
Artificial Intelligence: Foundations, Theory, and Algorithms

Qionghai Dai
Yue Gao

Hypergraph
Computation

Artificial Intelligence: Foundations, Theory,
and Algorithms

Series Editors

Barry O’Sullivan, Dep. of Computer Science, University College Cork, Cork,
Ireland

Michael Wooldridge, Department of Computer Science, University of Oxford,
Oxford, UK

Artificial Intelligence: Foundations, Theory and Algorithms fosters the dissemina-
tion of knowledge, technologies and methodologies that advance developments in
artificial intelligence (AI) and its broad applications. It brings together the latest
developments in all areas of this multidisciplinary topic, ranging from theories
and algorithms to various important applications. The intended readership includes
research students and researchers in computer science, computer engineering,
electrical engineering, data science, and related areas seeking a convenient way to
track the latest findings on the foundations, methodologies, and key applications of
artificial intelligence.

This series provides a publication and communication platform for all AI topics,
including but not limited to:

• Knowledge representation
• Automated reasoning and inference
• Reasoning under uncertainty
• Planning, scheduling, and problem solving
• Cognition and AI
• Search
• Diagnosis
• Constraint processing
• Multi-agent systems
• Game theory in AI
• Machine learning
• Deep learning
• Reinforcement learning
• Data mining
• Natural language processing
• Computer vision
• Human interfaces
• Intelligent robotics
• Explanation generation
• Ethics in AI
• Fairness, accountability, and transparency in AI

This series includes monographs, introductory and advanced textbooks, state-of-the-
art collections, and handbooks. Furthermore, it supports Open Access publication
mode.

Qionghai Dai • Yue Gao

Hypergraph Computation

Qionghai Dai
Department of Automation
Tsinghua University
Beijing, China

Yue Gao
School of Software
Tsinghua University
Beijing, China

This work was supported by Tsinghua University

ISSN 2365-3051 ISSN 2365-306X (electronic)
Artificial Intelligence: Foundations, Theory, and Algorithms
ISBN 978-981-99-0184-5 ISBN 978-981-99-0185-2 (eBook)
https://doi.org/10.1007/978-981-99-0185-2

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
https://doi.org/10.1007/978-981-99-0185-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

Artificial Intelligence is now everywhere and fuels both industry and daily life all
over the world. We are in the era of “big data,” and huge sums of information can
be obtained which are too cumbersome for people to process themselves. These
big data are even with much complex correlations behind them in various areas,
such as computer vision and social media. For example, the complex correlations
among pixels in an image reveal its semantic information, and different types of
correlations among social posts infer the users’ emotions. Therefore, developing
effective AI methods to exploit such complex data correlations has become an urgent
but challenging task.

Graph has been widely used to formulate data correlations. A graph is a non-
linear data structure which is composed of groups of vertices and edges, representing
the pairwise correlations among vertices. Graph learning and graph neural networks
have attracted much attention in both research and industrial fields and become very
hot topics in these years. It is noted that the world is far more complex than just
pairwise connections, and thus graph-based methods still have limitations on high-
order correlation modeling.

Hypergraph, as a generation of graph, is able to formulate such high-order
correlations among the data and has been investigated in last decades. Recent years
have witnessed a great popularity of research on hypergraph-related AI methods,
which have been used in computer vision, social media analysis, and etc. We noticed
that there still has not been a theoretical book to systematically introduce the recent
achievements in this field and then started preparation of this book. We summarize
these attempts as a new computing paradigm, called hypergraph computation, which
is to formulate the high-order correlations underneath the data using hypergraph,
and then conduct semantic computing on the hypergraph for different applications.

In this book, we introduce recent progress in hypergraph computation, from
hypergraph modeling to hypergraph neural networks. The applications of hyper-
graph computation are also discussed. We also summarize the recent achievements
and useful tools in hypergraph computation. This book can be regarded as both a
theoretical book and a manual on how to use hypergraph computation in practice.

v

vi Preface

Book Organization

This book includes 13 chapters with 3 parts. The first part introduces the fundamen-
tal knowledge of hypergraph computation. In this part, Chap. 1 depicts the basic
knowledge, applications, and history of hypergraph. The mathematical foundations
of hypergraph are introduced in Chap. 2. Three general paradigms of hypergraph
computation are provided in Chap. 3.

The second part focuses on hypergraph modeling and learning techniques. The
first step of hypergraph computation is to construct a hypergraph to formulate the
high-order correlations among data, which is provided in Chap. 4. Typical hyper-
graph computation tasks are then provided in Chap. 5, including label propagation,
data clustering, cost-sensitive learning, and link prediction. We further introduce the
hypergraph structure evolution methods for hypergraph optimization in Chap. 6. The
neural networks on hypergraph are introduced in Chap. 7. The practical applications
of hypergraph computation require the capability of handling large-scale data.
Therefore, we give an extensive introduction to large-scale hypergraph computation
in Chap. 8.

The third part introduces the applications of hypergraph computation in several
fields, including social media analysis in Chap. 9, medical and biological appli-
cations in Chap. 10, and computer vision in Chap. 11. This part also introduces
the DeepHypergraph library, a hypergraph computation library based on Python,
in Chap. 12, and the future advancement of hypergraph computation research in
Chap. 13.

Prerequisites

This book is designed for advanced undergraduate and graduate students, postdoc-
toral researchers, lecturers, researchers, and industrial engineers, as well as anyone
interested in AI, especially hypergraph computation. The readers are expected to
have basic knowledge in probability, linear algebra, and machine learning. Graph
theory could be a good prior before reading this book, but not mandatory. Besides
the theoretical part from Section 3 to Section 8, we have also provided a series of
applications from Section 9 to Section 11, which can be used as guidelines for the
deployment of hypergraph computation in practice.

Preface vii

Contact Information

We welcome any feedback, corrections, and suggestions on the book, which may be
sent to gaoyue@tsinghua.edu.cn. The readers can also find updates about the book
from the personal homepage at www.gaoyue.org.

Beijing, China Qionghai Dai
December 2022 Yue Gao

www.gaoyue.org
www.gaoyue.org
www.gaoyue.org

Acknowledgments

The authors would like to acknowledge the support and contributions of research
collaborators, who have provided insightful comments and suggestions. For the
whole book, we thank Yifan Feng, Shuyi Ji, Yutong Jiang, Qingmei Tang, Jielong
Yan, Xinwei Zhang, Yubo Zhang, Zizhao Zhang, and Hao Zhong for the preparation
of initial drafts, and thank Jialiang Cheng, Yue Dai, Lou Fang, Jiashu Han, Jiangang
Huang, Kejie Huang, Tao Jin, Renjie Li, Zhi Li, Jun Ma, Bohua Wang, Yuehang
Wang Xu Wu, Chengwu Yang, Yifan Zhang, and Zhikuan Zhou for proofreading
and corrections.

We started the plan for this book in 2018 and finished the preparation in 2022. We
sincerely thank the Springer Senior Editor, Dr. Celine Lanlan Chang, for providing
insightful comments and suggestions during the preparation of this book. We are
also grateful to Springer’s production editor, Jayesh Kalleri, for offering invaluable
help during the preparation of this manuscript.

Also special thanks to Dr. Shihui Ying, for patiently discussing the book frame-
work and reviewing early versions of this manuscript and high-quality suggestions
which have significantly improved this book.

We also give our appreciations to our organizations, Department of Automa-
tion at Tsinghua University, School of Software at Tsinghua University, Institute
for Brain and Cognitive Sciences at Tsinghua University (THUIBCS), and the
Broadband Network and Digital Multimedia Lab at Tsinghua University, who have
provided outstanding supports and facilities for preparing this book.

Finally, and most importantly, a very heartfelt thank you to our families, for their
constant support, encouragement, patience, and understanding during the whole
journey.

This book is supported by the Natural Science Foundation of China (62088102
and U1701262).

ix

Contents

1 Introduction . 1
1.1 Background . 1
1.2 The Definition of Hypergraph . 5
1.3 Applications of Hypergraph . 7
1.4 The History of Studies on Hypergraph . 9

1.4.1 Topology and Coloring on Hypergraph. 9
1.4.2 Hypergraph Partitioning, Clustering, and

Machine Learning . 9
1.4.3 Deep Learning on Hypergraph . 10

1.5 Hypergraph Computation: Challenges and Objectives 11
1.6 Structure of This Book . 13
1.7 Summary. 14
References . 14

2 Mathematical Foundations of Hypergraph . 19
2.1 Introduction . 19
2.2 Preliminary Knowledge of Hypergraph . 20

2.2.1 Undirected Hypergraph . 20
2.2.2 Directed Hypergraph . 22
2.2.3 Probabilistic Hypergraph . 23
2.2.4 K-Uniform Hypergraph . 24
2.2.5 Hypergraph and Bipartite Graph . 24
2.2.6 The Weights on Hypergraph . 26

2.3 Comparison Between Graph and Hypergraph . 27
2.3.1 Low-Order Versus High-Order Correlations 27
2.3.2 Adjacency Matrix Versus Incidence Matrix 28
2.3.3 Structure Transformation from Hypergraph to Graph 29
2.3.4 Random Walks on Graph and Hypergraph 34

2.4 Summary. 38
References . 39

xi

xii Contents

3 Hypergraph Computation Paradigms . 41
3.1 Introduction . 41
3.2 Intra-hypergraph Computation . 42
3.3 Inter-hypergraph Computation. 42
3.4 Hypergraph Structure Computation . 44
3.5 Summary. 46
References . 46

4 Hypergraph Modeling . 49
4.1 Introduction . 49
4.2 Implicit Hypergraph Modeling . 50

4.2.1 Distance-Based Hypergraph Generation 51
4.2.2 Representation-Based Hypergraph Generation 54

4.3 Explicit Hypergraph Modeling . 57
4.3.1 Attribute-Based Hypergraph Generation 57
4.3.2 Network-Based Hypergraph Generation 59

4.4 Typical Examples of Hypergraph Modeling . 61
4.4.1 Computer Vision . 61
4.4.2 Recommender System. 63
4.4.3 Computer-Aided Diagnosis . 65
4.4.4 Brain Network . 66

4.5 Hypergraph Modeling in Next Stage . 67
4.5.1 Adaptive Hypergraph Modeling . 67
4.5.2 Generative Hypergraph Modeling . 68
4.5.3 Knowledge Hypergraph Generation . 68

4.6 Summary. 69
References . 69

5 Typical Hypergraph Computation Tasks . 73
5.1 Introduction . 73
5.2 Label Propagation on Hypergraph . 75
5.3 Data Clustering on Hypergraph. 82
5.4 Cost-Sensitive Learning on Hypergraph . 86
5.5 Link Prediction on Hypergraph . 93
5.6 Summary. 97
References . 98

6 Hypergraph Structure Evolution . 101
6.1 Introduction . 101
6.2 Hypergraph Component Optimization . 102

6.2.1 Hyperedge Weight Optimization. 102
6.2.2 Vertex Weight Optimization. 105
6.2.3 Sub-hypergraph Weight Optimization . 107

6.3 Hypergraph Structure Optimization . 110

Contents xiii

6.4 Incremental Learning on Growing Data. 114
6.5 Summary. 119
References . 119

7 Neural Networks on Hypergraph . 121
7.1 Introduction . 121
7.2 Spectral-Based Neural Networks on Hypergraph. 123

7.2.1 Hypergraph Neural Networks . 123
7.2.2 Hypergraph Convolution and Hypergraph Attention 127
7.2.3 Hyperbolic Hypergraph Neural Networks 128

7.3 Spatial-Based Neural Networks on Hypergraph . 131
7.3.1 General Hypergraph Neural Networks . 131
7.3.2 Dynamic Hypergraph Neural Networks 135

7.4 Comparison Between Graph and Hypergraph Neural Networks. . . 137
7.4.1 Spectral Perspective . 139
7.4.2 Spatial Perspective. 140

7.5 Summary. 140
References . 142

8 Large Scale Hypergraph Computation . 145
8.1 Introduction . 145
8.2 Factorization-Based Big-Hypergraph Modeling . 146
8.3 Hierarchical Hypergraph Modeling . 151
8.4 Summary. 155
References . 156

9 Hypergraph Computation for Social Media Analysis 159
9.1 Introduction . 159
9.2 Recommender System . 161

9.2.1 Collaborative Filtering . 162
9.2.2 Attribute Inference. 168

9.3 Sentiment Analysis . 172
9.3.1 Sentiment Prediction . 173
9.3.2 Social Event Detection . 176

9.4 Emotion Recognition. 181
9.5 Summary. 187
References . 188

10 Hypergraph Computation for Medical and Biological
Applications . 191
10.1 Introduction . 191
10.2 Computer-Aided Diagnosis . 192

10.2.1 MCI Identification Using MRI . 193
10.2.2 Medical Image Retrieval . 196
10.2.3 COVID-19 Identification Using CT Imaging 199
10.2.4 ASD Identification Using Brain Functional Networks. . . . 201

xiv Contents

10.3 Survival Prediction with Histopathological Image 204
10.3.1 Ranking-Based Survival Prediction. 205
10.3.2 Phenotypic and Topological Hypergraph Modeling 207

10.4 Drug Discovery . 210
10.5 Medical Image Segmentation . 216
10.6 Summary. 218
References . 220

11 Hypergraph Computation for Computer Vision . 223
11.1 Introduction . 223
11.2 Visual Classification. 224
11.3 3D Object Retrieval . 227
11.4 Tag-Based Social Image Retrieval . 230
11.5 Summary. 234
References . 235

12 The DeepHypergraph Library . 237
12.1 Introduction . 237
12.2 The Correlation Structures in DHG . 238
12.3 The Function Library in DHG . 239
12.4 Summary. 240
References . 240

13 Conclusions and Future Work . 241
13.1 Summary of This Book . 241
13.2 Future Work . 242

Acronyms

AD Alzheimer’s disease
AHGAE Adaptive hypergraph auto-encoder
ASD Autistic spectrum disorder
BCR Bayesian concordance readjust
b-HGFN Big-hypergraph factorization neural network
BIC Bayesian information criteria
CF Collaborative filtering
CHL Centralized hypergraph learning
CT Computed tomography
DGCNN Dynamic graph CNN
DHCF Dual-channel hypergraph collaborative filtering
DHG Deep hypergraph
DHGNN Dynamic hypergraph neural networks
DTI Drug-target interaction
FC Functional connectivity
GCNs Graph convolutional networks
GVCNN Group-view convolutional neural networks
HeteHG-VAE Hypergraph variational autoencoder
HGNN Hypergraph neural networks
HGNN+ General hypergraph neural networks
HHDTI Heterogeneous hypergraph learning method for the DTI predic-

tion
HHGNN Hyperbolic hypergraph neural network
HHPL Hierarchical hypergraph patch labeling
HINGE Hyper-relational knowledge graph embedding
Hyper-Atten Hypergraph convolution with attention
Hyper-SAGNN Self-attention-based hypergraph neural network
IGL Incremental graph learning
iMHL Inductive multi-hypergraph learning
JHyConv Jump hypergraph convolution
MAS Multi-atlas segmentation

xv

xvi Acronyms

MC Microblog clique
MCI Mild cognitive impairment
MHG Multi-modal hypergraph learning
MHGNN Multi-hypergraph neural networks
MRI Magnetic resonance imaging
m-TransH Multi-fold TransH
MVCNN Multi-view convolutional neural networks
MVHL Multi-modal vertex-weighted hypergraph learning
NaLP N-ary link prediction
NC Normal control
PER Personalized emotion recognition
TAP Tandem affinity purification
WSIs Whole-slide histopathological images

Chapter 1
Introduction

Abstract High-order correlations among data exist widely in various practical
applications. Compared with the simple graph which can only model the pairwise
relationship between two subjects, hypergraph is a flexible and representative model
to formulate high-order correlations. Based on the hypergraph model, there have
been many efforts to design the computation framework and analyze the high-
order correlations. In this chapter, we briefly introduce the hypergraph computation,
including its background, definition, history, recent challenges, and objectives.

1.1 Background

The basic elements of many natural and artificial systems have dependencies on
each other and call for correlation modeling and analytic methods to study these.
The graphs are all around us from different perspective, and in general all the
objects in the real world are defined based on their connections with other objects.
These connections can be described as a graph, which is a common data structure
in many cases. For example, graphs can depict the path in a city, where each path
is represented with an edge to show the spatial connections between two locations.
Graphs are also employed in the airline route map, in which each vertex is an airport
and each edge is an airline.

Recently, the most challenging data processing problem comes from the con-
nected data, not just from the discrete ones. How to exploit the underneath
connections behind the data has become an urgent and important task in many
applications. Generally, graph has been used to formulate such correlations among
data. A graph is a nonlinear data structure which is composed of a group of vertices
and edges. Here, the vertices in a graph represent the subjects to be analyzed, and
the edges in a graph are the lines connecting two vertices in the graph. Figure 1.1
shows an example of a graph.

