in CSPLib.

To benchmark performance, we ran our models using CoPTIC and recorded
time taken to solve them. We measured times with two different builds of CBMC
5.57.0: one using MiniSat 2.2.1 as the solver (the standard configuration) and the
other using CaDiCaL 1.4.1 (a supported compile-time option). For comparison,
we also ran the MiniZinc models and the Essence models using SAT-based solvers.
Note that, while these models encode the same problem, they may do so with
quite different formalisations, which can have a big impact on solution time. This
is fine for our purposes, as in evaluating the whole CoPTIC system, the ease with
which we can write good models is at least as important as the speed of solution.

To run the MiniZinc models, we used MiniZinc 2.6.3 to convert them into
FlatZinc, then PicatSAT in Picat 3.3#3 to solve them. PicatSAT uses the SAT
solver Kissat 1.0.3. PicatSAT won 2nd place in the Free track of the MiniZinc
Challenge 2022; Kissat won the Main track of the SAT Competition 2020. We
also benchmarked a version of PicatSAT patched to use CaDiCaL 1.4.1.

To run the Essence models, we used Conjure 2.3.0 to compile to EssencePrime,
then SavileRow 1.9.1 to solve using CaDiCaL 1.4.1 as the SAT solver (instead of
the shipped solver CaDiCaL 1.3.0).

Table 1 shows our results. All benchmarks were run on a Debian Linux 10
machine with a 3.4 GHz Intel Core i5-7500 CPU and 64 GB of RAM, using a
time limit of 1 hour. It is clear that dedicated constraint modelling languages
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Table 1. Solution times for different CSPLib problem instances with different models
and solvers. All values are times rounded to the nearest second. The time limit was
1 hour of CPU time. Times are from a single run; problems 4 and 10 showed some
variation on repetition.

# Instance CoPTIC
(MiniSat)

CoPTIC
(CaDiCaL)

Essence
(CaDiCaL)

MiniZinc
(CaDiCaL)

MiniZinc
(Kissat)

1 sample 0 0 3 0 0
2 catfood 3 3563 324 timeout 23 16
3 QG4, non-ID 0 0 2 0 0
4 sample 28 99
5 n=17 118 74 4
6 n=11 timeout 2718 memout 582 699
7 n=12 1 1 2 0 0
8 sample 1 1 6 0 0
9 n=21, size=112 78 9 timeout

10 g=8, s=4, w=7 63 93 30 timeout timeout
11 sample 163 31
12 soccer player 6 7 memout 0 0
13 Ian10 18 25 7
14 sample 9 7 0 0

and solvers generally perform better than CoPTIC, as one would expect. But
the majority of problems are still solvable within a reasonable amount of time.
Therefore this is not a problem for our intended user, who would normally be
happy to trade an increase in solution time for a decrease in time and effort
needed to learn how to write a model. In fact, comparing directly with just the
Essence models or just the MiniZinc models, we see that the CoPTIC models led
to more solutions within our time limit, although this is somewhat dependent on
our choice of time limit and hardness of problem instances.

Using CBMC built with CaDiCaL rather than MiniSat slows down some
models, but mostly results in more consistent performance. CaDiCaL is much
better at proving unsatisfiability, which makes a big difference for the optimisation
problems (2, 5 and 6), where unsatisfiability demonstrates optimality.

During our benchmarking, we discovered that there were some errors in the
Essence models in CSPLib. The model for problem 2 (template design) omits
the limit on the total number of designs in a template, so the solution it gives
is infeasible. We fixed the model by adding the missing constraint. The model
for problem 8 (vessel loading) has a subtle error resulting from the semantics
of evaluating a function outside its defined domain, so it can never be solved.
We fixed the model by changing a guard in an implication. We also found that
the EssencePrime solver SavileRow ran out of memory very quickly on some
problems; we suspect this is a bug in the translation to SAT.

It is difficult to evaluate ease of writing models quantitatively, although
perhaps this could be done through a controlled trial with undergraduate students.
But what we can do is measure the size of the models we produced in terms
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Table 2. Number of lines of code and resulting SAT instance sizes (thousands of
variables/clauses) for modelling different CSPLib problems in different languages. Blank
lines, comments, input data and formatting are excluded from SLoC totals.

CSPLib Problem SLoC Instance size (kvars/kclauses)

# Name C. Ess. MZ CoPTIC Essence MiniZinc

1 Car Sequencing 22 15 34 4 / 17 29 / 145 0 / 2
2 Template Design 27 12 60 13 / 54 / 3 / 25
3 Quasigroup Existence 35 8 44 11 / 38 1 / 4 1 / 9
4 Mystery Shopper 44 90 / 134 / /
5 Low Autocorrelation 18 4 74 / 361 2 / 53 /
6 Golomb Rulers 21 10 12 85 / 360 / 10 / 87
7 All Interval 23 7 19 27 / 77 2 / 6 0 / 4
8 Vessel Loading 33 32 33 24 / 109 8 / 47 1 / 5
9 Perfect Square 26 12 23 / 89 174 / 1046 /
10 Social Golfers 38 8 33 175 / 480 41 / 153 366 / 4541
11 ACC Basketball 146 84 / 755 / /
12 Nonograms 49 52 84 102 / 317 / 5 / 18
13 Progressive Party 56 14 78 / 251 6 / 43 /
14 Solitaire Battleships 119 85 94 / 403 / 6 / 46

of source lines of code (SLoC). While there are many criticisms of SLoC, it is
widely used as a metric to estimate the amount of effort needed to develop a
program. Table 2 shows the size of our CoPTIC models, compared with the
MiniZinc and Essence models. As is conventional, we do not count blank lines or
comments. We have also chosen not to count lines used for any input data or for
formatting output. For input data, this is because the formats are very similar,
but conventions on line breaks may differ between them, so it is not meaningful
to compare them. For formatting, Essence does not appear to support custom
formatting in the models, so including formatting code would inflate the line
counts for CoPTIC and MiniZinc. Furthermore, for some problems, the output
format may differ significantly between the CoPTIC and MiniZinc models. For
example, output for a problem involving laying out rectangles in a grid could
consist of co-ordinates of the rectangles or a rendering in ASCII art.

Again, it is clear that models written in the dedicated modelling languages
tend to be smaller, as one would expect, However, the CoPTIC models are of
similar size to and occasionally smaller than the MiniZinc models. The Essence
models are particularly succinct because they include more complex, higher-
level modelling constructs. For example, in the model for the Progressive Party
problem, one of the constraints is encoded in the Essence model using universal
quantification, function preimage and function composition, while the CoPTIC
model expresses the same constraint using a for loop and nested array lookup.
From the perspective of a casual user, while the latter is more verbose, it may be
easier to write and comprehend.
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Table 2 also shows the number of variables and clauses in the SAT instances
generated from each model. While this is a poor metric of the difficulty of a SAT
instance, it is useful here in demonstrating the extra overhead introduced by
using CoPTIC, compared with a dedicated modelling language and encoding.

5 Related Work

The key underlying technology in CoPTIC is the bounded model checker CBMC [7],
which in turn relies on the SAT solvers MiniSat and CaDiCaL. In typical op-
eration, CBMC aims to verify the universally quantified property that, for all
paths of execution of a C program, there is no assertion violation. It does this by
using a SAT solver to solve the existential problem of finding a path containing
an assertion violation. If the SAT solver finds a path, CBMC reports failed
verification with the path as a counterexample; if not, CBMC reports successful
verification. In CoPTIC, we typically use CBMC to solve the existential problem
of finding values of variables that satisfy constraints.

In the field of automated verification, bounded model checkers have been
successful because of their ability to verify (or find bugs in) large programs with
bit-level accuracy and minimal user annotation. Other successful bounded model
checkers include SMACK [18], which uses the LLVM toolchain with Boogie as
the solver, and ESBMC [8], which uses SMT solvers rather than a SAT solver.

Most modern SAT solvers use a variant of Conflict-Driven Clause Learning
(CDCL). MiniSat [9] won the SAT Race 2006. Because of its good performance
and publicly available, easily editable source code, it became the default choice
for developers of applications that needed a SAT solver. The more modern solver
CaDiCaL [4] won several tracks in the 2017 and 2018 competitions and has since
also become a popular choice. The recent editions of the SAT Competition have
been dominated by Kissat, Biere’s rewrite of CaDiCaL in C.

Constraint programming encompasses a wide range of modelling languages
and solution techniques. Because the ability of a technique to handle a problem
efficiently depends significantly on how the problem is expressed, modelling of
constraint problems, including the choice of modelling language, remains a big
concern. Significant milestones in modelling include the release of CSPLib in
1999 [12] and the MiniZinc modelling language in 2007 [17]. Whilst MiniZinc is the
most broadly supported language and has a long-running associated competition,
there are many others, including Essence [11] (which supports higher-level types,
such as functions), Picat [24] (which adopts a logic programming paradigm) and
XCSP3 [1] (which aims to be a kind of intermediate language).

There are several constraint programming toolkits such as Gecode [6] that
provide an API through which a constraint solver can be invoked from within a
C program. However, these either require that the constraints be written in a
separate modelling language, or that the model be built through a sequence of
API calls that resembles a transliteration of a constraint program written in the
solver’s native language. The system closest to ours is CoJava [5], which adopts
a similar guess-and-check paradigm in Java; there is a custom translation into
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MiniZinc [10]. As it does not use an existing, well-tested verification tool, there
may be concerns about the correctness of its translation.

The main techniques implemented in general-purpose constraint solvers are
backtracking search and local search, both of which can be improved by good
choice of heuristics and constraint propagation. However, in recent years, transla-
tion into SAT has become a leading technique for solving constraint problems.
PicatSAT [22] won the main tracks in the XCSP3 Competition 2019 and 2022,
and has ranked highly in every MiniZinc Challenge since 2016.

The idea of solving a constraint problem by translating it into C and using a C
program verification tool, such as CBMC, is not new, but CoPTIC automates part
of this process. Verma and Yap translated XCSP3 problems into C programs [20]
and used them to benchmark symbolic execution tools such as KLEE. Lester
used a similar translation as the basis for Exchequer [2], which won the Mini
Solver track in the XCSP3 Competition 2022. Lester has also shown how to
solve the planning problem of completing an interactive fiction game by applying
CBMC to a modified version of the source code [14]. Meanwhile, in the SAT
Competition 2022, Manthey submitted a set of benchmarks based around using
CBMC to solve the puzzle Summle [16].

6 Conclusion

We have presented the CoPTIC system for constraint programming, which allows
a user to write constraint models in C and solve them by translation to SAT
using the bounded model checker CBMC. Our system is freely available online
and easy to install, with only standard dependencies. CoPTIC supports not only
constraint satisfaction problems, but also optimisation and enumeration.

These features make CoPTIC an attractive system for casual users of con-
straint programming. In time, it may serve as a gateway language for some to
learn dedicated constraint programming languages. As well as being a useful
system in its own right, CoPTIC showcases the power of automated verification
tools and SAT solvers, which have advanced massively in the last two decades.

In many cases, a CoPTIC model for solving a problem will perform better
than a C program that uses brute force or heuristic search. Even when it does
not, we should recall that in the world of programming, it is received wisdom
that “premature optimisation is the root of all evil”, as it wastes development
effort and increases the risk of introducing bugs. Thus the CoPTIC approach is
still preferable, as it reduces development effort.

This argument also applies at the meta level. For occasional users of constraint
programming, it is better to write constraint programs in a language one already
knows than to expend time and effort learning a dedicated constraint programming
language, even if the dedicated language ultimately allows one to write more
succinct models and supports more efficient solvers. For regular users of constraint
programming, the dedicated language is a clear winner, but for casual users,
CoPTIC achieves an acceptable balance of ease of learning, ease of use and
performance.
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Data Availability Statement

The source code and constraint models that support the findings of this study
are available in Zenodo: https://doi.org/10.5281/zenodo.7313351 [15]. The
constraint models were derived from CSPLib: https://www.csplib.org/.

References

1. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C., Roussel, O.: Xcsp3 and
its ecosystem. Constraints An Int. J. 25(1-2), 47–69 (2020). https://doi.org/10.
1007/s10601-019-09307-9, https://doi.org/10.1007/s10601-019-09307-9

2. Audemard, G., Lecoutre, C., Lonca, E.: Proceedings of the 2022 XCSP3 competition.
CoRR abs/2209.00917 (2022). https://doi.org/10.48550/arXiv.2209.00917,
https://doi.org/10.48550/arXiv.2209.00917

3. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses -
execution-based validation of verification results. In: Dubois, C., Wolff, B. (eds.)
Tests and Proofs - 12th International Conference, TAP@STAF 2018, Toulouse,
France, June 27-29, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10889, pp. 3–23. Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_
1, https://doi.org/10.1007/978-3-319-92994-1_1

4. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020),
https://helda.helsinki.fi/handle/10138/318450

5. Brodsky, A., Nash, H.: Cojava: Optimization modeling by nondeterministic simula-
tion. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming
- CP 2006, 12th International Conference, CP 2006, Nantes, France, September
25-29, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4204, pp. 91–
106. Springer (2006). https://doi.org/10.1007/11889205_9, https://doi.org/
10.1007/11889205_9

6. Cipriano, R., Dovier, A., Mauro, J.: Compiling and executing declarative modeling
languages to gecode. In: de la Banda, M.G., Pontelli, E. (eds.) Logic Programming,
24th International Conference, ICLP 2008, Udine, Italy, December 9-13 2008,
Proceedings. Lecture Notes in Computer Science, vol. 5366, pp. 744–748. Springer
(2008). https://doi.org/10.1007/978-3-540-89982-2_69, https://doi.org/10.
1007/978-3-540-89982-2_69

7. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings. Lecture Notes in Com-
puter Science, vol. 2988, pp. 168–176. Springer (2004). https://doi.org/10.1007/
978-3-540-24730-2_15, https://doi.org/10.1007/978-3-540-24730-2_15

8. Cordeiro, L.C., Fischer, B., Marques-Silva, J.: Smt-based bounded model check-
ing for embedded ANSI-C software. IEEE Trans. Software Eng. 38(4), 957–974
(2012). https://doi.org/10.1109/TSE.2011.59, https://doi.org/10.1109/TSE.
2011.59

189

https://doi.org/10.5281/zenodo.7313351
https://www.csplib.org/
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.1007/s10601-019-09307-9
https://doi.org/10.48550/arXiv.2209.00917
https://doi.org/10.48550/arXiv.2209.00917
https://doi.org/10.48550/arXiv.2209.00917
https://doi.org/10.1007/978-3-319-92994-1\_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1\_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1
https://helda.helsinki.fi/handle/10138/318450
https://doi.org/10.1007/11889205\_9
https://doi.org/10.1007/11889205_9
https://doi.org/10.1007/11889205_9
https://doi.org/10.1007/11889205_9
https://doi.org/10.1007/978-3-540-89982-2\_69
https://doi.org/10.1007/978-3-540-89982-2_69
https://doi.org/10.1007/978-3-540-89982-2_69
https://doi.org/10.1007/978-3-540-89982-2_69
https://doi.org/10.1007/978-3-540-24730-2\_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2\_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59


M. M. Lester

9. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer
(2003). https://doi.org/10.1007/978-3-540-24605-3_37, https://doi.org/10.
1007/978-3-540-24605-3_37

10. Francis, K., Brand, S., Stuckey, P.J.: Optimisation modelling for software developers.
In: Milano, M. (ed.) Principles and Practice of Constraint Programming - 18th
International Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7514, pp. 274–289. Springer
(2012). https://doi.org/10.1007/978-3-642-33558-7_22, https://doi.org/10.
1007/978-3-642-33558-7_22

11. Frisch, A.M., Grum, M., Jefferson, C., Hernández, B.M., Miguel, I.: The design of
ESSENCE: A constraint language for specifying combinatorial problems. In: Veloso,
M.M. (ed.) IJCAI 2007, Proceedings of the 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, January 6-12, 2007. pp. 80–87 (2007),
http://ijcai.org/Proceedings/07/Papers/011.pdf

12. Gent, I.P., Walsh, T.: Csplib: A benchmark library for constraints. In: Jaffar,
J. (ed.) Principles and Practice of Constraint Programming - CP’99, 5th In-
ternational Conference, Alexandria, Virginia, USA, October 11-14, 1999, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1713, pp. 480–481. Springer
(1999). https://doi.org/10.1007/978-3-540-48085-3_36, https://doi.org/10.
1007/978-3-540-48085-3_36

13. Gent, I.P., Walsh, T.: Csplib: Twenty years on. CoRR abs/1909.13430 (2019),
http://arxiv.org/abs/1909.13430

14. Lester, M.M.: Solving interactive fiction games via partial evaluation and bounded
model checking. CoRR abs/2012.15365 (2020), https://arxiv.org/abs/2012.
15365

15. Lester, M.M.: CoPTIC: Constraint programming translated into C (Nov 2022).
https://doi.org/10.5281/zenodo.7313351, https://doi.org/10.5281/zenodo.
7313351

16. Manthey, N.: Solving summle.net with SAT. In: Balyo, T., Heule, M., Iser, M.,
Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competition 2022 – Solver and Bench-
mark Descriptions. Department of Computer Science Report Series B, vol. B-2022-1,
pp. 70–71. University of Helsinki (2022), http://hdl.handle.net/10138/318450

17. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard CP modelling language. In: Bessiere, C. (ed.) Principles
and Practice of Constraint Programming - CP 2007, 13th International Con-
ference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4741, pp. 529–543. Springer (2007).
https://doi.org/10.1007/978-3-540-74970-7_38, https://doi.org/10.1007/
978-3-540-74970-7_38

18. Rakamaric, Z., Emmi, M.: SMACK: decoupling source language details from verifier
implementations. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8559, pp. 106–113. Springer (2014). https://doi.org/10.
1007/978-3-319-08867-9_7, https://doi.org/10.1007/978-3-319-08867-9_7

190

https://doi.org/10.1007/978-3-540-24605-3\_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-33558-7\_22
https://doi.org/10.1007/978-3-642-33558-7_22
https://doi.org/10.1007/978-3-642-33558-7_22
https://doi.org/10.1007/978-3-642-33558-7_22
http://ijcai.org/Proceedings/07/Papers/011.pdf
https://doi.org/10.1007/978-3-540-48085-3\_36
https://doi.org/10.1007/978-3-540-48085-3_36
https://doi.org/10.1007/978-3-540-48085-3_36
https://doi.org/10.1007/978-3-540-48085-3_36
http://arxiv.org/abs/1909.13430
https://arxiv.org/abs/2012.15365
https://arxiv.org/abs/2012.15365
https://doi.org/10.5281/zenodo.7313351
https://doi.org/10.5281/zenodo.7313351
https://doi.org/10.5281/zenodo.7313351
https://doi.org/10.5281/zenodo.7313351
http://hdl.handle.net/10138/318450
https://doi.org/10.1007/978-3-540-74970-7\_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-319-08867-9\_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9\_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7


CoPTIC: Constraint Programming Translated Into C

19. Triska, M., Musliu, N.: An improved SAT formulation for the social golfer
problem. Ann. Oper. Res. 194(1), 427–438 (2012). https://doi.org/10.1007/
s10479-010-0702-5, https://doi.org/10.1007/s10479-010-0702-5

20. Verma, S., Yap, R.H.C.: Benchmarking symbolic execution using constraint prob-
lems - initial results. In: 31st IEEE International Conference on Tools with Artifi-
cial Intelligence, ICTAI 2019, Portland, OR, USA, November 4-6, 2019. pp. 1–9.
IEEE (2019). https://doi.org/10.1109/ICTAI.2019.00010, https://doi.org/
10.1109/ICTAI.2019.00010

21. Zhou, N.: In pursuit of an efficient SAT encoding for the hamiltonian cycle prob-
lem. In: Simonis, H. (ed.) Principles and Practice of Constraint Programming
- 26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, Septem-
ber 7-11, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12333,
pp. 585–602. Springer (2020). https://doi.org/10.1007/978-3-030-58475-7_34,
https://doi.org/10.1007/978-3-030-58475-7_34

22. Zhou, N., Kjellerstrand, H.: The picat-sat compiler. In: Gavanelli, M., Reppy,
J.H. (eds.) Practical Aspects of Declarative Languages - 18th International
Symposium, PADL 2016, St. Petersburg, FL, USA, January 18-19, 2016. Pro-
ceedings. Lecture Notes in Computer Science, vol. 9585, pp. 48–62. Springer
(2016). https://doi.org/10.1007/978-3-319-28228-2_4, https://doi.org/10.
1007/978-3-319-28228-2_4

23. Zhou, N., Kjellerstrand, H.: Optimizing SAT encodings for arithmetic constraints.
In: Beck, J.C. (ed.) Principles and Practice of Constraint Programming - 23rd
International Conference, CP 2017, Melbourne, VIC, Australia, August 28 -
September 1, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10416,
pp. 671–686. Springer (2017). https://doi.org/10.1007/978-3-319-66158-2_43,
https://doi.org/10.1007/978-3-319-66158-2_43

24. Zhou, N., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with
Picat. Springer Briefs in Intelligent Systems, Springer (2015). https://doi.org/
10.1007/978-3-319-25883-6, https://doi.org/10.1007/978-3-319-25883-6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

191

https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1007/s10479-010-0702-5
https://doi.org/10.1109/ICTAI.2019.00010
https://doi.org/10.1109/ICTAI.2019.00010
https://doi.org/10.1109/ICTAI.2019.00010
https://doi.org/10.1109/ICTAI.2019.00010
https://doi.org/10.1007/978-3-030-58475-7\_34
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.1007/978-3-319-28228-2\_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-28228-2_4
https://doi.org/10.1007/978-3-319-66158-2\_43
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6
https://doi.org/10.1007/978-3-319-25883-6
http://creativecommons.org/licenses/by/4.0/


Acacia-Bonsai: A Modern Implementation of
Downset-Based LTL Realizability
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Abstract. We describe our implementation of downset-manipulating al-
gorithms used to solve the realizability problem for linear temporal logic
(LTL). These algorithms were introduced by Filiot et al. in the 2010s
and implemented in the tools Acacia and Acacia+ in C and Python.
We identify degrees of freedom in the original algorithms and provide
a complete rewriting of Acacia in C++20 articulated around genericity
and leveraging modern techniques for better performance. These tech-
niques include compile-time specialization of the algorithms, the use of
SIMD registers to store vectors, and several preprocessing steps, some
relying on efficient Binary Decision Diagram (BDD) libraries. We also
explore different data structures to store downsets. The resulting tool is
competitive against comparable modern tools.

Keywords: LTL synthesis · C++ · downset · antichains · SIMD · BDD

1 Introduction

Nowadays, hardware and software systems are everywhere around us. One way
to ensure their correct functioning is to automatically synthesize them from a
formal specification. This has two advantages over alternatives such as testing
and model checking: the design part of the program-development process can be
completely bypassed and the synthesized program is correct by construction.

In this work we are interested in synthesizing reactive systems [17]. These
maintain a continuous interaction with their environment. Examples of reac-
tive systems include communication, network, and multimedia protocols as well
as operating systems. For the specification, we consider linear temporal logic
(LTL) [27]. LTL allows to naturally specify time dependence among events that
make up the formal specification of a system. The popularity of LTL as a formal
specification language extends to, amongst others, AI [15,8,16], hybrid systems
and control [6], software engineering [21], and bio-informatics [1].

The classical doubly-exponential-time synthesis algorithm can be decom-
posed into three steps: 1. compile the LTL formula into an automaton of ex-
ponential size [32], 2. determinize the automaton [29,26] incurring a second ex-
ponential blowup, and 3. determine the winner of a two-player zero-sum game
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played on the latter automaton [28]. Most alternative approaches focus on avoid-
ing the determinization step of the algorithm. This has motivated the develop-
ment of so-called Safra-less approaches, e.g., [20,11,10,31]. Worth mentioning
are the on-the-fly game construction implemented in the Strix tool [24] and the
downset-based (or “antichain-based”) on-the-fly bounded determinization de-
scribed in [13] and implemented in Acacia+ [5]. Both avoid constructing the
doubly-exponential deterministic automaton. Acacia+ was not ranked in recent
editions of SYNTCOMP [18] (see http://www.syntcomp.org/) since it is no
longer maintained despite remaining one of the main references for new ad-
vancements in the field (see, e.g., [12,33,30,22,2]).

Contribution. We present the Acacia approach to solving the problem at hand
and propose a new implementation that allows for a variety of optimization steps.
For now, we have focused on (Büchi automata) realizability, i.e., the decision
problem which takes as input an automaton compiled from the LTL formula
and asks whether a controller satisfying it exists. In our tool, we compile the
input LTL formula into an automaton using Spot [9]. We entirely specialize
our presentation on the technical problem at hand and strive to distillate the
algorithmic essence of the Acacia approach in that context. The main algorithm
is presented in Section 3.4 and the different implementation options are listed in
Section 4. Benchmarks are included in Section 6.

All benchmarks were executed on the revision of the software that can be
found at: https://github.com/gaperez64/acacia-bonsai/tree/SYNTCOMP22.

2 Preliminaries

Throughout this paper, we assume the existence of two alphabets, I and O;
although these stand for input and output, the actual definitions of these two
terms is slightly more complex: An input (resp. output) is a boolean combination
of symbols of I (resp. O) and it is pure if it is a conjunction in which all the
symbols in I (resp. O) appear exactly once; e.g., with I = {i1, i2}, the expressions
> (true), ⊥ (false), and (i1 ∨ i2) are inputs, and (i1 ∧ ¬i2) is a pure input.
Similarly, an IO is a boolean combination of symbols of I ∪O, and it is pure if
it is a conjunction in which all the symbols in I ∪ O appear exactly once. We
use i, j to denote inputs and x, y for IOs. Two IOs x and y are compatible if
x ∧ y 6= ⊥.

A Büchi automaton A is a tuple (Q, q0, δ, B) with Q a set of states, q0 the
initial state, δ the transition relation that uses IOs as labels, and B ⊆ Q the
set of Büchi states. The actual semantics of this automaton will not be relevant
to our exposition, we simply note that these automata are usually defined to
recognize infinite sequences of pure IOs. We assume, throughout this paper, the
existence of some automaton A.

We will be interested in valuations of the states of A that encode the number
of visits to Büchi states—again, we do not go into details here. We will simply
speak of vectors over A for elements in ZQ, mapping states to integers. We

Acacia-Bonsai: Downset-Based LTL Realizability 193

http://www.syntcomp.org/
https://github.com/gaperez64/acacia-bonsai/tree/SYNTCOMP22


will write ~v for such vectors, and vq for its value for state q. In practice, these
vectors will range into a finite subset of Z, with −1 as an implicit minimum
value (meaning that (−1) − 1 is still −1) and an upper bound provided by the
problem.

For a vector ~v over A and an IO x, we define a function that takes one
step back in the automaton, decreasing components that have seen Büchi states.
Write χB(q) for the function mapping a state q to 1 if q ∈ B, and 0 otherwise.
We then define bwd(~v, x) as the vector over A that maps each state p ∈ Q to:

min
(p,y,q)∈δ

x compatible with y

(vq − χB(q)) ,

and we generalize this to sets: bwd(S, x) = {bwd(~v, x) | ~v ∈ S}. For a set S of
vectors over A and a (possibly nonpure) input i, define:

CPrei(S) = S ∩
⋃

x pure IO
x compatible with i

bwd(S, x) .

It can be proved that iterating CPre with any possible pure input stabilizes
to a fixed point that is independent from the order in which the inputs are
selected. We define CPre∗(S) to be that set.

All the sets that we manipulate will be downsets : we say that a vector ~u
dominates another vector ~v if for all q ∈ Q, uq ≥ vq, and we say that a set
is a downset if ~u ∈ S and ~u dominates ~v implies that ~v ∈ S. This allows to
implement these sets by keeping only dominating elements, which form, as they
are pairwise nondominating, an antichain. In practice, it may be interesting to
keep more elements than just the dominating ones or even to keep all of the
elements to avoid the cost of computing domination.

Finally, we define Safek as the downset {i | i ≤ k}Q, i.e., all vectors with
values bounded by k. We are now equipped to define the computational problem
we focus on:

BackwardRealizability
– Given: A Büchi automaton A and an integer k > 0,
– Question: Is there a ~v ∈ CPre∗(Safek) with vq0 ≥ 0?

We note, for completeness, that (for sufficiently large values of k) this problem
is equivalent to deciding the realizability problem associated with A: the question
has a positive answer if and only if the output player wins the Gale-Stewart game
with payoff set the complement of the language of A.

3 Realizability algorithm

The problem admits a natural algorithmic solution: start with the initial set, pick
an input i, apply CPrei on the set, and iterate until all inputs induce no change
to the set, then check whether this set contains a vector that maps q0 to 0. We
first introduce some degrees of freedom in this approach, then present a slight
twist on that solution that will serve as a canvas for the different optimizations.
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3.1 Boolean states

This opportunity for optimization was identified in [4] and implemented in Aca-
cia+, we simply introduce it in a more general setting and succinctly present
the original idea when we mention how it can be implemented in Section 4.2.
We start with an example. Consider the Büchi automaton from Figure 1 with
q0, q1 6∈ B.

q0 q1
> >

Fig. 1. Small automaton with q0, q1 6∈ B.

Recall that we are interested in whether the initial state can carry a non-
negative value, after CPre has stabilized. In that sense, the crucial information
associated with q0 is boolean in nature: is its value positive or −1? Even fur-
ther, this same remark can be applied to q1 since q1 being valued 6 or 7 is not
important to the valuation of q0. Hence the set of states may be partitioned into
integer-valued states and boolean-valued ones. Naturally, detecting which states
can be made boolean comes at a cost and not doing it is a valid option.

3.2 Actions

For each IO x, we will have to compute bwd(~v, x) oftentimes. This requires to
refer to the underlying Büchi automaton and checking for each transition therein
whether x is compatible with the condition. It may be preferable to precompute,
for each x, what are the relevant pairs (p, q) for which x can go from p to q. We
call the set of such pairs the io-action of x and denote it io-act(x); in symbols:

io-act(x) = {(p, q) | (∃(p, y, q) ∈ δ)[x is compatible with y]} .

Further, as we will be computing CPrei(S) for inputs i, we abstract in a
similar way the information required for this computation. We use the term
input-action for the set of io-actions of IOs compatible with i and denote it
i-act(i); in symbols:

i-act(i) =
⋃

x an IO
compatible with i

io-act(x) .

In other words, actions contain exactly the information necessary to compute
CPre. Note that from an implementation point of view, we do not require that the
actions be precomputed. Indeed, when iterating through pairs (p, q) ∈ io-act(x),
the underlying implementation can choose to go back to the automaton.
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3.3 Sufficient inputs

As we consider the transitions of the Büchi automaton as being labeled by
boolean expressions, it becomes more apparent that some pure IOs can be re-
dundant. For instance, consider a Büchi automaton with I = {i}, O = {o1, o2},
but the only transitions compatible with i are labeled (i∧o1) and (i∧¬o1). Pure
IOs compatible with the first label will be (i ∧ o1 ∧ o2) and (i ∧ o1 ∧ ¬o2), but
certainly, these two IOs have the same io-actions, and optimally, we would only
consider (i ∧ o1). However, we should not consider (i ∧ o2), as it induces an io-
action that is not induced by a pure IO. We will thus allow our main algorithm
to select certain inputs and IOs and introduce the following notion:

Definition 1. An IO (resp. input) is valid if there exists any pure IO (resp.
input) with the same io-action (resp. input-action). A set X of valid IOs is
sufficient if it represents all the possible io-actions of pure IOs: {io-act(x) | x ∈
X} = {io-act(x) | x is a pure IO}. A sufficient set of inputs is defined similarly
with input-actions.

3.4 Algorithm

We solve BackwardRealizability by computing CPre∗ explicitly:

Algorithm 1 Main algorithm

Input: A Büchi automaton A, an integer k > 0
Output: Whether (∃~v ∈ CPre∗(Safek))[vq0 ≥ 0]

1 Possibly remove some useless states in A
2 Split states of A into boolean and nonboolean
3 Let Downset be a type for downsets using a vector type that possibly has a boolean

part
4 Let S = Safek of type Downset

5 Compute a sufficient set E of inputs
6 Compute the input-actions of E
7 while true do
8 Pick an input-action a of E
9 if no action is returned then

10 return whether a vector in S maps q0 to a nonnegative value

11 S ← CPrea(S)

Our algorithm requires that the “input-action picker” used in line 8 decides
whether we have reached a fixed point. As the picker could check whether S has
changed, this is without loss of generality.

The computation of CPrea is the intuitive one, optimizations therein coming
from the internal representation of actions. That is, it is implemented by iterating
through all io-actions compatible with a, applying bwd on S for each of them,
taking the union over all these applications, and finally intersecting the result
with S.
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4 The many options at every line

The main computational costs of the algorithm are in finding input-actions and
computing CPrea. For the former, reducing the number of candidates is crucial
(by considering a good set of sufficient inputs). For the latter, reducing the size
of the automaton (hence the dimension of the vectors) and providing efficient
data types for downsets is key. Additionally, for the “input-action picker” to
return an input that will make progress, it has to explore S in some way — this
can again be a costly operation that would be sped up by better data structures
for downsets. Let us now review these potential optimizations line by line.

4.1 Preprocessing of the automaton (line 1)

In this step, one can provide a heuristic that removes certain states that do not
contribute to the computation. We provide an optional step that detects surely
losing states, as presented in [14].

4.2 Boolean states (line 2)

We provide an implementation of the detection of boolean states, in addition to
an option to not detect them. Our implementation is based on the concept of
bounded state, as presented in [4]. A state is bounded if it cannot be reached from
a Büchi state that lies in a nontrivial strongly connected component. This can
be detected in several ways, although it is not an intrinsically costly operation.

4.3 Vectors and downsets (line 3)

The most basic data structure in the main algorithm is that of a vector used to
give a value to the states. We provide a handful of different vector classes:
– Standard C++ vector and array types (std::vector,

std::array). Note that arrays are of fixed size; our implementation pre-
compiles arrays of different sizes (up to 300 by default), and defaults to
vectors if more entries are needed.

– Vectors and arrays backed by SIMD3 registers. This makes use of the type
std::experimental::simd and leverages modern CPU optimizations.

Additionally, all these implementations can be glued to an array of booleans
(std::bitset) to provide a type that combines boolean and integer values.
These types can optionally expose an integer that is compatible with the partial
order (here, the sum of all the elements in the vector: if ~u dominates ~v, then
the sum of the elements in ~u is larger than that of ~v). This value can help the
downset implementations in sorting the vectors.

Downset types are built on top of a vector type. We provide:

3 SIMD: Single Instruction Multiple Data, a set of CPU instructions & registers to
compute component-wise operations on fixed-size vectors.
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– Implementations using sets or vectors of vectors, either containing only the
dominating vectors, or containing explicitly all the vectors;

– An implementation that relies on k-d trees, a space-partitioning data struc-
ture for organizing points in a k-dimensional space; [3]

– Implementations that store the vectors in specific bins depending on the
information exposed by the vector type.

4.4 Selecting sufficient inputs (line 5)

Recall our discussion on sufficient inputs of Section 3.3. We introduce the notion
of terminal IO following the intuition that there is no restriction of the IO that
would lead to a more specific action:

Definition 2. An IO x is said to be terminal if for every compatible IO y,
we have io-act(x) ⊆ io-act(y). An input i is said to be terminal if for every
compatible input j we have i-act(i) ⊆ i-act(j).

Our approaches to input selection focus on efficiently searching for a sufficient
set of terminal IOs and inputs. The key property of terminal inputs is that they
are automatically valid, while still being more general than pure inputs.

Proposition 1. Any pure IO and any input is terminal. Any terminal IO and
any terminal input is valid.

Proof. Any pure IO is terminal. Consider a pure IO x and a compatible IO y. If
(p, q) ∈ io-act(x), then there is a transition (p, z, q) ∈ δ such that x is compatible
with z, and thus x ∧ z = x. Consequently, x ∧ z ∧ y = x ∧ y 6= ⊥, hence y and z
are compatible and (p, q) ∈ io-act(y). This shows that io-act(x) ⊆ io-act(y) and
that x is terminal.

Any pure input is terminal. Consider now a pure input i and a compatible
input j. Let io-act(x) ∈ i-act(i). It holds that x is compatible with i, hence
i ∧ x 6= ⊥. Since i is pure, i ∧ j = i, thus i ∧ j ∧ x 6= ⊥, and x is also compatible
with j, implying that io-act(x) ∈ i-act(j). This shows that i-act(i) ⊆ i-act(j)
and that i is terminal.

Any terminal IO and input is valid. We prove the case for inputs, the IO
case being similar. Let i be a terminal input and j be a compatible pure input
(at least one exists), then i-act(i) ⊆ i-act(j). Since j is pure, it is also terminal,
hence i-act(j) ⊆ i-act(i). Hence i-act(i) = i-act(j) and i is valid. ut

We present a simple algorithm for computing a sufficient set of terminal IOs.
This is done by iteratively refining a set P of terminal IOs, starting by assuming
that {>} is such a set and using any counterexample to split the IOs:
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Algorithm 2 Computing a sufficient set of terminal IOs

Input: A Büchi automaton A
Output: A sufficient set of terminal IOs

P ← {>}
for every label x in the automaton do

for every element y in P do
if x ∧ y 6= ⊥ then

Delete y from P
Insert x ∧ y in P
if ¬x ∧ y 6= ⊥ then insert ¬x ∧ y in P

return P

We provide 3 implementations of input selection:
– No precomputation, i.e., return pure inputs/IOs;
– Applying Algorithm 2 twice: for IOs and inputs;
– Use a pure BDD approach to do the previous algorithm; this relies on extra

variables to have the loop “for every element y in P” iterate only over
elements y that satisfy x ∧ y 6= ⊥.

4.5 Precomputing actions (line 6)

Since computing CPrei for an input i requires to go through i-act(i), possibly
going back to the automaton and iterating through all transitions, it may be ben-
eficial to precompute this set. We provide this step as an optional optimization
that is intertwined with the computation of a sufficient set of IOs; for instance,
rather than iterating through labels in Algorithm 2, one could iterate through
all transitions, and store the set of transitions that are compatible with each
terminal IO on the fly.

4.6 Main loop: Picking input-actions (line 8)

We provide several implementations of the input-action picker:
– Return each input-action in turn, until no change has occurred to S while

going through all possible input-actions;
– Search for an input-action that is certain to change S. This is based on the

concept of critical input as presented in [4]. This is reliant on how input-
actions are ordered themselves, so we provide multiple options (using a pri-
ority queue to prefer inputs that were recently returned, randomize part of
the array of input-actions, and randomize the whole array).

4.7 When are we done?

The main algorithm answers either “yes, the formula is realizable” or “don’t
know.” Indeed, for the value of k to provide an exact value, it has to be very large
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and reaching a fixed point in the computation becomes impossible in practice.
However, it is not necessary to restart the whole algorithm with larger values of
k in order to converge towards the correct answer: one can just increase all the
components of all the vectors in S (our main set), and go back to the main loop.
There are thus two parameters that can be adjusted: the starting value of k and
the increment to S each time the loop is restarted.

5 Checking unrealizability of LTL specifications

As mentioned in the preliminaries, for large values of k the BackwardRealiz-
ability problem is equivalent to a non-zero sum game whose payoff set is the
complement of the language of the given automaton. More precisely, for small
values of k, a negative answer for the BackwardRealizability problem does
not imply that the output player does not win the game. Instead, if one is inter-
ested in whether the output player wins, a property known as determinacy [23]
can be leveraged to instead ask whether a complementary property holds: does
the input player win the game?

We thus need to build an automaton B for which a positive answer to the
BackwardRealizability translates to the previous property. To do so, we can
consider the negation of the input formula, ¬φ, and inverse the roles of the play-
ers, that is, swap the inputs and outputs. However, to make sure the semantics
of the game is preserved, we also need to have the input player play first, and
the output player react to the input player’s move. To do so, we simply need to
have the outputs moved one step forward (in the future, in the LTL sense). This
can be done directly on the input formula, by putting an X (neXt) operator on
each output. This can however make the formula much more complex.

We propose an alternative to this: Obtain the automaton for ¬φ, then push
the outputs one state forward. This means that a transition (p, 〈i, o〉, q) is trans-
lated to a transition (p, i, q), and the output o should be fired from q. In practice,
we would need to remember that output, and this would require the construction
to consider every state (q, o), augmenting the number of states tremendously. Al-
gorithm 3 for this task, however, tries to minimize the number of states (q, o)
necessary by considering nonpure outputs that maximally correspond to a pure
input compatible with the original transition label.

Algorithm 3 Modifying A so that the outputs are shifted forward

Input: A Büchi automaton A with initial state q0 and transition set δ
Output: The states S and transitions ∆ of the Büchi automaton B
S, V ← {(q0,>)}
∆← {}
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while V is nonempty do
Pop (p, o) from V
for every (p, x, q) ∈ δ do

y ← x
while y 6= ⊥ do // Iterating through x’s minterms focusing on inputs

Let i be a pure input compatible with y
o′ ← ∃I. x ∧ i // Extract nonpure output compatible with i
Add (〈p, o〉, o ∧ i, 〈q, o′〉) to ∆
If (q, o′) is not in S, add it to S and V
y ← y ∧ ¬i

return S,∆

6 Benchmarks

6.1 Protocol

For the past few years, the yardstick of performance for synthesis tools is the
SYNTCOMP competition [19]. The organizers provide a bank of nearly a thou-
sand LTL formulas, and candidate tools are run with a time limit of one hour
on each of them. The tool that solves the most instances in this timeframe wins
the competition.

To benchmark our tool, we relied on the 930 LTL formulas that were used in
the 2021 SYNTCOMP competition, of which about 60% are realizable. Notably,
864 of all the tests were solved in less than 20 seconds by some tool during the
competition, and among the 66 tests left out, 50 were not solved by any tool.
This showcases a usual trend of synthesis tools: either they solve an instance fast,
or they are unlikely to solve it at all. To better focus on the fine performance
differences between the tools, we set a timeout of 60 seconds for all tests.

We compared Acacia-Bonsai against itself using different choices of options,
and against Acacia+ [5], Strix [24], and ltlsynt [9,25]. The benchmarks were
completed on a Linux computer with the following specifications:
– CPU: Intel R© CoreTM i7-8700 CPU @ 3.20GHz. This CPU has 6 hyper-

threaded cores, meaning that 12 threads can run concurrently. It supports
Intel R© AVX2, meaning that it has SIMD registers of up to 256 bits.

– Memory: The CPU has 12 MiB of cache, the computer has 16 GiB of DDR4-
2666 RAM.
We present some of these results in the form of survival plots (also called

cactus plots). They indicate how many instances can be solved within a set
time, where the time limit is for each instance. As a rule of thumb, the lower
the curve, the better. Since the tool tend to solve a lot of instances under one
second, we elected to present these graphics with a logarithmic y-axis.

6.2 Results

The options of Acacia-Bonsai. We compared 25 different configurations of Acacia-
Bonsai, in order to single out the best combination of options. We elected to
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start with some sensible defaults and test each parameter by diverging from the
defaults by a single option each time.

– Preprocessing of the automaton (Section 4.1). This has little impact, al-
though a handful of tests saw an important boost. Overall, the performance
was slightly worse with automaton preprocessing, owing to the cost of com-
puting the surely loosing states. We elected to deactivate this option in our
best configuration, as this allowed four more tests to pass.

– Boolean states (Section 4.2). This step allowed solving about 5% more tests
when activated, globally.

– Vectors and downsets (Section 4.3). Despite a wealth of different implemen-
tations, only the k-d tree implementation really stands out, in that it solves
5% fewer tests than the rest. The impact on using SIMD vectors and tailor-
ing downset algorithms to leverage SIMD operations appears to be minimal.
This is likely caused by two factors: 1. The increasing ability for modern
compilers to automatically identify where SIMD instructions can benefit
performances; 2. The relative uselessness of pointwise vector operations in
the task at hand.

– Precomputing a sufficient set of inputs and IO (Section 4.4). Computing that
set using Algorithm 2 turned out to offer the best performance, solving 23
more tests than using the pure inputs/IOs. The pure BDD approach for this
step was slightly more costly.

– Picking input-actions (Section 4.6). The approaches performed equivalently,
with a slight edge for the choice of critical inputs without randomizing or
priority queue.

– Initial value and increments of k (Section 4.7). We compared several combi-
nations, which had little impact on overall performance, with the best one
solving 3 more tests than the worst.

– Unrealizability (Section 5). The following figure shows how the formula-
based and the automaton-based approaches to unrealizability compare. We
only show the unrealizable tests and add the configuration we use in practice:
start two threads, one for each option, and stop as soon as one returns.
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Fig. 2. Reducing unrealizability to realizability. Timeout set at 20 seconds.
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Despite the automaton-based approach showing better overall results, we
note that this approach provides a larger automaton than the formula-based
approach in about 99.5% of the tests. Additionally, the automaton-based
approach offers better performances even when looking at the running time
without the formula-to-automaton part of the process. This seems to indi-
cate that the automaton that is produced is somewhat simpler for the main
algorithm.

Acacia-Bonsai and foes. The following plot shows the performance of the tools
together. Within our parameters, Acacia-Bonsai solves 699 tests, while Acacia+
solves 560, ltlsynt 703, and Strix 770.
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Fig. 3. Survival plot for SYNTCOMP tools and Acacia-Bonsai

Instances solved by one tool but not the other. To better understand the intrinsic
algorithmic competitiveness of the different tools, we study which instances were
solved by our tool but not the others, and conversely:

– ltlsynt. This tool solves 4 more instances than Acacia-Bonsai overall. It
solves 61 instances on which Acacia-Bonsai times out, with less than a third
of them being unrealizable instances. It would be interesting to implement,
within ltlsynt, the unrealizability techniques we describe in Section 5.

– Strix. This tool solves 71 more instances than Acacia-Bonsai overall. It
solves 124 instances on which Acacia-Bonsai times out, 58% of which are
unrealizable. For 90% of these 124 instances, Strix answers in less than 2
seconds. Conversely, of the instances on which Acacia-Bonsai answers while
Strix times out, three quarters are solved within two seconds. This naturally
hints at the possibility of combining the approaches of the two tools, using
parallelization.
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7 Conclusion

We provided multiple degrees of freedom in the main algorithm for downset-
based LTL realizability and implemented options for each of these degrees. In
this paper, we presented the main ideas behind these. Experiments show that
this careful reimplementation surpasses the performance of the original Acacia+,
making Acacia-Bonsai competitive against modern LTL realizability tools. Along
with implementing some optimizations present in previous implementations, we
introduced several new ones: reduction of the input-output alphabet, alternative
antichain data structures, different strategies for input-picking, and constructing
a “shifted automaton” to test unrealizability.

A somewhat disappointing conclusion of our experiments concerns code that
makes explicit use of SIMD registers, i.e., large CPU registers that support point-
wise vector operations. Our experiments indicate that downset-based algorithms
and downset data structures are not able to take full advantage of SIMD. In the
future, we plan on investigating data structures for downsets that delay some
of their computations in order to better leverage vectorized operations. Such
a data structure would not provide better theoretical performances, but would
potentially outperform our other data structures.

One surprise that prompts for further investigation is brought by our ap-
proach to unrealizability (Section 5): we provided two options for processing the
input LTL formula into an automaton that expresses a realizable game iff the
original formula was unrealizable. Although one option consistently produces
larger automata than the other, it appears that the downset-based realizability
algorithm performs better on the larger automata. A close study of the resulting
automata may help in identifying salient features of automata that are easier for
the Acacia algorithm.

Lastly, we should note that this reimplementation of Acacia+ is not complete,
since a few options of Acacia+ have not yet been included in Acacia-Bonsai yet.
One such option consists in decomposing LTL formulas that are conjunctions
of subformulas into smaller instances of the realizability problem. We plan on
implementing this before the next edition of SYNTCOMP.
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Abstract. We automatically compute a new class of environment as-
sumptions in two-player turn-based finite graph games which character-
ize an “adequate cooperation” needed from the environment to allow the
system player to win. Given an ω-regular winning condition Φ for the
system player, we compute an ω-regular assumption Ψ for the environ-
ment player, such that (i) every environment strategy compliant with
Ψ allows the system to fulfill Φ (sufficiency), (ii) Ψ can be fulfilled by
the environment for every strategy of the system (implementability), and
(iii) Ψ does not prevent any cooperative strategy choice (permissiveness).
For parity games, which are canonical representations of ω-regular games,
we present a polynomial-time algorithm for the symbolic computation of
adequately permissive assumptions and show that our algorithm runs
faster and produces better assumptions than existing approaches—both
theoretically and empirically. To the best of our knowledge, for ω-regular
games, we provide the first algorithm to compute sufficient and imple-
mentable environment assumptions that are also permissive.

Keywords: Synthesis · Two-player Games · Parity · Permissiveness.

1 Introduction

Two-player ω-regular games on finite graphs are the core algorithmic components
in many important problems of computer science and cyber-physical system
design. Examples include the synthesis of programs which react to environment
inputs, modal µ-calculus model checking, correct-by-design controller synthesis
for cyber-physical systems, and supervisory control of autonomous systems.

These problems can be ultimately reduced to an abstract two-player game
between an environment player and a system player, respectively capturing the
external unpredictable influences and the system under design, while the game
captures the non-trivial interplay between these two parts. A solution of the
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game is a set of decisions the system player needs to make to satisfy a given
ω-regular temporal property over the states of the game, which is then used to
design the sought system or its controller.

Traditionally, two-player games over graphs are solved in a zero-sum fashion,
i.e., assuming that the environment will behave arbitrarily and possibly adversar-
ially. Although this approach results in robust system designs, it usually makes
the environment too powerful to allow an implementation for the system to ex-
ist. However in reality, many of the outlined application areas actually account
for some cooperation of system components, especially if they are co-designed.
In this scenario it is useful to understand how the environment (i.e., other pro-
cesses) needs to cooperate to allow for an implementation to exist. This can be
formalized by environment assumptions, which are ω-regular temporal proper-
ties that restrict the moves of the environment player in a synthesis game. Such
assumptions can then be used as additional specifications in other components’
synthesis problems to enforce the necessary cooperation (possibly in addition to
other local requirements) or can be used to verify existing implementations.

For the reasons outlined above, the automatic computation of assumptions
has received significant attention in the reactive synthesis community. It has
been used in two-player games [8,6], both in the context of monolithic system
design [11,19] as well as distributed system design [18,13].

All these works emphasize two desired properties of assumptions. They should
be (i) sufficient, i.e., enable the system to win if the environment obeys its as-
sumption and (ii) implementable, i.e., prevent the system from falsifying the
assumption to vacuously win the game by not even respecting the original spec-
ification. In this paper, we claim that there is an important third property —
permissiveness, i.e. the assumption retains all cooperatively winning plays in the
game. This notion is crucial in the setting of distributed synthesis, as here as-
sumptions are generated before the implementation of every component is fixed.
Therefore, assumptions need to retain all feasible ways of cooperation to allow
for a distributed implementation to be discovered in a decentralized manner.

While the class of assumptions considered in this paper is motivated by
their use for distributed synthesis, this paper focuses only on their formalization
and computation, i.e., given a two-player game over a finite graph and an ω-
regular winning condition Φ for the system player, we automatically compute an
adequately permissive ω-regular assumption Ψ for the environment player that
formalizes the above intuition by being (i) sufficient, (ii) implementable, and
(iii) permissive. The main observation that we exploit is that such adequately
permissive assumptions (APA for short) can be constructed from three simple
templates which can be directly extracted from a cooperative synthesis game
leading to a polynomial-time algorithm for their computation. By observing page
constrains, we postpone the very interesting but largely orthogonal problem of
contract-based distributed synthesis using APAs to future work.

To appreciate the simplicity of the assumption templates we use, consider the
game graphs depicted in Fig. 1 where the system and the environment player
control the circle and square vertices, respectively. Given the specification Φ =
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(a)

p q
e1

(b) (c)

p q
e1

p

q r

e1
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Fig. 1: Game graphs with environment (squares) and system (circles) vertices.

♦�{p} (which requires the play to eventually only see vertex p), the system
player can win the game in Fig. 1 (a) by requiring the environment to fully disable
edge e1. This introduces the first template type—a safety template—on e1. On
the other hand, the game in Fig. 1 (b) only requires that e1 is taken finitely often.
This is captured by our second template type—a co-liveness template—on e1.
Finally, consider the game in Fig. 1 (c) with the specification Φ = �♦{p}, i.e.
vertex p should be seen infinitely often. Here, the system player wins if whenever
the source vertices of edges e1 and e2 are seen infinitely often, also one of these
edges is taken infinitely often. This is captured by our third template type—a
live group template—on the edge-group {e1, e2}.
Contribution. The main contribution of this paper is to show that APAs can
always be composed from the three outlined assumption templates and can be
computed in polynomial time.

Using a set of benchmark examples taken from SYNTCOMP [1] and a pro-
totype implementation of our algorithm in our new tool SImPA, we empirically
show that our algorithm is both faster and produces more desirable solutions
than existing approaches. In addition, we apply SImPA to the well known 2-
client arbiter synthesis benchmark from [21], which is known to only allow for
an implementation of the arbiter if the clients’ moves are suitably restricted. We
show that applying SImPA to the unconstrained arbiter synthesis problem yields
assumptions on the clients which are less restrictive but conceptually similar to
the ones typically used in the literature.
Related Work. The problem of automatically computing environment assump-
tions for synthesis was already addressed by Chatterjee et al. [8]. However, their
class of assumptions does in general not allow to construct permissive assump-
tions. Further, computing their assumptions is an NP-hard problem, while our
algorithm computes APAs in O(n4)-time for a parity game with n vertices. The
difference in the complexity arises because Chatterjee et al. require minimality
of the assumptions. On the other hand, we trade minimality for permissiveness
which allows us to utilize cooperative games, which are easier to solve.

When considering cooperative solutions of non-zerosum games, related works
either fix strategies for both players [7,14], assume a particularly rational behav-
ior of the environment [4] or restrict themselves to safety assumptions [18]. In
contrast, we do not make any assumption on how the environment chooses its
strategy. Finally, in the context of specification-repair in zerosum games multiple
automated methods for repairing environment models exist, e.g., [22,15,16,20,8].
Unfortunately, all of these methods fail to provide permissiveness. A recent work
by Cavezza et al. [6] computes a minimally restrictive set of assumptions but only
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for GR(1) specifications, which are a strict subclass of the problem considered
in our work. To the best of our knowledge, we propose the first fully automated
algorithm for computing permissive assumptions for general ω-regular games.

2 Preliminaries

Notation. We use N to denote the set of natural numbers including zero.
Given two natural numbers a, b ∈ N with a < b, we use [a; b] to denote the
set {n ∈ N | a ≤ n ≤ b}. For any given set [a; b], we write i ∈even [a; b] and
i ∈odd [a; b] as short hand for i ∈ [a; b] ∩ {0, 2, 4, . . .} and i ∈ [a; b] ∩ {1, 3, 5, . . .}
respectively. Given two sets A and B, a relation R ⊆ A × B, and an element
a ∈ A, we write R(a) to denote the set {b ∈ B | (a, b) ∈ R}.
Languages. Let Σ be a finite alphabet. The notations Σ∗ and Σω denote the
set of finite and infinite words over Σ, respectively, and Σ∞ is equal to Σ∗∪Σω.
For any word w ∈ Σ∞, wi denotes the i-th symbol in w. Given two words u ∈ Σ∗
and v ∈ Σ∞, the concatenation of u and v is written as the word uv.
Game graphs. A game graph is a tuple G = (V,E) where (V,E) is a finite
directed graph with vertices V and edges E, and V = V 0 ] V 1 be a partition
of V . Without loss of generality, we assume that for every v ∈ V there exists
v′ ∈ V s.t. (v, v′) ∈ E. For the purpose of this paper, the system and the
environment players will be denoted by Player 0 and Player 1, respectively. A
play is a finite or infinite sequence of vertices ρ = v0v1 . . . ∈ V∞. A play prefix
p = v0v1 · · · vk is a finite play.
Winning conditions. Given a game graph G, we consider winning conditions
specified using a formula Φ in linear temporal logic (LTL) over the vertex set V ,
that is, we consider LTL formulas whose atomic propositions are sets of vertices
V . In this case the set of desired infinite plays is given by the semantics of Φ
over G, which is an ω-regular language L(Φ) ⊆ V ω. Every game graph with an
arbitrary ω-regular set of desired infinite plays can be reduced to a game graph
(possibly with an extended set of vertices) with an LTL winning condition, as
above. The standard definitions of ω-regular languages and LTL are omitted for
brevity and can be found in standard textbooks [3].
Games and strategies. A two-player (turn-based) game is a pair G = (G,Φ)
where G is a game graph and Φ is a winning condition over G. A strategy of
Player i, i ∈ {0, 1}, is a partial function πi : V ∗V i → V such that for every
pv ∈ V ∗V i for which π is defined, it holds that πi(pv) ∈ E(v). Given a strategy
πi, we say that the play ρ = v0v1 . . . is compliant with πi if vk−1 ∈ V i implies
vk = πi(v0 . . . vk−1) for all k ∈ dom(ρ). We refer to a play compliant with πi and
a play compliant with both π0 and π1 as a πi-play and a π0π1-play, respectively.
We collect all plays compliant with πi, and compliant with both π0 and π1 in
the sets L(πi) and L(π0π1), respectively.
Winning. Given a game G = (G,Φ), a strategy πi is (surely) winning for
Player i if L(πi) ⊆ L(Φ), i.e., a Player 0 strategy π0 is winning if for every
Player 1 strategy π1 it holds that L(π0π1) ⊆ L(Φ). Similarly, a fixed strategy
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profile (π0, π1) is cooperatively winning if L(π0π1) ⊆ L(Φ). We say that a ver-
tex v ∈ V is winning for Player i (resp. cooperatively winning) if there exists a
winning strategy πi (resp. a cooperatively winning strategy profile (π0, π1)) s.t.
πi(v) is defined. We collect all winning vertices of Player i in the Player i win-
ning region 〈〈i〉〉Φ ⊆ V and all cooperatively winning vertices in the cooperative
winning region 〈〈0, 1〉〉Φ. We note that 〈〈i〉〉Φ ⊆ 〈〈0, 1〉〉Φ for both i ∈ {0, 1}.

3 Adequately Permissive Assumptions for Synthesis

Given a two-player game G, the goal of this paper is to compute assumptions on
Player 1 (i.e., the environment), such that both players cooperate just enough
to fulfill Φ while retaining all possible cooperative strategy choices. Towards a
formalization of this intuition, we define winning under assumptions.

Definition 1. Let G = (G = (V,E), Φ) be a game and Ψ be an LTL formula
over V . Then a Player 0 strategy π0 is winning in G under assumption Ψ , if for
every Player 1 strategy π1 s.t. L(π1) ⊆ L(Ψ) it holds that L(π0π1) ⊆ L(Φ). We
denote by 〈〈0〉〉ΨΦ the set of vertices from which such a Player 0 strategy exists.

We remark that the ’winning-under-assumption’ strategies π0 from Def. 1
satisfy two simple but interesting properties — anti-monotonicity (if π0 is win-
ning under an assumption, then it is so under every stronger assumption), and
conjunctivity (if π0 is winning under two different assumptions, then it is so un-
der their conjunction). However, it does not satisfy disjunctivity (see [2, Sec. 3.1]
for an example). In addition, we remark that the definition of ’winning-under-
assumption’ in terms of plays (rather than strategies) might seem more natural
to some readers. We refer these readers to the full version of the paper [2, Sec.
3.1] for an in-depth discussion on the differences of these definitions.

We now see that the assumption Ψ introduced in Def. 1 weakens the strategy
choices of the environment player (Player 1). We call assumptions sufficient if
this weakening is strong enough to allow Player 0 to win from every vertex in
the cooperative winning region.

Definition 2. An assumption Ψ is sufficient for (G,Φ) if 〈〈0〉〉ΨΦ ⊇ 〈〈0, 1〉〉Φ.

Unfortunately, sufficient assumptions can be abused to change the given syn-
thesis problem in an unintended way. Consider for instance the game in Fig. 2
(left) with Φ = �♦{v0} and Ψ = �♦e1. Here, there is no strategy π1 for Player 1
such that L(π1) ⊆ L(Ψ) as the system can always falsify the assumption by sim-
ply not choosing e1 infinitely often in v1. Therefore, any Player 0 strategy is
winning under assumption even if Φ is violated. The assumption Ψ , however,
is trivially sufficient, as 〈〈0〉〉ΨΦ = V . In order to prevent sufficient assumptions
to be falsifiable and thereby enabling vacuous winning, we define the notion of
implementability, which ensures that Ψ solely restricts Player 1 moves.

Definition 3. An assumption Ψ is implementable for (G,Φ) if 〈〈1〉〉Ψ = V .
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v0v1 v2
e1 v0 v1 v2

e1

e2

e3

v0v1 v2

e1

Fig. 2: Two-player games with Player 1 (squares) and Player 0 (circles) vertices.

A sufficient and implementable assumption ensures that the cooperative win-
ning region of the original game coincides with the winning region under that
assumption, i.e., 〈〈0〉〉ΨΦ = 〈〈0, 1〉〉Φ. However, all cooperative strategy choices
of both players might still not be retained, which is ensured by the notion of
permissiveness.

Definition 4. An assumption Ψ is permissive for (G,Φ) if L(Φ) ⊆ L(Ψ).

This notion of permissiveness is motivated by the intended use of assump-
tions for compositional synthesis. In the simplest scenario of two interacting
processes, two synthesis tasks—one for each process—are considered in parallel.
Here, generated assumptions in one synthesis task are used as additional speci-
fications in the other synthesis problem. Therefore, permissiveness is crucial to
not “skip” over possible cooperative solutions—each synthesis task needs to keep
all allowed strategy choices for both players intact to allow for compositional
reasoning. This scenario is illustrated in the following example to motivate the
considered class of assumptions. Formalizing assumption-based compositional
synthesis in general is however out of the scope of this paper.

Example 1. Consider the (non-zerosum) two-player game in Fig. 2 (middle)
with two different specifications for both players, namely Φ0 = ♦�{v1, v2}
and Φ1 = ♦�{v1}. Now consider two candidate assumptions Ψ0 = ♦�¬e1 and
Ψ ′0 = (�♦v1 =⇒ �♦e2) on Player 1. Notice that both assumptions are suffi-
cient and implementable for (G,Φ0). However, Ψ ′0 does not allow the play {v1}ω
and hence is not permissive whereas Ψ0 is permissive for (G,Φ0). As a conse-
quence, there is no way Player 1 can satisfy both her objective Φ1 and the
assumption Ψ ′0 even if Player 0 cooperates, since L(Φ1) ∩ L(Ψ ′0) = ∅. However,
under the assumption Ψ0 on Player 1 and assumption Ψ1 = ♦�¬e3 on Player 0
(which is sufficient and implementable for (G,Φ1) if we interchange the vertices
of the players), they can satisfy both their own objectives and the assumptions
on themselves. Therefore, they can collectively satisfy both their objectives.

We also remark that for this example, the algorithm in [9] outputs Ψ ′0 as the
desired assumption for game (G,Φ0) and their used assumption formalism is not
rich enough to capture assumption Ψ0. This shows that the assumption type we
are interested in is not computable by the algorithm from [9].

Definition 5. An assumption Ψ is called adequately permissive (an APA for
short) for (G,Φ) if it is sufficient, implementable and permissive.

4 Computing Adequately Permissive Assumptions (APA)

In this section, we present our algorithm to compute adequately permissive as-
sumptions (APA for short) for parity games, which are canonical representations
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of ω-regular games. For a gradual exposition of the topic, we first present algo-
rithms for simpler winning conditions, namely safety (Sec. 4.2), Büchi (Sec. 4.3),
and Co-Büchi (Sec. 4.4), which are used as building blocks while presenting the
algorithm for parity games (Sec. 4.5). All proofs omitted can be found in the full
version [2]. Let us first introduce some preliminaries.

4.1 Preliminaries

We use symbolic fixpoint algorithms expressed in the µ-calculus [17] to compute
the winning regions and to generate assumptions in simple post-processing steps.
Set Transformers. Let G = (V = V 0 ] V 1, E) be a game graph, U ⊆ V be a
subset of vertices, and a ∈ {0, 1} be the player index. Then we define two types
of predecessor operators:

preG(U) = {v ∈ V | ∃u ∈ U. (v, u) ∈ E} (1)
cpreaG(U) = {v ∈ V a | v ∈ preG(U)} ∪ {v ∈ V 1−a | ∀(v, u) ∈ E. u ∈ U} (2)

cprea,1G (U) = cpreaG(U) ∪ U (3)

cprea,iG (U) = cpreaG(cpre
a,i−1
G (U)) ∪ cprea,i−1G (U) with i ≥ 1 (4)

The predecessor operator preG(U) computes the set of vertices with at least one
successor in U . The controllable predecessor operators cpreaG(U) and cprea,iG (U)
compute the set of vertices from which Player a can force visiting U in at most
one and i steps respectively. In the following, we introduce the attractor operator
attraG(U) that computes the set of vertices from which Player a can force at least
a single visit to U in finitely many but nonzero3 steps:

attraG(U) =
(⋃

i≥1 cprea,i(U)
)
\U (5)

When clear from the context, we drop the subscript G from these operators.
Fixpoint Algorithms in the µ-calculus. µ-calculus [17] offers a succinct
representation of symbolic algorithms (i.e., algorithms manipulating sets of ver-
tices instead of individual vertices) over a game graph G. The formulas of the
µ-calculus, interpreted over a 2-player game graph G, are given by the grammar

φ := p | X | φ ∪ φ | φ ∩ φ | pre(φ) | µX.φ | νX.φ

where p ranges over subsets of V , X ranges over a set of formal variables, pre
ranges over monotone set transformers in {pre, cprea, attra}, and µ and ν denote,
respectively, the least and the greatest fixed point of the functional defined as
X 7→ φ(X). Since the operations ∪,∩, and the set transformers pre are all
monotonic, the fixed points are guaranteed to exist, due to the Knaster-Tarski
Theorem [5]. We omit the (standard) semantics of formulas (see [17]).

A µ-calculus formula evaluates to a set of vertices over G, and the set can be
computed by induction over the structure of the formula, where the fixed points
are evaluated by iteration. The reader may note that pre, cpre and attr can be
computed in time polynomial in number of vertices.
3 In existing literature, usually U ⊆ attra(U), i.e., attra(U) contains vertices from
which U is visited in zero steps. We exclude U from attra(U) for a technical reason.
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4.2 Safety Games

A safety game is a game G = (G,Φ) with Φ := �U for some U ⊆ V , and a play
fulfills Φ if it never leaves U . APAs for safety games disallow every Player 1
move that leaves the cooperative winning region in G w.r.t. Safety(U). This is
formalized in the following theorem.

Theorem 1. Let G = (G = (V,E),�U) be a safety game, Z∗ = νY.U ∩ pre(Y ),
and S =

{
(u, v) ∈ E |

(
u ∈ V 1 ∩ Z∗

)
∧ (v /∈ Z∗)

}
. Then Z∗ = 〈〈0, 1〉〉�U and 4

Ψunsafe(S) := �
∧
e∈S ¬e, (6)

is an APA for the game G. We denote by UnsafeA(G,U) the algorithm com-
puting S as above, which runs in time O(n2), where n = |V |.

We call the LTL formula in (6) a safety template and assumptions that solely
use this template safety assumptions.

4.3 Live Group Assumptions for Büchi Games

Büchi games. A Büchi game is a game G = (G,Φ) where Φ = �♦U for some
U ⊆ V . Intuitively, a play is winning for a Büchi game if it visits the vertex set
U infinitely often. We first recall that the cooperative winning region 〈〈0, 1〉〉�♦U
can be computed by a two-nested symbolic fixpoint algorithm [10]

Büchi(G,U) := νY.µX. (U ∩ pre(Y )) ∪ (pre(X)). (7)

Live group templates. Given the standard algorithm in (7), the set Xi com-
puted in the i-th iteration of the fixpoint variable X in the last iteration of Y
actually carries a lot of information to construct a very useful assumption for
the Büchi game G. To see this, recall that Xi contains all vertices which have an
edge to vertices which can reach U in at most i − 1 steps [10, sec. 3.2]. Hence,
for all Player 1 vertices in Xi \Xi−1 we need to assume that Player 1 always
eventually makes progress towards U by moving to Xi. This can be formalized
by a so called live group template.

Definition 6. Let G = (V,E) be a game graph. Then a live group H = {ej}j≥0
is a set of edges ej = (sj , tj) with source vertices src(H) := {sj}j≥0. Given a set
of live groups H` = {Hi}i≥0 we define a live group template as

Ψlive(H
`) :=

∧
i≥0

�♦src(Hi) =⇒ �♦Hi. (8)

4 We use e = (u, v) in LTL formulas as a syntactic sugar for u ∧©v, where © is the
LTL next operator. A set of edges E′ = {ei}i∈[0;k], when used as atomic proposition,
is a syntactic sugar for

∨
i∈[0;k] ei.
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The live group template says that if some vertex from the source of a live group is
visited infinitely often, then some edge from this group should be taken infinitely
often. We will use this template to give the assumptions for Büchi games.

Remark 1. Note that the assumptions computed by Chatterjee et al. [8] uses live
edges, i.e., singleton live groups, and hence, they are less expressive. In particular,
there are instances of Büchi games, where the permissive assumptions can not
be expressed using live edges but they can be using live groups, e.g., in Fig. 1 (c)
the live edge assumption �♦e1 ∧�♦e2 is sufficient but not permissive, whereas
the live group assumption �♦src(H) =⇒ �♦H with H = {e1, e2} is an APA.

In the context of the fixpoint computation of (7), we can construct live groups
H` = {Hi}i≥0 where each Hi contains all edges of Player 1 which originate in
Xi \ Xi−1 and end in Xi−1. Then the live group assumption in (8) precisely
captures the intuition that, in order to visit U infinitely often, Player 1 should
take edges in Hi infinitely often if vertices in src(Hi) are seen infinitely often.
Unfortunately, it turns out that this live group assumption is not permissive.
The reason is that it restricts Player 1 also on those vertices from which she will
anyway go towards U . For example, consider the game in Fig. 2 (right). Here
defining live groups through computations of (10), will mark e1 as a live group,
but then (v2v1v0)

ω will be in L(Φ) but not in the language of the assumption.
Here the permissive assumption would be Ψ = true.
Accelerated fixpoint computation. In order to provide permissiveness, we
use a slightly modified fixpoint algorithm that computes the same set Z∗ but
allows us to extract permissive assumptions directly from the fixpoint computa-
tions. Towards this goal, we introduce the together predecessor operator.

tpreG(U) = attr0G(U) ∪ cpre1G(attr
0
G(U) ∪ U). (9)

Intuitively, tpre adds all vertices from which Player 0 does not need any cooper-
ation to reach U in every iteration of the fixpoint computation. The interesting
observation we make is that substituting the inner pre operator in (7) by tpre
does not change the computed set but only accelerates the computation. This is
formalized in the next proposition and visualized in Fig. 3.

Proposition 1. Let G = (G,�♦U) be a Büchi game and

TBüchi(G,U) = νY.µX. (U ∩ pre(Y )) ∪ (tpre(X)). (10)

Then TBüchi(G,U) = Büchi(G,U) = 〈〈0, 1〉〉�♦U .

Prop. 1 follows from the correctness proof of (7) by using the observation
that for all U ⊆ V we have µX. U ∪ pre(X) = µX. U ∪ tpre(X).
Computing live group assumptions. Intuitively, the operator tpreG com-
putes the union of (i) the set of vertices from which Player 0 can reach U in
a finite number of steps with no cooperation from Player 1 and (ii) the set of
Player 1 vertices from which Player 0 can reach U with at most one-time coop-
eration from Player 1. Looking at Fig. 3, case (i) is indicated by the dotted line,

219



A. Anand et al.

v1
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Fig. 3: Computation of µX. U∪pre(X) (left) and µX. U∪tpre(X) (right). Each colored
region describes one iteration over X. The dotted region on the right is added by the
attr part of tpre, and this allows only the vertex v5 to be in front({v1}). Each set of
the same colored edges defines a live transition group.

while case (ii) corresponds to the last added Player 1 vertex (e.g., v5). Hence,
we need to capture the cooperation needed by Player 1 only from the vertices
added last, which we call the frontier of U in G and are formalized as follows:

front(U) := tpreG(U) \ attr0G(U). (11)

It is easy to see that, indeed front(U) ⊆ V 1, as whenever v ∈ front(U) ∩ V 0,
then it would have been the case that v ∈ attr0G(U) via (10).

Defining live groups based on frontiers instead of all elements in Xi indeed
yields the desired permissive assumption for Büchi games. By observing that we
additionally need to ensure that Player 1 never leaves the cooperative winning
region by a simple safety assumption, we get the following result, which is the
main contribution of this section.

Theorem 2. Let G = (G = (V,E), Φ = �♦U) be a Büchi game with Z∗ =
TBüchi(G,U) and H` = {Hi}i≥0 s.t.

∅ 6= Hi := (front(Xi)× (Xi+1 \ front(Xi))) ∩ E, (12)

where Xi is the set computed in the i-th iteration of the computation over X
and in the last iteration of the computation over Y in TBüchi. Then Ψ =
Ψunsafe(S) ∧ Ψlive(H

`) is an APA for G, where S = UnsafeA(G,U). We write
LiveA(G,U) to denote the algorithm to construct live groups H` as above, which
runs in time O(n3), where n = |V |.

In fact, there is a faster algorithm for computation of APAs for Büchi games,
that runs in time linear in the size of the graph, which we present in the full
version [2]. We chose to present the µ-calculus based algorithm here, because it
provides more insights into the nature of live groups.

4.4 Co-Liveness Assumptions in Co-Büchi Games

A co-Büchi game is the dual of a Büchi game, where a winning play should visit
a designated set of vertices only finitely many times. Formally, a co-Büchi game
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is a tuple G = (G,Φ) where Φ = ♦�U for some U ⊆ V . The standard symbolic
algorithm to compute the cooperative winning region is as follows:

CoBüchi(G,U) := µX.νY. (U ∩ pre(Y )) ∪ (pre(X)). (13)

As before, the sets Xi obtained in the i-th computation of X during the evalua-
tion of (13) carry essential information for constructing assumptions. Intuitively,
X1 gives precisely the set of vertices from which the play can stay in U with
Player 1’s cooperation and we would like an assumption to capture the fact
that we do not want Player 1 to go further away from X1 infinitely often. This
observation is naturally described by so called co-liveness templates.

Definition 7. Let G = (V,E) be a game graph and D ⊆ V × V a set of edges.
Then a co-liveness template over G w.r.t. D is defined by the LTL formula

Ψcolive(D) := ♦�
∧
e∈D ¬e. (14)

The assumptions employing co-liveness templates will be called co-liveness
assumptions. With this, we can state the main result of this section.

Theorem 3. Let G = (G = (V,E),♦�U), Z∗ = CoBüchi(G,U) and

D =
( [

(X1 ∩ V 1)× (Z∗ \X1)
]
∪
[⋃

i>1(X
i ∩ V 1)× (Z∗ \Xi−1)

])
∩E, (15)

where Xi is the set computed in the i-th iteration of fixpoint variable X in
CoBüchi. Then Ψ = Ψunsafe(S) ∧ Ψcolive(D) is an APA for G, where S =
UnsafeA(G,U). We write CoLiveA(G,U) to denote the algorithm construct-
ing co-live edges D as above which runs in time O(n3), where n = |V |.

We observe that X1 is a subset of U such that if a play reaches X1, Player 0
and Player 1 can cooperatively keep the play in X1. To do so, we ensure via the
definition of D in (15) that Player 1 can only leave X1 finitely often. Moreover,
with the other co-live edges in D, we ensure that Player 1 can only go away from
X1 finitely often, and hence if Player 0 plays their strategy to reach X1 and
then stay there, the play will be winning. The permissiveness of the assumption
comes from the observation that if co-liveness is violated, then Player 1 takes
a co-live edge infinitely often, and hence leaves X1 infinitely often, implying
leaving U infinitely often.

We again present a faster algorithm that runs in time linear in size of the
graph for computation of APAs for co-Büchi games in the full version [2].

4.5 APA Assumptions for Parity Games

Parity games. Let G = (V,E) be a game graph, and C = {C0, . . . , Ck} be a
set of subsets of vertices which form a partition of V . Then the game G = (G,Φ)
is called a parity game if

Φ = Parity(C) :=
∨
i∈odd[0;k]

�♦Ci =⇒
∨
j∈even[i+1;k] �♦Cj . (16)
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The set C is called the priority set and a vertex v in the set Ci, for i ∈ [1; k],
is said to have priority i. An infinite play ρ is winning for Φ = Parity(C) if the
highest priority appearing infinitely often along ρ is even.
Conditional live group templates. As seen in the previous sections, for games
with simple winning conditions which require visiting a fixed set of edges in-
finitely or only finitely often, a single assumption (conjoined with a simple safety
assumption) suffices to characterize APAs, as there is just one way to win. How-
ever, in general parity games, there are usually multiple ways of winning: for
example, in parity games with priorities {0, 1, 2}, a play will be winning if either
(i) it only infinitely often sees vertices of priority 0, or (ii) it sees priority 1 in-
finitely often but also sees priority 2 infinitely often. Intuitively, winning option
(i) requires the use of co-liveness assumptions as in Sec. 4.4. However, winning
option (ii) actually requires the live group assumptions discussed in Sec. 4.3 to
be conditional on whether certain states with priority 1 have actually been vis-
ited infinitely often. This is formalized by generalizing live group templates to
conditional live group templates.

Definition 8. Let G = (V,E) be a game graph. Then a conditional live group
over G is a pair (R,H`), where R ⊆ V and H` is a live group. Given a set of
conditional live groups H`, a conditional live group template is the LTL formula

Ψcond(H`) :=
∧

(R,H`)∈H`

(
�♦R =⇒ Ψlive(H

`)
)
. (17)

Again, the assumptions employing conditional live group templates will be
called conditional live group assumptions. With the generalization of live group
assumptions to conditional live group assumptions, we actually have all the
ingredients to define an APA for parity games as a conjunction

Ψ = Ψunsafe(S) ∧ Ψcolive(D) ∧ Ψcond(H`) (18)

of a safety, a co-liveness, and a conditional live group assumptions. Intuitively,
we use (i) a safety assumption to prevent Player 1 to leave the cooperative win-
ning region, (ii) a co-live assumption for each winning option that requires seeing
a particular odd priority only finitely often, and (iii) a conditional live group as-
sumption for each winning option that requires seeing an even priority infinitely
often if certain odd priority have been seen infinitely often. The remainder of
this section gives an algorithm (Alg. 1) to compute the actual safety, co-live
and conditional live group sets S, D and H`, respectively, and proves that the
resulting assumption Ψ (as in (18)) is actually an APA for the parity game G.
Computing APAs. The computation of unsafe, co-live, and conditional live
group sets S, D, and H` to make Ψ in (18) an APA is formalized in Alg. 1.
Alg. 1 utilizes the standard fixpoint algorithm Parity(G,C) [12] to compute
the cooperative winning region for a parity game G, defined as

Parity(G,C) := τXd · · · νX2 µX1 νX0.
⋃
i∈[0;d](Ci ∩ pre(Xi)), (19)

where τ is ν if d is even, and µ otherwise. In addition, Alg. 1 involves the
algorithms UnsafeA (Thm. 1), LiveA (Thm. 2), and CoLiveA (Thm. 3) to
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Algorithm 1 ParityAssumption
Input: G = (V,E) , C : V → {0, 1, . . .}
Output: Ψ
1: Z∗ ← Parity(G,C)
2: S ← UnsafeA(G,Z∗)
3: G← G|Z∗ , C ← C|Z∗
4: (D,H`)←ComputeSets((G,C), ∅, ∅)
5: return S,D,H`

6: procedure ComputeSets((G,C), D,H`)
7: d← max{i | Ci 6= ∅}
8: if d is odd then
9: W¬d ← Parity(G|V \Cd

, C)

10: D ← D ∪CoLiveA(G,W¬d)
11: else
12: Wd ← Büchi(G,Cd), W¬d ← V \Wd

13: for all odd i ∈ [0; d] do
14: H` ← H` ∪ (Wd ∩ Ci,LiveA(G|Wd

, Ci+1 ∪ Ci+3 · · · ∪ Cd))

15: if d > 0 then
16: G← G|W¬d , C0 ← C0 ∪ Cd, Cd ← ∅
17: ComputeSets((G,C), D,H`)
18: else
19: return (D,H`)

v1

c1

v2

c2

v3

c3

v4

c4

v5

c5

v6

c4

v7

c3

Fig. 4: A parity game, where a vertex with priority i has label ci. The dotted edges are
the unsafe edges, the dashed edges are the co-live edges, and every similarly colored
vertex-edge pair forms a conditional live group.

compute safety, live group, and co-liveness assumptions in an iterative manner.
In addition, G|U :=

(
U,U0, U1, E′

)
s.t. U0 := V 0 ∩ U , U1 := V 1 ∩ U , and

E′ := E ∩ (U × U) denotes the restriction of a game graph G :=
(
V, V 0, V 1, E

)
to a subset of its vertices U ⊆ V . Further, C|U denotes the restriction of the
priority set C from V to U ⊆ V .

We illustrate the steps of Alg. 1 by an example depicted in Fig. 4. In line 1,
we compute the cooperative winning region Z∗ of the entire game, to find that
the parity condition cannot be satisfied from vertex v7 even with cooperation,
i.e., Z∗ = {v1, . . . , v6}. So we put the edge (v6, v7) in a safety template, restrict
the game to G = G|Z∗ and run ComputeSets on the new restricted game.

In the new game G the highest priority is odd (d = 5), hence we execute
lines 9-10. Now a play would be winning only if eventually the play does not see
v5 any more. Hence, in step 9, we find the region W¬5 = {v1, . . . , v4, v6} of the
restricted graph G|V \C5

(only containing nodes vi with priority C(vi) < 5)) from
where we can satisfy the parity condition without seeing v5. We then make sure
that we do not leave W¬5 to visit v5 in the game G infinitely often by executing
CoLiveA(G,W¬5) in line 10, making the edges (v5, v5) and (v6, v5) co-live.

Once we restrict a play from visiting v5 infinitely often, we only need to focus
on satisfying parity without visiting v5 within W¬5. This observation allows us
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to further restrict our computation to the game G = G|W¬5 in line 16, where we
also update the priorities to only range from 0 to 4. In our example this step
does not change anything. We then re-execute ComputeSets on this game.

In the restricted graph, the highest priority is 4 which is even, hence we
execute lines 12-14. One way of winning in this game is to visit C4 infinitely
often, so we compute the respective cooperative winning region W4 in line 12.
In our example we have W4 =W¬5 = {v1, . . . , v4, v6}. Now, to ensure that from
the vertices from which we can cooperatively see 4, we actually win, we have
to make sure that every time a lower odd priority vertex is visited infinitely
often, a higher priority is also visited. This can be ensured by conditional live
group fairness as computed in line 14. For every odd priority i < 4, (i.e, for
i = 1 and i = 3) we have to make sure that either 2 or 4 (if i = 1) or 4 (if
i = 3) is visited infinitely often. The resulting live groups H`i = (Ri, H

`
i ) collect

all vertices in W4 with priority i in Ri and all live groups allowing to see even
priorities j with i < j ≤ 4 in H`

i , where the latter is computed using the fixed-
point algorithm LiveA to compute live groups. The resulting live groups for
i = 1 (blue) and i = 3 (red) are depicted in Fig. 4 and given by ({v1}, {(v1, v2)})
and ({v3}, {(v2, v4)}, {(v1, v2)}), respectively.

At this point we have W¬4 = ∅, making the game graph computed in line 16
empty, and the algorithm eventually terminates after iteratively removing all
priorities from C by running ComputeSets (without any computations, as G
is empty) for priorities 3, 2 and 1. In a different game graph, the reasoning done
for priorities 5 and 4 above can be repeated for lower priorities if there are other
parts of the game graph not contained in W4, from where the game can be won
by seeing priority 2 infinitely often. The main insight into the correctness of the
outlined algorithm is that all computed assumptions can be conjoined to obtain
an APA for the original parity game.

With Alg. 1 in place, we now state the main result of the entire paper.

Theorem 4. Let G = (G,Parity(C)) be a parity game such that (S,D,H`) =
ParityAssumption(G,C). Then Ψ = Ψunsafe(S) ∧ Ψcolive(D) ∧ Ψcond(H`) is
an APA for G. Moreover, Alg. 1 terminates in time O(n4), where n = |V |.

5 Experimental Evaluation

We have developed a C++-based prototype tool SImPA5 computing Sufficient,
Implementable and Permissive Assumptions for Büchi, co-Büchi, and parity
games. We first compare SImPA against the closest related tool GIST [9] in
Sec. 5.1. We then show that SImPA gives small and meaningful assumptions for
the well-known 2-client arbiter synthesis problem from [21] in Sec. 5.2.

5 Repository URL: https://gitlab.mpi-sws.org/kmallik/simpa
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Fig. 5: Running times of SImPA
vs GIST (in seconds, log-scale)

SImPA GIST
Mean-time 64.8s 1079.0s
Non-timeout
mean-time 64.8s 209.2s

Timeouts (1hr) 0(0%) 59(26%)
No assumption
generated 0(0%) 20(9%)

Faster 230(100%) 0(0%)

Table 1: Summary of the experimental re-
sults

5.1 Performance Evaluation

We compare the effectiveness of our tool against a re-implementation of GIST [9],
which is not available anymore 6. GIST originally computes assumptions only
enabling a particular initial vertex to become winning for Player 0. However, for
the experiments, we run GIST until one of the cooperatively winning vertices
is not winning anymore. Since GIST starts with a maximal assumption and
shrinks it until a fixed initial vertex is not winning anymore, our modification
makes GIST faster as the modified termination condition is satisfied earlier.
Owing to the non-dependence of our tool and dependence of GIST on a fixed
vertex, this modification allows a fair comparison.

We compared the performance and the quality of the assumptions computed
by SImPA and GIST on a set of parity games collected from the SYNTCOMP
benchmark suite [1], with a timeout of one hour per game. All the experiments
were performed on a computer equipped with Intel(R) Core(TM) i5-10600T
CPU @ 2.40GHz and 32 GiB RAM.

We provide all details of the experimental results in the full version [2] and
summarize them in Table 1. In addition, Fig. 5 shows a scatter plot, where
every instance of the benchmarks is depicted as a point, where the X and the
Y coordinates represent the running time for SImPA and GIST (in seconds),
respectively. We see that SImPA is computationally much faster than GIST in
every instance (all dots lie above the lower red line) – most times by one (above
the middle green line) and many times even by two (above the upper orange
line) orders of magnitude.

Moreover, in some experiments, GIST fails to compute a sufficient assumption
(in the sense of Def. 2), whereas SImPA successfully computes an APA (see the
row labeled ‘no assumption generated’ in Table 1). This is not surprising, as
the class of assumptions used by GIST are only unsafe edges and live edges
(i.e., singleton live groups) which are not expressive enough to provide sufficient
assumptions for all parity games (see Fig. 1(b) for a simple example where there
is no sufficient assumption that can be expressed using live edges). Furthermore,
6 The link provided in the paper is broken, and the authors informed us that the
implementation is not available.
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Fig. 6: Illustration of a relevant part of the game graph for the 2-client arbiter. Rect-
angles and circles represent Player 1 and Player 0 vertices, respectively. The labels
of the Player 0 states indicate the current status of the request and grant bits, and
in addition, remember if a request is currently pending using the atomic propositions
F1, F2. The double-lined vertices are Büchi vertices, i.e., ones with no pending requests.

we note that in all cases where the assumptions computed by GIST are actually
APAs, SImPA computes the same assumptions orders of magnitudes faster.

5.2 2-Client Arbiter Example

We consider the 2-client arbiter example from the work by Piterman et al. [21],
where clients i ∈ {1, 2} (Player 1) can request or free a shared resource by
setting the input variables ri to true or false, and the arbiter (Player 0) can set
the output variables gi to true or false to grant or withdraw the shared resource
to/from client i. The game graph for this example is implicitly given as part
of the specification (as this is a GR(1) synthesis problem [21]). The goal of the
arbiter is to ensure that always eventually the requests are granted. This can be
depicted by a Büchi game, part of which is presented in Fig. 6. It is known that
Player 0 can not win the game without constraining moves of Player 1.

Running SImPA (took 0.01s) on this example yields two live groups (edges
of one live group are indicated by thick red arrows in Fig. 6) that ensures that
the play eventually moves to vertices where the Player 0 can force a visit to
a Büchi vertex. These assumptions are similar to the ones used to restrict the
clients’ behavior in [21], but are more permissive. Furthermore, running GIST
(took 6.44s) yields several live edges (e.g., 2 − 3 , 7 − 1 ), which again is less
permissive than ours. It turns out that an APA for this example will unavoidably
require live groups — singleton live edges, as computed by GIST, will not suffice.
For a detailed discussion, we refer the reader to the full version [2].
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Abstract. We present a verification-based learning framework VEL that
synthesizes safe programmatic controllers for environments with contin-
uous state and action spaces. The key idea is the integration of pro-
gram reasoning techniques into controller training loops. VEL performs
abstraction-based program verification to reason about a programmatic
controller and its environment as a closed-loop system. Based on a novel
verification-guided synthesis loop for training, VEL minimizes the amount
of safety violation in the proof space of the system, which approximates
the worst-case safety loss, using gradient-descent style optimization. Ex-
perimental results demonstrate the substantial benefits of leveraging ver-
ification feedback for synthesizing provably correct controllers.

1 Introduction

Controller search is commonly used to govern cyber-physical systems such as
autonomous vehicles, where high assurance is particularly important. Reinforce-
ment Learning (RL) of neural network controllers is a promising approach for
controller search [19]. State-of-the-art RL algorithms can learn motor skills au-
tonomously through trial and error in simulated or even unknown environments,
thus avoiding tedious manual engineering. However, well-trained neural network
controllers may still be unsafe since the RL algorithms do not provide any formal
guarantees on safety. A learned controller may fail occasionally but catastroph-
ically, and debugging these failures can be challenging [46].

Guaranteeing the correctness of an RL controller is therefore important.
Principally, given an environment model, the correctness of a controller can
be verified by reachability analysis over a closed-loop system that combines the
environment model and the controller. Indeed, the use of formal verification
techniques to aid the design of reliable learning-enabled autonomous systems
has risen rapidly over the last few years [43,28,41,18,17]. A natural extended
question is that in case verification fails, can we exploit verification feedback in
the form of counterexamples to synthesize a verifiably correct controller? This
turns out to be a very challenging task due to the following reasons.

Verification Scalability. A counterexample-guided controller synthesizer has
to iteratively conduct reachability analysis and controller optimization as each
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if 28.33x1 + 4.23x2 + 4.16 ≥ 0
then 6.79x1 − 8.56x2 + 0.35
else 11.01x1 − 13.50x2 + 8.71

(a) Oscillator Programmatic Controller (b) Oscillator Reachability Analysis

Fig. 1: An oscillator programmatic controller and its reachability analysis. In
Fig. 1b, the red region represents the oscillator unsafe set (−03,−0.25) ×
(0.2, 0.35), and the blue region depicts the target set [−0.05, 0.05]× [−0.05, 0.05].
The initial state set of oscillator is [−0.51,−0.49]× [0.49, 0.51].

iteration may discover a new counterexample. However, repeatedly calculating
the reachable set of a nonlinear system controlled by a neural network controller
over a long horizon is computationally challenging. For example, consider de-
signing a controller for the Van der Pol’s oscillator system [49]. The oscillator
is a 2-dimensional non-linear system whose state transition can be expressed by
the following ordinary differential equations:

ẋ1 = x2 ẋ2 = (1− x21)x2 − x1 + u (1)

where (x1, x2) is the system state variables and u is the control action variable.
A feedback controller π(x1, x2) measures the current system state and then ma-
nipulates the control input u as needed to drive the system toward its target.
The initial set of the control system is (x1, x2) ∈ [−0.51,−0.49]× [0.49, 0.51]. As
depicted in Fig. 1b, the controlled system is expected to reach the target region
in blue while avoiding the obstacle region in red within 120 timesteps (i.e. con-
trol steps). In our experience, even for this simple example, using Verisig [28]
and ReachNN∗ [18] (two state-of-the-art verification tools for neural network
controlled systems) to calculate the reachable set of a simple 2-layer neural net-
work feedback controller πNN(x1, x2) costs more than 100s each. It is even more
a costly process to repeatedly conduct reachability analysis of a complex neural
network controller in a counterexample-guided learning loop.

Recently, programmatic controllers emerge as a promising solution to address
the lack of interpretability problem in deep reinforcement learning [47,27,44,38]
by training controllers as programs. A programmatic controller to control the
oscillator environment learned by a programmatic reinforcement learning algo-
rithm [38] is depicted in Fig. 1a. We depict the decision boundary of the pro-
gram’s conditional statement (28.33x1 + 4.23x2 + 4.16 = 0) in solid dash
in Fig. 1b. The program can be interpreted as a decomposition of the reach-
avoid learning problem into two sub-problems — the linear controller in the else
branch of the program first pushes the system away from the obstacle and next
the linear controller in the then branch takes over to make the system reach the
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target. As we show in this paper, the compact and structured representation of
a programmatic controller lends itself amenable to off-the-shelf hybrid or con-
tinuous system reachability tools e.g. [10,20]. Compared with verifying a deep
neural network controller, reasoning about a programmatic controller is more
feasible. However, the question remains when verification fails – rather than re-
training a new controller, how can we leverage verification feedback to construct
a verifiably correct controller?

Proof Space Optimization. The other main challenge of verification-guided
controller synthesis is that when verification fails, the counterexample path
may provide little help or even be spurious due to estimated approximation
errors. This is because reachability analyses typically overapproximate the true
reachable sets using a computationally convenient representation such as poly-
topes [20] or Taylor models [10]. This overapproximation leads to quick error
accumulation over time, known as the wrapping effect. Even a well-trained con-
troller may fail verification because of approximation errors. For example, we
adapted a state-of-the-art reachability analyzer Flow∗ [10] to conduct reachabil-
ity analysis of the closed-loop system combined by the programmatic controller
in Fig. 1a and the oscillator environment (Equation 1) to compute a reachable
state set between each time interval within the episode horizon (the controller
is applied to generate a control action at the start of each time interval). The
result is depicted in Fig. 1b. Although the programmatic controller empirically
succeeds reaching the goal on extensive test simulations, the reachability analysis
cannot determine whether the target region can always be reached as it computes
a larger reachable region that keeps expansion, which may be an overestimation
caused by over-approximation.

We hypothesize that verification failures can be caused by (1) true counterex-
ample of unsafe states, (2) states caused by approximate errors, and (3) states
in between the time interval of each control step (RL algorithms only sample
states at the start and the end of a time interval). The latter two kinds of states
cannot be observed by an RL algorithm during training in the concrete system
state space. Thus, counterexample-guided controller synthesis may not work well
if counterexamples are in the form of paths within the concrete state space.

To address this challenge, we propose synthesizing controllers in the proof
space of a reachability analyzer. Controller synthesis in the proof space is critical
to learning a verified controller because it can leverage verification feedback on
either true unsafe counterexample states or approximation errors introduced by
the verification procedure for searching a provably correct controller. A coun-
terexample detected by a reachability analyzer is a symbolic rollout of abstract
states of the closed-loop system that combines a (fixed) environment model and
a (parameterized) programmatic controller. An abstract state (e.g. depicted as
a green region in Fig. 1b) at a timestep over-approximates the set of concrete
states reachable during the time interval of the timestep. VEL quantifies the
safety and reachability property violation by the abstract states, e.g. there is
an abstract loss between the approximative abstract state and the target region
at the last control step. The loss approximates the worst-case reachability loss
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of any concrete state subsumed by the abstraction. We introduce lightweight
gradient-descent style optimization algorithms to optimize controller parame-
ters to effectively minimize the amount of correctness property violation to zero
to refute any verification counterexamples.

Contributions. The main contribution of this paper is twofold. First, we
present an efficient controller synthesis approach that integrates formal veri-
fication within a programmatic controller learning loop. Second, instead of syn-
thesizing a programmatic controller from concrete state and action samples, we
optimize the controller using symbolic rollouts with abstract states obtained by
reachability analysis in the verification proof space. We implement the proposed
ideas in a tool called VEL and present a detailed experimental study over a
range of reinforcement learning systems. Our experiments demonstrate the ben-
efits of integrating formal verification as part of the training objective and using
verification feedback for controller synthesis.

2 Problem Setup

Environment Models. An environment is a structure M δ[·] = (S,A, F : {S×
A→ S}, R : {S ×A→ R}, ·) where S is an infinite set of continuous real-vector
environment states which are valuations of the state variables x1, x2, . . . , xn of
dimension n (S ⊆ Rn); and A is a set of continuous real-vector control actions
which are valuations of the action variables u1, u2, . . . , um of dimension m. F
is a state transition function that emits the next environment state given a
current state s and an agent action a. We assume that F is defined by an
ordinary differential equation (ODE) in the form of ẋ = f(x, u) and the function
f : Rm×Rn → Rm is Lipschitz continuous in x and continuous in u. R(s, a) is the
immediate reward after transition from an environment state s ∈ S with action
a ∈ A. An environment M δ[·] is parameterized with an (unknown) controller.

Controllers. An agent uses a controller to interact with an environment M δ[·].
We explicitly model the deployment of a (learned) controller π : {S → A} in
M δ[·] as a closed-loop system M δ[π]. The controller π determines which action
the agent ought to take in a given environment state. Specifically, it is invoked
every δ time period at a timestep. π reads the environment state si = s(iδ)
at time t = iδ (i = 0, 1, 2, . . .) or timestep i, and computes a control action
as ai = a(iδ) = π(s(iδ)). Then the environment evolves following the ODE
ẋ = f(x, a(iδ)) within the time period [iδ, (i+ 1)δ] and obtain the state si+1 =
s((i+ 1)δ) at the next timestep i+ 1. In the oscillator example from Sec. 1, the
duration δ of a timestep is 0.05s and the time horizon is 6s (i.e. 120 timesteps).

For environment simulation, given a set of initial states S0, we assume the
existence of a flow function1 φ(s0, t) : S0×R+ → S that maps some initial state
s0 to the environment state φ(s0, t) at time t where φ(s0, 0) = s0. We note that
φ is the solution of the ODE ẋ = f(x, a(iδ)) in the state transition function F
during the time period [iδ, (i+ 1)δ] and a(iδ) = π(φ(s0, iδ)).

1 φ may be implemented using scipy.integrate.odeint (or scipy.integrate.solve ivp).
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Reinforcement Learning (RL). Given a set of initial states S0 and a time
horizon Tδ (T > 0) with δ as the duration of a timestep, a T -timestep rollout ζ
of a controller π is denoted as (ζ = s0, a0, s1, . . . , sT ) ∼ π where si = s(iδ) and
ai = a(iδ) are the environment state and the action taken at timestep i such
that s0 ∈ S0, si+1 = F (si, ai), and ai = π(si). The aggregate reward of π is

JR(π) = E(ζ=s0,a0,...,sT )∼π[

T∑
t=0

βtR(si, ai)] (2)

where β is the reward discount factor (0 < β ≤ 1). Controller search via RL
aims to produce a controller π that maximizes JR(π).

Controller Correctness Specification. A correctness specification of a con-
troller is a logical formula specifying whether any rollout ζ of the controller
accomplishes the task without violating safety properties and reachability prop-
erties. To define safety and reachability over rollouts, the user first specifies a
set of atomic predicates over environment states s.

Definition 1 (Predicates). A predicate ϕ is a quantifier-free Boolean combi-
nations of linear inequalities over the environment state variables x:

〈ϕ〉 ::= 〈P〉 | ϕ ∧ ϕ | ϕ ∨ ϕ;

〈P〉 ::= A · x ≤ b where A ∈ R|x|, b ∈ R;

A state s ∈ S satisfies a preciate ϕ, denoted as s |= ϕ, iff ϕ(s) is true.
The correctness requirement of a controller goes beyond from predicates over

environment states s to specifications over controller rollouts ζ.

Definition 2 (Rollout Specifications). The syntax of our correctness speci-
fications for RL controllers is defined as:

ψ ::= ϕI reach ϕ1 ensuring ϕ2

In a rollout specification, ϕI reach ϕ1 enforces reachability - the controlled agent
should eventually reach some goal states evaluated true by the predicate ϕ1 from
an initial state that satisfies ϕI. For instance, the agent should achieve some goals
from an initial state. The constraint ensuring ϕ2 additionally enforces safety -
any rollout of the controller should only visit safe states evaluated true by the
predicate ϕ2. For example, the agent should remain within a safety boundary or
avoid any obstacles throughout a rollout. Formally, the semantics of a rollout
specification ψ is defined as follows:

JϕI reach ϕ1 ensuring ϕ2K(ζ0:T ) = ϕ1(sT ) ∧ (∀ 0 ≤ i ≤ T. ϕ2(si))

where ζ0:T = s0, s1, . . . , sT is a rollout such that s0 ∈ ϕI and T > 0 denotes the
total number of timesteps. Our specification implicitly requires that if the target
region is reached before the T timestep of a rollout, the controlled agent does not
leave the target region at the end of the rollout.
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Given a time horizon Tδ (T > 0), a controller π is correct for an environment
M δ[·] with respect to a rollout specification ψ ::= ϕI reach ϕ1 ensuring ϕ2 iff for
any rollout ζ0:T = s0, s1, . . . sT−1, sT of M δ[π] such that ϕI(s0) holds, JψK(ζ0:T )
is true. Notice that this definition does not consider any states of the continuous
environment occurring within the time period of a timestep.

Example 1 Continue the oscillator example. Assume an oscillator initial state
is from x1, x2 ∈ [−0.51,−0.49]× [0.49, 0.51]. Specify the initial state constraint:

ϕI(x1, x2) ≡ −0.51 ≤ x1 ≤ −0.49 ∧ 0.49 ≤ x2 ≤ 0.51

The unsafe set of oscillator is (−03,−0.25) × (0.2, 0.35) (depicted as the red
region in Fig. 1b). The safety ϕsafe of the system is specified as:

ϕsafe(x1, x2) ≡ x1 ≤ −0.3 ∨ x1 ≥ −0.25 ∨ x2 ≤ 0.2 ∨ x2 ≥ 0.35

For this example, the target region is [−0.05, 0.05]× [−0.05, 0.05] (the blue region
in Fig. 1b). The reachability of the system ϕreach is specified as:

ϕreach(x1, x2) ≡ −0.05 ≤ x1 ≤ 0.05 ∧ −0.05 ≤ x2 ≤ 0.05

The target region should be eventually reached by the end of a control episode
while avoiding the unsafe state region. We express the rollout specification as:

ϕI(x1, x2) reach ϕreach(x1, x2) ensuring ϕsafe(x1, x2)

The following specification formulates that a desired controller stabilizes the os-
cillator around the target region over an infinite time horizon:

ϕreach(x1, x2) reach ϕreach(x1, x2) ensuring ϕsafe(x1, x2)

3 Programmatic Controllers

Programmatic controllers have emerged as a promising solution to address the
lack of interpretability in deep reinforcement learning [47,38,27,8] by learning
controllers as programs. This paper focuses on programmatic controllers struc-
tured as differentiable programs [38].

