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ETAPS Foreword

Welcome to the 26th ETAPS! ETAPS 2023 took place in Paris, the beautiful capital of
France. ETAPS 2023 was the 26th instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference established
in 1998, and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organising these conferences in a coherent,
highly synchronized conference programme enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attracted many researchers from all over the globe.

ETAPS 2023 received 361 submissions in total, 124 of which were accepted,
yielding an overall acceptance rate of 34.3%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2023 featured the unifying invited speakers Véronique Cortier (CNRS,
LORIA laboratory, France) and Thomas A. Henzinger (Institute of Science and
Technology, Austria) and the conference-specific invited speakers Mooly Sagiv (Tel
Aviv University, Israel) for ESOP and Sven Apel (Saarland University, Germany) for
FASE. Invited tutorials were provided by Ana-Lucia Varbanescu (University of
Twente and University of Amsterdam, The Netherlands) on heterogeneous computing
and Joost-Pieter Katoen (RWTH Aachen, Germany and University of Twente, The
Netherlands) on probabilistic programming.

As part of the programme we had the second edition of TOOLympics, an event to
celebrate the achievements of the various competitions or comparative evaluations in
the field of ETAPS.

ETAPS 2023 was organized jointly by Sorbonne Université and Université
Sorbonne Paris Nord. Sorbonne Université (SU) is a multidisciplinary,
research-intensive and worldclass academic institution. It was created in 2018 as the
merge of two first-class research-intensive universities, UPMC (Université Pierre and
Marie Curie) and Paris-Sorbonne. SU has three faculties: humanities, medicine, and
55,600 students (4,700 PhD students; 10,200 international students), 6,400 teachers,
professor-researchers and 3,600 administrative and technical staff members. Université
Sorbonne Paris Nord is one of the thirteen universities that succeeded the University of
Paris in 1968. It is a major teaching and research center located in the north of Paris. It
has five campuses, spread over the two departments of Seine-Saint-Denis and Val



d’Oise: Villetaneuse, Bobigny, Saint-Denis, the Plaine Saint-Denis and Argenteuil. The
university has more than 25,000 students in different fields, such as health, medicine,
languages, humanities, and science. The local organization team consisted of Fabrice
Kordon (general co-chair), Laure Petrucci (general co-chair), Benedikt Bollig (work-
shops), Stefan Haar (workshops), Étienne André (proceedings and tutorials), Céline
Ghibaudo (sponsoring), Denis Poitrenaud (web), Stefan Schwoon (web), Benoît Barbot
(publicity), Nathalie Sznajder (publicity), Anne-Marie Reytier (communication),
Hélène Pétridis (finance) and Véronique Criart (finance).

ETAPS 2023 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), EASST
(European Association of Software Science and Technology), Lip6 (Laboratoire
d'Informatique de Paris 6), LIPN (Laboratoire d'informatique de Paris Nord), Sorbonne
Université, Université Sorbonne Paris Nord, CNRS (Centre national de la recherche
scientifique), CEA (Commissariat à l'énergie atomique et aux énergies alternatives),
LMF (Laboratoire méthodes formelles), and Inria (Institut national de recherche en
informatique et en automatique).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns (Saar-
brücken), Marieke Huisman (Twente, chair), Jan Kofroň (Prague), Barbara König
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Inria), Jan Křetínský (Munich),
and Lenore Zuck (Chicago).

Other members of the steering committee are: Dirk Beyer (Munich), Luís Caires
(Lisboa), Ana Cavalcanti (York), Bernd Finkbeiner (Saarland), Reiko Heckel
(Leicester), Joost-Pieter Katoen (Aachen and Twente), Naoki Kobayashi (Tokyo),
Fabrice Kordon (Paris), Laura Kovács (Vienna), Orna Kupferman (Jerusalem), Leen
Lambers (Cottbus), Tiziana Margaria (Limerick), Andrzej Murawski (Oxford), Laure
Petrucci (Paris), Elizabeth Polgreen (Edinburgh), Peter Ryan (Luxembourg), Sriram
Sankaranarayanan (Boulder), Don Sannella (Edinburgh), Natasha Sharygina (Lugano),
Pawel Sobocinski (Tallinn), Sebastián Uchitel (London and Buenos Aires), Andrzej
Wasowski (Copenhagen), Stephanie Weirich (Pennsylvania), Thomas Wies (New
York), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer-Verlag GmbH for their
support. I hope you all enjoyed ETAPS 2023.

Finally, a big thanks to Laure and Fabrice and their local organization team for all
their enormous efforts to make ETAPS a fantastic event.

April 2023 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword



Preface

This book contains the proceedings of FASE 2023, the 26th International Conference
on Fundamental Approaches to Software Engineering, held in Paris, France, in April
2023, as part of the annual European Joint Conferences on Theory and Practice of
Software (ETAPS 2023).

FASE is concerned with the foundations on which software engineering is built. We
solicited four categories of papers, research, empirical, new ideas and emerging results,
and tool demonstrations; all of which should make novel contributions to making
software engineering a more mature and soundly-based discipline.

The contributions accepted for presentation at the conference were carefully selected
by means of a thorough double-blind review process which included no less than 3
reviews per paper. We received 50 submissions, which after a reviewing period of nine
weeks and intensive discussion resulted in 16 accepted papers, representing a 32%
acceptance rate.

We also ran an artifact track where authors of accepted papers optionally submitted
artifacts described in their papers for evaluation. 10 artifacts were submitted for
evaluation, 8 of which were successfully evaluated.

In addition, FASE 2023 hosted the 5th International Competition on Software
Testing (Test-Comp 2023), which is an annual comparative evaluation of automatic
tools for test generation. A total of 13 tools participated this year, from seven countries.
The tools were developed in academia and in industry. The submitted tools and the
submitted system-description papers were reviewed by a separate program committee:
the Test-Comp jury. Each tool and paper was assessed by at least three reviewers.
These proceedings contain the competition report and one selected system description
of a participating tool. Two sessions in the FASE program were reserved for the
presentation of the results: the summary by the Test-Comp chair and of the partici-
pating tools by the developer teams in the first session, and the community meeting in
the second session.

We thank the ETAPS 2023 general chair, Marieke Huisman, the ETAPS 2023
organizers, Fabrice Kordon and Laure Petrucci, as well as the FASE SC chair, Andrzej
Wasowksi, for their support during the whole process. We thank our invited speaker,
Sven Apel, for his keynote. We thank all the authors for their hard work and will-
ingness to contribute. We thank all the Program Committee members, external
reviewers, who invested time and effort in the selection process to ensure the scientific
quality of the program. Last but not least, we thank the Test-Comp chair Dirk Beyer,



the artifact evaluation committee chairs, Marie-Christine Jakobs and Carlos Diego
Nascimento Damasceno, and their evaluation committees.

April 2023 Leen Lambers
Sebastián Uchitel
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Brains on Code: Towards a Neuroscientific
Foundation of Program Comprehension

(Abstract of an Invited Talk)

Sven Apel

Saarland University, Saarland Informatics Campus

Abstract. Research on program comprehension has a fundamental limitation:
program comprehension is a cognitive process that cannot be directly observed,
which leaves considerable room for misinterpretation, uncertainty, and con-
founders. In the project Brains On Code, we are developing a neuroscientific
foundation of program comprehension. Instead of merely observing whether
there is a difference regarding program comprehension (e.g., between two
programming methods), we aim at precisely and reliably determining the key
factors that cause the difference. This is especially challenging as humans are the
subjects of study, and inter-personal variance and other confounding factors
obfuscate the results. The key idea of Brains On Code is to leverage established
methods from cognitive neuroscience to obtain insights into the underlying
processes and influential factors of program comprehension.
Brains On Code pursues a multimodal approach that integrates different

neuro-physiological measures as well as a cognitive computational modeling
approach to establish the theoretical foundation. This way, Brains On Code lays
the foundations of measuring and modeling program comprehension and offers
substantial feedback for programming methodology, language design, and
education. With Brains On Code, addressing longstanding foundational ques-
tions such as “How can we reliably measure program comprehension?”, “What
makes a program hard to understand?”, and “What skills should programmers
have?” comes into reach. Brains On Code does not only help answer these
questions, but also provides an outline for applying the methodology beyond
program code (models, specifications, requirements, etc.).

Keywords: Program comprehension � Neuro-imaging � Computational cognitive
modeling
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ACoRe: Automated Goal-Conflict Resolution

Luiz Carvalho1, Renzo Degiovanni1, Mat́ıas Brizzio2,3, Maxime Cordy1,
Nazareno Aguirre4, Yves Le Traon1, Mike Papadakis1

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
{luiz.carvalho,renzo.degiovanni,maxime.cordy,yves.traon,mike.papadakis}@uni.lu

2 IMDEA Software Institute, Madrid, Spain
matias.brizzio@imdea.org

3 Universidad Politécnica de Madrid, Madrid, Spain
4 Universidad Nacional de Ŕıo Cuarto and CONICET, Ŕıo Cuarto, Argentina

naguirre@dc.exa.unrc.edu.ar

Abstract. System goals are the statements that, in the context of soft-
ware requirements specification, capture how the software should be-
have. Many times, the understanding of stakeholders on what the sys-
tem should do, as captured in the goals, can lead to different problems,
from clearly contradicting goals, to more subtle situations in which the
satisfaction of some goals inhibits the satisfaction of others. These latter
issues, called goal divergences, are the subject of goal conflict analysis,
which consists of identifying, assessing, and resolving divergences, as part
of a more general activity known as goal refinement.
While there exist techniques that, when requirements are expressed for-
mally, can automatically identify and assess goal conflicts, there is cur-
rently no automated approach to support engineers in resolving identi-
fied divergences. In this paper, we present ACoRe, the first approach
that automatically proposes potential resolutions to goal conflicts, in
requirements specifications formally captured using linear-time tempo-
ral logic. ACoRe systematically explores syntactic modifications of the
conflicting specifications, aiming at obtaining resolutions that disable
previously identified conflicts, while preserving specification consistency.
ACoRe integrates modern multi-objective search algorithms (in par-
ticular, NSGA-III, WBGA, and AMOSA) to produce resolutions that
maintain coherence with the original conflicting specification, by search-
ing for specifications that are either syntactically or semantically similar
to the original specification.
We assess ACoRe on 25 requirements specifications taken from the lit-
erature. We show that ACoRe can successfully produce various conflict
resolutions for each of the analyzed case studies, including resolutions
that resemble specification repairs manually provided as part of conflict
analyses.

1 Introduction

Many software defects that come out during software development originate from
incorrect understandings of what the software being developed should do [24].

© The Author(s) 2023
L. Lambers and S. Uchitel (Eds.): FASE 2023, LNCS 13991, pp. 3–2 , 2023.
https://doi.org/10.1007/978-3-031-30826-0 1
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L. Carvalho et al.

These kinds of defects are known to be among the most costly to fix, and thus it
is widely acknowledged that software development methodologies must involve
phases that deal with the elicitation, understanding, and precise specification
of software requirements. Among the various approaches to systematize this re-
quirements phase, the so-called goal-oriented requirements engineering (GORE)
methodologies [13,55] provide techniques that organize the modeling and analysis
of software requirements around the notion of system goal. Goals are prescrip-
tive statements that capture how the software to be developed should behave,
and in GORE methodologies are subject to various activities, including goal
decomposition, refinement, and the assignment of goals [3,13,15,39,55,56].

The characterization of requirements as formally specified system goals en-
ables tasks that can reveal flaws in the requirements. Formally specified goals
allow for the analysis and identification of goal divergences, situations in which
the satisfaction of some goals inhibits the satisfaction of others [9,16]. These di-
vergences arise as a consequence of goal conflicts. A conflict is a condition whose
satisfaction makes the goals inconsistent. Conflicts are dealt with through goal-
conflict analysis [58], which comprises three main stages: (i) the identification
stage, which involves the identification of conflicts between goals; (ii) the assess-
ment stage, aiming at evaluating and prioritizing the identified conflicts accord-
ing to their likelihood and severity; and (iii), the resolution stage, where conflicts
are resolved by providing appropriate countermeasures and, consequently, trans-
forming the goal model, guided by the criticality level.

Goal conflict analysis has been the subject of different automated tech-
niques to assist engineers, especially in the conflict identification and assessment
phases [16,18,43,56]. However, no automated technique has been proposed for
dealing with goal conflict resolution. In this paper, we present ACoRe, the first
automated approach that deals with the goal-conflict resolution stage. ACoRe
takes as input a set of goals formally expressed in Linear-Time Temporal Logic
(LTL) [45], together with previously identified conflicts, also given as LTL for-
mulas. It then searches for candidate resolutions, i.e., syntactic modifications to
the goals that remain consistent with each other, while disabling the identified
conflicts. More precisely, ACoRe employs modern search-based algorithms to
efficiently explore syntactic variants of the goals, guided by a syntactic and se-
mantic similarity with the original goals, as well as with the inhibition of the
identified conflicts. This search guidance is implemented as (multi-objective) fit-
ness functions, using Levenshtein edit distance [42] for syntactic similarity, and
approximated LTL model counting [8] for semantic similarity. ACoRe exploits
this fitness function to search for candidate resolutions, using various alternative
search algorithms, namely a Weight-Based Genetic Algorithm (WBGA) [29], a
Non-dominated Sorted Genetic Algorithm (NSGA-III) [14], an Archived Multi-
Objective Simulated Annealing search (AMOSA) [6], and an unguided search
approach, mainly used as a baseline in our experimental evaluations.

Our experimental evaluation considers 25 requirements specifications taken
from the literature, for which goal conflicts are automatically computed [16].
The results show that ACoRe is able to successfully produce various conflict

4
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resolutions for each of the analysed case studies, including resolutions that re-
semble specification repairs manually provided as part of conflict analyses. In
this assessment, we measured their similarity concerning the ground-truth, i.e.,
to the manually written repairs, when available. The genetic algorithms are able
to resemble 3 out of 8 repairs in the ground truth. Moreover, the results show
that ACoRe generates more non-dominated resolutions (their finesses are not
subsumed by other repairs in the output set) when adopting genetic algorithms
(NSGA-III or WBGA), compared to AMOSA or unguided search, favoring ge-
netic multi-objective search over other approaches.

2 Linear-Time Temporal Logic

2.1 Language Formalism

Linear-Time Temporal Logic (LTL) is a logical formalism widely used to spec-
ify reactive systems [45]. In addition, GORE methodologies (e.g. KAOS) have
also adopted LTL to formally express requirements [55] and taken advantage of
the powerful automatic analysis techniques associated with LTL to improve the
quality of their specifications (e.g., to identify inconsistencies [17]).

Definition 1 (LTL Syntax). Let AP be a set of propositional variables. LTL
formulas are inductively defined using the standard logical connectives, and the
temporal operators © (next) and U (until), as follows:

(a) constants true and false are LTL formulas;
(b) every p ∈ AP is an LTL formula;
(c) if ϕ and ψ are LTL formulas, then ¬ϕ, ϕ ∨ ψ, ©ϕ and ϕUψ are also LTL

formulas.

LTL formulas are interpreted over infinite traces of the form σ = s0 s1 . . .,
where each si is a propositional valuation on 2AP (i.e., σ ∈ 2APω

).

Definition 2 (LTL Semantic). We say that trace σ = s0, s1, . . . satisfies a
formula ϕ, written σ |= ϕ, if and only if ϕ holds at the initial state of the trace,
i.e. (σ, 0) |= ϕ. The last notion is inductively defined on the shape of ϕ as follows:

(a) (σ, i) |= p⇔ p ∈ si
(b) (σ, i) |= (φ ∨ ψ)⇔ (σ, i) |= φ or (σ, i) |= ψ
(c) (σ, i) |= ¬φ⇔ (σ, i) 6|= φ
(d) (σ, i) |=©φ⇔ (σ, i+ 1) |= φ
(e) (σ, i) |= (φ U ψ)⇔ ∃k≥0 : (σ, k) |= ψ and ∀0≤j<k : (σ, j) |= φ

Intuitively, formulas with no temporal operator are evaluated in the first
state of the trace. Formula©ϕ is true at position i, iff ϕ is true in position i+1.
Formula ϕU ψ is true in σ iff formula ϕ holds at every position until ψ holds.

Definition 3 (Satisfiability). An LTL formula ϕ is said satisfiable (SAT) iff
there exists at least one trace satisfying ϕ.
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We also consider other typical connectives and operators, such as, ∧, 2 (al-
ways), 3 (eventually) and W (weak-until), that are defined in terms of the
basic ones. That is, φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ), 3φ ≡ trueUφ, 2φ ≡ ¬3¬φ, and
φWψ ≡ (2φ) ∨ (φUψ).

2.2 Model Counting

The model counting problem consists of calculating the number of models that
satisfy a formula. Since the models of LTL formulas are infinite traces, it is often
the case that analysis is restricted to a class of canonical finite representation of
infinite traces, such as lasso traces or tree models. Notably, this is the case in
bounded model checking for instance [7].

Definition 4 (Lasso Trace). A lasso trace σ is of the form σ = s0 . . . si(si+1

. . . sk)ω, where the states s0 . . . sk conform the base of the trace, and the loop
from state sk to state si+1 is the part of the trace that is repeated infinitely many
times.

For example, an LTL formula 2(p∨ q) is satisfiable, and one satisfying lasso
trace is σ1 = {p}; {p, q}ω, wherein the first state p holds, and from the second
state both p and q are valid forever. Notice that the base in the lasso trace σ1
is the sequence containing both states {p}; {p, q}, while the state {p, q} is the
sequence in the loop part.

Definition 5 (LTL Model Counting). Given an LTL formula ϕ and a bound
k, the (bounded) model counting problem consists in computing how many lasso
traces of at most k states exist for ϕ. We denote this as #(ϕ, k).

Since existing approaches for computing the exact number of lasso traces
are ineffective [25], Brizzio et. al [8] recently developed a novel model counting
approach that approximates the number (of prefixes) of lasso traces satisfying
an LTL formula. Intuitively, instead of counting the number of lasso traces of
length k, the approach of Brizzio et. al [8] aims at approximating the number of
bases of length k corresponding to some satisfying lasso trace.

Definition 6 (Approximate LTL Model Counting). Given an LTL for-
mula ϕ and a bound k, the approach of Brizzio et. al [8] approximates the number
of bases w = s0 . . . sk, such that for some i, the lasso trace σ = s0 . . . (si . . . sk)ω

satisfies ϕ (notice that prefix w is the base of σ). We denote #Approx(ϕ, k) to
the number computed by this approximation.

ACoRe uses #Approx model counting to compute the semantic similarity
between the original specification and the candidate goal-conflict resolutions.
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3 The Goal-Conflict Resolution Problem

Goal-Oriented Requirements Engineering (GORE) [55] drives the requirements
process in software development from the definition of high-level goals that state
how the system to be developed should behave. Particularly, goals are prescrip-
tive statements that the system should achieve within a given domain. The
domain properties are descriptive statements that capture the domain of the
problem world. Typically, GORE methodologies use a logical formalism to spec-
ify the expected system behavior, e.g., KAOS uses Linear-Time Temporal Logic
for specifying requirements [55]. In this context, a conflict essentially represents
a condition whose occurrence results in the loss of satisfaction of the goals, i.e.,
that makes the goals diverge [56,57]. Formally, it can be defined as follows.

Definition 7 (Goal Conflicts). Let G = {G1, . . . , Gn} be a set of goals, and
Dom be a set of domain properties, all written in LTL. Goals in G are said to
diverge if and only if there exists at least one Boundary Condition (BC), such
that the following conditions hold:

– logical inconsistency: {Dom,BC, ∧
1≤i≤n

Gi} |= false

– minimality: for each 1 ≤ i ≤ n, {Dom,BC, ∧
j 6=i

Gj} 6|= false

– non-triviality: BC 6= ¬(G1 ∧ . . . ∧Gn)

Intuitively, a BC captures a particular combination of circumstances in which
the goals cannot be satisfied. The first condition establishes that, when BC
holds, the conjunction of goals {G1, . . . , Gn} becomes inconsistent. The second
condition states that, if any of the goals are disregarded, then consistency is
recovered. The third condition prohibits a boundary condition to be simply the
negation of the goals. Also, the minimality condition prohibits that BC be equals
to false (it has to be consistent with the domain Dom).

Goal-conflict analysis [55,56] deals with these issues, through three main
stages: (1) The goal-conflicts identification phase consists in generating boundary
conditions that characterize divergences in the specification; (2) The assessment
stage consists in assessing and prioritizing the identified conflicts according to
their likelihood and severity; (3) The resolution stage consists in resolving the
identified conflicts by providing appropriate countermeasures. Let us consider the
following examples found in our empirical evaluation and commonly presented
in related works.

Example 1 (Mine Pump Controller - MPC). Consider the Mine Pump Con-
troller (MPC) widely used in related works that deal with formal requirements
and reactive systems [16,35]. The MPC describes a system that is in charge of
activating or deactivating a pump (p) to remove the water from the mine, in the
presence of possible dangerous scenarios. The MP controller monitors environ-
mental magnitudes related to the presence of methane (m) and the high level of
water (h) in the mine. Maintaining a high level of water for a while may produce
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flooding in the mine, while the methane may cause an explosion when the pump
is switched on. Hence, the specification for the MPC is as follows:

Dom : 2((p ∧©(p))→©(©(¬h)) G1 : 2(m→©(¬p)) G2 : 2(h→©(p))

Domain property Dom describes the impact into the environment of switch-
ing on the pump (p). For instance, when the pump is kept on for 2 unit times,
then the water will decrease and the level will not be high (¬h). Goal G1 ex-
presses that the pump should be off when methane is detected in the mine. Goal
G2 indicates that the pump should be on when the level of water is high.

Notice that this specification is consistent, for instance, in cases in which
the level of water never exceeds the high threshold. However, approaches for
goal-conflict identification, such as the one of Degiovanni et al. [16], can detect
a conflict between goals in this specification.

The identified goal-conflict describes a divergence situation in cases in which
the level of water is high and methane is present at the same time in the envi-
ronment. Switching off the pump to satisfy G1 will result in a violation of goal
G2; while switching on the pump to satisfy G2 will violate G1. This divergence
situation clearly evidence a conflict between goals G1 and G2 that is captured
by a boundary condition such BC = 3(h ∧m).

In the work of Letier et al. [40] two resolutions were manually proposed that
precisely describe what should be the software behaviour in cases where the
divergence situation is reached. The first resolution proposes to refine goal G2,
by weakening it, requiring to switch on the pump only when the level of water
is high and no methane is present in the environment.

Example 2 (Resolution 1 - MPC).

Dom : 2((p ∧©(p))→©(©(¬h)))

G1 : 2(m→©(¬p)) G′2 : 2(h ∧ ¬m→©(p))

With a similar analysis, the second resolution proposes to weaken G1, requir-
ing switching off the pump when methane is present and the level of water is
not high.

Example 3 (Resolution 2 - MPC).

Dom : 2((p ∧©(p))→©(©(¬h)))

G′1 : 2(m ∧ ¬h→©(¬p)) G2 : 2(h→©(p))

The resolution stage aims at removing the identified goal-conflicts from the
specification, for which it is necessary to modify the current specification formu-
lation. This may require weakening or strengthening the existing goals, or even
removing some and adding new ones.

Definition 8 (Goal-Conflict Resolution). Let G = {G1, . . . , Gn}, Dom, and
BC be the set of goals, the domain properties, and an identified boundary con-
dition, respectively written in LTL. Let M : S1 × S2 7→ [0, 1] and ε ∈ [0, 1] be
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a similarity metric between two specifications and a threshold, respectively. We
say that a resolution R = {R1, . . . , Rm} resolves goal-conflict BC, if and only
if, the following conditions hold:

– consistency: {Dom,R} 6|= false
– resolution: {BC,R} 6|= false
– similarity: M(G,R) < ε

Intuitively, the first condition states that the refined goals in R remain consistent
within the domain properties Dom. The second condition states that BC does
not lead to a divergence situation in the resolution R (i.e., refined goals in R
know exactly how to deal with the situations captured by BC). Finally, the last
condition aims at using a similarity metric M to control for the degree of changes
applied to the original formulation of goals in G to produce the refined goals in
resolution R.

Notice that the similarity metric M is general enough to capture similarities
between G and R of different natures. For instance, M(G,R) may compute the
syntactic similarity between the text representations of the original specification
of goals in G and the candidate resolution R, where the number of tokens edited
from G to R is the aim. On the other hand, M(G,R) may compute a semantic
similarity between G and R, for instance, to favour resolutions that weaken the
goals (i.e. G→ R), or strengthen the goals (i.e. R→ G) or that maintain most
of the original behaviours (i.e. #G−#R < ε).

Precisely, ACoRe will explore syntactic modifications of goals from G, lead-
ing to newly refined goals in R, with the aim at producing candidate resolutions
that are consistent with the domain properties Dom and resolve conflict BC.
Assuming that the engineer is competent and the current specification is very
close to the intended one [19,1], ACoRe will integrate two similarity metrics in a
multi-objective search process to produce resolutions that are syntactically and
semantically similar to the original specification. Particularly, ACoRe can gen-
erate exactly the same resolutions for the MPC previously discussed, manually
developed by Letier et al. [40].

4 ACoRe: Automated Goal-Conflict Resolution

ACoRe takes as input a specification S = (Dom,G), composed by the domain
properties Dom, a set of goals G, and a set {BC1, . . . , BCk} of identified bound-
ary conditions for S. ACoRe uses search to iteratively explore variants of G
to produce a set R = {R1, . . . , Rn} of resolutions, where each Ri = (Dom,Gi),
that maintain two sorts of similarities with the original specification, namely,
syntactic and semantic similarity between S and each Ri. Figure 1 shows an
overview of the different steps of the search process implemented by ACoRe.

ACoRe instantiates multi-objective optimization (MOO) algorithms to effi-
ciently and effectively explore the search space. Currently, ACoRe implements
four MOO algorithms, namely, the Non-Dominated Sorting Genetic Algorithm
III (NSGA-III) [14], a Weight-based genetic algorithm (WBGA) [29], an Archived
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Multi-objective Simulated Annealing (AMOSA) [6] approach, and an unguided
search approach we use as a baseline. Let us first describe some common compo-
nents shared by the algorithms (namely, the search space, the multi-objectives,
and the evolutionary operators) and then get into the particular details of each
approach (such as the fitness function and selection criteria).

Initial Population

Evaluation Selection

Stop Criterion?

No

Yes

Resolutions

1

2 3

population

CrossoverMutation

Evolution Operators
4

(only in GAs)
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Fig. 1: Overview of ACoRe.

4.1 Search Space and Initial Population

Each individual cR = (Dom,G′), representing a candidate resolution, is a LTL
specification over a set AP of propositional variables, where Dom captures the
domain properties and G′ the refined system goals. Notice that domain proper-
ties Dom are not changed through the search process since these are descriptive
statements. On the other hand, ACoRe performs syntactic alterations to the
original set of goals G to obtain the new set of refined goals G′ that potentially
resolve the conflicts given as input.

The initial population represents a sample of the search space from which
the search starts. ACoRe creates one or more individuals (depending on the
multi-objective algorithm being used) as the initial population by applying the
mutation operator (explained below) to the specification S given as input.

4.2 Multi-Objectives: Consistency, Resolution and Similarities

ACoRe guides the search with four objectives that check for the validity of
each of the conditions needed to be a valid goal-conflict resolution, namely,
consistency, resolution and two similarity metrics (cf. Definition 8).

Given a resolution cR = (Dom,G′), the first objective Consistency(cR) eval-
uates if the refined goals G′ are consistent with the domain properties by using
SAT solving.

Consistency(cR) =


1 if Dom ∧G′ is satisfiable

0.5 if Dom ∧G′ is unsatisfiable, but G′ is satisfiable

0 if G′ is unsatisfiable
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The second objective ResolvedBCs(cR) computes the ratio of boundary con-
ditions resolved by the candidate resolution cR, among the total number of
boundary conditions given as input. Hence, ResolvedBCs(cR) returns values be-
tween 0 and 1, and is defined as follows:

ResolvedBCs(cR) =

∑k
i=1 isResolved(BCi, G

′)

k

isResolved(cR,BCi) returns 1, if and only if BCi ∧G′ is satisfiable; otherwise,
returns 0. Intuitively, when BCi ∧ G′ is satisfiable, it means that the refined
goals G′ satisfies the resolution condition of Definition 8 and thus, BCi is no
longer a conflict for candidate resolution cR. In the case that cR resolves all the
(k) boundary conditions, the objective ResolvedBCs(cR) will return 1.

With the objective of prioritising resolutions that are in some sense similar
to the original specification among the dissimilar ones, ACoRe integrates two
similarity metrics. ACoRe considers one syntactic and one semantic similarity
metric that will help the algorithms to focus the search in the vicinity of the
specification given as input.

Precisely, objective Syntactic(S, cR) refers to the distance between the text
representations of the original specification S and the candidate resolution cR.
To compute the syntactic similarity between LTL specifications, we use Leven-
shtein distance [42]. Intuitively, the Levenshtein distance between two words is
the minimum number of single-character edits (insertions, deletions, or substi-
tutions) required to change one word into the other. Hence, Syntactic(S, cR), is
computed as:

Syntactic(S, cR) =
maxLength− Levenshtein(S, cR)

maxLength

where maxLength = max(length(S), length(cR)). Intuitively, Syntactic(S, cR)
represents the ratio between the number of tokens changed from S to obtain cR
among the maximum number of tokens corresponding to the largest specification.

On the other hand, our semantic similarity objective Semantic(S, cR) refers
to the system behaviour similarities described by the original specification and
the candidate resolution. Precisely, Semantic(S, cR) computes the ratio between
the number of behaviours present in both, the original specification and candi-
date resolution, among the total number of behaviours described by the speci-
fications. To efficiently compute the objective Semantic(S, cR), ACoRe uses
model counting and the approximation previously described in Definition 6.
Hence, given a bound k for the lasso traces, the semantic similarity between
S and cR is computed as:

Semantic(S, cR) =
#Approx(S ∧ cR, k)

#Approx(S ∨ cR, k)

Notice that, small values for Semantic(S, cR) indicate that the behaviours
described by S are divergent from those described by cR. In particular, in cases
that S and cR are contradictory (i.e., S∧cR is unsatisfiable), Semantic(S, cR) is
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0. As this value gets closer to 1, both specifications characterize an increasingly
large number of common behaviors.

4.3 Evolutionary Operators

New individuals are generated through the application of the evolution operators.
Particularly, our approach ACoRe implements two standard operators used for
evolving LTL specifications [17,43], namely a mutation and a crossover operators.
Below, we provide some examples of the application of these operators, and
please refer to the complementary material for a detailed formal definition.
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Fig. 2: Mutation operator.
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Fig. 3: Crossover operator.

Given a candidate individual cR′ = (Dom,G′), the mutation operator selects
a goal g′ ∈ G′ to mutate, leading to a new goal g′′, and produces a new candidate
specification cR′′ = (Dom,G′′), where G′′ = G′[g′ 7→ g′′], that is, G′′ looks
exactly as G′ but goal g′ is replaced by the mutated goal g′′.

For instance, Figure 2 shows 5 possible mutations that we can generate for
formula 3(p→ 2r). Mutation M1 replaces 3 by 2, leading to M1 : 2(p→ 2r).
Mutation M2 : 3(p ∧2r) replaces → by ∧. Mutation M3 : 3(p→ ¬r) replaces
2 by ¬. Mutation M4 : 3(true → 2r), reduces to 32r, replaces p by true.
While mutation M5 : 3(p→ 2q) replaces r by q.

On the contrary, the crossover operator takes two individuals cR1 = (Dom,G1)
and cR2 = (Dom,G2), and produces a new candidate resolution cR′′ = (Dom,G′′)
by combining portions of both specifications. In other words, it takes one goal
from each individual, i.e. G1 ∈ G1 and G2 ∈ G2, and generates a new goal G′′

that is obtained by replacing a subformula α of G1 by a subformula β taken
from G2. For instance, Figure 3 provides an illustration of how this operator
works. Particularly, subformula α : p is selected from goal G1 : 3(p → 2r),
while subformula β : ¬p is selected from goal G2 : ¬p∧ q. Hence, by replacing in
G1 subformula α by subformula β, the crossover operators generate a new goal
G′′ : 3(¬p→ 2r).
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ACoRe: Automated Goal-Conflict Resolution

It is worth mentioning that the four multi-objective search algorithms imple-
mented by ACoRe use the mutation operator to evolve the population. However,
only two of the algorithms that implement two different genetic algorithms (i.e.
NSGA-III and WBGA) use the crossover operator to evolve the population.

4.4 Multi-Objective Optimisation Search Algorithms

In a multi-objective optimisation (MOO) problem there is a set of solutions,
called the Pareto-optimal (PO) set, which is considered to be equally important.
Given two individuals x1 and x2 from the search-space S, and f1, . . . , fn a set of
(maximising) fitness functions, where fi : S → R, we say that x1 dominates x2
if (a) x1 is not worse than x2 in all objectives and (b) x1 is strictly better than
x2 at least in one objective. Typically, MOO algorithms evolve the candidate
population with the aim to converge to a set of non-dominated solutions as
close to the true PO set as possible and maintain as diverse a solution set as
possible. There are many variants of MOO algorithms that have been successfully
applied in practice [27]. ACoRe implements four multi-objective optimization
algorithms to explore the search space to generate goal-conflict resolutions.

AMOSA. The Archived Multi-objective Simulated Annealing (AMOSA) [6] is
an adaptation of the simulated annealing algorithm [34] for multi-objectives.
AMOSA only analyses one (current) individual per iteration, and a new indi-
vidual is created by the application of the mutation operator. AMOSA has two
particular features that make it promising for our purpose. During the search,
it maintains an “archive” with the non-dominated candidates explored so far,
that is, candidates whose fitness values are not subsumed by other generated
individuals. Moreover, when a new individual is created that does not dominate
the current one, it is not immediately discarded and can still be selected among
the current individual with some probability that depends on the “temperature”
(a function that decreases over time). At the beginning the temperature is high,
then new individuals with worse fitness than the current element, are likely to be
selected, but this probability decreases over the iterations. This strategy helps
in avoiding local maximums and exploring more diverse potential solutions.

WBGA. ACoRe also implements a classic Weight-based genetic algorithm
(WBGA) [29]. In this case, WBGA maintains a fixed number of individuals
in each iteration (a configurable parameter), and applies both the mutation and
crossover operators to generate new individuals. WBGA computes the fitness
value for each objective and combines them into a single fitness f defined as:

f(S, cR) =α ∗ Consistency(cR) + β ∗ResolvedBCs(cR)+

γ ∗ Syntax(S, cR) + δ ∗ Semantic(S, cR)

where weights α = 0.1, β = 0.7, γ = 0.1, and δ = 0.1 are defined by default
(empirically validated), but these can be configured to other values if desired. In
each iteration, WBGA sorts all the individuals according to their fitness value
(descending order) and selects best ranked individuals to survive to the next
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iteration (other selectors can be integrated). Finally, WBGA reports all the
resolutions found during the search.
NSGA-III. ACoRe also implements the Non-Dominated Sorting Genetic Al-
gorithm III (NSGA-III) [14] approach. It is a variant of a genetic algorithm that
also uses mutation and crossover operators to evolve the population. In each
iteration, it computes the fitness values for each individual and sorts the pop-
ulation according to the Pareto dominance relation. Then it creates a partition
of the population according the level of the individuals in the Pareto dominance
relation (i.e., non-dominated individuals are in Level-1, Level-2 contains the in-
dividuals dominated only by individuals in Level-1, and so on). Thus, NSGA-III
selects only one individual per non-dominated level with the aim of diversifying
the exploration and reducing the number of resolutions in the final Pareto-front.

ACoRe also implements an Unguided Search algorithm that does not
use any of the objectives to guide the search. It randomly selects individuals
and applies the mutation operator to evolve the population. After generating a
maximum number of individuals (a given parameter of the algorithm), it checks
which ones constitute a valid resolution for the goal-conflicts given as input.

5 Experimental Evaluation

We start our analysis by investigating the effectiveness of ACoRe in resolving
goal-conflicts. Thus, we ask:

RQ1 How effective is ACoRe at resolving goal-conflicts?

To answer this question, we study the ability of ACoRe to generate resolu-
tions in a set of 25 specifications for which we have identified goal-conflicts.

Then, we turn our attention to the “quality” of the resolution produced by
ACoRe and study if ACoRe is able to replicate some of the manually written
resolutions gathered from the literature (ground-truth). Thus, we ask:

RQ2 How able is ACoRe to generate resolutions that match with resolutions
provided by engineers (i.e. manually developed)?

To answer RQ2, we check if ACoRe can generate resolutions that are equiv-
alent to the ones manually developed by the engineer.

Finally, we are interested in analyzing and comparing the performance of the
four search algorithms integrated by ACoRe. Thus, we ask:

RQ3 What is the performance of ACoRe when adopting different search algo-
rithms?

To answer RQ3, we basically employ standard quality indicators (e.g. hypervol-
ume (HV) and inverted generational distance (IGD)) to compare the Pareto-
front produced by ACoRe when the different search algorithms are employed.
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5.1 Experimental Procedure

We consider a total of 25 requirements specifications taken from the literature
and different benchmarks. These specifications were previously used by goal-
conflicts identification and assessment approaches [4,16,17,18,43,56].

Table 1: LTL Requirements Specifications and Goal-conflicts Identified.
Specification #Dom + #Goals #BCs
minepump 3 14

simple arbiter-v1 4 28

simple arbiter-v2 4 20

prioritized arbiter 7 11

arbiter 3 20

detector 2 15

ltl2dba27 1 11

round robin 9 12

tcp 2 11

atm 3 24

telephone 5 4

elevator 2 3

Specification #Dom + #Goals #BCs
rrcs 4 14

achieve-avoid pattern 3 16

retraction pattern-1 2 2

retraction pattern-2 2 10

RG2 2 9

lily01 3 5

lily02 3 11

lily11 3 5

lily15 3 19

lily16 6 38

ltl2dba theta-2 1 3

ltl2dba R-2 1 5

simple arbiter icse2018 11 20

We start by running the approach of Degiovanni et al. [17] on each subject
to identify a set of boundary conditions. Table 1 summarises, for each case, the
number of domain properties and goals, and the number of boundary conditions
(i.e. goal-conflicts) computed with the approach of Degiovanni et al. [17]. Notice
that we use the set of “weakest”1 boundary conditions returned by [17], in the
sense that by removing all of these we are guaranteed to remove all the boundary
conditions computed.

Then, we run ACoRe to generate resolutions that remove all the identified
goal-conflicts. We configure ACoRe to explore a maximum number of 1000 indi-
viduals with each algorithm. We repeat this process 10 times to reduce potential
threats [5] raised by the random elections of the search algorithms.

To answer RQ1, we run ACoRe and report the number of non-dominated res-
olutions produced by each implemented algorithm (i.e. those resolutions whose
fitness values are not subsumed by other individuals).

To answer RQ2, we collected from the literature 8 cases in which authors
reported a “buggy” version of the specification and a “fixed” version of the
same specification. We take the buggy version and compute a set of boundary
conditions for it that are later fed into ACoRe to automatically produce a set
of resolutions. We then compare the resolutions produced by our ACoRe and
the “fixed” versions we gathered from the literature. We basically analyse, by
using sat solving, if any of the resolutions produced by ACoRe is equivalent to
the manually developed fixed version.

To answer RQ3, we perform an objective comparison of the performance
of the four search algorithms implemented by ACoRe by using two standard

1 A formula A is weaker than B, if B ∧ ¬A is unsatisfiable, i.e., if B implies A.
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quality indicators: hypervolume (HV) [62] and inverted generational distance
(IGD) [12]. The recent work of Wu et al. [61] indicates that quality indicators HV
and IGD are the prefered ones for assessing genetic algorithms and Pareto evo-
lutionary algorithms such as the ones ACoRe implements (NSGA-III, WBGA,
and AMOSA). These quality indicators are useful to measure the convergence,
spread, uniformity, and cardinality of the solutions computed by the algorithms.
More precisely, hypervolume (HV) [42,54] is a volume-based indicator, defined
by the Nadir Point [38,62], that returns a value between 0 and 1, where a value
near to 1 indicates that the Pareto-front converges very well to the reference
point [42] (also, high values for HV are good indicator of uniformity and spread
of the Pareto-front [54]). The Inverted Generational Distance (IGD) indicator is
a distance-based indicator that also computes convergence and spread [42,54]. In
summary, IGD measures the mean distance from each reference point to the near-
est element in the Pareto-optimal set [12,54]. We also perform some statistical
analysis, namely, the Kruskal-Wallis H-test [37], the Mann-Whitney U-test [44],
and Vargha-Delaney A measure Â12 [59], to compare the performance of the
algorithms. Intuitively, the p-value will tell us if the performance between the
algorithms measured in terms of the HV and IGD is statistical significance, while
the A-measure will tell us how frequent one algorithm obtains better indicators
than the others.

ACoRe is implemented in Java into the JMetal framework [50]. It inte-
grates the LTL satisfiability checker Polsat [41], a portfolio tool that runs in
parallel with four LTL solvers, helping us to efficiently compute the fitness func-
tions. Moreover, ACoRe uses the OwL library [36] to parse and manipulate the
LTL specifications. The quality indicators also are implemented by the JMetal
framework and the statistical tests by the Apache Common Math. We ran all the
experiments on a cluster with nodes with Xeon E5 2.4GHz, with 5 CPUs-nodes
and 8GB of RAM available per run.

Regarding the setting of the algorithms, the population size of 100 indi-
viduals was defined and the fitness evaluation was limited to a number of 1000
individuals. Moreover, the timeout of the model counting and SAT solvers were
configured as 300 seconds. The probability of crossover application was 0.1, while
mutation operators were always applied. A tournament selection of four solutions
was used for NSGA-III, while WBGA instantiated Bolzman’s selection with a
decrement exponential function. The WBGA was configured to weight the fit-
ness functions as a proportion of 0.1 in the Status, 0.7 in the ResolvedBC, 0.1
in Syntactic, and 0.1 in Semantic. The AMOSA used an archive of crowding
distance, while the cooling scheme relied on a decrement exponential function.

The case studies and results are publicly available at https://sites.

google.com/view/acore-goal-conflict-resolution/.
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6 Experimental Results

6.1 RQ1: Effectiveness of ACoRe

Table 2 reports the average number of non-dominated resolutions produced by
the algorithms in the 10 runs. First, it is worth mentioning that when ACoRe
uses any of the genetic algorithms (NSGA-III or WBGA), it successfully gen-
erates at least one resolution for all the case studies. However, AMOSA fails
in producing a resolution for the lily16 and simple arbiter icse2018 in 2
and 1 cases of the 10 runs, respectively. Despite that Unguided search succeeds
in the majority of the cases, it was not able to produce any resolution for the
prioritized arbiter, and failed in producing a resolution in 5 out of the 10
runs for the simple-arbiter-v2.

Table 2: Effectiveness of ACoRe in producing
resolutions.
Specification NSGA-III WBGA AMOSA Unguided

minepump 5.0 6.5 1.8 5.1

simple arbiter-v1 4.8 3.1 2.0 4.1

simple arbiter-v2 3.1 3.4 2.3 0.5

prioritized arbiter 3.1 3.7 2.2 0.0

arbiter 5.8 2.7 3.0 5.5

detector 4.9 4.8 3.2 6.1

ltl2dba27 3.0 4.2 3.5 4.0

round robin 7.0 4.2 4.7 4.7

tcp 6.4 4.9 2.0 7.4

atm 3.9 6.3 3.3 4.5

telephone 4.7 4.4 2.2 4.5

elevator 5.9 5.9 3.6 4.8

rrcs 5.5 5.7 1.4 3.3

achieve pattern 5.0 5.9 2.5 2.8

retraction pattern-1 4.1 4.0 2.7 4.6

retraction pattern-2 6.1 4.8 2.6 6.0

RG2 3.3 5.2 1.5 4.3

lily01 5.1 5.1 1.5 4.1

lily02 2.4 3.8 1.9 1.9

lily11 7.1 5.0 2.2 5.8

lily15 6.1 4.1 1.2 5.8

lily16 3.5 3.2 0.8 3.8

ltl2dba theta-2 1.9 2.8 1.9 1.2

ltl2dba R-2 1.0 2.1 1.9 2.1

simple arbiter icse2018 3.8 3.7 0.9 3.5

Table 3: ACoRe effectiveness in
producing an exact or more gen-
eral resolution than the manually
written one.
Specification NSGA-III WBGA AMOSA Unguided

minepump X X X X
simple arbiter-v1

simple arbiter-v2 X X
prioritized arbiter

arbiter

detector X X X
ltl2dba27

round robin

Second, the genetic algorithms (NSGA-III and WBGA) generate on average
more (non-dominated) resolutions than AMOSA and unguided search. The re-
sults point out that WBGA generates more (non-dominated) resolutions than
others in 13 out of the 25 cases, and NSGA-III is the one that produces more
(non-dominated) resolutions in 11 cases. Considering the genetic algorithms to-
gether, we can observe that they outperform the AMOSA and unguided search
in 21 out of the 25 cases, and coincide in one case (ltl2dba R-2). Finally, the
Unguided Search generates more resolutions in 3 cases, namely, detector, TCP,
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and retraction-pattern-1. Interestingly, the different algorithms of ACoRe
produce on average between 1 and 8 non-dominated resolutions, which we con-
sider is a reasonable number of options that the engineer can manually inspect
and validate to select the most appropriate one.

ACoRe generates more non-dominated resolutions when adopting genetic al-
gorithms. On average, ACoRe produces between 1 and 8 non-dominated res-
olutions that can be presented to the engineer for analysis and validation.

6.2 RQ2: Comparison with the Ground-truth

Table 3 presents the effectiveness of ACoRe in generating a resolution that
is equivalent or more general than the ones manually developed by engineers.
Overall, ACoRe is able to reproduce same resolutions in 3 out of 8 of the
cases, namely, for the minepump (our running example), simple arbiter-v2,
and detector. Like for RQ1, the genetic algorithms outperform AMOSA and
unguided search in this respect. Particularly, the Unguided Search can replicate
the resolution for the detector case, in which AMOSA fails.

Overall, the genetic algorithms can produce same or more general resolutions
than the ground-truth in 3 out of the 8 cases, outperforming AMOSA (1 out
of the 8) and unguided search (2 out of the 8).

6.3 RQ3: Comparing the Multi-objective Optimization Algorithms

For each set of non-dominated resolutions generated by the different algorithms,
we compute the quality indicators HV and IGD for the syntactic and semantic
similarity values. The reference point is the best possible value for each objective
which is 1. These will allow us to determine which algorithm converges the most
to the reference point and produces more diverse and optimal resolutions.

Fig. 4: HV of the Pareto-optimal sets
generated by ACoRe.

Fig. 5: IGD of the Pareto-optimal sets
generated by ACoRe.
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Figures 4 and 5 show the boxplots for each quality indicator. NSGA-III ob-
tains on average much better HV and IGD than the rest of the algorithms.
Precisely, it obtains on average 0.66 of HV (while higher the better) and 0.34 of
IGD (while lower the better), outperforming the other algorithms.

To confirm this result we compare the quality indicators in terms of non-
parametric statistical tests: (i) Kruskal–Wallis test by ranks and (ii) the Mann-
Whitney U-test. The α value defined in the Kruskal-Wallis test by ranks is
0.05 and the Mann-Whitney U-test is 0.0125. Moreover, we also complete our
assessment by using Vargha and Delaney’s Â12, a non-parametric effect size
measurement. Table 4 summarises the results when we compare pair-wise each
one of the approaches. We can observe that NSGA-III in near 80% of the cases
obtains resolutions with better quality indicators than AMOSA and Unguided
search (and the differences are statistically significant). We can also observe that
NSGA-III obtains higher HV (IGD) than WBGA in 66% (65%) of the cases.
From Table 4 we can also observe that WBGA outperforms both AMOSA and
unguided search. Moreover, we can observe that AMOSA is the worse performing
algorithm according to the considered quality indicators.

Table 4: HV and IGD quality indicators for the generated resolutions.
WBGA AMOSA Unguided
HV IGD HV IGD HV IGD

NSGAIII p-value < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001

Â12 0.66 0.65 0.84 0.83 0.80 0.76

WBGA p-value - - < 0.00001 < 0.00001 < 0.00001 < 0.00001

Â12 - - 0.74 0.74 0.64 0.61

AMOSA p-value - - - - < 0.00001 < 0.00001

Â12 - - - - 0.36 0.36

Overall, both statistical tests evidence that NSGA-III leads to a set of reso-
lutions with better quality indicators (HV and IGD) than the rest of the al-
gorithms. WBGA is the one in the second place, outperforming the unguided
search and AMOSA. While AMOSA shows the lowest performance based on
the quality indicators, even worse than the unguided search in several cases.

7 Related Work

Several manual approaches have been proposed to identify inconsistencies be-
tween goals and resolve them once the requirements were specified. Among them,
Murukannaiah et al. [49] compares a genuine analysis of competing hypotheses
against modified procedures that include requirements engineer thought process.
The empirical evaluation shows that the modified version presents higher com-
pleteness and coverage. Despite the increase in quality, the approach is limited
to manual applicability performed by engineers as well previous approaches [56].

Various informal and semi-formal approaches [28,32,33], as well as more for-
mal approaches [21,23,26,30,51,53], have been proposed for detecting logically
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inconsistent requirements, a strong kind of conflicts, as opposed to this work
that focuses on a weak form of conflict, called divergences (cf. Section 3).

Moreover, recent approaches have been introduced to automatically identify
goal-conflicts. Degiovanni et al. [18] introduced an automated approach where
boundary conditions are automatically computed using a tableaux-based LTL
satisfiability checking procedure. Since it exhibits serious scaliability issues, the
work of Degiovanni et al. [17] proposes a genetic algorithm that mutates the LTL
formulas in order to find boundary conditions for the goal specifications. The
output of this approach can be fed into ACoRe to produce potential resolutions
for the identified conflicts (as shown in the experimental evaluation).

Regarding specification repair approaches, Wang et al. [60] introduced ARe-
pair, an automated tool to repair a faulty model formally specified in Alloy [31].
ARepair takes a faulty Alloy model and a set of failing tests and applies muta-
tions to the model until all failing tests become passing. In the case of ACoRe,
the identified goal conflicts are the ones that guide the search, and candidates
are aimed to be syntactic and semantically similar to the original specification.

In the context of reactive synthesis [22,46,52], some approaches were proposed
to repair imperfections in the LTL specifications that make the unrealisable (
i.e., no implementation that satisfies the specification can be synthesized). The
majority of the approaches focus on learning missing assumptions about the en-
vironment that make them unrealisable [4,10,11,48]. A more recent approach [8],
published in a technical report, proposes to mutate both the assumptions and
guarantees (goals) until the specification becomes realisable. Precisely, we use
the novel model counting approximation algorithm from Brizzio et. al [8] to
compute the semantic similarity between the original buggy specification and
the resolutions. However, the notion of repair for Brizzio et. al [8] requires a
realizable specification, which is very general and does not necessarily lead to
quality synthesized controllers [20,47]. In this work, the definition of resolution is
fine-grained and focused on removing the identified conflicts, which potentially
leads to interesting repairs as we showed in our empirical evaluation.

Alrajeh et al. [2] introduced an automated approach to refine a goal model
when the environmental context changes. That is, if the domain properties are
changed, then this approach will propose changes in the goals to make them
consistent with the new domain. The adapted goal model is generated using
a new counterexample-guided learning procedure that ensures the correctness
of the updated goal model, preferring more local adaptations and more similar
goal models. In our work, the domain properties are not changed and the adap-
tions are made to resolve the identified inconsistencies, and instead of counter-
examples, our search is guided by syntactic and semantic similarity metrics.

8 Conclusion

In this paper, we presented ACoRe, the first automated approach for goal-
conflict resolution. Overall, ACoRe takes a goal specification and a set of
conflicts previously identified, expressed in LTL, and computes a set of reso-
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lutions that removes such conflicts. To assess and implement ACoRe that is a
search-based approach, we adopted three multi-objective algorithms (NSGA-III,
AMOSA, and WBGA) that simultaneously optimize and deal with the trade-off
among the objectives. We evaluated ACoRe in 25 specifications that were writ-
ten in LTL and extracted from the related literature. The evaluation showed
that the genetic algorithms (NSGA-III and WBGA) typically generate more
(non-dominated) resolutions than AMOSA and an Unguided Search we im-
plemented as a baseline in our evaluation. Moreover, the algorithms generate
on average between 1 and 8 resolutions per specification, which may allow the
engineer to manually inspect and select the most appropriate resolutions. We
also observed that the genetic algorithms (NSGA-III and WBGA) outperform
AMOSA and Unguided Search in terms of several quality indicators: number of
(non-dominated) resolutions and standard quality indicators (HV and IGD) for
multi-objective algorithms.
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Abstract. The use of formal methods to prove the correctness of com-
positional embedded systems is increasingly important. However, the re-
quired models and algorithms can induce an enormous complexity. Our
approach divides the formal system model into layers and these in turn
into modules with defined interfaces, so that reduced formal models can
be created for the verification of concrete functional and non-functional
requirements. In this work, we use Uppaal to (1) model an RTOS ker-
nel in a modular way and formally specify its internal requirements, (2)
model abstract tasks that trigger all kernel functionalities in all combina-
tions or scenarios, and (3) verify the resulting system with regard to task
synchronization, resource management, and timing. The result is a fully
verified model of the operating system layer that can henceforth serve as
a dependable foundation for verifying compositional applications w.r.t.
various aspects, such as timing or liveness.

Keywords: Embedded Systems · Real-Time Operating Systems · For-
mal Methods · Uppaal · Software Composition.

Availability of Artifacts

All Uppaal models and queries are available at https://doi.org/10.6084/
m9.figshare.21809403. Throughout the paper, model details are omitted for
the sake of readability or due to space constraints. In such cases, the symbol 6
indicates that details can be found in the provided artifacts.

1 Introduction

Embedded systems are everywhere, from simple consumer electronics (wearables,
home automation, etc.) to complex safety-critical devices. e.g., in the automotive,
aerospace, medical, and nuclear domains. While bugs on non-critical devices are
at most inconvenient, errors on safety-critical systems can lead to catastrophic
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consequences, with severe financial or even human losses [19,21]. Therefore, it
is of utmost importance to guarantee dependable operation for safety-critical
systems at all times. Common practice in industry to validate safety-critical
systems is still extensive testing [4]. However, this approach only proves the
absence of errors in known cases, but it cannot prove general system correctness.

While general correctness can be proven with formal methods, they still face
resistance from practitioners [24], as they are considered resource-intensive and
difficult to integrate into existing development processes [14]. However, poten-
tial cost reduction or strict regulations might contribute to their adoption. For
example, the use of formal methods can facilitate the acceptance of medical
devices by regulatory agencies [13], and is already prescribed as part of future
development processes in some domains [30,31].

The software running in embedded devices is commonly composed of appli-
cations running on top of an Operating System (OS). Throughout the device life
cycle, there are usually many more updates on the application than on the OS.
Moreover, the application software is tailored for specific needs, while the OS is
a foundation that diverse applications can use. Therefore, it is highly desirable
to have a formally verified OS, which does not need to be re-verified when appli-
cations are modified. The complete formal verification of software involves the
creation of models and their verification. Furthermore, all transition steps from
models to machine code must be verified.

In this paper, we focus on the modeling stage by using the model-checking
tool Uppaal [23] to model typical features and functionality of modern real-time
operating systems and to formally specify requirements to verify the model. Once
the OS model is proven correct, it can be used by OS-based software models and
reduce the verification effort, since OS requirements do not need to be re-verified.

Our contributions in this paper are (1) an approach that allows the mod-
ularization of formal models with defined interfaces, so that these can be as-
sembled as models of the overall system; (2) based on this, guidelines to create
a self-contained OS model that facilitates the creation of application models,
which can be combined to verify various aspects of the overall software; (3) a
concept for creating abstract task models to verify the OS model against the
specified requirements.

As a proof of concept and to evaluate our approach in terms of per-
formance and scalability, we formally model typical syscalls that represent the
kernel interface towards the higher software levels. We then verify the modeled
kernel features under all conceivable situations. For this, we create models that
abstract the full software stack, and then verify timing, task synchronization,
and resource management with feasible resource expense. The result is a for-
mally verified OS model that can henceforth be used as a foundation for the
modeling and verification of complex OS-based applications.

In this paper, we do not address the correctness of concrete OS implemen-
tations or the completeness of specified requirements, i.e., this paper does not
aim to prove the correctness of the code-to-model translation, or that all require-
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Table 1. Common task states on RTOSes.
State Description
Running Task is currently being executed.
Waiting Task is waiting for an event, a resource , or a timeout.
Ready Task could be executed, but higher priority tasks or the OS are running.
Suspended Task is terminated or not yet started.

ments are specified. Still, the provided models and requirements are sufficient to
demonstrate the proposed concept.

The remainder of this paper is organized as follows: in Section 2 we present
relevant concepts for our proposed approach. In Section 3 we describe our ap-
proach to model the software layers modularly. In Section 4 we introduce abstract
tasks and discuss the verification of OS requirements. In Section 5, we analyze
and evaluate the proposed concept. In Section 6 we present related work. Finally,
Section 7 summarizes this paper and shows potential future work.

2 Background

2.1 Real-Time Operating System (RTOS)

Complex OSes quickly lead to state explosion when model-checking. Therefore,
we focus on a small common set of features of modern RTOSes that enables real-
time behavior, namely preemptive multitasking, priority-driven scheduling, task
synchronization, resource management, and time management. Priority inheri-
tance protocols are not addressed in this paper, because they are not necessary
to demonstrate our proposed concept. However, they can be integrated by mod-
ifying the related syscalls.
Tasks are the basic execution unit of RTOS-based software. They run in user
mode and have fewer privileges than the kernel, which runs in kernel mode. Tasks
have individual priorities and execute concurrently, and interact with the OS via
syscalls. Tasks can be in one of the four states shown in Table 1. Specific imple-
mentations might not contain all states. For example, in this paper we model
tasks as infinite loops, which never terminate. Thus, they have no suspended
state. RTOSes commonly contain an idle task, which runs when no other task
is in the ready state.
The Kernel is responsible for providing services to tasks and for interacting
with the hardware. It initializes the system on startup and switches between tasks
at runtime. Kernel execution can be triggered by tasks or interrupts through a
fixed interface only.
Syscalls and Interrupt Service Routines (ISRs) are special functions that
are exclusively provided by the kernel and define its interface. While user mode
software can only interact with the OS through syscalls, ISRs can only be trig-
gered by the hardware. The modeled syscalls and ISR are covered in Section 3.
Time Management is an important feature of RTOSes.The kernel (1) main-
tains an internal timeline to which all tasks can relate, and (2) allows tasks to
specify timing requirements.

L. Batista Ribeiro et al.28



Fig. 1. A general Uppaal timed automaton template.

Events can be used for inter-task communication and to react on interrupts.
They provide a unified synchronization mechanism across hardware and software,
in which tasks can signal each other, and interrupts can trigger tasks.
Resources coordinate the access of tasks to exclusively shared components, like
hardware (e.g., I/O peripherals) or virtual entities (e.g., data structures). They
can be requested from the OS and are assigned depending on availability and
the priority of waiting tasks.
The Scheduler is responsible for coordinating the interleaving of tasks accord-
ing to one or more predefined policies, such as fixed-priority, Rate-Monotonic
Scheduling (RMS), and Earliest Deadline First (EDF).

2.2 Uppaal

For modeling and verification, we choose the model-checking tool Uppaal [23],
in which systems are formalized as a network of timed automata with addi-
tional functions and data structures that are executed and changed on edges.
Since we model preemptive tasks, we use Uppaal 4.1, which supports stopwatch
automata[10] and enables the elegant modeling of preemption. While a formal
definition of timed automata is provided in [7], we still describe the features
relevant for this work. Examples in this section refer to Fig. 1.

Timed automata are composed of (labeled) locations and edges. In Uppaal,
timed automata are specified with the concept of templates, which are similar
to classes in object-oriented programming. For the verification, the templates
are instantiated into processes (analogous to objects). All instantiated processes
execute concurrently in a Uppaal model. However, they can still be modeled in
a fashion that executes them sequentially, which we adopted in our models.
Locations. Standard locations are represented by a circle (L2_NAME). The ini-
tial location (L1_NAME) is represented by a double circle. Committed locations
(L3_NAME) have a letter “C” within the circle, and they are used to connect
multi-step atomic operations. Different from standard locations, time does not
pass while any automata are in a committed location. Locations can have names
and invariants. Location names can be used in requirement specifications, and
ease the readability of automata. A location invariant (e.g., _clk<100) is an ex-
pression that must hold while the automaton is in that corresponding location.
Edges connect locations in a directional manner. Edge transitions are instan-
taneous, i.e., they introduce zero time overhead. Edges can have a select state-
ment(selectVar : Range), a guard (_guard()), a synchronization (_synch!),
and an update operation (_update()). A select statement non-deterministically
chooses a value from a range of options and assigns it to a variable. A guard
controls whether or not its edge is enabled. An update operation is a sequence of
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1 typedef int [5 , 10] from5to10_t;
2
3 const from5to10_t VALID = 10;
4 from5to10_t invalid = 4; // verification failure
5
6 typedef struct {from5to10_t var1;} newStruct_t;

Listing 1.1. Bounded types and data structures in Uppaal.

expressions to be executed. Finally, processes can synchronize and communicate
via channels.

Communication channels (_synch) allow processes to send output (_synch!)
or listen for input (_synch?). Uppaal supports handshake and broadcast com-
munication. When a synchronizing transition is triggered, both the sender and
the listener(s) move to the next location simultaneously, assuming their guards
allow for the transition to be taken. The update operation happens first at the
sender side, allowing the sender to communicate numeric values via shared vari-
ables. In our approach, this is used to pass function/syscall parameters and
return values between model modules.

Time is modeled with clock variables (_clk). The timing behavior is controlled
with clock constraint expressions in invariants and guards. For example, the
invariant _clk < 100 and the guard _clk >= 50 indicate that the transition
from L2_NAME to L3_NAME happens when _clk is in the interval [50, 100). In
general, all clock variables progress continuously and synchronously. However,
the stopwatch feature of Uppaal 4.1 provides a way to stop one or more clocks
in any location, namely by setting the clock derivative to zero (_clk’ == 0).
When the derivative is not written in the location invariant, its default value (1)
is used and the clock progresses normally. For our system models, stopwatches
are used to measure and verify the execution time of preemptive tasks. A task’s
clock progresses only if the task is in the running state, otherwise it is stopped.

Functions, data structures and bounded data types are defined in Up-
paal in a C-like language. Bounded types are very convenient for detecting
unwanted values during the verification, which is immediately aborted in case a
variable is assigned a value outside its type range. The syntax is exemplified in
Listing 1.1.

Formal verification. Uppaal performs symbolic model-checking to exhaus-
tively verify the specified system requirements. The Uppaal specification lan-
guage allows expressing liveness, safety, and reachability properties.
An important operator offered by Uppaal is "−− >" (leads to): p −− > q
means that whenever p holds, q shall also eventually hold. This notation is par-
ticularly useful to detect task starvation: if a task in the ready state does not
lead to its running state, it is starved. A deadlock in the Uppaal verification
query language is used to detect system states that are not able to progress,
i.e., states of the model in which no edges are enabled. Throughout this paper,
such situations are referred to as Uppaal deadlock. It must not be confused with
deadlock, which refers only to task deadlocks due to cyclic waiting on resources.
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User Mode

Kernel Mode

Syscalls
Interrupts

Application

Operating System

Kernel Interface

Fig. 2. Model layers as abstraction
of the software stack.

Fig. 3. Modeling of kernel execution
time.

Fig. 4. Kernel interface template. Syscalls
highlighted 6.

3 Model Design

In this section, we propose a general modular approach to model OSes and
(abstractions of) application tasks. Our overall goal is to formally prove that a
system meets all (non-)functional requirements, which we divide into OS-internal
and overall software composition requirements. The characteristics of each cat-
egory are described in Section 4.

We logically divide the Uppaal model into three layers, as shown in Fig. 2.
The application3 contains tasks that run in user mode and can use OS services
through syscalls. The kernel interface is responsible for switching between user
and kernel mode, and to invoke the appropriate OS services or functionality
upon syscalls or interrupts.

In this paper, we primarily focus on the operating system layer and how to
model it with the goal to simplify the later modeling of the application layer. The
result is a strict layering of the overall software model, where modules above the
OS layer can be added, removed or updated without re-verifying the OS itself.

To demonstrate the applicability of our approach, we create an OS model 6
(composed of sub-models) based on common features of modern RTOSes: pre-
emptive multitasking, priority-driven scheduling, and syscalls for task synchro-
nization, resource management, and time management. The modeling techniques
are generic, and any concrete OS can be similarly modeled.

3.1 Naming Convention

For readability, there is a naming convention for communication channels and
variables throughout the entire model: Channels starting with an underscore
3 For this paper, user libraries and middleware services are abstracted into the appli-
cation layer and are not discussed separately.
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(e.g., _proceed! in Fig. 4) represent internal kernel communication or are used
for interrupt handling. Similarly, variables starting with an underscore represent
internal kernel data structures. As for real code, the application layer must not
directly access such OS-internal functions or variables. Channels and variables
that can be accessed by the application layer as part of the OS interface start
with a letter (e.g., sleep? in Fig. 4). Unfortunately, Uppaal does not support
such scope separation and the naming convention is used only as visual aid.

3.2 The Kernel Interface

The kernel interface must offer all possibilities to switch from user to kernel
mode, modeled with communication channels. Triggering such channels from
automata in the application layer represents a syscall in the real code.

Fig. 4 depicts our modeled kernel interface. A context switch (_kernelEntry!)
occurs either upon syscalls, if the parameters are valid (valid6), or upon a timer
interrupt (_timerInt). Supporting more interrupts (or syscalls) can be achieved
by adding their corresponding automata, and respective edges into the kernel
interface.
Kernel Execution and Kernel Overhead. Our modeling approach can pre-
cisely reflect the runtime overhead introduced in a preemptive system by the OS
kernel itself. This allows a more accurate verification of the behavior of embed-
ded systems compared to approaches that abstract away the OS layer. While
different types of OS overhead can be modeled, we initially focus on timing.

Therefore, the kernel interface in Fig. 4 triggers a separate automaton for
the kernel timing (execute[KERNEL]!), as shown in Fig. 3. The execution time
interval [bcet, wcet] contains the time required to enter the kernel, process the
invoked syscall or ISR, execute further kernel functions (e.g., the scheduler), and
exit the kernel. This concentrated timing computation is possible because the
kernel executes atomically (in contrast to the preemptive tasks).

Next, after taking kernel timing into consideration (execDone[KERNEL]?),
we trigger the automata for the functional part of the actual syscall or ISR.
The variable sid in _syscall[sid]! is updated along the syscall edges 6 and
identifies the ID of the invoked syscall. The same approach can be used for
modeling multiple interrupts.

3.3 The Operating System

The OS model must contain the internal data structures as well as the Uppaal
templates for the scheduler and for all syscalls. For this paper, we created the
OS model based on the SmartOS [28] implementation.
Data Structures and Tight Bounds. We must declare all OS variables and
arrays with data types of the tightest possible boundaries, according to the
system parameters. Listing 1.2 shows a few examples from our OS model.

A beneficial consequence is a strict verification that does not tolerate any
value out of range. In such cases, the verification immediately fails and aborts.
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1 // 1 - System Parameters
2 const int NTASKS , NEVENTS , NRESOURCES , MMGR;
3 // 2 - Type Definitions
4 typedef struct {
5 int[0,NTASKS] qCtr; // the number of tasks in ready queue
6 ExtTaskId_t readyQ[NTASKS ]; // the ready queue containing all tasks
7 // in ready state sorted by priority
8 } SCB_t; // Scheduler Control Block
9 typedef int [0 , NTASKS - 1] TaskId_t;

10 // 3 - Declaration of Control Blocks
11 TCB_t _TCB[NTASKS ]; // Task CBs
12 RCB_t _Res[NRESOURCES ]; // Resource CBs
13 SCB_t _sched; // Scheduler CB

Listing 1.2. Tight bounds on type and array definitions 6

In other words, if the verification finishes, there is a guarantee that no boundary
violation has occurred.
The Scheduler must be the only part of the OS model allowed to manipulate
the ready queue (see Listing 1.2) and dispatch Ready tasks for execution.

Before the first task is dispatched, the system must be fully initialized. To
ensure this, we must use a single initial committed location, from which an ini-
tializing edge transition occurs. Fig. 5 shows this behavior on the scheduler. The
function startOS() initializes all the internal data structures of the OS. Next,
because the following location is also committed, the scheduler immediately dis-
patches the highest priority Ready task, and switches to user mode (uppermost
edge). The scheduler then must wait for instructions (_proceed?, _schedule?,
etc.), which are issued by syscalls or ISRs, and must adapt the ready queue
accordingly 6.
Syscalls. Each syscall must have a dedicated Uppaal template, which models
its semantics, i.e., the manipulation of related OS data structures, and interac-
tions with the scheduler. Syscalls can be triggered (1) from the kernel interface
(_syscall[sid]!) or (2) from other syscalls. Their general structure is an initial
non-committed location, followed by a sequence of transitions through commit-
ted locations, making the syscall execution atomic, as shown in Fig. 6.
Task slices. While syscall automata model the behavior of the OS, task slices
model different aspects of task execution, as shown in Fig. 7. They can directly
communicate with task models (e.g., in Fig. 7(c), start/end a real-time block), or
progress upon kernel operations (e.g., in Fig. 7(d), state change upon scheduler
actions). The latter is completely transparent to task models. The use of task
slices facilitates the modeling of tasks (Section 3.4) and the formal specification
and verification of requirements (Section 4).

Fig. 5. The priority-driven scheduler 6.
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Fig. 6. The releaseResource syscall model 6.

(a) (b)

(c) (d)

Fig. 7. Modeled task slices 6: (a) Task Execution, (b) Task Timeout, (c) Task Real-
Time, (d) Task States.

Task Execution Time. This task slice represents the user-space execution
time of (code blocks within) a task. It abstracts away the code functionality,
but allows the modeling of a [bcet, wcet] range. While the specification of the
range itself is shown in Section 3.4, the helper template is shown in Fig. 7(a).
Its structure is similar to the kernel execution time template in Fig. 3. However,
we cannot assure that the execution of code in user mode is atomic, and must
therefore consider preemption: If a _kernelEntry! occurs while a task is in the
Executing location, it goes to Preempted, where the task execution is paused,
i.e., the execution time clock et is paused (et’==0).
Task Timeout. This task slice is responsible for handling timeouts of syscalls
(e.g., sleep), and thus it must trigger timer interrupts. Our version is depicted
in Fig. 7(b)4. The clock c is used to keep track of elapsed time. The loca-
tion Waiting can be left in two different ways: either the timeout expires (edge
with c==timeout), or the task receives the requested resource/event (edge with
_schedule?) before the timeout. If c==timeout, a timer interrupt is generated
(_timerInt!) if the system is not in kernel mode. Otherwise, we directly proceed
to the next location, where we wait for a signal from the scheduler (_wakeNext?)
indicating that the task can be scheduled again. Finally, we instruct the scheduler
to insert the current task into the ready queue with _schedule!.

4 In our model, all syscalls with a timeout internally use _sleep[id] 6. Other ap-
proaches might require multiple outgoing edges from the initial state.
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Task Real-Time. This task slice is used to verify real-time behavior, as it
can detect deadline violations. This task slice acts as an observer of the response
times during verification, and has no influence on OS data structures or locations.

As shown in Fig. 7(c), there is a local clock rt, which is used to compute the
response time of a code sequence. It remains paused unless startRealTime[id]?
is triggered by the corresponding task. This happens in the task model (as shown
in Section 3.4) and indicates that the task is about to start the execution of a
code sequence with timing constraints. rt then progresses until the task triggers
endRealTime[id]?. If this happens before the deadline is reached, the process
returns to its initial state and is ready for another real-time block. Otherwise,
the system goes to the DLViolation error state. The self-loop in the error state
is used to avoid a Uppaal deadlock5.
Task States. This task slice allows the detection of task starvation. A task
starves if it never runs (again). A special case of starvation is task deadlock,
which can be detected by additionally analyzing the OS internal data structures
and identifying cyclic waiting on resources. Fig. 7(d) shows the modeled task
states (as locations) and the actions that trigger state transitions.

The use of task slices is an extensible modeling concept: Extra task slices can
be added to enable the verification of other (non-)functional requirements, e.g.,
energy/memory consumption.

3.4 Simple Application Modeling

The OS model, kernel interface, and task slices are designed with a common
goal: Simplify the modeling of application tasks and make the overall system
verification more efficient. With our concept, task models just need to use the
provided interfaces (channels) and pass the desired parameters.

In summary, a task can be modeled with three simple patterns, as exemplified
in Fig. 8:
Ê syscalls: invocation by triggering the corresponding channel, then waiting for
dispatch[id]? (from the scheduler),
Ë execution of regular user code between execute[id]! and execDone[id]?
(from Task Execution Time task slice),
Ì specification of real-time blocks between startRealTime! and endRealTime!.

As an example, Fig. 8 models the task source code from Listing 1.3 as a
Uppaal task. The variables p1 and p2 are used to pass data between different
processes, e.g., for syscall parameters.

For Ê and Ë, the use of the guard amIRunning(id) is crucial for the correct
behavior of the task. It allows a task to proceed only if it is Running. The
absence of this guard would allow any task to execute, regardless of priorities or
task states.

For Ì, this guard is not necessary when starting or ending real-time blocks,
though. If a task reaches the beginning of a real-time block, the response time

5 In our approach, an Uppaal deadlock indicates a modeling mistake.
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Fig. 8. Uppaal model of the code from Listing 1.3.

1 OS_TASKENTRY (taskSort){
2 while (1){
3 Ê waitEvent (evSort);
4 Ì // START: Real -Time Task block. Deadline =400
5 ÌË quickSort (buffer , BUFSIZE); // Execution Block: BCET=20, WCET =50
6 Ì // END: Real -Time Task block
7 Ë for (...) printf ("\n\%u", buffer[i]); // Execution Block: BCET=WCET =20
8 Ê setEvent (evSorted);
9 }

10 }

Listing 1.3. Source code of a task.

computation must be immediately started, even if the task is preempted. Sim-
ilarly, after the execution of a real-time block, the response time computation
must be stopped immediately.

4 Requirements and Verification

4.1 Composition Requirements

These requirements refer to task properties that are influenced by other tasks
running in the system, such as freedom from starvation and from deadline vio-
lations 6.

If a composition requirement is violated, the underlying cause is usually a
badly composed or implemented task set, which makes it impossible for all tasks
to coexist. However, it is also possible that an error in the OS leads to a violation
of the composition requirements. In order to exclude this second possibility when
verifying the complete system model, we must formally verify the OS model first.

4.2 OS Requirements

The OS requirements refer to OS properties that must always hold (invariants),
regardless of the number of tasks in the system or of how these tasks interact
with the OS (or with each other through the OS). As described in Section 3.3,
the OS model is composed of data structures and multiple Uppaal templates,
which must be consistent at all time (general requirement). For example, if a
task is in the Waiting location in the task timeout task slice, it must also be in
the Waiting location in the task states task slice. In Uppaal, we can verify this
requirement with the query:

A[] forall (Tasks) TaskTimeout.Waiting imply TaskStates.Waiting 6
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This example shows an important point when extending our concept: When-
ever new task slices are added to verify other (non-)functional requirements of
the application, additional OS requirements must be specified to verify the con-
sistency of the new task slice with pre-existing parts of the OS model.