As a common way to model pairwise correlations among data, the components
in a system can be represented by the vertices of a graph, and the associations
between components are described by the edges. In this way, the association
pattern is abstracted by the topological structure of the graph. In the past decades,

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1
https://doi.org/10.1007/978-981-99-0185-2_1

2 1 Introduction

Fig. 1.1 An example of a
graph

it was not easy to apply graph theory in practice because of the limitation of
computing power. In recent years, with the advancement of information technology
and computing power, graph theory has demonstrated its practical values. As scales
of data grow, scientists have come up with the concept of network science. The
study of network science can be applied in various fields. For example, by studying
the connection relationship between terminals on the Internet, the efficiency of data
transmission in a network can be estimated. The study of interpersonal relationships
can help understand the way people communicate with each other, disseminate
information, and generate community. Studying the transmission chain of infectious
diseases can help predict risks in time, thus interrupt transmission, and prevent
their spread. People have also found that many biological, social, information, and
other real networks have nontrivial structural patterns in the connections among
their elements. These patterns reflect meaningful features of the whole network. For
example, the small-world phenomenon (the average path length in the network does
not increase significantly with the increase of the network size) widely exists in
social networks [1]. Another example is scale-free network [2], in which the vertex
degree distribution follows a power-law distribution, and this phenomenon is known
in some biological metabolic networks [3].

It is noted that the world is far more complex than just pairwise connections.
Typical examples include social networks, protein–protein interaction networks,
and brain networks. In social networks, the individual characteristics of users are
related to the interactive patterns among users. The users with similar characteristics
are more likely to connect with each other to form a social group. The social
relationships of users also affect their profiling portraits. We notice that the
correlations among these uses are not just pairwise connections but also group-like
connections, which are more complex than these pairwise connections. Figure 1.2
shows an example of social connections, in which each user could have different
types of connections with two or more other users or items.

In human brain networks, the cerebral cortex contains more than .1011 neurons
and a cluster of neurons with similar functions and connections forms a nucleus. The
nuclei can be further divided into different brain regions, resulting in a multilevel
and multi-scale complex brain network. For example, the whole brain map includes
Insula and Cingulate Gyri, Frontal Lobe, Occipital Lobe, Parietal Lobe, and other
regions, which can be further divided into 90 brain regions that are provided in AAL
atlas [4], such as Hippocampus and Parahippocampus. Each neuron can have more
than 10,000 synapses, which can connect the neurons in the brain to other neurons in

1.1 Background 3

Fig. 1.2 An illustration of pairwise correlations and high-order correlations between/among users

the rest of the body or connect the neurons to the muscles. The connections among
the neurons are complex and hard to be formulated in a graph, although graph is a
typical way to model such correlations in the brain.

Such complex correlations, i.e., the high-order correlation rather than pairwise
ones, are very common in real-world data. To study these complex systems, it
is necessary to characterize and analyze high-order relationships between their
elements. Empirical studies have shown that the correlation patterns of a system
often play an important role in functions of the system. In recent years, more
researchers have begun to pay attention to this field and apply high-order correlation
modeling and analytic methods.

At the beginning of the development of machine learning on graph and network
science, only graph has been used to model the network or the correlations, and
the associations between the elements of the system were generally described
by the topological structure of the graph. As a result, the pairwise connections
can be described in the graph, while a large amount of semantic information
in the system could be lost, and descriptive features in the network could not
be extracted. Some well-discussed network properties, such as degree centrality,
semi-locality centrality, and closeness centrality, were all based on such a static
single network model. The underneath high-order information behind the data has
to be degenerated to pairwise ones for processing, which may lead to serious
information loss. With the development of big data, the explosive growth of
data demonstrates their complexity and diversity, which calls for more complex
data modeling methods. The network modeling methods for complex data types,
complex topological structures, and complex connection patterns emerge. For
example, the social closeness between individuals in a social network can be strong
or weak, and a system with weight distribution for the association between vertices
can be modeled using a weighted network [5]. Also, the power network and the
communication network are inter-dependent in infrastructure construction. The
vertices of the communication network provide control signals to the vertices of
the power network, whereas the vertices of the power network supply power to
the vertices of the communication network. The interdependence between different
networks can be modeled using an inter-dependent graph [6]. Another example is
the air transportation network, where the routes between the vertices may belong to
different airlines. For the heterogeneity of object types and association relationships,

4 1 Introduction

the concept of multi-layer network or graph has been proposed [7]. The last example
is that the ecological food chain in the species network changes with the change of
seasonal environmental conditions. For dynamic systems, the concept of temporal
network has been introduced [8] to formulate the correlation among the subjects.

Although graph-based methods have been developed for decades and great
progresses have been achieved, they still have limitations. These graph models
can better formulate the binary relationships between the elements in the system,
while they may ignore the high-order correlations among three or more elements.
In recent years, many studies have shown that modeling and optimizing high-
order correlations are even more important in most of the applications [9–11].
For example, in the biosphere system, the high-order interactions between species
ensure stable diversity of species [10]. The high-order characteristics of different
networks can effectively distinguish their fields [11]. With the rapid development
of network science, the complexity of data and correlation increase rapidly. In the
fields of biological information, social computing, and image processing, there are
a large number of multi-modal, heterogeneous, high-level data, and there are needs
for effective high-order correlation modeling and optimization methods.

As the subject of interdisciplinary study in many different fields including
computer science, physics, and biology, high-order correlation modeling and opti-
mization have attracted much attention in recent decades. There are a large number
of high-order relationships in many systems in the real world [12]. For example,
in social networks, people form groups of three or more to communicate, and
in academic networks, multiple authors cooperate to write an article. Protein
interactions in biological networks may occur between multiple proteins, and gene
expression is driven by high-order interactions between biomolecules [13]. High-
order associations among elements are difficult to be described by the topology
of simple graphs. Under such circumstances, the corresponding mathematical
expressions have been introduced, such as set systems [14], simplicial complexes,
and hypergraphs [15]. However, how to deploy the mathematical expressions in
computation paradigm is still an open problem. The complexity of high-order
correlations is much higher than that of pairwise correlations, which brings about
new challenges to computation paradigms.

Hypergraph, as a generation of graph, which is able to formulate high-order
correlations among the data, has been investigated recently. In this book, we
introduce recent progress on hypergraph computation, from hypergraph modeling
to hypergraph neural networks. Below we first introduce the basic definitions of
hypergraph and then show the applications and research history of hypergraph.
Finally, we provide the summary of our works in hypergraph computation and the
structure of this book.

1.2 The Definition of Hypergraph 5

1.2 The Definition of Hypergraph

The hypergraph is an important concept in discrete mathematics, which is a
generalization of the graph. Therefore, many concepts of hypergraphs can be defined
related to the well-known definition of graphs. A hypergraph is defined as a pair of
hypervertex set and hyperedge set. The hypervertex set, also called the vertex set,
is a finite set, whereas the hyperedge represents the subset of the vertex set. As the
hyperedge can connect any number of vertices, more general types of relationships
could be modeled by hypergraphs rather than graphs. The order and the size of the
hypergraph can be defined based on the vertex set and hyperedge set, i.e., the order
of the hypergraph represents the cardinality of the vertex set, and the size of the
hypergraph denotes the cardinality of the hyperedge set.

Similar to graphs, two specific types of hypergraphs can be defined, including
the empty hypergraph and the trivial hypergraph.

• The empty hypergraph is the hypergraph with empty vertex set and empty
hyperedge set.

• The trivial hypergraph is the hypergraph with nonempty vertex set and empty
hyperedge set.

Generally speaking, unless stated otherwise, hypergraphs have a nonempty vertex
set and nonempty hyperedge set and do not contain empty hyperedges.

The isolated vertex denotes the vertex which is not contained in any of the
hyperedges. Two vertices are adjacent if there exists a hyperedge containing both
of these two vertices. Two hyperedges are incident if they have a nonempty
intersection.

The sub-hypergraph and partial hypergraph can be defined as follows:

• An induced sub-hypergraph of given hypergraph is the hypergraph whose vertex
set is the subset of the given hypergraph, and the hyperedges have only one
element or the intersection of the vertex set no less than two.

• A sub-hypergraph of the given hypergraph is the hypergraph whose both the
vertex set and the hyperedge set are the subset of that of the given hypergraph.

• A partial hypergraph is a hypergraph whose hyperedge set is the subset of the
given hypergraph.

Two special types of the hypergraph can be defined based on the degree:

• A regular hypergraph is the hypergraph in which all of the vertices have the same
degree.

• A uniform hypergraph is the hypergraph in which all of the hyperedges have the
same degree.

The concept of connectivity is defined as follows. The loop denotes the hyper-
edge with only one element. The path is a vertex–hyperedge alternative sequence,
where the vertex belongs to the consecutive hyperedge in the sequence. The cycle
is a path whose first vertex is the same as the last vertex. The length of a path is the

6 1 Introduction

Fig. 1.3 An example of a
hypergraph

number of vertices in the path. A path connects two vertices if these two vertices are
in the path. A hypergraph is connected if any pair of vertices is connected, otherwise
it is disconnected. The distance between two vertices is the minimum length of the
path connecting these two vertices. The diameter of the hypergraph is the maximum
distance among all pairs of vertices.

Here, we provide an example of a hypergraph in Fig. 1.3. In this hypergraph, there
are 11 vertices and 5 hyperedges. In this hypergraph, the hyperedge . e1 connects
vertices . x1, . x2, . x3, and . x4. The hyperedge . e2 connects . x4, . x6, . x7, and . x8. The
hyperedge . e3 connects . x5 and . x6. The hyperedge . e4 connects . x1, . x5, and . x8. The
hyperedge . e5 is a loop, which only connects vertex . x10 itself. Vertices . x9 and . x11
are two isolated vertices. The hypergraph is disconnected since . x11 is not connected
with any other vertex. .x3 → e1 → x1 → e3 → x8 → e2 → x7 is a path from . x3 to
. x7, with length 4. The distance between . x4 and . x5 is 3 since the shortest path from
. x4 to . x5 is .x4 → e2 → x8 → e4 → x5.

Besides Fig. 1.3, there are also other typical illustrations of hypergraph, which are
shown in Fig. 1.4. In Fig. 1.4a, each circular represents a hyperedge. In Fig. 1.4b, all
the lines with the same color represent a hyperedge, which connect the vertices in
the hyperedge. In Fig. 1.4c, each hollow circle indicates a hypergraph and the lines
with the same color link the vertices in the hyperedge.

It is noted that the hypergraph-type structures may be not explicit in many
applications and they are hidden behind the data which can be observed directly.
In some cases, we may only capture some pairwise correlations among the data,
while the high-order correlation is needed to the regenerated based on these
observations. For example, some popular citation networks, such as Cora, Citeseer,
and PubMed [16], are widely used for analysis, while all these datasets only contain
graph-type data, which treat the articles as vertices and the citation relationships as

1.3 Applications of Hypergraph 7

Fig. 1.4 Three typical hypergraph illustrations

links. Under such circumstances, to exploit the high-order correlation among these
data, we need to transform these data to a hypergraph. As a typical method, a co-
authorship hypergraph can be generated, which formulates the articles as vertices,
and articles with the same authors are connected by a hyperedge. In a similar way,
a co-citation hypergraph can be generated, which treats the articles as vertices as
well, and the articles with the same citation are treated as a hyperedge.

1.3 Applications of Hypergraph

Hypergraph has been applied across several disciplines, including biology, eco-
nomics, and sociology, due to its superiority in complex correlations modeling,
which has promoted intelligent applications. In this part, we introduce several
typical applications of hypergraphs to help understand this powerful tool.

One representative application is social computing. The social media data have
been increasing rapidly over the past couple of decades, which can provide potential
population-level insights. The hypergraph [17] is a useful tool for discovering the
complex and hidden correlations from the data, in which the hypergraph structure
can be used to formulate the high-order correlation in social networks.

In recommender system, the hypergraph is used to model the user–item network,
to profile the user, and to further predict the preferences (future interactions). Given
the raw user–item network without other information than the historical interactions
between users and items, hypergraph [17] can be used to discriminatively formulate
the high-order connectivities among users and items separately and conduct the
collaborative filtering task. Sometimes the users and the items may be attached
with different attributes or properties. For example, the user-side information
may include the gender, age, and personality, and the item-side information may
contain the category, text description, and image. This attribute information can
help capture the user’s preference. Therefore, another application of hypergraphs in
recommender system is attribute modeling and inference.

Another popular yet challenging social media computing application is sentiment
analysis, with the goal of recognizing the real emotions and attitudes of people in

8 1 Introduction

social media contexts. Nevertheless, the multi-modality and complexity of social
media data have made the task more difficult. For example, the text, images, and
videos may coexist in one tweet. Additionally, there are intricate relationships
between posts, such as in the dimensions of time, location, and user preferences.
Therefore, how to find out the complex relationship between tweets and analyze the
user sentiment has become an urgent issue. To this end, hypergraph [18] can be used
to formulate the correlation among each sample and conduct robust and accurate
multi-modal sentiment prediction, taking into consideration different moods having
their own characteristics, and that sentiment analysis should be based on the joint
analysis of multiple information. As far as social event detection is concerned,
exploring a set of highly related posts becomes more important because of noise
and insufficient content in a single post that fails to convey clear and comprehensive
information. Hypergraph [19] can be used to characterize the relationship between
heterogeneous data among different tweets for its superiority in modeling high-order
correlations between data of various posts, modalities, and times, therefore enabling
real-time social event detection. Specifically, each microblog is connected with its
several textual-related and visual-related microblogs and forms two hyperedges.
Next, the microblog clique, a basic unit consisting of a set of highly related tweets,
is produced by using the hypergraph cut method to put together microblogs that are
about the same subject.

Hypergraph has also shown its advantage in medical and biological applications.
In the past few decades, massive amounts of biological and medical data have
been produced. The data is complex, heterogeneous, and multi-modal, with inter-
woven inter- and intra-data correlations. By concatenating hyperedge groups, the
hypergraph [20–22] can naturally accommodate multi-modal or heterogeneous data.
Moreover, in doing so, it can discriminatively use the complementary information
among these data. The pipeline below can be used to describe how hypergraph com-
putation is used in biological and medical tasks: (1) modeling the medical image,
patches, or biological entities as vertices and connecting them with hyperedges
based on their feature similarity or high-order topological links and (2) learning
high-order correlations between data using a series of hypergraph computation
methods. In this type of applications, hypergraph has been used for mild cognitive
impairment (MCI) identification using magnetic resonance imaging (MRI) [23],
COVID-19 identification using CT imaging [24], ASD identification using brain
functional networks [25], medical image retrieval [26], etc.

The aforementioned examples are just a small part of hypergraph applications.
Hypergraph computation techniques can be used in any cases where there exist high-
order and complex correlations among data, such as computer vision, knowledge
graph, and so on.

1.4 The History of Studies on Hypergraph 9

1.4 The History of Studies on Hypergraph

1.4.1 Topology and Coloring on Hypergraph

The studies of utilization on hypergraph have a long history. In 1943, Prenowitz
et al. [27] first illustrated several kinds of geometries (projective, descriptive, and
spherical) as hypergroup or multigroup. Prenowitz et al. [28] created Geometries on
Join Spaces, a unique hypergroup that has been proven to be a valuable tool in the
study of a variety of topics, including graphs, hypergraphs, binary relations, fuzzy
sets, and rough sets. In 1996, Rosenberg et al. [29] first addressed the relationships
between Hyperstructures (hypergraphs) and Binary Relations in the broadest sense.
Later, they were also studied by Corsini and Leoreanu [30]. Rosenberg et al. [29]
first developed join spaces related to fuzzy sets in 1996. Corsini, Leoreanu, and
Tofan [31] have all reexamined these structures. Zahedi et al. [32] also advanced the
concepts of linking a hypergraph with a fuzzy set and examining algebraic structures
equipped with a fuzzy structure.

Hypergraph coloring is a typical and important task, which has attracted much
attention since last century. It is fundamental to combinatorics and can be used
to determine bounds for the chromatic number of some graphs as described by
Kierstead et al. [33]. Lu et al. [34] suggested these algorithms to solve different
optimization problems, such as divide and conquer and partition problems, in which
hypergraph coloring can also be used to find monochromatic paths and cycles.
Voloshin et al. [35, 36] described how to color mixed hypergraphs, which are divided
into hyperedge and anti-hyperedge families. In such a case, they further applied it
to energy supply problem.

The problem of finding large matches is closely related to the problem of
bounding the chromatic index of a hypergraph (notice that the color classes of a
proper edge-coloring form a matching). As a classical subject in the study of graphs,
matching theory is very well developed and goes back to the work [37] in the 1930s.
Tutte’s theorem [38] is a characterization of graphs that contains perfect matchings.
Edmonds et al. [39] proposed the Blossom algorithm, which uncovers a maximum
matching in a graph in a polynomial amount of time for graphs containing a perfect
matching. The above methods are early works on hypergraph-related research.