Our programmatic controllers follow the high-level context-free grammar de-
picted in Fig. 2 where E is the start symbol, θ represents real-valued parameters
of the program. The nonterminals E and B stand for program expressions that
evaluate to action values in Rm and Booleans, respectively, where m is the action
dimension size, θ1 ∈ R and θ2 ∈ Rn. We represent a state input to a program-
matic controller as s = {x1 : ν1, x2 : ν2, . . . , xn} where n is the state dimension
size and νi = s[xi] is the value of xi in s. As usual, the unbounded variables in
X = [x1, x2, . . . , xn] are assumed to be input variables (i.e., state variables). C
is a low-level affine controller that can be invoked by a programmatic controller
where θ3, θc ∈ Rm, θ4 ∈ Rm·n are controller parameters. Notice that C can be
as simple as some (learned) constants θc.
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E ::= C | if B then C else E

B ::= θ1 + θT2 · X ≥ 0

C ::= θ3 + θ4 · X | θc

Fig. 2: A context-free grammar for programmatic controllers.

The semantics of a programmatic controller in E is mostly standard and
given by a function JEK(s), defined for each language construct. For example,
JxiK(s) = s[xi] reads the value of a variable xi in a state s. A controller may use an
if-then-else branching construct. To avoid discontinuities for differentiability,
we interpret its semantics in terms of a smooth approximation:

Jif B then C else EK(s) = σ(JBK(s)) · JCK(s) + (1− σ(JBK(s))) · JEK(s) (3)

where σ is the sigmoid function. Thus, any controller programmed in this gram-
mar is a differentiable program. During execution, a programmatic controller
invokes a set of low-level affine controllers under different environment condi-
tions, according to the activation of the B conditions in the program.

Programmatic Reinforcement Learning. We use the programmatic rein-
forcement learning algorithm [38] to learn a programmatic controller. Compared
with other programmatic reinforcement learning approaches [27,47], this algo-
rithm stands out by jointly learning both program structures and program pa-
rameters. Empirical results show that learned programmatic controllers achieve
comparable or even better reward performance than deep neural networks [38].

4 Proof Space Optimization

The main challenge of using a verification procedure to guide controller synthe-
sis is that verifiers are in general incomplete. When verification fails, it does not
necessarily mean the system under verification has a true counterexample as the
verifier may introduce states caused by over-approximation errors, commonly
seen in reachability analysis. Even a well-trained controller may fail verifica-
tion because of approximation errors. In our context, for soundness, reachability
analysis of continuous or hybrid systems additionally takes environment states
in between the time interval of a timestep into account. Both of these kinds
of states cannot be observed by RL agents during training in the concrete state
space, which renders the importance of controller optimization in the proof space
of verification. In the following, Sec. 4.1 defines a verification procedure for en-
vironment models governed by programmatic controllers. Sec. 4.2 encodes veri-
fication feedback as a loss function of controller parameters over the verification
proof space. Finally, Sec. 4.3 defines an optimization procedure that iteratively
minimizes the loss function for correct-by-construction controller synthesis.
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4.1 Controller Verification

We formalize controller synthesis as a verification-based controller optimization
problem. A synthesized controller π is certified by a formal verifier against an
environment model M δ[·] and a rollout specification ψ (Definition 2). The verifier
returns true if π can be verified correct.

Reinforcement learning algorithms typically discretize a continuous envi-
ronment model M δ[·] to sample environment states every δ time period (as a
timestep) for controller learning (Sec. 2). For soundness, in verification our ap-
proach instead considers all states reachable by the original continuous system.
Formally, given a set of initial states S0, we use Si (i > 0) to represent the set
of reachable concrete states during the time interval of [(i− 1)δ, iδ]:

Si = {φ(s0, t) | ∀s0 ∈ S0, ∀t ∈ [(i− 1)δ, iδ]}

where φ is the flow function for environment state transition defined in Sec. 2.
Our algorithm uses abstract interpretation to soundly approximate the set of
reachable states Si at each time step by reachability analysis.

Definition 3 (Symbolic Rollouts). Given an environment model M δ[π] =
(S,A, F,R, π) deployed with a controller π, a set of initial states S0, and an
abstract domain D, a symbolic rollout of M δ[π] over D is ζD = SD0 , S

D
1 , . . .

where SD0 = α(S0) is the abstraction of the initial states S0 in D. Each symbolic
state SDi = FD[π]

(
SDi−1

)
over-approximates Si - the set of reachable states from

the initial state S0 during the time interval [(i− 1)δ, iδ] of the timestep i. FD is
an abstract transformer for M δ[π]’s state transition function F .

Our implementation of the abstract interpreter FD is based on Flow∗ [10], a
reachability analyzer for continuous or hybrid systems, where the abstract do-
main D is Taylor Model (TM) flowpipes. Formally, for reachability computation
at each timestep i (where i > 0), we firstly use Flow∗ to evaluate the TM flow-
pipe Ŝi−1 for the reachable set of states at time t = (i − 1)δ. To obtain a TM
representation for the output set of the programmatic controller at timestep i,
we use TM arithmetic to evaluate a TM flowpipe Âi−1 for JπK(s) for all states
s ∈ Ŝi−1. Here JπK encodes the semantics of π (Equation 3). For example, the
semantics of the oscillator controller in Fig. 1a is:

σ(28.33x1 + 4.23x2 + 4.16)× (6.79x1 − 8.56x2 + 0.35)

+ (1− σ(28.33x1 + 4.23x2 + 4.16))× (11.01x1 − 13.50x2 + 8.71)

where the sigmoid function σ can be handled by TM arithmetic. The resulting
TM representation Âi−1 can be viewed as an overapproximation of the con-
troller’s output at timestep i. Finally, we use Flow∗ to construct the TM flow-
pipe overapproximation SDi for all reachable states during the time period at
timestep i by reachability analysis over the ODE dynamics of the transition
function ẋ = f(x, a) for δ time period with initial state x(0) ∈ Ŝi−1 and the
control action a ∈ Âi−1.
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Verification Procedure. Given a closed-loop system M δ[π], a time horizon
Tδ (T > 0), and a rollout specification ψ ::= JϕI reach ϕ1 ensuring ϕ2K, we
obtain the symbolic rollout of M δ[π] as ζD0:T = SD0 , S

D
1 , . . . , S

D
T where SD0 is the

abstraction of all states in ϕI in the abstract domain D. For formal verification,
we extend the semantics definition of the rollout specification JψK over concrete
rollouts (Definition 2) to support symbolic rollouts. Formally, JψK(ζD0:T ) holds iff:

∀s ∈ γ(SDT ). ϕ1(s)
∧
∀ 0 ≤ i ≤ T, s ∈ γ(SDi ). ϕ2(s)

where γ is the concretization function of the abstract domain D. The closed-
loop system M δ[π] satisfies ψ, denoted as M δ[π] |= ψ, iff JψK(ζD0:T ) holds. The
abstract domain D is the proof space of controller verification.

Example 2 To verify the closed-loop system composed by the oscillator ODE
in Eq. 1 and the learned controller in Fig. 1a, we have conducted reachability
analysis to overapproximate the reachable state set during the time period of
each timestep within the episode horizon. The result of the TM flowpipes are
depicted as a sequence of green regions in Fig. 1b. The verification procedure
cannot guarantee that the target be reached eventually due to the approximation
errors.

4.2 Correctness Property Loss in the Proof Space

To facilitate controller optimization in the presence of verification failures, our
approach measures the amount of correctness property violation as verification
feedback. To this end, we firstly define correct property violation over the con-
crete environment state space and then lift this definition to the proof space of
controller verification.

We note that a controller rollout that fails correctness property verification
violates desired properties at some states. The following definition characterizes
a correctness loss function to quantify the correctness property violation of a
state.

Definition 4 (State Correctness Loss Function). For a predicate ϕ over
states s ∈ S, we define a non-negative loss function L(s, ϕ) such that L(s, ϕ) = 0
iff s satisfies ϕ, i.e. s |= ϕ. We define L(s, ϕ) recursively, based on the possible
shapes of ϕ (Definition 1):

– L(s,A · x ≤ b) := max(A · s− b, 0)
– L(s, ϕ1 ∧ ϕ2) := max(L(s, ϕ1),L(s, ϕ2))
– L(s, ϕ1 ∨ ϕ2) := min(L(s, ϕ1),L(s, ϕ2))

Notice that L(s, ϕ1 ∧ ϕ2) = 0 iff L(s, ϕ1) = 0 and L(s, ϕ2) = 0, and similarly
L(ϕ1 ∨ ϕ2) = 0 iff L(ϕ1) = 0 or L(ϕ2) = 0.

Our objective is to use verification feedback to improve controller safety. To
this end, we lift the correctness loss function over concrete states (Definition 4)
to an abstract correctness loss function over abstract states.
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Definition 5 (Abstract State Correctness Loss Function). Given an ab-
stract state SD and a predicate ϕ, we define an abstract correctness loss function:

LD(SD, ϕ) = max
s∈γ(SD)

L(s, ϕ)

where γ is the concretization function of the abstract domain D. The abstract
correctness loss function applies γ to obtain all concrete states represented by
an abstract state SD. It measures the worst-case correctness loss of ϕ among all
concrete states subsumed by SD. Given an abstract domain D, we can usually
approximate the concretization of an abstract state γ(SD) with a tight interval
γI(S

D). As exemplified in Fig. 1b, it is straightforward to represent Taylor model
flowpipes as intervals in Flow∗. Based on the possible shape of ϕ, we redefine
LD(SD, ϕ) as:

– LD(SD,A · x ≤ b) := maxs∈γI(SD)

(
max(A · s− b, 0)

)
– LD(SD, ϕ1 ∧ ϕ2) := max(LD(SD, ϕ1),LD(SD, ϕ2))
– LD(SD, ϕ1 ∨ ϕ2) := min(LD(SD, ϕ1),LD(SD, ϕ2))

Theorem 1 (Abstract State Correctness Loss Function Soundness).
Given an abstract state SD and a predicate ϕ, we have:

LD(SD, ϕ) = 0 =⇒ ∀s ∈ γI(SD) s |= ϕ.

We further lift the definition of the correctness loss function over abstract
states (Definition 5) to a correctness loss function over symbolic rollouts.

Definition 6 (Symbolic Rollout Correctness Loss). Given a rollout speci-
fication ψ := ϕI reach ϕ1 ensuring ϕ2 and a symbolic rollout ζD0:T = SD0 , . . . , S

D
T

where SD0 is the abstraction of all states in ϕI in the abstract domain D, we de-
fine an abstract safety loss function LD(ζ0:T , ψ) measuring the degree to which
the rollout specification is violated:

LD(ζ0:T , ϕI reach ϕ1 ensuring ϕ2) = max(LD(SDT , ϕ1), max
0<i≤T

(LD(SDi , ϕ2)))

Definition 6 enables a quantitative metric for the correctness loss of a con-
troller in the verification proof space. Given a closed loop system M δ[π], a
time horizon Tδ, a rollout specification ψ, and the corresponding symbolic
rollout ζD0:T of M δ[π], the correctness loss of M δ[π] with respect to ψ, de-
noted as LD(M δ[π], ψ), is defined over the symbolic rollout i.e. LD(M δ[π], ψ)
= LD(ζD0:T , ψ).

Example 3 In Fig. 1b, there is a correctness loss (depicted as a red arrow)
between the abstract state at the last timestep of the oscillator symbolic rollout
and the desired reachable region ϕreach defined in Example 1. We characterize
it as an abstract state correctness loss. The whole symbolic rollout has the same
correctness loss with respect to the rollout specification defined in Example 1.

Theorem 2 (Symbolic Rollout Correctness Soundness). Given an envi-
ronment M δ[·] deployed with a controller π and a rollout specification ψ, we
have

LD(M δ[π], ψ) = 0 =⇒ M δ[π] |= ψ.
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Algorithm 1 VEL: Verification-based learning framework for controller syn-
thesis. In line 8, ωk is a Gaussian noise and ν is a small positive real number.

Require: Environment model Mδ[·], rollout specification ψ, initial controller πθ
trained using the programmatic RL algorithm [38].

Ensure: Optimized controller πθ such that Mδ[πθ] |= ψ.

1: procedure VEL
2: θ ← all parameters in πθ for optimization
3: while true do
4: `D ← LD(Mδ[πθ], ψ)
5: if `D = 0 then
6: Dump πθ to a verified controller list
7: end if

8: ∇θLD ← 1
N

∑N
k=1

LD(Mδ [πθ+νωk
], ψ)−LD(Mδ [πθ−νωk ],ψ)

ν
ωk

9: θ ← θ − η · ∇θLD where η is a learning rate
10: end while
11: end procedure

4.3 Controller Synthesis

The unique feature of our controller synthesis algorithm is that it leverages
verification feedback on either true unsafe states or overapproximation errors
introduced by verification to search for a provably correct controller.

Controller Synthesis in the Proof Space. We deem a programmatic con-
troller π with trainable parameters θ (e.g. from the grammar in Fig. 2) as πθ.
Given a closed-loop system M δ[πθ], the correctness loss function LD(M δ[πθ], ψ)
is essentially a function of πθ’s parameters θ. To reduce the correctness loss
of πθ over the proof space D, we leverage a gradient-descent style optimiza-
tion to update θ by taking steps proportional to the negative of the gradient of
LD(M δ[πθ], ψ) at θ. As opposed to standard gradient descent optimization, we
optimize πθ based on symbolic rollouts in the proof space D, favouring the ab-
stract interpreter (i.e. Flow∗) directly for verification-guided controller updates.

Black-box Gradient Estimation. Directly deriving the gradients of LD, how-
ever, requires the controller verification procedure be differentiable, which is
not supported by reachability analyzers such as Flow∗. To overcome this chal-
lenge, our algorithm effectively estimates the gradients of LD based on random
search [34]. Given a closed-loop environment M δ[πθ], at each training iteration,
we obtain perturbed systems M δ[πθ+νω] and M δ[πθ−νω] where we add sampled
Gaussian noise ω to the current controller πθ’s parameters θ in both directions
and ν is a small positive real number. By evaluating the abstract correctness
losses of the symbolic rollouts of M δ[πθ+νω] and M δ[πθ−νω], we update θ with
a finite difference approximation along an unbiased estimator of the gradient:

∇θLD ←
1

N

N∑
k=1

(
LD(M δ[πθ+νωk ], ψ)−LD(M δ[πθ−νωk ], ψ)

)
ν

ωk
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We update controller parameters θ as follows where η is a learning rate:

θ ← θ − η · ∇θLD

Our high-level controller synthesis algorithm is depicted in Algorithm. 1. The
algorithm takes as input an environment model M δ[·], a rollout specification ψ,
and a programmatic controller π learned using the programmatic reinforcement
learning technique [38]. When verification fails (line 4), it uses the correctness
loss of the symbolic rollout of M δ[π] for optimization (line 8-9). The algorithm
repeatedly performs the gradient-based update until a verified controller is syn-
thesized. As the controller verification procedure is undecidable in general, it is
possible that Algorithm 1 converges with a nonzero correctness loss. Our empir-
ical results in Sec. 5 demonstrate that the algorithm works well in practice.

5 Experimental Results

We have implemented the verification-guided controller synthesis technique in
Algorithm 1 in a tool called VEL (VErification-based Learning) [50]. Given an
environment and a rollout specification ψ (Definition 2), VEL uses the program-
matic reinforcement learning algorithm [38] to learn a programmatic controller
π. The controller π is trained to satisfy the safety and reachability requirements
as set by ψ. We do so by shaping a reward function that is consistent with ψ -
this function rewards actions leading to goal states and penalizes actions leading
to unsafe states. As the RL algorithm does not provide any correctness guaran-
tees and the verification procedure may introduce large approximation errors,
even well-trained controllers may fail verification. In case of verification failures,
VEL applies Algorithm 1 to optimize π based on the verification feedback.

We evaluated VEL on several nonlinear continuous or hybrid systems taken
from the literature. These are problems that are widely used for evaluating state-
of-the-art verification tools for learning-enabled cyber-physical systems. Bench-
marks B1 - B5 were introduced by [18]; adaptive cruise control (ACC) was pre-
sented in [43]; mountain car (MC) and quadrotor with model-predictive control
(QMPC) were introduced by [28]; Pedulum and CartPole were taken from [29];
Tora and Unicyclecar were presented in the ARCH-COMP21 competition on
formal verification of Artificial Intelligence and Neural Network Control Sys-
tems (AINNCS). We present the dynamics and the detailed description of each
benchmark in [50]. The rollout specifications (Definition 2) are depicted in Ta-
ble 1. The specifications define for each benchmark the initial states, the goal
regions to reach, and the safety properties describing the safety boundary or
the obstacles to avoid. On three benchmarks we verify the controller correctness
over an infinite horizon. For the classic control problem Pendulum, to verify
that the pendulum does not fall in an infinite time horizon, the rollout spec-
ification requires that any rollout starting from the region x1, x2 ∈ [−0.1, 0.1]
(representing pendulum angle and angular velocity) eventually turns back to it
and any rollout states must be safe (including those that temporarily leave this
region). Similarly, Tora models a moving cart attached to a wall with a spring.
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Table 1: Benchmark Rollout Specifications (T represents True).
Tasks Rollout Specifications

B1

x1 ∈ [.8, .9] ∧ x2 ∈ [.5, .6] reach x1 ∈ [0, .2] ∧ x2 ∈ [.05, .3]

ensuring x1, x2 ∈ [−1.5, 1.5]

B2

x1 ∈ [.7, .9] ∧ x2 ∈ [.7, .9] reach x1 ∈ [−.3, .1] ∧ x2 ∈ [−.35, .5]

ensuring x1, x2 ∈ [−1.5, 1.5]

B3 x1 ∈ [.8, .9] ∧ x2 ∈ [.4, .5] reach x1 ∈ [0, .2] ∧ x2 ∈ [.05, .3] ensuring T

B4

x1, x3 ∈ [.25, .27] ∧ x2 ∈ [.08, .1]

reach x1 ∈ [−.3, .1] ∧ x2 ∈ [−.35, .5] ensuring T

B5

x1 ∈ [.38, .4] ∧ x2 ∈ [.45, .47] ∧ x3 ∈ [.25, .27]

reach x1 ∈ [0, .2] ∧ x2 ∈ [.05, .3] ensuring T

Oscillatorinf

x1 ∈ [−.51,−.49] ∧ x2 ∈ [.49, .51] reach x1, x2 ∈ [−.05, .05]
ensuring x1 ≤ −.3 ∨ x1 ≥ −.25 ∨ x2 ≤ .2 ∨ x2 ≥ .35,

x1, x2 ∈ [−.05, .05] reach x1, x2 ∈ [−.05, .05]
ensuring x1 ≤ −.3 ∨ x1 ≥ −.25 ∨ x2 ≤ .2 ∨ x2 ≥ .35

ACC
x1 ∈ [90, 110] ∧ x2 ∈ [32, 32.05] ∧ x4 ∈ [10, 11] ∧ x5 ∈ [30, 30.05]

reach −x1 + x4 − 102 ≤ 0 ensuring −x1 + 1.4 · x2 + x4 + 10 ≤ 0

MountainCar x1 ∈ [−.6,−.4] reach x1 > .45 ensuring x1 ≤ .15 ∨ x2 ≥ .25 ∨ x2 ≥ .02

QMPC
.025 ≤ x1 ≤ .05 ∧ 0 ≤ x2 ≤ .025 reach T

ensuring −.32 ≤ x1, x2, x3 ≤ .32

Penduluminf x1, x2 ∈ [−.1, .1] reach x1, x2 ∈ [−.1, .1] ensuring x1, x2 ∈ [−π
2
, π
2

]

CartPole

x1, x2, x3, x4 ∈ [−.05, .05] reach T
ensuring x1 ∈ [−2.4, 2.4] ∧ x2 ∈ [−.21, .21]

UnicycleCar

x1 ∈ [9.5, 9.55] ∧ x2 ∈ [−4.5,−4.45] ∧ x3 ∈ [2.1, 2.11] ∧ x4 ∈ [1.5, 1.51] reach

x1 ∈ [−.6, .6] ∧ x2 ∈ [−.2, .2] ∧ x3 ∈ [−.06, .06] ∧ x4 ∈ [−.3, .3] ensuring T

Tora

x1 ∈ [−.77,−.75] ∧ x2 ∈ [−.45,−.43] ∧ x3 ∈ [.51, .54] ∧ x4 ∈ [−.3,−.28]

reach x1 ∈ [−.1, .2] ∧ x2 ∈ [−.9, .6] ensuring x1, x2, x3, x4 ∈ [−1.5, 1.5]

Torainf

x1, x2, x3, x4 ∈ [−.1, .1] reach x1, x2, x3, x4 ∈ [−.1, .1]

ensuring x1, x2, x3, x4 ∈ [−1.5, 1.5]

On Torainf, we prove that the controller for the arm of the cart connecting to
the spring can stabilize the cart over an infinite horizon while maintain safety
around the origin. On Oscillatorinf, we verify that the controller can stabilize
the oscillator around a target region over an infinite horizon while the process
of reaching the target region from the initial states is safe.

The experimental results are given in Table 2. VEL synthesized provably
correct programmatic controllers for all the benchmarks. Table 2 shows the total
time spent on each benchmark (T.T) as well as the verification time of the final
controller (V.T). Half of the benchmarks can be directly verified with the initial
programmatic controller (in Table 2, T.T for these benchmarks is empty as
they only need one pass of verification in V.T). The other half must go through
the verification-guided controller learning loop due to approximation errors in
verification although these controllers achieved satisfactory test performance. We
depict the learning performance of VEL on these benchmarks in Fig. 3 averaged
over 5 random seeds. The results show that VEL can robustly and reliably reduce
the correctness loss over symbolic rollouts (i.e. the verification feedback) to zero.

241



Y. Wang and H. Zhu

Table 2: Experiment Results. Depth shows the height of the abstract syntax tree
of a programmatic controller. T.T shows the overall execution time of VEL in-
cluding both the time for reachability analysis and verification-guided controller
synthesis. V.T measures only the verification time for the final controller. If a
controller can be verified directly without verification-guided optimization, the
value of T.T is empty. The execution times for ReachNN∗ and Verisig measure
the cost of verifying a neural network controlled system (NNCS). The notation
of the size (n× k) indicates a neural network (with sigmoid activations) with n
hidden layers and k neurons per layer. If a property could not be verified, it is
marked as Unknown. N/A means that the tool is not applicable to a benchmark.

VEL (ours) NNCS

Task Depth V.T T.T Size ReachNN∗ Verisig

B1 2 27.32s 86.57s 2× 20 69s 49s

B2 2 0.25s - 2× 20 32s Unknown

B3 2 1.96s - 2× 20 130s 47s

B4 2 0.63s - 2× 20 20s 12s

B5 2 0.64s 2.01s 3× 100 31s 196s

Oscillatorinf 2 1.74s 25.72s 2× 20 Unknown Unknown

ACC 3 5.56s 196.03s 3× 20 Unknown 1512s

MountainCar 3 233.45s - 2× 16 N/A 52s

QMPC 5 2.21s 16.54s 2× 20 N/A 697s

Penduluminf 2 0.95s - 3× 64 57s Unknown

CartPole 3 8.97s - 2× 64 Unknown Unknown

Unicycle 3 0.75s 16.52s 3× 20 N/A Unknown

Tora 2 3.71s - 3× 20 Unknown 83s

Torainf 2 0.86s 150.86s 3× 20 Unknown Unknown

Table 2 also shows the results of verifying the benchmarks as neural net-
work controlled systems (NNCS) using two state-of-the-art verification tools
ReachNN∗ [18] and Verisig [28] where the controllers are trained as neural net-
works. We note that VEL is designed for programmatic controllers and uniquely
has a verification-guided learning loop. Here our intention is not to compare
the tools’ performance. Instead, Table 2 demonstrates that integrating verifica-
tion in training loops for programmatic controllers is more tractable than for
neural network controllers. It shows that programmatic controller verification
(column V.T) has a much lower computation cost compared to verifying neu-
ral network controllers using ReachNN∗ and Verisig except for MountainCar2.
When ReachNN∗ and Verisig produces Unknown, the tools are not able to verify
the rollout specification due to the large estimated approximation errors in ver-
ification. On Tora, ReachNN∗ spent over 13000s to produce imprecise flowpipes
with large approximation errors that cannot be used for verification. In this case,
repeatedly conducting neural network controller verification in a learning loop is

2 MountainCar is a hybrid system model. VEL is not yet optimized for hybrid system
verification.
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Fig. 3: Learning Performance of Verification-guided Controller Synthesis on B1,
UnicycleCar, QMPC, Oscillator, ACC, and Torainf. The y-axis records the cor-
rectness loss of symbolic rollouts over abstract states. The results are averaged
over 5 random seeds. VEL reliably reduces the symbolic rollout correctness loss
to zero across the learning loop iterations (the x axis) for each benchmark.

computationally infeasible. On the other hand, VEL makes verification-guided
controller synthesis feasible as evidenced in Table 2 and Fig. 3. It efficiently uses
the programmatic controller verification feedback to reduce the correctness loss
over the abstraction of controller reachable states to 0 in the verification proof
space (even if the abstraction may introduce approximation errors).

6 Related Work

Robust Machine Learning. Our work on using abstract interpretation [14]
for controller synthesis is inspired by the recent advances in verifying neural
network robustness, e.g. [23,5,40,51]. These approaches apply abstract inter-
pretation to relax nonlinearity of activation functions in neural networks into
convex representations, based on linear approximation [52,51,39,40,55] or in-
terval approximation [26,35]. Since the abstractions are differentiable, neural
networks can be optimized toward tighter concertized bounds to improve veri-
fied robustness [35,7,55,48,33]. Principally, abstract interpretation can be used to
verify the reachability properties of nonlinear dynamics systems [30,37,4]. Recent
work [43,28,41,18,17,29,13] has already achieved initial results about verifying
neural network controlled autonomous systems by conducting reachability anal-
ysis. However, these approaches do not attempt to leverage verification feedback
for controller synthesis within a learning loop partially because of the high com-

243



Y. Wang and H. Zhu

putation demand of repeatedly verifying neural network controllers. VEL demon-
strates the substantial benefits of using verification feedback in a proof space for
learning correct-by-construction programmatic controllers. Related works [25,16]
conduct trajectory planning from temporal logic specifications but do not pro-
vide formal correctness guarantees. Extending VEL to support richer logic spec-
ifications is left for future work.
Safe Reinforcement Learning. Safe reinforcement learning is a fundamental
problem in machine learning [36,45]. Most safe RL algorithms form a constraint
optimization problem by specifying safety constraints as cost functions in addi-
tion to reward functions [1,9,15,31,42,54,53]. Their goal is to train a controller
that maximizes the accumulated reward and bound the aggregate safety violation
under a threshold. However, aggregate safety costs do not support reachability
constraints in the Safe RL context. In contrast, VEL ensures that a learned con-
troller be formally verified correct and can better handle reachability constraints
beyond safety. Model-based safe learning is combined with formal verification
in [22] where an environment model is updated as learning progresses to take
into account the deviations between the model and the actual system behavior.
We leave combing VEL and model-based learning in future work.
Safe Shielding. The general idea of shielding is to use a backup controller to
enforce the safety of a deep neural network controller [3]. The backup controller
is less performant than the neural controller but is safe by construction using
formal methods. The backup controller runs in tandem with the neural controller.
Whenever the neural controller is about to leave the provably safe state space
governed by the backup controller, the backup controller overrides the potentially
unsafe neural actions to enforce the neural controller to stay within the certified
safe space [2,11,21,22,24,56,6,32]. In contrast, VEL directly integrates formal
verification into controller learning loops to ensure that learned controllers are
correct-by-construction and hence eliminates the need for shielding.

7 Conclusion

We present VEL that bridges formal verification and synthesis for learning
correct-by-construction programmatic controllers. VEL integrates formal veri-
fication into a controller learning loop to enable counterexample-guided con-
troller optimization. VEL encodes verification feedback as a loss function of the
parameters of a programmatic controller over the verification proof space. Its
optimization procedure iteratively reduces both controller correctness violation
by true counterexamples and overapproximation errors caused by abstraction.
Our experiments demonstrate that controller updates based on verification feed-
back can lead to provably correct programmatic controllers. For future work,
we plan to extend VEL to support controller safety during exploration in noisy
environments. When a worst-case environment model is provided, this can be
achieved by repeatedly leveraging the verification feedback on safety violation to
project a controller back onto the verified safe space [12] after each reinforcement
learning step taken on the parameter space of the controller.
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Data-Availability Statement VEL is available at the repository [50]. The in-
structions for reproducing our experiment results are included in this repository.
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10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5273–5282.
PMLR (2018)

52. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: Dy, J.G., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
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Abstract Automatic synthesis from temporal logic specifications is an
attractive alternative to manual system design, due to its ability to gen-
erate correct-by-construction implementations from high-level specifica-
tions. Due to the high complexity of the synthesis problem, significant
research efforts have been directed at developing practically efficient ap-
proaches for restricted specification language fragments. In this paper we
focus on the Safety LTL fragment of Linear Temporal Logic (LTL) syn-
tactically extended with bounded temporal operators. We propose a new
synthesis approach with the primary motivation to solve efficiently the
synthesis problem for specifications with bounded temporal operators, in
particular those with large bounds. The experimental evaluation of our
method shows that for this type of specifications it outperforms state-of-
art synthesis tools, demonstrating that it is a promising approach to ef-
ficiently treating quantitative timing constraints in safety specifications.

1 Introduction

Reactive synthesis [8] has the goal of automatically generating an implementa-
tion from a formal specification that describes the desired behavior of a reactive
system. The system requirements are typically specified using temporal logics
such as Linear Temporal Logic (LTL). Temporal logics are expressive, high-level
specification languages capable of describing rich properties, such as, for exam-
ple, robotic missions [16]. Specifications of reactive systems often include require-
ments of the form “something good eventually happens”. These can be expressed
in LTL via the temporal operators U (“until”) and (“eventually”). “Eventu-
ally” is an abstraction for the existence of some unknown time point in the future
of a system execution when some property holds true. While this abstraction is
useful for avoiding over-specification, there are many situations in which there are
practical bounds on the time within which a requirement must be met. In such
cases, it is vital that the synthesis procedure checks if the timing requirements
are realizable, and synthesizes an implementation that adheres to these bounds.

As a simple example, consider a specification of the desired behavior of a
controller for the front door of an office building. Our specification states that the

? Philippe Heim carried out this work as PhD candidate at Saarland University, Ger-
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door must always be locked at night, and unlocked otherwise. It also stipulates
that in the event of a fire the door should eventually open. Formulated like
this, the specification is realizable. However, in case of a fire during night the
synthesized implementation will only open the door at the start of the day.
Clearly, this is not the behavior we intended! We can specify the actual desired
behavior in LTL by using the temporal operator (“next”), which allows us
to state that a property should hold at the next time step. However, we would
need to use nested operators in order to express the required time bounds.
This can quickly become inconvenient, especially if we need to specify various
different time bounds, some of them large. This modeling inconvenience and the
increase of specification size are easily avoided by adding bounded versions of
the temporal operators as syntactic sugar, without increasing expressiveness.

Due to their practical significance, fragments of LTL in which the formu-
las (in negation normal form) include only bounded versions of the U and
operators have attracted considerable attention. The most prominent such frag-
ment is Safety LTL the until-free fragment of LTL in negated normal form.
Since Safety LTL is a syntactic fragment of LTL, it can express bounded live-
ness properties only via nested next operators. Another notable example is the
logic Extended Bounded Response LTL (LTLEBR) [9], which is a fragment of
LTL that includes bounded temporal operators as well as unbounded universal
temporal operators (i.e., “globally” and “release”). While every LTLEBR formula
can be expressed in Safety LTL, one significant advantage of LTLEBR is that
the bounds of the temporal operators are represented in binary, which allows for
exponentially more succinct formulas. However, in the course of the synthesis
procedure presented in [9] these bounds are expanded into nested “next” opera-
tors. Keeping bounds symbolic is identified in [9] as an interesting direction for
future developments. Indeed, in many practically relevant cases large bounds are
unavoidable due to requirements on the same system across different time-scales.

In this paper we address this challenge by proposing a synthesis procedure
for an extension of Safety LTL with bounded operators. We develop dedicated
techniques for handling the temporal bounds symbolically and efficiently.

Contribution. We propose a synthesis method for specifications expressed in
a fragment of LTL which is a syntactic extension of Safety LTL with bounded
temporal operators. The distinguishing characteristic of our method is a re-
duction to a dedicated game model, called countdown-timer games in which
the temporal operators’ bounds are treated symbolically via the introduction of
timers. Further features of the translation are techniques for on-the-fly prun-
ing of edges in the constructed game and reduction of the number of introduced
timers. We present an abstraction-based method for solving the resulting games.
We have developed a prototype implementation of our approach, and the exper-
imental evaluation demonstrates that it is indeed capable of handling efficiently
safety specifications with large bounds. We demonstrate that on a set of bench-
marks featuring bounded temporal operators with large bounds, our technique
outperforms state-of-the-art tools for LTLEBR and LTL synthesis.
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Related Work. The synthesis problem for Safety LTL has attracted significant
interest due to its algorithmic simplicity compared to general LTL synthesis [25].
For instance, the symbolic approach presented in [25] is shown to outperform
the state-of-the-art LTL synthesis tools at the time. For LTLEBR, [9] proposes a
synthesis algorithm based on a fully symbolic translation to deterministic safety
automata. A key difference between our approach and the above techniques
is that our countdown-timer game construction does not expand upfront the
bounded temporal operators, but treats them symbolically instead. Furthermore,
the authors of [25] point out that for large Safety LTL formulas the construction
of the deterministic safety automaton presents a performance bottleneck. Our
safety game constriction makes use of pruning in order to alleviate this problem
by eliminating on-the-fly parts of the game graph that need not be explored.

Parameterized temporal logics, such as PLTL [1] enable the specification of
parametric lower and upper bounds on the satisfaction time of the “globally”
operator and the wait time of “eventually”. In the logic prompt-LTL [17], only
eventualities are parameterized by upper bounds. The bounds of the temporal
operators in these logics are unknown parameters, while in the case that we
consider, the bounds are given integer constants. The goal of our work is to
develop a synthesis method that treats constant bounds efficiently.

In the real-time setting, temporal logics that allow for limiting the time scope
of temporal operators have been extensively studied. Notable logics are Metric
Temporal Logic (MTL) [15], and its fragment Metric Interval Temporal Logic
(MITL) [2]. Compared to the untimed setting, synthesis from real-time logic
specifications poses additional challenges. Controller synthesis is undecidable for
MTL [4], for MITL [5,11], and even for the safety fragment of MTL [5]. Decidabil-
ity is regained by fixing the resources (clocks and guards) of the controller [5,12].
The key challenge stems from the fact that synthesis requires deterministic au-
tomata, and it is not generally possible to construct deterministic timed au-
tomata for MITL. To circumvent this problem, the assumption of bounded vari-
ability is commonly made. Under this assumption, [20] proposes a synthesis algo-
rithm for bounded response properties, and a translation from MTL to determin-
istic timed automata is presented in [23]. With respect to tool support, sound
but incomplete synthesis methods for fragments of MTL have been proposed
in [6] and [18], and implemented in toolchains that employ Uppaal-Tiga [3]
for timed games solving. A tool for MTL controller synthesis via translation to
alternating timed automata was presented in [14]. In the case when the real-time
synthesis problem is given as a timed game and the specification is a state-based
winning condition, the problem of computing a control strategy is decidable [21].
Efficient on-the-fly algorithms for timed games have been developed [7], and suc-
cessfully implemented in Uppaal-Tiga [3] and Uppaal-Stratego [10].Since
we are interested in discrete-time systems, we circumvent the additional chal-
lenges present in the dense-time setting by remaining the realm of discrete time
and focusing on efficiently treating quantitative timing constraints there.
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2 Preliminaries

Reactive Synthesis Let I be a finite set of uncontrollable environment input
Boolean propositions and O be a finite set of controllable output Boolean propo-
sitions. A reactive system is a tuple (C, c0, γ) where C is a set of control states,
c0 ∈ C the initial control state, and γ : C × 2I → C × 2O is the transition
function. A specification is a language L ⊆

(
2I∪O

)ω
of infinite words over I ∪O.

A system (C, c0, γ) realizes a specification L if for all infinite sequences of
environment inputs i ∈

(
2I
)ω

it yields an output sequence o ∈
(
2O
)ω

defined
by (ct+1, ot) = γ(ct, it) for t ∈ N, such that i ∪ o ∈ L. Reactive synthesis is the
problem of finding a realizing implementation for a given specification.

Safety LTL with Bounded Liveness Operators We consider specifications
expressed using temporal logic, more concretely, in a fragment of LTL [24], which
we denote by SafeLTLB . The fragment SafeLTLB is a syntactic extension of
Safety LTL [25] and defined by the following grammar:

ϕ,ψ := ap | ¬ap | ϕ ∧ ψ | ϕ ∨ ψ | [n]ϕ | [n]ϕ | ϕW[n]ψ | ϕW ψ

for ap ∈ I ∪O and n ∈ N. SafeLTLB extends Safety LTL by bounded operators
with bounds encoded in binary. While all bounded operators have equivalent
Safety LTL formulas (e.g. [n]ϕ ≡

∨
i∈{0...n}

i ϕ) these have exponentially

larger encoding. The constants > (true), ⊥ (false), the “globally” operator and
“bounded until” U [n] can be derived as > := a∨¬a, ⊥ := a∧¬a, ϕ := ϕW⊥,

[n]ϕ := ϕW[n]⊥, and ϕU [n]ψ := (ϕW[n]ψ) ∧ [n]ψ, respectively.
The satisfaction of a formula Φ ∈ SafeLTLB by infinite word w = w0w1 . . . ∈(

2I∪O
)ω

at time point k ∈ N is denoted as w �k Φ and is defined follows:

w �k a :⇔ a ∈ wk w �k ¬a :⇔ a 6∈ wk
w �k ϕ ∧ ψ :⇔ (w �k ϕ) ∧ (w �k ψ) w �k ϕ ∨ ψ :⇔ (w �k ϕ) ∨ (w �k ψ)
w �k [n]ϕ :⇔ ∃i ≤ n. w �k+i ϕ w �k [n]ϕ :⇔ w �k+n ϕ

w �k ϕW[n]ψ :⇔ (∀i ≤ n.w �k+i ϕ) ∨ (∃j ≤ n.w �k+j ψ ∧ ∀i < j.w �k+i ϕ)
w �k ϕW ψ :⇔ (∀i.w �k+i ϕ) ∨ (∃j.w �k+j ψ ∧ ∀i < j.w �k+i ϕ).

The language of Φ ∈ SafeLTLB is defined as L(Φ) := {w ∈
(
2I∪O

)ω | w �0 Φ}.
Two-Player Safety Games The synthesis problem for temporal logic specifi-
cations can be solved by translating the specification into a two-player game be-
tween the system and the environment, and then solving the game to determine
the winning player. If the system wins, an implementation can be extracted.

A game structure is a tuple G = (S, S0, I,O, ρ), where S is a set of states,
S0 ⊆ S is a set of initial states, I and O are sets of propositions as defined
earlier, and ρ : S × 2I × 2O → S is a transition function. A game on G is played
by two players, the system and the environment. In a given state s ∈ S, the
environment chooses some input i ⊆ I, then the system chooses some output
o ⊆ O, and these choices determine the next state s′ := ρ(s, i, o). The game then
continues from s′. The resulting infinite sequence π = s0, s1, s2, . . . of states is
called a play. Formally, a play is a sequence π = s0, s1, s2, . . . ∈ Sω such that
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s0 ∈ S0 and for every t ∈ N, st+1 = ρ(st, i, o). A system strategy is a function
σ : S+ × 2I → 2O. An environment strategy is a function π : S+ → 2I . Given
a state s ∈ S, a system strategy σ and an environment strategy π, we denote
with Outcome(s, π, σ) the unique play s0, s1, s2, . . . such that s0 = s, and for all
k ∈ N, sk+1 = ρ(sk, ik, σ((s0, s1 . . . , sk), ik)), where ik = π((s0, s1 . . . , sk)).

A safety game is a tuple (G,UNSAFE ) where UNSAFE ⊆ S are unsafe
states. The system wins the safety game if it has a strategy σ such that for all
environment strategies π, s0 ∈ S0, k ∈ N, it holds that Outcome(s0, π, σ)k 6∈
UNSAFE . Such strategy is called a winning strategy for the system. Intuitively,
the system has to avoid the unsafe states no matter what the environment does.
The environment wins if it can enforce a visit to UNSAFE , i.e., when there exist
environment strategy π and s0 ∈ S0 such that for every system strategy σ there
exists k ∈ N such that Outcome(s0, π, σ)k ∈ UNSAFE .

3 SafeLTLB Synthesis with Countdown-Timer Games

SafeLTLB Synthesis We consider the realizability and synthesis problems for
the fragment SafeLTLB . We focus on the challenge of handling efficiently specifi-
cations with large bounds in the bounded temporal operators, and propose a new
synthesis method towards achieving this goal. The proposed approach proceeds
in two stages. In the first stage, the given SafeLTLB formula is transformed into
a kind of safety game, in which bounds are treated symbolically. We term these
games countdown-timer games, introduced later in this section. The second stage
of our synthesis algorithm is the solving of the generated countdown-timer game
in order to determine the winning player and answer the realizability question.
We propose in Section 5 a method that employs symbolic representation and
approximations in order to efficiently solve such games in practice.

Countdown-Timer Games Intuitively, countdown-timer games are like safety
games but with additional countdown-timers. Countdown-timers are discrete
timers that always start with an assigned duration and are decremented by
one with every transition in the game. Once a timer reaches zero it times out,
and the transition relation of the countdown-timer game may depend on this
information for determining the successor state. A countdown-timer can be reset
to the duration associated with it. In addition, countdown-timers with the same
duration can swap their values, which we will later use when generating timer-
games to avoid unnecessary blowup in the number of timers.

Definition 1 (Countdown-Timer Games). A countdown-timer game struc-
ture is a tuple GT = (T , d, L, L0, I,O, δ) where T is a finite set of countdown
timers, d : T → N associates a duration with each timer, L is a finite set of
game locations, L0 ⊆ L is the set of initial locations, I, O are finite sets of
uncontrollable environment input propositions and controllable system proposi-
tions, respectively, and δ : L× 2I × 2O × 2T → L× E is the transition relation.
E := T → (T ∪ {RESET}) is the set of effects where for all e ∈ E:
1. for all t ∈ T either e(t) = RESET , or e(t) ∈ T and d(e(t)) = d(t) and,
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2. for t1, t2 ∈ T with t1 6= t2 we have e(t1) 6= e(t2) or e(t1) = e(t2) = RESET .
A countdown-timer game is a pair (GT ,UNSAFEL) where UNSAFEL ⊆ L is a
set of unsafe locations.

The effects E capture the resets and remapping of timers that can occur upon
transitions. Condition (1) states that each timer is either reset or remapped to
a timer with the same duration. Condition (2) requires the remapping to be
injective, i.e. no two timers are mapped to the same timer. When timers are not
reset and not remapped to other timers, they are simply mapped to themselves.

The semantics of a countdown-timer game is the safety game generated by
explicitly expanding the possible valuations of the timers. Intuitively, each state
of the game structure is a pair s = (l, v) of a location l ∈ L and a timer
valuation v. Initially, each timer t is set to its associated duration d(t). The
transition relation updates the values of the timers by first decrementing them
and then applying the effect e of the corresponding transition in GT . The relevant
transition in GT is determined by the location l, the input and output sets i and
o, and the set of timers whose value has become 0 after the decrementation.

Definition 2 (Countdown-Timer Games Semantics). In the context of
Definition 1, let V := {v : T → N | ∀t ∈ T . v(t) ≤ d(t)} be the space of all
possible timer valuations. Let G = (L × V , L0 × {λt.d(t)}, I,O, ρ) be a game
structure where ρ((l, v), i, o) := trans(l, step(v), i, o) with

step(v) := λt.max{0, v(t)− 1}

trans(l, v, i, o) :=


(
l′, λt.

{
v(e(t)) if e(t) ∈ T
d(t) if e(t) = RESET

)
,

where (l′, e) := δ(l, i, o, {t ∈ T | v(t) = 0}).

The semantics of the countdown-timer game (GT ,UNSAFEL) is the safety game
(G,UNSAFEL×V). The system (environment) wins the countdown-timer game
if and only if it wins the safety game representing its semantics.

4 Countdown-Timer Game Construction

We now present the first phase of our synthesis algorithm, namely the translation
of a SafeLTLB formula to a countdown-timer game. Our construction is based on
expansion rules. For example, the formula [50]a is equivalent to a∨ [49]a. If
a is true, then the whole formula is true. Otherwise, in the next step [49]a has
to hold. Interpreted as a state of a safety game, [50]a has a transition to > on
a = > and to [49]a on a = ⊥. This can be repeated on [49]a and so on. Once
we reach [0]a we expand it to a ∨ ⊥, and hence, a = ⊥ leads to ⊥ which is
the unsafe state. This construction works for safety formulas, as rejection can be
decided with a finite prefix. As we show later, generating a game structure in this
way has the advantage that it can be pruned using information from the formula.

However, this explicit expansion yields a sequence of formulas that is linear
in the bound, and hence, exponential in the description of the formula. Instead
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of explicit bounds, we use countdown-timers representing multiple values. In the
above example, we do not generate all the expansions [50]a, . . . , [0]a, but
instead a timer t with duration 51 to represent all expansions from 50 to 0 in
the single location a ∨ [t]a. If t times out, [t] has reached the end of the
expansion and is transformed to ⊥. Hence, instead of having [50]a, . . . , [0]a,
> and ⊥ as states of a safety game we only have locations a ∨ [t]a, > and ⊥
in a countdown-timer game. We now describe this construction formally.

4.1 Construction of a Countdown-Timer Game from SafeLTLB

The locations of the generated countdown-timer games are SafeLTLB formulas
with, additionally, timers as bounds of the temporal operators. We denote the
set of these formulas as SafeLTLtB . Given a set of timers T , the grammar of
SafeLTLtB is the grammar of SafeLTLB but in [n], [n], and W[n] we have
n ∈ N∪T . For ϕ ∈ SafeLTLtB , Timers(ϕ) ⊆ T denotes all timers appearing in ϕ.

Game Structure Let Φ be a SafeLTLB formula over input propositions I
and output propositions O. We construct a countdown-timer game structure
(T , d, L, L0, I,O, δ) as follows. The set of timers

T := {tdi | [d], [d− 1], or W[d− 1] occurs in Φ, 0 ≤ i ≤ d}

consists of timers tdi with index i and durations d(tdi ) := d for 0 ≤ i ≤ d. The
duration of a timer determines the bounds of the temporal operators in Φ for
which it can be used, and the indices are used for distinguishing multiple timers
of the same duration (introduced at different points of the expansion).

Let L := PositiveBooleanCombinations(cl(Φ)) (i.e., built from cl(Φ) using
∧,∨) be the set of locations, where cl is the closure operator defined as:

cl(l) := {l,>,⊥} l ∈ {ap,¬ap}
cl(ϕ o ψ) := cl(ϕ) ∪ cl(ψ) o ∈ {∧,∨}
cl( [n]ϕ) := cl(ϕ) ∪ { [tni ]ϕ | 0 ≤ i ≤ n}
cl( [n]ϕ) := cl(ϕ) ∪ { [tn+1

i ]ϕ | 0 ≤ i ≤ n+ 1}
cl(ϕW[n]ψ) := cl(ϕ) ∪ cl(ψ) ∪ {ϕW[tn+1

i ]ψ | 0 ≤ i ≤ n+ 1}
cl(ϕW ψ) := cl(ϕ) ∪ cl(ψ) ∪ {ϕW ψ}.

Intuitively, the closure contains all possible temporal-operator sub-formulas and
literals that can appear during expansion. The locations L then represent the
expanded formulas, which, intuitively, correspond to the current obligations of
the system. Thus, the initial location will correspond to obligation Φ. Note that
L ⊆ SafeLTLtB . We apply simplifications to the generated formulas to ensure
that L is finite. Since by definition cl(Φ) is finite, we can ensure that |L| ≤ 2|cl(Φ)|.

In the construction of the initial location and the transition function we
use two helper functions, introExp : SafeLTLtB → SafeLTLtB , which performs
expansion and introduces new timers, and opt : SafeLTLtB → L, which performs
simplifications that ensure that L is finite. We let L0 := {opt(introExp(Φ))} and

δ(ϕ, i, o, T ) := (opt(introExp(ψ)), e) where (e, ψ) := squeeze(to(T, tree(ϕ, i, o))).
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Here, we use the additional functions tree : SafeLTLtB × 2I × 2O → SafeLTLtB ,
which performs the input and outputs choices, to : 2T ×SafeLTLtB → SafeLTLtB ,
which handles time-outs, and squeeze : SafeLTLtB → E×SafeLTLtB , which deter-
mines remapping and reset of timers. Below, we describe these functions in detail.

Remark: Note that for [b] we use timers of duration b, while for [b] and
W[b] we use timers of duration b+1. The reason for this is that for the latter we
consider the last step as part of the timing as this simplifies the game structure.

Before describing the functions, we illustrate them on a simple example.

Example 1. Let I = {r}, O = {g}, and consider the SafeLTLB formula Φ =
( [100]¬g) ∧ [10](r → [100]g). Φ states that the system should not give a
grant during the first 100 steps, and, if at step 10 there is a request, then a grant
should be given within the following 100 steps. We show how to construct the
initial location and some of the transitions in a countdown-timer game for Φ.
Initial state ϕ0 = opt(introExp(Φ))

The initial state is computed from Φ by expanding the formula and introduc-
ing any necessary timers. This is done by the function introExp. The subformula

[100]¬g expands to ¬g ∧ [t1010 ]¬g , reflecting the semantics of the operator
[100]. This introduces the timer t1010 with duration 101 and index 0. The sub-

formula [10](r → [100]g) expands to [t100 ](r → [100]g), which introduces
the timer t100 for [10]. The durations 101 and 10 of the timers correspond to
the respective bounds in [100] and [10], and the index 0 is the smallest index
of a currently unused timer of the respective duration. No timer is introduced
at this step for [100] as it is guarded by a operator. Thus, the initial state
is the expanded formula ϕ0 = ¬g ∧ ( [t1010 ]¬g) ∧ [t100 ](r → [100]g).
Determining transition δ(ϕ0, ∅, {g}, ∅) = (ϕ1, e1)

We apply tree(ϕ0, ∅, {g}) which computes the effect of the input ∅ and output
{g} on the formula in the current step, and thus substitutes g with > in ϕ0. This
results in tree(ϕ0, ∅, {g}) = ⊥, meaning that this transition leads to location ⊥.
Determining transition δ(ϕ0, ∅, ∅, {t100 }) = (ϕ2, e2)

Again, we first compute tree(ϕ0, ∅, ∅) = ( [t1010 ]¬g) ∧ [t100 ](r → [100]g),
which now substitutes ⊥ for g. To the result we apply the function to that
handles time-outs, here {t100 }, which means that the timer t100 times out at the
current step. As a result, the subformula [t100 ](r → [100]g) is replaced by
r → [100]g , meaning that the formula r → [100]g becomes part of the
obligation at the next step, since the timer t100 has run out. Thus, we obtain
to({t100 }, ( [t1010 ]¬g)∧ [t100 ](r → [100]g)) = ( [t1010 ]¬g)∧(r → [100]g). After
that, we apply function squeeze that takes care of timers that might have become
unused upon time-out. This is reflected in the effect e2 that resets all timers that
do not appear in the current formula. Thus, in e2 the timer t100 that just timed
out is mapped to RESET , and the timer t1010 that is still present is mapped to
itself. The final step is to apply function introExp that performs expansion on
the current formula and introduces any new timers that might be needed. The
subformula [t1010 ]¬g expands to ¬g ∧ [t1010 ]¬g . The subformula r → [100]g
expands to r → (g ∨ [t1011 ]g), which introduces the timer t1011 for [100]. Note
that since the formula already contains the timer t1010 of duration 101, the newly
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introduced timer t1011 has index 1. The functions to and squeeze ensure that the
order between the indices of timers of the same duration represents the order in
which these timers will time out. After computing introExp(( [t1010 ]¬g) ∧ (r →

[100]g)) we obtain ϕ2 = ¬g ∧ ( [t1010 ]¬g) ∧ (r → (g ∨ [t1011 ]g)).

Construction We construct the sets of locations, timers, and transitions, by
exploring the reachable parts of L from L0. We describe several pruning mech-
anisms that we use in order to maintain the set of reachable locations small.

Construction Invariants. To ensure correctness and keep the game generation
efficient, we maintain the following invariants for each reachable location:
1. For every reachable location ϕ we have (1.a) all literals and bounded opera-

tors not guarded by a “next” operator appear on the Boolean top-level, and
(1.b) all bounded operators at the top-level are instantiated with a timer.

2. For every duration d, the values of the timers are ordered by index, i.e. td0 <
td1 < . . . tdj = . . . tdd = d. The order is strict for timers whose value is not d.

3. In location ϕ, for any d and i > 0, if tdi ∈ Timers(ϕ), then tdi−1 ∈ Timers(ϕ).

Invariant (1) is needed for correctness, and for ensuring that all literals that
are relevant in the current step are considered, and that all relevant bounded op-
erators are tracked by timers. Invariant (2) ensures that we never need more than
the available d timers. This holds since the timers are strictly ordered when run-
ning, and once we would introduce tdd+1, td0 would have timed out. Furthermore,
ordering the timers reduces the possible combinations of time-outs. Invariant (3)
prevents having unused timers that are between used ones according to the above
order, thus reducing the possible combinations of equivalent locations.

Function tree: Selection of Inputs and Outputs. The function tree(ϕ, i, o) com-
putes the effect of the input i and output o on the formula in the current step.
With invariant (1) it suffices to consider literals on the Boolean top-level, i.e.
literals that are not sub-formulas of a temporal operator. When assigning the
literals in ϕ according to i and o, we prune and select some “obvious choices”
which can immediately be decided, using the fact that we are generating a game.
This pruning is an important part of our approach, as in practice it can prune a
significant portion of the possible locations. Function tree applies recursively a
set of rules. We now describe these rules in the order in which they are applied
in each recursion step. Figure 1 provides a formal description.
1. With top-level disjunct c that is output literal, the system wins by making

the formula >. The opposite choice for the system can be safely pruned.
2. With top-level conjunct u that is input literal, the environment wins by

making the formula ⊥. The opposite choice can be safely pruned.
3. If an output proposition appears either with only positive or with only neg-

ative polarity, it suffices for the system to pick the literal with the respective
polarity, as for the other choice the generated formula is subsumed.

4. If an input proposition appears either with only positive polarity or only neg-
ative polarity, it suffices to consider the case where the environment picks the
negated literal, as this case is strictly more difficult to realize (i.e. one formula
implies the other) and every strategy for this case works also for the other.
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tree(c ∨ ψ, i, o) := Jc ∈ oK (1)

tree(u ∧ ψ, i, o) := ⊥ (2)

tree(ψ, i, o) :=

{
tree(ψ[c/>]T ) if c ∈ o

⊥ if c 6∈ o
c ∈ ActL(ψ),¬c 6∈ ActL(ψ) (3)

tree(ψ, i, o) := tree(ψ[u/⊥]T ) u ∈ ActL(ψ),¬u 6∈ ActL(ψ) (4)

tree(ψ, i, o) := ψ[u/Ju ∈ iK]T u,¬u ∈ ActL(ψ) (5)

tree(ψ, i, o) := ψ[c/Jc ∈ oK]T c,¬c ∈ ActL(ψ) (6)

Figure 1: Let u ∈ I and c ∈ O. For simplicity of the presentation we leave out
the commutative and associative cases and negative literals. ActL(ψ) denotes
the set of literals appearing in the Boolean top-level of ψ. The formula ψ[ap/v]T
is obtained from ψ by replacing ap by v ∈ {>,⊥} for all occurrences of ap at
the Boolean top-level, but only there. After each replacement we simplify the
formula by doing constant folding. Jx ∈ XK is > if x ∈ X and ⊥ if x 6∈ X.

5. If no “early decision” or “worst case-decision” can be made, we apply the
environment choice, as the environment moves first in the game.

6. If no environment choices are left, we generate the branching for the system.

Function to: Handling Time-out. A consequence of invariant (2) is that only
timers with index 0, i.e., of the form td0, can time out since the timers are ordered.
In addition, timers that do not appear inside a formula should not time out (this
is enforced by squeeze) as we show later. Note that this does not apply to timers
with duration 1 as these time out immediately. We direct impossible time-outs to
> since they do not occur. Hence, to(T, ϕ) := > if for some tdi ∈ T we have that
i 6= 0, or d > 1 and tdi 6∈ Timers(ϕ). Otherwise, to(T, ϕ) is defined by applying
the following transformations on all subformulas of ϕ and timing out timers
t ∈ T : We transform [t]ψ  ⊥, [t]ψ  ψ, and φW[t]ψ  >. After applying
to we do constant folding as parts of the formula may become irrelevant.

Function squeeze: Determining remapping and reset of timers. When applying
the functions tree and to some timers might become unused. Hence, we have to
ensure that invariant (3) holds and, as stated in the previous paragraph, reset
all timers that do not appear in the formula. We define squeeze(ϕ) := (e, ψ) as
follows: For each duration d, let tdij ∈ Timers(ϕ) with indices i0 < i1 < i2 < . . .

be the remaining timers with sorted indices ij . Then set e(tdj ) := tdij if ij exists

and e(tdj ) := RESET otherwise. ψ is obtained by replacing the timers tdij by tdj .

Function introExp: Expansion and Timer Introduction. The function introExp
performs the formula expansion and introduces new timers if necessary. The
expansion guarantees that invariant (1) holds afterwards. When introducing
new timers, invariant (2) and invariant (3) have also to be maintained. This
is achieved by assigning for each bound b with associated duration d, the timer
with the next unused index, i.e. tdj 6∈ Timers(ϕ) where td0, . . . , t

0
j−1 ∈ Timers(ϕ).

Let I(d) := max{i | tdi ∈ Timers(ϕ)}+ 1 be the next unused index. In addition,
as timers tdi with i > d do not exist by invariant (2), expansions generating
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them are redirected to >. Hence, we define introExp(ϕ) := rd(iE I(ϕ)) where
rd(ϕ) := > if for some i > d we have tdi ∈ Timers(ϕ), and rd(ϕ) = ϕ otherwise.
The function iE I performing the expansion is defined by

iE I(l) := l iE I(ϕ o ψ) := iE I(ϕ) o iE I(ψ)
iE I( [n]ϕ) := iE I(ϕ) ∨ [tn+1

I(n+1)]ϕ iE I( [t]ϕ) := iE I(ϕ) ∨ [t]ϕ

iE I( [n]ϕ) := [tnI(n)]ϕ iE I( [t]ϕ) := [t]ϕ

iE I(ϕW[n]ψ) := iE I(ψ) ∨ iE I(ϕ)∧ iE I(ϕW [t]ψ) := iE I(ψ) ∨ iE I(ϕ)
(ϕW[tn+1

I(n+1)]ψ) ∧(ϕW[t]ψ)

iE I(ϕW ψ) := iE I(ψ) ∨ iE I(ϕ) ∧ (ϕW ψ)

where l ∈ {ap,¬ap}, o ∈ {∧,∨}, n ∈ N and t ∈ T .

Function opt : Formula Simplification. The function opt ensures that the con-
structed set of locations L is finite, by simplifying the formulas in order to avoid
introducing infinitely many logically equivalent formulas. Since we must main-
tain the invariants, the simplification does not guarantee uniqueness modulo
equivalence. Nevertheless, it ensures finiteness of L and performs optimizations.

Definition of UNSAFE and Correctness To complete the construction of
the countdown-timer game, we define the set of unsafe locations as UNSAFEL =
{⊥}. The proof of the correctness theorem below is given in the full version [13].

Theorem 1. Let Φ ∈ SafeLTLB and G be the countdown-timer game structure
constructed from Φ as described above. Then there exists a system realizing L(Φ)
if and only if the system wins in the countdown-timer game (G,UNSAFEL).

We augment the construction with several extensions to improve its efficiency
and expand its scope. For instance, we combine explicit expansion with timer-
based implicit expansion, which allows us to handle directly operators like single

. We also use approximation to handle simple assumptions of the form ψ
where ψ is fully bounded, i.e., without W. Details can be found in the full
version [13].

5 Solving Countdown-Timer Games

We now describe the second phase of our synthesis algorithm, namely the solv-
ing of the countdown-timer game generated from the SafeLTLB specification.
In a countdown-timer game, the durations of the timers, which correspond to
the bounds of the temporal operators in the specification, are encoded in binary.
Hence, the set V of timer valuations and thus also the safety game defined in
Section 3 grow exponentially in the size of the countdown-timer game. Since our
goal is to efficiently solve countdown-timer games with large durations, explic-
itly constructing and solving the semantic safety game is not desired. We note,
however, that in the worst case it is not possible to avoid this blowup. This is
stated in the next theorem, the proof of which is given in the full version [13].
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Theorem 2. Solving countdown-timer games is EXPTIME-complete.

This means that solving countdown-timer games efficiently requires an ap-
proach that manipulates sets of timer valuations symbolically, in order to avoid,
if possible, explicit enumeration. We propose a symbolic algorithm for solving
countdown-timer games that additionally employs an iteratively refined approx-
imation. The method is applicable to generic symbolic representations of the set
of timer valuations. We present an instantiation of the method with a represen-
tation composed of intervals of timer values and partial orders on timers.

Symbolic Game Solving The standard way to solve a safety game is to com-
pute the set of states from which the environment can enforce reaching an unsafe
state, and check if it intersects with the set of initial states. If this is the case,
then the environment wins the game, and otherwise the system wins.

For a game (G,UNSAFE ) with G = (S, S0, I,O, ρ), the set of states from
which the environment can enforce reaching UNSAFE is called environment
attractor and is defined as AttrEG(UNSAFE ) = {s ∈ S | ∃π : env. strategy.∀σ :
sys. strategy.∃k ∈ N. Outcome(s, π, σ)k ∈ UNSAFE}. The environment wins the
safety game if and only if AttrEG(UNSAFE ) ∩ S0 6= ∅.

We solve the countdown-timer game by computing a symbolic representation
of the attractor of the environment player to the unsafe locations. We assume
a symbolic representation Rep of the space of timer valuations 2V . For each
R ∈ Rep we denote with JRK ⊆ V the subset of V represented by R. We represent
subsets of the state space L×V of the semantic safety game using functions from
L→ Rep where U ∈ (L→ Rep) represents {(l, v) | v ∈ JU(l)K}.

The symbolic enforceable predecessor for the environment CPreE symb : (L→
Rep)→ (L→ Rep) is defined as follows. For U ∈ (L→ Rep), we let

CPreE symb(U) := λl.
⋃
i⊆I

⋂
o⊆O

⋃
T⊆T

symTrans(δ(l, i, o, T ), T, U), where

symTrans((l′, e), T, U) := inc(effTO(T, remap(e, effReset(e, U(l′)))))

is the symbolic backward application of transition δ(l, i, o, T ) to the target set
JU(l′)K. The operations that symTrans requires, from last to first, are as follows.
– inc : Rep → Rep performs the backward increment of the timers, formally,

Jinc(R)K = {λt. v(t) + 1 ∈ V | v ∈ JRK}.
– effTO : 2T × Rep → Rep models the effect of time-outs: JeffTO(T,R)K =
{v ∈ JRK | ∀t ∈ T .(t ∈ T → v(t) = 0) ∧ (t 6∈ T → v(t) ∈ [1, d(t)])}.

– remap : E × Rep → Rep models the effect of remapping: Jremap(e,R)K =
{v ∈ V | ∃v′ ∈ JRK.∀t ∈ T s.t. e−1(t) is defined. v(t) = v′(e−1(t))}.

– effReset : E×Rep → Rep models the effect of timer resets: JeffReset(e,R)K =
{v ∈ JRK | ∀t ∈ T .e(t) = RESET → v(t) = d(t)}. Note that e−1(t), the
timer mapped to t by effect e is unique, since the effect is injective for values
different from RESET , and can thus be inverted if defined.

We also require that we can preform set operations ∪, ∩, and equality checking
between elements of Rep, in order to perform the computation.
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We employ the symbolic enforceable predecessor operator CPreE symb to com-
pute a symbolic representation of the environment attractor AttrE symb as fol-
lows. We set AttrE 0

symb := (λl. if l ∈ UNSAFEL then V esle ∅), and then for

n ∈ N we let AttrEn+1
symb := AttrEn

symb ∪ CPreE symb(AttrEn
symb).

Proposition 1. If (GT ,UNSAFEL) is a countdown-timer game with GT =
(T , d, L, L0, I,O, δ) and the safety game (G,UNSAFEL × V) with G = (L ×
V, L0 × {λt.d(t)}, I,O, ρ) is its semantics, then for the symbolic attractor com-
puted above it holds JAttrE symb(l)K = {v ∈ V | (l, v) ∈ AttrEG} for every l ∈ L.

Approximation of Timer Valuations As the symbolically represented state-
space described above might still lead to exploring a large number of sets, we
perform an over- and under-approximation of the attractor of explored states.

We use a threshold k ∈ N to control the precision of the abstraction. In-
tuitively, when approximating for t ∈ T we would like to treat exactly timer
values at the “border”, i.e. timer values in [0, k] and [d(t)− k, d(t)], since these
matter for timeouts and resets. Our approximations over : Rep → Rep and
under : Rep → Rep treat the intermediate values [k, d(t)− k] like a single value-
block. The over-approximation over(R) adds all intermediate values if one value
from R is inside [k, d(t)− k] and the under-approximation under(R) removes all
intermediate values if one value from R is not inside. Formally:

approxk(t, I) := (I ∩ [k, d(t)− k] 6= ∅) ∧ ([k, d(t)− k] 6⊆ I)

Jover(R)K :=

{
λt.

{
v(t) ∪ [k, d(t)− k] if approxk(t, v(t))

v(t) otherwise

∣∣∣∣ v ∈ JRK

}

Junder(R)K :=

{
λt.

{
v(t) \ [k, d(t)− k] if approxk(t, v(t))

v(t) otherwise

∣∣∣∣ v ∈ JRK

}
The attractor computation is now done as follows: We start with k := 1. For

the current k we compute the environment attractor once using under- and
once using over-approximation at each symbolic state in the computation. If the
environment wins in the under-approximation, it wins the concrete game. If the
system wins in the over-approximation, it wins the concrete game. If neither
holds, we set k := 2 · k and repeat. This always terminates since for k > d(t)/2
the approximations become exact, and hence, one player wins for sure.

Example 2. Consider a countdown-timer game, some transitions of which are
depicted in Fig. 2a. From the depicted transitions, only the transition from l2 to

l0 l1 l2

. . . ⊥

o

{t10000 }¬o

(a) Countdown-timer game,
UNSAFEL = {⊥}.

0 1 2 3 4 . . . 7

l1 ∅ ∅ {1} {1} {1}, [3, 997] . . . {1}, [3, 997], {999}
l2 ∅ {0} {0} {0}, {2} {0}, {2} . . . {0}, [2, 998], {1000}

(b) Sets during approximate attractor computation.

Figure 2: Example demonstrating the effect of approximation of timer valuations.
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⊥ has a non-empty time-out set, {t10000 }. Since the timer t10000 has duration 1000,
computing AttrE symb for the locations l1 and l2 precisely would require 1000
iterations. Employing over-approximation with threshold k = 3, on the other
hand, reaches a fixed point in 7 iterations, as shown in Fig. 2b. This is helpful in
cases like the one in the game in Fig. 2a, where the choice of transition in location
l0 is controlled by the system (via the output o). Here, the overapproximation
allows the solving algorithm to quickly determine that the choice of transition
to l1 is loosing, while the system can win via the alternative transition.

Symbolic Representation using Boxes As a symbolic domain we chose
an interval representation augmented with partial orders over timers Rep :=
2PartialOrder(T )×2Rec

where Rec := { i ∈ (T → N × N) | ∀t ∈ T , (a, b) = i(t).0 ≤
a ≤ b ≤ d(t)} are the intervals in the form of a hyper-cube. Intuitively, we have a
set of partial-orders and for each of them we have a set of hyper-cubes. Formally:

JRK :=
⋃

(p,C)∈R

(
{v ∈ V | ∀(t1 ∼ t2) ∈ p : v(t1) ∼ v(t2)} ∩

⋃
r∈C

λt.[r(t)1, r(t)2]

)

where r(t)i is the i-th projection of r(t). It remains to define the necessary op-
erations: inc, effReset , effTO , and remap are mostly straightforward according
to their definition, as they can be performed by modifying and inspecting all
intervals individually or just reordering timers. Additionally, effReset uses the
partial order to derive bounds on timers that are in relation with a timer that
is reset. effTO refines the partial order, since on time-out T , all timers in T are
smaller than T \T . Also the approximations can be performed point-wise on the
intervals, as an approximate interval is again an interval.

We chose this domain since it is simple, and, at the same time, due to the use
of partial orders, well suited for the type of problem we are solving. Our solving
algorithm is generic and can accommodate other, more sophisticated domains.

6 Evaluation

We implemented1 and evaluated our approach. We compare our prototype im-
plementation to ebr-ltl-synth introduced in [9] which performs synthesis for
LTLEBR. We also compare to the state-of-the-art LTL synthesis tool strix ver-
sion 21.0.0 [19, 22]. In the following, we present the benchmarks we used, the
experiments, and the results. We ran all experiments on an Intel Core i7-1165G7
processor with 16GB RAM and a single core available. All times are wall-clock
times. A detailed description of the benchmarks is given in the full version [13].

Bounded Response Benchmarks In our first set of experiments we evaluate the
tools on LTLEBR formulas from [9], and on 23 SYNTCOMP 2021 benchmarks2

that fall into LTLEBR and are used for a similar comparison in [9]. Figure 3 and

1
Available at: https://github.com/phheim/lisynt

2
https://github.com/SYNTCOMP/benchmarks
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Figure 3: Execution times in mil-
liseconds on the benchmarks [9].
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Figure 4: Execution times in milliseconds on
the LTLEBR SYNTCOMP benchmarks.

Figure 4 show the runtimes with a time-out of one minute, respectively. Unfortu-
nately, for roughly half of the benchmarks from [9] strix did not accept the input
formula for being too long, since the bounded operators must be expanded explic-
itly upon input. We therefore left strix out for this comparison. Figure 3 shows
that on the benchmarks from [9] both our implementation and ebr-ltl-synth

have roughly the same runtime, ignoring different startup times. Figure 4 shows
that on the selected SYNTCOMP benchmarks all three tools are comparable.

These experiments evaluate our implementation on relevant benchmarks that
are partially not designed in the spirit of the problem that our approach targets.
The results show that our implementation is comparable to existing tools.

Adaption of Real-Time Benchmarks In our second set of experiments, we took
MTL synthesis problems from [14] and adapted them to SafeLTLB formulas. The

Name |L| |T | τGen k Win. τΣ τstrix
Clean(1) 8 2 0.01 1 S 0.01 3.56
Clean(2) 16 3 0.02 1 S 0.03 7.99
Clean(3) 41 4 0.06 8 S 0.33 21.4
Clean(4) 123 5 0.22 8 S 1.45 97.3
CleanC(1) 10 4 0.03 1 S 0.05 189
CleanC(2) 22 5 0.08 16 S 617 TO
CleanC(3) 61 6 0.32 - - TO TO
CleanC(4) 205 7 1.30 - - TO TO
Coffee(1) 14 4 0.03 1 S 0.04 TO
Coffee(2) 44 5 0.12 2 S 0.33 TO
Coffee(3) 175 6 0.55 2 S 3.53 TO
Coffee(4) 418 7 1.34 2 S 10.2 TO
conv-belt 9 3 0.01 1 S 0.02 F
robo-cam 22 5 0.04 1 S 0.19 F
rail(2,2) 647 6 2.60 1 S 3.93 TO
rail(2,4) 647 6 2.58 1 S 4.05 TO
rail(2,8) 647 6 2.62 1 S 3.97 TO
rail(4,4) 647 7 2.67 1 S 4.10 TO

Name |L| |T | τGen k Win. τΣ τstrix
CleanH(1) 3 2 0.02 512 E 0.07 1.61
CleanH(2) 3 2 0.02 512 E 0.07 2.63
CleanH(3) 3 2 0.02 512 E 0.07 4.99
CleanH(4) 3 2 0.02 512 E 0.07 5.64
CleanN (1) 23 4 0.07 1 S 0.12 TO
CleanN (2) 32 4 0.10 1 S 0.27 TO
CleanN (3) 48 4 0.15 8 S 7.47 TO
CleanN (4) 75 4 0.26 8 S 13.7 TO
CoffeeC(1) 46 6 0.16 1 S 0.88 F
CoffeeC(2) 151 7 0.59 1 S 5.51 F
CoffeeC(3) 613 8 2.73 1 S 62.9 F
CoffeeC(4) 1634 9 6.82 1 S 191 F
rail(4,8) 647 7 2.53 1 S 3.96 TO
rail(8,8) 647 7 2.60 1 S 4.03 TO
rail(1,1,1) 3111 7 27.8 - - TO TO
rail(2,1,1) 9179 9 89.1 1 S 220 TO
rail(2,2,2) 9179 9 93.7 1 S 225 TO

Table 1: Results on the office-robot and adapted real-time benchmarks. |L| and
|T | are the numbers of locations and timers in the generated countdown-timer
game. τGen is the runtime of the game generation in seconds. k is the approxima-
tion threshold on which the solving terminated. Win. shows whether the system
(S) or the environment (E) wins. τΣ is the total runtime including the game gen-
eration and solving, where TO means a time-out after 15 minutes. τstrix is the
runtime of strix. For some benchmarks strix rejects the input for being too
long (F) which is due to expanding the bounded operators when using strix.
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benchmarks include a conveyor belt (conv-belt), a robot camera (robo-cam), and
several parametrized instances of a multiple railroad-crossings controller (rail).
We discretized the real-time bounds. The benchmarks use up to 19 propositions
and 16 bounded operators, and bounds between 60 and 4000. Detailed results
can be found in Table 1. ebr-ltl-synth was not applicable to these benchmarks
as we had to use assumptions (which cannot be captured by the specifications
in the LTLEBR fragment) to model the timed environment.

These experiments show that SafeLTLB can express interesting requirements
from the real-time domain by appropriate discretization. We did not compare
directly to the tool in [14], as the underlying modeling formalism is different,
and hence we adapted the benchmarks. However, a superficial comparison of our
results to those in [14] shows that our tool compares well (and is in some cases
better). Furthermore, on these benchmarks our tool clearly outperforms strix.

Office Robot Benchmarks Our last set of experiments considers benchmarks we
created ourselves. They consists of a number of specifications describing tasks for
a robot in an office building with four rooms. The benchmarks are parametrized
by the number of rooms that have to be serviced. They use up to 11 propositions
and 14 bounded temporal operators, and bounds between 10 and 21600. Detailed
results can be found in Table 1. ebr-ltl-synth was either not applicable due
to use of assumptions (4 benchmarks) or timed out (25 benchmarks).

The results show that SafeLTLB can express meaningful synthesis tasks, and
that our approach is viable for solving them. Furthermore, they show that our
method indeed fulfills its purpose: for specifications requiring large bounds in the
temporal operators our method clearly outperforms the state-of-the-art tools.

Overall Analysis Table 1 shows that the countdown-timer game generation is very
efficient compared to the solving. As we expect to be able to improve the solving
by more sophisticated symbolic techniques, we expect the countdown-timer game
based approach to be viable for even more complex properties. In most cases
the solver terminated with a low approximation threshold, which shows the
usefulness of approximation. In our experience, without approximation solving
the benchmarks with large bounds becomes infeasible with our current technique.

7 Conclusion

We presented a new synthesis approach for specifications expressed in an exten-
sion of Safety LTL with bounded temporal operators. A distinguishing feature
of our method is that it is specifically targeted at efficiently solving the synthesis
problem for specifications with bounded temporal operators, in particular those
with large bounds. Our evaluation results show that our technique performs very
well on a range of benchmarks featuring such timing requirements. The key to
this success is a novel translation to a safety game with symbolically represented
bounds, whose efficiency is due to the use of effective pruning techniques. We
observe that our method for solving the generated game is viable, as shown by
the evaluation. However, it has potential for further improvement by employing
more performant symbolic representations and abstraction techniques.
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Data-Availability Statement

The datasets generated during and/or analysed during the current study are
available in the Zenodo repository,
https://doi.org/10.5281/zenodo.7505914.
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Abstract. Equivalence checking of two programs is often reduced to
the safety verification of a so-called product program that aligns the
programs in lockstep. However, this strategy is not applicable when pro-
grams have arbitrary loop structures, e.g., the numbers of loops vary. We
introduce an automatic iterative abstraction-refinement-based technique
for checking equivalence of a single-loop program and a program which
has a series of consecutive loops. Our approach decomposes the single
loop into a sequence of separate loops thus reducing the main problem
to a series of equivalence-checking problems for pairs of loops. Since due
to the decomposition, these problems become abstract, our approach it-
eratively refines the decomposed loops and lifts useful information across
them. Our second contribution is a procedure for the alignment of loops
with counters and explicit bounds that cannot be composed in lockstep.
We have implemented the approach and successfully evaluated it on two
suites, one with benchmarks containing different numbers of loops and
the other containing benchmarks that need alignment.

1 Introduction

To gain performance benefits, optimizing compilers perform program transfor-
mations such as loop peeling, loop unrolling, and loop unswitching. The reliance
on many transformations lowers the trust in the computation and motivates us
to use automated SMT-based verification to verify equivalence of the program
before and after the transformation. Specifically, one should prove that for any
equal inputs to both programs, their outputs are equal too. The problem is of-
ten reduced to construction of a product program by aligning (or merging) the
instructions in lockstep and then determining if the product program meets a
safety specification represented by the original relational specification. While ef-
fective for many pairs of programs that are relatively close to each other, this
strategy may be insufficient for pairs of loopy programs with arbitrary control
flow. We target the verification of pairs of programs in which the source program
has a single loop, and the target program has a sequence of non-nested loops.
Such programs have been extensively studied in the literature [4,23,31] but still
are challenging for automated reasoning.

Before proving equivalence, our approach decomposes the loop in the source
program into multiple loops such that the structure of this new program exactly
matches the one in the target program. With two structurally similar programs
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at hand, our approach targets pairs of loops and creates a lockstep composition
for each pair. This lets us break our equivalence checking problem into smaller
isolated problems, and if each such problem is successfully solved, then the given
programs are indeed equivalent. An obvious downside of decomposition is the
loss of context: if a program property is defined before the first loop, it may
not be available for the second and later loops. For that reason, we have to
refine the decomposition by extracting the requested properties in the previously
considered pairs of loops and pulling them to the currently-considered loops.
Technically, this process is driven by counterexamples.

Moreover, when attempting to create a lockstep composition for loops that
have different numbers of iterations, we might need to align them. When our
method can compute an exact number of iterations of both the source and the
target, it rearranges the control flow in the source by grouping the iterations in
the loop, and extracting selected iterations to either before the loop or after. Such
rearranging helps with programs where the number of iterations of one loop is a
multiple of other, or is off by few iterations, which is common for optimizations
including loop vectorization and loop peeling.

We implemented our equivalence checking algorithm, along with the algo-
rithms to refine and align the loops, in a tool called Alien. On many commonly
used public benchmarks [23], Alien is an order of magnitude faster than the
most recent (to our knowledge) state-of-the-art tool Counter [14]. Alien can
prove equivalence of pairs of user-written programs and it is not bound to any
particular compiler unlike many related tools based on translation validation.

We proceed with an overview of the related work in Sect. 2 and a motivating
example in Sect. 3. Then, we formally introduce our problem in Sect. 4. The
main ingredients of our algorithm are then discussed in Sect. 5, and in Sect. 6.
The evaluation is reported in Sect. 7, and conclusion in Sect. 8.

2 Related Work

Relational verification aims at analyzing two different programs or two execu-
tions of the same program. This research field has been extensively studied,
but since it reduces to safety verification, it is known to be undecidable in gen-
eral. Relational verification has applications in checking program equivalence,
information-flow leakage, incremental verification, etc. To reduce to safety, it is
a common practice to convert the programs into a product. The product can be
used for relational verification tasks by providing appropriate relational precon-
dition and postcondition. This research trend is pioneered by Barthe et al. [3]
who used product programs in Hoare-style proving. More recently, there has
been a rise of automated product construction techniques. e.g., [7, 16, 25,26].

Creating product program requires that the two programs can be composed
in some way, which is usually assumed to be trivial (e.g., lockstep), or provided
to the verifier in some form. However, it is not always possible to get the triv-
ial composition. The technique presented by Strichman et al. [36] extends the
work of Godlin et al. [12] and it attempts to prove equivalence of two recursive
functions having different base-cases and no lockstep composition, by creating
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an alignment between them. However, the alignment is done using unrolling fac-
tors, which are manually provided by the user, for both programs. The technique
presented in [34] targets self-composition. It computes a scheduler for an asyn-
chronous execution of both programs using counterexamples and a selection of
predicates (e.g., from the user). A more recent work [38] is also a scheduler-driven
but mainly targets mutual termination rather than full functional equivalence.

Translation validation techniques, [9, 17, 20, 22, 27, 28, 32, 35, 39], relate the
source programs with their compiler outputs to check equivalence. However, it
is usually the case that the compiler provides the manner of composition. Many
data-driven techniques for proving equivalence, like [5,33], rely on finding a trace
alignment between concrete executions of the programs. Such techniques might
perform inefficiently when sufficient number of execution traces are not available.
They might also require a lot of time for the data runs. The work in [22] performs
bounded translation validation at the level of LLVM intermediate representation.
The technique looks for a subset of behaviors of the source program in the target
to infer equivalence. As the technique is bounded, it may not be sound.

The work by Gupta et al. [14] presents a counterexample-guided algorithm
for translation validation of given programs. It explores the space of potential
products to find a bisimulation relation between intermediate program locations
of the two programs. and prove it via the generation of strong enough inductive
invariants. Again, while making the approach flexible, reliance on counterex-
amples makes it slower, and as we will see from our evaluation (Sect. 7), this
approach does not scale well in the cases an alignment needs larger unrollings.

Many techniques use relational verification for regression verification, where
two versions of a program are compared for equivalence checking [1, 2, 11, 13,
15, 19, 24, 30, 36, 37]. Such techniques usually assume that two programs are
closely related, hence the analysis is usually reduced by either pruning out or
abstracting common parts of the programs. Many techniques simplify the process
of equivalence checking. Some assume a static relationship between the number
of iterations of two loops, in order to prove equivalence [6, 11, 21, 29, 33]. Other
techniques create finite unrollings of loops and prove equivalence until a certain
bound, e.g., [1,18,22,30]. Our work makes an attempt to relax such assumptions.

3 Illustration on Example

Fig. 1 gives two C programs, the source program contains a single loop and the
optimized target programs contains two sequential loops. Our approach aims at
proving the equivalence of the source and the target, that is, if variables are
initially given equal values (b = d, M = X, K = Y), then their values at the
end are equal toothen outputs are equal too to, i.e., a = c, b = d. A lockstep
composition on the programs in Fig. 1 is challenging to construct: 1) it is difficult
to compare one loop with two sequential loops, and 2) there are different numbers
of iterations taken by programs.

Our method decomposes the source loop into two loops to make it easier to cre-
ate a product program. It creates two copies of the loop in the source with the same
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1 int M = nondet(), K = nondet(),
2 a = 0, N = 2*M+1+K, b = 2*M+1;
3 assume(M >= 0 && K >= 0);
4 while(a != N) {
5 b = (a >= b) ? b + 1 : b;
6 a++;
7 }

1 int X = nondet(), Y = nondet(),
2 c = 1, d = 2*X+1;
3 assume(X >= 0 && Y >= 0);
4 while(c < 2*X+1) c+=2;
5 while(c != 2*X+1+Y) {
6 d++;
7 c++;
8 }

Fig. 1: Source (left) and target (right) programs.

1 int M = nondet(), K = nondet(),
2 a = 0, N = 2*M+1+K, b = 2*M+1;
3 assume(M >= 0 && K >= 0);
4 while(a != N && a < 2*M+1) {
5 b = (a >= b) ? b + 1 : b;
6 a++;
7 }
8 while(a != N) {
9 b = (a >= b) ? b + 1 : b;

10 a++;
11 }

1 int M = nondet(), K = nondet(),
2 a = 0, N = 2*M+1+K, b = 2*M+1;
3 assume(M >= 0 && K >= 0);
4 b = (a >= b) ? b + 1 : b; a++;
5 while(a != N && a < 2*M+1) {
6 b = (a >= b) ? b + 1 : b; a++;
7 b = (a >= b) ? b + 1 : b; a++;
8 }
9 assume(N == 2*M+1+K && b == 2*M+1);

10 while(a != N) {
11 b = (a >= b) ? b + 1 : b; a++; }

Fig. 2: Decomposed (left) and refined (right) source programs.

loop body but different loop guards, shown in Fig 2 (left). Specifically, it uses the
loop guard for the first loop in the target program, i.e. c < 2*X+1, to create a < 2*M+1
and add it to the guard of the first source loop. It then checks the equivalence of
pairs of loops from the decomposed source and the target. However, the first pair
of loops (lines 4-7 in the decomposed source, line 4 in the target) is not in lockstep,
as for each iteration of the target, the source is expected to iterate twice. Thus, we
attempt to construct a lockstep composition by grouping two iterations of the first
loop in the decomposed source. However, this results in some residual iterations to
be processed before the loop in the decomposed source. After conducting an analy-
sis on the initial states of both loops and the body of the source loop, our approach
moves one iteration to before the loop in the source. This is sufficient to complete
the lockstep composition and prove that the first pair of loops are equivalent.

Similarly, the approach considers the second pair of loops (lines 8-11 in the
decomposed source, lines 5-8 in the target). To prove that the loops are in lock-
step and for equivalence we are missing the information that N = 2*M+1+K and
b = 2*M+1, which is available at the beginning of the program, but not in the
middle of it. We say that these equalities refine the composition of the second
loops, and they are added as an assumption before the start of the second loop
(the refined source program is given in Fig. 2 (right)). The refinement makes it
possible to both create the lockstep composition and prove the equivalence of
both pairs of loops. The analysis terminates with the verdict that both programs
are equivalent.

4 Preliminaries

We follow the Satisfiability Modulo Theories (SMT) background and notation
to present the contributions. The goal of SMT is either to find an assignment
to variables of a first-order logic formula that makes it true (written 𝑚 |= 𝜙,

Lockstep Composition for Unbalanced Loops 273



where 𝑚 is a model, and 𝜙 is a formula), or prove its non-existence (also called
unsatisfiability, denoted 𝜙 =⇒ ⊥). For formulas 𝜙,𝜓, if every model of 𝜙 satisfies
𝜓, we say that 𝜙 is logically stronger than 𝜓 (written 𝜙 =⇒ 𝜓). We write ite
for an if-then-else.

4.1 Constrained Horn Clauses

Throughout the paper, we use the notion of Constrained Horn Clauses (CHCs)
as a mean to represent the programs containing arbitrary number of loops.

Definition 1. A Constrained Horn Clause C over a set of uninterpreted relation
symbols 𝑅 is a (universally quantified, implicitly) formula in first-order logic that
has the form of one of the three implications (namely a fact, an inductive clause
and a query, respectively):

𝜑(V1) =⇒ 𝐿1(V1) 𝐿1(V1) ∧ . . . ∧ 𝐿𝑛(V𝑛) ∧ 𝜓(V1, . . . ,V𝑛+1) =⇒ 𝐿𝑛+1(𝑉𝑛+1)

𝐿1(V1) ∧ . . . ∧ 𝐿𝑘(V𝑘) ∧ 𝜋(V1, . . . ,V𝑘) =⇒ ⊥

where for all 𝑖, 𝐿𝑖 ∈ 𝑅 are uninterpreted predicate symbols, V𝑖 are implicitly
quantified vectors of variables, and some 𝐿𝑖 and 𝐿𝑗 might be the same. All
formulas 𝜑, 𝜓, 𝜋 are fully interpreted.

Throughout, we assume that each single loop is represented by two CHCs, e.g.:

Init(V ) =⇒ 𝐿(V ) 𝐿(V ) ∧GTr(V ,V ′) =⇒ 𝐿(V ′)

where, Init represents the initial state of the loop, GTr(V ,V ′) represents one
iteration of the loop, which we call a guarded transition. For convenience, we split
GTr(V ,V ′) to Tr(V ,V ′)∧𝐺(V ), where 𝐺 encodes a guard over the variables at
the beginning of transition, and Tr has no additional guard.

Definition 2. Given a set 𝑅 of uninterpreted predicates and a set 𝐻 of CHCs
over 𝑅, we say that 𝐻 is satisfiable if there exists an interpretation for every
𝐿 ∈ 𝑅 that makes all implications in 𝐻 valid.

Solutions for CHC systems are called inductive invariants. If a CHC system
is unsatisfiable, there exists a counterexample showing a bad state is reachable.

4.2 Relational Verification

The problems of equivalence checking and lockstep composability are the in-
stances of a more general problem of relational verification. In this section, we
introduce it in a simple case for two systems containing a single loop each.

Definition 3. Given two single-loop CHC systems over 𝐿{1,2} ∈ 𝑅 with ini-
tial states Init{1,2} and guarded transition bodies GTr{1,2}, resp., a relational
precondition pre and a relational postcondition post , the problem of relational
verification can be formulated as the satisfiability of the following CHC system:

Init1(V ) =⇒ 𝐿1(V ,V ) Init2(V ) =⇒ 𝐿2(V ,V )

𝐿1(V0,V ) ∧GTr1(V ,V
′) =⇒ 𝐿1(V0,V

′) 𝐿2(V0,V ) ∧GTr2(V ,V
′) =⇒ 𝐿2(V0,V

′)

pre(V0,𝑊0) ∧ 𝐿1(V0,V ) ∧ 𝐿2(𝑊0,𝑊 )∧¬post(V ,𝑊 ) =⇒ ⊥
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Here, both loop systems are augmented with an additional variable (at the first
argument of 𝐿{1,2}) to keep track of the initial values of variables.

To solve the problem, formulated as a complex nonlinear CHC, we need to
find individual invariants for both loops, which is difficult [7,25]. Instead, we aim
at simplifying the problem for certain classes of programs. Specifically, it often
can be reduced to safety verification via so-called lockstep composition.

Definition 4 (Lockstep-composability). Given two single-loop CHC sys-
tems and a relational precondition pre, a lockstep composition exists if 1) the
following CHC system is satisfiable:

pre(V1,V2) ∧ Init1(V1) ∧ Init2(V2) =⇒ 𝐿1,2(V1,V2)

𝐿1,2(V1,V2) ∧GTr1(V1,V
′
1) ∧GTr2(V2,V

′
2) =⇒ 𝐿1,2(V

′
1,V

′
2)

𝐿1,2(V1,V2) ∧𝐺1(V1) ̸= 𝐺2(V2) =⇒ ⊥

where 𝐿1,2 ∈ 𝑅 is an uninterpreted predicate symbol, an interpretation of which
corresponds to a relational invariant, and 𝐺1 and 𝐺2 represent the loop guards
and 2) the body of the first CHC is satisfiable.

Intuitively, the first CHC constrains the values of input variables to be related
through pre (and also, pre should be consistent with both Init-s.). The second
CHC encodes a synchronous computation of both loops. The third CHC ensures
that inside the product loop both 𝐺1 and 𝐺2 should be true, and outside the
loop both 𝐺1 and 𝐺2 should be false. This implies that the numbers of steps in
two lockstep-composable programs under some pre are the same.

The following lemma lets us reduce a relational verification problem to a
safety verification problem computed after merging the loops and then use ex-
isting invariant generation techniques for solving relational verification problems.
Note that due to the lockstep, both loop guards are always equal, so it is enough
to conjoin the negation of only one of the loop guards to the query.

Lemma 1. Given a relational verification problem over two systems over 𝐿{1,2} ∈
𝑅 representing single loops, pre, and post, if the systems are lockstep-composable
under pre, and the following CHC problem is satisfiable, then post holds at the
end of these loops.

pre(V1,V2) ∧ Init1(V1) ∧ Init2(V2) =⇒ 𝐿1,2(V1,V2)

𝐿1,2(V1,V2) ∧GTr1(V1,V
′
1) ∧GTr2(V2,V

′
2) =⇒ 𝐿1,2(V

′
1,V

′
2)

𝐿1,2(V1,V2) ∧ ¬𝐺1(𝑉1) ∧ ¬post(V1,V2) =⇒ ⊥

The problem of proving program equivalence is a special case of the relational
verification problem where pre = post is a pairwise equality overV1 andV2.

5 Equivalence Checking for Unbalanced Loops

In this section, we present our novel equivalence checking algorithm designed for
the cases when the source and the target programs have different structures. We
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first describe a class of the input CHC systems that we target in Sect. 5.1. We
then provide a procedure to decompose the source such that we can break the
problem of equivalence checking under our limitations into a sequence of smaller
problems in Sect. 5.2. We then finalize our core abstraction-refinement schema
for equivalence checker in Sect. 5.3.

5.1 Input Limitations and Auxiliary Definitions

We support pairs of programs where the source contains a single loop, and the
target possibly contains an arbitrary number of sequential loops. A CHC system
of the latter sort that has 𝑛 loops is called a flat 𝑛-sequence of loops further in
the paper. Here and throughout, we assume that 𝐺𝑆 and 𝐺𝑖 encode the loop
guard for the source loop and the 𝑖th loop in the target, and that Tr𝑆 and Tr 𝑖
encode respective loop bodies without the corresponding guards. Specifically,
the shape of a source program that we consider is defined over a single predicate
symbol 𝑆, and we thus refer to this system as 𝑆-system later in the text:

Init𝑆(V𝑆) =⇒ 𝑆(V𝑆) 𝑆(V𝑆) ∧𝐺𝑆(𝑉𝑆) ∧ Tr𝑆(V𝑆 ,V
′
𝑆) =⇒ 𝑆(V ′

𝑆)

The flat 𝑛-sequence is defined over 𝑛 predicate symbols 𝑇1,. . . ,𝑇𝑛, and is referred
to as 𝑇 -system in the paper:

Init𝑇 (V𝑇 ) =⇒ 𝑇1(V𝑇 ) 𝑇1(V𝑇 ) ∧𝐺1(V𝑇 ) ∧ Tr1(V𝑇 ,V
′
𝑇 ) =⇒ 𝑇1(V

′
𝑇 )

𝑇1(V𝑇 ) ∧ ¬𝐺1(V𝑇 ) =⇒ 𝑇2(V𝑇 ) 𝑇2(V𝑇 ) ∧𝐺2(V𝑇 ) ∧ Tr2(V𝑇 ,V
′
𝑇 ) =⇒ 𝑇2(V

′
𝑇 )

. . .

𝑇𝑛−1(V𝑇 ) ∧ ¬𝐺𝑛−1(V𝑇 ) =⇒ 𝑇𝑛(V𝑇 ) 𝑇𝑛(V𝑇 ) ∧𝐺𝑛(V𝑇 ) ∧ Tr𝑛(V𝑇 ,V
′
𝑇 ) =⇒ 𝑇𝑛(V

′
𝑇 )

There is one fact CHC, in which Init𝑇 represents the initial state of the program.
There are 𝑛 inductive clauses, i.e., for each 𝑖 ∈ [1, 𝑛], the 𝑖th inductive clause has
occurrence of symbol 𝑇𝑖 on both sides of the implication. There are also 𝑛 − 1
non-inductive clauses that encode transitions between adjacent loops, so ¬𝐺𝑖

represents the condition when loop 𝑖 exits.

Example 1. The source in Fig. 1 is encoded to CHCs as follows:

𝑎 = 0 ∧𝑁 = 2*𝑀+1+𝐾 ∧ 𝑏 = 2*𝑀+1 ∧𝑀 ≥ 0 ∧𝐾 ≥ 0 =⇒ 𝑆(𝑎, 𝑏,𝑀,𝐾,𝑁)

𝑆(𝑎, 𝑏,𝑀,𝐾,𝑁) ∧ 𝑎 ̸= 𝑁 ∧ 𝑎′ = 𝑎+1 ∧ 𝑏′ = ite(𝑎 ≥ 𝑏, 𝑏+1, 𝑏) =⇒ 𝑆(𝑎′, 𝑏′,𝑀,𝐾,𝑁)

Example 2. The CHC encoding of the target program in Fig 1 is given as:

𝑐 = 1 ∧ 𝑑 = 2*𝑋 + 1 ∧𝑋 ≥ 0 ∧ 𝑌 ≥ 0 =⇒ 𝑇1(𝑐, 𝑑,𝑋, 𝑌 )

𝑇1(𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑐 < 2*𝑋 + 1 ∧ 𝑐′ = 𝑐+ 2 =⇒ 𝑇1(𝑐
′, 𝑑,𝑋, 𝑌 )

𝑇1(𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑐 ≥ 2*𝑋 + 1 =⇒ 𝑇2(𝑐, 𝑑,𝑋, 𝑌 )

𝑇2(𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑐 ̸= 2*𝑋 + 1 + 𝑌 ∧ 𝑐′ = 𝑐+1 ∧ 𝑑′ = 𝑑+1 =⇒ 𝑇2(𝑐
′, 𝑑′, 𝑋, 𝑌 )

We introduce a concept needed for the presentation in the next section, where
by 𝐴[𝐵/𝐶], we denote expression 𝐴 with all instances of 𝐶 replaced by 𝐵:

Definition 5. Given a CHC system 𝐻 over predicate symbols 𝐿1, . . . , 𝐿𝑛, an
𝐿𝑖-projection of 𝐻 (denoted 𝐻 |𝑖) is defined as {𝐶[⊤/𝐿𝑗(·)] | 𝐶 ∈ 𝐻, 𝑗 ̸= 𝑖}.
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That is, our projection replaces all applications of all predicate symbols except
of 𝐿𝑖 by true. Clearly, some CHCs then can be simplified to true, and we assume
that they are removed from the projection.

Example 3. Let 𝐻 be a 𝑇 -system from Example 2, then 𝐻 |2 has two CHCs:

𝑐 ≥ 2*𝑋 + 1 =⇒ 𝑇2(𝑐, 𝑑,𝑋, 𝑌 )

𝑇2(𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑐 ̸= 2*𝑋 + 1 + 𝑌 ∧ 𝑐′ = 𝑐+1 ∧ 𝑑′ = 𝑑+1 =⇒ 𝑇2(𝑐
′, 𝑑′, 𝑋, 𝑌 )

5.2 Equivalence Checking by Decomposition

Our main insight on checking equivalence of a source loop and a flat 𝑛-sequence is
that if the source breaks into 𝑛 distinct loop-chunks, and if each of these chunks
is equivalent to the corresponding loop from the 𝑛-sequence, then the actual
programs are equivalent too. We thus present a decomposition of the source into
a sequence of 𝑛 new loops that gives us the basis for comparing the two CHC
systems. A decomposition of 𝑆-system into an 𝑛-flat sequence is done by:

1. introducing 𝑛 fresh predicate symbols 𝑆1, . . . , 𝑆𝑛,
2. cloning the inductive CHC 𝑛 times and replacing 𝑆 with 𝑆𝑖 in each clone,
3. creating 𝑛− 1 non-inductive CHCs between 𝑆𝑖 and 𝑆𝑖+1, and
4. introducing additional guard predicates 𝑃1, . . . , 𝑃𝑛−1 to schedule chunks of

iterations of the 𝑆-loop to either of the new 𝑛 loops. To sum up:

Init𝑆(V𝑆) =⇒ 𝑆1(V𝑆)

𝑆1(V𝑆) ∧𝐺𝑆(V𝑆) ∧ 𝑃1(V𝑆) ∧ Tr𝑆(V𝑆 ,V
′
𝑆) =⇒ 𝑆1(V

′
𝑆)

𝑆1(V𝑆) ∧ ¬(𝐺𝑆(V𝑆) ∧ 𝑃1(V𝑆)) =⇒ 𝑆2(V𝑆)

. . .

𝑆𝑛(V𝑆) ∧𝐺𝑆(V𝑆) ∧ Tr𝑆(V𝑆 ,V
′
𝑆) =⇒ 𝑆𝑛(V

′
𝑆)

For any interpretation of 𝑃1, . . . , 𝑃𝑛−1, the CHC system constructed above is
equivalent to the 𝑆-system, for the following three reasons. First, no matter how
many iterations the first 𝑛 − 1 loops conduct, all the remaining ones will be
conducted in the last loop. Second, all 𝑛 loops still use the original guard 𝐺, and
if it is exceeded in some 𝑖th loop, then all the remaining 𝑖+1th, . . . , 𝑛th loops will
be just skipped. Lastly, all these loops perform exactly the same operations as
the original loop since Tr𝑆 is copied to all of them. We will instantiate all the 𝑃 -
predicates on demand in our CounterExample Guided Abstraction Refinement
(CEGAR) loop.