4.3 Verifying the Requirements

For a given software (i.e., OS and application), we can prove correctness w.r.t. the
OS and composition requirements by verifying all associated queries. However,
we cannot yet claim that the OS model is correct in general (i.e., independent
from the task composition), because we do not know if all possible OS operations
were considered in all possible scenarios during the verification. Therefore, a
complete re-verification of both layers is required in case the application changes.

To avoid the repeated and resource-expensive re-verification of the OS re-
quirements for each task set, we must prove that the OS model is correct in
general. We can then limit the re-verification to the application layer. To achieve
this goal, we need to make sure that all possible OS operations are verified in
all possible scenarios and execution orders. One possible strategy is to create
different task sets to reach different scenarios, similar to test case generation.
However, this strategy requires the prior identification of relevant scenarios, and
the creation of the corresponding task sets. Additionally, it is hard to guarantee
that all scenarios were indeed identified. Therefore, we introduce a new concept
that inherently covers all scenarios: abstract tasks. They unite all possible be-
haviors of concrete tasks, i.e., they can trigger any action at any time. A task set
with N abstract tasks thus represents the behavior of all possible task sets with
N (concrete) tasks. Thus, by definition, all possible scenarios will be reached
(Uppaal exhaustive approach).
Abstract Tasks. Real tasks, as exemplified in Listing 1.3, are strictly sequential.
Thus, a (concrete) task model is a predefined sequence of steps, as discussed
in Section 3.4, and shown in Fig. 8. Their key characteristic is that only one
outgoing edge is enabled in any location at any point in time.

The abstract task is depicted in Fig. 9. Unlike a concrete task, it has multiple
outgoing edges enabled, which open all possible options to progress: Ê syscalls
with valid parameters and Ë user code execution (execute[id]!). Thus, the
behavior of any concrete task can also be achieved with the abstract task.

While different actions are performed by taking different edges, the param-
eters are non-deterministicaly chosen in the select statements for each syscall.
The Uppaal state space exploration mechanisms guarantee that all values of
the select statements are considered for each edge.

Select statements are not necessary for the timing parameters EX_TIME and
SL_TIME. Fixed values have less impact on the state space, and are enough to
fire all edges from the task execution and task timeout (Fig. 7(a) and Fig. 7(b),
respectively). We define the timing parameters 6 in a way that all edges are
eventually fired and the state space remains small enough for a feasible verifica-
tion.
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Fig. 9. The abstract task model 6.

Non-Goals of Verification with Abstract Tasks. With abstract tasks, it is
meaningless to verify if composition requirements are satisfied at task level.
Abstract tasks – by definition – lead to states where composition requirements
are violated6. The goal of abstract tasks is to ensure that the OS itself works
correctly even if the task composition is flawed, e.g., if it leads to starvation or
livelocks. This is achieved by verifying the OS requirements in all conceivable
scenarios (in the end of Section 4.4, we show how to verify that flawed composi-
tion scenarios are also reached). Additionally, we do not explore invalid values
of variables./parameters. Out-of-bound values lead to verification failure, and
when invalid syscall parameters are detected in the kernel interface, no function-
ality is triggered in the OS. Thus, checking for invalid values would increase the
state space without adding new behaviors.

4.4 OS Model Verification

A single set of abstract tasks provides a reliable way of verifying scenarios that
could otherwise only be reached with numerous concrete task sets. To fully verify
the OS model, we must compose the abstract task set so that it triggers all OS
operations in all possible scenarios (covering all corner cases).

Within our model, we can control four system parameters that affect the OS
verification: NTASKS, NEVENTS, NRESOURCES, and MMGR7, cf. Listing 1.2. We use
a short notation to represent the system configuration. For example, 5-3-4-2
represents a configuration with NTASKS = 5 (idle task + 4 others), NEVENTS = 3,
NRESOURCES = 4, and MMGR = 2. The goal is to find the minimal configuration
that reaches all possible scenarios, and thus allows the complete verification of
the OS model with minimal verification effort.

6 Unless the OS offers guarantees by design, e.g., if it implements the Highest Locker
Protocol (HLP), task deadlock scenarios must not be reachable.

7 Maximum multiple getResource, i.e., the upper limit of the resource counter.
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Model Coverage. In order to cover the whole model, the verification must
traverse all edges, and entirely cover the C-like code of update operations.

Edge Coverage. If there is at least one edge in the model that is not traversed
during verification, the model is surely not fully verified; unreachable edges could
also indicate design flaws in the model. Therefore, the first step of the verification
addresses the edge coverage. We add boolean markers in strategic edges, which
are set to true when the corresponding edge is taken. We then verify if all markers
are ever true:

E<> forall (i : int [0, NEDGES-1]) edge[i]==true

Edge Scenarios. A single edge can be traversed in multiple scenarios, due to
composite guards (with the pattern (A or B or C ...)) or update operations
(parameter passing or functions). For the composite guards, we must verify that
each of its components is reachable with queries with the following pattern 6:

E<> Location and A

For the update operations, we ensure that an edge is traversed with all possible
parameter values via select statements, which cover all valid parameter values.
The functions demand a more careful analysis. It is necessary to identify all
corner cases, and verify their reachability. For example, to verify the corner
cases of a list insertion, we can use the following queries:

E<> InsertLocation and firstPosInsertion
E<> InsertLocation and lastPosInsertion

E<> InsertLocation and intermediatePosInsertion

After an iterative process of increasing the configuration and verifying the
aforementioned properties, we found the smallest configuration that entirely cov-
ers our OS model: 4-1-1-2.

OS and Composition Requirements. The goal of the verification of the OS
model is to guarantee that all OS requirements are met. In conjunction with the
full model coverage verification, we prove that they are met regardless of the
operations performed by individual tasks on top of the OS.

However, to ensure that the OS model is correct, we still must prove that
the OS requirements are also met in states where composition requirements
are violated. For that, we must identify all situations that violate composition
requirements, and verify their reachability. For example, the reachability of a
deadlock scenario can be verified with the query 6:

E<> Res1.owner == Task1 and Res2.owner == Task2 and
Task1.waits == Res2 and Task2.waits == Res1

The deadlock scenario reveals that 4-1-1-2 is not sufficient to reach all
composition scenarios, since at least two resources are required to cause it. For
the modeled OS features, all composition scenarios are reachable with 4-1-2-2.
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Algorithm 1 Finding the minimal configuration.
1: procedure FindMinimalConfig (Features)
2: minConf← 0-0-...-0
3: foreach (f: Features)
4: conf← getMinimalFeatureConfig(f)
5: minConf← getMaxParams(minConf, conf )
6: return minConf

5 Analysis and Evaluation

So far, we verified 4-1-2-28, and confirmed that it satisfies all specified OS
requirements and the necessary aspects discussed in Section 4: (1) traverse all
model edges at least once; (2) invoke syscalls with all possible parameters; (3)
reach all corner cases of edge update operations; (4) satisfy all of the components
of composite guards; (5) reach valid and invalid composition scenarios; In this
section, we analyze how the minimal configuration is obtained in the general case,
and the scalability of the approach. We then reason why bigger configurations
are not necessary for the verification.

5.1 Compositional Approach to Deriving the Minimal Configuration

The verification of the OS model is essentially the verification of its set of sup-
ported features. Thus, the composition of all minimal configurations needed to
verify individual features is used to verify properties of the entire OS.

We assume that feature developers/experts provide the minimal configura-
tion based on the corner cases and composition scenarios of their feature. We
then build the minimal configuration by using the highest value of each param-
eter of each analyzed feature, as described in Algorithm 1. For example, the
dominating features9 in our OS model are resource management (3-0-2-2) and
event passing (4-1-0-0), which lead to the resulting configuration 4-1-2-2.

5.2 Scalability: Resource Consumption for Verification

First, we show a concrete analysis of our approach, namely the number of ex-
plored states, CPU Time, and memory consumption during verification. Addi-
tionally, we show how each system parameter influences these values.

The verification was performed with UPPAAL 4.1.26 x64, running on a ma-
chine with Ubuntu 18.04.5 LTS, a 16 core Intel(R) Xeon(R) CPU E5-2690 v3 @
2.60GHz, 64GB DDR4 memory @ 1600MHz, and 8GB swap.

State Space. In order to explore all states with a low processing overhead, we
verify the query "A[] true". Fig. 10 and Table 2 show the number of explored
states with different system configurations. The leftmost point (Delta = 0) in
8 see Section 4.4 for configuration notation.
9 No other feature has higher parameter values.
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Table 2. Verification time (minutes) and memory consumption (MB).

A[]true OS Requirements
Configuration State space Time Memory Time Memory
C-(51-50-2-2) 574,266 1.5 640 76.0 738

4-1-2-2 5,369,534 0.6 470 30.7 470
4-1-2-4 14,963,367 2.5 1,787 124.3 1,788
5-1-2-2 85,077,164 13.2 6,655 644.2 6,656
4-3-2-2 116,606,955 14.7 10,189 689.0 10,189
4-1-4-2 570,284,574 75.8 47,800 3,774.6 47,800
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Fig. 10. Verification overhead for different configurations.

Fig. 10 represents our proposed minimal system configuration 4-1-2-2. We then
vary one of the parameters, while all others are constant. For example, the
"Varying Events" line on Delta = 1 shows the number of states for 4-2-2-2;
and the "Varying Res. Ctr." line on Delta = 2 the number of states for 4-1-2-4.

The curves from Fig. 10 show that NTASKS has the biggest impact in the state
space, and that MMGR has the lowest. While MMGR affects only the upper bound of
the resource counters, NTASKS affects all kernel data structures, since each task
can call any of the syscalls, which drive the modifications on the kernel data
structures. In fact, the verification of 6-1-2-2 did not finish. It required more
than 72GB of RAM, and the process was killed by Linux. Until short before, we
could already count 950 million explored states.

It is important to highlight that the scalability is much better when sim-
ple concrete tasks are modeled. To demonstrate it, we modeled a concrete task
set with sequential execution (without preemption) and used the configuration
C-(51-50-2-2) 6, where C- indicates it is a configuration for a concrete task
set. Table 2 shows that verifying "A[]true" explored only 574,266 states. Ad-
ditionally, ongoing research on reducing the state-space, like for instance with
partial-order reduction [22], will enable the verification of ever larger systems.
Memory consumption and CPU time. For the tested configurations, mem-
ory and CPU time follow a pattern similar to the number of explored states
(Fig. 10). However, the number of states is not the only factor influencing re-
source consumption. The verification of C-(51-50-2-2) took longer and used
more memory than the verification of 4-1-4-2, even though the state space is
almost 10 times smaller (see Table 2). The size of individual states also plays

Modeling of OS-Based Compositional Software 41

https://doi.org/10.6084/m9.figshare.21809403


an important role, because they are stored/read into/from memory during the
verification. In our OS model, NTASKS, NEVENTS, and NRESOURCES contribute to
the state size, since bigger values increase the size/amount of data structures.

5.3 Sufficiency of 4-1-2-2 Configuration for our OS Model

We cannot run the verification of the OS model with arbitrarily big system
configurations, due to the state space explosion problem. Therefore, we reason
that, despite creating a larger state space, bigger configurations do not create
any new scenarios in the OS layer.

As discussed in Section 3.3, the bounds of all data types are as tight as
possible, and are defined according to the system parameters. Thus, when a
parameter is increased, the bounds of the variables are adapted accordingly,
avoiding out-of-bounds errors.

Since the bounds of data types and arrays are already covered by design, we
just need to assure that no extra corner cases arise on queue operations.
More abstract tasks. With more tasks, the capacity of OS internal queues
increases. Thus, there are more positions in which a new element can be inserted.
However, these new possibilities do not add any new corner cases.
More events or resources. More events or resources lead to more queues in
the system, but do not change the capacity of the queues. Thus, these parameters
do not affect queue operations w.r.t. verification.
Higher limit for counting resources. When a task T (that already owns a
resource R) requests R once again, R’s internal counter is incremented. Still, a
higher limit does not create new corner cases w.r.t. verification.
Composition Scenarios. Bigger system configurations do not create new sce-
narios, but only new settings for the existing ones, e.g., starvation of different
tasks, or deadlocks involving different sets of tasks and resources.

6 Related Work

Similar to our approach, with the goal to verify compositional requirements,
Ironclad [18] covers the full software stack. It uses Dafny [25] and Boogie [6] to
verify assembly code, but it addresses only security requirements. Borda et al.
[8] propose a language to model self-adaptive cyber-physical systems modularly
and a technique to support compositional verification. However, timing require-
ments are not addressed. Giese et al.[12] address compositional verification of
real-time systems modeled in UML. Components are verified in isolation, and
the correctness of the system is derived by ensuring that the composition is syn-
tactically correct. However, this is only possible if the components do not share
resources. Uppaal has been used for schedulability analysis of compositional
avionic software [17], and for conformance testing with requirements specified as
pre- and post-condition functions [29].

Regarding modeling and verification of OSes, on a more abstract level, Alkham-
mash et al.[5] propose guidelines for modeling FreeRTOS[1] using Event-B[3].
Cheng et al. formally specify the behavior of FreeRTOS tasks [11] and verify
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it using the Z/Eves theorem prover[26], but, unlike our approach, they do not
address timing, resource sharing, or interrupts.

On a less abstract level, closer to the real implementation, seL4 [20] proves the
functional correctness of the C code of the kernel. Furthermore, it guarantees that
the binary code correctly reflects the semantics of the C code. Hyperkernel [27]
formally verifies the functional correctness of syscalls, exceptions and interrupts.
The verification is performed at the LLVM intermediate representation level [32]
using the Z3 SMT solver[9]. CertikOS[16] is the first work that formally verifies a
concurrent OS kernel. They use the Coq proof assistant[2], a C-like programming
language, and a verified compiler [15]. These approaches focus exclusively on the
functional correctness of the OS kernel.

We have not found a work that can verify timing, resource sharing, task
synchronization, and interrupts in a compositional context. That is what our
work enables, after proving the correctness of the OS model.

7 Conclusions and Future Work
In this paper, we presented a Uppaal modeling approach for verifying com-
positional software, exemplified with an OS model containing a common set of
features present in modern RTOSes. Since the proposed techniques and patterns
are general, they can be used to model any concrete OS. We showed how to
model the OS aiming to simplify the modeling of application tasks (Section 3).
We also introduced separate OS requirements and composition requirements, and
showed how they can be formally specified (Section 4) to decouple the verification
of the OS and the application layer. We then proposed the concept of abstract
tasks (Section 4.3) and reasoned that the OS model can be fully verified with
a minimal set of such tasks, which interact through OS primitives (e.g., events
and shared resources) and thus trigger all OS functions in all possible scenarios
(Section 4.4). Finally, we evaluated the resource consumption of the verification
process, reasoned about the sufficiency of the used minimal configuration, and
analyzed the benefits of the proposed concept (Section 5).

With the OS model proven correct, there is no need to re-verify it when the
upper layers are modified, which saves time and resources on the verification of
concrete task sets. We consider this as particularly beneficial for developing and
maintaining highly dependable systems, where, e.g., the task composition and
functionality may change during updates. Another benefit of our approach is the
potential use on test case generation for the application software.

This work opens a variety of directions for future work. We currently work
on task slices to verify further (non-)functional requirements. Besides, we con-
tinuously improve the model design for a better trade-off between abstraction
level and verification overhead, including the avoidance of potential state space
explosions. Tools to convert between source code and Uppaal templates shall
reduce the modeling gap, i.e., the discrepancy between the formal model and the
actual implementation. While our models allow the verification of applications
on top of an OS, a limitation is that model correctness does not yet mean im-
plementation correctness. For that, the full path from models to machine code
must be verified.
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Abstract. Automata learning is a technique to infer an automaton
model of a black-box system via queries to the system. In recent years it
has found widespread use both in industry and academia, as it enables
formal verification when no model is available or it is too complex to
create one manually. In this paper we consider the problem of learning
the individual components of a black-box synchronous system, assum-
ing we can only query the whole system. We introduce a compositional
learning approach in which several learners cooperate, each aiming to
learn one of the components. Our experiments show that, in many cases,
our approach requires significantly fewer queries than a widely-used non-
compositional algorithm such as L∗.

1 Introduction

Automata learning is a technique for inferring an automaton from a black-box
system by interacting with it and observing its responses. It can be seen as
a game in which a learner poses queries to a teacher – an abstraction of the
target system – with the intent of inferring a model of the system. The learner
can ask two types of queries: a membership query, asking if a given sequence
of actions is allowed in the system; and an equivalence query, asking if a given
model is correct. The teacher must provide a counter-example in case the model
is incorrect. In practice, membership queries are implemented as tests on the
system, and equivalence queries as conformance test suites.

The original algorithm L∗ proposed by Dana Angluin in 1987 [3] allowed
learning DFAs; since then it has been extended to a variety of richer automata
models, including symbolic [5] and register [7,26] automata, automata for ω-
regular languages [4], and automata with fork-join parallelism [18], to mention re-
cent work. Automata learning enables formal verification when no formal model
is available and also reverse engineering of various systems. Automata learning
has found wide application in both academia and industry. Examples are: the
verification of neural networks [31], finding bugs in specific implementations of
security [29,12] and network protocols [11], or refactoring legacy software [30].
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In this paper we consider the case when the system to be learned consists
of several concurrent components that interact in a synchronous way; the com-
ponents themselves are not accessible, but their number and respective input
alphabets are known. It is well-known that the composite state-space can grow
exponentially with the number of components. If we use L∗ to learn such a system
as a whole, it will take a number of queries that is proportional to the whole state-
space – many more than if we were able to apply L∗ to the individual components.
Since in practice queries are implemented as tests performed on the system (in
the case of equivalence queries, exponentially many tests are required), learning
the whole system may be impractical if tests take a non-negligible amount of
time, e.g., if each test needs to be repeated to ensure accuracy of results or when
each test requires physical interaction with a system.

In this work we introduce a compositional approach that is capable of learning
models for the individual components, by interacting with an ordinary teacher
for the whole system. This is achieved by translating queries on a single com-
ponent to queries on the whole system and interpreting their results on the
level of a single component. The fundamental challenge is that components are
not independent: they interact synchronously, meaning that sequences of actions
in the composite system are realised by the individual components performing
their actions in a certain relative order. The implications are that: (i) the answer
to some membership queries for a specific component may be unknown if the
correct sequence of interactions with other components has not yet been dis-
covered; and (ii) counter-examples for the global system cannot univocally be
decomposed into counter-examples for individual components, therefore some of
them may result in spurious counter-examples that need to be corrected later.

To tackle these issues, we make the following contributions:

– A compositional learning framework, orchestrating several instances of (an
extension of) L∗ with the purpose to learn models for the individual compo-
nents from an ordinary monolithic teacher. An adapter transforms queries
on single components into queries to the monolithic teacher.

– An extension of L∗ that can deal with unknown membership query re-
sults and spurious counter-examples; when plugged into the aforementioned
framework, we obtain a learning algorithm for our setting.

– An implementation of our approach as a tool Coal based on the state-of-the-
art automata learning library LearnLib [22], accompanied by a comprehen-
sive set of experiments: for some of the larger systems, our approach requires
up to six orders of magnitude fewer membership queries and up to ten times
fewer equivalence queries than L∗ (applied to the monolithic system).

The rest of this paper is structured as follows. We introduce preliminary
concepts and notation in Section 2. Our learning framework is presented in Sec-
tion 3. Section 4 discusses the details of our implementation and the results of our
experiments. Related work is highlighted in Section 5 and Section 6 concludes.
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2 Preliminaries

Notation and terminology. We use Σ to denote a finite alphabet of action sym-
bols, and Σ∗ to denote the set of finite sequences of symbols in Σ, which we
call traces ; we use ϵ to denote the empty trace. Given two traces s1, s2 ∈ Σ∗,
we denote their concatenation by s1 · s2; for two sets S1, S2 ⊆ Σ∗, S1 · S2 de-
notes element-wise concatenation. Given s ∈ Σ∗, we denote by Pref (s) the set
of prefixes of s, and by Suff (s) the set of its suffixes; the notation lifts to sets
S ⊆ Σ∗ as expected. We say that S ⊆ Σ∗ is prefix-closed (resp. suffix-closed)
whenever S = Pref (S) (resp. S = Suff (S)). The projection σ↾Σ′ of σ on an
alphabet Σ′ ⊆ Σ is the sequence of symbols in σ that are also contained in Σ′.
Finally, given a set S, we write |S| for its cardinality.

In this work we represent the state-based behaviour of a system as a labelled
transition system.

Definition 1 (Labelled Transition System). A labelled transition system
(LTS) is a four-tuple L = (S,→, ŝ, Σ), where

– S is a set of states, which we refer to as the state space;
– →⊆ S ×Σ × S is a transition relation, which we write in infix notation as

s a−→ t, for (s, a, t) ∈ →.
– ŝ ∈ S is an initial state; and
– Σ is a finite set of actions, called the alphabet.

We say that L is deterministic whenever for each s ∈ S, a ∈ Σ there is at most
one transition from s labelled by a.

Some actions in Σ may not be allowed from a given state. We say that an action
a is enabled in s, written s a−→, if there is t such that s a−→ t. This notation is also
extended to traces σ ∈ Σ∗, yielding s σ−→ t and s σ−→. The language of L is the
set of traces enabled from the starting state, formally:

L(L) = {σ ∈ Σ∗ | ŝ σ−→} .

From here on, we only consider deterministic LTSs. Note that this does not
reduce the expressivity, in terms of the languages that can be encoded.

Remark 1. Languages of LTSs are always prefix-closed, because every prefix of
an enabled trace is necessarily enabled. Prefix-closed languages are accepted by
a special class of deterministic finite automata (DFA), where all states are final
except for a sink state, from which all transitions are self-loops. Our implemen-
tation (see Section 4) uses these models as underlying representation of LTSs.

We now introduce a notion of parallel composition of LTSs, which must
synchronise on shared actions.

Definition 2. Given n LTSs where Li = (Si,→i, ŝi, Σi) for 1 ≤ i ≤ n, their
parallel composition, notation ∥n

i=1 Li, is an LTS over the alphabet
⋃n

i=1 Σi,
defined as follows:
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– the state space is S1 × S2 × · · · × Sn;
– the transition relation is given by the following rule

si
a−→i ti for all i such that a ∈ Σi

sj = tj for all j such that a /∈ Σj

(s1, . . . , sn)
a−→ (t1, . . . , tn)

– the initial state is (ŝ1, . . . , ŝn).

Intuitively, a certain action a can be performed from (s1, . . . , sn) only if it can be
performed by all component LTSs that have a in their alphabet; all other LTSs
must stay idle. We say that an action a is local if there is exactly one i such that
a ∈ Σi, otherwise it is called synchronising. The parallel composition of LTSs
thus forces individual LTSs to cooperate on synchronising actions; local actions
can be performed independently. We typically refer to the LTSs that make up
a composite LTS as components. Synchronisation of components corresponds to
communication between components in real-world settings.

Example 1. Consider the left two LTSs below with the respective alphabets
{a, c} and {b, c}. Their parallel composition is depicted on the right.

L1 = s0 s1
a

c

L2 = t0 t1 t2
b c

L1 ∥ L2 = s0, t0

s1, t0

s0, t1

s1, t1

s1, t2

a

b

b

a

c

Here a and b are local actions, whereas c is synchronising. Note that, despite L1

being able to perform c from its initial state s0, there is no c transition from
(s0, t0), because c is not initially enabled in L2. First L2 will have to perform b
to reach t1, where c is enabled, which will allow L1 ∥ L2 to perform c. ⊓⊔

We sometimes also apply parallel composition to sets of traces: ∥i Si is equiv-
alent to ∥Ti, where each Ti is a tree-shaped LTS that accepts exactly Si, i.e.,
L(Ti) = Si. In such cases, we will explicitly mention the alphabet each Ti is
assigned. This notation furthermore applies to single traces: ∥i σi = ∥i{σi}.

2.1 L∗ algorithm

We now recall the basic L∗ algorithm. Although the algorithm targets DFAs, we
will present it in terms of deterministic LTSs, which we use in this paper (these
are a sub-class of DFAs, see Remark 1). The algorithm can be seen as a game in
which a learner poses queries to a teacher about a target language L that only
the teacher knows. The goal of the learner is to learn a minimal deterministic
LTS with language L. In practical scenarios, the teacher is an abstraction of the
target system we wish to learn a model of. The learner can ask two types of
queries:
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ϵ b

ϵ 1 0

b 0 0

a 1 1

ab 1 0

ba 0 0

bb 0 0

aa 0 0

aba 1 1

abb 0 0

S

S ·Σ \ S

E

(a)

1 0 1 1

a

b

(b)

Fig. 1: A closed and consistent observation table and the LTS that can be con-
structed from it.

– Membership query: is a trace s in the target language L? The teacher
will return a Yes/No answer.

– Equivalence query: does a given hypothesis LTS H accept L? The teacher
will return Yes/No; a No answer comes with a counter-example, i.e., a trace
in L(H) ∆ L, where ∆ denotes the symmetric difference.

The learner organises the information received in response to queries in an ob-
servation table, which is a triple (S,E, T ), consisting of a finite, prefix-closed set
S ⊆ Σ∗, a finite, suffix-closed set E ⊆ Σ∗, and a function T : (S ∪ S ·Σ) · E →
{0, 1}. The function T can be seen as a table in which rows are labelled by traces
in S ∪ S ·Σ, columns by traces in E, and cells T (s · e) contain 1 if s · e ∈ L and
0 otherwise.

Example 2. Consider the prefix-closed language L over the alphabet Σ = {a, b}
consisting of traces where a and b alternate, starting with a; for instance aba ∈ L
but abb /∈ L. An observation table generated by a run of L∗ targeting this
language is shown in Figure 1a. ⊓⊔

Let rowT : S∪S ·Σ → (E → {0, 1}) denote the function rowT (s)(e) = T (s·e)
mapping each row of T to its content (we omit the subscript T when clear
from the context). The crucial observation is that T approximates the Nerode
congruence [28] for L as follows: s1 and s2 are in the same congruence class only
if row(s1) = row(s2), for s1, s2 ∈ S. Based on this fact, the learner can construct
a hypothesis LTS from the table, in the same way the minimal DFA accepting
a given language is built via its Nerode congruence:3

– the set of states is {row(s) | s ∈ S, row(s)(ϵ) = 1};
3 For the minimal DFA, the set of states is {row(s) | s ∈ S}; here we only take
accepting states as we are building an LTS.
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– the initial state is row(ϵ);

– the transition relation is given by row(s) a−→ row(s · a), for all s ∈ S and
a ∈ Σ.

In order for the transition relation to be well-defined, the table has to satisfy the
following conditions:

– Closedness: for all s ∈ S, a ∈ Σ, there is s′ ∈ S such that rowT (s
′) =

rowT (s · a).
– Consistency: for all s1, s2 ∈ S such that rowt(s1) = rowt(s2), we have

rowT (s1 · a) = rowT (s2 · a), for all a ∈ Σ.

Example 3. The table of Example 2 is closed and consistent. The corresponding
hypothesis LTS, which is also the minimal LTS accepting L, is shown in Fig-
ure 1b. ⊓⊔

The algorithm works in an iterative fashion: starting from the empty table,
where S and E only contain ϵ, the learner extends the table via membership
queries until it is closed and consistent, at which point it builds a hypothesis
and submits it to the teacher in an equivalence query. If a counter-example
is received, it is incorporated in the observation table by adding its prefixes
to S, and the updated table is again checked for closedness and consistency.
The algorithm is guaranteed to eventually produce a hypothesis H such that
L(H) = L, for which an equivalence query will be answered positively, causing
the algorithm to terminate.

3 Learning Synchronous Components Compositionally

In this section, we show how to compositionally learn an unknown system M =
M1 ∥ · · · ∥ Mn consisting of n parallel LTSs. To achieve this, we assume that
we are given: (i) a teacher for M ; and (ii) the respective alphabets Σ1, . . . , Σn

of M1, . . . ,Mn. To achieve this, we propose the architecture in Figure 2. We
have n leaners, which are instances of (an extension of) the L∗ algorithm, one
for each component Mi. The instance L∗i can pose queries for Mi to an adapter,
which converts them to queries on M . The resulting yes/no answer (and possibly
counter-example) is translated back to information about Mi, which is returned
to leaner L∗i . To achieve this, the adapter moreover choreographs the learners to

some extent: before an equivalence query H
?
= M can be sent to the teacher, the

adapter must first receive equivalence queries Hi
?
= Mi from each learner.

We first discuss the implementation of the adapter and show its limitations.
To deal with these limitations, we next propose a couple of extensions to L∗ (Sec-
tion 3.2). Completeness claims are stated in Section 3.3. Several optimisations
are discussed in Section 3.4.
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M =
M1 ∥ · · · ∥ Mn

Teacher

A
d
a
p
t
e
r

w
?
∈ L(M)

H
?
= M

CEX σ

L∗i

...

L∗i

w1
?
∈ L(M

1)

H1
?
= M

1

CEX σ1

wn

?
∈ L(Mn)

Hn

?
= Mn

CEX
σn

Fig. 2: Architecture for learning LTS M consisting of components M1 ∥ · · · ∥ Mn.

L1 =
c

a

c
L2 =

c

b L =

c

a

c

a

b b b

Fig. 3: Running example consisting of two LTSs L1 and L2 and their parallel
composition L. The respective alphabets are {a, c}, {b, c} and {a, b, c}.

3.1 Query Adapter

As sketched above, our adapter answers queries on each of the LTSs Mi, based
on information obtained from queries on M . However, the application of the
parallel operator causes loss of information, as the following example illustrates.
We will use the LTSs below as a running example throughout this section.

Example 4. Consider the LTSs L1, L2 and L = L1 ∥ L2 depicted in Figure 3.
Their alphabets are {a, c}, {b, c} and {a, b, c}, respectively.

Suppose we sent a membership query bc to the teacher and we receive as
answer that bc /∈ L(L). At this point, we do not have sufficient information
to deduce about the respective projections whether bc↾{a,c} = c /∈ L(L1) or
bc↾{b,c} = bc /∈ L(L2) (or both). In this case, only the latter holds. Similarly,
if a composite hypothesis H = H1 ∥ H2 is rejected with a negative counter-
example ccc /∈ L(L), we cannot deduce whether this is because ccc /∈ L(L1) or
ccc /∈ L(L2) (or both). Here, however, the former is true but the latter is not,
i.e., ccc is not a counter-example for H2 at all. ⊓⊔

Generally, given negative information on the composite level (σ /∈ L(M)), it
is hard to infer information for a single component Mi, whereas positive infor-
mation (σ ∈ L(M)) easily translates back to the level of individual components.
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We thus need to relax the guarantees on the answers given by the adapter in
the following way:

1. Not all membership queries can be answered, the adapter may return the
answer ‘unknown’.

2. An equivalence query for component i can be answered with a spurious
counter-example σi ∈ L(Hi) ∩ L(Mi).

The procedures that implement the adapter are stated in Listing 1. For each
1 ≤ i ≤ n, we have one instance of each of the functions Member i and Equiv i,
used by the ith learner to pose its queries. Here, we assume that for each compo-
nent i, a copy of the latest hypothesis Hi is stored, as well as a set Pi which con-
tains traces that are certainly in L(Mi). Membership and equivalence queries on
M will be forwarded to the teacher via the functions Member(σ) and Equiv(H),
respectively.

Membership Queries A membership query σ ∈ L(Mi) can be answered di-
rectly by posing σ ∈ L(M) to the teacher if σ contains only actions local to Mi.
However, in the case where σ contains synchronising actions, cooperation from
other components Mj is required. So, during the runtime of the program, for
each i we collect traces in a set Pi, for which it is certain that Pi ⊆ L(Mi). That
is, Pi contains traces which were returned as positive counter-examples (line 16)
or membership queries (line 5). Recall from Section 2 that we can construct
tree-LTSs to compute ∥j ̸=i Pj , where each Pi has alphabet Σi. By construction,
we have L(∥j ̸=i Pj) ⊆ L(∥j ̸=i Mj), and so we have an under-approximation of
the behaviour of other components, possibly including some synchronising ac-
tions they can perform. If we find in L(∥j ̸=i Pj) a trace σ′ such that σ and σ′

contain the same sequence of synchronising actions (line 2, stored in set Π),
we construct an arbitrary interleaving (respecting synchronising actions) of σ
and σ′ and forward it to the teacher (line 4). Such an interleaving is a trace
σint ∈ L(σ ∥ σ′) of maximal length. Note that a σ′ ∈ Π trivially exists if σ does
not contain synchronising actions. If, on the other hand, no such σ′ exists, we
do not have sufficient information on how other LTSs Mj can cooperate, and we
return ‘unknown’ (line 7).

Example 5. Refer to the running example in Figure 3. Suppose that the current
knowledge about L2 is H2 = {ϵ, b}. When Member1(c) is called, Π = ∅, because
there is no trace σ′ ∈ P2 that is equal to c when restricted to {a, c}, therefore
unknown is returned. Intuitively, since the second learner has not yet discovered
that c or bc (or some other trace containing a c) is in its language, the adapter
is unable to turn the query c on L1 into a query for the composite system. ⊓⊔

Example 6. Suppose now that cac ∈ P1, i.e., we already learned that cac ∈
L(L1). When posing the membership query cbc ∈ L(L2), the adapter finds that
cac and cbc contain the same synchronising actions (viz. cc) and constructs
an interleaving, for example cabc. The teacher answers negatively to the query
cabc ∈ L(L), and thus we learn that cbc /∈ L(L2). ⊓⊔
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Listing 1: Membership and equivalence query procedures for component
i.
Input: Alphabets Σ1, . . . , Σn of the components
Data: for each i, the latest hypothesis Hi and a set Pi of traces, initially {ϵ}.

1 Function Member i(σ)
2 Π := {σ′ ∈ L(∥j ̸=i Pj) | σ′

↾Σi
= σ↾Σother } where Σother =

⋃
j ̸=i Σj ;

3 if Π ̸= ∅ then
4 answer := Member(σint) for some σ′ ∈ Π and some maximal

σint ∈ L(σ ∥σ′) ; /* construct interleaving */

5 if answer = yes then Pi := Pi ∪ {σ};
6 return answer

7 else return unknown;

8 Function Equiv i(H
′)

9 Hi := H ′;
10 while true do
11 barrier(n) ; /* wait until this point is reached for every i */

12 construct H = ∥i Hi;
13 switch Equiv(H) do
14 case yes do return yes;
15 case (no, σ) do
16 if σ /∈ L(H) then Pi := Pi ∪ {σ↾Σi};
17 if a ∈ Σi, where σ = σ′a, and σ ∈ L(H) ⇔ σ↾Σi ∈ L(Hi) then
18 return (no, σ↾Σi)

Equivalence Queries For equivalence queries, the adapter offers functions
Equiv i. To construct a corresponding query on the composite level, we first need
to gather a hypothesis Hi for each i. Thus, we synchronise all learners in a
barrier (line 11), after which a composite hypothesis can be constructed and
forwarded to the teacher (lines 12, 13). An affirmative answer can be returned
directly, while in the negative case we investigate the returned counter-example
σ. If σ is a positive counter-example, we add its projection to Pi (line 16). By the
assumption that σ is shortest4, H and M agree on all σ′ ∈ Pref (σ)\{σ}. Thus, σ
only concerns Hi if the last action in σ is contained in Σi. Furthermore, we need
to check whether H and Hi agree on σ: it can happen that σ↾Σi ∈ L(Hi) but
σ /∈ L(H) due to other hypotheses not providing the necessary communication
opportunities. If both conditions are satisfied (line 17), we return the projection
of σ on Σi (line 18). Otherwise, we cannot conclude anything about Hi at this
moment and we iterate (line 10). In that case, we effectively wait for other
hypotheses Hj , with j ̸= i, to be updated before trying again. A termination
argument is provided later in this section.

4 This assumption can be satisfied in practice by using a lexicographical ordering on
the conformance test suite the teacher generates to decide equivalence.
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Example 7. Again considering our running example (Figure 3), suppose the two
learners call in parallel the functions Equiv1(H1) and Equiv2(H2). The provided
hypotheses and their parallel composition are as follows:

H1 =
c

a
H2 = b c H1 ∥ H2 =

b

c

a

b

The adapter forwards H = H1 ∥ H2 to the teacher, which returns the counter-
example cc. The last symbol, c, occurs in both alphabets, but cc ∈ L(H) does
not hold and cc↾Σ2 ∈ L(H2) does, so only Equiv1(H1) returns (no, cc). The call
to Equiv2(H2) hangs in the while loop of line 10 until Equiv1 is invoked with a
different hypothesis. ⊓⊔

Example 8. Suppose now that the hypotheses and their composition are:

H1 =
c

a c
H2 =

c

b
H1 ∥ H2 =

c

a c
b b

a

When we submit Equiv(H1 ∥ H2), we may receive the negative counter-example
ccc, which is a shortest counter-example. This counter-example does not contain
any information to suggest that it only applies to H1. It is a spurious counter-
example for H2, since that should contain the trace ccc. ⊓⊔

3.2 L∗ extensions

As explained in the previous section, the capabilities of our adapter are limited
compared to an ordinary teacher. We thus extend L∗ to deal with the answer
‘unknown’ to membership queries and to deal with spurious counter-examples.

Answer ‘unknown’. The setting of receiving incomplete information through
membership queries first occurred in [15], and is also discussed in [24]. Here we
briefly recall the ideas of [15]. To deal with partial information from membership
queries, the concept of an observation table is generalised such that the function
T : (S ∪ S · Σ) · E → {0, 1} is a partial function, that is, for some cells we
have no information. Based on T , we now define the function row : S ∪ S ·
Σ → E → {0, 1, ?} to fill the cells of the table: rowT (s)(e) = T (se) if T (se)
is defined and ? otherwise. We refer to ‘?’ as a wildcard ; its actual value is
currently unknown and might be learned at a later time or never at all. To
deal with the uncertain nature of wildcards, we introduce a relation ≈ on rows,
where row(s1) ≈ row(s2) iff for every e ∈ E, row(s1)(e) ̸= row(s2)(e) implies
that row(s1)(e) = ? or row(s2)(e) = ?. Note that ≈ is not an equivalence relation
since it is not transitive. Closedness and consistency are defined as before, but
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now use the new relation ≈. We say an LTS M is consistent with T iff for all
s ∈ Σ∗ such that T (s) is defined, we have T (s) = 1 iff s ∈ L(M).

As discussed earlier, Angluin’s original L∗ algorithm relies on the fact that,
for a closed and consistent table, there is a unique minimal DFA (or, in our case,
LTS) that is consistent with T . However, the occurrence of wildcards in the
observation table may allow multiple minimal LTSs that are consistent with T .
Such a minimal consistent LTS can be obtained with a SAT solver, as described
in [19].

Similar to Angluin’s original algorithm, this extension comes with some cor-
rectness theorems. First of all, it terminates outputting the minimal LTS for the
target language. Furthermore, each hypothesis is consistent with all membership
queries and counter-examples that were provided so far. Lastly, each subsequent
hypothesis has at least as many states as the previous one, but never more than
the minimal LTS for the target language.

Spurious Counter-Examples. We now extend this algorithm with the abil-
ity to deal with spurious counter-examples. Any negative counter-example σ ∈
L(Hi) might be spurious, i.e., it is actually the case that σ ∈ L(Mi). Since L∗

excludes σ from the language of all subsequent hypotheses, we might later get
the same trace σ, but now as a positive counter-example. In that case, the initial
negative judgment from the equivalence teacher was spurious.

One possible way of dealing with spurious counter-examples, is adding to
L∗ the ability to overwrite entries in the observation table in case a spurious
counter-example is corrected. However, this may cause the learner to diverge if
infinitely many spurious counter-examples are returned. Therefore, we instead
choose to add a backtracking mechanism to ensure our search will converge. The
pseudo code is listed in Listing 2; we refer to this as L∗?,b (L∗ with wildcards and
backtracking).

We have a mapping BT that stores backtracking points; BT is initialised to
the empty mapping (line 1). Lines 5-11 ensure the observation table is closed and
consistent in the same way as L∗, but use the relation ≈ on rows instead. Next,
we construct a minimal hypothesis that is consistent with the observations in T
(line 12). This hypothesis is posed as an equivalence query. If the teacher replies
with a counter-example σ for which T (σ) = 0, then σ was a spurious counter-
example, so we backtrack and restore the observation table from just before T (σ)
was introduced (line 15). Otherwise, we store a backtracking point for when σ
later turns out to be spurious (line 17); this is only necessary if σ is a negative
counter-example. Note that not all information is lost when backtracking: the
set Pi stored in the adapter is unaffected, so some positive traces are carried over
after backtracking. Finally, we incorporate σ into the observation table (line 18).
When the teacher accepts our hypothesis, we terminate.

We finish this section with an example that shows how spurious counter-
examples may be resolved.
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Listing 2: Learning with wildcards and backtracking.

1 Set BT to ∅;
2 Initialise S and E to {ϵ};
3 Extend T to S ∪ S ·Σi by calling Member i;
4 repeat
5 while (S,E, T ) is not closed and consistent do
6 if (S,E, T ) is not consistent then
7 Find s1, s2 ∈ S, a ∈ Σi, e ∈ E such that rowT (s1) ≈ rowT (s2) and

T (s1 · a · e) ̸≈ T (s2 · a · e);
8 Add a · e to S and extend T by calling Member i;

9 if (S,E, T ) is not closed then
10 Find s1 ∈ S, a ∈ Σi such that rowT (s1 · a) ̸≈ rowT (s) for all s ∈ S;
11 Add s1 · a to S and extend T by calling Member i;

12 Call Equiv i(H) for some minimal LTS H consistent with T ;
13 if Teacher replies with counter-example σ then
14 if T (σ) = 0 then /* σ corrects an earlier spurious CEX */

15 (S,E, T ) := BT (σ);

16 else if σ ∈ L(H) then /* σ might be spurious */

17 BT (σ) := (S,E, T );

18 Add σ and all its prefixes to S and extend T by calling Member i;

19 until Teacher replies yes to conjecture H;
20 return H ;

Example 9. Refer again to the LTSs of our running example in Figure 3. Consider
the situation after proposing the hypotheses of Example 8 and receiving the
counter-example ccc, which is spurious for the second learner.

In the next iteration, Member2 can answer some membership queries, such
as cbc, necessary to expand the table of the second learner. This is enabled by
the fact that P1 contains cc from the positive counter-example of Example 7
(line 2 of Listing 1). The resulting updated hypotheses are as follows.

H ′
1 =

c

a

c
H ′

2 =
c c

b
b

b

Now the counter-example to composite hypothesis H ′
1 ∥ H ′

2 is cacc. The projec-
tion on Σ2 is ccc, which directly contradicts the counter-example received in the
previous iteration. This spurious counter-example is thus repaired by backtrack-
ing in the second learner. The invocation of Equiv1(H

′
1) by the first learner does

not return this counter-example, since H ′
1 ∥ H ′

2 and H ′
1 do not agree on cacc, so

the check on line 17 of Listing 1 fails.

Finally, in the next iteration, the respective hypotheses coincide with L1 and
L2 and both learners terminate. ⊓⊔
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3.3 Correctness

As a first result, we show that our adapter provides correct information on each
of the components when asking membership queries. This is required to ensure
that information obtained by membership queries does not conflict with counter-
examples. Proofs are omitted for space reasons.

Theorem 1. Answers from Member i are consistent with L(Mi).

Before presenting the main theorem on correctness of our learning frame-
work, we first introduce several auxiliary lemmas. In the following, we assume n
instances of L∗?,b run concurrently and each queries the corresponding functions
Member i and Equiv i, as per our architecture (Figure 2). First, a counter-example
cannot be spurious for all learners; thus at least one learner obtains valid infor-
mation to progress its learning.

Lemma 1. Every counter-example obtained from Equiv (H) is valid for at least
one learner.

The next lemma shows that even if a spurious counter-example occurs, this
does not induce divergence, since it is always repaired by a corresponding positive
counter-example in finite time.

Lemma 2. If Equiv(H) always returns a shortest counter-example, then each
spurious counter-example is repaired by another counter-example within a finite
number of invocations of Equiv(H), the monolithic teacher.

Our main theorem states that a composite system is learned by n copies of
L∗?,b that each call our adapter (see Figure 2).

Theorem 2. Running n instances of L∗?,b terminates, and on termination we
have H1 ∥ · · · ∥ Hn = M1 ∥ · · · ∥ Mn.

Remark 2. We cannot claim the stronger result that Hi = Mi for all i, since dif-
ferent component LTSs can result in the same parallel composition. For example,
consider the below LTSs, both with alphabet {a}:

H1 = H2 = a

Here we have H1 ∥ H2 = H1 ∥ H1. The equivalence oracle thus may also return
yes even when the component LTSs differ slightly.

3.4 Optimisations

There are a number of optimisations that can dramatically improve the practical
performance of our learning framework. We briefly discuss them here.

First, finding whether there is a trace σ′ ∈ Π (line 2 of Listing 1) can quickly
become expensive once the sets Pi grow larger. We thus try to limit the size
of each Pi without impacting the amount of information it provides on the
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synchronisation opportunities offered by component Mi. Therefore, when we
derive that σ ∈ L(Mi), we only store the shortest prefix ρ of σ such that ρ and σ
contain the same synchronising actions. That is, σ = ρ · ρ′ and ρ′ contains only
actions local to Mi. Furthermore, we construct ∥j ̸=i Pj only once after each call
to Equiv i and we cache accesses to ∥j ̸=i Pj , such that it is only traversed once
when performing multiple queries σ1, σ2 for which it holds that σ1

↾Σother
= σ2

↾Σother
.

A possibility that we have not explored is applying partial-order reduction to
eliminate redundant interleavings in ∥j ̸=i Pj .

Since the language of an LTS is prefix-closed, we can – in some cases –
extend the function T that is part of the observation table without performing
membership queries. Concretely, if T (σ) = 0 then we can set T (σ · σ′) = 0 for
any trace σ′. Dually, if T (σ · σ′) = 1 then we set T (σ) = 1.

4 Experiments

We created an experimental implementation of our algorithms in a tool called
Coal (COmpositional Automata Learner) [27], implemented in Java. It relies
on LearnLib [22], a library for automata learning, which allows us to re-use
standard data structures, such as observation tables, and compare our framework
to a state-of-the-art implementation of L∗. To extract a minimal LTS from an
observation table, we first attempt the inexact blue-fringe variant of RPNI [20]
(as implemented in LearnLib). If this does not result in an LTS that is minimal,
we resort to an exact procedure based on a SAT translation; we use the Z3
solver [10].

Our experiments are run on a machine with an Intel Core i3 3.6GHz, with
16GB of RAM, running Ubuntu 20.04. For each experiment, we use a time-out
of 30 minutes.

4.1 Random Systems

We first experiment with a large number of composite systems where each of
the component LTSs is randomly generated. This yields an accurate reflection of
actual behavioural transition systems [16]. Each component LTS has a random
number of states between 5 and 9 (inclusive, uniformly distributed) and a max-
imum number of outgoing edges per state between 2 and 4 (inclusive, uniformly
distributed).

We assign alphabets to the components LTSs in five different ways that
reflect real-world communication structures, see Figure 4. Here, each edge repre-
sents a communication channel that consists of two synchronising actions; each
component LTS furthermore has two local actions. The hyperedge in multiparty
indicates multiparty communication: the two synchronising actions in such a
system are shared by all component LTSs. The graph that represents the bipar-
tite communication structure is always complete, and the components are evenly
distributed between both sides. Random is slightly different: it contains 2(n−1)
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multiparty ring bipartite star random

Fig. 4: Communication structure of the randomly generated systems. Dots rep-
resent components LTSs; edges represent shared synchronising actions.

edges, where n is the number of components, each consisting of one action; we
furthermore ensure the random graph is connected.

For our five communication structures, we create ten instances for each num-
ber of components between 4 and 9; this leads to a total benchmark set of 300
LTSs. Out of these, 47 have more than 10,000 states, including 12 LTSs of more
than 100,000 states. The largest LTS contains 379,034 states. Bipartite often
leads to relatively small LTSs, due to its high number of synchronising actions.
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Fig. 5: Performance of L∗ and compositional learning on random models.

On each LTS, we run the classic L∗ algorithm and Coal, and record the
number of queries posed to the teacher.5 The result is plotted in Figure 5; note
the log scale. Here, marks that lie on the dashed line indicate a time-out or
out-of-memory for one of the two algorithms.

Coal outperforms the monolithic L∗ algorithm in the number of member-
ship queries for all cases (unless it fails). In more than half of the cases, the

5 The number of queries is the standard performance measure for query learning algo-
rithms; runtime is less reliable, as it depends on the specific teacher implementation.
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Table 1: Performance of Coal and L∗ for realistic composite systems.
Coal L∗

model scaling comp states time(s) memQ eqQ spCE time(s) memQ eqQ

CloudOps W = 1, C = 1, N = 3 5 690 1.06 957 24 0 1.85 2,740,128 88
CloudOps W = 1, C = 1, N = 4 6 1,932 1.13 1,004 26 0 16.99 22,252,120 216
CloudOps W = 2, C = 1, N = 3 5 3,858 47.13 8,897 41 3 8.94 12,574,560 99
CloudOps W = 2, C = 1, N = 4 6 10,824 48.20 8,811 36 3 84.02 91,178,900 227

ProdCons K = 5, P = 1, C = 1 3 246 0.51 285 13 3 0.34 160,126 30
ProdCons K = 5, P = 2, C = 1 4 962 0.54 401 13 0 2.35 2,523,625 91
ProdCons K = 5, P = 3, C = 2 6 13,001 1.65 1,239 16 0 65.42 60,186,235 187
ProdCons K = 5, P = 3, C = 3 7 45,302 3.21 2,276 16 0 241.37 222,567,729 193

ProdCons K = 3, P = 2, C = 2 5 2,273 0.61 456 13 0 1.66 2,141,165 43
ProdCons K = 5, P = 2, C = 2 5 3,329 1.29 596 15 1 6.36 6,984,705 93
ProdCons K = 7, P = 2, C = 2 5 4,385 0.97 799 15 0 17.56 15,792,997 135

difference is at least three orders of magnitude; it can even reach six orders of
magnitude. For equivalence queries, the difference is less obvious, but our com-
positional approach scales better for larger systems. This is especially relevant,
because in practice implementations equivalence queries may require a number
of membership queries that is exponential in the size of the system. Multiparty
communication systems benefit most from compositional learning. The num-
ber of spurious counter-examples that occurs for these models is limited: about
one on average. Only twelve models require more than five spurious counter-
examples; the maximum number required is thirteen. This is encouraging, since
even for this varied set of LTSs the amount of duplicate work performed by
Coal is limited.

4.2 Realistic Systems

Next, we investigate the performance of Coal on two realistic systems that
were originally modelled as a Petri net. These Petri nets can be scaled according
to some parameters to yield various instances. The ProdCons system models a
buffer of size K that is accessed by P producers and C consumers; it is described
in [32, Fig. 8]. The CloudOpsManagement net is obtained from the 2019 Model
Checking Contest [2], and describes the operation of C containers and operating
systems and W application runtimes in a cloud environment. Furthermore, we
scale the number N of application runtime components. We generate the LTS
that represents the marking graph of these nets and run L∗ and Coal; the results
are listed in Table 1. For each system, we list the values of scaling parameters,
the number of components and the number of states of the LTS. For Coal and
L∗, we list the runtime and the number of membership and equivalence queries;
for Coal we also list the number of spurious counter-examples (column spCE).

The results are comparable to our random experiments: Coal outperforms L∗

in number of queries, especially for larger systems. For the two larger CloudOps-
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Management instances, the increasing runtime of Coal is due to the fact that
two of the components grow as the parameter W increases. The larger number of
states causes a higher runtime of the SAT procedure for constructing a minimal
LTS.

We remark that in our experiments, the teacher has direct access to the LTS
we aim to learn, leading to cheap membership and equivalence queries. Thus, in
this idealised setting, L∗ incurs barely any runtime penalty for the large number
of queries it requires. Using a realistic teacher implementation would quickly
cause time-outs for L∗, making the results of our experiments less insightful.

5 Related Work

Finding ways of projecting a known concurrent system down into its components
is the subject of several works, e.g., [8,17]. In principle, it would be possible to
learn the system monolithically and use the aforementioned results. However, as
shown in Section 4, this may result in a substantial query blow-up.

Learning approach targeting various concurrent systems exist in the litera-
ture. As an example of the monolithic approach above, the approach of [6] learns
asynchronously-communicating finite state machines via queries in the form of
message sequence charts. The result is a monolithic DFA that is later broken
down into components via an additional synthesis procedure. This approach thus
does not avoid the exponential blow-up in queries. Another difference with our
work is that we consider synchronous communication.

Another monolithic approach is [18], which provides an extension of L∗ to
pomset automata. These automata are acceptors of partially-ordered multisets,
which model concurrent computations. Accordingly, this relies on an oracle capa-
ble of processing pomset-shaped queries; adapting the approach to an ordinary
sequential oracle – as in our setting – may cause a query blow-up.

A severely restricted variant of our setting is considered in [13], which in-
troduces an approach to learn Systems of Procedural Automata. Here, DFAs
representing procedures are learned independently. The constrained interaction
of such DFAs allows for deterministically translating between component-level
and system-level queries, and for univocally determining the target of a counter-
example. Our setting is more general – arbitrary (not just pair-wise) synchroni-
sations are allowed at any time – hence these abilities are lost.

Two works that do not allow synchronisation at all are [23,25]. In [23] indi-
vidual components are learned without any knowledge of the component number
and their individual alphabets, however components cannot synchronise (alpha-
bets are assumed to be disjoint). This is a crucial difference with our approach,
which instead has to deal with unknown query results and spurious counter-
examples precisely due to the presence of synchronising actions. An algorithm
for learning Moore machines with decomposable outputs is propose in [25]. This
algorithm spawns several copies of L∗, one per component. This approach is not
applicable to our setting, as we do not assume decomposable output and allow
dependencies between components.
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Other approaches consider teachers that are unable to reply to membership
queries [1,14,15,24]; they all use SAT-based techniques to construct automata.
The closest works to ours are: [24], considering the problem of compositionally
learning a property of a concurrent system with full knowledge of the compo-
nents; and [1], learning an unknown component of the serial composition of two
automata. In none of these works spurious counter-examples arise.

6 Conclusion

We have shown how to learn component systems with synchronous communica-
tion in a compositional way. Our framework uses an adapter and a number of
concurrent learners. Several extensions to L∗ were necessary to circumvent the
fundamental limitations of the adapter. Experiments with our tool Coal show
that our compositional approach offers much better scalability than a standard
monolithic approach.

In future work, we aim to build on our framework in a couple of ways. First,
we want to apply these ideas to all kinds of extensions of L∗ such as TTT [21]
(for reducing the number of queries) and algorithms for learning extended finite
state machines [7]. Our expectation is that the underlying learning algorithm
can be replaced with little effort. Next, we want to eliminate the assumption
that the alphabets of individual components are known a priori. We envisage
this can be achieved by combining our work and [23].

We also would like to explore the integration of learning and model-checking.
A promising direction is learning-based assume-guarantee reasoning, originally
introduced by Cobleigh et. al. in [9]. This approach assumes that models for
the individual components are available. Using our approach, we may be able
to drop this assumption, and enable a fully black-box compositional verification
approach.

Acknowledgements. We thank the anonymous reviewers for their useful com-
ments, and Tobias Kappé for suggesting several improvements. This research was
partially supported by the EPSRC Standard Grant CLeVer (EP/S028641/1).

References

1. Abel, A., Reineke, J.: Gray-Box Learning of Serial Compositions of Mealy Ma-
chines. In: NFM. pp. 272–287 (2016). https://doi.org/10.1007/978-3-319-40648-
0 21

2. Amparore, E., et al.: Presentation of the 9th Edition of the Model
Checking Contest. In: TACAS2019. LNCS, vol. 11429, pp. 50–68 (2019).
https://doi.org/10.1007/978-3-030-17502-3 4

3. Angluin, D.: Learning regular sets from queries and counterexamples. Infor-
mation and Computation 75(2), 87–106 (1987). https://doi.org/10.1016/0890-
5401(87)90052-6

4. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016). https://doi.org/10.1016/j.tcs.2016.07.031

64

https://doi.org/10.1007/978-3-319-40648-0_21
https://doi.org/10.1007/978-3-319-40648-0_21
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.tcs.2016.07.031


Compositional Automata Learning of Synchronous Systems

5. Argyros, G., D’Antoni, L.: The Learnability of Symbolic Automata. In: CAV. pp.
427–445 (2018). https://doi.org/10.1007/978-3-319-96145-3 23

6. Bollig, B., Katoen, J., Kern, C., Leucker, M.: Learning Communicating Au-
tomata from MSCs. IEEE Trans. Software Eng. 36(3), 390–408 (2010).
https://doi.org/10.1109/TSE.2009.89

7. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for ex-
tended finite state machines. Formal Aspects Comput. 28(2), 233–263 (2016).
https://doi.org/10.1007/s00165-016-0355-5

8. Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing Distributed Transition
Systems from Global Specifications. In: FSTTCS. LNCS, vol. 1738, pp. 219–231
(1999). https://doi.org/10.1007/3-540-46691-6 17

9. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning Assumptions for
Compositional Verification. In: TACAS. Lecture Notes in Computer Science,
vol. 2619, pp. 331–346. Springer (2003). https://doi.org/10.1007/3-540-36577-X 24

10. De Moura, L., Bjørner, N.: Z3: An efficient SMT Solver. In: TACAS 2008. LNCS,
vol. 4963, pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. Fiterau-Brostean, P., Janssen, R., Vaandrager, F.W.: Combining Model Learn-
ing and Model Checking to Analyze TCP Implementations. In: CAV2016. LNCS,
vol. 9780, pp. 454–471 (2016). https://doi.org/10.1007/978-3-319-41540-6 25

12. Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K., So-
morovsky, J.: Analysis of DTLS Implementations Using Protocol State Fuzzing.
In: USENIX (2020), https://www.usenix.org/conference/usenixsecurity20/

presentation/fiterau-brostean

13. Frohme, M., Steffen, B.: Compositional learning of mutually recursive procedural
systems (2021). https://doi.org/10.1007/s10009-021-00634-y

14. Grinchtein, O., Leucker, M.: Learning Finite-State Machines from Inexperienced
Teachers. In: ICGI. pp. 344–345 (2006). https://doi.org/10.1007/11872436 30

15. Grinchtein, O., Leucker, M., Piterman, N.: Inferring Network Invariants Automat-
ically. In: IJCAR. pp. 483–497 (2006). https://doi.org/10.1007/11814771 40

16. Groote, J.F., van der Hofstad, R., Raffelsieper, M.: On the random structure of
behavioural transition systems. Science of Computer Programming 128, 51–67
(2016). https://doi.org/10.1016/j.scico.2016.02.006

17. Groote, J.F., Moller, F.: Verification of parallel systems via decom-
position. In: CONCUR 1992. LNCS, vol. 630, pp. 62–76 (1992).
https://doi.org/10.1007/BFb0084783
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Abstract. JavaScript has become the most popular programming lan-
guage for web front-end development. With such popularity, there is a
great demand for thorough testing of client-side JavaScript web applica-
tions. In this paper, we present a novel approach to concolic testing of
front-end JavaScript web applications. This approach leverages widely
used JavaScript testing frameworks such as Jest and Puppeteer and con-
ducts concolic execution on JavaScript functions in web applications
for unit testing. The seamless integration of concolic testing with these
testing frameworks allows injection of symbolic variables within the na-
tive execution context of a JavaScript web function and precise capture
of concrete execution traces of the function under test. Such concise
execution traces greatly improve the effectiveness and efficiency of the
subsequent symbolic analysis for test generation. We have implemented
our approach on Jest and Puppeteer. The application of our Jest imple-
mentation on Metamask, one of the most popular Crypto wallets, has
uncovered 3 bugs and 1 test suite improvement, whose bug reports have
all been accepted by Metamask developers on Github. We also applied
our Puppeteer implementation to 21 Github projects and detected 4 bugs.

Keywords: Concolic Testing · JavaScript · Front-end Web Application.

1 Introduction

JavaScript (JS), as the most popular web frond-end programming language, is
used by 95.1% of websites [23]. Many of such websites handle sensitive infor-
mation such as financial transactions and private conversions. Errors in these
websites not only affect user experiences, but also endanger safety, security, and
privacy of users. Therefore, these websites, particularly their dynamic functions
that are often implemented in JS, must be thoroughly tested to detect software
bugs. There have been many testing frameworks for JS applications, such as Jest
and Puppeteer. These frameworks provide a systematic way to test JS applica-
tions and reduce the tedious testing setup, particularly for unit testing. However,
although these testing frameworks simplify the execution of testing, they do not
provide test data for web applications. Such test data still needs to be provided
manually by application developers, which is often very time-consuming and la-
borious. And achieving high code and functional coverage on web applications
with high-quality test data still remains a challenge [34].
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Symbolic execution has shown great promises in software testing, particularly
in test data generation [29]. It exercises software with symbolic inputs, explores
its execution paths systematically, and generates test data for the paths explored
symbolically. However, symbolic execution may suffer from path explosions when
the software has too many paths to explore [26]. Concolic testing addresses path
explosion by combining concrete execution with symbolic execution. The soft-
ware is first exercised with a concrete input and the resulting concrete execution
trace is then analyzed symbolically to explore paths that are adjacent to the
concrete trace. Concolic testing has achieved many successes in software test-
ing [25]. It is strongly desirable to apply concolic testing to front-end JS web
application to generate high-quality test data automatically, so manually efforts
can be reduced and test coverage can be improved. However, front-end JS ap-
plications pose major challenges to concolic testing. These applications typically
execute in the contexts of web browsers, which tends to be complex, and they
are usually event-driven, user-interactive, and string-intensive [35].

In this paper, we present a novel approach to concolic testing of front-end
JS web application. This approach leverages widely used JS testing frameworks
such as Jest and Puppeteer and conducts concolic execution on JS web functions
for unit testing [39]. These testing frameworks isolate the web function under
test from the context of its embedding web page by mocking the environment
and provide the test data that drives the function. This isolation of web function
provides an ideal target for application of concolic testing. We integrate concolic
testing APIs into these testing frameworks. The seamless integration of concolic
testing allows injection of symbolic variables within the native execution con-
text of a JS web function and precise capture of concrete execution traces of this
function. As the testing framework executes the function under test with test
data, parts or all of the test data can be made symbolic and the resulting ex-
ecution traces of the function are captured for later symbolic analysis. Concise
execution traces greatly improve the effectiveness and efficiency of the subse-
quent symbolic analysis for test generation. The new test data generated by the
symbolic analysis is again fed back to the testing frameworks to drive further
concolic testing.

We have implemented our approach on Jest and Puppeteer. The application of
our Jest implementation to Metamask, one of the most popular Crypto wallets,
has uncovered 3 bugs and 1 test suite improvement, whose bug reports have
been accepted by Metamask developers on Github. We have also applied our
Puppeteer implementation to 21 Github projects and detected 4 bugs.

2 Background

2.1 Front-end JavaScript Testing Frameworks

In a general software testing framework, a test case is designed to exercise a
single, logical unit of behavior in an application and ensure the targeted unit
operates as expected [21]. Typically, it is structured as a tuple {P, C, Q}:
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– P are the preconditions that must be met so that the function under test
can be executed.

– C is the function under test, containing the logic to be tested.

– Q are the post assertions of the test case that are expected to be true.

As shown in Figure 1, a front-end JS testing framework inspects the web
application in the browser for JS functions to test. It utilizes testing libraries to

Fig. 1: Front-end JS testing framework workflow

obtain the web pages, parses them and stores page functions and their context
information individually so that test runners can run the functions browser-
less [4]. The test runner sets up the three parts of a test case for each JS function
under test and then executes the test case. The front-end JS testing framework
helps isolate the JS function under test and provides the execution context for
testing the function, which is an ideal entry for our application of the concolic
testing to front-end JS.

2.2 In-situ Concolic Testing of Backend JavaScript

In [9], a new approach has been introduced to applying concolic testing to
backend JS in-situ, i.e., scripts are executed in their native environments (e.g.,
Node.js) as part of concolic execution and test cases generated are directly re-
played in these environments [13]. As illustrated in Figure 2, the concrete execu-
tion step of concolic testing as indicated by the dashed box on top is conducted
in the native execution environment for JS, where the trace of this concrete ex-
ecution is captured. The trace is then analyzed in the symbolic execution step
of concolic testing to generate test cases that are then fed back into the native
concrete execution to drive further test case generation. This approach has been
implemented on the Node.js execution environment and its V8 JS engine [24]. As
a script is executed with Node.js, its binary-level execution trace is captured and
later analyzed through symbolic execution for test case generation. It also offers
the flexibility of customizing trace as needed. We leverage this functionality in
our approach.
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Test Harness

JavaScript

Execution Tracer

JavaScript Execution Trace

JS execution engine

Symbolic Execution

Engine

Test cases

Constraint Solver

Path Explosion

Path Constraint

Fig. 2: Workflow for in-situ concolic testing of backend JavaScript

3 Approach

3.1 Overview

Our approach strives to apply concolic testing on front-end JS web applications
to generate effective test data for unit-testing of these applications. Below are
the specific design goals for our approach:

– Front-end JS Extraction. JS web functions need to be extracted from web
pages to execute independently to reduce complexity for concolic testing.

– Execution Context Construction. JS web functions under test need to
have the same execution environments as they are executed in the web pages.

– Non-intrusive and Effective Concolic Testing. Concolic execution on
JS web applications needs to require minimal changes on both the applica-
tions and the symbolic engine and generate useful test cases effectively.

With the above goals in mind, we design an approach to concolic testing of
front-end JS web application, which leverages the JS testing frameworks such
as Jest and Puppeteer and conducts concolic execution on JS web functions
for unit testing. The seamless integration of concolic testing with these testing
frameworks is achieved through extending in-situ concolic testing of backend JS
applications. Figure 3 illustrates how the integration is realized:

1. Workflow 1 in Figure 3a illustrates the original capability of in-situ concolic
testing of backend JS applications. It tests pure JS functions from NPM JS
libraries. The execution tracer captures the traces of the pure JS functions
and feeds them to the symbolic execution engine to generate new test data.

2. Workflow 2 in Figure 3b illustrates a näıve application of in-situ concolic
testing to a JS web application. However, in-situ concolic testing cannot
handle web elements, e.g., <HTML> tags, without the capability of a browser.
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(a) Original workflow of in-situ concolic testing

(b) Näıve execution of JS web function directly with in-situ concolic testing

Execution Context

<frame>

args (symbolic variable)
function js_func (args) => 
{
if (args=='test')
...

else
...

return;
}
testRunner.call();
exit();
</frame>

call symbolic execution interface

3

Web J S Application

<html>
<component/>
<script>js_func</script>
...
</html>

Node.js

Execution Tracer

symbolic exeuction

interface function

pure J S function 

with Web Info

Symbolic Execution
Engine

In-situ concolic testing

Test Case

J S Testing Famework

Test Runner Testing Libraries

Mocking input

HTML renderer
Extract

Function

Interceptor

(c) Workflow for enabling effective in-situ concolic testing on front-end JS

Fig. 3: Overview for concolic testing of front-end JS

3. Workflow 3 in Figure 3c illustrates how we leverage a JS testing framework
to extract the front-end JS web function and its execution context from the
web page. In the extraction, we encapsulate them as a pure JS function aug-
mented with the web page information, inject symbolic values and capture
execution traces for later symbolic analysis by calling the symbolic execution
interface functions within the extracted execution context. We then utilize
the test runner of the JS testing framework to initiate and drive concolic
testing within the execution context to generate new test data.

This workflow allows faithful simulation of the execution context of a JS web
function without the presence of a web browser. It enables injection of symbolic
variables and captures of concrete execution traces within the execution context
of the JS web function under test. A concise and accurate concrete execution
trace can greatly improve the effectiveness and efficiency of the following sym-
bolic analysis for test generation. We explain how to decide the starting point
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of tracing within the native execution context and what difference it makes in
Section 3.2.

3.2 Concolic Testing of JS Web Function within Execution Context

A front-end JS web function is invoked from a web page and its execution de-
pends on the execution context from the web page [28]. The core of our approach
is to enable concolic testing on the JS web function within its native execution
context from the web page in a manner same as in-situ concolic execution of
back-end JS. We can achieve this by the following three steps: execution context
extraction, execution context tracing customization (including symbolic value
injection and tracing control), and concolic execution within execution context.

J S Testing Framework 

Test Runner

Testing Libraries

HTML render

Function
Interceptor

Mocking Input

Page frame detail

Web J S Application

Page
J S

Script

<html>
<component/>
<script>js_func</script>
...
</html>

HTML
Unit

Execution Context (EC)
//construct EC with test-helper 
page = requesting_url;
CallArgument[] = helper_js_1.helper; 
...
func js_func(args) => {

}
%StartTracing();
//encapsulated Web JS function call 
//by test runner 
Runtime.callFunction();
exit();

%MarkSymbolic(args)
if (args=='test')
...

else
...

return;

Execution Tracer

Execution Trace

Trace 1 (page)

Trace 2 (js_helpers)

js_func trace

Trace 3

start tracing

end tracing

Execution Trace For
In-situ Concolic

Execution

SE Engine

Fig. 4: Concolic testing of JS Web function within execution context

Execution Context Extraction To transform a JS web function to a pure
JS function without losing its context of a web page, we introduce a function

interceptor to the JS testing framework to serve this purpose. As shown in
Figure 4, the function interceptor completes the following tasks to finish this
transformation in order to suit later in-situ concolic testing in the back-end:

– First, the function interceptor requests the page frame detail of the web
page where the targeted JS web function resides, utilizing the existing mock-
ing data and the HTML render function. The mocking data and the HTML

render function are usually created manually and included in the unit test
suite.

– Second, from the page frame detail, the function interceptor identifies
the function body in a pure JS form given the function name. To preserve the
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JS function’s native web environment, it extracts the associated execution
context of the web page. This is realized by calling helper functions provided
by the testing libraries of the JS testing framework. The execution context
contains everything that is needed for the pure JS function to be executed
in the web page, which includes the arguments of the function, its concrete
dependency objects set by mocking data and the function scope.

– Third, the function interceptor delivers a complete function in the pure
JS form encapsulated with its associated web execution context by assem-
bling them, and then makes it accessible for the test runner of the JS testing
framework so that the test runner can initiate the concolic execution in the
execution context when running the test suite.

Execution Context Tracing Customization In-situ concolic testing offers
the capability of tracing inside the V8 JS engine to capture the execution trace
that closely matches the JS bytecode interpretation [9,22]. The conciseness of an
execution trace determines the efficiency and the effectiveness of later symbolic
analysis and test case generation. Therefore, to make the most of this capability,
we pinpoint the locations of where to introduce symbolic values and start tracing
during the extraction of the execution context, before we commence concolic
testing on the encapsulated JS web function with its execution context. In-
situ concolic testing provides interface functions for introducing the symbolic
values (MarkSymbolic()) and tracing control (StartTracing()). We use these
interface functions to customize execution context tracing as needed.

Symbolic Value Injection and Tracing Control A JS testing frameworks uses a
test runner to execute its test suites. As shown in Figure 5, the test runner
prepares the dependencies for setting up the testing environment and loads the
JS libraries the test suites need before starting run the individual function under
test. In order to avoid tracing the unnecessary startup overhead of the test runner

J S Testing Framework

Test Runner

...
require from './TestUtils';
require from 'render';
...

loading mocking-input;
loading test-file dependencies;
loading HTML render libs;
...

Load test runner dependencies Load test suite dependencies

mockingInput();
HTMLrender();
Execute Test Suites...

Page frame detail

function_interceptor()

Execution Context

identify web function and

extract execution context

inject symbolic value

and start tracing

Fig. 5: How to avoid unnecessary tracing of the test runner setup by delaying
injection of symbolic values and start of tracing

(indicated by the red box in Figure 5), we choose to inject symbolic values
inside the execution context and start tracing when the test runner actually
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executes the encapsulated function, by calling the interface functions the in-
situ concolic testing provides. This way the execution tracer only captures the
execution trace of the encapsulated JS web function. The locations for injecting
symbolic values and starting tracing are indicated in the ”Execution Context
(EC)” box in Figure 4 and the captured execution trace is indicated by the
”Execution Trace” box in the right corner of Figure 4.

Most Concise Execution Trace Figure 6 shows why our approach can obtain
the most concise execution trace for the JS web function driven by the test
runner of the JS testing framework. Apart from the overhead caused by the test

Fig. 6: How we obtain the most concise concrete execution trace

runner, the extraction of the execution context for the JS web function involves
calling a set of JS helper functions to collect web page information, such as
helper js 1 and JSHandle js 1. If we directly apply symbolic execution within
the test runner where the JS function is intercepted along with the execution
context extraction, the execution tracer will also capture the execution traces
of the test runner and the testing helper functions from the testing libraries
shown as ”Execution Trace 0” in the right-hand side of Figure 6. We modified
the test runner to mark symbolic variables and enable tracing control within the
execution context. Instead of starting tracing when the test runner starts, we
defer the tracing of the execution to when and where the test runner actually
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executes the encapsulated function under test in the extracted execution context,
indicated by the ”Execution Trace 1” in the left-hand side of Figure 6. This way
we minimize the extend of execution tracing needed.

Concolic Testing within Execution Context We leverage the test runner
of the JS testing framework to initiate and start the in-situ concolic testing of
the JS web function under test. Typically the test runner starts running the
JS web function with an existing unit test. In our approach, the execution of
the unit test triggers the function interceptor, which starts the process of
extracting the execution context and encapsulating the target JS web function.
During this process, symbolic values are injected and tracing is started in the
right place as described in previous sections. The resulting pure JS application is
then executed by in-situ concolic testing. Newly generated test data is fed back
to the JS testing framework to drive further concolic testing.

4 Implementations

In this section, we demonstrate the feasibility of our approach to concolic testing
of front-end JS functions by implementing it on two popular JS testing frame-
works, namely Puppeteer and Jest assisted by the React testing library [18,14].

4.1 Implementation on Puppeteer

Puppeteer is a testing framework developed by the Chrome team and imple-
mented as a Node.js library [14]. It provides a high-level API to interact with
headless (or full) Chrome. It can simulate browser functions using testing li-
braries. Puppeteer can execute JS functions residing in a web page without a
browser. Puppeteer allows us to easily navigate pages and fetch information
about those pages. In the implementation of our approach on Puppeteer, we
augment it with the implementation of the function interceptor to identify
the targeted web JS functions and extract their execution contexts from the web
pages and encapsulate them for in-situ concolic testing.

Encapsulating JS Web Function with Execution Context As shown
in Figure 7, Puppeteer communicates with the browser [15]. One browser in-
stance can own multiple browser contexts. A Browser Context instance defines
a browsing session and can have more than one pages. The Browser Context

provides a way to operate an independent browser session [3]. A Page has at least
one frame. Each frame has a default execution context. The default execution
context is where the frame’s JavaScript is executed. This context is returned by
frame.executionContext() method, which gives the detail about a page frame.
We implement the function interceptor in the Execution Context class un-
der the browser context to collect necessary information for encapsulating a JS
function with its associated web execution context. The Execution Context class
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Fig. 7: How Puppeteer executes a JS function in a web page

represents a context for JS execution in the web page. We modified it to identify
the page function, its arguments and return value [5]. The pageFunction is the
function in the HTML page to be evaluated in the execution context, which is in
a pure JS form. For example, Listing 1.1 shows a front-end application example
written with the Express web development framework [6]. This example contains
a web page (from line 7 to line 17) with a JS web function marked by <script>

tag in line 15. The ${path} points to the JS file that contains the implemen-
tation of the JS web function, as shown in Listing 1.2. Our approach is able to
encapsulate the pure JS form of the web JS function (its implementation) with
its associated web execution context.