1.4.2 Hypergraph Partitioning, Clustering, and Machine
Learning

Hypergraph partition is another important problem on hypergraph. It is defined
in the Encyclopedia of Parallel Computing1 that hypergraph partitioning involves

1 https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1.

https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1
https://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_1

10 1 Introduction

dividing a hypergraph into two or more roughly equal parts in such a way that
the cost function of the hyperedge connecting vertices in the different parts is
minimized. In many cases, this definition is too restrictive and requires more than
two parts. Karypis et al. [40] proposed the hMetis algorithm, which is based on
multilevel coarsening of hypergraphs. The method iteratively bisections coarsened
hypergraphs, starting with the smallest. George et al. [41] further developed the
hMeTiS-Kway algorithm, which directly constructs a K-way partitioning of a hyper-
graph with coarse–uncoarse paradigm to solve the K-way hypergraph partitioning
problem.

Besides, Papa et al. [42] provided several methods of partitioning hypergraphs
and defines clustering as “the process of merging vertices into larger groups
of vertices known as clusters to compute a coarser hypergraph from an input
hypergraph.” A number of applications of partitioning and clustering are also
given, including VLSI design, numerical linear algebra, automated theorem proving,
and formal verification. Several applications and methods have been described in
the literature. For more details, a survey of clustering ensemble techniques has
been published in [43], which includes hypergraph partitioning techniques as well.
Multilevel strategies are often required in clustering and partitioning, which have
been well studied in previous works. It has been extensively used in VLSI design
[40], parallel scientific computing [44–46], image categorization [47], and social
networks [48, 49].

In this century, hypergraph has been used in machine learning. Transductive
hypergraph learning [48] is introduced to give the basic mathematical formulation
of the objective function for predicting labels of vertices on a hypergraph. Since
the performance of hypergraph learning is related to the modeling quality of the
hypergraph, there are some efforts to further assign weights to the components in
the hypergraph, including hyperedges, vertices, and hyperedge-dependent vertex
weights [50, 51]. To accelerate the label propagation process on hypergraph, the
cross diffusion on multiple hypergraphs is further introduced to model the high-
order correlations among multi-modal data and conduct multi-modal information
fusion [52].

1.4.3 Deep Learning on Hypergraph

Research on high-order representations of hypergraph structures has also been
inspired by deep learning’s powerful learning and modeling abilities. Generally
speaking, most deep learning methods on hypergraph can be divided into spectral-
based methods and spatial-based methods.

As for the spectral-based methods, Feng et al. [53] proposed Hypergraph Neural
Networks (HGNNs) to model non-pairwise relations based on the hypergraph
Laplacian. Multi-modal data can be naturally modeled using the proposed methods.
It is also possible to classify images using hypergraph neural networks[54].
Using tools from the spectral theory of hypergraphs, Yadati et al. [55] proposed

1.5 Hypergraph Computation: Challenges and Objectives 11

HyperGCN to train a GCN for semi-supervised learning on hypergraphs using graph
convolutional networks (GCNs). As for the spatial-based method, by extending the
dynamic hypergraph learning, Jiang et al. [56] proposed a dynamic hypergraph
neural network, which can adaptably change the hypergraph structure at each
layer. As opposed to hypergraph convolution, where the underlying structure is
defined beforehand, Bai et al. [57] proposed a hypergraph attention mechanism
strategy to learn a dynamic connection of hyperedges, which propagates and
gathers information in the task-relevant parts of the graph, thereby generating
more discriminative vertex embeddings. Moreover, Gao et al. [58] proposed a
general hypergraph neural network framework, which can be applied to multiple
types of hypergraphs like undirected hypergraph, directed hypergraph, probabilistic
hypergraph, vertex/hyperedge weighted hypergraph, etc.

For homogeneous and heterogeneous hypergraphs, Zhang et al. [59] proposed a
self-attention-based hypergraph neural network (Hyper-SAGNN). By mapping the
hypergraph to a weighted attribute line graph, Bandyopadhyay et al. [60] achieved
a bi-injective hypergraph structure. Huang et al. [61] proposed UniGNN, which
can generalize general GNN models into hypergraphs by interpreting the message
passing process in graph and hypergraph neural networks. These neural network
methods on hypergraph enable the representation learning by incorporating high-
order correlation in process.

1.5 Hypergraph Computation: Challenges and Objectives

Hypergraph has its advantage on high-order correlation modeling compared with
graph and other structures. To take this advantage in practice, hypergraph can be
used to formulate such correlations and the conduct computing task accordingly.
In this part, we summarize the objective of hypergraph computation, especially the
main challenges and the tasks inside.

Below we give the definition of hypergraph computation: hypergraph computa-
tion is to formulate the high-order correlations underneath the data using hypergraph
and then conduct semantic computing on the hypergraph for different applications.

The main challenges and objectives in hypergraph computation are from three
parts, including how to generate a hypergraph, how to deal with large scale data,
and how to conduct learning on hypergraph.

1. How to generate a hypergraph. In most cases, the hypergraph structure is
not explicitly existed. What can be observed could be non-structure data, such
as images, videos and discrete signals, and pairwise relationships between two
subjects. To reveal the underneath high-order correlation as a hypergraph, it
is needed to define how to generate it. More importantly, the observed data
could be noisy, missing, and tend to be multi-modal. How to describe these
data is also challenged. Under such circumstances, it is difficult to generate an
accurate hypergraph structure based on these data. Therefore, how to generate a

12 1 Introduction

hypergraph, especially a good hypergraph structure for specific task, is the first
challenge in practice.

2. How to deal with large scale data. Computational complexity is a major issue
for graph data, which is also very serious for hypergraph. The data in many
applications, such as social media and brain neurons, are in million level or more.
Confronting such large scale data, how to effectively and efficiently conduct
storage and computing on hypergraph require further research.

3. How to conduct learning on hypergraph. Given a hypergraph, learning task
can be conducted on the hypergraph structure, and it is important to design label
propagation method on hypergraph. Besides traditional feature representation
methods, the connections can also be used as representation. Given such high-
order correlation by hypergraph, it is useful to learn new representations on
hypergraph. Therefore, how to conduct representation learning on hypergraph
is an important topic.

Hypergraph modeling can be briefly divided into two categories, i.e., the intra-
correlation modeling and the inter-correlation modeling, as shown in Fig. 1.5. Here,
the intra-correlation modeling regards the high-order correlations inside the subject.
The components of the subject are represented as the vertices, and the correlations
among these components are represented as hyperedges in the hypergraph. In
these cases, the hypergraph, named intra-hypergraph, aims to represent the subject
itself. The inter-correlation modeling concentrates on the high-order correlations
among different subjects. A group of subjects is represented as the vertices, and the

Fig. 1.5 The intra-hypergraph and the inter-hypergraph based on the intra-correlations and the
inter-correlations among components and subjects

1.6 Structure of This Book 13

correlations among these subjects are represented as hyperedges in the hypergraph,
named inter-hypergraph. The objective is to learn the representation or connections
of the target subject with the help of its correlations to other subjects. Here
we take image representation as an example. When an image is selected as the
subject, the correlations among the pixels or the patches in the image are intra-
correlations, and the corresponding intra-hypergraph can be generated for image
representation. On the other side, we can also observe other images for processing.
The correlations among the subject image and other images are inter-correlations,
and the corresponding inter-hypergraph can be generated for image representation
too. That is to say, the intra- and inter-correlations can be regarded as the views from
different scales. If we take the subject itself as the target system, the correlations of
the subject and other subjects are inter-correlations of the subject, corresponding
to an inter-hypergraph. If we take the group of subjects as the target system, the
correlations of these subjects are intra-correlations, leading to an intra-hypergraph
accordingly.

1.6 Structure of This Book

This book is composed of 13 chapters and the structure of the remainders is
introduced here.

• Chapter 2. Mathematical Foundations of Hypergraph. This chapter introduces the
fundamental mathematics of hypergraph and presents the mathematical notations
that are used to facilitate deep understanding and analysis of hypergraph
structure.

• Chapter 3. Hypergraph Computation Paradigm. This chapter introduces three
typical hypergraph computation paradigms, including inter-representation com-
puting, inter-representation computing, and group correlation computing.

• Chapter 4. Hypergraph Modeling. This chapter introduces different hypergraph
modeling methods, including implicit hypergraph modeling and explicit hyper-
graph modeling. Examples on computer vision, recommender system, and other
applications are also provided in this chapter.

• Chapter 5. Typical Hypergraph Computation Tasks. This chapter introduces the
typical hypergraph computation tasks, including label propagation on hyper-
graph, data clustering on hypergraph, imbalanced learning on hypergraph, and
link prediction on hypergraph.

• Chapter 6. Hypergraph Structure Evolution. This chapter introduces the structure
evolution methods on the hypergraph, which optimize the hypergraph struc-
ture accordingly, including both the hypergraph component optimization and
hypergraph structure optimization. We briefly introduce the incremental learning
method on growing data.

• Chapter 7. Neural Networks on Hypergraph. This chapter introduces recent
progresses on hypergraph neural networks, including the spectral-based methods

14 1 Introduction

and the spatial-based methods. The comparison between graph neural networks
and hypergraph neural networks is also provided in this chapter.

• Chapter 8. Large Scale Hypergraph Computation. This chapter introduces how
to deal with large scale data. More specifically, two kinds of large scale
hypergraph computation methods, i.e., factorization-based hypergraph reduction
and hierarchy-based hypergraph learning, are provided in this chapter.

• Chapter 9. Hypergraph Computation for Social Media Analysis. This chapter
introduces applications of hypergraph computation on social media analysis,
including recommender system, sentiment analysis, and emotion recognition.

• Chapter 10. Hypergraph Computation for Medical and Biological Applications
This chapter introduces applications of hypergraph computation on medical and
biological applications, including computer-aided diagnosis, survival prediction
with histopathological image, drug discovery, and medical image segmentation.

• Chapter 11. Hypergraph Computation for Computer Vision. This chapter intro-
duces applications of hypergraph computation on computer vision, including
visual classification, 3D object retrieval, and tag-based social image retrieval.

• Chapter 12. The DeepHypergraph Library. This chapter introduces the DeepHy-
pergraph Library, a hypergraph computation library based on Python.

• Chapter 13. Conclusions and Future Work. This chapter concludes this book and
introduces three further research directions of hypergraph computation.

1.7 Summary

In this chapter, we introduce the basic ideas and background of hypergraph
computation. We also provide the applications and the related research history
on hypergraph. The idea of hypergraph computation is detailed introduced and
discussed in this chapter. We also summarize our studies on hypergraph computation
and present the organization of this book.

References

1. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393(6684),
440–442 (1998)

2. A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–
512 (1999)

3. A.D. Broido, A. Clauset, Scale-free networks are rare. Nat. Commun. 10(1), 1–10 (2019)
4. F. Crivello, O. Étard, N. Delcroix, B. Mazoyer, M. Joliot, Automated anatomical labeling of

activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. NeuroImage 15, 273–289 (2002)

5. E. Almaas, B. Kovacs, T. Vicsek, Z.N. Oltvai, A.L. Barabási, Global organization of metabolic
fluxes in the bacterium Escherichia coli. Nature 427(6977), 839–843 (2004)

6. A. Bashan, S. Havlin, The combined effect of connectivity and dependency links on percolation
of networks. J. Statist. Phys. 145(3), 686–695 (2011)

References 15

7. P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Community structure in time-
dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

8. A.L. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social
network of scientific collaborations. Phys. A Statist. Mech. Appl. 311(3), 590–614 (2002)

9. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple
building blocks of complex networks. Science 298(5594), 824–827 (2002)

10. J. Grilli, G. Barabás, M.J. Michalska-Smith, S. Allesina, Higher-order interactions stabilize
dynamics in competitive network models. Nature 548(7666), 210–213 (2017)

11. A.R. Benson, R. Abebe, M.T. Schaub, A. Jadbabaie, J. Kleinberg, Simplicial closure and
higher-order link prediction. Proc. Natl. Acad. Sci. 115(48), E11221–E11230 (2018)

12. A.R. Benson, D.F. Gleich, J. Leskovec, Higher-order organization of complex networks.
Science 353(6295), 163–166 (2016)

13. S. Basu, K. Kumbier, J.B. Brown, B. Yu, Iterative random forests to discover predictive and
stable high-order interactions. Proc. Natl Acad. Sci. 115(8), 1943–1948 (2018)

14. P. Frankl, Extremal set systems, in Handbook of Combinatorics, vol. 2 (Elsevier, Amsterdam,
1996), pp. 1293–1329

15. C. Berge, Hypergraphs: Combinatorics of Finite Sets (Elsevier, Amsterdam, 1984)
16. P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad, Collective classification

in network data. AI Mag. 29(3), 93–93 (2008)
17. S. Ji, Y. Feng, R. Ji, X. Zhao, W. Tang, Y. Gao, Dual channel hypergraph collaborative filtering,

in Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, (2020), pp. 2020–2029

18. R. Ji, F. Chen, L. Cao, Y. Gao, Cross-modality microblog sentiment prediction via bi-layer
multimodal hypergraph learning, IEEE Trans. Multimedia. 21(4), 1062–1075 (2019)

19. S. Zhao, Y. Gao, G. Ding, T.S. Chua, Real-time multimedia social event detection in microblog,
IEEE Trans. Cyber. 48(11), 3218–3231 (2018)

20. D. Di, S. Li, J. Zhang, Y. Gao, Ranking-based survival prediction on histopathological whole-
slide images, in Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention, (2020), pp. 428–438

21. D. Di, J. Zhang, F. Lei, Q. Tian, Y. Gao, Big-hypergraph factorization neural network for
survival prediction from whole slide image. IEEE Trans. Image Process. 31, 1149–1160 (2022)

22. D. Di, C. Zou, Y. Feng, H. Zhou, R. Ji, Q. Dai, Y. Gao, Generating hypergraph-based high-order
representations of whole-slide histopathological images for survival prediction. IEEE Trans.
Pattern Analy. Mach. Intell. 1–16 (2022). https://doi.org/10.1109/TPAMI.2022.3209652

23. Y. Gao, C. Wee, M. Kim, P. Giannakopoulos, M. Montandon, S. Haller, D. Shen, MCI
identification by joint learning on multiple MRI data, in Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention (2015), pp. 78–
85

24. D. Di, F. Shi, F. Yan, Liming Xia, Z. Mo, Z. Ding, F. Shan, B. Song, S. Li, Y. Wei, Y. Shao,
M. Han, Y. Gao, H. Sui, Y. Gao, D. Shen, Hypergraph learning for identification of COVID-19
with CT imaging. Med. Image Analy. 68, 101910 (2021)

25. Z. Zhang, J. Liu, B. Li, Y. Gao, Diagnosis of childhood autism using multi-modal functional
connectivity via dynamic hypergraph learning, in Proceedings of the CAAI International
Conference on Artificial Intelligence (2021), pp. 123–135

26. Y. Gao, M. Kim, P. Giannakopoulos, S. Haller, D. Shen, Medical image retrieval using multi-
graph learning for MCI diagnostic assistance, in Proceedings of the International Conference
on Medical Image Computing and Computer-Assisted Intervention, (2015), pp. 86–93

27. W. Prenowitz, Projective geometries as multigroups. Amer. J. Math. 65(2), 235–256 (1943)
28. J. Jantosciak, W. Prenowitz, Geometrics and join spaces. J. Fur Die Reine Und Angewandte

Mathematik 257, 100–128 (1972)
29. I. G. Rosenberg, Wall monoids, in New Frontiers in Hyperstructures, vol. 166 (Hadronic Press,

Palm Harbor, 1996)
30. V. Leoreanu, Direct limit and inverse limit of join spaces associated with fuzzy sets. Pure Math.