The CEGAR loop for our equivalence checking problem is outlined in Alg. 1.
It begins with decomposing the 𝑆-system into a flat 𝑛-sequence, as defined
above. The 𝑃 -predicates are created from 𝐺𝑖 guards in 𝑇 -system by rewriting
𝑇 -variables to 𝑆-variables, 𝑖 ∈ [1, 𝑛− 1]:

𝑃𝑖(𝑉 )
def
= ∃𝑉 ′.𝐺𝑖(𝑉

′) ∧ pre(𝑉, 𝑉 ′)

Lockstep Composition for Unbalanced Loops 277



Algorithm 1: DecomposeAndCheck(𝑆, 𝑇 , 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡)

Input: 𝑆-system, 𝑇 -system, relational pre and post-conditions
𝑃𝑟𝑒 = ⟨pre1, pre2, . . . , pre𝑛⟩ and 𝑃𝑜𝑠𝑡 = ⟨post1, post2, . . . , post𝑛⟩

Output: res ∈ ⟨equiv,unknown⟩
1 𝑆′ ← decompose(𝑆, 𝑛);
2 for 𝑖← 1; 𝑖 ≤ 𝑛; 𝑖← 𝑖+1 do
3 𝑆𝑖 ← 𝑆′ |𝑖; 𝑇𝑖 ← 𝑇 |𝑖;
4 while true do
5 aligned ← ⊥; refined1,2 ← ⊥;
6 ST 𝑖 ← getProduct(𝑆𝑖, 𝑇𝑖, pre𝑖);
7 Let Init be the body of the fact CHC in ST 𝑖;
8 res ← checkSAT(Init);
9 if res then

10 ⟨inv , cex ⟩ ← checkSAT(ST 𝑖 ∪ {𝐿 ∧ (𝐺𝑠 ∧ 𝑃𝑖) ̸= 𝐺𝑖 =⇒ ⊥});
11 if ¬res ∨ cex /∈ ∅ then
12 ⟨aligned , 𝑆𝑖⟩ ← alignCHCs(𝑆𝑖, 𝑇𝑖, pre𝑖);
13 if aligned then continue;

14 else
15 ⟨inv , cex ⟩ ← checkSAT(ST 𝑖 ∪ {𝐿 ∧ ¬𝐺𝑖 ∧ ¬𝑝𝑜𝑠𝑡𝑖 =⇒ ⊥});
16 if cex ∈ ∅ then break;

17 ⟨refined1, 𝑆1, . . . , 𝑆𝑖⟩ ← refine(𝑆1, . . . , 𝑆𝑖, cex );
18 ⟨refined2, 𝑇1, . . . , 𝑇𝑖⟩ ← refine(𝑇1, . . . , 𝑇𝑖, cex );
19 if ¬(refined1 ∨ refined2 ∨ aligned) then return unknown;

20 return equiv;

Note that the relational precondition pre is assumed to be a conjunction of
equalities. This gives us two flat 𝑛-sequences, which lets us consider pairs of
loops (line 2) from both systems separately. Each such CHC system is created
by applying the projection from Def. 5. In a sense, this is an abstraction of the
original system since by isolating one loop (say, 𝑖th), we lose the state computed
all the way from the entry to the program by iterating 𝑖 − 1 loops. Aiming to
check equivalence for each pair of projections, the algorithm first figures out
how/if a lockstep-composition is applicable. We write: res ← checkSAT(𝑓𝑙𝑎)
to denote a satisfiability check for a (first order) formula 𝑓𝑙𝑎, and we write:

⟨inv , cex ⟩ ← checkSAT(ST 𝑖 ∪ {𝐿 ∧ . . . =⇒ ⊥})

to denote this check for the CHC-product ST 𝑖 over predicate symbol 𝐿 with
respect to the query written in {. . .}. The check returns either an inductive
invariant (i.e., an interpretation of 𝐿) or a counterexample. Before checking for
lockstep, the compatibility of the initial states needs to be checked, i.e., if the
body of the fact is satisfiable (line 8). If it succeeds, each check of the lockstep-
composability is reduced by Def. 4 to a CHC satisfiability check, and it uses both
guards in the CHC query (line 9). If either the initial-states check or the lockstep
check fails, the algorithm uses a method for alignment of projections discussed
in detail in Sect. 6. If aligned, we continue with the next iteration of the loop,
attempting to prove lockstep composition and equivalence of the projections.
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Algorithm 2: Refine(𝑄1, . . . , 𝑄𝑖, cex )

Input: Set of 𝑖 CHC systems 𝑄1, . . . , 𝑄𝑖 over 𝐿; and counterexample cex
Output: res ∈ ⟨⟨⊥, ·⟩, ⟨⊤, refined systems 𝑄1, . . . , 𝑄𝑖⟩⟩

1 if 𝑖 = 1 then return⟨⊥, ·⟩;
2 while cex /∈ ∅ do
3 ⟨𝑖𝑛𝑣, cex ′⟩ ← checkSAT(𝑄𝑖−1∪{𝐿(𝑉 )∧¬𝐺𝑖−1(V )∧

⋀︀
𝑣∈V

𝑣=cex (𝑣) =⇒⊥});

4 if cex ′ ∈ ∅ then
5 assert(𝑖𝑛𝑣 /∈ ∅);
6 Fact ← {𝐶 ∈ 𝑄𝑖 | 𝐶 has form Init(𝑉 ) =⇒ 𝐿(𝑉 )};
7 𝑄𝑖 ← 𝑄𝑖 ∖ {Fact} ∪ {Init(𝑉 ) ∧ 𝑖𝑛𝑣(𝑉 ) =⇒ 𝐿(𝑉 )};
8 return⟨⊤, 𝑄1, . . . , 𝑄𝑖⟩;
9 else

10 ⟨res, 𝑄1, . . . , 𝑄𝑖−1⟩ ← refine(𝑄1, . . . , 𝑄𝑖−1, cex
′);

11 if ¬res then return⟨⊥, ·⟩;

Example 4. Recall CHC systems defined in Examples 1 and 2. In the first
iteration, Alg. 1 considers the first pair of loops. The initial-states check at line 8
fails, and thus the loops are aligned at line 12 (to be explained in Example 8).

Whenever two CHC systems are in lockstep, the algorithm utilizes Lemma 1
and checks the product system computed for two isolated loops (line 15) for
safety. The success of the check lets the algorithm to continue with the next
pair of loops. Otherwise, we receive a counterexample, which might be spuri-
ous because of the abstraction. Our refinement procedure then searches for a
strengthening of either of the CHC systems (lines 17-18), which is described in
more details in the next subsection. If it cannot refine further using the given
technique, it returns unknown (line 19).

5.3 Refinement

Due to the decomposition presented in the previous section, there could be sen-
sitive information that is available in the earlier parts of the programs, but
not in the later parts. Alg. 2 gives a refinement procedure needed to propagate
useful properties about the programs towards queries. Intuitively, we have to
strengthen our relational preconditions, thus improving the chances to prove the
safety of the 𝑖th CHC product. Recall that in Alg. 1, refinement is invoked for
each counterexample which is technically an assignment to the variables at the
initial state of either of the programs being composed into the product CHC.

The key idea is to check if the counterexample is spurious by constructing a
scenario in which the 𝑖 − 1th system can eventually reproduce the values from
the counterexample at the end of its execution (line 3). This is reduced to a
satisfiability check of the corresponding CHC system w.r.t. the “negation” of
the counterexample. If it succeeds, then an inductive invariant can be used to
strengthen (line 7) the 𝑖th system. Otherwise, the algorithm might recursively
descend to refining the 𝑖 − 1th system via finding an invariant for the 𝑖 − 2nd
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product, and so on (line 10). For this reason, the algorithm has the while-loop
(line 2) that lets to repeat the satisfiability check for some (already strengthened)
systems, and it continues till the current system has been refined.

Example 5. Continuing with Example 4, in the second iteration of Alg. 1, the
lockstep check1 does not succeed:

𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ∧𝑀 = 𝑋 ∧ 𝑌 = 𝐾 ∧ (𝑎 = 𝑁 ∨ 𝑎 ≥ 2*𝑀 + 1) ∧ 𝑐 ≥ 2*𝑋 + 1 =⇒ 𝐿2(V )

𝐿2(V ) ∧ 𝑎 ̸= 𝑁 ∧ 𝑎′ = 𝑎+ 1 ∧ 𝑏′ = ite(𝑎 ≥ 𝑏, 𝑏+ 1, 𝑏)∧
𝑐 ̸= 2*𝑋 + 1 + 𝑌 ∧ 𝑐′ = 𝑐+ 1 ∧ 𝑑′ = 𝑑+ 1 =⇒ 𝐿2(V

′)

𝐿2(V ) ∧ (𝑎 ̸= 𝑁) ̸= (𝑐 ̸= 2*𝑋 + 1 + 𝑌 ) =⇒ ⊥

For the CHC system above, a counterexample could be cex = {𝑎, 𝑐, 𝑏, 𝑑 ↦→
110,𝑀,𝐾 ↦→ 50, 𝑁 ↦→ 0, 𝑋, 𝑌 ↦→ 50} because we miss that 𝑁 = 2*𝑀 + 1 +𝐾,
hence lockstep is not possible. Alg. 2 then confirms that this counterexample is
spurious by learning this inductive invariant. After adding it to the fact CHC
of 𝑆2 and recomputing the product system ST 2, it becomes satisfiable. We then
add the following query for equivalence check:

𝐿2(V ) ∧ 𝑐 = 2*𝑋 + 1 + 𝑌 ∧ (𝑎 ̸= 𝑐 ∨ 𝑏 ̸= 𝑑 ∨𝑀 ̸= 𝑋 ∨𝐾 ̸= 𝑌 ) =⇒ ⊥

which fails because of missing invariant 𝑏 = 2*𝑀 +1. After adding it to the fact
CHC of 𝑆2 and recomputing the product CHC system, it becomes satisfiable.

As can be seen from this example, the refinement procedure is beneficial for
both the lockstep-composability and the equivalence checks in Alg. 1, thus the
inner loop in the algorithm can iterate multiple times before terminating with a
positive verdict. We note that inductive invariants are in general tricky for find-
ing. Thus, our approach has essential limitations and cannot prove equivalence
of programs that require complicated (e.g., quantified) inductive invariants.

6 Aligning Unbalanced Loops

In this section, we present an algorithm for creating alignment between two
single-loop CHC systems that have different number of loop iterations. Our
new method of alignment of an 𝑆-projection and a 𝑇 -projection is based on
restructuring the former to become lockstep-composable with the latter. The
algorithm identifies if any iterations of the former have to be extracted and
placed before the loop and if any iterations have to be grouped and performed
at once. These numbers (called alignment bounds in the rest of the section) are
identified if exact loop bounds of both projections are computable.

6.1 Finding the Number of Iterations

We aim first at computing a function that returns the exact number of iterations
of a single loop in terms of input variables, based on the CHC representation.

1 We abbreviate ⟨𝑎,𝑏,𝑀,𝐾,𝑁,𝑐,𝑑,𝑋,𝑌 ⟩ withV , and ⟨𝑎′,𝑏′,𝑀,𝐾,𝑁,𝑐′,𝑑′,𝑋,𝑌 ⟩ withV ′.
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In the technique presented below, the input systems need to have a counter
variable that monotonically increments between two extremes that do not change
in the loop.2 Focusing on a single-loop CHC system with initial states Init and
guarded transition body 𝐺 ∧ Tr where 𝐺 encodes a guard over the variables
at the beginning of the transition, and Tr has no additional guard, we wish to
find the exact number of the iterations of the corresponding loop. In general, for
that, we could consider an augmented CHC system with a fresh decrementing
counter.

Definition 6. The exact number of iterations is an interpretation of the func-
tion symbol N that makes the augmented CHC system satisfiable:

Init(𝑉 ) ∧ 𝑗 = N(𝑉 ) =⇒ 𝐿(𝑉, 𝑗)

𝐿(𝑉, 𝑗) ∧𝐺(𝑉 ) ∧ Tr(𝑉, 𝑉 ′) ∧ 𝑗′ = 𝑗 − 1 =⇒ 𝐿(𝑉 ′, 𝑗′)

𝐿(𝑉, 𝑗) ∧ ¬𝐺(𝑉 ) ∧ 𝑗 ̸= 0 =⇒ ⊥

For an arbitrary loop, finding N is difficult and often not possible (e.g., for
problems with nondeterminism in the loop). However, for some CHC systems
encoding range-based loops, i.e., that already have counters, we can attempt to
synthesize N from the information obtained from syntax of CHCs. Specifically,
we assume that formula Init has the form 𝑖 = S(V )∧Init ′(V , 𝑖) for some variable
𝑖 and some function S, We also assume that the guard of the transition has
the form 𝑖 < F(V ) ∧ 𝐺′(V , 𝑖) for some function F, and Tr has the form 𝑖′ =
𝑖+D ∧ Tr ′(V , 𝑖,V ′, 𝑖′) for some positive constant D > 0.

Definition 7. A range-based CHC system is the one that has the following form

Init ′(V , 𝑖) ∧ 𝑖 = S(V ) =⇒ 𝑇 (V , 𝑖)

𝑇 (V , 𝑖) ∧ 𝑖 < F(V ) ∧ 𝑖′ = 𝑖+D ∧𝐺′(V , 𝑖) ∧ Tr ′(V , 𝑖,V ′, 𝑖′) =⇒ 𝑇 (V ′, 𝑖′)

such that for some inductive invariant inv the following hold:

Tr ′(V , 𝑖,V ′, 𝑖′) ∧ inv(V , 𝑖) =⇒ S(V ) = S(V ′) (1)

Tr ′(V , 𝑖,V ′, 𝑖′) ∧ inv(V , 𝑖) =⇒ F(V ) = F(V ′) (2)

𝑖 < F(V ) ∧ inv(V , 𝑖) =⇒ 𝐺′(V , 𝑖) (3)

To guarantee soundness of our construction, the constraints in the definition
above ensure that S and F are the tightest bounds for the counter variable 𝑖.
Specifically, (1) and (2) ensure that 𝑖 has the lower and the upper bound that
do not change throughout the execution, and (3) ensures that the loop does
not break before 𝑖 exceeds F(𝑉 ). An invariant inv could in simple cases be just
⊤ but often it needs to bring important information from an initial state to an
arbitrary iteration. For instance, if a loop has two counters with their own upper
and lower bounds, then our analysis can proceed only when we can prove that

2 A similar technique for a decrementing counter is straightforward but omitted for
brevity of presentation.
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either of the counters exceeds its upper bound always faster than another does
so. Our running example makes another use of (3), to ensure that the residual
guard 𝐺′(V , 𝑖) is weaker than 𝑖 < F(V ) strengthened by the invariant.

Example 6. Recall the first loop of the decomposed source of Example 1. It has
the guard 𝑎 ̸= 𝑁∧𝑎 < 2*𝑀+1. We can find invariant 𝑁 = 2*𝑀+1+𝐾∧𝐾 ≥ 0.
Clearly, since 𝑁 = 2*𝑀 + 1 +𝐾 ∧𝐾 ≥ 0 ∧ 𝑎 < 2*𝑀 + 1 =⇒ 𝑎 ̸= 𝑁 , then

F(𝑀)
def
= 2*𝑀 + 1 satisfies (3). With no invariant, 𝑎 < 2*𝑀 + 1 ≠⇒ 𝑎 ̸= 𝑁 .

Lemma 2. An integer function N computes the exact number of iterations for
a range-based CHC system:

N
def
= (F − S) div D+ (if ((F − S) mod D = 0) then 0 else 1)

In practice, the approach is limited to the invariant generation capabilities.
If a sufficient invariant for Def. 7 (and thus, Lemma 2) is found, the approach
proceeds to align loops. Otherwise, it returns Unknown.

6.2 Identifying Unrolling Depths

If the numbers of iterations can be computed, the approach proceeds to finding
alignment bounds ℓ and𝑚 that define respectively the number of iterations to be
extracted and placed before the loop and the number of iterations to be grouped
and performed at once in the loop. These bounds are obtained from the following
ingredients:

1. functionsN𝑆 andN𝑇 to compute the numbers of iterations of the 𝑆-projection
and the 𝑇 -projection, respectively;

2. fresh integer variable 𝑣ℓ to represent (a yet unknown) number of iterations
to be moved out of the loop in the 𝑆-projection,

3. fresh integer variable 𝑣𝑚 to represent (a yet unknown) number of iterations
to be grouped inside the loop for the 𝑆-projection.

Values ℓ and𝑚 can be directly taken from a satisfying assignment to variables
𝑣ℓ and 𝑣𝑚 for the following SMT query. Intuitively, it equates the total numbers
of iterations in the 𝑆-projection and the 𝑇 -projection:

𝑄ST
def
= ∃𝑣ℓ, 𝑣𝑚 . ∀V𝑆 ,V𝑇 . (𝑣ℓ ≥ 0 ∧ 𝑣𝑚 > 0) ∧ pre(V𝑆 ,V𝑇 ) =⇒

N𝑆(V𝑆)− 𝑣ℓ = 𝑣𝑚 *N𝑇 (V𝑇 )

Thus, the SMT formula has the form of implication: if pre holds, then the
number of iterations of one program can be expressed over the number of iter-

ations of another program (and vice versa). If M |= 𝑄ST , then ℓ
def
= M(𝑣ℓ), and

𝑚
def
= M(𝑣𝑚).

Example 7. For the first projections in the decomposed source and the target,
we generate the following (simplified) SMT query:

𝑄ST = ∃𝑣ℓ, 𝑣𝑚 . (𝑣ℓ ≥ 0 ∧ 𝑣𝑚 > 0) ∧𝑀 = 𝑋 =⇒ 2*𝑀 + 1− 𝑣ℓ = 𝑣𝑚 *𝑋

and the solver generates model M = {𝑣ℓ ↦→ 1, 𝑣𝑚 ↦→ 2}, and ℓ = 1, and 𝑚 = 2.
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6.3 Rearrangement of the Source Projection

Finally, we present the restructuring of the 𝑆-projection based on two alignment
bounds, ℓ and 𝑚, computed in the previous section. The former represents the
number of iterations to be moved before the loop, and the latter represents the
number of iterations to make a batch inside the loop.3 We assume that an 𝑆-
projection is defined using the following two CHCs over a single predicate symbol
𝐿: Init𝑆(V ) =⇒ 𝐿(V ) and 𝐿(V ) ∧GTr(V ,V ′) =⇒ 𝐿(V ′).

We define an auxiliary predicate 𝑈(𝑢,V ,V ′) that allows us to create an un-
rolling of arbitrary length: if 𝑢 = 0, the result is the identity formula, otherwise

we create 𝑢 unrollings of the system (GTr𝑆 conjoined 𝑢 times), then define Init
(ℓ)
𝑆

and GTr
(𝑚)
𝑆 , as follows:

𝑈(𝑢,V ,V ′)
def
= ite(𝑢 = 0, V ′ =V ,

∃V ′′, . . . ,V (𝑢) .GTr𝑆(V ,V
′′) ∧ . . . ∧GTr𝑆(V

(𝑢),V ′))

Init
(ℓ)
𝑆 (V ′)

def
= ∃V . Init𝑆(V ) ∧ 𝑈(ℓ,V ,V ′)

GTr
(𝑚)
𝑆 (V ,V ′)

def
= 𝑈(𝑚,V ,V ′)

Finally, we are ready to define the aligned CHC product used in Alg. 1 (align-
CHCs(𝑆, 𝑇, pre)).

Definition 8. Let 𝑆 and 𝑇 be two range-based CHC systems, as defined in
Def. 7. Let M |= 𝑄ST (N𝑆 ,N𝑇 , 𝑣ℓ, 𝑣𝑚, pre), as defined in Sect. 6.2. Then, the
rearranged system 𝑆𝑅 is defined as follows:

Init
(M(𝑣ℓ))
𝑆 (V ) =⇒ 𝐿(V ) 𝐿(V ) ∧GTr

(M(𝑣𝑚))
𝑆 (V ,V ′) =⇒ 𝐿(V ′)

Note that 𝑆𝑅 and 𝑇 are in lockstep, and 𝑆𝑅 is equivalent to 𝑆, both by con-
struction. Thus, after such alignment, our Alg. 1 will proceed to checking the
equivalence of 𝑆 and 𝑇 by means of checking equivalence of 𝑆𝑅 and 𝑇 .

Example 8. For the first projections in the decomposed source and the target,
the lockstep check does not succeed because the body of the fact is unsatisfiable:

𝑎 = 𝑐 ∧ 𝑏 = 𝑑 ∧𝑀 = 𝑋 ∧ 𝑌 = 𝐾 ∧ 𝑎 = 0 ∧𝑁 = 2*𝑀+1+𝐾 ∧ 𝑏 = 2*𝑀+1 ∧𝑀 ≥ 0∧
𝐾 ≥ 0 ∧ 𝑐 = 1 ∧ 𝑑 = 2*𝑋+1 ∧𝑋 ≥ 0 ∧ 𝑌 ≥ 0 =⇒ 𝐿1(𝑎, 𝑏,𝑀,𝐾,𝑁, 𝑐, 𝑑,𝑋, 𝑌 )

With the bounds computed in Example 7, we compute the following product:

𝑎 = 0 ∧𝑁 = 2*𝑀 + 1 +𝐾∧ 𝑏 = 2*𝑀 + 1 ∧𝑀 ≥ 0 ∧𝐾 ≥ 0∧
𝑎 ̸= 𝑁 ∧ 𝑎 < 2*𝑀 + 1 ∧ 𝑎′ = 𝑎+1 ∧ 𝑏′ = ite(𝑎 ≥ 𝑏, 𝑏+1, 𝑏)∧

𝑐 = 1 ∧ 𝑑 = 2*𝑋 + 1 ∧𝑋 ≥ 0 ∧ 𝑌 ≥ 0∧ 𝑎′ = 𝑐 ∧ 𝑏′ = 𝑑 ∧𝑀 = 𝑋 ∧ 𝑌 = 𝐾

=⇒ 𝐿1(𝑎
′, 𝑏′,𝑀,𝐾,𝑁, 𝑐, 𝑑,𝑋, 𝑌 )

𝐿1(𝑎, 𝑏,𝑀,𝐾,𝑁, 𝑐, 𝑑,𝑋, 𝑌 ) ∧ 𝑎 ̸= 𝑁 ∧ 𝑎 < 2*𝑀+1 ∧ 𝑎′= 𝑎+1 ∧ 𝑏′= ite(𝑎 ≥ 𝑏, 𝑏+1, 𝑏)∧
𝑎′ ̸= 𝑁 ∧ 𝑎′ < 2*𝑀+1∧𝑎′′= 𝑎′+1 ∧ 𝑏′′= ite(𝑎′ ≥ 𝑏′, 𝑏′+1, 𝑏′)∧
𝑐 < 2*𝑋 + 1 ∧ 𝑐′ = 𝑐+ 2 =⇒ 𝐿1(𝑎

′′, 𝑏′′,𝑀,𝐾,𝑁, 𝑐′, 𝑑,𝑋, 𝑌 )

3 In practice, it could also be required to move some iterations to after the loop (and
our implementation supports it). Then, we split 𝑚 into 𝑚1 +𝑚2 heuristically and
move 𝑚1 iterations to before the loop, and 𝑚2 to after the loop.
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7 Evaluation

We have implemented the algorithm for equivalence checking in a tool called
Alien4 on top of the invariant synthesizer FreqHorn that supports integers
and arrays (over integers) [10]. Alien takes as input an 𝑆-system and a 𝑇 -
system, automatically decomposes the former, creates a sequence of product
programs, and delegates the inductive invariant generation to FreqHorn. For
solving SMT queries, it uses Z3 [8]. We considered two benchmark suites:

– Test Suite of Vectorization Compilers (TSVC) [23], preprocessed in the way
suggested by [5]. TSVC has 152 benchmarks, and 48 of which are either
not vectorizable, contain floating point operations, intrinsic functions, or
need some extra processing like loop rerolling. We thus experimented on a
set of remaining 104 remaining benchmarks. We check equivalence of these
programs w.r.t. their optimized versions, both translated to CHCs.

– A subset of 24 multi-phase benchmarks taken from [4,31] in which the phases
can be “extracted” from the loops. The optimized versions of these bench-
marks have more than one loop, thus necessitating to use our decomposition.

We considered the state-of-the-art tools LLREVE [16], an equivalence checker
by Churchill et al. [5], Counter [14], and CHC-Product [25]. However, only
Counter was able to solve some of our benchmarks in reasonable time: Churchill
et al. report that the minimum time any benchmark takes to solve is around 2
hours, and it was largely outperformed by Counter in [14].

We thus evaluate our Alien against Counter for both benchmark suites. To
run Counter on a pair of manually provided C programs5, it was configured
to apply no optimization to any of the programs. For TSVC benchmarks, we
manually pass an unrolling factor 8 required by each benchmark (compare to
our approach in which the tool automatically identifies this number). For Alien,
we provide two CHC encodings of the program before and after the optimization.
We specified a timeout of 15 minutes for both tools.

Alien solved 103 out of 104 TSVC benchmarks. Alien times out on the
s279 benchmark because its invariant synthesizer struggles with finding a helper
invariant. Benchmark s113 requires the approach to automatically synthesize an
extra lemma (i.e., cnt>0), in addition to the variable equalities. Alien took 3.7
seconds to solve a benchmark on average: from 1.3 in the best case to 27.4 in
the worst case. Among all, 26 (resp. 2) benchmarks require moving iterations
before (resp. after) the loop. Counter proved equivalence for 15 benchmarks,
it failed to prove equivalence for 9 benchmarks, while the rest (81 benchmarks)
timed-out. Its minimum running time is 50.2 seconds, maximum 704 seconds
and average 117.4 seconds.

4 The tool and benchmarks are available at https://github.com/a-hamza-r/aeval/
tree/equiv-check.

5 We consulted https://github.com/compilerai/counter to run tool in our setting. Note
that in their paper, the authors evaluated Counter only on compiler-optimized
targets. Our case study is different, and it shows that checking equivalence between
two arbitrary programs is a harder problem for Counter.
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Fig. 3: Cactus plots (left: for TSVC benchmarks, right: for multi-phase benchmarks)
comparing running times of ALIEN (blue line) and Counter (orange line).

For 24 multi-phase benchmarks,ALIEN proved all of them.Counter proved
equivalence for 5 benchmarks, it failed to prove equivalence for 3 benchmarks,
while the remaining benchmarks timed-out. The minimum, maximum and av-
erage times are 3.2, 32.6, and 11.5 seconds, respectively for ALIEN; and 43.8,
106.9, and 56.2 seconds respectively for Counter.

A larger picture on the experimental results is given in Fig. 3. The horizontal
axes in the cactus plots represent time limit (logarithmic scale), and the vertical
axes represent the numbers of benchmarks (linear scale) solved within the cor-
responding time limits. Intuitively, the plots demonstrate that Counter is an
order of magnitude slower than our novel approach.

8 Conclusion

We have presented a novel CEGAR-based approach for checking equivalence
of two programs containing possibly different number of loops. The technique
involves automatic decomposition of one of the programs to match the loops
structure of the other, so that the task of equivalence checking of two given
programs can be split into a sequence of tasks of equivalence checking of single
loops, each of which is solved easier. Since such decomposition comes at a cost of
possible loss of information, we developed a refinement schema that is intuitively
based on propagation of lemmas on demand. Moreover, in case we deal with
loops with provably-different number of iterations, our technique automatically
rearranges the iterations in the loops making them lockstep-composable for each
subtask. We developed the Alien tool and empirically demonstrated that our
approach to equivalence checking is more efficient than state-of-the-art on two
classes of public benchmarks. In future, it would be interesting to extend these
techniques to more general program structures, e.g., where both programs have
multiple and possibly nested loops.
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Abstract. Distributed agreement-based (DAB) systems use common dis-
tributed agreement protocols such as leader election and consensus as
building blocks for their target functionality. While automated verifica-
tion for DAB systems is undecidable in general, recent work identifies a
large class of DAB systems for which verification is efficiently-decidable.
Unfortunately, the conditions characterizing such a class can be opaque
and non-intuitive, and can pose a significant challenge to system design-
ers trying to model their systems in this class.
In this paper, we present a synthesis-driven tool, Cinnabar, to help
system designers building DAB systems ensure that their intended de-
signs belong to an efficiently-decidable class. In particular, starting from
an initial sketch provided by the designer, Cinnabar generates sketch
completions using a counterexample-guided procedure. The core tech-
nique relies on compactly encoding root-causes of counterexamples to
varied properties such as efficient-decidability and safety. We demon-
strate Cinnabar’s effectiveness by successfully and efficiently synthe-
sizing completions for a variety of interesting DAB systems including a
distributed key-value store and a distributed consortium system.

1 Introduction

Distributed system designers are increasingly embracing the incorporation of
formal verification techniques into their development pipelines [8,10,13,31]. The
formal methods community has been enthusiastically responding to this trend
with a wide array of modeling and verification frameworks for prevalent dis-
tributed systems [29,17,15,32]. A desirable workflow for a system designer using
one of these frameworks is to (1) provide a framework-specific model and speci-
fication of their system, and (2) automatically verify if the system model meets
its specification.

However, the problem of algorithmically checking if a distributed system
is correct for an arbitrary number of processes, i.e., the automated parameter-
ized verification problem, is undecidable, even for finite-state processes [5,34].
To circumvent undecidability, the system designer must be involved, one way
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or another, in the verification process. Either the designer may choose a semi-
automated verification approach and use their expertise to “assist” the verifier
by providing inductive invariants [32,25,15,36]. Or, the designer may choose a
fully-automated verification approach that is only applicable to a restricted class
of system models [16,17,24,7] and use their expertise to ensure that the model
of their system belongs to the decidable class. This begs the question—for each
workflow, how can we further simplify the system designer’s task? While effec-
tive frameworks have been developed to aid the designer in discovering inductive
invariants for the first workflow (e.g., Ivy [29], I4 [26]), there has been little em-
phasis on aiding the designer to build decidability-compliant models of their
systems for the second workflow.

In this paper, we present a synthesis-driven approach to help system designers
using the second workflow to build models that are both decidability-compliant
and correct. Thus, our approach helps designers to construct models that be-
long to a decidable class for automated, parameterized verification, and can be
automatically verified to be safe for any number of processes.

In particular, we instantiate this approach in a tool, Cinnabar, that targets
an existing framework, QuickSilver, for modeling and automated verification
of distributed agreement-based (DAB) systems [17]. Such systems use agreement
protocols such as leader election and consensus as building blocks. QuickSilver
enables modular verification of DAB systems by providing a modeling language,
Mercury, that allows designers to model verified agreement protocols using
inbuilt language primitives, and identifying a class of Mercury models for which
the parameterized verification problem is efficiently decidable.

Unfortunately, this efficiently-decidable class of Mercury models is char-
acterized using conditions that are rather opaque and non-intuitive, and can
pose a significant challenge to system designers trying to model their systems
in this class. The designer is responsible for understanding the conditions, and
manually modifying their system model to ensure it belongs to the efficiently-
decidable class of Mercury. This process can be both tedious and error-prone,
even for experienced system designers.

Cinnabar demonstrates that synthesis can be used to automatically build
models of DAB systems that belong to the efficiently-decidable fragment of Mer-
cury and are correct.
Contributions. The key contributions of this paper are:
1. A synthesis-driven method for building efficiently-decidable, correct Mer-

cury models (Sec. 3). Starting from an initial sketch of the system design
provided by the designer, Cinnabar generates a sketch completion that (i)
belongs to the efficiently-decidable class of Mercury and (ii) is correct.

2. A counterexample-guided synthesis procedure that leverages an efficient, ex-
tensible, multi-stage architecture (Sec. 4). We present a procedure that in-
volves a learner that proposes completions of the Mercury sketch, and
a teacher that checks if the completed model belongs to the efficiently-
decidable class of Mercury and is correct. To enable efficient synthesis
using this procedure, we propose an architecture that proceeds in stages.
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The initial stages focus on checking if a completed model is in the efficiently-
decidable class while the latter stages focus on checking if a completed model
is also correct. To enable efficiency, when a candidate completion fails at
any stage, the architecture helps the learner avoid “ similar” completions
by extracting a root-cause of the failure and encoding the root-cause as an
additional constraint for the learner. Each stage is equipped with a coun-
terexample extraction strategy tailored to the property checked in that stage.
The encoding procedure, on the other hand, is property-agnostic—it is able
to encode the root-cause of any failure regardless of the stage that extracts
it. The separation of the counterexample extractions and the encoding al-
lows the architecture to be extensible—one can add a new stage with a new
counterexample extraction strategy, and leverage the existing encoding.

3. The Cinnabar tool (Sec. 5). We develop a tool, Cinnabar, to help sys-
tem designers build Mercury models of DAB systems. Cinnabar employs
QuickSilver as its teacher and the Z3 SMT solver as its learner. Cinnabar
is able to successfully and efficiently complete Mercury sketches of various
interesting distributed agreement-based systems.

2 The Mercury Parameterized Synthesis Problem

We first briefly review the syntax and semantics of Mercury [17], a modeling
language for distributed systems that build on top of verified agreement protocols
such as leader election and consensus. Then, we formalize the synthesis problem.

2.1 Review: Mercury Systems

Mercury Process Definition. A Mercury process DistributedStore
variables
int[1,5] cmd

events
env rz doCmd : int[1,5]

initial location Candidate
on partition<elect>(All, 1)
win: goto Leader
lose: goto Replica

location Leader
on recv(doCmd) do
cmd := doCmd.payld
if(cmd = 3) goto Return
else goto RepCmd

...

system is composed of an arbitrary number of n
identical Mercury system processes with pro-
cess identifiers 1, . . . , n and one environment
process. The programmer specifies a system pro-
cess definition P that consists of (i) a set V of
local variables with finite domains, (ii) a set E of
events used to communicate between processes,
and (iii) a set of locations that the processes can
move between. Each event e in E incarnates an
acting action A(e) and a reacting action R(e)
(e.g., for a rendezvous event, the acting (resp.
reacting) action is the send (resp. receive) of that event). All processes start in
a location denoted initial. Each location contains a set of action handlers a
process in that location can execute. Each handler has an associated action, a
Boolean guard over the local variables, and a set of update statements. A partial
process definition is depicted on the right.

The language supports five different types of events, namely, broadcast, ren-
dezvous, partition, consensus, and internal. The synchronous broadcast (resp.
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rendezvous) communication event type is denoted br (resp. rz) and indicates
an event where one process synchronously communicates with all other pro-
cesses (resp. another process). The agreement event type partition, denoted
partition, indicates an event where a set of processes agree to partition them-
selves into winners and losers. For instance, in the figure, partition<elect>
(All,1) denotes a leader election round with identifier elect where All pro-
cesses elect 1 winning process that moves to the Leader location, while all other
losing processes move to the Replica location. The agreement event type con-
sensus, denoted consensus, indicates an event where a set of processes, each
proposing one value, reach consensus on a given set of decided values. For in-
stance, consensus<vcCmd>(All,1,cmd) denotes a consensus round with identi-
fier vcCmd where All processes want to agree on 1 decided value from the set
of proposed values in the local variable cmd. Finally, the internal event indicates
an event where a process is performing its own internal computations. For a
communication event, the acting action is a send, while the reacting action is
a receive. For a partition event, the acting action is a win, while the reacting
action is a lose. Finally, for a consensus event, the acting action is proposing a
winning value, while the reacting action is proposing a losing value. We denote
by A(E) and R(E) the set of all acting and reacting actions, respectively.

The updates in an action handler may contain send, assignment, goto, and/or
conditional statements. Assignment statements are of the form lhs := rhs where
lhs is a local variable and rhs is an expression of the appropriate type. The goto
statement goto ` causes the process to switch to location ` (i.e., it can be thought
of as the assignment statement vloc := `, where vloc is a special “location vari-
able” that stores the current location of the process). The conditional statements
are of the expected form: if(cond) then...else.... We denote by H the set
of all handlers in the process, and for each handler h ∈ H we denote its action,
guard, and updates as a(h), g(h), and u(h), respectively.

Local Semantics. The local semantics JP K of a process P is expressed as a
state-transition system (S, s0, E, T ), where S is the set of local states, s0 is the
initial state, E is the set of events, and T ⊆ S × {A(E) ∪ R(E)} × S is the set
of transitions of JP K. A state s ∈ S is a valuation of the variables in V . We let
s(v) denote the value of the variable v in state s.

The set of action handlers associated with all acting and reacting actions of
all events induces the transitions in T . In particular, a transition t = s

a−→ s′

based on action handler h over action a is in T iff the guard g(h) evaluates to
true in s and s′ is obtained by applying the updates u(h) to s.

Global Semantics. The global semantics JP, nK of a Mercury system P1|| . . .
||Pn||Pe consisting of n identical processes P1, . . . , Pn and an environment process
Pe (with local state space Se) is expressed as a transition system (Q, q0, E,R),
where Q = Sn × Se is the set of global states, q0 is the initial global state, E is
the set of events, and R ⊆ Q× E ×Q is the set of global transitions of JP, nK.

The set of events E induce the transitions in R. As is the case for events, there
are five types of global transitions: broadcast, rendezvous, partition, consensus,
and internal. In particular, a transition r = q

e−→ q′ for some broadcast event e
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is in R iff the send local transition q[i]
A(e)−−−→ q[i]′ is in T for some process Pi,

and the receive local transition q[j]
R(e)−−−→ q[j]′ is in T for every other process Pj

with j 6= i. The remaining global transitions can be formalized similarly.
A trace of a Mercury system is a sequence q0, q1, . . . of global states such

that for every i ≥ 0, the global transition qi
e−→ qi+1 for some event e is in R. A

global state q is reachable if there is a trace that ends in it.
Permissible Safety Specifications. QuickSilver targets parameterized ver-
ification for a class of properties called permissible safety specifications that dis-
allow global states where m or more processes, for some fixed number m, are in
some subset of the local states. We denote by φs(n) the permissible safety spec-
ifications provided by the designer for a system with n processes. A Mercury
system is safe if there are no reachable error states in its global semantics. We
denote that as JP, nK |= φs(n).
The Efficiently-Decidable Fragment. QuickSilver identifies a fragment of
Mercury for which the parameterized verification problem of a large class of
safety properties is efficiently-decidable. In particular, a pair 〈P, φ〉 of a Mercury
process P and a safety specification φ is in the efficiently-decidable fragment of
Mercury if it satisfies phase-compatibility and cutoff-amenability conditions.
For such a pair, a cutoff number c of processes can be computed and the param-
eterized verification problem can be reduced to the verification of the cutoff-sized
system (i.e., ∀n : JP, nK |= φs(n)⇔ JP, cK |= φs(c)).

During verification, QuickSilver computes a set of phases that an execution
of the system goes through. On a high level, the phase-compatibility conditions
ensure that the system moves between phases through “globally-synchronizing”
events (i.e., broadcast, partition, or consensus), and that all processes in the same
phase can participate in further globally-synchronizing events. This ensures that
the system’s ability to move between phases is independent of the number of
processes in the system. The cutoff-amenability conditions ensure that an error
state, where m processes are in a subset of the local states violating some safety
specification, is reachable in a system of any size iff it is reachable in a system
with exactly m processes. If any of these conditions fails, the designer must
modify the process definition manually and attempt the verification again. We
denote by JP K |= φpc (resp. JP K |= φca) that the Mercury process P with local
semantics JP K satisfies phase-compatibility (resp. cutoff-amenability) conditions.

2.2 Mercury Process Sketch

Let us extend Mercury’s syntax to allow process sketches that can be com-
pleted by a synthesizer. In particular, we allow the process definition to include
a set of uninterpreted functions that can replace various expressions in Mer-
cury such as the Boolean expression cond in the if(cond) then . . . else . . .,
the target locations of goto statements, and the rhs of assignments. 3 As is stan-
dard, each uninterpreted function f is equipped with a signature determining its
3 Such uninterpreted functions are sufficient to be a building block for more complex
expressions and statements (See, for instance, the Sketch Language [33]).
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Fig. 1: Overview of Cinnabar’s architecture.

list of named, typed parameters and its return type. A valid list of arguments
arg for some function f is a list of values with types that match the function’s
parameter list. Applying a function f to a valid list of arguments arg is denoted
by f(arg). Additionally, we define a function interpretation I(f) of an uninter-
preted function f as a mapping from every valid list of arguments of f to a valid
return value.

A Mercury process definition P that contains one or more uninterpreted
functions is called a sketch, and is denoted Psk . We denote by Fsk the set of
all uninterpreted functions in a sketch Psk . An interpretation I of the set Fsk
of uninterpreted functions is then a mapping from every uninterpreted function
fsk ∈ Fsk to some function interpretation I(fsk ).

For some process sketch Psk and some interpretation I of the set Fsk of
uninterpreted functions in Psk , we denote by PI the interpreted process sketch
obtained by replacing every uninterpreted function fsk ∈ Fsk in the sketch Psk
with its function interpretation I(fsk ) according to the interpretation I.

2.3 Problem Definition

We now define the parameterized synthesis problem for Mercury systems.

Definition 1 (Mercury Parameterized Synthesis Problem (MPSP)).
Given a process sketch Psk with a set of uninterpreted functions Fsk, an environ-
ment process Pe, and permissible safety specification φs(n), find an interpretation
I of uninterpreted functions in Fsk such that the system PI,1|| . . . ||PI,n||Pe is safe
for any number of processes, i.e., ∀n : JPI , nK |= φs(n).

3 Constraint-Based Synthesis for Mercury Systems

Architecture. To solve MPSP, we propose a multi-stage, counterexample-based
architecture, shown in Fig. 1, with the following components:
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– Learner: a constraint-solver that accepts a set C of constraints over the
uninterpreted functions Fsk and generates interpretations I satisfying these
constraints (i.e., I |= C). Specifically, a constraint c ∈ C is a well-typed
Boolean formula over uninterpreted function applications.

– Teacher: a component capable of checking phase-compatibility, cutoff-
amenability, safety, and liveness4 of Mercury systems. We refer to these
four conditions as properties.

– complete: a component that builds an interpreted process sketch PI from a
process sketch Psk and an interpretation I provided by the learner.

– extractprop: a property-specific component to extract a counterexample cex,
capturing the root cause of a violation, if the Teacher determines that a
property prop from the above-mentioned properties is violated.

– encode: a novel property-agnostic component that encodes counterexamples
generated by extract components into additional constraints for the learner.

Algorithm 1: Solving MPSP.
1 procedure Synth(Psk, φs(n), φl(c))
2 C = ∅
3 while true do
4 I = interpret(Fsk , C)
5 if I 6= null then
6 PI = complete(Psk , I)
7 JPIK = buildLS(PI)
8 cexp = findPhCoCE(JPIK)
9 if cexp 6= null then

10 C = C ∪ ¬ encode(cexp)
11 Continue
12 ... B check cutoff-amenability
13 c = compCutoff(PI , φs(n))
14 JPI , cK = buildGS(PI , c)
15 cex s = findSaCE(JPI , cK, φs(c))
16 if cexs 6= null then
17 C = C ∪ ¬ encode(cex s)
18 Continue
19 return PI

20 else
21 return null

Synthesis Procedure. Cinnabar
instantiates this architecture as shown
in Algo. 1. The algorithm starts
with an empty set of constraints, C
(Line 2) over the set Fsk of uninter-
preted functions in the process sketch
Psk . In each iteration, it checks if
there exists an interpretation I of
the uninterpreted functions that sat-
isfies all the constraints collected so
far (Line 4). If such an interpretation
is found, it is used to obtain an in-
terpreted process sketch PI (Line 6).
Then, the algorithm checks if the
system described by PI is phase-
compatible and cutoff-amenable. If
so, a cutoff c is computed (Line 13)
and the c-sized system is checked to
be safe. The cutoff-amenability stage
is similar to phase-compatibility and
is hence omitted from the algorithm.
At any stage, if the process fails
to satisfy any of these properties (e.g., a counterexample cexp to phase-
compatibility is found on Line 8), the root-cause of the failure is extracted and
encoded into a constraint for the learner to rule out the failure (e.g., Line 10).

4 While MPSP targets permissible safety specifications, in order to improve the quality
of the interpreted process sketch PI , we extend Mercury with liveness specifica-
tions to help rule out trivial completions that are safe. We emphasize that such
specifications are only used as a tool to improve the quality of synthesis, and are
only guaranteed for the cutoff-sized system, as opposed to safety properties that are
guaranteed for any system size.
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Note that these stages are checked sequentially due to the inherent depen-
dency between them: (i) the system can only be cutoff amenable if it is phase
compatible, and (ii) one can only check safety after a cutoff has been computed.

Lemma 1. Assuming that the teacher is sound and the learner is complete for
finite sets of interpretations, Algo. 1 for solving MPSP is sound and complete.

Proof. Soundness follows directly from the soundness of the teacher. Complete-
ness follows from that the encoding and extraction procedures ensure progress by
eliminating at least the current interpretation at each iteration, and the finite-
ness of the set of interpretations. Finiteness follows from (i) the finite number of
uninterpreted functions in a sketch Psk , (ii) the finiteness of the domain of each
local variable, and (iii) the finiteness of the number of local variables in Psk .

In the remainder of this section, we describe the property-agnostic encode
component in Algo. 1. In the following section, we describe our implementa-
tion of our synthesis procedure specialized to a QuickSilver-based teacher and
property-specific extraction procedures.

Property-Agnostic Counterexample Encoding Procedure

We first describe the necessary augmentation of local semantics with disabled
transitions needed for Cinnabar’s counterexample extraction and encoding.
While such transitions are not relevant when reasoning about a “concrete” pro-
cess definition (i.e., one with no uninterpreted functions), they are quite im-
portant when extracting an explanation for why some conditions (e.g., phase-
compatibility) fail to hold on JP K.
Augmented Local Semantics of the Mercury Process PI. We extend
the definition of the local semantics of a Mercury interpreted process sketch PI

to be JPIK = (SI , s0, E, TI , T
dis
I ) where SI , s0, E, and TI are defined as before

and T dis
I is the set of disabled transitions under the current interpretation I.

In particular, a disabled transition t = s
a−→ ⊥ based on action handler h over

action a is in T dis
I iff the guard g(h) evaluates to false in s. The symbol ⊥ here

indicates that no local state is reachable, since the guard is disabled.
Additionally, we say a transition t = s

a−→ s′ based on action handler h over
action a is a sketch transition if h contains no uninterpreted functions in its
guard or updates. A local state s ∈ SI is concrete if (i) s is the initial state s0, or
(ii) there exists a sketch transition s′ −→ s where s′ is concrete. In other words, a
local state s is concrete if there exists a path from the initial state s0 to s that is
composed purely of sketch transitions and hence is always reachable regardless
of the interpretation we obtain from the learner.

We now formalize counterexamples for phase-compatibility and cutoff amenabil-
ity properties then present an encoding procedure for such counterexamples. The
encoding is exact in the sense that a generated constraint c corresponding to
some counterexample cex rules out exactly all interpretations I where an in-
terpreted process sketch PI exhibits cex (as opposed to an over-approximation
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where c would rule out interpreted process sketches that do not exhibit cex, or
an under-approximation where c would allow interpreted process sketches that
do exhibit cex). Additionally, the encoding is property-agnostic in the sense that
it can handle counterexamples for any property failure.
Counterexamples. Recall that a candidate process PI based on some process
sketch Psk and interpretation I has the local semantics JPIK = (SI , s0, E, TI , T

dis
I ).

A counterexample cex to phase-compatibility (resp. cutoff-amenability) is a “sub-
set” of the local semantics JPIK such that cex 6|= φpc (resp. cex 6|= φca). We say
that cex is a subset of JPIK, denoted cex ⊆ JPIK, when it has a subset of its
enabled and disabled transitions, i.e., cex = (SI , s0, E, T

′
I ⊆ TI , T ′disI ⊆ T dis

I ).
Encoding Counterexamples. Let C be the set of all well-typed constraints that
the learner accepts. The encoding of counterexample cex = (SI , s0, E, TI , T

dis
I )

w.r.t. interpretation I is a formula 〈〈cex〉〉I ∈ C defined as:

〈〈cex〉〉I =
( ∧

ten∈TI

〈〈ten〉〉I
)
∧
( ∧

tdis∈T dis
I

〈〈tdis〉〉I
)
,

where 〈〈ten〉〉I (resp. 〈〈tdis〉〉I) is an encoding of an enabled (resp. disabled) local
transition. Note that 〈〈cex〉〉I is satisfied under interpretation I (i.e., I |= 〈〈cex〉〉I)
and implies that cex ⊆ JP K. An encoding of some enabled transition ten = s

a−→ s′

based on action handler h over action a is defined as:

〈〈s a−→ s′〉〉I = 〈〈s〉〉I ∧ 〈〈a : s〉〉I ∧ 〈〈s
′ : s, a〉〉I ,

where:
1. the predicate 〈〈s〉〉I indicating that the source state s is reachable from the

initial state s0 under interpretation I. If s is concrete, 〈〈s〉〉I is simply true
(i.e., s is always reachable regardless of I). Otherwise, 〈〈s〉〉I is defined as
follows. Let P be the set of all paths from the initial state s0 to state s.
Then, 〈〈s〉〉I :=

∨
p∈P〈〈p〉〉I , where 〈〈p〉〉I for some path p consisting of local

transitions t1, . . . , ti is defined as 〈〈t1〉〉I ∧ . . . ∧ 〈〈ti〉〉I .
2. the predicate 〈〈a : s〉〉I indicating that the process can perform action a

from state s. The predicate 〈〈a : s〉〉I is defined as follows: 〈〈a : s〉〉I :=
(g(h)[s(V )/V ] = true), where g(h)[s(V )/V ] is the guard g(h) with each
local variable v ∈ V replaced by its value s(v) in state s.
Example. Let uf(x, y) be an uninterpreted function over local int variables
x and y. Let the local state s := {vloc = F, x = 1, y = 2}, and let the local
guard of action handler h over action a in location F be g := uf(x, y) >
7 ∨ x = 2. Then 〈〈a : s〉〉I =

(
( uf(s(x), s(y)) > 7 ∨ s(x) = 2) = true)

)
which

is
(
(uf(1, 2) > 7 ∨ 1 = 2) = true

)
which simplifies to uf(1, 2) > 7.

3. the predicate 〈〈s′ : s, a〉〉I indicating that s goes to s′ on action a. The pred-
icate 〈〈s′ : s, a〉〉I is defined as follows. Let u(h) denote the set of updates
of the form lhs := rhs of handler h over action a. Then, 〈〈s′ : s, a〉〉I :=∧

lhs:=rhs∈u(h) s
′(lhs) = rhs[s(V )/V ].

Example. Let the set of updates have the single update x := uf(y, z) and
s, s′ be {vloc = F, x = 1, y = 2, z = 3} and {vloc = D, x = 5, y = 2, z = 3}.
Then 〈〈s′ : s, a〉〉I is: s′(x) = uf(s(y), s(z)) which is uf(2, 3) = 5.
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An encoding of some disabled transition tdis = s
a−→ ⊥ in cex is defined as

〈〈tdis〉〉I = 〈〈s〉〉I ∧ 〈〈¬a : s〉〉I where 〈〈s〉〉I is as before and the predicate 〈〈¬a : s〉〉I ,
indicating that the process cannot perform action a from state s, is defined as
follows: 〈〈¬a : s〉〉I := (g(h)[s(V )/V ] = false).

The intuition behind breaking a transition’s encoding to various predicates is
that some phase-compatibility conditions leave parts of a transition unspecified.
For instance, the predicate “the local state s can react to event e” corresponds
to a local transition s

R(e)−−−→ ∗ ∈ TI with encoding 〈〈s〉〉I ∧ 〈〈R(e) : s〉〉I .
Finally, to rule out any interpretation I that exhibits cex, we add the con-

straint c = ¬〈〈cex〉〉I to the learner.

Encoding Counterexamples to Safety Properties. Similar to the local se-
mantics, we extend the definition of the global semantics JPI , nK of a Mer-
cury system PI,1|| . . . ||PI,n||Pe to be JPI , nK = (QI , q0, E,RI , R

dis
I ), where

QI , q0, E, and RI are defined as before and Rdis
I is the set of disabled global

transitions under the current interpretation I. Then, a counterexample cex
to safety is a “subset” of the global semantics JPI , cK such that cex 6|= φs(c).
Encoding of such a counterexample cex is formalized as before, with the en-
coding of an enabled global transition r in cex being a formula 〈〈cex〉〉I ∈ C
computed as follows. For some global transition r = q

e−→ q′, we denote by
active(r) the local transitions that processes in q locally use to end in q′. That

is, active(r) = {t ∈ TI | ∃PI,i : t = q[i]
A(e)−−−→ q′[i] ∨ t = q[i]

R(e)−−−→ q′[i]} We then
define the encoding 〈〈r〉〉I as: 〈〈r〉〉I =

∧
t∈active(r) 〈〈t〉〉I .

Note that the predicates 〈〈q〉〉I , 〈〈e : q〉〉I , 〈〈q′ : q, e〉〉I , and 〈〈¬e : q〉〉I as well as
the encoding for the global disabled transitions can be defined similar to their
counterparts discussed earlier.

4 Counterexample Extraction

Our tool specializes the synthesis procedure in Algo. 1 by using QuickSilver

Algorithm 2: Counterex-
ample Extraction.
1 procedure Extract(PI , φ)
2 φ′ = makeDNF (¬φ)
3 W = ∅
4 foreach c ∈ cubes(φ′) do
5 if JPIK |= c then
6 cw = ∅
7 foreach l ∈ literals(c) do
8 lw = witness(l)
9 cw = cw ∪ {lw}

10 W =W ∪ {cw}
11 cex = pickMinimal(W )
12 return cex

as the teacher to check phase-compatibility,
cutoff-amenability, and safety. For the
remainder of this section, we will re-
fer to phase-compatibility and cutoff-
amenability conditions as local properties
and safety (and liveness) specifications as
global properties.

Local Properties.Given a local property
φ expressed as first-order logic formulas
over the local semantics of a Mercury
process, Cinnabar extracts a counterex-
ample cex according to Algo. 2.

First, we negate the property and ex-
press in disjunctive normal form (DNF):
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φ′ = ¬φ = c1 ∨ c2 ∨ . . ., where each cube ci = l1 ∧ l2 ∧ . . . is a conjunction of
literals (Line 2). Then, for each cube c satisfied under JPIK (Line 5), extract a
cube witness cw that is a subset of the local semantics JPIK such that JPIK |= cw
(Lines 7 - 9). This is done by extracting, for each literal l in c, a minimal subset
lw of JPIK such that lw |= l (Line 8). We say lw is a minimal witness of l if any
strict subset of lw cannot be a witness for l (i.e., ∀lw′ ⊂ lw : lw′ 6|= l). Finally
pick a minimal (in terms of size) cube witness of some cube c as a cex (Line 11).
Since cex |= c and c⇒ ¬φ, we know that cex |= ¬φ (or equivalently, cex 6|= φ).

In this work, we carefully analyzed the phase-compatibility and cutoff amenabil-
ity conditions and incorporated procedures to compute witnesses for their literals
(i.e., the witness calls on Line 8). We refer the interested reader to the extended
version [19] of this paper for complete details, and illustrate one such counterex-
ample extraction procedure using an example.
Example.We present a simplified phase-compatibility condition and demonstrate
the above procedure on it. Let the set of broadcast, partition, and consensus
events be called the globally-synchronizing events, denoted Eglobal. Let ph(s)
be the set of all “phases” containing local state s. The condition states that:
for each internal transition s −→ s′ that is accompanied by a reacting transition
s′

R(f)−−−→ s′′ for some globally-synchronizing event f, and for each state t in the
same phase as s, state t must have a reacting transition of event f. Formally:

∀f ∈ Eglobal, s, s
′ ∈ S :(

s −→ s′ ∈ T ∧ s′ R(f)−−−→ ∗ ∈ T
)
⇒
(
∀X ∈ ph(s), t ∈ X : ∃t R(f)−−−→ ∗ ∈ T

)
.

This condition is an example of a local property φ we want to extract counterex-
amples for when it fails. The procedure is applied as follows:
Step (1): We first simplify φ to the following:

∀f ∈ Eglobal, s, s
′, t ∈ S,X ∈ ph(s) :(

s −→ s′ ∈ T ∧ s′ R(f)−−−→ ∗ ∈ T ∧ inPhase(X, s, t)
)
⇒
(
∃t R(f)−−−→ ∗ ∈ T

)
,

where inPhase(X, s, t) indicates that states s and t are in phase X together.
We then obtain the negation ¬φ:

∃f ∈ Eglobal, s, s
′, t ∈ S,X ∈ ph(s) :

s −→ s′ ∈ T ∧ s′ R(f)−−−→ ∗ ∈ T ∧ inPhase(X, s, t) ∧ ¬∃t R(f)−−−→ ∗ ∈ T.

Step (2): The formula ¬φ is in DNF, and there is a cube for each instantiation
of event f ∈ Eglobal, states s, s′, t ∈ S, and phase X that satisfies the formula

¬φ. There are 4 literals. The literals “s −→ s′ ∈ T ” and “s′
R(f)−−−→ ∗ ∈ T ” can be

witnessed by the corresponding transitions s −→ s′ and s′
R(f)−−−→ ∗, respectively.

The literal “¬∃t R(f)−−−→ ∗ ∈ T ” can be witnessed by the disabled transition
t

R(f)−−−→ ⊥. The witness for the literal inPhase(X, sa, sb) for some phase X and
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local states sa and sb is more involved. It depends on the nature of that phase.
We analyzed the phase construction procedure given in [17] and distilled it as
follows. For each event e ∈ Eglobal, we define its source (resp. destination) set
to be the set of states in S from (resp. to) which there exists a transition in T
labeled with an acting or reacting action of event e. Let corePhases be the set
of all source and destination sets of all globally-synchronizing actions. Then,
two states sa and sb are in the same phase if:
(a) they are part of some core phase, i.e., ∃X ∈ corePhases : sa, sb ∈ X, or,
(b) they are in different core phases that are connected by an internal path,

i.e., ∃A,B ∈ corePhases : sa, s′a ∈ A∧sb, s′b ∈ B∧s′a  s′b, where s
′
a  s′b

is an internal path from s′a to s′b.
If X is a core phase (i.e., case (A) holds), the counterexample extraction pro-
cedure returns the phase itself. Otherwise, case (B) holds and the two core
phases are recursively extracted as well as the internal path connecting them.

Step (3) The final step is to build a subset of the local semantics that include
the extracted witnesses for all 4 literals.

Global Properties. If a candidate process PI meets its phase-compatibility
and cutoff-amenability conditions, then it belongs to the efficiently-decidable
fragment of Mercury, and a cutoff c exists. It then remains to check if the
system PI,1|| . . . ||PI,n||Pe is safe (i.e., JPI , cK |= φs(c)).

Safety properties φs(n) are specified by the system designer as (Boolean
combinations of) permissible safety specifications. Such properties are invariants
that must hold in every reachable state in JPI , cK.

A counterexample cex ⊆ JPI , cK to a safety property φs(c) is a finite trace
from the initial state q0 to an error state qe. Such traces are extracted while
constructing JPI , cK.

5 Implementation and Evaluation

5.1 Implementation

Our tool, Cinnabar5, implements the architecture illustrated in Fig. 1. Addi-
tionally, it incorporates a liveness checker into the teacher. Liveness properties
φl(c) ensure that the system makes progress and eventually reacts to various
events. We refer the interested reader to the extended version [19] for details on
specifying liveness properties as well as extracting and encoding counterexamples
to such properties.

5.2 Evaluation

In this section, we investigate Cinnabar’s performance. We study the impact
of Cinnabar’s counterexample extraction and encoding, as well as the choice of
uninterpreted functions, on performance. Finally, we examine how Cinnabar’s
iterations are distributed across the different types of counterexamples.
5 Cinnabar is publicly available on Zenodo [18].
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Fig. 2: Cinnabar’s performance compared to enumeration-based synthesis. The
systems studied are: Distributed Store (DS), Consortium (CTM), Distributed
Lock Service (DLS), Distributed Register (DR), Two-Object Tracker (TOT),
Distributed Robot Flocking (DRF), variants Small Aircraft Transportation Sys-
tem Landing Protocol (SATS, SATS2), variants of Distributed Sensor Network
(DSN, DSNR), and variants of Robotics Motion Planner (RMP, RMPR). For
each benchmark, the i-th point denotes the average runtime for all variants with
i uninterpreted functions.

Benchmarks. The benchmarks we use are process sketches based on the bench-
marks presented in [17]. We refer the reader to the extended version [19] for (i)
a description of each benchmark’s functionality, its safety and liveness speci-
fications, and the unspecified functionality in the sketch, and (ii) an example
Mercury sketch and its completion.
Experimental Setup. To ensure that our reported results are not dependent
on a particular choice of uninterpreted functions, we create a set of variants
for each benchmark as follows. For each benchmark, we first pick a set ue of
“candidate uninterpreted functions”, corresponding to expressions that a designer
might reasonably leave unspecified. Then, for each subset e in the set P(ue) of
all non-empty subsets of ue, we create a variant of the benchmark where the
uninterpreted functions in e are included in the sketch. We set a timeout of 15
minutes when running any variant and conduct our experiments on a MacBook
Pro with 2 GHz Quad-Core Intel Core i5 and 16 GB of RAM.
Effect of Counterexample Extraction and Encoding. As our baseline,
we consider a synthesis loop where the learner enumerates interpretations un-
til a correct interpretation is found. If some interpreted process sketch PI fails
a property at any stage, we add the constraint c = ¬I to the learner. This
effectively eliminates one interpretation at a time, as opposed to all interpreta-
tions that exhibit the given counterexample at a time (as done by our encoder).
In Fig. 2, we present a comparison of Cinnabar’s runtime compared to this
enumeration-based baseline. We make the following observations. While the run-
times of both enumeration-based synthesis and Cinnabar grow exponentially
when increasing the number of uninterpreted functions, Cinnabar outperforms
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Fig. 3: Effect of the choice of uninterpreted functions on synthesis time. For
some benchmark and some number m of uninterpreted functions, the m-th box-
and-whiskers plot presents, from bottom to top, the minimum, first quartile,
median, third quartile, and maximum synthesis run time across the run times
of all variants of that benchmark with m uninterpreted functions.

enumeration-based synthesis in almost all scenarios. Only for variants with a
single uninterpreted function we observed cases where enumeration-based syn-
thesis found a correct solution faster than Cinnabar (e.g., as in DSNR with one
uninterpreted function). This is due to the additional time spent extracting and
encoding counterexamples. However, the value of the counterexample extraction
and encoding becomes clearly apparent with larger number of unspecified ex-
pressions as the number of interpretations grows much larger and it becomes
infeasible to just enumerate them. Furthermore, Cinnabar is able to perform
synthesis for any variant of our benchmarks in under 9 minutes.
Effect of the Choice of Uninterpreted Functions. In Fig. 3, for each bench-
mark, we examine the variation of synthesis runtime across variants with the
same number of uninterpreted functions. As shown in the figure, in some cases
(e.g., CTM and DS), the variation is more noticeable. The main factor contribut-
ing to this is that uninterpreted functions present different overhead on synthesis
based on their nature. For instance, an uninterpreted function corresponding to
a lhs of some assignment expression is more expensive to synthesize compared
to an uninterpreted function corresponding to a target of some goto statement,
as the latter has a smaller search space.
Counterexample Distribution on Iterations. In Fig. 4, we illustrate the
different types of counterexamples encountered throughout Cinnabar’s itera-
tions. We make the following observations. First, Cinnabar spends most of its
iterations ruling out phase-compatibility violations. This is expected as check-
ing phase-compatibility is the first stage in our synthesis loop. Since a phase-
compatible system moves in a structured way between its phases, this stage rules
out all arbitrary completions that prohibit processes from advancing through the
phases. Furthermore, there are fewer safety violations than any other type of vio-
lations. Once an interpreted process sketch is in the efficiently-decidable fragment
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consortium_6_145689 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4 1 1 2 1 2 1 2 2 1 1 2 1 1 2 1 2 2 2 2 1 2 2 2 1 1 1 1 2 1 2 2 2 2 4 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 1 1 1 1 1 1 1 1 4 2 1 1
dmr_6_123457 2 1 1 2 1 1 3 2 2 1 1 2 2 1 1 1 1 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 1 1 1 2 2 2 1 2 2 1 1 1 1 1 1 1 2 2 2 2 2 3 2 2 1 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 1 1 4 1 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 2
consortium_3_129 4 2 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1 1 1 1 3 4 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 1 1 1 4 4 1 1 1 1 4 1 1 1 4 1 4 3 3 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 3 4 1 1 2 1 1 4 1 3 1 1 1 3 4 4 4 1 1 1 1 1 1 3 1 1 1
consortium_4_1269 4 1 1 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1 1 1 3 3 4 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 3 1 1 1 1 1 1 1 4 4 4 1 1 4 4 4 4 1 1 1 3 1 1 1 4 4 4 4 4 1 1 3 1 1 1 4 1 1 1 1 1 1 1 1 1 1 4 1 1 4 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
dmr_withreset_6_123458 2 1 1 2 1 1 2 3 2 1 1 1 2 2 2 2 2 1 1 2 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 2 1 1 1 2 2 2 1 2 1 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 4 2 2 2 1 4 1 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 1 1 1 2 2 1 2 2 2 2 1 1 1 1 1 1 1 4 1 2 2 1 4 1 1 1 1 1 1 2 2 2 2 2 1 1
sats_5_12678 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 3 3 1 1 1 3 1 1 3 1 1 3 1 1 1 1 1 4 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 3 1 2 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 3 3 1 1 1 1 1 1 1 3
dmr_withreset_6_124568 2 1 1 2 1 2 3 2 1 1 2 2 2 2 2 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 2 1 1 1 1 2 3 1 2 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
dmr_withreset_7_1345678 2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 4 2 2 1 2 2 1 2 1 1 3 1 1 2 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 4 1
consortium_5_56789 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
consortium_6_236789 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 2 2 2 1 1 1 1 1 2 1 1 1 1 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 4 2
satspp_5_12456 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 2 1 1 2 2 2 2 1 1 1 1 1 1 1 1 3 2 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 2 1 1 1 1 1 1 3 1 3 2 1 1 3 1 1 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 3
dmr_5_12456 2 1 1 2 2 2 2 2 2 1 2 3 2 1 1 1 1 2 1 1 2 2 1 2 1 1 1 2 2 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 3 2 2 1 2 1 2 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 1 1 2 1 2 2 1 2 2 1 1 1 2 1 4 2 2 2 1 2 1 2 1 2
consortium_7_2356789 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2
satspp_6_123456 4 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 3 3 1 1 1 1 3 1 1 1 3 1 1 1 1 3 3 2 1 2 2 2 2 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 2 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 3 3 1 3 3
sats_4_1256 4 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 2 1 1 1 2 2 3 2 1 2 2 1 1 2 1 1 1 1 1 3 2 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 3 2 1 1 2 2 1 1 1 1 1 1 1 2 1 2 1 2 2 2 2 1 1 1 1 1 3 1 2 2 2 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3
sats_5_12456 4 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 2 1 1 1 2 2 3 2 1 2 2 2 2 1 1 2 1 2 1 1 1 2 2 2 2 2 2 3 2 2 1 2 1 2 1 2 1 2 1 2 3 3 2 2 2 2 2 1 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1 2 1 1 1 1 2 1 1 1 1 3 3 3 3
dmr_withreset_7_1245678 2 1 1 2 2 2 1 2 2 1 2 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 2 1 3 2 2 1 1 1 2 1 1 1 1 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1 1 4 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1
consortium_4_1289 4 1 1 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 3 3 4 1 1 1 1 1 1 4 4 1 1 1 3 4 4 1 1 1 1 4 1 4 1 2 1 1 1 1 1 1 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 2 3 4 1 1 1 1 1 1
dmr_withreset_5_12368 2 1 2 2 2 2 2 2 1 2 3 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 2 1 2 1 2 4 2 2 2 4 2 2 1 1 1 1 2 1 4 1 1 1 1 2 2 1 1 1 4 1 2 1 1 1 2 2 2 1 1 1 1 1 1 2 1 2 1 4
consortium_7_1345679 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 4 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 2 2 3 2 2 1 1 1 1 1 4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 3 1
two_object_tracker_5_12367 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 2 2 4 1 2 2 2 1 1 1 2 2 1 1 1 1 1 2 2 1 2 2 2 2 1 1 1 1 1 1 2 1 2 1 1 1 2 2 2 2 2 1 2 2 2 2 2 2 1 1 1 2 1 1 2 2 2 2 2 2 2 1 2 2 2 2
two_object_tracker_6_123456 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 2 2 1 1 1 1 1 1 2 1 1 2 2 1 1 2 1 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 2 1 2 2 2 2 2 2
consortium_6_124678 4 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 3 4 2 1 1 1 1 1 2 2 2 1 1 2 1 1 1 2 3 3 1 1 1 1 4 4 4 4 3 1 1 1 1 3 1 1 2 1 4 1 1 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 4 1 1 1 1 1 1 4 2 3 2
sats_5_12457 4 2 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 3 1 3 3 2 1 1 2 1 1 1 1 1 2 3 1 2 1 1 1 2 1 1 2 1 3 2 2 1 2 1 2 2 2 2 1 1 2 1 1 1 1 2 3 1 1 1 1 1 3 3

Fig. 4: A property-based visualization of Cinnabar’s iterations for a represen-
tative subset of the variants. Each line corresponds a Cinnabar’s execution of
a synthesis variant of a benchmark. From left to right, each line starts with iter-
ation 1, ends with the iteration where a correct interpretation was found, and is
colored to indicate nature of violations encountered throughout the execution.
For instance, the line would indicate that Cinnabar encountered a phase-
compatibility violation in iteration 1, then a cutoff-amenability in iteration 2,
..., and finally was able to find a correct interpretation in iteration 6.

of Mercury, it is more likely to be safe. There are two factors that contribute
to this: (i) phase-compatible systems move in a structured way and are more
likely to be “closer” to a correct version of the system, and (ii) because cutoff-
amenability depends on the safety specification, satisfying cutoff-amenability
means the interpreted process sketch is more likely to be correct with respect
to the safety property already. Finally, eliminating liveness violations ensures
that Cinnabar is able to synthesize higher-quality completions. As shown in
the figure, liveness violations are often encountered in the very first iteration, as
the SMT-based learner tends to favor interpretations with disabled guards that
trivially satisfy phase-compatibility, cutoff-amenability, and safety properties.
Usability. If Cinnabar fails to synthesize a correct completion, the designer
can replace existing expressions in the sketch with uninterpreted functions, al-
lowing Cinnabar to explore a larger set of possible candidate completions.

Finally, while the supported uninterpreted functions may not correspond to
large segments of the code or complex control-flow constructs, they are the main
“knobs” that the designer needs to turn to ensure that their systems belong to
the efficiently-decidable fragment of Mercury.

6 Related Work

Aiding System Designers via Decidable Verification. Ivy [29] adopts an
interactive approach to aid the designer in searching for inductive invariants for
their systems. Ivy translates the system model and its invariant to EPR [30],
and looks for a counterexample-to-induction (CTI). The designer adjusts the
invariant to eliminate that CTI and Ivy starts over. I4 [26] builds on Ivy by first
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considering a fixed system size, automatically generating a potential inductive
invariant, and using Ivy to check if that invariant is also valid for any system
size. The approach in [11] identifies a class of asynchronous systems that can be
reduced to an equivalent synchronized system modeled in the Heard-Of Model
[9]. The designer manually annotates the asynchronous system to facilitate the
reduction, and encodes the resulting Heard-Of model in the CL [14] logic which
has a semi-decision procedure. These approaches differ from ours in two ways.
First, the designer needs to manually provide/manipulate inductive invariants
and/or annotations to eventually enable decidable verification. Second, these
approaches are “verification only”: they require a fully-specified model that either
meets or violates its correctness properties and the designer is responsible for
adjusting the model if verification fails. Cinnabar, on the other hand, accepts
a sketch that is then completed to meet its properties.

Parameterized Synthesis. Jacobs and Bloem [20] introduced a general ap-
proach for parameterized synthesis based on cutoffs, where they use an underly-
ing fixed-size synthesis procedure that is required to guarantee that the condi-
tions for cutoffs are met by the synthesized implementation. Our approach can be
seen as an instantiation of this approach, as one of the stages in our multi-stage
counterexample-based loop ensures that cutoff-amenability conditions hold on
any candidate process. Other approaches that tackle the parameterized synthesis
problem without cutoff results are more specialized. For instance, the approach
in [24] adopts a CEGIS-based synthesis strategy where the designer provides a
threshold automaton with some parameters unspecified. Synthesis completes the
model and uses the parameterized model checker in [23] to check the system. A
similar idea, but based on the notion of well-structured transition systems, is
used for the automatic repair of parameterized systems in [21]. The approach
in [22] targets parameterized synthesis for self-stabilizing rings, and shows that
the problem is decidable even when the corresponding parameterized verifica-
tion problem is not. The designer provides a set of legitimate states and the size
of the template process, and the procedure yields a completed self-stabilizing
template. A similar approach for more general topologies is presented in [28].
Bertrand et al. [6] target systems composed of an unbounded number of agents
that are fully specified and one underspecified controller process. The synthesis
goal is to synthesize a controller that controls all agents uniformly and guides
them to a specific desired state. Markgraf et al. [27] also target synthesis of con-
trollers by posing the problem as an infinite-duration 2-player game and utilize
regular model checking and the L* algorithm [4] to learn correct-by-design con-
trollers. These approaches are not applicable to our setup as they do not admit
distributed agreement-based systems (modeled in Mercury).

Synthesis of Distributed Systems with a Fixed Number of Processes.
Various approaches focus on automated synthesis of distributed systems with a
fixed number of processes [3,2,1,12,35]. While such approaches deploy a similar
counterexample-guided strategy to complete a user-provided sketch, they do
not provide parameterized correctness guarantees nor the necessary agreement
primitives needed to model distributed agreement-based systems.
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Data availability. The artifact and related data that support the findings of
this work are publicly available on Zenodo [18].
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Abstract. We study a variant of the problem of synthesizing Mealy ma-
chines that enforce LTL specifications against all possible behaviours of
the environment, including hostile ones. In the variant studied here, the
user provides the high level LTL specification ϕ of the system to design,
and a set E of examples of executions that the solution must produce.
Our synthesis algorithm first generalizes the user-provided examples in
E using tailored extensions of automata learning algorithms, while pre-
serving realizability of ϕ. Second, it turns the (usually) incomplete Mealy
machine obtained by the learning phase into a complete Mealy machine
realizing ϕ. The examples are used to guide the synthesis procedure. We
prove learnability guarantees of our algorithm and prove that our prob-
lem, while generalizing the classical LTL synthesis problem, matches its
worst-case complexity. The additional cost of learning from E is even
polynomial in the size of E and in the size of a symbolic representation of
solutions that realize ϕ, computed by the synthesis tool Acacia-Bonzai.
We illustrate the practical interest of our approach on a set of examples.

1 Introduction

Reactive systems are notoriously difficult to design and even to specify cor-
rectly [1,13]. As a consequence, formal methods have emerged as useful tools to
help designers to built reactive systems that are correct. For instance, model-
checking asks the designer to provide a model, in the form of a Mealy machine
M, that describes the reactions of the system to events generated by its en-
vironment, together with a description of the core correctness properties that
must be enforced. Those properties are expressed in a logical formalism, typi-
cally as an LTL formula ϕCORE. Then an algorithm decides if M |= ϕCORE, i.e.
if all executions of the system in its environment satisfy the specification. Auto-
matic reactive synthesis is more ambitious: it aims at automatically generating
a model from a high level description of the “what” needs to be done instead of
the “how” it has to be done. Thus the user is only required to provide an LTL
specification ϕ and the algorithm automatically generates a Mealy machine M
such that M |= ϕ whenever ϕ is realizable. Unfortunately, it is most of the time
not sufficient to provide the core correctness properties ϕCORE to obtain a Mealy
machine M that is useful in practice, as illustrated next.

Example 1. [Synthesis from ϕCORE - Mutual exclusion] Let us consider the clas-
sical problem of mutual exclusion. In the simplest form of this problem, we
need to design an arbiter that receives requests from two processes, modeled
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by two atomic propositions r1 and r2 controlled by the environment, and that
grants accesses to the critical section, modeled as two atomic propositions g1
and g2 controlled by the system. The core correctness properties (the what) are:
(i) mutual access, i.e. it is never the case that the access is granted to both
processes at the same time, (ii) fairness, i.e. processes that have requested ac-
cess eventually get access to the critical section. These core correctness spec-
ifications for mutual exclusion (ME) are easily expressed in LTL as follows:
ϕME
CORE ≡ �(¬g1 ∨ ¬g2) ∧ �(r1 → ♦g1) ∧ �(r2 → ♦g2). Indeed, this formula

expresses the core correctness properties that we would model check no matter
how M implements mutual exclusion, e.g. Peterson, Dedekker, Backery algo-
rithms, etc. Unfortunately, if we submit ϕME

CORE to an LTL synthesis procedure,
implemented in tools like Acacia-Bonzai [11], BoSy [17], or Strix [25], we
get the solution M depicted in 1-(left) (all three tools return this solution).
While this solution is perfectly correct and realizes the specification ϕME

CORE, the
solution ignores the inputs from the environment and grants access to the criti-
cal sections in a round robin fashion. Arguably, it may not be considered as an
efficient solution to the mutual exclusion problem. This illustrates the limits of
the synthesis algorithm to solve the design problem by providing only the core
correctness specification of the problem, i.e. the what, only. To produce useful
solutions to the mutual exclusion problem, more guidance must be provided.

q0 q1

true/!g1 ∧ g0

true/!g0 ∧ g1

q0 q1 q2

!r0∧!r1/!g0∧!g1
!r0 ∧ r1/!g0 ∧ g1
r0∧!r1/g0∧!g1

r0 ∧ r1/!g0 ∧ g1

!r1/g0∧!g1

r1/g0∧!g1

!r0/!g0 ∧ g1

r0/!g0 ∧ g1

Fig. 1: (Left) The solution of Strix to the mutual exclusion problem for high level
specification ϕME

LOW . Edge labels are of the form ϕ/ψ where ϕ: Boolean formula
on input atomic propositions (Boolean variables controlled by environment) and
ψ: maximally consistent conjunction of literals over set of output propositions
(Boolean variables controlled by system). (Right) A natural solution that could
be drawn by hand, and is automatically produced by our learning/synthesis
algorithm for the same specification plus with two simple examples.

The main question is now: how should we specify these additional properties
? Obviously, if we want to use the ”plain” LTL synthesis algorithm, there is no
choice: we need to reinforce the specification ϕME

CORE with additional lower level
properties ϕME

LOW. Let us go back to our running example.

Example 2. [Synthesis from ϕME
CORE and ϕME

LOW] To avoid solutions with unsolicited
grants, we need to reinforce the core specification. The Strix online demo website
proposes to add the following 3 LTL formulas ϕME

LOW to ϕME
CORE (see Full arbitrer

n = 2, at https://meyerphi.github.io/strix-demo/): (1)
∧
i∈{1,2}�((gi ∧

�¬ri) → ♦¬gi), (2)
∧
i∈{1,2}�(gi ∧ ©(¬ri ∧ ¬gi) → ©(riR¬gi)), and (3)∧

i∈{1,2}(riR¬gi). Strix, on the specification ϕME
CORE ∧ ϕME

LOW, provides us with
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a better solution, but it is more complex than needed (it has 9 states: refer [5])
and clearly does not look like an optimal solution to our mutual exclusion prob-
lem. E.g., the model of Fig. 1-(right) is arguably more natural. How can we get
this model without coding it into the LTL specification, which would diminish
greatly the interest of using a synthesis procedure in the first place?

In general, higher level properties are properties that need to be met by all
implementations, e.g. safety-critical properties. In contrast, lower level properties
are more about a specific implementation, its expected behaviour and efficiency.
At this point, it is legitimate to question the adequacy of LTL as a specification
language for lower level properties, and so as a way to guide the synthesis pro-
cedure towards relevant solutions to realize ϕCORE. In this paper, we introduce
an alternative to guide synthesis toward useful solutions that realize ϕCORE: we
propose to use examples of executions that illustrate behaviors of expected so-
lutions. We then restrict the search to solutions that generalize those examples.
Examples, or scenarios of executions, are accepted in requirement engineering
as an adequate tool to elicit requirements about complex systems [12]. For re-
active system design, examples are particularly well-suited as they are usually
much easier to formulate than full blown solutions, or even partial solutions. It
is because, when formulating examples, the user controls both the inputs and the
outputs, avoiding the main difficulty of reactive system design: having to cope
with all possible environment inputs. We illustrate this on our running example.

Example 3. [Synthesis from ϕME
CORE and examples] Let us keep, as the LTL speci-

fication, ϕME
CORE only, and let us consider the following simple prefix of executions

that illustrate how solutions to mutual exclusion should behave:

(1) {!r1, !r2}.{!g1, !g2}#{r1, !r2}.{g1, !g2}#{!r1, r2}.{!g1, g2}
(2) {r1, r2}.{g1, !g2}#{!r1, !r2}.{!g1, g2}
These trace prefixes prescribe reactions to typical fixed finite input sequences: (1)
if there is no request initially, then no access is granted (note that this excludes
already the round robin solution), if process 1 and 2 request subsequently, process
1 is granted first and then process 2 is granted after, (2) if both process request
simultaneously, then process 1 is granted first and then process 2 is granted after.
Given those two simple traces together with ϕCORE, our algorithm generates the
solution of Fig. 1-(right). Arguably, the solution is now simple and natural.

Contributions First, we provide a synthesis algorithm SynthLearn that,
given an LTL specification ϕCORE and a finite set E of prefixes of executions,
returns a Mealy machine M such that M |= ϕCORE, i.e. M realizes ϕCORE,
and E ⊆ Prefix(L(M)), i.e. M is compatible with the examples in E, if such
a machine M exists. It returns unrealizable otherwise. Additionally, we require
SynthLearn to generalize the decisions illustrated in E. This learnability re-
quirement is usually formalized in automata learning with a completeness cri-
terium that we adapt here as follows: for all specifications ϕCORE, and for all
Mealy machines M such that M |= ϕCORE, there is a small set of examples E
(polynomial in |M|) such that L(SynthLearn(ϕCORE, E)) = L(M). We prove
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this completeness result in Theorem 4 for safety specifications and extend it to
ω-regular and LTL specifications in Section 4, by reduction to safety.

Second, we prove that the worst-case execution time of SynthLearn is 2Ex-
pTime (Theorem 7), and this is worst-case optimal as the plain LTL synthesis
problem (when E = ∅) is already known to be 2ExpTime-Complete [27].
SynthLearn first generalizes the examples provided by the user while main-
taining realizability of ϕCORE. This generalization leads to a Mealy machine with
possibly missing transitions (called a preMealy machine). Then, this preMealy
machine is extended into a (full) Mealy machine that realizes ϕCORE against
all behaviors of the environment. During the completion phase, SynthLearn
reuses as much as possible decisions that have been generalized from the exam-
ples. The generalization phase is essential to get the most out of the examples.
Running classical synthesis algorithms on ϕCORE ∧ ϕE , where ϕE is an LTL en-
coding of E, often leads to more complex machines that fail to generalize the
decisions taken along the examples in E. While the overall complexity of Synth-
Learn is 2ExpTime and optimal, we show that it is only polynomial in the size
of E and in a well-chosen symbolic representation a set of Mealy machines that
realize ϕCORE, see Theorem 6. This symbolic representation takes the form of an
antichain of functions and tends to be compact in practice [19]. It is computed
by default when Acacia-Bonzai is solving the plain LTL synthesis problem
of ϕCORE. So, generalizing examples while maintaining realizability only comes
at a marginal polynomial cost. We have implemented our synthesis algorithm
in a prototype, which uses Acacia-Bonzai to compute the symbolic antichain
representation. We report on the results we obtain on several examples.

Related works Scenarios of executions have been advocated by researchers in
requirements engineering to elicit specifications, see e.g. [12,14] and references
therein. In [28], learning techniques are used to transform examples into LTL
formulas that generalize them. Those methods are complementary to our work,
as they can be used to obtain the high level specification ϕCORE.

In non-vacuous synthesis [8], examples are added automatically to an LTL
specification in order to force the synthesis procedure to generate solutions that
are non-vacuous in the sense of [23]. The examples are generated directly from the
syntax of the LTL specification and they cannot be proposed by the user. This
makes our approach and this approach orthogonal and complementary. Indeed,
we could use the examples generated automatically by the non-vacuous approach
and ask the user to validate them as desirable or not. Our method is more flexible,
it is semi-automatic and user centric: the user can provide any example he/she
likes and so it offers more flexibility to drive the synthesis procedure to solutions
that the user deems as interesting. Furthermore, our synthesis procedure is based
on learning algorithms, while the algorithm in [8] is based on constraint solving
and does not offer guarantees of generalization, unlike our algorithm (see Thm 4).

Supplementing the formal specification with additional user-provided infor-
mation is at the core of the syntax-guided synthesis framework (SyGuS [3]),
implemented for instance in program by sketching [31]: in SyGuS, the specifica-
tion is a logical formula and candidate programs are syntactically restricted by a
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user-provided grammar, to limit and guide the search. The search is done by us-
ing counter-example guided inductive synthesis techniques (CEGIS) which rely
on learning [32]. In contrast to our approach, examples are not user-provided
but automatically generated by model-checking the candidate programs against
the specification. The techniques are also orthogonal to ours: SyGuS targets pro-
grams syntactically defined by expressions over a decidable background theory,
and heavily relies on SAT/SMT solvers. Using examples to synthesise programs
(programming by example) has been for instance explored in the context of string
processing programs for spreadsheets, based on learning [30], and is a current
trend in AI (see for example [26] and the citations therein). However this ap-
proach only relies on examples and not on logical specifications.

[4] explores the use of formal specifications and scenarios to synthesize dis-
tributed protocols. Their approach also follows two phases: first, an incomplete
machine is built from the scenarios and second, it is turned into a complete one.
But there are two important differences with our work. First, their first phase
does not rely on learning techniques and does not try to generalize the provided
examples. Second, in their setting, all actions are controllable and there is no
adversarial environment, so they are solving a satisfiability problem and not a
realizability problem as in our case. Their problem is thus computationally less
demanding than the problem we solve: Pspace versus 2ExpTime for LTL specs.

The synthesis problem targeted in this paper extends the LTL synthesis
problem. Modern solutions for this problem use automata constructions that
avoid Safra’s construction as first proposed in [24], and simplified in [29,18], and
more recently in [16]. Efficient implementations of Safraless constructions are
available, see e.g. [9,17,25,15]. Several previous works have proposed alternative
approaches to improve on the quality of solutions that synthesis algorithms can
offer. A popular research direction, orthogonal and complementary to the one
proposed here, is to extend the formal specification with quantitative aspects,
see e.g. [6,10,22,2], and only synthesize solutions that are optimal.

The first phase of our algorithm is inspired by automata learning techniques
based on state merging algorithms like RPNI [21,20]. Those learning algorithms
need to be modified carefully to generate partial solutions that preserve realiz-
ability of ϕCORE. Proving completeness as well as termination of the completion
phase in this context requires particular care.

2 Preliminaries on the reactive synthesis problem

Words, languages and automata An alphabet is a finite set of symbols. A
word u (resp. ω-word) over an alphabet Σ is a finite (resp. infinite sequence) of
symbols from Σ. We write ε for the empty word, and denote by |u| ∈ N ∪ {∞}
the length of u. In particular, |ε| = 0. For 1 ≤ i ≤ j ≤ |u|, we let u[i:j] be the
infix of u from position i to position j, both included, and write u[i] instead of
u[i:i]. The set of finite (resp. ω-) words over Σ is denoted by Σ∗ (resp. Σω). We
let Σ∞ = Σ∗ ∪ Σω. Given two words u ∈ Σ∗ and v ∈ Σ∞, u is a prefix of v,
written u � v, if v = uw for some w ∈ Σ∞. The set of prefixes of v is denoted by
Prefs(v). Finite words are linearly ordered according to the length-lexicographic
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order �ll, assuming a linear order <Σ over Σ: u �ll v if |u| < |v| or |u| = |v| and
u = pσ1u

′, v = pσ2v
′ for some p, u′, v′ ∈ Σ∗ and some σ1 <Σ σ2. In this paper,

whenever we refer to the order �ll for words over some alphabet, we implicitly
assume the existence of an arbitrary linear order over that alphabet. A language
(resp. ω-language) over an alphabet Σ is a subset L ⊆ Σ∗ (resp. L ⊆ Σω).

In this paper, we fix two alphabets I and O whose elements are called inputs
and outputs respectively. Given a word u ∈ (IO)∞, we let in(u) ∈ I∞ be the
word obtained by erasing all O-symbols from u. We define out(u) similarly and
naturally extend both functions to languages.

Automata over ω-words A parity automaton is a tuple A = (Q,Qinit, Σ, δ, d)
where Q is a finite non empty set of states, Qinit ⊆ Q is a set of initial states, Σ is
a finite non empty alphabet, δ : Q×Σ → 2Q \{∅} is the transition function, and
d : Q→ N is a parity function. The automaton A is deterministic when |Qinit| = 1
and |δ(q, σ)| = 1 for all q ∈ Q. The transition function is extended naturally into
a function Post∗ : Q × Σ∗ → 2Q \ {∅} inductively as follows: Post∗(q, ε) = {q}
for all q ∈ Q and for all (u, σ) ∈ Σ∗ ×Σ, Post∗(q, uσ) =

⋃
q′∈Post∗(q,u) δ(q

′, σ).
A run of A on an ω-word w = w0w1 . . . is an infinite sequence of states

r = q0q1 . . . such that q0 ∈ Qinit, and for all i ∈ N, qi+1 ∈ δ(qi, wi). The run r
is said to be accepting if the minimal colour it visits infinitely often is even, i.e.
lim inf(d(qi))i≥0 is even. We say that A is a Büchi automaton when dom(d) =
{0, 1} (1-coloured states are called accepting states), a co-Büchi automaton when
dom(d) = {1, 2}, a safety automaton if it is a Büchi automaton such that the
set of 1-coloured states, called unsafe states and denoted Qusf , forms a trap: for
all q ∈ Qusf , for all σ ∈ Σ, δ(q, σ) ⊆ Qusf , and a reachability automaton if it is
{0, 1}-coloured and the set of 0-coloured states forms a trap.

Finally, we consider the existential and universal interpretations of nonde-
terminism: under the existential (resp. universal) interpretation, a word w ∈ Σω

is in the language of A, if there exists a run r on w such that r is accepting
(resp. for all runs r on w, r is accepting). We denote the two languages defined
by these two interpretations L∃(A) and L∀(A) respectively. Note that if A is
deterministic, then the existential and universal interpretations agree, and we
write L(A) for L∀(A) = L∃(A). For a deterministic automaton A, the initial
state is fixed to the singleton {q}.

For a co-Büchi automaton, we also define a strengthening of the acceptance
condition, called K-co-Büchi, which requires, for K ∈ N, that a run visits at most
K times a state labelled with 1 to be accepting. Formally, a run r = q0q1 . . . qn . . .
is accepting for the K-co-Büchi acceptance condition if |{i ≥ 0 | d(qi)) = 1}| ≤
K. The language defined by A for the K-co-Büchi acceptance condition and
universal interpretation is denoted by L∀K(A). Note that this language is a safety
language because if a prefix of a word p ∈ Σ∗ is such that A has a run prefix on
p that visits more than K times a states labelled with color 1, then all possible
extensions w ∈ Σω of p are rejected by A.

(Pre)Mealy machines Given a (partial) function f from a set X to a set Y ,
we denote by dom(f) its domain, i.e. the of elements x ∈ X such that f(x) is
defined. A preMealy machine M on an input alphabet I and output alphabet
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O is a triple (M,minit, ∆) such that M is a non-empty set of states, minit ∈M is
the initial state, ∆ : Q×I → O×M is a partial function. A pair (m, i) is a hole
in M if (m, i) 6∈ dom(∆). A Mealy machine is a preMealy machine such that ∆
is total, i.e., dom(∆) = M × I.

We define two semantics of a preMealy machine M = (M,minit, ∆) in terms
of the languages of finite and infinite words over I∪O they define. First, we define
two (possibly partial functions) PostM : M × I → M and OutM : M × I → O
such that ∆(m, i) = (PostM(m, i),OutM(m, i)) for all (m, i) ∈ M × I if ∆(m, i)
is defined. We naturally extend these two functions to any sequence of inputs
u ∈ I+, denoted Post∗M and Out∗M. In particular, for u ∈ I+, Post∗M(m,u)
is the state reached by M when reading u from m, while Out∗M(m,u) is the
last output in O produced by M when reading u. The subcript M is om-
mitted when M is clear from the context. Now, the language L(M) of finite
words in (IO)∗ accepted by M is defined as L(M) = {i1o1 . . . inon | ∀1 ≤ j ≤
n, Post∗M(minit, i1 . . . ij) is defined and oj = Out∗M(minit, i1 . . . ij)}. The language
Lω(M) of infinite words accepted by M is the topological closure of L(M):
Lω(M) = {w ∈ (IO)ω | Prefs(w) ∩ (IO)∗ ⊆ L(M)}.
The reactive synthesis problem A specification is a language S ⊆ (IO)ω.
The reactive synthesis problem (or just synthesis problem for short) is the prob-
lem of constructing, given a specification S, a Mealy machine M such that
Lω(M) ⊆ S if it exists. Such a machine M is said to realize the specification S,
also written M |= S. We also say that S is realizable if some Mealy machine M
realizes it. The induced decision problem is called the realizability problem.

It is well-known that if S is ω-regular (recognizable by, e.g., a parity au-
tomaton [33]) the realizability problem is decidable [1] and moreover, a Mealy
machine realizing the specification can be effectively constructed. The realizabil-
ity problem is 2ExpTime-Complete if S is given as an LTL formula [27] and
ExpTime-Complete if S is given as a universal coBüchi automaton.

Theorem 1 ([7]). The realizability problem for a specification S given as a
universal coBüchi automaton A is ExpTime-C. Moreover, if S is realizable and
A has n states, then S is realizable by a Mealy machine with 2O(nlog2n) states.

We generalize this result to the following realizability problem which we
describe first informally. Given a specification S and a preMealy machine P,
the goal is to decide whether P can be completed into a Mealy machine which
realizes S. We now define this problem formally. Given two preMealy machines
P1,P2, we write P1 � P2 if P1 is a subgraph of P2 in the following sense: there
exists an injective mapping Φ from the states of P1 to the states of P2 which
preserves the initial state (s0 is the initial state of P1 iff Φ(s0) is the initial state
of P2) and the transitions (∆P1

(p, i) = (o, q) iff ∆P2
(Φ(p), i) = (o, Φ(q)). As a

consequence, L(P1) ⊆ L(P2) and Lω(P1) ⊆ Lω(P2). Given a preMealy machine
P, we say that a specification S is P-realizable if there exists a Mealy machine
M such that P � M and M realizes S. Note that if P is a (complete) Mealy
machine, S is P-realizable iff P realizes S. The next result is proved in [5]:

Theorem 2. Given a universal co-Büchi automaton A with n states defining a
specification S = L∀(A) and a preMealy machine P with m states and nh holes,
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deciding whether S is P-realizable is ExpTime-hard and in ExpTime (in n and
polynomial in m). Moreover, if S is P-realizable, it is P-realizable by a Mealy
machine with m + nh2O(nlog2n) states. Hardness holds even if P has two states
and A is a deterministic reachability automaton.

3 Synthesis from safety specifications and examples

In this section, we present the learning framework we use to synthesise Mealy
machines from examples, and safety specifications. Its generalization to any ω-
regular specification is described in Sec. 4 and solved by reduction to safety
specifications. It is a two-phase algorithm: (1) it generalizes the examples while
maintaining realizability of the specification, and outputs a preMealy machine,
(2) it completes the preMealy machine into a full Mealy machine.

Phase 1: Generalizing the examples This phase exploits the examples by
generalizing them as much as possible while maintaining realizability of the
specification. It outputs a preMealy machine which is consistent with the ex-
amples and realizes the specification, if it exists. It is an RPNI-like learning
algorithm [21,20] which includes specific tests to maintain realizability of the
specification. In particular, it first builds a tree-shaped preMealy machine whose
accepted language is exactly the set of prefixes Prefs(E) of the given set of exam-
ples E, called a prefix-tree acceptor (PTA). Then, it tries to merge as many as
possible states of the PTA. The strategy used to select a state to merge another
given state with, is a parameter of the algorithm, and is called a merging strat-
egy σG. Formally, a merging strategy σG is defined over 4-tuples (M,m,E,X)
where M is a preMealy machine, m is a state of M, E is a set of examples and
X is subset of states of M (the candidate states to merge m with), and returns
a state of X, i.e., σG(M,m,E,X) ∈ X.

The pseudo-code is given by alg. 1. Initially, it tests whether the set of ex-
amples E is consistent1and if yes, checks if PTA(E) can be completed into a
Mealy machine realizing the given specification S, thanks to Thm. 2. If that
is the case, then it takes all prefixes of E as the set of examples, and enters a
loop which consists in iteratively coarsening again and again some congruence ∼
over the states of PTA(E), by merging some of its classes. The congruence ∼ is
initially the finest equivalence relation. It does the coarsening in a specific order:
examples (which are states of PTA(E)) are taken in length-lexicographic order.
When entering the loop with example e, the algorithm computes at line 4 all the
states, i.e., all the examples e′ which have been processed already by the loop
(e′ ≺ll e) and whose current class can be merged with the class of e (predicate
Mergeable(PTA(E),∼, e, e′)). State merging is a standard operation in automata
learning algorithms which intuitively means that merging the ∼-class of e and the
∼-class of e′, and propagating this merge to the descendants of e and e′, does not
result any conflict. The formal definition is in [5]. At line 5, it filters the previous
set by keeping only the states which, when merged with e, produce a preMealy

1 E is consistent if outputs uniquely depends on prefixes. Formally, it means for all
prefixes u ∈ Prefs(E) ∩ (IO)∗I, there is a unique output o ∈ O s.t. uo ∈ Prefs(E).
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machine which can be completed into a Mealy machine realizing S (again by
Thm. 2). If after the filtering there are still several candidates for merge, one
of them is selected with the merging strategy σG and the equivalence relation
is then coarsened via class merging (operation MergeClass(PTA(E),∼, e, e′)). At
the end, the algorithm returns the quotient of PTA(E) by the computed Mealy-
congruence. As a side remark, when S is universal, i.e. S = (IO)ω, then it is
realizable by any Mealy machine and therefore line 5 does not filter any of the
candidates for merge. So, when S is universal, Algo 1 can be seen as an RPNI
variant for learning preMealy machines.

Algorithm 1: GEN(E,S,σG) – generalization algorithm

Input: A finite set of examples E ⊆ (I.O)∗, a specification S ⊆ (I.O)ω given
as a deterministic safety automaton, a merging strategy σG

Output: A preMealy machine M s.t. E ⊆ L(M) and S is M-realizable, if it
exists, otherwise UNREAL.

1 if E is not consistent or S is not PTA(E)-realizable then return UNREAL
2 E ← Prefs(E) ∩ (IO)∗; ∼← {(e, e) | e ∈ E}; // ∼= diagE
3 for e ∈ E in length-lexicographic order �ll do
4 mergeCand← {e′ | Mergeable(PTA(E),∼, e, e′) ∧ e′ ≺ll e}
5 mergeCand← {e′ ∈ mergeCand | S is MergeStates(PTA(E),∼

, e, e′)−realizable}
6 if mergeCand 6= ∅ then
7 e′ ← σG(M, e,mergeCand)
8 ∼← MergeClass(PTA(E),∼, e, e′)

9 return PTA(E)/∼

Phase 2: completion of preMealy machines into Mealy machines As it
only constructs the PTA and tries to merge its states, the generalization phase
might not return a (complete) Mealy machine. In other words, the machine it
returns might still contain some holes (missing transitions). The objective of this
second phase is to complete those holes into a Mealy machine, while realizing
the specification. More precisely, when a transition is not defined from some
state m and some input i ∈ I, the algorithm must select an output symbol
o ∈ O and a state m′ to transition to, which can be either an existing state
or a new state to be created (in that case, we write m′ = fresh to denote the
fact that m′ is a fresh state). In our implementation, if it is possible to reuse
a state m′ that was created during the generalization phase, it is favoured over
other states, in order to exploit the examples. However, the algorithm for the
completion phase we describe now does not depend on any particular strategy to
pick states. Therefore, it is parameterized by a completion strategy σC , defined
over all triples (M,m, i, X) where M is a preMealy machine with set of states
M , (m, i) is a hole ofM, and X ⊆ O× (M ∪ {fresh}) is a list of candidate pairs
(o,m′). It returns an element of X, i.e., σC(M,m, i, X) ∈ X.

In addition to σC , the completion algorithm takes as input a preMealy ma-
chineM0 and a specification S, and outputs a Mealy machine whichM0-realizes
S, if it exists. The pseudo-code is given in Algo 2. Initially, it tests whether S
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is M0-realizable, otherwise it returns UNREAL. Then, it keeps on completing
holes of M0. The computation of the list of output/state candidates is done
at the loop of line 5. Note that the for-loop iterates over M ∪ {fresh()}, where
fresh() is a procedure that returns a fresh state not in M . The algorithm main-
tains the invariant that at any iteration of the while-loop, S is M-realizable,
thanks to the test at line 7, based on Thm. 2. Therefore, the list of candidates
is necessarily non-empty. Amongst those candidates, a single one is selected and
the transition on (m, i) is added to M accordingly at line 10.

Algorithm 2: Comp(M0,S,σC): preMealy machine completion algo-
rithm
Input: A preMealy machine M0 = (M,minit,∆), a specification S ⊆ (I.O)∗

given as a deterministic safety automaton, a completion strategy σC

Output: A (complete) Mealy machine M such that S is M0-realizable,
otherwise UNREAL.

1 if S is not M0-realizable then return UNREAL
2 M←M0

3 while there exists a hole (m, i) ∈M × I do
4 candidates← ∅
5 for (o,m′) ∈ O × (M ∪ {fresh()}) do

// fresh() denotes a new state not in M
6 Mo,m′ ← (M ∪ {m′},minit,∆ ∪ {(m, i) 7→ (o,m′)})
7 if S is Mo,m′ -realizable then
8 candidates← candidates ∪ {(o,m′)}

9 (o,m′)← σC(M,m, i, candidates)
10 (M,∆)← (M ∪ {m′},∆ ∪ {(m, i) 7→ (o,m′)})
11 M← (M,minit,∆)

12 returnM

Two-phase synthesis algorithm from specifications and examples The
two-phase synthesis algorithm for safety specifications and examples, called Synth-
Safe(E,S, σG, σC) works as follows: it takes as input a set of examples E, a spec-
ification S given as a deterministic safety automaton, a generalizing and comple-
tion strategies σG, σC respectively. It returns a Mealy machineM which realizes
S and such that E ⊆ L(M) if it exists. In a first steps, it calls Gen(E,S, σG). If
this calls returns UNREAL, then SynthSafe return UNREAL as well. Other-
wise, the call to Gen returns a preMealy machineM0. In a second step, Synth-
Safe calls Comp(M0,S, σC). If this call returns UNREAL, so does Synth-
Safe, otherwise SynthSafe returns the Mealy machine computed by Comp.
The pseudo-code of SynthSafe can be found in [5].