Listing 1.1: An example of a front-end web application using Express framework

1 const app = express ()

2 .use(middleware(compiler , { serverSideRender: true }))

3 .use((req , res) => {

4 const webpackJson =

res.locals.webpack.devMiddleware.stats.toJson ()

5 const paths = getAllJsPaths(webpackJson)

6 res.send(

7 ‘<!DOCTYPE html>

8 <html>

9 <head>

10 <title>Test </title>

11 </head>

12 <body>

13 <div id="root"></div>

14 ${paths.map ((path) =>

15 ‘<script src="${path}"></script>‘).join(’’)}
16 </body>

17 </html>‘

18 )

19 })

Listing 1.2: An example of a front-end JS script under Express framework
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1 function foo(args) {

2 if(args === ’foo’){

3 return ’match ’;

4 }

5 return ’not match ’;

6 }

7 module.exports = foo;

Execution Context Tracing Customization We utilize the page.evaluate
function of the Puppeteer testing framework to drive the JS function under test
and extend it with the function interceptor. As described in Figure 8, to
enable customized execution context tracing, the function interceptor intro-
duces symbolic variables and set the starting point for tracing within the web
execution context of the JS function wrapped by the <script> tag in the web
page. This way, we make it possible for the test runner to initiate concolic test-
ing when it starts running the test suites so that JS function can be tested
concolically and automatically without tracing additional overheads. Since the
Execution Context is triggered by the evaluate function in unit tests. We tar-
get applications from GitHub that uses Puppeteer to test front-end features and
utilizes evaluate in unit testing. We will discuss the results later in Section 5.

//pageFunction

x => {

function foo(x) {

if (args === 'foo') { return 'match';}

return 'not match';

}

module.exports = foo;

}

//Mark symbolic value and set tracing start point

%MarkSymbolic(Object.values(arguments)[2]);

%StartTracing();

//where the JS function is executed

rs = Runtime.callFunction(foo);

return rs;

Execution Context

Arguments

pageFunction

returnByValue

//Arguments

{ '0': true, 

'1': [Function],

'2': 'test' 

}

Runtime.callFunction

function interceptor

Fig. 8: How we set symbolic variables in the execution context and enable cus-
tomized execution context tracing in Puppeteer

4.2 Implementation on Jest with React Testing Library

Another implementation of our approach is on the Jest testing framework as-
sisted by the React testing library for unit testing. The React testing library is
a lightweight library for testing React components that wrap the JS functions
with the HTML elements [18]. As shown in Figure 9, there are three components
in the application as indicated by the numbers. Components allow the splitting
of a UI into independent, reusable pieces, and designing each piece in isolation.
React is flexible; however, it has a strict rule: all React components must act as
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pure functions with respect to their inputs [16]. We refer to them as ”functional
components”. They accept arbitrary inputs (called “props”) and return React
elements describing what should appear on the web page [17]. An individual
component can be reused in different combinations. Therefore, the correctness
of an individual component is important with the respect to the correctness of
their compositions. In our implementation, we only consider components that
have at least one input.

Account Panel

Search...

Click Me!

Account ID Name

xxx xxx 

xxx xxx

3

2

1

Fig. 9: Example React Compo-
nents

Jest has a test runner, which allows us to
run tests from the command line. Jest also
provides additional utilities such as mocks,
stubs, etc., besides the utilities of test cases,
assertions, and test suites. We use Jest’s mock
data to set up the testing environment for the
front-end components defined with React. Fig-
ure 10 shows how we leverage and extend Jest
assisted by React testing library to apply the
in-situ concolic testing to React component.
To encapsulate the JS function in the com-
ponent with its execution context, we aug-

mented the render function, whose functionality is to render the React com-
ponent function and props as an individual unit for Jest to execute from the
web page, with the function interceptor. Through the render function, the
function interceptor extracts a complete execution context for the functional
component and intercepts the JS function wrapped in the functional component
indicated by the arrows in Figure 10. To enable customized execution context
tracing, the function interceptor then marks symbolic variables and starts
tracing after the completion of the encapsulation. At last, we configure Jest ’s
test runner to run each unit test individually while initiating in-situ concolic exe-
cution so that we can obtain the most concise execution traces for later symbolic
analysis.

Fig. 10: How to apply in-situ concolic testing on React components using Jest
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5 Evaluations

For evaluations, we apply our approach to in-situ concolic testing on front-end
JS web application projects that come with unit test suites. They are utilizing
Jest with React testing library and Puppeteer. In these evaluations, we target
the String and Number types as symbolic variables for the functions under test.

5.1 Evaluation of Puppeteer Implementation on Github Projects

We have selected 21 GitHub projects utilizing Puppeteer. We test them using the
Puppeteer framework extended with our concolic testing capability. As a result,
we discovered 4 bugs triggered from their web pages and 2 of them originated
from their dependency libraries.

Evaluation Setup We selected GitHub projects with the following properties
as as our targets:

(1) They use Puppeteer for unit testing of their JS web features;
(2) They have JS functions in web pages and such functions have at least one

argument whose type is string or number;
(3) They utilize evaluate in their unit tests.

We have developed a script based on such properties and used the searching API
provided by GitHub to collect applicable projects [20]. 21 projects were collected.
Table 1 summarizes the demographics of the 21 GitHub projects collected by our
script. We calculated the statistics using ls-files [7] combined with cloc provided
by GitHub [8]. The LoC/JS is the LoC (lines of code) of all JS files, which includes
the JS files of the libraries the project depends on. The LoC/HTML is the LoC of
HTML files, which indicates the volume of its front-end web contents. The LoC of
unit tests (LoC/unit test) includes the unit test files ending with .test.js. The
test ratio is the ratio between the LoC/unit test over the LoC/JS, indicating the
availability of unit tests for the projects. Before evaluation, we configure these
projects to use the extended Puppeteer framework instead of the original one.

Result Analysis We ran each project with our approach for 30 minutes. On
average, our implementation generates 200 to 400 test cases for each function.
Table 2 summarizes the bugs detected. For polymer, our method generates two
types of test cases that trigger two different bugs in user password validation
functionalities of the project: 1) a generated test case induces execution to skip
an if branch, which causes the password to be undefined, leading to the condi-
tion !password || this.password === password to return true, which should
have returned false. We have fixed this bug by changing the operator || to &&.
2) test cases containing unicode characters fail password pattern matching using
regular expression without g flag, i.e., /[!@#$%&̂*(),.?":|<>]/.test(value).
For InsugarTrading, a test case of a string not containing comma is generated for
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Table 1: Selected Projects that utilize Puppeteer for unit testing
name LoC/JS LoC/HTML LoC/unit test test ratio

keepfast 15835 514 58 8.61
DragAndScale* 982 16 370 77.49
affiliate 306 13 197 64.37
ecowetrics 3363 339 0 0
phantomas 5973 655 1440 24.10
polymer* 5399 157 2045 37.87
Insugar* 1967 32 410 20.84
wolkenkit* 1618 15 0 0
vidi 192048 2430 3505 1.82
vue* 849 125 0 0
weatherzen 333 45 0 0
querystringme 835 12 191 22.87
avocode* 5330 9 0 0
Odoo 1303 528 92 7.06
easy 54620 25141 4081 7.47
drag-and-scale 1100 24 548 88.09
My-first* 22729 808 0 0
boxtree 2033 48 1434 70.53
foundation 967 0 18 1.86
treezjs 109975 1475 8519 7.74
TicTacToe 543 442 243 44.75

str.split(’,’) function. The return value of an empty array causes errors in
the dependency library cookie-connoisseur. A number out-of-bound error is
discovered in the changeCell() function of TicTacToe. For phantomas, function
phantomas has a check for url to be the string type but does not have pattern
matching for it. A generated test case with an invalid url causes an exception
in function addScriptToEvaluateOnNewDocument of chromeDevTools.

Table 2: Bugs detected in web applications using Puppeteer from Github
GitHub Projects Bugs Error Sources

polymer Passwords fail validate and match validator-match.js

InsugarTrading Empty array caused by invalid string cookie-connoisseur

TicTacToe changeCell() out of bound game.js

phantomas Invalid string for url due to lack of pattern
matching

chromeDevTools

We identified two traits of the projects for which we did not detect bugs
in. (1) A project does not fit the design of our Puppeteer implementation, i.e.,
evaluate is not used in the test suite. (2) The applicable JS part is small and
well tested.

5.2 Evaluation of Jest Implementation on Metamask

In evaluation of the implementation of our concolic testing approach on Jest,
we focus on Metamask’s browser extension for Chrome. MetaMask is a software
crypto-currency wallet used to interact with the Ethereum blockchain. It allows
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users to access their Ethereum wallet through a browser extension or mobile
app, which can then be used to interact with decentralized applications [12].
Metamask extension utilizes the render functionality for testing JS functions in
React components. We focus on front-end JS web functions, React component
functions in particular. They reside in the ui folder of the metamask-extension
project.

Testing Coverage Statistics of Metamask We select the ui folder as our
evaluation target for two reasons: (1) React components of metamask-extension
are mostly defined and implemented under this folder; (2) the functions in this
folder is under tested. Figure 11 shows the current testing coverage statistics of
the ui folder of metamask-extension [1]. We can see that only one sub-folder of
ui (which also happens to be named as ui) has a relatively high coverage of
82.03%. Most other folders have coverage under 70% or even lower coverage.

Fig. 11: Coverage statistics of ui folder of Metamask-extension

Evaluation Setup In the unit testing workflow of metamask-extension, there is
a global configuration for all unit test suites of UI components. This is because
one component’s functionality may depend on other components. Therefore,
metamask-extension needs to be executed as an instance to support unit testing.
To evaluate the implementation of in-situ concolic testing for React components,
we need an independent environment for each component function wrapped with
a single test file. This test file only contains one function under test. Therefore,
each test file is an independent in-situ concolic testing runner for a function in a
component. We implement an evaluation setup script to complete this task. This
script automatically prepares the evaluation environment for in-situ concolic
testing of a React component. Specifically, it does the following work under the
folder where the target component resides:

– Jest Configuration. Configure Jest for the individual component test file
with an independent jest.config.js

– Babel Configuration. Configure Babel for the component test file to take JS
native syntax, which is required by in-situ concolic testing. This is because
metamask-extension JS source files are transformed using Babel.
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– Dependency Installation. Collect and install dependencies for the target com-
ponent. Such dependencies can be components or libraries.

Result Analysis After we set up the evaluation environment, we can conduct
our evaluation in a sandbox on the test network of Metamask. We have uncovered
3 bugs and 1 test suite improvement as shown in Table 3. We have filed them as
bug reports through GitHub. They have been accepted by Metamask develop-
ers. Along the way, we also found some similar test cases that Metamask ’s bot
reported.

Table 3: Bugs Detected in Metamask under UI folder
Features Bugs Functions

buy-eth Missing checks for if the returned url is null
causes page to return 500 in test network

buyEth

token-search Syntax error without boundary checking isEqualCase-
Insensitive

ens-input No NULL check for function argument isValidDomainName

advanced-gas-fee Show error if gas limit is not in range gasLimit

For the buy-eth feature as shown in Figure 12, a test network error with a
respond code of 500 was triggered when testing the Ether deposit functionality.
Concolic testing generates a test case of an invalid chainId for buyEth(), which
is defined in the DepositEtherModal component. It is wrapped by a <Button>

tag and can be triggered by onClick(). buyEth() calls into buyEthUrl(), which
retrieves a url for buyEth() function. Because buyEthUrl() did not check if the
url is valid or null before it calls openTab(url) with the returned url. And
there is also no validation for input in the component implementation. Addi-
tionally, this process was not wrapped in a try/catch block. We caught this
error in our evaluation. We tested 16 component folders and discovered that
metamask-extension most likely will ignore input checking if inputs are not di-
rectly from users. chainId is retrieved from mock data in this case, which is
generated by our concolic engine.

render(){chainId, buyEth}

return (<div> ...

//Component has no input checking

<Button 

onButtonClick=buyEth(chainId)/>

... </div>)

DepositEtherModal

buyEth(chainId) {...

var url=getBuyEthUrl(chainId);

//no validation of url.

var re=openTab(url);

//invalid chaidId cause empty url.

...}

Test("buyEth", ()=>{

let tc=render(<DepositEtherModal

onClick=mockProp>)

var chainId = "0x4";

%MarkSymbolic(chainId);

%StartTracing()

tc.buyEth(ChainId);})

Test Runner

actoin.js

Fig. 12: Error trace of the bug discovered in buy-eth
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For the token-search feature, we uncovered a bug triggered by an empty
string. In the TokenSearch component, function handleSearch() is wrapped
by <TextField> with onChange method. It calls isEqualCaseInsensitive()

with an empty string as its second argument without boundary checking. Func-
tion isEqualCaseInsensitive is defined in utils.js, which provides shared
functions. We found that the unit testing for utils.js do not have test suites
for that function, while the same bug is not found in the experiment conducted
on the send.js file. In send.js, function validateRecipientUserInput also
calls the incorrect function isEqualCaseInsensitive. However, since send.js

checks for both empty string and null inputs before calling the faulty function,
it avoids the potential error in utils.js.

For the ens-input feature, in the onChange method of component EnsInput’s
<input/>, the function isValidDomain is called. Our approach generated test
cases with unacceptable ASCII characters in the domain name, e.g., %ff.bar.
We replay this test case, function isValidDomain returns true when it should
return false. In Listing 1.3, function isValidDomain returns the value of the
condition match !== undefined. This test case made through regex matching
and returned null but null is not equal to undefined in JS.

Listing 1.3: A code segment of utils.js with function isValidDomain showing
incorrect behavior in line 8

1 function isValidDomainName (\%ff.bar) {

2 var match = punycode

3 .toASCII(address)

4 .match(

5 /^(?:[a-z0 -9](?:[ -a-z0 -9]*[a-z0 -9]) ?\.)+[a-z0 -9][-a

-z0 -9]*[a-z0 -9]$/u,
6 );

7 // After match function , returning string match=null;

therefore , match !== undefined return true.

8 return match !== undefined;

9 }

For the advanced-gas-fee feature, we found the updateGasLimit(gasLimit)

function (expecting a numeric input) in the <FormField> component has wrong
behavior when given a string input containing only digits such as "908832".
The function simply sets the gas limit to 0 without emitting error. We do not
consider this as a bug since component <FormField> restricted the input to be
numeric in the HTML element. After we filed it, this has been marked with the
area-testSuite tag on GitHub by developers as a test suite improvement.

6 Related Work

Our approach is closely related to work on symbolic execution for JS. Most of
them aim at back-end/standalone JS programs, primarily target specific bug
patterns and depend on whole-program analysis. Jalangi works on pure JS pro-
grams and instruments the source JS code to collect path constraints and data
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for replaying [38]. COSETTE is another symbolic execution engine for JS using
an intermediate representation, namely JSIL, translated from JS [36]. ExpoSE
applies symbolic execution on standalone JS and uses JALANGI as its symbolic
execution engine. ExpoSE’s contribution is in addressing the limitation that
JALANGI has, which is to support regular expressions for JS [33]. There are
few symbolic analysis frameworks for JS web applications. Oblique injects sym-
bolic JS library into the page’s HTML. When a user loads the page, it conducts
a symbolic page load to explore the possible behaviors of a web browser and a
web server during the page load process. It generates a list of pre-fetch url for
client-side to speed up page load [30]. It is an extension of the ExpoSE concolic
engine. SymJS is a framework for testing client-side JS script and mainly focus
on automatically discovering and exploring web events [31]. It modifies Rhino
JS engine for symbolic execution [27,19]. Kudzu targets AJAX applications and
focuses on discovering code injection vulnerabilities by implementing a dynamic
symbolic interpreter that takes a simplified intermediate language for JS [37].
To the best of our knowledge, there has been no publicly available symbolic
execution engines targeting JS functions embedded in front-end web pages [32].

Another related approach to JS testing is fuzzing, which typically uses code
coverage as feedback to test generation. There are a few fuzzers for JS, e.g.,
jsfuzz [11] and js-fuzz [10], which are largely based on the fuzzing logic of AFL
(American fuzzy lop) [2] and re-implemented it for JS. We view fuzzing and
symbolic/concolic testing as complementing techniques: fuzzing for broader ex-
ploration of JS while symbolic/concolic testing for deeper exploration.

7 Conclusions

We have presented a novel approach to apply concolic execution to front-end
JS. The approach makes use of an in-situ concolic executor for JS and leverages
the functionality of JS testing frameworks as test runners and web content ex-
tractors. Our approach works in three steps: (1) extracting JS functions from
web pages using with JS testing framework; (2) integrating the in-situ concolic
testing interface in the execution context for the JS Web functions; (3) utilizing
the testing framework’s test runner and its mock data as the driver for concolic
execution to generate additional test data for the JS web function under test.

We have conducted evaluation on open-source projects from Github and on
Metamask ’s UI features, which are proper targets for our implementations on
Puppeteer and Jest respectively. We have found bugs in each evaluation, whose
bug reports have been accepted on GitHub. This contributes to both bug finding
and test suite improvement for the applications tested. The results show that
our approach to concolic testing frontend JS is both practically and effective.
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National Science Foundation (Grant #: 1908571).

84



Concolic Testing of Front-end JavaScript

References

1. Metamask-extension coveralls. https://coveralls.io/github/MetaMask/

metamask-extension (Mar 2021)

2. Afl: American fuzzy lop. http://lcamtuf.coredump.cx/afl/ (Jan 2022)

3. Browser context. https://pptr.dev/api/puppeteer.browser (Oct 2022)

4. Building a javascript testing framework. https://cpojer.net/posts/

building-a-javascript-testing-framework#building-a-testing-framework

(Oct 2022)

5. Executioncontext class. https://pub.dev/documentation/puppeteer/latest/

puppeteer/ExecutionContext-class.html (Oct 2022)

6. Express. https://expressjs.com/ (Oct 2022)

7. git-ls-files. https://git-scm.com/docs/git-ls-files (Oct 2022)

8. git-ls-files. https://github.com/AlDanial/cloc (Oct 2022)

9. Zhe, L., Fei, X.: In-situ concolic testing of javascript. In: Proceedings of the 30th
IEEE International Conference on Software Analysis, Evolution and Reengineering
(2023)

10. js-fuzz. https://github.com/connor4312/js-fuzz (Jan 2022)

11. Jsfuzz: coverage-guided fuzz testing for javascript. https://github.com/

fuzzitdev/jsfuzz (Jan 2022)

12. Metamask. https://metamask.io/ (Oct 2022)

13. Node.js. https://nodejs.org/en/ (Oct 2022)

14. Puppeteer. https://pptr.dev/ (Oct 2022)

15. Puppeteer architecture. https://devdocs.io/puppeteer (Oct 2022)

16. React component. https://reactjs.org/docs/react-component.html (Oct
2022)

17. React component. https://reactjs.org/docs/components-and-props.html

(Oct 2022)

18. React testing library. https://testing-library.com/docs/

react-testing-library/intro/ (Oct 2022)

19. Rhino: Javascript in java. http://mozilla.github.io/rhino (Oct 2022)

20. Search: The search api lets you to search for specific items on github. https:

//docs.github.com/en/rest/search (Oct 2022)

21. Six essential frameworks for creating automated tests. https://dzone.com/

refcardz/javascript-test-automation-frameworks (Oct 2022)

22. Understanding v8’s bytecode. https://medium.com/dailyjs/

understanding-v8s-bytecode-317d46c94775 (Oct 2022)

23. Usage statistics of javascript as client-side programming language on websites.
https://w3techs.com/technologies/details/cp-javascript (Oct 2022)

24. v8. https://v8.dev/ (Oct 2022)

25. Araki, L.Y., Peres, L.M.: A systematic review of concolic testing with aplication
of test criteria. In: ICEIS (2018)

26. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A sur-
vey of symbolic execution techniques. ACM Comput. Surv. 51(3) (May 2018).
https://doi.org/10.1145/3182657, https://doi.org/10.1145/3182657

27. JIN, X.o., ZHONG, B.y., LI, X.: Research and implementation of interpreting
javascript dynamic web page based on rhino engine [j]. Computer Technology and
Development 2(002) (2008)

85

https://coveralls.io/github/MetaMask/metamask-extension
https://coveralls.io/github/MetaMask/metamask-extension
http://lcamtuf.coredump.cx/afl/
 https://pptr.dev/api/puppeteer.browser
https://cpojer.net/posts/building-a-javascript-testing-framework#building-a-testing-framework
https://cpojer.net/posts/building-a-javascript-testing-framework#building-a-testing-framework
 https://pub.dev/documentation/puppeteer/latest/puppeteer/ExecutionContext-class.html
 https://pub.dev/documentation/puppeteer/latest/puppeteer/ExecutionContext-class.html
https://expressjs.com/
 https://git-scm.com/docs/git-ls-files
 https://github.com/AlDanial/cloc
https://github.com/connor4312/js-fuzz
https://github.com/fuzzitdev/jsfuzz
https://github.com/fuzzitdev/jsfuzz
 https://metamask.io/
https://nodejs.org/en/
https://pptr.dev/
 https://devdocs.io/puppeteer
 https://reactjs.org/docs/react-component.html
 https://reactjs.org/docs/components-and-props.html
 https://testing-library.com/docs/react-testing-library/intro/
 https://testing-library.com/docs/react-testing-library/intro/
http://mozilla.github.io/rhino
https://docs.github.com/en/rest/search
https://docs.github.com/en/rest/search
https://dzone.com/refcardz/javascript-test-automation-frameworks
https://dzone.com/refcardz/javascript-test-automation-frameworks
https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775
https://medium.com/dailyjs/understanding-v8s-bytecode-317d46c94775
https://w3techs.com/technologies/details/cp-javascript
https://v8.dev/
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657


Z. Li and F. Xie

28. Jueckstock, J., Kapravelos, A.: Visiblev8: In-browser monitoring of javascript
in the wild. In: Proceedings of the Internet Measurement Conference. p.
393–405. IMC ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3355369.3355599, https://doi.org/10.

1145/3355369.3355599

29. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),
385–394 (jul 1976). https://doi.org/10.1145/360248.360252, https://doi.org/10.
1145/360248.360252

30. Ko, R., Mickens, J., Loring, B., Netravali, R.: Oblique: Accelerating page loads
using symbolic execution. In: 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). pp. 289–302. USENIX Association (Apr
2021), https://www.usenix.org/conference/nsdi21/presentation/ko

31. Li, G., Andreasen, E., Ghosh, I.: Symjs: automatic symbolic testing of javascript
web applications. In: Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering. pp. 449–459 (2014)

32. Li, Y.F., Das, P.K., Dowe, D.L.: Two decades of web application testing—a survey
of recent advances. Information Systems 43, 20–54 (2014)

33. Loring, B., Mitchell, D., Kinder, J.: Expose: practical symbolic execution of stan-
dalone javascript. In: Proceedings of the 24th ACM SIGSOFT International SPIN
Symposium on Model Checking of Software. pp. 196–199 (2017)

34. Mirshokraie, S., Mesbah, A., Pattabiraman, K.: Jseft: Automated javascript unit
test generation. In: 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST). pp. 1–10. IEEE (2015)

35. Powers, B., Vilk, J., Berger, E.D.: Browsix: Bridging the gap between unix
and the browser. In: Proceedings of the Twenty-Second International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems. p. 253–266. ASPLOS ’17, Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3037697.3037727, https://doi.org/

10.1145/3037697.3037727
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Abstract. ML systems have become an essential tool for experts of
many domains, data scientists and researchers, allowing them to find an-
swers to many complex business questions starting from raw datasets.
Nevertheless, the development of ML systems able to satisfy the stake-
holders’ needs requires an appropriate amount of knowledge about the
ML domain. Over the years, several solutions have been proposed to
automate the development of ML systems. However, an approach tak-
ing into account the new quality concerns needed by ML systems (like
fairness, interpretability, privacy, and others) is still missing.
In this paper, we propose a new engineering approach for the quality-
based development of ML systems by realizing a workflow formalized as
a Software Product Line through Extended Feature Models to generate
an ML System satisfying the required quality constraints. The proposed
approach leverages an experimental environment that applies all the set-
tings to enhance a given Quality Attribute, and selects the best one. The
experimental environment is general and can be used for future quality
methods’ evaluations. Finally, we demonstrate the usefulness of our ap-
proach in the context of multi-class classification problem and fairness
quality attribute.

Keywords: Machine Learning System · Software Quality · Feature Mod-
els · Software Product Line · Low-code development

1 Introduction

Machine Learning (ML) systems are increasingly becoming used instruments,
applied to all application domains and affecting our real life. The development
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of ML systems usually requires a good knowledge of the underlying ML ap-
proaches to choose the best techniques and models to solve the targeted prob-
lem. Many methods have been developed in the last years to automate some
ML systems development phases and help non-technical users [61,31,34]. How-
ever, these techniques do not consider the quality properties essential for ML
systems, such as dataset’s Privacy, model’s Interpretability, Explainability, and
Fairness [50,46,12]. Indeed, if we consider the impact that ML applications have
in our lives, it is clear how assuring that these quality properties are satisfied
is of paramount importance (look for instance at some of the 17 sustainable
development goals proposed by the United Nations [51]).

In this paper, we present MANILA (Model bAsed developmeNt of machIne
Learning systems with quAlity), a novel approach which will democratize the
quality-based development of ML systems by means of a low-code platform [62].
The goal of our approach is to provide an environment for the automatic con-
figuration of experiments that automatically selects the ML System (i.e., ML
Algorithm and quality enhancing method) better satisfying a given quality re-
quirement. The requirement is satisfied by finding the best trade-off among the
involved quality attributes. This will simplify the work of the data scientist and
will make the quality-based development of ML systems also accessible to non-
technical users (in other words, democratize).

Hence, the main contributions of this paper are the following:

– The identification of key quality attributes in ML systems by selecting the
more adopted ones in the literature;

– The specification and realization of a general workflow for the quality-based
development of ML systems. This workflow is derived from our experience
in the quality-based development of ML systems. It leverages an experimen-
tal environment that evaluates all the methods to enhance a given quality
attribute, and selects the one performing better. Such workflow can be mod-
elled as a Software Product Line (SPL);

– The specification of an Extended Feature Models (ExtFM) [38,9] that imple-
ments the SPL, where the variation points are identified by all the compo-
nents needed to generate a quality experiment. The ExtFM guides the data
scientist through a low-code workflow configuration;

– The generation, from the workflow configuration, of an actual Python im-
plementation of the experiment to find the ML System that better satisfies a
given quality constraint. The generated experimental environment is general
and can be used in the future to evaluate other methods to enhance a given
quality property.

This paper is organized as follows: in section 2 we discuss related works
related to quality engineering of ML systems.In section 3, we present the selected
quality attributes and discuss how they affect ML systems. Section 4 is devoted
to presenting a general workflow to choose the ML system achieving the best-
given quality attributes. This general workflow has been the motivating scenario
for MANILA. In section 5, we present MANILA by describing in detail the
implemented ExtFM and explaining each step of the quality-based development
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of ML systems. Section 6 is dedicated to a proof of concept of the developed
modelling framework by reproducing a case study. Section 7 describes some
threats to validity, and finally, section 8 presents some discussions, describes
future work, and wraps up the paper.

2 Related Work

The problem of quality assurance in machine learning systems has gained much
relevance in the last years. Many articles highlight the needing of defining and
formalizing new standard quality attributes for machine learning systems
[30,65,70] [50,12,46]. Most of the works in the literature focus either on the
identification of the most relevant quality attributes for ML systems or on the
formalization of them in the context of ML systems development.

Concerning the identification of quality attributes in ML systems, the au-
thors of [40,72] identify three main components in which quality attributes can
be found: Training Data, ML Models and ML Platforms. The quality of
Training Data is usually evaluated with properties such as privacy, bias, num-
ber of missing values, expressiveness. For ML Model, the authors mean the
trained model used by the system. The quality of this component is usually
evaluated by fairness, explainability, interpretability, security. Finally, the ML
Platform is the implementation of the system, which is affected mostly by se-
curity and performance reliability and availability. Muccini et al. identify in [50]
a set of quality properties as stakeholders’ constraints and highlight the need-
ing of considering them during the Architecture Definition phase. The quality
attributes are: data quality, ethics, privacy, fairness, ML models’ performance,
etc. Martinez-Fernàndez et al. also highlight in [46] the needing of formalizing
quality properties in ML systems and to update the software quality require-
ments defined by ISO 25000 [36]. The most relevant properties highlighted by
the authors concern: ML safety, ML ethics, and ML explainability. In our work,
we focus on quality properties that arises during the development of ML systems
such as, fairness, explainability, interpretability, and dataset’s privacy, while we
leave other quality properties (e.g., performance) that arises during other phases
(e.g., deployment) for future works.

Many solutions have been proposed to formalize and model standard quality
assurance process in ML systems. Amershi et al., have been the first authors
to identify a set of common steps that identify each ML system development
[5]. In particular, each ML system is identified by nine stages that go from data
collection and cleaning, to model training and evaluation, and finally to the de-
ployment and monitoring of the ML model. Their work has been the foundation
of many subsequent papers on quality modelling of ML systems. CRISP ML
(Cross-Industry Standard Process model for Machine Learning) is a process
model proposed by Studer et al. [66], extending the more known CRISP DL
[45] process model to ML systems. They identify a set of common phases for
the building of ML systems namely: Business and Data understanding, Data
preparation, Modeling, Evaluation, Deployment, Monitoring and Maintenance.
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For each phase, the authors identify a set of functional quality properties to
guarantee the quality of such systems. Similarly, the Quality for Artificial In-
telligence (Q4AI ) consortium proposed a set of guidelines [32] for the quality
assurance of ML systems for specific domains: generative systems, operational
data in process systems, voice user interface system, autonomous driving and
AI OCR. For each domain, the authors identify a set of properties and met-
rics to ensure quality. Concerning the modelling of quality requirements, Azimi
et al. proposed a layered model for the quality assurance of machine learning
systems in the context of Internet of Things (IoT) [7]. The model is made of
two layers: Source Data and ML Function/Model. For the Source Data, a set of
quality attributes are defined: completeness, consistency, conformity, accuracy,
integrity, timeliness. Machine learning models are instead classified into predic-
tors, estimators and adapters and a set of quality attributes are defined for each
of them: accuracy, correctness, completeness, effectiveness, optimality. Each sys-
tem is then influenced by a subset of quality characteristics based on the type
of ML model and the required data. Ishikawa proposed, instead, a framework
for the quality evaluation of an ML system [35]. The framework defines these
components for ML applications: dataset, algorithm, ML component and system,
and, for each of them, proposed an argumentation approach to assess quality.
Finally, Siebert et al. [64] proposed a formal modelling definition for quality re-
quirements in ML systems. They start from the process definition in [45] and
build a meta-model for the description of quality requirements. The meta-model
is made of the following classes: Entity (which can be defined at various levels
of abstraction, such as the whole system or a specific component of the system),
Property (also expressed at different levels of abstraction), Evaluation and Mea-
sure related to the property. Starting from this meta-model, the authors build
a tree model to evaluate the quality of the different components of the system.
From this analysis, we can conclude that there is a robust research motivation in
formalizing and defining new quality attributes for ML systems. Many attempts
have been proposed to solve these issues, and several quality properties, metrics
and definitions of ML systems can now be extracted from the literature. However
a framework that actually guides the data scientist through the development of
a ML systems satisfying quality properties is still missing.In this paper, we aim
to solve these concerns by proposing MANILA, a novel approach which will de-
mocratize the quality-based development of ML systems by means of a low-code
platform. In particular, we model a general workflow for the quality-based de-
velopment of ML systems as a SPL through the ExtFM formalism. Next, we
demonstrate how it is possible to generate an actual implementation of such
workflow from a low-code experiment configuration and how this workflow is
actually able to find the best methods to satisfy a given quality requirement.
Recalling the ML development process of [5], MANILA focuses on the model
training and model evaluation development steps by guiding the data scientist
in selecting the ML system (i.e., ML algorithm and quality-enhancing method)
better satisfying a given quality attribute.
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Concerning the adoption of Feature Models to model ML systems, a similar
approach has been used by Di Sipio et al. in [24]. In their work, the authors use
Feature Models to model ML pipelines for Recommender Systems. The variation
points are identified by all the components needed to implement a recommender
system (e.g., the ML algorithm to use or the python libraries for the implemen-
tation). However, they do not consider quality attributes in their approach.

Finally, concerning assessing quality attributes in ML systems, there is an
intense research activity primarily related to the fairness-testing domain [20].
In general, the problem of fairness assurance can be defined as a search-based
problem among different ML algorithms and fairness methods [20]. Many tools
have been proposed for the automatic fairness test, such as [18,63,69] to cite
a few. However, these tools tend to require programming skills and thus are
unfriendly to nontechnical stakeholders [20]. In our work, we aim to fill this
gap by proposing a low-code framework that, generating and executing suitable
experiments, supports (also not expert) users in the quality-based development
of ML systems, by returning the trained ML model with best quality.

3 Considered Quality Attributes

In software engineering, a quality requirement specifies criteria that can be used
to quantify or qualify the operation of a system rather than to specify its be-
haviours [19]. To analyse an ML system from a qualitative perspective, we must
determine the Quality Attributes (QA) that we can use to judge the system’s
operation, influencing the ML designers’ decisions. We refer to the literature for
ML systems to identify the QA to consider [46,50,30,40,70]. In this work, we con-
sider a sub-set of the identified QA, i.e., Effectiveness, Fairness, Interpretability,
Explainability, and Privacy.

Effectiveness. This QA is used to define how good the model must be in
predicting outcomes [13]. There are different metrics in the literature to address
the Effectiveness of an ML model. Among the most common metrics, we cite
Precision: fraction of true positives (TP) to the total positive predictions [14];
Recall : fraction of TP to the total positive items in the dataset [14]; F1 Score:
harmonic mean of Precision and Recall [67]; Accuracy : fraction of True Pos-
itives (TP) and True Negatives (TN) above the total of predictions [60]. This
attribute can be considered crucial in developing an ML system and must always
be accounted in the quality evaluation of ML systems [72,13].

Fairness. A ML model can be defined fair if it has no prejudice or favouritism
towards an individual or a group based on their inherent or acquired character-
istics identified by the so-called sensitive variables [47]. Sensitive variables are
variables of the dataset that can cause prejudice or favouritism towards individ-
uals having a particular value of that variable (e.g., sex is a very common sensi-
tive variable, and women can be identified as the unprivileged group [47,16,42]).
Several metrics can assess the discrimination of an ML system towards sen-
sitive groups (group fairness metrics) or single individuals (individual-fairness
metrics) [47,16].
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Interpretability. Interpretability can be defined as the ability of a system to
enable user-driven explanations of how a model reaches the produced conclusion
[15]. Interpretability is one QA that can be estimated without executing an ac-
tual ML system. Indeed, ML methods are classified as whitebox, i.e., interpretable
(e.g., Decision Trees or linear models), and black-box, i.e., not interpretable (e.g.,
Neural Networks) [49]. Interpretability is a very strong property that can hold
only for white-box approaches (such as decision trees). Instead, black-box meth-
ods (such as neural networks) require the addition of explainability-enhancing
methods to have their results interpretable [43].

Explainability. Explainability can be defined as the ability to make black-
box methods’ results (which are not interpretable) interpretable [43]. Enhancing
the Interpretability of black-box methods has become crucial to guarantee the
trustworthiness of ML systems, and several methods have been implemented for
this purpose [43]. The quality of explanations can be measured with several met-
rics that can be categorised as application-grounded metrics, which involve an
evaluation of the explanations with end-users, human-grounded metrics, which
include evaluations of explanations with non-domain-experts, and functionally-
grounded metrics, which use proxies based on a formal definition of interpretabil-
ity [73].

Privacy. Privacy can be defined as the susceptibility of data or datasets
to revealing private information [21]. Several metrics can assess the ability to
link personal data to an individual, the level of detail or correctness of sensitive
information, background information needed to determine private information,
etc [71].

4 Motivating Scenario

Today, a data scientist, required to realize an ML system satisfying a given
quality constraint, has no automatic support in the development process. Indeed,
she follows and manually executes a general experiment workflow aiming at
evaluating a set of ML systems obtained by assembling quality assessment and
improvement algorithms with the ones solving the specific ML tasks. By running
the defined experiment, she aims to find the optimal solution satisfying a given
QA constraint.

Algorithm 1 reports the pseudo-code of a generic experiment to assess a
generic QA during the development of an ML system. This code has been derived
from our previous experience in the quality-based development of ML Systems
and by asking researchers studying ML development and quality assessment how
they evaluate such properties during ML systems development.

The first step in the experiment workflow is selecting the dataset to use (in
this work, we assume that the dataset has already been preprocessed and is ready
to train the ML model). Next, the data scientist selects the ML algorithms, the
methods enhancing a QA, and the appropriate quality metrics for the evaluation.
Then, for each of the chosen ML algorithms, she applies the selected quality
methods accordingly to their type, there can be the following options:
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Algorithm 1: Quality-evaluation experiment pseudo-code

1 select dataset d;
2 select set of ML Algorithms;
3 select set of QA Methods and Metrics;
4 for m ∈ ML Algorithms do
5 for q ∈ QA Methods do
6 if q works on d then
7 apply q on d;

8 if q works on m before training then
9 apply q on m;

10 f = train m;
11 if q works on f then
12 apply q on f ;

13 compute selected metrics on f ;

14 choose report technique;
15 evaluate the results;
16 Q = best QA Method;
17 M = best ML Algorithm;
18 F = train M with full dataset applying Q;
19 return F

– if the quality method works on the training set, it has to be applied to the
dataset before training the ML algorithm;

– if the quality method works on the ML algorithm before training, then it
has to be applied to the ML algorithm before the training phase;

– if the method works on the trained ML algorithm (i.e., f in the code), then
it has to be applied after the training of the ML algorithm.

Finally, the data scientist computes the selected metrics for the specific pair of
ML and QA methods. After repeating the process for all the selected methods,
she chooses a report technique (e.g., table or chart), evaluates the obtained
results collected in the report and trains with the entire dataset the ML algorithm
performing better by applying the quality method that better achieves the QA.
If the data scientist has a threshold to achieve, then she can verify if at least
one of the ML and quality methods combinations satisfies the constraint. If so,
one of the suitable pair is selected. Otherwise, she has to relax the threshold and
repeat the process again.

The workflow described in Algorithm 1 can be generalized as a process of
common steps describing any experiment in the considered domain. Figure 1
sketches such a generalization. First, the data scientist selects all the features
of the experiment, i.e., the dataset, the ML Methods, the methods assuring a
specific QA and the related metrics. we call such a step Features Selection. Next,
she runs the quality methods using the general approach described in algorithm
1 and evaluates the results (namely, Experiment Execution). If the results are
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Fig. 1: Manual execution of the quality experiment workflow

satisfying (i.e., they satisfy the quality constraints), then the method with the
best QA is returned. Otherwise, the data scientist have to repeat the process.

The described workflow is the foundation of MANILA that aims to formalise
and democratise it by providing a SPL and ExtFM-based low-code framework
that supports her in development of quality ML systems.

5 MANILA Approach

In this section, we describe MANILA, a framework to formalise and democra-
tise the quality-based development of ML systems. This work is based on the
quality properties and the experiment workflow described in sections 3 and 4,
respectively.

Our approach aims to automate and ease the quality-based development
of ML systems. We achieve this goal by proposing a framework to automati-
cally generate a configuration of an experiment to find the ML system (i.e., ML
algorithm and quality enhancing method) better satisfying a given QA. This
framework will accelerate the quality-based development of ML systems making
it accessible also to not experts.

Recalling the experimental workflow described in section 4, the set of ML
models, quality methods and metrics can be considered variation points of each
experiment, differentiating them from one another. For this reason, we can think
of this family of experiments as a Software Product Line (SPL) specified by a
Feature Model [6]. Indeed, Feature Models allow us to define a template for
families of software products with standard features (i.e., components of the
final system) and a set of variability points that differentiate the final systems
[38,29]. Features in the model follow a tree-like parent-child relationship and
could be mandatory or optional [29]. Sibling features can belong to an Or-
relationship or an Alternative-relationship [29]. Finally, there could be Cross-tree
relationships among features not in the same branch. These relationships are
expressed using logical propositions [29]. However, traditional Feature Models
do not allow associating attributes to features, which are necessary in our case
to represent a proper experiment workflow (for instance, to specify the label of
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the dataset or the number of rounds in a cross-validation [58]). Hence, we relied
on the concept of Extended Feature Models [38,9] to represent the family of
experiments workflows.

MANILA

MANILA Extended Feature Model

Feature 
selection

Experiment 
generation

Experiment 
execution

Quality Attribute 1

Best Quality
Method

Quality report

Quality Attribute 2

Quality report

Best Quality
Method

Quality 
Trade-off

Extended Feature Model Meta-Model

Fig. 2: MANILA approach

Figure 2 details a high-level picture of MANILA, where each rounded box
represents a step in the quality-driven development process, while square boxes
represent artefacts. Dotted blocks represent steps which have not been imple-
mented yet and will be considered in future works.

The basis of MANILA is the Extended Feature Model (ExtFM), based on
the existing ExtFM Meta-Model. The ExtFM is the template of all possible
experiments a data scientist can perform and guides her through the quality-
based development of an ML system. The first step in the development process is
the features selection, in which the data scientist selects all the components of the
quality-testing experiment. Next, a Python script implementing the experiment
is automatically generated from the selected features. Finally, the experiment is
executed, and for each QA selected, it returns:

1. a quality report reporting for each quality method and ML algorithm the
related metrics;

2. the ML algorithm with the applied quality enhancing method that better
performs with the given QA, trained and ready for production.

In the future, MANILA will analyse the quality reports of each selected QA in
order to find the best trade-off among them (for instance, by means of Pareto-
front functions). The architecture of MANILA makes it easy to extend. In fact,
adding a new method or metric to MANILA just translates to adding a new
feature to the ExtFM and adding the proper code implementing it.

Near each step, we report the tools involved in its implementation. The source
code of the implemented artefacts is available on Zenodo [23], and GitHub [22].
In the following, we detail the ExtFM and each process step.
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5.1 Extended Feature Model

As already mentioned, the ExtFM is the basis of MANILA approach since it
defines the template of all possible experiments a data scientist can generate. It
has been implemented using FeatureIDE, an open-source graphical editor which
allows the definition of ExtFMs [68]. Figure 3 shows a short version of the im-

Fig. 3: Short version of the implemented Extended Feature Model

plemented ExtFM1. In particular, each experiment is defined by seven macro
features, which are then detailed by children’s features.

The first mandatory feature is the Dataset. The Dataset has a file exten-
sion (e.g., CSV, EXCEL, JSON, and others), and a Label which can be Binary
or Multi-Class. The Label feature has two attributes specifying his name and

1 The whole picture can be downloaded here https://anonymous.4open.science/r/

manila-101D/imgs/feature-model.png
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the positive value (used to compute fairness metrics). The Dataset could also
have one or more sensitive variables that identify sensitive groups subject to
unfairness [47]. The sensitive variables have a set of attributes to specify their
name and the privileged and unprivileged groups [47]. Finally, there is a feature
to specify if the Dataset has only positive attributes. This feature has been in-
cluded to define a cross-tree constraint with a scaler technique that requires only
positive attributes (see table 1). All these features are modelled as abstract since
they do not have a concrete implementation in the final experiment. The next
feature is a Scaler algorithm, which is not mandatory and can be included in the
experiment to scale and normalize the data before training the ML model [54].
Different scaler algorithms from the scikit-learn library [55] are listed as concrete
children of this feature. Next, there is the macro-feature representing the ML
Task to perform. This feature has not been modelled as mandatory since there
are two fairness methods (i.e. Gerry Fair and Meta Fair [39,17]) that embed a
fair classification algorithm and so, if they are selected, the ML Task can not be
specified. However, we included a cross-tree constraint requiring the selection of
ML Task if any of these two methods are selected (¬ Gerry Fair ∧ ¬ Meta Fair
⇒ ML Task). An ML Task could be Supervised or Unsupervised. A Supervised
task could be a Classification task or a Regression task and has an attribute
to specify the size of the training set. These two abstract features are then de-
tailed by a set of concrete implementations of ML methods selected from the
scikit-learn library [55]. The Unsupervised learning task could be a Clustering
or an Aggregation task. At this stage of the work, these two features have not
been detailed and will be explored in future works. Next is the macro feature
representing the system’s Quality Attributes. This feature is detailed by the four
quality attributes described in section 3. Effectiveness is not included in these
features since it is an implicit quality of the ML methods and does not require
adding other components (i.e. algorithms) in the experiment. At the time of this
paper, the Fairness quality has been detailed, while the other properties will be
deepened in future works. In particular, Fairness methods can be Pre-Processing
(i.e. strategies that try to mitigate the bias on the dataset used to train the
ML model [47,37,27]), In-Processing (i.e. methods that modify the behaviour
of the ML model to improve fairness [47,3]), and Post-Processing (i.e. methods
that re-calibrate an already trained ML model to remove bias [47,56]). These
three features are detailed by several concrete features representing fairness-
enhancing methods. In selecting such algorithms, we selected methods with a
solid implementation, i.e., algorithms integrated into libraries such as AIF360
[8] or Fairlearn [11] or algorithms with a stable source code such as DEMV
[26] or Blackbox [56]. All these quality features have been implemented with an
Or-group relationship. Forward, the macro feature represents the Metrics to use
in the experiment. Metrics are divided among Classification Metrics, Regression
Metrics and Fairness Metrics. Each metric category has a set of concrete metrics
selected from the scikit-learn library [55] and the AIF360 library [8]. Based on
the ML Task and the Quality Attributes selected, the data scientist must select
the proper metrics to assess Correctness and the other Quality Attributes. This
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constraint is formalized by cross-tree relationships among features (see table 1).
In addition, a set of Aggregation Functions must be selected if more than one
metric is selected. The aggregation function combines the value of the other
metrics to give an overall view of the method’s behaviour. Forward, there is the
optional macro feature identifying the Validation function. Validation functions
are different strategies to evaluate the Quality Attributes of an ML model [57].
Several Validation functions are available as children features, and there is an
attribute to specify the number of groups in case of cross-validation [57]. The
last macro-feature is related to the presentation of the results. Recalling the
experiment workflow described in section 4, the results are the metrics’ values
derived from the execution of the experiment. The results can be presented in
a tabular way or using proper charts. Different chart types are available as con-
crete children features. Finally, table 1 lists the cross-tree constraints defined

Table 1: Extended Feature Model cross-tree constraints
Cross-tree constraints

Single Sensitive Var⇒ ¬ Sampling ∧ ¬ Blackbox ∧ ¬ DIR

Fairness ⇒ Sensitive Variables

MultiClass⇒ ¬ Reweighing ∧ ¬ DIR ∧ ¬ Optimized Preprocessing ∧ ¬ LFR
∧ ¬ Adversarial Debiasing ∧ ¬ Gerry Fair ∧ ¬ Meta Fair
∧ ¬ Prejudice Remover ∧ ¬ Calibrated EO ∧ ¬ Reject Option

Regression⇒ ¬ PostProcessing ∧ ¬ Reweighing ∧ ¬ DIR ∧ ¬ DEMV
∧ ¬ Optimized Preprocessing ∧ ¬ LFR ∧ ¬ Adversarial Debiasing
∧ ¬ Gerry Fair ∧ ¬ Meta Fair ∧ ¬ Prejudice Remover

Exponentiated Gradient ∨ Grid Search ⇒ ¬ MLP Classifier ∧¬ MLP Regressor

¬ GerryFair ∧¬ MetaFair ⇒ ML Task

Classification ⇐⇒ Classification Metrics ∧¬ Regression Metrics

Classification Metrics ⇐⇒ ¬ Regression Metrics

Regression ⇐⇒ Regression Metrics ∧¬ Classification Metrics

Fairness ⇒ Fairness Metrics

Box Cox Method ⇒ Strictly Positive Attributes

in our model. These constraints are useful to guide the data scientist through
selecting proper fairness-enhancing methods or metrics based on the Dataset’s
characteristics (i.e., label type or the number of sensitive variables) or the ML
Task.

5.2 Features Selection

From the depicted ExtFM, the data scientist can define her experiment by spec-
ifying the needed features inside a configuration file. A configuration file is an
XML file describing the set of selected features and the possible attribute val-
ues. The constraints among features defined in the ExtFM will guide the data
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scientist in the selection by not allowing the selection of features that are in con-
trast with already selected ones. The editor used to implement the ExtFM [68]
provides a GUI for the specification of configuration files, making this process
accessible to non-technical users.

(a) Feature selection
(b) Attribute specification

Fig. 4: Feature selection and attribute specification process

Figure 4 depicts how the features selection and attribute specification pro-
cesses are done in MANILA. In particular, figure 4a details how the features of
the Dataset are selected inside the configuration. Note how features in contrast
with already selected ones are automatically disabled by the system (e.g., the
Binary feature is disabled since the MultiClass feature is selected). This au-
tomatic cut of the ExtFM guides the data scientist in defining configurations
that always lead to valid (i.e., executable) experiments. Figure 4b details how
attributes can be specified during the definition of the configuration. In partic-
ular, the rightmost column in figure 4b displays the attribute value specified by
the data scientist (e.g., the name of the label is y, and the positive value is 2).
During the experiment generation step, a process will automatically check if all
the required attributes (e.g., label name) have been defined. Otherwise, it will
ask the data scientist to fill them.

5.3 Experiment generation

From the XML file describing an experiment configuration, it is possible to
generate a Python script implementing the defined experiment.

<feature automatic="selected" manual="undefined" name="Dataset"/

>

<feature automatic="selected" manual="undefined" name="Label">

<attribute name="Positive value" value="2"/>

<attribute name="Name" value="contr_use"/>

</feature >

<feature automatic="unselected" manual="undefined" name="Binary"

/>
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<feature automatic="undefined" manual="selected" name="

MultiClass"/>

Listing 1.1: Portion of configuration file

Listing 1.1 shows a portion of the configuration file derived from the fea-
ture selection process. In particular, it can be seen how the Dataset and the
Label features have been automatically selected by the system (features with
name="Dataset" and name="Label" and automatic="selected"), the Multi-
Class feature has been manually selected by the data scientist (feature with
name="MultiClass" and manual="selected"), and the Binary feature was not
selected (feature with name="Binary" and both automatic and manual un-
selected). In addition, the name and the value of two Label attributes (i.e.,
Positive value equal to 2 and Name equal to contr use) are reported.

The structure of the configuration file makes it easy to be parsed by a proper
script. In MANILA, we implemented a Python parser that reads the configura-
tion file given as input and generates a set of scripts implementing the defined
experiment. The parser can be invoked using the Python interpreter with the
following command shown in listing 1.2.

$ python generator.py -n <CONFIGURATION FILE PATH >

Listing 1.2: Python parser invocation

In particular, the parser first checks if all the required attributes (e.g., the
label’s name) are set. If some of them are not set, it asks the data scientist to
fill them in before continuing the parsing. Otherwise, it selects all the features
with automatic="selected" or manual="select" and uses them to fill a Jinja2
template [53]. The generated quality-evaluation experiment follows the same
structure of algorithm 1. It is embedded inside a Python function that takes
as input the dataset to use (listing 1.3). An example of a generated file can be
accessed on the GitHub [22] or Zenodo [23] repository.

def experiment(data):

# quality evaluation experiment

Listing 1.3: Quality-testing experiment signature

In addition to the main file, MANILA generates also a set of Python files
needed to execute the experiment and an environment.yml file containing the
specification of the conda [1] environment needed to perform the experiment.
All the files are generated inside a folder named gen.

5.4 Experiment Execution

The generated experiment can be invoked directly through the Python inter-
preter using the command given in listing 1.4. Otherwise, it can be called through
a REST API or any other interface such as a desktop application, or a Scien-
tific Workflow Management System like KNIME [44,10]. This generality of our
experimental workflow, makes it very flexible and suitable to many use-cases.

Extended Feature Models for Quality-Based ML Development 101



$ python main.py -d <DATASET PATH >

Listing 1.4: Experiment invocation

The experiment applies each ML algorithm with each quality method and
returns a report using the adequate selected metrics along with the method
achieving the best QA. It is worth noting how each quality method is evaluated
individually on the selected ML algorithm, and for each QA, a corresponding
report is returned by the system. Figure 5 reports an example of how the quality

Quality Evaluation Process
Fairness report

Fairness Metric 1
...

Fairness Metric j

Explainability report

Explainability Metric 1
...

Explainability Metric k

Best Fairness 
Method

Best
Explainability 

Method

Method n...Method 1

Explainability

Method 1 Method m...

Fairness

ML Method 2

ML Method 1

ML Method 3

Fig. 5: Quality evaluation process example

evaluation process is done in MANILA. In this example, the data scientist has
selected three ML algorithms and wants to assure Fairness and Explainability.
She has selected n methods to assure Fairness and m methods to assure Ex-
plainability. In addition, she has selected j metrics for Fairness and k metrics
for Explainability. Then, the testing process performs two parallel set of exper-
iments. In the first, it applies the n fairness methods to each ML algorithm
accordingly and computes the j fairness metrics. In the second, it applies the m
Explainability methods to the ML algorithms and computes the k Explainabil-
ity metrics. Finally, the process returns two reports synthesising the obtained
results for Fairness and Explainability along with the ML algorithms with the
best Fairness and Explainability, respectively. If the data scientist chooses to see
the results in tabular form (i.e., selects the Tabular feature in the ExtFM), then
the results are saved in a CSV file. Otherwise, the charts displaying the results
are saved as PNG files. The ML algorithm returned by the experiment is instead
saved as a pickle file [2]. We have chosen this format since it is a standard format
to store serialized objects in Python and can be easily imported in other scripts.

Finally, it is worth noting how the generated experiment workflow is written
in Python and can be customised to address particular stakeholders’ needs or
evaluate other quality methods.
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6 Proof of Concept

To prove the ability of MANILA in supporting the quality-based development
of ML systems, we implemented with MANILA a fair classification system to
predict the frequency of contraceptive use by women, using a famous dataset
in the Fairness literature [42]. This use case is reasonable since fairness has
acquired much importance in recent years, partly because of the sustainable
goals of the UN [51]. The first step in the quality development process is feature

(a) Selected features of the Dataset
(b) Attributes of the Dataset

Fig. 6: Dataset specification

selection. The ML task to solve is a multi-class classification problem [4], hence
in the ExtFM we selected the feature MultiClass for the Label and we specified
its name and the positive value to consider for the fairness evaluation (long-
term use). We will use a CSV dataset file, so we specified this feature in the
configuration. Finally, accordingly to the literature [42], we specified that the
dataset has multiple sensitive variables to consider for fairness, and we specified
their names and privileged and unprivileged values. Figure 6 reports the selected
features of the Dataset and the attributes specified.

Next, we specified that we want to use a Standard Scaler algorithm to normal-
ize the data and we selected the following ML algorithms for classification: Logis-
tic Regression[48], Support Vector Classifier [52], and Gradient Boosting Classi-
fier [28]. Figure 7 reports the Fairness methods we want to test. Note how many
methods have been automatically disabled by the system based on the features
already selected2. Further, we specified the metrics we want to use to evaluate
Fairness and Effectiveness: Accuracy [60], Zero One Loss [25], Disparate Impact
[27], Statistical Parity [41], and Equalized Odds [33], and the Harmonic Mean as
aggregation function (we have chosen this aggregation function since it is widely
used in the literature). Finally, we specified that we want to perform a 10-fold
cross validation [59] and that we want the results in tabular form without the

2 In particular, these methods have been disabled because they do not support multi-
class classification or multiple sensitive variables
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(a) Pre-processing methods
(b) In-processing methods

Fig. 7: Selected Fairness methods

generation of a chart. From the given configuration, MANILA generates all the
python files needed to run the quality-assessment experiment. In particular, the
generated experiment trains and tests all the selected ML algorithm (i.e., Lo-
gistic Regression, Support Vector Classifier, and Gradient Boosting Classifier )
applying all the selected fairness methods properly (i.e., DEMV, Exponentiated
Gradient, and Grid Search). Finally, it computes the selected metrics on the
trained ML algorithms and returns a report of the metrics along with the fully
trained ML algorithm with the best fairness. All the generated files are available
on Zenodo [23] and Github [22]. The generated experiment was executed di-

Table 2: Generated results
Fairness Method ML Model Stat Par Eq Odds ZO Loss Disp Imp Accuracy HMean

demv svm 0.004 0.216 0.273 0.708 0.546 0.705

demv gradient -0.006 0.197 0.276 0.689 0.561 0.702

demv logreg 0.003 0.193 0.225 0.676 0.511 0.7

grid gradient -0.057 0.21 0.167 0.749 0.443 0.694

eg gradient -0.09 0.183 0.309 0.658 0.546 0.685

grid logreg -0.012 0.241 0.26 0.815 0.445 0.679

eg svm -0.109 0.16 0.337 0.549 0.546 0.652

eg logreg -0.107 0.218 0.35 0.543 0.509 0.617

grid svc -0.197 0.273 0.295 0.197 0.435 0.301

rectly from the python interpreter, and the obtained results are available in table
2. In the table are reported the Fairness enhancing methods, the ML algorithms
and all the metrics computed. The table has been automatically ordered based
on the given aggregation function (i.e., the rightmost column HMean). From
the results, we can see that the Support Vector Classifier (i.e., svc in the table)
and the DEMV fairness method can achieve the best Fairness and Effectiveness
trade-off, since they have the highest HMean value (highlighted in green in table
2). Hence, the ML algorithm returned by the experiment is the Support Vec-
tor Classifier, trained with the full dataset after the application of the DEMV
algorithm.
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7 Threats to Validity

Although the QA considered in MANILA are the most relevant and the most
cited in the literature, there could be other QA highly affecting the environ-
ment/end users of the ML system that are not focused prominently by existing
papers. In addition, the proposed experimental workflow is based on the consid-
ered QA; there could be other QA not considered at the time of this paper that
should be evaluated differently.

8 Conclusion and Future Work

In this paper, we have presented MANILA, a novel approach to democratize the
quality-based development of ML systems. First, we have identified the most in-
fluential quality properties in ML systems by selecting the quality attributes that
are most cited in the literature. Next, we have presented a general workflow for
the quality-based development of ML systems. Finally, we described MANILA in
detail by first explaining how the general workflow can be formalized through an
ExtFM. Next, we detailed all the steps required to develop a quality ML system
using MANILA. We started from the low-code configuration of the experiment
to perform; we described how a Python implementation could be generated from
such a configuration. Finally, we showed how the execution of the experiment
could identify the method better satisfying a given quality requirement. We have
demonstrated the ability of MANILA in guiding the data scientists through the
quality-based development of ML systems by implementing a fair multi-class
classification system to predict the use of contraceptive methods by women.

In future, we plan to improve MANILA by extending the ExtFM with addi-
tional methods enhancing other quality attributes and by implementing in the
framework the trade-off analysis that combines the different quality attribute
evaluations when required by means of Pareto-front functions. MANILA appears
to be easy to use and very general, able to embed different quality attributes
that are quantitatively measured. To demonstrate our intuition, we will con-
duct a user evaluation of MANILA, to evaluate its usability by involving experts
and not experts of the quality ML system development. Some groups we aim to
involve are: master students in computer science and applied data science (i.e.,
non-expert users), data scientists working in industries, and researchers studying
ML development and quality assessment (i.e., expert users). In addition, since
MANILA supports the configuration of an experiment by running all possible
combinations of the selected features, a limit of the proposed approach can be
its complexity and the time needed to obtain the results. Such limitation is mit-
igated by the feature selection step, which demands the user to choose which
features to include in the experiment. As future work, to enlarge the MANILA
usage, we will better study such aspects and provide guidelines to the users on
how to mitigate such potential limitations.
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Abstract. Bounded exhaustive input generation (BEG) is an effective
approach to reveal software faults. However, existing BEG approaches
require a precise specification of the valid inputs, i.e., a repOK, that must
be provided by the user. Writing repOKs for BEG is challenging and time
consuming, and they are seldom available in software.
In this paper, we introduce BEAPI, an efficient approach that employs
routines from the API of the software under test to perform BEG. Like
API-based test generation approaches, BEAPI creates sequences of calls
to methods from the API, and executes them to generate inputs. As op-
posed to existing BEG approaches, BEAPI does not require a repOK to
be provided by the user. To make BEG from the API feasible, BEAPI
implements three key pruning techniques: (i) discarding test sequences
whose execution produces exceptions violating API usage rules, (ii) state
matching to discard test sequences that produce inputs already created
by previously explored test sequences, and (iii) the automated identifi-
cation and use of a subset of methods from the API, called builders, that
is sufficient to perform BEG.
Our experimental assessment shows that BEAPI’s efficiency and scalabil-
ity is competitive with existing BEG approaches, without the need for
repOKs. We also show that BEAPI can assist the user in finding flaws in
repOKs, by (automatically) comparing inputs generated by BEAPI with
those generated from a repOK. Using this approach, we revealed several
errors in repOKs taken from the assessment of related tools, demonstrat-
ing the difficulties of writing precise repOKs for BEG.

1 Introduction

Automated test generation approaches aim at assisting developers in crucial
software testing tasks [2,22], like automatically generating test cases or suites
[6,18,10], and automatically finding and reporting failures [23,19,12,20,4,13].
Many of these approaches involve random components, that avoid making a
systematic exploration of the space of behaviors, but improve test generation
efficiency [23,19,10]. While these approaches have been useful in finding a large
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number of bugs in software, they might miss exploring certain faulty software
behaviors due to their random nature. Alternative approaches aim at system-
atically exploring a very large number of executions of the software under test
(SUT), with the goal of providing stronger guarantees about the absence of
bugs [20,4,12,14,6,18]. Some of these approaches are based on bounded exhaus-
tive generation (BEG) [20,4], which consists of generating all feasible inputs that
can be constructed using bounded data domains. Common targets to BEG ap-
proaches have been implementations of complex, dynamic data structures with
rich structural constraints (e.g., linked lists, trees, etc). The most widely-used
and efficient BEG approaches for testing software [20,4] require the user to pro-
vide a formal specification of the constraints that the inputs must satisfy –often
a representation invariant of the input (repOK)–, and bounds on data domains
[20,4] –often called scopes. Thus, specification-based BEG approaches yield all
inputs within the provided scopes that satisfy repOK.

Writing appropriate formal specifications for BEG is a challenging and time
consuming task. The specifications must precisely capture the intended con-
straints of the inputs. Overconstrained specifications lead to missing the gen-
eration of valid inputs, which might make the subsequent testing stage miss
the exploration of faulty behaviors of the SUT. Underconstrained specifications
may lead to the generation of invalid inputs, which might produce false alarms
while testing the SUT. Furthermore, sometimes the user needs to take into ac-
count the way the generation approach operates, and write the specifications in
a very specific way for the approach to achieve good performance [4] (see Section
4). Finally, such precise formal specifications are seldom available in software,
hindering the usability of specification-based BEG approaches.

Several studies show that BEG approaches are effective in revealing software
failures [20,16,4,33]. Furthermore, the small scope hypothesis [3], which states
that most software faults can be revealed by executing the SUT on “small inputs”,
suggests that BEG approaches should discover most (if not all) faults in the
SUT, if large enough scopes are used. The challenge that BEG approaches face
is how to efficiently explore a huge search space, that often grows exponentially
with respect to the scope. The search space often includes a very large number
of invalid (not satisfying repOK) and isomorphic inputs [15,28]. Thus, pruning
parts of the search space involving invalid and redundant inputs is key to make
BEG approaches scale up in practice [4].

In this paper, we propose a new approach for BEG, called BEAPI, that works
by making calls to API methods of the SUT. Similarly to API-based test gener-
ation approaches [23,19,10], BEAPI generates sequences of calls to methods from
the API (i.e., test sequences). The execution of each test sequence yielded by
BEAPI generates an input in the resulting BEG set of objects. As usual in BEG,
BEAPI requires the user to provide scopes for generation, which for BEAPI in-
cludes a maximum test sequence length. Brute force BEG from a user-provided
scope would attempt to generate all feasible test sequences of methods form the
API with up to a maximum sequence length. This is an intrinsically combinato-
rial process, that exhausts computational resources before completion even for
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very small scopes (see Section 4). We propose several pruning techniques that are
crucial for the efficiency of BEAPI, and allow it to scale up to significantly larger
scopes. First, BEAPI executes test sequences and discards those that correspond
to violations of API usage rules (e.g., throwing exceptions that indicate incorrect
API usage, such as IllegalArgumentException in Java [17,23]). Thus, as op-
posed to specification-based BEG approaches, BEAPI does not require a repOK
that precisely describes valid inputs. In contrast, BEAPI requires minimum spec-
ification effort in most cases (including most of our case studies in Section 4),
which consists of making API methods throw exceptions on invalid inputs (in
the “defensive programming” style popularized by Liskov [17]). Second, BEAPI
implements state matching [15,28,36] to discard test sequences that produce in-
puts already created by previously explored sequences. Third, BEAPI employs
only a subset of the API methods to create test sequences: a set of methods
automatically identified as builders [27]. Before test generation, BEAPI executes
an automated builders identification approach [27] to find a smaller subset of the
API that is sufficient to yield the resulting BEG set of inputs. Another advan-
tage of BEAPI with respect to specification-based approaches is that it produces
test sequences to create the corresponding inputs using methods from the API,
making it easier to create tests from BEAPI’s output [5].

We experimentally assess BEAPI, and show that its efficiency and scalability
are comparable to those of the fastest BEG approach (Korat), without the need
for repOKs. We also show that BEAPI can be of help in finding flaws in repOKs,
by comparing the sets of inputs generated by BEAPI using the API against the
sets of inputs generated by Korat from a repOK. Using this procedure, we found
several flaws in repOKs employed in the experimental assessment of related tools,
thus providing evidence on the difficulty of writing repOKs for BEG.

2 A Motivating Example

To illustrate the difficulties of writing formal specifications for BEG, consider
Apache’s NodeCachingLinkedList’s (NCL) representation invariant shown in
Figure 1 (taken from the ROOPS benchmark5). NCLs are composed of a main
circular, doubly-linked list, used for data storage, and a cache of previously used
nodes implemented as a singly linked list. Nodes removed from the main list
are moved to the cache, where they are saved for future usage. When a node is
required for an insertion operation, a cache node (if one exists) is reused (instead
of allocating a new node). As usual, repOK returns true iff the input structure
satisfies the intended NCL properties [17]. Lines 1 to 20 check that the main list
is a circular doubly-linked list with a dummy head; lines 21 to 33 check that the
cache is a null terminated singly linked list (and the consistency of size fields
is verified in the process). This repOK is written in the way recommended by
the authors of Korat [4]. It returns false as soon as it finds a violation of an
intended property in the current input. Otherwise, it returns true at the end.
This allows Korat to prune large portions of the search space, and improves its
5 https://code.google.com/p/roops/
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1 public boolean repOK() {
2 if (this.header == null) return false;
3 // Missing constraint: the value of the sentinel node must be null
4 // if (this.header.value != null) return false;
5 if (this.header.next == null) return false;
6 if (this.header.previous == null) return false;
7 if (this.cacheSize > this.maximumCacheSize) return false;
8 if (this.size < 0) return false;
9 int cyclicSize = 0;

10 LinkedListNode n = this.header;
11 do {
12 cyclicSize++;
13 if (n.previous == null) return false;
14 if (n.previous.next != n) return false;
15 if (n.next == null) return false;
16 if (n.next.previous != n) return false;
17 if (n != null) n = n.next;
18 } while (n != this.header && n != null);
19 if (n == null) return false;
20 if (this.size != cyclicSize - 1) return false;
21 int acyclicSize = 0;
22 LinkedListNode m = this.firstCachedNode;
23 Set visited = new HashSet();
24 visited.add(this.firstCachedNode);
25 while (m != null) {
26 acyclicSize++;
27 if (m.previous != null) return false;
28 // Missing constraint: the value of cache nodes must be null
29 // if (m.value != null) return false;
30 m = m.next;
31 if (!visited.add(m)) return false;
32 }
33 if (this.cacheSize != acyclicSize) return false;
34 return true;
35 }

Fig. 1. NodeCachingLinkedList’s repOK from ROOPS

performance [4]. repOK suffers from underspecification: it does not state that the
sentinel node and all cache nodes must have null values (lines 3-4 and 28-29,
respectively). Mistakes like these are very common when writing specifications
(see Section 4.3), and difficult to discover by manual inspection of repOK. These
errors can have serious consequences for BEG. Executing Korat with repOK and
a scope of up to 8 nodes produces 54.5 million NCL structures, while the actual
number of valid NCL instances is 2.8 million. Clearly, this is a problem for Ko-
rat’s performance, and for the subsequent testing of the SUT. In addition, the
invalid instances generated might trigger false alarms in the SUT in many cases.
We discovered these errors in repOK with the help of BEAPI: we automatically
contrasted the structures generated using BEAPI and the NCL’s API, with those
generated using Korat with repOK, for the same scope.

This example shows that writing sound and precise repOKs for BEG is difficult
and time consuming. Fine-tuning repOKs to improve the performance of BEG
(e.g., for Korat) is even harder. The main advantage of BEAPI is that it requires
minimal specification effort to perform BEG. If API methods used for generation
are correct, all generated structures are valid by construction. The programmer
only needs to make sure that API methods throw exceptions when API usage
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1 max.objects=3
2 int.range=0:2
3 # strings=str1,str2,str3
4 # omit.fields=NodeCachingLinkedList.DEFAULT_MAXIMUM_CACHE_SIZE

Fig. 2. BEAPI’s scope definition for NCL (max. nodes 3)

rules are violated, in a defensive programming style [17]. In most cases, this
requires checking very simple conditions on the inputs. In our example, the
method to add an element to a NCL throws an IllegalArgumentException
when is called with the null element (the implementation of the method takes
care that the remaining NCL properties hold).

3 Bounded Exhaustive Generation from Program APIs

We now describe BEAPI’s approach. We start with the definition of scope, then
present BEAPI’s optimizations, and we finally describe BEAPI’s algorithm.

3.1 Scope Definition

The definition of scope in Korat involves providing bounded data domains for
classes and fields of the SUT, since Korat explores the state space of feasible in-
put candidates, and yields the set of inputs satisfying repOK as a result. Instead,
BEAPI explores the search space of (bounded) test sequences that can be formed
by making calls to the SUT’s API. Thus, we have to provide data domains for
the primitive types employed to make such calls, and a bound on the maximum
size of the structures we want to keep, from those generated by such API calls.
An example configuration file defining BEAPI’s scope for the NCL case study is
shown in Figure 2. The max.objects parameter specifies the maximum number
of different objects (reachable from the root) that a structure is allowed to have.
Test sequences that create a structure with a larger number of different objects
(of any class) than max.objects will be discarded (and the structure too). In
our example, this implies that BEAPI will not create NCLs with more than 3
nodes. Next, one has to specify the values that will be employed by BEAPI to
invoke API routines that take primitive type parameters (e.g., elements to in-
sert into the list). The int.range parameter allows one to specify a range of
integers, which goes from 0 to 2 in Figure 2. One may also specify domains for
other primitive types like floats, doubles and strings, by describing their values
by extension. For example, line 3 shows how to define str1, str2 and str3
as the feasible values for String-typed parameters. Also, we can instruct BEAPI
which fields to take into account for structure canonicalization, or which fields to
omit (omit.fields). This allows the user to control the state matching process
(see Section 3.2). For example, uncommenting line 4 would make BEAPI omit
the DEFAULT_MAXIMUM_CACHE_SIZE in state matching, which in our example is
a constant initialized to 20 in the class constructor. In this case, omitting the
field does not change anything in terms of the different structures generated by
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BEAPI, but in other cases omitting fields may have an impact. The configura-
tion in Figure 2 is enough for BEAPI to generate NCLs with a maximum of 3
nodes, containing integers from 0 to 2 as values, which allowed us to mimic the
structures generated by Korat for the same scope.

3.2 State Matching

In test generation with BEAPI, multiple test sequences often produce the same
structure, e.g., inserting an element into a list and removing the element after-
wards. BEAPI assumes that method executions are deterministic: any execution
of a method with the same inputs yields the same results. For the generation
of a bounded exhaustive set of structures, for each distinct structure s in the
set, BEAPI only needs to save the first test sequence that generates s. All test
sequences generated subsequently that also create s can be discarded. As BEAPI
works by extending previously generated test sequences (Section 3.4), if we save
many test sequences for the same structure, all these sequences would have to
be extended with new routines in subsequent iterations of BEAPI, resulting in
unnecessary computations. Hence, we implement state matching on BEAPI as fol-
lows. We store all the structures produced so far by BEAPI in a canonical form
(see below). After executing the last routine r(p1,..,pk) of a newly generated
test sequence T, we check whether any of r’s parameters hold a structure not
seen before (not stored). If T does not create any new structure, it is discarded.
Otherwise, T and the new structures it generates are stored by BEAPI.

We represent heap-allocated structures as labeled graphs. After the execution
of a method, a (non-primitive typed) parameter p holds a reference to the root
object r of a rooted heap (i.e. p = r), defined below.

Definition 1. Let O be a set of objects, and P a set of primitive values (includ-
ing null). Let F be the fields of all objects in O.

– A heap is a labeled graph H = 〈O,E〉 with E = {(o, f, v)|o ∈ O, f ∈ F, v ∈
O ∪ P}.

– A rooted heap is a pair RH = 〈r,H〉 where r ∈ O, H = 〈O,E〉 is a heap,
and for each v′ ∈ O ∪ P , v′ is reachable from r through fields in F .

The special case p = null can be represented by a rooted heap with a dummy
node and a dummy field pointing to null. In languages without explicit memory
management (like Java), each object is identified by the memory address where
is allocated. But changing the memory addresses of objects (while keeping the
same graph structure) has no effect in the execution of a program. Heaps ob-
tained by permutations of the memory addresses of their component objects are
called isomorphic heaps. We avoid the generation of isomorphic heaps by employ-
ing a canonical representation for heaps [15,4]. Rooted heaps can be efficiently
canonicalized by an approach called linearization [15,36], which transforms a
rooted heap into a unique sequence of values.