Appl. 11(3), 509–516 (2000)

https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652

16 1 Introduction

31. I. Tofan, A.C. Volf, On some connections between hyperstructures and fuzzy sets. Ital. J. Pure
Appl. Math. 7, 63–68 (2000)

32. R. Ameri, M.M. Zahedi, Hypergroup and join spaces induced by a fuzzy subset. Pure Math.
Appl. 8(2–4), 155–168 (1997)

33. H.A. Kierstead, V. Rodl, Applications of hypergraph coloring to coloring graphs not inducing
certain trees. Discrete Math. 150(1–3), 187–193 (1996)

34. C.J. Lu, Deterministic hypergraph coloring and its applications. SIAM J. Discrete Math. 18(2),
320–331 (2004)

35. V.I. Voloshin, The mixed hypergraphs. Computer Science J. Moldova. 1(1), 1 (1993)
36. V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, vol. 17,

(American Mathematical Society, Providence, 2002)
37. H. Philip, On representatives of subsets. J. London Math. Soc. 10(1), 26–30 (1935)
38. W.T. Tutte, The factorization of linear graphs. J. London Math. Soc. 1(2), 107–111 (1947)
39. J. Edmonds, Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
40. G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph partitioning: applica-

tions in VLSI domain. IEEE Trans. Very Large Scale Integr. Syst. 7(1), 69–79 (1999)
41. G. Karypis, V. Kumar, Multilevel k-way Hypergraph Partitioning. VLSI Design 11(3), 285–

300 (2000)
42. D. A. Papa, I. L. Markov, Hypergraph partitioning and clustering, in Handbook of Approxima-

tion Algorithms and Metaheuristics (CRC Press, Boca Raton, 2007), pp. 61–1–61–19
43. R. Ghaemi, M.N. Sulaiman, H. Ibrahim, N. Mustapha, A survey: clustering ensembles

techniques. Int. J. Comput. Inf. Eng. 3(2), 365–374 (2009)
44. U.V. Catalyurek, C. Aykanat, Hypergraph-partitioning-based decomposition for parallel

sparse-matrix vector multiplication. IEEE Trans. Parallel Distributed Syst. 10(7), 673–693
(1999)

45. K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, U.V. Catalyurek, Parallel hypergraph
partitioning for scientific computing, in Proceedings of the IEEE International Parallel &
Distributed Processing Symposium (2006)

46. G. Ballard, A. Druinsky, N. Knight, O. Schwartz, Hypergraph partitioning for sparse matrix-
matrix multiplication. ACM Trans. Parallel Comput. 3(3), 1–34 (2016)

47. Y. Huang, Q. Liu, F. Lv, Y. Gong, D.N. Metaxas, Unsupervised image categorization by
hypergraph partition. IEEE Trans. Pattern Analy. Mach. Intell. 33(6), 1266–1273 (2011)

48. D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: Clustering, classification, and
embedding, in Proceedings of the Advances in Neural Information Processing Systems (2006),
pp. 1601–1608

49. W. Yang, G. Wang, M.Z.A. Bhuiyan, K.K.R. Choo, Hypergraph partitioning for social
networks based on information entropy modularity. J. Netw. Comput. Appl. 86, 59–71 (2017)

50. Y. Gao, M. Wang, Z.J. Zha, J. Shen, X. Li, X. Wu, Visual textual joint relevance learning for
tag-based social image search. IEEE Trans. Image Process. 22(1), 363–376 (2013)

51. Z. Zhang, H. Lin, Y. Gao, Dynamic hypergraph structure learning, in Proceedings of the
International Joint Conference on Artificial Intelligence (2018), pp. 3162–3169

52. Z. Zhang, H. Lin, J. Zhu, X. Zhao, Y. Gao, Cross-diffusion on multi-hypergraph for multi-
modal 3D object recognition, in Proceedings of the Pacific-Rim Conference on Multimedia
(2018), pp. 38–49

53. Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in Proceedings of the
AAAI Conference on Artificial Intelligence (2019), pp. 3558–3565

54. H. Shi, Y. Zhang, Z. Zhang, N. Ma, X. Zhao, Y. Gao, J. Sun, Hypergraph-induced convolutional
networks for visual classification. IEEE Trans. Neural Netw. Learn. Syst. 30(10), 2963–2972
(2018)

55. N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, P. Talukdar, HyperGCN: A new
method for training graph convolutional networks on hypergraphs, in Proceedings of the
Advances in Neural Information Processing Systems (2019), pp. 1511–1522

56. J. Jiang, Y. Wei, Y. Feng, J. Cao, Y. Gao, Dynamic hypergraph neural networks, in Proceedings
of the International Joint Conference on Artificial Intelligence (2019), pp. 2635–2641

References 17

57. S. Bai, F.Zhang, P.H. Torr, Hypergraph convolution and hypergraph attention. Pattern Recog.
110, 107637 (2021)

58. Y. Gao, Y. Feng, S. Ji, R. Ji, HGNN+: General hypergraph neural networks. IEEE Trans.
Pattern Analy. Mach. Intell. 45(3), 3181–3199 (2023)

59. R. Zhang, Y. Zou, J. Ma, Hyper-SAGNN: A self-attention based graph neural network for
hypergraphs, in Proceedings of the International Conference on Learning Representations
(2020)

60. S. Bandyopadhyay, K. Das, M.N. Murty, Line hypergraph convolution network: applying graph
convolution for hypergraphs (2020). Preprint arXiv:2002.03392

61. J. Huang, J. Yang, Unignn: A unified framework for graph and hypergraph neural networks, in
Proceedings of the International Joint Conference on Artificial Intelligence (2021), pp. 2563–
2569

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 2
Mathematical Foundations of
Hypergraph

Abstract In this chapter, we introduce the mathematical foundations of hypergraph
and present the mathematical notations that are used to facilitate deep understanding
and analysis of hypergraph structure. A hypergraph is composed of a set of vertices
and hyperedges, and it is a generalization of a graph, where a weighted hypergraph
quantifies the relative importance of hyperedges or vertices. Hypergraph can also be
divided into two main categories, i.e., the undirected hypergraph representation and
the directed hypergraph representation. The latter one further divides the vertices
in one hyperedge into the source vertex set and the target vertex set to model more
complex correlations. Additionally, we discuss the relationship between hypergraph
and graph from the perspective of structural transformation and expressive ability.
The most intuitive difference between a simple graph and a hypergraph can be
observed in the size of order and expression of adjacency. A hypergraph can
be converted into a simple graph using clique expansion, star expansion, and
line expansion. Moreover, the proof based on random walks and Markov chains
establishes the relationship between hypergraphs with edge-independent vertex
weights and weighted graphs.

2.1 Introduction

The importance of high-order complex network modeling has been discussed in
Chap. 1. In this chapter, we introduce the basic knowledge of hypergraph. In a
hypergraph, the edge degree is usually higher than that of a simple graph, which
is two for a simple graph. Different from a graph structure that can model pairwise
connections with its 2-degree edges, a hypergraph can model correlations between
practical data that are much more complex than pairwise relationships. As a result
of its versatility and usefulness of modeling complex correlations of data, machine
learning on hypergraph has attracted increasing attention.

Machine learning methods on hypergraph have been used in many real-world
applications due to its advantages. A wide variety of tasks have been performed with
hypergraph in computer vision, including image retrieval [1] and 3D object classi-
fication [2], video segmentation [3], re-identification of people [4], hyper-spectral

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2
https://doi.org/10.1007/978-981-99-0185-2_2

20 2 Mathematical Foundations of Hypergraph

image analysis [5], landmark retrieval [6], and visual tracking [7]. It is possible
to embed a wide range of subjects into a hypergraph structure for these tasks. In
different tasks, the hypergraph structure can be used to formulate the correlation
among a variety of subjects. In image retrieval [3], the correlation among different
images can be modeled in a hypergraph, where each vertex denotes an image and
the hyperedges can be generated by finding similar image features. In 3D object
classification [2], the correlation among different 3D objects can be modeled in
a hypergraph, where each vertex denotes a 3D object and the hyperedges can be
generated based on the similarity among these 3D objects. In person re-identification
[4], a hypergraph structure can be constructed, where each vertex represents a
personal image and the hyperedges can be generated based on the similarities
in the feature space. Similar modeling attempts have been deployed in medical
image analysis and bio-informatics studies to identify genes [8, 9], predict diseases
[10, 11], identify sub-types [12], and analyze functional networks [13].

Before detailed introduction of the hypergraph computation paradigm, hyper-
graph modeling, and other related methods and applications, in this chapter, we
first present preliminary knowledge of hypergraph and multiple representations of
hypergraph. We also compare the hypergraph structure with the graph structure from
four aspects.

2.2 Preliminary Knowledge of Hypergraph

The basic concepts of hypergraph are hereby briefly discussed. Table 2.1 provides
the main notations and definitions of hypergraphs throughout this chapter. We
first introduce undirected hypergraph and directed hypergraph, respectively, and
then introduce the K-uniform hypergraph, probabilistic hypergraph, the relationship
between hypergraph and bipartite graph, and the weights on hypergraph.

2.2.1 Undirected Hypergraph

Let . G be an indication of a hypergraph (undirected hypergraph), which consists of a
set of vertices . V and a set of hyperedges . E . In a weighted hypergraph, each hyper-
edge .e ∈ E is assigned with a weight .w(e), symbolizing the importance of the con-
nection relationship throughout the whole hypergraph. Let . W denote the diagonal
matrix of the hyperedge weights, i.e., .diag(W) = [

w (e1) , w (e2) , . . . , w
(
e|E |

)]
.

Given a hypergraph .G = (V ,E ,W), the structure of the hypergraph is usually
represented by an incidence matrix .H ∈ {0, 1}|V |×|E |, with each entry . H(v, e)

indicating whether the vertex v is in the hyperedge e:

.H(v, e) =
{
1 if v ∈ e

0 if v /∈ e,
(2.1)

2.2 Preliminary Knowledge of Hypergraph 21

Table 2.1 Notations and definitions of hypergraphs

Notation Definition

.G The hypergraph

.V The set of vertices

.E The set of hyperedges

.W The diagonal matrix of the hyperedge weights

.U The diagonal matrix of the vertex weights

.X The vertex feature matrix

.Y The vertex label matrix

.H The .|V | × |E | incidence matrix of undirected hypergraph structure. . H(v, e)

indicates the connection strength between vertex v and hyperedge e
.Dv The diagonal matrix of vertex degrees

.De The diagonal matrix of hyperedge degrees

.Δ The Laplacian matrix of hypergraph

.xi The feature vector of vertex . vi

.d(v) The degree of vertex v

.δ(e) The degree of hyperedge e

.w(e) The weight of hyperedge e

.u(v) The weight of vertex v

where .H(v, e) indicates the possibility of vertex v assigned to hyperedge e or the
importance of vertex v for hyperedge e. The degree of hyperedge e and the degree
of vertex v are defined as follows:

.δ(e) =
∑

v∈V

H(v, e), (2.2)

and

.d(v) =
∑

e∈E

w(e) ∗ H(v, e). (2.3)

The traditional hypergraph structure creates associations among vertices, with a
single hyperedge connecting multiple vertices that have associations. All vertices on
the same hyperedge are given a value of 1 in the incidence matrix . H. The adjacency
matrix . H is calculated as in (2.1), whose elements are valued by 0 or 1. Each row
represents each vertex in the hypergraph and the columns represent all hyperedges.
Each column represents the set of vertices on this hyperedge.

Figure 2.1 shows an undirected hypergraph, including the hypergraph itself, the
incidence matrix . H, the vertex set . V , the hyperedge set . E , and the weight matrix . W.
In the illustrated undirected hypergraph, there are 3 hyperedges . e1, . e2, and . e3 with
6 vertexes. The degree of the hyperedge . e3 is 3, which contains vertices .{v3, v4, v6}.
By the same token, other elements of . Dv can be inferred. Vertex . v3 belongs to the
hyperedges . e2 and . e3, and the degree of the vertex is 2. The incidence matrix . H of

22 2 Mathematical Foundations of Hypergraph

Fig. 2.1 An example of an
undirected hypergraph

hypergraph is readily obtained by the rules of construction, which are shown on the
right side of Fig. 2.1.

Given the incidence matrix . H as calculated as in Eq. (2.1), all elements are valued
by either 0 or 1. It is noted that the connection weights of different vertices on a
hyperedge could be different. For example, some vertices are highly connected in
the hyperedge and with high weights, while others may be with low weights. That
is to say, the sum of each column of . H is 1 (or not, due to different applications and
objectives) and its values represent the vertex importance on this hyperedge.

There are various rules that can be used to determine whether vertices are
associated with one another. Hyperedge groups can be generated from the data with
a graph structure by using pairwise edges and k-hops; for the data without a graph
structure, they can be generated by using neighbors in feature space. A detailed
description of these methods is provided in Chap. 4.

2.2.2 Directed Hypergraph

The real world is incompatible with traditional undirected hypergraph representation
in that hyperedges may be directional. Therefore, the representation of directed
hypergraph structures is important. In each hyperedge, the vertex can be further
divided into two sets: the source vertex set and the target vertex set. On directed
hypergraph, a trivial definition [14] for the incidence matrix is defined as follows:

.Ĥ(v, e) =
⎧
⎨

⎩

−1 if v ∈ T (e)

1 if v ∈ S(e)

0 otherwise,
(2.4)

2.2 Preliminary Knowledge of Hypergraph 23

Fig. 2.2 An example of a directed hypergraph

where .T (e) and .S(e) are the target and source vertices for hyperedge e, respectively.
The incidence matrix . H is split into two matrices, . Hs and . Ht, describing the source
and target vertices for all hyperedges, respectively. When passing messages with
these two incidence matrices, it is important to maintain the directional information.
Two different incidence matrices guide message passing in the directed hypergraph,
. Hs and . Ht, unlike in the undirected hypergraph. The average aggregation of
messages is normalized by . Ds and . Dt as two matrices, and it can be formulated
as follows:

.

{
Ds = diag(col_sum(Hs))

Dt = diag(col_sum(Ht)),
(2.5)

where .diag(v) is a function that converts a vector v to a diagonal matrix. The
.col_sum(·) is a column accumulation function.

Figure 2.2 shows an example of directed hypergraph including the directed
hypergraph itself, the incidence matrix . H, the source incidence matrix . Hs , and
the target incidence matrix . Ht . The illustrated directed hypergraph contains six
vertices and two hyperedge . e1 and . e2. . e1 connects four vertices and . e2 connects
three vertices. In hyperedge . e1, the source vertices are . v1 and . v2, and the target
vertices are . v4 and . v5. As for the hyperedge . e2, the source vertices are . v2 and . v3,
and the target vertices are only . v6.

2.2.3 Probabilistic Hypergraph

In the real-world correlations, the intensity of the connection can not only be a
binary number but also be a continuous number from zero to one. Consequently, the
incidence matrix may be a continuous matrix with elements ranging from 0 to 1,
which is adopted to denote a probabilistic hypergraph.

As shown in Fig. 2.3, the probabilistic hypergraph consists of six vertices and
three hyperedges. The hyperedge . e1 connects three vertices . v1, . v2, and . v5. The
intensity of the connection in this hyperedge is not the same. As shown in the
right side of the figure, . e1 connects . v1 with an intensity of . 0.3, connects . v2 with

24 2 Mathematical Foundations of Hypergraph

Fig. 2.3 An example of a probabilistic hypergraph

an intensity of . 0.8, and connects . v5 with an intensity of . 0.5. The degree of vertex
and hyperedge in this type of hypergraph is computed by the sum of the row or
column of the hypergraph incidence matrix . H, as shown in the bottom of Fig. 2.3.

2.2.4 K-Uniform Hypergraph

In many applications, hyperedges in a hypergraph may connect the same number of
vertices, which is known as the k-uniform hypergraph. In the k-uniform hypergraph,
each hyperedge contains precisely k vertices, as shown in Fig. 2.4. Under this
definition, a simple can be regarded as a spatial case of hypergraph, a 2-uniform
hypergraph, where each hyperedge only connects two vertices.

Figure 2.4 illustrates an example of 3-uniform hypergraph. The hypergraph
consists of six vertices and three hyperedges, and each hyperedge contains precisely
3 vertices. Hyperedge . e1 connects vertices . v1, . v2, and . v5. Hyperedge . e2 connects
vertices . v1, . v2, and . v3. The degree of all hyperedges in this type of hypergraph is
consistent k.

2.2.5 Hypergraph and Bipartite Graph

The bipartite graph can be indicated by .G = {U ,V ,E }. Unlike the simple graph,
vertices in the bipartite can be divided into two disjoint and independent sets .U

2.2 Preliminary Knowledge of Hypergraph 25

Fig. 2.4 An example of a 3-uniform hypergraph

Fig. 2.5 The relationship between hypergraph and bipartite graph

and . V . Every edge only connects one vertex in set . U and another vertex in set
. V . Obviously, an undirected hypergraph can be regarded as a bipartite graph if the
hyperedges are treated as another vertex set, as shown in Fig. 2.5.

Figure 2.5 illustrates examples of converting hypergraph to bipartite graph. The
bipartite graph can be generated by two strategies: the vertices and hyperedges
are treated as vertices in . U and vertices in . V (as illustrated in the left part), and
the vertices and hyperedges are treated as vertices in . V and vertices in . U (as
illustrated in the right part). Similarly, a bipartite graph can also be transformed
to an undirected hypergraph with set . U /. V as the hyperedges. It is not mean
that the hypergraph is the same as or can be replaced with the bipartite graph.
The transformation only exists in the undirected hypergraph and the probabilistic
hypergraph. Confronting more complex hypergraph like directed hypergraph, the
transformation will be invalid.

26 2 Mathematical Foundations of Hypergraph

2.2.6 The Weights on Hypergraph

It is noted that there are different weights on a hypergraph, which provide
additional information to assign values to a hypergraph structure. This is a more
semantically preferred way of representing a hypergraph, as different components
of a hypergraph, such as a vertex, a hyperedge or even a sub-hypergraph, should
have different impact on the relationship modeling. For example, in a recommender
system, the weights in the user profile influence the categorization of user attributes.
If the attributes are not categorized accurately, the accuracy of the recommendations
and marketing based on the profile could be questionable. The main types of
weight information on a hypergraph are hyperedge weights and vertex weights, with
the magnitude of the values indicating the relative importance of hyperedges and
vertices, respectively.