The completion procedure may not terminate for some completion strategies.
It is because the completion strategy could for instance keep on selecting pairs of
the form (o,m′) where m′ is a fresh state. However we prove that it always termi-
nates for lazy completion strategies. A completion strategy σC is said to be lazy
if it favours existing states, which formally means that if X \ (O×{fresh}) 6= ∅,
then σC(M,m, i, X) 6∈ O × {fresh}. The 1st theorem states correctness and ter-
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mination of the algorithm for lazy completion strategies (assuming the functions
σG and σC are computable in worst-case exptime in the size of their inputs).

Theorem 3 (termination and correctness). For all finite sets of examples E ⊆
(I.O)∗, all specifications S ⊆ (I.O)ω given as a deterministic safety automaton
A with n states, all merging strategies σG and all completion strategies σC , if
SynthSafe(E,S, σG, σC) terminates then, it returns a Mealy machine M such
that E ⊆ L(M) and M realizes S, if it exists, otherwise it returns UNREAL.
Moreover, SynthSafe(E,S, σG, σC) terminates if σC is lazy, in worst-case ex-
ponential time (polynomial in the size2 of E and exponential in n).

The proof of the latter theorem is a consequence of several results proved on
the generalization and completion phases, and is given in [5].

A Mealy machine T is minimal if for all Mealy machineM such that L(T ) =
L(M), the number of states of M is at least that of T . The next result, proved
in [5], states that any minimal Mealy machine realizing a specification S can be
returned by our synthesis algorithm, providing representative examples.

Theorem 4 (Mealy completeness). For all specifications S ⊆ (I.O)ω given as a
deterministic safety automaton, for all minimal Mealy machines M realizing S,
there exists a finite set of examples E ⊆ (I.O)∗, of size polynomial in the size of
M, such that for all generalizing strategies σG and completion strategies σC , and
all sets of examples E′ s.t. E ⊆ E′ ⊆ L(M), SynthSafe(E′,S, σG, σC) =M.

The polynomial upper bound given in the statement of Theorem 4 is more
precisely the following: the cardinality of E is O(m+n2) where n is the number
of states of M while m is its number of transitions. Moreover, each example
e ∈ E has length O(n2). More details can be found in Remark 1 of [5].

4 Synthesis from ω-regular specifications and examples

We now consider the case where the specification S is given as universal coBüchi
automaton, in Section 4. We consider this class of specifications as it is complete
for ω-regular languages and allow for compact symbolic representations. Further
in this section, we consider the case of LTL specifications.

Specifications given as universal coBüchi automata Our solution for ω-
regular specifications relies on a reduction to the safety case treated in Sec. 3. It
relies on previous works that develop so called Safraless algorithms for ω-regular
reactive synthesis [24,29,18]. The main idea is to strengthen the (safety) accep-
tance condition of the automaton from coBüchi to K-coBüchi. It is complete
for the plain synthesis problem (w/o examples) if K is large enough (in the
worst-case exponential in the number of states of the automaton (e.g., see [18])).
Moreover, it allows for incremental synthesis algorithms: if the specification de-
fined by the automaton with a k-coBüchi acceptance condition is realizable, for
k ≤ K, so is the specification defined by taking K-coBüchi acceptance. Here, as
we also take examples into account, we need to slightly adapt the results. The
next theorem is proved in [5] while the next lemma is immediate:

2 The size of E is the sum of the lengths of the examples of E.
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Theorem 5. Given a universal co-Büchi automaton A with n states defining a
specification S = L∀(A) and a preMealy machine P with m states, we have that
S is P-realizable iff S ′ = L∀K(A) is P-realizable for K = nm|I|2O(n log2 n).

Lemma 1. For all co-Büchi automata A, for all preMealy machines P, for all
k1 ≤ k2, we have that L∀k1(A) ⊆ L∀k2(A) and so if L∀k1(A) is P-realizable then

L∀k2(A) is P-realizable. Furthermore for all k ≥ 0, if S ′ = L∀k(A) is P-realizable

then S = L∀(A) is P-realizable.

Thanks to the latter two results applied to P = PTA(E) for a set E of
examples of size m, we can design an algorithm for synthesising Mealy machines
from a specification defined by a universal coBüchi automaton A with n states
and E: it calls SynthSafe on the safety specification L∀k(A) and E for increasing
values of k, until it concludes positively, or reach the bound K = 2O(mn log2mn)+
1. In the latter case, it returns UNREAL. However, to apply SynthSafe properly,
L∀k(A) must be represented by a deterministic safety automaton. This is possible
as k-coBüchi automata are determinizable [18].

Determinization The determinization of k-co-Büchi automata A relies on a
simple generalization of the subset construction: in addition to remembering the
set of states that can be reached by a prefix of a run while reading an infi-
nite word, the construction counts the maximal number of times a run prefix
that reaches a given state q has visited states labelled with color 1 (remem-
ber that a run can visit at most k such states to be accepting). The states
of the deterministic automaton are so-called counting functions, formally de-
fined for a co-Büchi automaton A = (Q, qinit, Σ, δ, d) and k ∈ N, as the set
noted CF (A, k) of functions f : Q → {−1, 0, 1, . . . , k, k + 1}. If f(q) = −1
for some state q, it means that q is inactive (no run of A reach q on the cur-
rent prefix). The initial counting function finit maps all 1-colored initial states
to 1, all 0-colored initial states to 0 and all other states to −1. We denote by
D(A, k) = (QD = CF (A, k), qDinit = finit, Σ, δ

D, QDusf) the deterministic automa-
ton obtained by this determinization procedure. It is formally defined in [5]. We
can now give algorithm SynthLearn, in pseudo-code, as Algo 3.

Complexity considerations and improving the upper-bound As the au-
tomaton D(A, k) is in the worst-case exponential in the size of the automaton
A, a direct application of Thm. 3 yields a doubly exponential time procedure.
This complexity is a consequence of the fact that the P-realizability problem is
ExpTime in the size of the deterministic automaton as shown in Thm. 2, and
that the termination of the completion procedure is also worst-case exponential
in the size of the deterministic automaton.

We show that we can improve the complexity of each call to SynthSafe
and obtain an optimal worst-case (single) exponential complexity. We provide
an algorithm to check P-realizability of a specification S = L∀k(A) that runs in
time singly exponential in the size of A and polynomial in k and the size of P.
Second, we provide a finer complexity analysis for the termination of the com-
pletion algorithm, which exhibits a worst case exponential time in |A|. Those
two improvements lead to an overall complexity of SynthLearn which is expo-
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Algorithm 3: SynthLearn(E,A,σG,σC) – synthesis algorithm from
ω-regular specification and examples by a reduction to safety

Input: A universal co-Büchi automaton A with n states, a finite set of
examples E ⊆ (I.O)∗, a generalizing strategy σG and a completion
strategy σC .

Output: A Mealy machine M realizing L∀(A) and such that E ⊆ L(M) if it
exists, otherwise UNREAL.

1 K ← nm|I|2O(n log2 n); k ← 0; // m is the size of E
2 while k ≤ K do
3 if SynthSafe(E,D(A, k), σC , σG) 6= UNREAL then
4 return SynthSafe(E,D(A, k), σC , σG)

5 k ← k + 1;

6 return UNREAL

nential in the size of the specification A and polynomial in the set of examples
E. This is provably worst-case optimal because for E = ∅ the problem is already
ExpTime-Complete. We explain next the first improvement, the upper-bound
for termination is provided in [5].

Checking P-realizability of a specification S = L∀k(A) To obtain a better
complexity, we exploit some structure that exists in the deterministic automaton
D(A, k). First, the set of counting functions CF (A, k) forms a complete lattice
for the partial order � defined by f1 � f2 if f1(q) ≤ f2(q) for all states q.
We denote by f1

⊔
f2 the least upper-bound of f1, f2, and by WAk the set of

counting functions f such that the specification L(D(A, k)[f ]) is realizable (i.e.
the specification defined by D(A, k) with initial state f). It is known that WAk
is downward-closed for � [18], because for all f1 � f2, any machine realizing
L(D(A, k)[f2]) also realizes L(D(A, k)[f1]). Therefore, WAk can be represented
compactly by the antichain dWAk e of its �-maximal elements. Now, the first
improvement is obtained thanks to the following result:

Lemma 2. Given a preMealy P = (M,m0, ∆), a co-Büchi automata A, and
k ∈ N. For all states m ∈M , we let F ∗(m) =

⊔
{f | ∃u ∈ (IO)∗ ·Post∗P(m0, u) =

m ∧ PostD(f0, u) = f}. Then, L(D(A, k)) is P-realizable iff there does not exist
m ∈M such that F ∗(m) 6∈WAk .

It is easily shown that the operator F ∗ can be computed in pTime. Thus, the
latter lemma implies that there is a poly-time algorithm in |P|, |A|, k ∈ N, and
the size of dWAk e to check the P-realizability of L∀(A). Formal details in [5].

We end this subsection by summarizing the behavior of our synthesis algo-
rithm for ω-regular specifications defined as universal co-Büchi automata.

Theorem 6. Given a universal coBüchi automaton A and a set of examples E,
the synthesis algorithm SynthLearn returns, if it exists, a Mealy machine M
such that E ⊆ L(M) and Lω(M) ⊆ L∀(A), in worst-case exponential time in
the size of A and polynomial in the size of E. Otherwise, it returns UNREAL.

Specifications given as an LTL formula We are now in position to apply
Alg. 3 to a specification given as LTL formula ϕ. Indeed, thanks to the results
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of the subsection above, to provide an algorithm for LTL specifications, we only
need to translate ϕ into a universal co-Büchi automaton. This can be done
according to the next lemma. It is well-known (see [24]), that given an LTL
formula ϕ over two sets of atomic propositions PI and PO, we can construct in
exponential time a universal co-Büchi automaton Aϕ such that L∀(Aϕ) = [[ϕ]],
i.e. A recognizes exactly the set of words w ∈ (2PI2PO )ω that satisfy ϕ. We then
get the following theorem that gives the complexity of our synthesis algorithm
for a set of examples E and an LTL formula ϕ, complexity which is provably
worst-case optimal as deciding if [[ϕ]] is realizable with E = ∅, i.e. the plain LTL
realizability problem, is already 2ExpTime-Complete [27].

Theorem 7. Given an LTL formula ϕ and a set of examples E, the synthesis
algorithm SynthLearn returns a Mealy machine M such that E ⊆ L(M) and
Lω(M) ⊆ [[ϕ]] if it exists, in worst-case doubly exponential time in the size of ϕ
and polynomial in the size of E. Otherwise it returns UNREAL.

5 Implementation and Case study

We have implemented the algorithm SynthLearn of the previous section in a
prototype tool, in Python, using the tool Acacia-Bonzai [11] to manipulate
antichains of counting functions. We first explain the heuristics we have used to
define state-merging and completion strategies, and then demonstrate how our
implementation behaves on a case study whose goal is to synthesize the controller
for an elevator. The interested reader can find in [5] other case studies, including
a controller for an e-bike and two variations on mutual exclusion.

Merging and completion strategies implemented in our prototype Our
tool implements a merging strategy σG where, given an example e that leads
in the current preMealy machine to a state m and a set {m1,m2, . . . ,mk} of
candidates for merging, as computed in line 7 of Algorithm 1, we choose state mi

with a �-minimal counting function F ∗(mi), as defined in Lemma 2. Intuitively,
favouring minimal counting functions preserves as much as possible the set of
behaviors that are possible after the example e.

Our tool also implements a completion strategy σC , where for every hole (m, i)
of the preMealy machine M and out of the list of candidate pairs, selects an
element which again favour states associated with �-minimal counting functions.
For more details, we refer the reader to [5].

Lift Controller Example We illustrate how to use our tool to construct a
suitable controller for a two-floor elevator system.

Considering two floors is sufficient enough to illustrate most of the main
difficulties of a more general elevator. Inputs of the controller are given by two
atomic propositions b0 and b1, which are true whenever the button at floor 0
(resp. floor 1) is pressed by a user. Outputs are given by the atomic propositions
f0 and f1, true whenever the elevator is at floor 0 (resp. floor 1); and ser, true
whenever the elevator is serving the current floor (i.e. doors are opened). This
controller should ensure the following core properties:
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q0 q1 q2 q3

!b0 & !b1/f0 & !f1 & !ser
b0 & !b1/f0 & !f1 & ser

b1/f0 & !f1 & !ser b1/!f0 & f1 & ser

!b0 & b1/!f0 & f1 & ser!b0 & !b1/!f0 & f1 & !ser

b0/!f0 & f1 & !ser

b0/f0 & !f1 & ser

Fig. 2: Machine returned by our tool on the elevator specification w/o examples.
Here, q0, q1, q2, q3 represents the states where f0 is served when required, where
b1 is pending, where f1 is served, the state where b0 is pending respectively.

q0 q1 q2

q3

!b0 & !b1/f0 & !f1 & !ser
b0 & !b1/f0 & !f1 & ser

!b0 & b1/f0 & !f1 & !ser

b0 & b1/f0 & !f1 & ser

!b0 & !b1/!f0 & f1 & !ser
!b0 & b1/!f0 & f1 & ser

b0 & !b1/!f0 & f1 & !ser b0 & b1/!f0 & f1 & ser

b0/!f0 & f1 & !ser

b1/!f0 & f1 & !ser

Fig. 3: Mealy machine returned by our tool on the elevator specification with ad-
ditional examples. The preMealy machine obtained after generalizing the exam-
ples and before completion is highlighted in red. This took 3.10s to be generated.

1. Functional Guarantee: whenever a button of floor 0 (resp. floor 1) is
pressed, the elevator must eventually serve floor 0 (resp. floor 1): G(b0 ->

F (f0 & ser)) & G(b1 -> F (f1 & ser))

2. Safety Guarantee: The elevator is always at one floor exactly: G(f0<->!f1)

3. Safety Guarantee: The elevator cannot transition between two floors when
doors are opened: G((f0 & ser) -> X(!f1)) & G((f1 & ser) -> X(!f0))

4. Initial State: The elevator should be in floor 0 initially: f0

Additionally, we make the following assumption: whenever a button of floor
0 (or floor 1) is pressed, it must remain pressed until the floor has been served,
i.e., G(b0 -> (b0 W (f0 & ser))) & G(b1 -> (b1 W (f1 & ser))).

Before going into the details of this example, let us explain the methodology
that we apply to use our tool on this example. We start by providing only the
high level specification ϕCORE for the elevator given above. We obtain a first
Mealy machine from the tool. We then observe the machine to identify prefix
of behaviours that we are unhappy with, and for which we can provide better
alternative decisions. Then we run the tool on ϕCORE and the examples that we
have identified, and we get a new machine, and we proceed like that up to a
point where we are satisfied with the synthesized Mealy machine.

Let us now give details. When our tool is provided with this specification
without any examples, we get the machine depicted in fig. 2. This solution
makes the controller switch between floor 0 and floor 1, sometimes unnecessarily.
For instance, consider the trace s # {!b0 & !b1}{!f0 & f1 & !ser} # {!b0
& !b1}{f0 & !f1 & !ser}, where we let s = {!b0 & b1}{f0 & !f1 & !ser}
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# {!b0 & b1}{!f0 & f1 & ser}. Here, we note that the transition goes back to
state q0, where the elevator is at floor 0, when the elevator could have remained
at floor 1 after serving floor 1. The methodology described above allows us to
identify the following three examples:

1. The 1st trace states that after serving floor 1, the elevator must remain
at floor 1 as b0 is false: s # {!b0 & !b1}{!f0 & f1 & !ser} # {!b0 &

!b1}{!f0 & f1 & !ser}
2. The 2nd trace states that the elevator must remain at floor 0, as b1 is false:
{!b0 & !b1}{f0 & !f1 & !ser} # {!b0 & !b1}{f0 & !f1 & !ser}

3. The 3rd trace ensures that after s, there is no unnecessary delay in serving
floor 0 after floor 1 is served in s: s # {b0 & !b1}{!f0 & f1 & !ser} #

{b0 & !b1}{f0 & !f1 & ser}
With those additional examples, our tool outputs the machine of fig. 3, which
generalizes them and now ensures that moves of the elevator occur only when
required. For example, the end of the first trace has been generalized into a loop
on state q1 ensuring that the elevator does not go to floor 0 from floor 1 unless b0
is pressed. We note that the number of examples provided here is much smaller
than the theoretical (polynomial) upper bound proved in Theorem 4.

6 Conclusion

We have introduced synthesis with a few hints, which allows the user to guide
synthesis using examples of expected executions of high quality solutions. Ex-
isting synthesis tools may provide unnatural solutions when fed with high-level
specifications only. As providing complete specifications goes against the very
goal of synthesis, we believe our algorithm has a greater potential in practice.

We have studied the computational complexity of problems that need to be
solved during our synthesis procedure. We have proved our algorithm is complete:
any Mealy machine M realizing a specification ϕ can be obtained from ϕ and a
representative example set E, whose size is bounded polynomially in the size of
M. We have implemented our algorithm in a prototype tool that extends Acacia-
Bonzai [11] with tailored state-merging learning algorithms. We have shown that
only a small number of examples are necessary to obtain high quality machines
from high-level LTL specifications only. The tool is not fully optimized yet. While
this is sufficient to demonstrate the relevance of our approach, we will work on
efficiency aspects of the implementation.

As future works, we will consider extensions of the user interface to interac-
tively and concisely specify sets of (counter-)examples to solutions output by the
tool. In the same line, an interesting future direction is to handle parametric ex-
amples (e.g. elevator with the number of floors given as parameter). This would
require to provide a concise syntax to define parametric examples and to design
efficient synthesis algorithm in this setting. We will also consider the possibility
to formulate negative examples, as our theoretical results readily extend to this
case and their integration in the implementation should be easy.
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Abstract. We present algorithms for model checking and controller
synthesis of timed automata, seeing a timed automaton model as a parallel
composition of a large finite-state machine and a relatively smaller timed
automaton, and using compositional reasoning on this composition. We
use automata learning algorithms to learn finite automata approximations
of the timed automaton component, in order to reduce the problem at
hand to finite-state model checking or to finite-state controller synthesis.
We present an experimental evaluation of our approach.

1 Introduction

Timed automata [1] are a well-known formalism for modeling and verifying real-
time systems. They can be used to model systems as finite automata, while using,
in addition, clocks to impose timing constraints on the transitions. Using clock
variables have advantages. They allow one to describe models that are expressive
thanks to real-valued clock values; moreover, the use of specific clock variables
enable optimizations such as sound and complete abstractions, also known as
extrapolation operators [5]. Model checking algorithms have been developed and
implemented in tools such as Uppaal [8], TChecker [28], PAT [50].

One approach for model checking timed automata is based on representing the
set of clock values with zones, which are particular polyhedra, and using explicit
enumeration on the discrete states. There has been extensive research on sound
and complete abstractions on zones, which improved the performance of the
model checking tools, and made it possible to handle models with more complex
time constraints; see [11] for a survey. However this approach does not scale to
models with large discrete spaces due to explicit enumeration. Several authors
have developed algorithms to remedy this issue, and to attempt to adapt efficient
model checking techniques finite-state systems to timed systems. Extensions of
binary decision diagrams (BDD) with clock constraints have been considered
both for continuous time [53,10,23] and discrete time [42,51]. Another approach
is to use predicate abstraction on clock variables that enables efficient finite-state
verification techniques based on BDDs or SAT solvers [17,16,46].

Controller synthesis is a related problem in which some transitions of the
system are controllable and some are uncontrollable, and the objective is to
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compute a control strategy which guarantees that all induced runs of the system
satisfy a given specification; see e.g. [52]. This problem is formalized using games,
and in the case of real-time systems, using timed games [39,4]. Zone-based
algorithms have been developed to solve timed games and compute control
strategies [14], and are available in the Uppaal TIGA tool [7]. These algorithms
suffer from the same limitations as the zone-based model checking algorithms.
Although they can be efficient on instances with small discrete state spaces,
they do not scale well to large systems. An attempt was made to implement the
counter-example guided abstraction refinement scheme to handle larger discrete
state space in timed games in [44]. On the other hand, there are several efficient
finite-state game solvers, based on BDDs and SAT solvers, which can efficiently
handle relatively large state spaces [31], but cannot handle real time.

In this work, we introduce an approach that is applied both to model checking
and controller synthesis of timed automata with the objective of combining the
advantages of both timed automata and finite-state model checkers and game
solvers. Our suggestion is to see the input model, without loss of generality, as a
parallel composition between a finite-state machine A, and a timed automaton T .
We specifically target instances where A is large, and T is relatively small but
nontrivial. Note that this point of view was considered before in the verification
of synchronous systems within a real-time environment [9]. As a novelty, for
model checking, we apply a compositional reasoning rule on the product A‖T by
replacing the timed automaton T by a (small) deterministic finite automaton
(DFA) H which represents the behaviors of T . To automatically select the DFA H,
we adapt the algorithm [43] to our setting, and use a DFA learning algorithm
(such as L* [3], or TTT [29]) to find an appropriate DFA either to prove the
specification or to reveal a counterexample.

Our approach enjoys the principle of separation of concerns in the following
sense. A timed automaton model checker is used by the learning algorithm to
answer membership and equivalence queries (see Section 2.2); these are answered
without referring to A, thus, by avoiding the large discrete state space. Therefore,
the timed automaton model checker is used in this approach for what it is
designed for: handling real-time constraints encoded in T , not for dealing with
excessive discrete state spaces. Once an appropriate DFA H is found by the
learning algorithm, the system A‖H is model-checked using a finite-state model
checker whose focus is to deal with large discrete state spaces. We can thus
benefit from the best of the two worlds: a state-of-the-art model checker for timed
automata, which is somewhat used here as a theory solver, and any finite-state
model checker based on BDDs, SAT solvers, or even explicit-state enumeration.

The application of the learning-based compositional reasoning of [43] to
controller synthesis is more involved. Our objective was to find a way to exploit
efficient finite-state game solvers [31] in the context of timed automata even
if this meant having an incomplete algorithm. We describe a setting where a
one-sided abstraction is applied for controller synthesis by replacing the timed
automaton component by a learned DFA. Contrarily to the model checking
algorithm, our controller synthesis algorithm is sound but not complete, that is,
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the algorithm may fail although there exists a control strategy, while any control
strategy that is output is correct. More precisely, we consider timed games in
the form G‖T where G is a finite-state game, and T is a timed automaton. We
describe an algorithm that alternates between two phases. In the first phase,
the goal is to find a DFA H that is an overapproximation of T . Once this is
found, we use a finite-state game solver on G‖H ; if there is a control strategy, we
prove that it can be applied in the original system G‖T . If not, then we obtain a
counterstrategy S. We then switch to the second phase whose goal is to check
whether the counterstrategy is spurious or not; and it does so by learning an
underapproximation DFA H of T , and checking whether S induces runs that
are all in H. Accordingly, we either reject the instance or switch back to the
first phase. As in the model checking algorithm, the timed automaton model
checker is only used to answer queries independently from G, and a finite-state
game solver and a model checker are used to compute and analyze strategies in a
discrete state-space.

To the best of our knowledge, apart from [44], we present the first algorithm
that can solve timed games with large discrete state spaces. Although the algo-
rithm applies to a subset of timed games and is not complete, we believe it is
of utmost importance to make progress on the scalability of timed game solvers
in order for these methods to be applied in convincing applications. Our paper
makes an attempt in this direction.

We evaluate our algorithms in comparison with state-of-the-art tools and
show that our approach is competitive with the existing tools, and can allow both
model checking and synthesis to scale to larger models. The approach offers an
alternative treatment of timed models, which might be applied in other settings.

We present the model checking algorithm in Section 2 which contains formal
definitions, the description of the algorithm, and the experiments. Section 3
presents our contributions on the controller synthesis problem, and includes
formal definitions, the description of the algorithm, and the experiments. In
Section 4, we provide a broader discussion on related works, and present our
conclusions and perspectives.

2 Compositional Model Checking

2.1 Preliminaries

Labeled Transition Systems and Finite Automata. We denote finite labeled tran-
sition systems (LTS) as tuples (Q, q0, Σ, T ) where Q is the set of states, q0 ∈ Q
is the initial state, Σ is a finite alphabet, T ⊆ Q×Σ ∪ {ε}×Q is the transition
relation (ε labels silent transitions). Because we will consider synchronous product
of LTSs, we will use silent transitions to define internal transitions not exposed
for synchronization. A finite automaton is an LTS given with a set of accepting
states F ⊆ Q, and is written (Q, q0, Σ, T, F ). A run of an automaton is a se-
quence q1e1q2e2 . . . qn where q1 = q0, ei = (qi, σi, qi+1) ∈ T for some σi ∈ Σ∪{ε}
for each 1 ≤ i ≤ n − 1. The trace of the run is the sequence σ1σ2 . . . σn−1. An
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accepting run starts at q0 and ends in F . The language of a finite automaton
A is the set of the traces of all accepting runs of A, and is denoted by L(A).
We will consider deterministic finite automata (DFA) which do not have silent
transitions, and have at most one edge for each label from each state.

The parallel composition of two automata Ai = (Qi, q
0
i , Σ, Ti, Fi), i ∈ {1, 2},

defined on the same alphabet, is the automaton A1 ‖ A2 = (Q, q0, Σ, T, F ) with
Q = Q1×Q2, q0 = (q01 , q

0
2), F = F1×F2, and T contains ((q1, q2), σ, (q′1, q

′
2)) for

all (q1, σ, q
′
1) ∈ T1, and (q2, σ, q

′
2) ∈ T2; and ((q1, q2), ε, (q′1, q2)) for all (q1, ε, q

′
1) ∈

T1, and q2 ∈ Q2; and symmetrically, ((q1, q2), ε, (q1, q
′
2)) for all (q2, ε, q

′
2) ∈ T2,

and q1 ∈ Q1.

Finite Automata Learning. We use finite automata learning algorithms such as L∗

[3,45] and TTT [29]. In the online learning model, the learning algorithm interacts
with a teacher in order to learn a deterministic finite automaton recognizing a
hidden regular language known to the teacher. The algorithm can make two types
of queries. A membership query consists in asking whether a given word belongs
to the language, to which the teacher answers by yes or no. An equivalence
query consists in creating a hypothesis automaton H, and asking the teacher
whether H recognizes the language. The teacher either answers yes, or no and
provides a counterexample word which is in the symmetric difference of L(H)
and of the target language. Learning algorithms typically make a large number
of membership queries, and a smaller number of equivalence queries.

Timed Automata. We fix a finite set of clocks C. Clock valuations are the
elements of RC≥0. For R ⊆ C and a valuation v, v[R← 0] is the valuation defined
by v[R← 0](x) = v(x) for x ∈ C \ R and v[R← 0](x) = 0 for x ∈ R. Given
d ∈ R≥0 and a valuation v, v+ d is defined by (v+ d)(x) = v(x) + d for all x ∈ C.
We extend these operations to sets of valuations in the standard way. We write 0
for the valuation that assigns 0 to every clock.

We consider a clock named 0 which has the constant value 0, and let C0 =
C ∪ {0}. An atomic guard is a formula of the form x ./ k, or x − y ./ k where
x, y ∈ C0, k, l ∈ N, and ./ ∈ {<,≤, >,≥}. A guard is a conjunction of atomic
guards. A valuation v satisfies a guard g, denoted v |= g, if all atomic guards are
satisfied when each x ∈ C is replaced by v(x). Let ΦC denote the set of guards
for C.

A timed automaton T is a tuple (L, `0, Σ, Inv, C, E, F ), where L is a finite
set of locations, `0 ∈ L is the initial location, Σ is the alphabet, Inv : L → ΦC
the invariants, C is a finite set of clocks, E ⊆ L×Σ×ΦC×2C×L is a set of edges.

An edge e = (`, g, σ,R, `′) is also written as `
g,σ,R−−−→ `′. F ⊆ L is the set of

accepting locations.
A run of T is a sequence r = q1e1q2e2 . . . qn where qi ∈ L×RC≥0, q1 = (`0,0),

and writing qi = (`, v) for each 1 ≤ i ≤ n, we have v ∈ Inv(`). If i < n,
then either ei ∈ R>0 and v + ei ∈ Inv(`), in which case qi+1 = (`, v + ei), or
ei = (`, g, σ,R, `′) ∈ E, in which case v |= g and qi+1 = (`′, v[R ← 0]). The
run is accepting if the last location is in F . The trace of the run r is the word
σ0σ1 . . . σn where σi is the label of edge ei.
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The untimed language of the timed automaton T is the set the traces of the
accepting runs of T , and is denoted by L(T ).

A timed automaton is label-deterministic if at each location `, for each label
σ ∈ Σ, there is at most one transition leaving ` labelled by σ; in other terms,
the finite automaton obtained by removing all clocks is deterministic.

We consider the parallel composition of a finite automaton A = (Q, q0, Σ, T, F )
and a timed automaton T = (L, `0, Σ, Inv, C, E, FT ) which is a new timed
automaton. Intuitively, a transition labeled by σ consists in an arbitrary number
of silent transitions of A, followed by a joint σ-transition of both components.
The guard and the reset of the overall transition are those of the transition of
T . Formally, let A‖T = (L′, `′0, Σ, Inv′, C, E′, F ′) with L′ = Q×L, Inv′ : (q, `) 7→
Inv(`), `′0 = (q0, `0), and E′ contains all edges of the form ((q, `), g, σ,R, (q′, `′))
such that (`, g, σ,R, `′) ∈ E, and there exists a sequence q = q0, q1, . . . , qk, qk+1 =
q′ of states of A such that (q0, ε, q1), . . . , (qk−1, ε, qk), (qk, σ, qk+1) are transitions
of A. We let F ′ = F×FT .

It follows from the definition of the parallel composition that L(A‖T ) =
L(A) ∩ L(T ).

Target Timed Automata Instances. Our main motivation is to consider real-time
systems that are modeled naturally as A‖T . Typically, A has a large (discrete)
state space, and T is a relatively small timed automaton, but with potentially
complex time constraints involving several clocks.

It should be clear however that any timed automaton T can be seen as such
a product as follows. Let A be a finite automaton identical to T except that
guards and resets are removed; and for each pair of guard g and reset r, a fresh
label σg,r is defined and added to each edge with the said guard and reset. Now,
define the timed automaton T ′ as a single state with the same clocks as T , with
one self-loop for each pair (g, r): such an edge is labeled by σg,r, has guard g,
and reset r. We have that T is isomorphic to A‖T ′.

An example is given in Figure 1 which shows how a simple scheduling setting
can be modeled in this way. Here, the finite automaton is simple and only stores
the mapping from machines to the tasks they are executing. Typically, if the
machines or the processes executing tasks have internal states, these could be
modeled in A as well without altering the timed automaton.

2.2 Learning-Based Compositional Model Checking Algorithm

We present an algorithm for model checking the untimed language L(A‖T ).
Although it is known that the untimed language is regular [1], the size of the

corresponding finite automaton can be exponential so a direct computation is
not efficient. We will be looking for a finite automaton H which is an overapprox-
imation of T i.e. L(T ) ⊆ L(H). H stands for hypothesis made by the learning
algorithm. We will in fact use the following lemma.

Lemma 1. For all finite automata A and H, and timed automata T on common
alphabet Σ, if L(T ) ⊆ L(H), then L(A‖T ) ⊆ L(A ‖ H).
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Finite automaton A:

M0 7→ ⊥
M1 7→ ⊥

M0 7→ 0
M1 7→ ⊥

M0 7→ 0
M1 7→ 1

M0 7→ 1
M1 7→ ⊥

M0 7→ 1
M1 7→ 0

M0 7→ ⊥
M1 7→ 1

M0 7→ ⊥
M1 7→ 0

ready[0]

done[0]

ready[1]

done[1]

ready[1]

done[1]

ready[0]

done[0]

done[0]

ready[0]

done[1]done[1]

ready[1]

done[0]

Timed automaton T :

x0 ≤ 10 x0 ≤ 30

ready[0], x0 ∈ [5, 10]
x0 := 0

done[0], x0 ∈ [20, 30]
x0 := 0

x1 ≤ 10 x1 ≤ 20

ready[1], x1 ∈ [2, 10]
x1 := 0

done[1], x1 ∈ [10, 20]
x1 := 0

Fig. 1. Timed automaton A‖T modeling a simple scheduling policy. The finite au-
tomaton A is given above and models a scheduler which schedules tasks (0 and 1)
immediately when they become ready (ready[0] and ready[1]) on machines M0 and M1,
using M0 first if it is available. The timed automaton T is below, here, as a network of
the timed automata, and models interarrival and computation times for each task.

In other terms, by replacing the timed automaton T by its overapproximation,
we obtain an overapproximation of the compound system in terms of untimed
language. So if a linear property can be established on A‖H for an appropriate H ,
then the property also holds on the original system.

Let us present the above property as a verification rule. Assuming that we
want to establish A‖T ⊆ Spec for some language Spec, we have

L(T ) ⊆ L(H) L(A‖H) ⊆ Spec

L(A‖T ) ⊆ Spec.
Asym

(1)

Here, H serves as an assumption we make on T when verifying A; so as in
Lemma 1, we can use H instead of T during model checking. The rule (1) is well
known as the assume-guarantee verification rule [19], and has been used in model
checking finite-state systems as well as timed automata [35]. The assumption H
can either be provided by the user, or automatically computed using automata
learning as in [43]. Intuitively, the model checking algorithm we present in this
section is an application of [43] to our specific case.

Figure 2 presents the overview of the algorithm. The membership queries of the
learning algorithm are answered by the membership oracle; the equivalence query
with conjecture H is answered by the inclusion oracle. When the conjecture H
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passes the inclusion check, we model-check H‖A. When this is successful, we stop
and declare that the original system A‖T satisfies the specification. Otherwise, a
counterexample w ∈ L(A‖H) \ Spec was found, and we use a realizability check
to see whether w ∈ L(T ) (this is actually done by the membership oracle). If the
answer is yes, then the counterexample is confirmed, and we stop. Otherwise,
we inform the learning algorithm that w must be excluded, and continue the
learning process.

Note that this algorithm can be used for any regular language specification
Spec. We focus on safety properties in our experiments, presented next.

DFA Learning
Algorithm

Membership Oracle
w ∈ L(T )?

Inclusion Oracle
L(T ) ⊆ L(H)?

Finite-State Model
Checking Oracle
L(A‖H) ⊆ Spec?

Realizability Check
w ∈ L(T )?

w ∈ L(T )?

yes/no

conjecture H

no

w ∈ L(T ) \ L(H)
yes

yes
X

no: w ∈ L(A‖H) \ Spec

yes
×no

w 6∈ L(T )

Fig. 2. The learning-based compositional model checking algorithm. The box on the
left is a DFA learning algorithm, while the oracles answering the queries of the learning
algorithm are shown on the right and correspond to the teacher.

2.3 Experiments

We built a prototype implementation of our algorithm in Scala, using the TTT
automata learning algorithm [29] from the learnlib library [30], and the associated
automatalib for manipulating finite automata1. We used the TChecker [28] model
checker for implementing membership and inclusion oracles. For the latter, we
complement H into Hc, and check the emptiness of the parallel composition of T
with Hc. We use the NuSMV model checker for finite-state model checking.

The overall input consists in an SMV file describing A, and of a TChecker
timed automaton describing T . We use define expressions in SMV to define the
labels Σ, while TChecker allows us to tag each transition with a label.

1 https://github.com/osankur/compRTMC/releases/tag/tacas23
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Table 1. Model checking benchmarks. The column #Clk is the number of clocks; #C
is the number of conjectures made by the DFA learning algorithm; #M is the number
of membership queries; and |DFA| is the size of the final finite automaton learned. The
safety specification holds on all models but those marked with *. In each cell, — means
out of memory (8GB), and - means time out (30 minutes).

Compositional Uppaal nuXmv

#Clk #C #M |DFA| Time Time Time

Leader Election A 3 13 232 15 157s — —

Leader Election B 3 26 661 29 198s — —

Leader Election C 3 33 997 53 149s — -

Leader Election D 3 - — -

Leader Election (Stateless) A 3 13 232 15 15s 6s —

Leader Election (Stateless) B 3 28 776 33 44s 8s —

Leader Election (Stateless) C 3 33 997 53 17s 6s -

Leader Election (Stateless) D * 3 134 6965 240 10m7s 6s -

FTSP-abstract-2 2 3 54 8 2s 2s -

FTSP-abstract-3 3 17 340 23 47s 7m8s -

FTSP-abstract-4 4 - - -

STS-2 5 7s 19s -

STS-3 6 - - -

Rt-broadcast A 4 49 1324 63 59s - 87s

Rt-broadcast B 4 41 1100 63 101s - 90s

Rt-broadcast C 4 21 590 39 31s - 86s

Rt-broadcast D 4 27 901 52 49s - 80s

Priority Scheduling 2 A 3 35 9859 49 34s 1s 7s

Priority Scheduling 2 B 3 29 1162 42 16s — 2s

Priority Scheduling 3 C 4 - — 6s

Priority Scheduling 3 D 4 - — 8s

Priority Scheduling 3 E * 4 - — 11s

We compare our algorithm on a set of benchmarks with the model checkers
Uppaal [8] and nuXmv which has a timed automata model checker [16]. The
former implements a zone-based enumerative algorithm, while the latter uses
predicate abstraction through IC3IA. We describe some of the benchmarks here.

The leader election protocol is a distributed protocol that can recover from
crashes [22], extended here with periodic activation times and crash durations. The
first four rows of Table 1 correspond to the case where one of the processes crashes
when its internal state enters an error state. Internal states are modeled using
Boolean circuits from from the synthesis competition (SYNTCOMP) benchmarks.
The stateless version is more abstract: there is no internal state model, and crashes
can occur at any time. The letters A, B, C, D indicate different timed automaton
models. Uppaal was more efficient at solving the stateless version but failed in
the full version due to the large discrete state space. The compositional algorithm
was effective in verifying all instances but the D case which required a large
finite automaton to be learned. One can notice an overhead of the compositional
algorithm in the stateless version due to the computation of the finite automaton
H . This was particularly an issue in the stateless D case where Uppaal could find
a counterexample trace faster; nuXmv was not able to solve these instances.
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The flooding time synchronization protocol (FTSP) is a leader election algo-
rithm for multi-hop wireless sensor networks used for clock synchronization [40],
and has been the subject of formal verification before [41,34]. We consider the
abstract model used in [48] for parameterized verification allowing one to verify
the model for a large number of topologies. Our algorithm was faster for the
model with 3 processes, although none of the tools scaled to 4 processes.

Overall, the experiments show that our algorithm is competitive with the
state of the art tools; while it does not improve the performance uniformly on all
considered benchmarks, it does allow us to solve instances that are not solvable
by other tools, and sometimes to improve performance both compared to a
zone-based approach (Uppaal) and SAT-based algorithms (nuXmv).

3 Compositional Controller Synthesis

3.1 Preliminaries

Games. A finite safety game is a pair (G,Bad) where G is an LTS (QE∪̇QC , q0,
Σ, T ) with the set of states given as a partition QE∪̇QC , namely, Environment
states (QE), and Controller states (QC), and Bad ⊆ QE∪̇QC is an objective. The
game is played between two players, namely, Controller and Environment. At
each state q ∈ QC , Controller determines the successor by choosing an edge
from q, and Environment determines the successor from states q ∈ QE . A strategy
for Controller (resp. Environment) maps finite runs of (QE∪̇QC , q0, Σ, T ) ending
in QC (resp. QE) to an edge leaving the last state. A pair of strategies, one for
each player, induces a unique infinite run from the initial state. A run is winning
for Controller if it does not visit Bad; it is winning for Environment otherwise.
A winning strategy for Controller is such that for all Environment strategies,
the run induced by the two strategies is winning for Controller. Symmetrically,
Environment has a winning strategy if for all Controller strategies, the induced
run is winning. A strategy is positional (a.k.a. memoryless) if it only depends on
the last state of the given run.

The parallel composition of (G,Bad) and a deterministic finite automaton F =
(Q′, q′0, Σ, T

′, F ) on alphabet Σ is a new game whose LTS is G‖F in which the
Controller states are QC×Q′, the Environment states are QE×Q′, and the
objective is Bad×F (Notice that Controller thus has a safety objective).

Finite games were extended to the real-time setting as timed games [39,4]. A
timed game is a timed automaton T = (LE∪̇LC , `0, Σ, Inv, C, E,Bad) with the
exception that its edges are labeled by Σ∪{ε} (and not just by Σ as in the previous
section), and the locations are partitioned as LE∪̇LC into Environment locations
and Controller locations. The semantics is defined by letting Environment choose
the delay and the edge to be taken at locations LE , while Controller choose these
from LC . Formally, a strategy for Environment (resp. Controller) is a function
which associates a run that ends in LE (resp. LC) to a pair of delay and an edge
enabled from the state reached after the delay. A run is winning for Controller if
it does not visit Bad. A Controller (resp. Environment) strategy is winning for
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objective Bad if for all Environment (resp. Controller) strategies, the induced
run from the initial state is winning (resp. not winning) for Controller. A run r
is compatible with a strategy S for Controller (resp. Environment) if there exists
an Environment (resp. Controller) strategy S′ such that r is induced by S,S′.

The parallel composition of a finite safety game (G,Bad) and a timed automa-
ton T = (L, `0, Σ, Inv, C, E, F ) on common alphabet Σ is the timed game G‖T
where Controller locations are QC×L, and Environment locations are QE×L.

Positional strategies exist both for reachability and safety objectives in finite
and timed games. Both finite and timed games are known to be determined
for reachability and safety objectives. For instance, if Controller does not have
a winning strategy for the safety objective, then Environment has a strategy
ensuring the reachability of Bad [39,4].

Target Timed Game Instances. We consider controller synthesis problems de-
scribed as timed games in the form of (G‖T ,Bad×F ) where (G,Bad) is a finite
safety game, and T is a timed automaton. In addition, we assume that G‖T is
Controller-silent, defined as follows.

Definition 1. The timed game (G‖T ,Bad×F ) on alphabet Σ is Controller-silent
if 1) all Controller transitions are silent; and 2) all Controller locations in T are
urgent, that is, an invariant ensures that no time can elapse.

Hence, we again separate the game G defined on a possibly large discrete
state space while real-time constraints are separately given in T .

The intuition behind the semantics is the following: because the game is played
in G‖T and G is Controller-silent, the timed automaton model T is only used to
disallow some of the Environment transitions according to real-time constraints,
while Controller’s actions are instantaneous responses to Environment’s actions
and thus are unaffected by the constraints of T . One can think of the timed
automaton as some form of scheduler that schedules uncontrollable events in the
system, so the order of these is determined by Environment. This assumption is
restrictive; for instance, this excludes controller synthesis problems where the
control strategy is to choose delays to execute some events. Nonetheless, this
asymetric view enables a one-sided abstraction framework presented in the next
section, where Environment transitions are approximated by a DFA.

An example is given in Figure 3. The finite game drawn here only shows
the structure of the game. It has, in addition, integer variables rob x, rob y,

obs x, obs y encoding the positions of the robot and of the obstacle, and a
Boolean variable door to encode the state of the door. The state e belongs to
Environment, which can move the obstacle in any direction, close or open the
door, or let the robot move by going to state c. The state c belongs to Controller.
All its leaving transitions are silent, and correspond to moving the robot in four
directions. These transitions have preconditions, not shown in the figure, that
check whether the moves are possible, and have updates that modify the state
variables. The timed automaton, given as a network of three timed automata,
determine the timings of these events. One can notice, for example, that the
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Finite game:

e c
robot

open

close

obs left / obs right

obs up / obs down

εl

εr

εu

εd
r

o

Timed automaton:

x ≤ 5 y ≤ 9 z ≤ 10

x ∈ [4, 5]

robot, x := 0

y ∈ [7, 9]

obs up, y := 0

y ∈ [7, 9]

obs down, y := 0

y ∈ [7, 9]
obs right

y := 0

y ∈ [7, 9]
obs left

y := 0

z ≥ 2, close, z := 0

z = 10, open, z := 0

Fig. 3. The sketch of a timed game G‖T modelling a planning problem. The finite
game models a robot and an obstacle moving in a grid world as shown on top right.
The cells r and o show, respectively, the initial positions of the robot and the obstacle.
The robot cannot cross walls (shown in thick segments), and can only cross the door if
it is open. Here four silent transitions were marked with εr, εl, εu, εd for readability; in
reality, these are all labeled by ε.

robot is moving faster than the obstacle, and that whenever the door is closed, it
remains so for 10 time units.

3.2 One-Sided Abstraction

Thanks to the assumption we make on considered timed games, we show that by
replacing T by a DFA H that is an overapproximation, we obtain an abstract
game in which Controller strategies can be transferred to the original game. This
is formalized in the next lemma (the proof is in the appendix).

Lemma 2. Consider a Controller-silent timed game (G‖T ,Bad×F ), and a com-
plete DFA H with accepting states FH , satisfying L(T ) ⊆ L(H).

– If Controller wins (G‖H,Bad×FH), then it wins (G‖T ,Bad×F ).

– If Environment wins (G‖T ,Bad×F ), then it wins (G‖H,Bad×FH), and has
a strategy in (G‖H,Bad×FH) whose all compatible runs have traces in L(T ).

Note that in the above lemma, it is crucial that the game is Controller-silent. In
fact, if Controller could take edges that synchronize with T , then we may not
be able to apply a strategy in G‖H to G‖T , since such a strategy may prescribe
traces that are not accepted in T . Moreover, if Controller locations are not urgent,
we would not know how to select the delays when mapping the strategy to G‖T .
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DFA
Learning

Algorithm

Membership Oracle
w ∈ L(T )?

Inclusion Oracle
L(T ) ⊆ L(H)?

Containment Oracle
L(H) ⊆ L(T )?

Synthesis Oracle
Does Controller

win in G‖H?

Strategy Con-
tainment Oracle
L((G‖H)S) ⊆ L(H)?

Switch to Under-

approximation

DFA
Learning

Algorithm

w ∈ L(T )?

Switch to Over-

approximation

w ∈ L(T )?

yes/no

Conjecture H

no

w ∈ L(T ) \ L(H)

w ∈ L(T )?

yes/no

yes

yes
X

no: Env. counterstrategy S

Conjecture H

no

w ∈ L(H) \ L(T )
yes

yes

×

no

w ∈ L((G‖H)S)\L(H)

no: exclude w from L(H)

yes

Overapproximation Phase Underapproximation Phase

Fig. 4. The learning-based compositional controller synthesis algorithm for the input
timed game G‖T , with G a Controller-silent finite game, and T a label-deterministic
timed automaton. Two automata learning algorithms run in parallel to learn under-
and over-approximations H and H such that H ⊆ L(T ) ⊆ H.

3.3 Learning-Based Compositional Controller Synthesis Algorithm

We now present our compositional controller synthesis algorithm whose overview
is given in Figure 4. The algorithm for controller synthesis is more involved than
the model checking algorithm due to the alternating semantics for two players
in games. It consists in two phases that alternate: the overapproximation phase,
and the underapproximation phase. Each phase runs a DFA learning algorithm
which is interrupted when we switch to the other phase, and continued when
we switch back, until a decision is made. Together, both phases maintain two
approximations, H and H, such that L(H) ⊆ L(T ) ⊆ L(H).

The objective of the overapproximation phase is to attempt to learn a DFA
H satisfying L(T ) ⊆ H, and such that Controller wins in G‖H. The learning
algorithm uses membership and inclusion oracles just like in Section 2.2. Once
such a candidate DFA H is found, the synthesis oracle checks, using finite-state
techniques, whether Controller has a winning strategy in G‖H. If this is the
case, we stop and conclude that Controller wins in G‖T by Lemma 2. Otherwise,
Environment has a winning strategy S in this game; and we switch to the
underapproximation phase.

The goal of the underapproximation is to check whether the given Environment
strategy S can be proved to be spurious. Intuitively, we would like to check
whether L((G‖H)S) ⊆ L(T ) and reject if this is the case. In fact, by Lemma 2,
we know that a winning Environment strategy in G‖T implies that there is such
a strategy S. This is the source of incompleteness of our algorithm, since this
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condition is necessary but not sufficient for Environment to win; that is, the
condition does not guarantee that Environment actually wins in G‖T .

While L((G‖H)S) ⊆ L(T ) can be checked with a timed automaton model
checker (see Checking Containment below), this would mean exploring the large
state space due to G. Since we want to avoid using timed automata model checkers
on such large instances, we rather learn an underapproximation H of L(T ) using
the membership and containment oracles, and use a finite-state model checker to
check L((G‖H)S) ⊆ L(H). Note that although the learning process does require
inclusion checks of the form L(H) ⊆ L(T ), this check is feasible with a timed
automaton model checker since H is typically much smaller than G. If the above
check passes, then we reject the instance, that is, we declare the system not
controllable. Otherwise, some trace w appears in L((G‖H)S) but not in L(H).
If w ∈ L(T ), then we require that w be included in H , and continue the learning
process. Otherwise, S is not valid since it induces w which is not in L(T ). So
we interrupt the current phase and switch back to the overapproximation phase
requiring w to be removed from H.

Membership and inclusion oracles are implemented with a timed automata
model checker. Here, the synthesis oracle can be any finite game solver; we just
need the capability of computing the controlled system (G‖H)S. Such a system is
finite-state, so the strategy containment oracle can be implemented using a finite-
state model checker (since H is deterministic and can thus be complemented). It
remains to explain how the containment oracle is implemented.

Checking Containment L(H) ⊆ L(T ). First, notice that, even with determinism
assumptions on T , the untimed language of the timed automaton complement
of T is not the complement of L(T ). To see this, consider a timed automaton
with a single state which is both initial and accepting, a single clock x, and a
self-loop with guard x = 1, labeled by σ. Then, both L(T ) and L(T c) are the
language σ∗ where T c denotes the timed automaton complement.

Nevertheless, assuming the label-determinism of T , this check can be done by a
simple adaptation of a zone-based exploration algorithm, as follows. Let us assume
that accepting states are reachable from all states of H, which can be ensured
by a preprocessing step. We start exploring the timed automaton H‖T using a
zone-based exploration algorithm [11]. Consider any search node ((qH , qT ), Z)
encountered during the exploration algorithm, reachable by the trace w, where
(qH , qT ) is a location of H‖T , and Z a zone. The exploration algorithm generates
all available successors for σ ∈ Σ. We make the following additional check: If
there is σ′ ∈ Σ such that qH has a successor by σ′, but not T (either because
there is no such edge, or because the guard of the unique edge labeled by σ′ is
not satisfied by Z), then we stop and return the trace wσ′ ∈ L(H) \ L(T ) as a
counterexample to containment. If no such label can be found, the zone-based
exploration will terminate and the algorithm confirms the containment.

As an alternative, one can use testing such as the Wp-method [36] to establish
the containment, as it is customary in DFA learning. In this case, the answer
is approximate in the sense that the conformance test can fail to detect that
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containment does not hold. However, this does not affect the soundness of the
overall algorithm since it can only increase false negatives.

3.4 Experiments

Our tool accepts instances G‖T where G is given as a Verilog module, and T
as a TChecker timed automaton. Some of the inputs of the Verilog module are
uncontrollable (chosen by Environment), some others are controllable (chosen by
Controller). We use outputs of the Verilog module to define the synchronization
labels Σ; while TChecker models tag each transition with such a label.

Table 2. The results of the controller synthesis experiments. The columns #Clks, #C,
#M respectively show the number of clocks in the model, the numbers of conjectures
and membership queries made by the compositional algorithm; while |H|, |H| show the
sizes of the DFAs learned by the two phases.

Compositional Algorithm Uppaal TIGA Controllable

#Clks #C #M |H| |H| Time Time

Scheduling genbuf A 3 50 2178 114 26s — yes

Scheduling genbuf B 3 40 1734 96 15s — yes

Scheduling genbuf C 3 45 1503 88 4s — yes

Scheduling counter64 D 3 54 2098 108 26s 14s yes

Scheduling counter64 E 3 37 1454 83 16s 19s yes

Scheduling counter64 F 3 19 21391 19 19 89s 0s no

Planning genbuf A 2 2 17 4 6s — yes

Planning genbuf B 2 2 24 5 9s — yes

Planning genbuf C 2 9 1156 5 5 266s — no

Planning stateless D 2 3 50 9 2s 22s yes

Planning stateless E 2 2 17 4 2s 4s yes

Planning stateless F 2 8 973 5 5 10s 2s no

Membership, inclusion, and containment queries are answered by TChecker.
For the synthesis oracle, we used the game solver Abssynthe [12]. Abssynthe’s
input format is the and-inverter graphs format (AIG). For translating Verilog
modules to AIG circuits, we use berkeley-abc and yosys. Abssynthe is able to
compute the winning strategy S for the winning player; it also computes the
system controlled by S in this case as an AIG circuit. The strategy containment
oracle is implemented using NuSMV; since H is deterministic, one can complement
it, and check whether the intersection with (G‖H)S is empty.

The tool uses two Java threads to implement both learning phases, which
are interrupted and continued while switching phases. Note that the very first
learning step of H and H can be parallelized since the first underapproximation
conjecture H does not depend on S.

We evaluate our algorithm with two classes of benchmarks (Table 2). The only
tool to which we compare is Uppaal-TIGA [6] since Synthia [44] is not available
anymore, and we are not aware of any other timed game solver.
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In the scheduling benchmarks, there are two sporadic tasks that arrive non-
deterministically, but constrained by the timed automaton. The controller must
schedule these using two machines which have internal states, modeled either by a
simple 8-bit counter, or by a genbuf circuit from the SYNTCOMP database. The
scheduling duration depends on the internal state: some states require executing
two external tasks, some others require executing three. The external task has
a nondeterministic duration constrained by the timed automaton. The internal
states change when a task is finalized. The controller loses if all machines are
busy upon the arrival of a new task, or if it schedules a task on a busy machine.
Uppaal TIGA was able to solve the counter models since they induce a smaller
state space, but failed at the genbuf models. The compositional algorithm could
efficiently handle these models. Uppaal was generally able to determine very
quickly when the model is not controllable by finding a small counterstrategy,
while the compositional algorithm had a overhead: it had to learn H and H
before it can find and check the counterexample.

In the planning benchmarks, a robot and an obstacle is moving in a 6×6 grid
(or 9×9 for the stateless case). Each agent can decide to move to an adjacent cell
when they are scheduled, and the scheduling times are determined by a timed
automaton. The goal of the robot is to avoid the obstacles. In the genbuf case,
there are moreover internal states that can cause a glitch and prevent the agents
from performing their moves, depending on their states. Uppaal TIGA was not
able to manage the large state space unlike the compositional algorithm in this
case, but both were able to solve the stateless case.

4 Conclusion

Related Works Perhaps the most closely related approach to our compositional
model checking algorithm is trace abstraction refinement [25]. This was originally
applied to program verification, and consists in building a network of finite
automata that recognizes the program’s control flow paths that are infeasible.
One refines this language by model checking the control flow graph intersected
with the complement of the automaton. Thus, the semantics of the variables
of the program are abstractly represented by the finite automaton. This idea
was applied to timed automata as well [54,15]. However, the generalization of
the counterexamples which ensures convergence turns out to be less effective
in timed automata. We attempted at obtaining an implementation, but could
only confirm the poor performance for model checking timed automata as in [15]
(we do not include these results here). It might be that simpler graph structures
such as control flow graphs of programs are necessary for this approach to scale;
further investigation is also necessary to study better generalization methods.

The learning-based compositional reasoning approach of [43] is also related
to counter-example guided abstraction refinement (CEGAR) [18]. In fact, the
automata learning algorithm builds an overapproximation of one of the compo-
nents, and refines it as needed, guided by counterexamples. The difference is that,
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instead of using predicates, one uses automata to represent the overapproximation.
A discussion can also be found in [43].

Learning algorithms for event-recording automata, a subset of timed automata
were studied in [24]. The algorithm of [43] was extended for these automata in
[35]. In the context of parameter synthesis with learning, parameterized systems
were seen as a parallel composition of a non-parameterized component, and a
parameterized component in [2].

Other approaches targeting the formal verification of real-time systems with
large discrete state spaces include encodings of timed automata semantics in
Boolean logic include [33,49]. An extension of and-inverter graphs were used in
[20] that uses predicates to represent the state space of linear hybrid automata.

The abstract interpretation of games were studied in [27] that presents a theory
allowing one to define under- and over-approximations. Abstraction-refinement
algorithms based on counterexamples were given in [26,21]. These ideas were
applied to timed games in [44]. Several abstraction-refinement and compositional
algorithms were given in [12,13] for solving finite-state games given as Boolean
circuits. The synthesis competition gathers every year researchers who present
their game solvers [31,32].
Perspectives The algorithm we presented builds finite-state abstractions of real-
time constraints, that it represents as DFA. The approach is well adapted when
the interaction alphabet between A and T is small; this is the case, for instance,
for distributed systems where the time constraints are used to describe the
approximate period with which each process communicates with its neighbors; so
the alphabet contains only a few symbols per process. Some of the benchmarks we
considered are models of such systems. The approach is less convenient for time-
intensive systems such as, say, job shop scheduling problems where a separate
alphabet symbol is needed for each task.

As future work, we would like to understand when various abstraction schemes
are efficient among the approach presented here, the predicate-abstraction ap-
proach, and zone-based state-space exploration. Currently, all algorithms fail in
some benchmarks. Understanding the strengths of each algorithm might help
designing a uniformly better solution. Currently, we can only verify linear prop-
erties; one might verify branching-time properties by learning automata with
a stronger notion of equivalence such as bisimulation. In fact, an important
limitation is due to learning being slow for large alphabets. Our setting could be
extended to deal with large or symbolic alphabets e.g. [37,38].

For synthesis, our setting is currently restricted by the abstractions we use
since when the algorithm rejects the instance, we cannot conclude whether the
system is controllable or not. Using both the under- and overapproximations
within the finite-state synthesis, for instance, using the three-valued abstraction
approach [21] might allow us to render the approach complete, and to consider a
larger class of timed games such as those that allow Controller to select nonzero
delays.

Data Availability Statement Source codes, executables, and benchmark data are
available as an artifact [47].
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Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided Verification,
pages 487–495, Cham, 2015. Springer International Publishing.

31. Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus Hell,
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Abstract. Decomposing a directed graph to its strongly connected com-
ponents (SCCs) is a fundamental task in model checking. To deal with
the state-space explosion problem, graphs are often represented symbol-
ically using binary decision diagrams (BDDs), which have exponential
compression capabilities. The theoretically-best symbolic algorithm for
SCC decomposition is Gentilini et al’s Skeleton algorithm, that uses
O(n) symbolic steps on a graph of n nodes. However, Skeleton uses
Θ(n) symbolic objects, as opposed to (poly-)logarithmically many, which
is the norm for symbolic algorithms, thereby relinquishing its symbolic
nature. Here we present Chain, a new symbolic algorithm for SCC de-
composition that also makes O(n) symbolic steps, but further uses log-
arithmic space, and is thus truly symbolic. We then extend Chain to
ColoredChain, an algorithm for SCC decomposition on edge-colored
graphs, which arise naturally in model-checking a family of systems. Fi-
nally, we perform an experimental evaluation of Chain among other
standard symbolic SCC algorithms in the literature. The results show
that Chain is competitive on almost all benchmarks, and often faster,
while it clearly outperforms all other algorithms on challenging inputs.

Keywords: Binary decision diagrams · Strongly connected components ·
Colored graphs

1 Introduction

Strongly connected components (SCCs) are one of the most elegant and widely
applicable concepts of graph theory. They play a fundamental role in model
checking for LTL and ω-regular properties, as most model-checking tasks reduce
to locating cycles that traverse certain vertices in a graph [26], while strong fair-
ness assumptions typically require an SCC decomposition at hand [21,31]. SCCs
are also a key step to characterizing the attractor properties of systems, such as
bottom SCCs in Markov Chains [2] and maximal end components in Markov De-
cision Processes [12]. From an algorithmic point of view, the simplest approach
to SCC decomposition is by running a forward-backward reachability analysis
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from each vertex, which results in O(n2) time on a graph of n vertices. The cel-
ebrated Tarjan’s algorithm [28], and subsequently Dijkstra’s algorithm [15] and
Kosaraju-Sharir’s algorithm [27] have reduced the complexity down to O(n).

In the everyday practice of model checking, systems are represented as sym-
bolic, rather than explicit graphs. One predominant symbolic representation is
via (reduced/ordered) Binary Decision Diagrams (BDDs) [9], which are found
at the core of many classic and modern model checkers [13,23,19,24,3]. BDDs
can offer exponential compactness of the huge state space typically involved in
the model-checking task, by succinctly encoding symmetries abundant in the
represented system. On the other hand, this symbolic representation gives only
coarse-grained efficient access to the graph. In particular, one can query for the
image and preimage of a set of vertices with respect to the edge relation, which
accounts for one symbolic step. Although the time for performing a symbolic
step may vary, it is typically significantly larger than the time taken to perform
elementary operations (e.g., incrementing a counter). As such, symbolic steps
serve as the complexity measure of symbolic algorithms [8,18,11].

The simplest symbolic algorithm for SCC decomposition is the FwdBwd
algorithm, which computes the SCC of a vertex u as the intersection of its
forward and backward sets (as in the explicit setting). As this results in O(n2)
time complexity, the algorithm is often too slow in practice. The key challenge
towards efficient symbolic SCC algorithms is the seeming difficulty to traverse the
input graph G in a depth-first fashion, which is the technical underpinning of the
O(n)-time explicit SCC algorithms. Nevertheless, a series of improvements have
been made in this direction: (i) a variant of FwdBwd was shown in [30] to run
in time O(δn), where δ is the diameter of G, and only becomes quadratic when
δ = Θ(n), (ii) the LockStep algorithm [7] has complexity O(n log n), while
(iii) the Skeleton algorithm with complexity O(n) is provably optimal [11].
Practical improvements based on heuristics have also been proposed [29,16,31].

One characteristic requirement for symbolic algorithms is that they operate
in logarithmic symbolic space, i.e., they use logarithmically many objects, with
the size of a single symbolic data structure (e.g., a BDD) counting as O(1) [11].
Indeed, without this restriction, an algorithm could extract, and later analyze,
an explicit representation of its input graph, thereby relinquishing its symbolic
nature. Unfortunately, the theoretically optimal Skeleton algorithm uses Θ(n)
space, thereby violating the logarithmic-space requirement. As such, we find that
Skeleton is not truly symbolic, which also has a measurable effect: perhaps
paradoxically, Skeleton is often the slowest algorithm in practice.

1.1 Our Contributions

The Chain algorithm. We present a new algorithm, Chain, for symbolically
computing SCC decompositions. On input graph G with n vertices, Chain takes
time O(

∑
S∈SCCs(G)(δ(S) + 1)) = O(n), where SCCs(G) denotes the SCCs of G

and δ(S) is the diameter of S. It is known that Ω(
∑

S∈SCCs(G)(δ(S)+1)) is also
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a lower bound for the problem [11], thus Chain is optimal. Moreover, Chain
uses O(log n) symbolic data structures, thus being truly symbolic.

It is worth highlighting that Chain offers optimality while also being ar-
guably the simplest among all symbolic SCC decomposition algorithms beyond
FwdBwd. Indeed, Chain simply extends FwdBwd to accept as an argument a
set of vertices K, among which to choose a pivot in the current recursive call. It
is perhaps surprising that such a simple mechanism has been elusive for decades,
as all previous efforts [30,7,17] relied on more elaborate procedures to either re-
duce or refine the O(n2) time bound. That being said, our new mechanism is
somewhat insightful and with a non-trivial complexity analysis.

The ColoredChain algorithm. We extend Chain to ColoredChain for
computing SCCs on edge-colored graphs, in which edges have colors, and SCCs
are formed by restricting to monochromatic paths. Although a graph of p colors
can be handled in O(pn) time by breaking it to its monochromatic compo-
nents and executing Chain on each of them, ColoredChain handles all colors
simultaneously, thus benefiting from the symbolic compression of the edge re-
lation across multiple colors. A similar approach was followed recently [6], by
extending the standard LockStep algorithm [7] to colored graphs. However,
the corresponding colored LockStep algorithm runs in time O(pn log n), as it
inherits the log n factor from the basic LockStep algorithm.

Experimental evaluation. We implement and evaluate Chain in controlled,
synthetic, and previously-used experimental settings. We find that Chain is
never notably slower than other, standard algorithms, except when compared
to LockStep on a few benchmarks. On the other hand, Chain is measur-
ably faster than all other algorithms on demanding inputs. We further evaluate
ColoredChain on colored Boolean Networks, used recently for the colored
LockStep algorithm [6]. Our results indicate that ColoredChain is consider-
ably faster than LockStep, making it a promising alternative for the analysis
of Boolean networks.

2 Preliminaries

Here we set up our main notation on graphs, SCCs, and symbolic algorithms.

General notation. Given a natural number ` ∈ N, we let [`] = {1, 2, . . . , `}.

Graphs. We consider (directed) graphs G = (V,E), where V is a set of n
vertices and E ⊆ V × V is a set of edges. Given a set X ⊆ V , the restriction
of G on X is the graph G[X] = (X,E ∩ (X × X)). For a vertex v, we let
Pre(v) = {u : (u, v) ∈ E} and Post(v) = {u : (v, u) ∈ E} denote the set of
preimage and image of v under E, respectively. We lift this notation to sets of
vertices X, by letting Pre(X) =

⋃
v∈X Pre(v) and Post(X) =

⋃
v∈X Post(v). A

path from v to u in G is a sequence of vertices P : v = w1, w2, . . . , w` = u such
that, for each i ∈ [`− 1], we have (wi, wi+1) ∈ E. The length of P is |P | = `− 1,
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while a single vertex v serves as a path of length 0. We denote by v  u the
existence of a path from v to u, and call u reachable from v if there is such a
path in G. For a vertex v ∈ V , we let Fwd(v) and Bwd(v) denote the reflexive
transitive closure of Post(v) and Pre(v), respectively. In other words, Fwd(v)
(resp., Bwd(v)) contains the vertices that are reachable from v (resp., can reach
v). Given an additional set X ⊆ V , we let Fwd(v,X) and Bwd(v,X) denote the
forward and backward, respectively, set of v in the graph G[X]. The distance
from v to u is the length of the shortest path v  u, i.e., d(v, u) = minP : v u |P |,
where we take the minimum of an empty set to be ∞. The diameter of a set
X ⊆ V is δ(X) = maxv,u∈X,v u d(v, u), i.e., it is the maximum distance between
any pair of vertices in X, provided that they are connected by a path.

Strongly connected components (SCCs). A set X ⊆ V is strongly con-
nected if, for every two vertices v, u ∈ X, we have v  u. A strongly connected
component (SCC) of G is a maximal strongly connected set S ⊆ V . Given a
vertex v ∈ V , we let SCC(v) denote its SCC. We let SCCs(G) denote the set
of SCCs of G; note that SCCs(G) induces a partitioning on V . A set X ⊆ V is
called SCC-closed if for every S ∈ SCCs(G), we have either S ⊆ X or S∩X = ∅.
In other words, for every v ∈ X, we have SCC(v) ⊆ X. We sometimes call G[X]
SCC-closed, to indicate that X is SCC-closed (in G).

Symbolic operations and complexity measures. We consider that graphs
are represented symbolically using Binary Decision Diagrams (BDDs) [9]. The
symbolic representation suggests that efficient access to the graph can only
be carried out in a coarse-grained way. In particular, given a symbolically-
represented set of vertices X, a symbolic operation on X is either Pre(X) or
Post(X), and serves as the unit of time in measuring the time complexity of
symbolic algorithms. As per standard, we also perform common set operations
such as union, intersection, and difference, and use a specialized function Pick(X)
that returns an arbitrary vertex u ∈ X. This operation is natural in symbolic
SCC algorithms, as typically one needs to identify a specific vertex u in order
to output SCC(u). In alignment with the symbolic time complexity, the sym-
bolic space complexity of an algorithm is measured in number of (symbolic, or
not) objects it uses. As symbolic representations usually allow (in the context
they are designed for) large (and sometimes, even exponential) compression, we
require symbolic algorithms to operate in logarithmic symbolic space [11].

3 The Chain Algorithm

In this section we present the main result of this paper: a new algorithm, called
Chain, that runs in linear time and is truly symbolic (i.e., it uses O(log n)
symbolic memory). In particular, we establish the following theorem.

Theorem 1. Given a graph G = (V,E) of n nodes Chain computes SCCs(G)
in O(

∑
S∈SCCs(G)(δ(S) + 1)) symbolic time and O(log n) symbolic space.
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Note that O(
∑

S∈SCCs(G)(δ(S) + 1)) = O(n), as SCCs(G) partition G,
while for each S ∈ SCCs(G) we have δ(S) ≤ |S|. It is worth observing that
O(

∑
S∈SCCs(G)(δ(S) + 1)) can, however, be much smaller than n: e.g., over

cliques G, this bound becomes O(1). On the other hand, it is known that
Ω(

∑
S∈SCCs(G)(δ(S)+1)) is also a lower bound for the problem [11], hence The-

orem 1 is tight. As was shown in [11], a more refined analysis of the Skeleton
algorithm also achieves the time bound of Theorem 1. However, Skeleton suf-
fers a linear space bound, and thus is not truly symbolic.

In the following, we first present Chain in detail in Section 3.1. It’s correct-
ness is relatively straightforward, and stated in Section 3.2. On the other hand,
its complexity analysis is more involved, and is presented in Section 3.3.

3.1 Algorithm

Here we present Chain in detail, develop some intuition behind its time com-
plexity, and illustrate its execution on a small example.
Algorithm 1: Chain
Input: A graph G = (V,E), a vertex set K ⊆ V

1 if V = ∅ then return
2 if K 6= ∅ then // Pick a pivot on the chain, if possible
3 v = Pick(K)
4 else
5 v = Pick(V )
6 F = ∅; Last = ∅; Layer = {v}; S = {v}
7 while Layer 6= ∅ do // Compute Fwd(v, V )

8 F = F ∪ Layer
9 Last = Layer

10 Layer = Post(Layer) \ F
11 while Pre(S) ∩ F 6⊆ S do // Compute SCC(v)

12 S = S ∪ (Pre(S) ∩ F )
13 output S
14 Chain (G[F \ S],Last \S) // Recursive call on the forward set
15 Chain (G[V \ F ],Pre(S) \ F ) // Recursive call on the rest

The Chain algorithm. Algorithm 1 presents Chain in pseudocode. The prin-
ciple of operation of the algorithm is, perhaps, surprisingly simple. Given a
G = (V,E) and a pivot vertex v of G, the algorithm computes SCC(v) in two
phases, similarly to the standard FwdBwd algorithm. In particular:

1. The first phase computes Fwd(v, V ) (i.e., the forward set of v in V ) as the
least fixed point F = µX.{v} ∪ Post(X) (loop in Line 7).

2. The second phase outputs SCC(v) by iteratively computing the least fixed
point S = µX.{v} ∪ (Pre(X) ∩ F ) (loop in Line 11).

3. Finally, the computation proceeds recursively on the SCC-closed components
G[F \ S] and G[V \ F ] that partition V \ S (Line 14 and Line 15).
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However, in order to avoid the high complexity, Chain passes along each recur-
sive call the K argument (initially K = ∅). This argument restricts the recursive
call to pick its next pivot v such that v ∈ K; choosing the right set to pass as
K makes the algorithm achieve its tight time complexity.

Conceptually, after Fwd(v, V ) has been computed, the first recursive call
(Line 14) chooses K to be the set of vertices that are of maximum distance
from v (and not in SCC(v), as those are output in Line 13). On the other hand,
the second recursive call (Line 15) chooses K to be the predecessors of SCC(v).
Although the formal complexity analysis is somewhat involved (see Section 3.3),
the key, high-level idea is as follows. When computing Fwd(v, V ), the algorithm
has taken a number of symbolic steps that is proportional to the maximum
distance of a vertex from v. The chain of recursive calls starting in Line 14 and
followed by all recursive calls in Line 15 until Pre(S) ∩ F = ∅, ensures that the
algorithm will output all SCCs, in reverse order, along a maximal path from v
to a vertex in Fwd(v, V ) \ SCC(v). This amortizes the high cost of computing
Fwd(v, V ) in the current call to the cost of outputting these SCCs in future calls,
leading to only a constant factor increase in the overall complexity.

Besides viewing Chain as an augmentation of the FwdBwd algorithm with
a restriction on pivots, the algorithm can also be seen as a simplification of the
Skeleton algorithm [17]. Indeed, the computation of skeletons in the latter
serves the exact purpose to force the recursion to output SCCs in the same
order as in our chain argument above. As we show here, computing skeletons is
redundant: dropping them makes the algorithm simpler, truly symbolic, while
not sacrificing any of its time-complexity guarantees.

Example. Fig. 1 illustrates Chain on a graph G = (V,E) (left). The tree T
(right) represents the recursion of Chain as it outputs SCCs(G). We identify
every vertex of T by a vertex v ∈ V for which SCC(v) is computed in the
corresponding step. We subscript variables of the algorithm with v to denote
their value at that step. E.g., Vv denotes the vertex set in the recursive call that
computed SCC(v), and Fv denotes the forward set computed after the loop of
Line 7 has completed. The edges of T are labeled with the line that performed
the respective recursive call.

The key observation for understanding the complexity of Chain is as follows.
In the first step, the algorithm has paid the high cost of 5 symbolic steps to
compute F1, while its output is a small SCC of 2 vertices. However, the path 1

14−→
6

15−→ 4
15−→ 3 in T forms a chain from vertex 6, which is of maximum distance

from 1, back to vertex 3 that is adjacent to SCC(1). The cost of computing F1

can thus be amortized to outputting the SCCs along this chain (i.e., SCC(3),
SCC(4), SCC(6)), yielding only a linear overhead. As we prove in Section 3.3,
this behavior is not accidental, but guaranteed in every recursive call.

3.2 Correctness

We start with the soundness of Chain, i.e., it only outputs SCCs of G.
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V1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
K1 = ∅

F1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
S1 = {1, 2}

V6 = {3, 4, 5, 6, 7, 8, 9, 10}
K6 = {6, 10}

F6 = {5, 6}
S6 = {5, 6}

V4 = {3, 4, 7, 8, 9, 10}
K4 = {4, 8}

F4 = {4, 9, 10}
S4 = {4}

V10 = {9, 10}
K10 = {10}

F10 = {9, 10}
S10 = {9, 10}

14

V3 = {3, 7, 8}
K3 = {3}

F (3) = {3, 7, 8}
S(3) = {3}

V8 = {7, 8}
K8 = {8}

F8 = {7, 8}
S8 = {7, 8}

14

15

15

14

Fig. 1. An input graph (left), and the recursive computation of Chain (right).
Lemma 1. In every call of Chain, Line 13 outputs an SCC of G.

Proof. Consider any call to Chain on input G′ = (V ′, E′),K ′, with K ′ ⊆ V ′.
The algorithm first picks a vertex v from either V ′ or K ′, with v ∈ S, where S
is the set outputted in Line 13. It is straightforward to see that, after the loop
in Line 7 has executed, we have F = Fwd(u, V ′), while after the loop in Line 11
has executed, we have S = Fwd(u, V ′)∩Bwd(u, V ′). It suffices to argue that G′
is an SCC-closed subgraph of G, which implies that S = SCC(v).

The statement is true initially, as G′ = G. Now, assuming that the statement
holds on some input G′ = (V ′, E′),K ′ we argue each of G′[F \S] and G′[V ′ \F ],
in Line 14 and Line 15, respectively, is SCC-closed. Indeed, F is closed under
Post operations and thus SCC-closed. As S is an SCC of X, we have that F \S is
also SCC closed. Since F \S, S, and V ′ \F partition V ′, we have that G′[V ′ \F ]
is also SCC-closed. The desired result follows. ut

Lemma 2. Chain outputs every SCC in SCCs(G) exactly once.

Proof. The statement follows from the fact that, in every recursive call on input
G′ = (V ′, E′), the sets F \ S, S, and V ′ \ F partition V ′. ut
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3.3 Complexity Analysis

We now present the (symbolic) time and space complexity analysis of Chain.
For measuring time, we only count the number of Pre(·) and Post(·) operations.

Consider any input G = (V,E), and let T be the recursion tree produced
by the execution of Chain on G, as in Fig. 1. We will use lowercase (resp.,
uppercase) letters to refer to the vertices of G (resp., T ), and we will subscript
the variables of the algorithm with vertices of T (e.g., VA) to refer to variables
in the recursive call associated with the recursive step (at A). T has labeled
directed edges A f−→ B, where f ∈ {14, 15} denotes the line of the recursive call
that made B a child of A in T . Without loss of generality, we consider that every
vertex A of T corresponds to a recursive call with VA 6= ∅.

Main complexity analysis. Consider an edge A 14−→ B in T , and the path
A

14−→ B1
15−→ B2

15−→ . . .
15−→ Bk, where Bk is the first vertex B for which

Pre(SB) \ FB = ∅ in Line 15. Let Levels(A) denote the number of iterations
executing in Line 7, and note that Levels(A) = maxu∈VA

d(vA, u). The crux of
the complexity proof of Chain is the following lemma.

Lemma 3. Levels(A) ≤ δ(SCC(vA)) + 1 +
∑

i∈[k](δ(SCC(vBi)) + 1).

Before we prove Lemma 3, we show how it leads to the complexity of The-
orem 1. Given a vertex A of T , let T (A) denote the running time of Chain on
the subtree of T rooted at A. Let A 14−→ B and A 15−→ C be the children of A,
and the path A 14−→ B1

15−→ B2
15−→ . . .

15−→ Bk as defined above (thus B1 = B).
Then T (A) satisfies the following recurrence.

T (A) ≤

loop in Line 7︷ ︸︸ ︷
Levels(vA) +

loop in Line 11︷ ︸︸ ︷
δ(SCC(vA)) + 1+

Line 14︷ ︸︸ ︷
T (B) +

Line 15︷ ︸︸ ︷
1 + T (C)

≤
∑
i∈[k]

(δ(SCC(vBi
)) + 1) + δ(SCC(vA)) + 1

+ δ(SCC(vA)) + 1 + T (B) + 1 + T (C)
[Lemma 3]

=
∑
i∈[k]

(δ(SCC(vBi
)) + 1) + 2δ(SCC(vA)) + 3 + T (B) + T (C)

For every i iterating in
∑

i∈[k](δ(SCC(vBi)) + 1), the vertex vBi will not
appear in such a sum in any other vertex A′ of T . Indeed assume towards con-
tradiction that for some vertex Bi there are two vertices A 6= A′ and paths

P : A
14−→ B1

15−→ B2
15−→ . . .

15−→ Bi and P ′ : A′
14−→ B′1

15−→ B′2
15−→ . . .

15−→ B′i

with B′i = Bi. Due to the edge labels, none can be a sub-path of the other, which,
in turn, contradicts the tree structure of T . Given such a vertex Bi, let A(Bi)
denote its unique ancestor in T that appears as vertex A in the path P above.
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The total running time of Chain onG is≤
∑

B∈T (3δ(SCC(vB))+4), obtained by
counting for each vertex B of T (i) the 2δ(SCC(vB))+3 symbolic operations from
its own recursive call, plus (ii) δ(SCC(vB))+1 symbolic operations from the call
at A(B). Hence the total number of symbolic steps is O(

∑
S∈SCCs(G)(δ(S)+1)).

Proof of Lemma 3. We now turn our attention to the proof of Lemma 3.
Consider again the path A 14−→ B1

15−→ B2
15−→ . . .

15−→ Bk of T as defined above.
For simplicity of notation, let vi = vBi

, for i ∈ [k]. Clearly SCC(vi) 6= SCC(vj)
for i 6= j. We start with two simple lemmas.

Lemma 4. For every i ∈ [k], we have KBi 6= ∅.

Proof. The statement holds for i = 1, since otherwise LastA \SA = ∅, implying
that FA \SA = VB1

= ∅, and thus B1 would not be a vertex of T . The statement
also holds for all i > 1, by construction of the path to Bk. ut

Lemma 5. For all i ∈ [k − 1], we have vi ∈ Fwd(vk).

Proof. The lemma follows from the more general statement that vi ∈ Fwd(vi+1).
Indeed, by Lemma 4, we have that vi+1 ∈ Pre(SBi), while SBi = SCC(vi). ut

We call a vertex u critical if it is the first vertex w in a path from vA to vk
in VA, such that w 6∈ SCC(vA). We further call a path u  vk critical if u is a
critical vertex. In the example of Fig. 1, for the first call to Chain, where vA = 1,
vertex 3 is a critical vertex and the path 3→ 4→ 5→ 6 is a critical path. The
following lemma captures the fact that every recursive call Bi is performed on a
vertex set VBi

that is adjacent to SCC(vA).

Lemma 6. For all i ∈ [k], the set VBi has a critical path.

Proof. The proof follows induction on i. For i = 1, we have VB1
= Fwd(vA, VA)\

SCC(vA). Since A
14−→ B1 in T , we have Fwd(vA, VA)\SCC(vA) = VB1

6= ∅, thus
the statement holds for i = 1. Now assume that the statement holds for some
i ≥ 1, and we argue that it holds for i + 1. Take any critical path P : u  vk
in VBi , and assume towards contradiction that P is not a path in VBi+1 (i.e.,
at least one vertex of P is outside VBi+1). Since VBi+1 = VBi \ Fwd(vi, VBi), we
obtain that P has a vertex w with w ∈ Fwd(vi, VBi

), and hence vk ∈ Fwd(vi).
By Lemma 5, we also have vi ∈ Fwd(vk), thus SCC(vi) = SCC(vk), violating
the choices of vi. Thus VBi+1

has a critical path. ut

Specifically for the case i = k, the following is a strengthening of Lemma 6,
showing that SCC(vk) (only a subset of VBk

) is also adjacent to SCC(vA).

Lemma 7. SCC(vk) contains a critical vertex.

Proof. By Lemma 6, we have a critical path u  vk in VBk
. By construction,

(Pre(SCC(vk)) ∩ VBk
) \ SCC(vk) = ∅, thus u ∈ SCC(vk). ut
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Let vk+1 be a critical vertex in SCC(vk), whose existence is guaranteed by
Lemma 7. Given a vertex u ∈ VA, we write `(u) for the distance of u from vA in
VA. Note that Levels(A) = `(v1). Observe that for all u, v ∈ VA, if u ∈ SCC(v)
then `(u) − `(v) ≤ δ(SCC(v)). The following two lemmas relate the distances
`(vi) with the diameters of SCCs, and lead to the proof of Lemma 3.

Lemma 8. We have `(vk+1) ≤ δ(SCC(vA)) + 1.

Proof. By definition, there is a vertex w ∈ Pre(vk+1)∩SCC(vA). We have `(w) ≥
`(vk+1)− 1, while `(w) ≤ δ(SCC(vA)), hence `(vk+1) ≤ δ(SCC(vA)) + 1. ut

Lemma 9. For every i ∈ [k], we have `(vi)− `(vi+1) ≤ δ(SCC(vi)) + 1.

Proof. The statement holds trivially when `(vi) ≤ `(vi+1). Now consider the case
that `(vi) > `(vi+1). If i = k, then by our choice of vk+1, we have vi+1 ∈ SCC(vi),
thus `(vi) − `(vi+1) ≤ δ(SCC(vi)). Now consider that i < k. By construction,
there is a vertex w ∈ SCC(vi) ∩ Post(vi+1). Then `(vi) − `(w) ≤ δ(SCC(vi)),
while `(w) ≤ `(vi+1) + 1, resulting in `(vi)− `(vi+1) ≤ δ(SCC(vi)) + 1. ut

Proof (of Lemma 3).

Levels(A) = `(v1) =
∑
i∈[k]

(`(vi)− `(vi+1)) + `(vk+1) [algebra]

≤
∑
i∈[k]

(`(vi)− `(vi+1)) + δ(SCC(vA)) + 1 [Lemma 8]

≤
∑
i∈[k]

(δ(SCC(vi)) + 1) + δ(SCC(vA)) + 1 [Lemma 9]

ut

Space complexity. Finally, we address the O(log n) symbolic-space complexity
of Theorem 1. Chain uses O(1) symbolic sets in each recursive call. To achieve
the O(log n) bound, it suffices to first follow the recursive call between Line 14
and Line 15 with the smaller graph input. This results in O(log n) pending re-
cursive calls at any step of the execution, leading to storing O(log n) symbolic
sets overall. Note that this requires a function Count(X) that returns the size
of a symbolically represented set X. This is not a problem: BDDs are equipped
with such operations, and their complexity is only linear in the size of the rep-
resentation of X, even though X might be exponentially large.

4 Extension to Colored Graphs

In this section we turn our attention to colored graphs, where the edge relation
is parameterized by colors, and SCCs are formed with respect to monochromatic
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components of the graph. Each edge color stands for a different binary relation,
and all colors together allow to superpose several graphs on top of each other.
Although each monochromatic graph could be represented in isolation, this su-
perpositioning allows for an efficient symbolic representation, especially when
the edge relations are highly similar. In turn, this asks for efficient symbolic al-
gorithms that are able to exploit similarities between colors. Our study of this
setting is inspired by the recent extension of LockStep to colored graphs [6].

4.1 Edge-Colored Graphs

Here we lift some of our graph notation from Section 2 to the colored setting.

Colored graphs. An edge-colored graph G = (V,C,E) consists of a set of n
vertices V , a set of p colors C, and an edge relation E ⊆ V ×C×V . Given a color
c ∈ C, we let Gc = (V,Ec) be the projection of G on c, where Ec = E∩(V ×{c}×
V ) restricts the edge relation to color c. Given two vertices v, u ∈ V , we write
v

c
 u to denote that there is a path v  u in Gc, and say that u is c-reachable

from v in G. A colored vertex set is a set X ⊆ V ×C. The restriction of G on X is
the colored graph G[X] = (V ′, C ′, E′), where (i) V ′ = {v : ∃c ∈ C. (v, c) ∈ X)},
(ii) C ′ = {c : ∃v ∈ V . (v, c) ∈ X}, and (iii) E′ = {(u, c, v) : (u, c), (v, c) ∈ X}.
Given such a set X, we let Pre(X) = {(u, c) : ∃(v, c) ∈ X. (u, c, v) ∈ E}, and
Post(X) = {(u, c) : ∃(v, c) ∈ X. (v, c, u) ∈ E}. We call a set V ⊆ V ×C degenerate
if for all c ∈ Colors, we have |V∩(V ×{c})| ≤ 1, i.e., V has at most one vertex per
color. Given a degenerate set V, we let Fwd(V) = {(v, c) : ∃(u, c) ∈ V and u c

 
v}, i.e., it is the set of colored vertices reached by each colored vertex in V. We
similarly let Bwd(V) = {(v, c) : ∃(u, c) ∈ V and v c

 u}. Note that for degenerate
sets, Fwd (Bwd) is the transitive closure of Post (Pre). Further, given a colored
vertex set X, we let Fwd(V, X) (resp., Bwd(V, X)) be the set of colored vertices
reached by (resp., reaching) each colored vertex in V in the subgraph G[X].

Colored SCCs. Given a colored graph G = (V,C,E), a c-colored SCC of G
is a pair S = (R, c) ⊆ V × {c} such that R is an SCC of Gc. Given a vertex
v ∈ V and a color c ∈ C, we write SCC(v, c) for the SCC of v in Gc. We let
SCCs(G) denote the set of SCCs of G, and observe that SCCs(G) partitions
V × C. A set X ⊆ V × C is SCC-closed if for every color c ∈ C, the set
X ∩ (V × {c}) is SCC closed in Gc. Given an SCC-closed set X, we will also
call G[X] SCC-closed. Given a degenerate set V, we write SCC(V) for the set of
SCCs {(R, c) : (v, c) ∈ V and R = SCC(v) in Gc}.

Symbolic operations. Similarly to the non-colored setting, we use symbolic
operations Pre(X) and Post(X) on sets X ⊆ V ×C, which incur a unit time cost.
We further perform unions, intersections and differences on subsets of V ×C, and
use a specialized operation Pick(X) that returns an arbitrary pair (v, c) ∈ X.
Finally, we consider at our disposal a function Pivots(X), that acts on sets
X ⊆ V × C and returns a maximal degenerate subset of X containing one pair
(v, c) per color c appearing in X. This operation can be performed by combining
Pick with basic set operations, and has also appeared in other works [6].
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4.2 The ColoredChain Algorithm

Here we present our extension of Chain for handling edge colored graphs.
Algorithm 2: ColoredChain
Input: A graph G = (V,C,E), two colored vertex sets X,K ⊆ V × C,

1 if X = ∅ then return
2 V = Pivots (K ∪ (X \ (V × Colors(K))) // A degenerate set of pivots
3 F = ∅; Last = ∅; Layer = V; S = V
4 while Layer 6= ∅ do // Compute Fwd(V, X)

5 F = F ∪ Layer
6 Last = Layer∪ (Last \(V × Colors(Layer)))
7 Layer = Post(Layer) \ F
8 while Pre(S) ∩ F 6⊆ S do // Compute SCC(V)
9 S = S ∪ (Pre(S) ∩ F )

10 output S
11 ColoredChain (G[F \ S], F \ S,Last \S)
12 ColoredChain (G[X \ F ], X \ F,Pre(S) \ F )

The ColoredChain algorithm. Algorithm 2 presents ColoredChain in
pseudocode. The algorithm takes as input an edge-colored graph G = (V,C,E),
as well as two colored vertex sets X and K (initially X = V ×Colors and K = ∅).
In words, the current and future recursive steps will compute the colored SCCs
of G that are subsets of X. The set K serves the same purpose as in the basic
Chain algorithm, i.e., to restrict the set of vertices over which we select pivots
in the current recursive call, towards the linear-time properties of the algorithm.
The algorithm starts by selecting a degenerate set of pivots V in Line 2, with
the goal to output each SCC(v, c), for (v, c) ∈ V in the current recursive step.
The pivot set is constructed to contain one pair (v, c) for every color c present
in X. If c is also present in K, then the algorithm selects a pivot (v, c) ∈ K,
otherwise, it chooses an arbitrary pivot from X. The algorithm then computes
SCC(V) as Fwd(V, X) ∩ Bwd(V, X), similarly to the non-colored case (where
V is simply a non-colored vertex). In the i-th iteration of the loop of Line 4,
the variable Last contains the vertices (u, c) that have maximum distance ≤ i
from (v, c) ∈ V . As these maximal distances might converge at different lengths
for different colors, extra care is taken in Line 6 to maintain the converged
colors in the next iteration. Finally, the algorithm outputs SCC(V) (Line 10),
and proceeds recursively on the disjoint subsets F \ S and X \ F (Line 11 and
Line 12). The K argument is passed on each recursive call in the same way as in
the Chain algorithm, so that, in effect, the time taken to compute F is amortized
by the time to output colored SCCs in subsequent recursive calls (where now the
amortization also takes place among colors). Observe that, in the special case of
p = 1 color, ColoredChain operates identically to Chain.

Correctness and complexity. Due to the similarity of ColoredChain to
Chain, we will only sketch the main arguments for its correctness and complex-
ity. The key observation for correctness is that each recursive call processes an
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SCC-closed subgraph of G. Indeed, given an SCC-closed colored vertex set X, for
any vertex (v, c) ∈ X, we have SCC(v, c) = Fwd({(v, c)}, X)∩Bwd({(v, c)}, X).
Hence S = SCC(V) in Line 10. As F ∪ S is closed under Post operations and S
is an SCC of X, we have F \ S (and thus also X \ F ) is SCC closed.

The complexity of ColoredChain is O(
∑

S∈SCCs(G)(δ(S) + 1)) = O(pn),
as every vertex v belongs to exactly one SCC(v, c) for each color c ∈ C. This
bound follows from amortizing the number of iterations of the loop in Line 4
to the diameter of a color that converges last in the loop. Observe that the
computation on the remaining colors comes “for free”. This is the benefit of
treating all colors symbolically (as opposed to each monochromatic graph Gc

separately). The same observation holds for the while loop in Line 8.

5 Experiments

In this section we report our experimental evaluation of the new algorithms
Chain and ColoredChain on three classes of benchmarks. We compared their
performance to the standard algorithms FwdBwd [30], LockStep [7] (and its
recent colored variant [6]) and Skeleton [17]. Our experiments were run on a
Linux machine with 2.4GHz CPU speed and 60GB of memory (using 1 core).

5.1 Experiments on Synthetic Benchmarks

To better illustrate the behavior of the various algorithms, we start with a con-
trolled setting of synthetic benchmarks.

Setup.We performed a controlled experiment on product graphs Gi
k = Lk−i×Ci,

where Lj (resp, Cj) denotes a line graph (resp., cycle graph) of size 2j . This setup
follows [4]. Observe that Gi

k has 2k−i SCCs, of size (and diameter) 2i each. Our
implementation is in C++ and based on the Sylvan BDD library [14]. Recall
that the behavior of each algorithm depends on the non-determinism involved
in the Pick operation, that returns an arbitrary vertex of a given vertex set.
Sylvan returns the vertex with the smallest (binary encoded) ID. We generated
two variants of this setting: one in which vertex IDs follow an incremental order
in each graph component, and one in which they are uniformly random.

Results. Fig. 2 shows the number of symbolic steps per algorithm, for graphs
Gi

10, i ∈ {0} ∪ [10]. When the vertex encoding follows sequential IDs (left),
FwdBwd exhibits its worst-case Θ(n2) performance on graphs with many SCCs
(i.e., small i) as it repeatedly Pick’s pivots with large forward sets. As i increases,
the number of SCCs decreases, and FwdBwd eventually terminates in the first
call (for i = 10). On the other hand, the other algorithms exhibit almost iden-
tical, O(n) performance. In particular, every recursive call of LockStep Pick’s
a vertex v whose backward set equals SCC(v); thus the algorithm convergences
in a number of steps that is proportional to δ(SCC(v)), leading to Θ(n) perfor-
mance. Finally, after the first call, Skeleton and Chain output SCCs in the
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Fig. 2. Experimental results on product graphs Gi
10 = L10−i × Ci.

reverse order of FwdBwd, performing in each step a number of symbolic steps
that is proportional to the diameter of the SCC, like LockStep.

When the vertex encoding follows random IDs (right), every recursive call
of FwdBwd and LockStep Pick’s a pivot whose first component is roughly
in the middle of the line segment that is processed in that call. Hence the two
algorithms have similar performance, which follows Θ(n log n) behavior for large
lines (i.e., when i is small). On the other hand, Skeleton and Chain spend
O(

∑
S∈SCCs(G)(δ(S) + 1)) symbolic steps. Naturally, for larger lines, the two

algorithms spend more steps for computing the forward sets of their pivots, a
cost that is amortized in later recursive calls by a constant factor. Observe,
however, that Skeleton pays a larger constant factor, as the construction of
skeletons requires the forward sets to also be traversed backwards. This results in
Skeleton having the worst performance relative to the other algorithms when
the number of SCCs decreases (i.e., as i gets larger), as there are fewer recursive
calls to amortize the high cost of skeleton computation. Finally, we remark that
for small and large i, Skeleton constructs (in expectation) Θ(n) BDDs, hence
this is a family of graphs exposing the non-symbolic nature of the algorithm.

5.2 Experiments on Uncolored Graphs

To better understand the performance of the various algorithms in the wild, we
continue with their evaluation on standard model-checking benchmarks.

Setup. We considered benchmarks from the following categories:

– 1-safe Petri Net models from MCC, the Model Checking Contest [22].
– DiVinE models from BEEM, the Benchmark of Explicit Models [25].

In order to create equal experimental circumstances for all models, we used the
language-independent model checker LTSmin [19] to generate the disjunctively
partitioned symbolic transition relations for all these models. As symbolic rep-
resentation, we chose the multi-core BDD package Sylvan [14]. We implemented
all four algorithms of the previous section inside LTSmin. We disregarded graphs
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Fig. 3. Experimental results on PNML and DiVinE models.
of size < 104, as such graphs are handled more efficiently by explicit algorithms.
This led to a pool of 101 benchmarks. We measured the average time (across
three runs) each algorithm took on each benchmark, while discarding the over-
head due to state-space generation.

Results. Fig. 3 shows the running times of Chain against Skeleton,
LockStep and FwdBwd. Compared to the only other theoretically optimal
algorithm Skeleton, Chain is almost always somewhat faster, with the excep-
tion of one benchmark on which Chain is an order of magnitude faster. When
compared to LockStep, we find the two algorithms to be incomparable, with
Chain being slower on some benchmarks but faster on others. Indeed, we ex-
pect that LockStep behaves adequately in most practical scenarios, while its
log n slowdown (as demonstrated in Section 5.1) is witnessed only rarely. Finally,
we find that Chain is measurably and consistently equally-or-better performing
than FwdBwd.

5.3 Experiments on Colored Graphs

Finally, we turn our attention to colored graphs. We used models of discrete
control systems representing Biological Genetic Networks [20]. In high level, a
Boolean Network (BN) is defined by a set of Boolean variables X = {x1, . . . , xk}
and update functions of the form xi := ϕi, where each ϕi is a Boolean com-
bination over variables X. State updates are performed by nondeterministic
applications of the functions ϕi. In Colored Boolean Networks (CBNs), un-
interpreted function symbols are used to represent uncertainty. For instance,
x1 := x2 ∧ f(x3, x4) represents that x1 has a positive dependence on x2 and an
unknown dependence on x3 and x4. A single color corresponds to an assignment
of Boolean functions to the uninterpreted function symbols. The set of colors is
further restricted by constraints representing biological knowledge. This setting
is inspired by its use to evaluate the recently introduced colored LockStep [6].

Setup. We implemented our new ColoredChain-algorithm in Scala, using
JavaBDD (wrapping the classical BDD package BuDDy) with recommended
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Fig. 4. Experimental results on colored graphs from AEON models (seconds).

settings. We also reimplemented colored LockStep from [6] (without prepro-
cessing) and FwdBwd in Scala/JavaBDD. We used the CBNs coming from the
GINsim Boolean network database [10], represented in the AEON format that
supported the experiments in [6], accessed at [1]. We focused on benchmarks
with np ≥ 104, as the rest were run in < 0.2s by all algorithms. We remark that
most of these CBNs generate huge graphs; for the purposes of our evaluation,
we timed our experiments within 1h, which yielded a pool of 9 benchmarks.

Results. Fig. 4 shows the running time of each of the three algorithms. Perhaps
surprisingly, LockStep is consistently the slowest and by a large margin. On the
other hand, ColoredChain was always considerably faster than LockStep,
and consistently the fastest algorithm overall. The two exceptions are on the
CBNs 5_param_g2a and 27_068, where FwdBwd finished first in 2s and 1032s
(as opposed to 4s and 1114s for ColoredChain). On the other hand, FwdBwd
was considerably slower than ColoredChain in some CBNs (e.g., 20_049).
Although a wider experimental setting is required for conclusive results, our
evaluation indicates that ColoredChain is very effective in handling CBNs.

6 Conclusion

We have introduced Chain, a new, truly symbolic, and time-optimal algorithm
for SCC decomposition. The simplicity of Chain makes it theoretically elegant,
while our experimental evaluation demonstrates a potential for practical im-
pact. Some opportunities for future research include introducing saturation tech-
niques [31] to Chain, as well as specializing it to the computation of bottom
SCCs, which have received special attention [5].

Acknowledgements. This work was supported in part by Villum Fonden
(Project VIL42117).
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Abstract. We introduce the global conflict graph of DQCNFs (depen-
dency quantified conjunctive normal forms), recording clashes between
clauses on such universal variables on which all existential variables de-
pend (called “global variables”). The biclique covers of this graph cor-
respond to the eligible clause-slices of the DQCNF which consider only
the global variables. We show that all such slices yield satisfiability-
equivalent variations. This opens the possibility to realise this slice using
as few global variables as possible. We give basic theoretical results and
first supporting experimental data.

Keywords: QBF solving, DQBF, 2QCNF, biclique cover problem, conflict graph,
preprocessing, Horn clause-sets, minimal unsatisfiability

1 Introduction

The last two decades have seen enormous progress in quantified Boolean formula
(QBF) theory and technology, as witnessed by the Handbook chapters [2,14].
Core areas are preprocessing techniques, result validation of the solvers, strategy
extraction, and theoretical lower bounds. There are many applications in the
areas of artificial intelligence, planning, two player gaming and synthesis; see the
overview [25]. This progress is complemented by the annual QBF competition
called QBFEval (see [21]). A special class of QBF, 2QBF, is used to model
problems with simple quantifier structure (see [1,24] for basic references). In the
other direction, the more expressive logic DQBF has also seen recent progress in
this decade; see for example [13,26,3,12]. Here solving techniques from SAT and
QBFs are generalised, including preprocessing, strategy extraction and circuit
synthesis. We remind at the central complexity classes covered here: SAT is
NP-complete, 2QBF is ΠP

2 -complete, QBF is PSPACE-complete, and DQBF is
NEXPTIME-complete. In our paper we rely on the CNF-structure, and thus we
will use 2QCNF instead of 2QBF, and DQCNF instead of DQBF.

In our paper we present a new, at first sight astonishing, but essentially
simple theoretical insight into general DQCNFs, which enables transformations
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of problem instances, maintaining satisfiability-equivalence. We consider “global
variables”, universal variables on which every existential variable depends, and
the corresponding “slice” of the CNF (the parts of the clauses using these vari-
ables). The main insight is that we can replace this global slice by any other
global slice (using completely different variables and clauses), with the only con-
dition that the conflict (clashing) patterns between global literals need to be
maintained. These conflict patterns can be represented by bicliques in graphs,
with one biclique corresponding to one variable with its positive and negative
occurrences, establishing the two sides of the biclique (where all vertices from
the two sides are connected). In this way the tools of the theory of biclique
(edge) covers (and also biclique partitions) of graphs can be used to find “bet-
ter” global slices. A natural first metric for “better” is to use fewer bicliques, and
the corresponding decision problem, whether a graph has a biclique cover using
at most a given number of bicliques, is the NP-complete Problem GT18 in the
classical book [11]. The smallest number of bicliques needed to cover a graph is
called the biclique cover number, or also the bipartite dimension. In our context
there is a very natural alternative point of view of biclique-covers/partitions,
namely representing bicliques by boolean variables in CNFs, and then instead of
a biclique-cover we just have a CNF realising the graph, which means its conflict
graph is the given graph; now “fewer bicliques” means “fewer variables”. This
has apparently been first explored in [18,10]. The potential applications of this
new transformation (changing the global slice) are in preprocessing for solving,
and also the proof complexity aspect seems very interesting — how much do
such changes affect the complexity of the formula?