Figure 3 shows the linearization algorithm used by BEAPI, a customized
version that reports when objects exceed the scopes and supports ignoring object
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1 int[] linearize(O root, Heap<O, E> heap, int scope, Regex omitFields) {
2 Map ids = new Map(); // maps nodes into their unique ids
3 return lin(root, heap, scope, ids, omitFields);
4 }
5 int[] lin(O root, Heap<O, E> heap, int scope, Map ids, Regex omitFields) {
6 if (ids.containsKey(root))
7 return singletonSequence(ids.get(root));
8 if (ids.size() == scope)
9 throw new ScopeExceededException();

10 int id = ids.size() + 1;
11 ids.put(root, id);
12 int[] seq = singletonSequence(id);
13 Edge[] fields = sortByField({ <root, f, o> in E }, omitFields);
14 foreach (<root, f, o> in fields) {
15 if (isPrimitive(o))
16 seq.add(uniqueRepresentation(o));
17 else
18 seq.append(lin(o, heap, scope, ids, omitFields));
19 }
20 return seq;
21 }

Fig. 3. Linearization algorithm

fields (for the original version see [36]). linearize starts a depth-first traversal
of the heap from the root, by invoking lin in line 3. To canonicalize the heap,
lin assigns different identifiers to the different objects it visits. Map ids stores
the mapping between objects and unique object identifiers. When an object is
visited for the first time, it is assigned a new unique identifier (lines 10-11), and
a singleton sequence with the identifier is created to represent the object (line
12). Then, the object’s fields, sorted in a predefined order (e.g., by name), are
traversed and the linearization of each field value is constructed, and the result
is appended to the sequence representing the current object (lines 13-19). A field
storing a primitive value is represented by a singleton sequence with the primitive
value (line 15-16). If a field references an object, a recursive call to lin converts
the object into a sequence, which will be appended to the result (line 18). At the
end of the loop, seq contains the canonical representation of the whole rooted
heap starting at root, and is returned by lin (line 20). When an already visited
object is traversed by a recursive call, the object must have an identifier already
assigned in ids (line 6), and lin returns the singleton sequence with the object’s
unique identifier (lines 7). When more than scope objects are reachable from the
rooted heap, lin returns an exception to report that the scope has been exceeded
(lines 9-10). The exception will be employed later on by BEAPI to discard test
sequences that create objects larger than allowed by the scope. linearize also
takes as a parameter a regular expression omitFields, that matches the names of
the fields that must be omitted during canonicalization (see Section 3.1). To omit
such fields, we implemented sortByField (line 13) in such a way that it does
not return the edges corresponding to fields whose names match omitFields.
This in turn avoids saving the values of omitted fields in the sequence yielded by
linearize. Finally, notice that linearization allows for efficient comparison of
objects (rooted heaps): two objects are equal if and only if their corresponding
sequences yielded by linearize are equal.
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3.3 Builders Identification Approach

As the feasible combinations of methods grow exponentially with the number of
methods, it is crucial to reduce the number of methods that BEAPI uses to pro-
duce test sequences. We employ an automated builders identification approach
[27] to find a subset of API methods that are sufficient for the generation of the
bounded exhaustive structure sets. We call such routines builders. The previous
approach to identify a subset of sufficient builders from an API is based on a
genetic algorithm, but is computationally expensive [27]. Here, we consider a
simpler hill climbing approach (HC), that achieves better performance. HC may
of course be less precise, as it may include some methods in the resulting set
of builders that might not be needed to produce a bounded exhaustive set of
structures. However, HC worked very well and consistently computed minimal
sets of builders in our experiments (we checked that the set of builders computed
by HC matched the set of builders we manually identified for each case study).
Our goal here is to assess the impact of using builders for BEG from an API.
Comparing the HC approach against existing techniques is left for future work.

Let API=m1,m2, . . . ,mn be the set of API methods. HC explores the search
space of all subsets of methods from API. HC requires the user to provide a scope
s (in the same way as in BEAPI). The fitness f(sm) of a given set sm of methods is
the number of distinct structures (after canonicalization) that BEAPI generates
using the set, for the given scope s. We also give priority in the fitness to sets of
methods with less and simpler parameter types (see [27] for further details). The
successors succs(sm) for a candidate sm are the sets sm∪{mi}, for eachmi ∈ API.
HC starts by computing the fitness of all singletons {c} of constructor methods.
The best of the singletons is set as the current candidate curr, and HC starts a
typical iterative hill climbing process. At each iteration HC computes f(succ)
for each succ ∈ succs(curr). Let best be the successor with the highest fitness
value. Notice that best has exactly one more method than the best candidate
of the previous iteration, curr. If f(best) > f(curr), methods in best can be
used to create a larger set of structures than those in curr. Thus, HC assigns
best to curr, and continues with the next iteration. Otherwise, f(best) <=
f(curr), and curr already generates the largest possible set of structures (no
method could be added that increases the number of generated structures from
curr). At this point, curr is returned as the set of identified builders.

Notice that HC performs many invocations to BEAPI for builders identifi-
cation. The key insight that makes builders identification feasible is that often
builders identified for a relatively small scope are the same set of methods that
are needed to create structures of any size. In other words, once the scope for
builders computation is large enough, increasing the scope will yield the same set
of builders as a result. This result resembles the small scope hypothesis for bug
detection [3] (and transcoping [31]). A scope of 5 was enough for builders compu-
tation in all our case studies (we manually checked that the computed builders
were the right ones in all cases). After builders are identified efficiently using a
small scope, we can run BEAPI with the identified builders using a larger scope,
for example, to generate bigger objects to exercise the SUT. In most of our case
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1 BEAPI(List methods, int scope, Map<Type, List<Seq>> primitives, Regex omitFields) {
2 Map<Type, List<Seq>> currSeqs = new Map();
3 currSeqs.addAll({ T->L | T->L in primitives });
4 Set canonicalStrs = new Set();
5 for (int it=0; true; it++) {
6 Map<Type, List<Seq>> newSeqs = new Map();
7 boolean newStrs = false;
8 for (m(T1,. . .,Tn):Tr: methods) {
9 Map<Type, List<Seq>> seqsT1 = currSeqs.getSequencesForType(T1);

10 . . .
11 Map<Type, List<Seq>> seqsTn = currSeqs.getSequencesForType(Tn);
12 for ((s1,. . .,sn): seqsT1 × . . .×seqsTn) {
13 Seq newSeq = createNewSeq(s1,. . .,sn,m);
14 o1,. . .,on,or,failure,exception = execute(newSeq);
15 if (failure) throw new ExecutionFailedException(newSeq);
16 if (exception) continue;
17 c1,. . .,cn,cr,outOfScope = makeCanonical(o1,. . .,on,or,scope,omitFields);
18 if (outOfScope) continue;
19 if (isReferenceType(T1) and !canonicalStrs.contains(c1)) {
20 canonicalStrs.add(c1);
21 newSeqs.addSeqForType(T1, newSeq);
22 newStrs = true;
23 }
24 . . .
25 if (isReferenceType(Tr) and !canonicalStrs.contains(cr)) {
26 canonicalStrs.add(cr);
27 newSeqs.addSeqForType(Tr, newSeq);
28 newStrs = true;
29 }
30 }
31 }
32 if (!newStrs) break;
33 currSeqs.addAll(newSeqs);
34 }
35 return currSeqs.getAllSeqsAsList();
36 }

Fig. 4. BEAPI algorithm

studies, builders comprise a constructor and a single method to add elements to
the structure. However, our automated builder identification approach showed
that, for Red-Black Trees, a remove method was also required (for scopes greater
than 3), since there are trees with a particular balance configuration (red and
black coloring for the nodes) that cannot be constructed by just adding elements
to the tree. In contrast, AVL trees, which are also balanced, do not require the
remove method as a builder, and the class constructor and an add routine suf-
fice. This shows that builders identification is non-trivial to perform manually,
as it requires a very careful exploration of a very large number of structures and
method combinations. Other structures that require more than two builders are
binomial and Fibonacci heaps.

3.4 The BEAPI Approach

A pseudocode of BEAPI is shown in Figure 4. BEAPI takes as inputs a list
of methods from an API, methods (the whole API, or previously identified
builders); the scope for generation, scope; a list of test sequences to create values
for each primitive type provided in the scope description, primitives (automat-
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ically created from configuration options int.range, strings, etc., see Fig. 2);
and a regular expression matching fields to be omitted in the canonicalization
of structures, omitFields. Notice that methods from more than one class could
be passed in methods if one wants to generate objects for several classes in the
same execution of BEAPI, e.g., when methods from one class take objects from
another class as parameters. BEAPI’s map currSeqs stores, for each type, the
list of test sequences that are known to generate structures of the type. currSeqs
starts with all the primitive typed sequences in primitives (lines 2-3). At each
iteration of the main loop (lines 5-34), BEAPI creates new sequences for each
available method m (line 8), by exhaustively exploring all the possibilities for
creating test sequences using m and inputs generated in previous iterations and
stored in currSeqs (lines 9-30). The newly created test sequences that generate
new structures in the current iteration are saved in map newSeqs (initialized
empty in line 6); all the generated sequences are then added to currSeqs at the
end of the iteration (line 33). If no new structures are produced at the current
iteration (newStrs is false in line 32), BEAPI’s main loop terminates and the list
of all sequences in currSeqs is returned (line 35).

Let us now discuss the details of the for loop in lines 9-30. First, all sequences
that can be used to construct inputs for m are retrieved in seqsT1,...,seqsTn.
BEAPI explores each tuple (s1,...,sn) of feasible inputs for m. Then, it executes
createNewSeq (line 13), which constructs a new test sequence newSeq by per-
forming the sequential composition of test sequences s1,...,sn and routine m, and
replacing m’s formal parameters by the variables that create the required objects
in s1,...,sn. newSeq is then executed (line 14) and it either produces a failure
(failure is set to true), raises an exception that represents an invalid usage of
the API (exception is set to true), or its execution is successful and it creates
new objects o1,. . .,on,or. In case of a failure, an exception is thrown and newSeq
is presented to the user as a witness of the failure (line 15). If a different kind of
exception is thrown, BEAPI assumes it corresponds to an API misuse (see below),
discards the test sequence (line 16) and continues with the next candidate se-
quence. Otherwise, the execution of newSeq builds new objects o1,. . .,on,or (or
values of primitive types) that are canonicalized by makeCanonical (line 17) –by
executing linearize from Figure 3 on each structure. If any of the structures
produced by newSeq exceeds the scope, makeCanonical sets outOfScope to true,
BEAPI discards newSeq and continues with the next one (line 18). If none of the
above happens, makeCanonical returns canonical versions of o1,. . .,on,or in
variables c1,. . .,cn,cr, respectively. Afterwards, BEAPI performs state match-
ing by checking that the canonical structure c1 is of reference type and that
it has not been created by any previous test sequence (line 19). Notice that
canonicalStrs stores all of the already visited structures. If c1 is a new struc-
ture, it is added to canonicalStrs (line 27), and the sequence that creates c1,
newSeq, is added to the set of test sequences producing structures of type T1
(newSeqs in line 27). Also, newStrs is set to true to indicate that at least a
new object has been created in the current iteration (line 22). This process is
repeated for canonical objects c2,. . .,cn,cr (lines 24-29).

120



Efficient Bounded Exhaustive Input Generation from Program APIs

BEAPI distinguishes failures from bad API usage based on the type of the ex-
ception (similarly to previous API based test generation techniques [23]). For ex-
ample, IllegalArgumentException and IllegalStateException correspond
to API misuses, and the remaining exceptions are considered failures by default.
BEAPI’s implementation allows the user to select the exceptions that correspond
to failures and those that do not, by setting the corresponding configuration pa-
rameters. As mentioned in Section 2, BEAPI assumes that API methods throw
exceptions when they fail to execute on invalid inputs. We argue that this is a
common practice, called defensive programming [17], that should be followed by
all programmers, as it results in more robust code and improves software testing
in general [2] (besides helping automated test generation tools). We also argued
in Section 2 that the specification effort required for defensive programming is
much less than writing precise (and efficient) repOKs for BEG, and that this was
true after manually inspecting the source code of our case studies. On the other
hand, note that BEAPI can employ formal specifications to reveal bugs in the
API, e.g., by executing repOK and check that it returns true on every generated
object of the corresponding type (as in Randoop [23]). However, the specifica-
tions used for bug finding do not need to be very precise (e.g., the underspecified
NCL repOK from Section 2 is fine for bug finding), or written in a particular way
(as required by Korat). Other kinds of specifications that are weaker and simpler
to write can also be used by BEAPI to reveal bugs, like violations of language
specific contracts (e.g., equals is an equivalence relation in Java), metamorphic
properties [7], user-provided assertions (assert), etc.

Another advantage of BEAPI is that, for each generated object, it yields
a test sequence that can be executed to create the object. This is in contrast
with specification based approaches (that generate a set of objects from repOK).
Finding a sequence of invocations to API methods that create a specific structure
is a difficult problem on its own, that can be rather costly computationally [5], or
require significant effort to perform manually. Thus, often objects generated by
specification based approaches are “hardwired” when used for testing a SUT (e.g.,
by using Java reflection), making tests very hard to understand and maintain,
as they depend on the low-level implementation details of the structures [5].

4 Evaluation

In this section, we experimentally assess BEAPI against related approaches. The
evaluation is organized around the following research questions:

RQ1 Can BEG be performed efficiently using API routines?
RQ2 How much do the proposed optimizations impact the performance of BEG

from the API?
RQ3 Can BEAPI help in finding discrepancies between repOK specifications and

the API’s object generation ability?

As case studies, we employ data structures implementations from four bench-
marks: three employed in the assessment of existing testing tools (Korat [4],
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Kiasan [9], FAJITA [1]), and ROOPS. These benchmarks cover diverse implemen-
tations of complex data structures, which are a good target for BEG. We choose
these as case studies because the implementations come equipped with repOKs,
written by the authors of the benchmarks. The experiments were run on a work-
station with an Intel Core i7-8700 CPU (3.2 Ghz) and 16Gb of RAM. We set a
timeout of 60 minutes for each individual run. To replicate the experiments, we
refer the reader to the paper’s artifact [25].

4.1 RQ1: Efficiency of Bounded Exhaustive Generation from APIs

For RQ1 we assess whether or not BEAPI is fast enough to be a useful BEG
approach, by comparing it to the fastest BEG approach, Korat [32]. The results
of the comparison are summarized in Table 1. For each technique, we report
generation times (in seconds), number of generated and explored structures, for
increasingly large scopes. Due to space reasons, we show a representative sample
of the results (we try to maintain the same proportion of good and bad cases for
each technique in the data we report). We include the largest successful scope for
each technique; the execution times for the largest scopes are in boldface in the
table. In this way, should scalability issues arise, they can be easily identified. For
the complete report of the results visit the paper’s website [26]. To obtain proper
performance results for BEAPI, we extensively tested the API methods of the
classes to ensure they were correct for this experiment. We did not try to change
the repOKs in any way because that would change the performance of Korat, and
one of our goals here is evaluating the performance of Korat using repOKs writ-
ten by different programmers. Differences in explored structures are expected,
since the corresponding search spaces for Korat and BEAPI are different. How-
ever, for the same case study and scope, one would expect both approaches to
generate the same number of valid structures. This is indeed the case in most
experiments, with notable exceptions of two different kinds. Firstly, there are
cases where repOK has errors; these cases are grayed out in the tables. Secondly,
the slightly different notion of scope in each technique can cause discrepancies.
This only happens for Red-Black Trees (RBT) and Fibonacci heaps (FibHeap),
which are shown in boldface. In these cases certain structures of size n can only
be generated from larger structures, with insertions followed by removals and
then insertions again to trigger specific balance rearrangements. BEAPI discards
generated sequences as soon as they exceed the maximum structure size, hence
it cannot generate these structures.

In terms of performance, we have mixed results. In the Korat benchmark,
Korat shows better performance in 4 out of 6 cases. In the FAJITA benchmark,
BEAPI is better in 3 out of 4 cases. In the ROOPS benchmark, BEAPI is bet-
ter in 5 out of 7 cases. In the Kiasan benchmark, Korat is faster in 6 of the 7
cases. We observe that BEAPI shows a better performance in structures with
more restrictive constraints such as RBT and Binary Search Trees (BST); often
these cases have a smaller number of valid structures. Cases where the number
of valid structures grows faster with respect to the scope, such as doubly-linked
lists (DLList), are better suited for Korat. More structures means BEAPI has
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Table 1. Efficiency assessment of BEAPI against Korat

Class S Time Generated Explored
Korat BEAPI Korat BEAPI Korat BEAPI

K
O

R
A
T

DLList 6 0.24 7.11 55987 55987 521904 335930
7 2.31 108.08 960800 960800 9875550 6725609
9 1333.88 TO 435848050 5325611829

FibHeap 6 1.26 5.95 573223 54159 1641562 379125
7 32.87 115.44 17858246 898394 54268866 7187167
8 1415.77 TO 654214491 2105008180

BinHeap 7 0.26 25.32 107416 107416 261788 859337
8 0.85 163.39 603744 603744 1323194 5433706

11 2558.32 TO 2835325296 2985116257

BST 10 131.18 49.10 223191 223191 216680909 2231922
11 1137.17 199.46 974427 974427 1679669258 10718710
12 TO 1341.86 4302645 51631754

SLList 7 5.76 17.87 137257 137257 2055596 960807
8 8.16 256.49 2396745 2396745 40701876 19173969
9 190.45 TO 48427561 919451065

RBT 11 40.54 33.42 51242 39942 53141999 878743
12 220.77 79.45 146073 112237 276868584 2693710
13 1277.67 689.06 428381 314852 1454153331 8186175

BinTree 10 73.73 51.34 223191 223191 218675679 2231922
11 634.114 265.57 974427 974427 1689480455 10718710
12 TO 1578.72 4302645 51631754

AVL 10 163.50 1.92 7393 7393 349178307 73942
11 1271.23 5.80 20267 20267 2504382415 222950

F
A

J
IT

A

13 TO 45.45 145206 1887693

RBT 11 58.74 19.72 51242 39942 75814869 878743
12 318.57 63.16 146073 112237 385422689 2693710
13 1779.83 206.66 428381 314852 1957228527 8186175

BinHeap 7 .77 44.452 107416 107416 1447594 859337
8 5.96 97.08 603744 603744 13329584 5433706

10 1174.91 TO 117157172 2064639445

AVL 5 3.54 0.05 1107 62 12277946 317
6 213.63 .009 3969 157 701862289 950

13 TO 46.71 145206 1887693

NCL 6 0.65 2.27 800667 11196 805921 134364
7 8.797 33.89 2739128 160132 16443824 2241862
8 205.596 769.63 381367044 2739136 381381493 43826192

BinTree 3 0.173 0.02 65376 15 65596 50
4 37.546 0.05 121853251 51 121855507 210

12 TO 966.41 4302645 51631754

LList 7 0.51 12.62 137257 137257 1410799 960807
8 7.64 295.94 2396745 2396745 26952027 19173969
9 176.69 TO 48427561 591734656

RBT 11 69.87 31.02 51242 39942 75814869 878743
12 361.88 81.03 146073 112237 385422689 2693710
13 2007.29 697.06 428381 314852 1957228527 8186175

FibHeap 4 1.851 0.13 131444 335 5681553 1683
5 346.275 0.70 21629930 4381 1295961583 26297

R
O

O
P
S

7 TO 129.01 898394 7187167

BinHeap 6 1.04 1.31 7602 7602 3202245 53222
7 17.47 13.06 107416 107416 64592184 859337
8 448.48 96.94 603744 603744 1483194820 5433706

BST 11 12.184 204.83 974427 974427 62669069 10718710
12 65.305 1235.67 4302645 4302645 308229505 51631754
14 1751.4 TO 86211885 7438853941

DLL 7 0.614 18.09 137257 137257 2326622 960807
8 9.824 257.42 2396745 2396745 45449534 19173969
9 245.787 TO 48427561 1015587001

RBT 7 10.76 0.78 911 561 44832139 7866
8 283.33 1.57 2489 1657 1044561963 26526

12 TO 84.51 112237 2693710

DisjSetFast 6 0.198 0.89 52165 544 117456 22890
7 1.209 8.26 1545157 4397 3398383 246288

K
IA

S
A

N

9 1402.376 TO 2201735557 4715569321

StackList 6 0.128 4.35 55987 55987 56008 335930
7 0.517 83.06 960800 960800 960828 6725609
9 212.919 TO 435848050 435848095

BHeap 7 0.654 53.78 3206861 458123 3221407 3665089
8 8.98 1221.59 64014472 8001809 64124432 72016409
9 202.804 TO 1447959627 1449279657

TreeMap 5 .55 24.95 40526 34276 162375 1028287
6 2.85 866.71 1207261 1098397 3381725 46132686
8 1980.70 TO 1626500673 2671020961
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to create more test sequences in each successive iteration, which makes its per-
formance suffer more in such cases. As expected, the way repOKs are written
has a significant impact in Korat’s performance. For example, for binomial heaps
(BinHeap) Korat reaches scope 8 with Roops’ repOK, scope 10 with FAJITA’s
repOK, and scope 11 with Korat’s repOK (all equivalent in terms of generated
structures). In most cases, repOKs from the Korat benchmark result in better
performance, as these are fine-tuned for usage with Korat. Case studies with er-
rors in repOKs are grayed out in the table, and discussed further in Section 4.3.
Notice that errors in repOKs can severely affect Korat’s performance.

4.2 RQ2: Impact of BEAPI’s Optimizations

Table 2. Execution times (sec) of BEAPI under different configurations.

ROOPS

Class S SM/BLD SM BLD NoOPT

AVL 3 .02 .04 .34 -
4 .03 .07 102.16 -
5 .05 .11 - -

13 46.71 657.17 - -

NCL 3 .04 1.31 1.37 7.96
4 .10 9.59 52.17 -
5 .34 40.54 - -
8 769.63 - - -

BinTree 3 .02 .04 .23 33.84
4 .05 .08 85.32 -
5 .11 .16 - -

12 966.41 2281.42 - -

LList 3 .03 .09 .26 -
4 .07 .48 115.27 -
5 .18 118.75 - -
8 295.94 - - -

RBT 3 .04 .04 39.11 -
4 .11 .09 - -
5 .22 .14 - -

12 81.03 2379.44 - -

FibHeap 3 .04 .09 .94 -
4 .13 .20 -
5 .70 1.13 -
7 129.01 243.36 - -

BinHeap 3 .05 .11 2.03 18.38
4 .09 .34 - -
5 .26 .96 - -
8 96.94 220.18 - -

Real World

Class S SM/BLD SM BLD NoOPT

NCL 3 .10 .47 - -
4 .41 3.48 - -
5 3.33 - - -
6 73.78 - - -

TSet 3 .03 .07 56.82 -
11 21.52 86.06 - -
12 69.98 276.85 - -
13 226.66 887.83 - -

TMap 3 .11 .25 - -
4 .75 2.36 - -
5 15.97 57.64 - -
6 839.87 2901.37 - -

LList 3 .02 .13 .64 -
6 .96 258.85 - -
7 12.98 - - -
8 286.21 - - -

HMap 3 .10 11.49 - -
4 .55 - - -
5 5.33 - - -
6 119.87 - - -

In RQ2 we assess the impact each of BEAPI’s proposed optimizations has
in BEG. For this, we assess the performance of four different BEAPI configura-
tions: SM/BLD is BEAPI with state matching (SM) and builder identification
(BLD) enabled; SM is BEAPI with only state matching (SM) enabled; BLD is
BEAPI with only builders (BLD) identification enabled; NoOPT has both op-
timizations disabled. The left part of Table 2 summarizes the results of this
experiment for the ROOPS benchmark; the right part reports preliminary results
on five “real world” implementations of data structures: LinkedList (21 API
methods), TreeSet (22 API methods), TreeMap (32 methods) and HashMap (29
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methods) from java.util, and NCL from Apache Collections (20 methods). As
most real world implementations, these data structures do not come equipped
with repOKs, hence we only employed them in this RQ.

The brute force approach (NoOPT) performs poorly even for the easiest case
studies and very small scopes. These scopes are too small and often not enough
if one wants to generate high quality test suites. State matching is the most im-
pactful optimization, greatly improving by itself the performance and scalability
all around (compare NoOPT and SM results). As expected, builders identifica-
tion is much more relevant in cases where the number of methods in the API
is large (more than 10), and remarkably in the real world data structures (with
20 or more API methods). SM/BLD is more than an order of magnitude faster
than SM in AVL and RBT, and it reaches one more scope in NCL and LList. The
remaining classes of ROOPS have just a few methods, and the impact of using
builders is relatively small. The conclusions drawn from ROOPS apply to the other
three benchmarks (we omit their results here for space reasons, visit the paper’s
website for a complete report [26]). In the real world data structures, using pre-
computed builders allowed SM/BLD to scale to significantly larger scopes in all
cases but TreeMap and TreeSet, where it significantly improves running times.
Overall, the proposed optimizations have a crucial impact in BEAPI’s perfor-
mance and scalability, and both should be enabled to obtain good results.

On the cost of builders identification. Due to space reasons we report builders
identification times in the paper’s website [26]. For the conclusions of this sec-
tion, it is sufficient to say that scope 5 was employed for builders identification
in all cases, and that the maximum runtime of the approach was 65 seconds
in the four benchmarks (ROOPS’ SLL, 11 methods), and 132 seconds in the real
world data structures (TreeMap, 32 methods). We manually checked that the
identified methods included a set of sufficient builders in all cases. Notice that
BEG is often performed for increasingly larger scopes, and the identified builders
can be reused across executions. Thus, builder identification times are amor-
tized across different executions, which makes it difficult to calculate how much
builder identification times add to BEAPI running times in each case. So we did
not include builder identification times in BEAPI running times in any of the
experiments. Notice that, for the larger scopes, which arguably are the most im-
portant, builders identification time is negligible in relation to generation times.

4.3 RQ3: Analysis of Specifications using BEAPI

RQ3 addresses whether BEAPI can be useful in assisting the user in finding
flaws in repOKs, by comparing the set of objects that can be generated using the
API and the set of objects generated from the repOK. We devised the following
automated procedure. First, we run BEAPI to generate a set SA of structures from
the API, and Korat to generate a set SR from repOK, using the same scope for both
tools. Second, we canonicalize the structures in both SA and SR using linearization
(Section 3.2). Third, we compare sets SA and SR for equality. Differences in
this comparison point out a mismatch between repOK and the API. There are
three possible outputs for this automated procedure. If SA ⊂ SR, it is possible
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Table 3. Summary of flaws found in repOKs using BEAPI

Bench. Class Error Description Type

Korat RBTree Color of root should not be red under

Roops

NCL
Key values in the cache should be set to null under
Key value of the dummy node in the main list should be null under

BinTree Parent of root node should be null under
RBT Color of root should not be red under

AVL
Height computation is wrong (leaves are assigned the wrong value) error
Repeated key values should not be allowed under

FibHeap

Left and right fields of nodes should not be null under
Min node should always contain the minimum value in the heap under
If a node has no child its degree should be zero under
Child nodes should have smaller keys than their parents under
Parent fields of all nodes are forced to be null over
Heap with min node set to null is rejected over

Kiasan
DisjSetFast The rank of the root can be invalid under
BinaryHeap The first position of an array (dummy) may contain an element under

Fajita AVL Height computation is wrong (leaves are assigned the wrong value) error

that the API generates a subset of the valid structures, that repOK suffers from
underspecification (missing constraints), or both. In this case, the structures in
SR that do not belong to SA are witnesses of the problem, and the user has
to manually analyze them to find out where the error is. Here, we report the
(manually confirmed) underspecification errors in repOKs that are witnessed by
the aforementioned structures. In contrast, when SR ⊂ SA, it can be the case
that the API generates a superset of the valid structures, that repOK suffers
from overspecification (repOK is too strong), or both. The structures in SA that
do not belong to SR might point out to the root of the error, and again they
have to be manually analyzed by the user. We report the (manually confirmed)
overspecification errors in repOKs that are witnessed by these structures. Finally,
it can be the case that there are structures in SR that do not belong to SA, and
there are structures (distinct than the former ones) in SA that do not belong
to SR. These might be due to faults in the API, flaws in the repOK, or both.
We report the manually confirmed flaws in repOKs witnessed by such structures
simply as errors (repOK describes a different set of structures than the one it
should). Notice that differences in the scope definitions for the approaches might
make sets SA and SR differ. This was only the case in the RBT and FibHeap
structures, where BEAPI generated a smaller set of structures for the same scope
than Korat due to balance constraints (as explained in Section 4.1). However,
these “false positives” can be easily revealed, since all the structures generated
by Korat were always included in the structures generated by BEAPI if a larger
scope was used for the latter approach. Using this insight we manually discarded
the “false positives” due to scope differences in RBT and FibHeap.

The results of this experiment are summarized in Table 3. We found out flaws
in 9 out of 26 repOKs using the approach described above. The high number of
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flaws discovered evidences that problems in repOKs are hard to find manually,
and that BEAPI can be of great help for this task.

5 Related Work

BEG approaches have been shown effective in achieving high code coverage and
finding faults, as reported in various research papers [20,16,4,33]. Our goal here
is not to assess yet again the effectiveness of BEG suites, but to introduce an
approach that is straightforward to use in today’s software because it does not
require the manual work of writing formal specifications of the properties of the
inputs (e.g., repOKs). Different languages have been proposed to formally de-
scribe structural constraints for BEG, including Alloy’s relational logic (in the
so-called declarative style), employed by the TestEra tool [20]; and source code
in an imperative programming language (in the so-called operational style), as
used by Korat [4]. The declarative style has the advantage of being more concise
and simpler for people familiar with it, however this knowledge is not common
among developers. The operational style can be more verbose, but as specifi-
cations and source code are written in the same language this style is most of
the time preferred by developers. UDITA [11] and HyTeK [29] propose to employ
a mix of the operational and the declarative styles to write the specifications,
as parts of the constraints are often easier to write in one style or the other.
With precise specifications both approaches can be used for BEG. Still, to use
these approaches developers have to be familiar with both specification styles,
and take the time and effort required to write the specifications. Model checkers
like Java Pathfinder [34] (JPF) can also perform BEG, but the user has to manu-
ally provide a “driver” for the generation: a program that the model checker can
use to generate the structures that will be fed to the SUT afterwards. Writing
a BEG driver often involves invoking API routines in combination with JPF’s
nondeterministic operators, hence the developer must familiarize with such op-
erators and put in some manual effort to use this approach. Furthermore, JPF
runs over a customized virtual machine in place of Java’s standard JVM, so there
is a significant overhead in running JPF compared to the use of the standard
JVM (employed by BEAPI). The results of a previous study [32] show that JPF
is significantly slower than Korat for BEG. Therein, Korat has been shown to
be the fastest and most scalable BEG approach at the time of publication [32].
This in part can be explained by its smart pruning of the search space of invalid
structures and the elimination of isomorphic structures. In contrast, BEAPI does
not require a repOK and works by making calls to the API.

An alternative kind of BEG consists of generating all inputs to cover all feasi-
ble (bounded) program paths, instead of generating all feasible bounded inputs.
This is the approach of systematic dynamic test generation, a variant of symbolic
execution [14]. This approach is implemented by many tools [13,12,24,8], and has
been successfully used to produce test suites with high code coverage, reveal real
program faults, and for proving memory safety of programs. Kiasan [9] and FA-
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JITA [1] are also white-box test case generation approaches that require formal
specifications and aim for coverage of the SUT.

Linearization has been employed to eliminate isomorphic structures in tradi-
tional model checkers [15,28], and also in software model checkers [35]. A previous
study experimented with state matching in JPF and proposed several approaches
for pruning the search space for program inputs using linearization, for both con-
crete and symbolic execution [35]. As stated before, concrete execution in JPF
requires the user to provide a driver. The symbolic approach attempts to find
inputs to cover paths of the SUT; we perform BEG instead. Linearization has
also been employed for test suite minimization [36].

6 Conclusions

Software quality assurance can be greatly improved thanks to modern software
analysis techniques, among which automated test generation techniques play
an outstanding role [6,18,10,23,19,12,20,4,13]. Random and search-based ap-
proaches have shown great success in automatically generating test suites with
very good coverage and mutation metrics, but their random nature does now
allow these techniques to precisely characterize the families of software behav-
iors that the generated tests cover. Systematic techniques such as those based
on model checking, symbolic execution or bounded exhaustive generation, cover
a precise set of behaviors, and thus can provide specific correctness guarantees.

In this paper, we presented BEAPI, a technique that aims at facilitating
the application of a systematic technique, bounded exhaustive input genera-
tion, by producing structures solely from a component’s API, without the need
for a formal specification of the properties of the structures. BEAPI can generate
bounded exhaustive suites from components with implicit invariants, and reduces
the burden of providing formal specifications, and tailoring the specifications for
improved generation. Thanks to a number of optimizations, including an auto-
mated identification of builder routines and a canonicalization/state matching
mechanism, BEAPI can generate bounded exhaustive suites with a performance
comparable to that of the fastest specification-based technique Korat [4]. We
have also identified the characteristics of a component that may make it more
suitable for a specification-based generation, or an API-based generation.

Finally, we have shown how specification based approaches and BEAPI can
complement each other, depicting how BEAPI can be used to assess repOK imple-
mentations. Using this approach, we found a number of subtle errors in repOK
specifications taken from the literature. Thus, techniques that require repOK
specifications (e.g, [30]), as well as techniques that require bounded-exhaustive
suites (e.g., [21]) can benefit from our presented generation technique.
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Abstract. Applying standard software engineering practices to neural
networks is challenging due to the lack of high-level abstractions describ-
ing a neural network’s behavior. To address this challenge, we propose
to extract high-level task-specific features from the neural network inter-
nal representation, based on monitoring the neural network activations.
The extracted feature representations can serve as a link to high-level
requirements and can be leveraged to enable fundamental software engi-
neering activities, such as automated testing, debugging, requirements
analysis, and formal verification, leading to better engineering of neural
networks. Using two case studies, we present initial empirical evidence
demonstrating the feasibility of our ideas.

Keywords: Features, Neural Networks, Software Engineering

1 Introduction

The remarkable computational capabilities unlocked by neural networks have
led to the emergence of a rapidly growing class of neural-network based software
applications. Unlike traditional software applications whose logic is driven from
input-output specifications, neural networks are inherently opaque, as their logic
is learned from examples of input-output pairs. The lack of high-level abstractions
makes it challenging to interpret the logical reasoning employed by a neural
network and hinders the use of standard software engineering practices such as
automated testing, debugging, requirements analysis, and formal verification that
have been established for producing high-quality software.

In this work, we aim to address this challenge by proposing a feature-guided
approach to neural network engineering. Our proposed approach is illustrated
in Figure 1. We draw from the insight that, in a neural network, early layers
typically extract the important features of the inputs and the dense layers close
to the output contain logic in terms of these features to make decisions [12].
The approach therefore first extracts high-level, human-understandable feature
representations from the trained neural network which allows us to formally link
domain-specific, human-understandable features to the internal logic of a trained
model. This in turn enables us to reason about the model through the lens of
the features and to drive the above mentioned software engineering activities.
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Fig. 1: Proposed Approach

For feature representations, we seek to extract associations between the
activation values at the intermediate layers and higher-level abstractions that
have clear semantic meaning (e.g., objects in a scene or weather conditions).
We present an algorithm to extract these high-level feature representations in
the form of rules (pre =⇒ post) where the precondition (pre) is a box over
the latent space at an internal layer and the postcondition (post) denotes the
presence (or absence) of the feature.

The formal, checkable rules enable us to evaluate the quality of the datasets,
retrieve and label new data, understand scenarios where models make correct
and incorrect predictions, detect incorrect (or out-of-distribution) samples at
run-time, and verify models against human-understandable requirements.

We evaluate our algorithm for extracting feature representations and the
downstream analyses using two networks trained for computer vision tasks, namely
TaxiNet [4,9], a regression model for center-line tracking on airport runways,
and YOLOv4-Tiny [14], an object detection model trained on the nuImages [6]
dataset for autonomous driving.

2 Extracting Feature Representations

Algorithm 2.1 describes the method for extracting the representation of a par-
ticular feature from a trained neural network. A feed-forward neural network
f : Rn → Rm is organized in multiple layers, each consisting of computational
units called neurons. Each neuron takes a weighted sum of the outputs from the
previous layer and applies a non-linear activation function on it. The algorithm
requires a small dataset D where each raw input is labeled with 0 or 1 indicating
whether the feature under consideration is absent or present. The algorithm
takes as inputs a neural network f , the dataset D, the index l of the layer used
for extracting the feature representations. The first step of the algorithm (line
2) is to construct a new dataset A where each raw input x is replaced by the
corresponding activation value a output by layer l (f l(x) denotes the output of f
at layer l for input x). Next, the algorithm invokes a learning procedure to learn
a classifier r that separates activation values that map to feature being present
from activation values that map to feature absence (line 3).
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Algorithm 2.1: Extracting Feature Representations

Inputs: A neural classifier f ∈ Rn → Rm, dataset D ⊆ Rn × {0, 1}, |D| = N ,
and layer l ∈ {1, . . . , k − 1}, where k is the number of layers in f

Output: Representation r for the feature

1 FeatRep(f, D, l):
2 A := {(a, y) | (x, y) ∈ D ∧ a = f l(x)} //f l is the output of f at layer l
3 r := Learn(A)
4 return r

We use decision tree learning on line 3 to extract feature representations
as a set of rules of the form pre ⇒ {0, 1}; pre in each rule is a condition on
neuron values at layer l, and 0 or 1 indicates whether the rule corresponds to
the feature being absent or present. pre is a box in the activation space of layer
l, i.e.,

∧
Nj∈Nl

(Nj(x) ∈ [vLj , v
U
j ]). Here Nl is the set of neurons at layer l, and

vLj and vUj are lower and upper bounds for the output of neuron Nj . The rules
mined by decision-tree learning partition the activation space at a given inner
layer. Some partitions may be impure containing inputs both with and without
the feature. We only select pure rules, having 100% precision on d. We return
these rules as r. Note that there can be activation values for which no rule in r
is satisfied and we are unable to say whether the feature is absent or present.

3 Feature-Guided Analyses

The extracted feature representations as formal, checkable rules enable multiple
analyses, as listed below.

– Data analysis and testing. We can assess the quality of the training and
testing data in terms of coverage of different features. We can leverage the
extracted feature representations to automatically retrieve new data that has
the necessary features, by checking that the (unlabeled) data satisfies the
corresponding rules. We can also use the extracted rules to label new data
with their corresponding features, enabling further data-coverage analysis.

– Debugging and explanations of network behavior. We can leverage
the feature rules to uncover the high-level, human-understandable reasons
for a neural network model making correct and incorrect predictions. In the
latter case we can repair the model, which involves automatically selecting
and training based on inputs with features that caused incorrect predictions.

– Formulation and analysis of requirements. Extracted feature represen-
tations are the key to enabling verification of models with respect to high-level
safety requirements (pre =⇒ post). Specifically, the constraint pre in the
requirement expressed over features can be translated into a constraint pre′
expressed over activation values, by substituting the features with their cor-
responding representations. The modified requirement pre′ =⇒ post can
be checked automatically using off-the-shelf verification tools [10].
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– Run-time monitoring. We can also enforce safety properties at run-time.
For instance, we can use pre′ as above to check (at run-time) whether inputs
satisfy a desired precondition, and reject the ones that don’t.

– Conformance with the operational design domain (ODD). This is
a particular instance of the case above, where we use the rules to formally
capture the model’s expected domain of operation and use a run-time guard
to ensure that the model is not used in scenarios outside its ODD. A related
problem is out-of-distribution detection, where we can similarly formulate
the conditions under which the model is not supposed to operate and use
run-time monitoring to enforce it.

One can also check overlap between feature rules, using off-the-shelf decision
procedures, to uncover spurious correlations between the different features that
are learned by the network. We envision many other applications for these rules,
whose exploration we leave for the future.

4 Case Studies

We use two case studies to present initial empirical evidence in support of our
ideas. In particular, we show that Algorithm 2.1 with decision tree learning is
successful in extracting feature representations. We also demonstrate how these
representations can be used for analyzing the behavior of neural networks.

4.1 Center-line Tracking with TaxiNet

We first analyzed TaxiNet, a perception model for center-line tracking on airport
runways [4,9]. It takes runway images as input and produces two outputs, cross-
track (CTE) and heading angle (HE) errors which indicate the lateral and angular
distance respectively of the nose of the plane from the center-line of the runway.
We analyzed a CNN model provided by our industry partner, with 24 layers
including three dense layers (100/50/10 neurons) before the output layer. It is
critical that the TaxiNet model functions correctly and keeps the plane safe
without running off the taxiway. The domain experts provided a specification for
correct output behavior: |y0 − y0ideal | ≤ 1.0m ∧ |y1 − y1ideal | ≤ 5 degrees. One
can evaluate the model correctness using Mean Absolute Error (MAE) on a test
set (CTE:0.366, HE:1.645).
Feature Elicitation We first need to identify the high-level features that are
relevant for the task. These could be some of the simulator parameters (for
images generated from a simulator) and/or could be derived from high-level
system (natural language) requirements. This is a challenging process requiring
several iterations in collaboration with the domain experts. We obtained a list
of 10 features: center-line, shadow, skid, position, heading, time-of-day, weather,
visibility, intersection (junction) and objects (runway lights, birds, etc.) and
values of interest for each feature respectively.
Data Analysis and Annotations We manually annotated a subset of 450
images from the test set with values for each feature. An initial data-coverage
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Table 1: Rules for TaxiNet: d: annotated dataset, #d: total number of instances
for that feature value in d, Rd: recall (%) on d, Pv,Rv: precision (%) and recall
(%) on validation set. Rules with highest Rd are shown.

Feature Rule Metrics
#d Rd Pv Rv

Center-line N3,9 <= 1.39 ∧N3,9 > −0.98 ∧N3,1 > −0.99 202 92 93 100
∧N3,4 > −0.99 =⇒ present

N3,9 > 1.39 ∧N3,6 <= −0.81 =⇒ absent 25 40 100 12

Shadow N2,45 <= −0.75 ∧N1,50 > −0.91 30 86 100 69.23
∧N1,9 <= −0.95 =⇒ present

N2,4 <= −0.73 ∧N2,3 > 0.06 ∧N2,9 > −0.98 =⇒ absent 200 94.5 97 100

Skid N2,8 <= −0.98 ∧N2,10 <= 0.32 =⇒ dark 40 52.5 94.44 43.5
N1,28 <= −0.93 ∧N2,58 > −0.88 =⇒ no 5 60 0 0

N2,8 > −0.997 ∧N2,48 > −0.991 ∧N2,42 <= −0.342 182 97.8 93.4 95
∧N2,25 <= 1.82 =⇒ light

Position N2,2 > −0.99 ∧N2,24 <= −0.3 ∧N2,9 <= −1.19 =⇒ right 101 90 92.3 95.09
N1,26 > −0.55 ∧N1,20 <= −0.29 ∧N1,52 <= −0.96 =⇒ left 109 91 100 75.22
N3,6 > −0.17 ∧N3,6 <= 0.45 ∧N3,3 > −0.38 ∧N3,7 <= −0.55

∧N3,0 <= 2.56 ∧N3,5 <= −0.95 =⇒ on 11 45 13.5 45.45

Heading N1,5 > 3.29 ∧N1,90 <= −0.87 ∧N1,81 <= −0.76 =⇒ away 120 65 62.2 90.6
N1,5 <= 3.29 ∧N1,37 > −0.84 ∧N1,50 <= 8.22 ∧N1,53 <= −0.39 102 83 73.9 16.5
∧N1,64 > −0.98 ∧N1,45 <= −0.26 ∧N1,34 <= 12.21 =⇒ towards

Fig. 2: Images satisfying rules for features

analysis of the distribution of the values for every feature across all the images,
revealed many gaps. For instance, there were only day-time images, with only
cloudy weather and all the images had high visibility. Also apart from runway
lights, there were no images with any other objects on the runway. The analysis
proved already useful, providing feedback to the experts with regard to the type
of images that need to be added to improve the training and testing of the model.
Extracting Feature Rules We invoke Algorithm 2.1 to obtain rules in terms
of the values of the neurons at the three dense layers of the network. Note that
for each feature, we mined a separate rule for every value of interest. We used
half of the annotated set of 450 images for extraction (d in Algorithm 2.1) and
the remaining for validation of the rules. There are multiple rules extracted for
each feature; each rule is associated with a support value (# of instances in
d satisfying the rule) and has 100% precision on them since we only extract
pure rules. The results are summarized in Table 1, indicating some high-quality
rules (for "center-line present" , "shadow present" , "light skid", "position left",
"position right"), measured on the validation set.

Figure 2 displays some of the images satisfying different rules. The correspond-
ing heat maps were created by computing the image pixels impacting the neurons
in the feature rule [7]. Note that for the "center-line present" rule, the part of the
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image impacting the rule (highlighted in red) is the center-line, indicating that
indeed the rules identify the feature. On the other hand, in the absence of the
center-line, it is unclear what information is used by the model (and the image
leads to error). The heatmaps for the shadow and skid also correctly highlight
the part of the image with the shadow of the nose and the skid marks. We used
such visualization techniques to further validate the rules.

Labeling New Data The rules extracted based on a small set of manually
annotated data can be leveraged to annotate a much larger data set. We used the
rules for center-line (present/absent) to label all of the test data (2000 images).
We chose the rule with highest Rd for the experiments. However, more rules could
be chosen to increase coverage. 1822 of the images satisfied the rule for "center-
line present" and 79 images for "center-line absent". We visually checked some
of the images to estimate the accuracy of the labelling. We similarly annotated
more images for the shadow and skid features. These new labels enable further
data-coverage analysis over the train and test datasets.

Table 2: Feature-Guided Analysis Results

Rule MAE MAE errors
CTE HE

"center-line present" 0.36 1.63 45%
"center-line absent" 0.62 2.68 75%
"shadow present" 0.66 2.23 42%
"shadow absent" 0.34 1.55 7%

"dark skid" 0.43 1.84 52%
"light or no skid" 0.33 1.49 42%

Feature-Guided Analysis We per-
formed preliminary experiments to demon-
strate the potential of feature-guided anal-
yses. We first calculated the model accu-
racy (MAE) on subsets of the data labelled
with the feature present and absent respec-
tively. We also determined the % of inputs
in the respective subsets violating the cor-
rectness property. The results are summarized in Table 2.

These results can be used by developers to better understand and debug the
model behavior. For instance, the model accuracy computed for the subsets with
"shadow present" and "dark skid", respectively, is poor and also a high % of the
respective inputs violate the correctness property. This information can be used
by developers to retrieve more images with shadows and dark skids, to retrain
the model and improve its performance. The extracted rules can be leveraged to
automate the retrieval.

Furthermore, we observe that in the absence of the center-line feature, the
model has difficulty in making correct predictions. This is not surprising, as the
presence of the center-line can be considered as a (rudimentary) input requirement
for the center-line tracking application. Indeed, in the absence of the center-line it
is hard to envision how the network can estimate correctly the airplane position
from it. The network may use other clues on the runway, leading to errors. We
can thus consider the presence of the center-line feature as part of the ODD
for the application. The rules for the center-line feature can be deployed as a
run-time monitor to either pass inputs satisfying the rules for "present" or reject
those that satisfy the rules for "absent", ensuring that the model operates in the
safe zone as defined by the ODD, and at the same time increasing its accuracy.

We also experimented with generating rules to explain correct and incorrect
behavior in terms of combinations of features such as: (center − line present) ∧
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Table 3: Rules for YOLOv4-Tiny (same metrics as in Table 1).

Feature Rule Metrics
#d Rd Pv Rv

pedestrian.moving pre(21 terms) =⇒ present 1110 48 72 29
pre(15 terms) =⇒ absent 894 40 74 29

vehicle.parked pre(10 terms) =⇒ present 890 25 71 20
pre(19 terms) =⇒ absent 1114 43 70 32

pedestrian pre(25 terms) =⇒ present 1375 57 70 35
pre(14 terms) =⇒ absent 629 41 77 22

vehicle pre(20 terms) =⇒ present 1616 75 91 59
pre(11 terms) =⇒ absent 388 50 69 31

(shadow absent) ∧ (on position) =⇒ correct, and ¬(center − line present) ∧
(heading away)∧(position right) =⇒ incorrect. 1. These rules could be further
used by developers to better understand and debug the model behavior.

4.2 Object Detection with YOLOv4-Tiny

We conducted another case study with a more challenging network, an object
detector, to evaluate the quality of the extracted feature representations. For this
study, we use the nuImages dataset, a public large-scale dataset for autonomous
driving [1,6]. It contains 93000 images collected while driving around in actual
cities. To facilitate computer vision tasks such as object detection for autonomous
driving, each image comes labeled with 2d bounding boxes and the corresponding
object labels (from one of 23 object classes). Each labeled object also comes with
additional attribute annotations. For instance, the objects labeled vehicle carry
additional annotations like vehicle.moving, vehicle.stopped, and vehicle.parked.
Overall, the dataset has 12 categories of additional attribute annotations. We
trained a YOLOv4-Tiny object detection model [14,2] on this dataset. YOLOv4-
Tiny has 37 layers with 21 convolutional layers and 2 YOLO layers.

We leveraged the attribute annotations associated with each object as the
feature labels (thus no manual labeling was necessary). For extracting feature
representations, we run Algorithm 2.1 on a subset of 2000 images from the
nuImages dataset, and then evaluate the extracted representations on a separate
validation set of 2000 images.

Table 3 describes our results. We used layer 28 of the YOLOv4-Tiny model
to extract the feature representations. For brevity, we only report the number of
terms in the rule precondition, i.e., the number of neurons that appeared in the
constraints, instead of describing the exact rule in Table 3. Note that layer 28
has 798720 neurons. Strikingly, the extracted rules only have between 10 to 25
terms in their preconditions, and yet achieve precision (Pv) between 69− 74%.
The recall (Rv) values are also encouraging, and can be improved further by

1 The procedure to generate these rules has been omitted for brevity.
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considering more than one rule for each feature value (here, we only consider
pure rules with the highest recall Rd on dataset d used for feature extraction).

4.3 Challenges and Mitigations

Identifying relevant features is non-trivial and requires refinement and extensive
discussions with domain experts. The feature annotations may need to be provided
manually which is expensive and error-prone. However, we only need a small
annotated dataset to extract the representations, which can be used to further
annotate unlabeled data. The extracted rules may be incorrect (e.g., due to
unbalanced annotated data). We mitigate by carefully validating them using a
separate validation set and visualization techniques. It could also be that the
network did not learn some important features. To address the issue, in future
work, we plan to investigate neuro-symbolic approaches to build networks that are
aware of high-level features and satisfy (by construction) the safety requirements.

5 Related Work

There is growing interest in developing software engineering approaches for ma-
chine learning in general, and neural networks specially, investigating requirements
for neural networks [3], automated testing [16], debugging and fault localiza-
tion [8], to name a few. Our work contributes with a feature-centric view of
neural network behavior that links high-level requirements with the internal logic
of the trained models to enable better testing and analysis of neural networks.

A closely related work [18] uses high-level features to guide neural network
analysis. However, the features are extracted from input images, not from the
internal neural network representation. Further, the work only considers testing,
not other software engineering activities.

Our work is also related to concept analysis [17,11,15,13] which seeks to
develop explanations of deep neural network behavior in terms of concepts
specified by users. We propose to use high-level features for multiple software
engineering activities, which go beyond explanations. Moreover, the use of decision
tree learning makes our representations relatively cheap to extract. Note that
there are other works that use decision tree learning to distill neural network
input-output behavior, e.g., [5]; however none of them extract high-level features
from the network’s internal representation.

6 Conclusion

We proposed to extract high-level feature representations related to domain-
specific requirements to enable analysis and explanation of neural network behav-
ior. We presented initial empirical evidence in support of our ideas. In future work,
we plan to further investigate meaningful requirements for neural networks and
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effective techniques for checking them. We also plan to apply Marabou [10] for the
verification of safety properties expressed in terms of high-level features. Finally,
we plan to investigate neuro-symbolic techniques to develope high-assurance
neural network models.
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Abstract. We present “Verified JavaBIP”, a tool set for the verification
of JavaBIP models. A JavaBIP model is a Java program where classes
are considered as components, their behaviour described by finite state
machine and synchronization annotations. While JavaBIP guarantees ex-
ecution progresses according to the indicated state machines, it does not
guarantee properties of the data exchanged between components. It also
does not provide verification support to check whether the behaviour of
the resulting concurrent program is as (safe as) expected. This paper
addresses this by extending the JavaBIP engine with run-time verifi-
cation support, and by extending the program verifier VerCors to ver-
ify JavaBIP models deductively. These two techniques complement each
other: feedback from run-time verification allows quicker prototyping of
contracts, and deductive verification can reduce the overhead of run-time
verification. We demonstrate our approach on the “Solidity Casino” case
study, known from the VerifyThis Collaborative Long Term Challenge.

1 Introduction
Modern software systems are inherently concurrent: they consist of multiple
components that run simultaneously and share access to resources. Component
interaction leads to resource contention, and if not coordinated properly, can
compromise safety-critical operations. The concurrent nature of such interactions
is the root cause of the sheer complexity of the resulting software [9]. Model-
based coordination frameworks such as Reo [5] and BIP [6] address this issue by
providing models with a formally defined behaviour and verification tools.

JavaBIP [10] is an open-source Java implementation of the BIP coordina-
tion mechanism. It separates the application model into component behaviour,
modelled as Finite State Machines (FSMs), and glue, which defines the possi-
ble stateless interactions among components in terms of synchronisation con-
straints. The overall behaviour of an application is to be enforced at run time
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by the framework’s engine. Unlike BIP, JavaBIP does not provide automatic
code generation from the provided model; instead it realises the coordination
of existing software components in an exogenous manner, relying on component
annotations that provide an abstract view of the software under development.

To model component behaviour, methods of a JavaBIP program are anno-
tated with FSM transitions. These annotated methods model the actions of the
program components. Computations are assumed to be terminating and non-
blocking. Furthermore, side-effects are assumed to be either represented by the
change of the FSM state, or to be irrelevant for the system behaviour. Any
correctness argument for the system depends on these assumptions. A limita-
tion of JavaBIP is that it does not guarantee that these assumptions hold. This
paper proposes a joint extension of JavaBIP and VerCors [11] providing such
guarantees about the implementation statically and at run time.

VerCors [11] is a state-of-the-art deductive verification tool for concurrent
programs that uses permission-based separation logic [3]. This logic is an exten-
sion of Hoare logic that allows specifying properties using contract annotations.
These contract annotations include permissions, pre- and postconditions and
loop invariants. VerCors automatically verifies programs with contract annota-
tions. To verify JavaBIP models, we (i) extend JavaBIP annotations with ver-
ification annotations, and (ii) adapt VerCors to support JavaBIP annotations.
VerCors was chosen for integration with JavaBIP because it supports multi-
threaded Java, which makes it straightforward to express JavaBIP concepts in
its internal representation. To analyze JavaBIP models, VerCors transforms the
model with verification annotations into contract annotations, leveraging their
structure as specified by the FSM annotations and the glue.

For some programs VerCors requires extra contract annotations. This is gen-
erally the case with while statements and when recursive methods are used. To
enable properties to be analysed when not all necessary annotations are added
yet, we extend the JavaBIP engine with support for run-time verification. During
a run of the program, the verification annotations are checked for that specific
program execution at particular points of interest, such as when a JavaBIP com-
ponent executes a transition. The run-time verification support is set up in such
a way that it ignores any verification annotations that were already statically
verified, reducing the overhead of run-time verification.

This paper presents the use of deductive and run-time verification to prove
assumptions of JavaBIP models. We make the following contributions:
– We extend regular JavaBIP annotations with pre- and postconditions for

transitions and invariants for components and states. This allows checking
design assumptions, which are otherwise left implicit and unchecked.

– We extend VerCors to deductively verify a JavaBIP model, taking into ac-
count its FSM and glue structure.

– We add support for run-time verification to the JavaBIP engine.
– We link VerCors and the JavaBIP engine such that deductively proven an-

notations need not be monitored at run-time.
– Finally, we demonstrate our approach on a variant of the Casino case study

from the VerifyThis Collaborative Long Term Challenge.
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Tool binaries and case study sources are available through the artefact [7].

2 Related Work
There are several approaches to analyse behaviours of abstract models in the lit-
erature. Bliudze et al. propose an approach allowing verification of infinite state
BIP models in the presence of data transfer between components [8]. Abdellatif
et al. used the BIP framework to verify Ethereum smart contracts written in
Solidity [1]. Mavridou et al. introduce the VeriSolid framework, which generates
Solidity code from verified models [13]. André et al. describe a workflow to anal-
yse Kmelia models [4]. They also describe the COSTOTest tool, which runs tests
that interact with the model. Thus, these approaches do not consider verifica-
tion of model implementation, which is what we do with Verified JavaBIP. Only
COSTOTest establishes a connection between the model and implementation,
but it does not guarantee memory safety or correctness.

There is also previous work on combining deductive and runtime verification.
The following discussion is not exhaustive. Generally, these works do not support
concurrent Java and JavaBIP. Nimmer et al. infer invariants with Daikon and
check them with ESC/Java [14]. However, they do not check against an abstract
model, and the results are not used to optimize execution. Bodden et al. and
Stulova et al. optimize run-time checks using static analysis [12,16]. However,
Stulova et al. do not support state machines, and Bodden et al. do not support
data in state machines. The STARVOORS tool by Ahrendt et al. is comparable
to Verified JavaBIP [2]. Some minor differences include the type of state machine
used, and how Hoare triples are expressed. The major difference is that it is not
trivial to support concurrency in STARVOORS. VerCors and Verified JavaBIP
use separation logic, which makes concurrency support straightforward.

3 JavaBIP and Verification Annotations
JavaBIP annotations capture the FSM specification and describe the behaviour
of a component. They are attached to classes, methods or method parameters,
and were first introduced by Bliudze et al [10]. Listing 1 shows an example of
JavaBIP annotations. @ComponentType indicates a class is a JavaBIP component
and specifies its initial state. In the example this is the WAITING state. @Port
declares a transition label. Method annotations include @Transition, @Guard
and @Data. @Transition consists of a port name, start and end states, and
optionally a guard. The example transition goes from WAITING to PINGED when
the PING port is triggered. The transition has no guard so it may always be taken.
@Guard declares a method which indicates if a transition is enabled. @Data either
declares a getter method as outgoing data, or a method parameter as incoming
data. Note that the example does not specify when ports are activated. This is
specified separately from the JavaBIP component as glue [10].

We added component invariants and state predicates to Verified JavaBIP as
class annotations. @Invariant(expr) indicates expr must hold after each com-
ponent state change. @StatePredicate(state, expr) indicates expr must hold
in state state. Pre- and postconditions were also added to the @Transition an-
notation. They have to hold before and after execution of the transition. @Pure
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1 @Port(name = PING , type = PortType.enforceable)
2 @ComponentType(initial = WAITING , name = ECHO_SPEC)
3 public class Echo {
4 @Transition(name = PING , source = WAITING , target = PINGED)
5 public void ping() { System.out.println(this + ": pong");}}

Listing 1. Example of a minimal pinging component in JavaBIP

Fig. 1. Verified JavaBIP architecture. Ellipse boxes represent analysis or execution.

indicates that a method is side-effect-free, and is used with @Guard and @Data.
Annotation arguments should follow the grammar of Java expressions. We do
not support lambda expressions, method references, switch expressions, new,
instanceOf, and wildcard arguments. In addition, as VerCors does not yet sup-
port Java features such as generics and inheritance, models that use these cannot
be verified. These limitations might be lifted in the future.

4 Architecture of Verified JavaBIP
The architecture of Verified JavaBIP is shown in Figure 1. The user starts with a
JavaBIP model, optionally with verification annotations. The user then has two
choices: verify the model with VerCors, or execute it with the JavaBIP Engine.

We extended VerCors to transform the JavaBIP model into the VerCors in-
ternal representation, Common Object Language (COL). An example of this
transformation is given in Listing 2. If verification succeeds, the JavaBIP model
is memory safe, has no data races, and the components respect the properties
specified in the verification annotations. In this case, no extra run-time veri-
fication is needed. If verification fails, there are either memory safety issues,
components violate properties, or the prover timed out. In the first case, the
user needs to change the program or annotations and retry verification with
VerCors. This is necessary because memory safety properties cannot be checked
with the JavaBIP engine, and therefore safe execution of the JavaBIP model is
not guaranteed. In the second and third case, VerCors produces a verification
report with the verification result for each property.

We extended the JavaBIP engine with run-time verification support. If a
verification report is included with the JavaBIP model, the JavaBIP engine uses
it to only verify at run-time the verification annotations that were not verified
deductively. If no verification report is included, the JavaBIP engine verifies all
verification annotations at run time.

146



JavaBIP meets VerCors

1 @Transition(name=PING ,source=PING ,target=PING ,guard=HAS_PING)
2 public void ping() { pingsLeft --; }

1 requires PING_state_predicate () && hasPing ();
2 ensures PING_state_predicate ();
3 public void ping() { pingsLeft --; }

Listing 2. Top: example of a transition in JavaBIP. Bottom: internal representation
of ping after encoding JavaBIP semantics.

5 Implementation of Verified JavaBIP
This section briefly discusses relevant implementation details for Verified JavaBIP.

Run-time verification in the JavaBIP engine is performed by checking compo-
nent properties after component construction, and before and after transitions.
For example, before the JavaBIP engine executes a transition, it checks the
component invariant, the state invariant, and the precondition of the transi-
tion. When a property is violated, either execution is terminated or a warning is
printed, depending on how the user configured the JavaBIP engine. We expect
runtime verification performance to scale linearly, as properties can be checked
individually. We have not measured the impact of the use of reflection in the
JavaBIP engine.

For deductive verification the JavaBIP semantics is encoded into COL. We
describe this with an example. The top part of Listing 2 shows the ping method,
where @Transition indicates a transition from PING to PING. The guard indi-
cates that the transition is allowed if there is a ping. HAS_PING refers to a method
annotated with @Guard(name=HAS_PING), which returns pingsLeft >= 1.

The bottom part of Listing 2 shows the COL representation of the ping
method after encoding the JavaBIP semantics. Line 1 states the precondition,
line 2 the postcondition. PING_state_predicate() refers to the PING state pred-
icate, which constrains the values of the class fields. By default it is just true.
Since the predicate is both a pre- and a postcondition, it is assumed at the start
of the method, and needs to hold at the end of the method. hasPing() is the
method with the @Guard annotation for the HAS_PING label. The method is called
directly in the COL representation. We have implemented such a transformation
of JavaBIP to COL for each JavaBIP construct.

To prove memory safety, we extended VerCors to generate permissions. This
ensures verification in accordance with the Java memory model. Currently, each
component owns the data of all its fields. This works for JavaBIP models that
do not share data between components. For other models, a different approach
might be necessary, e.g. VerCors taking into account permissions annotations
provided by the user. For more info about permissions, we refer the reader to [3].

Finally, scalability of deductive verification of JavaBIP models could be a
point of future work, as the number of proof obligations scales quadratically in
the number of candidate transitions of a synchronization.
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6 VerifyThis Casino and Verified JavaBIP
We illustrate Verified JavaBIP with the Casino case study adapted from [17]. We
discuss the case study and its verification. The case study sources and Verified
JavaBIP sources and binaries are included in the artefact [7].

The model uses three component types: player, operator, and casino. The
model supports multiple players and casinos, but each casino has only one op-
erator. Players bet on the result of a coin flip. The casino pays out twice for
a correct guess, and keeps the money otherwise. The casino contains the pot
balance and money reserved for the current bet. The operator can add to or
withdraw money from the casino pot based on a local copy of the casino pot.

We have added several invariants to this model. The purse of every player, the
casino pot, its operator copy, the wallet of the operator, and the placed bet must
all be non-negative, as the model does not support debts. If no bet is placed, it
must be zero. These properties are defined as @Invariant or @StatePredicate
annotations on the components in the model.

One problem with the model is that the player can win more than the casino
pot contains, because there are no restrictions on how much the player can bet.
The problem is detected by both deductive and run-time verification. VerCors
cannot prove that the casino pot is non-negative, which is part of the casino
invariant, after the PLAYER_WIN transition. The JavaBIP engine detects it, but
is not guaranteed to because the model has some non-determinism. For example,
if no player ever wins the problem is not detected by run-time verification.

There are several solutions. First, the user can choose to always enable run-
time verification, such that the execution is always safe. This might be accept-
able depending on the performance penalty of run-time verification. Second,
guards can be added to restrict model behaviour. For example, PLACE_BET could
require bet <= pot. However, in general, adding guards might introduce dead-
locks. Third, a solution is to refactor the model to avoid the problem. For exam-
ple, the casino could limit how much the player can bet. This introduces no extra
run-time checks, however, in general the behaviour of the model will change.

7 Conclusions and Future Work
We presented Verified JavaBIP, a tool set for verifying the assumptions of JavaBIP
models and their implementations. The tool set extends the original JavaBIP an-
notations for verification of functional properties. Verified JavaBIP supports de-
ductive verification using VerCors, and run-time verification using the JavaBIP
engine. Only properties that could not be verified deductively are checked at
runtime. In the demonstration we automatically detect a problem on the Casino
case study using Verified JavaBIP.

There are several directions for future work. First, support for checking mem-
ory safety could be extended by supporting data sharing between components.
Second, we want to investigate run-time verification of memory safety. Third,
more experimental evaluation can be done on the capabilities and performance of
Verified JavaBIP. Fourth and finally, we want to investigate run-time verification
of safety properties of the JavaBIP model beyond invariants.
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Abstract. Player eXperience (PX) testing has attracted attention in
the game industry as video games become more complex and widespread.
Understanding players’ desires and their experience are key elements to
guarantee the success of a game in the highly competitive market. Al-
though a number of techniques have been introduced to measure the
emotional aspect of the experience, automated testing of player expe-
rience still needs to be explored. This paper presents a framework for
automated player experience testing by formulating emotion patterns’
requirements and utilizing a computational model of players’ emotions
developed based on a psychological theory of emotions along with a
model-based testing approach for test suite generation. We evaluate the
strength of our framework by performing mutation test. The paper also
evaluates the performance of a search-based generated test suite and LTL
model checking-based test suite in revealing various variations of tempo-
ral and spatial emotion patterns. Results show the contribution of both
algorithms in generating complementary test cases for revealing various
emotions in different locations of a game level.

Keywords: automated player experience testing, agent-based testing, model-
based testing, models of emotion

1 Introduction

Player experience (PX) testing has become an increasingly critical aspect of
game development to assist game designers in realistically anticipating the ex-
perience of game players in terms of enjoyment [17], flow [46] and engagement
[31]. While functional testing is intended to test the functionality of the game
[38], the PX testing verifies whether emotions and psychology of players shaped
during the interaction with the game are close to the design intention. This helps
game designers in early development stages to identify design issues leading to
game abandon, improve the general experience of players and even invoke certain
experience during the game-play [53,3,25]. Let us also clarify that ’usability’ is a
concept in the broad domain of PX testing, but not the only concept. Usability
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tests are designed to address issues that can lead to degrading the human perfor-
mance during the game-play [10], whereas PX can target the emotional experi-
ence of a player which eventually influences the success or failure of a game in the
market [1]. This has led to the emergence of Games User Research (GUR) as an
approach to gain insights into PX which is tied to human-computer-interaction,
human factors, psychology and game development [14].

Validating a game design relies either on trained PX testers or acquiring in-
formation directly from players with methods such as interviews, questionnaires
and physiological measurements [40,37], which are labour-intensive, costly and
not necessarily representing all users profiles and their emotions. Moreover, such
tests need to be repeated after every design change to assure the PX is still
aligned with the design intention. Thus, GUR researchers have turned into de-
veloping AI-based PX testing methods. In particular, agent-based testing has
attracted attention because it opens new rooms for automated testing of PX by
imitating players while keeping the cost of labour and re-applying the tests low.

There exist appraisal theories of emotions that address the elicitation of
emotions and their impact on emotional responses. They indicate that emotions
are elicited by appraisal evaluation of events and situations [33]. Ortony, Clore,
and Collins (OCC) theory [43] is one of several widely known appraisal theories
in cognitive science that is also commonly used in modeling emotional agents
[15,9,47,42,12]. Despite the influence of emotions on forming the experience of
players [39,13], this approach has not been employed in PX testing [6].

In our automated PX testing approach, we opt for a model-driven approach
to model emotions. Theoretical models of human cognition, used for decades
in cognitive psychology, provide a more coherent outlook of cognitive processes.
In contrast, applying a data-driven (machine learning) approach is greatly con-
strained by the availability of experimental data. Inferring a cognitive process
from limited experimental data is an ill-posed problem [5] because such a process
is subjective. Individuals can evaluate the same event differently due to age, gen-
der, education, cultural traits, etc. For example, when a romantic relationship
ends, some individuals feel sadness, others anger, and some even experience relief
[48]. However, according to appraisal theories of emotions, common patterns can
be found in emergence of the same emotion. These patterns are given as a struc-
ture of emotions by the aforementioned OCC. Thus, a model-driven approach
derived form a well-grounded theory of emotions such as OCC, is sensible when
access to a sufficient data is not possible.

In this paper, we present an agent-based player experience testing framework
that allows to express emotional requirements as patterns and verify them on
executed test suites generated by model-based testing (MBT) approach. The
framework uses a computational model of emotions based on OCC theory [21]
to generate the emotional experience of agent players. Comparing to [21], this
paper contributes to expressing emotion patterns’ requirements and generating
covering test suites for verifying patterns on a game level. We show such a
framework allows game designers to verify the emotion patterns’ requirements
and gain insight on emotions the game induce, over time and over space.
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Revealing such patterns requires a test suite that can trigger enough diversity
in the game behavior and as a result in the evoked emotions. This is where the
model-based testing approach with its fast test suites generation can contribute.
In this paper, we employ an extended finite state machine (EFSM) model [18]
that captures all possible game play behaviors serving as a subset of human
behaviors, at some level of abstraction. We use a search based algorithm (SB)
for testing, more precisely multi objective search algorithm (MOSA) [44], and
linear temporal logic (LTL) for model checking (MC) [8,11] as two model-based
test suite generation techniques to investigate the ability of each generated test
suite in revealing variations of emotion e.g absence of an emotion in a corridor.
We apply test-cases distance metric to measure test suites’ diversity and the
distance between SB and MC test suites. Results on our 3D game case study
shows that SB and MC, due to their different techniques for test generation,
produce distinctive test cases which can identify different variations of emotions
over space and time, that cannot be identified by just one of the test suites.

The remainder of this paper is organized as follows. Section 2 explains the
computational model of emotions and the model-based testing approach. Section
3 presents the PX framework architecture. Section 4 describes our methodology
of expressing PX requirements using emotion patterns, test suites diversity mea-
surement, and the overall PX testing algorithm. Section 5 shows an exploratory
case study to demonstrate the emotion pattern verification using model-based
testing along with an investigation on results of SB and MC test suite gener-
ation techniques. Mutation testing is also addressed in this section to evaluate
the strength of the proposed approach. Section 6 gives an overview of related
work. Finally, Section 7 proposes future work and concludes the paper.

2 Preliminaries

This section summarizes the OCC computational model of emotions [21] and
the model-based testing as key components of our PX framework.

2.1 Computational Model of Emotions

Gholizadeh Ansari et al. [21] introduces a transition system to model goal-
oriented emotions based on a cognitive theory of emotions called OCC. The
OCC theory gives a structure for 22 emotion types, viewed as cognitive processes
where each emotion type is elicited under certain conditions. The structure is
constructed based on the appraisal theory which is validated with a series of ex-
periments in psychology [50,16,49]. The appraisal conditions, exist in the OCC,
are modeled formally in [21] for six goal-oriented emotion types (ety), namely:
hope, joy, satisfaction, fear, distress, and disappointment for a single agent sim-
ulations where the agent’s emotional state changes only by game dynamism
expressed through events to the agent. A game is treated as an environment
that discretely produces events triggered by the agent’s actions or environmen-

153



S. G. Ansari et al.

tal dynamism such as hazards. The event tick represents the passage of time.
The emotion model of an agent is defined as a 7-tuple transition system M :

(S, s0, G,E, δ,Des, Thres)

– G is a set of goals, that the agent wants to achieve; each is a pair 〈id, x〉 of
a unique id and significance degree.

– S is the set of M ’s possible states; each is a pair 〈K,Emo〉:
• K is a set of propositions the agent believes to be true. It includes, for

each goal g, a proposition status(g, p) indicating if g has been achieved
or failed, and a proposition P(g, v) with v∈[0..1], stating the agent’s
current belief on the likelihood of reaching this goal.

• Emo is the agent’s emotional state represented by a set of active emo-
tions, each is a tuple 〈ety, w, g, t0〉, ety is the emotion type, w is the
intensity of the emotion respecting a goal g, and triggered time t0.

– s0 ∈ S is the agent’s initial state.
– E specifies the types of events the agent can experience.
– δ is M ’s state transition function; to be elaborated later.
– Des is an appraisal function; Des(K, e, g) expresses the desirability, as a

numeric value, of an event e with respect to achieving a goal g, judged when
the agent believes K. OCC theory has more appraisal factors [43], but only
desirability matters for aforementioned types of emotion [21].

– Thres : thresholds for activating every emotion type.

The transition function δ updates the agent’s state 〈K,Emo〉, triggered
by an incoming event e ∈ E as follows:

〈K , Emo〉 e−−−−→ 〈K′ ,

updated emotion Emo′︷ ︸︸ ︷
newEmo(K, e,G) ⊕ decayed(Emo)〉

– K ′ = e(K) \ H, where e(K) is the updated beliefs of the agent when K
is exposed to e; these may include updates on goals’ likelihood and their
status. H is the set of likelihoods of goals that are achieved or failed; this
information is no longer needed and removed from e(K).

– Emo′ = newEmo(K, e,G) ⊕ decayed(Emo), where newEmo(K, e,G) and
decayed(Emo) are newly activated emotions and the still active emotions
that decay over time. The operator ⊕ merges them after applying some
constraints [21].

Emotion activation. One or multiple emotions can be activated by an
incoming event (except tick). This is formulated as follows:

newEmo(K, e,G) = {〈ety, g, w, t〉 | ety ∈ Etype, g ∈ G,w = Eety(K, e, g) > 0} (1)

where w is the intensity of the emotion ety towards the goal g ∈ G and t is the
current system. Upon an incoming event, the above function is called to check
the occurrence of new emotions as well as re-stimulation of existing emotions in
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Emo for every g ∈ G. Eety(K, e, g) internally calculates an activation potential
value and compares it to a threshold Thresety; a new emotion is only triggered
if the activation potential value exceeds the threshold. These thresholds might
vary according to players’ characters and their moods. For instance, when a
person is in a good mood, their threshold for activating negative emotions go
up which conveys they become more tolerant before feeling negative-valenced
emotions. There is also a memory (emhistory) of activated emotions in the past
for some reasonable time frame. This is maintained implicitly in the emotions’
activation functions. The activation function of each emotion, based on provided
definitions in the OCC theory, is as bellows, where x, v and v′ refer to the goal’s
importance, the goal likelihood in previous and the new state respectively.

– E Hope (K, e, g) =

activation intensity︷ ︸︸ ︷
v′ ∗ x︸ ︷︷ ︸

activation potential

− Thres Hope

provided g = 〈id, x〉 ∈ G, P(g, v) ∈ K, P(g, v′) ∈ e(K), and v<v′<1.

– E Fear (K, e, g) = (1 − v′) ∗ x − Thres Fear , provided g = 〈id, x〉 ∈ G,
P(g, v) ∈ K, P(g, v′) ∈ e(K), and 0<v′<v.

– E Joy (K, e, g) = Des(K, e, g) − Thres Joy , provided g ∈ G, P(g, 1) ∈
e(K), and Des(K, e, g) > 0.

– E Distress (K, e, g) = |Des(K, e, g)| − Thres Distress , provided g ∈ G,
P(g, 0) ∈ e(K), and Des(K, e, g) < 0.

– E Satisfaction (K, e, g) = x−Thres Satisfaction , provided that g = 〈id, x〉 ∈
G, status(g, achieved) ∈ e(K), and both 〈Hope, g〉, 〈Joy, g〉 ∈ emhistory.

– E Disappointment (K, e, g) = x−Thres Disappointment , provided g=〈id, x〉 ∈
G, status(g, failed) ∈ e(K), and both 〈Hope, g〉, 〈Distress, g〉 ∈ emhistory.

Emotion decay. An emotion intensity in Emo declines over time, triggered
by tick events. This is formulated with a decay function over intensity as follows:

decayed(Emo) = {〈ety, g, w′, t0〉 | 〈ety, g, w, t0〉∈Emo, w′=decayety(w0, t0) > 0} (2)

where w0 is the initial intensity of ety for the goal g at time t0; this is stored in
emhistory. decayety which is a decay function defined as an inverse exponential
function over the peak of intensity (w0) at time t0.