First, let us show how the weights on vertex can be used. Different vertices
may have varying importance on hypergraph modeling, and vertex weights are used
in a hypergraph to determine the importance of different vertices. If a vertex is
connected on the hypergraph strongly (with high correlations), it should be with a
large vertex weight. Otherwise, it should be with a small vertex weight. For those
vertices which have a 0 weight value in the incidence matrix, it can also be regarded
as it is connected by the corresponding hyperedge with a weight of 0. Here, the
diagonal elements of . U to represent the weights of vertices, which are between 0
and 1, which reveal the relative importance of these hyperedges. Figure 2.6 shows
an example hypergraph with vertex weights. In this figure, the weight of each vertex
is denoted by the size of the vertex node. Vertex . v6 has a weight of . 0.9, which is
larger than all other vertices, and vertex . v2 is the smallest among the six vertices.

Then, let us focus on the weights on hyperedge. Hyperedge weights reflect the
importance of different hyperedges in a hypergraph. As different hyperedges may
have different importance in representing connections among vertices, it is crucial
that hyperedges be weighted corresponding to their representative capabilities. In
some cases, a part of hyperedges are more reliable due to its generation method or
the features employed in this task, and these hyperedges should be given a large

Fig. 2.6 An example of a
vertex weighted hypergraph

2.3 Comparison Between Graph and Hypergraph 27

Fig. 2.7 An example of a
hyperedge weighted
hypergraph

weight during the learning process. Here, the diagonal element values of . W can
be used to represent the weights of vertices, which are between 0 and 1, revealing
the relative importance of these hyperedges. Figure 2.7 shows an example of the
hyperedge weighted hypergraph. In the illustration, the three hyperedges have the
weights . 0.3, . 0.9, and . 0.5, respectively.

2.3 Comparison Between Graph and Hypergraph

As a generalization of graph, the relationship between graph and hypergraph
is a fundamental question. In this part, we detailedly introduce the relationship
between graph and hypergraph from four aspects, i.e., the order of correlations,
the representation methods, the structure transformation and random work on both
of them.

2.3.1 Low-Order Versus High-Order Correlations

First, we define the interaction as a set .I = [p0, p1, · · · , pk−1] containing k
basic elements of the system being studied, which can also be called vertices or
nodes. Various real-world interactions can be described by such interactions, such
as coauthors of a scientific paper, genes required to perform a specific function,
neurons co-activating during a specific task, and more. We then denote the order
(or dimension) of interactions among vertices as an order-0 interaction for a vertex
interacting with itself only, an order-1 interaction for two vertices interacting
with each other, an order-2 interaction for three vertices interactions, and so on.

28 2 Mathematical Foundations of Hypergraph

Fig. 2.8 The expressive ability comparison of graph and hypergraph

Furthermore, high-order interactions are considered k-interactions with .k ≥ 2. Low-
order interactions, on the other hand, are those characterized by .k ≤ 1.

Figure 2.8 shows the comparison of hypergraph and graph on the modeling
of different orders of correlations. We notice that a graph can only represent the
order-1 interactions between two vertices. Different from graph, a hypergraph
can represent any order-k interactions through its flexible hyperedges. From this
direction, hypergraph is more effective on modeling high-order correlation among
subjects compared with graph.

2.3.2 Adjacency Matrix Versus Incidence Matrix

A graph with N vertices can be described by an adjacency matrix .A ∈ {0, 1}N×N ,
where .Ai,j = 1 denotes that there is an edge connecting vertex . vi and vertex . vj . In
most cases, the adjacency matrix . A is a symmetry matrix.

A hypergraph with N vertices and M hyperedges can be described by an
incidence matrix .H ∈ {0, 1}N×M , where .Hi,j = 1 denotes that the hyperedge . ej

connects vertex . vi .
By comparison of adjacency matrix and incidence matrix, a graph can be

regarded as a 2-uniform hypergraph. In this case, each hyperedge can only connect
two vertices. Given the possible .N × N order-1 hyperedges . H in the 2-uniform
hypergraph, they can be directly projected to the .N × N elements in adjacency
matrix . A. The hypergraph incidence and the simple graph adjacency matrix can be
bi-transformed as follows:

.HH� = A + D. (2.6)

2.3 Comparison Between Graph and Hypergraph 29

The adjacency matrix for graph and the incidence matrix for hypergraph have
different processing styles when confronting multi-modal data or multiple types of
connections. Given m adjacency matrices representing m graphs .G1,G2, . . . ,Gm,
there are two typical ways to combine these data for graph. The first way is to
combine different graphs into one graph . G and then conduct other tasks. The second
way is to conduct the task in each graph individually and then combine all these
results. Figures 2.9 and 2.10 show these two types of methods. In either method, it
is required to perform fusion, either in the graph structure part or in the result part. In
recent years, a series of graph fusion methods [15, 16] have been introduced, while
it is still a challenging task to optimally combine different graphs. On the other side,
the multi-modal graph fusion is also with high computational complexity, which
may limit the applications on multi-modal data.

Different from the processing method in graph, hypergraph can handle such types
of different connections in an easy and direct way, due to its flexible hyperedges.
As shown in Fig. 2.11, when there are multiple types of connections available,
it is possible to generate multiple hyperedge groups with m incidence matrices
.H1,H2, . . . ,Hm, and these m incidence matrices can be directly concatenated to
generate the overall hypergraph structure . H. In this way, all these multi-modal data
or multiple types of connections can be easily modeled in one hypergraph and all
further processing can be directly deployed on this hypergraph structure. Under such
circumstances, it is not required to conduct multi-modal fusion in an explicit way,
while it could be jointly included in the hypergraph computation process.

2.3.3 Structure Transformation from Hypergraph to Graph

A hypergraph can encode high-order data correlation (beyond pairwise) using its
degree-free hyperedges compared to a simple graph, where the degree for all
edges has to be 2. In a sense, a simple graph can be viewed as a special case,
where all hyperedges on a hypergraph are of degree 2. Therefore, hypergraph and
graph are interconvertible. Currently, there are a number of methods for converting
a hypergraph to a simple graph. The common ones are clique expansion, star
expansion, and line expansion, which are shown in Figs. 2.12, 2.13 and 2.14,
respectively.

(1) Clique Expansion
Figure 2.12 shows an example of transforming a hypergraph to a graph with clique
expansion. The clique expansion algorithm constructs a graph .G x (V , Ex) from
the original hypergraph .G (V ,E) by replacing each hyperedge e with edges, whose
degree is 2, for each pair .(u, v) of vertices in the hyperedge [17]: . E x = {(u, v) :
u, v ∈ e, e ∈ E }.

It is interesting to note that the vertices in hyperedge e form a clique in the graph
. G x , exactly where the name comes from. . G x preserves the structure of the vertices
of . G , so that the information on the edges needs to be reduced as far as possible to

30 2 Mathematical Foundations of Hypergraph

F
ig
. 2

.9

A
n
ex
am

pl
e
of
 th

e
gr
ap
h
st
ru
ct
ur
e
fu
si
on
 f
or
 th

e
m
ul
ti-
m
od
al
 d
at
a

2.3 Comparison Between Graph and Hypergraph 31

Fig. 2.10 An example of the results fusion for the multi-modal data

the higher order associations of the hyperedges. That is, the difference between the
weights of any two edges that contains both u and v on . G x and the weights of the
hyperedge connections should be as small as possible. Thus we use the following
formula when assigning weights .wx(u, v) to edges on . G x :

.wx(u, v) = argmin
wx(u,v)

∑

e∈E :u,v∈e

(
wx(u, v) − w(e)

)2
. (2.7)

Hence, clique expansion uses the discriminative model, where every edge in the
clique of . G x associated with hyperedge e has weight .w(e). This criterion has the
following minimizer:

.wx(u, v) = μ
∑

e∈E :u,v∈e

w(e) = μ
∑

e

h(u, e)h(v, e)w(e), (2.8)

where . μ is a fixed scalar. Equivalently, from the point of view of edges, the weight
between two vertices u and v is derived from the sum of the weights assigned by
the hyperedge that contains all of them simultaneously.

(2) Star Expansion
Figure 2.13 shows an example of transforming a hypergraph to a graph with
star expansion. By star expansion, a graph .G ∗ (V ∗,E ∗) can be constructed from
hypergraph .G (V ,E) by regarding every hyperedge .e ∈ E as a new vertex, thus
.V ∗ = V ∪ E [17]. Each vertex in the hyperedge is connected to the new graph
vertex e, i.e., .E ∗ = {(u, e) : u ∈ e, e ∈ E }.

32 2 Mathematical Foundations of Hypergraph

F
ig
. 2

.1
1

A
n
ex
am

pl
e
of
 th

e
hy
pe
rg
ra
ph
 s
tr
uc
tu
re
 f
us
io
n
fo
r
th
e
m
ul
ti-
m
od
al
 d
at
a

2.3 Comparison Between Graph and Hypergraph 33

Fig. 2.12 An example of transforming a hypergraph to a graph with clique expansion

Fig. 2.13 An example of transforming a hypergraph to a graph with star expansion

Fig. 2.14 An example of transforming a hypergraph to a graph with line expansion

There are different types of vertices in graph .G ∗ and each hyperedge in . E
corresponds to a star in graph G. With star expansion, the scaled hyperedge weight
is assigned to each graph edge .w∗(u, e) that corresponds to each hyperedge in . E as
follows:

.w∗(u, e) = w(e)/δ(e). (2.9)

34 2 Mathematical Foundations of Hypergraph

For each vertex representing a hyperedge, the weights of edges connecting to it are
equivalent for equally dividing the superside weights into .|δ(e)| parts.
(3) Line Expansion
Figure 2.14 shows an example of transforming a hypergraph to a graph with line
expansion. In the case of line expansion algorithm, the vertices of the graph . G l =(
V l ,E l

)
are constructed by reconstructing the structure of the data stored in the

vertices of the hypergraph, .G = (V ,E). Each line vertex .(u, e) in . G l can be viewed
as a vertex in a context of a hyperedge or a hyperedge in a context of a vertex [18].
For each point on each hyperedge, a vertex is created to represent it. The vertex v
in the line expended graph indicates the property of the vertex in the hyperedge, to
each vertex in the hyperedge to it, i.e., .V ∗ = {(u, e) : u ∈ e, u ∈ V , e ∈ E }. This
means that .

∣∣V l
∣∣ = ∑

e δ(e).
Therefore the vertexes in . G l , which contain the same vertex or the same

hyperedge, can be defined as the neighborhood. Consider both connections to
be equally important, so .Wl = diag(1, . . . , 1), .|Wl | = |V l | × |V l |. The
mapping between a hypergraph . G and its line expansion . G l is bijective under the
construction.

2.3.4 Random Walks on Graph and Hypergraph

Random walks propagate the information stored in the vertices based on the links
among the vertices in the graph or hypergraph. These links constitute the path of
different vertices. In the hypergraph, each vertex’s neighbor vertex messages are
aggregated to update itself based on the “path” between the central vertex and
each vertex in its neighborhood. A hypergraph’s path between vertices . v1 and . vk

is defined as a sequence, called hyperpath [19]:

.P(v1, vk) = (v1, e1, v2, e2, . . . , vk−1, ek, vk), (2.10)

where . vj and .vj+1 are both part of the same vertex subset described by a hyperedge
. ej . We say that a hyperpath separates two neighboring vertices by a hyperedge. In a
hypergraph, messages between vertices are propagated through hyperedges, which
are higher-order relationships than those in graphs. It is first necessary to extend the
Neighbor Relation definition among vertices to the Inter-Neighbor Relation N over
vertex set . V and hyperedge set . E for message propagation from vertex to hyperedge
and hyperedge to hyperedge on the hyperpath.

Definition 1 The Inter-Neighbor Relation .N ⊂ V × E on a hypergraph . G =
(V ,E ,W) with incidence matrix .H ∈ {0, 1}|V |×|E | is defined as

.N = { (v, e) | H(v, e) = 1, v ∈ V and e ∈ E }. (2.11)

2.3 Comparison Between Graph and Hypergraph 35

The hyperedge inter-neighbor set .Ne(v) of vertex v and the vertex inter-neighbor
set .Nv(e) of hyperedge e are defined based on the Inter-Neighbor Relation.

Definition 2 The hyperedge inter-neighbor set of vertex .v ∈ V is defined as

.Ne(v) = { e | vNe, v ∈ V and e ∈ E }. (2.12)

Definition 3 The vertex inter-neighbor set of hyperedge .e ∈ E is defined as

.Nv(e) = { v | vNe, v ∈ V and e ∈ E }. (2.13)

With hypergraph learning, in contrast to graph learning, data are correlated at
a higher level, and correlation models are expanded to a high level, resulting in
improved performance in practice. This is just an apparent part of the nature of
graph and hypergraph. Next, we delve deeper into the relationship between graphs
and hypergraph from the point of view of mathematical derivations with the help
of random walks [20] and Markov chain [21]. We then provide a mathematical
comparison between hypergraph and graph. The proof concludes that, from random
walks’ aspect, a hypergraph with edge-independent vertex weights is equivalent to
a weighted graph, and a hypergraph with edge-dependent vertex weights cannot be
reduced to a weighted graph.

Two types of hypergraphs can be constructed to accurately represent real-world
correlations, that is, hypergraph with vertex weights independent of edge and
hypergraph with vertex weights dependent on edge. By using the binary hypergraph
incidence matrix .H ∈ {0, 1}|V |×|E |, where vertices in each hyperedge share the
same weight, hypergraph with edge-independent vertex weights (.Gin = {V ,E ,W})
can model beyond pairwise correlations. Alternatively, the weighted hypergraph
incidence matrix .R ∈ R

|V |×|E | is used to model the variable correlation intensity
in each hyperedge for the hypergraph with edge-dependent vertex weights (. Gde =
{V ,E ,W, γ }). We assume that hyperedge e includes vertex v, where .γe(v) denotes
the connection intensity and .w(e) the weight of hyperedge e.

In hypergraph with edge-independent vertex weights, the definition of binary
hypergraph incidence matrix . H, vertex degree .d(v), and hyperedge degree .δ(e) is
the same as in Sect. 2.1. In hypergraph with edge-dependent vertex weights, define
the .d(v) and .δ(e) as follows:

.

⎧
⎪⎨

⎪⎩

d(v) = ∑

β∈Ne(v)

w(β)

δ(e) = ∑

α∈Nv(e)

γe(α),
(2.14)

where .Nv(·) and .Ne(·) are defined in Eqs. (2.12) and (2.13), respectively.
Then, we will introduce the random walks and the Markov chain in hypergraph.

First, we define the random walk in a hypergraph following papers [20–23]. At time
t , a random walker at vertex . vt does the following:

36 2 Mathematical Foundations of Hypergraph

• Pick an edge e containing vertex .vt = v, with probability .pv→e.
• Pick vertex u from e, with probability .pe→u.
• Move to vertex .vt+1 = u, at time .t + 1.

We then define the transition probability .pv,u of the corresponding Markov
chain on . V as .pv,u = ∑

e∈Ne(v,u) pv→epe→u, where . Ne(v, u) = Ne(v) ∩ Ne(u)

denotes the hyperedge .β ∈ Ne(v, u) containing vertices v and u, simultaneously. In
hypergraph with edge-independent vertex weights, we have . pv→e = w(e)/d(v)

and .pe→u = 1/δ(e). The transition probability .pv,u can be written as . pv,u =∑
β∈Ne(v,u)

w(β)
d(v)

· 1
δ(β)

. In hypergraph with edge-dependent vertex weights, we have
.pv→e = w(e)/d(v) and .pe→u = γe(u)/δ(e), and the transition probability .pv,u can

be written as .pv,u = ∑
β∈Ne(v,u)

w(β)
d(v)

· γβ(u)

δ(β)
.

The following lemmas and definitions are used to compare the graph and the two
types of hypergraphs [21].

Definition 4 Let M be a Markov chain with state space X and transition probability
.px,y , for .x, y ∈ S. It can be said that M is reversible if there exists a probability
distribution . π over S such that .πxpx,y = πypy,x .

Lemma 5 Let M be an irreducible Markov chain with finite state space S and
transition probability .px,y for .x, y ∈ S. M is reversible if and only if there exists a
weighted undirected graph . G with vertex set S such that random walks on . G and M
are equivalent.

Proof of Lemma 5 Note that . π indicates the stationary distribution [21, 24] of a
given edge-independent/edge-dependent hypergraph. The transition probability . pv,u

of vertices in hypergraph with edge-independent vertex weights is defined as

.pv,u =
∑

β∈Ne(v,u)

(
w(β)

d(v)

) (
1

δ(β)

)
. (2.15)

Moreover, the transition probability .pv,u of vertices in hypergraph with edge-
dependent vertex weights is defined as

.pv,u =
∑

β∈Ne(v,u)

(
w(β)

d(v)

)(
γβ(u)

δ(β)

)
. (2.16)

“. ⇒”: Suppose M is reversible with transition probability .px,y . We then construct
a graph . G with vertex set S and edge weights .wx,y = πxpx,y . Because M is
irreducible, .πx �= 0 and .px,y �= 0 for all states x and y. Thus, the edge weight
.wx,y �= 0 and the graph . G are a connected graph. Due to the reversibility of M that
.wx,y = πxpx,y = πypy,x = wy,x , the constructed graph . G is an undirected graph.
Random walks on . G from x to y in one-time step satisfy the following:

.
wx,y∑
z∈S wx,z

= πxpx,y∑
z∈S πxpx,z

= px,y∑
z∈S px,z

= px,y, (2.17)

2.3 Comparison Between Graph and Hypergraph 37

since .
∑

z∈S px,z = 1. Thus, if M is reversible, the stated claim holds.
“. ⇐”: Random walks on an undirected graph are always reversible.