We now run through a simple example, which shows the main topic of the
paper in a nutshell: Using graph theory connected to CNFs to lower the number
of (certain) universal variables in a DQCNF.

1.1 Using fewer universal variables

Consider the DQCNF F with four universal and two existential variables

F := ∀x1, x2, x3, x4 ∃y1(x1, x2, x3) ∃y2(x1, x2, x3, x4) : F,

where F := (y1∨x2∨x3)∧(¬y1∨x1∨¬x2)∧(¬y2∨¬x1∨¬x2∨¬x3∨x4)∧(y2∨¬x4).
The universal variables of F are x1, x2, x3, x4, the existential variables are y1, y2,
with their dependencies shown in brackets. F has a solution: y1 = ¬x2, y2 = x4
(which makes all clauses tautologies). A central concept for this paper is that of a
global variable, which is a universal variable such that all existential variables
depend on it. The global variables of F are x1, x2, x3. The sub-clauses given by
the global variables yield the global slice, which is denoted by gsl(F ) (switching
from logical to clause-notation — the global slice is just a CNF-clause-set):

gsl(F ) =
{
{x2, x3}, {x1, x2}, {x1, x2, x3}, ∅

}
.

The second central concept of this paper is the global conflict graph gcg(F ),
which is the conflict graph of the global slice: the clauses are the vertices, and
an edge connects clauses iff they have clashing literals:
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{x2, x3} {x1, x2}

{x1, x2, x3} ∅

Note that indeed we have a graph, and there is only one edge between {x2, x3}
and {x1, x2, x3} (not two). Now the basic insight of our paper (Corollary 2) is:

Any clause-set realising the conflict-graph
can be used instead of the (given) global slice.

Here by “realising” we just mean that the clause-set has the given conflict-graph.
In our case, the triangle can be realised with just two variables x1, x2, yielding

{x1} {x1, x2}

{x1, x2} ∅

This triangle-realisation is Horn, minimally unsatisfiable, with one clause more
than variables (we will show that this is always available). We obtain the new
DQCNF F ′ (which is satisfiability-equivalent to F , also shown for comparison):

F = ∀ x1, x2, x3, x4 ∃y1(x1, x2, x3) ∃y2(x1, x2, x3, x4) : F

F = (y1 ∨ x2 ∨ x3)∧(¬y1 ∨ x1 ∨ ¬x2)∧(¬y2 ∨ ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4)∧(y2 ∨ ¬x4)

F ′ := ∀ x1, x2, x4∃y1(x1, x2)∃y2(x1, x2, x4) : F ′

F ′ := (y1 ∨ x1) ∧ (¬y1 ∨ ¬x1 ∨ x2) ∧ (¬y2 ∨ ¬x1 ∨ ¬x2 ∨ x4) ∧ (y2 ∨ ¬x4),

where a solution now is y1 = ¬x1, y2 = x4. In general we are aiming at reducing
the number of global variables, by using a smaller CNF-realisation of the global
conflict graph. Since minimising the number of global variables is NP-hard, for
this first study we only consider fixed predetermined replacement-schemes.

1.2 Overview

In Section 2 we present basic definitions related to logic and graph theory. Espe-
cially the conflict graph of clause-sets is given in Definition 1, and in Subsection
2.2 we discuss biclique-covers/partitions, and how they relate to conflict graphs
(Lemma 1). Section 3 then discusses the semantics of global variables in DQC-
NFs. Theorem 1 spells out the basic fact that global variables can be expanded
(they can be eliminated by considering all assignments to them), and that the
results are captured by independent (clash-free) sets of the global conflict graph.
In Definition 7 we make precise what it means that one DQCNF is obtained from
another one by replacing the global slice with an equivalent one, namely having
the same global conflict graph, and being the same after removal of the global
slices. Corollary 2 then says that such DQCNFs are satisfiability-equivalent.
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In Section 4 we study the most basic realisations, “precise” and “imprecise”
ones, the former realising precisely the number of given parallel edges in a given
multigraph. We start in Subsection 4.1 by using “full clause-sets”, which are
clause-sets where all clauses contain the same variables. So these are (imprecise)
realisations of complete graphs, and indeed contain optimal ones (always w.r.t.
the number of variables). In Subsection 4.2 we consider the trivial realisations,
where every clash is realised by one new variable with one positive and one
negative occurrence. A new perspective on basic realisations by “singular vari-
ables”, which occur in one sign only once, is then presented in Subsection 4.3. In
Lemma 2 we give a simple generation process for the class of Horn minimally un-
satisfiable clause-sets (HMUs), and, exploiting this, in Theorem 2 we show that
every graph has a precise realisation by HMUs, computable in linear time. In
Corollary 4 we obtain that every DQCNF with m clauses can be transformed in
linear time into a satisfiability-equivalent one with only the global slice changed,
so that now there are at most m − 1 global variables, using for each connected
component of the global conflict graph a (variable-disjoint) HMU.

We now come to the experimental part of the paper. In Section 5 we present
the first instance of a general scheme for generating 2QCNF, which are DQCNFs
of the form ∀X∃Y : F , where X is the set of global variables, and Y the set of
existential variables. The general scheme starts with a graph G with m vertices,
and chooses some realisation F of G. One chooses the number C ≥ 1 of connected
components of the (overall) global conflict graph, consisting of C vertex-disjoint
copies of G, realised by C variable-disjoint copies of F . This yields altogether
C ·m clauses. On these Cm clauses finally the existential slice is created, with
n variables, which makes altogether three parameters (C,m, n). For the graphs
G we choose complete graphs, and for the realisations the trivial realisation, the
(unique) HMU realisation, and the (optimum) log (full) realisation, considering
only powers of two: m = 2p. Finally for the existential slice we create random
3-CNFs. The basic question we want to explore is Hypothesis SIB: is using fewer
global variables better for solving? We run two leading solvers on a selection of
benchmark sets, which is presented in Section 6; see [19] for the benchmarks. To
a large extend SIB is validated; we found only one parameter triple where the
HMU-realisation could have some edge over the log-realisation, and present the
finding. We conclude in Section 7 with future research directions.

2 Preliminaries

2.1 Logic

We have an infinite set of variables to start with; these variables can be used as
universal or existential (boolean) variables in DQCNFs (see below), or just as
plain (boolean) variables in clause-sets. We usually write v for a variable, using
x for literals, with x the complement of a literal (“negation”). A clause C is a
(finite) set of literals not containing clashing literals, that is, there is no x ∈ C
with x ∈ C. Using L := {x : x ∈ L} for a set L of literals, clash-freeness of clauses
C means the condition C ∩ C = ∅. A clause-set F is a finite set of clauses. We
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use var(x) for the underlying variable of a literal x, var(C) := {var(x) : x ∈ C}
for the set of variables occurring (positively or negatively) in a clause C, and
var(F ) :=

⋃
C∈F var(C) for the set of variables occurring in F . As measures for

clause-sets F we use (taking values in N0 = {x ∈ Z : x ≥ 0}):

1. n(F ) := |var(F )| ∈ N0 for the number of variables in F ;

2. c(F ) := |F | ∈ N0 for the number of clauses in F ;

3. δ(F ) := c(F )− n(F ) ∈ Z for the deficiency of F .

Since in general we can not avoid having clauses with multiplicity, and we
want to name clauses, we also use labelled clause-sets, which are pairs (L,F ),
where L is the (finite) set of (clause-)labels, and F is a map with domain L,
mapping every label l ∈ L to a clause F (l). An ordinary clause-set F is converted
into a labelled clause-set by using F as the label-set, and using the identity on
F as clause-map. A DQCNF is a 4-tuple F = (A,E, F,D), where

– A,E are disjoint sets of variables, the universal and the existential variables;

– F is a clause-set over A∪E (i.e., using literals with variables from A or E);

– D maps every existential variable v to D(v) ⊆ A (the set of universal vari-
ables on which v depends; boolean variables have D(v) = ∅).

A satisfying (total) assignment of F is a map Φ with domain E, where Φ(v)
is a boolean function over the variables D(v), such that F after substitution via
Φ becomes a tautology (over A), where F is understood as a CNF (a conjunction
of clauses, where a clause is a disjunction of literals). A DQCNF F is satisfiable
if it has a satisfying assignment, otherwise F is unsatisfiable. Two DQCNFs are
satisfiability-equivalent if either both are satisfiable or both are unsatisfiable.

2.2 Graphs

We use
(
V
2

)
to denote the set of 2-element subsets of a set V . A graph is a pair

(V,E), with V the (finite) vertex-set, and E ⊆
(
V
2

)
the edge-set (undirected, no

parallel edges or (self-)loops). More generally, a multigraph is a pair (V,E), with
V as before, while E :

(
V
2

)
→ N0 maps every potential edge to its multiplicity

(a natural number ≥ 0). An ordinary graph is converted into a multigraph
by using the characteristic function of the edge-set. In the other direction, the
underlying graph of a multigraph (V,E) has the edge {v, w} iff E({v, w}) ≥ 1.
We use V (G) for the vertex-set of a (multi)graph G, and E(G) for the edge-set
of a graph G resp. for the edge-function of a multigraph G. An independent
set I ⊆ V (G) of a (multi)graph G has no edge e ∈ E(G) with e ⊆ I (resp.
E(G)(e) ⊆ I). For the number of vertices we use |V (G)| ∈ N0, while for the
number of edges we use |E(G)| ∈ N0, which for a multigraph G is defined as
|E(G)| :=

∑
e∈(V (G)

2 )E(G)(e), that is, as the sum of edge-multiplicities. Kn is

the complete graph with n ∈ N0 vertices, that is, V (Kn) = {1, . . . , n} and

E(G) =
(
V (G)

2

)
(thus |E(Kn)| = 1

2n(n− 1)).
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Definition 1. Consider a labelled clause-set (L,F ). The conflict multigraph
cmg(F ) is the multigraph with vertex-set L, where the multiplicity of an edge
{a, b} (for labels a, b ∈ L) is |F (a)∩F (b)|, that is, the number of clashing literals
between the clauses of a and b. The conflict graph cg(F ) is the underlying graph
of cmg(F ). A labelled clause-set (L,F ) precisely-realises a multigraph G, if
cmg(L,F ) = G, and realises a graph G, if cg(L,F ) = G.

We write “precisely-realise” instead of “precisely realise” to avoid grammatical
ambiguity (as in “that precisely realises what I want”).

A biclique in a multigraph G is a pair (A,B) of disjoint vertex sets A,B ⊆
V (G), such that all a ∈ A are adjacent with all b ∈ B. The corresponding
characteristic function maps exactly the edges {a, b} to 1 (all other edges to
zero). A biclique partition of G is a family ((Ai, Bi))i∈I of bicliques in G, such
that the sum of characteristic functions equals the edge-function of G, while
for a biclique cover of G that sum needs to be equal zero exactly for the non-
edges. For graphs G a biclique represents the corresponding set of edges of G,
and a biclique partition yields a partitioning of the edge-set, while a biclique
cover has as its union the edge-set. For (multi)graphs G by bcp(G) ∈ N0 resp.
bcc(G) ∈ N0 the minimum number of bicliques in a biclique partition resp.
cover of G is denoted. For an overview on the complexity of computing bcp(G)
and bcc(G) see [9,4,7]. That boolean clause-sets yield a natural environment for
biclique partitions (and covers) was apparently first realised in [18]:

Lemma 1. For a multigraph G the biclique partitions resp. biclique covers cor-
respond, up to handling of degenerations, to precise-realisation resp. realisations
of G by labelled clause-sets (Definition 1), with the bicliques corresponding to
the variables and their positive and negative occurrences. bcp(G) is the minimal
number of variables in a precise-realisation of G, while bcc(G) is the minimal
number of variables in a realisation of G.

We are mostly interested in (imprecise-)realisations, since we are interested in
using realisations F with as few variables as possible (i.e., minimising n(F ),
which is equivalent to maximising δ(F )). However also precise-realisations can be
of interest, since they are smaller in regards to the number of literal occurrences.

With the example from Subsection 1.1 we have already seen two different re-
alisations of the triangle K3 (thus using the label-set {1, 2, 3}), namely first using
three variables in

{
1 7→ {x2, x3}, 2 7→ {x1, x2}, 3 7→ {x1, x2, x3}

}
, correspond-

ing to the biclique cover by the three bicliques ({2}, {3}), ({1}, {2, 3}), ({1}, {3}),
and second using two variables in

{
1 7→ {x1}, 2 7→ {x1, x2}, 3 7→ {x1, x2}

}
, cor-

responding to the biclique cover by the two bicliques ({1}, {2, 3}), ({2}, {3}). The
latter is a precise-realisation (the cover is a partition).

3 The global conflict graph

We now study the simplest type of universal variables of a DQCNF, called “global
variables”, which are the variables every existential variable depends on. In the
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final result, Corollary 2, we will see that concerning satisfiability (at all), all what
matters about global variables is the clashes they create between the clauses.

Definition 2. A global variable of a DQCNF F = (A,E, F,D) is a universal
variable, such that every existential variable depends on it. We denote the set of
all global variables by gvar(F ) := {v ∈ A : ∀w ∈ E : v ∈ D(w)}.

We note that the notion of a global variable does not depend on the clauses. A
DQCNF might not have any global variable. For a 2QCNF the global variables
are all the universal variables, i.e., gvar(A,E, F,D) = A (that is indeed the
definition of 2QCNF). In order to access the clause-parts with global literals,
we consider a DQCNF as “sliced up” by their variable-sets, for example for a
QCNF ∃X∀Y ∃Z : F we have three natural slices, for X,Y, Z.

Definition 3. For a DQCNF F = (A,E, F,D) and some set V ⊆ A ∪ E of
variables, the V -slice is the labelled clause-set (F, FV ) (using the clauses of F
as labels), such that the clause of label C ∈ F is FV (C) := C[V ] := {x ∈ C :
var(x) ∈ V }. The global slice of F is the gvar(F )-slice, denoted by gsl(F ).

Combining Definition 1, 2, and 3, we obtain the “global conflict graph” as
the conflict graph of the global slice:

Definition 4. For a DQCNF F = (A,E, F,D) the global conflict graph resp.
multigraph is gcg(F ) := cg(gsl(F )) resp. gcmg(F ) := cmg(gsl(F )).

The vertices of the global conflict (multi)graph are the clauses, with the edges
corresponding to clashes between literals over global variables. Note that the
realisations of the global conflict graph are the same as the realisations of the
global conflict multigraph (for realisations, multiplicities of edges are irrelevant).

We need the ability to remove the global variables (obtaining another DQCNF),
for which we introduce the following notation:

Definition 5. For a DQCNF F = (A,E, F,D) let V := gvar(F ) be the set of
global variables, while V ′ := (A ∪E) \ V is the set of other variables. We define

mgvar(F ) := (A \ V,E, {C − V }C∈F , (D(v) \ V )v∈E),

with “m” for “minus”, which is the DQCNF obtained by removing the global
variables from its universal variables (removing all literals with underlying global
variable). Here C − V := C[V ′] (removing all literals with variables from V ).

The semantic contribution of global variables is captured by the global-clash-
free sub-clause-sets and their related sub-DQCNFs:

Definition 6. Consider a DQCNF F = (A,E, F,D). A globally-independent
sub-clause-set of F is a clause-set F ′ ⊆ F which is an independent sub-
set of gcg(F ) (that is, the global variables of F are all pure variables, appear-
ing only in one sign, in F ′). A globally-independent sub-DQCNF is some
mgvar(A,E, F ′, D) for some globally-independent sub-clause-set F ′. Speaking of

O. Kullmann and A. Shukla378



maximal globally-independent, we restrict the F ′ ⊆ F to maximal inde-
pendent subsets of gcg(F ). The set of all maximally globally-independent sub-
DQCNFs is denoted by gind(F ), and two DQCNF’s F ,F ′ are called gind-
equivalent if gind(F ) = gind(F ′).

We note that two gind-equivalent DQCNFs have the same existential variables,
and that gind-equivalence is indeed an equivalence relation. We now come in
Theorem 1 to the basic observation about the role played by global literals (lit-
erals whose underlying variables are global). Most basic is the insight that global
variables are exactly the variables which always allow reducing the problem by
substituting all possible truth values, which we illustrate by a simple example:

Example 1. Let A := {a}, E := {x}, F := {{a, x}, {a, x}}, D1 := (x 7→ A),
D2 := (x 7→ ∅), and finally F i := (A,E, F,Di) for i = 1, 2. Less formally, we have
two QCNFs: F 1 , ∀a∃x : F and F 2 , ∃x∀a : F , where F , a ↔ x. Obviously
F 1 is satisfiable, with the unique solution x , a, while F 2 is unsatisfiable.

We have gvar(F 1) = {a}, while gvar(F 2) = ∅. Substituting a 7→ 0 into F 1

or F 2 yields in both cases the DQCNF G0 = ∃x : ¬x, while a 7→ 1 yields
G1 = ∃x : x. Gε has the unique solution x , ε for ε ∈ {0, 1}. For F 1 we are
then able to get a solution for x, since x depends on a, and thus we can select
the appropriate solution from Gε, depending on the value ε. While x does not
depend on a in F 2, and thus we could only lift the solutions from G0,1 to F 2 if
they would be the same in both cases.

The vertices of the global conflict graphs of F 1,F 2 are the two clauses, which
in F 1 are connected by an edge, while in F 2 they are isolated. So gind(F 1) ,
{∃x : ¬x, ∃x : x}, while gind(F 2) = {F 2}.

Theorem 1. A DQCNF F = (A,E, F,D) is unsatisfiable iff there is some un-
satisfiable maximal globally-independent sub-DQCNF of F .

Proof. We show the equivalent statement: F is satisfiable iff all maximal globally-
independent sub-DQCNFs are satisfiable.

Let V := gvar(F ). F is satisfiable iff for all boolean total assignments ϕ :
V → {0, 1}, after substitution of ϕ into F , the resulting DQCNF ϕ ∗ F :=
(A\V,E, ϕ∗F, (D(v)\V )v∈E) is satisfiable, where ϕ∗F is the usual application of
a partial assignment to a clause-set (removing all satisfied clauses, and removing
the falsified literals from the remaining clauses): The direction from left to right
holds for all partial assignments to universal variables, while the direction from
right to left uses that the variables in V are global, and thus the boolean functions
used in a satisfying assignment of a DQCNF can be made dependent on them.
Now the clauses of ϕ ∗ F come from an independent subset of gcg(F ), since an
edge, that is a clash, would cause one of the two clauses involved to be satisfied.
And for every maximal independent subset F ′ we can find ϕ : V → {0, 1}
satisfying exactly all clauses in F \ F ′, by setting all global literals occurring
in F ′ to 1. Thus the maximal independent F ′ ⊆ F cover exactly the relevant
(maximal) cases of ϕ ∗ F , which shows the assertion. ut

Thus F is unsatisfiable iff gind(F ) contains an unsatisfiable element:
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Corollary 1. Gind-equivalence implies sat-equivalence, that is, if for DQCNF
F ,F ′ holds gind(F ) = gind(F ′), then F is satisfiable iff F ′ is satisfiable.

A sufficient condition for F ,F ′ being gind-equivalent is that F ′ is obtained
from F by replacing the global slice in such a way that the global conflict
graph is maintained. The precise concept is captured by “global-conflict-graph-
equivalence”:

Definition 7. Two DQCNFs F = (A,E, F,D), F ′ = (A′, E′, F ′, D′) are gcg-
equivalent if the following conditions hold:

1. mgvar(F ) = mgvar(F ′).
2. There is a bijection σ : F → F ′, which is an isomorphism from gcg(F ) to

gcg(F ′), such that for all C ∈ F we have C − gvar(F ) = σ(C)− gvar(F ′).

The first condition of Definition 7 says that after removal of the global variables,
we have exactly the same DQCNFs, while the second condition says that the
global literals inserted into the clauses of mgvar(F ) = mgvar(F ′) yield exactly
the same conflict-pattern (and thus the same independent subsets).

Corollary 2. Gcg-equivalence implies gind-equivalence. Thus two gcg-equivalent
DQCNFs are sat-equivalent.

In the following Section 4 we will consider the problem of constructing gcg-
equivalences. This is just a study of graphs G and their (CNF-)realisations,
since all what matters here is the global slice of a DQCNF, which is just a
boolean CNF. Furthermore we only need to consider connected graphs, since
every connected component of G can be handled separately.

4 Realisations

We now introduce the three most basic classes of realisations of multigraphs:

1. In Subsection 4.1 we consider clause-sets, where all clauses contain the
same variables (“full clause-sets”). These realisations realise exactly com-
plete graphs (all vertices connected to each other), and they contain the
optimum realisation (always w.r.t. the number of variables), which we call
log-realisations (of complete graphs).

2. In Subsection 4.2 we consider realisations, which as biclique-partitions/covers
only contain bicliques which are single edges. In this way every multigraph
is (trivially) precisely-realised, and we speak of trivial realisations.

3. In Subsection 4.3 we consider more generally realisations, which correspond
to biclique-partitions/covers containing only claws (connecting one vertex
with many). Here we get better bounds, and it is known that every con-
nected graph with m vertices allows such a precise-realisations with m − 1
variables. Looking closer, one sees that these realisations actually encode
unit-clause propagation, and thus the underlying class of clause-sets is the
class of minimally unsatisfiable Horn clause-sets (which are special cases of
MUs of deficiency 1). We call these realisations HMU-realisations.
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These three representation-classes are based on three classes of clause-sets:

Definition 8. For a clause-set F we introduce the following special cases of
variables v ∈ var(F ):

1. v is full if every clause contains v (positively or negatively);
2. v is 1-singular if it occurs in both signs exactly once;
3. v is singular if it occurs in both signs, and in one sign exactly once.

A clause-set having only full resp. 1-singular resp. singular variables is a full
resp. totally 1-singular resp. totally singular clause-set.

4.1 Full clause-sets

Any full clause-set F realises the complete graph Kc(F ) with c(F ) many vertices.
Indeed the realisations of the complete graphs are exactly the hitting clause-sets
(any two clauses clash; as DNFs also known as orthogonal or disjoint DNFs),
and we will see in Corollary 5 another class of hitting clause-sets. For a complete
graph Km with m ∈ N vertices, it is well-known ([8]) that bcc(Km) = dlg(m)e,
where lg(m) is the binary logarithm of m. Such optimal realisations F are ob-
tained from the canonical (full) clause-set with n := dlg(m)e many variables and
2n clauses by selecting any m clauses.

In contrast to this we have the Theorem of Graham-Pollak ([15]), which
states bcp(Km) = m − 1. Thus there exists a precise-realisation of Km with
deficiency 1 (which is optimal among precise-realisations), and in the already
mentioned Corollary 5 we will see an example for that (the simplest example).
More generally, in Subsection 4.2 we will indeed see that every nonempty con-
nected graph has a minimally unsatisfiable precise-realisation F with δ(F ) = 1.
We note that the above optimal logarithmic realisations by full clause-sets are
minimally unsatisfiable iff m is a power of two (otherwise they are satisfiable);
this could be repaired by removal of literal occurrences for the non-powers of
two, but we have to leave this refinement to future work, and in this paper we
only consider the cases m = 2n.

4.2 Totally 1-singular clause-sets

Obviously, every multigraph G can be precisely-realised by a totally 1-singular
clause-set F with n(F ) = |E(G)|. For a connected G, these precise-realisations
are minimally unsatisfiable iff G is a tree; these are exactly the marginal mini-
mally unsatisfiable clause-sets of deficiency 1 (see Corollary 6). Otherwise they
are satisfiable.

4.3 Totally singular MUs

It is well-known that every connected graph G with m := |E(G)| ≥ 1 vertices
has a claw-decomposition with m − 1 claws, and thus bcp(G) ≤ m − 1. Here a
“claw” is a special biclique, with one side having exactly one vertex. The proof

Transforming DQBFs using biclique covers 381



uses a elimination-sequence v1, . . . , vm−1 ofG, which removes one vertex after the
other (including incident edges) such that always a (nonempty) connected graph
is maintained. That is, G0 := G, while Gi := Gi−1 − vi for i = 0, . . . ,m− 1: the
defining property of “elimination-sequence” is that each Gi is connected (and
nonempty — eliminating the last vertex would yield a superfluous claw, with
one side being empty). Here for a graph G and a vertex v ∈ V (G) we define
G− v := (V (G) \ {v}, {e ∈ E(G) : v /∈ e}).

The existence of an elimination-sequence, and computing it in linear time in
the size of the graph, can be accomplished as follows (this is well-known, see e.g.
[6, Proposition 1.4.1], but for completeness we discuss it here):

(a) an elimination-sequence for a spanning tree of G (which can be computed in
linear time) is an elimination-sequence for G;

(b) an elimination-sequence for a tree is a sequence removing one leaf after the
other (these are the vertices of degree 1, that is, having exactly one neigh-
bour); by a procedure similar to unit-clause propagation this can be accom-
plished in linear time as well.

A claw in a biclique-partition is a singular variable in the corresponding reali-
sation. Thus we obtain that G has a totally singular realisation F with m − 1
variables (and m clauses, thus of deficiency 1). Now indeed the F constructed
in this way are exactly the minimally unsatisfiable Horn clause-sets, and this
correspondence, based on unit-clause propagation, we discuss in this subsection.

It is useful to introduce the following three classes of clause-sets:

– MU is the class of all minimally unsatisfiable clause-sets, that is, all unsat-
isfiable clause-sets F such that F \ {C} is satisfiable for all C ∈ F .

– HO is the class of all Horn clause-sets, defined by the property that every
clause contains at most one positive literal (i.e., all F such that for all C ∈ F
holds |C ∩ var(C)| ≤ 1).

– HMU := HO ∩MU are the minimally unsatisfiable Horn clause-sets.

For a general overview on minimally unsatisfiable formulas see [17], while [5,
Corollary 10] seems the first source for the fact that HMUs have deficiency 1.

Lemma 2. The class HMU is generated by the following process (each step
called a singular positive unit-extension):

1. Start with {⊥}.
2. For some F already created, choose a variable v /∈ var(F ) and some ∅ 6= F0 ⊆

F , and create a new clause-set F ′ := {{v}} ∪ (F \ F0) ∪ {C ∪ {v} : C ∈ F0}
(that is, add the unit-clause {v}, and add the literal v to the clauses of F0).

Proof. It is easy to see that all generated clause-sets are elements of HMU .
It remains to show that all F ∈ HMU can be generated; we show this by
induction on n(F ). For n(F ) = 0 we have F = {⊥}, which is the base case of the
generation process. So assume n(F ) > 0. F must contain a positive unit-clause
{v} (otherwise every clause would contain a negative literal, due to the Horn-
property, and then setting all literals to 0 would be a satisfying assignment). Due
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to F being minimally unsatisfiable, there is no other clause than {v} containing
the positive literal v. Now setting v to 1 produces F ′ ∈ HMU , where we can
apply the induction hypothesis to F ′, and from F ′ by one step of singular positive
unit-extension with v we obtain F . ut

The following four properties of HMUs follow all easily from the generation
process of Lemma 2 by induction:

Corollary 3. Clause-sets F ∈ HMU have the following properties:

1. F is totally singular (indeed for every variable the positive literal occurs
exactly once).

2. The number n(F ) of variables equals the number of singular unit-extensions
applied, while c(F ) = n(F ) + 1. Thus F has deficiency 1 (δ(F ) = 1).

3. F has exactly one negative clause.
4. The conflict multigraph of F is a graph (at most one conflict between clauses).

So HMUs precisely-realise nonempty connected graphs, and indeed they re-
alise exactly those:

Theorem 2. For every connected nonempty (finite) graph G one can construct
in linear time (in the length of G, i.e., in |V (G)| + |E(G)|) an HMU precisely-
realising G.

Proof. For G compute an elimination-sequence v1, . . . , vm−1 as explained at the
beginning of the subsection, and use these vertices as variables for the generation
process according to Lemma 2, where F0 is the set of neighbours. ut

The novelty of Theorem 2 from the graph-theoretical perspective lies in re-
lating biclique partitions by claws with realisations by HMUs (note that realisa-
tion by any totally singular clause-set of deficiency 1 is trivial). The restriction
to graphs (without parallel edges) is natural here, since our main interest is
in imprecise-realisations (using as few variables as possible). A related result
here for precise-realisations of multigraphs is given in [27], where it is shown
(in graph-theoretical language), that for every graph G the multigraph G′ with
V (G) = V (G′), which has as many edges between vertices as is given by their
distance in G, has a precise-realisation F with δ(F ) ≥ 1; such an F yields a
so-called “addressing” of G.

Corollary 4. For each DQCNF F there is a gcg-equivalent F ′ such that the
global slice of F ′ is a variable-disjoint union of HMUs.

Recall that a “hitting clause-set” is a clause-set F such that every two (dif-
ferent) clauses clash; full clause-sets are a special case. In other words, hitting
clause-sets are exactly the realisations of complete graphs.

Corollary 5. The hitting HMUs are exactly those where for each singular unit-
extension step F0 = F holds. For every n ∈ N0 there is up to isomorphism
exactly one such clause-set, called Sn, with n(Sn) = n.

Corollary 6. The totally 1-singular HMUs are exactly those where for each
singular unit-extension step |F0| = 1 holds; they precisely-realise exactly all trees.
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5 A basic generator

The main target of this first experimental evaluation is the validation or refu-
tation of the Hypothesis SIB: “Small Is Better” — the smaller the number of
variables in the realisation, the easier to solve.

First, to generate test-instances, we take the simplest approach for our gen-
erator, focusing on generating 2QCNFs. For 2QCNFs, the global variables are
all the universal variables (for more information, see Section 3), and thus the
universal slice is the same as the global slice. The following is an example of
2QCNF in the standard QDIMACS form, with 6 variables and 4 clauses:

p cnf 6 4 # parameter line; nvars ncls

a 5 6 0 # universally quantified variables

e 1 2 3 4 0 # existentially quantified variables

-1 -3 4 | 5 0 # | 0

-1 -2 3 | -5 0 # exist | univ 0

1 -2 5 | 6 0 # slice | slice 0

1 3 -4 | -6 0 # | 0

For the presentation, existential literals precede the universal literals, using a sep-
arator ”|”. The existential slice is {{−1,−3, 4}, {−1,−2, 3}, {1,−2, 5}, {1, 3,−4}},
while the universal (global) slice is {{5}, {−5}, {6}, {−6}}. In Section 3 we con-
sidered the case of connected graphs. Real world instances have indeed a large
number of connected (global) components, and so we are using C ∈ N many
components. Altogether the parameters (C, p, n) specify the generated 2QCNF,
where p ∈ N is the (binary log of the) number of vertices in a component, and
n ∈ N is the total number of existential variables.

For the component-conflict-graph of the universal slice, we use the complete
graph with m := 2p vertices (clauses), and q := 1

2m(m− 1) edges — this is the
simplest case where we have an exponential separation between the optimum
realisation and the HMU-realisation. So the total number of generated clauses
is C ·m. In the above QDIMACS we have C = 2 and p = 1 (the smallest value
to obtain a proper 2QCNF), thus q = 1. For the existential slice we choose a
random 3-CNF with n variables and C · m clauses; note that components of
the conflict graph do not play any role here. We use the three realisation from
Section 4 (for each component, with m clauses):

– Trivial: q variables (Subsection 4.2; all clauses have length m− 1).

– HMU: m− 1 variables (Sm−1 from Corollary 5; clause-lengths 1, . . . ,m− 1).

– Log: a full clause-set with p variables (Subsection 4.1).

Example 2. Below we display a generated 2QCNF for all three realisations, with
(C, p, n) = (2, 2, 4). Thus m = 22 = 4 clauses per component, making 2 · 4 = 8
clauses in total. The existential slice is a uniform random 3-CNF with 4 variables
and 8 clauses. For each component, the trivial realisation uses q = 1

2 · 4 · 3 = 6
variables, HMU uses 3 variables, and log uses 2 variables. Leftmost is the trivial
realisation, then the HMU realisation, and finally the logarithmic realisation:
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-1 -3 -4 | 5 6 7 0 -1 -3 -4 | 5 0 -1 -3 -4 | -5 -6 0
1 2 -4 | -5 8 9 0 1 2 -4 | -5 6 0 1 2 -4 | -5 6 0

-2 3 4 | -6 -8 10 0 -2 3 4 | -5 -6 7 0 -2 3 4 | 5 -6 0
1 -3 4 | -7 -9 -10 0 1 -3 4 | -5 -6 -7 0 1 -3 4 | 5 6 0
1 3 4 | 11 12 13 0 1 3 4 | 8 0 1 3 4 | -7 -8 0
2 3 4 | -11 14 15 0 2 3 4 | -8 9 0 2 3 4 | -7 8 0
1 2 -3 | -12 -14 16 0 1 2 -3 | -8 -9 10 0 1 2 -3 | 7 -8 0
2 3 -4 | -13 -15 -16 0 2 3 -4 | -8 -9 -10 0 2 3 -4 | 7 8 0

6 Experimental results

We use two top-performing 2QCNF solvers, DepQBF [20] and CADET [23],
based on the QBFEVAL 2020 competition results [22]. In order to avoid the
known high variability on satisfiable instances, for this first experimental eval-
uation we only considered unsatisfiable instances (throwing away satisfiable in-
stances). Recall that we use parameter values (C, p, n) according to Section 5.
For each parameter value, we generated 1000 instances and report the results
only on the unsatisfiable instances. In general we tried to select values such
that the created benchmarks are of medium hardness, around at most one hour,
considering all three realisations (trivial, HMU, logarithmic). Now it turned out
that the trivial realisation caused mostly very hard instances, and so our selec-
tion process focuses on HMU and logarithmic realisations. We found in general
Hypothesis SIB (“small is better”) well validated: On all parameters considered,
both solvers solved more instances with the logarithmic realisation and had a
better average runtime than with the HMU-realisation. All the experiments were
conducted on Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPUs with a time limit
of 3600s and memory limit of 8 GB per instance. Memory usage for instance
generation and solving processes of generated benchmarks was minimal (< 1
GB). The summary of the results is as follows, using rounded runtimes:

No. Solver C p n
#inst Solved instances HMU time(s) log time(s)

/1000 triv HMU log mean median mean median

1. D
10 4 8 1000

0 978 1000 280 82 32 23

C 140 384 990 448 39 67 2

2. D
10 4 10 500

0 167 500 1260 884 155 139

C 7 23 236 303 10 637 146

3. D
10 4 12 28

0 14 28 1530 1562 87 87

C 0 3 19 774 56 458 70

4. D
10 5 12 35

0 3 35 1788 1108 1911 1916

C 3 4 5 721 232 1099 375

5. D
12 4 12 384

0 70 384 1176 993 1125 930

C 5 12 149 663 381 736 218

6. D
14 4 11 1000

1 971 1000 301 92 294 172

C 170 327 827 431 27 292 13

The solver column labelled with “D” refers to DepQBF, while “C” is CADET.
The mean and median consider only instances solved by the corresponding solver.
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For example for Row 1D, the HMU-mean 280 as well as the HMU-median 82
relates only to the runtimes on the 978 HMU-instances solved by DepQBF.

The table shows that the Hypothesis SIB is mostly validated for the 2 ·6 = 12
rows (only comparing HMU and log now). First there are 6 fully conforming rows,
namely 1DC, 2D, 3D, 5D, and 6C, where more instances were solved for the log-
realisation, and this also with better mean and median times. Then there are 4
mostly conforming rows 2C, 3C, 4D, and 5C, where we have also clearly more
solved log-realisations, while mean or median could be better for HMU, but only
for a small number of instances. This leaves two exceptional rows: 4C and 6D.
We need to leave 4C for more extensive experimentation: these instances were
very hard for CADET, and the number of solved instances is too small for a
statistical analysis. For the 6D instances with (C, p, n) = (14, 4, 11), the median
solving time for the HMU realisation is better (92s versus 172s), and it solves
nearly as many instances as the logarithmic realisation. However, the average
solving time for the HMU realisation is worse than for the logarithmic realisation
(301s versus 294s; timeouts are not included in these averages). This warrants
further investigation, and the density plot (the second plot shows times ≤ 1000s
only) can provide additional insight:
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The mean values shown in the plots now include the 3600s timeout, which
for HMU increases the mean to 397s. The second plot, which shows times ≤
1000s, reveals that the HMU realisation solves several instances faster than the
logarithmic realisation, but its performance deteriorates over time, with fewer
and fewer instances solved. The first plot, which shows the overall picture, shows
a spike for the HMU realisation at times ≤ 3600s at the tail end, indicating that
29 instances timed out (while the logarithmic realisation solved all instances).
When the timeout is increased from 3600s to 18000s, the mean of the HMU
realisation increases to 445s.

On these instances we could devise a portfolio strategy in which both HMU
and logarithmic realisation instances run in parallel, while aborting HMU reali-
sation relatively quickly — in this way one could achieve a faster average solving
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time overall. While this parameter triple is interesting, more investigation is
required to understand the precise causes of this behaviour.

7 Conclusion and Outlook

We have introduced the global conflict graph of DQCNFs, which represents the
clashes (conflicts) between global literals; for 2QCNFs the global literals are just
the universal literals. We have shown that the corresponding global slice can
be replaced by anything else which just reproduces the conflict graph. We then
switched to investigating (CNF-)realisations of arbitrary graphs, concentrating
on the three most basic classes, given by full clause-sets (complete graphs only),
by variables occurring only twice, and by HMUs (Horn minimally unsatisfiable
clause-sets). For the latter we showed that they can realise everything, and thus
yield the upper bound m − k on the number of global variables needed for any
DQCNF with m clauses and k connected components of the conflict graph;
such a transformation can be computed in linear time. We created then families
of 2QCNF instances, with a relatively small number of connected components,
and consisting of small complete graphs; together with any of the three basic
realisations (full-log, trivial, HMU) this creates the universal slice, while the
existential slice is given by a random 3-CNF. We investigated whether indeed
in this setting fewer universal variables mean easier solving, and found that in
general well supported. There are many future avenues for research and practice:

1. In a forthcoming paper we investigate the global conflict graph of real-world
instances — when and how we can simplify the global slice (using several
metrics), and what effect this has on solving time (for satisfiable and unsatis-
fiable instances). For the minimisation of the number of variables, naturally
SAT-solving is employed.

2. The instances created for this first experimental evaluation can be gener-
alised by a general DQCNF generator, which takes as input-parameters (a)
graph families for the global conflict graphs, (b) realisation strategies to pro-
duce the global slice, and (c) some generator to create the DQCNF minus
the global slice.

3. Especially interesting should be classes where an exponential separation be-
tween the best and an HMU-realisation exists. We have seen the example of
complete graphs; a more complex class are the grid graphs ([16]).

Of course, insights into the behaviour of solvers is an important goal here.

On the theory side, a fundamental question here is to investigate which re-
stricted classes of global conflict graphs still yield completeness for the respective
complexity classes. Finally it seems natural to conjecture that allowing arbitrary
transformations of the global slice can have a huge influence on various complex-
ity issues, like proof-length in various calculi, and the complexities of strategy
extraction.
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Abstract. Probabilistic pushdown automata (pPDA) are a standard
model for discrete probabilistic programs with procedures and recur-
sion. In pPDA, many quantitative properties are characterized as least
fixpoints of polynomial equation systems. In this paper, we study the
problem of certifying that these quantities lie within certain bounds.
To this end, we first characterize the polynomial systems that admit
easy-to-check certificates for validating bounds on their least fixpoint.
Second, we present a sound and complete Optimistic Value Iteration al-
gorithm for computing such certificates. Third, we show how certificates
for polynomial systems can be transferred to certificates for various quan-
titative pPDA properties. Experiments demonstrate that our algorithm
computes succinct certificates for several intricate example programs as
well as stochastic context-free grammars with > 104 production rules.

Keywords: Probabilistic Pushdown Automata · Probabilistic Model
Checking · Certified Algorithms · Probabilistic Recursive Programs.

1 Introduction

Complex software is likely to contain bugs. This applies in particular to model
checking tools. This is a serious problem, as the possibility of such bugs com-
promises the trust one can put in the verification results, rendering the process
of formal modeling and analysis less useful. Ideally, the implementation of a
model checker should be formally verified itself [15]. However, due to the great
complexity of these tools, this is often out of reach in practice. Certifying algo-
rithms [31] mitigate this problem by providing an easy-to-check certificate along
with their regular output. This means that there exists a verifier that, given the
input problem, the output, and the certificate, constructs a formal proof that the
output is indeed correct. The idea is that the verifier is much simpler than the
algorithm, and thus likely to be bug-free or even amenable to formal verification.

This paper extends the recent line of research on probabilistic certifica-
tion [19,23,24,41] to probabilistic pushdown automata [13,30] (pPDA). pPDA and
related models have applications in, amongst others, pattern recognition [39],
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Fig. 1: Left: A stochastic context-free grammar (SCFG; e.g. [16]) and the asso-
ciated positive polynomial system (PPS) which encodes the termination proba-
bilities of each non-terminal, assuming production rules are taken uniformly at
random. Right: The curves defined by the two equations. The least fixpoint (lfp)
is ≈ (0.66, 0.70). The thin colored area to the top right of the lfp is the set of
inductive, self-certifying upper bounds on the lfp.

computational biology [28], and speech recognition [25]. They are moreover a
natural operational model for programs with procedures, recursion, and (dis-
crete) probabilistic constructs such as the ability to flip coins. With the advent
of probabilistic programming [32] as a paradigm for model-based machine learn-
ing [6], such programs have received lots of attention recently. Moreover, several
efficient algorithms such as Hoare’s quicksort with randomized pivot selection
(e.g. [26]) are readily encoded as probabilistic recursive programs.

A pPDA can be seen as a purely probabilistic variant of a standard pushdown
automaton: Instead of reading an input word, it takes its transitions randomly
based on fixed probability distributions over successor states. Quantities of inter-
est in pPDA include reachability probabilities [13], expected runtimes [8], vari-
ances [14], satisfaction probabilities of temporal logic formulas [47,42], and others
(see [7] for an overview). pPDA are equivalent to Recursive Markov Chains [17].
In the past two decades there have been significant research efforts on efficient
approximative algorithms for pPDA, especially a decomposed variant of Newton
iteration [16,27,11,17,12,10,40] which provides guaranteed lower, and occasion-
ally upper [10,12] bounds on key quantities. However, even though implementa-
tions might be complex [46], these algorithms are not certifying.

Our technique for certificate generation is a non-trivial extension of Opti-
mistic Value Iteration [22] (OVI) to pPDA. In a nutshell, the idea of OVI is to
compute some lower bound l on the solution—which can be done using an ap-
proximative iterative algorithm—and then optimistically guess an upper bound
u = l + ε and verify that the guess was correct. Prior to our paper, OVI had
only been considered in Markov Decision Processes (MDP) [22] and Stochastic
Games (SG) [1], where it is used to compute bounds on, e.g., maximal reachabil-
ity probabilities. The upper bounds computed by OVI have a special property:
They are self-certifying (also called inductive in our paper): Given the system
and the bounds, one can check very easily that the bounds are indeed correct.

However, pPDA are much more complicated than MDP or SG for the follow-
ing reasons: (i) pPDA may induce infinite-state Markov processes due to their
unbounded stack; (ii) the analysis of pPDA requires solving non-linear equa-
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tions ; (iii) the complexity of basic decision problems is generally higher than in
MDP/SG. For example, reachability in MDP is characterized as the least fix-
point (lfp) of a piece-wise linear function that can be computed in PTIME via,
e.g., LP solving. On the other hand, reachability in pPDA requires computing a
fixed point of a positive polynomial function, leading to a PSPACE complexity
bound [13]. See Figure 1 for an example.

Contributions. Despite the difficulties mentioned above, we show in this paper
that the general idea of OVI can be extended to pPDA, yielding a practically
feasible algorithm with good theoretical properties. More concretely:

Contribution 1 We present an OVI-style algorithm for computing inductive
upper bounds of any desired precision ε > 0 on the lfp of a positive polynomial
system. Compared to the existing OVI [22], the key novelty of our algorithm is
to compute a certain direction v in which to guess, i.e., the guess is u = l + εv
rather than u = l + ε. The direction v is an estimate of a certain eigenvector.
This ensures that we eventually hit an inductive bound, even if the latter lie in a
very “thin strip” as in Figure 1, and yields a provably complete algorithm that is
guaranteed to find an inductive bound in finite time (under mild assumptions).

Contribution 2 We implement our algorithm in the software tool pray and
compare the new technique to an out-of-the-box approach based on SMT solving,
as well as to standard OVI with a simpler guessing heuristic.

Related Work. Certification of pPDA has not yet been addressed explicitly, but
some existing technical results go in a similar direction. For instance, [17, Prop.
8.7] yields certificates for non-termination in SCFG, but they require an SCC
decomposition for verification. Farkas certificates for MDP [19] are more closely
related to our idea of certificates. They require checking a set of linear con-
straints. A symbolic approach to verify probabilistic recursive programs on the
syntax level including inductive proof rules for upper bounds was studied in [35].
A higher-order generalization of pPDA was introduced in [29], and an algorithm
for finding upper bounds inspired by the Finite Element method was proposed.
Applications of PPS beyond the analysis of pPDA include the recent factor
graph grammars [9] as well as obtaining approximate counting formulas for many
classes of trees in the framework of analytic combinatorics [18]. Regarding soft-
ware tools, PReMo [46] implements iterative algorithms for lower bounds in
Recursive Markov Chains, but it supports neither certificates nor upper bounds.

Paper Outline. We review the relevant background information on PPS in Sec-
tion 2. Section 3 presents our theoretical results on inductive upper bounds in
PPS as well as the new Optimistic Value Iteration algorithm. In Section 4 we
explain how inductive bounds in PPS are used to certify quantitative properties
of pPPA. The experimental evaluation is in Section 5. We conclude in Section 6.
A full version of this paper is available online [44].
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2 Preliminaries

Notation for Vectors. All vectors in this paper are column vectors and are written
in boldface, e.g., u = (u1, . . . , un)

T . For vectors u,u′, we write u ≤ u′ if u is
component-wise less than or equal to u′. Moreover, we write u < u′ if u ≤ u′
and u 6= u′, and u ≺ u′ if u is component-wise strictly smaller than u′. The
zero vector is denoted 0. The max norm of a vector u is ||u||∞ = max1≤i≤n |ui|.
We say that u is normalized if ||u||∞ = 1.

Positive Polynomial Systems (PPS). Let n ≥ 1 and x = (x1, . . . , xn)
T be a

vector of variables. An n-dimensional PPS is an equation system of the form

x1 = f1(x1, . . . , xn) . . . xn = fn(x1, . . . , xn)

where for all 1 ≤ i ≤ n, the function fi is a polynomial with non-negative real
coefficients. An example PPS is the system x = 1

2 (1+xy
2), y = 1

3 (1+x+y
2) from

Figure 1. We also use vector notation for PPS: x = f(x) = (f1(x), . . . , fn(x))
T .

We write R≥0 = R≥0 ∪ {∞} for the extended non-negative reals. By conven-
tion, for all a ∈ R≥0, a ≤ ∞, a+∞ =∞+ a =∞, and a ·∞ =∞· a equals 0 if
a = 0 and ∞ otherwise. For n ≥ 1, the partial order (Rn≥0,≤) is a complete lat-
tice, i.e., all subsets of Rn≥0 have an infimum and a supremum. In particular, there
exists a least element 0 and a greatest element ∞ = (∞, . . . ,∞)T . Every PPS
induces a monotone function f : Rn≥0 → Rn≥0, i.e., u ≤ v =⇒ f(u) ≤ f(v). By
the Knaster-Tarski fixpoint theorem, the set of fixpoints of f is also a complete
lattice, and thus there exists a least fixpoint (lfp) denoted by µf .

In general, the lfp µf is a vector which may contain ∞ as an entry. For
instance, this happens in the PPS x = x + 1. A PPS f is called feasible if
µf ≺∞ (or equivalently, µf ∈ Rn≥0). The Knaster-Tarski theorem also implies:

Lemma 1 (Inductive upper bounds). For all u ∈ Rn≥0 it holds that

f(u) ≤ u implies µf ≤ u .

Such a vector u with u ≺∞ is called inductive upper bound.

If f is feasible, then µf is obviously an inductive upper bound. The problem is
that µf may be irrational even if f has rational coefficients only (see Example 1
below) and can thus not easily be represented exactly. In Section 3 we show
under which conditions there exist rational inductive upper bounds u ∈ Qn≥0.

Given a feasible PPS f , find a rational inductive upper bound u ≥ µf .
Problem statement of this paper

A PPS is called clean if µf � 0. Every PPS can be cleaned in linear time by
identifying and removing the variables that are assigned 0 in the lfp [17,12].

Given a PPS f and a point u ∈ Rn≥0, we define the Jacobi matrix of f at u
as the n×n-matrix f ′(u) with coefficients f ′(u)1≤i,j≤n = ∂

∂xj
fi(u).
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Example 1. Consider the example PPS fex with variables x = (x, y)T :

x = f1(x, y) = y + 0.1 y = f2(x, y) = 0.2x2 + 0.8xy + 0.1 .

The line and the hyperbola defined by these equations are depicted in Figure 2
on Page 7. The fixpoints of fex are the intersections of these geometric objects;
in this case there are two. In particular, fex is feasible and its lfp is

µfex =
(
(27−

√
229)/50 , (22−

√
229)/50

)T ≈ (0.237 , 0.137)T .

Therefore, fex is clean as µfex � 0. The Jacobi matrix of fex is

f ′ex(x, y) =

(
∂
∂xf1

∂
∂yf1

∂
∂xf2

∂
∂yf2

)
=

(
0 1

0.4x+ 0.8y 0.8x

)
.

Note that the lfp µfex contains irrational numbers. In the above example, these
irrational numbers could still be represented using square roots because the
fixpoints of fex are the zeros of a quadratic polynomial. However, there are PPS
whose lfp cannot be expressed using radicals, i.e., square roots and cubic roots,
etc. [16]. This means that in general, there is no easy way to compute the lfp
exactly. It is thus desirable to provide bounds, which we do in this paper. 4

Matrices and Eigenvectors. Let M be a real n×n-matrix. We say that M is
non-negative (in symbols: M ≥ 0) if it has no negative entries. M is called
irreducible if for all 1 ≤ i, j ≤ n there exists 0 ≤ k < n such that (Mk)i,j 6= 0. It
is known that M is irreducible iff the directed graph GM = ({1, . . . , n}, E) with
(i, j) ∈ E iff Mi,j 6= 0 is strongly connected. A maximal irreducible submatrix
of M is a square submatrix induced by a strongly connected component of GM .
The period of a strongly connected M is the length of the shortest cycle in GM .
It is instructive to note that PPS x = f(x) are generalizations of linear equation
systems of the form x = Mx + c, with M ≥ 0 and c ≥ 0. Moreover, note that
for any PPS f it holds that f ′(u) ≥ 0 for all u � 0.

An eigenvector of an n×n-matrix M with eigenvalue λ ∈ C is a (complex)
vector v 6= 0 satisfying Mv = λv. There are at most n different eigenvalues.
The spectral radius ρ(M) ∈ R≥0 is the largest absolute value of the eigenvalues
of M . The following is a fundamental theorem about non-negative matrices:

Theorem 1 (Perron-Frobenius; e.g. [37]). Let M ≥ 0 be irreducible.

(1) M has a strictly positive eigenvector v � 0 with eigenvalue ρ(M), the spectral
radius of M , and all other eigenvectors v′ � 0 are scalar multiples of v.

(2) The eigenvalues of M with absolute value ρ(M) are exactly the h numbers
ρ(M), ξρ(M), . . . , ξh−1ρ(M), where ξ is a primitive hth root of unity.

The unique eigenvector v � 0 with ||v||∞ = 1 of an irreducible non-negative
matrix M is called the Perron-Frobenius eigenvector of M .
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Strongly Connected Components. To each PPS f we associate a finite directed
graph Gf = ({x1, . . . , xn}, E), which, intuitively speaking, captures the depen-
dency structure among the variables. Formally, (xi, xj) ∈ E if the polynomial fi
depends on xj , i.e., xj appears in at least one term of fi with a non-zero coef-
ficient. This is equivalent to saying that the partial derivative ∂

∂xj
fi is not the

zero polynomial. We say that f is strongly connected if Gf is strongly connected,
i.e., for each pair (xi, xj) of variables, there exists a path from xi to xj in Gf .
For instance, fex from Example 1 is strongly connected because the dependency
graph has the edges E = {(x, y), (y, x), (y, y)}. Strong connectivity of PPS is a
generalization of irreducibility of matrices; indeed, a matrix M is irreducible iff
the PPS x = Mx is strongly connected. We often use the fact that f ′(u) for
u � 0 is irreducible iff f is strongly connected.

PPS are usually analyzed in a decomposed fashion by considering the sub-
systems induced by the strongly connected components (SCCs) of Gf in bottom-
up order [16]. Here we also follow this approach and therefore focus on strongly
connected PPS. The following was proved in [17, Lem. 6.5] and later generalized
in [12, Thm. 4.1] (also see remark below [12, Prop. 5.4] and [17, Lem. 8.2]):

Theorem 2 ([17,12]). If f is feasible, strongly connected and clean, then for
all u < µf , we have ρ(f ′(u)) < 1. As a consequence, ρ(f ′(µf)) ≤ 1.

Theorem 2 partitions all PPS f which satisfy its precondition into two classes:
Either (1) ρ(f ′(µf)) < 1, or (2) ρ(f ′(µf)) = 1. In the next section we show that
f admits non-trivial inductive upper bounds iff it is in class (1).

Example 2. Reconsider the PPS fex from Example 1. It can be shown that
v = (1, λ1)

T where λ1 ≈ 0.557 is an eigenvector of f ′ex(µfex) with eigenvalue λ1.
Thus by the Perron-Frobenius Theorem, ρ(f ′ex(µfex)) = λ1 < 1. As promised,
there exist inductive upper bounds as can be seen in Figure 2. 4

3 Finding Inductive Upper Bounds in PPS

In this section, we are concerned with the following problem: Given a feasible,
clean, and strongly connected PPS f , find a vector 0 ≺ u ≺ ∞ such that
f(u) ≤ u, i.e., an inductive upper bound on the lfp of f (see Lemma 1).

3.1 Existence of Inductive Upper Bounds

An important first observation is that inductive upper bounds other than the
exact lfp do not necessarily exist. As a simple counter-example consider the 1-
dimensional PPS x = 1

2x
2 + 1

2 . If u is an inductive upper bound, then

1

2
u2 +

1

2
≤ u =⇒ u2 − 2u+ 1 ≤ 0 =⇒ (u− 1)2 ≤ 0 =⇒ u = 1 ,

and thus the only inductive upper bound is the exact lfp u = 1. Another example
is the PPS f̃ex from Figure 2. What these examples have in common is the
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x = y + 0.1

y = 0.2x2 + 0.8xy + 0.1

y = 0.2x2 + 0.8xy + 0.1916

Fig. 2: The PPS fex corresponds to the solid red line and the solid blue curve. Its
inductive upper bounds form the shaded area above the lfp µfex. Lemma 2(4)
ensures that one can fit the gray “cone” pointing in direction of the Perron-
Frobenius eigenvector v inside the inductive region. The PPS f̃ex which com-
prises the dashed curve and the solid line does not have any non-trivial inductive
upper bounds. Note that the tangent lines at µf̃ex are parallel to each other.

following property: Their derivative evaluated at the lfp is not invertible. Indeed,
we have ∂

∂x (
1
2x

2 + 1
2 − x) = x − 1, and inserting the lfp x = 1 yields zero. The

higher dimensional generalization of this property to arbitrary PPS f is that the
Jacobi matrix of the function f − x evaluated at µf is singular; note that this
is precisely the matrix f ′(µf) − I. Geometrically, this means that the tangent
lines at µf are parallel, as can be seen in Figure 2 for the example PPS f̃ex . It
should be intuitively clear from the figure that inductive upper bounds only exist
if the tangent lines are not parallel. The next lemma makes this more precise:

Lemma 2 (Existence of inductive upper bounds). Let f be a feasible,
clean, and strongly connected PPS. Then the following are equivalent:

(1) The matrix I − f ′(µf) is non-singular.
(2) The spectral radius of f ′(µf) satisfies ρ(f ′(µf)) < 1.
(3) There exists 0 ≺ u ≺∞ s.t. f(u) < u (i.e. u is inductive but not a fixpoint).
(4) The matrix f ′(µf) has a unique (normalized) eigenvector v � 0 and there

exist numbers δmax > 0 and ε > 0 s.t.

f(µf + δ · ṽ ) ≺ µf + δ · ṽ

holds for all 0 < δ ≤ δmax and vectors ṽ ≥ v with ||v − ṽ||∞ ≤ ε.

The proof of Lemma 2 (see [44]) relies on a linear approximation of f via
Taylor’s familiar theorem as well as Theorems 1 and 2. Condition (4) of Lemma 2
means that there exists a “truncated cone”

Cone(µf ,v, ε, δmax) = {µf + δṽ | 0 ≤ δ ≤ δmax, ṽ ≥ v, ||ṽ − v||∞ ≤ ε }

which is entirely contained in the inductive region. The “tip” of the cone is located
at the lfp µf and, the cone points in the direction of the Perron-Frobenius
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eigenvector v, as illustrated in Figure 2 (assuming δmax = 1 for simplicity). The
length δmax > 0 and the radius ε > 0 of the cone depend on ρ(f ′(µf)), but for us
it suffices that they are non-zero. Note that this cone has non-empty interior and
thus contains rational-valued vectors. The idea of our Optimistic Value Iteration
is to construct a sequence of guesses that eventually hits this cone.

3.2 The Optimistic Value Iteration Algorithm

The basic idea of Optimistic Value Iteration (OVI) can be applied to monotone
functions of the form φ : Rn≥0 → Rn≥0 (in [22], φ is the Bellman operator of an
MDP). Kleene’s fixpoint theorem suggests a simple method for approximating
the lfp µφ from below : Simply iterate φ starting at 0, i.e., compute the sequence
l0 = 0, l1 = φ(l0), l2 = φ(l1), etc.1 In the context of MDP, this iterative scheme
is known as Value Iteration (VI). VI is easy to implement, but it is difficult
to decide when to stop the iteration. In particular, standard stopping criteria
such as small absolute difference of consecutive approximations are formally un-
sound [20]. OVI and other algorithms [3,36] cope with this problem by computing
not only a lower but also an upper bound on µφ. In the case of OVI, an upper
bound with absolute error ≤ ε is obtained as follows (we omit some details):

(1) Compute lk ≤ µφ such that ||lk − lk−1||∞ ≤ τ , for some (small) τ > 0.
(2) Guess a candidate upper bound u = lk + ε.

(a) If φ(u) ≤ u holds, i.e., u is inductive, then return u.
(b) If not, refine u (see [22] for details). If the refined u is still not inductive,

then go back to step (1) and try again with 0 < τ ′ < τ .

We present our variant of OVI for PPS as Algorithm 1. The main differences
to the above scheme are that (i) we do not insist on Kleene iteration for obtaining
the lower bounds l, and (ii) we approximate the eigenvector v from condition (4)
of Lemma 2 and compute the “more informed” guesses u = l+ εv, for various ε.
Refining the guesses as original OVI does is not necessary (but see our remarks
in Section 3.3 regarding floating point computations).

The functions improveLowerBound and approxEigenvec used in Algorithm 1
must satisfy the following contracts in order for the algorithm to be correct:

– The sequence l0 = 0, li+1 = improveLowerBound(f , li) for i ≥ 0, is a
monotonically increasing sequence of rational vectors converging to µf .

– approxEigenvec must satisfy the following: Let M ≥ 0 be an irreducible
matrix with (normalized) Perron-Frobenius eigenvector v � 0. Then for all
ε > 0, we require that there exists τ > 0 such that ||approxEigenvec(M, τ)−
v||∞ ≤ ε. In words, approxEigenvec approximates v up to arbitrarily
small absolute error if the tolerance τ is chosen sufficiently small. Moreover,
approxEigenvec(M, τ) returns a rational vector.

1 In order for the Kleene seqence to converge to the lfp, i.e., limk→∞ lk = µφ, it suffices
that φ is ω-continuous. This already implies monotonicity.
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Algorithm 1: Optimistic Value Iteration (OVI) for PPS
input : strongly connected clean PPS f ; maximum abs. error ε ∈ Q>0

output : a pair (l,u) of rational vectors s.t. l ≤ µf , f(u) ≤ u (hence
µf ≤ u), and ||l− u||∞ ≤ ε

termination : guaranteed if f is feasible and I − f ′(µf) is non-singular
1 l← 0 ; N ← 0 ;
2 τ ← ε ; /* τ is the current tolerance */
3 while true do
4 l′ ← improveLowerBound(f , l) ; /* e.g. Kleene or Newton update */

/* guess and verify phase starts here */
5 if ||l− l′||∞ ≤ τ then
6 v ← approxEigenvec(f ′(l), τ) ; /* recall v is normalized */
7 for k from 0 to N do
8 u← l+ dkε · v ; /* optimistic guess, d ∈ (0, 1) */
9 if f(u) ≤ u then

10 return (l,u) ; /* guess was successful */

11 N ← N + 1 ;
12 τ ← c · τ ; /* decrease tolerance for next guess, c ∈ (0, 1) */

13 l← l′ ;

In practice, both the Kleene and the Newton [16,17,12] update operator can
be used to implement improveLowerBound. We outline a possible implementa-
tion of approxEigenvec further below in Section 3.3.

Example 3. Consider the following PPS f : x = 1
4x

2 + 1
8 , y = 1

4xy+
1
4y+

1
4 . The

table illustrates the execution of Algorithm 1 on f with ε = 0.1 and c = 0.5:

# N τ l l′ ||l− l′||∞ v u f(u) ≤ u
1 0 0.1 (0, 0) (0.4, 0.3) 0.4
2 0 0.1 (0.4, 0.3) (0.5, 0.4) 0.1 (1.0, 0.8) (0.5, 0.38) 7
3 1 0.05 (0.5, 0.4) (0.55, 0.41) 0.05 (1.0, 0.9) (0.6, 0.49) 3

The algorithm has to improve the lower bound 3 times (corresponding to the
3 lines of the table). After the second improvement, the difference between the
current lower bound l2 and the new bound l′2 does not exceed the current
tolerance τ2 = 0.1 and the algorithm enters the optimistic guessing stage. The
first guess u2 is not successful. The tolerance is then decreased to τ3 = c·τ2 = 0.05
and the lower bound is improved to l′3. The next guess u3 is inductive. 4

Theorem 3. Algorithm 1 is correct: when invoked with a strongly connected
clean PPS f and ε ∈ Q>0, then (if it terminates) it outputs a pair (l,u) of
rational vectors s.t. l ≤ µf , f(u) ≤ u, and ||l − u||∞ ≤ ε. Moreover, if f is
feasible and I − f ′(µf) is non-singular, then the algorithm terminates.
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The proof of Theorem 3 (see [44]) crucially relies on condition (4) of Lemma 2
that assures the existence of a “truncated cone” of inductive bounds centered
around the Perron-Frobenius eigenvector of f ′(µf) (see Figure 2 for an illustra-
tion). Intuitively, since the lower bounds l computed by the algorithm approach
the lfp µf , the eigenvectors of f ′(l) approach those of f ′(µf). As a consequence,
it is guaranteed that the algorithm eventually finds an eigenvector that intersects
the cone. The inner loop starting on line 7 is needed because the “length” of the
cone is a priori unknown; the purpose of the loop is to scale the eigenvector down
so that it is ultimately small enough to fit inside the cone.

3.3 Considerations for Implementing OVI

As said earlier, there are at least two options for improveLowerBound: Kleene
or Newton iteration. We now show that approxEigenvec can be effectively im-
plemented as well. Further below we comment on floating point arithmetic.

Approximating the Eigenvector. A possible implementation of approxEigenvec
relies on the power iteration method (e.g. [38, Thm. 4.1]). Given a square matrix
M and an initial vector v0 withMv0 6= 0, power iteration computes the sequence
(vi)i≥0 such that for i > 0, vi =Mvi−1/||Mvi−1||∞.

Lemma 3. Let M ≥ 0 be irreducible. Then power iteration applied to M + I
and any v0 > 0 converges to the Perron-Frobenius eigenvector v � 0 of M .

The convergence rate of power iteration is determined by the ratio |λ2|/|λ1|
where λ1 and λ2 are eigenvalues of largest and second largest absolute value,
respectively. Each time approxEigenvec is called in Algorithm 1, the result of
the previous call to approxEigenvec may be used as initial approximation v0.

Exact vs Floating Point Arithmetic. So far we have assumed exact arithmetic for
the computations in Algorithm 1, but an actual implementation should use float-
ing point arithmetic for efficiency. However, this leads to unsound results. More
specifically, the condition f(u) ≤ u may hold in floating point arithmetic even
though it is actually violated. As a remedy, we propose to nevertheless run the
algorithm with floats, but then verify its output u with exact arbitrary-precision
rational arithmetic. That is, we compute a rational number approximation uQ
of u and check f(uQ) ≤ uQ with exact arithmetic. If the check fails, we resort to
the following refinement scheme which is an instance of the general k-induction
principle for complete lattices from [5]: We iteratively check the conditions

f(uQ u f(uQ)) ≤ uQ , f(uQ u f(uQ u f(uQ))) ≤ uQ , and so on,

where u denotes pointwise minimum. If one of the checks is satisfied, then µf ≤
uQ [5]. This scheme often works well in practice (see Section 5). The original
OVI from [22] uses a similar technique to refine its guesses.
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4 Certificates for Probabilistic Pushdown Automata

This section shows how the results from Section 3 can be applied to pPDA. We
introduce some additional notation. For finite sets A, D(A) denotes the set of
probability distributions on A. In this section we often denote tuples without
parentheses and commata, e.g., we may write ab rather than (a, b).

Definition 1 (pPDA [13]). A probabilistic pushdown automaton (pPDA) is a
triple ∆ = (Q,Γ, P ) where Q 6= ∅ is a finite set of states, Γ 6= ∅ is a finite stack
alphabet, and P : Q× Γ → D(Q× Γ≤2) is a probabilistic transition function.

In the following, we often write qZ p−→ rα instead of P (qZ)(rα) = p [13]. Intu-
itively, qZ p−→ rα means that if the pPDA is in state q and Z is on top of the
stack, then with probability p, the pPDA moves to state r, pops Z and pushes α
on the stack. More formally, the semantics of a pPDA ∆ = (Q,Γ, P ) is a count-
ably infinite Markov chain with state space Q × Γ ∗ and transition probability
matrix M such that for all q, r ∈ Q, Z ∈ Γ , α ∈ Γ≤2, γ ∈ Γ ∗, we have

M(qZγ, rαγ) = P (qZ)(rα) , M(qε, qε) = 1 ,

and all other transition probabilities are zero. This Markov chain, where the
initial state is fixed to qZ, is denoted MqZ

∆ (see Figure 3 for an example). As
usual, one can formally define a probability measure PqZ∆ on the infinite runs of
MqZ

∆ via the standard cylinder construction (e.g., [2, Sec. 10]).
Consider a triple qZr ∈ Q×Γ×Q. We define the return probability2 [qZr] as

the probability of reaching rε in the Markov chainMqZ
∆ , i.e., [qZr] = PqZ∆ (♦{rε}),

where ♦{rε} is the set of infinite runs ofMqZ
∆ that eventually hit state rε.

Theorem 4 (The PPS of return probabilities [13]3). Let ∆ = (Q,Γ, P )
be a pPDA and (〈qZr〉)qZr∈Q×Γ×Q be variables. For each 〈qZr〉, define

〈qZr〉 =
∑

qZ
p−→sY X

p ·
∑
t∈Q
〈sY t〉 · 〈tXr〉 +

∑
qZ

p−→sY

p · 〈sY r〉 +
∑

qZ
p−→rε

p

and call the resulting PPS f∆. Then µf∆ = ([qZr])qZr∈Q×Γ×Q.

Example 4. Figure 3 shows a pPDA ∆ex and the associated PPS f∆ex . The
least non-negative solution is 〈qZq〉 = 2 −

√
2 ≈ 0.586 and 〈qZr〉 =

√
2 − 1 ≈

0.414 (and, of course, 〈rZq〉 = 0, 〈rZr〉 = 1). Thus by Theorem 4, the return
probabilities are [qZq] = 2−

√
2 and [qZr] =

√
2− 1. 4

The PPS f∆ is always feasible (because µf∆ ≤ 1). f∆ is neither necessarily
strongly connected nor clean. Let f̂∆ denote the cleaned up version of f∆.

2 See [42] for an explanation of this terminology.
3 We refer to [30, Sec. 3] for an intuitive explanation of the equations in f∆.
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)
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Fig. 3: Top left: The pPDA ∆ex = ({q, r}, {Z}, P ) where P comprises the tran-

sitions qZ
1/4−−→ qZZ, qZ

1/2−−→ qε, qZ
1/4−−→ rε, rZ

1−→ rε. Top right: A fragment of
the infinite underlying Markov chain MqZ

∆ , assuming initial configuration qZ.
Bottom: The associated equation system from Theorem 4.

Proposition 1 (Basic Certificates for pPDA). A basic certificate for
∆ = (Q,Γ, P ) is a rational inductive upper bound u ∈ QQ×Γ×Q≥0 on the lfp of the
return probabilities system f∆ (see Thm. 4). They have the following properties:

– (Existence) ∀ε > 0 there exists a basic certificate u with ||µf∆ − u||∞ ≤ ε
if all maximal irreducible submatrices M of f̂ ′∆(µf̂∆) satisfy ρ(M) < 1.

– (Complexity) Let β be the maximum number of bits used to encode any of the
numerators and denominators of the fractions occurring in u ∈ QQ×Γ×Q≥0 .
Then checking f∆(u) ≤ u, i.e., whether u is basic certificate for ∆, can be
done in time polynomial in β and the size of ∆.

Existence of basic certificates follows from Lemma 2 applied to each SCC of
the cleaned-up version of f∆ individually. However, note that in order to merely
check the certificate, i.e., verify the inequality f(u) ≤ u, neither do SCCs need
to be computed nor does the system has to be cleaned up.

Example 5. Reconsider the example pPDA and its associated (non-strongly con-
nected) system of return probabilities from Figure 3. We verify that uqZq = 3/5
and uqZr = 1/2 (as well as urZq = 0,urZr = 1) is a basic certificate:

1

4

(
3

5
· 3
5
+

1

2
· 0
)
+

1

2
=

59

100

X
≤ 3

5
,

1

4

(
3

5
· 1
2
+

1

2
· 1
)
+

1

4
=

45

100

X
≤ 1

2
.

Note that [qZq] ≈ 0.586 ≤ 3/5 = 0.6 and [qZr] ≈ 0.414 ≤ 1/2 = 0.5. 4

In the following we outline how a variety of key quantities associated with a
pPDA can be verified using basic certificates.
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Upper Bounds on Temporal Properties. We may use basic certificates to verify
that a bad state rbad is reached with low probability, e.g., at most p = 0.01.
To this end, we remove the outgoing transitions of rbad and add the transitions
rbadZ

1−→ rbadε for all Z ∈ Γ . Clearly, rbad is reached with probability at most p
from initial configuration qZ iff [qZrbad] ≤ p. The results of [13] imply that this
idea can be generalized to until -properties of the form C1 U C2, where C1 and C2
are regular sets of configurations.

Certificates for the Output Distribution. Once a pPDA reaches the empty stack,
we say that it has terminated. When modeling procedural programs, this cor-
responds to returning from a program’s main procedure. Assuming initial con-
figuration qZ, the probability sub-distribution over the possible return values is
then given by the return probabilities {[qZr] | r ∈ Q}. Missing probability mass
models the probability of non-termination. Therefore, a basic certificate may be
used to prove a point-wise upper bound on the output distribution as well as non
almost-sure termination (AST). If a pPDA ∆ is known to be AST, then we can
also certify a lower bound on the output distribution: Suppose that u is a basic
certificate for ∆ and assume that ∆ is AST from initial configuration qZ. Define
ε =

∑
r∈Q uqZr − 1. Then for all r ∈ Q, we have uqZr − ε ≤ [qZr] ≤ uqZr.

Example 6. The pPDA ∆ex from Figure 3 is AST from initial configuration qZ,
as the transition qZ

1/4−−→ rε is eventually taken with probability 1, and the stack
is emptied certainly once r is reached. Using the basic certificate from Example 5
we can thus (correctly) certify that 0.5 ≤ [qZq] ≤ 0.6 and 0.4 ≤ [qZr] ≤ 0.5.

Certificates for Expected Rewards. pPDA may also be equipped with a reward
function Q→ R≥0. It was shown in [14] that the expected reward accumulated
during the run of a pPDA is the solution of a linear equation system whose
coefficients depends on the numbers [qZr]. Given a basic certificate u, we obtain
an equation system whose solution is an over-approximation of the true expected
reward (see [44]). We may extend the basic certificate u by the solution of
this linear system to make verification straightforward. Note that a program’s
expected runtime [8,35] is a special case of total expected reward.

5 Implementation and Experiments

Our Tool: pray. We implemented our algorithm in the prototypical Java-tool
pray (Probabilistic Recursion AnalYzer) [43]. It supports two input formats:
(i) Recursive probabilistic programs in a Java-like syntax (e.g. Figure 4); these
programs are automatically translated to pPDA. (ii) Explicit PPS in the same
syntax used by the tool PReMo [46]. The output of pray is a rational inductive
upper bound on the lfp of the return probability PPS of the input program’s
pPDA model (a basic certificate), or on the lfp of the explicitly given PPS. The
absolute precision ε is configurable. The implementation works as follows:
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(1) It parses the input and, if the latter is a program, constructs a pPDA model
and the associated PPS of return probabilities.

(2) It computes an SCC decomposition of the PPS under consideration using
standard algorithms implemented in the jGraphT library [33].

(3) It applies Algorithm 1 to the individual SCC in reverse topological order
using floating point arithmetic. Algorithm 1 is instantiated with Kleene it-
eration4, the power iteration for approximating eigenvectors as outlined in
Section 3.3, and constants c = 0.1, d = 0.5. We allow ≤ 10 guesses per SCC.

(4) If stage (3) is successful, the tool verifies the resulting floating point certifi-
cate using exact rational number arithmetic as described in Section 3.3.

Baselines. To the best of our knowledge, no alternative techniques for finding
inductive upper bounds in PPS have been described explicitly in the literature.
However, there is an (almost) out-of-the-box approach using an SMT solver:
Given a PPS x = f(x), compute some lower bound l ≤ µf using an iterative
technique. Then query the SMT solver for a model (variable assignment) of the
quantifier-free first-order logic formula ϕf (x) =

∧n
i=1 fi(x) ≤ xi∧li ≤ xi ≤ li+ε

in the (decidable) theory of polynomial real arithmetic with inequality (aka
QF_NRA in the SMT community). If such a model u exists, then clearly µf ≤ u
and ||l − u||∞ ≤ ε. If no model exists, then improve l and try again. We have
implemented this approach using the state-of-the-art SMT solvers cvc5 [4] and
z3 [34], the winners of the 2022 SMT-COMP in the category QF_NRA5.

As yet another baseline, we have also implemented a variant of OVI for PPS
which is closer to the original MDP algorithm from [22]. In this variant, called
“standard OVI” from now on, we compute the candidate u based on the relative
update rule u = (1 + ε)l, where l is the current lower bound [22].

Research Questions. We aim to shed some light on the following questions: (A)
How well does our algorithm scale? (B) Is the algorithm suitable for PPS with dif-
ferent characteristics, e.g., dense or sparse? (C) Is the requirement ρ(f(µf)′) < 1
restrictive in practice? (D) How does our OVI compare to the baselines?

Benchmarks. To answer the above questions we run our implementation on two
sets of benchmarks (Table 1 and Table 2, respectively). The first set consists of
various example programs from the literature as well as a few new programs,
which are automatically translated to pPDA. This translation is standard and
usually takes not more than a few seconds. The programs golden, and-or (see Fig-
ure 4), virus, gen-fun are adapted from [35,8,42] and [32, Program 5.6], respec-
tively. The source code of all considered programs is in [44]. We have selected
only programs with possibly unbounded recursion depth which induce infinite
Markov chains. The second benchmark set comprises explicit PPS from [46]. The
instances brown, lemonde, negra, swbd, tiger, tuebadz, and wsj all encode SCFG

4 In fact, we use the slightly optimized Gauss-Seidel iteration (see [45, Sec. 5.2]) which
provides a good trade-off between ease of implementation and efficiency [45].

5 https://smt-comp.github.io/2022/results
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bool and() {
prob {

1//2: return
(1//2: true | 1//2: false);

1//2: {
if(!or()) return false;
else return or(); } } }

bool or() {
prob {

1//2: return
(1//2: true | 1//2: false);

1//2: {
if(and()) return true;
else return and(); } } }

Fig. 4: Program evaluating a random and-or tree [8]. The prob-blocks execute
the contained statements with the respective probabilities (syntax inspired by
Java’s switch). Our tool automatically translates this program to a pPDA and
computes a basic certificate (Proposition 1) witnessing that calling and() returns
true and false with probability ≤ 382/657 ≈ 0.58 and 391/933 ≈ 0.42, resp.

from the area of language processing (see [46] for details). random is the return
probability system of a randomly generated pPDA.

Summary of Results. We ran the experiments on a standard notebook. The
approach based on cvc5 turns out to be not competitive (see [44]). We thus
focus on z3 in the following. Both pray and the z3 approach handle most of the
programs from Table 1 within a 10 minute time limit. The considered programs
induce sparse PPS with 38 - 26,367 variables, and most of them have just a
single SCC. Notably, the examples with greatest maximum SCC size are only
solved by z3. pray and z3 need at most 95 and 31 seconds, respectively, for the
instances where they succeed. In many cases (e.g., rw-5.01, golden, virus, brown,
swbd), the resulting certificates formally disprove AST. For the explicit PPS in
Table 2, pray solves all instances whereas z3 only solves 3/8 within the time
limit, and only finds the trivial solution 1. Most of these benchmarks contain
dense high-degree polynomials, and our tool spends most time on performing
exact arithmetic. Standard OVI (rightmost columns in Tables 1 and 2) solves
strictly less instances than our eigenvector-based OVI. On some instances, Stan-
dard OVI is slightly faster (if it succeeds). However, on some larger benchmarks
(brown, swbd) our variant runs ≈ 3× faster.

Evaluation of Research Questions. (A) Scalability: Our algorithm succeeds on
instances with maximum SCC size of up to 8,000 and number of terms over
50,000. pray solves all instances with a maximum SCC size of ≤ 1,000 in less
than 2 minutes per instance. For the examples where our algorithm does not suc-
ceed (e.g., escape100) it is mostly because it fails converting a floating point to a
rational certificate. (B) PPS with different flavors: The problems in Table 1 (low
degree and sparse, i.e., few terms per polynomials) and Table 2 (higher degree
and dense) are quite different. A comparison to the SMT approach suggests that
our technique might be especially well suited for dense problems with higher
degrees. (C) Non-singularity: The only instance where our algorithm fails be-
cause of the non-singularity condition is the symmetric random walk rw-0.500.
We therefore conjecture that this condition is often satisfied in practice. (D)
Comparison with baselines: There is no clear winner. Some instances can only
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Table 1: Experiments with PPS obtained from recursive probabilistic programs.
Columns vars and terms display the number of variables and terms in the PPS.
Columns sccs and sccmax indicate the number of non-trivial SCC and the size of
the largest SCC. G is total number of guesses made by OVI (at least one guess
per SCC). ttot is the total runtime excluding the time for model construction.
tQ is the percentage of ttot spent on exact rational arithmetic. D is the average
number of decimal digits of the rational numbers in the certificate. The timeout
(TO) was set to 10 minutes. Time is in ms. The absolute precision is ε = 10−3.
benchmark |Q| |P | |Γ | vars terms sccs sccmax cert G D tQ ttot certz3 Dz3 tz3 certstd Gstd Dstd tstd

rw-0.499 18 29 5 38 45 1 12 3 5 5 17% 163 3 2 11 3 4 5 59
rw-0.500 18 29 5 38 45 1 12 7 10 - - 7327 3 2 10 7 10 - 8083
rw-0.501 18 29 5 38 45 1 12 3 5 4 6% 36 3 13 12 3 4 5 23
geom-offspring 24 40 5 52 80 4 24 3 8 6 13% 15 3 9 16 3 8 6 14
golden 27 49 6 81 94 1 36 3 1 5 30% 10 3 7 14 3 2 4 12
and-or 50 90 7 149 182 1 48 3 2 4 26% 19 3 12 15260 3 2 4 19
gen-fun 85 219 7 202 327 1 16 3 2 3 32% 22 3 15 141 3 2 3 21
virus 68 149 27 341 551 1 220 3 1 5 38% 40 3 7 139 3 1 6 59
escape10 109 174 23 220 263 1 122 3 1 4 5% 56 3 7 48 3 1 8 71
escape25 258 413 53 518 621 1 300 3 1 5 17% 245 3 7 15958 3 1 9 172
escape50 508 813 103 1018 1221 1 600 3 1 7 23% 653 3 7 410 7 1 - 400
escape75 760 1215 153 1522 1825 1 904 3 2 9 10% 3803 7 - TO 7 1 - 635
escape100 1009 1614 203 2020 2423 1 1202 7 5 - - 29027 3 6 939 7 1 - 901
escape200 2008 3213 403 4018 4821 1 2400 7 6 - - 83781 7 - TO 7 1 - 2206
sequential5 230 490 39 1017 1200 10 12 3 15 4 26% 103 3 8 1074 3 15 5 204
sequential7 572 1354 137 3349 3856 14 12 3 21 5 27% 1049 3 8 12822 3 20 5 1042
sequential10 3341 8666 1036 26367 29616 20 12 3 30 5 2% 100613 3 8 453718 3 30 6 101554
mod5 44 103 10 296 425 1 86 3 1 5 39% 28 3 9 34150 7 2 - 178
mod7 64 159 14 680 1017 1 222 3 1 6 69% 172 3 7 443 7 2 - 624
mod10 95 244 20 1574 2403 1 557 7 1 - - 675 3 7 1245 7 2 - 882

Table 2: Experiments with explicitly given PPS (setup as in Table 1).
benchmark vars terms sccs sccmax cert G D tQ ttot certz3 Dz3 tz3 certstd Gstd Dstd tstd

brown 37 22866 1 22 3 2 6 74% 3212 7 - TO 3 2 8 9065
lemonde 121 32885 1 48 3 2 5 97% 40738 7 - TO 3 2 5 38107
negra 256 29297 1 149 3 2 7 89% 10174 3 1 37248 3 1 7 8873
swbd 309 47578 1 243 3 1 7 93% 18989 7 - TO 3 1 8 67314
tiger 318 52184 1 214 3 2 8 98% 94490 3 1 17454 3 1 8 90801
tuebadz 196 8932 2 168 3 4 9 85% 2666 3 1 15323 3 3 9 2700
wsj 240 31170 1 194 3 2 9 96% 30275 7 - TO 3 2 9 29038
random 10000 20129 1 8072 3 3 7 5% 17585 7 - TO 3 4 8 16357

be solved by one tool or the other (e.g., escape100 and brown). However, pray of-
ten delivers more succinct certificates, i.e., the rational numbers have less digits.
Moreover, z3 behaves much less predictably than pray.

6 Conclusion and Future Work

We have proposed using inductive bounds as certificates for various properties
in probabilistic recursive models, and presented the first dedicated algorithm for
computing such bounds. Our algorithm already scales to non-trivial problems.
A remaining bottleneck is the need for exact rational arithmetic. This might be
improved using appropriate rounding modes as in [21]. Additional future work
includes certificates for lower bounds and termination.
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Abstract. Essential tasks for the verification of probabilistic programs
include bounding expected outcomes and proving termination in finite
expected runtime. We contribute a simple yet effective inductive synthesis
approach for proving such quantitative reachability properties by generat-
ing inductive invariants on source-code level. Our implementation shows
promise: It finds invariants for (in)finite-state programs, can beat state-
of-the-art probabilistic model checkers, and is competitive with modern
tools dedicated to invariant synthesis and expected runtime reasoning.

1 Introduction

Reasoning about reachability probabilities is a foundational task in the analysis
of randomized systems. Such systems are (possibly infinite-state) Markov chains,
which are typically described as probabilistic programs – imperative programs
that may sample from probability distributions. We contribute a method for
proving bounds on quantitative properties of probabilistic programs, which finds
inductive invariants on source-code level by inductive synthesis. We discuss each
of these ingredients below, present our approach with a running example in
Sect. 2, and defer a detailed discussion of related work to Sect. 8.

1) Quantitative Reachability Properties. We aim to verify properties such as “is
the probability of reaching an error at most 1%?” More generally, our technique
proves bounds on the expected value of a probabilistic program terminating in
designated states (see Sect. 2.1). Various verification problems are ultimately
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CEGIS loop

Synthesizer Verifier

I is inductive invariant 3

Template Generator
(cf. [12, Appx. D])

Counterexample s

I ∈ 〈T 〉Template T

Unsat, hint?

Fig. 1: Our CEGIS framework for synthesizing quantitative inductive invariants.

solved by bounding quantitative reachability properties (cf. [7,47]). Further
examples of such problems include “does a program terminate with finite expected
runtime?” and “is the expected sum of program variables x and y at least one?”

2) Inductive Invariants. An inductive invariant is a certificate that witnesses a
certain quantitative reachability property. Quantitative (and qualitative) reacha-
bility are typically captured as least fixed points (cf. [52,47,7]). For upper bounds,
this characterization makes it natural to search for a prefixed point – the in-
ductive invariant – that, by standard fixed point theory [56], is greater than or
equal to the least fixed point. Our invariants assign every state a quantity. If the
initial state is assigned a quantity below the desired threshold, then the invariant
certifies that the property in question holds. We detail quantitative inductive
invariants in Sect. 2.2; we adapt our method to lower bound reasoning in Sect. 6.

3) Source-Code Level. We consider probabilistic programs over (potentially un-
bounded) integer variables that conceptually extend while-programs with coin
flips, see e.g. Fig. 2.6 We exploit the program structure to reason about infinite-
state (and large finite-state) programs: We never construct a Markov chain but
find symbolic inductive invariants (mapping from program states to nonnegative
reals) on source-code level. We particularly discover inductive invariants that are
piecewise linear, as they can often be verified efficiently.

4) Inductive Synthesis. Our approach to finding invariants, as sketched in Fig. 1,
is inspired by inductive synthesis [4]: The inner loop (shaded box) is provided
with a template T which may generate an infinite set 〈T 〉 of instances. We
then synthesize a template instance I that is an inductive invariant witnessing
quantitative reachability, or determine that no such instance exists. We search for
such instances in a counterexample-guided inductive synthesis (CEGIS) loop: The
synthesizer constructs a candidate. (A tailored variant of) an off-the-shelf verifier
either (i) decides that the candidate is a suitable inductive invariant or (ii) reports
a counterexample state s back to the synthesizer. Upon termination (guaranteed
for finite-state programs), the inner loop has either found an inductive invariant
or the solver reports that the template T does not admit an inductive invariant.

Contributions. We show that inductive synthesis for verifying quantitative
reachability properties by finding inductive invariants on source-code level is

6 Prism programs can be interpreted as an implicit while(not error-state) {. . .}
program – see [40] for an explicit translation.

Probabilistic Program Verification via Inductive Synthesis 411



1 : fail := 0 ; sent := 0 ;

2 : while ( sent < 8 000 000 ∧ fail < 10 ) {
3 : { fail := 0 ; sent := sent + 1 } [ 0.999 ] { fail := fail + 1 } }

Fig. 2: Model for the bounded retransmission protocol (BRP).

feasible: Our approach is sound for arbitrary probabilistic programs, and complete
for finite-state programs. We implemented our simple yet powerful technique.
The results are promising: Our CEGIS loop is sufficiently fast to support large
templates and finds inductive invariants for various probabilistic programs and
properties. It can prove, amongst others, upper and lower bounds on reachability
probabilities and universal positive almost-termination [42]. Our implementation
is competitive with three state-of-the-art tools – Storm [39], Absynth [50], and
Exist [9] – on subsets of their benchmarks fitting our framework.

Applicability and Limitations. We consider programs with possibly unbounded
nonnegative integer-valued variables and arbitrary affine expressions in quantita-
tive specifications. As for other synthesis-based approaches, there are unrealizable
cases – loops for which no piecewise linear invariant exists. But, if there is an
invariant, our CEGIS loop often finds it within a few iterations.

2 Overview

We illustrate our approach using the bounded retransmission protocol (BRP)
– a standard probabilistic model checking benchmark [38,28] – modeled by the
probabilistic program in Fig. 2. The model attempts to transmit 8 million packets7

over a lossy channel, where each packet is lost with probability 0.1%; if a packet
is lost, we retry sending it; if any packet is lost in 10 consecutive sending attempts
(fail = 10), the entire transmission fails; if all packets have been transmitted
successfully (sent = 8 000 000), the transmission succeeds.

2.1 Reachability Probabilities and Loops

We aim to reason about the transmission-failure probability of BRP, i.e. the
probability that the loop terminates in a target state t with t(fail) = 10 when
started in initial program state s0 with s0(fail) = s0(sent) = 0. One approach to
determine this probability is to (i) construct an explicit-state Markov chain (MC)
per Fig. 2, (ii) derive its Bellmann operator Φ [52], (iii) compute its least fixed
point lfp Φ (a vector containing for each state the probability to reach t), e.g.
using value iteration (cf. [7, Thm 10.15]), and finally (iv) evaluate lfp Φ at s0.

The explicit-state MC of BRP has ca. 80 million states. We avoid building
such large state spaces by computing a symbolic representation of Φ from the

7 Large constants like the number of packets appear naturally in quantitative models
of protocols and have a non-trivial impact on probabilities.
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program. More formally, let S be the set of all states, loop the entire loop (ll. 2–3
in Fig. 2), body the loop’s body (l. 3), and JbodyK(s)(s′) the probability of
reaching state s′ by executing body once on state s. Then the least fixed point of
the loop’s Bellmann operator Φ :

(
S → R∞≥0

)
→
(
S → R∞≥0

)
, defined by

Φ(I) = λs.



1, if s(fail) = 10 ,∑
s′∈S

JbodyK(s)(s′) · I(s′),
if s(sent) < 8 000 000

and s(fail) < 10 ,

0, otherwise ,

captures the transmission-failure probability for the entire execution of loop and
for any initial state, that is, (lfp Φ)(s) is the probability of terminating in a target
state when executing loop on s (even if loop would not terminate almost-surely).
Intuitively, Φ(I)(s) maps to 1 if loop has terminated meeting the target condition
(transmission failure); and to 0 if loop has terminated otherwise (transmission
success). If loop is still running (i.e. it has neither failed nor succeeded yet), then
Φ(I)(s) maps to the expected value of I after executing body on state s.

2.2 Quantitative Inductive Invariants

Reachability probabilities are generally not computable for infinite-state proba-
bilistic programs [43]. Even for finite-state programs the state-space explosion
may prevent us from computing reachability probabilities exactly. However, it
often suffices to know that the reachability probability is bounded from above by
some threshold λ. For BRP, we hence aim to prove that (lfp Φ)(s0) ≤ λ.

We attack the above task by means of (quantitative) inductive invariants :
a candidate for an inductive invariant is a mapping I : S → R∞≥0. Intuitively, such
a candidate I is inductive if the following holds: when assuming that I(s) is (an
over-approximation of) the probability to reach a target state upon termination
of loop on s, then the probability to reach a target state after performing one
more guarded loop iteration, i.e. executing if ( sent < . . . ) { body ; loop } on s,
must be at most I(s). Formally, I is an inductive invariant8 if

∀s : Φ(I)(s) ≤ I(s) which implies ∀s :
(
lfp Φ

)
(s) ≤ I(s)

by Park induction [51]. Hence, I(s) bounds for each initial state s the exact
reachability probability from above. If we are able to find an inductive I that is
below λ for the initial state s0 with fail = sent = 0, i.e. I(s0) ≤ λ, then we have
indeed proven the upper bound λ on the transmission-failure probability of our
BRP model. In a nutshell, our goal can be phrased as follows:

Goal: Find an inductive invariant I, i.e. an I with Φ(I) ≤ I, s.t. I(s0) ≤ λ.

8 For an exposition of why it makes sense to speak of invariants even in a quantitative
setting, [42, Sect. 5.1] relates quantitative invariants to invariants in Hoare logic.
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2.3 Our CEGIS Framework for Synthesizing Inductive Invariants

While finding a safe inductive invariant I is challenging, checking whether a given
candidate I is indeed inductive is easier: it is decidable for certain infinite-state
programs (cf. [14, Sect. 7.2]), it may not require an explicit exploration of the
whole state space, and it can be done efficiently for piecewise linear I. Hence,
techniques that generate decent candidate expressions fast and then check their
inductivity could enable the automatic verification of probabilistic programs with
gigantic and even infinite state spaces.

In this paper, we test this hypothesis by developing the CEGIS framework
depicted in Fig. 1 for incrementally synthesizing inductive invariants. A template
generator generates parametrized templates for inductive invariants. The inner
loop (shaded box in Fig. 1) then tries to solve for appropriate template-parameter
instantiations. If it succeeds, an inductive invariant has been synthesized. Other-
wise, the template provably cannot be instantiated into an inductive invariant.
The inner loop then reports that back to the template generator (possibly with
some hint on why it failed, see [12, Appx. D]) and asks for a refined template.

For our running example, we start with the template

T = [fail < 10 ∧ sent < 8 000 000] · (α · sent + β · fail + γ) + [fail = 10] , (1)

where we use Iverson brackets for indicators, i.e. [ϕ] (s) = 1 if s |= ϕ and 0
otherwise. T contains two kinds of variables: integer program variables fail, sent
and Q-valued parameters α, β, γ. While the template is nonlinear, substituting
α, β, γ with concrete values yields piecewise linear candidate invariants I. We
ensure that those I are piecewise linear to render the repeated inductivity checks
efficient. We construct only so-called natural templates T with Φ in mind, e.g.
we want to construct only I such that I(s) = 1 when s(fail) = 10.

Our inner CEGIS loop checks whether there exists an assignment from these
template variables to concrete values such that the resulting piecewise linear
expression is an inductive invariant. Concretely, we try to determine whether
there exist values for α, β, γ such that T (α, β, γ) is inductive. For that, we first
guess values for α, β, γ, say all 0’s, and ask a verifier whether the instantiated
(and now piecewise linear) template I = T (0, 0, 0) is indeed inductive. In our
example, the verifier determines that I is not inductive: a counterexample is
s(fail) = 9, s(sent) = 7999999. Intuitively, the probability to reach the target
after one more loop iteration exceeds the value in I for this state, that is,
Φ(I)(s) = 0.001 > 0 = I(s). From this counterexample, our synthesizer learns

Φ(T )(s) = 0.001
!
≤ α · 7999999 + β · 9 + γ = T (s) .

Observe that this learned lemma is linear in α, β, γ. The synthesizer will now
keep “guessing” assignments to the parameters which are consistent with the
learned lemmas until either no such parameter assignment exists anymore, or
until it produces an inductive invariant I = T (. . .). In our running example,
assuming λ = 0.9, after 6 lemmas, our synthesizer finds the inductive invariant I[

fail < 10 ∧ sent < 8 · 106
]
· (− 9

8·107 · sent + 79 991
72·107 · fail + 9

10 ) + [fail = 10] (2)
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fail := 0 ; sent := 0 ;

while ( sent < P ∧ fail < R ∧ P ≤ 8 000 000 ∧ R ≥ 5 ) {
{ fail := 0 ; sent := sent + 1 } [ 0.99 ] { fail := fail + 1 }

}

(a) A family of retransmission protocols
(b) Inductive invariant for
fail = 0 and R ≥ 5

Fig. 3: A bounded retransmission protocol family and piece of a matching invariant.

where indeed I(s0) ≤ λ holds. For a tighter threshold λ, such simple templates
do not suffice. For example, it is impossible to instantiate this template to an
inductive invariant for λ = 0.8, even though 0.8 is an upper bound on the actual
reachability probability. We therefore support more general templates of the form

T =
∑
i

[Bi] · (αi · sent + βi · fail + γi) + [fail = 10] ,

where the Bi are (restricted) predicates over program and template variables
which partition the state space. In particular, we allow for a template such as

T = [fail < 10 ∧ sent < δ] · (α1 · sent + β1 · fail + γ1) +

[fail < 10 ∧ sent ≥ δ] · (α2 · sent + β2 · fail + γ2) + [fail = 10]
(3)

However, such templates are challenging for the CEGIS loop. Thus, we additionally
consider templates where the Bi’s range only over program variables, e.g.

[fail < 10 ∧ sent < 4 000 000] · (. . .) + [fail < 10 ∧ sent ≥ 4 000 000] · (. . .) + . . .

Our partition refinement algorithms automatically produce these templates,
without the need for user interaction.

Finally, we highlight that we may use our approach for more general questions.
For BRP, suppose we want to verify an upper bound λ = 0.05 on the probability of
failing to transmit all packages for an infinite set of models (also called a family)
with varying upper bounds on packets 1 ≤ P ≤ 8000000 and retransmissions
R ≥ 5. This infinite set of models is described by the loop shown in Fig. 3a. Our
approach fully automatically synthesizes the following inductive invariant I:

[
fail < R ∧ sent < P ∧ P < 8 000 000 ∧ R ≥ 5

∧ R > 1 + fail ∧ 13067990199
5280132671650

· fail ≤ 5278689867
211205306866000

]
·


−19

3820000040
· sent

+ 19
3820000040

· P
+ 19500001

1910000020


+ . . . (7 additional summands omitted)

The first summand of I is plotted in Fig. 3b. Since I overapproximates the
probability of failing to transmit all packages for every state, I may be used to
infer additional information about the reachability probabilities.
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3 Formal Problem Statement

Before we state the precise invariant synthesis problem that we aim to solve, we
summarize the essential concepts underlying our formalization.

Probabilistic Loops. We consider single probabilistic loops while (ϕ ) {C } whose
loop guard ϕ and (loop-free) body C adhere to the grammar

C −→ skip | x := e | C ; C | {C } [ p ] {C } | if (ϕ ) {C } else {C }
ϕ −→ e < e | ¬ϕ | ϕ ∧ ϕ e −→ z | x | z · e | e+ e ,

where z ∈ Z is a constant and x is from an arbitrary finite set Vars of N-valued
program variables. Program states in S = { s | s : Vars→ N } map variables to
natural numbers.9 All statements are standard (cf. [47]). {C1 } [ p ] {C2 } is a
probabilistic choice which executes C1 with probability p ∈ [0, 1] ∩Q and C2 with
probability 1− p. Fig. 2 (ll. 2–3) is an example of a probabilistic loop.

Expectations. In Sect. 2, we considered whether final states meet some target
condition by assigning 0 or 1 to each final state. The assignment can be generalized
to more general quantities in R∞≥0. We call such assignments f expectations [47]
(think: random variable) and collect them in the set E, i.e.

E =
{
f
∣∣ f : S → R∞≥0

}
, where f � g iff ∀ s ∈ S : f(s) ≤ g(s) .

� is a partial order on E – necessary to sensibly speak about least fixed points.

Characteristic Functions. The expected behavior of a probabilistic loop for an
expectation f is captured by an expectation transformer (namely the Φ : E→ E of
Sect. 2), called the loop’s characteristic function. To focus on invariant synthesis,
we abstract from the details10 of constructing characteristic functions from
probabilistic loops; our framework only requires the following key property:

Proposition 1 (Characteristic Functions). For every loop while (ϕ ) {C }
and expectation f , there exists a monotone function Φf : E→ E such that

Φf (I)(s) =

f(s), if s 6|= ϕ ,

“expected value of I after executing C once on s”, if s |= ϕ ,

and the least fixed point of Φf , denoted lfp Φf , satisfies(
lfp Φf

)
(s) = “expected value of f after executing while (ϕ ) {C } on s” .

9 Considering only unsigned integers does not decrease expressive power but simplifies
the technical presentation (cf. [16, Sect. 11.2] for a detailed discussion). We statically
ensure that for every assignment x := e, e always evaluates to some value in N.

10 We can (and our tool does) derive a symbolic representation of a loop’s characteristic
function from the program structure using a weakest-precondition-style calculus (cf.
[47]); see [12, Appx. A] for details. If f maps only to 0 or 1, Φf corresponds to the
least fixed point characterization of reachability probabilities [7, Thm. 10.15].
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Example 1. In our running example from Sect. 2.1, we chose as f the expression
[fail = 10], which evaluates to 1 in every state s where fail = 10 and to 0 otherwise.
The characteristic function Φf (I) of the loop in Fig. 2 is
[¬ϕ] · [fail=10] + [ϕ] ·

(
0.999 · I [sent/sent+1] [fail/0] + 0.001 · I [fail/fail+1]

)
,

where ϕ = sent < 8 000 000 ∧ fail < 10 is the loop guard and I [x/e] denotes the
(syntactic) substitution of variable x by expression e in expectation I – the latter
is used to model the effect of assignments as in standard Hoare logic. C

Inductive Invariants. For a probabilistic loop while (ϕ ) {C }, and pre- and
postexpectations g, f ∈ E, we aim to verify lfp Φf � g, i.e. that the expected value
of f after termination of the loop is bounded from above by g. We discuss how to
adapt our approach to expected runtimes and lower bounds in Sect. 6. Intuitively,
f assigns a quantity to all target states reached upon termination. g assigns to all
initial states a desired bound on the expected value of f after termination of the
loop. By choosing g(s) =∞ for certain s, we can make s so-to-speak “irrelevant”.
An I ∈ E is an inductive invariant proving lfp Φf � g iff Φf (I) � I and I � g.
Continuing our example, Eq. (2) on p. 5 shows an inductive invariant proving
that lfp Φf � g := [fail = 0 ∧ sent = 0] · 0.9 + [¬(fail = 0 ∧ sent = 0)] · ∞.

Our framework employs syntactic fragments of expectations on which the
check Φf (I) � I can be done symbolically by an SMT solver. As illustrated in
Fig. 1, we use templates to further narrow down the invariant search space.

Templates. Let TVars = {α, β, . . .} be a countably infinite set of Q-valued template
variables. A template valuation is a function I : TVars→ Q that assigns to each
template variable a rational number. We will use the same expressions as in
our programs except that we admit both rationals and template variables as
coefficients. Formally, arithmetic and Boolean expressions E and B adhere to

E −→ r | x | r · x | E + E B −→ E < E | ¬B | B ∧B ,

where x ∈ Vars and r ∈ Q∪TVars. The set TExp of templates then consists of all

T = [B1] · E1 + . . .+ [Bn] · En ,

for n ≥ 1, where the Boolean expressions Bi partition the state space, i.e. for all
template valuations I and all states s, there is exactly one Bi such that I, s |= Bi.
T is a fixed-partition template if additionally no Bi contains a template variable.