2.2 Model-based Testing with EFSM

Since automated testing is a major challenge for the game industry due to the
complexity and hugeness of games’ interaction space, a recent development is to
apply a model-based approach for test generation. [30,52,18]. For this purpose,
an extended finite state machine (EFSM) M can be used which is a finite state
machine (FSM), extended with a set V of context variables that allows the
machine to have richer concrete states than the abstract states of its base FSM
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[2]. Transitions t in M take the form n
l/g/α−−−→ n′ where n and n′ are source and

destination abstract states of the transition, l is a label, g is a predicate over V
that guards the transition, and α is a function that updates the variables in V .

Figure 1 shows an example of a small level in a game called Lab recruits
4which is the case study of this paper as well. A Lab recruits level is a maze
with a set of rooms and interactive objects, such as doors and buttons. A level
might also contain fire hazards The player’s goal is to reach the object gf0.
Access to it is guarded by door3, so reaching it involves opening the door using
a button, which in turn is in a different room, guarded by another door, and so
on. Ferdous et al. [18] employs a combined search-based and model-based testing
for functional bug detection in this game using EFSM model (Figure 1). In the
model, all interactable objects are EFSM states: doors (3), buttons (4), and the
goal object gf0. For each doori, dip and dim are introduced to model the two
sides of the door. The model has three context variables representing the state
of each door (open/close). A solid edged transition on the model is unguarded,
modelling the agent’s trip from one object to another without walking through
a door. A dotted transition models traversing through a door when the door is
open. A dashed self loop transition models pressing a button; it toggles the status
of the doors connected to the pressed button. Notice that the model captures the
logical behavior of the game. It abstracts away the physical shape of the level,
which would otherwise make the model more complicated and prone to changes
during development. Given such a model, abstract test cases are constructed as
sequences of consecutive transitions in the model. This paper will extend the
EFSM model-based testing approach [18] for player experience testing.

Fig. 1: A game level in the Lab Recruits game and its EFSM model [18].

3 PX Testing Framework

The proposed automated PX testing framework aims to aid game designers for
PX assessment of their games by providing information on the time and place
of emerged emotions and their patterns which would ultimately determine the
general experience of player. E.g. if these patterns do not fulfill design intentions,
game properties can be altered and testing process can be repeated.

4 https://github.com/iv4xr-project/labrecruits
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Figure 2 shows the general architecture of the framework. There are four main
components: a Model-based Testing component for generating tests, the Model
of Emotions component implements the computational model of emotions from
Section 2.1, an Aplib basic test agent [45] for controlling the in-game player-
character, and the PX Testing Tool as an interface for a game designer towards
the framework. The designer needs to provide these inputs, see 1 in Figure 2:

– An EFSM that abstractly models the functional behavior of the game.
– A selection of game events that have impacts on the player’s emotions (e.g.

defeating an enemy, acquiring gold).
– Characteristics that the designer wants to address in the agent to resemble

a certain type of players, such as: a player’s goals and their priorities, the
player’s initial mood and beliefs before playing the game, and the desirability
of incoming events for the player. E.g. a player might experience a high level
of positive emotions on defeating an enemy, while for another player who
prefers to avoid conflicts, acquiring a gold bar could be more desirable.

Given the EFSM model, the Model-based testing component, 2 in Figure
2, generates a test suite consisting of abstract test cases to be executed on the
game under test (GUT). The test generation approach is explained in Section
4.1. Due to the abstraction of the model, emotion traces cannot be obtained
from pure on-model executions. They require the executions of the test cases on
the GUT. An adapter is needed to convert the abstract test cases into actual
instructions for the GUT. The Aplib basic test agent does this conversion.

Attaching the Model of Emotions to the basic test agent creates an emotional

test agent, 3 in Figure 2, which is able to simulate emotions based on incoming
events. Via a plugin, the emotional test agent is connected to the GUT. Each
test case of the test suite is then given to the agent for execution. The agent
computes its emotional state upon observing events and records it in a trace file.
Finally, when the whole test suite is executed, the PX Testing Tool analyzes
the traces to verify given emotional requirements and provide heat-maps and
timeline graphs of emotions for the given level ( 4 in Figure 2).

Fig. 2: Automated PX testing framework architecture.
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4 Methodology

This section describes the framework’s model-based test generation techniques
and our approach to measure a test suite’s diversity. Then, our approach for
expressing emotion pattern requirements and verifying them are explained.

4.1 Test Suite Generation

A test generation algorithm is applied to produce abstract test cases from a
model with respect to a given coverage criterion. From now on, we refer to
these abstract test cases simply as test cases. In our context, game designers
can evaluate the game experience by evaluating emerging emotional experience
through various paths to the game’s goal. So, a proper test suite needs to cover
various variations of player behavior to expose various emotion patterns. Here,
we aim at graph-based coverage, such as transition coverage. However, since the
model of emotions from Section 2.1 is goal-oriented, some adjustment is needed:

Definition 1. Transition-goal coverage over an EFSM model M with respect to
a goal state g is a requirement to cover all transitions in M , where a transition
t is covered by a test case if its execution passes t and terminates in g.

Given the above definition, the PX framework uses the following complementary
test generation approaches; one is stochastic and the other is deterministic.

Search Based Test generation Search based testing (SBT) formulates testing
problems as an optimization problem in which a search algorithm is used to find
an optimized solution, in the form of a test suite, that satisfies a given test
adequacy criterion encoded as a fitness function [36]. Meta-heuristic algorithms
such as genetic algorithm [23] and tabu [22,26] are commonly used for this. Our
framework uses an open source library EvoMBT [18] that comes with several state
of the art search algorithms e.g. MOSA [44]. We utilize this to produce a test
suite satisfying e.g. the criterion in Def.1 to represent players’ potential behavior
in the game, which are then executed to simulate their emotional experience.

To apply MOSA, individual encoding, search operators and a fitness func-
tion need to be defined. An individual I is represented as a sequence of EFSM
transitions. Standard crossover and mutation are used as the search operators.
MOSA treats each coverage target as an independent optimisation objective. For
each transition t, the fitness function measures how much of an individual I is
actually executable on the model and how close it is from covering t as in Def.1.
MOSA then evolves a population that minimize the distances to all the targets.

LTL model checking test generation Model checking is the second tech-
nique we use for test generation. This technique is originally introduced for
automated software verification that takes a finite state model of a program
as an input to check whether given specifications hold in the model [8]. Such
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specifications can be formulated in e.g. LTL which is a powerful language for
expressing system properties over time. When the target formula is violated,
a model checker produces a counter example in the form of an execution trace
to help debugging the model. This ability is exploited for producing test cases
by encoding coverage targets as negative formulas, and converting the produced
counter examples to test cases [4,11,20]. We use this to generate test suites sat-
isfying the coverage criterion in Def.1, encoded as an LTL properties. For each
transition t : n1 → n2 in the EFSM model, the transition-goal coverage require-
ment to cover t is encoded as the following LTL formula:

φt = ¬g U (n1 ∧ X (n2 ∧ ¬g U g ))

where g is the goal state like gf0 in Figure 1. The model checking algorithm
checks whether ¬φt is valid on the EFSM model using depth-first traversal [29].
If it is not, a counter example is produced that visits t and terminates in g. An
extra iteration is added to find the shortest covering test case.

4.2 Test Suite Diversity

Diversity is an approach to measure the degree of variety of the control and data
flow in software or a game[41]. We use this approach to measure the diversity of
test suites obtained from the generators in Section 4.1. A test suite’s diversity
degree is the average distance between every pair of distinct test cases, which
can be measured in e.g. the Jaro distance metric. For a test case tc, let tc and
|tc| be its string representation and its length respectively. The Jaro distance
between two test cases of tci and tcj is calculated as follows:

Dis Jaro( tci, tcj) =

{
1 , if m = 0

1 − 1
3
( m
|tci|

+ m
|tcj |

+ m−t
m

) , if m 6= 0
(3)

where m is the number of matching symbols in two strings whose distance is less
than b|tci|/2c, assuming tci is the longer string; and t is half of the number of
transpositions. Then, the diversity of a test suite TS is a summation of distances
between every pair of distinct test cases, divided by the number such pairs:

Divavg(TS) =

∑|TS|
i=1

∑|TS|
j=i+1Dis Jaro(tci, tcj)
|TS| ∗ (|TS|−1)

2

(4)

where |TS| is TS’ size. Additionally, if TS1 and TS2 are two test suites, the
average distance between them is:

Dis avg(TS1, TS2) =

∑
tci∈TS‘1,tcj∈TS2

Dis Jaro(tci, tcj)

|TS1| ∗ |TS2|
(5)

This is used in Section 5 to measure the distance between the test suites
generated by the two approaches (Section 4.1) provided by our framework, along
with their complementary effects on revealing different emotion patterns.
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4.3 Emotion Patterns’ Requirements and Heat-maps

In Section 2.1, we described the emotion model of an agent. When the agent
executes a test case, it produces a trace of its emotion state over time. Such a
trace is a sequence of tuples (t, p, Emo) where t is a timestamp, Emo is the agent
emotion state at time t, and p is its position. Running a test suite produces a
set of such traces.We define emotion patterns to capture the presence or absence
of an emotional experience in a game. Such a pattern is expressed by a string of
symbols, each representing the stimulation, or lack of a certain emotion type.

Definition 2. An emotion pattern is a sequence of stimulations e or ¬e, where
e is one of the symbols H, J , S, F , D and P . Each represents the stimulation
of respectively hope, joy, satisfaction, fear, distress, and disappointment.

A single pattern such as F represents the stimulation of the corresponding
emotion, in this case fear. We will restrict ourselves to simply mean that this
stimulation occurs, without specifying e.g. when it happens exactly, nor for how
long it is sustained. A negative single pattern such as ¬F represents the absence
of stimulation, in this case fear. A pattern is a sequence of one or more sin-
gle patterns, specifying in what order the phenomenon that each single pattern
describes is expected to occurs. Patterns provide a simple, intuitive, but reason-
ably expressive way to express PX. For example, the pattern JFS is satisfied by
traces where the agent at some point becomes satisfied (S) after a stimulation
of joy (J), but in between it also experiences a stimulation of fear at least once.
Another example is J¬FS when there is no stimulation of fear between J and
S. The presence of this pattern indicates the presence of a ’sneak’ route, where
a goal is achievable without the player has to fight enough for it.

As a part of PX requirements, developers might insist on presence or absence
of certain patterns. More precisely, given a pattern p, we can pose these types of
requirements: Sat(p) requires that at least one execution of the game under test
satisfies p; UnSat(p) requires that Sat(p) does not hold; and V alid(p) requires
that all executions satisfy p. In the context of testing, we will judge this by
executions of the test cases in the given test suite TS.

Heat-maps Whereas above we discuss emotion patterns over time, a heat-
map shows patterns over space. Assuming the visitable parts of a game level
form a 2D surface, we can divide it into small squares of u×u. Given a posi-
tion p and a square s, we can check if p∈s. Given a trace τ , let Emo(s) =
{Emo | (t, p, Emo) ∈ τ, p∈s}: the set of emotions, that occur in the square
s. This can be aggregated by a function aggr that maps Emo(s) to R. An ex-
ample of an aggregator is the function maxe that calculates the maximum of a
specific emotion e (e.g. hope). Section 5 will show some examples. Such maps
can be analyzed against requirements, e.g. that the aggregate values in certain
areas should be of a certain intensity. We can also create an aggregated heat-
map of an entire test suite by merging the traces of its test cases into a single
trace, and then calculate the map from the combined trace. Finally, the overall
methodology of our PX testing is summarized in Algorithm 1.
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4.4 PX Framework Implementation

Algorithm 1 The Execution of automated PX
Testing Algorithm.

Input: EFSM M , coverage criterion C,
configuration parameters Config for test generator,
and emotion pattern requirements’ list R.

Output: Emotion traces, Heat-maps of emotions,
and the verification of requirements’ (true/false).

1: procedure Exec(M,C,Config, R)
2: TSabstract← TSGenerate(M,C,Config)
3: TSconcrete← Translate(TSabstract)
4: Configure an emotional test agent A
5: tracesemotion ← ∅
6: for all test cases tc ∈ TSconcrete do
7: τ ← A executes tc on the SUT
8: tracesemotion ← tracesemotion ∪ {τ}
9: end for
10: Hmaps← GenerateHeat-maps(tracesemotion)
11: V result← { (r,Verify(r)) | r ∈ R }
12: return (tracesemotions, Hmaps, V results)
13: end procedure

The test agent is implemented us-
ing APlib Java library [45]. It has
a BDI architecture [27] with a
novel goal and tactical program-
ming layer. We use JOCC library
[21] for modeling emotions. To fa-
cilitate the model-based testing,
we integrate EvoMBT[18]. It gen-
erates abstract test suites from
an EFSM model, utilizing Evo-
Suite [19] for search-based test
generation. An implementation of
LTL model checking algorithm
is employed to produce model
checking-based test suites. The
framework and its data will be
available for public use.

5 Case Study

This section presents an exploratory case study conducted to investigate the use
of a model-based PX testing framework5 for verifying emotion requirements in a
game-level and to investigate the difference between the search based generated
test suite and the model checker generated test suites on revealing emotion pat-
terns. Finally, we run mutation testing to evaluate the strength of our framework.

5.1 Experiment Configuration

Figure 3 shows a test level called Wave-the-flag in the Lab Recruits, a config-
urable 3D game, designed for AI researchers to define their own testing problems.

Fig. 3: Wave-the-flag level.

It is a medium sized level, consisting
of a 1182 m2 navigable virtual floor,
8 rooms, 12 buttons, and 11 doors.
Its EFSM model consists of 35 states
and 159 transitions. The player starts
in the room marked green at the top,
and must find a ’goal flag’ gf0 marked
red in the bottom room to finish the
level. Doors and buttons form a puzzle
in the game. A human player needs to
disclose the connections between but-
tons and doors to open a path through

5 https://doi.org/10.5281/zenodo.7506758
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the maze to reach the aforementioned goal flag in a timely manner. The player
can earn points by opening doors and lose health in case of passing fire flames.
For the test agent, the latter is also observable as an event called Ouch. If the
player runs out of health, it loses the game. The player also has no prior knowl-
edge about the position of doors, buttons and the goal flag, nor the knowledge
on which buttons open which doors. Since there are multiple paths to reach the
target, depending on the path that the player chooses to explore, it might be able
to reach the goal without health loss, at one end of spectrum, or it can end up
dead at the other end. The EFSM model (not shown) of the Wave-the-flag level
is constructed similar to the running example in section 2.2. To add excitement,
Wave-the-flag also contains fire flames. However, these flames are not included
into the EFSM model because the placement and amount of these objects are
expected to change frequently during development. Keeping this information in
the EFSM model would force the designer to constantly update the model after
each change in flames. Thus, similar to the running example, the EFSM model
contains doors, buttons and goal flags.

In addition to the EFSM model, we need to characterize a player to do
PX testing ( 1 in Figure 2). Table 1 shows basic characteristics of a player,
defined with a set of parameters, to configure the emotion model of the agent
before the execution. The level designer determines values of these parameters.
After the execution of the model, we asked the designer to check the plausibility
their values by checking the emotional heat-map results. The designer checked
randomly selected number of test cases with their generated emotional heat maps
to check the occurrence of emotions are reasonable. Thus, the utilized values for
the following experiment is confirmed reasonable by the designer. Moreover, The
likelihood of reaching the goal gf0 is set to 0.5 in the initial state to model a
player who initially feels unbiased towards the prospect of finishing the level.
Thus, the agent feels an equal level w of hope and fear at the beginning.

5.2 PX Testing Evaluation

Test suites are generated from the EFSM model using LTL model checking
(MC) and the search-based (SB) approach with the full transition-goal coverage
criterion (Def.1) named as TSSB and TSMC , both with 60 seconds time budget.

Abstract test suite characteristics. Our reason for using multiple test
generation algorithms is to improve the diversity of the generated test cases,
which in turn would improve our ability to reveal more emotion patterns. Table
2 shows the basic characteristics of the generated test suites. Due its stochastic
behavior, the search-based (SB) generation is repeated 10 times, and then aver-
aged. The SB algorithm manages to provide full transition-goal coverage with, in
average, 54.6 test cases (σ = 7.8), with the average diversity of 0.192 (σ = 0.03)
between test cases in a test suite. The model checker (MC) always satisfies the
criterion with 74 test cases and average diversity of 0.113. The higher diversity
of SB test suites (TSSB) can be explained through the stochastic nature of the
search algorithm. Table 2 also shows the length of the shortest and longest test
cases. While SB manages to find a shorter test case with only 17.7 transitions
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Table 1: Configuration of Player Characterization. G is the agent’s goal set; it has one
goal for this level, namely reaching the goal-flag gf0, s0 is the emotion model’s initial
state, a set of relevant events (E) needs to be defined by the designers: DoorOpen
event, triggered when a new door gets open, is perceived as increasing the likelihood
of reaching gf0 by v1 in the model, Ouch event, that notifies fire burn, is perceived
as declining the likelihood of reaching gf0 by v2, GoalInSight event, triggered at the
first time the agent observes the goal gf0 in its vicinity , is modelled as making the
agent believes that the likelihood of reaching the goal becomes certain (1), and finally
GoalAccomplished event is triggered when the goal gf0 is accomplished. Des reflects
the desirability/undesirability of each event with respect to the goal and Thres is the
emotions’ activation thresholds. x, vi, and yi are constants determined by the designer.

Parameter Value
G g =< gf0, x >∈ G
s0 likelihood(gf0, 0.5) ∈ K0,

Emo0 = {< Hope, gf0, w, 0 >,< Fear, gf0, w, 0 >}
E = {DoorOpen,Ouch,GoalInSight,GoalAccomplished}

on DoorOpen event: likelihood(gf0,+v1),
on fire burn in Ouch event: likelihood(gf0,−v2) ,

on GoalInSight event: likelihood(gf0, 1).
Des Des(K,DoorOpen, gf0) = +y1 ,

Des(K,Ouch, gf0) = −y2 ,
Des(K,GoalInSight, gf0) = +y3

Thres 0

in average, its longest test case has in average 74.25 transitions. Finally, the last
row in Table 2 indicates the difference between SB and MC test suites. The
distance between two test suites is measured for every generated TSSB using
Equation 5 which brings about 0.214 (σ = 0.024) distance in average between
test cases of the two suites. Later, we investigate whether such a difference can
lead to differences at the execution level in emotion patterns.

Table 2: Characteristics of LTL-model checking-based and search-based test suites with
respect to the same coverage criterion.

Test suite size Divavg(TSi) Shortest tc longest tc
TSMC 74 0.113 23 45
TSSBavg 54.6 0.192 17.7 74.25

Div avg(TSMC , TSSB) 128.6 0.214

Evaluation of emotional heat-maps. Inspecting the emerging emotions
requires real execution of test cases on the game under test. The execution of
TSMC with 74 test cases and the TSSB with the average 54.5 test cases took
11,894 seconds and 10,201 respectively in the game. After the executions, the
automated PX testing framework produces a heat-map of emotions for every
test case to give spatial information about the intensity of the emotion at each
location in the game. Unlike [21] which only produces heat-maps of emotions for
a single pre-defined navigation path, Figure 4 shows the aggregated heat map
visualization of some selected emotions, evoked during the execution of all test
cases in TSMC and a randomly chosen TSSB suite from the previously generated
10 TSSB suites, with the square size u=1 and maxe as the aggregation func-
tion. So, the maps show the maximum intensity on a given spot over the whole
execution of the corresponding test suite. The brighter color shows the higher
intensity of an emotion. In this case, the bright yellow represents the highest
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emotional intensity in heat maps. The heat maps of hope, joy and satisfaction
for these test suites show quite similar spatial information (only hope and joy
are shown in Figure 4). However, TSMC generally shows a higher level of hope
during the game-play (Figures 4a and 4b). So, if the designer verifies his level on
the presence and spatial distribution of intensified hope through the level, the
test cases produced by TSMC can expose these attributes better. This can be
explained by the model checker setup to find shortest test cases; some can then
open the next door sooner, raising hope before its intensity decays too much.

The maps also show a difference in the spatial coverage of TSSB and TSMC

(marked green in Figures 4a and 4b). The transition that traverses the corridor is
present in TSMC , but when the corresponding abstract test case is transformed
into an executable test case for APlib test agent, they also incorporate optimiza-
tion. So, it finds a more optimized way for execution by skipping the transition
that actually passes the corridor towards the room, if the next transition is to
traverse back along same corridor. The corridor is, however, covered by TSSB .

(a) MC-Hope (b) SBT-Hope (c) SBT-Joy

Fig. 4: Heat-map visualization of positive emotions for SBT and MC test suites.

The most striking differences between TSSB and TSMC are revealed in their
negative emotions’ heat-maps (Figure 5). Most places that are marked black
as distress-free by executed TSMC (Figure 5a) are actually highly distressful
positions for some test cases of TSSB . The presence of distress might be the
intended player experience, whereas its absence in certain places might actually
be undesirable. Upon closer inspection of individual test cases, it turns out that
the test cases of TSSB that pass e.g. the red regions in Figure 5a and 5b always
show distress in the marked corridor, whereas one test case in TSMC manages
to find a ’sneak route’ that passes the corridor without distress, and finishes the
level successfully. Thus, if the designer is looking for the possibility of absence of
distress in the sneak corridor, inspection of TSSB would not suffice. The heat-
maps of disappointment reveals another difference. While TSMC only finds one
location where the agent dies and feels disappointed, TSSB manages to find 3
more locations in the level with the disappointment state (Figure 5c).

The main reason behind those differences is that a sequence of transitions
results in experiencing an emotion in the agent, not just a single transition.
Furthermore, emotions intensity has a residual behavior which means a sequence
of transitions and behavior might result in an emotion which still remains in
the agent emotional state after some time. Thus, providing state coverage or the
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transition-coverage criterion does not in itself suffice to manage revealing possible
emotions and their patterns. The variation of transitions and their order in a test
case can resemble the different player behaviors during the game-play that their
outcomes ultimately form the player emotional experience. Therefore, finding
a proper test suite that can capture the distributions of theses emotions with
test cases exhibiting the presence or absence of emotions in various locations is
challenging. As remarked before, due to the stochastic nature of its algorithm, the
search algorithm produces more diverse test suite than the LTL model checker,
and hence can increase the chance of revealing more variation of emotions in
different locations of the level. However, our experiments show the model checker
does provide useful complementary test cases, e.g. for finding corner cases which
can be covered only by the model checker that were missed by SB. All mentioned
differences can explain the 0.20 distant difference between TSMC and TSSB .

(a) MC-Distress (b) SBT-Distress (c) SBT-Disappointment

Fig. 5: Heat-map visualization of negative emotions for SBT and MC test suites.

Checking emotion pattern requirements.The PX testing framework is
also capable of verifying emotion requirements using patterns as defined in Def-
inition 2 format based on stimulation of emotions. These patterns are verified by
inspecting the order in which different emotions are stimulated, as recorded in the
trace files. Although there are numerous combinations of emotions, only some of
them matter for the designer to check. As a requirement, recall that a pattern can
be posed as an existential requirement, i.e. Sat(p), or need to happen for all game-
plays, i.e. V alid(p) or need to unwitnessed for all game-plays, i.e.USat(p). It is also
essential to clarify that the choice of which emotion patterns are to be required
can vary among game-levels, as expectations on the occurrences of patterns de-
pend on the design goal. E.g. a game level with Sat(DHS) would provide at least
one thrilling game-play. But if it is intended to be an easy level for beginners, the
designer might insist onUnSat(DHS) instead.We have collected a number of emo-
tion pattern requirements from the designer of the Wave-the-flag level; these are
shown in the upper part of Table 3. The main expectation of the designer is to en-
sure that the designed level is enjoyable by experiencing different positive as well
as negative emotions during the game-play and to avoid the player to get bored by
interpreting boredom as absence of active emotions in the agent emotional state for
some time. As can be seen in Table 3, while most requirements are verified during
the test, there are requirements like Sat(J¬S) that are failed. This requirement
indicates the designer expects at least one execution path that joy is stimulated
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at least once thought the execution, but the agent never reaches the goal with sat-
isfaction. Having Sat patterns failed to be witnessed, or UnSat patterns that are
witnessed, assist the designer to alter their game level and run the agent through
the level again. For example, here, the fail on Sat(J¬S) is an indication that the
designer needs to put some challenging objects like fire or enemies in the vicinity
of the goal gf0.

Table 3: Emotion pattern check with TSMC and TSSB. H= hope, F= fear, J= joy,
D= distress, S= satisfaction, P = disappointment and ¬X = absence of emotion X.

Emotion patterns TSMC TSSB

Sat(¬DS) 4 4
UnSat(¬FS) 4 4
Sat(J¬S) 7 7
UnSat(JD) 4 4
Sat(JFS) 4 4
Sat(DHP ) 4 4
Sat(DHS) 4 4

Sat(DH¬DS) 7 4
Sat(FDHFJ) 7 4

Sat(HFDDDHFJ) 7 4
Sat(FDDHFP ) 7 7

Emotion patterns length=2 101/144 (70.2%) 101/144 (70.2%)
Emotion patterns length=3 88/150 (58.6%) 88/150 (58.6%)
Emotion patterns length=4 71/164 (43.2%) 72/164 (43.9%)
Emotion pattern length=5 60/177 (33.8%) 61/177 (34.4%)

Table 3 also shows the similar ratio of the pairwise combination of emotions
over various Sat(p) for the pattern p between length 2-5 by the TSSB and the
TSMC , indicating that both test suites can perform well to detect Sat-type
emotion patterns. However, there the last three patterns in Table 3 are covered
by TSSB but missed by TSMC . Thus, they are complementary, which makes it
reasonable to use both test suites for verifying emotion pattern requirements.

5.3 Mutation Testing Evaluation

Mutation testing [32] is a technique to evaluate the quality of test suites in de-
tecting faults, represented by faulty variants (’mutants’) of the target program
generated through a set of mutation operators. Here, we use this to evaluate the
strength of our PX testing approach. In the procedure, we use a corrected Wave-
the-flag level (’original’ level), satisfying all the emotion pattern requirements
we posed in Table 3. Mutations are applied on the original’s level definition file
to produce mutants (one mutation per mutant). An example of a mutation is
to remove all fire flames from a certain zone in the level; Table 4 lists the used
mutation operators. A mutant represents an alternate design of the level, main-
taining the level’s logic, but may induce different PX. To apply the mutations,
the game level is divided to 16 zones of about equal size. We apply the muta-
tion operators on each zone. Every mutant is labeled with the applied mutation
operator and z x y where (x, y) specifies the bottom-left corner of the zone on
which the mutation is applied. After dropping mutations that do not change the
level’s properties, we obtain 20 distinct mutants, from which we randomly choose
10 mutants for execution. We re-run both TSMC and TSSB test suites on each
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mutant. A mutant is automatically killed when the correctness of a specification
is judged differently from the original results. Table 5 shows that 8 of the 10
randomly selected mutants are killed. Remaining mutants are not killed because
emotion requirements might not be distinctive enough to kill them too.

Table 4: Mutation operators
Code Description
RF Remove fire

RW2WF Relocate fire
between walls

RMRF Relocate fire in
middle of a room

AMRF Add fire in
middle of a room

AW2WF Add fire
between walls

Table 5: Kill matrix of the mutants.
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Sat(¬DS) 4 4 4 4 4 4 4 4 4 4 4
UnSat(¬FS) 4 7 4 4 4 4 4 4 4 4 4
Sat(J¬S) 4 4 4 7 4 4 7 7 4 7 7
UnSat(JD) 4 4 4 4 4 4 4 4 7 4 4
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Threat to Validity. The designed character in Player Characterization, the
selected coverage criterion for test generation to verify UnSat specifications, and
the small number of mutation testing assessments due to the computational cost
are internal threats to the validity of the work. In terms of external threats,
performing the experiment on one level is not safe to be generalized.

6 Related Work

A number of research has been conducted on automated play testing to reduce
the cost of repetitive and labor-intensive functional testing tasks in video games
[35,54]. In particular, agent based testing has been a subject of recent research
to play and explore the game space on behalf of human players for testing pur-
poses. Ariyurek et al. [7] introduces Reinforcement Learning (RL) and Monte
Carlo Tree Search (MCTS) agents to detect bugs in video games automatically.
Stahlke et al. [51] presents a basis for a framework to model player’s memory
and goal-oriented decision-making to simulate human navigational behavior for
identifying level design issues. The framework creates an AI-agent that uses a
path finding heuristic to navigate a level, optimized by a given player charac-
teristics such as level of experience and play-style. Zhao et al. [55] intend to
create agents with human-like behavior for balancing games based on skill and
play-styles. These parameters are measured using introduced metrics to help
training the agents in four different case studies to test the game balance and to
imitate players with different play-styles. Gordillo et al. [24] addresses the game
state coverage problem in play-testing by introducing a curiosity driven rein-
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forcement learning agent for a 3D game. The test agent utilizes proximal policy
optimization (PPO) with a curiosity factor reflected on the RL reward function
with frequency of a game state visit. Pushing the agent to have the exploratory
behaviour provides a better chance to explore unseen states for bugs.

Among game model-based testing, Iftikhar et al. [30] applies it on Mario
Brothers game for functional testing. The study uses UML states machine as a
game model for test case generation which manages to reveal faults. Ferdous et al.
[18] employs combined search-based and model-based testing for automated play-
testing using an EFSM. Search algorithms are compared regarding the model
coverage and bug detection. Note that while an EFSM provides paths through
a game, it can not reveal the experience of a player who navigates the path.

Despite some research on modeling human players and their behavior in agents
for automated functional play testing, there are a few research on automation of
PX evaluation. Holmgard et al. [28] propose to create procedural personas or player
characteristics for test agent to help game designers to develop game contents and
desirable level design for different players. The research proposes to create per-
sonas in test agents using MCTS with evolutionary computation for node selec-
tion. The result on MiniDungeons 2 game shows how different personas brings
about different behavior in response to game contents which can be seen as differ-
ent play-styles. Lee et al. [34] investigate a data-driven cognitive model of human
performance in moving-target acquisition to estimate the game difficulty for dif-
ferent players with different skill level. There is limited research on the emotion
prediction and its usage for automation of PX evaluation. Gholizadeh et al. [21]
introduce an emotional agent using a formal model of OCC emotions and propose
the potential use of such an agent for PX assessment. However, the approach lacks
automated path planning and reasoning, and hence it cannot do automated game-
play. Automatic coverage of game states and collecting all emerging emotions are
thus not supported which are addressed in this paper.

7 Conclusion & Future work

This paper presented a framework for automated player experience testing, in
particular automated verification of emotion requirement, using a computational
model of emotions and model-based test generation targeting a subset of human
players’ behaviors. We presented a language for emotion patterns to capture emo-
tion requirements. We also investigated the complementary impact of different
test generation techniques on verifying spatial and temporal emotion patterns.

Future work. The explained language is able to capture complex patterns
with the temporal order of emotions’ stimulations in the framework. However,
it cannot capture spatial behavior of emotions, such as differences in the heat-
maps. Generally, combining spatial and temporal aspects to verify emotion re-
quirements in specific areas and time intervals would give a more refined way
to assess the emotional experience. How to capture this into formal patterns is
still an open question. Investigating the application of our approach in empirical
case studies with human players is future work.
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Abstract. We introduce a generic approach for monitoring multithreaded pro-
grams online leveraging existing runtime verification (RV) techniques. In our
setting, monitors are deployed to monitor specific threads and only exchange in-
formation upon reaching synchronization regions defined by the program itself.
They use the opportunity of a lock in the program, to evaluate information across
threads. As such, we refer to this approach as opportunistic monitoring. By us-
ing the existing synchronization, our approach reduces additional overhead and
interference to synchronize at the cost of adding a delay to determine the ver-
dict. We utilize a textbook example of readers-writers to show how opportunistic
monitoring is capable of expressing specifications on concurrent regions. We also
present a preliminary assessment of the overhead of our approach and compare
it to classical monitoring showing that it scales particularly well with the concur-
rency present in the program.

1 Introduction

Guaranteeing the correctness of concurrent programs often relies on dynamic analysis
and verification approaches. Some approaches target generic concurrency errors such
as data races [29, 37], deadlocks [11], and atomicity violations [28, 47, 57]. Others tar-
get behavioral properties such as null-pointer dereferences [27], and typestate viola-
tions [36, 38, 55] and more generally order violations with runtime verification [42]. In
this paper, we focus on the runtime monitoring of general behavioral properties target-
ing violations that cannot be traced back to classical concurrency errors.

Runtime verification (RV) [9, 24, 25, 34, 42], also known as runtime monitoring, is
a lightweight formal method that allows checking whether a run of a system respects
a specification. The specification formalizes a behavioral property and is written in a
suitable formalism based for instance on temporal logic such as LTL or finite-state
machines [1, 45]. Monitors are synthesized from the specifications, and the program is
instrumented with additional code to extract events from the execution. These extracted
events generate the trace, which is fed to the monitors. From the monitor perspective,
the program is a black box and the trace is the sole system information provided.

To model the execution of a concurrent program, verification techniques choose
their trace collection approaches differently based on the class of targeted properties.
When properties require reasoning about concurrency in the program, causality must
be established during trace collection to determine the happens-before [40] relation be-
tween events. Data race detection techniques [29, 37] for instance require the causal
ordering to check for concurrent accesses to shared variables; as well as predictive ap-
proaches targeting behavioral properties such as [19, 38, 55] in order to explore other
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feasible executions. Causality is best expressed as a partial order over events. Partial
orders are compatible with various formalisms for the behavior of concurrent programs
such as weak memory consistency models [2, 4, 46], Mazurkiewicz traces [32, 48], par-
allel series [43], Message Sequence Charts graphs [49], and Petri Nets [50]. However,
while the program behaves non-sequentially, its observation and trace collection is se-
quential. Collecting partial order traces often relies on vector clock algorithms to times-
tamp events [3,16,47,53] and requires blocking the execution to collect synchronization
actions such as locks, unlocks, reads, and writes. Hence, existing techniques that can
reason on concurrent events are expensive to use in an online monitoring setup. In-
deed, many of them are often intended for the design phase of the program and not in
production environments (see Section 5).

Other monitoring techniques relying on total-order formalisms such as LTL and fi-
nite state machines require linear traces to be fed to the monitors. As such they immedi-
ately capture linear traces from a concurrent execution without reestablishing causality.
Most of the top1 existing tools for the online monitoring of Java programs, these in-
clude tools such as Java-MOP [18, 30] and Tracematches [5], provide multithreaded
monitoring support using one or more of the following two modes. The per-thread
mode specifies that monitors are only associated with a given thread, and receive all
events of the given thread. This boils down to doing classical RV of single-threaded
programs, assuming each thread is an independent program. In this case, monitors are
unable to check properties that involve events across threads. The global monitoring
mode spawns a global monitor and ensures that the events from different threads are
fed to a central monitor atomically, by utilizing locks, to avoid data races. As such, the
monitored program execution is linearized so that it can be processed by the monitors.
In addition to introducing additional synchronization between threads inhibiting paral-
lelism, this monitoring mode forces events of interest to be totally ordered across the
entire execution, which oversimplifies and ignores concurrency.

Figure 1 illustrates a high-level view of a concurrent execution fragment of 1-Writer
2-Readers, where a writer thread writes to a shared variable, and two other reader
threads read from it. The reader threads share the same lock and can read concurrently
once one of them acquires it, but no thread can write nor read while a write is oc-
curring. We only depict the read/write events and omit lock acquires and releases for
brevity. In this execution, the writer acquires the lock first and writes (event 1), then
after one of the reader threads acquires the lock, they both concurrently read. The first
reader performs 3 reads (events 2, 4, and 5), while the second reader performs 2 reads
(events 3 and 6), after that the writer acquires the lock and writes again (event 7). A user

1

2

3

4 5

6

7

Fig. 1: Execution fragment of 1-Writer 2-Readers. Double circle: write, normal: read.
Numbers distinguish events. Events 2 and 6 (shaded) are example concurrent events.

1 Based on the first three editions of the Competition on Runtime Verification [7, 8, 26, 52].
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may be interested in the following behavioral property: “Whenever a writer performs a
write, all readers must at least perform one read before the next write”. Note that the
execution here has no data races nor a deadlock, and techniques focusing on generic
concurrency properties are not suitable for the property. Monitoring of this (partial)
concurrent execution with both previously mentioned modes presents restrictions. For
per-thread monitoring, since each of the readers is a thread, and the writer itself is a
thread, it cannot check any specification that refers to an interaction between them. For
global monitoring, it imposes an additional lock operation to send each read event to
the monitor, introducing additional synchronization and suppressing the concurrency of
the program.

A central observation we made is that when the program is free from generic con-
currency errors such as data races and atomicity violations, a monitoring approach can
be opportunistic and utilize the available synchronization in the program to reason about
high-level behavioral properties. In the previous example, we know that reads and writes
are guarded by a lock and do not execute concurrently (assuming we checked for data
races). We also know that the relative ordering of the reads between themselves is not
important to the property as we are only interested in counting that they all read the
latest write. As such, instead of blocking the execution at each of the 7 events to safely
invoke a global monitor and check for the property, we can have thread-local observa-
tions and only invoke the global monitor once either one of the readers acquires the
lock or when the writer acquires it (only 3 events). As such, in this paper, we propose
an approach to opportunistic runtime verification. We aim to (i) provide an approach
that enables users to arbitrarily reason about concurrency fragments in the program,
(ii) be able to monitor properties online without the need to record the execution, (iii)
utilize the existing tools and formalism prevalent in the RV community, and (iv) do so
efficiently without imposing additional synchronization.

We see our contributions as follows. We present a generic approach to monitor
lock-based multithreaded programs that enable the re-use of the existing tools and ap-
proaches by bridging per-thread and global monitoring. Our approach consists of a
two-level monitoring technique where at both levels existing tools can be employed.
At the first level, a thread-local specification checks a given property on the thread
itself, where events are totally ordered. At the second level, we define scopes which
delimit concurrency regions. Scopes rely on operations in the program guaranteed to
follow a total order. The guarantee is ensured by the platform itself, either the program
model, the execution engine (JVM in our case), or the compiler. We assume that scopes
execute atomically at runtime. Upon reaching the totally ordered operations, a scope
monitor utilizes the result of all thread-local monitors executed in the concurrent region
to construct a scope state, and perform monitoring on a sequence of such states. Our
approach can be seen as a combination of performing global monitoring at the level of
scope (for our example, we utilize lock acquires) and per-thread monitoring for active
threads in the scope. Thus, we allow per-thread monitors to communicate their results
when the program synchronizes. This approach relies on existing ordered operations in
the program. However, it incurs minimal interference and overhead as it does not add
additional synchronization, namely locks, between threads in order to collect a trace.
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0.l0t 0.l0s 0.w0 0.u0s 0.u0t 3.l0t 2.l0s 1.w0

1.l1t 0.l1c 0.i1 1.l1s 0.u1c 1.u1t r1 3.l1c 1.d1 1.u1s 3.u1c

2.l2t 1.l2c 1.i2 1.u2c 2.u2t r2 2.l2c 0.d2 2.u2c

Fig. 2: Concurrent execution fragment of 1-Writer 2-Readers. Labels l, u,w, r indicate
respectively: lock, unlock, write, read. Actions with a double border indicate actions of
locks. The read and write actions are filled to highlight them.

2 Modeling the Program Execution

We are concerned with an abstraction of a concurrent execution, we focus on a model
that can be useful for monitoring the behavioral properties. We choose the smallest
observable execution step done by a program and refer to it as an action; for instance a
method call or write operation.

Definition 1 (Action). An action is a tuple 〈lbl, id, ctx〉, where: lbl is a label, id is a
unique identifier, and ctx is the context of the action.

The label captures an instruction name, function name, or specific task information
depending on the granularity of actions. Since the action is a runtime object, we use id
to distinguish two executions of the same syntactic element. Finally, the context (ctx)
is a set containing dynamic contexts such as a thread identifier (threadid), process
identifier (pid), resource identifier (resid), or a memory address. We use the notation
id.lblthreadidresid to denote an action, omit resid when absent, and id when there is no
ambiguity. Furthermore, we use the notation a.threadid for a given action a to retrieve
the thread identifier in the context, and a.ctx(key) to retrieve any element in the context
associated with key.

Definition 2 (Concurrent Execution). A concurrent execution is a partially ordered
set of actions, that is a pair 〈A,→〉, where A is a set of actions and→ ⊆ A × A is a
partial order over A.

Two actions a1 and a2 are related (i.e., 〈a1, a2〉 ∈→) if a1 happens before a2.

Example 1 (Concurrent fragment for 1-Writer 2-Readers.). Figure 2 shows another
concurrent execution fragment for 1-Writer 2-Readers introduced in Sec. 1. The con-
current execution fragment contains all actions performed by all threads, along with
the partial order inferred from the synchronization actions such as locks and unlocks
(depicted with dashed boxes). Recall that a lock action on a resource synchronizes with
the latest unlock if it exists. This synchronization is depicted by the dashed arrows. We
have three locks: test for readers (t), service (s), and readers counter (c). Lock t checks
if any reader is currently reading, and this lock gives preference to writers. Lock s is
used to regulate access to the shared resource, it can be either obtained by readers or
one writer. Lock c is used to regulate access to the readers counter, it only synchronizes
readers. In this concurrent execution, first, the writer thread acquires the lock and writes
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on a shared variable whose resource identifier is omitted for brevity. Second, the readers
acquire the lock s and perform a read on the same variable. Third, the writer performs
a second write on the variable.

In RV, we often do not capture the entire concurrent execution but are interested
in gathering a trace of the relevant parts of it. In our approach, a trace is also a con-
current execution defined over a subset of actions. Since the trace is the input to any
RV technique, we are interested in relating a trace to the concurrent execution, while
focusing on a subset of actions. For this purpose, we introduce the notions of soundness
and faithfulness. We first define the notion of trace soundness. Informally, a concurrent
execution is a sound trace if it does not provide false information about the execution.

Definition 3 (Trace Soundness). A concurrent trace tr = 〈Atr ,→tr〉 is said to be a
sound trace of a concurrent execution e = 〈A,→〉 (written snd(e, tr)) iff (i) Atr ⊆ A
and (ii)→tr ⊆ →.

Intuitively, to be sound, a trace (i) should not capture an action not found in the
execution, and (ii) should not relate actions that are unrelated in the execution. While
a sound trace provides no incorrect information on the order, it can still be missing in-
formation about the order. In this case, we want to also express the ability of a trace to
capture all relevant order information. Informally, a faithful trace contains all informa-
tion on the order of events that occurred in the program execution.

Definition 4 (Trace Faithfulness). A concurrent trace tr = 〈Atr ,→tr〉 is said to be
faithful to a concurrent execution e = 〈A,→〉 (written faith(e, tr)) iff →tr ⊇ (→
∩Atr × Atr ).

3 Opportunistic Monitoring

We start with distinguishing threads and events from the execution. We then define
scopes that allow us to reason about properties over concurrent regions. We then devise
a generic approach to evaluate scope properties and perform monitoring.

3.1 Managing Dynamic Threads and Events

Threads are typically created at runtime and have a unique identifier. We denote the set
of all thread ids by TID. They are subject to change from one execution to another, and
it is not known in advance how many threads will be spawned during the execution. As
such, it is important to design specifications that can handle threads dynamically.

Distinguishing Threads To allow for a dynamic number of threads, we first denote
thread types T, to distinguish threads that are relevant to the specification. For example,
the set of thread types for readers-writers is Trw = {reader,writer}. By using thread
types, we can define properties for specific types regardless of the number of threads
spawned for a given type. In order to assign a type to a thread in practice, we distinguish
a set of actions S ⊆ A called “spawn” actions. For example in readers-writers, we
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can assign the spawn action of a reader (resp. writer) to be the method invocation of
Reader.run (Writer.run). Function spawn : S→ T, assigns a thread type to a spawn
action. The threads that match a given type are determined based on the spawn action(s)
present during the execution. We note that a thread can have multiple types. To reference
all threads assigned a given type, we use function pool : T → 2TID. That is, given a
type t, a thread with threadid tid, we have tid ∈ pool(t) iff ∃a ∈ S : spawn(a) =
t ∧ a.threadid = tid. This allows a thread to have multiple types so that properties
operate on different events in the same thread.

Events As properties are defined over events, actions are typically abstracted into
events. As such, we define for each thread type t ∈ T, the alphabet of events: Et. Set Et

contains all the events that can be generated from actions for the particular thread type
t ∈ T. The empty event E is a special event that indicates that no events are matched.
Then, we assume a total function evt : A → {E} ∪ Et. The implementation of ev re-
lies on the specification formalism used, it is capable of generating events based on the
context of the action itself. For example, the conversion can utilize the runtime context
of actions to generate parametric events when needed. We illustrate a function ev that
matches using the label of an action in Ex. 2.

Example 2 (Events.). We identify for readers-writers (Ex. 1) two thread types: Trw
def
=

{reader,writer}. We are interested in the events Ereader
def
= {read}, and Ewriter

def
=

{write}. For a specification at the level of a given thread, we have either a reader or a
writer, and the event associated with the reader (resp. writer) is read (resp. write).

evreader(a)
def
=

{
read if a.lbl = “r”,
E otherwise evwriter(a)

def
=

{
write if a.lbl = “w”,
E otherwise.

3.2 Scopes: Properties Over Concurrent Regions

We now define the notion of scope. A scope defines a projection of the concurrent
execution to delimit concurrent regions and allow verification to be performed at the
level of regions instead of the entire execution.

Synchronizing Actions A scope s is associated with a synchronizing predicate syncs :
A→ B2 which is used to determine synchronizing actions (SAs). The set of synchroniz-
ing actions for a scope s is defined as: SAs = {a ∈ A | syncs(a) = >}. SAs constitute
synchronization points in a concurrent execution for multiple threads. A valid set of
SAs is such that there exists a total order on all actions in the set (i.e., no two SAs can
occur concurrently). As such SAs are sequenced and can be mapped to indices. Func-
tion idxs : SAs → N\{0} returns the index of a synchronizing action. For convenience,
we map them starting at 1, as 0 will indicate the initial state. We denote by |idxs| the
length of the sequence.
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Scope Region A scope region selects actions of the concurrent execution delimited by
two successive SAs. We define two “special” synchronizing actions: begin, end ∈ A
common to all scopes that are needed to evaluate the first and last region. The actions
refer to the beginning and end of the concurrent execution, respectively.

Definition 5 (Scope Regions). Given a scope s and an associated index function idxs :
SAs → N\{0}, the scope regions are given by functionRs : codom(idxs)∪{0, |idxs|+
1} → 2A, defined as:

Rs(i)
def
=


{a ∈ A | 〈a′, a〉 ∈ → ∧ 〈a, a′′〉 ∈→ ∧ issync(a′, i− 1) if 1 ≤ i ≤ |idxs|,
∧ issync(a′′, i)}
{a ∈ A | 〈a′, a〉 ∈→ ∧〈a, end〉 ∈→ ∧ issync(a′, i− 1)} if i = |idxs|+ 1,
{a ∈ A | 〈begin, a〉 ∈→ ∧〈a, a′′〉 ∈→ ∧ issync(a′′, 1)} if i = 0,
∅ otherwise

where: issync(a, i)
def
= (syncs(a) = > ∧ idxs(a) = i).

Rs(i) is the i-th scope region, the set of all actions that happened between the two syn-
chronizing actions a and a′, where idxs(a) = i and idxs(a

′) = i+1 taking into account
the start and end of a program execution (i.e., actions begin and end, respectively).

Example 3 (Scope regions). For readers-writers (Ex. 1), we consider the resource ser-
vice lock (s) to be the one of interest, as it delimits the concurrent regions that allow
either a writer to write or readers to read. We label the scope by res for the remainder of
the paper. The synchronizing predicate syncres selects all actions with label l (lock ac-
quire) and with the lock id s present in the context of the action. The obtained sequence
of SAs is 0.l0s · 1.l1s · 2.l0s. The value of idxres for each of the obtained SAs is respec-
tively 1, 2, and 3. Every lock acquire delimits the regions of the concurrent execution.
The region k+ 1 includes all actions between the two lock acquires 0.l0s and 1.l1s. That
is, Rres(k + 1) = {0.w0, 0.u0s, 0.u0t, 1.l1t, 0.l1c, 0.i1}. The region k + 2 contains two
concurrent reads: r1, r2.

Definition 6 (Scope fragment). The scope fragment associated with a scope region
Rs(i) is defined as Fs(i)

def
= 〈Rs(i),→ ∩Rs(i)×Rs(i)〉.

Proposition 1 (Scope fragment preserves order). Given a scope s, we have:
∀i ∈ dom(Rs(i)) : snd(〈A,→〉,Fs(i)) ∧ faith(〈A,→〉,Fs(i)).

Proposition 1 states that for a given scope, any fragment (obtained using Fs) is a sound
and faithful trace of the concurrent execution. This is ensured by construction using
Definitions 5 and 6 which follow the same principles of the definitions of soundness
(Definition 3) and faithfulness (Definition 4).

Remark 1. In this paper, scopes regions are defined by the user by selecting the syn-
chronizing predicate as part of the specification. Given a property, regions should de-
limit events whose order is important for a property. For instance, for a property specify-
ing that “between each write, at least one read should occur”, the scope regions should
delimit read versus write events. Delimiting the read events themselves, performed by
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k + 1 k + 2 k + 3

0.l0s 0.w0(write) 2.l0s 1.w0(write)

1.l1s r1(read)

r2(read)

[threadid:0, type:writer]

[threadid:1, type:reader]

[threadid:2, type:reader]

Fig. 3: Projected actions using the scope and local properties of 1-Writer 2-Readers. The
action labels l,w, r indicate respectively the following: lock, write, and read. Filled ac-
tions indicate actions for which function ev for the thread type returns an event. Actions
with a pattern background indicate the SAs for the scope.

different threads, is not significant. How to analyze the program to find and suggest
scopes for the user that are suitable for monitoring a given property is an interesting
challenge that we leave for future work. Moreover, we assume the program is properly
synchronized and free from data races.

Local Properties In a given scope region, we determine properties that will be checked
locally on each thread. A thread-local monitor checks a local property independently for
each given thread. These properties can be seen as the analogous of per-thread monitor-
ing applied between two SAs. For a specific thread, we have a guaranteed total order on
the local actions being formed. This ensures that local properties are compatible and can
be checked with existing RV techniques and formalisms. We refer to those properties
as local properties.

Definition 7 (Local property). A local property is a tuple 〈type,EVS,RT, eval〉 with:

– type ∈ T is the thread type to which the local property applies;
– EVS ⊆ Etype is a subset of (thread type) events relevant to the property evaluation;
– RT is the resulting type of the evaluation (called return type); and
– eval : (N → EVS) → RT is the evaluation function of the property, taking as

input a sequence of events, and returning the result of the evaluation.

We use the dot notation: for a given property prop = 〈type,EVS,RT, eval〉 we use
prop.type, prop.EVS, prop.RT, and prop.eval respectively.

Example 4 (At least one read). The property “at least one read”, defined for the thread
type reader, states that a reader must perform at least one read event. It can be ex-
pressed using the classical LTL3 [10] (a variant of linear temporal logic with finite-
trace semantics commonly used in RV) as ϕ1r

def
= F(read) using the set of atomic

propositions {read}. Let LTL3
AP
ϕ denote the evaluation function of LTL3 using the

set of atomic propositions AP and a formula ϕ, and let B3 = {>,⊥, ?} be the truth
domain where ? denotes an inconclusive verdict. To check on readers, we specify it as
the local property: 〈reader, {read},B3,LTL3

{read}
ϕ1r

〉. Similarly, we can define the local
specification for at least one write.
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Scope Trace To evaluate a local property, we restrict the trace to the actions of a given
thread contained within a scope region. A scope trace is analogous to acquiring the
trace for per-thread monitoring [5, 30] in a given scope region (see Definition 5). The
scope trace is defined as a projection of the concurrent execution, on a specific thread,
selecting actions that fall between two synchronizing actions.

Definition 8 (Scope trace). Given a local property p = 〈type,EVS,RT, eval〉 in a
scope region Rs with index i, a scope trace is obtained using the projection function
proj, which outputs the sequence of actions of length n for a given thread with tid ∈
TID that are associated with events for the property. We have: ∀` ∈ [0, n]

proj(tid, i, p,Rs)
def
=

{
filter(a0) · . . . · filter(an) if i ∈ dom(Rs) ∧ tid ∈ pool(type),
E otherwise,

with: filter(a`)
def
=

{
e if evtype(a`) ∈ EVS
E otherwise,

where · is the sequence concatenation operator (such that a · E = E · a = a), with
(∀j ∈ [1, n] : 〈aj−1, aj〉 ∈→) ∧ (∀k ∈ [0, n] : ak ∈ Rs(i)∧ ak.threadid = tid).

For a given thread, the scope trace filters the actions associated with an event for the
local property (i.e., evtype(a`) ∈ EVS) of a scope region. It includes only actions that
are associated with the threadid that has the correct type associated with the local spec-
ification (i.e., tid ∈ pool(type)). While the scope trace is obtained using projection, it
is still needed to convert actions to events to later evaluate local properties, to do so we
generate the sequence of events associated with the actions in the projected trace. That
is, for a given action a in the sequence, we output evtype(a`), we denote the generated
sequence as evs(proj(tid, i, p,Rs)).

Example 5 (Scope trace). Figure 3 illustrates the projection on the scope regions de-
fined using the resource lock (Ex. 3) for each of the 1 writer and 2 reader threads, where
the properties “at least one write” or “at least one read” (Example 4) apply. We see the
scope traces for region k + 1 are respectively 0.w0, E , E for the threads with thread ids
0, 1, and 2 respectively. For that region, we can now evaluate the local specification
independently for each thread on the resulting traces by converting the sequences of
events: write, E , E for each of the scope traces.

Proposition 2 (proj preserves per-thread order). Given a scope s, a thread with
threadid tid, and a local property p, we have:
∀i ∈ dom(Rs) : snd (〈A,→〉, proj(tid, i, p,Rs))∧ faith (〈A,→〉, proj(tid, i, p,Rs)).

Proposition 2 is guaranteed by construction (from Definition 8), ensuring that projec-
tion function proj does not produce any new actions and does not change any order
information from the point of view of a given thread. We also note the assumption that
for a single thread, all its actions are totally ordered, and therefore we capture all possi-
ble order information for the actions in the scope region. Finally, the function filter only
suppresses actions that are not relevant to the property, without adding or re-ordering
actions. The sequence of events obtained using the function evs also follows the same
order.

181



C. Soueidi et al.

Scope State A scope state aggregates the result of evaluating all local properties for a
given scope region. To define a scope state, we consider a scope s, with a list of local
properties 〈prop0, . . . , propn〉 of return types respectively 〈RT0, . . . ,RTn〉. Since a
local specification can apply to an arbitrary number of threads during the execution, for
each specification we create the type as a dictionary binding a threadid to the return
type (represented as a total function). We use the type na to determine a special type
indicating the property does not apply to the thread (as the thread type does not match
the property). We can now define the return type of evaluating all local properties as
RI

def
= 〈TID → {na} ∪ RT0, . . . ,TID → {na} ∪ RTn〉. Function states : RI → Is

processes the result of evaluating local properties to create a scope state in Is.

Example 6 (Scope state). We illustrate the scope state by evaluating the properties “at
least one read” (pr) and “at least one write” (pw) (Ex. 4) on scope region k + 2 in
Fig. 3. We have TID = {0, 1, 2}, we determine for each reader the trace (being (read)
for both), and the writer being empty (i.e. no write was observed). As such for property
pr (resp. pw), we have the result of the evaluation [0 7→ na, 1 7→ >, 2 7→ >] (resp.
[0 7→ ?, 1 7→ na, 2 7→ na]). We notice that for property pr, the thread of type writer
evaluates to na, as it is not concerned with the property.

We now consider the state creation function states. We consider the following
atomic propositions activereader, activewriter, allreaders, and onewriter that indi-
cate respectively: at least one thread of type reader performed a read, at least one thread
of type writer performed a write, all threads of type reader (|pool(reader)|) performed
at least a read, and at most one thread of type writer performed a write. The scope
state in this case is a list of 4 boolean values indicating each atomic proposition respec-
tively. As such by counting the number of threads associated with >, we can compute
the Boolean value of each atomic proposition. For region k + 2, we have the following
state: 〈>,⊥,>,⊥〉. We can establish a total order of scope states. For k + 1, k + 2 and
k + 3, we have the sequence 〈⊥,>,⊥,>〉 · 〈>,⊥,>,⊥〉 · 〈⊥,>,⊥,>〉.

We are now able to define formally a scope by associating an identifier with a syn-
chronizing predicate, a list of local properties, a spawn predicate, and a scope property
evaluation function. We denote by SID the set of scope identifiers.

Definition 9 (Scope). A scope is a tuple 〈sid, syncsid, 〈prop1, . . . , propn〉, statesid,
sevalsid〉, where:

– sid ∈ SID is the scope identifier;
– syncsid : A→ B2 is the synchronizing predicate that determines SAs;
– 〈prop0, . . . , propn〉 is a list of local properties (Definition 7);
– statesid : 〈TID→ {na} ∪ prop0.RT, . . . ,TID→ {na} ∪ propn.RT〉 → Is is the

scope state creation function;
– sevalsid : N × Is → O is the evaluation function of the scope property over a

sequence of scope states.

3.3 Semantics for Evaluating Scopes

After defining scope states, we are now able to evaluate properties on the scope. To
evaluate a scope property, we first evaluate each local property for the scope region, we
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then use statesid to generate the scope state for the region. After producing the sequence
of scope states, the function sevalsid evaluates the property at the level of a scope.

Definition 10 (Evaluating a scope property). Using the synchronizing predicate syncsid,
we obtain the regions Rsid(i) for i ∈ [0,m] with m = |idxsid| + 1. The evaluation of
a scope property (noted res) for the scope 〈sid, syncsid, 〈prop0, . . . , propn〉, statesid,
sevalsid〉 is computed as: ∀tid ∈ TID, ∀j ∈ [0, n]

res = sevalsid(SR0 · . . . · SRm), where SRi = statesid(〈LRi
0, . . . ,LRi

n〉)

LRi
j =

{
tid 7→ propj .eval(evs(proj(tid, i, propj ,Rsid))) if tid ∈ pool(propj .type)
tid 7→ na otherwise

Example 7 (Evaluating scope properties). We use LTL to formalize three scope prop-
erties based on the scope states from Ex. 6 operating on the alphabet {activereader,
activewriter, allreaders, onewriter}:
- Mutual exclusion between readers and writers: ϕ0

def
= activewriter XOR activereader.

- Mutual exclusion between writers: ϕ1
def
= activewriter =⇒ onewriter.

- All readers must read a written value: ϕ2
def
= activereader =⇒ allreaders.

Therefore the specification is: G(ϕ0 ∧ ϕ1 ∧ ϕ2). We recall that a scope state is a list
of boolean values for the atomic propositions in the following order: activereader,
activewriter, allreaders, and onewriter. The sequence of scope states from Ex. 6:
〈⊥,>,⊥,>〉 · 〈>,⊥,>,⊥〉 · 〈⊥,>,⊥,>〉 complies with the specification.

Correctness of Scope Evaluation We assume that the SAs selected by the user in the
specification are totally ordered. This ensures that the order of the scope states is a total
order, it is then by assumption sound and faithful to the order of the SAs. However, it
is important to ensure that the actions needed to construct the state are captured faith-
fully and in a sound manner. We capture the partial order as follows: (1) actions of
different threads are captured in a sound and faithful manner between two successive
SAs (Proposition 1), and (2) actions of the same thread are captured in a sound and
faithful manner for that thread (Proposition 2). Furthermore, we are guaranteed by Def-
inition 10 that each local property evaluation function is passed to all actions relevant to
the given thread (and no other). As such, for the granularity level of the SAs, we obtain
all relevant order information.

Evaluating without resetting. We notice that in Definition 10 monitors on local proper-
ties are reset for each concurrency region. As such, they are unable to express properties
that span multiple concurrency regions of the same thread. The semantics of function
res conceptually focus on treating concurrency regions independently. However, we can
account for elaborating the expressiveness of local properties by extending the alphabet
for each local property with the atomic proposition sync which delimits the concurrency
region. The proposition sync denotes that the scope synchronizing action has occurred,
and adds it to the trace. We need to take careful consideration that threads may sleep and
not receive any events during a concurrent region. For example, consider two threads
waiting on a lock, when one thread gets the lock, the other will not. As such, to pass the
sync event to the local specification of the sleeping thread requires we instrument very
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k + 1 k + 2 k + 3

0.l0s 0.w0(write) 2.l0s 1.w0(write)

1.l1s r1(read)

r2(read)

[threadid:0, type:writer]

[threadid:1, type:reader]

[threadid:2, type:reader]

Channel

0 1 2

reader - na na

writer > - -

0 1 2

reader - > >
writer na - -

0 1 2

reader - na na

writer > - -

Fig. 4: Example of a scope channel for 1-Writer 2-Readers.

intrusively to account for that, a requirement we do not want to impose. Therefore, we
add the restriction that local properties are only evaluated if at least one event relevant
to the local property is encountered in the concurrency region (that is not the synchro-
nization event). Using that consideration, we can define an evaluation that considers all
events starting from concurrent region 0 up to i, and adding sync events between scopes
(we omit the definition for brevity). This allows local monitors to account for synchro-
nization, either to reset or check more expressive specifications such as “a reader can
read at most n times every m concurrency regions”, and “writers must always write a
value that is greater than the last write”.

3.4 Communicating Verdicts and Monitoring

We now proceed to describe how the monitors communicate their verdicts.

Scope channel. The scope channel stores information about the scope states during the
execution. We associate each scope with a scope channel that has its own timestamp.
The channel provides each thread-local monitor with an exclusive memory slot to write
its result when evaluating local properties. Each thread can only write to its associated
slot in the channel. The timestamp of the channel is readable by all threads participating
in the scope but is only incremented by the scope monitor, as we will see.

Example 8 (Scope channel). Figure 4 displays the channel associated with the scope
monitoring discussed in Ex. 6. For each scope region, the channel allows each monitor
an exclusive memory slot to write its result (if the thread is not sleeping). The slots
marked with a dash (-) indicate the absence of monitors. Furthermore, na indicates that
the thread was given a slot, but it did not write anything in it (see Definition 10).

For a timestamp t, local monitors no longer write any information for any scope
state with a timestamp inferior to t, this makes such states always consistent to be read
by any monitor associated with the scope. While this is not in the scope of the paper, it
allows monitors to effectively access past data of other monitors consistently.

Thread-local monitors. Each thread-local monitor is responsible for monitoring a local
property for a given thread. Recall that each thread is associated with an identifier and a
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type. Multiple such monitors can exist on a given thread, depending on the needed prop-
erties to check. These monitors are spawned on the creation of the thread. It receives an
event, performs checking, and can write its result in its associated scope channel at the
current timestamp.

Scope monitors. Scope monitors are responsible for checking the property at the level of
the scope. Upon reaching a synchronizing action by any of the threads associated with
the scope, the given thread will invoke the scope monitor. The scope monitor relies
on the scope channel (shared among all threads) to have access to all observations.
Additional memory can be allocated for its own state, but it has to be shared among
all threads associated with the scope. The scope monitor is invoked atomically after
reaching the scope synchronizing action. First, it constructs the scope state based on the
results of the thread-local monitors stored in the scope channel. Second, it invokes the
verification procedure on the generated state. Finally, before completing, it increments
the timestamp associated with the scope channel.

4 Preliminary Assessment of Overhead

We first opportunistically monitor readers-writers, using the specification found in
Ex. 7. We then demonstrate our approach with classical concurrent programs2.

4.1 Readers-Writers

Experiment setup. For this experiment, we utilize the standard LTL3 semantics defined
over the B3 verdict domain. As such, all the local and scope property types are B3. We
instrument readers-writers to insert our monitors and compare our approach to global
monitoring using a custom aspect written in AspectJ. In total, we have three scenarios:
non-monitored, global, and opportunistic. In the first scenario (non-monitored), we do
not perform monitoring. In the second and third scenarios, we perform global and op-
portunistic monitoring. We recall that global monitoring introduces additional locks at
the level of the monitor for all events that occur concurrently. We make sure that the
program is well synchronized and data race free with RVPredict [37].

Measures. To evaluate the overhead of our approach, we are interested in defining pa-
rameters to characterize concurrency regions found in readers-writers. We identify two
parameters: the number of readers (nreaders), and the width of the concurrency region
(cwidth). On the one hand, nreaders determines the maximum parallel threads that are
verifying local properties in a given concurrency region. On the other hand, cwidth
determines the number of reads each reader performs concurrently when acquiring the
lock. Parameter cwidth is measured in number of read events generated. By increasing
the size of the concurrency regions, we increase lock contention when multiple concur-
rent events cause a global monitor to lock. We use a number of writers equivalent to
nreaders ∈ {1, 3, 7, 15, 23, 31, 63, 127} and cwidth ∈ {1, 5, 10, 15, 30, 60, 100, 150}.

2 The artifact for this paper is available [56].
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Fig. 5: Execution time for readers-writers for non-monitored, global, and opportunistic
monitoring when varying the number of readers.

We perform a total of 100,000 writes and 400,000 reads, where reads are distributed
evenly across readers. We measure the execution time (in ms) of 50 runs of the program
for each of the parameters and scenarios.

Preliminary results. We report the results using the averages while providing the scat-
ter plots with linear regression curves in Figures 5, and 6. Figure 5 shows the overhead
when varying the number of readers (nreaders). We notice that for the base program
(non-monitored), the execution time increases as lock contention overhead becomes
more prominent and the JVM is managing more threads. In the case of global moni-
toring, as expected we notice an increasing overhead with the increase in the number
of threads. As more readers are executing, the program is being blocked on each read
which is supposed to be concurrent. For opportunistic, we notice a stable runtime in
comparison to the original program as no additional locks are being used; only the
delay to evaluate the local and scope properties. Figure 6 shows the overhead when
varying the width of the concurrency region (cwidth). We observe that for the base
program, the execution time decreases as more reads can be performed concurrently
without contention on the shared resource lock. In the case of global monitoring, we
also notice a slight decrease, while for opportunistic monitoring, we see a much greater
decrease. By increasing the number of concurrent events in a concurrency region, we
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Fig. 6: Execution time varying the number of events in the concurrency region.

highlight the overhead introduced by locking the global monitor. We recall that a global
monitor must lock to linearize the trace, and as such interferes with concurrency. This
can be seen by looking at the two curves for global and opportunistic monitoring, we
see that opportunistic closely follows the speedup of the non-monitored program, while
global monitoring is much slower. For opportunistic monitoring, we expected a positive
performance payoff when events in concurrency regions are dense.

4.2 Other Benchmarks

We target classical benchmarks that use different concurrency primitives to synchronize
threads. We perform global and opportunistic monitoring and report our results using
the averages of 100 runs in Figure 7. We use an implementation of the Bakery lock al-
gorithm [39], for two threads 2-bakery and n threads n-bakery. The algorithm performs
synchronization using reads and writes on shared variables and guarantees mutual ex-
clusion on the critical section. As such, we monitor the program for the bounded waiting
property which specifies that a process should not wait for more than a limited number
of turns before entering the critical section. For opportunistic monitoring, thread-local
monitors are deployed on each thread to monitor if the thread acquires the critical sec-
tion. Scope monitors check if a thread is waiting for more than n turns before entering
the critical section. We notice slightly less overhead with opportunistic than global for
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Fig. 7: Execution time of benchmarks.

2-bakery and more overhead with opportunistic on n-bakery. This is because of the
small concurrency region (cwidth) which is equal to 1. As such, the overhead of eval-
uating local and scope monitors by several threads, having a cwidth of 1, exceeds the
gain in performance achieved by our approach and hence not fitting for opportunistic
monitoring.

We also monitor a textbook example of Ping-Pong algorithm [33] that is used for
instance in databases and routing protocols. The algorithm synchronizes, using reads
and writes on shared variables and busy waiting, between two threads producing events
pi for the pinging thread and po for the pong thread. We monitor for the alternation
property specified as ϕ

def
= (ping =⇒ Xpong) ∧ (pong =⇒ Xping). We also

include a classic producer-consumer program from [35] which uses a concurrent FIFO
queue using locks and conditions. We monitor the precedence property, which specifies
the requirement that a consume (event c) is preceded by a produce (event p), expressed
in LTL as ¬cW p. For both above benchmarks, we observe less overhead when moni-
toring with opportunistic, since no additional locks are being enforced on the execution.

We also monitor a parallel mergesort algorithm which is a divide-and-conquer al-
gorithm to sort an array. The algorithm uses the fork-join framework [41] which re-
cursively splits the array into sorting tasks that are handled by different threads. We
are interested in monitoring if a forked task is returning a correctly sorted array be-
fore performing a merge. The monitoring step is expensive and linear in the size of the
array as it involves scanning it. For opportunistic, we use the joining of two subtasks
as our synchronizing action and deploy scope monitors at all levels of the recursive
hierarchy. We observe less overhead when monitoring with opportunistic than global
monitoring, as concurrent threads do not have to wait at each monitoring step. This
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benchmark motivates us to further investigate other hierarchical models of computation
where opportunistic RV can be used such as [22].

5 Related Work

We focus here on techniques developed for the verification of behavioral properties of
multithreaded programs written in Java and refer to [12] for a detailed survey on tools
covering generic concurrency errors. The techniques we cover typically analyze a trace
to either detect or predict violations.

Java-MOP [18], Tracematches [5,13], MarQ [51], and LARVA [21] chosen from the
RV competitions [8,26,52] are runtime monitoring tools for violation detection. These
tools allow different specification formalisms such as finite-state machines, extended
regular expressions, context-free grammars, past-time linear temporal logic, and Quan-
tified Event Automata (QEA) [6]. Their specifications rely on a total order of events
and require that a collected trace be linearized. They were initially developed to mon-
itor single-threaded programs and later adapted to monitor multithreaded programs.
As mentioned, to monitor global properties spanning multiple threads these techniques
impose a lock on each event blocking concurrent regions in the program and forcing
threads to synchronize. Moreover, they often produce inconsistent verdicts with the ex-
istence of concurrent events [23]. EnforceMOP [44] for instance, can be used to detect
and enforce properties (deadlocks as well). It controls the runtime scheduler and blocks
the execution of threads that might cause a property violation, sometimes itself leading
to a deadlock.

Predictive techniques [19, 31, 38, 54] reason about all feasible interleavings from a
recorded trace of a single execution. As such, they need to establish the causal ordering
between the actions of the program. These tools implement vector clock algorithms,
such as [53], to timestamp events. The algorithm blocks the execution on each property
event and also on all synchronizing actions such as reads and writes. Vector clock algo-
rithms typically require synchronization between the instrumentation, program actions,
and algorithm’s processing to avoid data races [16]. jPredictor [19] for instance, uses
sliced causality [17] to prune the partial order such that only relevant synchronization
actions are kept. This is achieved with the help of static analysis and after recording at
least one execution of the program. The tool is demonstrated on atomicity violations
and data races; however, we are not aware of an application in the context of generic
behavioral properties. RVPredict [37] develops a sound and maximal causal model to
analyze concurrency in a multithreaded program. The correct behavior of a program is
modeled as a set of logical constraints, thus restricting the possible traces to consider.
Traces are ordered permutations containing both control flow operations and memory
accesses and are constrained by axioms tailored to data race and sequential consistency.
The theory supports any logical constraints to determine correctness, it is then possible
to encode a specification on multithreaded programs as such. However, allowing for ar-
bitrary specifications to be encoded while supported in the model, is not supported in the
provided tool (RVPredict). In [27], the authors present ExceptioNULL that target null-
pointer exceptions. Violations and causality are represented as constraints over actions,
and the feasibility of violations is explored via an SMT constraint solver. GPredict [36]
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extends the specification formalism past data races to target generic concurrency prop-
erties. GPredict presents a generic approach to reason about behavioral properties and
hence constitutes a monitoring solution when concurrency is present. Notably, GPredict
requires specifying thread identifiers explicitly in the specification. This makes specifi-
cations with multiple threads to become extremely verbose; unable to handle a dynamic
number of threads. For example, in the case of readers-writers, adding extra readers or
writers requires rewriting the specification and combining events to specify each new
thread. The approach behind GPredict can also be extended to become more expressive,
e.g. to support counting events to account for fairness in a concurrent setting. Further-
more, GPredict relies on recording a trace of a program before performing an offline
analysis to determine concurrency errors [36]. In addition to being incomplete due to
the possibility of not getting results from the constraint solver, the analysis from GPre-
dict might also miss some order relations between events resulting in false positives. In
general, the presented predictive tools are often designed to be used offline and unfor-
tunately, many of them are no longer maintained.

In [14,15], the authors present monitoring for hyperproperties written in alternation-
free fragments of HyperLTL [20]. Hyperproperties are specified over sets of execution
traces instead of a single trace. In our setup, each thread is producing its trace and
thus scope properties we monitor can be expressed in HyperLTL for instance. The time
occurrence of events will be delimited by concurrency regions and thus traces will con-
sist of propositions that summarize the concurrency region. We have yet to explore
the applicability of specifying and monitoring hyperproperties within our opportunistic
approach.

6 Conclusion and Perspectives

We introduced a generic approach for the online monitoring of multithreaded programs.
Our approach distinguishes between thread-local properties and properties that span
concurrency regions referred to as scopes (both types of properties can be monitored
with existing tools). Our approach relies heavily on existing totally ordered operations
in the program. However, by utilizing the existing synchronization, we can monitor
online while leveraging both existing per-thread and global monitoring techniques. Fi-
nally, our preliminary evaluation suggests that opportunistic monitoring incurs a lower
overhead in general than classical monitoring.

While the preliminary results are promising, additional work needs to be invested
to complete the automatic synthesis and instrumentation of monitors. So far, splitting
the property over local and scope monitors is achieved manually and scope regions
are guaranteed by the user to follow a total order. Analyzing the program to find and
suggest scopes suitable for splitting and monitoring a given property is an interesting
challenge that we leave for future work. The program can be run, for instance, to cap-
ture its causality and recommend suitable synchronization actions for delimiting scope
regions. Furthermore, the expressiveness of the specification can be increased by ex-
tending scopes to contain other scopes and adding more levels of monitors. This allows
for properties that target not just thread-local properties, but also concurrent regions
enclosed in other concurrent regions, thus creating a hierarchical setting.
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Abstract. Ranged symbolic execution has been proposed as a way of
scaling symbolic execution by splitting the task of path exploration onto
several workers running in parallel. The split is conducted along path
ranges which – simply speaking – describe sets of paths. Workers can
then explore path ranges in parallel.
In this paper, we propose ranged analysis as the generalization of ranged
symbolic execution to arbitrary program analyses. This allows us to not
only parallelize a single analysis, but also run different analyses on dif-
ferent ranges of a program in parallel. Besides this generalization, we
also provide a novel range splitting strategy operating along loop bounds,
complementing the existing random strategy of the original proposal. We
implemented ranged analysis within the tool CPAchecker and evalu-
ated it on programs from the SV-COMP benchmark. The evaluation in
particular shows the superiority of loop bounds splitting over random
splitting. We furthermore find that compositions of ranged analyses can
solve analysis tasks that none of the constituent analysis alone can solve.

Keywords: Ranged Symbolic Execution, Cooperative Software Verifi-
cation, Parallel Configurable Program Analysis

1 Introduction

Recent years have seen enormous progress in automatic software verification,
driven amongst others by annual competitions like SV-COMP [13]. Software ver-
ification tools employ a bunch of different techniques for analysis, like predicate
analysis, bounded model checking, k-induction, property-directed reachability, or
automata-based methods. As however none of these techniques is superior over
the others, today often a form of cooperative verification [24] is employed. The
idea of cooperative verification is to have different sorts of analyses cooperate on
the task of software verification. This principle has already been implemented
in various forms [16,19,33,59], in particular also as cooperations of testing and
verification tools [10,39,41,42]. Such cooperations most often take the form of se-
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quential combinations, where one tool starts with the full task, stores its partial
analysis result within some verification artefact, and the next tool then works
on the remaining task. In contrast, parallel execution of different tools is in the
majority of cases only done by portfolio approaches, simply running the different
tools on the same task in parallel. One reason for using portfolios when employ-
ing parallel execution is the fact that it is unclear how to best split a program
into parts on which different tools could work separately while still being able
to join their partial results into one for the entire program.