Definition 6 A Markov chain is reversible if and only if its transition probability
satisfies

.pv1,v2pv2,v3 · · ·pvn,v1 = pv1,vnpvn,vn−1 · · ·pv2,v1 (2.18)

for any finite sequence of states .v1, v2, · · · vn ∈ S. The definition is also known as
Kolmogorov’s criterion. For more detailed proofs, please refer to [25].

Theorem 1 Let .Gin = {V ,E ,W} be a hypergraph with edge-independent weights,
and then there exists a weighted undirected graph . G such that a random walk on . G
is equivalent to a random walk on . Gin.

Proof of Theorem 1 The probability .pv,u of .Gin is defined in Eq. (2.15). By
Definition 6, the following equation can be deduced:

.pv1,v2pv2,v3 · · ·pvn,v1 (2.19)

=
∑

β∈Ne(v1,v2)

(
w(β)
d(v1)

· 1

δ(β)

)
· · ·

∑

β∈Ne(vn,v1)

(
w(β)
d(vn)

· 1

δ(β)

)

=

⎛

⎝ 1

d(v1)

∑

β∈Ne(v1,v2)

w(β)
δ(β)

⎞

⎠ · · ·

⎛

⎝ 1

d(vn)

∑

β∈Ne(vn,v1)

w(β)
δ(β)

⎞

⎠

=
1

d(v2)

∑

β∈Ne(v1,v2)

w(β)
δ(β)

· · ·
1

d(v1)

∑

β∈Ne(vn,v1)

w(β)
δ(β)

.

For any . vi and . vj , .
∑

β∈Ne(vi ,vj)
w(β)
δ(β)

= ∑
β∈Ne(vj ,vi)

w(β)
δ(β)

. Thus, the reversibility
can be proven by

.pv1,v2pv2,v3 · · ·pvn,v1 (2.20)

=
1

d(v2)

∑

β∈Ne(v2,v1)

w(β)
δ(β)

· · ·
1

d(v1)

∑

β∈Ne(v1,vn)

w(β)
δ(β)

= pv2,v1pv3,v2 · · ·pv1,vn

= pv1,vnpvn,vn−1 · · · pv2,v1 .

We say that a random walk on . Gin is reversible. Furthermore, by Lemma 5, a random
walk on . Gin is equivalent to a random walk on a weighted undirected graph . G .

The proof of Theorem 1 can be processed as follows:

1. A random walk on . Gin is equivalent to a random walk on a reversible Markov
chain (according to Definition 6).

38 2 Mathematical Foundations of Hypergraph

Fig. 2.15 An example of two types of random walks on the hypergraph with edge-independent
vertex weights and the hypergraph with edge-dependent vertex weights. This figure is from [26]

2. A random walk on a reversible Markov chain is equivalent to a random walk on
a weighted undirected graph . G (according to Lemma 5).

Theorem 2 Let .Gde = {V ,E ,W, γ } be a hypergraph with edge-dependent
weights, and then there does not exist a weighted undirected graph . G such that
a random walk on . G is equivalent to a random walk on . Gde.

Proof of Theorem 2 Figure 2.15 provides an example that a random walk on . Gde
is not equivalent to a random walk on a reversible Markov chain. According to the
second step of Theorem 1’s proof, Theorem 2 holds.

A simple illustration is shown in Fig. 2.15 to make it easier to understand. There
is no difference in the connection structure between the two hypergraphs, but there
is a difference in the intensity of the connections. For two types of hypergraphs, the
transition probabilities .pv,u can be computed accordingly. As a consequence, two
random walks from vertex . v0 are conducted: “.v0 → v1 → v2 → v0” and “. v0 →
v2 → v1 → v0.” Having obtained .pv0,v1 ·pv1,v2 ·pv2,v0 and .pv0,v2 ·pv2,v1 ·pv1,v0 for
the two paths, the cumulative transition probability can then be calculated. This type
of hypergraph is reversible according to Theorem 1 and Lemma 5. Thus, from the
two reversible paths, the same accumulated transition probability can be obtained.
Alternatively, two different accumulated transition probabilities are obtained from
two reversible paths in the hypergraph with edge-independent vertex weights.

2.4 Summary

In this chapter, we present the mathematical definition of the foundations of
hypergraph and their interpretation. We then also show the representation of directed

References 39

hypergraph, different from undirected hypergraph, which represents the relation-
ships between vertices within a hyperedge. Finally, we discuss the relationship
between graph and hypergraph in conversions and expressive ability perspectives.
The most intuitive differences between graph and hypergraph can be seen in low-
order versus high-order representations and adjacency matrix versus incidence
matrix. Clique expansion, star expansion, and line expansion are methods for
converting hypergraph into simple graph. We also show the relationship between
graph and hypergraph from the random walk view. A hypergraph with edge-
independent vertex weights is equivalent to a weighted graph, and a hypergraph
with edge-dependent vertex weights cannot be reduced to a weighted graph from
the information propagation process on graph/hypergraph.

References

1. Y. Huang, Q. Liu, S. Zhang, D.N. Metaxas, Image retrieval via probabilistic hypergraph
ranking, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2010), pp. 3376–3383

2. Y. Gao, M. Wang, D. Tao, R. Ji, Q. Dai, 3-D object retrieval and recognition with hypergraph
analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

3. Y. Huang, Q. Liu, D. Metaxas, Video object segmentation by hypergraph cut, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 1738–1745

4. W. Zhao, S. Tan, Z. Guan, B. Zhang, M. Gong, Z. Cao, Q. Wang, Learning to map social
network users by unified manifold alignment on hypergraph. IEEE Trans. Neural Netw. Learn.
Syst. 29(12) 5834–5846 (2018)

5. F. Luo, B. Du, L. Zhang, L. Zhang, D. Tao, Feature learning using spatial-spectral hypergraph
discriminant analysis for hyperspectral image. IEEE Trans. Cyber. 49(7), 2406–2419 (2018)

6. L. Zhu, J. Shen, H. Jin, R. Zheng, L. Xie, Content-based visual landmark search via multimodal
hypergraph learning. IEEE Trans. Cyber. 45(12), 2756–2769 (2015)

7. D. Du, H. Qi, L. Wen, Q. Tian, Q. Huang, S. Lyu, Geometric hypergraph learning for visual
tracking. IEEE Trans. Cyber. 47(12), 4182–4195 (2017)

8. Z. Tian, T. Hwang, R. Kuang, A hypergraph-based learning algorithm for classifying gene
expression and arrayCGH data with prior knowledge. Bioinformatics. 25(21), 2831–2838
(2009)

9. X. Zheng, W. Zhu, C. Tang, M. Wang, Gene selection for microarray data classification via
adaptive hypergraph embedded dictionary learning. Gene. 706, 188–200 (2019)

10. Y. Gao, C.-Y. Wee, M. Kim, P. Giannakopoulos, M.L. Montandon, S. Haller, D. Shen. MCI
identification by joint learning on multiple MRI data, in Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Intervention (2015), pp. 78–
85

11. W. Shao, Y. Peng, C. Zu, M. Wang, D. Zhang, Hypergraph based multi-task feature selection
for multimodal classification of Alzheimer’s disease. Comput. Med. Imaging Graph. 80,
101663 (2020)

12. E. Ramadan, S. Perincheri, D. Tuck, A hyper-graph approach for analyzing transcriptional net-
works in breast cancer, in Proceedings of the ACM International Conference on Bioinformatics
and Computational Biology (2010), pp. 556–562

13. L. Xiao, J. Wang, P.H. Kassani, Y. Zhang, Y. Bai, J.M. Stephen, T.W. Wilson, V.D. Calhoun,
Y. Wang, Multi-hypergraph learning based brain functional connectivity analysis in fMRI data.
IEEE Trans. Med. Imaging 39(5), 1746–1758 (2019)

40 2 Mathematical Foundations of Hypergraph

14. G. Gallo, G. Longo, S. Pallottino, S. Nguyen, Directed hypergraphs and applications. Discrete
Appl. Math. 42(2–3), 177–201 (1993)

15. K. Zhan, C. Niu, C. Chen, F. Nie, C. Zhang, Y. Yang, Graph structure fusion for multiview
clustering. IEEE Trans. Knowl. Data Eng. 31(10), 1984–1993 (2018)

16. Z. Kang, G. Shi, S. Huang, W. Chen, X. Pu, J.T. Zhou, Z. Xu, Multi-graph fusion for multi-view
spectral clustering. Knowl.-Based Syst. 189, 105102 (2020)

17. Y.J. Zien, M. Schlag, P. Chan, Multilevel spectral hypergraph partitioning with arbitrary vertex
sizes. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 18(9), 1389–1399 (1999)

18. C. Yang, R. Wang, S. Yao, T. Abdelzaher, Hypergraph learning with line expansion (2020).
Preprint arXiv:2005.04843

19. R. Dharmarajan, K. Kannan, Hyper paths and hyper cycles. Ital. J. Pure Appl. Math. 98(3),
309–312 (2015)

20. T. Carletti, F. Battiston, G. Cencetti, D. Fanelli, Random walks on hypergraphs, Phys. Rev. E
101(2), 022308 (2020)

21. U. Chitra, B. Raphael, Random walks on hypergraphs with edge-dependent vertex weights, in
Proceedings of the Machine Learning Research (2019), pp. 1172–1181

22. D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: Clustering, classification, and
embedding, in Proceedings of the Advances in Neural Information Processing Systems (2007)

23. A. Ducournau, A. Bretto, Random walks in directed hypergraphs and application to semi-
supervised image segmentation. Comput. Vision Image Understand. 120, 91–102 (2014)

24. J. Li, J. He, Y. Zhu, E-tail product return prediction via hypergraph-based local graph cut, in
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (2018), pp. 519–527

25. P.F. Kelly, Reversibility and Stochastic Networks (Cambridge University Press, Cambridge,
2011)

26. Y. Gao, Y. Feng, S. Ji, R. Ji, HGNN+: General hypergraph neural networks. IEEE Trans. Pattern
Analy. Mach. Intell. 45(3), 3181–3199 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 3
Hypergraph Computation Paradigms

Abstract This chapter introduces three hypergraph computation paradigms,
including intra-hypergraph computation, inter-hypergraph computation, and
hypergraph structure computation. Intra-hypergraph computation representation
aims to conduct representation learning of a hypergraph, where each subject is
represented by a hypergraph of its components. Inter-hypergraph computation is to
conduct representation learning of vertices in the hypergraph, where each subject
is a vertex in the hypergraph. Hypergraph structure computation is to conduct
hypergraph structure prediction, which aims to find the connections among vertices.
This chapter is a general introduction of hypergraph computation paradigms to
show how to formulate the task in the hypergraph computation framework.

3.1 Introduction

Hypergraph computation can be roughly divided into three types: representation
learning of a hypergraph, where each subject is represented by a hypergraph of
its components, representation learning of vertices in the hypergraph, where each
subject is a vertex in the hypergraph, and hypergraph structure prediction, which
aims to find the connections among vertices. There are three types of computation
paradigms that can be named intra-hypergraph computation, inter-hypergraph
computation, and hypergraph structure computation. In this chapter, we introduce
the generalized computation paradigms corresponding to these three directions and
show how to formulate practical tasks in these hypergraph computation frameworks.
We note that specific implementations of generalized functions in the paradigm are
not introduced here, as they are parts of specifically defined functions or modules
in the hypergraph computation framework and will be introduced in subsequent
chapters.

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3
https://doi.org/10.1007/978-981-99-0185-2_3

42 3 Hypergraph Computation Paradigms

3.2 Intra-hypergraph Computation

Intra-hypergraph computation targets on learning the representation of a single
subject using the inside component information, in which the correlations among
the components of this subject are formulated in a hypergraph. In this hypergraph,
the components of this subject are regarded by the set of vertices, and their high-
order correlations are modeled by hyperedges. In this way, the individual subject
is transformed into a hypergraph. As this hypergraph is generated by the subject’s
components themselves, we can name this hypergraph as the intra-hypergraph of
this subject.

Image representation and understanding [1–3] are typical intra-hypergraph com-
putation applications. For example, an image can be split into a group of patches,
and each patch is denoted by a vertex in the hypergraph. The hypergraph can be
generated according to the semantic and spatial information of these patches. The
information of these patches and their high-order correlations can be then used
simultaneously to learn the representation for the image.

The general paradigm of intra-hypergraph computation can be described as
follows. Given a target subject that contains n components, that are represented
by feature vectors .X ∈ R

n×d . An intra-hypergraph . G can be generated to formulate
the high-order correlations inside the subject, whose incidence matrix is denoted by
. H. The representation of the individual subject can be learned by

.ZG = fΘ(H,X), (3.1)

where . Θ denotes the to-be-learned parameters. The function .fΘ(·) can be the neural
network layers or other computing operators that aggregate the information of
vertices together based on the hypergraph structure. Intra-hypergraph computation
integrates the complex correlations among components into the learned representa-
tion, which can extract more information than simple aggregation operations.

In this paradigm, the subject to be analyzed is regarded as a whole system, and
the intra-hypergraph is to model the correlation inside the system. This process is
shown in Fig. 3.1.

3.3 Inter-hypergraph Computation

Inter-hypergraph computation targets at learning the representation of a subject by
considering its correlations with other subjects. In this hypergraph, each subject,
including the target one, is regarded by the set of vertices, and their high-order
correlations are modeled by hyperedges. In this way, this group of subjects is
transformed into a hypergraph. As this hypergraph is generated by the cross-subject
correlations, we can name this hypergraph as the inter-hypergraph of this subject.
Subject classification and retrieval [4–7] are typical inter-hypergraph computation

3.3 Inter-hypergraph Computation 43

F
ig
. 3

.1

A
n
ill
us
tr
at
io
n
of
 in

tr
a-
hy
pe
rg
ra
ph
 c
om

pu
ta
tio

n
an
d
in
te
r-
hy
pe
rg
ra
ph
 c
om

pu
ta
tio

n

44 3 Hypergraph Computation Paradigms

applications. For example, we take an image as the target subject, and we can also
have a pool of images for processing. Each image can be denoted by a vertex in the
hypergraph. The hypergraph can be generated according to the semantic and spatial
information of these images. The information of these images and their high-order
correlations can be then used simultaneously to learn the representation of the target
image.

The general paradigm of inter-hypergraph computation can be described as
follows. Given a target subject and other .n − 1 subjects, represented by feature
vectors .X ∈ R

n×d , an inter-hypergraph . G can be generated to formulate the high-
order correlations among these subjects, whose incidence matrix is denoted by . H.
The representation of the target subject can be learned by

.ZV = fΘ(H,X). (3.2)

The vertex embedding can be further used for the downstream tasks, such as vertex
classification, where the vertices are associated with pre-defined labels .Y ∈ [K]n.
This process is also shown in Fig. 3.1.

It is noted that a hypergraph structure can be either homogeneous or hetero-
geneous, depending on the definition of vertices. Given multiple types of data,
or multi-modal data, another way to formulate such correlations is to generate
multiple hypergraphs accordingly. For example, supposing that there are m types
of features or modalities, denoted by .X1,X2, . . . ,Xm, we can construct one
hypergraph for each modality respectively. In this way, we can have m hypergraphs
.G1 = (V1;E1;W1);G2 = (V2;E2;W2); ...;Gm = (Vm;Em;Wm) for the data with
m modalities. The general paradigm for multi-modal inter-hypergraph computation
can be described as

.ZV = fΘ(H1,H2, . . . ,Hm,X1,X2, . . . ,Xm), (3.3)

where .H1,H2, . . . ,Hm are the incidence matrices of the m hypergraphs.

3.4 Hypergraph Structure Computation

Hypergraph structure computation aims to learn the high-order correlations among
data in the presence of missing links and inaccurate initial structure. There are
two scenarios in which hypergraph structure computation is performed: either the
set of hyperedges is incomplete or the affiliation relationships between vertices
and hyperedges are incomplete. Recommender system and drug discovery [8–
10] are typical hypergraph structure computation applications. For example, in
recommender system, the hyperedges describe the connections between items and
users with specific semantics. The number of hyperedges is fixed, and the features

3.4 Hypergraph Structure Computation 45

of both vertices and hyperedges can be obtained as the input. Here, the target
of hypergraph structure computation is to predict whether a vertex belongs to a
hyperedge or not. If a new hyperedge is predicted, we can have new link to indicate
the connections. However, in a knowledge hypergraph, the hyperedges display the
facts in the real world, which are usually highly incomplete. The missing links are
expected to be inferred based on existing links by hypergraph structure computation.
Therefore, in the second case, the objective of hypergraph structure computation is
not only optimizing existing links but also inferring the unobserved links.