Notice that templates are generally not linear (over Vars ∪ TVars). Sect. 2
gives several examples of templates, e.g. Eq. (1).

Template Instances. We denote by T [I] the instance of template T under I, i.e.
the expression obtained from substituting every template variable α in T by its
valuation I(α). For example, the expression in Eq. (2) on p. 5 is an instance of
the template in Eq. (1) on p. 5. The set of all instances of template T is defined
as 〈T 〉 = {T [I] | I : TVars→ Q }. We chose the shape of templates on purpose:
To evaluate an instance T [I] of a template T in a state s, it suffices to find the
unique Boolean expression Bi with I, s |= Bi and then evaluate the single linear
arithmetic expression Ei [I] in s. For fixed-partition templates, the selection of
the right Bi does not even depend on the template evaluation I.
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Piecewise Linear Expectations. Some template instances T [I] do not represent
expectations, i.e. they are not of type S → R∞≥0, as they may evaluate to negative
numbers. Template instances T [I] that do represent expectations are piecewise
linear ; we collect such well-defined instances in the set LinExp. Formally,

Definition 1 (LinExp). The set LinExp of (piecewise) linear expectations is
LinExp = {T [I] | T ∈ TExp and I : TVars→ Q and ∀s ∈ S : T [I] (s) ≥ 0}.

We identify well-defined instances of templates in LinExp with the expectation in E
that they represent, e.g. when writing the inductivity check Φf (T [I])

?� (T [I]).

Natural Templates. As suggested in Sect. 2.3, it makes sense to focus only on
so-called natural templates. Those are templates that even have a chance of
becoming inductive, as they take the loop guard ϕ and postexpectation f into
account. Formally, a template T is natural (wrt. to ϕ and f) if T is of the form

T = [¬ϕ ∧B1] · E1 + . . .+ [¬ϕ ∧Bn] · En︸ ︷︷ ︸
must be equivalent to [¬ϕ] · f

+ [B′1] · E′1 + . . .+ [B′m] · E′m .

We collect all natural templates in the set TnExp.

Formal Problem Statement. Throughout this paper, we fix an ambient
single loop while (ϕ ) {C }, a postexpectation f ∈ LinExp, and a preexpectation
g ∈ LinExp11 such that lfp Φf (I) � g12. The set AdmInv of admissible invariants
(i.e. those expectations that are both inductive and safe) is then given by

AdmInv = { I ∈ LinExp︸ ︷︷ ︸
well-definedness: I�0

| Φf (I) � I︸ ︷︷ ︸
inductivity

and I � g︸ ︷︷ ︸
safety

} ,

where the underbraces summarize the tasks for a verifier to decide whether a
template instance I is an admissible inductive invariant. We require lfp Φf � g,
so that AdmInv is not vacuously empty due to an unsafe bound g.

Formal problem statement: Given a natural template T , find an instan-
tiation I ∈ 〈T 〉 ∩ AdmInv or determine that there is no such I.

Notice that AdmInv might be empty, even for safe g’s, because generally one
might need more complex invariants than piecewise linear ones [16]. However,
there always exists an inductive invariant in LinExp if a loop can reach only
finitely many states.13 We call a loop while (ϕ ) {C } finite-state, if only finitely
many states satisfy the loop guard ϕ, i.e. if Sϕ = { s ∈ S | s |= ϕ } is finite.

Syntactic Characteristic Functions. We work with linear expectations
I, f ∈ LinExp, so that we can check inductivity (Φf (I) � I) symbolically (via
SMT) without state space construction. In particular, we can construct a
syntactic counterpart Ψf to Φf that operates on templates. Intuitively, whether

11 To enable declaring certain states as irrelevant, we additionally allow Ei =∞ in the
linear preexpectation g = [B1] · E1 + . . .+ [Bn] · En.

12 We discuss in Sect. 6 how to reason about lower bounds g � lfp Φf (I).
13 Bluntly just choose as many pieces as there are states.
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we evaluate Ψf on a (syntactic) template T and then instantiate the result with
a valuation I, or we evaluate Φf on the (semantic) expectation T [I] emerging
from instantiating T with I – the results will coincide if T [I] is well-defined.
Formally:

Proposition 2. Given while (ϕ ) {C } and f ∈ LinExp, one can effectively
compute a mapping Ψf : TExp→ TExp, such that for all T and I

T [I] ∈ LinExp implies Ψf (T ) [I] = Φf

(
T [I]

)
.

Moreover, Ψf maps fixed-partition templates to fixed-partition templates.

In Ex. 1, we have already constructed such a Ψf to represent Φf . The general
construction is inspired by [14], but treats template variables as constants.

4 One-Shot Solver

One could address the template instantiation problem from Sect. 3 in one shot:
encode it as an SMT query, ask a solver for a model, and infer from the model an
admissible invariant. While this approach is infeasible in practice (as it involves
quantification over Sϕ), it inspires the CEGIS loop in Fig. 1.

Regarding the encoding, given a template T , we need a formula over TVars
that is satisfiable if and only if there exists a template valuation I such that T [I]
is an admissible invariant, i.e. T [I] ∈ AdmInv. To get rid of program variables
in templates, we denote by T (s) the expression over TVars in which all program
variables x ∈ Vars have been substituted by s(x).

Intuitively, we then encode that, for every state s, the expression T (s) satisfies
the three conditions of admissible invariants, i.e. well-definedness, inductivity, and
safety. In particular, we use Prop. 2 to compute a template Ψf (T ) that represents
the application of the characteristic function Φf to a candidate invariant, i.e.
Φf (T [I]) – a necessity for encoding inductivity.

Formally, we denote by Sat(φ) the set of all models of a first-order formula φ
(with a fixed underlying structure), i.e. Sat(φ) = {I | I |= φ}. Then:

Theorem 1. For every natural template T ∈ TnExp and f, g ∈ LinExp, we have

〈T 〉 ∩ AdmInv 6= ∅
iff Sat

(
∀s ∈ Sϕ : 0 ≤ T (s)︸ ︷︷ ︸

well-definedness

∧ Ψf (T )(s) ≤ T (s)︸ ︷︷ ︸
inductivity

∧ T (s) ≤ g(s)︸ ︷︷ ︸
safety

)
6= ∅ .

Notice that, for fixed-partition templates, the above encoding is particularly
simple: T (s) and Ψf (T )(s) are equivalent to single linear arithmetic expressions
over TVars; g(s) is either a single expression or ∞ – in the latter case, we get an
equisatisfiable formula by dropping the always-satisfied constraint T (s) ≤ g(s).

For general templates, one can exploit the partitioning to break it down into
multiple inequalities, i.e. every inequality becomes a conjunction over implications
of linear inequalities over the template variables TVars.
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Example 2. Reconsider template T in Eq. (3) on p. 6 and assume a state s with
s(fail) = 5 and s(sent) = 2. Then, we encode the well-definedness, T (s) ≥ 0, as(
5 < 10∧ 2 < δ ⇒ α1 · 2 + β1 · 5 + γ1 ≥ 0

)
∧
(
5 < 10∧ 2 ≥ δ ⇒ α2 · 2 + β2 · 5 + γ2 ≥ 0

)
where the trivially satisfiable conjunct 5 = 10⇒ true encoding the last summand,
i.e. [fail = 10], has been dropped. C

The query in Thm. 1 involves (non-linear) mixed real and integer arithmetic with
quantifiers – a theory that is undecidable in general. However, for finite-state
loops and natural templates, one can replace the universal quantifier ∀s by a
finite conjunction

∧
s∈Sϕ

to obtain a (decidable) QF LRA formula.

Theorem 2. The problem 〈T 〉 ∩ AdmInv
?

6= ∅ is decidable for finite-state loops
and T ∈ TnExp. If T is fixed-partition, it is decidable via linear programming.

5 Constructing an Efficient CEGIS Loop

We now present a CEGIS loop (see inner loop of Fig. 1) in which a synthesizer
and a verifier attempt to incrementally solve our problem statement (cf. p. 9).

5.1 The Verifier

We assume a verifier for checking I
?

∈ AdmInv. For CEGIS, it is important to get
some feedback whenever I 6∈ AdmInv. To this end, we define:

Definition 2. For a state s ∈ S, the set AdmInv(s) of s-admissible invariants is

AdmInv(s) = { I | I(s) ≥ 0︸ ︷︷ ︸
s-well-defined

and Φf (I)(s) ≤ I(s)︸ ︷︷ ︸
s-inductive

and I(s) ≤ g(s)︸ ︷︷ ︸
s-safe

} .

For a subset S′ ⊆ S of states, we define AdmInv(S′) =
⋂

s∈S′ AdmInv(s).

Clearly, if I 6∈ AdmInv, then I /∈ AdmInv(s) for some s ∈ S, i.e. state s is a
counterexample to well-definedness, inductivity, or safety of I. We denote the
set of all such counterexamples (to the claim I ∈ AdmInv) by CounterExI . We
assume an effective (baseline) verifier for detecting counterexamples:

Definition 3. A verifier is any function Verify : LinExp→ {true} ∪ S such that

1. Verify(I) = true if and only if I ∈ AdmInv, and
2. Verify(I) = s implies s ∈ CounterExI .

Proposition 3 ([14]). There exist effective verifiers.

For example, one can implement an SMT-backed verifier using an encoding
analogous to Thm. 1, where every model is a counterexample s ∈ CounterExI :

I /∈ AdmInv iff Sat
(
¬
(

0 ≤ I ∧ Φf (I) ≤ I ∧ I ≤ g
) )
6= ∅︸ ︷︷ ︸

∃s∈S : I /∈AdmInv(s)

.
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Algorithm 1: Template-Instance Synthesizer for template T

1 S′ ← ∅ ;
2 while SyntT (S′) 6= false do
3 I ← SyntT (S′) ;
4 result ← Verify(I) ;
5 if result = true then
6 return I ; /* Verifier returns true, we have I ∈ AdmInv */

7 S′ ← S′ ∪ {result} ; /* result is a counterexample */

8 return false ; /* 〈T 〉 ∩ AdmInv = ∅ */

5.2 The Counterexample-Guided Inductive Synthesizer

A synthesizer must generate from a given template T instances I ∈ 〈T 〉 which
can be passed to a verifier for checking admissibility. To make an informed guess,
our synthesizers can take a finite set of witnesses S′ ⊆ S into account:

Definition 4. Let FinStates be the set of finite sets of states. A synthesizer for
template T ∈ TnExp is any function SyntT : FinStates→ 〈T 〉 ∪ {false} such that

1. if SyntT (S′) = I, then I ∈ 〈T 〉 ∩ AdmInv(S′), and

2. SyntT (S′) = false if and only if 〈T 〉 ∩ AdmInv(S′) = ∅.

To build a synthesizer SyntT (S′) for finite sets of states S′ ⊆ S, we proceed
analogously to one-shot solving for finite-state loops (Thm. 2), i.e. we exploit

T [I] ∈ AdmInv(S′) iff I |=
∧
s∈S′

0 ≤ T (s) ∧ Ψf (T )(s) ≤ T (s) ∧ T (s) ≤ g(s)︸ ︷︷ ︸
T [I]∈AdmInv(s)

.

That is, our synthesizer may return any model I of the above constraint system;
it can be implemented as one SMT query. In particular, one can efficiently find
such an I for fixed-partition templates via linear programming.

Theorem 3 (Synthesizer Completeness). For finite-state loops and natural
templates T ∈ TnExp, we have SyntT (Sϕ) ∈ AdmInv or 〈T 〉 ∩ AdmInv = ∅.

Using the synthesizer and verifier in concert is then intuitive as in Alg. 1. We
incrementally ask our synthesizer to provide a candidate invariant I that is
s-admissible for all states s ∈ S′. Unless the synthesizer returns false, we ask
the verifier whether I is admissible. If yes, we return I; otherwise, we get a
counterexample s and add it to S′ before synthesizing the next candidate.

Remark 1. Without further restrictions, the verifier of Def. 3 may go into a coun-
terexample enumeration spiral. In [12, Appx. C], we therefore discuss additional
constraints that make this verifier act more cooperatively. C
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6 Generalization to Termination and Lower Bounds

We extend our approach to (i) proving universal positive almost-sure termination
(UPAST) – termination in finite expected runtime on all inputs, see [42, Sect. 6]
– by synthesizing piecewise linear upper bounds on expected runtimes, and to
(ii) verifying lower bounds on possibly unbounded expected values.

UPAST. We leverage Kaminski et al.’s weakest-precondition-style calculus for
reasoning about expected runtimes [44,45]:

Proposition 4. For every loop while (ϕ ) {C }, the monotone function

Θ : E→ E, Θ(I)(s) = 1 + Φ0(I)(s) ,

obtained from Φ0 (cf. Prop. 1) satisfies(
lfp Θ

)
(s) =

“expected number of loop guard evaluations
when executing while (ϕ ) {C } on s” .

All properties of Φ0 relevant to our approach carry over to Θ, thus enabling the
synthesis of inductive invariants I ∈ LinExp satisfying 0 � I and Θ(I) � I. Such I
upper-bound the expected number of loop iterations [44] and, since expectations
in LinExp never evaluate to infinity, I witnesses UPAST of the while-loop.

Lower Bounds. Consider the problem of verifying a lower bound g � lfp Φf

for some loop C ′ = while (ϕ ) {C }. It is straightforward to modify our CEGIS
approach for synthesizing sub-invariants, i.e. I ∈ LinExp with I � Φf (I). However,
Hark et al. [36] showed that sub-invariants do not necessarily lower-bound lfp Φf ;
they hence proposed a more involved yet sound induction rule for lower bounds:

Theorem 4 (Adapted from Hark et al. [36]). Let T be a natural template
and I ∈ 〈T 〉. If 0 � I, I � Φf (I), and C ′ is UPAST, then

∃ c ∈ R≥0 ∀ s ∈ Sϕ : Φf

(
|I − I(s)|

)
(s) ≤ c︸ ︷︷ ︸

I is conditionally difference bounded (c.d.b.)

implies I � lfp Φf .

Akin to Prop. 2, given T ∈ TnExp, we can compute T ′ ∈ TnExp s.t. for all I,

T [I] ∈ LinExp implies T ′ [I] = λs. Φf

(
|T [I]− T [I] (s)|

)
(s) ,

which facilitates the extension of our verifier and synthesizer (see Sect. 5) for
encoding and checking conditional difference boundedness. Hence, we can employ
our CEGIS framework for verifying g � lfp Φf by (i) proving UPAST of C ′ as
demonstrated above and (ii) synthesizing a c.d.b. sub-invariant I with g � I.

7 Empirical Evaluation

We have implemented a prototype of our techniques called cegispro214: CEGIS
for PRObabilistic PROgrams. The tool is written in Python using pySMT [34]

14 � https://github.com/moves-rwth/cegispro2
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Fig. 4: Performance of cegispro2 vs. state-of-the-art tools on three verification tasks
(time in seconds, log-scaled; MO=8GB). Markers above the solid line depict benchmarks
where cegispro2 is faster (in different orders of magnitude marked by the dashed lines).

with Z3 [49] as the backend for SMT solving. cegispro2 proves upper- or
lower bounds on expected outcomes of a probabilistic program by synthesizing
quantitative inductive invariants. We investigate the applicability and scalability
of our approach with a focus on the expressiveness of piecewise linear invariants.
Moreover, we compare with three state-of-the-art tools – Storm [39], Absynth
[50], and Exist [9] – on subsets of their benchmarks fitting into our framework.

Template Refinement. We start with a fixed-partition template T1 constructed
automatically from the syntactic structure of the given loop (i.e. the loop guard
and branches in the loop body, see e.g. Eq. (1)). If we learn that T1 admits no
admissible invariant, we generate a refined template T2, and so on, until we find
a template Ti with 〈Ti〉 ∩ AdmInv 6= ∅ or realize that no further refinement is
possible. We implemented three strategies for template refinement (including one
producing non-fixed-partition templates); see [12, Appx. D] for details.

Finite-State Programs. Fig. 4a depicts experiments on verifying upper bounds
on expected values of finite-state programs. For each benchmark, i.e. program
and property with increasingly sharper bounds, we evaluate cegispro2 on all
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template-refinement strategies (cf. [12, Appx. D]). We compare explicit- and
symbolic-state engines of the probabilistic model checker Storm 1.6.3 [39] with
exact arithmetic. Storm implements LP-based model checking (as in Sect. 4) but
employs more efficient methods in its default configuration. Fig. 4a depicts the
runtime of the best configuration. See detailed configurations in [12, Appx. E.1].

Results. (i) Our CEGIS approach synthesizes inductive invariants for a variety of
programs. We mostly find syntactically small invariants with a small number of
counterexamples compared to the state-space size (cf. [12, Tab. 2]). This indicates
that piecewise linear inductive invariants can be sufficiently expressive for the
verification of finite-state programs. The overall performance of cegispro2
depends highly on the sharpness of the given thresholds. (ii) Our approach can
outperform state-of-the-art explicit- and symbolic-state model checking techniques
and can scale to huge state spaces. There are also simple programs where our
method fails to find an inductive invariant (gridbig) or finds inductive invariants
only for rather simple properties while requiring many counterexamples (gridsmall).
Whether we need more sophisticated template refinements or whether these
programs are not amenable to piecewise linear expectations is left for future work.
(iii) There is no clear winner between the two fixed-partition template-refinement
strategies (cf. [12, Tab. 2]). We further observe that the non-fixed-partition
refinement is not competitive as significantly more time is spent in the synthesizer
to solve formulae with Boolean structures. We thus conclude that searching for
good fixed-partition templates in a separate outer loop (cf. Fig. 1) pays off.

Proving UPAST. Fig. 4b depicts experiments on proving UPAST of (possibly
infinite-state) programs taken from [50] (restricted to N-valued, linear programs
with flattened nested loops). We compare to the LP-based tool Absynth [50]
for computing upper bounds on expected runtimes. These benchmarks do not
require template refinements. More details are given in [12, Appx. E.2].

Results. cegispro2 can prove UPAST of various infnite-state programs from
the literature using very few counterexamples. Absynth mostly outperforms
cegispro215, which is to be expected as Absynth is tailored to the computation
of expected runtimes. Remarkably, the runtime bounds synthesized by cegispro2
are often as tight as the bounds synthesized by Absynth (cf. [12, Tab. 3]).

Verifying Lower Bounds. Fig. 4c depicts experiments aiming to verify lower
bounds on expected values of (possibly infinite-state) programs taken from [9].
We compare to Exist [9]16, which combines CEGIS with sampling- and ML-
based techniques. However, Exist synthesizes sub-invariants only, which might be
unsound for proving lower bounds (cf. Sect. 6). Thus, for a fair comparison, Fig. 4c
depicts experiments where both Exist and cegispro2 synthesize sub-invariants
only, whereas in Fig. 4d, we compare cegispro2 that finds sub-invariants only
with cegispro2 that additionally proves UPAST and c.d.b., thus obtaining
sound lower bounds as per Thm. 4. No benchmark requires template refinements.

15 Absynth uses floating-point arithmetic whereas cegispro2 uses exact arithmetic.
16 Exist supports parametric probabilities, which are not supported by our tool. We

have instantiated these parameters with varying probabilities to enable a comparison.
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Results. cegispro2 is capable of verifying quantitative lower bounds and outper-
forms Exist (on 30/32 benchmarks) for synthesizing sub-invariants. Additionally
proving UPAST and c.d.b. naturally requires more time. A manual inspection re-
veals that, for most TO/MO cases in Fig. 4d, there is no c.d.b. sub-invariant. One
soundness check times out, since we could not prove UPAST for that benchmark.

8 Related Work

We discuss related works in invariant synthesis, probabilistic model checking,
and symbolic inference. ICE [33] is a template-based, cex.-guided technique for
learning invariants. More inductive synthesis approaches are surveyed in [4,29].

Quantitative Invariant Synthesis. Apart from the discussed method [9], constraint
solving-based approaches [30,26,46] aim to synthesize quantitative invariants for
proving lower bounds over R-valued program variables – arguably a simplification
as it allows solvers to use (decidable) real arithmetic. In particular, [26] also ob-
tains linear constraints from counterexamples ensuring certain validity conditions
on candidate invariants. Apart from various technical differences, we identify three
conceptual differences: (i) we support piecewise expectations which have been
shown sufficiently expressive for verifying quantitative reachability properties;
(ii) we focus on the integration of fast verifiers over efficiently decidable theories;
and (iii) we do not need to assume termination or boundedness of expectations.

Various martingale-based approaches, such as [19,23,24,32,31,2,48], aim to
synthesize quantitative invariants over R-valued variables, see [55] for a recent
survey. Most of these approaches yield invariants for proving almost-sure termi-
nation or bounding expected runtimes. ε-decreasing supermartingales [19,20] and
nonnegative repulsing supermartingales [55] can upper-bound arbitrary reach-
ability probabilities. In contrast, we synthesize invariants for proving upper-
or lower bounds for more general quantities, i.e. expectations. [10] can prove
bounds on expected values via symbolic reasoning and Doob’s decomposition,
which, however, requires user-supplied invariants and hints. [1] employs a CEGIS
loop to train a neural network dedicated to learning a ranking supermartingale
witnessing UPAST of (possibly continuous) probabilistic programs. They also
use counterexamples provided by SMT solvers to guide the learning process.

The recurrence solving-based approach in [11] synthesizes nonlinear invariants
encoding (higher-order) moments of program variables. However, the underlying
algebraic techniques are confined to the sub-class of prob-solvable loops.

Probabilistic Model Checking. Symbolic probabilistic model checking focusses
mostly on algebraic decision diagrams [6,3], representing the transition rela-
tion symbolically and using equation solving or value iteration [8,37,53] on that
representation. PrIC3 [15] finds quantitative invariants by iteratively overapprox-
imating k-step reachability. Alternative CEGIS approaches synthesize Markov
chains [18] and probabilistic programs [5] that satisfy reachability properties.

Symbolic Inference. Probabilistic inference – in the finite-horizon case – employs
weighted model counting via either decision diagrams annotated with probabilities
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as in Dice [41,40] or approximate versions by SAT/SMT-solvers [21,22,27,54,17].
PSI [35] determines symbolic representations of exact distributions. Prodigy [25]
decides whether a probabilistic loop agrees with an (invariant) specification.

Data-Availability Statement The datasets generated during and/or analysed dur-
ing the current study are available in the Zenodo repository [13].
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Abstract. This paper describes the design and implementation of the
open-source tool Coyote for testing concurrent programs written in the
C# language. Coyote provides algorithmic capabilities to explore the
state-space of interleavings of a concurrent program, with deterministic
repro for any bug that it finds. Coyote encapsulates multiple ideas from
the research community to offer state-of-the-art testing for C# programs,
as well as an efficiently engineered implementation that has been shown
robust enough to support industrial use.

1 Introduction

Testing programs with concurrency is a challenging problem for developers. Con-
currency introduces non-determinism in the program, making bugs hard to find,
re-produce and debug [25,43]. In fact, concurrency is one of the main reasons
behind flaky tests [34] (tests that may pass or fail without any code changes),
causing a significant engineering burden on development teams [31]. As concur-
rency, in the form of multi-threading or distributed systems, is fundamental to
how we build modern systems, solutions are required to help developers test
their concurrent code for correctness.

There are two important challenges with testing concurrent programs. First
is the problem of reproducibility or control. By default, a programmer does not
have control over how concurrent workers interleave during execution.4 The only
programmatic control is through enforcing synchronization, but that is usually
not enough to guarantee that certain interleavings can be reproduced. The sec-
ond challenge is the state-space explosion problem. A concurrent program, even
with a fixed test input, can have many possible behaviors; in fact, there can be
exponentially many interleavings in terms of the length of the execution.
? Work was done while the author was at Microsoft Research.
4 Concurrency comes in many forms: threads, tasks, actors, processes, etc. We use the
term workers to abstractly refer to any of these forms.
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One line of work that attempts to solve these challenges is controlled con-
currency testing (CCT) [53]. This approach proposes taking over the scheduling
of concurrent workers and then using algorithms, either randomized or system-
atic, for searching over the space of interleavings. The former (i.e., taking over
scheduling) is typically an engineering challenge. It requires understanding the
language runtime and building solutions that are efficient, robust and usable.
The latter (i.e., searching over the space of interleavings) requires algorithmic
and empirical insights on finding bugs, and it has been the main topic of many re-
search publications (e.g., [43,42,55,32,54,10,40,13,53,16,41,48,19,56]). Both these
aspects are essential for industrial adoption.

In this paper, we describe the design and implementation of the open-source
tool Coyote [7] for controlled concurrency testing of C# programs. Coyote
aims to make testing of concurrent programs as easy and natural as testing of
sequential programs.

Usage Coyote was released on GitHub on March 2020, and since then its
release binaries have been downloaded from nuget.org over a million times.
The project has extensive documentation as well as tutorials for developers [8].
Coyote has been used internally in Microsoft for testing multiple differ-
ent services of the Azure cloud infrastructure. Through the use of lightweight
telemetry [9], we have consistently seen over three million seconds of testing each
month for the last 12 months, peaking at roughly 13 million seconds in a month.
Coyote testing has been invoked 71K times per month on average, reporting
around 10K test failures per month on average.

Coyote is also a testing backend for the P language [15], currently used in
Amazon for the analysis of several core distributed systems [5]. A P program is
compiled to a C# program and fed to Coyote for testing.

Contributions This paper covers the design decisions that were necessary for
supporting industrial usage. It is unreasonable to support all programs in a
language as broad as C#, so the focus of Coyote has been on the task asyn-
chronous programming (TAP) model [38] that is the recommended and most
common way of expressing concurrency and asynchrony in C#. Coyote encap-
sulates multiple state-space exploration techniques from the literature in order
to provide state-of-the-art testing to its users. Coyote is also designed to be
extensible, both in supporting other programming models (it already supports
an actor programming model [4,12] and support for threads is straightforward),
as well as other exploration strategies. This paper also describes a novel search
technique specifically for TAP and its evaluation on industrial benchmarks.

Historical journey The origin of the Coyote code base can be traced back
to an earlier system called P# [11] that defined a restricted (domain-specific)
programming model for communicating state machines. The P# system has since
then evolved into an actor framework that is still supported by Coyote, however
Coyote itself has generalized to focus on TAP, making it a very different tool
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compared to P#. Prior work with Coyote has either focused on exploration
strategies [48,40,39] or on applications [12,11,13], but not on the tool itself.

Coyote is useful for practitioners looking for industrial-strength tools (for
C#), as well as researchers interested in evaluating new exploration algorithms for
concurrency testing. This paper hopes to inspire and inform the reader towards
contributing new ideas, features, and case-studies to Coyote.

2 The Coyote Tool

The C# task asynchronous programming (TAP) model revolves around the Task
type that is used to encapsulate parallel computation. One can spawn a new task
to execute in parallel with its parent, wait on an existing task to finish, or query
for the result of a task once it has finished. Furthermore, the C# language offers
async and await keywords that make it very convenient to write efficient (non-
blocking) programs [37]. Similar features are also mainstream in other languages
such as Rust, Python, Javascript and Go, and even C++ has support for them.
Their semantics are fairly standard so we avoid them for space constraints, and
instead just illustrate using an example.

Fig. 1 shows a typical concurrency test that we will use as a running example
in this paper. The RunTest method creates two parallel tasks t1 and t2, waits
for them to finish and asserts some condition. A programmer can run this test
as-is with Coyote to find if the assertion can fail. There are two key points to
note about this example. First, its behavior is interleaving dependent. The loop
in SendMessages adds a string to the global list variable that is shared between
the two tasks, so its final value will have a mix of strings of the form aN and
bN, depending on the interleaving order. (This program has an unsynchronized
access to list, but let us assume for simplicity that operations on List are
atomic; in practice, one can guard these operations with locks). Second, while
this code seemingly only has two tasks, at runtime it can have up to a 100 tasks
created by the .NET runtime. The initial task created by SendMessages starts
executing the async lambda code, but when it hits the await point, the runtime
can (optionally) end the current task and spawn a new one to execute the rest
of the code after the awaited expression finishes. (This “magic” happens when
async methods get de-sugared by the C# compiler into state machines [52]. This
transformation is what allows the code to be non-blocking.) Note that the await
in this code can be hit 100 times (50 for each of the call to SendMessages). We
will revisit the complexity imposed by such implicit tasks, both for the tool to
take control (§4.1) and on space-space exploration later (§3.2); for now, we focus
on the user experience.

Coyote use is illustrated in Fig. 2. After the user compiles their C# program
containing one or more tests, they invoke the coyote rewrite command-line
tool to rewrite their binaries. This automatic rewriting adds instrumentation
to the original code to provide the necessary hooks and metadata for Coyote
to control the (task-based) concurrency in the program (§3). Next, the user
invokes the coyote test command-line tool to run their tests with the Coyote

435



List⟨string⟩ list = new ( );
 Task SendMessages (string prefix) {

    return Task.Run (async ( ) => {

        for (int val = 0; val < 50; val++) {
             list.Add (string.Concat (prefix, val));
             await Task.Yield ( );
        }
    });
}

async Task RunTest ( ) {

    Task t1 = SendMessages ("a");

    Task t2 = SendMessages ("b");

    await task.WhenAll (t1, t2);
    Assert.True (predicate (list));
}

Fig. 1: Example test code in C# with concurrency.
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Fig. 2: Developer workflow when using Coyote.

test engine. The engine runs each test repeatedly for a user-specified number of
iterations until a bug (failed assertion or unhandled exception) is found. The
engine uses the instrumented hooks to intercept the execution of all workers in
the test, and control them to allow only a single worker to execute at a time.
The exact choice of which worker to enable in each step is left to an exploration
strategy (§3.2).

When a bug is found, Coyote dumps out the sequence of all scheduling
decisions taken in that test iteration. The user can replay the test failure using
the coyote replay command, as many times as they like, with the C# debugger
attached to step through the test deterministically.

Architecture, Extensibility The architecture of Coyote is illustrated in
Fig. 3. The test engine exposes an instrumentation API used for declaring the
concurrency, and synchronization, used in the program (§3). For task-based pro-
grams, the experience is seamless because the rewriting engine takes care of
adding calls to this API automatically (§4). One can also add a custom runtime
to Coyote. For instance, Coyote supports an actor-based programming model
(to code at the level of actors instead of tasks) [12]. The actor runtime, in this
case, performs the necessary calls into the Coyote test engine, again providing
a seamless experience to users. For other programming models, say, a program
using threads directly instead of tasks, these calls must either be inserted man-
ually or a rewriting pass be added to Coyote to add these calls automatically
for threads. Exploration strategies are also defined by a simple interface that
makes it easy to implement multiple techniques.

The test engine is roughly 11K lines of C# code, the rewriting engine and
the actor runtime are 12K lines each, and Coyote is overall 45K lines of code.
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Fig. 3: The architecture of Coyote.

Coyote is heavily tested for robustness, with an additional 38K lines of code
of unit tests.

Limitations, Requirements Coyote requires a test to be deterministic mod-
ulo scheduling between workers. This implies that, for instance, the program
should not take a branch based on the current system time, or read data from an
external service or a file that may change outside the scope of the test. Coyote
also requires that tests be idempotent, that is, running the test twice has the
same effect as running it once. This is because Coyote runs a test multiple
times without re-starting the hosting process. Idempotence is easy to guarantee
by avoiding static variables. Violating these requirements can imply that replay
will fail. These are minor requirements, with users seldom complaining about
them in our experience so far.

A more significant requirement is that Coyote be able to control all the
concurrency created by a test. This may not happen when the program uses
an unsupported programming model, or a library that cannot be rewritten be-
cause, say, it includes native code, which is outside the scope of coyote rewrite.
Coyote has partial defenses against this: when it detects concurrent activity
outside its control, it tries to tolerate it by letting it finish on its own (§5), else
throws an error to make the user aware.

Coyote does not currently support the detection of low-level data races,
i.e., unsynchronized memory accesses, which can indicate concurrency bugs.
Race detection requires instrumentation at the level of individual memory ac-
cesses, which Coyote avoids for engineering simplicity and lower maintenance
costs. (Coyote only instruments at the level of task APIs or synchronization
operations.) Nonetheless, coyote rewrite is extensible, and the door is open
for any contributor to take on this responsibility and implement race detection
[22,49,23,51,50].
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interface Instrumentation
WorkerId OnWorkerCreated();
void OnWorkerStarted(WorkerId);
void OnWorkerCompleted(WorkerId);

void OnWorkerPaused(WorkerId,P);
void ScheduleNextWorker(WorkerId);
WorkerId GetCurrentWorkerId();

Fig. 4: The Coyote test engine instrumentation API.

Task Run (Action lambda) {

    WorkerId id = OnWorkerCreated ( );

    Task task = new Task (( ) => {

        // Control the executing task (worker).

        OnWorkerStarted (id);

        lambda ( ); // Execute the task lambda.
        OnWorkerCompleted (id);

        ScheduleNextWorker (id);

    });

    task.Start ( ); // Start the task concurrently.
    return task;
}

void WaitAll (IEnumerable⟨Task⟩ tasks) {

    // Get the worker id associated with the current task.

    WorkerId id = GetCurrentWorkerId ( );

    // Pause the current (task) worker until all the specified

    // tasks have completed their execution. Invoking this

    // API also calls ScheduleNextWorker to schedule a

    // worker that is not paused nor completed.

    OnWorkerPaused (id, ( ) => tasks.All(t => t.IsCompleted));

    // At this point, Coyote guarantees that the predicate passed

    // to OnWorkerPaused above evaluates to true, hence all

    // tasks have completed and we can return.

}


Fig. 5: Example wrappers for task creation (left) and waiting (right) that call
into the Coyote test engine.

3 Coyote Test Engine

3.1 Instrumentation API

Fig. 4 lists the core instrumentation API that must be called from the user
program to provide the Coyote test engine (CTE) with enough hooks for con-
trolling its concurrency. CTE itself does not have a first-class understanding of
TAP (or any programming model for that matter); all information about the
program comes through this API, which allows us to keep CTE simple, and also
allows easy addition of new programming models.

The instrumentation API takes inspiration from prior work [3] that demon-
strated the generality of the API, even outside of C#, at capturing different pro-
gramming models. Each worker created in the program must inform CTE when
it is created (OnWorkerCreated), when it starts running (OnWorkerStarted),
and when it completes (OnWorkerCompleted). A worker calls OnWorkerPaused
with a predicate P to notify CTE that it has paused its execution and will be-
come unblocked when P evaluates to true. For instance, when a worker pauses
to acquire a lock, then P becomes true when the lock is released by some other
worker. A worker calls ScheduleNextWorker to ask CTE to consider running a
different worker. A worker calls GetCurrentWorkerId to ask CTE for its unique
identifier.

Fig. 5 shows wrapper methods for task creation (Run) and waiting on the
completion of a set of tasks (WaitAll). These methods implement the original
semantics, but additionally call the instrumentation APIs to notify CTE. We
show this only for illustrating the instrumentation APIs. In practice, the devel-
oper does not have to add these calls. §4 demonstrates how the Coyote binary
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rewriting engine automatically inserts these calls to cover the broad TAP pro-
gramming model. An approach that creates a substitute method for each TAP
method does not scale. For actor-based programs, the Coyote actor runtime
takes care of calling the CTE without the need for binary rewriting.

Any time the program invokes CTE via one of these APIs (referred to as
a scheduling point or step), CTE blocks the current worker, then looks at the
list of workers that are enabled (by inspecting their pause-predicates, if any). It
will then query the exploration strategy to select one worker from this list. The
selected worker is unblocked (rest all workers remain blocked) and is allowed to
execute until it hits a scheduling point again, at which point control goes into the
CTE and the process repeats. This design, of sequentializing workers to execute
only one-at-a-time is fairly standard in CCT tools [3].

3.2 Exploration Strategies

Coyote decouples the concern of how to control workers from how to explore
their interleavings. The latter is the responsibility of the exploration strategy,
which is defined by a common interface. At its core, the interface has a single
method that accepts a list of enabled workers and must return one of them. With
most of the heavy lifting performed by CTE, exploration strategies are easy to
implement; the largest one is only 400 lines of code. Furthermore, at the time
the exploration strategy is invoked, all workers are in a blocked state (blocked
by the CTE). Some strategies (like QL and POS; see below) require inspection
of the program state. This can be done safely by the strategy without worrying
about racing with the program’s execution.

The random walk strategy (RW) picks an enabled worker uniformly at ran-
dom in each step. This simple strategy has been shown to be effective in practice
and argued as a necessary baseline for other strategies [53]. The PCT strategy
[10] implements a priority-based scheduler. When a worker is created, it is as-
signed a new randomly-generated priority. At a scheduling point, PCT always
picks the enabled worker that has the highest priority. In addition, at d times
during an execution (called the bug depth parameter, which is supplied by a
user-controlled configuration), PCT lowers the priority of the currently exe-
cuting worker to be the smallest. These d priority lowering points are picked
uniformly across the entire program execution. This priority-based nature helps
PCT induce long delays in workers, unlike RW that switches back-and-forth
between workers much more frequently.

Task-based PCT PCT was originally designed for multi-threaded programs.
Later work observed its shortcomings for distributed systems and proposed the
revised strategy called PCTCP [48]. We now discuss a novel adaptation of the
idea behind PCTCP to TAP in a strategy called PCTt.

Consider again the program of Fig. 1. Let us define the function predicate to
check that the string a49 does not appear before b0 in list. For the assertion in
this program to fail, an interleaving must essentially execute t1 to completion
before t2 gets a chance. The chance of RW producing this interleaving is tiny:
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around 1 in 250. If we imagine a thread-based scenario (ideal setting for PCT),
where RunTest created two threads instead of tasks, then PCT (with d = 0) has
50% probability of hitting this bug. This is because if the first thread is assigned
a higher priority, it will execute to completion before the second thread gets a
chance to execute. However, PCT, with priorities-per-task, is unable to find this
bug because of all the implicit tasks that get created at the await point (recall
§2). Each time a new task is created, it gets a new randomly-generated priority.
In effect, for this program, PCT behaves like RW.

PCTCP addresses this problem by constructing a partial order between
workers, where two workers w1 and w2 are ordered if the programming model
enforces that w2 must only start after w1 finishes. This partial order, constructed
on-the-fly during program execution, is then decomposed into chains, which are
totally-ordered subsets of the partial order. PCTCP then maintains priorities
per chain, not per worker. When a new worker starts, it gets assigned to a chain
(existing or a new one) and inherits the priority of the chain. PCTCP’s effec-
tiveness has only been demonstrated for distributed message-passing systems.

PCTt adapts the concept of chains for TAP. On the explicit creation of a task
(using Task.Run), it gets assigned to a new chain (hence, it gets a randomly-
generated priority). If a task t yields control by executing Task.Yield, the
continuation task is assigned to the same chain as t (hence, it inherits its prior-
ity). When a task t1 awaits another task t2 to complete, the continuation task
of t1 is assigned to the chain of t2 because the continuation can only execute
after t2 completes. (In reality, the continuation task is assigned to the chain of
the task that completes t2, because t2 may have its own continuations created.)
PCTt recovers the benefits of PCT; in our running example, only two chains
are created, and it can find the bug with a 50% probability.

Other strategies Coyote also implements a strategy based on reinforcement-
learning (QL) [40]. QL requires a partial hash (or fingerprint) of the program
state and then learns a model that maximize the number of unique fingerprints
seen during a test run. Increased coverage helps uncover more bugs. The partial
order sampling (POS) strategy [56] uses information about which workers are
racing with each other, i.e., they are about to access the same object (either a
memory location or a synchronization object). POS uses a priority-based sched-
uler like PCT, but instead of lowering priority at d chosen points, POS keeps
shuffling (i.e., re-assigning) priorities of racing workers at each step.

Other strategies available in Coyote are delay bounding (DB) [19] and vari-
ants of RW that use a biased coin. These strategies can also be combined either
in the same test iteration (run one strategy for certain number of steps, then
switch to running another strategy) or across iterations (pick a different strategy,
in a round-robin fashion, for each iteration).

Data non-determinism Exploration strategies also offer a means to generate
unconstrained boolean or integer values. Coyote exposes these APIs to develop-
ers, who can use them to express non-determinism in their program. An example
is when testing for the robustness of a program against faults. In this case, the
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developer can non-deterministically choose to raise a fault (like an exception or
return an error code) and check that their code can handle the fault correctly.
Other examples are non-deterministically firing timeouts, non-deterministically
choosing what method to call from a set of equivalent library methods, etc. Most
exploration strategies resolve this non-determinism uniformly at random, with
the exception of QL that tries to learn, alongside scheduling decisions, what
return values are able to maximize program coverage.

Liveness checking In addition to catching safety violations (assertion failures
and uncaught exceptions), Coyote can also check liveness properties where,
essentially, one asserts that every program run eventually makes progress. The
definition of progress is programmable, using the concept of liveness monitors
(variant of deterministic Büchi automata) borrowed from the P modeling lan-
guage [15]. A violation of a liveness property is an infinite run where no progress
is made. Testing cannot produce an infinite run, so instead Coyote looks for a
sufficiently long execution based on user-set thresholds [27,39]. Liveness proper-
ties are not rare. In fact, they are commonly asserted when testing distributed
services to check that the service eventually completes every user request [12].

Any exploration strategy can be used for liveness checking, as long as it is
fair, i.e., it does not contiguously starve an enabled worker for a long time. Un-
fairness can easily lead to liveness violations, but such violations are considered
false positives because they cannot happen in practice as system scheduling is
generally fair. RW is (probabilistically) fair, but PCT is not. Coyote con-
verts unfair strategies to fair ones by running them up to a certain number of
scheduling steps and then switching to use RW.

4 Automation for C# Task Asynchronous Programs

The style of instrumentation shown in Fig. 5 is not practical because there
are many ways in which lambdas and tasks can be created (some return a re-
sult on completion, some do not, and there are optimized variants of tasks like
ValueTask [45], etc.). Imposing directly on the creation process would be very
cumbersome. One must also be able to handle both explicit creation of tasks,
as well as the implicit creation that happens at await points. After much trial-
and-error, we arrived at an efficient solution that is simple and easy to main-
tain, even as C# itself evolves. We crucially rely on controlling task execution
through a narrow lower layer of abstraction in the .NET runtime called the
TaskScheduler [44]. We observed that whenever a task is created, it goes to the
.NET default task scheduler, which is then responsible for executing the task on
the .NET thread pool. This task scheduler can be subclassed, which we do as
shown in Fig. 6 (right). Coyote.TaskScheduler offers a convenient place to call
into the test engine, without requiring imposition on the creation of the task or
its lambda. The job of rewriting then is to route tasks to this scheduler instead
of the default task scheduler. We do this by defining simple wrapper methods
for Task APIs, and rewriting the user C# binaries to call the wrapper methods
instead of the original ones.
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class Coyote.TaskWrapper
state

TestEngine engine
Coyote.TaskScheduler scheduler

static Task Run(F func)
task← new Task(func)
scheduler.QueueTask(task)
return task

static void Wait(Task self)
id← engine.GetCurrentWorkerId()
P ← self.Status.IsCompleted
engine.OnWorkerPaused(id,P)
self.Wait()

class Coyote.TaskScheduler : TaskScheduler
state

TestEngine engine
ThreadPool pool // Managed by Coyote.

void QueueTask(Task task)
id← engine.OnWorkerCreated()
thread← pool.GetNextAvailableThread()
thread.Run(()→ ExecuteTask(task, id))

void ExecuteTask(Task task, WorkerId id)
engine.OnWorkerStarted(id)
base.RunInline(task) // Execute task inline.
engine.OnWorkerCompleted(id)
engine.ScheduleNextWorker(id)

Fig. 6: Wrapper methods for Task APIs (left) and the implementation of the
Coyote task scheduler (right).

Fig. 6 (left) illustrates static wrapper methods for Task.Run and Task.Wait.
Notice that on TaskWrapper.Run, no modification to the lambda (func) is re-
quired. A task gets created as usual, then gets enqueued to the Coyote task
scheduler, which, in turn, executes the task with appropriate calls to the test
engine (ExecuteTask). This solution piggybacks on the RunInline functionality
that the default scheduler also uses. The TaskWrapper.Wait method adds the
call to OnWorkerPaused.

What about implicitly created tasks? This required more digging into the
C# compiler to understand the compilation of async methods to state machines
[52]. Fortunately, all we required is to identify the point where continuation tasks
are created by these state machines, and instead call a wrapper method (similar
to TaskWrapper.Run) that enqueues the task to the Coyote task scheduler.

4.1 Binary Rewriting for C# Tasks

Binary rewriting is necessary to provide a push-button experience for Coyote
on TAP programs. In C#, code gets compiled into the Common Intermediate
Language (CIL) [17], which is an object-oriented machine-independent bytecode
language that can run on top of the .NET runtime in any supported operating
system (Windows, Linux and macOS). Each compiled C# program consists of
one or more CIL binaries. Each binary contains an assembly, which is a unit of
functionality implemented as a set of types (these can be exposed publicly to be
consumed by other assemblies). Each type might contain members such as fields
and methods, and so on.

We implemented the binary rewriting engine on top of Cecil [46], an open-
source .NET library that provides a rich API for rewriting CIL code. The rewrit-
ing engine architecture is illustrated in Fig. 7. The engine loads all program
binaries from disk to access the CIL assemblies in-memory, topologically sorts
them (to ensure that dependencies are processed first), and then traverses each
assembly (using the visitor pattern) to apply a sequence of CIL rewriting passes,
where each pass focuses on a different type of instrumentation.
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Instrumentation Engine
Assembly Loader

Assembly Writer

Rewritten

CIL


Binaries

Original

CIL
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...Pass 1 Pass 2 Pass N

interface Pass
void VisitAssembly(AssemblyInfo);
void VisitType(TypeDefinition);
void VisitField(FieldDefinition);
void VisitMethod(MethodDefinition);
void VisitVariable(VariableDefinition);
void VisitInstruction(Instruction);
void CompleteVisit();

Fig. 7: The architecture of the Coyote rewriting engine (left). The interface of
a CIL rewriting pass (right).

Each rewriting pass implements the Coyote Pass interface, which is listed in
Fig. 7. The rewriting engine visitor will traverse the CIL assembly and invoke the
corresponding pass method for each encountered type, field, method signature,
as well as each variable and instruction in each method body.

Built-in Rewriting Passes Coyote implements and invokes in-order the fol-
lowing four passes: type rewriting pass, task API rewriting pass, async rewriting
pass, and inter-assembly invocation rewriting pass. The type rewriting pass is re-
sponsible for replacing certain C# system library types in the user program with
corresponding drop-in-replacement types that are implemented by Coyote. The
replacement types implement exactly the same interface as the original types,
and invoke the original methods to maintain semantics, but are instrumented
with callbacks to the Coyote test engine. Some examples of replaced types are:
(1) System.Threading.Monitor type, which implements the lock statement in
C#, and (2) the System.Threading.Semaphore type that is another variant of
a lock. The Coyote versions of these types invoke the test engine to notify it
when a worker acquires or releases a lock. These two are the synchronization
primitives that Coyote supports by default, in addition to Task APIs. Adding
support for more synchronization requires adding another type rewriting pass.

The task API rewriting pass inserts calls to the Coyote.TaskWrapper wrap-
per type, as discussed earlier. The async rewriting pass is similar, except for
wrapping APIs that create implicit tasks. Finally, the inter-assembly invocation
rewriting pass is responsible for identifying invocations in the code that are made
across CIL assembly boundaries, where the target assembly is not rewritten by
Coyote. Coyote adds instrumentation to detect (and tolerate) uncontrolled
concurrency (see §5).

New passes that implement the Pass interface can be easily integrated in
the current pipeline of passes, allowing power users to extend coyote rewrite
for custom rewriting (e.g., to support controlling a new synchronization type
without having to manually use the Coyote instrumentation API).

Design Considerations We decided to target CIL for instrumentation in-
stead of doing it at the level of ASTs. This helps reduce the instrumentation
scope because the CIL instruction set is much smaller than C# surface syntax.
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Furthermore, CIL changes infrequently (last update was in 2012 [17]), and we
can target pre-compiled binaries without access to their source code.

5 Additional Features

Partially-Controlled Exploration As mentioned in §2, Coyote requires
tests to be deterministic modulo the concurrency that it controls. This require-
ment can be broken when the test creates a worker without reporting it to
the Coyote test engine, which impacts the ability of Coyote to reproduce
an execution. This can happen when using APIs outside of the TAP program-
ming model or by calling into a library that has not been rewritten. Partially-
controlled exploration allows the controlled part of a program to be tested with
high-coverage, even when interacting with an uncontrolled part. In fact, Coyote
recommends to developers that they should only rewrite their test binaries as
well as the binaries of their production code, but leave the binaries of any exter-
nal dependencies unmodified (to be handled by partially-controlled exploration).

During partially-controlled exploration, Coyote will treat any un-rewritten
binaries as “pass-through”, and their methods are invoked atomically from the
perspective of the tool. In this testing mode, Coyote sequentializes the exe-
cution of the controlled workers, as usual, and if a controlled worker invokes a
method in an un-rewritten binary, or waits on a task that was earlier returned by
a method from a non-rewritten binary, or invokes an unsupported low-level C#
concurrency API, then Coyote detects this and invokes ScheduleNextWorker
to explore a scheduling decision. Instead of immediately trying to choose a con-
trolled worker to schedule, Coyote uses a (tunable) heuristic that gives a chance
to wait for the uncontrolled task or invocation to first complete, before trying to
resolve the scheduling decision. This is important because instead of regressing
coverage, it allows Coyote to cover scenarios where completing the uncontrolled
task or invocation first results in new states of the state space being available
for exploration.

Setting max-steps Some tests can be potentially non-terminating, i.e., some
executions of the test will go on forever. Non-termination comes naturally when
a program has spinloops or polling loops (loops that keep going until some condi-
tion is met), or when they are unavoidable, as in consensus protocols like Paxos
or Raft that cannot avoid the existence of infinite executions. coyote test pro-
vides the option of setting a bound on the length of a test iteration in terms of
the number of scheduling points that it hits. This bound is supplied with the
max-steps flag. The test engine keeps a count of the number of scheduling points
in the current iteration. When it hits the max value, the test engine throws an
exception in all of the workers (that would currently be blocked by the engine).
This exception essentially kills the worker by propagating all the way up to the
test harness, where it is caught by the engine. Once all workers are killed, the
engine starts the next iteration.

This solution, of throwing an exception to kill a worker, only works when
the worker does not catch the exception to try and resume the execution. All
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exceptions in C# must derive from the System.Exception type, and a construct
like catch(Exception) will catch all exceptions. Coyote gets around this prob-
lem by using a binary rewriting pass that edits all catch statements to disallow
catching of Coyote exceptions.

Thread-safety violations A thread-safety violation occurs in a program
when it concurrently invokes some library API that is not designed to be
thread safe. Prior work showed the prevalence of such errors in .NET pro-
grams when accessing data structures such as dictionaries and lists in the
System.Collections.Generic namespace [33]. These data structures do not
offer thread safe APIs. (In concurrent scenarios, one should instead use the data
structures in System.Collections.Concurrent namespace.)

Coyote offers the ability to catch such errors. It implements a rewriting pass
that replaces such a data structure, say Dictionary, with a drop-in replacement
type WrapperDictionary. The latter keeps tracks of concurrent (write-write or
write-read) accesses and throws an exception when there are two such simulta-
neous accesses. The exception causes Coyote to report a test failure.

Actor runtime Coyote offers a library, inspired from the P# [11] line of work,
that allows a developer to use actors to express concurrency in their program.
Actors, when created, run concurrently with respect to other actors. They con-
tinue to be alive unless explicitly halted. Each actor has an inbox where it listens
for messages from other actors and processes them in a FIFO order. Several pro-
duction systems have been build with Coyote’s actor framework [12]. The actor
runtime takes care of calling the test engine instrumentation APIs at the appro-
priate points, such as when creating an actor or sending a message to another
actor. Hence, no rewriting is required. The Coyote test engine treats tasks and
actors the same way, allowing a developer to freely mix the two programming
models, i.e., test programs that use both actors and tasks.

6 Evaluation

Our evaluation covers three experiments, each on a different set of benchmarks.
Each benchmark is a concurrent program with a known bug. We measure the
effectiveness of Coyote by the number of times that it is able to hit the bug
within a fixed number of test iterations. For each benchmark, we report its
degree of concurrency (DoC), defined as the maximum number of simultaneously
enabled workers, and the number of scheduling decisions (#SD), i.e., number of
times the exploration strategy is invoked on average per test iteration.

The first experiment compares the performance of PCTt against PCT on
task-heavy programs. We took a proprietary production service of Microsoft,
which we call ProdService. The service runs as part of the Azure platform;
it is roughly 54K lines of C#, and is designed to be highly-concurrent for high
throughput. The owning engineering team were routinely running Coyote on
multiple concurrency tests. We took an intermediate version of this service and

Industrial-Strength Controlled Concurrency Testing for C# Programs 445



Table 1: Results on ProdService tests. Degree of concurrency varied from 5
to 16, and the number of scheduling decisions varied from 94 to 1054.

Test# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

RW 1 1 7 7 7 7 7 7 1 4 7 7 7 1 1 1 4 7 4 7 7

PCT 46 3 7 7 7 7 7 7 30 17 2 1 1 1 2 7 5 1 1 8 7

PCTt 119 159 49 2 5 5 11 8 43 59 8 11 7 72 71 7 50 7 7 45 1

Table 2: Results from testing buggy protocol implementations. Number of test
iterations was set to 10K, except for FailureDetector and Paxos that used 100K
iterations. PCT, PCTt and DB use the bound d = 10.

Exploration Strategies

Benchmarks DoC #SD RW PCT PCTt DB POS QL

P
ro

to
co

ls ChainReplication 9 620 7 22 13 1 7 7

Chord 7 223 1715 557 1185 537 2782 1533
FailureDetector 6 115 7 37 1 11 2 1
Paxos 11 217 7 5 2 10 1 7

Raft 18 798 166 18 88 7 204 7

ran all tests with RW, PCT and PCTt, each with 1000 iterations each. There
were a total of 111 tests, out of which 21 tests reported a failure (i.e., bug) with
some strategy. The comparison is shown in Table 1. (We actually ran both PCT
and PCTt with multiple different values of the d parameter, and selected the
best among them for each strategy; this value turned out to be d = 10 for both.)

Table 1 shows superior performance of PCTt. It is able to find 17 test failures,
compared to 13 for PCT and 9 for Random. Furthermore, on tests that failed
with both PCT and PCTt, the latter found the bug 9 times more often (geo
mean). We observe that these tests created many tasks, roughly 277 tasks (geo
mean) in each test iteration, which throws off PCT. With PCTt, the number of
chains was 6 times smaller (geo mean). Running these 21 tests for 1000 iterations
each takes roughly 50 min (wall clock) on a 16 core AMD EPYC (2.6Ghz) VM,
running Ubuntu 20.04 on Azure, when utilizing 14 threads on the machine to
run tests in parallel.

The second experiment is on buggy protocol implementations from prior work
[48,40], shown in Table 2. This experiment evaluates a wider range of strategies.
Three schedulers (PCT, PCTt and DB) find all the bugs, but none is a clear
winner. A combination of schedulers is likely required for reliably finding bugs
in a small number of iterations.

The final experiment is to show that Coyote is indeed state-of-the-art by
comparing against other tools. We did not find any other CCT tool for C#, so
we instead took an established benchmark suite SCTBench [53] of C/C++ pro-
grams that use pthreads for concurrency, and manually ported some of them
to C# (Table 3), replacing pthreads APIs with Task APIs. These benchmarks
have potentially racy shared variables, so we implemented an experimental bi-
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Table 3: Results on SctBench with 10K test iterations. PCT uses the d = 3
and DB uses the d = 5 bound. Numbers in parenthesis report performance on
the same benchmark-strategy pair from a different CCT tool (Maple) [56].

Exploration Strategies

Benchmarks DoC #SD RW PCT DB POS QL

S
c
t
B

en
c
h

bluetooth_dr... 2 18 598(628) 281(597) 651 610(847) 402
deadlock01_bad 3 12 3132(3668) 994(1714) 1717 4436(3315) 2856
queue_bad 3 53 10000(9999) 8212(1415) 9387 9737(9999) 10000
reorder_10_bad 52 238 7(7) 18(14) 7 2568(308) 7

reorder_20_bad 111 515 7(7) 4(27) 7 2526(1709) 7

reorder_5_bad 27 121 1(18) 36(110) 7 2591(668) 34
token_ring_bad 5 31 1305(1245) 1303(1717) 403 1640(1724) 1552
twostage_bad 15 115 192(806) 146(1959) 6 7440(1212) 273

nary rewriting pass in Coyote that adds scheduling points on heap accesses,
to ease the porting exercise. A direct comparison with prior tools is difficult be-
cause there can still be subtle differences in how scheduling points get inserted.
Regardless, we note that numbers for POS are roughly in agreement with its
original paper [56] and numbers for PCT and RW are in agreement with a prior
empirical study [53]. (Note that PCTt is identical to PCT on these benchmarks
because there are no task continuations.) Our implementation of POS performs
better than the original one, but the original implementation is unavailable for
us to make a more accurate assessment. This comparison is useful to ground
Coyote with respect to related work.

The code and scripts to run all the non-proprietary experiments from this
paper are available as an artifact on Zenodo [14].

7 Related Work

The term controlled concurrency testing (CCT) was coined only recently [53] but
it inherits its roots from stateless model checking (SMC) that was popularized
by VeriSoft [24]. Stateful approaches require the ability to record the state of
an executing program; this is hard to achieve for production code, consequently
stateful checking tools [26,6] are often applied to models of code that are written
in custom languages. SMC/CCT, on the other hand, only record the sequence
of actions taken during an execution, making them the technique of choice for
directly testing code written in commercial languages (like C#).

Research in SMC/CCT can further be classified in two categories. One cat-
egory is of exhaustive techniques, where the goal is to explore the entire state-
space of a program (in reality, it is the state-space of a fixed test that invokes
a bounded workload on the program), and obtain a verified verdict. Exhaustive
techniques are based on the notion of partial order reduction (POR) [24] that
constructs equivalence classes of executions so that only one exploration per
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equivalence class is required [35]. Recently, this line of work has produced sev-
eral tools, such as CDSChecker [47], GenMC [30], and Nidhugg [2], that have
demonstrated value in verifying concurrency primitives (e.g., latches, mutex im-
plementations) and concurrent data structures, especially when considering weak
memory behaviors [1,28,29].

The other category for SMC/CCT are techniques aimed towards bug-finding.
These techniques are either bounded (i.e., aim to explore only a subset of the
executions) or randomized or both. By lowering expectations (i.e., not insisting
on covering the entire state-space), these techniques can be applied on larger
systems. We have discussed several instances of these techniques throughout this
paper. The first work that popularized bug-finding was the notion of context-
bounded exploration [41]. Coyote borrows heavily from this line of work on
bug-finding techniques, which is evident in the set of exploration strategies that
it supports. Implementing POR-based strategies is possible; the POS strategy
already takes Coyote in this direction. The absence of exhaustive techniques
has (so far) not been felt by users of Coyote, likely because the usage scenarios
have neither focused on weak memory behaviors (more present in C/C++ rather
than C#), nor on verifying concurrent data structures. Nonetheless, supporting
POR-based techniques remains an important direction for future work.

Related to the idea of CCT for bug-finding are noise-injection-based tech-
niques [21,20,18]. These techniques rely on perturbing the execution of a con-
current program by injecting noise such as sleep statements, which force the
execution to explore alternative interleavings. Unlike CCT, no control is re-
quired on concurrent workers, hence these techniques have simpler engineering
requirements. However, the tradeoff is that the loss of control implies that the
ability to explore specific interleavings, such as what PCT requires, is reduced.
The ANaConDA tool has successfully demonstrated noise-injection in an indus-
trial setting [21]. It can be interesting to explore the use of noise injection to
provide coverage in portions of code that are not controlled by Coyote.

The CHESS tool [41], to the best of our knowledge, was the only other CCT
tool to support C#. CHESS is currently not in a usable state. It was designed
prior to the popularity of TAP in C#, thus had no special support for tasks.
In terms of implementation, it occupied a different design space than Coyote.
It relied on interception of C# threading APIs and redirecting them to custom
mocks. Maintenance of these mocks was an engineering cost. Furthermore, the
interception technology relied on a framework [36] that also went out of support.
This showcases that the complexity of supporting C# must be met with good
engineering, built on stable frameworks. Coyote is also more extensible, both
in terms of programming frameworks, as well as exploration strategies.
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Abstract. We show how to generate a constraint system of symbolic
expressions as part of an inter-procedural constraint-system–based pro-
gram analysis such that any chosen slice of the intended analysis may
be computed through the evaluation of the symbolic constraints. Thus,
our method ensures that the computed expressions provide genuine ex-
planations for the chosen analysis slice.The resulting system is then an-
notated with program location information, translated into closed-form
expressions, and simplified to yield a human-readable justification for
the analyzer’s verdict. Justifications are given using program locations,
constants from the program, abstract lattice operations, loops in the
analysis, and computed results.

Keywords: Program analysis, Data-flow analysis, Constraint systems,
Abstract domains, Explainability

1 Introduction

When a program analysis tool identifies a flaw in the program, it is often possi-
ble to produce a counterexample execution trace that is useful for debugging the
program. As noted by the founders of model checking, “it is impossible to overes-
timate the importance of this feature” [13]. In contrast, when a sound analyzer
verifies the absence of errors, it does not produce an equivalent human-readable
artifact to explain this verdict. The challenge is to explain why a property holds
along all possible executions of the program in a way that is understandable to
users of the tool.

Fig. 1: Explanation in IntelliJ IDEA.

A simple example of explaining an
invariant is seen in Fig. 1, where the
code inspection of IntelliJ IDEA ex-
plains the reason for a boolean guard
being always false. This is elegant, and
we aim to generalize this idea to ex-
plain verdicts that rely on inductive in-
variants. IntelliJ does not explain more
complicated analyses than simple con-
stant propagation.
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Fig. 2: Explanation generated for Interval Analysis by the Põder analyzer.

The usability aspects of sound static analyzers deserve more research atten-
tion, especially as decades of work have been put into the more technical aspects
of analysis theory and tool design. Empirical studies suggest that poor explain-
ability of analysis results is as serious an obstacle as false positives in preventing
the wider adoption of static analysis tools [12, 22, 28]. We take a first step in this
direction by providing a general framework for explaining abstract interpreters.
We then instantiate this framework to generate explanations for interval analy-
sis with widening and narrowing iterations. A prototype implementation of our
approach is avaliable in the static analysis framework Põder1. In the Fig. 2 we
see the results of Põder analyzing a Java bytecode program. On the right-hand
side, the solved interval value of the field x on line 17 is shown together with rea-
soning on how the value was computed. The example program and its (interval)
analysis is explained in Section 4 (Example 1); the justification is explained in
Section 6.

Explanations for simple analyses can be useful in practice. In our previous
work on static analysis for Linux device drivers [34], we spent countless hours
determining why the analyzer claimed that a portion of the code is definitely
unreachable. Rather than relying on ad-hoc methods to trace the computation
of the analyzer, we aim to build an analyzer with explainability as a core consid-
eration. We identify two desirable functional requirements that a framework for
explainable static analysis should satisfy:

Result consistency. Computing explanations should not influence the result
of the actual analysis.

1 Avaliable via artifact[6] or bitbucket: https://bitbucket.org/kalmera/poder.
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Explanation Consistency. The explanation should be semantically consistent
with the result of the analysis.

The key contribution of this paper is a framework for explainable analysis that
prioritizes explanation consistency. The analysis will operate with symbolic ex-
pressions, which can be directly translated into explanations, and crucially, the
result of the analysis is based on evaluating these expressions. This ensures ex-
planation consistency by construction.

The proposed method fits into the framework of A2I (also called meta-abstract
interpretation) described by Cousot et al. [18]. A simplified view of A2I is that
the analysis is divided into two instances of abstract interpretation: a meta-
analysis and an underlying-analysis. The benefit of this approach is that one
can reason about the soundness of the meta-analysis with the same formalism
as the analysis itself. In our case, the meta-analysis generates analysis expres-
sions and the underlying analysis evaluates them.

The structure of the paper. We introduce the formal setting in Section 2, and
give abstract definitions for explainable analysis in Section 3. The main con-
tribution is introduced via an example in Section 4 — transforming interval
analysis to additionally gather interval expressions. Several examples are pre-
sented. The post-processing of generated expressions into closed form is shown
in Section 5. In Section 6, we discuss our prototype implementation in Põder.
Next, in Section 7 we discuss limitations of the current implementation and pos-
sibilities for applying our approach in various settings. Related work is described
in Section 8, after which we conclude.

2 Data-flow Analysis

A program is a set of functions Fun containing main. Each function f P Fun is
represented by its Control Flow Graph (Nf , Ef , fbegin, fend) where Nf is a finite
set of program points and Ef Ď Nf ˆ LˆNf is the set of labeled edges pu, l, vq.
Each function has a unique source fbegin and a unique sink fend. The label set
L represents program statements including (but not limited to) function calls as
well as conditional guards. We assume that CFG nodes of distinct functions are
distinct, so we can leave out subscripts from Nf and Ef .

A complete lattice pD, Ďq is a partial order that for each set D1 Ď D has
a least upper bound

Ů

D1 [9]. We know that any complete lattice must have a
unique least element K :“

Ů

H and a unique greatest element J :“
Ů

D.
A constraint system is a set of variables V where each variable v P V may be

constrained using pĎq by an expression fv over variables V . The expression fv
is formalized as a function pV Ñ Dq Ñ D. A (partial) mapping σ : V Ñ D is a
(partial) solution to a constraint system if for all variables v in the domain of σ
it holds that σpvq Ě fvpσq.

Let S denote the set of all possible concrete program states. We can for-
mulate the collecting semantics for the set of states reachable by the program,
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using the functional approach [33] to include states reachable through inter-
procedurally valid paths only. The constraint system variable rv, ds consists of a
program point v P Nf together with sets of program states d, representing states
at the beginning of the function f . For each d P 2S “ D we have constraints:

rfbegin, ds Ě d @f P Fun

rv, ds Ě vewpru, dsq @e “ pu, l, vq P E

rv, ds Ě
ď

d1Pru,ds

combf pd1, rfend, enterf pd1qsq @e “ pu, x :“fp. . .q, vqPE

The value of a constraint system variable rfbegin, ds is the set of states that
reach the beginning of f with the assumption that the start of f can be reached
in states d. Thus, the first constraint is trivial. For non–function-call edges a
distributive transfer function v¨w : E Ñ p2S Ñ 2Sq is applied which translates
labels to transformations of program state sets. For calls to f P Fun in edges
e “ pu, x :“fp. . .q, vq P E two distributive functions are used: entere and combe.
First, caller states are translated to callee starting states using entere : S Ñ S,
and then caller states together with called function end-states are translated to
returning states using combe : S Ñ 2S Ñ 2S .

Given the least partial solution σ, the set of reaching states for each program
point u is the union of values of σru, ds that rmainend, d0s (recursively) depends
on. Note that we prefer partial solutions over total solutions as we want to avoid
unreachable contexts. Thus, we have for each CFG node the set of program
states that this node may be reached with. We have proven partial correctness
if erroneous states can not be reached. Reachable program state sets, however,
are in general not practically computable. So instead of sets of states, we use a
different complete lattice so that a single abstract value describes a whole set of
concrete program states.

The correspondence of program states and the chosen complete lattice ele-
ments is formalized using a description relation p∆q Ă S ˆD [32], i.e., we write
s ∆ d if the program state s P S is described by the abstract state d P D. We
require that the least element K should not describe any program state and the
greatest element J must describe all concrete program states. The description
relation must also reflect the ordering of the lattice: s ∆ d1 ^ d1 Ď d2 ùñ

s ∆ d2. For sound analysis we require an abstract version of semantics function
that agrees with concrete semantics:

s∆ d^ s1 P vewptsuq ùñ s1 ∆ vew7pdq

s∆ d^ s1 ∆ d1 ^ s2 P combf ps, s1q ùñ s2 ∆ comb7
f pd, d

1q

s∆ d ùñ enterepsq∆ enter7epdq

For non-recursive programs, the most precise partial solution is computable
if D does not contain infinite ascending chains. In the case of ascending chains,
we can find a partial solution that is not necessarily the most precise [4]. Either
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way, any partial solution is a sound over-approximation of the collecting seman-
tics. Thus, we have proven partial correctness if the computed partial solution
does not contain any abstract state that describes a concrete error state.

As a side-note, if program graphs contain an equivalent of dynamic goto
instructions, full CFG-s might be impractically large. Then it is advantageous to
explore the CFG lazily starting from mainbegin, for example, using the function
next : N Ñ D Ñ 2LˆN that gives for each node n and abstract state d the set of
reached nodes and their corresponding edge labels from n [33]. For manageable-
sized CFG-s, an off-the-shelf local solver can also be used in practice to produce
the partial solution [2, 31].

3 Meta-analysis for explanations

Data-flow analysis with finite number of constraint system variables can be suc-
cinctly formalized as a single vectorized constraint

x̄ Ě F 7
ppx̄q (1)

where a post-fixpoint of F 7
p contains true statements about the program p. In

general, there is no easy way to succintly explain how a member of the vector
x̄ is computed without expensive inspection of the function F 7

p . Instead, we
propose to apply meta-abstract interpretation and split the analysis into two
constraints

ȳ Ě G7
ppx̄q

x̄ Ě E7px̄, ȳq
(2)

where, first, the function G7
p generates expressions and, second, the function E7

evaluates the generated expressions.

Definition 1 (Result & Explanation Consistency). Let x̄1 be a solution of
System 1, and pȳ2, x̄2q be a solution of System 2. We say the result is consistent
iff x̄1 “ x̄2. And the explanation is consistent iff x̄2 “ E7px̄2, ȳ2q. Jointly, these
properties ensure that ȳ2 is a valid explanation for the computation of x̄1.

The functions G7
p and E7 must be implemented in a way that guarantees re-

sult consistency — explanation consistency is guaranteed by construction for
the least solution. As the resulting construction is in the form of a constraint
system, it may be combined with other constraint system based analyses into
a single constraint system. Thus, the analysis designer can choose to generate
explanations about the (sub-)analysis where it is considered beneficial.

One standard example of a complete lattice is the box domain — a mapping
from program variables to integer intervals. For this domain, the analysis pro-
duces bounds for integer variables that may be used to warn the user if array
accesses are not within bounds. In practice, however, programs use dynamic lan-
guage features such as function pointers, dynamic memory, multi-threading, etc.
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and more information must be stored in the domain than just intervals. Thus,
we should also show how interval analysis can use and provide information to
other analyses. In the next section, we propose a process to modify an analysis
to that effect.

4 Transforming the box domain

We start with a functional approach [33] analysis where the domain D consists
of an arbitrary “helper” analysis domain H and the box domain.

D “ H ˆ pVar Ñ IqK

The box domain can either be K, meaning that the program point is not reach-
able, or a function that maps program variables to inclusive integer intervals
ra, bs. The lower (upper) bound a (b) can be an integer or negative (positive) in-
finity. We can assume that the lower bound is not larger than the upper bound.
The lattice order is defined pointwise with the exception that K is the least
lattice element. For any context d P D, the constraint for the analysis are the
following:

rfbegin, ds Ě d @f P Fun
rv, ds Ě vew7pru, dsq @e “ pu, l, vq P E

rv, ds Ě comb7
epru, ds, rfend, enter7epru, dsqsq @e “ pu, x :“fp. . .q, vq P E

First, the starting point of the function is constrained by the value in the
context. The second and third constraints deal with non-call edges and function
call edges, respectively. The constraint system is analogous to the constraint
system for concrete semantics with the exception that the argument of enter7
and the first argument of comb7 represent state sets instead of one particular
state.

1

2

3

4

5

6

x = 0;
y = 0;

x<100
x>=100

x++;evalInt(x);
evalInt(y);

(a) Control Flow Graph.

void foo() {
x = 0;
y = 0;
for (x<100) {
x++;

}
evalInt(x);
evalInt(y);

}

(b) Java code.

# n Hn xn yn

1 2

this
not

escaped

rrr0,0sss rrr0,0sss
2 3 rrr0,0sss rrr0,0sss
3 4 rrr1,1sss rrr0,0sss
4 2 rrr0,888sss r0, 0s
5 3 rrr0,99sss r0, 0s
6 4 rrr1,100sss r0, 0s
7 2 rrr0,100sss r0, 0s
8 5 rrr100,100sss rrr0,0sss
9 6 rrr100,100sss rrr0,0sss

(c) Solver steps.

Fig. 3: Interval analysis of a program with a loop.
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Example 1. Consider the Java method foo in Fig. 3a and 3b. First, two fields
are initialized to the value 0. The field x is incremented in the loop, but the field
y is left as is. At the end, field values are printed using the evalInt method.
We assume that the helper analysis may conclude that the object pointed to
by this will not be visible to other threads. Until a reference to the object
escapes to other threads, we can be sure that no other access to these fields can
happen during the call to foo. Solving steps are shown in Fig. 3c, where the
abstract values of fields x and y at program point m are referred to as xm and
ym, respectively.

Thanks to the helper analysis, we know that the object pointed to by this
will not be visible to other threads and, thus, we may consider fields x and y as
local variables. At the final node, the value of x is 100 and y is zero. Bold font in
Fig. 3c emphasizes a change to the solver variable. The analysis uses widening
and narrowing [15] to reach the least partial solution in nine steps.

For novice program analysis tool users, seeing only the final result, it might
not be clear how values for x and y are derived. Other users might complain
that for iterations 4 to 7, the values for y and H are re-computed unnecessarily.
In the following sections, we aim to remedy such issues.

4.1 A naive approach to adding expressions

To add interval expression information for each program point we, instead of D,
use the domain D1 consisting of the helper analysis domain, interval expressions,
and interval values.

D1 “ H ˆ pVar Ñ E7qK ˆ pVar Ñ IqK

For abstract expressions we use values in the form joinpSq P E7 where S P 2E is
a set of expressions defined using the following grammar:

E ::“ rN,D1,Vars |FpE˚q | J

The ordering is defined as joinpXq Ď joinpY q :“ J P Y _ X Ď Y . The vari-
able rn, d, xs (written as xn in the examples where the context can be inferred)
refers to the value of the program variable x in program point n in context d.
Furthermore, an expression can be unknown (J) or an n-ary function from the
set F together with its argument expressions. It is assumed that F contains
interval constants as nullary functions. The expression mapping k P Var Ñ E7

can be evaluated for each variable evaluation ρ P N ˆ D1 ˆ Var Ñ I using
vkw7

Epρq “ λx .vkpxqw7
Epρq where

vjoinpSqw7
Epρq “

ğ

tvsw7
Epρq | s P Su

vJw
7
Epρq “ r´8,8s

vfps1, . . . , snqw
7
Epρq “ fpvs1w

7
Epρq, . . . , vsnw

7
Epρqq

vrn, d, xsw7
Epρq “ ρpn, d, xq

This analysis can be implemented directly using the functional approach,
i.e., the previously discussed constraint system with the domain D1 instead of D.
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The transfer functions need to be extended such that the expressions perform
the same operations as the analysis performs on the interval values.

# n Hn xn yn vxnw
7
E vynw

7
E

1 2

this
not

escaped

0\\\ x4 0\\\ y4 rrr0,0sss rrr0,0sss
2 3 x2 [[[ rrr´́́888,99sss y2 rrr0,0sss rrr0,0sss
3 4 x3 `̀̀ 1 y3 rrr1,1sss rrr0,0sss
4 2 0\ x4 0\ y4 rrr0,888sss r0, 0s
5 3 x2 [ r´8, 99s y2 rrr0,99sss r0, 0s
6 4 x3 ` 1 y3 rrr1,100sss r0, 0s
7 2 0\ x4 0\ y4 rrr0,100sss r0, 0s
8 5 x2 [[[ rrr100,888sss y2 rrr100,100sss rrr0,0sss
9 6 x5 y5 rrr100,100sss rrr0,0sss

Fig. 4: Analysis of program in Fig. 3a using the domain D1.

Example 2. When analyzing the program form Fig. 3a using the domain D1, we
get the iterates shown in Fig. 4. The interval values stay the same w.r.t. analysis
using D. In addition, we obtain an interval constraint system for integer pro-
gram variables. The unknown xn signifies the interval state of program variable
x in the program point n. Note that without the helper analysis we would need
to handle potential write operations from other threads. In general, we have
gathered the information on how interval values are computed at each step, but
the overview is still lacking. As the expressions refer to several variables, the
correspondence and correctness may not be immediately apparent. Also, note
that we have increased the amount of unnecessary re-computation (in non-bold
font).

4.2 A more sophisticated approach to adding expressions

The naive approach has two downsides which we aim to overcome. First, we
tackle the issue that a buggy analysis may output inconsistent expressions and
interval values. Furthermore, a function would be analyzed for each expression
and value at the start point, i.e., context, not only for each distinct value. This
is excessive as the analyzed program can only access the numeric value — not
the way values were computed — and therefore cannot behave differently based
on it. Thus, we only store interval values as the context so that the expressions
at the start of the function will have literal values.

We use three kinds of constraint system variables instead of triples to reduce
unnecessary re-computation. First, helper analysis variables ru, ds1 with values
from the domain H which corresponds to the first components of ru, ds. Second,
expression map variables ru, ds2 with values from the domain pVar Ñ E7qK, and
finally, interval map variables ru, ds3 with values from the domain pVar Ñ IqK.
Interval values are computed from interval expression by evaluation as follows;
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thus guaranteeing that they will agree w.r.t. the solution.

rv, ds3 Ě λx. vrv, ds2pxqw
7
Epλ pu, d1, yq. ru, d1s3pyqq v P N ^ d P D

The constraints for non-function-call labels for any d P D are as follows

rfbegin, ph, kqs1 Ě h @f P Fun
rfbegin, ph, kqs2 Ě k @f P Fun
prv, ds1, rv, ds2q Ě vew7ppru, ds1, ru, ds3q, dq @e “ pu, l, vq P E

Note that the transfer function does get the expression component as a parame-
ter and does not contribute directly to the interval component. Also, the current
calling context is passed on to the function so that it is able to reference vari-
ables for this context in the expression component. The calling context may not
be used for any other purpose. In addition, we have constraints for any d P D
and for function call edges e “ pu, x :“fp. . .q, vq P E:

prv, ds1, rv, ds2q Ě let h, k “ enter7epru, ds1, ru, ds3, dq in
let d1 “ ph, λx. vkpxqw7

Epλ pu, d1, yq. ru, d1s3pyqqq in
comb7

epru, ds1, ru, ds3, rfend, d
1s1, rfend, d

1s3, d, d
1q

Neither enter7e nor comb7
e depend directly on the expression component and do

not contribute directly to the interval component. In addition to the caller call-
ing context, the new context is passed on to comb7

e. We assume that the contexts
are used only in the expression component to reference variables in the respec-
tive contexts. Thus, if the generation of expressions also does not depend on
interval values, they will be computed alongside the helper analysis and do not
add iteration steps.

The correctness condition of interval analysis with interval expression can be
stated w.r.t. plain interval analysis: the produced expressions must evaluate to
intervals that describe all possible states from the collecting semantics. I.e., for
any state s P rv, cs in collecting semantics, we must ensure that it is described
by the analysis s∆ prv, ds1, rv, ds3q where context are related c∆ d.

The above is ensured by the framework if the transfer functions are trans-
lated into corresponding symbolic expressions. Given an edge e, and the original
sound abstract function vew7

I , we now need corresponding symbolic representa-
tions, e7. Ignoring detail, in order to ensure result consistency, it is sufficient for
our symbolic transfer function to satisfy the condition that ve7w

7
E must compute

the same result as vew7
I . Similar conditions can be given for inter-procedural

analysis functions enter7 and comb7. The detailed sufficient conditions for result
consistency are stated in the following lemmas.

Lemma 1 (Intra-Procedural Result Consistency). Given for all d P D
and pu, e, vq P E where e7 “ vew7ppru, ds1, ru, ds3q, dq2 only contains variables
preceding program point u and context d such that its evaluation ve7w

7
Epλ_.ru, ds3q

is equal to the original interval analysis vew7
Ipru, ds1, ru, ds3q—then the results of

the original intra-procedural analysis and transformed analysis are consistent.
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# n Hn xn yn

1 2 not
escaped

0\\\ x4 0\\\ y4

2 3 x2 [[[ rrr´́́888,99sss y2

3 4 x3 `̀̀ 1 y3

4 5 x2 [[[ rrr100,888sss y2

5 6 x5 y5

# n vxnw
7
E vynw

7
E

1 2 v0\ x4w
7
Epρq “ rrr0,0sss v0\ y4w

7
Epρq “ rrr0,0sss

2 3 vx2 [ r´8, 99sw7
Epρq “ rrr0,0sss vy2w

7
Epρq “ rrr0,0sss

3 4 vx3 ` 1w7
Epρq “ rrr1,1sss vy3w

7
Epρq “ rrr0,0sss

4 2 r0, 0s∇v0\ x4w
7
Epρq “ rrr0,888sss v0\ y4w

7
Epρq “ r0, 0s

5 3 vx2 [ r´8, 99sw7
Epρq “ rrr0,99sss vy2w

7
Epρq “ r0, 0s

6 4 vx3 ` 1w7
Epρq “ rrr1,100sss vy3w

7
Epρq “ r0, 0s

7 2 r0,8s∆v0\ x4w
7
Epρq “ rrr0,100sss v0\ y4w

7
Epρq “ r0, 0s

8 5 vx2 [ r100,8sw
7
Epρq “ rrr100,100sss vy2w

7
Epρq “ rrr0,0sss

9 6 vx5w
7
Epρq “ rrr100,100sss vy5w

7
Epρq “ rrr0,0sss

Fig. 5: Example analysis of using separate components of the domain D1.

Lemma 2 (Inter-Procedural Result Consistency). In addition to the as-
sumptions of Lemma 1, we require that the generated function entry state s7 “

enter7epru, ds1, ru, ds3, dq2 evaluates to the same value as in the original analy-
sis, i.e., vs7wEpλ_.ru, ds3q “ enter7e,Ipru, ds1, ru, ds3q. Finally, the generated func-
tion return state r7 “ comb7

epru, ds1, ru, ds3, rfend, d
1s1, rfend, d

1s3, d, d
1q2 must

evaluate to the same value as in the original analysis, i.e., vr7wEpλ_.ru, ds3q “
comb7

e,Ipru, ds1, ru, ds3, rfend, d
1s1, rfend, d

1s3q. Then the results of the inter-procedural
original analysis and transformed analysis are consistent.

A demand-driven constraint system solver would alternate between generat-
ing and evaluating expressions, yielding online meta-abstract interpretation [18].
Offline meta-abstract interpretation could be achieved when the generation of
expressions does not depend on or even query the results of the expressions’
evaluations. A demand-driven constraint system solver could first generate all
expressions and then, independently, evaluate them.

Example 3. The analysis of the running example using our most recent con-
straint system that separates the helper, expression, and interval components of
D1 is shown in Fig. 5. The analysis in this example produces expressions based
on the helper analysis — interval values are not queried. Thus, we can first
compute all object-escape information and interval expressions, and only then
interval values. We have decreased the amount of unnecessary re-computation
(in non-bold font), but clarity for the analysis user is still lacking. We note that
we can eliminate unnecessary re-computation altogether by distributing inter-
val computations of different program variables to separate constraint system
unknowns [5].
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vlfppfqw7
Epρq Ď kp∆, kp∇, vfpKqw

7
Epρqqq where

kpl, xq :“

#

kpl, xl vfpxqw7
Epρqq, if x ‰ vfpxqw7

Epρq

x, otherwise

Fig. 6: Over-approximating lfp using widening and narrowing.

5 Obtaining closed-form expressions

We saw from the previous example that the generated constraint system is not
very clear. Thus, as a post-processing step, we may want to produce closed
expressions E 1 Ą E7 that compute the respecting values. For that, we need to
encode the least upper bounds as uninterpreted function calls (join P F) and
add the least fixpoint operator that takes a lambda expression as an argument.

E 1 ::“ rN,D1,Vars | FpE 1˚q | J | lfppλ x. E 1q

The extended expressions E 1 need not form a complete lattice as it is only
used as output. Also, we need to note that the expressions we generate speci-
fies the least (partial) solution of a constraint system, i.e., the smallest element
of the lattice that over-approximates the concrete collecting semantics. And for
that reason we make use of the least fixpoint expressions lfppfq, the meaning
of which can be described as vlfppfqw7

Epρq “
Ů

nPNvf
npKqw

7
Epρq. The least over-

approximations are not computable in general, e.g., generic constraint system
solvers also do not aim to compute the least fixpoint but some nontrivial fix-
point. For a domain with infinite ascending chains, a fixpoint can be computed
using an ascending iteration using widening followed by a descending iteration
using narrowing [15], as shown in Fig. 6. Though, for Noetherian domains, it
suffices to have a single precise ascending iteration.

To get closed expressions, we need to inline constraints in such a way that re-
cursion is captured using the fixpoint operator lfp. For that we define a substitu-
tion function substpe, ρq where e P E 1 is an expression, ρ P pN ˆD1 ˆ Varq ãÑ E 1

is a partial map from variables to expressions that are to be substituted.

substpJ, ρq “ J

substpgpe1, . . . , enq, ρq “ gpsubstpe1, ρq, . . . , substpen, ρqq
substplfppλ x. eq, ρq “ lfppλ x. substpe, ρ´ txuqq

substprxs, ρq “

$

’

&

’

%

rxs if x R dompρq

let e “ substpρpxq, ρ´ txuq in
if x P FVpeq then lfppλ x. eq else e

otherwise

No further substitution is required in case the expression is J. For function
application, we recursively perform substitution in the arguments. For fixpoint
expressions, we use recursion while decreasing the partial map ρ by the formal
parameter x. For variables rxs, we first determine whether substitution is needed.
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x2
“ 0\ ppx2

[ r´8, 99sq ` 1q

x6
“ x2

[ r100,8s
(3)

x6
“ lfppλ z. 0\ pz [ r´8, 99sq ` 1q [ r100,8s (4)

y6
“ lfppλ z. 0\ zq “ 0 (5)

vx6
w

7
Epρq “ pp0∇r0, 1sq∆r0, 100sq [ r100,8s “ r100, 100s (6)

Fig. 7: Simplified interval expressions and evaluation for our running example.

We perform no substitution if x is not a key in ρ. If x maps to e1 in ρ, we first
perform the substitution in e1 to obtain a closed form; however, we remove x
from ρ to ensure termination. Next, if x is still free in the result of the recursive
substitution e2, we return lfppλ x. e2q. If, however, x is not free in e2 we can, as
an optimization, directly return e2.

The justification for using substitution for expressions is given in Lemma 3
that states that substitution retains the least solutions. Using widening and
narrowing in conjunction with substitution is not predictable as widening and
narrowing are not necessarily monotonic. However, any solution is still a sound
over-approximation of the least solution.

Lemma 3. Given a constraint system ρ with the least solution σ such that a
constraint x Ě fx in ρ implies that x maps to vfxw

7
Epσq in σ. Then for any subset

of constraints ρ1 Ď ρ and expression e we have

vsubstpe, ρ1qw
7
Epσ ´ dompρ1qq “ vew7

Epσq

Proof. Using structural induction, the J case is trivial. Function application
and fixpoint iteration cases are applications of the induction hypothesis if we
can conclude that substituted variables will not be free after substitution. Sim-
ilarly, the first case of rxs is trivial. For the second case in rxs, we see that the
evaluation of e using σ will be equal to the value σpxq and if x is not free in e
then we have shown our goal. If, however, x is free in e then we can conclude
that lfppλ x. eq will be equal to σpxq as σ is the least solution. [\

Example 4. For our running example in Fig. 3a we have computed interval ex-
pressions for each program point in Fig. 5. Results shown in Fig. 7: inlining can
produce (based on preference) recursive definitions for x2 and x6 (3) or a single
non-recursive definition that uses the lfp operator (4). We see that the expres-
sion for y6 can be simplified to constant zero (5). The evaluation of x6 yields the
expected result of exactly one hundred (6).

The function subst can be used to inline all constraints at once to generate
a closed expression or, using some custom strategy, to generate a more compact
constraint system. For using generated expressions to explain the resulting in-
terval values in a user-friendly way, we may want to inline all variables except
function or method calls. As a corollary of Lemma 3, we then have explanation
consistency for the least solutions of the closed forms and the interval analysis.

K. Apinis and V. Vojdani464



12 void foo() {
13 x = 0;
14 y = 0;
15 for (x<100)
16 x += 1;
17 P6der.evalInt(x);
18 P6der.evalInt(y);
19 }

İ value 100 due to condition “at least 100” on line 15
İ range r0, 100s due to a loop on line 15 on field x

starting with: value 0 due to constant on line 13
İ cycle with:

İ range r1, 100s due to operation IADD
İ parameter 1:

İ range r0, 99s due to condition “at most 99”
range r0, 100s due to field x at line 15

parameter 2: value 1 due to constant on line 16

Fig. 8: Reproduction of the explanation provided by Põder from Fig. 2.

Theorem 1 (Consistency Closed-Form Explanations). For any program
point v P N and any context d P D, the inlined version of expression rv, ds2
describes the least possible interval value of rv, ds3, even if the computed interval
is an over-approximation.

6 Usability and Experimental implementation

Displaying analysis expressions to the user is a challenge. First, the size of the
expressions might be overwhelming for non-trivial programs. Instead of asking
the user to grasp the whole expression at once, we should formulate the ex-
pression in a way that can be followed step by step. Second, the syntax should
be intuitively understandable but sufficiently precise. The terminology should
be programmer centric such that it avoids unnecessarily theoretic and program
analysis specific terms. This could be fine-tuned based on user studies. Third,
the sub-expressions should relate to the analyzed source code in a clear fashion
so that knowledge from the expression can be used to better understand the
code.

To investigate these usability issues further, we prototyped the proposed
analysis method in a new Java bytecode analyzer called Põder. The tool has a
source-code view and a control-flow-graph view which may be inspected while
stepping through the analysis. Analysis results are presented in a collapsible
tree-view, which may be examined by selecting a line in the source-code or
selecting a node in the CFG.

Fig. 2, at the start of the paper, is a screenshot of Põder after it has com-
pleted the analysis of the code from Fig. 3. For easier readability, we have repro-
duced this explanation in Fig. 8. When the line 17 from OInt.java is selected
by the user, the value of the field x is shown as 100 on the right.

The full explanation of the value in field y, which was not updated in the
loop, is “value 0 due to constant on line 14”. We note that the loop has been
optimized away as shown in Fig. 7. The full explanation of the value in field x
is also shown in Fig. 8, even though initially the explanation of the value is par-
tially collapsed at the level of “range [1,100] due to operation IADD”. Leaving
the loop is only possible with a value no less than 100. Before that, a loop is
entered with a constant value of 0 and each cycle performs an addition opera-
tion. The second addend is the constant one while the first addend is the value
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İ range r0,`infs due to loop in class OIntBad on field x.
starting with: value 0 due to constant

İ cycle with:
İ range r1,`infs due to operation IADD

parameter 1: range r0,`infs due to field x at the head of the loop in the class OIntBad.
parameter 2: value 1 due to constant.

Fig. 9: Explanation for field x if this may escape.

of x at the head of the loop, satisfying the condition for entering the body, i.e.,
it is less than 100. Selecting a line from the explanation highlights its source in
the source-code view. In the screenshot the line “range r1, 100s due to operation
IADD” is selected by the user, after which the source of the operation, at line
16, is highlighted in the source-code view.

Now let us consider other programs than our running example. Suppose we
need to explain a value returned from a method call a = add(5,20). In that
case, the explanation will list explanations of parameters, the returned range,
and the line of the called method in the source code where the user can find
the explanation of that method’s return. Next, we look at the case where foo is
called on an object that may be visible to other threads — this happens, e.g.,
when its reference is written to a static field. In such a general case, the analysis
handles the object fields context- and flow-insensitively [30]. Thus, guard con-
straints will not have an effect and the result for field x is r0,`8s. Furthermore,
because of flow-insensitivity, the loop materializes in the fields’ value and not
directly because of the loop in method foo. The generated explanation is given
in Fig. 9.

7 Generalizability

The problem of explaining the absence of warnings is challenging, especially
from a usability perspective. Our experimental implementation shows that gen-
erating explanations for simple inductive invariants is possible. We will now ad-
dress questions of generalizability to larger programs and state-of-the-art anal-
yses where one may require more fine-grained explanations of the computation
and the employed domains are more complex.
Large Programs. While we have focused here on simpler programs where the
explanation is brief and all related program points are close to each other.
The implementation can handle inter-procedural explanations, and we include
an inter-procedural example in the replication package. Explanations may thus
span multiple different files, and the explanation tab allows convenient naviga-
tion between these files. The limitation of experimental implementation is that
it lacks state-of-the-art abstractions for the analysis of real-world Java programs.
As symbolic domains are employed by many real-world analyzers [11, 20, 25], the
runtime overhead is not a significant bottleneck. Our method generalizes well to
larger programs; the main difficulty is explaining more complex analyses.
Complicated Computations. State-of-the-art analyzers handle a wide array of
programming languages features, such as dynamic memory allocation and thread
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j `̀̀ 1 ăăă len
overflow check at line

3

i ěěě 0 ^̂̂ j ăăă len ´́́ 1 ´́́ i
invariant at line 3

j ăăă len ´́́ 1 ´́́ i
guard from line 2

i ěěě 0
invariant at line 1

i “““ 0
fact from line

1
i``

operation at line 1

(a) Explanation graph.

1 for (i=0; i<len-1; i++)
2 for (j=0; j<len-1-i; j++)
3 if (A[j+1] < A[j]) {
4 int tmp = A[j];
5 A[j] = A[j+1];
6 A[j+1] = tmp;
7 }

(b) Analyzed code.

Fig. 10: Bubble sort array bound example.

creation. The analysis is, therefore, built from a combination of domains [17].
Thus, a new abstract value is computed at each step, first, based on the com-
putation for each individual domain, and then, refinement operations are ap-
plied (e.g., reduced products) and integrated with the previous state using more
complex widening/narrowing operations that may interact with thresholds and
counters.

While the general framework supports any granularity, obtaining more fine-
grained explanations requires extending the explanation vocabulary with sym-
bolic operations for low-level operators such as threshold widenings and reduced
products. There are serious implementation and usability challenges to obtain
readable explanations for complex computations. As we focused on how to ex-
plain simpler invariants to end users, we leave the issue of explaining more com-
plex computations as an open problem in explainable static analysis.

Relational Domains. Filtering out relevant information happens naturally for
pointwise domains such as the box domain. For each program variable, we col-
lect only expressions that affect that variable. So, for justifying the value of
a variable, we just need the expression for that variable. No such natural slic-
ing occurs for relational domains where one program variable may depend on
other program variables. Thus, the explanation of a relational value must filter
out unnecessary information as a post-processing step taking into account the
computed solution.

We have not yet worked out a general algorithm that generates arbitrary
explanations for relational domains. However, as an example, consider a polyhe-
dral analysis of the Bubble sort algorithm in Figure 10b, where we picked one
specific bound condition j ` 1 ă len on line 3 to check. The hand-computed
explanation is in Figure 10a, where the queried condition is explained using rel-
evant parts of the invariant i ě 0 ^ j ă len ´ 1 ´ i for line 3. The explanation
of a part of an invariant may refer to other invariants, basic facts, or statements
from the program, as seen on Figure 10a. We note that validity of the explana-
tion is not trivial to see, but it nevertheless captures exactly how the analyzer
inferred that the access is not outside the array bounds.
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8 Related work

There has been work in recent years to address usability issues and improve the
understandability of static analysis results [26, 28]. These mostly focus on ex-
plaining analysis warnings. Zhang et al. [35] present an interactive approach to
eliminating false alarms of a sound race detection analysis by applying more ag-
gressive and potentially unsound heuristics. Facts about the program inferred by
the analyzer are translated into human-readable queries that the user can con-
firm or reject; however, the aim is not to explain how the results were computed,
which is the emphasis of our work.

Combining abstract interpretation [15] and partial evaluation [24] has been
considered to the effect of improving partial evaluation [14, 23]. As an alter-
native to generating constraints explicitly, partial evaluation can also be used
in the context of constraint-based program analyses [3]. Though, partial evalua-
tion does not allow direct inspection of the intermediate result and has, at times,
unpredictable runtime behavior. In the context of partial evaluation of logic pro-
gram analysis, improved precision and performance has been achieved [29] —
though not with the goal of producing more explainable analyses. Recently, par-
tial evaluation of Horn clauses has been used for control-flow refinement [19] to
increase precision and make implicit control-flow explicit.

Cousot and Cousot [16] has described how sound program transformation
can be formalized within abstract interpretation in a general uniform language-
independent framework. The correctness of transformation is an orthogonal is-
sue w.r.t. the goals of this paper. Most other applications of meta-analysis focus
on reasoning and quantifying precision loss [10, 21], which is again orthogonal
to the explainability of the fixpoint computation.

Another related approach has been the drive to generate proof objects, wit-
nesses, as evidence for the verdict of the analyzer. For error verification, coun-
terexample witnesses [8] may be generated based on the inspection of expression
information to minimize the set of paths required to reach an error state. For
correctness, analyzers can output their computed invariants, which can be vali-
dated by other analyzers [1, 7, 27]. Being able to produce some artifact as evi-
dence for successful verification is also our goal, but we aim here for explanation
that humans find understandable and convenient to navigate.

Finally, we note that symbolic domains [11, 20, 25] are also used to express
properties about the program. Thus, these analyses use symbolic expressions
over program variables that soundly over-approximate the program state. In
contrast, we use expressions involving constraint system variables in order to
reason about the constraint system itself and extract an explanation for the
computation of the abstract values of program variables at a given program
point.

9 Conclusion

The ability to produce counter-examples has been an important reason behind
the tremendous success of software model checking. For developers to also see
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the value in sound analysis, more work is needed on explainability, so that a
verdict that the program is safe can be trusted by our end users. We have taken
a significant step in this direction, and characterized the challenges that lie
ahead.

Using interval analysis as an example, we have presented a general scheme to
write analyses that generate parts of the constraint system as an intermediate
step. The generated constraint system can be transformed into a closed expres-
sion and simplified, e.g., to inline computations and even remove unnecessary
loops. The closed expressions can be mapped onto user-friendly explanations of
how the analysis results are computed, which we have integrated into a proto-
type tool for explainable program analysis.
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Abstract. Runtime monitors analyze system execution traces for policy compli-
ance. Monitors for propositional specification languages, such as metric temporal
logic (MTL), produce Boolean verdicts denoting whether the policy is satisfied or
violated at a given point in the trace. Given a sufficiently complex policy, it can be
difficult for the monitor’s user to understand how the monitor arrived at its verdict.
We develop an MTL monitor that outputs verdicts capturing why the policy was
satisfied or violated. Our verdicts are proof trees in a sound and complete proof sys-
tem that we design. We demonstrate that such verdicts can serve as explanations for
end users by augmenting our monitor with a graphical interface for the interactive
exploration of proof trees. As a second application, our verdicts serve as certificates
in a formally verified checker we develop using the Isabelle proof assistant.

Keywords: metric temporal logic · runtime monitoring · explanations · proof
system · formal verification · certification

1 Introduction

In runtime verification, monitoring is the task of analyzing an event stream produced by a
running system for violations of specified policies. An online monitor for a propositional
policy specification language, such as metric temporal logic (MTL), consumes the stream
event-wise and gradually produces a stream of Boolean verdicts denoting the policy’s sat-
isfaction or violation at every point in the event stream. MTL monitors [3, 19, 24, 27, 33]
use complex algorithms, whose correctness is not obvious, to efficiently arrive at the
verdicts. Yet, users must rely on the algorithms being correct and correctly implemented,
as the computed verdicts carry no information as to why the policy is satisfied or violated.

The two main approaches to increase the reliability of complex algorithm implemen-
tations are verification and certification. Formal verification using proof assistants or
software verifiers is laborious and while it provides an ultimate level of trust, the user
of a verified tool still gains no insight into why a specific, surely correct verdict was
produced. In contrast, certification can yield both trust (especially when the certificate
checker is itself formally verified) and insight, provided that the certificate is not only
machine-checkable but also human-understandable.
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In this paper, we develop a certification approach to MTL monitoring: instead of
Boolean verdicts, we require the monitor to produce checkable and understandable certifi-
cates. To this end, we develop a sound and complete local proof system (§2) for the satis-
faction and violation of MTL policies. Following Cini and Francalanza [15], local means
that a proof denotes the policy satisfaction on a given stream of events and not general
MTL satisfiability (for any stream). Our proof system is an adaptation of Basin et al.’s [4]
local proof system for LTL satisfiability on lasso words to MTL with past and bounded
future temporal operators. A core design choice for our proof system was to remain
close to the MTL semantics and thus to be understandable for users who reason about
policies in terms of the semantics. Therefore, proof trees in our proof system, or rather
their compact representation as proof objects (§3), serve as understandable certificates.

With the certificate format in place, we devise an algorithm that computes minimal (in
terms of size) proof objects (§4). We implement the algorithm in OCaml and augment it
with an interactive web application1 to visualize and explore the computed proof objects
(§5). Independently, we prove the soundness and completeness of our proof system and
formally verify a proof checker using the Isabelle/HOL proof assistant. We extract OCaml
code from this formalization and use it to check the correctness of the verdicts produced
by our unverified algorithm. To ensure that our correct verdicts are also minimal, we de-
velop a second formally verified but less efficient monitoring algorithm in Isabelle, which
we use to compute the minimal proof object size when testing our unverified algorithm.

Finally, we demonstrate how our work provides explainable monitoring output
through several examples (§6) and empirically evaluate our algorithm’s performance in
comparison to other monitors (§7). In summary, we make the following contributions:

– We develop a sound and complete local proof system for past and bounded future
MTL that follows closely the semantics of the MTL operators.

– We develop and empirically evaluate an efficient algorithm to compute size-minimal
proof objects representing proof trees in our proof system.

– We implement our algorithm in a new, publicly available monitoring tool EXPLANA-
TOR2 [22] that includes a web front end and a formally verified proof object checker.

Related Work. We take the work by Basin et al. [4] on optimal proofs for LTL on
lasso words as our starting point but change the setting from lasso words to streams of
time-stamped events and the logic from LTL to MTL. Moreover, Basin et al. considered
the offline path checking problem, whereas we tackle online monitoring here.