With ranged symbolic execution, Siddiqui and Khurshid [86] proposed one
such technique for splitting programs into parts. The idea of ranged symbolic
execution is to scale symbolic execution by splitting path exploration onto several
workers, thereby, in particular allowing the workers to operate in parallel. To this
end, they defined so-called path ranges. A path range describes a set of program
paths defined by two inputs to the program, where the path π1 triggered by the
first input is the lower bound and the path π2 for the second input is the upper
bound of the range. All paths in between, i.e., paths π such that π1 ≤ π ≤ π2
(based on some ordering ≤ on paths), make up a range. A worker operating
on a range performs symbolic execution on paths of the range only. In their
experiments, Siddiqui and Khurshid investigated one form of splitting via path
ranges, namely by randomly generating inputs, which then make up a number
of ranges.

In this paper, we generalize ranged symbolic execution to arbitrary analyses.
In particular, we introduce the concept of a ranged analysis to execute an ar-
bitrary analysis on a given range and compose different ranged analyses, which
can then operate on different ranges in parallel. Also, we propose a novel split-
ting strategy, which generates ranges along loop bounds. We implemented ranged
analysis in the software verification tool CPAchecker [21], which already pro-
vides a number of analyses, all defined as configurable program analyses (CPAs).
To integrate ranged analysis in CPAchecker, we defined a new range reduction
CPA, and then employed the built-in feature of analysis composition to combine
it with different analyses. The thus obtained ranged analyses are then run on
different ranges in parallel, using CoVeriTeam [20] as tool for orchestration. We
furthermore implemented two strategies for generating path ranges, our novel
strategy employing loop bounds for defining ranges plus the original random
splitting technique. A loop bound n splits program paths into ranges only en-
tering the loop at most n times and ranges entering for more than n times3.

Our evaluation on SV-COMP benchmarks [36] first of all confirms the results
of Siddiqui and Khurshid [86] in that symbolic execution benefits from a ranged
execution. Second, our results show that a loop-bound based splitting strategy
brings an improvement over random splitting. Finally, we see that a composition
of ranged analyses can solve analysis tasks that none of the (different) constituent
analyses of a combination can solve alone.

3 Such splits can also be performed on intervals on loop bounds, thereby generating
more than two path ranges.
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1 int mid(int x, int y, int z)
2 {
3 if (x < y)
4 {
5 if (y < z) return y;
6 else if (x < z) return z;
7 else return x ;
8 }
9 else if (x < z) return x;

10 else if (y < z) return z;
11 else return y;
12 }

`0

`1 `2

`3 `4 `5 `6

`7 `8 `9 `10

`11

x<y !(x<y)

y<z !(y<z) x<z !(x<z)

return y;

x<z !(x<z)

re
tu
rn

x;

y<z !(y<z)

return z;

return
x;

ret
urn

z;

return y;

Fig. 1: Example program mid (taken from [86]) and its CFA

2 Background

We start by introducing some notations on programs, defining path ranges, and
introducing configurable program analysis as implemented in CPAchecker.

2.1 Program Syntax and Semantics

For the sake of presentation, we consider simple, imperative programs with a de-
terministic control-flow with one sort of variables (from some set V) only4. For-
mally, we model a program by a control-flow automaton (CFA) P = (L, `0, G),
where L ⊆ Loc is a subset of the program locations Loc (the program counter
values), `0 ∈ L represents the beginning of the program, and control-flow edges
G ⊆ L×Ops×L describe when which statements may be executed. Therein the
set of statements Ops contains all possible statements, e.g., assume statements
(boolean expressions over variables V, denoted by BExpr), assignments, etc. We
expect that CFAs originate from program code and, thus, control-flow may only
branch at assume operations, i.e., CFAs P = (L, `0, G) are deterministic in the
following sense. For all (`, op′, `′), (`, op′′, `′′) ∈ G either op′ = op′′ ∧ `′ = `′′ or
op′, op′′ are assume operations and op′ ≡ ¬(op′′). We assume that there exists an
indicator function BP : G→ {T, F,N} that reports the branch direction, either
N(one), T(rue), or F(alse). This indicator function assigns N to all edges without
assume operations and for any two assume operations (`, op′, `′), (`, op′′, `′′) ∈ G
with op′ 6= op′′ it guarantees BP ((`, op′, `′)) ∪ BP ((`, op′′, `′′)) = {T, F}. Since
CFAs are typically derived from programs and assume operations correspond
to the two evaluations of conditions of e.g., if or while statements, the assume
operation representing the true evaluation of the condition is typically assigned
T . We will later need this indicator function for defining path orderings.

Figure 1 shows our example program mid, which returns the middle value
of the three input values, and its CFA. For each condition of an if statement it
contains one assume edge for each evaluation of the condition, namely solid edges
labelled by the condition for entering the if branch after the condition evaluates

4 Our implementation supports C programs.
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to true and dashed edges labelled by the negated condition for entering the else
branch after the condition evaluates to false, i.e., the negated condition evaluates
to true. All other statements are represented by a single edge.

We continue with the operational semantics of programs. A program state is
a pair (`, c) of a program location ` ∈ L and a data state c from the set C of data
states that assign to each variable v ∈ V a value of the variable’s domain. Pro-
gram execution paths π = (`0, c0) −g1−→ (`1, c1) −g2−→ . . . −gn−→ (`n, cn) are sequences
of states and edges such that (1) they start at the beginning of the program
and (2) only perform valid execution steps that (a) adhere to the control-flow,
i.e., ∀1 ≤ i ≤ n : gi = (`i−1, ·, `i), and (b) properly describe the effect of the
operations, i.e., ∀1 ≤ i ≤ n : ci = spopi(ci−1), where the strongest postcondition
spopi : C ⇀ C is a partial function modeling the effect of operation opi ∈ Ops on
data states. Execution paths are also called feasible paths, and paths that fulfil
properties (1) and (2a) but violate property (2b) are called infeasible paths. The
set of all execution paths of a program P is denoted by paths(P ).

2.2 Path Ordering, Execution Trees, and Ranges

Our ranged analysis analyses sets of consecutive program execution paths. To
specify these sets, we first define an ordering on execution paths. Given two

program paths π = (`0, c0) −g1−→ (`1, c1) −g2−→ . . . −gn−→ (`n, cn) and π′ = (`′0, c
′
0) −g

′
1−→

(`′1, c
′
1) −g

′
2−→ . . . −g

′
m−→ (`′m, c

′
m) ∈ paths(P ), we define their order ≤ based on their

control-flow edges. More specifically, edges with assume operations representing
a true evaluation of a condition are smaller than the edges representing the
corresponding false evaluation of that condition. Following this idea, π ≤ π′ if
∃ 0 ≤ k ≤ n : ∀ 1 ≤ i ≤ k : gi = g′i ∧

(
(n = k ∧ m ≥ n) ∨ (m > k ∧ n > k

∧BP (gk+1) = T ∧ BP (g′k+1) = F )
)
. An execution tree is a tree containing all

execution paths of a program with the previously defined ordering, where nodes
are labelled with the assume operations.

Based on the above ordering, we now specify ranges, which describe sets of
consecutive program execution paths analysed by a ranged analysis and which
are characterized by a left and right path that limit the range. Hence, a range
[π, π′] is the set {πr ∈ paths(P ) | π ≤ πr ≤ π′}5. To easily describe ranges that
are not bound on the left or right, we use the special paths π⊥ , π> /∈ paths(P )
which are smaller and greater than every path, i.e., ∀π ∈ paths(P ) : (π ≤ π>)
∧ (π> 6≤ π) ∧ (π⊥ ≤ π) ∧ (π 6≤ π⊥ ). Consequently, [π⊥ , π> ] = paths(P ).

As the program is assumed to be deterministic except for the input, a test
case τ , τ : V → Z, which maps each input variable to a concrete value, describes
exactly a single path π6. We say that τ induces π and write this path as πτ .
Consequently, we can define a range by two induced paths, i.e., as [πτ1 , πτ2 ] for
test cases τ1 and τ2. For the example program from Fig. 1, two example test
cases are τ1 = {x : 0, y : 2, z : 1} and τ2 = {x : 1, y : 0, z : 2}. Two such induced

5 In [86], the range is formalized as [π, π′) but their implementation works on [π, π′].
6 More concretely, test input τ describes a single maximal path and all its prefixes.
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path are πτ1 = (`0, c1) −x<y−−→ (`1, c1) −!(y<z)−−−−→ (`4, c1) −x<z−−→ (`7, c1) −ret z−−→ (`11, c1),

where c1 = [x 7→ 0, y 7→ 2, z 7→ 1] and πτ2 = (`0, c2) −!(x<y)−−−−→ (`2, c2) −x<z−−→
(`5, c2) −ret x−−−→ (`11, c2), where c2 = [x 7→ 1, y 7→ 0, z 7→ 2].

2.3 Configurable Program Analysis

We will realize our ranged analysis using the configurable program analysis (CPA)
framework [17]. This framework allows one to define customized, abstract-inter-
pretation based analyses, i.e., it allows a selection of the abstract domain as well
as a configuration for exploration. For the latter, one defines when and how to
combine information and when to stop exploration. Formally, a CPA A = (D, ,
merge, stop) consists of

– the abstract domain D = (Loc × C, (E,>,v,t), J·K), which is composed of
a set Loc×C of program states, a join semi-lattice on the abstract states E
as well as a concretization function, which fulfils that

J>K = Loc× C and ∀e, e′ ∈ E : JeK ∪ Je′K ⊆ Je t e′K

– the transfer relation  ⊆ E × G × E defining the abstract semantics that
safely overapproximates the program semantics, i.e.,

∀e ∈ E, g ∈ Loc×Ops× Loc :

{s′ | ∃ valid execution step s −g→ s′ : s ∈ JeK} ⊆
⋃

(e,g,e′)∈ 

Je′K

– the merge operator merge : E × E → E used to combine information that
satisfies ∀e, e′ ∈ E : e′ v merge(e, e′)

– the termination check stop : E × 2E → B that decides whether the explo-
ration of an abstract state can be omitted and that fulfils

∀e ∈ E,Esub ⊆ E : stop(e, Esub) =⇒ JeK ⊆
⋃

e′∈Esub

Je′K

To run the configured analysis, one executes a meta reachability analysis, the
so-called CPA algorithm, configured by the CPA and provides an initial value
einit ∈ E which the analysis will start with. For details on the CPA algorithm,
we refer the reader to [17].

As part of our ranged analysis, we use the abstract domain and transfer
relation of a CPA V for value analysis [9] (also known as constant propaga-
tion or explicit analysis). An abstract state v of the value analysis ignores pro-
gram locations and maps each variable to either a concrete value of its do-
main or >, which represents any value. The partial order vV and the join
operator tV are defined variable-wise while ensuring that v vV v′ ⇔ ∀v ∈
V : v(v) = v′(v) ∨ v′(v) = >7 and (v tV v′)(v) = v(v) if v(v) = v′(v) and
otherwise (v tV v′)(v) = >. The concretization of abstract state v contains

7 Consequently, ∀v ∈ V : >V(v) = >.
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Splitting R[πτ1 ,πτ2 ] × A2

R[π⊥ ,πτ2 ] × A1

R[πτ2 ,π
> ] × A3

Aggregation

Task Result

π⊥ , πτ1

πτ1 , πτ2

πτ2 , π
>

res

res

res

Fig. 2: Composition of three ranged analyses (in orange)

all concrete states that agree on the concrete variable values, i.e., JvKV :=
{(`, c) ∈ Loc× C | ∀v ∈ V : v(v) = > ∨ v(v) = c(v)}. If the values for all relevant
variables are known, the transfer relation  V will behave like the program se-
mantics. Otherwise, it may overapproximate the executability of a CFA edge
and may assign value > if a concrete value cannot be determined.

To easily build ranged analysis instances for various program analyses, we
modularize our ranged analysis into a ranged reduction and a program anal-
ysis. Technically, we will compose a ranged analysis from different CPAs us-
ing the concept of a composite CPA [17]. We demonstrate the composition
for two CPAs. The composition of more than two CPAs works analogously or
can be achieved by recursively composing two (composite) CPAs. A compos-
ite CPA A× = (D×, ×,merge×, stop×) of CPA A1 = ((Loc × C, (E1,>1,v1,
t1), J·K1), 1,merge1, stop1) and CPA A2 = ((Loc× C, (E2,>2,v2,t2), J·K2), 2,
merge2, stop2) considers the product domain D× = (Loc×C, (E1×E2, (>1,>2),
v×,t×), J·K×) that defines the operators elementwise, i.e., (e1, e2) v× (e′1, e

′
2) if

e1 v1 e
′
1 and e2 v2 e

′
2, (e1, e1) t× (e′1, e

′
2) = (e1 t1 e′1, e2 t e′2), and J(e1, e2)K =

Je1K1 ∩ Je2K2. The transfer relation may be the product transfer relation or may
strengthen the product transfer relation using knowledge about the other ab-
stract successor. In contrast, merge× and stop× cannot be derived and must
always be defined.

3 Composition of Ranged Analyses

In this section, we introduce the composition of ranged analyses as a general-
ization of ranged symbolic execution to arbitrary program analyses. The overall
goal is to split the program paths into multiple disjoint ranges each of which is
being analysed by a (different) program analysis. Therein, the task of a program
analysis is to verify whether a program fulfils a given specification. Specifica-
tions are often given in the form of error locations, so that the task is proving
the unreachability of error locations. The results for the verification task contain
a verdict and potentially an additional witness (a justification or a concrete path
violating the specification [14]). The verdict indicates whether the program fulfils
the specification (verdict “true”), violates it (verdict “false”) or if the analysis
did not compute a result (verdict “unknown”).

To ensure that an arbitrary program analysis operates on paths within a
given range only, we employ ranged analysis. A ranged analysis is realized as
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τ1 = {x : 0, y : 2, z : 1}
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(c) Composition of range
reductions

Fig. 3: Application of range reduction on the running example of Fig. 1

a composition of an arbitrary program analysis (a CPA) and a range reduction
(also given as a CPA below) ensuring path exploration to stay within the range.
Then, a composition of ranged analyses is obtained by (1) splitting the program
into ranges, (2) then running several ranged analyses in parallel, and (3) at the
end aggregating analysis results (see Fig. 2). Splitting is described in Sec. 4.
For aggregation, we simply return the verdict “false” whenever one analysis
returns “false”, we return “unknown” whenever no analysis returns “false” and
one analysis returns “unknown” or aborts, otherwise we return “true”. We do not
support aggregation of witnesses yet (but this could be realized similar to [70]).

3.1 Ranged Analysis

Next, we define ranged analysis as a CPA composition of the target program
analysis and the novel range reduction. The range reduction decides whether a
path is included in a range [πτ1 , πτ2 ] and limits path exploration to this range. We
decompose the range reduction for [πτ1 , πτ2 ] into a composition of two specialized
ranged reductions R[πτ1 ,π> ] and R[π⊥ ,πτ2 ]

, which decide whether a path is in the
range [πτ1 , π

> ] and [π⊥ , πτ2 ], respectively. Since [πτ1 , πτ2 ] = [πτ1 , π
> ] ∩ [π⊥ , πτ2 ]

and the composition stops the exploration of a path if one analysis returns ⊥,
the composite analysis R[πτ1 ,πτ2 ]

= R[π⊥ ,πτ2 ]
×R[πτ1 ,π> ] only explores paths that

are included in both ranges (which are exactly the paths in [πτ1 , πτ2 ]). Figure 3
depicts the application of range reduction to the example from Fig. 1, where the
range reduction R[π⊥ ,πτ2 ]

is depicted in Fig. 3a and R[πτ1 ,π> ] in Fig. 3b and the
composition of both range reductions in Fig. 3c. Finally, the ranged analysis of
any arbitrary program analysis A in a given range [πτ1 , πτ2 ] can be represented
as a composition:

R[πτ1 ,π> ] × R[π⊥ ,πτ2 ]
× A

For R[πτ1 ,πτ2 ]
, we define merge× component-wise for the individual merge oper-

ators and stop× as conjunction of the individual stop operators. As soon as the
range reduction decides that a path π is not contained in the range [πτ1 , πτ2 ]
and returns ⊥, the exploration of the path stops for all analyses defined in the
composition.
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3.2 Range Reduction as CPA

Next, we define the range reduction R[πτ1 ,π> ] (R[π⊥ ,πτ2 ]
, respectively) as a CPA,

which tracks whether a state is reached via a path in [πτ1 , π
> ] ([π⊥ , πτ2 ]).

Initialisation. To define the CPAs for R[πτ1 ,π> ] and R[π⊥ ,πτ2 ]
, we reuse compo-

nents of the value analysis V (as described in Sec. 2.3). A value analysis explores
at least all feasible paths of a program by tracking the values for program vari-
ables. If the program behaviour is fully determined (i.e., all (input) variables are
set to constants), then only one feasible, maximal path exists, which is explored
by the value analysis. We exploit this behaviour by initializing the analysis based
on our test case τ (being a lower or upper bound of a range):

eINIT =

{
v(x) = τ(x) if x ∈ dom(τ), x ∈ V
v(x) = > otherwise

In this case, all variables which are typically undetermined8 and dependent
on the program input have now a determined value, defined through the test case.
As the behaviour of the program under the test case τ is now fully determined,
the value analysis only explores a single path πτ , which corresponds to the
execution trace of the program given the test case. Now, as we are interested
in all paths defined in a range and not only a single path, we adapt the value
analysis as follows:

Lower Bound CPA. For the CPA range reduction R[πτ1 ,π> ] we borrow all com-
ponents of the value analysis except for the transfer relation  τ1 . The transfer
relation  τ1 is defined as follows:

(v, g, v′) ∈ τ1 iff


v = > ∧ v′ = >, or

v 6= > ∧ v′ = > ∧BP (g) = F ∧ (v, g,⊥) ∈ V, or

v 6= > ∧
(
v′ 6= ⊥ ∨BP (g) 6= F

)
∧ (v, g, v′) ∈ V

Note that > represents the value analysis state where no information on variables
is stored and ⊥ represents an unreachable state in the value analysis, which stops
the exploration of the path. Hence, the second case ensures that R[πτ1 ,π> ] also
visits the false-branch of a condition when the path induced by τ1 follows the
true-branch. Note that in case that  V computes ⊥ as a successor state for a
assumption g with BP (g) = T , the exploration of the path is stopped, as πτ1
follows the false-branch (contained in the third case).

Upper Bound CPA. For the CPA range reduction R[π⊥ ,πτ2 ]
we again borrow

all components of the value analysis except for the transfer relation  τ2 . The
transfer relation  τ2 is defined as follows:

(v, g, v′) ∈ τ2 iff


v = > ∧ v′ = >
v 6= > ∧ v′ = > ∧BP (g) = T ∧ (v, g,⊥) ∈ V

v 6= > ∧
(
v′ 6= ⊥ ∨BP (g) 6= T

)
∧ (v, g, v′) ∈ V

The second condition now ensures that R[π⊥ ,πτ2 ]
also visits the true-branch of a

condition when πτ2 follows the false-branch.

8 Assuming that randomness is controlled through an input and hence the program is
deterministic.
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3.3 Handling Underspecified Test Cases

So far, we have assumed that test cases are fully specified, i.e., contain values for
all input variables, and the behaviour of the program is deterministic such that
executing a test case τ follows a single (maximal) execution path πτ . However,
in practice, we observe that test cases can be underspecified such that a test
case τ does not provide concrete values for all input variables. We denote by Pτ
the set of all paths that are then induced by τ . In this case, we define:

[π⊥ , Pτ ] = {π | ∀π′ ∈ Pτ : π ≤ π′} = {π | π ≤ min(Pτ )}
and

[Pτ , π> ] = {π | ∃π′ ∈ Pτ : π′ ≤ π} = {π | min(Pτ ) ≤ π}

Interestingly enough, by defining πτ = min(Pτ ) for an underspecified test case τ
we can handle the range as if τ would be fully specified.

4 Splitting

A crucial part of the ranged analysis is the generation of ranges, i.e., the splitting
of programs into parts that can be analysed in parallel. The splitting has to either
compute two paths or two test cases, both defining one range. Ranged symbolic
execution [86] employs a random strategy for range generation (together with
an online work-stealing concept to balance work among different workers). For
the work here, we have also implemented this random strategy, selecting random
paths in the execution tree to make up ranges. In addition, we propose a novel
strategy based on the number of loop unrollings. Both strategies are designed
to work “on-the-fly” meaning that none requires building the full execution tree
upfront, they rather only compute the paths or test cases that are used to fix a
range. Next, we explain both strategies in more detail, especially how they are
used to generate more than two ranges.

Bounding the Number of Loop Unrollings (Lb). Given a loop bound i ∈ N,
the splitting computes the left-most path in the program that contains exactly i
unrollings of the loop. If the program contains nested loops, each nested loop is
unrolled for i times in each iteration of the outer loop. For the computed path,
we (1) build its path formula using the strongest post-condition operator [46],
(2) query an SMT-solver for satisfiability and (3) in case of an answer SAT, use
the evaluation of the input variables in the path formula as one test case. In case
that the path formula is unsatisfiable, we iteratively remove the last statement
from the path, until a satisfying path formula is found. A test case τ determined
in this way defines two ranges, namely [π⊥ , πτ ] and [πτ , π> ]. In case that the
program is loop-free, the generation of a test case fails and we generate a single
range [π⊥ , π> ]. In the experiments, we used the loop bounds 3 (called Lb3) and
10 (called Lb10) with two ranges each. To compute more than two ranges, we
use intervals of loop bounds.

Generating Ranges Randomly (Rdm). The second splitting strategy selects
the desired number of paths randomly. At each assume edge in the program
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analysis tool
res
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Fig. 4: Construction of a ranged analysis from an off-the-shelf program analysis

(either a loop head or an if statement), it follows either the true- or the false-
branch with a probability of 50%, until it reaches a node in the CFA without
successor. Again, we compute the path formula for that path and build a test
case. This purely random approach is called Rdm.

Selecting the true- or the false-branch with the same probability may lead to
fairly short paths with few loop iterations. As the execution tree of a program
is often not balanced, it rather grows to the left (true-branches). Thus, we used
a second strategy based on random walks, which takes the true-branch with a
probability of 90%. We call this strategy Rdm9.

5 Implementation

To show the advantages of the composition of ranged analyses, especially the
possibility of running conceptually different analyses on different ranges of a
program, we realized the range reduction from Sec. 3.2 and the ranged analyses
in the tool CPAchecker [21]. The realization of the range reduction follows our
formalization, i.e., it reuses elements from the value analysis, which are already
implemented within CPAchecker.

Due to the composite pattern, we can build a ranged analysis as composition
of range reduction and any existing program analysis within CPAchecker with
nearly no effort. We can also use other (non CPA-based) off-the-shelf analyses by
employing the construction depicted in Fig. 4: Instead of running the analysis in
parallel with the range reduction CPA, we can build a sequential composition of
the range reduction and the analysis itself. As off-the-shelf tools take programs as
inputs, not ranges, we first construct a reduced program,which by construction
only contains the paths within the given range. For this, we can use the existing
residual program generation within CPAchecker [19].

The composition of ranged analyses from Sec. 3 is realized using the tool
CoVeriTeam [20]. CoVeriTeam allows building parallel and sequential compo-
sitions using existing program analyses, like the ones of CPAchecker. We use
CoVeriTeam for the orchestration of the composition of ranged analyses. The
implementation follows the structure depicted in Fig. 2 and also contains the Ag-
gregation component. It is configured with the program analysis A1, · · · ,An
and a splitting component. For splitting, we realized the splitters Lb3, Lb10,
Rdm and Rdm9 in CPAchecker. Each splitter generates test cases in the stan-
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dardized XML-based TEST-Comp test case format9. In case that the splitter
fails (e.g. Lb3 cannot compute a test-case, if the program does not contain a
loop) our implementation executes the analysis A1 on the interval [π⊥ , π> ]. For
the evaluation, we used combinations of three existing program analyses within
the ranged analysis, briefly introduced next.

Symbolic Execution. Symbolic execution [73] analyses program paths based
on symbolic inputs. Here, states are pairs of a symbolic store, which describes
variable values by formulae on the symbolic inputs, and a path condition, which
tracks the executability of the path. Operations update the symbolic store and
at branching points the path condition is extended by the symbolic evaluation
of the branching condition. Furthermore, the exploration of a path is stopped
when it reaches the program end or its path condition becomes unsatisfiable.

Predicate Analysis. We use CPAchecker’s standard predicate analysis, which
is configured to perform model checking and predicate abstraction with ad-
justable block encoding [22] such that it abstracts at loop heads only. The
required set of predicates is determined by counterexample-guided abstraction
refinement [35], lazy refinement [64], and interpolation [63].

Bounded Model Checking. We use iterative bounded model checking (BMC).
Each iteration inspects the behaviour of the CFA unrolled up to loop bound k
and increases the loop bound in case no property violation was detected. To
inspect the behaviour, BMC first encodes the unrolled CFA and the property in
a formula using the unified SMT-based approach for software verification [15].
Thereafter, it checks the satisfiability of the formula encoding to detect property
violations.

For the evaluation, we build four different basic configurations and employed
our different range splitters: Ra-2Se and Ra-3Se which employ two resp. three
instances of symbolic execution in parallel, Ra-2bmc employing two instances
of BMC and Ra-Se-Pred that uses symbolic execution for the range [π⊥ , πτ ]
and predicate analysis on [πτ , π> ] for some computed test input τ .

6 Evaluation

Siddiqui and Khurshid concentrated their evaluation on the issue of scaling,
i.e., showing that a certain speed-up can be achieved by ranged execution [86].
More specifically, they showed that ranged symbolic execution can speed-up
path exploration when employing ten workers operating on ranges in parallel.
In contrast, our interest was not in scaling issues only, but also in the obtained
verification results. We in particular wanted to find out whether a ranged analy-
sis can obtain more results for verification tasks than analyses in isolation would
achieve within the same resource limitations. Furthermore, our evaluation is

9 https://gitlab.com/sosy-lab/test-comp/test-format/blob/testcomp22/doc/Format.
md
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different to [86] in that we limit the available CPU time, meaning that both
analyses, the default analysis and the composition of ranged analyses, have the
same resources and that we employ different analyses. Finally, we were inter-
ested in evaluating our novel splitting strategy, in particular in comparison to
the existing random strategy. To this end, we studied the following research
questions:

RQ1 Can a composition of ranged analyses, in particular our novel splitting
strategy, increase the efficiency and effectiveness of symbolic execution?

RQ2 Can other analyses also benefit from using a composition of ranged anal-
yses, in particular combinations of different analyses?

6.1 Evaluation Setup

All experiments were run on machines with an Intel Xeon E3-1230 v5 @ 3.40
GHz (8 cores), 33 GB of memory, and Ubuntu 20.04 LTS with Linux kernel 5.4.0.
We use BenchExec [23] for the execution of our experiments to increase the
reproducibility of the results. In a verification run, a tool-configuration is given
a task (a program plus specification) and computes either a proof (if the program
fulfils the specification) or raises an alarm (if the specification is violated on the
program). We limit each verification run to 15 GB of memory, 4 CPU cores, and
15 min of CPU time, yielding a setup that is comparable to the one used in
SV-Comp. The evaluation is conducted on a subset of the SV-Benchmarks used
in the SV-Comp and all experiments were conducted once. It contains in total
5 400 C-tasks from all sub-categories of the SV-Comp category reach-safety [36].
The specification for this category, and hence for these tasks, states that all calls
to the function reach error are unreachable. Each task contains a ground truth
that contains the information, whether the task fulfils the specification (3 194
tasks) or not (2 206 tasks). All data collected is available in our supplementary
artefact [60].

6.2 RQ 1: Composition of Ranged Analyses for Symbolic Execution

Evaluation Plan. To analyse the performance of symbolic execution in a com-
position of ranged analyses, we compare the effectiveness (number of tasks
solved) and efficiency (time taken to solve a task) for the composition of ranged
analyses with two and three ranged analyses each using a symbolic execution
with one of the four splitters from Sec. 5 against symbolic execution standalone.
For efficiency, we compare the consumed CPU time as well as the (real) time
taken overall to solve the task (called wall time). The CPU time is always lim-
ited for the full configuration, s.t. an instance combining two ranged analyses in
parallel has also only 900 s CPU time available, hence at most 450 s per ranged
analysis. To achieve a fair comparison, we also executed symbolic execution in
CoVeriTeam, where we build a simple configuration that directly calls CPA-

checker running its symbolic execution.
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Table 1: Number of correct and incorrect verdicts reported by SymbExec and
compositions of ranged analyses with symbolic executions using different splitters

correct incorrect
overall proof alarm add. proof alarm

SymbExec 1 386 565 821 - 1 31
Ra-2Se-Lb3 1487 566 921 116 1 36
Ra-2Se-Lb10 1 464 567 897 92 1 37
Ra-2Se-Rdm 1 464 569 895 97 1 39
Ra-2Se-Rdm9 1 408 565 843 46 1 34

Ra-3Se-Lb 1532 563 969 181 1 35
Ra-3Se-Rdm 1 505 565 940 160 1 55
Ra-3Se-Rdm9 1 416 556 860 80 1 53

Effectiveness. Table 1 compares the verdicts of symbolic execution (Symb-
Exec) and the configurations using a composition of ranged analyses with one
range (and thus two analyses in parallel, called Ra-2Se) or with two ranges (and
three analyses, called Ra-3Se). The table shows the number of overall correct
verdicts reported (divided into the number of correct proofs and correct alarms),
the number of correct verdicts additionally reported compared to SymbExec
as well as the number of incorrect proofs and alarms reported. First of all, we
observe that all configurations using a composition of ranged analyses compute
more correct verdicts than SymbExec alone. We see the largest increase for Ra-
2Se-Lb3, where 116 tasks are additionally solved. This increase comes nearly
exclusively from the fact that Ra-2Se-Lb3 computes more correct alarms. The
number of reported proofs does not change significantly, as SymbExec and all
configurations of the composition of ranged analyses both have to check the same
number of paths in the program leading to a property violation (namely all) for
being infeasible. Thus, all need to do “the same amount of work” to compute a
proof. As the available CPU time is identical for both, the ranged analyses do
not compute additional proofs by sharing work. In contrast, for computing an
alarm, finding a single path that violates the specification suffices. Thus, using
two symbolic execution analyses in parallel working on different parts of the
program increases the chance of finding such a violating path. All configurations
employing the composition of ranged analyses compute a few more false alarms.
For these tasks, SymbExec runs into a timeout and would also compute a false
alarm, if its time limit would be increased.

For configurations using three symbolic executions in parallel, we used three
splitters: Ra-3Se-Lb, which uses both loop-bound splitters in parallel, i.e., we
have the ranges with less than three loop unrollings, three to ten loop unrollings
and more than ten, and Ra-3Se-Rdm resp. Ra-3Se-Rdm9, which both em-
ploy the random splitting to generate two ranges. Again all configurations can
compute more correct alarms compared to SymbExec, even more than Ra-
2Se-Lb3. Again, splitting the state space in even more parts that are analysed
in parallel increases the chance to find an alarm.
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Finally, when comparing the effectiveness of the different strategies employed
to generate bounds, we observe that splitting the program using our novel com-
ponent Lb3 is more effective than using a randomly generated bound when using
two and three symbolic execution analyses in parallel.

Efficiency. For comparing the efficiency of compositions of ranged analyses, we
compare the CPU time and the wall time taken to compute a correct solution by
SymbExec and several configurations of ranged analysis. We excluded all tasks
where the generation of the ranges fails, as SymbExec and the composition
of ranged analyses behave equally in these cases. In general, all configurations
consume overall approximately as much CPU time as SymbExec to solve all
tasks and are even faster w.r.t. wall time. The scatter-plot in Fig. 5 visualizes the
CPU time consumed to compute a result in a log-scale by SymbExec (on the
x-axis) and by Ra-2Se-Lb3 (on the y-axis), for tasks solved correctly by both
analyses. It indicates that for tasks solved quickly, Ra-2Se-Lb3 requires more
time than SymbExec, as the points are most of the time above the diagonal,
and that the difference gets smaller the longer the analyses run.

We present a more detailed analysis of the efficiency in Fig. 6a and 6b. Each
of the bar-plots represents the median factor of the increase in the run time
for tasks that are solved by SymbExec within the time interval that is given
on the x-axis. If for example SymbExec solves all tasks in five CPU seconds
and Ra-2Se-Lb3 in six CPU seconds, the factor would be 1.2, if SymbExec
takes five CPU seconds and Ra-2Se-Lb3 only three, the factor is 0.6. The width
of the bars corresponds to the number of tasks within the interval. Figure 6a
visualizes the comparison of the CPU time for Ra-2Se-Lb3 and SymbExec.
For Ra-2Se-Lb3, the median and average increase is 1.6 for all tasks. Taking a
closer look, in the median it takes twice as long to solve tasks which are solved
by SymbExec within at most ten CPU seconds. Generating the ranges is done
for the vast majority of all tasks within a few seconds. For tasks that can be
solved in fewer than ten CPU seconds, the nearly constant factor for generating
the ranges that is present in each run of Ra-2Se-Lb3 has a large impact on both
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Table 2: Number of correct and incorrect verdicts reported by compositions of
bounded model checking (upper half) and combinations of symbolic execution
and predicate analysis (lower half) using different splitters

correct incorrect
overall proof alarm add. proof alarm

Bmc 2 534 930 1 604 - 0 68
Ra-2bmc-Lb3 2437 925 1 512 36 0 68
Ra-2bmc-Lb10 2 445 926 1 519 43 0 70
Ra-2bmc-Rdm 2 457 925 1 532 48 0 69
Ra-2bmc-Rdm9 2505 932 1 573 48 0 68

SymbExec 1 386 565 821 - 1 31
Pred 2 254 1 107 1 147 - 0 38
Ra-Se-Pred-Lb3 2021 913 1 108 30 0 40
Ra-Se-Pred-Lb10 2 021 911 1 110 36 0 38
Ra-Se-Pred-Rdm 1 643 534 1 109 27 1 40
Ra-Se-Pred-Rdm9 1 795 715 1 080 17 1 38

CPU and wall time taken. Most importantly, the impact gets smaller the longer
the analyses need to compute the result (the factor is constantly decreasing). For
tasks that are solved by SymbExec in more than 50 CPU seconds, Ra-2Se-Lb3
is as fast as SymbExec, for tasks solved in more than 100 CPU seconds it is
20% faster. As stated above, the CPU time consumed to computing a proof is
not affected by parallelization. Thus, when only looking at the time taken to
compute a proof, Ra-2Se-Lb3 takes as long as SymbExec after 50 CPU sec-
onds. In contrast, Ra-2Se-Lb3 is faster for finding alarms in that interval. A
more detailed analysis can be found in the artefact [60].

When comparing the wall time in Fig. 6b, the positive effect of the paral-
lelization employed in all configurations of a composition of ranged analyses gets
visible. Ra-2Se-Lb3 is faster than SymbExec, when SymbExec takes more
than 20 seconds in real time to solve the task. To emphasize the effect of the
parallelization, we used pre-computed ranges for Ra-2Se-Lb3. Now, Ra-2Se-
Lb3 takes only the 1.1-fold wall time in the median compared to SymbExec,
and is equally fast or faster for all tasks solved in more than ten seconds.

The use of compositions of ranged analysis for symbolic execution increases
its effectiveness for finding violations of the specification. Moreover, the real
overall time consumed to compute the result is reduced for large or complex
tasks due to the parallelization employed. We have hence reproduced the
findings from [86] in a different setting.

6.3 RQ 2: Composition of Ranged Analyses for Other Analyses

Evaluation Plan. To investigate whether other analysis combinations benefit
from a composition of ranged analyses, we evaluated two combinations: The first
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Fig. 7: Median factor of time increase for different compositions of ranged anal-
yses

uses two instances of BMC (Ra-2bmc), the second one uses symbolic execution
on the interval [π⊥ , πτ ] and predicate analysis on the range [πτ , π> ] (Ra-Se-
Pred). We are again interested in effectiveness and efficiency.

Results for BMC. The upper part of Tab. 2 contains the results for a compo-
sition of ranged analyses using two instances of BMC. In contrast to Ra-2Se,
Ra-2bmc does not increase the number of overall correct verdicts compared to
Bmc. Ra-2bmc-Rdm9 computes 48 correct verdicts that are not computed by
Bmc, it also fails to compute the correct verdict in 77 cases solved by Bmc. Both
observations can mainly be explained from the fact that one analysis computes a
result for a task where the other runs into a timeout. Again, we observe that the
composition of ranged analyses computes additional alarms (here 36), as both
ranged analyses search in different parts of the program.

When comparing the efficiency, we notice that the CPU time consumed to
compute a result for Ra-2bmc-Rdm9 (and all other instances) is higher than
for Bmc. In average, the increase is 2.6, the median is 2.5, whereas the median
increase for tasks solved in more than 100 CPU seconds by Bmc is 1.1. For wall
time, where we depict the increases in Fig. 7a, the median overall increase is
1.9. This high overall increase is caused by the fact that Bmc can solve nearly
65% of all tasks within ten seconds wall time. Thus, the effect of computing the
splitting has a big impact on the factor. For more complex or larger instances,
where Bmc uses more time, the wall time of Ra-2bmc-Rdm9 is comparable, for
instances taking more than 100 seconds, both takes approximately the same time.

Results for Predicate Analysis and Symbolic Execution. Table 2 also
contains the results for the compositions of ranged analyses using predicate anal-
ysis and symbolic execution in combination. Here, the column “add.” contains
the tasks that are neither solved by Pred nor SymbExec. Both default analy-
ses used in this setting have different strengths, as Pred solves 1 517 tasks not
solved by SymbExec, and SymbExec 649 not solved by Pred. 737 tasks are
solved by both analyses.
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The most successful configuration of the composition of ranged analyses again
uses Lb3 for generating the ranges. In comparison to SymbExec and Pred, Ra-
Se-Pred-Lb3 computes 635 more overall correct verdicts than SymbExec, but
233 fewer than Pred. It solves 430 tasks not solved by Pred and 918 tasks not
solved by SymbExec. Most important, it can compute 36 correct proofs and
alarms that are neither found by Pred nor SymbExec. The effect that tasks
can be solved by the composition of ranged analyses that are not solvable by one
or both instances lays in the fact that both analyses work only on a part of the
program, making the verification problem easier. Unfortunately, the remaining
part is sometimes still too complex for the analysis to be verified in the given
time limit. Then, Ra-Se-Pred-Lb3 cannot compute a final result.

When evaluating the effectiveness of Ra-Se-Pred-Lb3, we need to compare
it to both Pred and SymbExec. Figure 7b compares the median factor of the
wall time increase for Pred and SymbExec. For both, we observe that the
median increase factor of the wall time is high (2.1 for Pred and 1.6 for Symb-
Exec) for tasks that are solved quickly (within ten seconds), but decreases for
more complex tasks. For tasks that are solved with a wall time greater 100 s,
Ra-Se-Pred-Lb3 takes approx. the same time as Pred, and is 10% faster
than SymbExec. Important to note that Fig. 7b does not include the situation
that Pred or SymbExec does not compute a solution but Ra-Se-Pred-Lb3
does. For the former questions, these cases happen rarely, for Ra-Se-Pred-Lb3
and SymbExec it occurs for 918 tasks. Ra-Se-Pred-Lb3 needs in median 15
seconds wall time to compute a solution when Pred runs into a timeout and 52
seconds for SymbExec, both would lead to an increase factor smaller than 0.1.

In summary, Bmc can partially benefit from using a composition of ranged
analyses, although the effect is not as good as for symbolic execution. The
use of predicate analysis and symbolic execution within a composition of
ranged analyses increases the performance of the weaker performing analysis
SymbExec drastically, but slightly decreases the performance of the better
performing predicate analysis. Again, Lb3 is a good choice for splitting.

7 Related Work

Numerous approaches combine different verification techniques. Selective com-
binations [6,40,45,51,72,83,92] consider certain features of a task to choose the
best approach for that task. Nesting approaches [3,4,25,26,30,32,49,82,84] use
one or more approaches as components in a main approach. Interleaved ap-
proaches [1,2,5,10,42,50,55,58,62,68,75,78,90,97] alternate between different ap-
proaches that may or may not exchange information. Testification approaches
[28,29,39,43,52,74,81] often sequentially combine a verification and a validation
approach and prioritize or only report confirmed proofs and alarms. Sequen-
tial portfolio approaches [44,61] run distinct, independent analyses in sequence
while parallel portfolio approaches [91,12,57,65,66,96] execute various, indepen-
dent analyses in parallel. Parallel white-box combinations [7,9,37,38,54,56,59,79]
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run different approaches in parallel, which exchange information for the purpose
of collaboration. Next, we discuss cooperation approaches that split the search
space as we do.

A common strategy for dividing the search space in sequential or interleaved
combinations is to restrict the subsequent verifiers to the yet uncovered search
space, e.g., not yet covered test goals [12], open proof obligations [67], or yet
unexplored program paths [8,10,19,31,33,41,42,47,53,71]. Some parallel combi-
nations like CoDiDroid [80], distributed assertion checking [93], or the compo-
sitional tester sketched in conditional testing [12] decompose the verification
statically into separate subtasks. Furthermore, some techniques split the search
space to run different instances of the same analysis in parallel on different parts
of the program. For example, conditional static analysis [85] characterizes paths
based on their executed program branches and uses sets of program branches to
describe the split. Concurrent bounded model checking techniques [69,77] split
paths based on their thread interleavings. Yan et al. [95] dynamically split the
input space if the abstract interpreter returns an inconclusive result and analyses
the input partitions separately with the abstract interpreter. To realize parallel
test-case generation, Korat [76] considers different input ranges in distinct par-
allel instances. Parallel symbolic execution approaches [82,86,87,88,89,94] and
ranged model checking [48] split execution paths, thereby often partitioning the
execution tree. The set of paths are characterized by input constraints [89], path
prefixes [87,88], or ranges [82,86,94,48] and are either created statically from an
initial shallow symbolic execution [87,88,89] or tests [82,86,94] or dynamically
based on the already explored symbolic execution tree [27,34,82,86,98]. While
we reuse the idea of splitting the program paths into ranges [82,86,94,48], we
generalize the idea of ranged symbolic execution [82,86,94] to arbitrary analyses
and in particular allow to combine different analyses. Furthermore, we introduce
a new static splitting strategy along loop bounds.

8 Conclusion

Ranged symbolic execution scales symbolic execution by having several analysis
instances ran on different ranges in parallel. In this paper, we have generalized
this idea to arbitrary analyses by introducing and formalizing the notion of a
composition of ranged analyses. We have moreover proposed and implemented a
novel splitting component based on loop bounds. Our evaluation shows that a
composition of ranged analyses can in particular increase the number of solved
tasks. It furthermore demonstrates the superiority of the novel splitting strategy.
As future work we see the incorporation of information sharing between analysis
running in parallel.

Data Availability Statement. All experimental data and our open source
implementation are archived and available in our supplementary artefact [60].
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31. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: Proc. ICSE. pp. 144–155. ACM (2016).
https://doi.org/10.1145/2884781.2884843

32. Christakis, M., Eniser, H.F., Hermanns, H., Hoffmann, J., Kothari, Y., Li, J.,
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47. Ferles, K., Wüstholz, V., Christakis, M., Dillig, I.: Failure-directed program trim-
ming. In: Proc. ESEC/FSE. pp. 174–185. ACM (2017), http://doi.acm.org/10.
1145/3106237.3106249

48. Funes, D., Siddiqui, J.H., Khurshid, S.: Ranged model checking. ACM SIGSOFT
Softw. Eng. Notes 37(6), 1–5 (2012), https://doi.org/10.1145/2382756.2382799

49. Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based test suite generation
with dynamic symbolic execution. In: Proc. ISSRE. pp. 360–369. IEEE (2013),
https://doi.org/10.1109/ISSRE.2013.6698889

50. Gao, M., He, L., Majumdar, R., Wang, Z.: LLSPLAT: improving concolic testing
by bounded model checking. In: Proc. SCAM. pp. 127–136. IEEE (2016), https:
//doi.org/10.1109/SCAM.2016.26

215

https://doi.org/10.1145/1713254.1713257
https://doi.org/10.1007/10722167_15
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp22
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/978-3-662-46675-9\_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9\_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/11804192_7
https://doi.org/10.1007/11804192_7
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-319-21690-4_39
https://doi.org/10.1007/978-3-319-21690-4_39
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-1-4612-3228-5
http://doi.acm.org/10.1145/3106237.3106249
http://doi.acm.org/10.1145/3106237.3106249
https://doi.org/10.1145/2382756.2382799
https://doi.org/10.1109/ISSRE.2013.6698889
https://doi.org/10.1109/SCAM.2016.26
https://doi.org/10.1109/SCAM.2016.26


J. Haltermann et al.

51. Gargantini, A., Vavassori, P.: Using decision trees to aid algorithm selection in
combinatorial interaction tests generation. In: Proc. ICST. pp. 1–10. IEEE (2015),
https://doi.org/10.1109/ICSTW.2015.7107442

52. Ge, X., Taneja, K., Xie, T., Tillmann, N.: Dyta: Dynamic symbolic execution
guided with static verification results. In: Proc. ICSE. pp. 992–994. ACM (2011).
https://doi.org/10.1145/1985793.1985971

53. Gerrard, M.J., Dwyer, M.B.: ALPACA: a large portfolio-based alternating condi-
tional analysis. In: Proc. ICSE. pp. 35–38. IEEE / ACM (2019), https://doi.org/
10.1109/ICSE-Companion.2019.00032

54. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random test-
ing. In: Proc. PLDI. pp. 213–223. ACM (2005), https://doi.org/10.1145/1065010.
1065036

55. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.: Compositional may-must
program analysis: Unleashing the power of alternation. In: Proc. POPL. pp. 43–
56. ACM (2010). https://doi.org/10.1145/1706299.1706307, http://doi.acm.org/
10.1145/1706299.1706307

56. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proc. NDSS. The Internet Society (2008), http://www.isoc.org/isoc/conferences/
ndss/08/papers/10 automated whitebox fuzz.pdf

57. Groce, A., Zhang, C., Eide, E., Chen, Y., Regehr, J.: Swarm testing. In: Proc.
ISSTA. pp. 78–88. ACM (2012), https://doi.org/10.1145/2338965.2336763

58. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Syn-
ergy: A new algorithm for property checking. In: Proc. FSE. pp. 117–127. ACM
(2006). https://doi.org/10.1145/1181775.1181790

59. Haltermann, J., Wehrheim, H.: CoVEGI: Cooperative Verification via Externally
Generated Invariants. In: Proc. FASE. pp. 108–129. LNCS 12649, Springer (2021),
https://doi.org/10.1007/978-3-030-71500-7 6

60. Haltermann, J., Jakobs, M., Richter, C., Wehrheim, H.: Replication package for
article ’Parallel Program Analysis via Range Splitting’ (Jan 2023). https://doi.
org/10.5281/zenodo.7189816

61. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate automizer
and the search for perfect interpolants - (competition contribution). In: Proc.
TACAS. pp. 447–451. LNCS 10806, Springer (2018), https://doi.org/10.1007/
978-3-319-89963-3 30
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Abstract. Knowledge bases have been extensively used to represent and
reason about static domain knowledge. In this work, we show how to en-
force domain knowledge about dynamic processes to guide executions
at runtime. To do so, we map the execution trace to a knowledge base
and require that this mapped knowledge base is always consistent with
the domain knowledge. This means that we treat the consistency with
domain knowledge as an invariant of the execution trace. This way, the
domain knowledge guides the execution by determining the next possi-
ble steps, i.e., by exploring which steps are possible and rejecting those
resulting in an inconsistent knowledge base. Using this invariant directly
at runtime can be computationally heavy, as it requires to check the con-
sistency of a large logical theory. Thus, we provide a transformation that
generates a system which is able to perform the check only on the past
events up to now, by evaluating a smaller formula. This transformation
is transparent to domain users, who can interact with the transformed
system in terms of the domain knowledge, e.g., to query computation
results. Furthermore, we discuss different mapping strategies.

1 Introduction

Knowledge bases (KBs) are logic-based representations of both data and do-
main knowledge, for which there exists a rich toolset to query data and reason
about data semantically, i.e., in terms of the domain knowledge. This enables
domain users to interact with modern IT systems [39] without being exposed to
implementation details, as well as to make their domain knowledge available for
software applications. KBs are the foundation of many modern innovation drivers
and key technologies: Applications range from Digital Twin engineering [31], over
industry standards in robotics [23] to expert systems, e.g., in medicine [38].

The success story of KBs, however, is so far based on the use of domain
knowledge about static data. The connection to transition systems and pro-
grams beyond Prolog-style logic programming has just begun to be explored.
This is mainly triggered by tool support for developing applications that use
KBs [7,13,28], in a type-safe way [29,32].

In this work, we investigate how one can use domain knowledge about dy-
namic processes and formalize knowledge about the order of computations to
be performed. More concretely, we describe a runtime enforcement technique to
use domain knowledge to guide the selection of rules in a transition system, for
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example to simulate behavior with respect to domain knowledge, a scenario that
we use as a guiding example in this article, or to enforce compliance of business
process models with respect to restrictions arising from the domain [41].

Approach. At the core, our approach considers the execution trace of a run, i.e.,
the sequence of rule applications, as a KB itself. As such, it can be combined with
the KB that expresses the domain knowledge of dynamic processes (DKDP). The
DKDP expresses knowledge about (partial) executions such that the execution
trace must be consistent with it before and after every rule application. For
example, in a simulation system for geology, the DKDP may express that a
certain rock layer A is above a certain rock layer B and, thus, the event to
deposit a layer must occur for B, before it occurs for A. Consistency with the
DKDP forms a domain invariant for the trace of a system, i.e., a trace property.

To trigger a transition rule, we use a hypothetical execution step: the execu-
tion trace is extended with a potential event and the consistency of the extended
trace against the DKDP is checked. However using this consistency invariant di-
rectly at run time can be computationally heavy, as it requires to check the con-
sistency of a large logical theory. Thus, we give a transformation that removes
the need for a hypothetical execution step and instead results in a transition
system that evaluates a transformed condition on (1) the existing trace and (2)
the parameters of the potentially extended event. This condition does not re-
quire domain-specific reasoning anymore. This transformation removes the need
for hypothetical execution steps and DKDP can be used to guide any transition
system, including languages based on structural operational semantics. For ex-
ample, it is then possible to express the invariant checking as a guard for the rule
that deposits layers (e.g., only deposit A if layer B has been deposited already).

It is crucial that this system is usable for both the domain user (who possesses
the domain knowledge) and the programmer (that has to program the interac-
tion with the domain knowledge), a requirement explicitly stressed by Corea et
al. [16] for the use of ontologies in business process models. We, thus, carefully
designed our framework to increase its usability: First, the reasoning (in the
geology example above, from spatial properties of layers to temporal properties
of events) is completely performed in the domain and needs not be handled by
the transition system. I.e., the programmer must not perform reasoning over the
KB in the program itself. Second, the DKDP is expressed over domain events,
as the domain users do not have knowledge about implementation details, such
as the state organization. Furthermore, the formalization of the DKDP should
not be affected by the underlying implementation details such that the DKDP
can be reused. The DKDP can reuse the aforementioned industry standards
and established ontologies, as well as modeling languages and techniques from
ontology engineering [17], such as OWL [42], which are established for domain
modeling and more suitable for this task than correctness-focused temporal log-
ics such as LTL [35]: The domain users must not be an expert in programming
or verification to contribute to the system.

The transformation that replaces the need for a hypothetical execution step
with a transition system evaluating a transformed condition is also transparent
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to the domain users. We say a transformed guarded rule is applicable if it would
not violate consistency w.r.t. the DKDP. Lastly, we provide the domain users
possibilities to query the final result, i.e., the KB of the final execution trace, and
to explore possible simulations using the defined DKDP. Note that the mapping
from trace to KB must not necessarily be designed manually: various (semi-)
automatic mapping design strategies are discussed in the paper.

Contributions and Structure. Our main contributions are (1) a system that en-
forces domain knowledge to guide a transition system at runtime, and (2) a proce-
dure that transforms such a transition system that uses consistency with domain
knowledge as an invariant into a transition system using first-order guards over
past events in a transparent way. We give preliminaries in Sec. 2 and present
our running example in Sec. 3. We formalize our approach in Sec. 4 and give
the transformation in Sec. 5, before we discuss (semi-)automatically generated
mappings in Sec. 6. We discuss the mappings in Sec. 7 and related work in Sec. 8.
Lastly, Sec. 9 concludes.

2 Preliminaries

We give some technical preliminaries for knowledge bases as well as transition
systems, as far as they are needed for our runtime enforcement technique.

Definition 1 (Domain Knowledge of Dynamic Processes). Domain knowl-
edge of dynamic processes (DKDP) is the knowledge about events and changes.

Example 1 (DKDP in Geology). DKDP describes knowledge about some tem-
poral properties in a domain. In geology, for example, this may be the knowledge
that a deposition of some geological layers in Cretaceous should happen after a
deposition in Jurassic, because the Cretaceous is after the Jurassic. This can be
deduced from, e.g., fossils found in the layers.

A description logic (DL) is a decidable fragment of first-order logic with
suitable expressive power for knowledge representation [3]. We do not commit to
any specific DL here, but require that for the chosen DL it is decidable to check
consistency of a KB, which we define next. A knowledge base is a collection of DL
axioms, over individuals (corresponding to first-order logic constants), concepts,
also called classes (corresponding to first-order logic unary predicates) and roles,
also called properties (corresponding to first-order logic binary predicates).

Definition 2 (Knowledge Base). A knowledge base (KB) K = (R, T ,A) is a
triple of three sets of DL axioms, where the ABox A contains assertions over in-
dividuals, the TBox T contains axioms over concepts, and the RBox R contains
axioms over roles. A KB is consistent if no contradiction follows from it.

KBs can be seen as first-order logic theories, so we refrain from introducing
them fully formally and introduce them by examples throughout the article. The
Manchester syntax [25] is used for DL formulas in examples to emphasize that
they model knowledge, but we treat them as first-order logic formulas otherwise.
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Example 2. Continuing Exp. 1, the following axiom, expressing that Jurassic is
before Cretaceous, is expressed by the following ABox axiom, where Jurassic

and Cretaceous are individuals, while before is a role.

before(Jurassic, Cretaceous)

The following TBox axioms express that every layer with Stegosaurus fossils
has been deposited during the Jurassic. The first two axioms define the concepts
StegoLayer (the class of things having the value Stegosaurus as their contains
role) and JurassicLayer (the class of things having the value Jurassic as their
during role). The last axiom says that the class of things having the value
Stegosaurus as their contains role is a subclass of JurassicLayer. 3 The bold
literals are keywords, the literals StegoLayer, JurassicLayer denote concept-
s/classes, the literals contains, during denote roles/properties and the literals
Stegosaurus, Jurassic denote individuals.

StegoLayer EquivalentTo contains value Stegosaurus

JurassicLayer EquivalentTo during value Jurassic

StegoLayer SubClassOf JurassicLayer

The following RBox axioms express two constraints: The first line states that
both below and before roles are asymmetric. The second line states that if a
deposition is from an age before the age of another deposition, then it is below
that deposition. Formally, the axiom expresses that the concatenation of the
following three roles (a) the during role, (b) the before role, and (c) the inverse
of the during role, is the sub-property of the below role. I.e., given an individual
a, every individual b reachable from a following the chain during, before and
the inverse of during, is also reachable by just below.

Asy(below) Asy(before)
during o before o inverse(during) SubPropertyOf below

Knowledge based guiding can be applied to any transition system to leverage
domain knowledge during execution. States are not the focus of our work, and
neither is the exact form of the rules that specify the transition between states.
For our purposes, it suffices to define states as terms, i.e., finite trees where each
node is labeled with a name from a finite set of term symbols, and transition
rules as transformations between schematic terms. State guards can be added
but are omitted for brevity’s sake.

Definition 3 (Terms and Substitutions). Let ΣT be a finite set of term
labels and ΣV a disjoint set of term variables. A term t is a finite tree, where
each inner node is a term label and each leaf is either a term label or a term
variable. The set of term variables in a term t is denoted Σ(t). We denote the
set of all terms with T . A substitution σ is a map from term variables to terms
without term variables. The application of a substitution σ to a term t, with the
usual semantics, is denoted tσ. In particular, if t contains no term variables,
then tσ = t.
3 The first-order equivalent is ∀x. contains(x, Stegosaurus) → during(x, Jurassic)
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Rewrite rules map one term to another by unifying a subterm with the head
term. The matched subterm is then rewritten by applying the substitution to
the body term. Normally one would have additional conditions on the transition
rules, but these are not necessary to present semantical guiding.

Definition 4 (Term Rewriting Systems). A transition rule in the term
rewriting system has the form

thead
r−→ tbody

Where r is the name of the rule, and thead, tbody ∈ T are the head and body terms.
A rule matches on a term t with Σ(t) = ∅, if there is a subterm ts of t,

such that thead = tsσ, for a suitable substitution σ. A rule produces a term t′,
by matching on subterm ts with substitution σ, and generating t′ by replacing
ts in t by tsσ

′, where σ′ is equal to σ for all v ∈ Σ(tbody) ∩ Σ(thead) and maps
v ∈ Σ(thead) \Σ(tbody) to fresh term symbols. For production, we write

t
r,σ′

−−→ t′

3 A Scenario for Knowledge Based Guiding

To illustrate our approach, we continue with geology, namely with a simulator
for deposition and erosion of geological layers. Such a simulator is used, e.g., for
hydrocarbon exploration [20]. It contains domain knowledge about the type of
fossils and the corresponding geological age, and connects spatial information
about deposition layers with temporal information about their deposition. We
started a formalization of the DKDP in Ex. 2 and expand it below.

The core challenge is that the simulator must make sure that it does not
violate domain properties. This means that it cannot deposit a layer containing
fossils from the Jurassic after depositing a layer containing fossils from the Cre-
taceous. This information is given by the domain users as an invariant, i.e., as
knowledge that the execution must be consistent with at all times.

Programming with Knowledge Bases. Our model of computation is a set of
rewrite rules on some transition structure. The sequence of rule applications,
denoted events, forms the trace. DKDP constrains the extension of the trace.
This realizes a clear separation of concerns between declarative data modelling
and imperative programming with, in our case, transitions.

Example 3. Let us assume 4 rules: a rule deposit that deposits a layer without
fossils, a rule depositStego that deposits a layer with Stegosaurus fossils, an
analogous rule depositTRex that deposits a layer with Tyrannosaurus fossils,
and a rule erode that removes the top layer of the deposition. One example re-
duction sequence, for some terms ti and with substitutions omitted, is as follows:

t0
depositStego−−−−−−−−→ t1

erode−−−→ t2
depositTRex−−−−−−−→ t3
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contains contains

StegosaurusTyrannosaurus

layer1 layer2

contains

before

during

below

JurassicCretaceous 

contains

during

layer1 layer2below

StegosaurusTyrannosaurus

before JurassicCretaceous 

Fig. 1. Left: KB as generated. Right: Inferred KB to detect inconsistency.

which describes the rule application of depositStego on term t0 following by
the rule application of erode on term t1 and then depositTRex on term t2.

In the domain KB, we add an axiom expressing that the geological layer
containing Stegosaurus fossils is deposited during the Jurassic, and that the geo-
logical layer containing Tyrannosaurus fossils is deposited during the Cretaceous.

Consider that rule depositStego may trigger on term t3.

. . . t2
depositTRex−−−−−−−→ t3

depositStego−−−−−−−−→
?

This would violate the domain knowledge, as we can derive a situation, where a
layer with Tyrannosaurus fossils is below a layer with Stegosaurus fossils, imply-
ing that the Cretaceous is before the Jurassic. This contradiction is captured by
the knowledge base in Fig. 1. The domain knowledge DKDP should prevent this
rule application at t3 to happen. To achieve this, i.e., enforce domain knowledge
at runtime, we must connect the trace with the KB. Specifically, we represent
the trace as a KB itself, i.e., instead of operating on a KB, we record the events
and generate a KB from a trace using a mapping.

For example, consider the left KB in Fig. 1. The upper part is (a part of)
our DKDP about geological ages, while the lower part is the KB mapped from
the trace. Together they form a KB. In the knowledge base of this example, we
add one layer that contains Stegosaurus fossils for each depositStego event and
analogously for depositTRex events. We also add the below relation between
two layers, if their events are ordered. So, if we would execute depositStego

after depositTRex, there would be two layers in the KB as shown in Fig. 1, with
corresponding fossils, connected using the below relation. On the right, the KB
is shown with the additional knowledge following from its axioms. In particular,
we can deduce that layer2 must be below layer1 using the axioms from Sec. 2.
This, in turn, makes the overall KB inconsistent, as below must be asymmetric.

We stress that consistency of the execution with the DKDP is a trace prop-
erty, it is reasoning about the events that happen regardless of the current state.
In our example, consider the situation, where the next event after t3 rule erode

triggers again, and then we consider rule depositStego. I.e., the following con-
tinuation of the trace
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. . . t2
depositTRex−−−−−−−→ t3

erode−−−→ t4
depositStego−−−−−−−−→

?

We still consider the layer with the Tyrannosaurus fossils in our KB, despite
its erosion. Firstly, because the layer may potentially have had an effect on
the execution before being removed, and, secondly, because its deposition also
models implicit information. It expresses the current geological era of the system,
which cannot be reverted: at t3 the system is in the Cretaceous, and while the
depositStego models an action in the Jurassic – the trace would not represent
a semantically sensible execution if the depositStego rule would be executed.

Fig. 2 illustrates the runtime enforcement of domain knowledge on traces in
a more general setting. The execution itself is a reduction sequence over some
terms t, where each rule application emits some event ev, e.g., name of the
applied rule and matched subterms. A mapping µ is used to generate a KB from
the trace. The knowledge base then contains (a) the DKDP, pictured as the
shaded box, (b) the mapping of the trace so far, pictured as the unshaded box
with solid frame, and (c) the potential next event, pictured as the dashed box.
Additionally, new connections may be inferred.

The mapping from a trace to a KB matches the system formalized by the do-
main knowledge to the system used for programming, it is the interface between
domain experts and the programmer. Indeed, the mapping allows the domain
users to investigate program executions without being exposed to the implemen-
tation details. Given a fixed execution, the mapping can be applied to allow the
domain users to query its results (in form of the trace) using domain vocabulary.

From the program’s point of view, it defines an invariant over the trace, which
must always hold: consistency with domain knowledge. While this saves the
domain users from learning about the implementation, it poses two challenges to
the programmer: first, the mapping must be developed additionally to the rules,
and second, the invariant is not specific to the rules. The extended trace caused by
the execution of one single event, must be checked against the full DKDP, which
is not specific to any transition event. Instead of this computationally costly
operation, we provide an alternative. For example, to ensure consistency when
executing the rule depositStego, it suffices to evaluate the following formula
on the past trace tr to check that depositTRex has not been executed yet:
∀i ≤ |tr |. tr [i] 6 .= ev(depositTRex). The condition of a rule is specific to the
corresponding transition action, instead of a general condition on all the rules.

After defining runtime enforcement of domain knowledge formally, we will
return to these challenges and (a) discuss different mapping strategies, and es-
pecially the (semi-)automatic generation of mappings and (b) give a system that,
for a big class of mappings, also derives local conditions.

4 Knowledge Guided Transition Systems

We now introduce runtime enforcement using KBs. To this end, we define the
mapping of traces to KBs formally and give the transition system that uses this
lifting for consistency checking. First, we define the notion of traces.
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DKDPMapping of
current trace

Mapping of
extended trace

Fig. 2. Runtime enforcement of knowledge bases on traces.

Definition 5 (Execution Traces). An event ev for a rule r and a substitution
σ has the form ev(r, σ), which we write asev(r, v1 : t1, . . . , vn : tn), where vi : ti
are the pairs in σ. To record the sequence of an execution, we use traces. A trace
is a finite sequence of events, where each event records the applied rule and the
corresponding substitutions, if there are any.

Example 4. The trace of the rule application in Ex. 3 is as follows, for suit-
able substitutions that all store the deposited or eroded layer in the variable v.〈

ev
(
depositStego, v : layer0

)
, ev
(
erode, v : layer0

)
, ev
(
depositTRex, v : layer1

)〉
To connect executions with knowledge bases, we define mappings that trans-

form traces into knowledge bases, given a fixed vocabulary Σ.

Definition 6 (Mappings). A Σ-mapping µ is a function from traces to knowl-
edge bases over vocabulary Σ.

The mapping is given by the user, who has to respect the signature of the
KB formalizing the used domain knowledge. While we are not specific in the
structure of the mapping in general, we introduce the notion of a first-order
matching mapping, which allow for optimization and automatization.

Definition 7 (First-Order Matching Mapping). A first-order matching
mapping µ is defined by a set {ϕ1 7→N1

ax 1, . . . , ϕn 7→Nn
axn}, where each

element has a first-order logic formula ϕi as its guard, a set of individuals Ni
and some set ax i of KB axioms as its body. We write ax i(N) to emphasize that
a set of individuals N occur in ax i(N).

The mapping is applied to a trace tr by adding all those bodies whose guard
evaluates to true and replacing all members of N in ax1 by fresh individual
names:

µ(tr) =

 ⋃
tr|=ϕi

ax i(N)

 [N fresh]

Where A[N fresh] substitutes all individuals in N with fresh names in A.

Example 5. Consider the following first-order matching mapping µ, for some
role/property P and individuals A, B and C. The function rule(ev) extracts the
rule name from the given event ev .{

∃i. rule(tr [i])
.
= r1 7→∅ P(A, B), ∃i. rule(tr [i])

.
= r2 7→∅ P(B, A),

∃i. rule(tr [i])
.
= r3 7→∅ P(A, C), ∃i. rule(tr [i])

.
= r4 7→∅ P(C, A)

}
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Its application to a trace 〈ev(r1), ev(r1), ev(r2)〉 is the set {P(A, B), P(B, A)}.

First-order matching mapping can also be applied to our running example.

Example 6. We continue with the trace from Ex. 4, extended with another event
ev(depositStego, v : layer2). We check whether adding an event to the trace
would result in a consistent KB by actually extending the trace for analysis. We
call this a hypothetical execution step.

The following mapping, which must be provided by the user adds the spatial
information about layers w.r.t. the fossils found within. The first-order logic
formula at the guard of the mapping expresses that an event of depositTRex

is found before the event of depositStego in the trace. Note that the given
set of axioms from the mapping faithfully describes the event structure of the
trace, i.e., the mapping could produce axioms which will cause inconsistency
w.r.t. the domain knowledge: Together with the DKDP, we can see that the
trace is mapped to an inconsistent knowledge base by adding 5 axioms. Note
that we do not generate one layer for each deposition event during simulation,
but only two specific ones, Layer(l1) and Layer(l2) in this case, for the relevant
information. One can extend mapping rules for the different cases (for instance,
depositStego before depositTRex, only depositTRex events, etc.), or use a
different mapping mechanism, which we discuss further in Sec. 6.

∃l1, l2. ∃i1, i2.
tr [i1]

.
= ev

(
depositTRex, v : l1

)
∧ tr [i2]

.
= ev

(
depositStego, v : l2

)
∧ i1 < i2

7→l1,l2{
Layer(l1), contains(l1, Tyrannosaurus),

Layer(l2), contains(l2, Stegosaurus), below(l1, l2)
}

We stress again that we are interested in trace properties, a layer may still
have had effects on the state despite being completely removed at one point (by
an erode event). Thus, we must consider the deposition event of a layer to check
the trace against the domain knowledge.

The guided transition systems extends the mapping of a basic transition
system, by additionally ensuring that the trace after executing the rule would
be mapped to a consistent knowledge base. This treats the domain knowledge
as an invariant that is enforced, i.e., a transition is only allowed if it indeed
preserves the invariant.

Definition 8 (Guided Transition System). Given a set of rules R, a map-
ping µ and a knowledge base K, the guided semantics is defined as a transition
system between pairs of terms t and traces tr . For each rule r ∈ R, we have one
guided rule (for consistency, cf. Def. 2):

t
r,σ−−→ t′ ev = ev(r, σ) µ(tr ◦ ev) ∪ K is consistent

(kb)

(t, tr)
r−→ (t′, tr ◦ ev)
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The set of traces generated by a rewrite system R from a starting term t0 is
denoted H(R, µ,K, t0). Execution always starts with the empty trace.

5 Well-Formedness and Optimization

The transition rule in Def. 8 uses the knowledge base directly to check consis-
tency, and while this enables to integrate domain knowledge into the system
directly, it also poses challenges from a practical point of view. First, the condi-
tion of the rule application is not specific to the change of the trace, and must
check the consistency of the whole knowledge base, which can be computation-
ally heavy. Second, the consistency check is performed at every step, for every
potential rule application. Third, the trace must be mapped whenever it is ex-
tended. Which means the same mapping computation that has been performed
in the previous step may be executed all over again.

To overcome these challenges, we provide a system that reduces consistency
checking by using well-formedness guards, which only require to evaluate an
expression over the trace without accessing the knowledge base. These guards
are transparent to the domain users, the system behaves the same as with the
consistency checks of the knowledge base. At its core, we use well-formedness
predicates, which characterize the relation of domain knowledge and mappings.

Definition 9 (Well-Formedness). A first-order predicate wf of a trace tr is
a well-formedness predicate for some mapping µ and some knowledge base K, if
the following holds:

∀tr . wf (tr) ⇐⇒ µ(tr) ∪ K is consistent

Using this definition we can slightly rewrite the rule of Def. 8: For every
starting term t0, the set of generated traces is the same if the rule of Def. 8 is
replaced by the following one

t
r,σ−−→ t′ ev = ev(r, σ) wf (tr ◦ ev)

(wf)

(t, tr)
r−→ (t′, tr ◦ ev)

For first-order matching mappings, we can generate the well-formedness pred-
icate by testing all possible extensions of the knowledge base upfront and defining
the guards of those sets that are causing inconsistency as non-well-formed.

Theorem 1. Let µ be a first-order matching mapping for some knowledge base
K. Let Ax = {ax 1, . . . , axn} be the set of all bodies in µ. Let Incons be the set
of all subsets of Ax, such that for each A ∈ Incons,

⋃
a∈A a ∪ K is inconsistent.

Let guardA be the set of guards corresponding to each body in A. The following
predicate wf µ is a well-formedness predicate for µ and K.

wf µ = ¬
∨

A∈Incons

∧
ϕ∈guardA

ϕ
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Example 7. We continue with Ex. 5. Consider a knowledge base K expressing
that role P is asymmetric. The knowledge base becomes inconsistent if the first
two or the last two axioms from µ are added to the knowledge base. Thus, the
generated well-formedness predicate wf is the following

wf µ(tr) ≡ ¬
((

(∃i. rule(tr [i])
.
= r1) ∧ (∃i. rule(tr [i])

.
= r2)

)
∨(

(∃i. rule(tr [i])
.
= r3) ∧ (∃i. rule(tr [i])

.
= r4)

))
The above procedure has exponential complexity in the number of branches

of the mapping. But as the superset of an inconsistent set is also inconsistent, it is
not necessary to generate all the subsets. I.e., it suffices to consider the following
set of minimal inconsistencies instead, which can be computed by testing for
inconsistencies based on the sets ordered by ⊂.

min-Incons = {A | A ∈ Incons ∧ ∀A′ ∈ Incons. A′ 6= A→ A′ 6⊂ A}

If well-formedness is defined inductively, then we can give an even more
specific transformation. The well-formedness predicate is inductive, if it checks
well-formedness for each trace and its last event is equivalent to the evalution
of a formula over the trace, which is specific to the event. If this is the case,
then each rule, which dictates the event, can have an own, highly specialized
well-formedness guard, which further enhances efficiency.

Definition 10 (Inductive Well-Formedness). A well-formedness predicate
wf is inductive 4 for some set of rules R if there is a set of predicates wf r for
all rules r ∈ R, such that wf can be written as an inductive definition:

wf (〈〉) ≡ true

wf (tr ◦ ev) ≡ wf (tr) ∧
∧
r∈R

(
(rule(ev)

.
= r)→ wf r(tr, ev)

)
in which wf r(tr, ev) is the local well-formedness predicate specifically for rule
r with the condition rule(ev)

.
= r. The predicate wf r forms the guard for rule

r. Every well-formedness predicate is equivalent to an inductive well-formedness
predicate by setting wf r(tr, ev) = wf (tr ◦ ev), but we aim to give more specific
predicates per rule.

Example 8. Finishing our geological system, we can give local well-formedness
predicates for all rules. For example, we can define a specific guard for rule
depositStego expressing that the deposition of a layer containing Stegosaurus
fossil is not allowed if there is already a deposition of a layer containing Tyran-
nosaurus fossils captured in the trace tr up to now. Compare with the approach
that the whole knowledge base needs to be checked, this proposed solution using

4 Our well-formedness predicates are inspired by the ones used in verification of concur-
rent systems, where they characterize traces w.r.t. a specific concurrency model [21].
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inductive well-formedness simplifies the complexity of analysis significantly. For
instance, the rule for deposition does not need to concern with the ordering of
the geological age.

wf deposit
(
tr, ev(deposit, v : l)

)
≡ wf erode

(
tr, ev(erode, v : l)

)
≡ true

wf depositTRex
(
tr, ev(depositTRex, v : l)

)
≡ true

wf depositStego
(
tr, ev(depositStego, v : l)

)
≡ ∀i ≤ |tr|. rule(tr [i]) 6 .= depositTRex

Definition 11 (Transition System using Well-Formedness). Let wf be an
inductive well-formedness predicate for a set of rules R, some mapping µ, some
knowledge base K. We define the transformed guarded transition system with the
following rule for each r ∈ R.

t
r,σ−−→ t′ ev = ev(r, σ) wf r(tr, ev)

(wf-r)

(t, tr)
r−→ (t′, tr ◦ ev)

The set of traces generated by this transition system from a starting term t0
is denoted G(R,wf , t0). Execution always starts with the empty trace.

Note that (a) we do use a specific well-formedness predicate per rule, and that
(b) we do not extend the trace tr in the premise as the rules in Def. 8 and Def. 9.

Theorem 2. Let wf be an inductive well-formedness predicate for a set of rules
R, some mapping µ, some knowledge base K. The guided system of Def. 8 and
Def. 11 generate the same traces: ∀t. H

(
R, µ,K, t

)
= G

(
R,wf , t

)
We can also define determinism as terms of the inductive well-formedness.

An inductive well-formedness predicate wf is deterministic, if for each trace tr
and event ev, only one possible local well-formedness predicate wf r(tr , ev) holds.

Proposition 1 (Deterministic Well-Formedness). An inductive well-
formedness predicate wf with local well-formedness predicates {wf r}r∈R is
deterministic, if

∀tr. ∀ev .
∧
r∈R

(
wf r(tr, ev)→

∧
r′∈R
r′ 6=r

¬wf r′(tr, ev)
)

For deterministic predicates, only one trace is generated:
∣∣G(R,wf , t

)∣∣ = 1.