In the following, we describe the computation paradigms of these two cases
separately. The first scenario is that the set of hyperedges is complete and the
affiliation relationships between vertices and hyperedges are incomplete. In this
case, we usually can extract a feature vector for each hyperedge representation.
Given the input of vertex features .XV and hyperedge features . XE , we can calculate
the incidence matrix by the function related to the vertex and hyperedge features as

.H∗ = fΘ(XV ,XE). (3.4)

For example, the attention score can be used as an instance of the function in
practice.

In the second scenario, if there are missing hyperedges in the observed hyper-
graph and the semantics of hyperedges are ambiguous, it is difficult to directly
describe the hyperedges by features. Consequently, only the initial incomplete
hypergraph structure and the features of vertices can be available as the input.
We denote the incidence matrix of the initial hypergraph structure by .H(0). The
computation paradigm can be written as

.H∗ = fΘ(XV ,H(0)), (3.5)

which indicates that the new hypergraph structure is updated based on the original
hypergraph structure following specific prior information.

To guide the evolution of hypergraph structure to more accurately model data
correlation, it is necessary to evaluate the quality of hypergraph structure based on
the training data and prior information. If there is part of ground truth information
about the hypergraph structure, the performance of correlation modeling can be
evaluated directly. However, there is no golden standard for hypergraph structure
in most cases. Therefore, we may need to perform downstream tasks using the new
hypergraph and indirectly evaluate hypergraph computation performance through
the downstream task results. Here, we refer to Fig. 3.1, and hypergraph structure
computation can be conducted under the intra- and inter-hypergraph computation
frameworks.

46 3 Hypergraph Computation Paradigms

3.5 Summary

In this chapter, we introduce three hypergraph computation paradigms for dif-
ferent scenarios. These three paradigms are intra-hypergraph computation, inter-
hypergraph computation, and hypergraph structure computation, which focus on
learning the representation of a single subject using the inside component informa-
tion, learning the representation of a subject by considering its correlations with
other subjects, and learning the high-order correlations among data in the presence
of missing links and inaccurate initial structure. This chapter provides an overview
of how to use hypergraph computation, and the detailed hypergraph computation
theory, methods, and application will be introduced in the following chapters.

References

1. D. Di, S. Li, J. Zhang, Y. Gao, Ranking-Based survival prediction on histopathological whole-
slide images, in Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention (2020), pp. 428–438

2. D. Di, J. Zhang, F. Lei, Q. Tian, Y. Gao, Big-hypergraph factorization neural network for
survival prediction from whole slide image. IEEE Trans. Image Process. 31, 1149–1160 (2022)

3. D. Di, C. Zou, Y. Feng, H. Zhou, R. Ji, Q. Dai, Y. Gao, Generating hypergraph-based high-order
representations of whole-slide histopathological images for survival prediction. IEEE Trans.
Pattern Analy. Mach. Intell. 1–16 (2022). https://doi.org/10.1109/TPAMI.2022.3209652

4. Y. Gao, Z. Zhang, H. Lin, X. Zhao, S. Du, C. Zou, Hypergraph learning: methods and practices.
IEEE Trans. Pattern Analy. Mach. Intell. 44(5), 2548–2566 (2022)

5. Y. Gao, M. Wang, D. Tao, R. Ji, Q. Dai, 3-D object retrieval and recognition with hypergraph
analysis. IEEE Trans. Image Process. 21, 4290–4303 (2012)

6. Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence (2019), pp. 3558–3565

7. Y. Gao, M. Wang, Z.J. Zha, J. Shen, X. Li, X. Wu, Visual textual joint relevance learning for
tag-based social image search. IEEE Trans. Image Process. 22(1), 363–376 (2013)

8. S. Ji, Y. Feng, R. Ji, X. Zhao, W. Tang, Y. Gao, Dual channel hypergraph collaborative filtering,
in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (2020), pp. 2020–2029

9. H. Fan, F. Zhang, Y. Wei, Z. Li, C. Zou, Y. Gao, Q. Dai, Heterogeneous hypergraph variational
autoencoder for link prediction. IEEE Trans. Pattern Analy. Mach. Intell. 44(8), 4125–4138
(2021)

10. D. Ruan, S. Ji, C. Yan, J. Zhu, X. Zhao, Y. Yang, Y. Gao, C. Zou, Q. Dai, Exploring complex
and heterogeneous correlations on hypergraph for the prediction of drug-target interactions.
Patterns 2(12), 100390 (2021)

https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652

References 47

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 4
Hypergraph Modeling

Abstract Hypergraph modeling is the fundamental task in hypergraph computa-
tion, which targets on establishing a high-quality hypergraph structure to accurately
formulate the high-order correlation among data. In this section, we introduce
different hypergraph modeling methods to show how to build hypergraphs using
various pieces of information, such as features, attributes, and/or graphs. These
methods are organized into two broad categories, depending on whether these
correlations are explicit or implicit, to distinguish the similarities and differences.
We then further discuss different hypergraph structure optimization and generation
methods, such as adaptive hypergraph modeling, generative hypergraph modeling,
and knowledge hypergraph generation.

4.1 Introduction

Although there are complex correlations among data in many applications, it is
difficult to discover such complex correlations in many cases due to the limitations
of observation technologies. Taking social networks as an example, the group
information is a kind of high-order correlation that connects a number of people
based on certain criteria. However, it is intractable to investigate all the groups
when there are millions or even billions of vertices in a social network. Another
typical example is the human brain network. Apparently, some functions of the brain
are implemented by the communications among multiple brain regions rather than
just two regions, which means that there exist high-order correlations among brain
regions. Nevertheless, much manpower and material resources would be required
to directly record such high-order correlations by neuroscience experiments. There-
fore, it is necessary to study how to model such high-order correlations based on
existing information in practical applications.

Hypergraph has shown its superiority on high-order correlation modeling.
Hypergraph structure generation has attracted much attention and is still an open
problem due to complex correlations among non-standard data. In this chapter, we
systematically review the existing hypergraph modeling methods, including both
the implicit hypergraph modeling strategy and the explicit hypergraph modeling

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_4

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4
https://doi.org/10.1007/978-981-99-0185-2_4

50 4 Hypergraph Modeling

Implicit Methods

Explicit Methods

Distance-Based

Representation-Based

Attribute-Based

Network-Based

Hypergraph Modeling

Fig. 4.1 Different categories of hypergraph modeling methods

strategy. The implicit hypergraph modeling strategy aims to generate the hypergraph
structure using vertex representations based on their distances or similarities, in
which the correlations are not directly provided. The explicit hypergraph modeling
strategy targets at the data with explicit high-order correlation information, such as
attributes and pairwise connections. For the implicit hypergraph modeling strategy,
we mainly introduce the distance-based and representation-based hypergraph struc-
ture generation methods. For the explicit hypergraph modeling strategy, we focus
on the attribute-based and the network-based hypergraph generation approaches.
Figure 4.1 illustrates the hypergraph modeling methods.

We further give four examples in computer vision, recommender system,
computer-aided diagnosis, and brain network for hypergraph modeling in this
chapter. In the last part, we discuss the topics of further research of hypergraph
modeling, which have the potential of going beyond the limitations of current
methods that are difficult to be adaptive to complex data. Part of the work introduced
in this chapter has been published in [1–4].

4.2 Implicit Hypergraph Modeling

In implicit hypergraph modeling, the correlations among data are not directly pro-
vided. Under such circumstances, we need to explore different representations of the
data to build the correlations. Two typical methods for implicit hypergraph modeling
are distance-based methods and representation-based methods. In distance-based
methods, we can explore the neighborhood information for each sample in some
specific feature spaces, and the samples with high similarity/low distance can be
connected by a corresponding hyperedge. In representation-based methods, the
representation among different feature vectors for the samples is used to measure
the neighborhood information, which can be used to generate hyperedges.

4.2 Implicit Hypergraph Modeling 51

4.2.1 Distance-Based Hypergraph Generation

Distance-based hypergraph generation methods construct the hyperedges based on
the distances in the feature space for all the vertices. In general, the construction of
the hypergraph can be divided into two steps: the incidence matrix generation and
the hyperedge weight generation. For the incidence matrix generation, the connec-
tivity on the hypergraph, i.e., the hyperedge, is determined with the consideration
of the neighborhood relationships, where the neighbors of the vertices in the feature
space are connected by these hyperedges. For the hyperedge weight generation, the
weights of these hyperedges are calculated based on the distance information.

The incidence matrix is generated based on the neighbors of the vertices. There
are two major approaches to determine the neighbors [1], i.e., the nearest-neighbor-
based hyperedge generation strategy (shown in Fig. 4.2) and the clustering-based
hyperedge strategy (shown in Fig. 4.3). The nearest-neighbor-based hyperedge
generation strategy searches the nearest vertices for the given vertex, i.e., the
centroid, and connects these vertices by the hyperedges. The clustering-based
hyperedge generation strategy groups the vertices with the features and constructs a
hyperedge to connect all vertices fallen into the same cluster.

The nearest-neighbor-based hyperedge generation strategy starts out with calcu-
lating the distances between all pairs of vertices in the feature space. Subsequently,

Fig. 4.2 An illustration of the nearest-neighbor-based hyperedge generation strategy. (a) shows
the k-NN neighbors of the given vertex, and (b) shows the .ε-ball neighbors

Fig. 4.3 Illustration of the cluster-based hyperedge generation strategy. This figure is from [1]

52 4 Hypergraph Modeling

two commonly used criteria [5] are applied to determine the neighbors of the
given centroid, i.e., the k-NN neighbors [6] and the .ε-ball neighbors [2]. The given
centroid and the selected neighbors are connected together by a hyperedge.

Here we denote . V as the vertices set, .u ∈ V as the given centroid, .X(u) as the
feature vector of u, .d(x1, x2) = ||x1 − x2||2 as the Euclidean distance between the
vectors . x1 and . x2, .Nk(u) as the k-NN neighbors set of u, and .Nε(u) as the .ε-ball
neighbors set of u. .Nk(u) contains k vertices with the smallest distance to u, while
.Nε(u) contains the vertices with distance smaller than . ε, i.e.,

.Nε(u) = {v|d(X(u),X(v)) ≤ ε}. (4.1)

The vertex u and the neighbors .N (u) (either .Nk(u) or .Nε(u)) are grouped together
to generate a hyperedge .e(u):

.e(u) = N (u) ∪ {u}, (4.2)

and the hyperedge set . E is formulated as

.E = {e(u)|u ∈ V }. (4.3)

The clustering-based hyperedge generation strategy starts out with grouping the
vertices according to the corresponding features using the clustering algorithms,
such like k-means. Subsequently, the vertices belonging to the same cluster are
connected together using a hyperedge. Here we assume that the k-means algorithm
clusters the vertex set . V into K groups .V1, . . . ,VK . Then, K hyperedges can be
constructed using these clustering results:

.∀1 ≤ k ≤ K, ek = Vk = {vk1 , vk2 , . . .}, (4.4)

and the hyperedge set . E is formulated as

.E = {ek|∀1 ≤ k ≤ K}. (4.5)

Besides the similarity/distance in the feature space, other types of information,
which can be used to measure the correlation in some specific space, such as the
spatial information, can also be applied for hyperedge generation. For example,
the spatial information of pixels in an image can be used to select a group of
neighbor pixels for one centroid, which can be connected by a hyperedge, as shown
in Fig. 4.4.

4.2 Implicit Hypergraph Modeling 53

Fig. 4.4 An illustration of using spatial information of pixels to generate a hyperedge

Typically, an incidence matrix . H is used to represent the structure of the
hypergraph, i.e.,

.Hue =
{
1 if u ∈ e

0 otherwise
, (4.6)

where .u ∈ V and .e ∈ E .
The weight matrix of the hypergraph represents the importance of each hyper-

edge. A commonly used method for the hyperedge weight measurement is based on
the Gaussian kernel, where the scores of each pair of vertices belonging to the same
hyperedge are calculated using the distance between the vertices in the pair and the
average score can be used as the weight of the hyperedge, i.e.,

.w(e) =
∑
u,v∈e

exp

(
−d(X(u),X(v))

σ 2

)
, (4.7)

where .w(e) denotes the weight of hyperedge e, and . σ is the band width of the
Gaussian kernel.

In this way, if the vertices connected by a hyperedge are with relatively higher
similarity, the corresponding hyperedge weight could be larger and vice versa. Then,
the hyperedge weights can represent whether this hyperedge is trustable for further
processing.

In practice, . σ can be set as the median value of the distances among all vertices
by

.σ = medianu,v∈V d (X (u) ,X (v)) , (4.8)

where .median denotes the median value. It is noted that the hyperedge weight can
be set in other ways following the purpose of evaluating the importance of each
hyperedge.

54 4 Hypergraph Modeling

The main limitation of the distance-based hypergraph generation method is the
inaccurate distances due to noise and outliers of data, which may further introduce
noise to the structure of hypergraphs. In practice, the feature representation for the
data is still a challenging task. It is not easy to conduct effective feature extraction
under certain application scenario. The metric for distance calculation also matters.
Although the Euclidean distance is commonly used, there still exist some other
metrics, such as the .L1-norm and the negative cosine distance. The decision making
of these metrics requires experimental evaluation. Therefore, the distance-based
hypergraph generation method may suffer under such circumstances.

The nearest-neighbor-based hyperedge generation strategy is the most simple
one to be deployed in practice. The limitations of this strategy are as follows.
First, the hyperparameter, i.e., k for the k-NN neighbors and . ε for the .ε-ball
neighbors, may significantly affect the structure of the hypergraph and further
influence the performance of hypergraph learning. Unfortunately, there are still no
general principles for the selection of k and . ε, and the adaptive justification of
these hyperparameters is not trivial in practice. Second, the calculation of the k-NN
neighbors is expensive for large scaled data in both time and memory.

Regarding the clustering-based hyperedge generation strategy, there is no com-
mon way to determine howmany clusters should the vertex set be divided into, as the
scale of the clustering results also affects the structure of the hypergraph. A possible
solution is to conduct clustering multiple times in different scales, which generates
multiple hypergraphs with different k values and then composes these hypergraphs
together for multilevel representation.

4.2.2 Representation-Based Hypergraph Generation

As introduced above, the distance-based hypergraph generation has some disadvan-
tages. For the kNN hypergraph, the hypergraph, which connects the centroid sample
and its k nearest samples, is uniform. Its structure may not be sufficiently adaptive.
Also, the distance-based hypergraph is sensitive to noise. To solve this problem, the
hypergraph can be generated by the representation-based methods.

Different from the distance-based methods, which generate hyperedges through
some metrics in the feature space, the relations among the vertices in representation-
based methods are from the feature reconstruction, as shown in Fig. 4.5. In
reconstruction, different strategies have different generation effects. Here we intro-
duce three representation-based main branches to construct hypergraphs, i.e.,
.l1-hypergraph [7], .l2-hypergraph [8], and the combination of them both. The details
of these methods are described as follows.

(1) .l1-Hypergraph Generation
For the .l1-hypergraph construction, as introduced in [7], sparse representation
method can be used to formulate the relation between the hyperedge and its vertices,
and the sparse representation is embodied in the coefficients that linearly combine

4.2 Implicit Hypergraph Modeling 55

Fig. 4.5 An illustration of the representation-based methods

the basic vectors to reconstruct the input vector. In the hyperedge construction, the
centroid vertex is reconstructed by the other vertices in the same hyperedge. We use
the coefficients to present the incidence matrix of hypergraph. Mathematically, we
denote the centroid vertex in the .l1-hypergraph by . vc, and it can be represented as

.

argmin
z

‖Bz − X(vc)‖22 + γ ‖z‖1,
s.t. ∀i, zi ≥ 0,

(4.9)

where .X(vc) denotes the feature vector of the centroid vertex, . B denotes the feature
of its k nearest vertices, and . zi is the reconstruction coefficient vector. The first term
in Eq. (4.9) is the reconstruction term that makes a good representation of input
vector .X(vc) with the basic vectors . B. The second term is the .l1-regularization,
which forces the coefficient . z to sparse. . γ is a hyperparameter that balances the
influences of the two terms. The constraint .zi ≥ 0 makes the reconstruction
coefficients non-negative. Note that each sample may act as a centroid vertex
to generate a hyperedge. For the dataset containing n samples, the optimization
problem is solved for n times. The non-zero reconstruction coefficients in the
representation can be seen as the connection weights of the neighborhood vertices in
the hyperedge, and the neighborhood vertices with zero reconstruction coefficients
are outside of the hyperedge. The connection weight between the hyperedge and the
neighborhood vertices can be set as the vector of coefficients . zi . The incident matrix
. H of this hypergraph is defined as

.H(vj , ei) =
{
zj
i if vj ∈ ei

0 otherwise
, (4.10)

where . ei is generated with the centroid vertex . vi , and . z
j
i is the j th element of

representation coefficients . z.

56 4 Hypergraph Modeling

(2) Elastic-Hypergraph Generation
The .l1-regularization in .l1-hypergraph can generate sparse and effective hyper-
graphs, despite that fact that it is hard to reveal the grouping information of samples.
To enhance the effect of grouping, the elastic net [9] is introduced to combine an
.l2-norm penalty with the .l1-norm constraint. The objective function of elastic net
can be formulated as

.

argmin
z

‖Bz − X(vc)‖22 + γ ‖z‖1 + β‖z‖22,
s.t. ∀i.zi ≥ 0.