Parts of the work presented here are also described in two B.Sc. theses by Yuan [39]
and Herasimau [16]. Yuan developed the MTL proof system we present here as well as
a monitoring algorithm for computing optimal proofs based on dynamic programming
(similarly to Basin et al.’s algorithm [4]). Herasimau formalized Yuan’s development
in Isabelle/HOL. We use his work as the basis for our formally verified checker. Here,
we present a different algorithm that resembles the algorithms used by state-of-the-art
monitors for metric first-order temporal logic [5, 29], which perform much better than
dynamic programming algorithms for non-trivial metric interval bounds.

Basin et al.’s approach [4] is parameterized by a comparison relation on proof objects
that specifies what the algorithm should optimize for. Yuan [39] discovers a flaw in the
correctness claim for Basin et al.’s algorithm and corrects it by further restricting the

1 https://runtime-monitoring.github.io/explanator2
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i ⊨ p iff p ∈ πi i ⊨ α∨β iff i ⊨ α or i ⊨ β i ⊨ Iα iff i > 0 and τi−τi−1 ∈ I and i−1 ⊨ α
i ⊨ ¬α iff i ⊭ α i ⊨ α∧β iff i ⊨ α and i ⊨ β i ⊨#Iα iff τi+1−τi ∈ I and i+1 ⊨ α
i ⊨ α SI β iff j ⊨ β for some j≤ i with τi−τ j ∈ I and k ⊨ α for all j < k ≤ i
i ⊨ α UI β iff j ⊨ β for some j≥ i with τ j−τi ∈ I and k ⊨ α for all i≤ k < j

Fig. 1: Semantics of MTL for a fixed trace ρ= ⟨(πi, τi)⟩i∈N
supported comparisons. Herasimau [16] relaxes Yuan’s requirements while formally ver-
ifying the correctness statement. Our algorithm minimizes the computed proof objects’
size as this both simplifies the presentation and caters for a more efficient algorithm.

Formal verification of monitors is a timely topic. Some verified monitors were de-
veloped recently using proof assistants, e.g., VeriMon [29] and Vydra [28] in Isabelle
and lattice-mtl [8] in Coq. Others leveraged SMT technology to increase their trustwor-
thiness [12, 14]. To the best of our knowledge, we present the first verified checker for
an online monitor’s output, even though verified certifiers are standard practice in other
areas such as distributed systems [35], model checking [37,38], and SAT solving [11,21].

Several monitors visualize their output [1,2,7,18,25,30]; some of these even present
visually separate verdicts for different parts of the policy. Our work takes inspiration
from these approaches, but goes deeper: our minimal proof trees characterize precisely
how the verdicts for the different parts compose to a verdict for the overall policy.

Our work follows the “proof trees as explanations” paradigm and thereby joins a
series of works on LTL [4,15,32], CFTL [13], and CTL [9]. Of these only Basin et al. [4]
supports past operators and none support metric intervals. Two of the above works [9,15]
use proof systems based on the unrolling equations for temporal operators instead of the
operator’s semantics, which we believe is suboptimal for understandability: users think
about the operators in terms of their semantics and not in terms of unrolling equations.

Outside of the realm of temporal logics one can find the “proof trees as explanations”
paradigm in regular expression matching [31] and in the database community [10].
Metric Temporal Logic. We briefly recall MTL’s syntax and point-based semantics [6].
MTL formulas are built from atomic propositions (a, b, c, . . .) via Boolean (∧, ∨, ¬)
and metric temporal operators (previous  I , next #I , since SI , until UI), where I = [l,r]
is a non-empty interval of natural numbers with l ∈ N and r ∈ N∪{∞}. We omit the
interval when l = 0 and r = ∞. For the until operator U[l,r], we require the interval to
be bounded, i.e., r ̸= ∞. Formulas are interpreted over streams of time-stamped events
ρ= ⟨(πi, τi)⟩i∈N, also called traces. An event πi is a set of atomic propositions that hold
at the respective time-point i. Time-stamps τi are natural numbers that are required to be
monotone (i.e., i≤ j implies τi ≤ τ j) and progressing (i.e., for all τ there exists a time-
point i with τi > τ). Note that consecutive time-points can have the same time-stamp. Fig-
ure 1 shows MTL’s standard semantics for a formula φ at time-point i for a fixed trace ρ.

Fix a trace ρ = ⟨(πi, τi)⟩i∈N. The earliest time-point of a time-stamp τ on ρ is the
smallest time-point i such that τi≥ τ and is denoted as ETPρ(τ). Similarly, the latest time-
point of a time-stamp τ≥ τ0 on ρ is the greatest time-point i such that τi ≤ τ and is de-
noted as LTPρ(τ). Whenever the trace ρ is fixed, we will only write ETP(τ) and LTP(τ).

2 Local Proof System
We introduce a local proof system for monitoring MTL formulas as the least relation
satisfying the rules shown in Figure 2. It contains two mutually dependent judgments: ⊢+
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a ∈ πi

i ⊢+ a
ap+ i ⊢− α

i ⊢+ ¬α ¬
+ i ⊢+ α

i ⊢+ α∨β
∨+L

i ⊢+ β
i ⊢+ α∨β

∨+R
i ⊢+ α i ⊢+ β

i ⊢+ α∧β ∧+

a /∈ πi

i ⊢− a
ap− i ⊢+ α

i ⊢− ¬α ¬
− i ⊢− α

i ⊢− α∧β
∧−L

i ⊢− β
i ⊢− α∧β

∧−R
i ⊢− α i ⊢− β

i ⊢− α∨β ∨−

j≤ i τi−τ j ∈ I j ⊢+ β ∀k ∈ ( j, i]. k ⊢+ α
i ⊢+ α SI β

S+
i > 0 τi−τi−1 ∈ I i−1 ⊢+ α

i ⊢+  Iα
 +

E
p
i ([l,r])≤ j j≤ i m = L

p
i ([l,r]) τi−τ0 ≥ l j ⊢− α ∀k ∈ [ j, m]. k ⊢− β

i ⊢− α S[l,r] β
S−

j = E
p
i ([l,r]) m = L

p
i ([l,r]) τi−τ0 ≥ l ∀k ∈ [ j, m]. k ⊢− β

i ⊢− α S[l,r] β
S−∞

τi−τ0 < l

i ⊢− α S[l,r] β
S−<I

0 ⊢−  Iα
 −0

i > 0 i−1 ⊢− α
i ⊢−  Iα

 −
i > 0 τi−τi−1 < I

i ⊢−  Iα
 −<I

i > 0 τi−τi−1 > I

i ⊢−  Iα
 −>I

i≤ j τ j−τi ∈ I j ⊢+ β ∀k ∈ [i, j). k ⊢+ α
i ⊢+ α UI β

U+
τi+1−τi ∈ I i+1 ⊢+ α

i ⊢+ #Iα
#+

m = Ef
i(I) i≤ j j≤ Lf

i(I) j ⊢− α ∀k ∈ [m, j]. k ⊢− β
i ⊢− α UI β

U−
τi+1−τi < I

i ⊢− #Iα
#−<I

m = Ef
i(I) j = Lf

i(I) ∀k ∈ [m, j]. k ⊢− β
i ⊢− α UI β

U−∞
i+1 ⊢− α
i ⊢− #Iα

#−
τi+1−τi > I

i ⊢− #Iα
#−>I

Fig. 2: Local proof system for MTL for a fixed trace ρ= ⟨(πi, τi)⟩i∈N

(for satisfaction proofs) and ⊢− (for violation proofs). A satisfaction (violation) proof
describes the satisfaction (violation) of a formula at a given time-point on a fixed trace
ρ. Each rule is suffixed by + or −, indicating whether an operator has been satisfied
or violated. Moreover, we define Ep

i (I) := ETP(τi− r) and Lp
i (I) := min(i,LTP(τi− l))

for I = [l,r], which correspond to the earliest and latest time-point within the interval
I, respectively, when formulas having SI as their topmost operator are considered. In the
definition of Lp

i (I) we take the minimum to account for consecutive time-stamps with
the same value. For formulas having UI as their topmost operator, both definitions are
mirrored, resulting in Ef

i(I) := max(i,ETP(τi + l)) and Lf
i(I) := LTP(τi + r).

The semantics of the MTL operators directly corresponds to the satisfaction rules ap+,
¬+, ∨+L , ∨+R , ∧+, S+, U+,  +, and #+. For instance, consider two time-points j and i
such that j≤ i. The rule S+ is applied whenever the time-stamp difference τi−τ j belongs
to the interval I, and there is a witness for a satisfaction proof of β in the form of j ⊢+ β
together with a finite sequence of satisfaction proofs of α for all k ∈ ( j, i]. The violation
rules for the non-temporal operators ap−, ¬−, ∨−, ∧−L , ∧−R are dual to their satisfaction
counterparts. On the other hand, the violation rules for the temporal operators I ,#I , SI ,
and UI are derived by negating and rewriting their semantics. Consider SI with I = [l,r]:

i ⊭ α SI β ↔
(
τi−τ0 ≥ l∧∃ j ∈ (Ep

i (I), i]. j ⊭ α∧∀k ∈ [ j, Lp
i (I)]. k ⊭ β

)
∨(

τi−τ0 ≥ l∧∀k ∈ [Ep
i (I), L

p
i (I)]. k ⊭ β

)
∨ τi−τ0 < l

(1)

The rules S−, S−∞ , and S−<I correspond to the three disjuncts in Equation (1). We argue
that these three cases intuitively represent different ways of violating a since operator. In
the first disjunct, α is violated at some time-point after the interval starts and β is violated

L. Lima et al.476



β
α
β

· · · iE
p
i (I) L

p
i (I)

τi− r τi− l

α

· · · iE
p
i (I) L

p
i (I)

τi− r τi− l

Fig. 3(a): S− cases

β β β

· · · iE
p
i (I) L

p
i (I)

τi− r τi− l

Fig. 3(b): S−∞ case

0 · · · i

τi− r τi− l

Fig. 3(c): S−<I case

Fig. 3: Graphical representation of the violation cases for α SI β with I = [l,r]

from that time-point until the interval ends. Indeed, the violation proof j ⊢− α is enough
to dismiss all previous occurrences of a satisfaction of β. Moreover, if l ̸= 0, i.e., if the
interval does not include the current time-point, then αmay be violated between the inter-
val’s end and the current time-point. Figure 3(a) shows both cases, where φ denotes a vio-
lation of φ. In the second disjunct, β is violated at every time-point inside the interval (Fig-
ure 3(b)). The third disjunct captures the special case at the beginning of the trace when
the interval is located before the first time-point (Figure 3(c)). Next, we consider UI :

i ⊭ α UI β ↔
(
∃ j ∈ [i,Lf

i(I)). j ⊭ α∧∀k ∈ [Ef
i(I), j]. k ⊭ β

)
∨(

∀k ∈ [Ef
i(I), L

f
i(I)]. k ⊭ β

) (2)

The rules U− and U−∞ correspond to the two disjuncts in Equation (2). In the first
disjunct, β is violated from the interval start until a time-point j at which also α is violated.
Symmetrically to S−, we can dismiss all satisfactions of β after j because of the violation
proof j ⊢− α. In the second disjunct, β is violated at every time-point inside the interval.

Theorem 1. Fix an arbitrary trace ρ= ⟨(πi, τi)⟩i∈N. For any formula φ and i ∈ N, we
have i ⊢+ φ iff i ⊨ φ and i ⊢− φ iff i ⊭ φ, i.e., the proof system is sound and complete.

In other words, proof trees in our proof system contain all the necessary information
to explain why a formula has been satisfied or violated on a given trace. A mechanically
checked proof of the above statement can be found in our Isabelle formalization [22].

Example 1. Let ρ = ⟨({a,b,c},1),({a,b},3),({a,b},3),({·},3),({a},3),({a},4)⟩ and
φ= a S[1,2] (b∧ c). A proof of 5 ̸|= φ has the following form:

a /∈ {·}
3 ⊢− a

ap−

b /∈ {·}
3 ⊢− b

ap−

3 ⊢− b∧ c
∧−L

b /∈ {a}
4 ⊢− b

ap−

4 ⊢− b∧ c
∧−L

5 ⊢− a S[1,2] (b∧ c)
S−

In ρ, only events with time-stamp 3 satisfy the interval conditions, resulting in Ep
5(I) = 1

and Lp
5(I) = 4, where I = [1,2]. (Time-points are zero-based.) Thus, the portion of the

trace we are interested in is ⟨({a,b},3),({a,b},3),({·},3),({a},3)⟩. Here, a is only
violated at time-point 3, so our proof includes the witness 3 ⊢− a. From there until
time-point Lp

5(I) = 4 the subformula b∧c is violated, witnessed by 3 ⊢− b and 4 ⊢− b. ■

3 Proof Objects
To make proofs from our proof system explicit, we define an inductive syntax for
satisfaction (sp) and violation (vp) proofs and call this representation proof objects.
Proof objects allow us to easily compute with, modify and compare the size of proof
trees. From now on, the term proof will be used for both proof tree and proof object.

Explainable Online Monitoring of Metric Temporal Logic 477



sp = ap+(N,Σ) | ¬+(vp) | ∨+L (sp) | ∨
+
R (sp) | ∧+(sp,sp) | +(sp) |#+(sp)

| S+(sp,sp∅) | U+(sp,sp∅)
vp= ap−(N,Σ) | ¬−(sp) | ∨−(vp,vp) | ∧−L (vp) | ∧

−
R (vp) | −(vp) | 

−
<I(N)

|  −>I(N) | 
−
0 |#−(vp) |#

−
<I(N) |#

−
>I(N) | S

−
<I(N) | S

−(N,vp,vp∅)
| S−∞(N,vp∅) | U−(N,vp,vp∅) | U−∞(N,vp∅)

Here, sp and vp denote finite non-empty sequences of sp and vp subproofs and sp∅ and
vp∅ denote finite possibly empty sequences of sp and vp subproofs. We define p= sp⊎
vp to be the disjoint union of satisfaction and violation proofs. Given a proof p ∈ p, we
define V(p) to be ⊤ if p ∈ sp and ⊥ if p ∈ vp. Each constructor corresponds to a rule in
our proof system. Each proof p has an associated time-point tp(p) for which it witnesses
the satisfaction or violation. In some cases, tp(p) can be computed recursively from p’s
subproofs. For example, tp(S+(p, [q1, . . . ,qn])) is tp(qn) if n > 0 and tp(p) otherwise.
Similarly, tp(U+(p, [q1, . . . ,qn])) is tp(q1) if n > 0 and tp(p) otherwise. Other cases,
namely ap+, ap−,  −<I ,  

−
>I , #

−
<I , #

−
>I , S

−
<I , S

−, and S−∞ , explicitly store the associated
time-points as an argument of type N because we cannot compute them from the
respective subproofs. For example, tp(ap+( j,a)) = j and tp(S−( j,q, [p1, . . . , pn])) = j.

Given a trace ρ = ⟨(πi, τi)⟩i∈N and a formula φ, we call a proof p valid at tp(p),
denoted by p ⊢ φ, if p represents a valid proof according to the rules of our local proof
system. Note that once again we leave the dependency on ρ implicit in p ⊢ φ. Formally,
validity p ⊢ φ is defined recursively, checking for each constructor that the corresponding
rule has been correctly applied. For example, atomic proofs are valid if the mentioned
atom is (not) contained in the trace at the specified time-points: ap+(i,a) ⊢ a↔ a ∈ πi
(ap−(i,a) ⊢ a↔ a /∈ πi). Moreover, for r = S+(p, [q1, . . . ,qn]) we have

r ⊢ α SI β ↔ tp(p)≤ tp(r)∧τtp(r)−τtp(p) ∈ I∧
[tp(q1), . . . , tp(qn)] = [tp(p)+1, tp(r)]∧ p ⊢ β∧ (∀k ∈ [1,n]. qk ⊢ α).

Multiple valid proofs may exist for a time-point i and formula φ as we demonstrate next.

Example 2. The proof object representing the proof tree from Example 1 is P1 =
S−(5,ap−(3,a), [∧−L (ap−(3,b)),∧−L (ap−(4,b))]). However, we could have argued dif-
ferently, using the fact that c is violated at all time-points inside the interval. Then, S−∞
would be used instead to construct the proof P2 = S−∞(5, [∧−R (ap−(1,c)),∧−R (ap−(2,c)),
∧−R (ap−(3,c)),∧−R (ap−(4,c))]), which is also a valid proof at tp(P2) = 5. In addi-
tion, P3 = S−(5,ap−(3,a), [∧−L (ap−(3,c)),∧−L (ap−(4,c))]) is another valid proof at
tp(P3) = 5. It is structurally identical to P1, but instead of using the violations of
b as witnesses for time-points 3 and 4, it uses the violations of c. In fact, both b and c
are violated at time-points 3 and 4, so we can use either to justify the violations of b∧ c.

We now compare P1, P2, and P3. The proof P2 uses S−∞ , so we must store a witness
of the violation of b∧ c for each one of the 4 time-points inside the interval. The proofs
P1 and P3 use S−, taking advantage of the violation proof 3 ⊢− a that allows us to
dismiss both 1 ⊢+ a and 2 ⊢+ a. Formally, we define the size |p| of a proof p to be
the number of proof object constructors occurring in p. Then, |P1| = |P3| = 6, and
|P2|= 9. ■

We are particularly interested in small proofs as they tend to be easier to understand.
Given a trace ρ and a formula φ, a proof p is minimal at time-point i if and only if it is
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type buf = p list×p list type buft = p list×p list× ((ts× tp) list)

type saux = { tszero : ts option, ts tpin : (ts× tp) list, ts tpout : (ts× tp) list,
s beta alphasin : (ts× sp)slist, s beta alphasout : (ts× sp) list,
v alpha betasin : (ts×vp)slist, v alphasout : (ts×vp)slist,
v betasin : (ts×vp) list, v alphas betasout : (ts×vp option×vp option) list }

type state = PredS string | NegS state | AndS state state buf | OrS state state buf
| PrevS I state bool p (ts list) | NextS I state bool (ts list)
| SinceS I state state buft saux | UntilS I state state buft uaux

function init :: formula⇒ state function eval :: ts× tp⇒ atom set⇒ state⇒ p list× state

Fig. 4: Types of the monitor’s state and evaluation functions

valid at i (p ⊢ φ and tp(p) = i), and all other valid proofs q (at i) have greater or equal
size (q ⊢ φ and tp(q) = i implies |p| ≤ |q|). In our example, P1 and P3 are minimal.

4 Computing Minimal Proofs

Given an MTL formula φ, our (online) monitor incrementally processes a trace and
for each time-point i it outputs a minimal proof of the satisfaction or violation of φ
at i. The algorithm constructs this minimal proof of φ by combining minimal proofs of
φ’s immediate subformulas. To do this efficiently, the monitor maintains just enough
information about the trace in its state so that it can guarantee to output minimal proofs.
In case the monitored formula includes (bounded) future operators, the monitor’s output
may be delayed, such that a single event may trigger the output of multiple proofs at
once. In this section, we describe our algorithm in detail and explain its correctness.

4.1 Monitor’s State

Figure 4 shows the types of our algorithm’s main functions init, which computes the
monitor’s initial state, and eval, which processes a time-stamped event while updating the
monitor’s state and producing a list of minimal proofs (satisfactions or violations) for an
in-order (potentially empty) sequence of time-points. Our monitor’s state (type state in
Figure 4) has the same tree-like structure as the monitored MTL formula. Additionally, it
stores operator-specific information for each Boolean and temporal operator. For example,
in the state of α SI β, we store the interval I, the states of the subformulas α and β, a
buffer buft for proofs (and associated time-stamps) coming from the recursive evaluation
of subformulas and the operator-specific data structures saux. Our monitor’s overall
structure is modeled after VERIMON [29], which has a similar interface (init and eval)
and state type including the used buffers buf and buft. The main novelty is our design of
the saux and uaux data structures, which store sufficient information to compute minimal
proofs for formulas with topmost operator S and U. Here, we only describe saux in detail.

The data structure saux for a formula φ= α SI β is a record consisting of nine fields.
We will describe it next assuming that φ is being evaluated at the current time-point cur.
Furthermore, some fields have the type option, which means they are of the form ⊥ (if
no value is available) or ⌊v⌋ (storing the value v). The function THE retrieves the optional
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1: procedure UPDATE SAUX ([l,r], τcur,cur, p1, p2,saux)
2: saux.tszero← if saux.tszero =⊥ then ⌊τcur⌋ else saux.tszero
3: saux← ADD SUBPS (τcur, p1, p2,saux)

▷ update s betas alphasin, s betas alphasout, v alphas betasout, and v alphasout
4: if τcur < THE (saux.tszero)+ l then
5: saux.ts tpout← APPEND (saux.ts tpout, [(τcur,cur)])
6: return (S−<I(cur),saux)
7: else
8: lr← (if r = ∞ then THE (saux.ts zero) else MAX (0, τcur− r), τcur− l)
9: saux← SHIFT SAUX(lr, l, τcur,cur,saux)

10: minimal proof ← EVAL SAUX(cur,saux) ▷ extract proofs; pick one of minimal size
11: return (minimal proof ,saux)
12:
13: procedure SHIFT SAUX (lr, l, τcur,cur,saux)
14: saux← SHIFT TS TPS (lr, l, τcur,cur,saux) ▷ update ts tpout and ts tpin
15: saux← SHIFT SAT (lr,saux) ▷ update s beta alphasout and s beta alphasin
16: saux← SHIFT VIO (lr,saux) ▷ update v alphas betasout, v alpha betasin, and v betasin
17: saux← REMOVE SAUX (lr,saux) ▷ remove too old proofs (that fell out of the interval)
18: return saux

Algorithm 1: State update algorithm for Since

value from ⌊v⌋, i.e., THE (⌊v⌋) = v. The field tszero stores ⊥ in the initial state, and after
the first event arrives, it stores the first time-stamp ⌊τ0⌋. Fields ts tpin and ts tpout store
lists of time-stamp-time-point pairs inside the interval (between Ep

cur(I) and Lp
cur(I))

and after the interval (between Lp
cur(I)+1 and cur), respectively. The other fields store

satisfaction (prefix s ) or violation (v ) proofs. Specifically, s beta alphasin stores S+
proofs inside and s beta alphasout stores S+ proofs after the interval. Crucially, while
s beta alphasout is an ordinary list, s beta alphasin has type slist, which is a variant of
the list type that indicates that the stored proofs are sorted in ascending order (with
respect to size). We maintain this invariant to optimize the number of proofs we must
store, i.e., if a proof enters the interval, we can delete all larger proofs that entered the
interval prior to it. In addition, we can quickly access the first proof of this list which
necessarily has minimal size. On the other hand, s beta alphasout must store all proofs
because it is not possible to predict when and which of these proofs will enter the interval.

Furthermore, v alpha betasin is the analogue of s beta alphasin for S− proofs with
a violation of α inside the interval, and a sequence of violations of β until the end of the
interval. Note that S− proofs can also be constructed using a single violation proof of α
that occurs after the interval, and these are instead stored in the also sorted list v alphasout.
Moreover, S−∞ proofs require that β is violated at all time-points inside the interval, so
v betasin stores a suffix of β violations inside the interval. Finally, v alphas betas stores
all α and β violations outside the interval, so all other components that store violation
proofs inside the interval can be efficiently updated when the interval shifts.
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4.2 State Update

Algorithm 1 shows the skeleton of our procedure for updating (and simultaneously
evaluating) the state of a since operator. The state update for φ= α SI β is parametrized
by the interval I = [l,r], the current time-point cur and its time-stamp τcur, minimal
proofs p1 and p2 (obtained recursively) for the subformulas α and β, respectively, and
the current state saux. The procedure first checks if cur is the first time-point to arrive
and initializes tszero accordingly (line 2). Next, we add the new subproofs to their desti-
nations (ADD SUBPS). For example, if p1 ∈ sp then all proofs from s betas alphasin and
s betas alphasout are extended with this additional satisfaction proof for α. In contrast,
if p1 ∈ vp then both s betas alphas lists are emptied and the violation of α is stored in
v alphasout and v alphas betasout instead. A similar case distinction happens for p2. Af-
ter storing the proofs, we handle the case where cur is a time-point at the beginning of the
trace for which the past interval has not started yet (lines 4–6), which corresponds to the
S−<I case depicted in Figure 3(b) on the right. Here, we add a new time-stamp-time-point
pair to ts tpout (line 5), and return the proof S−<I(cur) and the updated saux.

In the general case (when the interval has started), we compute the absolute time-
stamp pair lr that constitute the boundaries of the past interval I relative to τcur (line 8).
We use the absolute boundaries to identify a potential interval shift and move proofs in
saux from the out lists to the in lists accordingly (line 9). Lines 13–18 provide additional
details in which order the various components are shifted. Lastly, we compute a minimal
proof (line 10), performing a case distinction. If s beta alphasin is non-empty, then its
head must be a minimal satisfaction proof. Otherwise, the formula is violated and a mini-
mal violation proof is either the head of v alpha betasin or the head of v alphasout (after
adding a S− constructor) or the application of S−∞ to v betasin (provided that this suffix
spans the entire interval which can be deduced by comparing the lengths of v betasin and
ts tpin). We extract these (at most three) candidates, compute their sizes, and pick one
of minimal size. This minimal proof and the updated saux are then returned (line 11).

Example 3. To illustrate how the state is updated, we once again consider the formula
and trace introduced in Example 1. Figure 5 shows the saux states of our algorithm and
the produced minimal proof after processing every event. In every state, we only show
the non-empty components. Initially, all components of the state are empty except for
tszero, which is ⊥. When the first event ({a,b,c},1) arrives, the list ts tpout is updated
accordingly and a pair with time-stamp 1 and a S+ proof using the satisfactions of b and
c is added to s beta alphasout. This proof is clearly not valid for the current time-point
0, considering that the interval [1,2] has not yet started, so the monitor outputs the trivial
proof S−<I(0). The time-stamp of the first event moves inside the interval when the second
event ({a,b},3) arrives, and both ts tpout and ts tpin are updated accordingly. Further-
more, the algorithm extends the S+ proof previously stored in s beta alphasout by adding
ap+(1,a) to the sequence of a satisfactions, after which the resulting proof is moved
to s beta alphasin. The algorithm also appends the proof ap−(1,c) to v alphas betasout.
Because s beta alphasin is not empty, the monitor outputs the first proof of this list.

In the next step, event ({a,b},3) arrives and the monitor proceeds similarly, adding
the proof ap+(2,a) to the S+ proof in s beta alphasin. Aside from outputting the ex-
tended satisfaction proof, the algorithm also adds the proof ap−(2,c) to v alphas betasout.
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tszero =⊥
tszero = ⌊1⌋ ts tpout = [(1,0)]
s beta alphasout = [(1,S+(∧+(ap+(0,b),ap+(0,c)), [·]))]

output: S−<I(0)

tszero = ⌊1⌋ ts tpin = [(1,0)] ts tpout = [(3,1)]
s beta alphasin =

[
(1,S+(∧+(ap+(0,b),ap+(0,c)),

[
ap+(1,a)

]
))
]

v alphas betasout =
[
(3,⊥,⌊∧−R (ap−(1,c))⌋)

]
output: S+(∧+(ap+(0,b),ap+(0,c)), [ap+(1,a)])

tszero = ⌊1⌋ ts tpin = [(1,0)] ts tpout = [(3,1),(3,2)]
s beta alphasin =

[
(1,S+(∧+(ap+(0,b),ap+(0,c)), [ap+(1,a),ap+(2,a)]))

]
v alphas betasout = [(3,⊥,⌊∧−R (ap−(1,c))⌋),(3,⊥,⌊∧−R (ap−(2,c))⌋)]

output: S+(∧+(ap+(0,b),ap+(0,c)), [ap+(1,a),ap+(2,a)])

tszero = ⌊1⌋ ts tpin = [(1,0)] ts tpout = [(3,1),(3,2),(3,3)]
v alphasout =

[
(3,ap−(3,a))

]
v alphas betasout = [(3,⊥,⌊∧−R (ap−(1,c))⌋),(3,⊥,⌊∧−R (ap−(2,c))⌋),

(3,⌊ap−(3,a)⌋,⌊∧−L (ap−(3,b))⌋)]
output: S−(3,ap−(3,a), [·])

tszero = ⌊1⌋ ts tpin = [(1,0)] ts tpout = [(3,1),(3,2),(3,3),(3,4)]
v alphasout =

[
(3,ap−(3,a))

]
v alphas betasout = [(3,⊥,⌊∧−R (ap−(1,c))⌋),(3,⊥,⌊∧−R (ap−(2,c))⌋),

(3,⌊ap−(3,a)⌋,⌊∧−L (ap−(3,b))⌋),(3,⊥,⌊∧−L (ap−(4,b))⌋)]
output: S−(4,ap−(3,a), [·])

tszero = ⌊1⌋ ts tpin = [(3,1),(3,2),(3,3),(3,4)] ts tpout = [(4,5)]
v alpha betasin = S−(5,ap−(3,a), [∧−L (ap−(3,b)),∧−L (ap−(4,b))])
v betasin = [∧−R (ap−(1,c)),∧−R (ap−(2,c)),∧−L (ap−(3,b)),∧−L (ap−(4,b))]
v alphas betasout = [(4,⊥,⌊∧−L (ap−(5,b))⌋)]

output: S−(5,ap−(3,a), [∧−L (ap−(3,b)),∧−L (ap−(4,b))])

({a,b,c},1)

({a,b},3)

({a,b},3)

({·},3)

({a},3)

({a},4)

Fig. 5: The monitor’s saux states when executing Example 1

When event ({·},3) arrives, the sequence of a satisfactions comes to an end, which in-
dicates that the proofs in s beta alphasin and s beta alphasout are no longer valid nor
useful. Hence, we clear both lists. In addition, the proof ap−(3,a) is stored in v alphasout,
since the a violation happens after the interval. This subproof is also appended to
v alphas betasout along with the violation of the conjunction ∧−L . The algorithm then
proceeds to construct a violation proof S−(3,ap−(3,a), [·]) using the subproof stored in
v alphasout and outputs it. When ({a},3) arrives, the algorithm appends the proof ∧−L to
v alphas betasout and again uses the same subproof stored in v alphasout to construct
S−(4,ap−(3,a), [·]). Note that this proof has an associated time-point of 4, which is the
only distinction from the last proof that the monitor output.

Finally, when the last event ({a},4) arrives, the interval shifts and ts tpin and ts tpout
change accordingly. At this stage, the algorithm populates v alpha betasin and v betasin
with the subproofs stored in v alphas betasout. In particular, it constructs and stores the
proof S−(5,ap−(3,a), [∧−L (ap−(3,b)),∧−L (ap−(4,b))]) in v alpha betasin. Moreover, a
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sorted(s beta alphasin)∧ sorted(v alpha betasin)∧ sorted(v alphasout)∧
(1) ∀(τ,u) ∈ s beta alphasin. ∃p q̄. u = S+(p,q)∧u ⊢ α SI β∧ tp(u) = cur∧τ= ts(p)

(2) ∀(τ,u) ∈ s beta alphasout. ∃p q̄. u = S+(p,q)∧u ⊢ α S β∧ tp(u) = cur∧τ= ts(p)

(3) ∀(τ,u) ∈ v alpha betasin. ∃p q̄. u = S−(cur, p,q)∧u ⊢ α SI β∧τ= ts(p)

(4) ∀(τ, p) ∈ v alphasout. S−(cur, p, []) ⊢ α SI β∧τ= ts(p)

(5) ∀(τ, p) ∈ v betas suffixin. E
p
cur(I)≤ tp(p)≤ L

p
cur(I)∧ p ⊢ β∧¬V(p)∧τ= ts(p)

(6) ∀(τ, p∗,q∗) ∈ v alphas betasout. ∃i ∈
]
L

p
cur(I),cur

]
. τ= τi∧

(p∗ =⊥∨ (∃p. ¬V(p)∧ p∗ = ⌊p⌋∧ p ⊢ α))∧ (q∗ =⊥∨ (∃q. ¬V(q)∧q∗ = ⌊q⌋∧q ⊢ β))

Fig. 6: The algorithm’s invariant (soundness)

sequence of violations of the conjunction inside the interval is stored in v betasin.
This sequence of violations fills the entire interval, so it is then used to construct
the proof S−∞(5, [∧−R (ap−(1,c)),∧−R (ap−(2,c)),∧−R (ap−(3,c)),∧−R (ap−(4,c))]). The S−
proof corresponds precisely to the proof tree presented in Example 1, and the proof
object P1 in Example 2, whereas the S−∞ proof corresponds to the proof object P2. Lastly,
the size of these two proofs is computed, and the algorithm selects the S− proof, since it
is smaller (i.e., it includes fewer constructors). ■

4.3 Correctness

We now formally describe the invariant we maintain for saux. We write ts(p) for the time-
stamp associated with a proof, i.e., the time-stamp τtp(p) of the associated time-point
tp(p). We also use functional programming notations like λ-abstractions and the list
map function. We define the predicate sorted(seq) :=

(
∀(τi, pi) ,(τ j, p j)∈ seq. (i < j)∧

( j < length(seq))→ τi ≤ τ j∧|pi| ≤ |p j|
)

over a sequence of pairs of time-stamps and
proofs and assume that every sequence below is monotone with respect to time-stamps
(i < j implies τi ≤ τ j). The fields tszero, ts tpin and ts tpout are characterized as follows:

tszero =

{
⊥ iff cur =−1
⌊τ0⌋ iff cur ≥ 0

ts tpin =map (λi. (τi, i))
[
Ep

cur(I),L
p
cur(I)

]
ts tpout =map (λi. (τi, i))

]
Lp

cur(I),cur
]

The desired properties of the objects stored in other fields are given in Figure 6.
We describe each of the invariant’s statements. In (1) a proof in s beta alphasin

(which must be sorted) must have form S+(p,q) and be a valid proof of α SI β at the cur-
rent time-point, with time-stamp ts(p). Next, (2) requires proofs to have the same form
but instead be valid for a modified formula without the interval I. In this case, we can relax
the timing constraint because these proofs will only be valid at a later time-point, namely
once ts(p) moves inside the interval. The statement (3) is precisely the same as (1), but
for S− proofs. In (4), each proof p in v alphasout (which must too be sorted) must be a
valid subproof of a S− proof at the current time-point with time-stamp ts(p). In (5), each
subproof corresponding to the violation of β must be inside the interval with time-stamp
ts(p). The statement (6) specifies that outside the interval there is either a subproof of a
violation of α or β or there are no such proofs. These statements formalize what must hold
for the things stored in saux, which yields soundness. We briefly consider completeness,
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Fig. 7: Visualization of Example 1

by answering the question of what must be stored, on the example of s beta alphasin:

∀p q̄ τ. S+(p,q) ⊢ αS Iβ∧ tp
(
S + (p, q̄)

)
= cur∧τ= ts(p)→(

∃p′ q̄′ τ′. |S+(p′,q′)| ≤ |S+(p,q)|∧S+(p′,q′) ⊢ α SI β∧τ′ = ts
(

p′
)
∧

τ′ ≥ τ∧ tp
(
S+(p′,q′)

)
= tp

(
S+(p,q)

)
∧
(
τ′,S+(p′,q′)

)
∈ s beta alphasin

)
In words: for any valid S+ proof for φ = α SI β at time-point cur, we must store in
s beta alphasin another proof at most as large and old, that is also valid for φ at cur. Other
fields of saux have similar completeness statements and so have other state components.

Together, soundness and completeness ensure that given a formula, a trace, and a time-
point i, our online monitoring algorithm will eventually output a valid minimal proof at i.

5 Implementation
We implement our algorithm in a new tool called EXPLANATOR2 [22]. The implementa-
tion amounts to around 4 000 lines of OCaml. In addition, a 6 900 lines long OCaml pro-
gram is extracted from our Isabelle formalization consisting of 19 000 lines of definitions
and proofs. The extracted program contains the proof object validity checker in the form
of a function is valid : trace→ formula→ proof→ bool, which effectively implements
what we denote by p ⊢ φ. Moreover, it also contains the minimality checker is minimal :
trace→ formula→ proof→ bool that given a trace ρ, a formula φ, and a proof p com-
putes a proof q for φ on ρ at time-point tp(p) with a minimal size using a verified dynamic
programming algorithm and then checks that |p| ≤ |q|. Note that q may differ from p
because minimal proof objects are not unique. Herasimau [16] provides more details on
the formalization and the dynamic programming algorithm. We used the verified validity
and minimality checkers to thoroughly test our unverified algorithm. Our tool includes a
command line option to enable the verified certification of its output, which slows down
computation as the verified algorithm is rather inefficient but increases trustworthiness.

EXPLANATOR2 also includes a JavaScript web front end. To this end, we transpile
the compiled OCaml bytecode to JavaScript using Js of ocaml [36]. The resulting
JavaScript library runs in any web browser. We augment the library with an interactive
visualization using React [17]. Figure 7 shows the visualization of our Example 1. On the
left, the visualization shows the trace (from top to bottom) consisting of the atomic propo-
sitions (columns a, b, and c), the time-stamps (column TS) and associated time-points
(column TP). The following columns show either the topmost operator of the different
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...
61 ⊢+ r∧¬q

∧+

q ∈ {q}
56 ⊢+ q

ap+

61 ⊢+ ♦q
♦+

61 ⊢+ (r∧¬q)∧♦q
∧+

...
58, . . . ,61 ⊢− p∨q

∨−

61 ⊢− ♦[0,3] (p∨q)
♦−

q /∈ {r}
61 ⊢− q

ap−

61 ⊢−
(
♦[0,3] (p∨q)

)
S q

S−

61 ⊢−
(
(r∧¬q)∧♦q

)
→

((
♦[0,3] (p∨q)

)
S q

) →−

Fig. 8: Proof of φ1’s violation at time-point 61

subformulas or the atomic propositions of our monitored MTL formula φ= aS[1,2] (b∧c).
In particular, the column labeled with φ’s topmost operator, namely S[1,2], shows the
Boolean verdicts that a traditional monitor would output. Users of EXPLANATOR2 can
further inspect the Boolean verdicts by clicking on them. Figure 7 shows the visualiza-
tion’s state after clicking on φ’s violation at time-point 5. The visualization highlights the
time interval and the Boolean verdicts for subformulas that justify the verdict associated
with the inspected formula and time-point. Furthermore, it shows the relevant violations
of φ’s subformulas a and b∧ c: the subformula a is violated at time-point 3 and b∧ c is
violated at time-points 3 and 4, which corresponds to a valid S− proof. The user could
continue the exploration by further clicking on the two b∧c violations to find out that the
tool used b violations to justify both. The visualization uses black circles to denote combi-
nations of subformula and time-point that are relevant for at least one of φ’s verdicts. The
Boolean value for these relevant subformula verdicts is only revealed upon exploration.

6 Examples

We demonstrate how the minimal proofs produced by our monitor can be useful when try-
ing to comprehend a satisfaction or violation of an MTL formula. To this end, we consider
Timescales [34], a benchmark generator for MTL monitors. Timescales uses predefined
MTL formulas that represent temporal patterns that commonly occur in real system de-
signs [20]. It generates traces, in which the time-stamps are equal to their corresponding
time-points. We selected the two most complex properties and generated their correspond-
ing traces. At the end of both traces there is a violation of the pattern, and we use our
approach to explain these violations. In addition to the operators presented in Figure 2, we
extended our proof system and algorithm with the following operators: ⊤ (truth), ⊥ (fal-
sity),→ (implies),↔ (iff), ■I (historically), □I (always), ♦I (once), and ♢I (eventually).

Bounded Recurrence Between q and r. The bounded recurrence property specifies the
following pattern: between events q and r there is at least one occurrence of event p
every u time units. In MTL, this pattern is captured by the formula φ1 = (r∧¬q∧♦q)→(
(♦[0,u] (p∨q)) S q

)
. We set the bound u = 3, and we consider the trace ⟨. . . ,({q},56),

({·},57),({·},58),({·},59),({·},60),({r},61)⟩, which is the portion pertinent to the
proof. The formula φ1 is violated at time-point 61 and the proof is shown in Figure 8.

To prove the violation of the implication (the formula’s topmost operator) the subfor-
mula on the left (assumption) must be satisfied and the subformula on the right (conclu-
sion) must be violated. For this reason, two subproofs are constructed. In the left subproof,
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Fig. 9: Visualization of φ1’s violation at time-point 61

we can see that the subformula on the left is violated because both conjuncts r∧¬q and
♦q are satisfied at time-point 61. This part of the formula enforces that: (i) r is satisfied
(and q is not satisfied) at the current time-point; and (ii) q is satisfied at some point in the
past. Note that (ii) corresponds exactly to ♦q. In the left subproof, we have 61 ⊢+ r∧¬q
because r is satisfied and q is violated at time-point 61. Moreover, the proof 61 ⊢+ ♦q
uses the fact that q is satisfied at time-point 56, which is when the last q had arrived. Mov-
ing to the subproof 61⊢− (♦[0,3] (p∨q))S q, the violation occurs because both subformu-
las are violated at time-point 61. The subproof 61⊢− ♦[0,3] (p∨q) uses the violations of p
and q in the last 3 time units (58, . . . ,61), whereas the proof 61 ⊢− q indicates that q is not
satisfied at the current time-point. This is sufficient to show that since the last q has arrived
(at time-point 56), it is neither the case that a new sequence started (with a new occurrence
of q) or that a sequence finished (with an occurrence of p) within 3 time units in the past.

Figure 9 shows our visualization of the above proof. Starting from→, the columns
show the topmost operators of φ1’s subformulas (including atomic propositions). For
example, φ1 is violated because the left subformula is satisfied (the first ∧ column) and
the right subformula is violated (column S[0,∞)). All subformulas have a corresponding
column and the order of the columns is such that immediate subformulas of a subformula
appear further to the right. The same atomic proposition may occur in different subfor-
mulas, in which case there will be multiple columns showing the same proposition (but
potentially different time-points of interest). Continuing our example, the right subproof
from Figure 8 starts in column S[0,∞) in Figure 9. The formula (♦[0,3] (p∨q)) S q is
violated at time-point 61 because both subformulas are violated. In the visualization, we
focus (by clicking) on the subformula ♦[0,3] (p∨q) (displayed when hovering over the
corresponding cell) and observe that it is violated because p∨q is violated at time-points
58, . . . ,61 (highlighted cells in the ∨ column). Also, the context of this subproof, i.e.,
all parent nodes in the proof tree, is highlighted. In this case, these are→ and S[0,∞) at
time-point 61. Even though it presents the exact same information as the proof tree, our
interactive visualization makes the proofs easier to navigate, explore, and digest.

Bounded Response Between q and r. Closely related to the bounded recurrence, the
bounded response property specifies the following pattern: between events q and r, event
s must respond to event p within the interval [l,u]. In MTL, this pattern is specified by the
formula φ2 = ((r∧¬q)∧♦q)→

(((
s→ ♦[l,u]p

)
∧¬

(
¬s S[u,∞) p

))
S q

)
. We consider

the trace ⟨. . . ,({q},58),({p},59),({·},60),({·},61),({·},62),({·},63),({r},64)⟩ and
set l = 0 and u = 3. Figure 10 shows a violation proof for φ2 at time-point 64.
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...
P

p ∈ {p}
59 ⊢+ p

ap+

...
60, . . . ,62 ⊢− s

60, . . . ,62 ⊢+ ¬s
¬+

62 ⊢+ ¬s S[3,∞) p
S+

62 ⊢− ¬
(
¬s S[3,∞) p

) ¬−
62 ⊢−

(
s→ ♦[0,3]p

)
∧¬

(
¬s S[3,∞) p

) ∧−R ...
62, . . . ,64 ⊢− q

64 ⊢−
((

s→ ♦[0,3]p
)
∧¬

(
¬s S[3,∞) p

))
S q

S−

64 ⊢−
(
(r∧¬q)∧♦q

)
→

(((
s→ ♦[0,3]p

)
∧¬

(
¬s S[3,∞) p

))
S q

) →−
Fig. 10: Proof of φ2’s violation at time-point 64

· · ·

Fig. 11: Visualization of φ2’s violation at time-point 64

The implication’s assumption in φ2 is the same as the assumption in φ1 (the bounded
recurrence formula). We omit the corresponding subproof P from Figure 11 as it has
the same structure as the subproof of the bounded recurrence example. (Yet, there are
differences in the time-points.) The conclusion of φ2 has the form α S q. It is violated at
time-point 64 because α is violated at time-point 62, and from this point onward until the
current time-point 64, q is always violated. According to our proof system, we only need
to consider violations of q starting at time-point 62, because α is violated at that point.
The formula α=

(
s→ ♦[0,3]p

)
∧¬

(
¬s S[3,∞) p

)
captures two properties: (i) if there is a

response s then there must be a recent challenge p (i.e., p must be satisfied within the last
3 time units); (ii) there are no challenges p more than 3 time units in the past without a
response s. In our proof, the violation of α is constructed using the violation of (ii). After
applying the negation rule, the proof 62 ⊢+ ¬s S[3,∞) p uses the fact that p is satisfied at
time-point 59 and that s is violated at time-points 60, 61 and 62. In other words, there was
no response s to the challenge p within the required time constraint. Figure 11 shows the
visualization of this subproof. While the static image already helps with the intuition, we
invite the reader to explore this and the previous example in our interactive visualization.

7 Performance

We empirically evaluate our tool by answering the following research question: How does
EXPLANATOR2 scale with respect to the formula size when compared to other state-of-
the-art monitoring tools? To this end, we reuse the evaluation setup of the MTL monitor

Explainable Online Monitoring of Metric Temporal Logic 487



Past-only MTL

 0.001

 0.01

 0.1

 1

 10

 100

 0  10  20  30  40  50

T
im

e 
[s

]

Formula Size

Average-Case Time Complexity

 0.1

 1

 10

 100

 0  10  20  30  40  50

S
p

ac
e 

[M
B

]

Formula Size

Average-Case Space Complexity

MTL

 0.001

 0.01

 0.1

 1

 10

 100

 0  10  20  30  40  50

T
im

e 
[s

]

Formula Size

Average-Case Time Complexity

 0.1

 1

 10

 100

 0  10  20  30  40  50

S
p

ac
e 

[M
B

]

Formula Size

Average-Case Space Complexity

EXPLANATOR2
AERIAL

MONPOLY

VERIMON

HYDRA

VYDRA

Fig. 12: Evaluation results

HYDRA [26]. We consider two different settings: (i) past-only MTL formulas; and (ii)
MTL formulas (mixing past and future operators). For each setting we pseudo-randomly
generate a trace with 100000 events and collections of five different formulas for each
size s ∈ {6,17, . . . ,50} . We measure the time and space usage of the EXPLANATOR2,
HYDRA and VYDRA [27], AERIAL [3] MONPOLY [5], and VERIMON [29]. Our verified
dynamic programming algorithm is not included because it times out (with a time-out of
200 seconds) even for the smallest formulas of size 6. The experiments were conducted
on a computer with an AMD Ryzen 5 5600X CPU and 16GB of RAM. The results
are presented in Figure 12. Each filled shape is an average of the measurements for the
corresponding formula size. (Unfilled shapes show the individual runs, but are sometimes
invisible.) The axes showing time and space usage measurements are of logarithmic scale.

Time-wise, EXPLANATOR2 outperforms MONPOLY and VERIMON (first-order
monitors), and is on par with most of its competitors in the past-only setting. When we
include future operators, EXPLANATOR2 performs worse than its competitors, although
only by a narrow margin. However, we must consider that in contrast to the others our
tool has a clear disadvantage: it produces checkable and understandable output instead of
Boolean verdicts. Thus, these results reassure us that we do not compromise too much by
providing this feature, and that our algorithm is indeed efficient. In terms of space usage,
EXPLANATOR2 performs worse than other monitoring tools in both settings. This is
hardly surprising, given that proofs can be huge (e.g., they may contain the entire trace).
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8 Conclusion

We have developed an online MTL monitor that outputs detailed verdicts in the form of
proof trees, which serve as both understandable explanations and checkable certificates.
Our monitor incorporates a formally verified checker and an interactive visualization.
Our empirical evaluation demonstrates the reasonable performance of our monitor, even
though it provides a strictly more informative output than its competitors. Overall, we
believe that our approach significantly improves the user experience when using an MTL
monitor. In particular, the generated explanations provide insight into root causes of
violations and can help with specification debugging. Another plausible application of
explanations is teaching temporal logics to students and engineers.

As future work, we will lift our approach to the more expressive metric first-order tem-
poral logic. The main challenge here is to incorporate parametric events and quantifica-
tion. Moreover, we are interested in optimizing other aspects of the proofs than their size.

Data Availability Statement EXPLANATOR2 is available under the GNU Lesser General
Public License v3.0 [22] and its interactive visualization is hosted on GitHub. Our
artifact [23] contains the snapshot of the tool’s source code at paper submission time
along with instructions on how to run our test suite and to reproduce our evaluation.

References

1. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent program ex-
ecutions. In: COMPSAC 2007. pp. 541–546. IEEE Computer Society (2007).
https://doi.org/10.1109/COMPSAC.2007.236

2. Bartocci, E., Ferrère, T., Manjunath, N., Nickovic, D.: Localizing faults in Simulink/Stateflow
models with STL. In: Prandini, M., Deshmukh, J.V. (eds.) HSCC 2018. pp. 197–206. ACM
(2018). https://doi.org/10.1145/3178126.3178131

3. Basin, D., Bhatt, B.N., Krstic, S., Traytel, D.: Almost event-rate independent monitoring.
Formal Methods Syst. Des. 54(3), 449–478 (2019). https://doi.org/10.1007/s10703-018-00328-
3

4. Basin, D., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on lasso words.
In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 37–55. Springer (2018).
https://doi.org/10.1007/978-3-030-01090-4 3

5. Basin, D., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/2699444

6. Basin, D., Klaedtke, F., Zalinescu, E.: Algorithms for monitoring real-time properties. Acta
Informatica 55(4), 309–338 (2018). https://doi.org/10.1007/s00236-017-0295-4

7. Baumeister, J., Finkbeiner, B., Gumhold, S., Schledjewski, M.: Real-time visualization of
stream-based monitoring data. In: Dang, T., Stolz, V. (eds.) RV 2022. LNCS, vol. 13498, pp.
325–335. Springer (2022). https://doi.org/10.1007/978-3-031-17196-3 21

8. Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric temporal logic with
quantitative semantics. In: Deshmukh, J., Nickovic, D. (eds.) RV 2020. LNCS, vol. 12399, pp.
383–403. Springer (2020). https://doi.org/10.1007/978-3-030-60508-7 21

9. Chechik, M., Gurfinkel, A.: A framework for counterexample generation and exploration. Int.
J. Softw. Tools Technol. Transf. 9(5-6), 429–445 (2007). https://doi.org/10.1007/s10009-007-
0047-9

Explainable Online Monitoring of Metric Temporal Logic 489

https://runtime-monitoring.github.io/explanator2/
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1145/3178126.3178131
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1145/2699444
https://doi.org/10.1007/s00236-017-0295-4
https://doi.org/10.1007/978-3-031-17196-3_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/s10009-007-0047-9
https://doi.org/10.1007/s10009-007-0047-9


10. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and where. Found.
Trends Databases 1(4), 379–474 (2009). https://doi.org/10.1561/1900000006

11. Cruz-Filipe, L., Heule, M.J.H., Jr., W.A.H., Kaufmann, M., Schneider-Kamp, P.: Efficient
certified RAT verification. In: de Moura, L. (ed.) CADE 26. vol. 10395, pp. 220–236. Springer
(2017). https://doi.org/10.1007/978-3-319-63046-5 14

12. Dauer, J.C., Finkbeiner, B., Schirmer, S.: Monitoring with verified guarantees. In:
Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 62–80. Springer (2021).
https://doi.org/10.1007/978-3-030-88494-9 4

13. Dawes, J.H., Reger, G.: Explaining violations of properties in control-flow temporal logic. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 202–220. Springer (2019).
https://doi.org/10.1007/978-3-030-32079-9 12

14. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified Rust monitors for Lola
specifications. In: Deshmukh, J., Nickovic, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 431–
450. Springer (2020). https://doi.org/10.1007/978-3-030-60508-7 24

15. Francalanza, A., Cini, C.: Computer says no: Verdict explainability for runtime moni-
tors using a local proof system. J. Log. Algebraic Methods Program. 119, 100636 (2021).
https://doi.org/10.1016/j.jlamp.2020.100636

16. Herasimau, A.: Formalizing Explanations for Metric Temporal Logic. B.Sc. thesis, ETH
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Abstract. The 12th edition of the Competition on Software Verification
(SV-COMP 2023) is again the largest overview of tools for software verifi-
cation, evaluating 52 verification systems from 34 teams from 10 countries.
Besides providing an overview of the state of the art in automatic software
verification, the goal of the competition is to establish standards, provide
a platform for exchange to developers of such tools, educate PhD students
on reproducibility approaches and benchmarking, and provide comput-
ing resources to developers that do not have access to compute clusters.
The competition consisted of 23 805 verification tasks for C programs
and 586 verification tasks for Java programs. The specifications include
reachability, memory safety, overflows, and termination. This year, the
competition introduced a new competition track on witness validation,
where validators for verification witnesses are evaluated with respect to
their quality.

Keywords: Formal Verification · Program Analysis · Competition · Soft-
ware Verification · Verification Tasks · Benchmark · C Language · Java
Language · SV-Benchmarks · BenchExec · CoVeriTeam

1 Introduction

This report extends the series of competition reports (see footnote) by describing
the results of the 2023 edition, but also explaining the process and rules, giving
insights into some aspects of the competition (this time the focus is on the added
validation track). The 12th Competition on Software Verification (SV-COMP,
https://sv-comp.sosy-lab.org/2023) is the largest comparative evaluation ever in
this area. The objectives of the competitions were discussed earlier (1-4 [16])
and extended over the years (5-6 [17]):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

This report extends previous reports on SV-COMP [10, 11, 12, 13, 14, 15, 16, 17, 18, 20].
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3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results,

4. accelerate the transfer of new verification technology to industrial practice by
identifying the strengths of the various verifiers on a diverse set of tasks,

5. educate PhD students and others on performing reproducible benchmarking,
packaging tools, and running robust and accurate research experiments, and

6. provide research teams that do not have sufficient computing resources with
the opportunity to obtain experimental results on large benchmark sets.

The SV-COMP 2020 report [17] discusses the achievements of the SV-COMP
competition so far with respect to these objectives.

Related Competitions. There are many competitions in the area of formal
methods [9], because it is well-understood that competitions are a fair and accurate
means to execute a comparative evaluation with involvement of the developing
teams. We refer to a previous report [17] for a more detailed discussion and give
here only the references to the most related competitions [22, 58, 67, 74].

Quick Summary of Changes. While we try to keep the setup of the com-
petition stable, there are always improvements and developments. For the 2023
edition, the following changes were made:

• The category for data-race detection was added (last year as demonstration,
this year as regular category).

• New verification tasks were added, with an increase in C from 15 648 in 2022
to 23 805 in 2023.

• A new track was added that evaluates all validators for verification witnesses,
which was discussed and approved by the jury in the 2022 community meeting
in Munich, based on a proposal by two community members [37].

2 Organization, Definitions, Formats, and Rules

Procedure. The overall organization of the competition did not change in
comparison to the earlier editions [10, 11, 12, 13, 14, 15, 16, 17, 18]. SV-COMP is an
open competition (also known as comparative evaluation), where all verification
tasks are known before the submission of the participating verifiers, which is
necessary due to the complexity of the C language. The procedure is partitioned
into the benchmark submission phase, the training phase, and the evaluation
phase. The participants received the results of their verifier continuously via
e-mail (for preruns and the final competition run), and the results were publicly
announced on the competition web site after the teams inspected them.

Competition Jury. Traditionally, the competition jury consists of the chair and
one member of each participating team; the team-representing members circulate
every year after the candidate-submission deadline. This committee reviews the
competition contribution papers and helps the organizer with resolving any
disputes that might occur (cf. competition report of SV-COMP 2013 [11]). The
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Table 1: Scoring schema for SV-COMP 2023 (unchanged from 2021 [18])
Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True incorrect −32 Incorrect program reported as correct (wrong proof)

TASK

VERIFIER
true-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0
unknown

-16
false

2true (witness confirmed)

0unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32true

0

unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 1: Visualization of the scoring schema for the reachability property (unchanged
from 2021 [18])

tasks of the jury were described in more detail in the report of SV-COMP 2022 [20].
The team representatives of the competition jury are listed in Table 5.

Scoring Schema and Ranking. The scoring schema of SV-COMP 2023 was
the same as for SV-COMP 2021. Table 1 provides an overview and Fig. 1 visually
illustrates the score assignment for the reachability property as an example. As
before, the rank of a verifier was decided based on the sum of points (normalized
for meta categories). In case of a tie, the rank was decided based on success
run time, which is the total CPU time over all verification tasks for which the
verifier reported a correct verification result. Opt-out from Categories and Score
Normalization for Meta Categories was done as described previously [11, page 597].

License Requirements. Starting 2018, SV-COMP required that the verifier
must be publicly available for download and has a license that

(i) allows reproduction and evaluation by anybody (incl. results publication),
(ii) does not restrict the usage of the verifier output (log files, witnesses), and
(iii) allows (re-)distribution of the unmodified verifier archive via SV-COMP

repositories and archives.
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Table 2: Publicly available components for reproducing SV-COMP 2023

Component Fig. 3 Repository Version

Verification Tasks (a) gitlab.com/sosy-lab/benchmarking/sv-benchmarks svcomp23
Benchmark Definitions (b) gitlab.com/sosy-lab/sv-comp/bench-defs svcomp23
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.16
Verifier Archives (d) gitlab.com/sosy-lab/sv-comp/archives-2023 svcomp23
Benchmarking (e) github.com/sosy-lab/benchexec 3.16
Witness Format (f) gitlab.com/sosy-lab/benchmarking/sv-witnesses svcomp23
Continuous Integration (f) gitlab.com/sosy-lab/software/coveriteam 1.0

Table 3: Artifacts published for SV-COMP 2023

Content DOI Reference

Verification Tasks 10.5281/zenodo.7627783 [23]
Competition Results 10.5281/zenodo.7627787 [21]
Verifiers and Validators 10.5281/zenodo.7627829 [25]
Verification Witnesses 10.5281/zenodo.7627791 [24]
BenchExec 10.5281/zenodo.7612021 [112]
CoVeriTeam 10.5281/zenodo.7635975 [32]

Task-Definition Format 2.0. SV-COMP 2023 used the task-definition format
in version 2.0. More details can be found in the report for Test-Comp 2021 [19].

Properties. Please see the 2015 competition report [13] for the definition of the
properties and the property format. All specifications used in SV-COMP 2023
are available in the directory c/properties/ of the benchmark repository.

Categories. The (updated) category structure of SV-COMP 2023 is il-
lustrated by Fig. 2. Category C-FalsificationOverall contains all verifica-
tion tasks of C-Overall without Termination and Java-Overall contains
all Java verification tasks. Compared to SV-COMP 2022, we added
one new sub-category ReachSafety-Hardware to main category ReachSafety,
sub-categories ConcurrencySafety-MemSafety, ConcurrencySafety-NoOverflows,
and ConcurrencySafety-NoDataRace-Main (was demo in 2022) to main
category ConcurrencySafety, main category NoOverflows was restructured,
and finally we added SoftwareSystems-DeviceDriversLinux64-MemSafety to
main category SoftwareSystems. The categories are also listed in Ta-
bles 8, 9, and 10, and described in detail on the competition web site
(https://sv-comp.sosy-lab.org/2023/benchmarks.php).

Reproducibility. SV-COMP results must be reproducible, and consequently,
all major components are maintained in public version-control repositories. The
overview of the components is provided in Fig. 3, and the details are given
in Table 2. We refer to the SV-COMP 2016 report [14] for a description of all
components of the SV-COMP organization. There are competition artifacts at
Zenodo (see Table 3) to guarantee their long-term availability and immutability.

Dirk Beyer498

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/tree/svcomp23
https://gitlab.com/sosy-lab/sv-comp/bench-defs/-/tree/svcomp23
https://github.com/sosy-lab/benchexec/tree/3.16/benchexec/tools
https://gitlab.com/sosy-lab/sv-comp/archives-2023/tree/svcomp23/2023
https://github.com/sosy-lab/benchexec/tree/3.16
https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/tree/svcomp23
https://gitlab.com/sosy-lab/software/coveriteam/tree/1.0
https://doi.org/10.5281/zenodo.7627783
https://doi.org/10.5281/zenodo.7627787
https://doi.org/10.5281/zenodo.7627829
https://doi.org/10.5281/zenodo.7627791
https://github.com/sosy-lab/benchexec
https://doi.org/10.5281/zenodo.7612021
https://gitlab.com/sosy-lab/software/coveriteam
https://doi.org/10.5281/zenodo.7635975
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp23/c/properties
https://sv-comp.sosy-lab.org/2023/benchmarks.php


Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

Combinations

Hardware

ReachSafety

Arrays

Heap

LinkedList

Other

Juliet

MemCleanup

MemSafety

Main

MemSafety

NoOverflows

NoDataRace-Main

ConcurrencySafety

Main

Juliet
NoOverflows

BitVectors

MainControlFlow

MainHeap

Other

Termination

AWS-C-Common ReachSafety

BusyBox ReachSafety

BusyBox MemSafety

BusyBox NoOverflows

DeviceDriversLinux64 ReachSafety

DeviceDriversLinux64Large ReachSafety

DeviceDriversLinux64 MemSafety

OpenBSD MemSafety

uthash ReachSafety

uthash MemSafety

uthash NoOverflows

SoftwareSystems

C-Overall

Java-Overall

C-FalsificationOverall

Fig. 2: Category structure for SV-COMP 2023
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(a) Verification Task

(e) Verification Run

(b) Benchmark Definition (c) Tool-Info Module (d) Tool Archive

FALSE UNKNOWN TRUE(f) Violation
Witness

(f) Correctness
Witness

Fig. 3: Benchmarking components of SV-COMP and competition’s execution flow
(same as for SV-COMP 2020)

Table 4: Validation: Witness validators and witness linter

Validator Reference Jury Member Affiliation

CPAchecker [26, 27, 29] Henrik Wachowitz LMU Munich, Germany
CPA-w2t [28] Henrik Wachowitz LMU Munich, Germany
Dartagnan [98] Hernán Ponce de León Huawei Dresden, Germany
CProver-w2t [28] Michael Tautschnig Queen Mary U. of London, UK
GWIT [75] Falk Howar TU Dortmund U., Germany
MetaVal [35] Martin Spiessl LMU Munich, Germany
NITWIT [115] Jana (Philipp) Berger RWTH Aachen, Germany
Symbiotic-Witch [7] Paulína Ayaziová Masaryk U., Brno, Czechia
UAutomizer [26, 27] Daniel Dietsch U. of Freiburg, Germany
WIT4JAVA [113] Tong Wu U. of Manchester, UK
WitnessLint Martin Spiessl LMU Munich, Germany

Competition Workflow. The workflow of the competition is described in
the report for Test-Comp 2021 [19] (SV-COMP and Test-Comp use a similar
workflow). For a description of how to reproduce single verification runs and a
trouble-shooting guide, we refer to the previous report [20, Sect. 3].

3 Participating Verifiers and Validators

The participating verification systems are listed in Table 5. The table contains
the verifier name (with hyperlink), references to papers that describe the systems,
the representing jury member and the affiliation. The listing is also available on
the competition web site at https://sv-comp.sosy-lab.org/2023/systems.php. Table 6
lists the algorithms and techniques that are used by the verification tools, and
Table 7 gives an overview of commonly used solver libraries and frameworks.

Validation of Verification Results. The validation of the verification results
was done by eleven validation tools (ten proper witness validators, and one
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Table 5: Verification: Participating verifiers with tool references and representing jury
members; new for first-time participants, ∅ for hors-concours participation

Participant Ref. Jury member Affiliation

2ls [39, 88] Viktor Malík BUT, Brno, Czechia
Brick [40] Lei Bu Nanjing U., China
Bubaak new [42] Marek Chalupa ISTA, Austria
Cbmc [46, 84] Michael Tautschnig Queen Mary U. London, UK
Coastal∅ [109] (hors concours) –
CPA-BAM-BnB∅ [4, 111] (hors concours) –
CPA-BAM-SMG∅ (hors concours) –
CPAchecker [33, 53] Henrik Wachowitz LMU Munich, Germany
CPALockator∅ [5, 6] (hors concours) –
Crux∅ [57, 104] (hors concours) –
CSeq∅ [51, 79] (hors concours) –
CVT-AlgoSel∅ [30, 31] (hors concours) –
CVT-ParPort∅ [30, 31] (hors concours) –
Dartagnan [65, 97] Hernán Ponce de León Huawei Dresden, Germany
Deagle [70] Fei He Tsinghua U., China
Divine∅ [8, 85] (hors concours) –
Ebf [3] Fatimah Aljaafari U. of Manchester, UK
Esbmc-incr∅ [47, 50] (hors concours) –
Esbmc-kind [63, 64] Rafael Sá Menezes U. of Manchester, UK
Frama-C-SV [36, 52] Martin Spiessl LMU Munich, Germany
Gazer-Theta∅ [1, 69] (hors concours) –
GDart [93] Falk Howar TU Dortmund, Germany
GDart-Llvm new Falk Howar TU Dortmund, Germany
Goblint [103, 110] Simmo Saan U. of Tartu, Estonia
Graves-CPA [86] Will Leeson U. of Virginia, USA
Graves-Par new Hors Concurs U. of Virginia, USA
Infer∅ [41, 82] (hors concours) –
Java-Ranger [76, 106] Soha Hussein U. of Minnesota, USA
JayHorn∅ [81, 105] (hors concours) –
Jbmc [48, 49] Peter Schrammel U. of Sussex / Diffblue, UK
JDart∅ [87, 92] (hors concours) –
Korn [60, 61] Gidon Ernst LMU Munich, Germany
Lazy-CSeq∅ [77, 78] (hors concours) –
LF-checker new Tong Wu U. of Manchester, UK
Locksmith [99] Vesal Vojdani U. of Tartu, Estonia
Mlb new Lei Bu Nanjing U., China
Mopsa new [80, 91] Raphaël Monat Inria and U. of Lille, France
PeSCo-CPA [101, 102] Cedric Richter U. of Oldenburg, Germany
PIChecker new [107] Jie Su Xidian U., China
Pinaka∅ [45] (hors concours) –
PredatorHP∅ [73, 96] (hors concours) –
(continues on next page)
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Table 5: Competition candidates (continued)

Participant Ref. Jury member Affiliation

Spf∅ [94, 100] (hors concours) –
Symbiotic [43, 44] Marek Trtík Masaryk U., Brno, Czechia
Theta [108, 114] Levente Bajczi BME Budapest, Hungary
UAutomizer [71, 72] Matthias Heizmann U. of Freiburg, Germany
UGemCutter [62, 83] Dominik Klumpp U. of Freiburg, Germany
UKojak [59, 95] Frank Schüssele U. of Freiburg, Germany
UTaipan [56, 68] Daniel Dietsch U. of Freiburg, Germany
VeriAbs [2, 54] Priyanka Darke TCS, India
VeriAbsL new [55] Priyanka Darke TCS, India
VeriFuzz [89, 90] Raveendra Kumar M. TCS, India
VeriOover new HaiPeng Qu Ocean U. of China, China

Table 6: Algorithms and techniques that the participating verification systems used;
new for first-time participants, ∅ for hors-concours participation
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2ls ✓ ✓ ✓ ✓ ✓ ✓

Brick ✓ ✓ ✓ ✓ ✓

Bubaak new ✓ ✓ ✓ ✓ ✓

Cbmc ✓ ✓ ✓

Coastal∅ ✓

CPA-BAM-BnB∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPA-BAM-SMG∅

CPAchecker ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CPALockator∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Crux∅ ✓

CSeq∅ ✓ ✓ ✓

CVT-AlgoSel∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVT-ParPort∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dartagnan ✓ ✓ ✓

Deagle ✓ ✓

Divine∅ ✓ ✓ ✓ ✓ ✓ ✓

Ebf ✓

Esbmc-incr∅ ✓ ✓ ✓ ✓

Esbmc-kind ✓ ✓ ✓ ✓ ✓

(continues on next page)
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Table 6: Algorithms and techniques (continued)
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Frama-C-SV ✓

Gazer-Theta∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GDart ✓ ✓ ✓

GDart-Llvm new ✓ ✓

Goblint ✓ ✓ ✓

Graves-CPA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Graves-Par new

Infer∅ ✓ ✓ ✓ ✓

Java-Ranger ✓ ✓

JayHorn∅ ✓ ✓ ✓ ✓ ✓ ✓

Jbmc ✓ ✓ ✓

JDart∅ ✓ ✓ ✓

Korn ✓ ✓ ✓ ✓

Lazy-CSeq∅ ✓ ✓ ✓

LF-checker new

Locksmith ✓

Mlb new

Mopsa new ✓

PeSCo-CPA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PIChecker new ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pinaka∅ ✓ ✓ ✓

PredatorHP∅ ✓

Spf∅ ✓ ✓ ✓

Symbiotic ✓ ✓ ✓ ✓ ✓ ✓ ✓

Theta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UAutomizer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UGemCutter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓ ✓ ✓

UTaipan ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriAbs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriAbsL new ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VeriFuzz ✓ ✓ ✓

VeriOover new
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Table 7: Solver libraries and frameworks that are used as components in the participating
verification systems (component is mentioned if used more than three times; new for
first-time participants, ∅ for hors-concours participation)
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2ls ✓ ✓

Brick ✓ ✓

Bubaak new ✓

Cbmc ✓ ✓

Coastal∅ ✓

CPA-BAM-BnB∅ ✓ ✓ ✓

CPA-BAM-SMG∅ ✓ ✓ ✓

CPAchecker ✓ ✓ ✓ ✓

CPALockator∅ ✓ ✓ ✓

Crux∅ ✓

CSeq∅ ✓ ✓

CVT-AlgoSel∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVT-ParPort∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dartagnan ✓

Deagle ✓

Divine∅

Ebf ✓ ✓

Esbmc-incr∅ ✓ ✓

Esbmc-kind ✓ ✓

Frama-C-SV
Gazer-Theta∅

GDart ✓ ✓

GDart-Llvm new ✓

Goblint ✓

Graves-CPA ✓ ✓ ✓

Graves-Par new

Infer∅

Java-Ranger ✓

JayHorn∅

Jbmc ✓ ✓

JDart∅ ✓ ✓ ✓

Korn ✓

Lazy-CSeq∅ ✓ ✓

LF-checker new

Locksmith

(continues on next page)
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Table 7: Solver libraries and frameworks (continued)
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Mlb new

Mopsa new ✓

PeSCo-CPA ✓ ✓ ✓

PIChecker new ✓ ✓ ✓ ✓

Pinaka∅

PredatorHP∅

Spf∅ ✓

Symbiotic ✓

Theta
UAutomizer ✓ ✓ ✓ ✓ ✓

UGemCutter ✓ ✓ ✓ ✓ ✓

UKojak ✓ ✓ ✓

UTaipan ✓ ✓ ✓ ✓ ✓

VeriAbs ✓ ✓ ✓ ✓

VeriAbsL new ✓ ✓ ✓ ✓

VeriFuzz ✓

VeriOover new

witness linter for syntax checks), which are listed in Table 4, including references
to literature. The ten witness validators are evaluated based on all verification
witnesses that were produced in the verification track of the competition.

Hors-Concours Participation. As in previous years, we also included verifiers
to the evaluation that did not actively compete or that should not occur in the
rankings for some reasons (e.g., meta verifiers based on other competing tools, or
tools for which the submitting teams were not sure if they show the full potential of
the tool). These participations are called hors concours, as they cannot participate
in rankings and cannot “win” the competition. Those verifiers are marked as ‘hors
concours’ in Table 5 and others, and the names are annotated with a symbol (∅).

4 Results of the Verification Track

The results of the competition represent the the state of the art of what can be
achieved with fully automatic software-verification tools on the given benchmark
set. We report the effectiveness (number of verification tasks that can be solved
and correctness of the results, as accumulated in the score) and the efficiency
(resource consumption in terms of CPU time and CPU energy). The results are
presented in the same way as in last years, such that the improvements compared
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Table 8: Verification: Quantitative overview over all regular results;
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2ls 3617 611 0 6570 1183 75 1884 9722
Brick

Bubaak new 4278 -4655 9 5005 195 1589 4313 2426
Cbmc 3497 1798 1185 6267 862 -711 2110 10886
CPAchecker 5535 2612 1744 4079 883 758 4254 14559
Dartagnan 1268
Deagle 4744
Divine∅ 2698 -354 -2 0 0 101 -573 1429
Ebf -317
Esbmc-incr∅ 480
Esbmc-kind 5183 2000 1162 6342 782 275 3507 13299
Frama-C-SV 1522
GDart-Llvm new

Goblint 874 1591 5306 358 6397
Graves-CPA 4868 -1186 3447 5258
Graves-Par new -64 2179 118 -17785 590 -1337 -3063 -8217
Korn

LF-checker new 1023
Locksmith

Mopsa new 699 556 5671 815
PeSCo-CPA 5576 812 4258 14652
PIChecker new 552
Symbiotic 4786 2620 194 2407 930 1604 4026 12097
Theta 1076 1286
UAutomizer 3997 2301 2717 8639 2105 476 4173 19589
UGemCutter 2710
UKojak 2306 1526 0 7305 0 274 3092 8102
UTaipan 3672 2354 2612 8492 0 412 4100 14514
VeriAbs 6628
VeriAbsL new 6478
VeriFuzz 1704 -500 2305
VeriOover new

GDart 652
Java-Ranger 400
Jbmc 667
Mlb new 495
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Table 9: Verification: Quantitative overview over all hors-concours results; empty cells
represent opt-outs, new for first-time participants, ∅ for hors-concours participation
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CVT-AlgoSel∅ -507 59
CVT-ParPort∅ 2033 2539 847 -3793 947 1421 3734 7212
CPA-BAM-BnB∅ 458
CPA-BAM-SMG∅ 2587 804
CPALockator∅ -2720
Crux∅ 879 1316
CSeq∅ -11702
Divine∅ 2698 -354 -2 0 0 101 -573 1429
Esbmc-incr∅ 480
Gazer-Theta∅

Infer∅ -56129 -5737 -77220 -25556
Lazy-CSeq∅ -13840
Pinaka∅ 3387 -879 631
PredatorHP∅ 1926
Coastal∅ -2816
JayHorn∅ 220
JDart∅ 382
Spf∅ 182

to the last years are easy to identify. The results presented in this report were
inspected and approved by the participating teams.

Quantitative Results. Tables 8 and 9 present the quantitative overview of
all tools and all categories. Due to the large number of tools, we need to split
the presentation into two tables, one for the verifiers that participate in the
rankings (Table 8), and one for the hors-concours verifiers (Table 9). The head
row mentions the category, the maximal score for the category, and the num-
ber of verification tasks. The tools are listed in alphabetical order; every table
row lists the scores of one verifier. We indicate the top three candidates by for-
matting their scores in bold face and in larger font size. An empty table cell
means that the verifier opted-out from the respective main category (perhaps
participating in subcategories only, restricting the evaluation to a specific topic).
More information (including interactive tables, quantile plots for every category,
and also the raw data in XML format) is available on the competition web site
(https://sv-comp.sosy-lab.org/2023/results) and in the results artifact (see Table 3).
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Table 10: Verification: Overview of the top-three verifiers for each category; new for
first-time participants, values for CPU time and energy rounded to two significant digits

Rank Verifier Score CPU CPU Solved Unconf. False Wrong
Time Energy Tasks Tasks Alarms Proofs
(in h) (in kWh)

ReachSafety
1 VeriAbs 6628 150 1.6 3 509 431
2 VeriAbsL new 6478 120 1.1 3 600 567 8
3 PeSCo-CPA 5576 79 0.84 3 294 330 3 8
MemSafety
1 Symbiotic 2620 1.4 0.018 304 0 2
2 CPAchecker 2612 6.1 0.053 3 053 0
3 UTaipan 2354 34 0.33 1 945 29

ConcurrencySafety
1 Deagle 4744 1.1 0.014 2 545 27 1
2 UAutomizer 2717 34 0.37 1 498 18
3 UGemCutter 2710 36 0.37 1 495 13

NoOverflows
1 UAutomizer 8639 53 0.48 5 407 62
2 UTaipan 8492 55 0.51 5 296 107
3 UKojak 7305 32 0.26 4 275 60

Termination
1 VeriFuzz 2305 21 0.26 1 216 141 3
2 UAutomizer 2105 13 0.12 1 196 9
3 2ls 1183 3.7 0.029 1 005 205

SoftwareSystems
1 Symbiotic 1604 0.80 0.011 1 026 189 1
2 Bubaak new 1589 0.32 0.0036 432 206 1
3 Mopsa new 815 12 0.16 1 610 94

FalsificationOverall
1 Bubaak new 4313 36 0.39 5 258 219 10
2 PeSCo-CPA 4258 46 0.49 3 800 150 7
3 CPAchecker 4254 90 1.0 3 677 99 4

Overall
1 UAutomizer 19589 250 2.5 13 367 337
2 PeSCo-CPA 14652 160 1.7 10 372 497 9 8
3 CPAchecker 14559 220 2.5 10 200 539 6

JavaOverall
1 Jbmc 667 0.34 0.0032 473 29
2 GDart 652 3.0 0.026 477 9
3 Mlb new 495 0.38 0.0036 336 95

Table 10 reports the top three verifiers for each category. The run time (column
‘CPU Time’) and energy (column ‘CPU Energy’) refer to successfully solved
verification tasks (column ‘Solved Tasks’). We also report the number of tasks for
which no witness validator was able to confirm the result (column ‘Unconf. Tasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
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Fig. 4: Quantile functions for category C-Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by correct verification runs
below a certain run time (y-coordinate). More details were given previously [11].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear scale
is used for the time range between 0 s and 1 s.

tasks for which the verifier reported wrong results, i.e., reporting a counterexample
when the property holds (incorrect False) and claiming that the program fulfills
the property although it actually contains a bug (incorrect True), respectively.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [11, 34] because these visualizations make it easier to
understand the results of the comparative evaluation. The results archive (see Ta-
ble 3) and the web site (https://sv-comp.sosy-lab.org/2023/results) include such
a plot for each (sub-)category. As an example, we show the plot for category
C-Overall (all verification tasks) in Fig. 4. A total of 13 verifiers participated in
category C-Overall, for which the quantile plot shows the overall performance over
all categories (scores for meta categories are normalized [11]). A more detailed
discussion of score-based quantile plots, including examples of what insights one
can obtain from the plots, is provided in previous competition reports [11, 14].

The winner of the competition, UAutomizer, achieves the best cumulative score
(graph for UAutomizer has the longest width from x = 0 to its right end). Verifiers
whose graphs start with a negative cumulative score produced wrong results.

New Verifiers. To acknowledge the verification systems that participate for
the first or second time in SV-COMP, Table 11 lists the new verifiers (in SV-
COMP 2022 or SV-COMP 2023). It is remarkable to see that first-time par-
ticipants can win or almost win large categories: Bubaak new is the best ver-
ifier for category FalsificationOverall, and Bubaak new is the second-best and
Mopsa new third-best in category SoftwareSystems. Figure 5 shows the growing
interest in the competition over the years.
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Fig. 5: Number of evaluated verifiers for each year (first-time participants on top)

Table 11: New verifiers in SV-COMP 2022 and SV-COMP 2023; column ‘Sub-
categories’ gives the number of executed categories (including demo category
NoDataRace), new for first-time participants, ∅ for hors-concours participation

Verifier Language First Year Sub-categories

Bubaak new C 2023 40
GDart-Llvm new C 2023 1
Graves-Par new C 2023 40
LF-checker new C 2023 3
Mopsa new C 2023 32
PIChecker new C 2023 1
VeriAbsL new C 2023 13
VeriOover new C 2023 1

Mlb new Java 2023 1

CVT-AlgoSel∅ C 2022 18
CVT-ParPort∅ C 2022 35
CPA-BAM-SMG∅ C 2022 16
Crux∅ C 2022 20
Deagle C 2022 1
Ebf C 2022 1
Graves-CPA C 2022 35
Infer∅ C 2022 25
Lart C 2022 22
Locksmith C 2022 1
Sesl C 2022 6
Theta C 2022 13
UGemCutter C 2022 2

GDart Java 2022 1

Computing Resources. The resource limits were the same as in the previous
competitions [14], except for the upgraded operating system: Each verification
run was limited to 8 processing units (cores), 15GB of memory, and 15min of
CPU time. Witness validation was limited to 2 processing units, 7 GB of memory,
and 1.5min of CPU time for violation witnesses and 15min of CPU time for
correctness witnesses. The machines for running the experiments are part of a
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Fig. 6: Scoring schema for evaluation of validators; p = −16 for SV-COMP 2023;
figure adopted from [37]

compute cluster that consists of 168 machines; each verification run was executed
on an otherwise completely unloaded, dedicated machine, in order to achieve
precise measurements. Each machine had one Intel Xeon E3-1230 v5 CPU, with 8
processing units each, a frequency of 3.4GHz, 33GB of RAM, and a GNU/Linux
operating system (x86_64-linux, Ubuntu 22.04 with Linux kernel 5.15). We
used BenchExec [34] to measure and control computing resources (CPU time,
memory, CPU energy) and VerifierCloud to distribute, install, run, and clean-up
verification runs, and to collect the results. The values for time and energy are
accumulated over all cores of the CPU. To measure the CPU energy, we used
CPU Energy Meter [38] (integrated in BenchExec [34]).

One complete verification execution of the competition consisted of
490 858 verification runs in 91 run sets (each verifier on each verification task
of the selected categories according to the opt-outs), consuming 1 114 days of
CPU time and 299 kWh of CPU energy (without validation). Witness-based result
validation required 4.59 million validation runs in 1 527 run sets (each validator on
each verification task for categories with witness validation, and for each verifier),
consuming 877 days of CPU time. Each tool was executed several times, in order
to make sure no installation issues occur during the execution. Including these
preruns, the infrastructure managed a total of 2.78 million verification runs in
560 run sets (verifier × property) consuming 13.8 years of CPU time, and 35.9
million validation runs in 11 532 run sets (validator × verifier × property) con-
suming 17.8 years of CPU time. This means that also the load of the experiment
infrastructure increased and was larger than ever before.
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Table 12: Validation of violation witnesses: Overview of the top-three verifiers for each
category; values for CPU time and energy rounded to two significant digits

Rank Validator Score CPU Solved False Wrong
Time Tasks Alarms Proofs
(in h)

ReachSafety
1 UAutomizer 62966 99 12 196
2 CProver-w2t 49545 16 18 903 2
3 CPAchecker 33938 92 17 770 12

MemSafety
1 UAutomizer 31156 49 5 680
2 CPAchecker 9013 40 16 881 7
3 CPA-w2t 1241 0.76 327

ConcurrencySafety
1 Dartagnan 9777 44 6 520 14
2 CPAchecker 2658 14 3 466 28
3 UAutomizer 912 1.2 263

NoOverflows
1 UAutomizer 74933 150 23 142
2 CProver-w2t 61848 6.3 13 450
3 CPAchecker 28600 5.0 2 747

Termination
1 UAutomizer 3017 7.6 1 052
2 CPAchecker 423 19 3 113
3 MetaVal 0 0 0

SoftwareSystems
1 Symbiotic-Witch 3304 0.55 846 1
2 UAutomizer 2468 29 3 579
3 CPAchecker 1620 14 2 475

Overall
1 UAutomizer 127030 330 45 912
2 CPAchecker 52851 180 46 452 47
3 Symbiotic-Witch 35851 65 38 644 10

5 Results of the Witness-Validation Track

The validation of verification results, in particular, verification witnesses, becomes
more and more important for various reasons: verification witnesses justify and
help to understand and interpret a verification result, they serve as exchange
object for intermediate results, and they allow to make use of imprecise verifica-
tion techniques (e.g., via machine learning). A case study on the quality of the
results of witness validators [37] suggested that validators for verification results
should also undergo a periodical comparative evaluation and proposed a scoring
schema for witness-validation results. SV-COMP 2023 evaluated 10 validators
on more than 100 000 verification witnesses.

Dirk Beyer512

https://ultimate.informatik.uni-freiburg.de
https://www.cprover.org/cbmc/
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://cpachecker.sosy-lab.org/
https://github.com/hernanponcedeleon/Dat3M
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://ultimate.informatik.uni-freiburg.de
https://www.cprover.org/cbmc/
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://gitlab.com/sosy-lab/software/metaval
https://github.com/ayazip/witch-klee
https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://ultimate.informatik.uni-freiburg.de
https://cpachecker.sosy-lab.org/
https://github.com/ayazip/witch-klee


Table 13: Validation of correctness witnesses: Overview of the top-three verifiers for
each category; values for CPU time and energy rounded to two significant digits

Rank Validator Score CPU Solved False Wrong
Time Tasks Alarms Proofs
(in h)

ReachSafety
1 UAutomizer 21499 350 16 768
2 CPAchecker 17816 220 16 437
3 MetaVal -89088 320 14 217 16
MemSafety
1 UAutomizer 18219 710 16 247
2 MetaVal 0 0 0
3 missing validator 0 0 0

ConcurrencySafety
1 UAutomizer 12994 140 10 232
2 missing validator 0 0 0
3 missing validator 0 0 0

NoOverflows
1 UAutomizer 65478 390 37 419
2 CPAchecker 27151 14 3 082
3 MetaVal 0 0 0

Termination
1 missing validator 0 0 0
2 missing validator 0 0 0
3 missing validator 0 0 0

SoftwareSystems
1 CPAchecker 3147 36 6 124
2 UAutomizer 3027 300 17 385
3 MetaVal -121312 600 18 148 232
Overall
1 UAutomizer 930491 900 98 051
2 CPAchecker 30076 280 25 643
3 MetaVal -165166 910 32 365 248

Scoring Schema for Validation Track. The score of a validator in a sub-
category is computed as

score =

(
pcorrect∗

|correct∗|
+ q · pwrong

|wrong|

)
· |correct

∗|+ |wrong|
2

where the points in pcorrect∗ and pwrong are determined according to the schema in
Fig. 6 and then normalized using the normalization schema that SV-COMP uses for
meta categories [11, page 597], except for the factor q, which gives a higher weight
to wrong witnesses. Wrong witnesses are witnesses that do not agree with the
expected verification verdict. Witnesses that agree with the expected verification
verdict cannot be automatically treated as correct because we do not yet have
an established way to determine this. Therefore, we call this class of witnesses
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correct∗. Further details are given in the proposal [37]. This schema relates to
each base category from the verification track a meta category that consists of
two sub-categories, one with the correct∗ and one with the wrong witnesses.

Tables 12 and 13 show the rankings of the validators. False alarms in Table 12
are claims of a validator that the program contains a bug described by a given
violation witness although the program is correct (the validator confirms a wrong
violation witness). Wrong proofs in Table 13 are claims of a validator that the
program is correct according to invariants in a given correctness witness although
the program contains a bug (the validator confirms a wrong correctness witness).
The scoring schema significantly punishes results that confirm a wrong verification
witness, as visible for validator MetaVal in Table 13.

Table 13 shows that there are categories that are supported by less than
three validators (‘missing validators’). This reveals a remarkable gap in software-
verification research:

There are verification results that cannot be independently confirmed,
according to the state of the art in software verification.

6 Conclusion

The 12th edition of the Competition on Software Verification (SV-COMP 2023)
again increased the number of participating systems and gave the largest ever
overview over software-verification tools, with 52 participating verification systems
(incl. 9 new verifiers and 18 hors-concours; see Fig. 5 for the participation numbers
and Table 5 for the details). For the first time, a thorough comparative evaluation
of 10 validation tools was performed; the validation tools were assessed in a
similar manner as in the verification track, using a community-agreed scoring
schema [37] which is derived from the scoring schema of the verification track.
The number of verification tasks in SV-COMP 2023 was significantly increased
to 23 805 in the C category. The high quality standards of the TACAS conference
are ensured by a competition jury, with a member from each actively participating
team. We hope that the broad overview of verification tools stimulates the further
advancements of software verification, and in particular, the validation track
showed some open problems that should be addressed.

Data-Availability Statement. The verification tasks and results of the compe-
tition are published at Zenodo, as described in Table 3. All components and data
that are necessary for reproducing the competition are available in public version
repositories, as specified in Table 2. For easy access, the results are presented also
online on the competition web site https://sv-comp.sosy-lab.org/2023/results. The
main results were reproduced in an independent reproduction study [66].
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Abstract. The new version of the witness validator Symbiotic-Witch
follows more precisely the (fixed version of the) semantics of verifica-
tion witnesses. This makes the tool more efficient as it can benefit from
sink nodes. Further, the tool can now refute a witness. To sum up,
Symbiotic-Witch 2 can confirm or refute violation witnesses of reach-
ability safety, memory safety, memory cleanup, and overflow properties
of sequential C programs.

1 Witness Validation Approach

The basic principle of the witness validator Symbiotic-Witch 2 remains the
same as in the previous version of the tool [1], i.e., it symbolically executes [9] the
given program along execution paths specified by the corresponding witness. The
substantial differences were induced by a more precise interpretation of violation
witnesses and by the commmunity decision to support witness refutation.

We originally thought that every node of a witness automaton has an im-
plicit self-loop that can be taken under each program instruction. After SV-
COMP 2022, we learnt that the implicit self-loop of a node q can be used only
by edges of control flow automata (CFA) that are “either

(a) not matched by the source-code guard of any other outgoing transition of q
or

(b) are matched by the source-code guard of some other outgoing transition of
q that also matches a successor CFA edge.” [5]

This definition is problematic in particular because it refers to CFA and there
is no standardized translation of C programs to CFA. Especially the case (b)
heavily depends on the granularity of constructed CFA as it refers to adjacent
edges. As the semantics of verification witnesses has to be unambiguous, we
have convinced the community that the case (b) should be removed from the
semantics. Still, the case (a) is viable and it considerably reduces the applicability
of implicit self-loops.

? This work has been supported by the Czech Science Foundation grant GA23-06506S.

c© The Author(s) 2023

https://doi.org/10.1007/978-3-031-30820-8_30
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 523–528, 2023.

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-1072-8137
http://orcid.org/0000-0001-5873-403X
https://doi.org/10.1007/978-3-031-30820-8_30
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_30&domain=pdf


P. Ayaziová and J. Strejček

Symbiotic-Witch 2 works as follows. It reads a given violation witness and
the corresponding program. The program is symbolically executed and every
state of symbolic execution is accompanied by the set of witness automaton
nodes that are reached by the executed program path. Note that these sets are
dramatically smaller than in the previous version of our tool due to the more
precise semantics of implicit self-loops. If the set does not contain any node
except sink nodes, the symbolic execution of the corresponding path is stopped.
This brings a significant speed up compared to the previous version of our tool
where this situation cannot happen.

Another significant difference to the previous version is the handling of state-
space guards of a given witness. Consider a symbolic execution state and the as-
sociated set of witness automata nodes. Further, assume that the next instruction
processed by the symbolic execution matches the source-code guards of some au-
tomata edges leading from the set of nodes. For each state-space guard of these
edges, we create a fork of symbolic execution and restrict the next symbolic exe-
cution state to satisfy the state-space guard. The set of nodes accompanying the
restricted symbolic execution state contains only target nodes of the edges with
the enforced state-space guard. Note that the previous version of our validator
ignores state-space guards unless the witness automaton contains a single path
from the entry node to the violation node.

If the symbolic execution detects a violation of the considered property and
the tracked set of witness automata nodes contains a violation node, the witness
is confirmed. The witness is refuted if

– the symbolic execution ends without finding a property violation represented
by the witness and

– there was no execution path unexplored due to the limitations of the em-
ployed symbolic executor (e.g., our executor based on Klee [6] cannot han-
dle symbolic floats and thus it instantiates them with a concrete value and
ignores executions with other values) and

– the witness uses only source-code guards supported by our tool (see below).

The witness automata use various attributes to specify source-code guards
(saying which instructions correspond to a given witness automaton edge) and
state-space guards (restrictions on program states). Symbiotic-Witch 2 sup-
ports only selected attributes for source-code guards, namely the line number
of executed instructions, the information whether true or false branch is taken,
and the information about entering a function or returning from a function.
Regarding the state-space guard, our tool uses only the return values of the
__VERIFIER_nondet_* functions. The limited support of attributes means that
our tool can misinterpret a given witness automaton, i.e., it can consider some
execution path to be represented by the automaton even if it is not, and vice
versa. In practice, this is not a big issue as many verification tools produce vi-
olation witnesses with only the supported attributes and some other tools use
unsupported attributes to provide additional information (like offset of an in-
struction in the source code) that typically do not change the represented set of
execution paths.
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2 Software Architecture

The tool Symbiotic-Witch 2 is integrated to the Symbiotic framework [7]
and it can be roughly divided into two components. The first component is a
set of python scripts (many of them shared with other Symbiotic tools) that
preprocess the code. More precisely, they set the options for optimisations and
Clang sanitizer depending on the considered property, translates the given C
program into llvm intermediate representation via Clang, and links necessary
function definitions.

The second component called Witch-Klee takes the preprocessed program
and the witness, and it runs the actual witness validation. Witch-Klee is de-
rived from the symbolic executor JetKlee, which is a fork of Klee [6] used
in the Symbiotic framework. Witch-Klee employs RapidXML for parsing
witnesses in the GraphML format [5] and Z3 [10] as the SMT solver in symbolic
execution.

Both components of Symbiotic-Witch 2 run on llvm 10.0.1.

3 Strengths and Weaknesses

On the positive side, Symbiotic-Witch 2 can efficiently handle violation wit-
nesses providing return values of __VERIFIER_nondet_* functions as well as
those describing execution paths by taken branches.

Further, if Symbiotic-Witch 2 confirms a witness containing only attributes
supported by the tool, then the witness is indeed valid. If Symbiotic-Witch 2
confirms a witness with some attributes not supported by the tool, then the
program really violates the considered property and this violation can, but does
not have to be represented by the witness. If Symbiotic-Witch 2 refutes a wit-
ness, then this witness is indeed invalid. The only exception is the case when the
program contains some inner nondeterminism that is lost by the translation to
llvm. For example, consider a program that contains a test f(x) < g(x). Due
to the C standard, the functions f(x) and g(x) can be evaluated in any order.
If a violation witness prescribes one order of evaluation and Clang translates
the program such that the functions are evaluated in the opposite order, then
the witness can be refuted even if it is correct. We can construct such a witness,
but we have not yet come across any of these in practice. We plan to extend our
tool with a check for this kind of inner nondeterminism in order to guarantee
the correctness of refutation answers.

Our tool also has some weaknesses. Some of them come from the fact that
we do not support all possible attributes of witnesses. We decided not to invest
more effort to support other attributes as we expect the witness format to be
revised soon due to detected issues in its semantics. In spite of this, the tool
correctly confirmed 35536 and refuted 3108 violation witnesses of SV-COMP
2023. On the negative side, the tool also confirmed 10 witnesses of memory safety
violation marked as invalid. Nine of these incorrect validation results stem from
two verification tasks where our symbolic executor reported a valid-memtrack
violation while the tasks are marked true for this property.
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Symbiotic-Witch 2 struggles to evaluate two specific classes of witnesses.
The first class are the witnesses for the programs in the ECA subcategory. These
generated artificial programs are hard to compile and optimize. Thus, our tool
sometimes runs out of time during the code preprocessing phase.

The second class are the witnesses that contain edges describing declarations
and initializations of global variables (e.g., some witnesses produced by Ultimate
Automizer [8]). Our algorithm processes these declarations and initializations in
a separate step and starts the symbolic execution of a given program (and thus
also the witness tracking) in the function main. This means that the witness
tracking cannot pass any witness edge representing instructions that are not
reachable from main. Hence, Symbiotic-Witch 2 can refute some witnesses of
the second class even if it finds the property violations they represent. This issue
can be seen as another consequence of the fact that the semantics of witnesses
is formulated over CFA and the translation of C programs to CFA is not given.

4 Tool Setup and Configuration

The archive with Symbiotic-Witch 2 is available in the SV-COMP archives.
To run the validator, use the command

./symbiotic [--prp <prop>] [--32 | --64] --witness-check <witness> <prg>

where <witness> is a violation witness in the GraphML format, <prg> is the
corresponding C program, and <prop> is the considered property. The property
can be supplied as a .prp file or one of the following shortcuts: no-overflow,
valid-memsafety, or valid-memcleanup. The default property is unreachabil-
ity of the function reach_error(). The switches --32 and --64 specify the
considered architecture, 64-bit being the default.

Both components of the tool are also available on GitHub with build instruc-
tions in the respective README.md files. To start validation, build each component
separately, add the path to the built witch-klee executable to $PATH and run
Symbiotic as previously described.

5 Software Project and Contributors

Symbiotic-Witch 2 has been developed at Faculty of Informatics, Masaryk
University by Paulína Ayaziová under the guidance of Jan Strejček. The tool is
available under the MIT license and all used tools and libraries (llvm, Klee,
Z3, RapidXML, Symbiotic) are also available under open-source licenses that
comply with SV-COMP’s policy for the reproduction of results. The source code
of Witch-Klee (the competing version tagged SV-COMP23) can be found at:

https://github.com/ayazip/witch-klee

The source code of the respective version of Symbiotic is available at:

https://github.com/staticafi/symbiotic/tree/witch-klee
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Data Availability Statement. All data of SV-COMP 2023 are archived as described
in the competition report [3] and available on the competition web site. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduction. The
version of Symbiotic-Witch 2 used in the competition is archived together with other
participating tools [4] or separately [2].
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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Abstract 2LS is a C program analyser built upon the CPROVER infrastructure
that can verify and refute program assertions, memory safety, and termination.
Until now, one of the main drawbacks of 2LS was its inability to verify most
programs with arrays. This paper introduces a new abstract domain in 2LS for
reasoning about the contents of arrays. In addition, we introduce an improved
approach to loop unwinding, a crucial component of the 2LS’ verification al-
gorithm, which particularly enables finding proofs and counterexamples for pro-
grams working with dynamic memory.

1 Overview
2LS is a static analysis and verification tool for sequential C programs. At its core, it
uses the kIkI algorithm (k-invariants and k-induction) [2], which integrates bounded
model checking, k-induction, and abstract interpretation into a single, scalable frame-
work. kIkI relies on incremental SAT solving in order to find proofs and refutations of
assertions, as well as to perform (non)termination analysis [3].

One of the core mechanisms of kIkI is incremental loop unwinding. However, the
original unwinding approach that 2LS used was not compatible with the memory model
developed in [6]. Hence, in the first part of this paper, we introduce a new approach to
loop unwinding [9] that supports programs manipulating dynamic memory and hence
allows 2LS to verify programs that could not be handled before.

The abstract interpretation part of kIkI features multiple abstract domains for reas-
oning about various data structures in programs. In particular, the competition version
of 2LS uses the interval domain for numerical values and our custom heap domain for
describing the shape of the heap. A common data structure that 2LS could not handle
in the past are arrays. Therefore, in the second part of this paper, we introduce a new
array abstract domain capable of reasoning about the content of arrays.

Architecture. The architecture of 2LS has been described in previous competi-
tion contributions [10,7,8]. In brief, 2LS is built upon the CPROVER infrastructure [4]
and thus uses GOTO programs as the internal program representation. The analysed
program is first translated into a single static assignment (SSA) form. Then, inductive
invariants in various abstract domains are computed for the program’s loops. Last, the
SSA form and the invariants are bit-blasted into a propositional formula and given to a
SAT solver which is used to reason about the program’s properties.
? Jury member
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Software Project. 2LS is implemented in C++ and it is maintained by Peter Schram-
mel and Viktor Malı́k with contributions by the community. The competition version
uses Glucose 4.0 as its back-end SAT solver. 2LS competes in all C categories except
Concurrency. See the previous competition report [8] for details on executing 2LS.

2 Loop Unwinding of Heap-Manipulating Programs

Whenever the kIkI algorithm is not able to verify or refute the program’s properties
for the given unwinding level, it incrementally unwinds the loops in order to com-
pute a stronger invariant or to explore additional reachable program states [2]. 2LS’
original unwinder unrolls the loops directly at the level of the program’s SSA form.
However, this approach is not compatible with the encoding of pointer operations that
2LS uses [6]. Hence, for this year’s competition version of 2LS, we introduce a new
approach to loop unwinding which overcomes these limitations and allows to verify
heap-manipulating programs using k-induction and BMC.

Memory model in 2LS. Each call of malloc is replaced by a finite number of so-
called abstract dynamic objects that over-approximate the (possibly unbounded) set of
concrete dynamic objects allocated by that call. Subsequently, the conversion of pointer-
dereferencing operations to the SSA form is based on a static points-to analysis which
computes for each pointer p the set of memory objects that p can be dereferenced into.
Reads and writes to memory through p are then encoded using a case-split of objects
which p can point to in the program location of the given memory operation [6].

The points-to analysis is performed on the GOTO program (control-flow graph)
prior to generating the SSA form. This approach poses a problem for the original un-
winder when dealing with allocations inside loops. Each new unwinding of a loop may
introduce a new call to malloc, effectively introducing new abstract dynamic objects.
Such additions invalidate the previously computed points-to analysis since pointers may
now also point to the new objects and, thus, operations via pointers must be re-encoded.

Unwinding in the GOTO programs. Our new approach to loop unwinding unrolls
the loops in the GOTO program representation instead of the SSA form. This allows us
to update the set of abstract dynamic objects in the program as well as to compute the
points-to analysis anew based on the newly introduced objects [9]. In order to facilit-
ate verification in 2LS, there are multiple transformations that need to be done after
the loops of the GOTO program are unwound. First, the k-induction algorithm of 2LS
requires a special unwinding approach. Many state-of-the-art unwinders, including the
unwinder from CPROVER that we use, copy the loop body and place it before the ori-
ginal loop (i.e., the unwound loop bodies are outside the loop). On the contrary, 2LS
requires all of the unwindings to be included in a single loop, i.e., the backwards edge of
the not-yet-unwound part must go to the beginning of the topmost unwinding (instead of
going to the top of the not-yet-unwound part) [2]. Hence, we must appropriately recon-
nect the backwards edges to fulfil this requirement and make our approach usable with
the current algorithms of 2LS. Second, assertions inside the unwound loop bodies may
be assumed to hold as they were verified in the previous iteration of the kIkI algorithm.
Hence, 2LS converts such assertions into assumptions. We reflect this approach inside
our new unwinding algorithm, cf. [9] for details.
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Combining the two approaches. The proposed approach, while being sound when
handling dynamic memory, introduces a noticeable performance degradation. Unwind-
ing of loops in the GOTO program changes a great part of the generated SSA form
which decreases the benefits of incremental SAT solving. To overcome this issue, we
only enable the new unwinder when necessary, i.e., when dynamic memory is used in
the analysed program. In addition, in our future work, we plan to improve our new
unwinder to fully leverage incremental solving.