When the programmer designs the mapping, the focus is on mapping enough
information to achieve inconsistency, to ensure that certain transition steps are
not performed. If the same mapping is to be used to retrieve results from the
computation, e.g., to query over the final trace, this may be insufficient. Next,
we discuss mappings that preserve more, or all information from the trace.
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6 (Semi-)Automatically Generated Mappings

The mappings we discussed so far require to be defined completely by the pro-
grammer and are used to extract a certain correct information from a trace,
which is sufficient to enforce domain invariants at runtime. In this section, we
introduce mappings which can be constructed (semi-)automatically to simplify
the usage of domain invariants: The transducing mappings and direct mappings
leverage the structure of the trace directly. A transducing mapping is constructed
semi-automatically. It applies some manually defined mapping to each event and
automatically connects every pair of consecutive events in a trace using the next

role in KB. A direct mapping relates each event with its parameters and is con-
structed fully automatically. Both kinds of mappings are not only easier to use
for the programmer, they can also be used by the domain users to access the
results of the computation in terms of the domain.

A transducing mapping is semi-automatic in the sense that part of the map-
ping is pre-defined, and the programmer must only define a part of it, namely
the mapping from a single event to a KB.

Formally, a transducing mapping consists of a function ι that generates
unique individual names5 per event and a user-defined function ε that maps
every event to a KB.

Definition 12 (Transducing Mapping). Let ι an injective function from nat-
ural numbers to individuals, and ε be a function from events to KBs. Let next be
an asymmetric role. Given a trace tr, a transducing mapping δnextι,ε (tr) is defined
as follows. For simplicity, we annotate the index i of an event in tr directly.

δnextι,ε (〈〉) = ∅ δnextι,ε (〈evi〉) = ε(evi)

δnextι,ε (〈evi, evj〉 ◦ tr) = ε(evi) ∪ {next(ι(i), ι(j))} ∪ δnextι,ε (〈evj〉 ◦ tr)

in which the ◦ operator concatenates two traces. This approach is less demanding
than to design an arbitrary mapping, as the structure of the sequence between
each pair of consecutive events is taken care of by the next role and ι is trivial
in most cases: one can just generate a fresh node with the number as part of its
individual symbol. The programmer only has to provide a function ε for events.

Example 9. Our geology example can be reformulated with the following user-
defined function εgeo . Let ιgeo map every natural number i to the symbol layeri:

εgeo(evi(depositStego, v : l))={contains(ιgeo(i), Stegosaurus), Layer(ιgeo(i))}
εgeo(evi(depositTRex, v : l))={contains(ιgeo(i), Tyrannosaurus), Layer(ιgeo(i))}

εgeo(evi(deposit, v : l))={contains(ιgeo(i), Nothing), Layer(ιgeo(i))}
εgeo(evi(erode))=∅

Note that the function ιgeo(i) is used to generate new symbols for each event,
which are then declared to be geological layers by the axiom Layer(ιgeo(i)). It

5 If using the Resource Description Framework (RDF) [43] for the knowledge base,
one requires fresh unique resource identifiers (URI).
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generalizes the set of fresh names from first-order matching mappings in Def. 7.
Based on this function definition, the example in Sec. 3 can be performed using
the transducing mapping δbelowιgeo ,εgeo . The connections between each pair of consec-
utive events in a trace, i.e., a layer is below another layer, is derived from the
axioms in the domain knowledge and is added as additional axioms to the KB.

So far, the mappings of the trace to some information in terms of a specific
domain are defined by the programmer. To further enhance the automation of the
mapping construction, we give a direct mapping, that captures all information
of a trace in a KB. More technically, the direct mapping directly expresses the
trace structure using a special vocabulary, which captures domain knowledge
about traces themselves and is independent from any application domain. We
first define the domain knowledge about trace structure.

Definition 13 (Knowledge Base for Traces). The knowledge base for traces
contains the concept Event modeling events, the concept Match modeling one pair
of variable and its matching terms, and the concept Term for terms. Furthermore,
the functional property appliesRule connects events to rule names (as strings),
the property match that connects the individuals for events with the individuals
for matches (i.e., an event with the pairs v : t of a variable and the term as-
signed to this variable), the property var that connects matches and variables
(as strings), and term that connects matches and terms.

We remind that KBs only support binary predicates and we cannot avoid
formalizing the concept of a match, which connects three parts: event, variable
and term. The direct mapping lessens the workload for the programmer further:
it requires no additional input and can be done fully automatically. It is a pre-
defined mapping for all programs and is defined by instantiating a transducing
mapping using the next role and pre-defined functions εdirect and ιdirect for ε
and ι. Also, we must generate additional fresh individuals for the matches. The
formal definition of the pre-defined functions for the direct mapping is as follows.

Definition 14 (Direct Mapping). The direct mapping is defined as a trans-
ducing mapping δnextιdirect ,εdirect

, where the function ιdirect maps every natural number
i to an individual ei. The individuals matchi j uniquely identify a match inside
a trace for the jth variable of the ith event, and we regard variables as strings
containing their names. Function εdirect is defined as follows:

εdirect (evi(r, v1 : t1, . . . , vn, tn)) =

{Event(ιdirect (i)), appliesRule(ιdirect (i), r)}∪⋃
j≤n

(
{match(ιdirect (i), matchi j), var(matchi j, vj), term(matchi j, η(tj)} ∪ δ(tj)

)
where δ(tj) deterministically generates the axioms for the tree structure of the
term tj according to Def. 3 and η(tj) returns the individual of the head of tj.
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The properties match, var and term connect each event with its parameters.
For example, the match v : layer0 of the first event in Ex. 4, generates

match(e1, match0 1), var(match0 1, “v”), term(match0 1, layer0)

where e1 is the representation of the event and match0 1 is the representation
of the match in the KB. The complete direct mapping is given in the following
example.

Example 10. The direct mapping of Ex. 4 is as follows. We apply the εdirect
function to all three events, where each event has one parameter.{
Event(e1), Event(e2), Event(e3), Next(e1, e2), Next(e2, e3), appliesRule(e1, “depositStego”),

appliesRule(e2, “erode”), appliesRule(e3, “depositTRex”), match(e1, m1), var(m1, “v”),

term(m1, layer0), match(e2, m2), var(m2, “v”), term(m2, layer0), match(e3, m3),

var(m3, “v”), term(m3, layer1)
}

7 Discussion

Querying and Stability. The mapping can be used by the domain users to interact
with the system. For one, it can be used to retrieve the result of the computation
using the vocabulary of a domain. For example, the following SPARQL [44] query
retrieves all depositions generated during the Jurassic:

SELECT ?l WHERE {?l a Layer. ?l during Jurassic}

Indeed, one of the main advantages of knowledge bases is that they enable
ontology-based data access [46]: uniform data access in terms of a given do-
main. Another possibility is to use justifications [5]. Justifications are minimal
sets of axioms responsible for entailments over a knowledge base, e.g., to find
out why it is inconsistent. They are able to explain, during an interaction, why
certain steps are not possible.

The programmers do not need to design a complete knowledge base – for
many domains knowledge bases are available, for example in form of indus-
trial standards [26,23]. For more specific knowledge bases, clear design principles
based on experiences in ontology engineering are available [17]. Note that these
KBs are stable and do rarely change. Our system requires a static domain knowl-
edge, as changes in the DKDP can invalidate traces during execution without
executing a rule, which is, thus, not a limitation if one uses stable ontologies.

The direct mapping uses a fixed vocabulary, but one can formulate the con-
nection to the domain knowledge by using additional axioms. In Ex. 10, one can
declare every event to be a layer. The axiom for depositStego is as follows.

appliesRule value “depositStego” SubClassOf contains value Stegosaurus

The exact mapping strategy is application-specific – for example, to remove
information erode must be handled through additional axioms as well, for exam-
ple by adding a special concept RemovedLayer that is defined as all layers that
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Fig. 3. Runtime comparison.

are matched on by some erode event. We next discuss some of the considerations
when choosing the style of mapping, and the limitations of each.

There are, thus, two styles to connect trace and domain knowledge: One
can add axioms connecting the vocabulary of traces with the vocabulary of the
DKDP (direct mapping), or one can translate the trace into the vocabulary of
the DKDP (first-order matching mapping, transducing mappings).

The two styles require different skills from the programmer to interact with
the domain knowledge: The first style requires to express a trace as part of
the domain as a set of ABox axioms, while the second one requires to connect
general traces to the domain using TBox axioms. Thus, the second style operates
on a higher level of abstraction and we conjuncture that such mappings may
require more interaction with the domain expert and a deeper knowledge about
knowledge graphs. However, the same insights needed to define the TBox axioms,
are also needed to define the guards of a first-order matching mapping.

Naming Schemes. The transducing mappings and the first-order matching map-
ping have different naming schemes. A transducing mapping, and thus, a direct
mapping, generate a new name per event, while the first-order matching map-
ping generates a fixed number of new names per rule: A transducing mapping
can extract quite extensive knowledge from a trace, with the direct mapping
giving a complete representation of it in a KB. As discussed, this requires the
user to define general axioms. A first-order matching mapping must work with
less names, and extract less knowledge from a trace. Its design requires to choose
the right amount of abstraction to detect inconsistencies.

Evaluation. To evaluate whether the proposed system indeed gives a perfor-
mance increase, we have implemented the running example6 as follows: The
system generates all traces up to length n, using three different transition sys-
tems: (a) The guided system (Def. 8) using the transducing mapping of Ex. 9.
For reasoning, we use the Apache Jena framework [2]. (b) The guarded system
(Def. 11) that uses a native implementation of the well-formedness predicate, and
(c) the guarded system that uses the Z3 SMT solver [18] to check the first-order
logic guards. The results are shown in Fig. 3.As we can see, the native imple-
mentation of the guarded systems is near instant for n ≤ 7, while the guided

6 https://github.com/Edkamb/KnowEnforce We slightly modified the example and
replaced the asymmetry axioms by an equivalent formalization to fit the example
into the fragment supported by the Jena OWL reasoner.
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system needs more than 409s for n = 7 and shows the expected blow-up due to
the N2ExpTime-completeness of reasoning in the logic underlying OWL [30]. The
guarded system based on SMT similarly shows a non-linear behavior, but scales
better then the guided system. For the evaluation, we ran each system for every
n three times and averaged the numbers, using a Ubuntu 21.04 machine with an
i7-8565U CPU and 32GB RAM. As we can see, the guarded system allows for an
implementation that does not rely on an external, general-purpose reasoners to
evaluate the guards and increases the scalability of the system, while the guided
system does not scale even for small system and KBs.

8 Related Work

Runtime enforcement is a vast research field, for a recent overview we refer to the
work of Falcone and Pinisetty [22], and give the related work for combinations
of ontologies/knowledge bases and transitions systems in the following.

Concerning the combination of ontologies/knowledge bases and business pro-
cess modeling, Corea et al. [16] point out that current approaches lack the foun-
dation to annotate and develop ontologies together with business process rules.
Our approach focuses explicitly on automating the mapping, or support devel-
opers in its development in a specific context, thus satisfying requirement 1 and
7 in their gap analysis for ontology-based business process modelling. Note that
most work in this domain uses ontologies for the process model itself, similar
to the ontology we give in Def. 13 and Def. 13 (e.g., Rietzke et al. [36]) or the
current state (e.g., Corea and Delfmann [15]), not the trace. We refer to the
survey of Corea et al. for a detailed overview.

Compared with existing simulators of hydrocarbon exploration [20,47], which
formalized the domain knowledge of geological processes directly in the transition
rules, we propose a general framework to formalize the domain knowledge in a
knowledge base which is independent from the term rewriting system. This clear
separation of concerns makes it easier for domain users to use the knowledge
base for simulation without having the ability to program.

Tight interactions between programming languages, or transition systems,
beyond logical programming and knowledge bases have recently received increas-
ing research attention. The focus of the work of Leinberger [29,32] is the type
safety of loading RDF data from knowledge bases into programming languages.
Kamburjan et al. [28] semantically lift states for operations on the KB represen-
tation of the state, but are not able to access the trace. In logic programming,
a concurrent extension of Golog [33] is extended to verify CTL properties with
description logic assertions by Zarrieß and Claßen [48].

Cauli at al. [12] use knowledge bases to reason about the security properties of
deployment configuration in the cloud, a high level representation of the overall
system. As for traces, Pattipati et al. [34] introduce a debugger for C programs
that operates on logs, i.e., special Traces. Their system operates post-execution
and cannot guide the system. Al Haider et al. [1] use a similar technique to
investigate logged traces of a program.

E. Kamburjan and C. C. Din236



In runtime verification, knowledge bases has been investigated by Baader
and Lippmann [6] in ALC-LTL, which uses the description logic ALC instead
of propositional variables inside of LTL. An overview over further temporaliza-
tions of description logics can be found in the work of Baader et al. [4]. Runtime
enforcement has been using to temporal properties over traces since its begin-
nings [37], but, as a recent survey by Falcone and Pinisetty [22] points out,
mainly for security/safety or usage control of libraries. In contrast, our work
requires the enforcement to do any meaningful computation and uses a different
way to express constraints than prior work: consistency with knowledge bases.

DatalogMTL extends Datalog with MTL operators [9,45] to enable ontology-
based data access about sequences using inference rules. The ontology is ex-
pressed in these rules, i.e., it is not declarative but an additional programming
layer, which we deem unpractical for domain users from non-computing domains.
DatalogMTL has been used for queries [10] but not for runtime enforcement.

Traces have been explored from a logical perspective mainly in the style of
CTL∗, TLA and similar temporal logics. More recently, interest in more expres-
sive temporal properties over traces of programming languages for verification
using more complex approaches has risen and led to symbolic traces [11,19],
integration of LTL and dynamic logics for Java-like languages [8] and trace lan-
guages based on type systems [27]. These approaches have in common that they
aim for more expressive power and are geared towards better usability for pro-
grammers and simple verification calculi. They are only used for verification, not
at runtime, and do not connect to formalized domain knowledge.

The guided system can be seen as a meta-computation, as put forward by
Clavel et al. [14] for rewrite logics, which do not discuss the use of consistency as
a meta-computation and instead program such meta computations explicitly.

9 Conclusion

We present a framework to use domain knowledge about dynamic processes to
guide the execution of generic transition systems through runtime enforcement.
We give a transformation to use of rule specific guards instead of using the do-
main knowledge directly as a consistency invariant over knowledge bases. The
transformation is transparent and the domain user can interact with the system
without being aware of the transformation or implementation details. To reduce
the working load on the programmer, we discuss semi-automatic design of map-
pings using transducing approaches and a pre-defined direct mapping. We also
discuss further alternatives, such as additional axioms on the events, and the
use of local well-formedness predicates for certain classes of mappings.

Future Work. We plan to investigate how our system can interact with knowledge
base evolution [24], a more declarative approach for changes in knowledge bases,
as well as other approaches to modeling sequences in knowledge bases [40].
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Abstract. A growing range of applications use autonomous agents such
as AI and robotic systems to perform tasks deemed dangerous, tedious
or costly for humans. To truly succeed with these tasks, the autonomous
agents must perform them without violating the social, legal, ethical,
empathetic, and cultural (SLEEC) norms of their users and operators.
We introduce SLEECVAL, a tool for specification and validation of rules
that reflect these SLEEC norms. Our tool supports the specification
of SLEEC rules in a DSL [1] we co-defined with the help of ethicists,
lawyers and stakeholders from health and social care, and uses the CSP
refinement checker FDR4 to identify redundant and conflicting rules in
a SLEEC specification. We illustrate the use of SLEECVAL for two case
studies: an assistive dressing robot, and a firefighting drone.

1 Introduction

AI and autonomous robots are being adopted in applications from health and
social care, transportation, infrastructure maintenance. In these applications,
the autonomous agents are often required to perform normative tasks that raise
social, legal, ethical, empathetic, and cultural (SLEEC) concerns [2]. There is
widespread agreement that these concerns must be considered throughout the de-
velopment of the agents [3,4], and numerous guidelines propose high-level princi-
ples that reflect them [5,6,7,8]. However, to follow these guidelines, the engineers
developing the control software of autonomous agents need methods and tools
that support formalisation, validation and verification of SLEEC requirements.

The SLEECVAL tool introduced in our paper addresses this need by enabling
the specification and validation of SLEEC rules, i.e., nonfunctional requirements
focusing on SLEEC principles. To best of our knowledge, our tool is novel in its
support for the formalisation and validation of normative rules for autonomous
agents, and represents a key step towards an automated framework for specify-
ing, validating and verifying autonomous agent compliance with such rules.

SLEECVAL is implemented as an Eclipse extension, and supports the defi-
nition of SLEEC rules in a domain-specific language (DSL). Given a set of such
rules, the tool extracts their semantics in tock-CSP [9]—a discrete-time variant
of the CSP process algebra [10], and uses the CSP refinement checker FDR4 [11]
to detect conflicting and redundant rules, providing counterexamples when such

c© The Author(s) 2023
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Fig. 1: Fragment of the SLEEC specification for an assistive dressing robot.

problems are identified. Our SLEECVAL tool and case studies, together with
a description of its DSL syntax (BNF Grammar) and tock-CSP semantics are
publicly available on our project webpage [12] and GitHub repository [13].

2 SLEECVAL: Notation, Components, and Architecture

SLEEC Rule Specification. As illustrated in Fig. 1, SLEEC DSL provides
constructs for organising a SLEEC specification into a definition and a rule block.
The definition block includes the declarations of events such as UserFallen, which
corresponds to the detection of a user having fallen, and measures such as userDis-
tressed, which becomes true when the user is distressed. Events and measures
reflect the capabilities of the agent in perceiving and affecting its environment.

A SLEEC rule has the basic form ‘when trigger then response’. The trig-
ger defines an event whose occurrence indicates the need to satisfy the con-
straints defined in the response. For example, Rule1 applies when the event
DressingStarted occurs. In addition, the trigger may include a Boolean expres-
sion over measures from the definition block. For instance, Rule3 applies when
the event OpenCurtainsRequested occurs and, additionally, the Boolean measure
userUndressed is true. The response defines requirements for that need to be
satisfied when the triggers hold, and may include deadlines and timeouts.
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//Conflicting Rules

RuleA when OpenCurtainsRequested then CurtainsOpened within 3 seconds

RuleB when OpenCurtainsRequested and userUndressed then not CurtainsOpened

//Redundant Rules

RuleC when DressingStarted then DressingFinished

RuleD when DressingStarted then DressingFinished within 2 minutes

(a) Example of conflicting and redundant rules written in SLEECVAL.

1 // CONFLICT CHECKING

2 SLEECRuleARuleB = timed priority(intersectionRuleARuleB)

3 assert SLEECRuleARuleB:[deadlock-free]

4 // REDUNDANCY CHECKING

5 SLEECRuleCRuleD = timed priority(intersectionRuleCRuleD)

6 assert not MSN::C3(SLEECRuleCRuleD) [T= MSN::C3(SLEECRuleD)

(b) Conflict and redundancy handling in CSP using FDR4.

Fig. 2: SLEECVAL conflict and redundancy checking.

The within construct specifies a deadline for the occurrence of a response.
To accommodate situations where a response may not happen within its required
time, the otherwise construct can be used to specify an alternative response. In
Rule6, the response requires the occurrence of the event HealthChecked in 30
seconds, but provides an alternative to have SupportCalled if there is a timeout.

Importantly, a rule can be followed by one or more defeaters [14], introduced
by the unless construct, and specifying circumstances that preempt the origi-
nal response and provide an alternative. In Rule8, the first unless preempts the
response if userUnderdressed is true, and a second defeater preempts both the
response and the first defeater if the value of the measure userDistressed is ‘high’.

SLEEC Rule Validation. SLEECVAL supports rule validation via conflict
and redundancy checks. To illustrate the process, we consider the conflicting
RuleA and RuleB from Fig. 2a, for the dressing robot presented above. Each rule
is mapped to a tock-CSP process automatically generated by SLEECVAL. To
define the checks, SLEECVAL computes the alphabet of each rule, i.e., the set
of events and measures that the rule references, and examines each pair of rules.

For rule pairs with disjoint alphabets, there is no need to check consistency
or redundancy. Otherwise (i.e., for rule pairs with overlapping alphabets), refine-
ment assertions are generated as illustrated in Fig. 2b. Line 1 defines a tock-CSP
process SLEECRuleARuleB that captures the intersection of the behaviours of the
rules (in the example, RuleA and RuleB). The assertion in Line 3 is a deadlock
check to reveal conflicts. If the assertion fails, there is a conflict between the two
rules, and FDR4 provides a counterexample. For instance, the trace below is a
counterexample that illustrates a conflict between RuleA and RuleB.
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Fig. 3: SLEECVAL workflow.

OpenCurtainsRequested → userUndressed .true → tock → tock → tock

This trace shows a deadlock in a scenario in which OpenCurtainsRequested oc-
curs, and the user is undressed, as indicated by the CSP event userUndressed .true.
In these circumstances, RuleA imposes a deadline of 3 s for CurtainsOpened to
occur, but RuleB forbids it. With a tock event representing 1 s, after three tock
events, no further events can occur: tock cannot occur because the maximum 3 s
allowed by RuleA have passed, and CurtainsOpened is disallowed by RuleB.

To illustrate our check of redundancy, we consider RuleC and RuleD in Fig. 2a.
Line 5 in Fig. 2b defines the CSP process that captures the conjunction of these
rules. Line 6 shows the assertion for checking whether RuleC is redundant under
RuleD. It checks whether the behaviours allowed by RuleD are those allowed (ac-
cording to trace-refinement ‘[T =’) by the conjunction of RuleC and RuleD. If
they are, it means that RuleC imposes no extra restrictions, and so is redun-
dant. The assertion states that RuleC is not redundant. FDR4 shows that the
assertion fails, as expected, since RuleD is more restrictive in its deadline. No
counterexample is provided because the refinement holds.

The complexity of this process of validation is quadratic in the number of
rules since the rules are considered pairwise. We refer the reader to [9] for back-
ground on refinement checking in tock-CSP using FDR4.

Specification and Validation Workflow. The SLEECVAL workflow relies
on the three components shown in Fig. 3. We implemented the parser for the
SLEEC DSL in Eclipse Xtext [15] using EBNF. The SLEEC concrete syntax
provided by SLEECVAL supports highlighting of the keyword elements, and
there is extra support in the form of pop-up warnings and errors. SLEECVAL
also enforces a simple style for naming rules, events, and measures. Conflicts are
treated as errors whereas redundant rules are indicated as warnings.

The tock-CSP processes that define the semantics of the rules are computed
through a visitor pattern applied to each element of the SLEEC grammar’s
syntax tree, with each SLEEC rule converted to a tock-CSP process. The com-
putation is based on translation rules. Each event and measure is modelled in
tock-CSP as a channel, with measure types directly converted into existing CSP
datatypes, or introduced as a new scalar datatype in CSP.
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Table 1: Summary of evaluation results.

Case study Related SLEEC principles #rules #conflicts #redundancies

assistive dressing
robot

social, ethical, empathetic,
legal, cultural

9 4 2

firefighter drone legal, social, ethical 7 1 7

3 Evaluation

Case studies. We used SLEECVAL to specify and validate SLEEC rules sets
for agents in two case studies presented next and summarised in Table 1.

Case study 1. The autonomous agent from the first case study is an assistive
dressing robot from the social care domain [16]. The robot needs to dress a user
with physical impairments with a garment by performing an interactive process
that involves finding the garment, picking it, and placing it over the user’s arms
and torso. The SLEEC specification for this agent comprises nine rules, a subset
of which is shown in Fig. 1. SLEECVAL identified four pairs of conflicting rules
and two pairs of redundant rules in the initial version of this SLEEC specification
including the conflicting rules RuleA and RuleB, and the redundant rules RuleC
and RuleD from Fig. 2a.

Case study 2. The autonomous agent from the second case study is a firefighter
drone whose detailed description is available at [17]. Its model identifies 21
robotic-platform services (i.e., capabilities) corresponding to sensors, actuators,
and an embedded software library of the platform. We consider scenarios in
which the firefighter drone interacts with several stakeholders: human firefight-
ers, humans affected by a fire, and teleoperators.

In these scenarios, the drone surveys a building where a fire was reported
to identify the fire location, and it either tries to extinguish a clearly identified
fire using its small on-board water reservoir, or sends footage of the surveyed
building to teleoperators. If, however, there are humans in the video stream,
there are privacy (ethical and/or legal) concerns. Additionally, the drone sounds
an alarm when its battery is running out. There are social requirements about
sounding a loud alarm too close to a human. The SLEEC specification for this
agent consists of seven rules, within which SLEECVAL identified one conflict
(between the rules shown in Fig. 4) and seven redundancies. The conflict is due
to the fact that Rule3 requires that the alarm is triggered (event SoundAlarm)
when the battery level is critical (signalled by the event BatteryCritical) and either
the temperature is great than 35◦C or a person is detected, while the defeater
from Rule7 prohibits the triggering of the alarm when a person is detected.

Overheads. The overheads of the SLEECVAL validation depend on the com-
plexity and size of the SLEEC specifications, which preliminary discussions with
stakeholders suggested might include between several tens and a few hundred
rules. In our evaluation, the checks of the 27 assertions from the assistive robot
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Rule3 when BatteryCritical and temperature > 35 or personDetected then SoundAlarm

Rule7 when BatteryCritical then SoundAlarm unless personDetected then goGome unless temperature > 35

Fig. 4: Conflicting rules for the firefighter drone case study.

case study and of the 63 assertions from the firefighter drone case study were
performed in under 30s and 70s, respectively, on a standard MacBook laptop.
As the number of checks is quadratic in the size of the SLEEC rule set, the
time required to validate a fully fledged rule set of, say, 100–200 rules should not
exceed tens of minutes on a similar machine.

Usability. We have conducted a preliminary study in which we have asked eight
tool users (including lawyers, philosophers, computer scientists, roboticists and
human factors experts) to assess the SLEECVAL usability and expressiveness,
and to provide feedback to us. In this trial, the users were asked to define SLEEC
requirements for autonomous agents used in their projects, e.g. autonomous cars
and healthcare systems. The feedback received from these users can be summa-
rized as follows: (1) SLEECVAL is easy to use and the language is intuitive;
(2) The highlighting of keywords, errors messages and warnings is particularly
helpful in supporting the definition of a comprehensive and valid SLEEC speci-
fication; (3) Using the FDR4 output (e.g., counterexamples) directly is useful as
a preliminary solution, but more meaningful messages are required to make rule
conflicts and redundancies easier to comprehend and fix.

4 Conclusion

We have introduced SLEECVAL, a tool for definition and validation of nor-
mative rules for autonomous agents. SLEECVAL uses a DSL for encoding of
timed SLEEC requirements, and provides them with a tock-CSP semantics that
is automatically calculated by SLEECVAL, as are checks for conflicts and re-
dundancy between rules. We also presented the results from the SLEECVAL use
for an assistive dressing robot and a firefighter drone.

In the future, we will consider uncertainty in the agents and their environ-
ments by extending the SLEEC DSL with probability constructs. Additionally,
we will develop a mechanism to annotate rules with labels that can be used to
provide more insightful feedback to SLEEC experts. Finally, a systematic and
comprehensive user study is also planned as future work. Our vision is to auto-
mate the whole process in Fig. 3 with a suggestive feedback loop allowing users
to address validation issues within their rule sets.
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Abstract. This short paper takes initial steps towards developing a
novel approach, called log slicing, that aims to answer a practical question
in the field of log analysis: Can we automatically identify log messages
related to a specific message (e.g., an error message)? The basic idea
behind log slicing is that we can consider how different log messages are
“computationally related” to each other by looking at the correspond-
ing logging statements in the source code. These logging statements are
identified by 1) computing a backwards program slice, using as criterion
the logging statement that generated a problematic log message; and 2)
extending that slice to include relevant logging statements.

The paper presents a problem definition of log slicing, describes an initial
approach for log slicing, and discusses a key open issue that can lead
towards new research directions.

Keywords: Log · Program Analysis · Static Slicing.

1 Introduction

When debugging failures in software systems of various scales, the logs generated
by executions of those systems are invaluable [5]. For example, given an error
message recorded in a log, an engineer can diagnose the system by reviewing
log messages recorded before the error occurred. However, the sheer volume of
the logs (e.g., 50 GB/h [9]) makes it infeasible to review all of the log messages.
Considering that not all log messages are necessarily related to each other, in
this paper we lay the foundations for answering the following question: can we
automatically identify log messages related to a specific message (e.g., an error
message)?

A similar question for programs is already addressed by program slicing [2,14].
Using this approach, given a program composed of multiple program statements
and variables, we can identify a set of program statements (i.e., a program slice)
that affect the computation of specific program variables (at specific positions
in the source code).

Inspired by program slicing, in this paper we take initial steps towards de-
veloping a novel approach, called log slicing. We also highlight a key issue to
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(1) logger.info("check memory status: %s" % mem.status)

(2) db = DB.init(mode="default")

(3) logger.info("DB connected with mode: %s" % db.mode)

(4) item = getItem(db)

(5) logger.info("current item: %s" % item)

(6) if check(item) is "error":

(7) logger.error("error in item: %s" % item)

Fig. 1. An example program Pex

(1) check memory status: okay

(2) DB connected with mode: default

(3) current item: pencil

(4) error in item: pencil

Fig. 2. An example execution log Lex of Pex

be addressed by further research. Once this issue has been addressed, we expect
log slicing to be able to identify the log messages related to a given problematic
log message by using static analysis of the code that generated the log. Further,
since we will be using static analysis of source code, we highlight that our ap-
proach is likely to be restricted to identifying problems that can be localised at
the source code level.

The rest of the paper is structured as follows: Section 2 illustrates a motivat-
ing example. Section 3 sketches an initial approach for log slicing, while Section 4
shows its application to the example, and discusses limitations and open issues.
Section 5 discusses related work. Section 6 concludes the paper.

2 Motivating Example

Let us consider a simplified example program Pex (Figure 1) connecting to a
database and getting an item from it. For simplicity, we denote Pex as a sequence
of program statements 〈s1, s2, . . . , s7〉 where sk is the k-th statement. We can see
that Pex contains logging statements (i.e., s1, s3, s5, and s7) that will generate log
messages when executed3. Figure 2 shows a simplified execution log Lex of Pex .
Similar to Pex , we denote Lex as a sequence of log messages 〈m1,m2,m3,m4〉
where mk is the k-th log message. Note that we do not consider additional
information that is often found in logs, such as timestamp and log level (e.g.,
info and debug)4, so these are omitted.

3 If a program statement generates a log message when executed, it is considered a
logging statement; otherwise, it is a non-logging statement.

4 We ignore log levels since the user may choose a log message of any level to start
log slicing.
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The last log message “error in item: pencil” in Lex indicates an error.
Calling this log message merr , let us suppose that a developer is tasked with
addressing the error by reviewing the log messages leading up to merr . Though
we have only four messages in Lex , it is infeasible in practice to review a huge
amount of log messages generated by complex software systems. Furthermore,
it is not necessary to review all log messages generated before merr since only a
subset of them is related to merr ; for example, if we look at Lex and Pex together,
we can see that the first log message “check memory status: okay” does not
contain information that is relevant to the error message, merr . In particular,
we can see this by realising that the variable mem logged in the first log message
does not affect the computation of the variable item logged in the error message.

Ultimately, if we can automatically filter out such unrelated messages, with
the goal of providing a log to the developer that only contains useful log messages,
then the developer will better investigate and address issues in less time. We thus
arrive at the central problem of this short paper: How does one determine which
log messages are related to a certain message of interest?

An initial, naive solution would be to use keywords to identify related mes-
sages. In our example log Lex , one could use the keyword “pencil” appearing
in the error message to identify the messages related to the error, resulting in
only the third log message. However, if we look at the source code in Pex , we
can notice that the second log message “DB connected with mode: default”
could be relevant to the error because this message was constructed using the
db variable, which is used to compute the value of variable item. This example
highlights that keyword-based search cannot identify all relevant log messages,
meaning that a more sophisticated approach to identifying relevant log messages
is needed.

3 Log Slicing

A key assumption in this work is that it is possible to associate each log message
with a unique logging statement in source code. We highlight that, while we do
not describe a solution here, this is a reasonable assumption because there is
already work on identifying the mapping between logging statements and log
messages [4,11]. Therefore, we simply assume that the mapping is known.

Under this assumption, we observe that the relationship among messages in
the log can be identified based on the relationship among their corresponding
logging statements in the source code. Hence, we consider two distinct layers: the
program layer, where program statements and variables exist, and the log layer,
where log messages generated by the logging statements of the program exist.

To present our log slicing approach, as done in Section 2, let us denote a
program P as a sequence of program statements and a log L as a sequence of log
messages. Also, we say a program (slice) P ′ is a subsequence of P , denoted by
P ′ @ P , if all statements of P ′ are in P in the same order. Further, we extend
containment to sequences and write s ∈ P when, with P = 〈s1, . . . , su〉, there is
some k such that sk = s. The situation is similar for a log message m contained
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in a log L, where we write m ∈ L. Now, for a program P = 〈s1, . . . , su〉 and its
execution log L = 〈m1, . . . ,mv〉, let us consider a log message of interest mj ∈
L that indicates a problem. An example could be the log message “error in

item: pencil” from the example log Lex in Figure 2. Based on the assumption
made at the beginning of this section, that we can identify the logging statement
si ∈ P (in the program layer) that generated mj ∈ L (in the log layer), our log
slicing approach is composed of three abstract steps as follows:

Step 1: Compute a program slice Sr @ P using the combination of the statement
si and the program variables in si as a slicing criterion. Notice that, apart
from the logging statement si that is a part of the slicing criterion, Sr is
composed solely of non-logging statements because logging statements
do not affect the computation of any program variable5.

Step 2: Identify another program slice Sl @ P composed of logging statements
that are “relevant” to Sr. Here, a logging statement sl ∈ Sl is relevant
to a non-logging statement sr ∈ Sr if the message that sl writes to the
log contains information that is relevant to the computation being per-
formed by sr. Formally, we write 〈sl, sr〉 ∈ relevanceP , that is, relevanceP
is a binary relation over statements in the program P .

Step 3: Remove any log message m ∈ L that was not generated by some sl ∈ Sl.

The result of this procedure would be a log slice that contains log messages that
are relevant to mj .

We highlight that defining the relation relevanceP for a program P (intu-
itively, deciding whether the information written to a log by a logging statement
is relevant to the computation being performed by some non-logging statement)
is a central problem in this work, and will be discussed in more depth in the
next section.

4 An Illustration of Log Slicing

We now illustrate the application of our log slicing procedure to our example
program and log (Figures 1 and 2). Since, as we highlighted in Section 3, the
definition of the relevanceP relation is a central problem of this work, we will
begin by fixing a provisional definition. A demonstration of our log slicing ap-
proach being applied using this definition of relevanceP will then show why this
definition is only provisional.

4.1 A Provisional Definition of Relevance

Our provisional definition makes use of some attributes of statements that can be
computed via simple static analyses. In particular, for a statement s, we denote
by vars(s) the set of variables that appear in s (where a variable x appears in
a statement s if it is found in the abstract syntax tree of s). If s is a logging

5 Assuming a logging statement does not call an impure function.
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(2) db = DB.init(mode="default")

(4) item = getItem(db)

(6) if check(item) is "error":

(7) logger.error("error in item: %s" % item)

Fig. 3. Program slice Sr of the program Pex when s7 and its variable item are used as
the slicing criterion

statement that writes a message m to the log, then, assuming that the only
way in which a logging statement can use a variable is to add information to
the message that it writes to the log, the set vars(s) corresponds to the set of
variables used to construct the message m. If s is a non-logging statement, then
vars(s) represents the set of variables used by s.

Now, let us consider a logging statement sl, that writes a message ml to the
log, and a non-logging statement sr. We define relevanceP

6 over the statements
in a program P by 〈sl, sr〉 ∈ relevanceP if and only if vars(sl) ∩ vars(sr) 6= ∅. In
other words, a logging statement is relevant to a non-logging statement whenever
the two statements share at least one variable.

4.2 Applying Log Slicing

Taking the program Pex from Figure 1 and the log Lex from Figure 2, we now
apply the steps described in Section 3, while considering the log message m4 ∈
Lex (i.e., “error in item: pencil”) to be the message of interest mi.

Step 1. Under our assumption that log messages can be mapped to their gen-
erating logging statements, we can immediately map m4 to s7 ∈ Pex . Once we
have identified the logging statement s7 that generated m4, we slice Pex back-
wards, using s7 and its variable item as the slicing criterion. This would yield
the program slice Sr = 〈s2, s4, s6, s7〉 as shown in Figure 3.

Step 2. The program slice Sr = 〈s2, s4, s6, s7〉 yielded by Step 1 contains only
non-logging statements (apart from the logging statement s7 used as the slicing
criterion). Hence, we must now determine which logging statements (found in
Pex ) write messages that are relevant to the statements in Sr. More formally,
we must find a sequence of logging statements Sl @ Pex such that 〈sl, sr〉 ∈
relevanceP for any logging statement sl ∈ Sl and a non-logging statement sr ∈
Sr \ {s7}. For this, we use the provisional definition of relevance that we intro-
duced in Section 4.1, that is, we identify the logging statements that share vari-
ables with the statements in our program slice Sr. For example, let us consider
the non-logging statement sr = s2 ∈ Sr (i.e., “db = DB.init(mode="default")”).
Our definition tells us that the logging statement sl = s3 (i.e., “logger.info("DB

6 We remark that this simple provisional definition of relevance misses relating state-
ments that only share syntactically different aliased variables
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(3) logger.info("DB connected with mode: %s" % db.mode)

(5) logger.info("current item: %s" % item)

(7) logger.error("error in item: %s" % item)

Fig. 4. Logging statements Sl relevant to Sr

(2) DB connected with mode: default

(3) current item: pencil

(4) error in item: pencil

Fig. 5. Log slicing result from Lex when m4 is the message of interest

connected with mode: %s" % db.mode)”) should be included in Sl, since
vars(s3)∩vars(s2) = {db}. Similarly, the logging statement s5 should be included
in Sl since vars(s3) ∩ vars(s2) = {item}, and the logging statement s7 should be
included in Sl since vars(s7)∩vars(s6) = {item}. Note that the logging statement
s2 (i.e., “logger.info("check memory status: %s" % mem.status)”) would
be omitted by our definition because no statements in Sr use the variable mem.
As a result, with respect to our definition of relevance, Sl = 〈s3, s5, s7〉 as shown
in Figure 4.

Step 3. Using Sl = 〈s3, s5, s7〉, we now remove log messages from Lex that were
generated by logging statements not included in Sl. The result is the sliced log
in Figure 5.

4.3 Limitations and Open Issues

We now discuss the limitations of the definition of relevance presented so far,
along with a possible alternative approach. We also highlight a key open issue.

Limitations. Using a combination of program slicing and our provisional defini-
tion of relevance seems, at least initially, to be an improvement on the keyword-
based approach described in Section 2. However, the major limitation of this
definition, that looks at program variables shared by logging and non-logging
statements, is that a logging statement must use variables in the first place.
Hence, this definition can no longer be used if we are dealing with log messages
that are statically defined (i.e., do not use variables to construct part of the
message written to the log). In this case, we must look to the semantic content
of the log messages.

An Alternative. Our initial suggestion in this case is to introduce a heuristic
based on the intuition that particular phrases in log messages will often accom-
pany particular computation being performed in program source code. Such a
heuristic would operate as follows:
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1. For each non-logging statement s, inspect each variable v appearing in s.
2. For each such variable v, further inspect the tokens found in the string

literals of logging statements that are reachable from s. The word tokens
here is deliberately left vague; it could mean individual words found in string
literals, or vectors of words.

3. For each variable/token pair that we find, we compute a score that takes
into account 1) the frequency of that pair in the program source code; and
2) how close they are (in terms of the distance between the source code lines
in which the variable/token appear), on average.

4. We say that, for a logging statement sl and a non-logging statement sr,
〈sl, sr〉 ∈ relevanceP if and only if sl contains tokens that score highly with
respect to the variables found in sr. Hence, we use the token-based heuristic
to define the relation relevanceP with respect to a single program P .

We highlight that this token-based approach is to be used in combination with
the backwards program slicing described in Section 3.

Further Limitations. While this heuristic takes a step towards inspecting the
semantic content of log messages, rather than relying on shared variables, initial
implementation efforts have demonstrated the following limitations:

– It is difficult to choose an appropriate definition of a token. For example,
should we use individual words found in string literals used by logging state-
ments, or should we use sequences of words?

– Depending on the code base, there can be varying numbers of coincidental
associations between tokens and variables. For example, a developer may
always use the phrase “end transaction” near a use of the variable commit,
but also near a use of the variable query. The developer may understand
“end transaction” as being a phrase related to the variable commit and
not to the variable query, despite the accidental co-occurrence of the two
variables.

– Suppose that a phrase like “end transaction” appears only once, and is
close to the variable commit. The developer may intend for the two to be
related. However, if we use a heuristic that combines the frequency of a
pair with the distance between the variable and token in the pair, a single
occurrence will not score highly. Hence, there are some instances of relevance
that this heuristic cannot identify.

More Issues. In Section 3, we assumed that the mapping between log messages
and the corresponding logging statements that generated the log messages is
known. However, determining the log message that a given logging statement
might generate can be challenging, especially when the logging statement has a
non-trivial structure. For example, while some logging statements might consist
of a simple concatenation of a string and a variable value, others might involve
nested calls of functions from a logging framework. This calls for more studies
on finding the correspondence between logging statements and log messages.

255



J. H. Dawes et al.

Another key problem is the inconsistency of program slicing tools across
programming languages (especially weakly-typed ones such as Python). If the
underlying program slicing machinery made too many overapproximations, this
would affect the applicability of our proposed approach. Furthermore, the ca-
pability of the tools for handling complex cases, such as nested function calls
across different components, can hinder the success of log slicing.

5 Related Work

Log Analysis. The relationship between log messages has also been studied in
various log analysis approaches (e.g., performance monitoring, anomaly detec-
tion, and failure diagnosis), especially for building a “reference model” [12] that
represents the normal behavior (in terms of logged event flows) of the system
under analysis. However, these approaches focus on the problem of identifying
whether log messages co-occur (that is, one is always seen in the neighbourhood
of the other) without accessing the source code [6,10,13,17,18]. On the other
hand, we consider the computational relationship between log messages to filter
out the log messages that do not affect the computation of the variable values
recorded in a given log message of interest.

Log partitioning. Log partitioning, similarly to log slicing, involves separating a
log into multiple parts, based on some criteria. In the context of process mining
[1], log partitioning is used to allow parallelisation of model construction. In the
context of checking an event log for satisfaction of formal specifications [3], slices
of event logs are sent to separate instances of a checking procedure, allowing
more efficient checking for whether some event log satisfies a formal specification
written in a temporal logic. Hence, again, log partitioning, or slicing, is used to
parallelise a task. Finally, we highlight that our log slicing approach could be used
to generate multiple log slices to be investigated in parallel by some procedure.

Program Analysis including Logging Statements. Traditionally, program analy-
sis [14,2] ignores logging statements since they usually do not affect the com-
putation of program variables. Nevertheless, program analysis including logging
statements has been studied as part of log enhancement to measure which pro-
gram variables should be added to the existing logging statements [7,15] and
where new logging statements should be added [16] to facilitate distinguishing
program execution paths. Log slicing differs in that it actively tries to reduce
the contents of a log. Finally, Messaoudi et al. [8] have proposed a log-based test
case slicing technique, which aims to decompose complex test cases into simpler
ones using, in addition to program analysis, data available in logs.

6 Conclusion

In this short paper, we have taken the first steps in developing log slicing, an
approach to helping software engineers in their log-based debugging activities.
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Log slicing starts from a log message that has been selected as indicative of a
failure, and uses static analysis of source code (whose execution generated the
log in question) to throw away log entries that are not relevant to the failure.

In giving an initial definition of the log slicing problem, we highlighted the
central problem of this work: defining a good relevance relation. The provisional
definition of relevance that we gave in Section 4.1 proved to be limited in that it
required logging statements to use variables when constructing their log message.
To remedy the situation, we introduced a frequency and proximity-based heuris-
tic in Section 4.3. While this approach could improve on the initial definition of
relevance, it possessed various limitations that we summarised.

Ultimately, as part of future work, we intend to investigate better definitions
of relevance between logging statements and non-logging statements. If we were
to carry on with the same idea for the heuristic (using frequency and proximity),
future work would involve 1) finding a suitable way to define tokens ; 2) reducing
identification of coincidental associations between tokens and variables (i.e., re-
ducing false positives); and 3) attempting to identify associations between tokens
and variables with a lower frequency.

Acknowledgments. The research described has been carried out as part of
the COSMOS Project, which has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under grant agreement No.
957254.
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Abstract. As the complexity and criticality of software increase every
year, so does the importance of run-time monitoring. Third-party moni-
toring, with limited knowledge of the monitored software, and best-effort
monitoring, which keeps pace with the monitored software, are especially
valuable, yet underexplored areas of run-time monitoring. Most existing
monitoring frameworks do not support their combination because they
either require access to the monitored code for instrumentation purposes
or the processing of all observed events, or both.
We present a middleware framework, Vamos, for the run-time monitor-
ing of software which is explicitly designed to support third-party and
best-effort scenarios. The design goals of Vamos are (i) efficiency (keep-
ing pace at low overhead), (ii) flexibility (the ability to monitor black-box
code through a variety of different event channels, and the connectability
to monitors written in different specification languages), and (iii) ease-
of-use. To achieve its goals, Vamos combines aspects of event broker and
event recognition systems with aspects of stream processing systems.
We implemented a prototype toolchain for Vamos and conducted exper-
iments including a case study of monitoring for data races. The results
indicate that Vamos enables writing useful yet efficient monitors, is com-
patible with a variety of event sources and monitor specifications, and
simplifies key aspects of setting up a monitoring system from scratch.

1 Introduction

Monitoring—the run-time checking of a formal specification—is a lightweight
verification technique for deployed software. Writing monitors is especially chal-
lenging if it is third-party and real-time. In third-party monitoring, the monitored
software and the monitoring software are written independently, in order to in-
crease trust in the monitor. In the extreme case, the monitor has very limited
knowledge of and access to the monitored software, as in black-box monitoring.
In real-time monitoring, the monitor must not slow down the monitored software
while also following its execution close in time. In the extreme case, the monitor
may not be able to process all observed events and can check the specification
only approximately, as in best-effort monitoring.

We present middleware—called Vamos (“Vigilant Algorithmic Monitoring
of Software”)—which facilitates the addition of best-effort third-party monitors
to deployed software. The primary goals of our middleware are (i) performance
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(keeping pace at low overhead), (ii) flexibility (compatibility with a wide range
of heterogeneous event sources that connect the monitor with the monitored
software, and with a wide range of formal specification languages that can be
compiled into Vamos), and (iii) ease-of-use (the middleware relieves the designer
of the monitor from system and code instrumentation concerns).

All of these goals are fairly standard, but Vamos’ particular design tradeoffs
center around making it as easy as possible to create a best-effort third-party
monitor of actual software without investing much time into low-level details of
instrumentation or load management. In practice, instrumentation—enriching
the monitored system with code that is gathering observations on whose basis
the monitor generates verdicts—is a key part of writing a monitoring system
and affects key performance characteristics of the monitoring setup [11]. These
considerations become even more important in third-party monitoring, where the
limited knowledge of and access to the monitored software may force the monitor
to spend more computational effort to re-derive information that it could not
observe, or combine it from smaller pieces obtained from more (and different)
sources. By contrast, current implementations of monitor specification languages
mostly offer either very targeted instrumentation support for particular systems
or some general-purpose API to receive events, or both, but little to organize
multiple heterogeneous event streams, or to help with the kinds of best-effort
performance considerations that we are concerned with. Thus, Vamos fills a gap
left open by existing tools.

Our vision for Vamos is that users writing a best-effort third-party monitor
start by selecting configurable instrumentation tools from a rich collection. This
collection includes tools that periodically query webservices, generate events for
relevant system calls, observe the interactions of web servers with clients, and
of course standard code instrumentation tools. The configuration effort for each
such event source largely consists of specifying patterns to look for and what
events to generate for them. Vamos then offers a simple specification language
for filtering and altering events coming from the event sources, and simple yet
expressive event recognition rules that produce a single, global event stream
by combining events from a (possibly dynamically changing) number of event
sources. Lastly, monitoring code as it is more generally understood—which could
be written directly or generated from existing tools for run-time verification like
LTL formulae [47], or stream verification specifications [8] such as TeSSLa [41]—
processes these events to generate verdicts about the monitored system.

Vamos thus represents middleware between event sources that emit events
and higher-level monitoring code, abstracting away many low-level details about
the interaction between the two. Users can employ both semi-synchronous and
completely asynchronous [11] interactions with any or all event sources. Between
these two extremes, to decouple the higher-level monitoring code’s performance
from the overhead incurred by the instrumentation, while putting a bound on
how far the monitoring code can lag behind the monitored system, we provide a
simple load-shedding mechanism that we call autodrop buffers, which are buffers
that drop events when the monitoring code cannot keep up with the rate of in-
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coming events, while maintaining summarization data about the dropped events.
This summarization data can later be used by our event recognition system when
it is notified that events were dropped; some standard monitoring specification
systems can handle such holes in their event streams automatically [32,42,54].
The rule-based event recognition system allows grouping and ordering buffers
dynamically to prioritize or rotate within variable sets of similar event sources,
and specifying patterns over multiple events and buffers, to extract and combine
the necessary information for a single global event stream.

Data from event sources is transferred to the monitor using efficient lock-free
buffers in shared memory inspired by Cache-Friendly Asymmetric Buffers [29].
These buffers can transfer over one million events per second per event source
on a standard desktop computer. Together with autodrop buffers, this satisfies
our performance goal while keeping the specification effort low. As such, Va-
mos resembles a single-consumer version of an event broker [18,58,48,55,26,1]
specialized to run-time monitoring.

The core features we built Vamos around are not novel on their own, but
to the best of our knowledge, their combination and application to simplify
best-effort third-party monitoring setups is. Thus, we make the following contri-
butions:

– We built middleware to connect higher-level monitors with event sources,
addressing particular challenges of best-effort third-party monitoring (Sec-
tion 2), using a mixture of efficient inter-process communication and easy-to-
use facilities for load management (Section 3) on one hand, and buffer groups
and other event recognition abstractions (Section 4) on the other hand.

– We implemented a compiler for Vamos specifications, a number of event
sources, and a connector to TeSSLa [41] monitors (Section 5).

– We conducted some stress-test experiments using our framework, as well as
a case study in which we implemented a monitor looking for data races,
providing evidence of the feasibility of low-overhead third-party monitoring
with simple specifications (Section 6).

2 Architectural Overview

Writing a run-time monitor can be a complex task, but many tools to express
logical reasoning over streams of run-time observations [19,34,16,49,24,27,41]
exist. However, trying to actually obtain a concrete stream of observations from
a real system introduces a very different set of concerns, which in turn have a
huge effect on the performance properties of run-time monitoring [11].

The goal of Vamos is to simplify this critical part of setting up a monitoring
system, using the model shown in Figure 1. On the left side, we assume an arbi-
trary number of distinct event sources directly connected to the monitor. This is
particularly important in third-party monitoring, as information may need to be
collected from multiple different sources instead of just a single program, but can
be also useful in other monitoring scenarios, e.g. for multithreaded programs.
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Fig. 1. The components of a Vamos setup.

The right-most component is called the monitor, representing the part of the
monitoring system that is typically generated by a monitoring specification tool,
usually based on a single global event stream. As middleware, Vamos connects
the two, providing abstractions for common issues that monitor writers would
otherwise have to address with boilerplate, but still complicated code.

Given that there are multiple event sources providing their own event streams,
but only one global event stream consumed by the monitor, a key aspect is merg-
ing the incoming streams into one, which happens in the arbiter. Third-party
monitoring often cannot rely on the source-code-based instrumentation that is
otherwise common [21,4,14,16,25]; for example, TeSSLa1 [41] comes with a basic
way of instrumenting C programs by adding annotations into the specification
that identify events with function calls or their arguments. Instead, it has to rely
on things that can be reliably observed and whose meaning is clear, for example
system calls, calls to certain standard library functions, or any other information
one can gather from parts of the environment one controls, such as sensors or
file system. These do not necessarily correspond in a straightforward way to the
events one would like to feed into the higher-level monitor and thus need to be
combined or split up in various ways. For example, when a program writes a line
to the standard output, the data itself might be split into multiple system calls
or just be part of a bigger one that contains multiple lines, and there are also
multiple system calls that could be used. Therefore, the arbiter provides a way
to specify a rule-based event recognition system to generate higher-level events
from combinations of events on the different event sources.

Another common assumption in monitoring systems is some global notion
of time that can be used to order events. This is not necessarily true for multi-
ple, heterogeneous event sources, and even just observing the events of a multi-
threaded program can cause events to arrive in an order that does not represent
causality. Vamos arbiter specifications are flexible enough to support many user-
defined ways of expressing ways of merging events into a single global stream.

Doing this kind of sorting and merging and then potentially arbitrarily com-
plex other computations in both the arbiter and the monitor may take longer
than it takes the monitored system to generate events. Especially in third-party
monitoring, a monitor may have to reconstruct information that is technically

1 We keep referring to TeSSLa in the rest of the paper and also chose to use it in our
implementation because it is one of the most easily available existing tools we could
find. In general, the state of the field is that, while many papers describing similar
tools exist, few are actually available [48].
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1 stream type Observation { Op(arg : int, ret : int); }
2 event source Program : Observation to autodrop(16,4)
3 arbiter : Observation {
4 on Program: hole(n) | ;
5 on Program: Op(arg, ret) | yield;
6 }
7 monitor(2) { on Op(arg, reg) $$ CheckOp(arg, ret); $$ }

Listing 1.1. A basic asynchronous best-effort monitor.

present in the monitored system but cannot be observed, or, worse, the monitor
may have to consider multiple different possibilities if information cannot be reli-
ably recomputed. However, as part of our performance goal, we want the monitor
to not lag too far behind the monitored system. Therefore, our design splits the
monitoring system into the performance and correctness layers. In between the
two, events may be dropped as a simple load-shedding strategy.

The performance layer, on the other hand, sees all events and processes each
event stream in parallel. Stream processors enable filtering and altering the events
that come in, reducing pressure and computational load on the correctness layer.
This reflects that in third-party monitoring, observing coarse-grained event types
like system calls may yield many uninteresting events. For example, all calls to
read may be instrumented, but only certain arguments make them interesting.

A Simple Example Listing 1.1 shows a full Vamos specification (aside from
the definition of custom monitoring code in a C function called CheckOp). Stream
types describe the kinds of events and the memory layout of their data that can
appear in a particular buffer; in this example, streams of type Observation

contain only one possible event named Op with two fields of type int. For source
buffers—created using event source descriptions as in line 2—these need to be
based on the specification of the particular event source. Each event source is
associated with a stream processor; if none is given (as in this example), a default
one simply forwards all events to the corresponding arbiter buffer, here specified
as an autodrop buffer that can hold up to 16 events and when full keeps dropping
them until there is again space for at least four new events. Using an autodrop
buffer means that in addition to the events of the stream type, the arbiter may
see a special hole event notifying it that events were dropped. In this example,
the arbiter simply ignores those events and forwards all others to the monitor,
which runs in parallel to the arbiter with a blocking event queue of size two, and
whose behavior we implemented directly in C code between $$ escape characters.

3 Efficient Instrumentation

Our goals for the performance of the monitor are to not incur too much overhead
on the monitored system, and for the monitor to be reasonably up-to-date in
terms of the lag between when an event is generated and when it is processed. The
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key features Vamos offers to ensure these properties while keeping specifications
simple are related to the performance layer, which we discuss here.

3.1 Source Buffers and Stream Processors

Even when instrumenting things like system calls, in order to extract informa-
tion from them in a consistent state, the monitored system will have to be briefly
interrupted while the instrumentation copies the relevant data. A common solu-
tion is to write this data to a log file that the monitor is incrementally processing.
This approach has several downsides. First, in the presence of multiple threads,
accesses to a single file require synchronization. Second, the common use of string
encodings requires extra serialization and parsing steps. Third, file-based buffers
are typically at least very large or unbounded in size, so slower monitors even-
tually exhaust system resources. Finally, writing to the log uses relatively costly
system calls. Instead, Vamos event sources transmit raw binary data via chan-
nels implemented as limited-size lock-free ring buffer in shared memory, limiting
instrumentation overhead and optimizing throughput [29]. To avoid expensive
synchronization of different threads in the instrumented program (or just to
logically separate events), Vamos also allows dynamically allocating new event
sources, such that each thread can write to its own buffer(s). The total number
of event sources may therefore vary across the run of the monitor.

For each event source, Vamos allocates a new thread in the performance
layer to process events from this source2. In this layer, event processors can
filter and alter events before they are forwarded to the correctness layer, all in
a highly parallel fashion. A default event processor simply forwards all events.
The computations done here should be done at the speed at which events are
generated on that particular source, otherwise the source buffer will fill up and
eventually force the instrumentation to wait for space in the buffer.

3.2 Autodrop Buffers

As we already stated, not all computations of a monitor may be able to keep
up with the monitored system. Our design separates these kinds of computa-
tions into the correctness layer, which is connected with the performance layer
via arbiter buffers. The separation is achieved by using autodrop buffers. These
buffers provide the most straightforward form of load management via load shed-
ding [59]: if there is not enough space in the buffer, it gathers summarization
information (like the count of events since the buffer became full) and other-
wise drops the events forwarded to it. Once free space becomes available in the
buffer, it automatically inserts a special hole event containing the summarization
information. The summarization ensures that not all information about dropped
2 When event sources can be dynamically added, the user may specify a limit to how
many of them can exist concurrently to avoid accumulating buffers the monitor
cannot process fast enough. When that limit is hit, new event sources are rejected
and the instrumentation drops events that would be forwarded to them.
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events is lost, which can help to reduce the impact of load shedding. At mini-
mum, the existence of the hole event alone makes a difference in monitorability
compared to not knowing whether any events have been lost [35], and is used as
such in some monitoring systems [32,42,54].

In addition to autodrop buffers, arbiter buffers can also be finite-size buffers
that block when space is not available, or ininite-size buffers. The former may
slow down the stream processor and ultimately the event source, while the latter
may accumulate data and exhaust available resources. For some event sources,
this may not be a big risk, and it eliminates the need to deal with hole events.

4 Event Recognition, Ordering, and Prioritization

Vamos’ arbiter specifications are a flexible, yet simple way to organize the infor-
mation gathered from a—potentially variable—number of heterogeneous event
sources. In this section, we discuss the key relevant parts of such specifications—a
more complete specification can be found in the Technical Report [13].

4.1 Arbiter Rules

We already saw simple arbiter rules in Listing 1.1, but arbiter rules can be
much more complex, specifying arbitrary sequences of events at the front of
arbitrarily many buffers, as well as buffer properties such as a minimum number
of available events and emptiness. Firing a rule can also be conditioned by an
arbitrary boolean expression. For example, one rule in the Bank example we use
in our evaluation in Section 6 looks as follows:

1 on Out : transfer(t2, src, tgt) transferSuccess(t4) |,
2 In : numIn(t0, act) numIn(t1, acc) numIn(t3, amnt) |
3 where $$ t2 == t0 + 4 $$
4 $$ $yield SawTransfer(src, tgt, amnt); ... $$

This rule matches multiple events on two different buffers (In and Out), describ-
ing a series of user input and program output events that together form a single
higher-level event SawTransfer, which is forwarded to the monitor component
of the correctness layer. Rules do not necessarily consume the events they have
looked at; some events may also just serve as a kind of lookahead. The “|” charac-
ter in the events sequence pattern separates the consumed events (left) from the
lookahead (right). Code between $$ symbols can be arbitrary C code with some
special constructs, such as the $yield statement (to forward events) above.

The rule above demonstrates the basic event-recognition capabilities of ar-
biters. By ordering the rules in a certain way, we can also prioritize processing
events from some buffers over others. Rules can also be grouped into rule sets
that a monitor can explicitly switch between in the style of an automaton.
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4.2 Buffer Groups

The rules shown so far only refer to arbiter buffers associated with specific,
named event sources. As we mentioned before, Vamos also supports creating
event sources dynamically during the run of the monitoring system. To be able
to refer to these in arbiter rules, we use an abstraction we call buffer groups.

As the name suggests, buffer groups are collections of arbiter buffers whose
membership can change at run time. They are the only way in which the arbiter
can access dynamically created event sources, so to allow a user to distinguish
between them and manage associated data, we extend stream types with stream
fields that can be read and updated by arbiter code. Buffer groups are declared
for a specific stream type, and their members have to have that stream type3.
Therefore, each member offers the same stream fields, which we can use to com-
pare buffers and order them for the purposes of iterating through the buffer
group. Now the arbiter rules can also be choice blocks with more rules nested
within them, as follows (Both is a buffer group and pos is a stream field):

1 choose F,S from Both {
2 on F : Prime(n,p) | where $$ $F.pos < $S.pos $$
3 $$ ... $$
4 on F : hole(n) |
5 $$ $F.pos = $F.pos + n; $$
6 }

This rule is a slightly simplified version of one in the Primes example in Section 6.
This example does not use dynamically created buffers, but only has two event
sources, and uses the ordering capabilities of buffer groups to prioritize between
the buffers based on which one is currently “behind” (expressed in the stream
field pos, which the buffer group Both is ordered by). The choose rule tries to
instantiate its variables with distinct members from the buffer group, trying out
permutations in the lexicographic extension of the order specified for the buffer
group. If no nested rule matches for a particular instantiation, the next one in
order is tried, and the choose rule itself fails if no instantiation finds a match.

To handle dynamically created event sources, corresponding stream processor
rules specify a buffer group to which to add new event sources, upon which the
arbiter can access them through choose rules. In most cases, we expect that
choose blocks are used to instantiate a single buffer, in which case we only need
to scan the buffer group in its specified order. Here, a round-robin order allows
for fairness, while field-based orderings allow more detailed control over buffers
prioritization, as it may be useful to focus on a few buffers at the expense of
others, as in our above example.

Another potential option for ordering schemes for buffer groups could be
based on events waiting in them, or even the values of those events’ associated
data. Vamos currently does not support this because it makes sorting much more

3 Note that stream processors may change the stream type between the source buffer
and arbiter buffer, so event sources may use different types, but their arbiter buffers
may be grouped together if processed accordingly.
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expensive—essentially, all buffers may have to be checked in order to determine
the order in which to try matching them against further rules. Some of our
experiments could have made use of such a feature, but in different ways—future
work may add mechanisms that capture some of these ways.

5 Implementation

In this section, we briefly review the key components of our implementation.

5.1 Source Buffers and Event Sources

The source buffer library allows low-overhead interprocess communication be-
tween a monitored system and the monitor. It implements lock-free asynchronous
ring buffers in shared memory, inspired by Cache-Friendly Asymmetric Buffer-
ing [29], but extended to handle entries larger than 64 bits4. The library allows
setting up an arbitrary number of source buffers with a unique name, which a
monitor can connect to explicitly, and informing such connected monitors about
dynamically created buffers. A user can also provide stream type information so
connecting monitors can check for binary compatibility.

We have used the above library to implement an initial library of event
sources: one that is used for detecting data races, and several which use either
DynamoRIO [9] (a dynamic instrumentation framework) or the eBPF subsys-
tem of the Linux Kernel [10,28,50] to intercept the read and write (or any
other) system calls of an arbitrary program, or to read and parse data from file
descriptors. The read/write related tools allow specifying an arbitrary number
of regular expressions that are matched against the traced data, and associated
event constructors that refer to parts of the regular expressions from which to
extract the relevant data. Example uses of these tools are included in our arti-
fact [12].

5.2 The Vamos Compiler and the TeSSLa Connector

The compiler takes a Vamos specification described in the previous sections and
turns it into a C program. It does some minimal checking, for example whether
events used in parts of the program correspond to the expected stream types,
but otherwise defers type-checking to the C compiler. The generated program
expects a command-line argument for each specified event source, providing the
name of the source buffer created by whatever actual event source is used. Event
sources signal when they are finished, and the monitor stops once all event
sources are finished and all events have been processed.

The default way of using TeSSLa for online monitoring is to run an offline
monitor incrementally on a log file of serialized event data from a single global
4 Entries have the size of the largest event consisting of its fixed-size fields and iden-
tifiers for variable-sized data (strings) transported in separately managed memory.
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event source. A recent version of TeSSLa [33] allows generating Rust code for
the stream processing system with an interface to provide events and drive the
stream processing directly. Our compiler can generate the necessary bridging
code and replace the monitor component in Vamos with a TeSSLa Rust moni-
tor. We used TeSSLa as a representative of higher-level monitoring specification
tools; in principle, one could similarly use other standard monitor specification
languages, thus making it easier to connect them to arbitrary event sources.

6 Evaluation

Our stated design goals for Vamos were (i) performance, (ii) flexibility, and
(iii) ease-of-use. Of these, only the first is truly quantitative, and the major-
ity of this section is devoted to various aspects of it. We present a number of
benchmark programs, each of which used Vamos to retrieve events from differ-
ent event sources and organize them for a higher-level monitor in a different way,
which provides some qualitative evidence for its flexibility. Finally, we present a
case study to build a best-effort data-race monitor (Section 6.4), whose relative
simplicity provides qualitative evidence for Vamos’ ease of use.

In evaluating performance, we focus on two critical metrics:

1. How much overhead does monitoring impose on the monitored system? We
measure this as the difference of wall-clock running times.

2. How well can a best-effort third-party monitor cover the behavior of the
monitored program? We measure this as the portion of errors a monitor can
(not) find.

Our core claim is that Vamos allows building useful best-effort third-party
monitors for programs that generate hundreds of thousands of events per second
without a significant slow down of the programs beyond the unavoidable cost of
generating events themselves. We provide evidence that corroborates this claim
based on three artificial benchmarks that vary various parameters and one case
study implementation of a data race monitor that we test on 391 benchmarks
taken from SV-COMP 2022 [7].

Experimental setup All experiments were run on a common personal com-
puter with 16GB of RAM and an Intel(R) Core(TM) i7-8700 CPU with 6
physical cores running on 3.20GHz frequency. Hyper-Threading was enabled and
dynamic frequency scaling disabled. The operating system was Ubuntu 20.04.
All provided numbers are based on at least 10 runs of the relevant experiments.

6.1 Scalability Tests

Our first experiment is meant to establish the basic capabilities of our arbiter
implementation. An event source sends 10 million events carrying a single 64-bit
number (plus 128 bits of metadata), waiting for some number of cycles between
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Fig. 2. The percentage of events that reached the final stage of the monitor in a stress
test where the source sends events rapidly. Parameters are different arbiter buffer sizes
(x-axis) and the delay (Waiting) of how many empty cycles the source waits between
sending individual events. The shading around lines shows the 95% confidence interval
around the mean of the measured value. The source buffer was 8 pages large, which
corresponds to a bit over 1 300 events.

each event. The performance layer simply forwards the events to autodrop buffers
of a certain size, the arbiter retrieves the events, including holes, and forwards
them to the monitor, which keeps track of how many events it saw and how
many were dropped. We varied the number of cycles and the arbiter buffer sizes
to see how many events get dropped because the arbiter cannot process them
fast enough—the results can be seen in Figure 2.

At about 70 cycles of waiting time, almost all events could be processed
even with very small arbiter buffer sizes (4 and up). In our test environment,
this corresponds to a delay of roughly 700ns between events, which means that
Vamos is able to transmit approximately 1.4 million of events per second.

6.2 Primes

As a stress-test where the monitor actually has some work to do, this benchmark
compares two parallel runs of a program that generates streams of primes and
prints them to the standard output, simulating a form of differential monitor-
ing [45]. The task of the monitor is to compare their output and alert the user
whenever the two programs generate different data. Each output line is of the
form #n : p, indicating that p is the nth prime. This is easy to parse using reg-
ular expressions, and our DynamoRIO-based instrumentation tool simply yields
events with two 32-bit integer data fields (n and p).

While being started at roughly the same time, the programs as event sources
run independently of each other, and scheduling differences can cause them to
run out of sync quickly. To account for this, a Vamos specification needs to al-
locate large enough buffers to either keep enough events to make up for possible
scheduling differences, or at least enough events to make it likely that there is
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Fig. 3. Overheads (left) and percentage of found errors (right) in the primes benchmark
for various numbers of primes and arbiter buffer sizes relative to DynamoRIO-optimized
but not instrumented runs. DynamoRIO was able to optimize the program so much
that the native binary runs slower than the instrumented one.

some overlap between the parts of the two event streams that are not automat-
ically dropped. The arbiter uses the event field for the index variable n to line
up events from both streams, exploiting the buffer group ordering functionality
described in Section 4.2 to preferentially look at the buffer that is “behind”, but
also allowing the faster buffer to cache a limited number of events while waiting
for events to show up on the other one. Once it has both results for the same
index, the arbiter forwards a single pair event to the monitor to compare them.

Figure 3 shows results of running this benchmark in 16 versions, generating
between 10 000 and 40 000 primes with arbiter buffer sizes ranging between 128
and 2024 events. The overheads of running the monitor are small, do not differ
between different arbiter buffer sizes, and longer runs amortize the initial cost
of dynamic instrumentation. We created a setting where one of the programs
generates a faulty prime about once every 10 events and measured how many
of these discrepancies the monitor can find (which depends on how many events
are dropped). Unsurprisingly, larger buffer sizes are better at balancing out the
scheduling differences that let the programs get out of sync. As long as the
programs run at the same speed, there should be a finite arbiter buffer size that
counters the desynchronization. In these experiments, this size is 512 elements.

Primes with TeSSLa We experimented with a variation of the benchmark
that uses a very simple TeSSLa [17,41] specification receiving two streams for
each prime generator (i.e., four streams in total): one stream of indexed primes
as in the original experiment, and the other with hole events. The specification
expects the streams to be perfectly lined up and checks that, whenever the last-
seen pairs on both streams have the same index, they also contain the same
prime (and ignores non-aligned pairs of primes). We wrote three variants of an
arbiter to go in front of that TeSSLa monitor:
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Fig. 4. Percentage of primes checked and errors found (of 40 000 events in total) by
the TeSSLa monitor for different arbiter specifications and arbiter buffer sizes.

1. the forward arbiter just forwards events as they come; it is equivalent to writ-
ing a script that parses output of generators and (atomically) feeds events
into a pipe from which TeSSLa reads events.

2. the alternate arbiter always forwards the event from the stream where we
have seen fewer events so far; if streams happen to be aligned (that is, contain
no or only equally-sized hole events), the events will perfectly alternate.

3. the align arbiter is the one we used in our original implementation to intel-
ligently align both streams

Figure 4 shows the impact of these different arbiter designs on how well the
monitor is able to do its task, and that indeed more active arbiters yield better
results—without them, the streams are perfectly aligned less than 1% of the time.
While one could write similar functionality to align different, unsynchronized
streams in TeSSLa directly, the language does not easily support this. As such,
a combination of TeSSLa and Vamos allows simpler specifications in a higher-
level monitoring language, dealing with the correct ordering and preprocessing
of events on the middleware level.

6.3 Bank

In this classic verification scenario, we wrote an interactive console application
simulating a banking interface. Users can check bank account balances, and de-
posit, withdraw, or transfer money to and from various accounts. The condition
we want to check is that no operations should be permitted that would allow an
account balance to end up below 0.

We use an event source that employs DynamoRIO [9] to dynamically instru-
ment the program to capture its inputs and outputs, which it parses to forward
the relevant information to the monitor. The monitor in turn starts out with no
knowledge about any of the account balances (and resets any gathered knowl-
edge when hole events indicate that some information was lost), but discovers
them through some of the observations it makes: the result of a check balance
operation gives precise knowledge about an account’s balance, while the success
or failure of the deposit/withdraw/transfer operations provides lower and upper
bounds on the potential balances. For example, if a withdrawal of some amount
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Fig. 5. Results of monitoring a simple banking simulator with Vamos monitor (left)
and TeSSLa monitor (right). Boxplots show the difference in the number of reported
errors versus the number of errors the application made, in percent.

fails, this amount provides an upper bound on an account’s balance, and any
higher successive withdrawal attempt must surely fail too.

In the spirit of third-party monitoring, however, the stateful interface does
not necessarily make it easy to derive these higher level events. For example,
there is no individual confirmation that says that the withdrawal of some amount
from some account was successful or not. Instead, the user selects an account,
then the withdraw action, is then prompted which amount they would like to
withdraw from said account, and after entering said amount, the system only
displays a message that the withdrawal failed or was successful. The event source
parses each individual step and provides them on two separate streams, one for
the inputs and one for the outputs. This is where Vamos’ higher-level event
recognition capabilities (see also the example in Section 4.1) allow the arbiter
to recognize the higher-level events to forward to the monitor, which itself is
therefore again much easier to specify.

To conduct measurements, we randomly generated 10 000 (well-formed) in-
puts and fed them to the banking application as fast as possible. We also let
the application generate erroneous outputs (wrong balances, swapping success
and failure messages) at random and measured how many those our best-effort
third-party monitor was able to detect. The size of the source buffer was one
page (128 events) and we varied the size of arbiter buffers from 4 to 2048.

The heavyweight instrumentation we used in this scenario caused the bank-
ing application to run through its script about 40% slower than without instru-
mentation for all sizes of the arbiter buffer, which is more than in our other
benchmarks, but seems still plausible for interactive programs, and could be
much more optimized. Our second metric is how many errors the monitor actu-
ally detects. Figure 5 shows this for both the monitor we described above and
a TeSSLa variant that only considers exact knowledge about account balances
(no upper or lower bounds) and thus finds fewer errors, demonstrating both an
alternate monitor design and the use of our TeSSLa connector. The results vary
quite a bit with arbiter buffer sizes and between runs, and the monitor may re-
port more errors than were inserted into the run. This is because, first, especially

Vamos : Middleware for Best-Effort Third-Party Monitoring 273



with smaller buffer sizes, the autodrop buffers may drop a significant portion (up
to 60% at arbiter buffer size 4, 5% at size 256) of the events, but the moni-
tor needs to see a contiguous chunk of inputs and outputs to be able to gather
enough information to find inconsistencies. Second, some errors cause multiple
inconsistencies: when a transfer between accounts is misreported as successful
or failed when the opposite is true, the balances (or bounds) of two accounts
are wrong. Overall, both versions of the monitor were able to find errors with
even smaller sizes of arbiter buffers, and increasing numbers improved the results
steadly, matching the expected properties of a best-effort third-party monitor.

6.4 Case Study: Data Race Detection

While our other benchmarks were written artificially, we also used Vamos to de-
velop a best-effort data race monitor. Most tools for dynamic data race detection
use some variation of the Eraser algorithm [51]: obtain a single global sequence
of synchronization operations and memory accesses, and use the former to estab-
lish happens-before relationships whenever two threads access the same memory
location in a potentially conflicting way. This entails keeping track of the last ac-
cessing threads for each location, as well as of the ways in which any two threads
might have synchronized since those last accesses. Implemented naïvely, every
memory access causes the monitor to pause the thread and atomically update
the global synchronization state. Over a decade of engineering efforts directed
at tools like ThreadSanitizer [52] and Helgrind [57] have reduced the resulting
overhead, but it can still be substantial.

Vamos enabled us to develop a similar monitor at significantly reduced engi-
neering effort in a key area: efficiently communicating events to a monitor run-
ning in parallel in its own process, and building the global sequence of events.
To build our monitor, we used ThreadSanitizer’s source-code-based approach5
to instrument relevant code locations, and for each such location, we reduce
the need for global synchronization to fetching a timestamp from an atomi-
cally increased counter. Based on our facilities for dynamically creating event
sources, each thread forms its own event source to which it sends events. In the
correctness layer, the arbiter builds the single global stream of events used by
our implementation of a version of the Goldilocks [22] algorithm (a variant of
Eraser [51]), using the timestamps to make sure events are processed in the right
order. Autodrop buffers may drop some events to avoid overloading the moni-
tor; when this happens to a thread, we only report data races that the algorithm
finds if all involved events were generated after the last time that events were
dropped. This means that our tool may not find some races, often those that
can only be detected looking at longer traces. However, it still found many races
in our experiments, and other approaches to detecting data races in best-effort
ways have similar restrictions [56].