3 Array Domain

The core algorithm of 2LS, kIkI, uses abstract interpretation to infer k-inductive invari-
ants in various abstract domains. The computed invariants are used to verify or refute
the program’s properties. Since the verification approach of 2LS is based on translating
the program into a first-order formula to reason about its properties, the abstract do-
mains in 2LS are required to have the form of a template—a parametrised, quantifier-
free, first-order formula describing a relevant program property. 2LS already supports
a handful of domains, such as the interval domain [2], a shape domain [6], or rank-
ing domains [3] for termination analysis, however, a domain for describing the content
of arrays has been missing, which limited usability of 2LS on programs manipulating
array structures. In this section, we propose such a domain.

In the literature, there exists a number of works on abstract domains for arrays. To
exploit the 2LS’ seamless combination of abstract domains, we found that perhaps the
most suitable approach to draw inspiration from is [5], where each array is split into
several parts, called segments, and a separate invariant is computed for every segment.
The segment invariant can be computed in any domain supported by 2LS, usually selec-
ted based on the data type of the array elements (e.g., the interval domain for numerical
values or the shape domain for pointers). In the rest of this section, we describe different
aspects of our proposed domain. In all of the below parts, we assume that we compute
a loop invariant of an array a. We use Na to denote the number of elements of a.

Array Segmentation. First, let us assume that we know the set of array indices,
so-called segment borders, for an array a which we denote Ba (see below on the way
this set is obtained). When splitting a into segments, we distinguish two situations:

1. Indices from Ba cannot be totally ordered. In such a case, we create multiple seg-
mentations, one for each b ∈ Ba:

{0} Sb
1 {b} Sb

2 {b+ 1} Sb
3 {Na}. (1)

2. Indices from Ba can be totally ordered s.t. b1 ≤ · · · ≤ bn. In such a case, we create
a single segmentation for the entire a:
{0} S1 {b1} S2 {b1 + 1} S3 {b2} . . . {bn} S2n {bn + 1} S2n+1 {Na}. (2)

A single array segment S denoted {bl} S {bu} represents an abstraction of the ele-
ments of a between the indices bl (inclusive) and bu (exclusive). For each S, we define
two special variables: (1) the segment element variable elemS being an abstraction of
the array elements contained in S and (2) the segment index variable idxS being an
abstraction of the indices of the array elements contained in S.
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Array Template. Having the set of program arrays Arr and the set of segments
Sa for each a ∈ Arr, we define the array domain template as:

T A ≡
∧

a∈Arr

∧
S∈Sa

(
GS ⇒ T in(elemS)

)
(3)

where T in is the inner domain template (over the inner elements of S abstracted by
elemS) and GS is the conjunction of guards associated with the segment S. The pur-
pose of GS is to make sure that the inner invariant is limited to the elements of the given
segment {bl} S {bu}. In particular, GS is a conjunction of several guards:

bl ≤ idxS < bu ∧ 0 ≤ idxS < Na ∧ elemS = a[idxS ] (4)

where the first conjunct ensures that the segment index variable stays between the seg-
ment borders, the second conjunct makes sure that the segment index variable stays
between the array borders (since segment borders are generic expressions, they may lie
outside of the array), and the last conjunct binds the segment element variable to the
segment index variable. Using the above template, 2LS is able to compute a different
invariant for each segment. For example, for a typical array iteration loop, this would
allow 2LS to infer a different invariant for the part of the array that has already been
traversed than for the part of the array that is still to be visited.

Computing Array Segment Borders. Since 2LS requires the template formula to
be fixed at the beginning of the analysis, the set of segments must be pre-computed. The
main idea of our approach is that the segment borders should be closely related to the
expressions that are used to access array elements in the analysed program. Therefore,
we perform a static array index analysis which collects the set of all expressions occur-
ring as array access indices (i.e., inside the square bracket operators). Once the analysis
is complete, for each array a, we determine the set of its segment borders by taking the
set of all index expressions used to write into a in the corresponding loop.

4 Strengths and Weaknesses

For general strengths and weaknesses of 2LS, we refer to the previous competition
contribution [8]. The two major improvements described in the previous sections, in-
crease the number of programs correctly verified by this year’s version of 2LS. The
new loop unwinding approach allows us to use the BMC part of the kIkI algorithm for
programs manipulating dynamic memory, which particularly enables us to find counter-
examples occurring in higher loop iterations, as well as verify such programs for which
the initially computed invariant is not sufficiently strong and the loops can be unwound
completely. This is the most notable in the heap-related categories (MemSafety-Heap,
MemSafety-LinkedLists, and ReachSafety-Heap) where the number of the correct true
and the correct false results increased from 110 to 177 and from 51 to 82, respectively.
The new array domain allowed us to score points in array-related categories, which was

V. Malı et al.´532



not possible before (e.g., 2LS correctly solved 17 tasks in ReachSafety-Arrays com-
pared to 2 from the previous years, which 2LS managed by chance)1.

Still, there remains a number of limitations. The array domain is rather simple and
cannot verify many array-manipulating programs. In addition, as we described earlier,
the new unwinder cannot make use of incremental SAT solving efficiently.

5 Data-Availablitity Statement

2LS is publicly available from https://www.github.com/diffblue/2ls, under a BSD-style
license. The competition version is based on version 0.9.6 and the archive used in the
competition is available from https://doi.org/10.5281/zenodo.7467706 or from the col-
lection of all verifiers and validators participating in SV-COMP 2023 [1].
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Abstract. The main idea behind Bubaak is to run multiple program
analyses in parallel and use runtime monitoring and enforcement to ob-
serve and control their progress in real time. The analyses send informa-
tion about (un)explored states of the program and discovered invariants
to a monitor. The monitor processes the received data and can force
an analysis to stop the search of certain program parts (which have al-
ready been analyzed by other analyses), or to make it utilize a program
invariant found by another analysis.
At SV-COMP 2023, the implementation of data exchange between the
monitor and the analyses was not yet completed, which is why Bubaak
only ran several analyses in parallel, without any coordination. Still,
Bubaak won the meta-category FalsificationOverall and placed very well
in several other (sub)-categories of the competition.

1 Verification Approach

Runtime monitoring (RM) [1] is a lightweight approach to observing the execu-
tions of software systems and analyzing their behavior. The system, for simplicity
take a single program, is executed and observed to obtain a trace of events. The
observed events carry information about (a subset of) actions that have been
performed by the program like accesses to memory, calls of functions, or writing
a text to the standard output. The trace is analyzed by the monitor that outputs
verdicts, be it verdicts about some correctness property of the program or, e.g.,
information about resource consumption. Runtime enforcement [12] goes a step
further and allows the monitor to alter the behavior of the program upon seeing
some event or detecting a certain (usually faulty) behavior of the program.

RM is traditionally applied as a complementary method to static analysis
to find bugs in computer programs. In Bubaak, we use RM to do monitoring
and enforcement of the verifiers instead of the analyzed program itself. The
verifiers are manually modified to emit events about their internal actions, for
example, that they have reached some part of the analyzed code or that they
have discovered an invariant. The monitor gathers and analyzes these events and
can decide to command a verifier to stop a search of some parts of a program or
to take into account an invariant found by another verifier.
? This work was supported by the ERC-2020-AdG 10102009 grant.
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2 Bubaak at SV-COMP 2023

At SV-COMP 2023 [2], the verifiers that we used are based on forward and
backward symbolic execution.

(Forward) symbolic execution (SE) [14] is well-known for being efficient in
searching for bugs. It aims to explore every feasible execution path of the an-
alyzed program by building the so-called symbolic execution tree. Such an ap-
proach must fail if the SE tree is infinite or very large, in which case we talk
about the path explosion problem. There are ways how to prune the SE tree from
paths that are known to exclude buggy behavior, e.g., using interpolation [13].

Backward symbolic execution (BSE) [11] is a form of SE that searches the
program backwards from error locations towards the initial locations. It has
been shown [11] that BSE is equivalent to k-induction [16], another popular but
incomplete verification technique. The incompleteness of BSE (k-induction) is
caused by the lack of information about reachable states. This deficiency can
be tackled by providing (often trivial) invariants that supplement the missing
information [5]. These invariants can be computed externally before running
BSE, or they can be computed on the fly [5,4,11]. One of the on-the-fly methods
is loop folding and the resulting technique is called BSELF [11].

SE and BSE(LF) are well suited for analyzing safety properties, but are not
suited for analyzing the termination of programs. To analyse this property, we
have developed a new algorithm that has not been published yet and that we
dubbed TIIP : termination with inductive invariants with progress. This algo-
rithm runs SE, searching for non-terminating executions by remembering and
comparing program states visited at loop headers. At the same time, it tries to
incrementally (using a procedure similar to loop folding) compute an inductive
invariant with progress for each visited loop. This invariant, if found, gives a
pre-condition for the loop termination.

At SV-COMP 2023, we run in parallel two SE instances and one BSELF
instance when checking properties unreach-call and no-overflow, SE and TIIP
when checking termination, and just SE for memory safety properties. Using
multiple SE instances at the same time makes sense because we use different
verifiers (see Section 3) and their SE implementations support different features.

Because all the algorithms that we use are based on symbolic execution, the
enforcement done by the monitor would effectively do a pruning of SE and BSE
trees. Unfortunately, we have not managed to sufficiently debug this pruning
and therefore it was disabled in the competition. As a result, Bubaak at SV-
COMP 2023 only runs analyses in parallel without any coordination.

3 Software Architecture

The high-level scheme of Bubaak for SV-COMP 2023 is shown in Figure 1.
Bubaak takes as input C files and the property file. Internally, it compiles and
links the input files into a single llvm bitcode file [7] which is also instrumented
using UBSan sanitizer [18] if the checked property is no-overflow. Then, ver-
ifiers are spawned according to the given property. All verifiers run in parallel
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Fig. 1. The setup of Bubaak at SV-COMP 2023. The colors indicate the properties
that were checked by the different tools and algorithms.

(when there is more of them). At SV-COMP 2023, we used Slowbeast for SE,
BSELF, and TIIP, and BubaaK-LEE as another instance of SE1.

Slowbeast [17] is a symbolic executor written in Python. It supports check-
ing properties unreach-call and no-verflow with SE, BSE, and BSELF, and ter-
mination with TIIP. The tool has no or only a very limited support for properties
no-data-race, valid-memsafety, and valid-memcleanup.

BubaaK-LEE is a fork of symbolic executor Klee [9] which is implemented
in C++ and the current version is a merge of the upstream Klee and JetKLEE
(the fork of Klee used in the tool Symbiotic [10]) with additional modifica-
tions. These modifications mostly concern modeling standard C functions but
include also partial support for 128-bit wide integers and support for global vari-
ables with external linkage. BubaaK-LEE implements SE without any SE tree
pruning and can check for all SV-COMP properties except for no-data-race.

Both symbolic executors use Z3 [15] as the SMT solver. The features they
support differ significantly, though. For example, Slowbeast supports, apart
from BSE(LF) and TIIP, symbolic floating-point computations, threaded pro-
grams, and incremental solving, while it does not support symbolic pointers and
addresses which are features supported by BubaaK-LEE.

The monitor is currently a part of the control scripts written in Python and
at SV-COMP 2023 it monitors only the standard (error) output of the tools as
monitoring anything else is redundant until the implementation of data exchange
between verifiers and the monitor is finished. The only enforcement that it does
at SV-COMP 2023 is terminating the analysis entirely.

Differences to Symbiotic The tool Symbiotic [10] also uses Slowbeast
and a fork of Klee, and therefore a discussion on differences between Bubaak
and Symbiotic is in place. The version of Slowbeast used in Symbiotic
is outdated while Bubaak uses the most up-to-date version (at the time of
writing the paper) where a substantial part of the code has been rewritten and
that contains new features including the implementation of TIIP. The relation
between BubaaK-LEE and JetKLEE is mentioned earlier in this section.

Other differences between Bubaak and Symbiotic exist: Bubaak does not
use any pre-analyses, slicing, and instrumentation (apart from the instrumenta-

1 Because these verifiers do not compete at SV-COMP 2023 on their own, this does
not make Bubaak a meta-verifier.
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Table 1. Number of benchmarks decided by individual verifiers per property.

Property Total BubaaK-LEE Slowbeast

unreach-call 3263 2952 311
valid-memsafety/cleanup 3401 3401 0
termination 1417 739 678
no-overflow 4716 4399 317

tion by UBSan for the property no-overflow, but there Symbiotic uses its own
instrumentation), and it runs the verifiers in parallel, while Symbiotic uses a
sequential composition [10].

4 Strengths and Weaknesses

The combination of SE and BSELF has been previously shown to be promis-
ing [11] because SE can quickly analyse many programs and BSELF then solves
hard safe instances were SE found no bug or was unable to enumerate all paths.
Running TIIP in parallel with pure SE has similar advantages. Still, all of SE,
BSELF, and TIIP can be computationally very demanding as the number of
executions they must search may be enormous and/or their exploration may
involve lots of non-trivial queries to the SMT solver.

Running multiple verifiers in parallel reduces the wall-time while eating CPU
time rapidly, which may be a disadvantage in SV-COMP. A remedy for this
should be finishing the data exchange support between verifiers, which will allow
to avoid burning CPU time on duplicate tasks.

5 Results of Bubaak at SV-COMP 2023

The results of Bubaak were highly influenced by bugs in the implementation.
The tool had 41 wrong answers, 31 of these caused by a mistake in parsing
of the output of BubaaK-LEE (25 for the property valid-memcleanup and 6
for the property termination). The rest of wrong answers (10) were caused by
miscellaneous bugs. After normalizing scores, these 41 wrong answers resulted
in loosing almost 10000 points in the overall score.

Also, BSELF did not decide a single benchmark because of a mistake in
command line arguments when invoking it. Therefore, running Slowbeast was
useful mainly in the category Termination where TIIP was able to solve roughly
half of the decided benchmarks (in the rest of cases, BubaaK-LEE success-
fully enumerated all execution paths). The numbers of decided benchmarks are
summarized in Table 1.

Overall, Bubaak won the category Falsification-Overall which confirms that
SE is very good in finding bugs. The tool also scored silver in the category
SoftwareSystems where it was also the leading tool in several sub-categories.
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Data Availability Statement. The version of Bubaak that competed at SV-COMP
2023 is available at Zenodo [3,6]. The source code of Bubaak is available at github [8].
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Abstract. Combining different verification and testing techniques together could,
at least in theory, achieve better results than each individual one on its own. The
challenge in doing so is how to take advantage of the strengths of each technique
while compensating for their weaknesses. EBF 4.2 addresses this challenge for
concurrency vulnerabilities by creating Ensembles of Bounded model checkers
and gray-box Fuzzers. In contrast with portfolios, which simply run all possible
techniques in parallel, EBF strives to obtain closer cooperation between them.
This goal is achieved in a black-box fashion. On the one hand, the model check-
ers are forced to provide seeds to the fuzzers by injecting additional vulnerabili-
ties in the program under test. On the other hand, off-the-shelf fuzzers are forced
to explore different interleavings by adding lightweight instrumentation and sys-
tematically re-seeding them.

1 Overview

Finding vulnerabilities in concurrent programs presents the combined challenge of ex-
ploring the search space of program inputs and execution schedules, or interleavings.
Recently, there have been attempts at solving complex verification problems by com-
bining different techniques into hybrid verification tools [1,2,3].

More generally, these attempts belong to a larger trend in automated software analy-
sis called cooperative verification [4,5]. In this paradigm, the main idea is implementing
some form of communication interface between different tools (i.e., a common informa-
tion exchange format), which allows the exchange of partial results (artifacts). In this
way, we can harness the strengths of multiple verification techniques and solve more
complex problems [6,7,8].

In EBF [9], we are the first to implement a cooperative approach that combines
Bounded Model Checking (BMC) and concurrency-aware Gray-Box Fuzzing (GBF)
for finding vulnerabilities in concurrent C programs. In order to simplify the communi-
cation interface between the cooperating tools, we adopt a black-box design philosophy
where verification artifacts are implicitly shared via appropriate transformation and in-
strumentation of the program under test (PUT). The advantage of this design philosophy
is its universality: in fact, EBF can incorporate any BMC or GBF tool that takes a C
program as input.
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Fig. 1: The workflow of EBF 4.2 comprises four stages (dashed rectangles). The safety
proving and seed generation stages use a BMC tool. The falsification stage uses
our OpenGBF tool. The result aggregation stage generates a verification verdict and
counter-example (if any). Areas of improvement over EBF 4.0 [9] are shown in blue.

More specifically, EBF 4.2 expands the cooperative verification capabilities of pre-
vious versions of EBF. First, we introduce a new seed generation module for the GBF.
This module works by injecting additional vulnerabilities in critical areas of the PUT,
and then using a BMC engine to generate program inputs that trigger them. These inputs
represent higher quality seeds for the fuzzer than randomly-generated ones. Second, we
propose an improved light-weight instrumentation based on the Clang/LLVM toolchain
that turns any compatible off-the-shelf GBF into a concurrency-aware fuzzer. We do so
by injecting fuzzer-controlled delays in the PUT, which implicitly force the exploration
of different interleavings.

2 Architecture

Figure 1 illustrates the workflow of EBF, which comprises four verification stages:
safety proving, seed generation, falsification and results aggregation. Each of these
stages take a concurrent C program and a given safety property as an input.

Safety Proving Stage. During this stage, EBF calls the BMC engine with the given
inputs. The BMC tool produces one of the three possible verdicts: Safe if the model
checker deems the PUT safe with respect to the given property, Bug if a vulnerability is
detected, or Unknown encompassing a variety of different outcomes including reaching
a timeout, running out of memory, or crashing unexpectedly. If the BMC tool finds
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a bug, it generates a counter-example – a sequence of program inputs and a thread
schedule leading to the vulnerability. The input values are stored for later use as a seed.

Seed Generation Stage. This is a new feature of EBF 4.2, which harnesses the strength
of BMC in resolving complex path conditions. For instance, the branch if(x*x -2*x
+1 == 0) may be extremely difficult for the fuzzer to explore. EBF tackles this issue
by repeatedly injecting the error statement assert(0) in each conditional branch
of the PUT (similar to the approach in [2]). Then, each transformed program (which
contains one unique error statement) is independently verified with the BMC tool. If the
BMC reaches the error within a timeout, EBF converts the resulting counter-example
into a fuzzing seed. The seed generation process continues until all injected errors have
been detected or the stage timeout has been reached. The seeds we collect during this
stage greatly improve the fuzzer performance in the next stage.

Falsification Stage. During this stage, EBF checks whether the PUT contains any
vulnerabilities by fuzzing its inputs and thread interleavings. Due to the current lack of
open-source GBF tools for concurrent programs [9], EBF uses our own concurrency-
aware gray-box fuzzer OpenGBF. Its implementation extends AFL++, a state-of-the-
art GBF for single-threaded programs, by introducing the following concurrency-aware
lightweight instrumentation in the PUT.

First, OpenGBF injects delays after each instruction at the LLVM intermediate rep-
resentation level. The value of these delays (typically several micro-seconds) is con-
trolled by the fuzzer and implicitly forces the execution of different thread interleav-
ings. Second, OpenGBF inserts functions for recording all the information needed for
witness generation: assumption values, thread ID, variable names, and function names.
Third, OpenGBF supports the use of UndefinedBehaviorSanitizer [10], AddressSani-
tizer [11] and ThreadSanitizer [12] for the detection of vulnerabilities that cannot be
expressed as reachability errors (e.g., buffer overflows, thread leaks).

Results Aggregation Stage. Finally, EBF aggregates the outcomes of the Safety Prov-
ing and the Falsification stages as depicted in the table in Fig. 1. The majority of cases
are straightforward: if one of the tools produces an inconclusive verdict (i.e., Unknown),
then EBF relies on the decision provided by the other tool. However, if OpenGBF finds
a bug in the PUT that is deemed to be safe by BMC, EBF reports a Conflict. In this case
extra information can be obtained from the counter-example produced by the fuzzer.

3 Strengths and Weaknesses

EBF 4.2 participated in the ConcurrencySafety category of SV-COMP 2023, which
comprises four subcategories: ConcurrencySafety-Main, NoDataRace-Main, Concur-
rencySafety-NoOverflows and ConcurrencySafety-MemSafety.

Regarding the ConcurrencySafety-Main subcategory, EBF 4.2 provided 357 cor-
rect results out of 692, with only 1 incorrect false and the rest unknown. More in de-
tail, EBF correctly identified 67 safe benchmarks and 249 unsafe benchmarks, thus
highlighting the EBF strengths in bug-finding. In addition, EBF labeled an extra 41
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benchmarks as unsafe, which were not confirmed by the witness validator. Among
these benchmarks, there are 10 verification tasks (beginning with goblint-regression/28-
race reach *) where only two tools can find bugs: EBF and Infer [13]. At the same time,
we hypothesise that the counter-examples provided by EBF are more trustworthy than
those provided by Infer for these 10 tasks. This is because EBF is very conservative
in its bug-finding claims, with 290 correct false outcomes, 41 unconfirmed, and only
1 incorrect. In contrast, Infer produces 330 correct false outcomes and 331 incorrect
ones.

Regarding the NoDataRace-Main subcategory, EBF 4.2 only offered partial support
for data race detection by enabling ThreadSanitizer inside OpenGBF. Unfortunately,
the BMC engine we used in this year’s competition, ESBMC, does not yet maintain
full support of this safety property. As a consequence, EBF provided only 199 correct
verification verdicts out of 904, of which 112 were correct true and 87 correct false.
At the same time, EBF also reported 46 incorrect verdicts (23 incorrect true and 23
incorrect false), which resulted in a negative score for this subcategory.

Regarding the ConcurrencySafety-NoOverflows and ConcurrencySafety-MemSafety
subcategories, EBF 4.2 did provide support for detecting arithmetic overflows and mem-
ory safety violations by enabling UndefinedBehaviorSanitizer and AddressSanitizer.
However, we did not succeed in providing an implementation that was compliant with
the competition standards in time.

As a result, EBF did not feature in these subcategories.

4 Tool Setup and Configuration

In order to use EBF3, the user must set the architecture (32 or 64-bit) with flag -a,
the property file path with flag -p, the benchmark file paths, and run the following
command from the EBF root directory:

./scripts/RunEBF.py [-h] [-a {32,64}] [-p PROPERTY_FILE]
[benchmark]

Furthermore, there are optional flags that can be enabled (e.g., set the time and mem-
ory limit for each engine). In SV-COMP 2023 we divided the allotted 15 minutes of
CPU time per verification task across the verification stages inside EBF 4.2 as follows:
400s for the safety proving stage, 120s for the seed generation stage, 240s for the
falsification stage, and the remaining 140s were allocated for the results aggregation,
counter-example generation and potential execution overheads.

5 Software Project

We released EBF 4.2 under the MIT License, and its code is publicly available on
GitHub4. All dependencies and installation instructions are listed in the repository
README.md.

3 https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/
2023/ebf.zip

4 https://github.com/fatimahkj/EBF
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Abstract. The static analyzer Goblint is dedicated to the analysis
of multi-threaded C programs by abstract interpretation. It provides
multiple techniques for increasing analysis precision, e.g., configurable
context-sensitivity and a wide range of numerical analyses. As a rule
of thumb, more precise analyses decrease scalability, while not always
necessary for solving the task at hand. Therefore, Goblint has been
enhanced with autotuning which, based on syntactical criteria, adapts
analysis configuration to the given program such that relevant precision
is obtained with acceptable effort.

1 Verification Approach

Goblint is a static analysis framework for C programs based on abstract in-
terpretation [6]. It features scalable thread-modular analysis of concurrent pro-
grams on top of flow- and context-sensitive interprocedural analysis. The analysis
is specified as a side-effecting constraint system [2], which can conveniently ex-
press flow-insensitive invariants as well as flow-sensitive information per program
point [16] and is solved using a local generic solver [15]. Here, we detail some
recent SV-COMP–related advances in Goblint. The previous competition tool
paper [11] provides further details on the general approach.

New abstract domains have been added to enhance precision. In addition to
interval analysis of integer variables, Goblint now performs interval analysis of
floating-point variables following Miné [9], and maintains congruence informa-
tion [7]. Furthermore, the Apron library [8] has been integrated for relational
analysis. Goblint includes novel approaches to relational analysis of concurrent
programs [14], inferring relations between jointly-protected global variables.

In the previous tool paper, we suggested dynamically tailoring Goblint to
the program under analysis. This can increase precision, by activating analyses
that are more expensive yet offer crucial precision, and also decrease resource
? Jury member
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usage, by deactivating redundant analyses. To this end, we have implemented
analysis configuration autotuning based on cheap syntactic heuristics on the
program, before the analysis begins. The particular features have been chosen
according to how expert users might configure Goblint for a given program.
Measurements of program size (e.g. number of functions, loops, variables) are
taken into account to limit slowdown on larger programs.

Goblint provides a multitude of concurrency-related analyses (e.g. races,
symbolic locking patterns, thread joins [14, 16]) that have no use in single-
threaded programs which abound in SV-COMP. Hence, all such analyses are
now automatically deactivated for programs that never create any threads.

Goblint implements a wide variety of numerical abstract domains, but most
are not necessary for every program, thus, offering many possibilities for auto-
tuning. Interval information is omitted in calling contexts of recursive functions
to avoid an explosion of contexts in which they are to be analyzed. While the
congruence domain is generally active on small programs, for medium-sized pro-
grams it is only enabled for functions involving the modulo operator, either
directly or indirectly (up to fixed depth in the call stack). If the program uses
enums, then an integer domain for sets of enumeration values is activated. Oc-
tagon analysis is enabled for those local variables which occur most often in
linear expressions and conditions. Interval and octagon widening thresholds are
extracted from conditional expressions containing constants. Such thresholds are
especially useful for flow-insensitive analysis of global variables in multi-threaded
programs, since no narrowing is performed on flow-insensitive invariants.

Loop unrolling is a well-known technique to increase the precision of static
analysis. Goblint now unrolls loops up to their static bounds or feasible unrolled
code size. Loops which contain memory allocation, thread creation, or error
function calls, are prioritized since unique heap locations and threads are key to
maintaining analysis precision.

Schwarz et al. [13] enhanced Goblint with a suite of concurrent value analy-
ses and evaluated their precision. Following their observations, we use the cheap
yet sufficiently precise Protection-Based Reading. Data-race detection was made
more precise using may-happen-in-parallel analysis [14], to filter out spurious
races with threads that have already been joined or have not yet been created.

2 Software Architecture

Goblint is implemented in OCaml and uses an updated fork of CIL [10] as
its parser frontend for the C language. It depends on Apron [8] for relational
analyses. No other major libraries or external tools are required.

Goblint employs a modular architecture [1] where a combination of anal-
yses can be selected at runtime. Analyses are defined through their abstract
domains and transfer functions, which can communicate with other analyses
using predefined queries and events. The combined analyses together with the
control-flow graphs of the functions yield a side-effecting constraint system [2],
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which is solved using a local generic solver [15]. The solution is post-processed
to determine the verdict and construct a witness.

3 Strengths and Weaknesses

Goblint focuses on sound static analysis which is confirmed by the competi-
tion: our tool does not produce any incorrect results. A major limitation of our
approach is that, due to over-approximation, the tool can only prove the absence
of bugs, but not their presence. Thus, when Goblint flags a potential violation,
it answers “unknown” in the competition.

In SV-COMP 2023, NoDataRace became an official category and existing
ConcurrencySafety reachability tasks were newly included into it. This is where
Goblint really shines: it proves 652 out of 783 programs race-free, thereby
winning the category. Overall, the strengths and weaknesses of Goblint w.r.t.
categories remain the same as described in our previous tool paper. Therefore, we
describe here the impact of autotuning, based on our own preliminary compar-
ative evaluation. Unlike official SV-COMP evaluation, we used a 1 GB memory
limit, which is sufficient for most tasks Goblint can solve, and no witness val-
idators.

As noted above, the majority of SV-COMP programs across all categories
are single-threaded, thus, the greatest improvement comes from disabling all
concurrency analyses in those cases. This yields a notable reduction in runtime
and memory usage as shown in table 1, improving overall efficiency without
compromising precision.

The second greatest improvement is due to the use of relational analysis
with octagons. Although this incurs a runtime penalty, it increases the number
of correct verdicts notably. The improvement is especially visible in NoOver-
flows, where it yields 104 additional correct results. We also confirmed that the
automatic selection of octagon variables is better than tracking all variables: our
selection yields more correct verdicts (due to fewer timeouts) while successfully
avoiding an unnecessarily large performance penalty.

Autotuning along the other axes is not as impactful. Nevertheless, each leads
to Goblint being able to solve tasks it could not otherwise. Hence, a small in-
crease in score is achieved, justifying their use. Although disabling unnecessary

Table 1. Reduction in resource usage due to disabling all concurrency analyses for
single-threaded programs, as reported by BenchExec using ordinary least squares
(OLS) regression.

unreach-call no-overflows

Tasks CPU time Memory CPU time Memory

Correct only 16% 4% 5% 0%
All 5% 8% 16% 6%
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concurrency analyses reduces resource usage, overall this performance improve-
ment is canceled out by the simultaneous use of expensive analyses enabled by
autotuning, such as octagons. Thus, Goblint can solve more tasks while re-
taining the same level of overall efficiency observed in previous editions of the
competition [3].

Many future opportunities for autotuning exist: Goblint implements a num-
ber of concurrent value analyses offering different tradeoffs between time and pre-
cision [13, 14], but only used the fastest and least precise of these in SV-COMP.
If appropriate heuristics for using the more involved analyses are identified, au-
totuning could enable these when they are likely to yield a benefit. Autotuning
could be extended to supply a sequence of configurations, increasing in precision,
for a portfolio of analyses, instead of relying on the autotuning to immediately
pick the most appropriate configuration. While the current autotuning in Gob-
lint is hand-crafted, machine learning may provide additional improvements.

4 Tool Setup and Configuration

Goblint version svcomp23-0-g4f5dcf38f participated in SV-COMP 2023 [4,
12]. It is available in both binary (Ubuntu 22.04) and source code form at our
GitHub repository under the svcomp23 tag.3 The only runtime dependency is
Apron [8]. Instructions for building from source can be found in the README.

Both the tool-info module and the benchmark definition for SV-COMP are
named goblint. They correspond to running the tool as follows:

./goblint --conf conf/svcomp23.json \
--set ana.specification property.prp input.c

Goblint participated in the following categories: ReachSafety, Concurrency-
Safety, NoOverflows, SoftwareSystems and Overall, while opting-out from Mem-
Safety, Termination and SoftwareSystems-*-MemSafety.

5 Software Project and Contributors

Goblint development takes place on GitHub,4 while related publications are
listed on its website.5 It is an MIT-licensed joint project of the Technische Uni-
versität München (Chair of Formal Languages, Compiler Construction, Software
Construction) and University of Tartu (Laboratory for Software Science).
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Data Availability. All data of SV-COMP 2023 are archived as described in the
competition report [4] and available on the competition web site. This includes
the verification tasks, results, witnesses, scripts, and instructions for reproduc-
tion. The version of Goblint as used in the competition is archived together
with other participating tools [5] and individually [12] on Zenodo.
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Abstract. Java Ranger is a path-merging tool for Java Programs. It
identifies branching regions of code and summarizes them by generating
a disjunctive logical constraint that describes the behavior of the code
region. Previously, Java Ranger showed that a reduction of 70% of ex-
ecution paths is possible when used to merge branching regions of code
that support numeric constraints.
In this paper, we describe the support of two additional features since
participation in SV-COMP 2020: symbolic array and symbolic string
operations. Finally, we present a preliminary evaluation of the effect of
the structure of the disjunctive constraint on the solver’s performance.
Results suggest that certain constraint structures can speed up the per-
formance of Java Ranger.

1 Introduction

Path-merging [1,7,8] is a technique that speeds up the execution of Dynamic
Symbolic Execution (DSE) by collapsing paths within code regions into a dis-
junctive logical constraint. Java Ranger (JR) [12] is a path-merging tool for
Java Programs. It summarizes symbolic branches during execution. JR gener-
ates the disjunctive logical constraint for a code region predicated on a symbolic
branch by using a sequence of transformations. For example, JR alternates be-
tween substituting values for local variables in its summary and inlining method
summaries to eliminate dynamically dispatched method invocations. See [11] for
more information.

2 Path Merging Extensions and Results

Despite handling many of the Java language features, in SV-COMP 2020 [10]
JR did not support symbolically executing string functions. It also did not sum-
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marize arrayload and arraystore statements that exist outside a code region
predicated on a symbolic branch. For example, if a and i are symbolic integers,
JR could summarize a region of the form: if(a) {myval = arr[i]...} But not:
myval = arr[i]. More precisely, the newly introduced features to JR include:

1. Summarizing Array Creation of Symbolic Size: to support the creation
of symbolic-sized single and multi-dimensional arrays, we bound the symbolic
size to several values, and we executed the program on each concrete value.

2. Summarizing ArrayLoad and ArrayStore: to support the arrayload
and the arraystore of a symbolic index, we create a disjunctive constraint
that describes possible valuations. This constraint is then pushed on the
path condition. For example: for a symbolic index i and an array arr of size
3, we encode arrayload of the form myval = arr[i] as

myval := ite(i == 0, arr[0], ite(i == 1, arr[1], arr[2])

Similarly, we encode the arraystore of the form arr[i] = myval as

arr[0]new := ite(i == 0,myval, arr[0]old)
∧ arr[1]new := ite(i == 1,myval, arr[1]old)
∧ arr[2]new := ite(i == 2,myval, arr[2]old)

where arr[i]old, and arr[i]new indicate the old and the new values of the
array arr at index i.

3. Symbolically Executing Symbolic Strings: We added support to some
basic string operations for the String package and the StringBuilder

package; this includes but is not limited to charAt, concat, contains,

endsWith, equals, indexOf, length, replace, startsWith, isEmpty

and substring.

2.1 Run Configuration

In addition to JR configurations used in SV-COMP 2020 [10], we used the below
configurations for turning on the added features.:

– symbolic.jrarrays=true: to enable the above array features.
– symbolic.strings=true: to enable executing symbolic string
– symbolic.string dp=z3str3: to use Z3’s default string theory.
– symbolic.string dp timeout ms=3000: for timeout on the string queries.
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2.2 Results

JR 2020 JR 2023
number of tasks 587
total correct 429 475
correct true 220 200
correct false 209 275
total incorrect 97 0
incorrect true 97 0
incorrect false 0 0
Score -2455 400

Table 1: results of JR’s version participating in
2020 versus the improved 2023 version

To understand the value of
the JR’s extensions above, we
evaluated the old JR tool [9]
from SV-COMP 2020, which
had no support for symbolic
arrays nor symbolic strings,
to JR’s version participating
in 2023. We ran both versions
on the verification tasks used
in SV-COMP 2023. Results in
Tb. 1 show an increased num-
ber of correctly solved tasks
from 429 to 475, but more im-
portantly, a significant reduc-
tion in incorrect results from
97 to zero. These improved
scores show the importance and significance of the added support.

Unfortunately, however, because the current version of JR has no support
for witness generation, all correctly reached false verdicts were not included in
the SV-COMP 2023 score [2], which resulted in JR scoring 400 points instead of
675. In the future, we plan to extend JR to support witness generation.

3 Formula Structure in Path-Merged String Constraints

  public static void loopCharAt(String arg) {
    int counter = 0;
    for (int i = 0; i < arg.length(); i++) {
      char myChar = arg.charAt(i);
      if (myChar == 'B') counter++;
    }
    assert (counter != 121);
  }

Fig. 1: loopCharAt Example

Fig. 1 shows loopCharAt: an
SV-COMP 2023 verification
task [3] (from an example
of Avgerinos et al. [1]) that
can dramatically benefit from
path-merging. The task ac-
cepts a symbolic string arg,
and checks each character to
see if it is the letter ‘B’. If
so it increments counter. The
assertion fails if the value of
the counter can be 121. For
a symbolic string of length n,
this code has 2n execution paths, since each character can be B or not B in-
dependently. But applying path merging to the if statement leads to a single
execution path for a given length string. While JR sees this expected asymptotic
benefit (one path per string length), reaching the assertion failure takes more
than 2 hours, well beyond the competition time limit. Most time is spent in
the solver, so we investigated whether changing the syntax of the query could
improve performance.
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Each query generated from the satisfiability of the assert statement asks
whether an n-character string can contain 121 (or more generally, k) B charac-
ters; this query is satisfiable if 0 ≤ k ≤ n. We used a script to generate variations
of the query for different values of n and k, and different semantically equiva-
lent ways of expressing the constraints. We then measured the time to solve the
queries using Z3 4.8.15 with the seq string solver, on an Intel i7-3770 worksta-
tion running Ubuntu 20.04. The choice of k appeared to have little effect on
performance, so we report the results of averaging over runs with 0 ≤ k ≤ n+ 1.
Figure 2 shows how the running time grows with n, and that the query style has
a large impact on performance.

We describe the query styles in order of increasing overhead. Because no
complex string operations are needed, an equivalent query can be expressed in a
simple bit-vector (QF BV) logic. This was by far the fastest, and the only style
where the running time appears to grow linearly with n. The remaining styles
use a logic of strings and integers (QF SLIA), and we started with the constraint
style that seemed most natural to write by hand (“clean”) and sequentially added
complexities to make the constraints increasingly similar to those JR produces.
All these QF SLIA styles appear to slow down as a cubic polynomial in n, as
illustrated by the best-fit lines. Two features of JR’s queries had little effect on
performance: expressing the string length with a series of inequalities (in JR
these come from the loop), and introducing a temporary variable corresponding
to each update of the counter. A modest but measurable slowdown came from
expressing the effect of the merged region with OR and AND operations, instead
of the functional if-then-else operator. A final dramatic slowdown came from
constraining the value of each character via its character code (= (str.to code

(str.at s 0)) 66) (natural because Java’s char is an integer type) instead
of as a one-character string (= (str.at s 0) "B"). These results suggest that
this verification task could become feasible in 15 minutes if either JR or solvers
can transform the slow-to-solve forms into fast-to-solve ones.
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4 Data-Availability Statement

Java Ranger is developed at the University of Minnesota. It is continuously main-
tained on GitHub [6]. Readers interested in the reproducibility of Java Ranger
results in the competition an artifact can be found here [5,4].
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Abstract. Korn is a software verifier that infers correctness certificates
and violation witnesses sutomatically using state-of-the-art Horn-clause
solvers, such as Z3 and Eldarica. The solvers are used in a portfolio
together with cheap random sampling where the latter can be very effec-
tive at finding counterexamples. Korn perfomend best in the Recursive

sub-category of SV-COMP 2023.

Keywords: Software Verification · Horn Clauses · Loop Contracts

1 Verification Approach

Korn is a verifier for C programs that is based on a translation into systems
of constrained Horn clauses [5,12]. Therein, each program location is abstracted
by a second-order predicate over the program variables which are active at that
point. The system of Horn clauses has a (second-order) solution if and only if
the program is correct. Horn clauses encodings are a convenient intermediate
representation that is linear in the size of the program and that is inherently
modular, such that loops, procedure contracts, and non-local control flow like
gotos and labels can be easily abstracted (see Sect. 3 wrt. category Recursive).

Korn uses state-of-the-art solvers to determine the satisfiability of the gen-
erated Horn clause system (cf. Sect. 2), specifically for SV-COMP it uses Z3 [6]
and Eldarica [15]. Both solvers generate evidence for correctness of a given pro-
gram in terms of models that describe how the unknown predicates need to be
instantiated. Moreover, Eldarica can generate counterexample traces, and Korn
instruments the Horn clause system to get the concrete values returned by the
__VERIFIER_nondet_*() functions on an error path. For these reasons, Korn
tends to produce detailed correctness and violation witnesses.

The different solvers have different strengths and weaknesses. To that end,
Korn implements a portfolio approach with several sequential stages. The con-
figuration for SV-COMP 2023 [2] is as follows, where the specific timeouts for
the individual tools are chosen heuristically based on prior experiments:

1. Initially, 10s of random sampling with small values is performed. It picks
for each input value uniformly between number 0, and values of 2, 5, and
10 bits respectively, possibly with a sign. Absense of too large values avoids
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very long running loops when the counter is nondeterministic. There is no
particular justification for the sampling scheme, but it is effective.

2. Next, Z3 is executed on the verification problem, translated from C to Horn
clauses for 20s. Usually, Z3 finds solutions very quickly if it succeeds at all,
specifically on those benchmarks where Z3 succeeds but not Eldarica.

3. Finally, Eldarica is executed for the remaining time. From past experience, it
should be slightly better in comparison to Z3 in the long run on this specific
set of tasks [10]. The generated invariants from Eldarica tend to be simpler
and avoid the existential quantifiers often introduced by Z3, which improves
witness generation. To prevent spurious counterexamples, Korn reports a
violations only if it can be confirmed by executing the program natively.

Korn is overall similar to SeaHorn [13] but it operates on the C source level
instead of LLVM. Korn aims at a rather different design point, namely to fa-
vor simplicity over features, therefore offering a good platform for experiments.
Eldarica has its own C frontend that supports a different set of features, re-
cently published as TriCera [11]. Here the main distinction is that Korn uses
a large block encoding, such that the verification conditions closely reflect the
structure of the program. Korn offers a second verification approach with loop
contracts [16,14,7]. This was the original motivation to develop the tool, and
neither SeaHorn nor TriCera supports this feature, albeit it was not used for
SV-COMP because it offers no advantages [10] and because the encoding of loop
contracts into loop invariants would require quantifiers in the witnesses format.

2 Software Architecture

Korn is mainly written in the JVM language Scala.1 The front-end uses a cus-
tom parser, generated with jFlex and Beaver. The random sampler relies on na-
tive execution which links the benchmark task with a C file __VERIFIER_random.c
that implements the _VERIFIER_nondet_* functions. Verification conditions are
generated in the fragment of SMT-LIB of the HORN logic.2 Korn can invoke
any compliant solver as a backend either using its standard input or a file to
communicate the verification task. There is explicit support for Z3 [12], Eldar-
ica [15] to pass e.g. timeouts with tool-specific options or to produce models
resp. counterexamples. Currently, Korn use the theories of integers and arrays.

In order to produce SV-COMP correctness witnesses, Korn can read the
models generated by the backend-solvers, and translate them back into C ex-
pressions. The correctness witnesses produced currently are derived from the
invariants that are reported back by the Horn solvers (get-model resp. -ssol
flag of Eldarica). Violation witnesses are either read off the output of Eldarica
(-cex flag), or from the output of the random sampler, as a sequence of nonde-
terministic choices. When a counterexample is found, a test harness is compiled
to confirm whether reach_error() is in fact called.
1 https://scala-lang.org
2 https://chc-comp.github.io/format.html
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3 Discussion: Strengths and Weaknesses

Korn supports a substantial fraction of the C language, with the greatest lim-
itation being the lack of support for dynamic data structures (see website for a
detailed account), which means that currently any task which requires a memory
model is out of scope. The translation supports most control structures, includ-
ing goto and labels. With respect to solving verification tasks, Korn inherits
the strenths and limitations of the underlying solvers. Tasks that for which in-
variants and procedure contracts are expressible in linear integer arithmetic are
typically proved quickly by the solvers, whereas they struggle on tasks with ar-
rays and quantified invariants. Honoring these aspects, Korn participated in
four categories, ControlFlow, Loops, Recursive, XCSP for property ReachSafety.

The theoretical approach used by Korn is sound and complete relative to
the solver capabilities. Korn produced no incorrect result in SV-COMP 2023,
but there are circumstances which could lead to wrong verdicts. With respect to
C semantics, Korn currently makes the following trade-offs:

– Integer types are treated as unbounded and arithmetic overflows are not
modeled at all. This affects a single task, nla-digbench/geo1-u.c, which
contains an error caused by an unsigned integer overflow. This error is fortu-
nately caught by random sampling— Korn would otherwise wrongly prove
this task safe. We aim to experiment with a bitvector encoding eventually,
which would allow Korn to tackle tasks involving bitwise operations.

– Arrays are currently modeled as value types. Benchmarks in which tracking
aliases is relevant may not be solved correctly, but that does not occur in
the categories in which Korn participates.

– By confirming counterexamples via native execution, each bug reported is
necessarily a true bug. This safety net catches two incorrect error verdicts on
loops-crafted/theatreSquare.c and recursive/Primes.c, the reason for this
unsoundness is under investigation. However, counterexample confirmation
prevents Korn from rightfully reporting 50 error verdicts found by Z3 in
category XCSP which are missed by Eldarica († in Sect. 1). It is unclear how
to get usable counterexample traces from Z3 to resolve this dilemma.

– Differently from most other SV-COMP tools, Korn fixes the evaluation
order of function arguments to be right-to-left which matches the order typ-
ically used by C compilers. This is not faithful to C semantics as Korn
potentially misses bugs due to side-effects for some specific evaluation order.

The random sampler is very effective—in SV-COMP 2023 it discovered all
210 violations reported by Korn, of which 204 are found within 2 seconds.
Sampling of small non-zero values is crucial, e.g., Ackermann02.c falsifies with
input vector [2,0]; using all zero inputs still finds 57 of these 210 violations.

A key strength of Horn clause encodings is that they are inherently mod-
ular. This means that loops and recursion are abstracted by invariants resp.
pre-/postcondition pairs. The latter enable Korn to significantly outperform
all other tools in category Recursive. Plausible explanations are that classic
state-space exploration techniques struggle to abstract call stacks or maybe that
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Table 1. Comparison of official results (number of tasks solved) in comparison to result
of the best-scoring other tool in that category and post-competition experiments after
fixing an issue with the submitted Korn verifier archive which did not run Eldarica at
all. # Tasks is the number of tasks supported by Korn vs. category size. The result
marked by † is without counterexample confirmation. The official results can be found
at https://sv-comp.sosy-lab.org/2023/results/results-verified/

SV-COMP 2023 Post-Comp.

# tasks best scoring competitor Korn

Category supp./all tool true false true false true false

ControlFlow 19/ 22 CVT-ParPort 15 7 12 7 12 7
Loops 641/ 685 VeriAbs 386 185 80 178 288 178
Recursive 57/ 59 UAutomizer 20 18 27 25 27 25
XCSP 109/ 114 CBMC 54 50 46 0 46 † 50

techniques developed for loops like k-induction have simply not been adapted
well to recursive procedures. For Horn clause encodings on the other hand both
abstractions are uniform and solvers are largely agnostic to the purpose of pred-
icates. As a downside of enforcing modular proofs, Korn is currently unable to
compete in category Arrays, where finding the quantified invariants is hard but
state-space exploration succeeds on tasks with fixed loop bounds.

Unfortunately, in the 2023 competition, Eldarica did not run at all due to
some unknown problem with the verifier archive, such that Korn terminated
way too early and missed out on many results. Table 1 presents results from
re-running the evaluation on the competition hardware. This produces 208 ad-
ditional proofs from Eldarica in category Loops with a hypothetical score of 755
wrt. 323 in SV-COMP 2023, albeit the actual score would be lower than that
because usually not all witnesses are confirmed.

4 Software Project, Configuration & Participation

The implementation of Korn is available at https://github.com/gernst/korn

under the MIT license, installation instructions are part of the README. The
SV-COMP 2023 submission was packaged from commit 8e968dd and shows ver-
sion 0.4. The included solvers are Z3 4.11.2 64 bit (default configuration) and
Eldarica v2.0.8 (using -portfolio). The command line in SV-COMP 2023 is

./run -write -model -witness witness.graphml -confirm \

-random 10 -timeout 20 -z3 -timeout 900 -eld:portfolio <file.c>

Participation: ControlFlow, Loops, Recursive, XCSP for ReachSafety.

Contributors. Korn is developed and maintained by the author. G. Alexan-
dru [1] and J. Blau have contributed insights to approach of loop contracts [7].
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Data Availability Statement

The tool archive packaged for SV-COMP 2023 is part of the official tools arti-
fact [4] and also available separately [9]. The official competition results [3] are
complemented with our post-competition evaluation, based on commit 92e6732

and are available at [8].
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Abstract. Mopsa is a multilanguage static analysis platform relying on
abstract interpretation.
It is able to analyze C, Python, and programs mixing these two lan-
guages; we focus on the C analysis here. It provides a novel way to com-
bine abstract domains, in order to offer extensibility and cooperation
between them, which is especially beneficial when relational numerical
domains are used. The analyses are currently flow-sensitive and fully
context-sensitive. We focus only on proving programs to be correct, as
our analyses are designed to be sound and terminating but not complete.
We present our first participation to SV-Comp, where Mopsa earned a
bronze medal in the SoftwareSystems category.

Keywords: Static analysis · Abstract interpretation · Competition
on Software Verification · SV-Comp

1 Verification Approach: the Mopsa platform

Mopsa is an open-source static analysis platform relying on abstract interpreta-
tion [4]. The implementation of Mopsa aims at exploring new perspectives for
the design of static analyzers. Mopsa has a triple objective:

– To allow developers to define abstract domains in a modular fashion – that is,
as independently of each other as possible. In particular, this means that each
abstract domain can easily be enabled or disabled to customize an analysis.
– To allow different abstract domains to cooperate and communicate in a re-
lational way. Previous analyzers were able to combine domains in tree-shaped
structures [5, Fig. 1]. Mopsa allows sharing between abstract domains, meaning
schematically that the domains can be combined into an acyclic graph.
– To support the analysis of multiple languages while reusing existing abstrac-
tions. Mopsa is able to analyze C [16], Python [13], and multilanguage Python/C
programs [14]. The Michelson smart contract language is being added [1]. Other
safe analyzers, such as Astrée [5], Frama-C [6], Goblint [19], and TAJS [8] are
specialized in analyzing a single language.
⋆ Jury member
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These aims are achieved through a dynamic expression rewriting mechanism,
and a unified signature for abstract domains and iterators. Journault et al. [9]
describe the core Mopsa principles, and Monat [12, Chapter 3] provides an in-
depth introduction to Mopsa’s design.

The C analysis which we rely on for this competition is based on the work
of Ouadjaout and Miné [16]. The analysis works by induction on the syntax, is
fully context- and flow-sensitive, and committed to be sound. It targets complete
programs that have not been modified: Mopsa can be seamlessly integrated in
standard build systems (such as make), it supports main functions with symbolic
arguments, and it includes precise stubs for most of the standard C library. Our
benchmarks analyses include, for instance, several tools from coreutils.

Mopsa is written in 50,000 lines of OCaml code [21], and relies on the Clang
frontend to parse C programs. It relies on the Apron library [7] to handle rela-
tional numerical abstract domains.

2 Software Architecture: the SV-Comp driver

By default, the C analysis of Mopsa detects all the runtime errors that may
happen in the analyzed program (NULL pointer dereferences, integer overflows,
...), while SV-Comp tasks focus on a specific property at a time (reachability of a
function, validity of memory accesses, ...). We thus created an SV-Comp specific
driver. It takes as input the task description (program, property, data model).
It runs increasingly precise C analyses defined in Mopsa until the property of
interest is proved or the most precise analysis is reached. Each analysis result is
postprocessed by the driver to check if the property is proved.

An analysis configuration defines the set of domains used, as well as their
parameters allowing modifications of the precision-efficiency ratio. The four in-
creasingly precise configurations we use are the following:

– Conf. 1 is the base analysis relying on intervals and cells (a field-sensitive, low-
level memory abstraction able to handle type-puning, pointer casts, C unions,
. . . ) [11]. Global structures having up to 5 fields are precisely initialized.
– Conf. 2 additionally enables the string length domain [10], which precisely
tracks the position of the first 0 in byte arrays. Static struct initialization is
done precisely for structures having up to 50 fields.
– Conf. 3 adds a polyhedra abstract domain. This includes tracking numerical
relations between string lengths and scalar variables.4 It relies on a static packing
heuristic [5] to achieve a good precision-scalability tradeoff.
– Conf. 4 adds a congruence abstract domain, delayed widenings, and widening
with thresholds.

A schematic representation of the domains used in these analyses is shown in
Figure 1. The SV-Comp driver is written in 250 lines of Python code.
4 In this case, Mopsa’s ability to share abstract domain comes in handy. With a tree,
we would have to "linearize" the domains and put either cells or string length on top
of the other. This makes reduction more difficult (e.g., Astrée uses a global reduction
system on the whole tree, while we can use local reductions between two domains).
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C.program # C.desugar # C.goto #
U.intraproc # U.loops # U.interproc #
C.stubs # C.libraries # C.files #

∧

C.cells C.string_length

◦

×

C.machineNum C.pointers

◦

U.recency

◦

∧

∧

U.intervals U.congruences

U.linearRel

# Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Fig. 1. Configurations for Mopsa-C analyses used in SV-Comp. Dotted rectangles
indicate optionally enabled domains. “U.*” domains are shared between the analysis
of different languages, while the others are C-specific. The sequence operator lets the
domain on the left handle the analysis of a given statement: if it cannot, the analysis
continues with the domain on the right. The composition operator allows multiple
domains to share the same underlying domain. Products let both domains analyze the
given statement. In the case of a reduced product, a reduction operation is applied
after the analysis of a statement.

Conf. Tasks proved correct Tasks yielding timeout

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

Fig. 2. Results of the increasingly precise analyses (21220 tasks in total, 12636 correct-
ness tasks). Conf. 2 is able to prove 738 tasks correct in addition to the 5695 proved
by conf. 1, although 86 tasks reach the resource limits when analyzed by conf. 1 and
2. Mopsa yields unknown in the analysis of the other tasks.

3 Strengths and Weaknesses

Mopsa participated in all categories targeting reachability, memory safety and
overflow properties: ReachSafety, MemSafety, NoOverflows and SoftwareSys-
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tems. It did not compete in the datarace and termination categories. The com-
petition report [2] details all results.

Mopsa relies on over-approximations to guarantee soundness and termina-
tion of its analyses. As such, Mopsa scales well on SV-Comp benchmarks: the
successive analyses described in Section 1 yield a result within the allocated re-
sources in 91% of the tasks (and 98.5% of the cases for our cheapest analysis).
We show the detailed precision benefits of each analysis for the benchmarks in
Figure 2. Thanks to Mopsa’s scalability and commitment to soundness, we have
been able to discover and fix defects within SV-Comp benchmarks which were
not discovered by previous tools. In particular, we fixed 164 task definitions, as
well as 23 programs with unintended issues in their source code.5 Mopsa is es-
pecially competitive in the SoftwareSystems category, focusing on verifying real
software systems: it ranked third for our first participation.

Our approach is scalable but not complete: we can only prove programs
correct. In other cases, we cannot decide if the issues we found are real bugs or
false alarms: we return “unknown” in all these cases to avoid yielding incorrect
results. Thus, we can only obtain points on correctness verification tasks, which
represents around 58% of the current tasks. Our future work includes finding
approaches to exhibit real counterexamples when they exist.

In addition, our analyses are not precise enough for some small but intricate
benchmarks (for exemple, on arrays). In particular, the current version of Mopsa
does not support partitioning the abstract state into different ones to improve its
precision. We plan to add this classic feature for SV-Comp’s next edition. For an
over-approximating analyzer, Mopsa is nevertheless quite precise: Mopsa is able
to prove around 8% more tasks than Goblint [19, 20] (the leading state-of-the-art
abstract interpreter running in SV-Comp).

Finally, the SV-Comp driver we built does not extract precise witnesses from
the analyses. Indeed, the case of invariant generation for loops defined in func-
tions called in different contexts seems open for now: Saan [18] observed that
complex, interprocedural witnesses do not help the witness verifiers. However,
the trivial correctness witnesses we generate are validated in 96.4% of the cases.

4 Software Project and Contributors

Mopsa is currently available on Gitlab[17], and released under an open-source
license (GNU LGPL v3). Mopsa was originally developed at LIP6, Sorbonne
Université following an ERC Consolidator Grant award to Antoine Miné. Mopsa
is now developed in other places, including Inria, Airbus, and Nomadic Labs.
We thank Matthieu Journault for being one of the initial contributors to Mopsa.
This first participation to SV-Comp has spurred a lot of interesting discussions
within our development team, and lead to 20 bugfixes and new features.

5 We also added contributed to the benchmarks used in SV-Comp, by adding tasks
to check overflows from the Juliet Benchmarks (6156 new tasks); and reviewing 12
merge requests from the community.
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Data-Availability Statement The exact version of Mopsa that participated
in SV-Comp 2023, and our specific driver are available as a Zenodo archive [15].
A global tool archive is also available [3].

Acknowledgements. We thank Simmo Saan for his precious advice on how to
start integrating our tool within SV-Comp.
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Abstract. PIChecker is a tool for verifying reachability properties of
concurrent C programs. It moderates the trace-space explosion problem,
aggravated by thread alternation, through utilizing the PC-DPOR and
C-Intp techniques. The PC-DPOR technique constructs a constrained
dependency graph to refine dependencies between transitions. With this
basis, the inherent imprecision of the dependence over-approximation can
be overcome. Thereby, many redundant equivalent traces are prevented
from being explored. On the other hand, the C-Intp technique performs
conditional interpolation to confine the reachable regions of states, so
that infeasible conditional branches which occur more frequently in con-
current verification tasks could be pruned automatically. We have imple-
mented the above techniques on top of the open-source program analysis
framework CPAchecker.

Keywords: Partial-Order Reduction · Interpolation · Concurrent Pro-
gram · Model Checking

1 Verification Approach

Program synthesis[11] and verification[5] are two ways to improve the quality of
software. In this paper, we propose a tool, namely PIChecker, that utilizes the
PC-DPOR [9] and C-Intp [8] techniques to verify the reachability properties of
concurrent programs. These techniques work in two different ways, equivalent
trace class partitioning and infeasible conditional branch pruning, to reduce the
search space in model checking.

The PC-DPOR technique addresses the problem that the coarse dependency
approximation of transitions used in many POR [6] approaches significantly in-
creases the number of equivalent trace classes to be explored. In order to reduce
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unnecessary exploration, the PC-DPOR technique constructs a constrained de-
pendency graph (CDG) to refine the dependencies between transitions, where the
edges in a CDG represent the dependency constraints that transitions from dif-
ferent threads depend on each other. The first configuration in Fig. 1 combines
this technique with BDD-based reachability analysis to explore the reachable
state-space of a concurrent program. At each state s, if there are isolated transi-
tions which have no connection with the nodes of other threads in the CDG, then
only one reachable successor state s′ corresponding to an isolated transition will
be explored (i.e., the enabled transitions of other threads will be pruned). We
have proved that the prioritized exploration strategy for isolated transition still
provides full coverage of all program behaviors[9]. This prioritized exploration
continues until a checking state without any successor of isolated transition is
reached. Thereafter, the dependency between any two different transitions t and
t′ at a checking state can be dynamically determined by checking whether their
dependency constraint holds at the checking state. If the constraint does not
hold (i.e., t is independent of t′ at the current checking state), then only one of
the execution orders t · t′ and t′ · t will be explored. With the basis of CDG, the
inherent imprecision of traditional dependence over-approximation is overcome
and many redundant equivalent traces can be saved from being explored.

On the other hand, the C-Intp technique focuses on pruning the infeasible
conditional branches that may be explored in traditional abstraction-refinement
iterations [7] when predicates are insufficient. At each state s, besides the reach-
ability check of error locations, the C-Intp technique also inspects whether there
exists any path that contains infeasible conditional branches. If so, the C-Intp
technique will treat such a path as another form of spurious path, and additional
constraints, namely conditional interpolants, will be generated by performing
conditional interpolation on these additional spurious paths. Thereafter, infea-
sible conditional branches can be pruned by introducing these constraints into
the reachable regions of states. In order to improve the efficiency of satisfiability
checking and Craig interpolation [4] steps performed by C-Intp, the generated
conditional interpolants are utilized to shorten the interpolation paths. To do
so, the shortest C-Intp formula chains which contain only the formulas that
affect decision-making are constructed at each choice point to perform the inter-
polations. With the conditional interpolants and shorter interpolation paths, a
sufficient amount of predicates can be generated efficiently, and more attention
can be paid to the analysis of feasible paths.

2 Software Architecture

PIChecker is developed on top of CPAchecker with the PC-DPOR and C-Intp
extensions. By taking the strength of the CPA concept, PIChecker uses differ-
ent configurations as shown in Fig. 1 to cover as many concurrent programs as
possible. Within the verification time-bound, the verification for a given pro-
gram starts by executing the first configuration that combines the PC-DPOR
technique and BDD-based reachability analysis. If a counterexample is reported,
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Fig. 1. The verification flow that combines the PC-DPOR and C-Intp strategies.

the feasibility of this error path will be checked since the BDD-based reachabil-
ity analysis in CPAchecker currently only supports the representation of integer
variable values and other states in waitlist will continue to be explored if the
counterexample is spurious. If the execution of the first configuration terminates
unexpectedly within 900s, the verification will continue by using the other two
CEGAR + C-Intp based configurations with different back-end solvers. In that
case, the second configuration with the MathSAT5 will be chosen firstly. If its
execution also aborts abnormally because the MathSAT5 solver fails to perform
interpolation on the shortest C-Intp formula chains generated by the C-Intp ap-
proach, the last configuration with the SMTInterpol solver will finally be utilized
if the time cost is still within the bound.

3 Strengths and Weakness

Compared to CPAchecker which conservatively approximates the independence
of transitions by checking whether a transition only accesses local variables [2],
the use of CDG in PIChecker can improve the precision of estimating the depen-
dencies of enabled transitions at reachable states. Therefore, the exploration of
more traces in the same equivalent class can be avoided by utilizing PIChecker.
In addition, different from most of the abstraction-refinement approaches that
generate only a few number of predicates at the end of each iteration, the two CE-
GAR + C-Intp based configurations can effectively generate a sufficient amount
of conditional interpolants within a single round of iteration by performing the
conditional interpolation technique at conditional branches. Thus, the explo-
ration of many infeasible conditional branches can be avoided. For the sake of
clarifying the improvement from PIChecker more clearly, a comparison between
PIChecker and CPAchecker, on checking the unreach-call property under the
category ConcurrencySafety in SV-COMP 2023, is made. The results indicate
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that PIChecker succeeds to verify 394 out of 665 verification tasks, which is
more than 375 of CPAchecker. Further, for the 372 tasks that can be verified
by the both tools, the average time and memory costs of PIChecker (37.49s,
672.15MB) only account for 56.58% and 61.71% of the corresponding overheads
consumed by CPAchecker (66.27s, 1089.19MB), respectively.

In order to guarantee the correctness of verification results, some conser-
vative strategies are adopted by the three configurations. For example, when
the program statement corresponding to a transition contains non-deterministic
function calls (e.g., ’x = VERIFIER nondet int();’), the PC-DPOR technique
conservatively considers it to be dependent on other transitions if they access the
same shared variables. These strategies may significantly reduce the verification
efficiency.

4 Tool Setup and Configuration

PIChecker is built on the CPAchecker codebase and is publicly available1. It con-
tains all the dependent libraries and requires a Java 11 Runtime Environment.
In SV-COMP 2023, PIChecker only participates in the ConcurrencySafety cat-
egory and checks the unreach-call property2. Before verifying a program, all
files from the submitted archive must be extracted into the same folder. Execut-
ing PIChecker on a task can be done in the same way as executing any other
CPAchecker configuration by running: scripts/cpa.sh -svcomp23-pichecker

-timelimit <TIME LIMIT> [-spec <SPEC FILE>] <SOURCE FILE>. The exper-
imental statistics and verification results are written in output/Statistics.txt.
Moreover, human readable counterexamples output/Counterexample.%d.txt

will be generated if the reachability property does not hold. For more instruc-
tions, please refer to README.md and INSTALL.md.

5 Software Project and Contributors

Based on the open-source tool CPAchecker [3], PIChecker has been developed
by Jie Su, Zuchao Yang, Hengrui Xing, Jiyu Yang from the ICTT Lab in Xi-
dian University under the supervision of Cong Tian and Zhenhua Duan. We
thank Dirk Beyer and his team for their original contributions to CPAchecker.
PIChecker is licensed under the Apache 2.0, and it also contains the copyright
of CPAchecker.
Data Availability Statement. All data of SV-COMP 2023 are archived as
described in the competition report[1] and available on the competition web

site. This includes the verification tasks, results, witnesses, scripts, and in-
structions for reproduction. The version of PIChecker used in the competition
is archived on Zenodo [10] and also in its own artifact at GitLab.

1 PIChecker repository: https://gitlab.com/Lapulatos/pichecker.git
2 The benchmark definition of PIChecker: https://gitlab.com/sosy-lab/sv-comp/
bench-defs/-/blob/main/benchmark-defs/pichecker.xml
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Abstract. The verification approach of Ultimate Automizer utilizes
SMT formulas. This paper presents techniques to keep the size of the
formulas small. We focus especially on a normal form, called CommuHash
normal form that was easy to implement and had a significant impact
on the runtime of our tool.

1 Verification Approach

Ultimate Automizer (in the following calledAutomizer) is a software verifier
that combines a CEGAR scheme and trace abstraction [6] to check safety and
liveness properties.

Automizer’s algorithm begins by transforming an input program to a pro-
gram automaton whose transitions are labelled with formulas representing the
effects of a statement (or multiple statements), whose accepting states corre-
spond to error locations of the input program, and whose structure is equal to
the structure of the control-flow graph of the input program. This program au-
tomaton recognizes a language, where every word is a sequence of statements
that leads to an error location. If the language is empty, we can conclude that the
program is safe. If the language is not empty, our algorithm picks a word from
the language and checks whether it is feasible (i.e., the sequence of statements
corresponds to an execution of the program) or infeasible. If the word is feasible
we have found an actual counterexample. If it is infeasible we compute a proof
of infeasibility for this sequence of statements. Afterwards we generalize this se-
quence of statements to a new automaton that accepts sequences of statements
whose infeasibility can be shown by the very same proof. We then subtract the
automaton with the language of infeasible words from the program automaton
and obtain a new automaton that represents a smaller language, with which
we continue the refinement loop. An important benefit of this approach is that
because we perform the refinement step purely with automata operations, we
never have to mix infeasibility proofs from different iterations.

This basic approach has not changed since the last competition. In the next
section we explain improvements for the handling of SMT formulas.
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2 SMT formulas in Ultimate

The Ultimate program analysis framework on which Ultimate Automizer is
built upon, uses SMT formulas to represent the effect of program statements and
to represent sets of states. We call formulas that represent sets of states state
assertions. State assertions play a major role in the verification approach of
Automizer. The infeasibility proof that we infer for each infeasible sequence of
states is a sequence of state assertions and in the generalization step of the overall
verification algorithm we have to check thousands of Hoare triples of the form
{φ}st{ψ}, where φ and ψ are state assertions from infeasibility proofs. In order
to check these Hoare triples, we reduce the validity problem for Hoare triples
to a satisfiability problem for SMT formulas and let an SMT solver decide the
satisfiability. The costs for the overall verification algorithm would be dominated
by the costs for these satisfiability checks if we would not take additional actions
to keep the size of the SMT formulas low.

We infer the sequence of state assertions by Craig interpolation or by a sym-
bolic execution (via strongest post and weakest precondition) that is supported
by unsatisfiable cores [3]. In the latter case the state assertions are usually quan-
tified and we try to get rid of these quantifiers by applying several quantifier
elimination techniques. These quantifier elimination techniques make the formu-
las simpler for SMT solvers but increase their size.

Our most powerful technique for reducing the size of formulas is an algo-
rithm [4] that removes subformulas if the removal does not change the models
of the formula. This algorithm however is itself costly because it calls an SMT
solver for each subformula.

In order to also reduce the size of formulas without additional SMT solver
calls, we utilize the following optimizations whenever we construct a formula.

– We apply the laws for annulment (e.g., X∨true becomes true), identity (e.g.,
X ∧X becomes X), idempotency (e.g., x + 0 becomes x), double negation
(e.g., ¬¬X becomes X), and complement (e.g., X ∧ ¬X becomes false).

– We compute the result for all operations on literals (e.g., 5 ≤ 7%2 becomes
false).

– We represent all integer and bitvector terms as polynomials. All terms that
cannot be converted to polynomials become “variables” of the polynomial
(e.g., 2 · select(a, k) + 3 · (x%256) + 4).

– For inequalities over integers and equalities over bitvectors and integers, we
move monomials to the side of the relation where it can occur with a positive
coefficient. (e.g., 2x− 3y = 0 becomes 2x = 3y).

– We work only with inequalities that open to the right. I.e., we transform >
to <, ≥ to ≤, sgt to slt, sge to sle, ugt to ult, and uge to ule.

3 The CommuHash Normal Form

An effect of the quantifier elimination techniques and the optimizations men-
tioned above is that we construct formulas in many places of our code. A side-
effect of this is that we get formulas that have subformulas that differ only in the

578



Ultimate Automizer and the CommuHash Normal Form 579

order of the parameters of a commutative operator. E.g., we saw formulas like,
e.g., i = k∨k ̸= i or a[i+k] = a[k+ i]. For both formulas the logical equivalence
to true would have been detected if the operands of the commutative operations
+ and = would not have occurred in different orders. To minimize this problem
we define a normal form that we call CommuHash Normal Form (CHNF). This
normal form utilizes the fact that in Ultimate every formula has a 32-bit hash
code. We say that an SMT formula is in CommuHash Normal Form if for every
subformula with a commutative operator the operands are sorted according to
their hash code in ascending order. To ensure that every formula is in CHNF
Ultimate sorts the parameters whenever we construct a term whose operand
is one of the following SMT operators: =, distinct, and, or, xor, +, *,

bvadd, bvmul, bvand, bvor, bvxor.
In order to evalutate the effect of the CommuHash Normal Form we con-

ducted an experiment in which we compared the default version of Ultimate
Automizer to a version in which we disabled the sorting of parameters. We ran
both versions on the benchmarks of the MemSafety category. In this category
we typically have to deal with large formulas because the state assertions of
proofs have to encode alias information about the program’s pointers. We ran
both versions on all 3440 benchmarks of the category. The CPU was an AMD
Ryzen Threadripper 3970X, the time limit was 90s, the memory limit was 8000
MB and for each benchmark two CPU cores were used. In each run there were
no incorrect results. The run without CHNF produced 1347 correct results, the
run with CHNF produced 1439 correct results. Figure 1 shows a comparison of
the runtimes for each benchmark in which at least one setting produced a result.
We see that on average the run with CHNF needs less time. In fact on average
the speedup is 31%.
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Fig. 1: Comparison of the runtime with and without CHNF



4 Project, Setup and Configuration

Automizer is a part of the open-source program analysis framework Ulti-
mate1. Both are written in Java and licensed under LGPLv3. We use version
0.2.3 of Automizer [5] for SV-COMP, which requires Java 11 and Python 3.6.
The release 0.2.3 contains binaries for Automizer and the SMT solvers Z3,
CVC4, and Mathsat, as well as the Python wrapper script Ultimate.py. The
Python script provides an interface to the competition environment, in particu-
lar to the BenchExec2 tool-info module ultimateautomizer.py. Automizer
also participates as witness validator and can validate violation [2] or correct-
ness witnesses [1]. We participate in all categories 3 as verifier, but our witness
validator does not yet support concurrency witnesses. Hence, our validator does
not participate in ConcurrencySafety 4.

Automizer can be run by calling

./Ultimate.py --spec prop.prp --file input.c --architecture

32bit|64bit --full-output [--validate witness.graphml]

where prop.prp is the SV-COMP property file, input.c is the C file that
should be analyzed, 32bit or 64bit is the architecture of the input file, and
--full-output enables writing of verbose output to stdout. The witness that
should be validated is specified with --validate. If Automizer generates a
result, a witness is written to the file witness.graphml. Automizer’s output
is always written to the file Ultimate.log.
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Abstract. Ultimate Taipan integrates trace abstraction with alge-
braic program analysis on path programs. Taipan supports data race
checking in concurrent programs through a reduction to reachability
checking. Though the subsequent verification is not tuned for data race
checking, the results are encouraging.

1 Verification Approach

Ultimate Taipan [6,7] verifies programs using an approach based on trace ab-
straction [8]. The program is represented as a control flow automaton: Letters
correspond to program statements, accepting states correspond to error loca-
tions, and accepted words are error traces. The verification consists of proving
that all error traces are infeasible (they cannot be executed). To this end, Taipan
picks an error trace from the control flow automaton, and computes the corre-
sponding path program, i.e., the projection of the program on the statements in
the trace. Taipan then uses symbolic interpretation with fluid abstractions [6],
a variant of algebraic program analysis, to prove correctness of this path pro-
gram. If this fails, the algorithm falls back to an interpolation-based method
to prove correctness of the trace itself. In either case, the resulting predicates
are used to build a Floyd/Hoare-automaton [8] that accepts a regular language
of infeasible traces. This automaton is subtracted from the program’s control
flow automaton, yielding a refined abstraction. Taipan repeats this procedure
in a loop until it finds a feasible error trace (the program is incorrect) or the
abstraction is empty (all error traces are infeasible, the program is correct).

For concurrent programs, Taipan performs a näıve sequentialization, and
considers the interleaving product of all threads as a (nondeterministic) sequen-
tial program. Verification then proceeds on this program as it would for any
other sequential program. Note that this also affects the notion of path program,
i.e., path programs are also just sequential programs.

Taipan is part of the Ultimate framework, and uses the same front-end
as other Ultimate tools. C programs are first translated to the intermediate
verification language Boogie [10], the resulting Boogie program is converted into
a control flow automaton, which is then verified. The translation from C to
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Boogie models heap and stack memory through Boogie arrays (associative maps),
where pointers correspond to indices. To simplify the subsequent verification, any
variables, arrays and structures that are guaranteed to never be accessed through
a pointer are instead translated to corresponding Boogie variables.

2 From Data Races to Reachability

Since SV-COMP’22, Taipan can check for data races in concurrent programs.
A program written in C contains a data race if there are two different threads,
(i) one thread writes to a memory location and the other thread writes to or reads
from the same memory location, (ii) at least one of the accesses is not atomic,
and (iii) neither access happens-before the other. The C standard [9], section
5.1.2.4, gives the precise definition. Data races constitute undefined behaviour.

Ultimate supports data race checking through a reduction to reachability.
This reduction is implemented as part of our translation from C to our custom
Boogie dialect. Contrary to C, data races do not constitute undefined behaviour
in our Boogie dialect. The semantics prescribes that “simple” Boogie statements
– (nondeterministic) assignments and assume statements – execute atomically.
We consider all interleavings of these atomic statements, i.e., we assume se-
quential consistency. Hence the correctness of the generated Boogie programs is
well-defined, even if the input C program has undefined behaviour. Any verifi-
cation algorithm for concurrent programs can be applied to the resulting Boogie
program, including the algorithm implemented by Taipan.

The reduction to reachability proceeds as follows. For every global variable
x, we introduce a fresh Boolean global variable race x, which tracks read and
write accesses to x. By comparing the current value of race x to some value it
previously held, we can detect if x has been accessed since. We call an atomic
Boogie statement that represents a C statement or an evaluation step for a C
expression an action. Let <read(x)> denote an action that reads the value of x,
and let <write(x)> denote an action that assigns a new value to x. Our trans-
lation wraps such actions in data race detection code as shown in the following
listings, where tmp is a boolean, thread-local variable.

race_x := true;
<read(x)>
assert race_x == true;

havoc tmp; // nondeterministic assignment
race_x := tmp;
<write(x)>
assert race_x == tmp;

For an action a, we call the sequence of Boogie statements that results from
this wrapping block(a). Note that a is always contained in block(a). Our trans-
lation ensures that if an action a is part of an atomic block (delimited by
VERIFIER atomic *), then the entire block(a) falls inside that atomic block.

For two actions a and b, we say that block(b) can interrupt block(a) if there
exists a program execution that executes block(a) up to and including the action
a, then fully executes block(b), and then continues to execute the remaining
assert statement of block(a). Hence, a block(a) can interrupt block(b) or vice
versa if and only if at least one of the actions a or b is not atomic, and neither
happens-before [9] the other.
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For an action a, the assert statement in block(a) cannot fail, unless there is
an action b such that (i) block(b) can interrupt block(a), and (ii) a and b both
access the same variable x. For instance, let a be an action that writes to x,
and let b be an action that reads from x. In the following example, block(b) can
interrupt block(a) and the last assert statement can fail because false can be
chosen as value of tmp.

Thread 1: havoc tmp; race x:=tmp; a assert race x==tmp;

Thread 2: race x:=true; b assert race x==true;

Based on the definition of data races we distinguish three cases for the actions
a and b:

two reads: The assert statements cannot fail for any interleaving because
both blocks set race x to the same value. The fact that this value is true

has no significance; it only matters that the value is fixed.
a read r and a write w: If block(w) can interrupt block(r), the assert state-

ment for r can fail if block(w) assigns tmp (and consequently, race x) to
false. Similarly, if block(r) can interrupt block(w), the assert statement for
w can fail (again, if tmp has value false).

two writes w1, w2: If some block(wi) can interrupt block(w3−i), the assert state-
ment for w3−i can fail (the blocks may assign different values to race x).

From this case distinction we conclude that in the translated Boogie program, an
assert statement added for data race detection can fail if and only if the original
C program contains a data race.

Our encoding is independent of the synchronization mechanisms used to rule
out data races. Whether the program uses VERIFIER atomic *, pthread mu-
texes, or directly implements locking mechanisms, no special handling is needed.
Our implementation supports not only (primitive) global variables, but also data
on the heap (accessed through pointers) as well as off-heap structures and ar-
rays. In such cases, instead of a Boolean variable race x, more complicated data
structures are needed. We mirror the data layout with Boolean fields: For every
data array, there exists a corresponding Boolean array, for every structure, there
is a corresponding structure with Boolean-valued fields, etc.

This handling of complex data types also allows us to deal with aliasing issues:
Ultimate models memory as an associative array mem : [Pointer]Int, with
pointers as indices. Our race detection encoding creates a corresponding boolean-
valued associative array race mem : [Pointer]Boolean. The instrumentation for
an access to a memory location through a pointer p then manipulates the entry
race mem[p]. If pointers p and q point to the same memory location ` at runtime,
then race mem[p] and race mem[q] refer to the same array entry. Hence, if there
is a data race on `, one of the generated assert statements can fail.

3 Strengths and Weaknesses

Our encoding of data races is independent of the subsequent verification algo-
rithm. We have employed this encoding since SV-COMP 2022 [2], for Taipan
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as well as in the Ultimate tools Automizer and GemCutter (Ultimate
Kojak currently does not support concurrency).

We inherit limitations of the respective verification algorithms. Taipan is un-
able to prove correctness of programs with an unbounded (or very high) number
of threads. The NoDataRace category contains many such programs. Overall,
the Ultimate tools perform competitively in the NoDataRace-Main category,
with Automizer, GemCutter and Taipan reaching 4th, 5th and 6th place,
respectively. In comparison with last year’s performance in the demo category
(4th, 1st and 2nd place), a major factor seems to be the large number of new
correct benchmarks, where we do not perform as well yet. Perhaps some tuning
of the subsequent verification algorithms to the detection of data races can lead
to improvements in the future.

The presented encoding of data races as reachability is compositional, and
independent of the number of threads that are running concurrently: We always
add a single assertion per access, in contrast to some other methods [4].

One limitation of our implementation is that, from a feasible trace that ends
in an assertion violation, it is not always immediately clear which accesses have a
data race. In order to support violation witnesses for data races in future editions
of SV-COMP, a more detailed analysis of the trace will be needed.

Our performance suffers in some cases due to a large amount of instrumen-
tation, e.g. in benchmarks where large structs are copied: Currently, we handle
each byte in the struct separately. In the future, we hope to improve the imple-
mentation to (i) handle reads and writes of large memory chunks more efficiently,
(ii) detect more situations in which a concurrent access can be easily ruled out,
and no instrumentation is needed, and (iii) making parts of the generated data
race detection code atomic, thus reducing the number of interleavings.

4 Architecture, Setup, Configuration, and Project

Ultimate Taipan is part of Ultimate1, a program analysis framework written
in Java and licensed under LGPLv32. Taipan version 0.2.2-2329fc70 requires
Java 11 and Python 3.6. The submitted .zip archive contains the Linux version
of Taipan, binaries of the required SMT solvers3, and a Python wrapper script.
Taipan is invoked with

./Ultimate.py --spec <p> --file <f> --architecture <a> --full-output

where <p> is an SV-COMP property file, <f> is an input C file, <a> is the data
model (32bit or 64bit), and --full-output enables verbose output to stdout.
A violation or correctness witness may be written to the file witness.graphml.
The benchmarking tool BenchExec [3] supports Taipan through the tool-info
module ultimatetaipan.py4. Taipan participates in all categories, as declared in
its SV-COMP benchmark definition file utaipan.xml5.

1
ultimate.informatik.uni-freiburg.de and github.com/ultimate-pa/ultimate

2
www.gnu.org/licenses/lgpl-3.0.en.html

3
Z3 (github.com/Z3Prover/z3), CVC4 (cvc4.github.io/) and Mathsat (mathsat.fbk.eu)

4
github.com/sosy-lab/benchexec/blob/main/benchexec/tools/ultimatetaipan.py

5
gitlab.com/sosy-lab/sv-comp/bench-defs/-/blob/main/benchmark-defs/utaipan.xml

Ultimate Taipan and Race Detection in Ultimate 585

https://ultimate.informatik.uni-freiburg.de
https://github.com/ultimate-pa/ultimate
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://github.com/Z3Prover/z3
https://cvc4.github.io/
https://mathsat.fbk.eu
https://github.com/sosy-lab/benchexec/blob/main/benchexec/tools/ultimatetaipan.py
https://gitlab.com/sosy-lab/sv-comp/bench-defs/-/blob/main/benchmark-defs/utaipan.xml


Data Availability Ultimate Taipan can be found in the archive of all verifiers
and validators participating in SV-COMP’23 [1]. Additionally, the .zip archive
containing only Taipan is available online6 and on Zenodo [5].
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Abstract. We present VeriAbsL, a reachability verifier that performs ver-
ification in three stages. First, it slices the input code using a combination
of two slicers, then it verifies the slices using predicted strategies, and at
last, it composes the result of verifying the individual slices. We introduce
a novel shallow slicing technique that uses variable reference information
of the program, and data and control dependencies of the entry function
to generate slices. We also introduce a novel strategy prediction technique
that uses machine learning to predict a strategy. It uses boolean features to
describe a program to a neural network that predicts a strategy. We use the
portfolio of VeriAbs, a reachabiltiy verifier with manually defined strategies.
In sv-comp 2023, VeriAbsL verified 2273 more programs than VeriAbs, and
4753 programs that VeriAbs could not verify.

1 Verification Approach

It is folklore in automated software verification that no single verification technique
is good enough to verify all programs of interest. This limitation led to the advent
of strategy selection-based verifiers that use predefined verification strategies [4]. A
strategy is a sequence of verification techniques applied to a program, where each
technique is bounded by a heuristically defined time limit. In this paper, we present
a strategy prediction-based reachability verifier for C programs called VeriAbsL. It
verifies a program in stages using a portfolio of two slicing, and ten verification
techniques. First, it slices a program using a sequence of slicers. Then it uses a few
syntactic and semantic features of the slice to predict a strategy and verify the slice.
Lastly, it composes the result of verifying each slice. VeriAbsL uses a sequential
combination of two slicers, a slicer-analyzer [7], and a novel shallow slicer or Sslicer.
Sslicer is applied to programs that could not be sliced by the slicer-analyzer.
The slicer-analyzer is more efficient than Sslicer, but applies to a smaller class
of programs as explained in Section 1.2. Let a program P be sliced into n slices.
A strategy prediction module extracts the features of each slice Pi, 1≤ i≤n, and
predicts a strategy for it using a neural network. The program P is safe if each slice Pi

is safe, and P is unsafe if any slice Pi is unsafe. If program P cannot be sliced, then a
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strategy is predicted for P itself. Fig. 1 shows the architecture of VeriAbsL. As shown
VeriAbsL uses the portfolio of a strategy selection-based verifier called VeriAbs [7].
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1.1 Strategy Prediction using Machine Learning (ML)

Despite the advantages of sequencing multiple verification techniques in a strategy,
experimental evidence indicates that each strategy works well for only a class of
programs. When a new class is encountered, experts define a new strategy and
update the strategy-selection algorithm of the verifier. This is a tedious task. In order
to automate it, recently ML-based verifiers have been used with partial success [5].
VeriAbsL is one such verifier. It uses a simple ML-based approach explained as follows.

Feature Vector Generation. VeriAbsL uses a feature vector f of 22 boolean fea-
tures that describe a few semantic, or syntactic constructs of the input slice Pj. For
example, a boolean feature fi∈f if set to true can indicate the presence of arrays in
the input code, and false can indicate that no arrays are used. These features are
computed using a light-weight static analysis, and derived from those presented in [8].

Neural Network. VeriAbsL uses a three layered neural network with multi-class
classification, one class for each of the ten techniques in our portfolio. It has 22, 17,
and 10 neurons in the respective layers. It was trained using ReLU for the hidden layer
and softmax for the output layer, as activation functions, and with the mean-squared
error loss function. It translates an input feature vector f representing program slice
Pj into likelihoods of success li, 1≤i≤10, of the corresponding verification techniques
Ti in the portfolio for slice Pj. Each output node of the neural network ni represents
one verification technique Ti and the value li generated by the network at that node
ni is a heuristic measure of the relative likelihood that technique Ti will successfully
verify/disprove the property for slice Pj within 900 seconds.

Strategy Prediction. A strategy (Tk1,...,Tk10), 1≤kr≤10, 1≤r≤10, is created by
sorting the relative likelihoods of success li of each verification technique Ti in the
decreasing order. The techniques Ti are invoked in that order to verify slice Pj.

Experimental Results. The neural network in VeriAbsL was trained on 800 ran-
domly selected sv-comp 2022 ReachSafety benchmarks. At sv-comp 2023 out of
all 6138 benchmarks, VeriAbsL verified 227 more programs in 4.4% lesser time than

VeriAbsL: Scalable Verification by Abstraction and Strategy Prediction 589



VeriAbs4 and verified 475 programs that VeriAbs could not verify3. This was because
VeriAbsL predicted useful techniques early in its strategies, while VeriAbs selected
unsuitable strategies and ran out of time. Further the randomly selected training
data did not contain any benchmarks from three ReachSafety sub-categories namely
Combinations, ProductLines, and Hardware. VeriAbsL verified 72 more programs
than VeriAbs in these 3 sub-categories demonstrating that strategy-prediction in
VeriAbsL generalizes to programs for which it was not trained. VeriAbsL ran out of
time for 248 programs verified by VeriAbs because the randomly selected training
data did not contain any sample corresponding to two techniques, namely Vajra [6]
and Counter-Example Guided Loop Abstraction Refinement (ceglar) [4], needed to
verify the 248 programs. Thus they were always predicted late. Further VeriAbsL
verified 1047 and 543 more benchmarks compared to the other ML-based strategy
prediction tools, Graves [11] and PeSCo [12], respectively.

Strengths and Weaknesses of Strategy Prediction. VeriAbsL can verify more pro-
grams than VeriAbs in spite of the same portfolio because it uses ML for strategy
prediction. Also VeriAbsL demonstrates that a small set of boolean features can be
used successfully to verify programs, while other successful verifiers predict a strategy
using graph based learning methods [12]. Further VeriAbsL does not incorporate a
feedback mechanism that can penalize a technique if it cannot verify a program. Such
a feedback mechanism can improve its efficiency and accuracy.

1.2 Shallow Slicer

Sslicer is a generalization of the slicer-analyzer presented in [7] and like the latter,
aims for a scalable slicing with respect to calls in entry function main. But unlike the
slicer-analyzer, Sslicer allows multiple calls in main to (1) refer to the same global
variable, (2) transitively invoke the same function, or (3) have transitive dependence
on the same data element or control structure in main.

Sslicer partitions the program functions directly or indirectly called from main
into n sets F1...Fn such that the following conditions, termed as partition-independence,
are satisfied: (1) Each partition Fi contains at least one function directly called from
main. (2) Each partition Fi contains functions which are either directly or transitively
called from main. (3) All functions transitively called from function f∈Fi also belong
to Fi, the same partition as f . Thus if T(f) is the set of functions transitively called
from f , then ∀i, 1≤i≤n, ∀f∈Fi, T(f)⊆Fi. (4) No two functions f∈Fi and g∈Fj

belonging to different partitions transitively call the same function or refer to the same
global variable. Let V (Fi) be the set of global variables referred to by functions in set
Fi then ∀i,j | 1≤i≤n, 1≤j≤n, i 6=j =⇒ (V (Fi)∩V (Fj)=∅) (5) Let maini be the
function generated when a program containing only one function, the function main,
is sliced (using known slicing techniques [9]) with respect to calls to functions in set Fi

which are directly called from main. Then functions of no other set Fj, i 6=j, should re-
fer to the variables used inmaini. Thus ∀i,j | 1≤i≤n, 1≤j≤n, i 6=j =⇒ (V (maini)∩
V (Fj)=∅) (6) n is the largest possible natural number satisfying the above conditions.

4 The competition score of VeriAbs is greater than VeriAbsL because of 8 incorrect results
produced due to bugs in the implementation of a technique predicted by VeriAbsL. This
technique was not executed for these 8 programs by VeriAbs.
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A slice Pi corresponding to each set Fi is generated. The set of functions in
slice Pi is given by maini∪Fi. To create the slice, call graph and referred variables
information is computed using call-trees, and a light-weight flow-insensitive pointer
analysis. We assume that function main itself is not a part of any recursive call chain,
and does not specify the assertions directly.

main (){
if(a&&b)f1 ();
f2 ();
if(b) f5 ();

}
f1() { f3 (); }
f2() { f4 (); }
f3() { c++; }
f4() { a++; }
f5() { d++; }

(a) Input Code

main (){
if(a&&b)f1 ();
f2 ();

}
f1() { f3 (); }
f2() { f4 (); }
f3() { c++; }
f4() { a++; }

(b) Slice 1

main (){
if(b) f5 ();

}
f5() { d++; }

(c) Slice 2

Fig. 2. Example
Example. Consider the program presented in Fig. 2a. In this example functions

called from main can be initially partitioned into three sets {f1, f3}, {f2, f4,} and
{f5} as f1 calls f3, f2 calls f4, and f5 does not refer to any function or variable that
other functions refer to. But function f4 refers to variable a. If a program containing
only the body of function main shown in Fig. 2a were to be sliced with respect to the
call to f1 in main then it would refer to variable a. Function f1 belongs to the first
partition and f4 to the second. To satisfy the fifth condition of partition-independence
functions f1 and f4 must belong to a single partition. Thus finally there are two
partitions - {f1, f2, f3, f4}, and {f5}. The slices created for the first and second
partitions are shown in Figures 2b and 2c respectively. Notice that since function
f5 does not refer to variable b in its body, it need not be merged with the other
partition even though the body of sliced main in Fig. 2c refers to variable b.

Experimental Results. We compare the performances of VeriAbsL with (1) slicer-
analyzer, and (2) slicer-analyzer and Sslicer, on all 6138 benchmarks of the Reach-
Safety category of sv-comp 2023. The first configuration generated slices for 671
programs while the second generated slices for 1369 programs showing better applica-
bility. Further, due to Sslicer, VeriAbsL terminated its analysis for 42 more programs,
showing improved scalability, and its portfolio could verify 4 additional programs.

1.3 Software Project, Architecture, and Setup

The Foundations of Computing research group at TCS Research [1] has developed
VeriAbsL. It is written in Perl, Java and Python. It uses TCS’s program analysis frame-
work [10] for static analysis, and TensorFlow libraries [2] for learning. VeriAbsL uses Ve-
riAbs’s portfolio [7], except Vajra [6] because it is not supported on Ubuntu 22.04 LTS.
VeriAbsL participated in the Reach-Safety category at sv-comp 2023, and is available
at [3]. The installation instructions are in VeriAbsL/INSTALL.txt, the BenchExec5

wrapper script for the tool is veriabsl.py, and the benchmark definition file is veri-

absl.xml. On successful verification, VeriAbsL generates a witness in the current work-
ing directory as witness.graphml. A sample command to verify property given in file
reach-safety.prp for a program, given in a.c, of a 32-bit (or 64-bit) architecture is as
follows: VeriAbsL/scripts/veriabs -32|64 --property-file reach-safety.prp a.c

5 https://github.com/sosy-lab/benchexec
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2 Data-Availability Statement

VeriAbsL is available as part of sv-comp 2023 verifier repository at https://gitlab.
com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/veriabsl.zip. For any
queries please contact the authors at veriabs.tool@tcs.com.
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VeriFuzz 1.4: Checking for (Non-)termination
(Competition Contribution)
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Abstract. In VeriFuzz 1.4, we implemented two new techniques for
checking Non-termination and Termination. VeriFuzz 1.4 won the Ter-
mination category of SV-COMP 2023.

1 Approach for Non-termination and Termination

VeriFuzz 1.2.0 [4,10,11] is a framework to automatically generate test cases, and
lacks the ability to prove properties such as termination. Given a program P and
termination as the property, a tool needs to either provide a witness for Non-
termination of P , or give a true verdict if P always terminates. Therefore, we
developed two techniques: one for proving Non-termination and one for checking
termination with a high confidence, which are described below.

1.1 Technique for Non-termination Checking

For SV-COMP 2023, we implemented a variant of FuzzNT [7], a sound technique
for proving Non-termination arising due to infinite loops. FuzzNT takes as input
a C program P and a corpus of test inputs T generated using the Coverage
Guided Fuzzer of VeriFuzz 1.2. Each test input t ∈ T is a sequence of values to
be supplied to P via nondet() calls. We illustrate the key steps of FuzzNT using
the program P (Listing 1.1), adopted from the code that caused the SSL non-
termination [13]. Note that P terminates on the test input t = 〈1 : j = 129, 4 :
i == 1, 5 : j = 5, 4 : i == 3〉. Given such a test input, FuzzNT transforms P into
a Path Specific Program (PSP) P ′ (Listing 1.2), by replacing each nondet() call
in P with the corresponding value in the test input, if any, as described in [7].
If multiple values in the test input correspond to a nondet() call in P , FuzzNT
picks the first value among them to replace the nondet() call. For example, in t,
both i == 1 and i == 3 correspond to the nondet() call on Line 4 in Listing 1.1.
So, as shown on Line 4 of Listing 1.2, this nondet() call is replaced with i == 1.
Notice that P ′ has only one feasible execution path, which does not terminate. P ′

is then supplied to an abstract interpretation based safety checker, which checks
if P ′ does not terminate. If the check succeeds, then P ′ is non-terminating and
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Listing 1.1. Program P

1 i=1; j=nondet();

2 while(j!=1) {

3 i=i+1;

4 if (i==nondet()) exit(0);

5 j=nondet(); }

Listing 1.2. Program P ′

1 i=1; j=129;

2 while(j!=1) {

3 i=i+1;

4 if (i==1) exit(0);

5 j=5; }

hence P is also non-terminating, and a proof of Non-termination is generated
for P in the form of a witness automaton. These steps are repeated until either
a non-terminating execution is discovered, or test inputs are exhausted.

1.2 Variant of FuzzNT implemented in VeriFuzz 1.4

The version of FuzzNT in [7] uses Frama-C [14] for the abstract interpretation
based Non-termination check. However, we noticed that Frama-C’s abstract in-
terpretation does not precisely model termination semantics of standard library
functions like abort(). This leads to Frama-C incorrectly identifying some termi-
nating programs as non-terminating. Further, we could not bundle Frama-C with
FuzzNT due to the installation dependencies and it is unavailable in the Com-
petition Environment of SV-COMP 2023. Therefore, we implemented a variant
of FuzzNT using the C Bounded Model Checker [5], as described below.

Given a program P , we begin by checking if P terminates as described in
Section 1.3. If this check could not identify the termination of P , then we generate
PSPs for P using VeriFuzz 1.2 (described in Section 1.1). Next CBMC is run on
each generated PSP, say P ′, with a small loop unwind bound, say k, and check for
CBMC’s built-in unwinding assertion, which checks if all loops within P ′ iterate
at most k times. If this check succeeds, then P ′ is a terminating program. If this
check fails, then there exists an input for which some loop in P ′ iterates more
than k times. We then iteratively increase k and repeat the termination check
until a large enough k such as 10, 000. In our experiments, we observed that
while CBMC does not scale to such a large unwinding of P , it does scale to large
unwindings of the PSPs of P , as they admit much fewer behaviours than P . If
the check fails even at 10, 000 for P ′, it is likely to be non-terminating. We then
generate a witness automaton for P using P ′, classifying P as non-terminating.

1.3 Technique for termination

To check if a given a program P terminates on all inputs, we designed an un-
sound, but high confidence, incremental verification technique based on Bounded
Model Checking (CBMC). This technique works in two phases. Phase-1 is the
same as CBMC’s own termination check. In this, we begin by unwinding all the
loops in P for a small number of iterations, such as 2. Then, using CBMC’s
built-in loop unwinding assertion check, we verify if all loops terminate within
this small unwinding, say k. If this check is successful, then all loops in P ter-
minate within k iterations and hence P itself terminates, and we return TRUE
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to declare P to be terminating. If the check fails for any loop, then that loop
can iterate more than k times. So, we increment k, and repeat the check. This
approach suffers from two limitations. (1) As k grows larger, BMC suffers from
scalability issues, and (2) if P has a feasible non-terminating path, then the check
for a higher k repeats forever. To overcome these limitations, we stop Phase-1
and return UNKNOWN as soon as k reaches a threshold value (pre-configured
for SV-COMP 2023). We then proceed to Phase-2, described below.

In Phase-2, we try to find a small model for the termination property of P ,
by guessing a small range R of the inputs (viz. nondet() calls), such that if P
terminates for all inputs in R, then P is highly likely to terminate for all its
inputs. To guess this R, we learnt a Decision Tree (DT) model on a training
data of less than 10% of SV-COMP benchmarks, based on program features
and sample execution traces. We are working on formalizing this approach via
ranking functions [6].

We then run the incremental verification from Phase-1, but by bounding the
nondet() values to those in R. This bounding allows CBMC’s backend solvers
such as Z3 to scale to a larger loop unwind K (∼ 100, 000 in our experiments).
If all loops in P terminate within at most K iterations given the R-bounding,
then we assume that P is highly likely to terminate on all inputs even without
R-bounding. Therefore, if this bounded value check concludes that P terminates,
then we return TRUE to declare P to be terminating, else we return UNKNOWN
and invoke the non-termination check described in Section 1.2.

2 Software Architecture

Phase-1

Term-Check

Phase-2

Bounded-Value


Term-Check

TRUE

UNKNOWN

Path

Specific

Programs

VeriFuzz 1.2

BMC-NT

Check

Termination Non

Termination Unknown

P, Φ
UNKNOWN

TRUE

UNKNOWN

FALSE, WITNESS

Fig. 1. VeriFuzz 1.4 architecture

Figure 1 shows the architecture of VeriFuzz 1.4. Here P is the input program,
and φ is the termination property. The process-blocks Phase-1 Term-Check and
Phase-2 Bounded-Value Term-Check, together constitute our two phased ter-
mination check described in Section 1.3. If both Phase-1 and Phase-2 return
UNKNOWN, we then execute the Non-termination check described in Section
1.2. That is, we first generate PSPs using VeriFuzz 1.2, and search for a likely
non-terminating PSP, say P ′. If we find such a P ′, we generate a witness au-
tomaton and return FALSE (to report non-termination). Else, all the above
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steps must have returned UNKNOWN, and VeriFuzz 1.4 is unable to decide if
P is terminating or non-terminating, and hence returns UNKNOWN.

In Figure 1, VeriFuzz 1.2 is built using PRISM [8] program analysis frame-
work, AFL [16], and CBMC v5.67.0 [1] with Z3 4.8.15 [12] and Glucose Syrup [2]
as the backend SMT and SAT solvers respectively. The DT model used in Phase-2
of the termination check (see Section 1.3) is trained offline using booster trees [3].
The rest of VeriFuzz 1.4 is implemented in C++ and Python.

3 Strengths and Weaknesses

Out of 1043 Termination tasks in SV-COMP 2023, our two phase technique
correctly solved 865. Some of these, such as termination-crafted/easy2-2.c and
termination-dietlibc/atoi.c, contain loops that iterate arbitrarily large number
of times. Hence, while BMC fails to conclude their termination, our approach
succeeds as it limits the number of loop iterations by restricting the inputs to a
small range. Tasks, such as termination-restricted-15/Sunset.c, terminate within
the value ranges guessed during Phase-2, but do not terminate for some inputs
that lie outside the ranges. Thus, we wrongly reported them to be terminating.

Out of 766 Non-termination tasks, our Non-termination technique correctly
solved 351. Of these, tasks such as systemc/pipeline.cil-1.c , have complex control
and data dependencies, which could not be solved by approaches such as those in
UAutomizer [9] and Symbiotic [15]. But, the PSPs of these programs, generated
by our technique, were much simpler to check for non-termination and hence
our technique succeeded on them. However, within the given time limits, if all
the PSPs we generated happen to be terminating, then our technique fails to
identify the non-termination. Our results on tasks locks/test locks 14-2.c and
termination-restricted-15/Ex02.c demonstrate this behaviour. Another weakness
is that our technique currently does not handle programs with recursion.We are
currently developing new techniques that address these weaknesses.

4 Tool Configuration and Setup

VeriFuzz 1.4 is available at git@gitlab.com:sosy-lab/sv-comp/archives-2023.git.
To install and run the tool, follow the instructions in the README.txt. The
benchexec tool-info module is verifuzz.py and the benchmark definition file is
verifuzz.xml. A sample run command is as follows: ./scripts/verifuzz.py
--propertyFile termination.prp example.c. In SV-COMP 2023, VeriFuzz
opts to participate in Termination, ReachSafety, and Overflow categories.

5 Software Project and Contributors

VeriFuzz is developed and maintained by the authors at TCS Research. We thank
everyone who has contributed to the development of VeriFuzz and the tools AFL,
PRISM, CBMC, Glucose Syrup, and Z3. Contact: verifuzz.tool@tcs.com.
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6 Data-Availability Statement

VeriFuzz 1.4 is available as part of SV-COMP 2023 verifier repository at https://
gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/verifuzz.zip. For
any queries, please contact the authors at verifuzz.tool@tcs.com.
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