Our implementation (contained in our artifact [12]) consists of:

5 This decision was entirely to reduce our development effort; a dynamic instrumen-
tation source could be swapped in without other changes.
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Fig. 6. Comparing running times of the three tools on all 391 benchmarks (left) and the
correctness of their verdicts on the subset of 118 benchmarks for which it was possible
to determine the ground truth (right). Race vs. no race indicates whether the tool
found at least one data race, correct vs. wrong indicates whether that verdict matches
the ground truth. For benchmarks with unknown ground truth, the three tools agreed
on the existence of data races more than 99% of the time.

– a straightforward translation of the pseudocode in [22], using the C++ stan-
dard library set and map data structures, with extensions to handle holes;

– a small Vamos specification to retrieve events from the variable number of
event streams in order of their timestamps to forward to the monitor; the
biggest complication here is deciding when to abandon looking for the next
event in the sequence if it may have been dropped;

– an LLVM [40] instrumentation pass post-processing ThreadSanitizer’s in-
strumentation to produce an event source compatible with Vamos.

As such, we were able to use Vamos to build a reasonable best-effort data-
race monitor with relatively little effort, providing evidence that our ease-of-use
design goal was achieved. To evaluate its performance, we tested it on 391 SV-
COMP [7] concurrency test cases supported by our implementation, and com-
pared it to two state-of-the-art dynamic data race detection tools, ThreadSani-
tizer [52] and Helgrind [57]. Figure 6 shows that the resulting monitor in most
cases caused less overhead than both ThreadSanitizer and Helgrind in terms of
time while producing largely the same (correct) verdicts.

7 Related Work

As mentioned before, Vamos’ design features a combination of ideas from works
in run-time monitoring and related fields, which we review in this section.

Event Brokers/Event Recognition A large number of event broker systems
with facilities for event recognition [18,58,55,26,1] already exist. These typically
allow arbitrary event sources to connect and submit events, and arbitrarily many
observers to subscribe to various event feeds. Mansouri-Samani and Sloman [44]
outlined the features of such systems, including filtering and combining events,
merging multiple monitoring traces into a global one, and using a database to
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store (parts of) traces and additional information for the longer term. Mod-
ern industrial implementations of this concept, like Apache Flink [1], are built
for massively parallel stream processing in distributed systems, supporting arbi-
trary applications but providing no special abstractions for monitoring, in con-
trast to more run-time-monitoring-focused implementations like ReMinds [58].
Complex event recognition systems also sometimes provide capabilities for load-
shedding [59], of which autodrop buffers are the simplest version. Most event
recognition systems provide more features than Vamos, but are also harder to
set up for monitoring; in contrast, Vamos offers a simple specification language
that is efficient and still flexible enough for many monitoring scenarios.

Stream Run-Time Verification LoLa [19,24], TeSSLa [41], and Striver [27]
are stream run-time verification [8] systems that allow expressing a monitor as
a series of mutually recursive data streams that compute their current values
based on each other’s values. This requires some global notion of time, as the
streams are updated with new values at time ticks and refer to values in other
streams relative to the current tick, which is not necessarily available in a het-
erogeneous setting. Stream run-time verification systems also do not commonly
support handling variable numbers of event sources. Some systems allow for dy-
namically instantiating sub-monitors for parts of the event stream [3,6,49,24] in
a technique called parametric trace slicing [15]. This is used for logically split-
ting the events on a given stream into separate streams, making them easier
to reason about, and can sometimes be exploited for parallelizing the monitor’s
work. These additional streams are internal to the monitoring logic, in contrast,
Vamos’ ability to dynamically add new event sources affects the monitoring
system’s outside connections, while, internally, the arbiter still unifies the events
coming in on all such connections into one global stream.

Instrumentation The two key questions in instrumentation revolve around
the technical side of how a monitor accesses a monitored system as well as the
behavioral side of what effects these accesses can have. On the technical side,
static instrumentation can be either applied to source code [39,30,36,37,40,34] or
compiled binaries [23,20], while dynamic instrumentation, like DyanmoRIO, is
applied to running programs [43,46,9]. Alternatively, monitored systems or the
platforms they run on may have specific interfaces for monitors already, such as
PTrace and DTrace [10,28,50] in the Linux kernel. Any of these can be used to
create an instrumentation tool for Vamos.

On the behavioral side, Cassar et al. surveyed various forms of instrumen-
tation between completely synchronous and offline [11]. Many of the systems
surveyed [21,4,14,16] use a form of static instrumentation that can either do
the necessary monitoring work while interrupting the program’s current thread
whenever an event is generated, or offer the alternative of using the interruption
to export the necessary data to a log to be processed asynchronously or offline.
A mixed form called Asynchronous Monitoring with Checkpoints allows stopping
the monitored system at certain points to let the monitor catch up [25]. Our au-
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todrop buffers instead trade precision for avoiding this kind of overhead. Aside
from the survey, some systems (like TeSSLa [41]) incrementalize their default of-
fline behavior to provide a monitor that may eventually significantly lag behind
the monitored system.

Executing monitoring code or even just writing event data to a file or sending
it over the network is costly in terms of overhead, even more so if multiple threads
need to synchronize on the relevant code. Ha et al. proposed Cache-Friendly
Asymmetric Buffering [29] to run low-overhead run-time analyses on multicore
platforms. They only transfer 64-bit values, which suffices for some analyses, but
not for general-purpose event data. Our adapted implementation thus has to do
some extra work, but shares the idea of using a lock-free single-producer-single-
consumer ring buffer for low overhead and high throughput.

While we try to minimize it, we accept some overhead for instrumentation
as given. Especially in real-time systems, some run-time monitoring solutions
adjust the activation status of parts of the instrumentation according to some
metrics of overhead, inserting hole events for phases when instrumentation is
deactivated [5,31,2]. In contrast, the focus of load-shedding through autodrop
buffers is on ensuring that the higher-level part of the monitor is working with
reasonably up-to-date events while not forcing the monitored system to wait.
For monitors that do not rely on extensive summarization of dropped events,
the two approaches could easily be combined.

Monitorability and Missing Events Monitorability [38,47] studies the abil-
ity of a runtime monitor to produce reliable verdicts about the monitored system.
The possiblity of missing arbitrary events on an event stream without knowing
about it significantly reduces the number of monitorable properties [35]. The au-
todrop buffers of Vamos instead insert hole information, which some LTL [32],
TeSSLa [42], and Mealy machine [54] specifications can be patched to handle
automatically. Run-time verification with state estimation [53] uses a Hidden
Markov Model to estimate the data lost in missing events.

8 Conclusion

We have presented Vamos, which we designed as middleware for best-effort
third-party run-time monitoring. Its goal is to significantly simplify the instru-
mentation part of monitoring, broadly construed as the gathering of high-level
observations that serve as the basis for traditional monitoring specifications, par-
ticularly for best-effort third-party run-time monitoring, which may often need
some significant preprocessing of the gathered information, potentially collected
from multiple heterogeneous sources. We have presented preliminary evidence
that the way we built Vamos can handle large numbers of events and lets us
specify a variety of monitors with relative ease. In future work, we plan to apply
Vamos’ to more diverse application scenarios, such as multithreaded webservers
processing many requests in parallel, or embedded software, and to integrate our
tools with other higher-level languages. If a system’s behavior conforms to the
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expectation of a third party, this is generally recognized as inspiring a higher
level of trust than if that monitor was written by the system’s developers. We
hope that our design can help making best-effort third-party run-time monitor-
ing more common.
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Abstract. Software defect and code smell prediction help developers
identify problems in the code and fix them before they degrade the qual-
ity or the user experience. The prediction of software defects and code
smells is challenging, since it involves many factors inherent to the de-
velopment process. Many studies propose machine learning models for
defects and code smells. However, we have not found studies that explore
and compare these machine learning models, nor that focus on the ex-
plainability of the models. This analysis allows us to verify which features
and quality attributes influence software defects and code smells. Hence,
developers can use this information to predict if a class may be faulty or
smelly through the evaluation of a few features and quality attributes.
In this study, we fill this gap by comparing machine learning models
for predicting defects and seven code smells. We trained in a dataset
composed of 19,024 classes and 70 software features that range from dif-
ferent quality attributes extracted from 14 Java open-source projects. We
then ensemble five machine learning models and employed explainabil-
ity concepts to explore the redundancies in the models using the top-10
software features and quality attributes that are known to contribute to
the defects and code smell predictions. Furthermore, we conclude that
although the quality attributes vary among the models, the complexity,
documentation, and size are the most relevant. More specifically, Nesting
Level Else-If is the only software feature relevant to all models.

Keywords: Defect Prediction · Code Smells Detection · Explainable
Machine Learning · Quality Attributes

1 Introduction

Software defects appear in different stages of the life-cycle of software systems
degrading the software quality and hurting the user experience [25]. Sometimes,
the damage caused by software defects is in-reversible [44]. As consequence, the
software cost increases as developers need time to fix defects [43]. As a result,
it is better to avoid them as much as possible. Several studies showed that the
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presence of code smells and anti-patterns are normally related to defecting code
[24,34,49,51]. Code smells are symptoms of decisions on the implementation that
may degrade the code quality [22]. Anti-patterns are the misuse of solutions to
recurring problems [9]. For instance, Khomh et al. (2012) found that classes
classified as God Classes are more defect-prone than classes that are not smelly.
In this paper, we refer to code smells and anti-patterns as code smells.

One technique to mitigate the impact of defects and code smells is the appli-
cation of strategies that anticipate problematic code [47], usually with the use of
machine learning models that predict a defect or code smell
[12,13,14,26,35,45,47,52,73]. Training and evaluating machine learning models
is a hard task, since (i) it needs a large dataset, to avoid overfitting; (ii) the pro-
cess of obtaining the labels and features to serve as input is costly, and it requires
the use of different tools to support it; (iii) setting up the environment for train-
ing and evaluating models is time-consuming and computationally expensive,
even though some tools help to automatize the process, and; (iv) understanding
the importance of the features and how they affect the model is complex [39].

With these difficulties in mind, our goal is to identify a set of features that can
be used by developers to simplify the process of defect and code smell prediction.
To simplify, we aim at reducing the number of features that need to be collected
to predict or identify possible candidates to present defects and code smells,
through an analysis of model redundancies. To the best of our knowledge, no
other studies have investigated similarities between the defect and code smell
models. Instead, most studies focus on proposing and assessing the performance
of models that predict defects or code smells [27,35,41,44]. In this work, we
fill this gap through an analysis of which features are redundant or different
in models built for defects and for seven code smells. Even more, we highlight
which quality attributes are relevant to their prediction. This analysis is possible
by the use of the SHAP technique, which determines the contribution of each
feature to the prediction. As a result, using SHAP allows the verification of the
features that contributed the most to the prediction and whether the features
had high or low values.

To achieve our goal, we use a subset of 14 open-source Java systems that
had its features and defects annotated [15,16]. We then employ the Organic tool
[48] to detect nine code smells. We merged three of these smells due to similar
definitions. After merging the data, we train and evaluate an ensemble machine
learning model composed of five algorithms for each of our targets, i.e., defects
and code smells. After evaluating the performance of our ensemble, we apply
the SHAP technique to identify which features are relevant for each model.
Finally, we analyze the results in terms of: (i) which features are relevant for
each model; (ii) which features contribute the most for two or more models to
identify redundancies in the models; (iii) which quality attributes are important
to the defect and code smell prediction.

Our main findings are: (i) from the seven code smells evaluated, we identified
that the most similar models to the Defect are the God Class, Refused Bequest,
and Spaghetti Code; (ii) Nesting Level Else-If (NLE) and Comment Density
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(CD) are the most important features; (iii) most features have high values, ex-
cept on Refused Bequest; (iv) we identified sets of features that are common
in trios of problems, such as API Documentation (AD), which is important for
Defects, God Class, and Refused Bequest; (v) documentation, complexity, and
size are the quality attributes that contribute the most for the prediction of de-
fects and code smells; (vi) the intersection of features between the defects and
code smells ranges from 40% for Refused Bequest to 60% of the God Class. We
also contributed to the community by providing an extension of the previous
dataset of defects [15,16] through the addition of nine smells, available in our
online appendix [64]. As a consequence of these analyses, we obtained a smaller
set of features that contributes to the prediction of defects and code smells. De-
velopers and researches may train machine learning models with less effort using
these findings, or they may use these features to identify possible candidates for
introducing defects and code smells.

We organize the remainder of this work as follows. Section 2 describes the
background of our work. Section 3 shows how we structured the methodology.
Then, Section 4 presents the results of our evaluation comparing the defect
model with the code smells. Section 5 discusses the main threats to validity of
our investigation. Section 6 presents the related work our investigation is based
on. Finally, Section 7 concludes this paper with remarks for further explorations
about the subject.

2 Background

2.1 Defects

A software defect represents an error, failure, or bug [1] in a software project,
that harm the appearance, operation, functionality, or performance of the target
software project [25]. Defects may appear on different development stages [71]
and may interrupt the development progress and increase the planned budget
of software projects [43]. Furthermore, a software team may discover software
defects after code release, generating a significant effort to tackle defects in pro-
duction [37]. To mitigate these defects in software development, defect prediction
may find the defective classes [42,43,73] before system testing and release. For
instance, if a software team has limited resources for software inspection, a defect
predictor may indicate which modules are most likely to be defective.

2.2 Code Smells

Brown et al. [9] proposed a catalog of anti-patterns, that are solutions to recur-
ring problems based on design patterns, but instead of providing reusable code,
it impacts negatively on the source code. Later, Fowler [22] introduced the code
smells as symptoms of sub-optimal decisions in the software implementation that
leads to code quality degradation. Since our defect dataset is class-level, we only
consider the problems related to classes. In our work, we considered the following
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smells: Refused Bequest (RB), Brain Class (BC), Class Data Should be Private
(CP), Complex Class (CC), Data Class (DC), God Class (GC), Lazy Class (LC),
Spaghetti Code (SC), and Speculative Generality (SG). The definitions of the
problems presented in this paper are: God Class is a large class that has too
many responsibilities and centralizes the module functionality [61]. Refused Be-
quest is a class that does not use its parent behavior [22]. Spaghetti Code is a
class that has methods with large and unique multistage process flow [9]. Due to
space constraints, the definitions of all evaluated problems can be found in our
replication package [64].

3 Study Design

3.1 Research Questions

In this paper, we investigate the similarities and redundancies between the soft-
ware features used to predict defects and code smells. We can use this information
to simplify the prediction model or identify possible candidates for introducing
defects or smells. We employed data preparation to find the software features
for the defect and code smell prediction models. Therefore, our main objective
is to examine the software features applied for both predictions. Our paper in-
vestigates the following research questions.

RQ1. Are the defect and class-level code smell models explainable?
RQ2. Which software features are present in both defect and code smell models?
RQ3. Which software quality attributes are more relevant for the prediction of

both defects and code smells?

3.2 Data

Predicting a defect or a code smell is a supervised learning problem that re-
quires a dataset with the values of the independent and dependent variables for
each sample. Many datasets were proposed in the literature [13,31,44]; however,
in this work, the selected dataset portrays a joined version of several resources
publicly available in the literature [15,16,17,74]. In total, five data sources com-
pose this dataset: PROMISE [65], Eclipse Bug Prediction [84], Bug Prediction
Dataset [13], Bugcatchers Bug Dataset [24], and GitHub Bug Dataset [74]3. The
dataset has classes from 34 open-source Java projects [77]. Furthermore, the data
comprises 70 software features related to different aspects of the code. We can
divide the features into seven quality attributes: documentation, coupling, cohe-
sion, clone, size, complexity, and inheritance. We also highlight that the dataset
is imbalanced. Only around 20% of the classes have a defect, and for the code
smells, the range of classes they affect is between 4 to 16.2%. For these reasons,
the dataset has a wide range of software features that may promote interesting

3 https://zenodo.org/record/3693686
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analysis of the defects and code smells. Finally, the open-source data facilitates
the collection of code smells.
Data Collection. The first step of our study is to collect the data about the
code smells to merge with the defect data [15]. We applied the Organic tool [48]
to detect the code smells. As all projects are available on GitHub, we manually
cloned the source code matching the project version included in the dataset.
Since most of the systems in the original dataset have less than 1000 classes
(20 systems), we collected data from the ones with more than 1000 classes (14
projects). We decided to focus on these projects because they represent 75%
of the entire defect data and are readily available on GitHub. Additionally, we
matched the name of the detected instances of code smells to the class name
present in our defect dataset. Hence, independently of whether a class had a
smell or not, we only consider it if the match was found in both datasets (i.e.,
the one with the defects and the one with the code smells). In the case that we
could not find a match, we do not consider the class for further investigation. We
use this approach to avoid bias as it would be unfair to determine that a class
that Organic could not find in the defect dataset is non-smelly. Furthermore,
this approach decreased the number of classes for most of the projects.

Table 1. Summary of the data for each project.

Project Version Classes CP DC GC LC RB SC SG defects

Ant 1.7 1592 12 161 403 211 57 102 36 330
Broadleaf 3.0 1303 3 231 168 97 66 36 36 277
Camel 1.6 2456 7 115 198 519 53 7 87 550
Elasticsearch 0.9 2605 52 42 380 374 187 88 88 362
Hazelcast 3.3 1443 19 71 74 123 115 26 46 232
JDT 3.4 960 308 44 358 1 54 150 31 197
Jedit 4.3 1108 101 56 331 133 9 144 58 264
Lucene 2.4 500 51 13 96 67 66 36 15 208
Neo4J 1.9 1654 64 20 101 187 67 22 92 18
OrientDB 1.6 880 54 30 181 141 40 58 53 171
PDE 3.4 1130 5 34 206 0 22 56 84 167
POI 3.0 822 6 103 58 130 219 18 17 434
Titan 0.5 765 28 11 75 96 18 29 54 66
Xalan 2.7 1794 102 113 456 298 211 159 60 947

Total 19012 812 1044 3085 2377 1184 931 757 4223

Percentage 100% 4.3% 5.5% 16.2% 12.5% 6.2% 4.9% 4% 22.2%

CP: Class Data Should be Private; DC: Data Class; GC: God Class; LC: Lazy Class;
RB: Refused Bequest; SC: Spaghetti Code; SG: Speculative Generality.

Organic collects a wide range of code smells, including method and class
ones. However, as the defect dataset is class-level, we only use the code smells
found in classes. For this reason, we obtained the ground truth of nine smells,
as described in Section 2.2. After collecting the data, we merged three code
smells: Brain Class (BC), God Class (GC), and Complex Class (CC) into one
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code smell. Beyond the similar definitions, we merged the BC and CC to GC
due to their low occurrence on the dataset. Hence, we named the code smell as
God Class (GC), since it is more used in the literature [66]. Consequently, we
evaluate seven smells in total.

Table 1 shows a summary of the data for each project. The first column
presents the project’s name. The second column presents the project version
included in the dataset. The third column shows the number of classes for each
system. Columns 4 through 10 show the number of smells found. The last column
presents the number of defects in the system. The Total row presents the absolute
number of classes and smelly/defective classes. The Percentage row presents the
percentage of classes affected by smell/defect. We can observe from Table 1 that
the projects vary in size, Lucene has the least classes (500), while Elasticsearch
has the most (2605). We also observe that the number of smells and defects varies
greatly for each system. For instance, the Xalan system has 456 instances of God
Class and 947 defects. Meanwhile, even though the Neo4J is a large system, it
had only 18 defects, i.e., 1% of its classes are defective.

Code Smells Validation. To validate the code smells collected with Organic,
we conducted a manual validation with developers. First, we selected three of the
most frequent code smells (GC, RB, and SC), since manual validation is costly
and developers have to first understand the code. Then, we elaborate questions
about each code smell based on the current literature: God Class (GC) [66],
Refused Bequest (RB) [36] and Spaghetti Code (SC) [9]. We then produced
a pilot study with four developers to improve the questions using classes that
Organic classified as either one of the code smells. This allowed us to verify if
the questions are suitable for our goals and whether the surveyed developers
understood them. For each instance in our sample, we asked nine questions
(3 for each smell). The developer was blind to which code smells they were
evaluating and had four possible responses: “Yes”, “No”, “Don’t Know”, and
“NA” (Not Applicable). The questions and developers’ answers can be found in
our replication package [64].

To make our validation robust, we calculated the sample size based on the
number of instances for each of the three smells in our dataset. We then set
a confidence level of 90% and a margin error of 10%. As a result, the sample
size should have at least eighteen classes of each target code smell. Furthermore,
to avoid biasing the analysis, we determine that two developers should evaluate
each instance in our sample. In this case, developers had to validate 108 software
classes (54 unique). To validate the 108 software classes, we invited fifteen devel-
opers from different backgrounds, including two co-authors. One of the authors
was the moderator of the analysis and did not participate in the validation. As
there were three questions for each smell, in order to consider the instance as
truly containing the smell, developers needed to reach an agreement with the
expected answer that supports the presence of the code smell on two out of three
questions. In addition, if the two developers that evaluated the same instance
disagreed on the presence of the smell, a third and more experienced developer
checked the instance to make the final decision. This tiebreaker evaluation was
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done by two software specialists that did not participate in the previous valida-
tion.

In the end, the developers agree that all GC classified by the tool was correct
(i.e., 18 out of 18 responses). For RB, the developers agree in 14 out of the
18 software classes (meaning that approximately 77% of developers agree with
the tool). Finally, SC is slightly worse, where the developers classified 13 out of
the 18 classes as SC. Thus, SC classes achieved an agreement of 72% between
the developers and the tool. The results demonstrate that Organic can identify
code smells with an appropriate level of accuracy (around 84% of agreement
between them). For this reason, we conclude that the Organic data is adequate
to represent code smells.

3.3 Quality Attributes

Although the literature proposes many quality attributes to group software fea-
tures [4,8,68], we focus on the quality attributes previously discussed in the
selected dataset [15,16]. These quality attributes cluster the entire collection of
software features. Therefore, we separate the aforementioned software features
into seven quality attributes: (i) Complexity, (ii) Coupling, (iii) Size, (iv) Doc-
umentation, (v) Clone, (vi) Inheritance, and (vii) Cohesion. Table 2 presents
the quality attributes with their definition and reference. The complete list of
software features (66 in total) and the quality attributes are available under the
replication package of this study [64].

Table 2. Quality Attributes.

Class Definition Reference

Clone Measure the code cloning. They may be a copy and paste
of an existing piece of source code, and may present
smaller modifications considering the original code.

[15,74]

Cohesion Measure to what extent the source code elements are
coherent in the system.

[16,74]

Complexity Measure the complexity of source code elements (typi-
cally algorithms).

[8,16,68]

Coupling Measure the amount of dependencies of source code ele-
ments.

[3,16,68]

Documentation Measure the amount of comments and documentation of
source code elements in the system.

[4,16,22]

Inheritance Measure the different aspects of the inheritance hierarchy
of the system.

[4,16,22]

Size Measure the basic properties of the analyzed system in
terms of different aspects (e.g., number of code lines,
number of classes, or methods).

[16,22,78]
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3.4 Machine Learning

The predictive accuracy of machine learning classification models depends on the
association between the structural software properties and a binary outcome.
In this case, the properties are the software features widely evaluated in the
literature [15,16], and the binary outcome is the prediction if the class is defective
or non-defective or if the class presents each of the evaluated code smells. To
compare the defect and code smell prediction models, we rely on the same set
of software features, i.e., the models are trained with the same 66 measures,
except on the target representing the presence/absence of defect/code smell. We
train each machine learning model for each target (i.e., defect and code smell).
To build these models, we employ a tool known as PyCaret [6] to assist in the
different parts of the process, described later. Finally, to test the capacity of
the models, we apply five evaluation metrics: accuracy, recall, precision, F1, and
AUC [11].
Data Preparation. To build our models, we follow these fundamental steps
described in Figure 1. The three rounded rectangles indicate the steps and the
actions we performed to build the models. First, we clean the data (i). Then, we
explore the data identifying how better to represent them for our models (ii).
After, we prepare the features to avoid overfitting (iii).

Data Cleaning

- Non-numeric 
- Remove Duplicates 
- Missing Values

Data Exploration

- Normalization 
- Balancing 
- Encoding

Feature Engineering

- Feature Selection 
- Correlation-Threshold 
- Multicollinearity

(i) (ii)

(iii)

18,963 - 61

Data

19,012 - 70 18,963 - 62

18,963 - 56

Fig. 1. Data Preparation Process Overview.

Data Cleaning. We first applied data cleaning to eliminate duplicated classes,
non-numeric data, and missing values [56]. Hence, it was possible to vertically
reduce the data as we removed a small chunk of repeated entries (61 classes).
Further, we also reduced the horizontal dimension of the data from 70 to 65
features eliminating the non-numeric features. We also removed four over-
represented software features. These software features gathered information
about the exact line and column of the source code a class started and ended.
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In the end, we executed data imputation to track the missing values, but
the dataset had none.

Data Exploration. In the second step of the machine learning processing, we
executed the data exploration. Therefore, we used one-hot encoding [38] to
the type feature, which stores information about the class type. For instance,
we created two new features for class and interface types. Subsequently, we
applied data normalization using Standard Scaler [59]. Finally, we employed
Synthetic Minority Oversampling Technique (SMOTE) [70] to deal with the
imbalanced nature of the dataset. Table 1 summarizes the imbalanced nature
of the targets compared to the data collection. For instance, from 19K classes,
only 757 present Spaghetti Code (almost 4% of classes).

Feature Engineering. In the final step, we applied feature engineering to se-
lect the relevant software features. As a result, we executed feature selection,
correlation analysis, and multicollinearity thresholds. First, the feature selec-
tion technique chooses a subset of software features from the combination of
various permutation importance techniques, including Random Forest, Ad-
aboost, and Linear correlation. Second, we checked the correlation between
the subset of software features (99% of threshold). In doing so, we removed
five software features (LLDC, TNLPA, TNA, TNPA, and TCLOC) because
they were highly correlated with other software features (LDC, CLOC, NA,
NLPA, and NPA). Additionally, we set the multicollinearity threshold to
85%, meaning that we remove software features with a correlation higher
than the threshold. In the end, we ended up with 56 software features.

Training the Models. To build our classifier, we employ a technique known
as the ensemble machine learning model [6]. This technique learns how to best
combine the predictions from multiple machine learning models. Thus, we use
a stronger machine learning model in terms of prediction, since it combines the
prediction power of multiple models. To train the models, we divided the dataset
into two sets: 70% of the data is used for training the models, and 30% for testing
the models. To assess the performance of our models, we employed a method
called k-fold cross-validation. This technique splits the data into K partitions.
In our work, we used K=10 [11], and at each iteration, we use nine folds for
training and the remaining fold for validation. We then permute these partitions
on each iteration. As a result, we use each fold as training and as the validation
set at least once. This method allows us to compare distinct models, helping us
to avoid overfitting, as the training set varies on each iteration.

To identify which models are suitable to our goal, we evaluated 15 machine
learning algorithms: CatBoost Classifier [6], Random Forest [23], Decision Tree
[16], Extra Trees [6], Logistic Regression [29], K-Neighbors Classifier (KNN) [80],
Gradient Boosting Machine [83], Extreme Gradient Boosting [63], Linear Dis-
criminant Analysis [6], Ada Boost Classifier [55], Light Gradient Boosting Ma-
chine (LightGBM) [32], Naive Bayes [75], Dummy Classifier [55], Quadratic Dis-
criminant Analysis [6], and Support Vector Machines (SVM) [23]. Furthermore,
to tune the hyper-parameters of each model, we apply a technique called Op-
tuna [5]. Optuna uses Bayesian optimization to find the best hyper-parameters
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for each model. After experimenting with all the targets, we observed that five
models are able of achieving good performance independently of the target (i.e.,
defects or code smells): Random Forest [23], LightGBM [32], Extra Trees [10],
Gradient Boosting Machine [72], and KNN [80]. For this reason, these models
are carried out for the ensemble model. The data on the performance of the
evaluated models can be found in our replication package [64]. To evaluate our
models, we focus on the F1 and AUC metrics. F1 represents the harmonic mean
of precision and recall. Additionally, AUC is relevant because we are dealing
with binary classification and this metric shows the performance of a model at
all thresholds. For these reasons, both metrics are suitable for the imbalanced
nature of data [11].

Explaining the Models. The current literature offers many possibilities to ex-
plain machine learning models in multiple problems. One of the most prominent
techniques spread in the literature is the application of SHAP (SHapley Ad-
dictive exPlanation) values [39]. These values compute the importance of each
feature in the prediction model. Therefore, we can reason why a machine learn-
ing model made such decisions about the specific domain. For this reason, SHAP
is appropriate as machine learning models are hard to explain [69] and features
interact in complex patterns to create models that provide more accurate predic-
tions. Consequently, knowing the logic behind a software class is a determinant
factor that can help to tackle the reasons behind a defect or code smell in the
target class.

4 Results

4.1 Predictive Capacity

Before explaining the models, we evaluate if they can effectively predict the
code smells and defects. Even though we originally built models for the entire
set of code smells, we observed that only three code smells (God Class, Refused
Bequest, and Spaghetti Code) have comparable models to the defects. For this
reason, we only present the results of these three code smells. We believe some
code smells are not similar to the defect model because they indicate simple code
with less chance of having a defect, for instance, Lazy Class and Data Class. As
a result, these code smells seem to not have similarities with the defects. The
remaining code smells results are available in the replication package [64].

Table 3. Performance of the Machine Learning Models.

Target Accuracy AUC Recall Precision F1

God Class 0.944 0.973 0.801 0.844 0.823
Refused Bequest 0.976 0.951 0.645 0.939 0.765
Spaghetti Code 0.971 0.977 0.715 0.692 0.705
Defect 0.843 0.865 0.701 0.609 0.652
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Table 3 shows the performance of each ensemble machine learning model
with our four targets (i.e., defects and the three code smells). The values in the
columns represent the mean of the 10-fold cross-validation. We present in each
column the performance for the five evaluation metrics. We can observe from
Table 3 that the performance of the ensemble model for the four targets is fairly
acceptable, with models presenting an F1 score ranging from approximately 65%
(defect model) to 82% (God Class model). These numbers are similar to other
studies with similar purposes [15,16]. We conclude that the models can predict
the targets with acceptable accuracy, as shown by the high AUC values in Table
3. For this reason, we may exploit these machine learning models to explain
their prediction using the SHAP technique. In doing so, we can reason about
the similarities of the software features associated with defects and code smell.

RQ1. The results show that the predictive accuracy of the defect and code smell
models can be used to compare the models in terms of their features, with good
F1 measures and high AUC. We also found that the class-level code smell mod-
els are slightly superior to the defect model in all five evaluation metrics.

4.2 Explaining the Models

This section discusses the explanation of each target model. We rely on SHAP
to support the model explanation [39]. To simplify our analysis, we consider the
top-10 most influential software features on the target in each prediction model.
We then compare each code smell model with the defective one. Our goal is to
find similarities and redundancies between the software features that help the
machine learning model to predict the target code smells and defects. We extract
these ten software features from each of the four target models (i.e., the defect
model and the three code smell models presented in this paper).

To illustrate our results, we employ a Venn diagram to check the intersection
of features between the four models (Figures 2, 3, and 4). The Venn diagram
displays two dashed circles, one for the code smell model and another for the
defect model. Inside each dashed circle, we present the top-10 software features
that contributed the most to the prediction of the target within inner circles. The
color of these inner circles represents the feature’s quality attribute. Likewise,
the size of the inner circle represents the influence of the feature on the model,
meaning that the bigger the size, the more it contributes to the target prediction.
On each side of the inner circles, we have an arrow that indicates the direction
of the feature value. For instance, a software feature with an arrow pointing up
means that the software feature contributes to the prediction when its value is
high. On the other hand, a software feature with an arrow pointing down means
that the feature contributes to the prediction when its value is low. The software
features on the intersection have two inner circles because they have a different
impact on each target (i.e., defects and the three code smells). For a better
understanding of the acronyms, we show on the right side of each diagram, a
table with the acronym and the feature full name of all features that appears on
the diagram.

G. Santos et al.292



God Class. Figure 2 shows the top-10 features that contribute to the Defect
and God Class models, and their feature intersection. We can observe from
Figure 2 that the defect model has an intersection with God Class of 6 out of 10
features. This means that 60% of the top-10 features that contribute the most to
predictions are the same for both models. These features are: CD, CLOC, AD,
NL, NLE, and CLLC; and most of them are related to documentation (3 out of
6) and complexity (2 out of 6). The only difference is for the CD, which needs
to have low values to help in the God Class prediction. All remaining software
features require a high value to predict a defect or a God Class (see arrows
up). Moreover, in terms of importance, for both models, the largest inner circles
are for NLE, NL, and AD. For the AD, its importance is smaller for the GC
model compared to the defect model. Meanwhile, for the NLE, the importance
of God Class is a bit larger than for the defect model. For the NL feature, their
importance was equivalent.

PDA

TLOC

NLG

TNOS

DIT

CLC

CBO

NOIDocumentation

Size

Complexity

Clone

Coupling

Inheritance

NLE

CLLC

AD

NL

CD

CLOC

Defect vs. God Class  AD API Documentation

CBO Coupling Between Object Classes 

CD Comment Density

CLC Clone Line Coverage

CLLC Clone Logical Line Coverage

CLOC Comment Lines of Code

DIT Depth of Inheritance Tree

NL Nesting Level

NLE Nesting Level Else-If

NLG Number of Local Getters

NOI Number of Outgoing Invocations 

PDA Public Documented API

TLOC Total Lines of Code

TNOS Total Number of Statements

Fig. 2. Top-10 Software Features for the Defect and God Class Models.

Refused Bequest. Figure 3 shows the top-10 features that contribute the most
to the Defect and Refused Bequest models. We can observe from the Venn dia-
gram in Figure 3 that the defect model has an intersection of 40% (4 out of 10
features) with the Refused Bequest model when considering their top-10 software
features. The features that intersect are CD, AD, NLE, and DIT. It is interesting
to notice that for 3 out of the 4 software features in the intersection, the values
that help to detect the Refused Bequest have to be low (see arrows pointing
down), while for the defect model, all of them require to have high values. Fur-
thermore, most of the Refused Bequest features have to be low (6 or 60%). In
terms of importance, the DIT and NLE features were similar for both models.
However, for both CD and AD, their contribution to the Refused Bequest model
was smaller. Additionally, two features that highly contributed to the Refused
Bequest are not in the intersection (NOP and NOA), while one (NL) is outside
the intersection for the defect model. We also note that three features are related
to the inheritance quality attribute, but only one intersects for both models, the

A Study on Model’s Similarities for Defect and Code Smells 293



DIT one. We also observe that the size is relevant for both models. However,
we do not have any size feature on the intersection of the models. The cohesion
aspect was important only for the Refused Bequest model. The documentation
attribute, which is relevant for the defect model (4 out of 10), has two of them
with small importance (CLOC and PDA). The complexity attribute, indicated
by NLE, is also very relevant for both models. CBO is the only coupling metric
in the Refused Bequest model.

PDA

CLOC

NL

CLLC

TLOC

NLG

NPA

CBO

Documentation

Size

Complexity

Clone

Coupling

Inheritance

LCOM5

NG

Cohesion NOP

NOA

CD

AD

NLE

DIT

Defect vs. Refused Bequest AD API Documentation

CBO Coupling Between Object Classes 

CD Comment Density

CLLC Clone Logical Line Coverage

CLOC Comment Lines of Code

DIT Depth of Inheritance Tree

LCOM5 Lack of Cohesion in Methods 5

NG Number of Getters

NL Nesting Level

NLE Nesting Level Else-If

NLG Number of Local Getters

NOA Number of Ancestors

NOP Number of Parents

NPA Number of Public Attributes

PDA Public Documented API

TLOC Total Lines of Code

Fig. 3. Top-10 Software Features for the Defect and Refused Bequest Models.

Spaghetti Code. Figure 4 presents the 10 features that are most important
to the Defect and Spaghetti Code models. We observe in Figure 4 that the
Spaghetti Code model has 50% of intersection with the defect model. They in-
tersect with the CD, CLOC, CLLC, NL, and NLE features. For both models,
most features need high values, except one for Spaghetti Code, the CD. The
features NL, NLE, and CLOC had similar importance. On the other hand, the
CD feature contributes less to the Spaghetti Code. Meanwhile, the CLLC fea-
ture contributes less to the defect model than to the Spaghetti Code model. It is
interesting to notice that most features that highly contribute to the Spaghetti
Code prediction are outside the intersection (NOI, TNOS, and CBO). Further-
more, the complexity quality attribute intersects both models (i.e., 2 out of 5). In
addition, two of the documentation features on the defect model are important
for the Spaghetti Code model. In terms of clone duplication, it also intersects
half of the features of the Spaghetti Code model (CLLC). The size is relevant for
both models, but none of the features intersects (2 out of 10 for both models).
The features TLOC and NLG appear on the defect model, while the TNOS and
TNLA on the Spaghetti Code model. The coupling is exclusive to the Spaghetti
Code model, while the inheritance is exclusive to the defect model.

After observing the three figures (Figures 2, 3, and 4), we notice some inter-
sections between the four models. For instance, CLOC is important for Defect,
God Class, and Spaghetti Code models, even though the importance for God
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Fig. 4. Top-10 Software Features for the Defect and Spaghetti Code Models.

Class was smaller (see inner circle sizes). For this trio, we also have that NL and
CLLC are important for the three models, but the CLLC has a small contribu-
tion in comparison to other features. For the Defect, God Class, and Refused
Bequest, we highlight that the AD feature has high importance for all three
models. Meanwhile, we also have some intersections between smells models. For
the God Class and Spaghetti Code pair, we note that both NOI and TNOS are
highly relevant to the models. Finally, CBO is important for the God Class,
Refused Bequest, and Spaghetti Code, but with moderate importance.

RQ2. There is a group of software features that intersect between the defect
models and the three code smells. More importantly, Nesting Level Else-If
(NLE) and Comment density (CD) appear in the four models, although the
CD influence is considerably low for the evaluated code smells. Furthermore,
CBO is important for all the code smells, but not the defect model.

Figure 5 presents the number of features that correspond to the evaluated
quality attributes according to the top-10 features discovered by SHAP. We
stack each quality attribute horizontally to facilitate the comparison between
them. Hence, our results indicate that practitioners do not need to concentrate
on all software features to predict defects and the investigated code smells. A
subset of features is enough to predict the targets. For instance, software features
related to the documentation are the most relevant for the Defect and God Class
models, with 4 and 3 features on the top-10, respectively. The Refused Bequest
model needs software features related to the inheritance (3 features), but size
and documentation are also relevant with two features each. Meanwhile, the
Spaghetti Code model is the most comprehensive, requiring features linked to
documentation, size, complexity, coupling, and clone duplication, with all of
them having two features.

Based on the results discussed, we conclude that the four ensemble machine
learning models require at least one software feature related to documentation
(CD) and complexity (NLE) to predict the target. Hence, future studies about
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Fig. 5. Comparison between the Top-10 Features of each Target.

defect and code smell prediction, independently of the dataset and domain, could
focus on these two feature collections. Furthermore, as we can observe in Figure
5, considering all the machine learning models evaluated, the documentation,
complexity, and size are the most important quality attributes that contribute
to the detection of defects and the code smell.

RQ3. The most relevant quality attributes to predict defects and code smells
vary greatly between each model. For instance, documentation is more impor-
tant for the Defect and God Class models, while Spaghetti Code has all of its five
quality attributes with the same importance, and Refused Bequest prioritizes the
inheritance. In general, documentation, complexity, and size contribute more
to the prediction of defects and the investigated code smells.

5 Threats to Validity

− Internal Validity: In our investigation, the chosen dataset is a potential
threat to internal validity [79], as we employed the data documented in the
current literature [15,16]. For this reason, we cannot reason on data quality,
as any storing process could insert erroneous data into the dataset, which is
common in a complex context such as software development. Furthermore,
the use of Organic is also a threat; however, we validated the outcome by
asking developers for a statistical sample of the results. Finally, the limited
number of projects evaluated may interfere with the model’s generalization
to other contexts, although we covered 75% of the defect data with the
chosen projects.

− External Validity: In this study, the external threat to validity [79] connects
to the limited number of programming languages we examined to compare
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the defects and code smell. In this case, we limit the scope to the Java
programming language to make our analysis feasible. However, we selected
relevant systems that vary in domains, maturity, and development practices.
For this reason, we cannot guarantee that our results generalize to other
programming languages.

− Construct Validity: The use of SHAP is a possible threat to construct
validity [79]. There are other tools to explain a machine learning model in
the literature, such as Lime [60]. However, we tested only SHAP for our
experimentation. Further interactions of this data could compare to other
tools that focus on model explainability.

− Conclusion Validity: Our study could only match a chunk of the data col-
lected with Organic with the defect dataset. Even though we pulled the same
version from GitHub, we could not find some matching classes within the
dataset. One of the main reasons for unmatched software classes is proba-
bly the refactoring of the class name and dependencies. For this reason, we
cannot guarantee how different the results would be if we could match more
classes. Furthermore, our study focuses on a diverse set of domains, which
is a potential issue for generalization.

6 Related Work

Defect Prediction. Several studies [42,75] share the ability of applying code
metrics for defect prediction. They vary in terms of accuracy, complexity, target
programming language, input prediction density, and machine learning models.
Menzies et al. [42] presented defect classifiers using code attributes defined by
McCabe and Halstead metrics. They concluded that the choice of the learning
method is more important than which subset of the available data we use for
learning the software defects. In a similar approach, Turhan et al. [75] used
cross-company data for building localized defect predictors. They used principles
of analogy-based learning to cross-company data to fine-tune these models for
localization and used static code features extracted from the source code, such
as complex software features and Halstead metrics. They concluded that cross-
company data are useful in extreme cases and when within-company data is not
available [75].

In the same direction, the study of Turhan et al. [76] evaluate the effect of
mixing data from different projects stages. In this case, the authors use within
and cross-project data to improve the prediction performance. They show that
mixing project data based on the same project stage does not significantly im-
prove the model performance. Hence, they concluded that optimal data for de-
fect prediction is still an open challenge for researchers [76]. Similarly, He at al.
[27] investigate defect prediction based on data selection. The authors propose
a brute force approach to select the most relevant data for learning the soft-
ware defects. To do so, they experiment with three large-scale experiments on
34 datasets obtained from ten open-source projects. They conclude that training
data from the same project does not always help to improve the prediction per-
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formance [27]. On the other hand, we base our investigation on ensemble learning
to improve the prediction performance and a wide set of software features.

CodeSmellsPrediction. Several automated detection strategies for code smells,
and anti-patterns were proposed in the literature [18]. They also use diverse strate-
gies in their identification. For instance, some methods are based on combination
of metrics [48,57]; refactoring opportunities [19]; textual information [54]; histori-
cal data [52]; and machine learning techniques [7,12,14,20,21,35,40,41]. Khomh et
al. [35] used Bayesian Belief Networks to detect three anti-patterns. They trained
the models using two Java open-source systems. Maiga et al. [41] investigated the
performance of the Support Vector Machine trained in three systems to predict
four anti-patterns. Later, the authors introduced a feedback system to their model
[40]. Amorim et al. [7] investigated the performance of Decision Trees to detect four
code smells in one version of the Gantt project. Differently from these works, our
dataset is composed of 14 systems, and we evaluate 9 code smells at the class level.

Cruz et al. [12] evaluated seven models to detect four code smells in 20
systems. The authors found that algorithms based on trees had a better F1
score than other models. Fontana et al. [20] evaluated six models to predict four
smells. However, they have used the severity of the smells as the target. They
reported high-performance numbers of the evaluated models. Later, Di Nucci et
al. [14] replicated it [20] to address several limitations that potentially generated
bias on the models’ performance. Thus, the authors found out that the models’
performance, when compared to the reference study, was 90% lower, indicating
the need to further explore how to improve code smell prediction. Differently
from previous work on code smell prediction, we are interested in exploring the
similarities and differences between models for predicting code smells, in contrast
with the models for defect prediction.

Defects and Code Smells. Several works tried to understand how code smells
can affect software, evaluating different aspects of quality, such as maintainability
[21,67,82], modularity [62], program comprehension [2], change-proneness [33,34],
and how developers perceive code smells [53,81]. Other studies aim to evaluate
how code smells impact the defect proneness [24,28,34,49,50,51]. Olbrich et al.
[49] evaluated the fault-proneness evolution of the God Class and Brain Class of
three open-source systems. They discovered that classes with these two smells
can be more faulty, however, this did not hold for all analyzed systems. Similarly,
Khomh et al. [34] evaluated the impact on fault-proneness of 13 different smells
in several versions of three large open-source systems. They report the existence
of a relationship between some code smells with defects, but it is not consistent
for all system versions. Openja et al. [50] evaluated how code smells can make the
class more fault-prone in quantum projects. Differently from these studies, we
aim to understand whether models build for defects and code smells are similar
or not.

Hall et al. [24] investigated if files with smells present more defects than files
that do not have them. They found that for most of these smells, there is no
statistical difference between smelly and non-smelly classes. Palomba et al. [51]
evaluated how 13 code smells affect the presence of defects using a dataset of

G. Santos et al.298



30 open-source java systems. They reported that classes with smells have more
bug fixes than classes that do not have any smells. Jebnoun et al. [28] evaluated
how Code Clones are related to defects in three different programming languages.
They concluded that smelly classes are more defect prone, but it varies according
to the programming language. Differently from these three studies, we aim to
understand how the prediction of defects differs from the models used to detect
code smells, not on establishing a correlation between defect and code smell.

Explainable Machine Learning for Software Features. Software defect
explainability is a relatively recent topic in the literature [30,46,58]. Mori and
Uchihira [46] analyzed the trade-off between accuracy and interpretability of
various models. The experimentation displays a comparison between the bal-
anced output that satisfies both accuracy and interpretability criteria. Likewise,
Jiarpakdee et al. [30] empirically evaluated two model-agnostic procedures, Local
Interpretability Model-agnostic Explanations (LIME) [60] and BreakDown tech-
niques. They improved the results obtained with LIME using hyperparameter
optimization, which they called LIME-HPO. This work concludes that model-
agnostic methods are necessary to explain individual predictions of defect mod-
els. Finally, Pornprasit et al. [58] proposed a tool that predicts defects for systems
developed in Python. The input data consists of software commits, and the au-
thors compare its performance with the LIME-HPO [30]. They conclude that
the results are comparable to the state-of-the-art technology to explain models.

7 Conclusion

In this work, we investigated the relationship between defects and code smell
machine learning models. To do so, we identified and validated the code smells
collected with Organic. Then, we applied an extensive data processing step to
clean the data and select the most relevant features for the prediction model.
Subsequently, we trained and evaluated the models using an ensemble of models.
In the end, as the models performed well, we employed an explainability tech-
nique to understand the models’ decisions known as SHAP. We concluded that
among the seven code smells initially collected, only three of them were similar
to the defect model (Refused Bequest, God Class, and Spaghetti Code). In ad-
dition, we found that the features Nesting Level Else-If and Comment Density
were relevant for the four models. Furthermore, most features require high val-
ues to predict defects and code smells, except for the Refused Bequest. Finally,
we reported that the documentation, complexity, and size quality attributes are
the most relevant for these models. In the future steps of this investigation, we
can compare the SHAP results with other techniques (e.g., Lime) and employ
white-box models to simplify the explainability. Another potential application of
our study is the comparison between the reported code smells with other tools.
We encourage the community to further investigate and replicate our results.
For this reason, we made all data available under the replication package [64].
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Abstract. The 5th edition of the Competition on Software Testing (Test-
Comp 2023) provides again an overview and comparative evaluation
of automatic test-suite generators for C programs. The experiment was
performed on a benchmark set of 4 106 test-generation tasks for C programs.
Each test-generation task consisted of a program and a test specification
(error coverage, branch coverage). There were 13 participating test-suite
generators from 6 countries in Test-Comp 2023.
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SV-Benchmarks · BenchExec · TestCov · CoVeriTeam

1 Introduction

In its 5th edition, the International Competition on Software Testing (Test-
Comp, https://test-comp.sosy-lab.org, [7,8,9,10,11]) again compares automatic
test-suite generators for C programs, in order to showcase the state of the art
in the area of automatic software testing. This competition report is an up-
date of the previous reports, referring to the rules and definitions, presents
the competition results, and give some interesting data about the execution of
the competition experiments. We use BenchExec [24] to execute the bench-
marks and the results are presented in tables and graphs on the competition
web site (https://test-comp.sosy-lab.org/2023/results) and are available in the ac-
companying archives (see Table 3).

Competition Goals. In summary, the goals of Test-Comp are the following [8]:

• Establish standards for software test generation. This means, most prominently,
to develop a standard for marking input values in programs, define an exchange
format for test suites, agree on a specification language for test-coverage
criteria, and define how to validate the resulting test suites.

This report extends previous reports on Test-Comp [7,8,9,10,11].
Reproduction packages are available on Zenodo (see Table 3).
(B) dirk.beyer@sosy-lab.org
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• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage criteria,
and to make those publicly available for researchers to be used in performance
comparisons when evaluating a new technique.

• Provide an overview of available tools for test-case generation and a snapshot
of the state-of-the-art in software testing to the community. This means to
compare, independently from particular paper projects and specific techniques,
different test generators in terms of effectiveness and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the participants the opportunity to publish about
the development work that they have done.

• Educate PhD students and other participants on how to set up performance
experiments, package tools in a way that supports reproduction, and how to
perform robust and accurate research experiments.

• Provide resources to development teams that do not have sufficient computing
resources and give them the opportunity to obtain results from experiments
on large benchmark sets.

Related Competitions. In the field of formal methods, competitions are re-
spected as an important evaluation method and there are many competitions [5].
We refer to the report from Test-Comp 2020 [8] for a more detailed discussion
and give here only the references to the most related competitions [5,13,46,48].

2 Definitions, Formats, and Rules

Organizational aspects such as the classification (automatic, off-site, reproducible,
jury, training) and the competition schedule is given in the initial competi-
tion definition [7]. In the following, we repeat some important definitions that
are necessary to understand the results.

Test-Generation Task. A test-generation task is a pair of an input program (pro-
gram under test) and a test specification. A test-generation run is a non-interactive
execution of a test generator on a single test-generation task, in order to generate a
test suite according to the test specification. A test suite is a sequence of test cases,
given as a directory of files according to the format for exchangeable test-suites.1

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test-suite generator on the benchmark suite. One test run for a test-suite
generator gets as input (i) a program from the benchmark suite and (ii) a test
specification (cover bug, or cover branches), and returns as output a test suite (i.e.,
a set of test cases). The test generator is contributed by a competition participant
as a software archive in ZIP format. The test runs are executed centrally by the
competition organizer. The test-suite validator takes as input the test suite from

1 https://gitlab.com/sosy-lab/software/test-format
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Test
Generator

Program
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Test
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(Test Cases)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator (taken from [8])

Table 1: Coverage specifications used in Test-Comp 2023 (similar to 2019–2022)

Formula Interpretation

COVER EDGES(@CALL(reach_error)) The test suite contains at least one test
that executes function reach_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

the test generator and validates it by executing the program on all test cases:
for bug finding it checks if the bug is exposed and for coverage it reports the
coverage. We use the tool TestCov [23] 2 as test-suite validator.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2023).

The definition init(main()) is used to define the initial states of the program
under test by a call of function main (with no parameters). The definition FQL(f)
specifies that coverage definition f should be achieved. The FQL (FShell query
language [36]) coverage definition COVER EDGES(@DECISIONEDGE) means that all
branches should be covered (typically used to obtain a standard test suite for qual-
ity assurance) and COVER EDGES(@CALL(foo)) means that a call (at least one) to
function foo should be covered (typically used for bug finding). A complete specifi-
cation looks like: COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).

Table 1 lists the two FQL formulas that are used in test specifications of
Test-Comp 2023; there was no change from 2020 (except that special function
__VERIFIER_error does not exist anymore).

Task-Definition Format 2.0. Test-Comp 2023 used again the task-definition for-
mat in version 2.0.

2 https://gitlab.com/sosy-lab/software/test-suite-validator

311

https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp23/c/properties/coverage-error-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp23/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/software/test-suite-validator


Dirk Beyer

License and Qualification. The license of each participating test generator
must allow its free use for reproduction of the competition results. Details on
qualification criteria can be found in the competition report of Test-Comp 2019 [9].

3 Categories and Scoring Schema

Benchmark Programs. The input programs were taken from the largest and
most diverse open-source repository of software-verification and test-generation
tasks 3, which is also used by SV-COMP [13]. As in 2020 and 2021, we se-
lected all programs for which the following properties were satisfied (see is-
sue on GitLab 4 and report [9]):

1. compiles with gcc, if a harness for the special methods 5 is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yielded a total of 4 106 test-generation tasks, namely 1 173 tasks
for category Error Coverage and 2 933 tasks for category Code Coverage. The
test-generation tasks are partitioned into categories, which are listed in Ta-
bles 6 and 7 and described in detail on the competition web site.6 Figure 2
illustrates the category composition.

Category Error-Coverage. The first category is to show the abilities to discover
bugs. The benchmark set consists of programs that contain a bug. We produce for
every tool and every test-generation task one of the following scores: 1 point, if the
validator succeeds in executing the program under test on a generated test case that
explores the bug (i.e., the specified function was called), and 0 points, otherwise.

Category Branch-Coverage. The second category is to cover as many branches
of the program as possible. The coverage criterion was chosen because many test
generators support this standard criterion by default. Other coverage criteria
can be reduced to branch coverage by transformation [35]. We produce for every
tool and every test-generation task the coverage of branches of the program (as
reported by TestCov [23]; a value between 0 and 1) that are executed for the
generated test cases. The score is the returned coverage.

Ranking. The ranking was decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on the run time,
which is the total CPU time over all test-generation tasks. Opt-out from categories
was possible and scores for categories were normalized based on the number of
tasks per category (see competition report of SV-COMP 2013 [6], page 597).
3 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
4 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/774
5 https://test-comp.sosy-lab.org/2023/rules.php
6 https://test-comp.sosy-lab.org/2023/benchmarks.php
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Fig. 2: Category structure for Test-Comp 2023; compared to Test-Comp 2022,
sub-category Hardware was added to main category Cover-Error

4 Reproducibility

We followed the same competition workflow that was described in detail in
the previous competition report (see Sect. 4, [10]). All major components that
were used for the competition were made available in public version-control
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(a) Test-Generation Tasks

(e) Test-Generation Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Tester Archives

(f) Test Suite

Fig. 3: Benchmarking components of Test-Comp and competition’s execution flow
(same as for Test-Comp 2020)

Table 2: Publicly available components for reproducing Test-Comp 2023

Component Fig. 3 Repository Version

Test-Generation Tasks (a) gitlab.com/sosy-lab/benchmarking/sv-benchmarks testcomp23
Benchmark Definitions (b) gitlab.com/sosy-lab/test-comp/bench-defs testcomp23
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.16
Test-Generator Archives (d) gitlab.com/sosy-lab/test-comp/archives-2023 testcomp23
Benchmarking (e) github.com/sosy-lab/benchexec 3.16
Test-Suite Format (f) gitlab.com/sosy-lab/software/test-format testcomp23
Continuous Integration (f) gitlab.com/sosy-lab/software/coveriteam 1.0

Table 3: Artifacts published for Test-Comp 2023

Content DOI Reference

Test-Generation Tasks 10.5281/zenodo.7627783 [15]
Competition Results 10.5281/zenodo.7701122 [14]
Test-Suite Generators 10.5281/zenodo.7701118 [16]
Test Suites (Witnesses) 10.5281/zenodo.7701126 [17]
BenchExec 10.5281/zenodo.7612021 [52]
CoVeriTeam 10.5281/zenodo.7635975 [21]

repositories. An overview of the components that contribute to the reproducible
setup of Test-Comp is provided in Fig. 3, and the details are given in Table 2.
We refer to the report of Test-Comp 2019 [9] for a thorough description of all
components of the Test-Comp organization and how we ensure that all parts
are publicly available for maximal reproducibility.

In order to guarantee long-term availability and immutability of the test-
generation tasks, the produced competition results, and the produced test suites,
we also packaged the material and published it at Zenodo (see Table 3).

The competition used CoVeriTeam [20] 7 again to provide participants access
to execution machines that are similar to actual competition machines. The

7 https://gitlab.com/sosy-lab/software/coveriteam
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Table 4: Competition candidates with tool references and representing jury members;
new indicates first-time participants, ∅ indicates hors-concours participation

Tester Ref. Jury member Affiliation

CoVeriTest [19,39] Marie-Christine Jakobs TU Darmstadt, Germany
ESBMC-kind new [33,32] Rafael Sá Menezes U. of Manchester, UK
FuSeBMC [3,4] Kaled Alshmrany U. of Manchester, UK
FuSeBMC_IA new [1,2] Mohannad Aldughaim U. of Manchester, UK
HybridTiger [26,47] (hors concours) –
KLEE [27,28] (hors concours) –
Legion [42,43] (hors concours) –
Legion/SymCC [43] Gidon Ernst LMU Munich, Germany
PRTest [22,41] Thomas Lemberger QAware GmbH, Germany
Symbiotic [29,30] Marek Trtík Masaryk U., Brno, Czechia
TracerX [37,38] Joxan Jaffar National U. of Singapore, Singapore
VeriFuzz [45] Raveendra Kumar M. Tata Consultancy Services, India
WASP-C new [44] Filipe Marques INESC-ID, Lisbon, Portugal

competition report of SV-COMP 2022 provides a description on reproducing
individual results and on trouble-shooting (see Sect. 3, [12]).

5 Results and Discussion

This section represents the results of the competition experiments. The report
shall help to understanding the state of the art and the advances in fully au-
tomatic test generation for whole C programs, in terms of effectiveness (test
coverage, as accumulated in the score) and efficiency (resource consumption
in terms of CPU time). All results mentioned in this article were inspected
and approved by the participants.

Participating Test-Suite Generators. Table 4 provides an overview of the
participating test generators and references to publications, as well as the team
representatives of the jury of Test-Comp 2023. (The competition jury consists
of the chair and one member of each participating team.) An online table with
information about all participating systems is provided on the competition web
site.8 Table 5 lists the features and technologies that are used in the test generators.

There are test generators that did not actively participate (e.g., tester archives
taken from last year) and that are not included in rankings. Those are called
hors-concours participations and the tool names are labeled with a symbol (∅).

Computing Resources. The computing environment and the resource limits
were the same as for Test-Comp 2020 [8], except for the upgraded operating system:
Each test run was limited to 8 processing units (cores), 15GB of memory, and
15min of CPU time. The test-suite validation was limited to 2 processing units,

8 https://test-comp.sosy-lab.org/2023/systems.php
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Table 5: Technologies and features that the test generators used

Tester B
ou

n
d
ed

M
od

el
C
h
ec
ki
n
g

C
E
G
A
R

E
vo

lu
ti
on

ar
y
A
lg
or
it
h
m
s

E
xp

li
ci
t-
V
al
u
e
A
n
al
ys
is

F
lo
at
in
g-
P
oi
nt

A
ri
th
m
et
ic
s

G
u
id
an

ce
by

C
ov
er
ag
e
M
ea
su
re
s

P
re
d
ic
at
e
A
b
st
ra
ct
io
n

R
an

d
om

E
xe
cu

ti
on

S
ym

b
ol
ic

E
xe
cu

ti
on

T
ar
ge
te
d
In
p
u
t
G
en

er
at
io
n

A
lg
or
it
h
m

S
el
ec
ti
on

P
or
tf
ol
io

CoVeriTest 3 3 3 3 3

ESBMC-kind new 3 3 3

FuSeBMC 3 3 3 3 3

FuSeBMC_IA new 3 3 3 3 3

HybridTiger 3 3 3 3

KLEE 3 3 3

Legion 3 3 3 3 3 3

Legion/SymCC 3 3 3 3 3 3

PRTest 3 3

Symbiotic 3 3 3 3 3

TracerX 3 3 3 3

VeriFuzz 3 3 3 3 3 3

WASP-C new 3 3 3

7GB of memory, and 5min of CPU time. The machines for running the experiments
are part of a compute cluster that consists of 168 machines; each test-generation
run was executed on an otherwise completely unloaded, dedicated machine, in
order to achieve precise measurements. Each machine had one Intel Xeon E3-
1230 v5 CPU, with 8 processing units each, a frequency of 3.4GHz, 33GB of
RAM, and a GNU/Linux operating system (x86_64-linux, Ubuntu 22.04 with
Linux kernel 5.15). We used BenchExec [24] to measure and control computing
resources (CPU time, memory, CPU energy) and VerifierCloud9 to distribute,
install, run, and clean-up test-case generation runs, and to collect the results. The
values for time and energy are accumulated over all cores of the CPU. To measure
the CPU energy, we use CPU Energy Meter [25] (integrated in BenchExec [24]).
Further technical parameters of the competition machines are available in the
repository which also contains the benchmark definitions. 10

9 https://vcloud.sosy-lab.org
10 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp22
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Table 6: Quantitative overview over all results; empty cells mark opt-outs; new indicates
first-time participants, ∅ indicates hors-concours participation
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CoVeriTest 581 1509 2073
ESBMC-kind new 289
FuSeBMC 936 1678 2813
FuSeBMC_IA new 908 1538 2666
HybridTiger 463 1170 1629
KLEE 721 999 1961
Legion 838
Legion/SymCC 349 1027 1329
PRTest 222 770 927
Symbiotic 644 1430 2128
TracerX 1400
VeriFuzz 909 1546 2673
WASP-C new 570 1103 1770

One complete test-generation execution of the competition consisted of
50 445 single test-generation runs in 25 run sets (tester × property). The to-
tal CPU time was 315 days and the consumed energy 89.9 kWh for one complete
competition run for test generation (without validation). Test-suite validation
consisted of 53 378 single test-suite validation runs in 26 run sets (validator × prop-
erty). The total consumed CPU time was 19 days. Each tool was executed several
times, in order to make sure no installation issues occur during the execution. In-
cluding preruns, the infrastructure managed a total of 254 445 test-generation runs
(consuming 3.0 years of CPU time). The prerun test-suite validation consisted of
338 710 single test-suite validation runs in 152 run sets (validator × property) (con-
suming 63 days of CPU time). The CPU energy was not measured during preruns.

New Test-Suite Generators. To acknowledge the test-suite generators that
participated for the first time in Test-Comp, we list the test generators that
participated for the first time. ESBMC-kind new, FuSeBMC_IA new, and WASP-
C new participated for the first time in Test-Comp 2023, and Legion/SymCC
participated first in Test-Comp 2022. Table 8 reports also the number of sub-
categories in which the tools participated.
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Table 7: Overview of the top-three test generators for each category (measurement
values for CPU time and energy rounded to two significant digits)

Rank Tester Score CPU CPU
Time Energy
(in h) (in kWh)

Cover-Error
1 FuSeBMC 936 72 0.96
2 VeriFuzz 909 4.5 0.049
3 FuSeBMC_IA new 908 37 0.48

Cover-Branches
1 FuSeBMC 1678 720 9.2
2 VeriFuzz 1546 730 9.1
3 FuSeBMC_IA new 1538 470 6.0

Overall
1 FuSeBMC 2813 790 10
2 VeriFuzz 2673 730 9.2
3 FuSeBMC_IA new 2666 500 6.5

Table 8: New test-suite generators in Test-Comp 2022 and Test-Comp 2023;
column ‘Sub-categories’ gives the number of executed categories

Tester Language First Year Sub-categories

ESBMC-kind new C 2023 14
FuSeBMC_IA new C 2023 30
WASP-C new C 2023 30

Legion/SymCC C 2022 16

Quantitative Results. The quantitative results are presented in the same
way as last year: Table 6 presents the quantitative overview of all tools and all
categories. The head row mentions the category and the number of test-generation
tasks in that category. The tools are listed in alphabetical order; every table
row lists the scores of one test generator. We indicate the top three candidates
by formatting their scores in bold face and in larger font size. An empty table
cell means that the test generator opted-out from the respective main category
(perhaps participating in subcategories only, restricting the evaluation to a specific
topic). More information (including interactive tables, quantile plots for every
category, and also the raw data in XML format) is available on the competition
web site 11 and in the results artifact (see Table 3). Table 7 reports the top three
test generators for each category. The consumed run time (column ‘CPU Time’)
is given in hours and the consumed energy (column ‘Energy’) is given in kWh.

11 https://test-comp.sosy-lab.org/2023/results
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Fig. 4: Number of evaluated test generators for each year (top: number of first-time
participants; bottom: previous year’s participants)
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Fig. 5: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by test-generation runs below a
certain number of test-generation tasks (y-coordinate). More details were given
previously [9]. The graphs are decorated with symbols to make them better
distinguishable without color.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [24] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The web site 11 and the results
artifact (Table 3) include such a plot for each category; as example, we show
the plot for category Overall (all test-generation tasks) in Fig. 5. We had 11 test
generators participating in category Overall, for which the quantile plot shows
the overall performance over all categories (scores for meta categories are nor-
malized [6]). A more detailed discussion of score-based quantile plots for testing
is provided in the Test-Comp 2019 competition report [9].
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6 Conclusion

The Competition on Software Testing took place for the 5th time and provides
an overview of fully-automatic test-generation tools for C programs. A total of
13 test-suite generators was compared (see Fig. 4 for the participation numbers and
Table 4 for the details). This off-site competition uses a benchmark infrastructure
that makes the execution of the experiments fully-automatic and reproducible.
Transparency is ensured by making all components available in public repositories
and have a jury (consisting of members from each team) that oversees the process.
All test suites were validated by the test-suite validator TestCov [23] to measure
the coverage. The results of the competition are presented at the 26th International
Conference on Fundamental Approaches to Software Engineering at ETAPS 2023.

Data-Availability Statement. The test-generation tasks and results of the com-
petition are published at Zenodo, as described in Table 3. All components and data
that are necessary for reproducing the competition are available in public version
repositories, as specified in Table 2. For easy access, the results are presented also
online on the competition web site https://test-comp.sosy-lab.org/2023/results.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) — 418257054 (Coop).
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Abstract. The cooperative verification of Bounded Model Checking and Fuzzing
has proved to be one of the most effective techniques when testing C programs.
FuSeBMC is a test-generation tool that employs BMC and Fuzzing to produce
test cases. In Test-Comp 2023, we present an interval approach to FuSeBMC IA,
improving the test generator to use interval methods and abstract interpretation
(via Frama-C) to strengthen our instrumentation and fuzzing. Here, an abstract
interpretation engine instruments the program as follows. It analyzes different
program branches, combines the conditions of each branch, and produces a Con-
straint Satisfaction Problem (CSP), which is solved using Constraint Program-
ming (CP) by interval manipulation techniques called Contractor Programming.
This process has a set of invariants for each branch, which are introduced back
into the program as constraints. Experimental results show improvements in re-
ducing CPU time (37%) and memory (13%), while retaining a high score.

Keywords: Automated Test-Case Generation · Bounded Model Checking · Fuzzing
· Abstract Interpretation · Constraint Programming · Contractors.

1 Introduction
In Test-comp 2022 [1], cooperative verification tools showed their strength by being
the best tools in each category. FuSeBMC [9,10] is a test-generation tool that employs
cooperative verification using fuzzing and BMC. FuSeBMC starts with the analysis to
instrument the Program Under Test (PUT); then, based on the results from BMC/AFL,
it generates the initial seeds for the fuzzer. Finally, FuSeBMC keeps track of the goals
covered and updates the seeds, while producing test cases using BMC/Fuzzing/Selec-
tive fuzzer. This year, we introduce abstract interpretation to FuSeBMC to improve the
test case generation. In particular, we use interval methods to help our instrumentation
and fuzzing by providing intervals to help reach (instrumented) goals faster. The selec-
tive fuzzer is a crucial component of FuSeBMC, which generates test cases for uncov-
ered goals based on information obtained from test cases produced by BMC/fuzzer [9].
This work is based on our previous study, where CSP/CP by contractor techniques are
applied to prune the state-space search [12]. Our approach also uses Frama-C [4,8] to
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obtain variable intervals, further pruning the state space exploration. Our original con-
tributions are: (1) improve instrumentation to allow abstract interpretation to provide
information about variable intervals; (2) apply interval methods to improve the fuzzing
and produce higher impact test cases by pruning the search space exploration; (3) re-
duce the usage of resources (incl. memory and CPU time).

2 Interval Analysis and Methods for Test Case Generation
FuSeBMC IA improves the original FuSeBMC using Interval Analysis and Methods [3].
Fig. 1 illustrates the FuSeBMC IA’s architecture. Our approach starts from the analy-
sis phase of FuSeBMC [9,10]. It parses statement conditions required to reach a goal,
to construct a Constraint Satisfaction Problem/Constraint Programming (CSP/CP) [5]
with three components: constraints (program conditions), variables (used in a condi-
tion), and domains (provided by the static analyzer Frama-C via eva plugin [7]). We
instrument the PUT with Frama-C intrinsic functions to obtain the domains, which gen-
erate intervals of a given set of variables at a specific program location. Then, we apply
the contractor to each goal’s CSP and output the results to a file used by the selective
fuzzer. Contractor Programming is a set of interval methods that estimate the solution

FuSeBMC_IA: Interval Analysis and Methods for Test Case Generation

FuSeBMC v4 Test-Generation

Tracer

Selective 
fuzzer Engines

PropertyC Code

FuSeBMC analysis

Analyze and 
Inject

Test-cases

Interval Analysis & Methods

Parse conditions & 
Create CSP/CP Domains reduction Apply Contractors

Intervals files
Static Analyser
(Frama-C eva)

Instrumented file

Seed Generation

BMC/AFL

Seeds

Fig. 1: FuSeBMC IA’s architecture. The changes introduced in FuSeBMC IA for Test-Comp 2023 are highlighted in green.
The new Interval Analysis & Methods component generates intervals to be used by the selective fuzzer.

of a given CSP [5]. The used contractor technique is the Forward-Backward contractor,
which is applied to a CSP/CP with a single constraint [3], which is implemented in the
IBEX library [6]. IBEX is a C++ library for constraint processing over real numbers that
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implement contractors. More details regarding contractors can be found in our current
work-in-progress [12].

Parsing Conditions and CSP/CP creation for each goal. While traversing the PUT
clang AST [2], we consider each statement’s conditions that lead to an injected goal: the
conditions are parsed and converted from Clang expression [2] to IBEX expression [6].
The converted expressions are used as the constraints in CSP/CP to create a contractor.
After parsing the goals, we have a CSP/CP for each goal. In case of a goal does not have
a CSP/CP, the intervals for the variables are left unchanged. We also create a constraint
for each condition in case of multiple conditions and take the intersection/union. At the
end of this phase, we have a list of each goal and its contractor. Also, a list of variables
for each contractor will be used to instrument the Frama-C file in the next phase.

Instrumented file for Frama-C Intervals fileInstrumented file
Fig. 2: The figure illustrates an example of files produced. We are starting from the instrumented file that shows the goals
injected. Then, we instrument the file with the Frama-C intrinsic function. Finally, we produce a file with each goal and the
intervals to satisfy the conditions for each goal.

Domains reduction. In this step, we attempt to reduce the domains (primarily starting
from (−∞,∞)) to a smaller range. This is done via Frama-C eva plugin (evolved value
analysis) [7]. First, during the instrumentation, we make an instrumented file aimed to
be used by Frama-C using its intrinsic functions Frama c show each() (cf. Fig. 2).
This function allows us to add custom text to identify goals and how many variables are
in each call. Second, we run Frama-C to obtain the new variable intervals. Finally, we
update the domains for the corresponding CSP/CP.

Applying contractors. Contractors will help prune the domains of the variables by
removing a subset of the domain that is guaranteed not to satisfy the constraints. With all
the components for a CSP/CP available, we now apply the contractor for each goal and
produce the output file in Figure 2. The result will be split per goal into two categories.
The first category lists each variable and the possible intervals (lower bound followed
by upper bound) to enter the condition given. The second category contains unreachable
goals, i.e. when the contractor result is an empty vector.

Selective Fuzzer. The Selective Fuzzer parses the file produced by the analyzer, ex-
tracts all the intervals, applies these intervals to each goal, and starts fuzzing within the
given interval. Thus, pruning the search space from random intervals to informed inter-
vals. The selective fuzzer will also prioritize the goals with smaller intervals and set a
low priority to goals with unreachable results.
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3 Strengths and Weaknesses
Using abstract interpretation in FuSeBMC IA improved the test-case generation regard-
ing resources. The new contractors generated by the Interval Analysis and Methods
component are used by our selective fuzzer: (1) the information provided helps the
selective fuzzer to start from a given range of values rather than a random range (as
was our strategy in the previous version); (2) the selective fuzzer uses the information
about unreachable goals to set their priority low for reachability; (3) when compared
to FuSeBMC v4, this improvement helped saving CPU time by 37% and memory by
13%, which leads to saving 40% of energy; (4) although our approach produces fewer
test cases for a given category, the impact of these test cases is higher in terms of reach-
ing instrumented goals; (5) there is potential for future work to use the information
provided by Frama-C, especially regarding overflow warnings. Finally, the intervals
provided may not affect the FuSeBMC IA’s outcome in the worst case. i.e., the selec-
tive fuzzer performs no better than not having interval information for seed generation.
The time it takes to generate the intervals is only a tiny fraction of the time it takes to
produce the test cases; its impact when the information is not useful is negligible.

Our approach suffers from a significant technical limitation: FuSeBMC IA cannot
create complementary contractors; we can only create intervals that satisfy the con-
straints of a branch (i.e., outer contractors). In practice, we can only create intervals
to if-statements and ignore its else-statements (the inner contractor). We also skip
any if-statement inside else-statements, as this may lead to unsound intervals. This
is a technical limitation rather than a theoretical one: we use run-time type informa-
tion (RTTI) to identify ibex expressions. However, we link our tool with Clang, which
requires compilation with no RTTI information. We are investigating approaches to
address this limitation, e.g., to encapsulate all ibex expressions and manually store ex-
pression information, but currently, no proper fix has been implemented. Additionally,
a bug has been found that caused FuSeBMC IA to crash on some benchmarks that made
FuSeBMC IA scores much less than FuSeBMC in the coverage category.

4 Tool Setup and Configuration
When running FuSeBMC IA, the user is required to set the architecture with -a, the
property file path with -p, and the benchmark path, as:

fusebmc.py [-a {32, 64}] [-p PROPERTY FILE]
[-s {kinduction,falsi,incr,fixed}][BENCHMARK PATH]

For Test-Comp 2023, FuSeBMC IA uses incr for incremental BMC, which relies on
the ESBMC’s symbolic execution engine [11]. The fusebmc.py and FuSeBMC.xml
files are the Benchexec tool info module and the benchmark definition file respectively.

5 Software Project
FuSeBMC IA is publicly available on GitHub1 under the terms of MIT License. In the
repository, FuSeBMC IA is implemented using a combination of Python and C++. Build
instructions and dependencies are all available in README.md file. FuSeBMC IA is a
fork of the main project FuSeBMC available on GitHub2.

1 https://github.com/Mohannad-Aldughaim/FuSeBMC IA
2 https://github.com/kaled-alshmrany/FuSeBMC
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6 Data-Availability Statement
All files necessary to run the tool are available on Zenodo [13].
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sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons license and indicate if changes were made.
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