(4.11)

The elastic net can create a hyperedge whose weight can be determined by the
reconstruction coefficients by using both the .l2-norm and the .l1-norm penalties to
group more relevant and important neighbors.

(3) .l2-Hypergraph Generation
Note that there are two drawbacks of the above two representation-based
approaches: (1) They use a .l2-norm-based metric to measure the reconstruction
errors, which makes them still sensitive to sparse reconstruction errors. (2) Since
these methods create hyperedges by linearization, they are unable to handle
nonlinear data. By eliminating the sparse noise component from the original data,
integrating the locality, and maintaining the constraint to the linear regression
framework, the .l2-hypergraph [9] is created to address these issues as

.

argmin
z

‖X − XC − E‖2F + γ1

2
‖C‖2F + γ2

2
‖Q � C‖2F + β‖E‖1,

s.t. CT 1 = 1,Diag(C) = 0,
(4.12)

where . � stands for element-wise multiplication, . C is the coefficient matrix, . E is
the data error matrix, and . Q is the locality adapter matrix used to retain the local
manifold structures. Hyperedges can then be created using the coefficient matrix . C.

The ability of each vertex being able to be reconstructed in the feature space can
be evaluated via representation-based hyperedges. It is possible to calculate and use
the correlation between the feature vectors to create connections among the vertices.
Similar to the distance-based methods, this field of study may encounter the issue
of data noise and outliers. Another drawback of this type of hypergraph generation
methods is that only a portion of the relevant samples is chosen for reconstruction
during the computing process, and the resulting hyperedge may not be able to
accurately capture the data correlation through the complete data distribution.

4.3 Explicit Hypergraph Modeling 57

4.3 Explicit Hypergraph Modeling

Different from implicit hypergraph modeling, in some cases, there are existing
connections among data. Explicit hypergraph modeling focuses on these scenarios
and generates hypergraph structure using attribute information or networks.

4.3.1 Attribute-Based Hypergraph Generation

The data in real world may be associated with attributes in many cases. For example,
the users in social network could have profiles, such as gender, age, and interests.
The visual objects in images could have different characteristics, such as color,
shape, and texture. Given the data assigned with different attributes, attribute-based
hypergraph generation methods can be adopted to construct the hypergraph based
on the attribute information, which provides an explicit way to encode semantic
properties and diffuse knowledge [10]. As such a construction schema leverages
the apparent correlations among objects directly, it can be categorized as explicit
hyperedge methods.

To generate a hypergraph using attributes, the following steps are needed: the
hypergraph structure construction and the hyperedge weight assignation. The first
step is to generate the vertex set . V and hyperedge set . E based on the attribute
information, and the second step is to assign different weights to the hyperedges
and acquire the weight matrix . W.

When constructing the hypergraph from the attribute data, the samples to be
explored are first modeled as vertices in a hypergraph, denoted as the vertex set
. V . The same attribute shared by different vertices effectively indicates that these
samples share common characteristics, which may be an objective tag or a subjective
evaluation. Therefore, each attribute can be regarded as the semantic information on
a connection, i.e., a hyperedge. In attribute-based hypergraph generation methods,
a group of hyperedges (called a hyperedge group) are generated by linking all
the vertices associated with the attribute space. It is obvious that the number of
hyperedges equals to the number of attributes in this way. Such a hyperedge group
generated based on the attribute information is denoted by

.Eattribute =
{
Natt(a) | a ∈ A

}
, (4.13)

where .Natt(a) is the subset of vertex set . V sharing the attribute a, and . A is a set
containing all defined attributes. Sometimes the attribute could be hierarchical, e.g.,
the car within the vehicles. In this case, the . A and .Eattribute can be extended to
involve the subtypes of the attributes.

Here we give one simple example to show how to construct the hypergraph
structure using the attribute information, as shown in Fig. 4.6. Given a social
network data with user profiles, the users in the social network are first modeled as

58 4 Hypergraph Modeling

Fig. 4.6 An illustration of the attribute-based hyperedge generation method

vertices . V . The user profiles contain the objective reality such as gender and age as
well as the subjective characteristics such as interests and knowledge, both of which
can be adopted to generate the hyperedge groups. For example, we can have . ef emale

hyperedge connecting all female users and .esports linking users who like sports.
Additionally, as discussed above, sometimes the attributes are hierarchical. Under
such circumstances, we can generate hyperedges with different levels to characterize
multiple-scale attribute connections. For instance, we have users A, B, C, and D who
all like sports, among them both users A and B like playing basketball, and users
C and D like playing tennis. In this case, we first generate .esports connecting users
A, B, C, and D, and then .ebasketball and .etennis are generated to link A, B and C, D,
respectively. The hyperedge set in this example can be written as

. E = {ef emale, esports , ebasketball , etennis .}.

The hyperedge weights are also important here. For attribute-based hypergraph,
the number of shared attributes among the samples connected by the hyperedge
can quantitatively reflect the relative correlation strength. Specifically, the more
the attributes that the samples share, the stronger connections exist among these
corresponding vertices, and the bigger weight that the hyperedges are assigned.
Here each hyperedge e here can be seen as a clique. The mean of the heat kernel
weights .w(e) of the pairwise edges in this clique is considered as the corresponding
hyperedge weight:

.w(e) = 1

δ(e)(δ(e) − 1)

∑
u,v∈e

exp

(
−‖X(u) − X(v)‖22

σ 2

)
, (4.14)

4.3 Explicit Hypergraph Modeling 59

where .δ(e) indicates the degree of hyperedge e, and .X(u) and .X(v) denote the
feature vectors of vertices u and v, respectively.

The attribute-based hypergraph generation method can capture the semantic
properties apart from the structural information conveyed by the hypergraph
structures themselves. The attributes serve as a type of intermediate-level feature
representation of vertices and can provide another description for vertices beyond
the low-level representations. However, the attributes are not available all the time.
When there is no natural attribute descriptor for vertices, some extra solutions
need to be applied to conduct attribute-based hypergraph generation. One possible
solution is to manually design attribute tags, which may be both cumbersome and
time-consuming. The other alternative is extracting attribute information from the
raw low-level features by machine learning models [11]. Such a schema is more
time-saving than manual definition, whereas the results rely heavily on the accuracy
of the machine learning model. We also note that the attributes can be nameable,
which indicates the semantic information can be directly understood, while they
can also be non-nameable, which means the semantic information is not explicit.

4.3.2 Network-Based Hypergraph Generation

There are many applications of network data, including social networks [12],
reaction networks [13], cellular networks [13], and human brain networks [3]. It
is possible to generate subject correlations using the network information for these
data. In a typical work of social media analysis [14], the vertices on hypergraph
represent users and images. In addition to visual–textual relationships among
images, hyperedges can be used to capture social links between users and images,
also called homogeneous and heterogeneous hyperedges. The nearest-neighbor-
based and attribute-based hyperedge generation methods are used to construct
homogeneous hyperedges representing the visual and textual relations among
images. Users and images are connected through social link relations to construct
heterogeneous hyperedges. For example, both friendship and mobility information
in location-based social networks can be used to generate hypergraphs using
[12]. As a result, friendship hyperedges are generated within the social domain,
and check-in hyperedges are generated across the social, semantic, temporal, and
spatial domains. A protein–protein interaction network is naturally represented by a
hypergraph [15], whose subsets (hyperedges) can be represented by tandem affinity
purification (TAP) data.

Aside from the first-order correlation, high-order correlations, e.g., the second-
and third-order correlations, within the network can also be used as a means for
generating hyperedges. A center vertex can be connected with its first-order and
high-order neighbors (i.e., vertices whose shortest path to the centroid is greater
than 1) through a hyperedge. A vertex’s low-order neighbors need only to be
considered if attention is focused on its local connection in the network. As an
example, users who have similar preferences on items are able to be connected

60 4 Hypergraph Modeling

Fig. 4.7 An illustration of the network-based hyperedge generation method

within the recommendation network [4] according to first-order and second-order
correlations, which will be used in order to generate a hypergraph as well as to
perform collaborative filtering for the recommendation. Alternatively, if information
of a vertex travels a long distance in the network, higher-order correlation is required
to generate hyperedges.

We then introduce two typical approaches to construct hyperedges from net-
work/graph structure, i.e., pair-based and k-hop-based. Figure 4.7 illustrates the
profile of these two approaches. In this example, .Gs = (Vs ,Es) represents the graph
structure with .vi ∈ Vs representing a vertex and .esij ∈ Es representing an edge
connecting . vi and . vj . We let . A indicate the adjacency matrix of . Gs . As a result of
such a graph structure, two types of hyperedge groups can be generated (Fig. 4.7).

(1) Pair-Based Hyperedge Generation Strategy
The .Epair is adopted to indicate the hyperedges constructed by pair correlations in
the network/graph. .Epair targets at directly transforming the graph structure into a
group of 2-uniform hyperedges, which can be formulated as follows:

.Epair =
{
{vi, vj } | (vi, vj) ∈ Es

}
. (4.15)

As a result, .Epair covers the low-order (pairwise) correlations in the graph
structure, which is the basic information for high-order correlation modeling.

(2) k-Hop-Based Hyperedge Generation Strategy
.Ehop is adopted to indicate the hyperedges constructed by the k-hop neighbors in the
network/graph. First, we define the k-hop neighborhoods of a vertex v in graph . Gs

as follows:

. Nhopk
(v) = {u | Ak

uv 	= 0, u ∈ Vs}.

Based on the k-hop’s reachable positions in the graph structure, .Ehop aims to
find the related vertices for a central vertex. The range of the values of k is .[2, nv],
where . nv refers to the number of vertices in . Gs . The following is an example of a

4.4 Typical Examples of Hypergraph Modeling 61

hyperedge group .Ehop with k-hop:

.Ehopk
=

{
Nhopk

(v) | v ∈ V
}
. (4.16)

The hyperedge generated by .Ehop can be exploited by extending the search radius
to the external vertices, which also leads to groups of vertices rather than just
two vertices, as opposed to two vertices only in the graph structure. As compared
with just the pairwise correlation in .Epair, it can provide more information about
correlations.

Here, we discuss the advantages and limitations of the two types of hyperedges
using network data, respectively. As far as the pair-based construction is concerned,
clearly this type of hyperedge can only model low-order correlations, which cannot
naturally explore high-order correlations in some scenarios. In contrast, hyperedges
generated from the k-hop-based methods have the high-order information built-in of
the original network. However, the high-order information in this type of hyperedges
may be redundant and ambiguous. This is because the connection details in the k-
hop-based hyperedges may be lost, which means that you cannot reconstruct the
original network/graph from this type of hyperedge. Additionally, the k-hop-based
hyperedges may lead to irreversible over-smoothing in each hyperedge, which is
caused by the k-hop neighbors with exponential growth as k grows.

4.4 Typical Examples of Hypergraph Modeling

Here we give several examples of hypergraph modeling in real applications,
including computer vision, recommender systems, computer-aided diagnosis, and
brain networks, to demonstrate how to construct hypergraphs from data.

4.4.1 Computer Vision

Computer vision has attracted much attention in recent decades. In computer vision,
there are multi-modal data, such as images, point clouds, etc. Both low-level vision
tasks and high-level vision tasks have been deeply investigated. In these tasks, an
important but challenging issue is the complex data correlation behind the vision
data. For example, from the aspect of images, the pixels or patches are the elements
of an image, while the semantic information for the image is represented by these
pixels or patches. Terrence Joseph Sejnowski [16] mentioned that “In a task such
as face recognition, in which important information may be contained in the high-
order relationships among pixels, it seems reasonable to expect that better basis
images may be found by methods sensitive to these high-order statistics.” Similar
situations occur when facing multi-modal 3D object representation. Usually, a 3D

62 4 Hypergraph Modeling

object can be represented by different ways, such as one single image, multi-
view, point clouds, voxel, and mesh. Under such circumstances, the correlation
among these objects becomes even more complicated. To model such high-order
relationship among pixels/patches in one image, or among different 3D objects,
simple graph is not capable to conduct this task.

We first look into the high-order correlation modeling for an image. A 2D image
is composed of a set of pixels, and each pixel owns a feature vector (channels). To
generate a hypergraph to model the correlation behind this image, we can take each
patch in the image as a vertex in the hypergraph, and the objective is to generate
a group of hyperedges to connect these vertices (patches). Here we can employ
the distance-based hypergraph generation method, in which each patch is selected
as the centroid, and its nearest neighbors in the feature space are connected by a
hyperedge. This process is shown in Fig. 4.8. Furthermore, we can also employ
the spatial information to build connection among these patches. The patches
with closed spatial locations in the image could be connected with a hyperedge.
Figure 4.9 shows an example of hypergraph modeling for image patches using
spatial information.

For 3D visual objects, there are complex correlations among them. For example,
different furniture, such as tables and chairs, have legs, and different vehicles, such
as cars and bicycles, have wheels. Another challenging issue comes from the multi-
modality aspect. Given different modal data of 3D objects, the correlations are
composed of inter-modal correlations and the cross-modal correlations, as shown

Fig. 4.8 An example of hypergraph modeling for image patches using feature information

Fig. 4.9 An example of hypergraph modeling for image patches using spatial information

4.4 Typical Examples of Hypergraph Modeling 63

Fig. 4.10 The complex correlations among multi-modal 3D objects

in Fig. 4.10. Given a large number of 3D objects, it is difficult to accurately and
completely manually describe all these correlations.

In order to efficiently build a hypergraph structure, we usually extract the features
of 3D objects and then build implicit hypergraphs. 3D objects can be described by
multiple modalities, including point clouds, views, grids, and voxels. We can extract
the descriptors of their respective modalities through the corresponding deep neural
networks, such as dynamic graph CNN (DGCNN) [17] and PointNet (PointNet) [18]
for point cloud data, multi-view convolutional neural networks (MVCNN) [19], and
group-view convolutional neural networks (GVCNN) [20] for the multi-view data.
When multi-modal features have been obtained, we can build a hypergraph structure
for each kind of features.

Here, each 3D object can be represented by a vertex in the hypergraph. Each
time, one object is selected as the centroid in a feature space, and its nearest
neighbors can be connected by a corresponding hyperedge. This process is repeated
until all objects have been selected as the centroid once in this feature space.
Every feature and possible feature combination can be used in this process. In
this way, we can achieve multiple hypergraphs, represented by incidence matrices
.H1,H2, . . . ,Hm to formulate their correlations under different modalities. The
pipeline is demonstrated in Fig. 4.11. We can further concatenate these incidence
matrices along the axes of hyperedges to integrate these hypergraphs and obtain the
complete hypergraph structure, as shown in Fig. 4.12.

4.4.2 Recommender System

In a recommender system, the relationship between users and items can be
represented by a bipartite graph, that is, if an item is in a user’s recommendation
list, then we connect the user vertex with the item vertex. This bipartite graph can

64 4 Hypergraph Modeling

Multi-modal data Multi-hypergraphs

…………

Features Search k-NN

Fig. 4.11 An example of hypergraph modeling for multi-modal 3D objects

Hyperedge Group MHyperedge Group 2Hyperedge Group 1H
yp

er
ed

ge

G
ro

up
s

In
ci

de
nc

e
M

at
ri

ce
s

Concat Concat

U
ni

te
d

H
yp

er
gr

ap
h

Fig. 4.12 An illustration of multi-hypergraph combination. This figure is from [5]

4.4 Typical Examples of Hypergraph Modeling 65

Fig. 4.13 An example of hypergraph modeling for a recommender system

be simply transformed into a hypergraph, where vertices on one side remain and
vertices on the other side become hyperedges, as shown in Fig. 4.13. In this way,
each user can be represented as a vertex in the hypergraph, and the users shared
the same items can be connected by a corresponding hyperedge here. If the item
is regarded as a vertex, then the hyperedges are generated using shared users. This
hypergraph generation procedure follows the attribute-based strategy.

Mathematically, the ranking matrix of the recommender system equals to the
incidence matrix of the corresponding hypergraph. With this transformation, we
can solve the problem in recommender systems via hypergraph learning methods.
In fact, undirected bipartite graph modeling and hypergraph modeling are inter-
changeable in some cases. If the edges in bipartite graph are weighted, we can use
the hyperedge-dependent vertex weights accordingly.

4.4.3 Computer-Aided Diagnosis

In computer-aided diagnosis, the main objective is to measure whether a coming
patient has some specific disease or not, or how serious the disease it is. For
diagnosis, the experience and knowledge are from previous medical records. Case-
based diagnosis has shown importance in practice. For AI-based computer-aided
diagnosis, it is important to explore the existing labeled training data, which could
be very few in some cases. These medical records may contain different examine
files, MR images, CT images, and other types of data.

A conventional pipeline for computer-aided diagnosis is first extracting features
from clinical text or medical imaging data and then applying computer programs
to automatically categorize healthy people and patients. The commonly used
techniques involve natural language processing, medical imaging analysis, machine
learning, etc. It is worth noting that the existing methods mostly focus on individual
subject classification. Under such circumstances, how to model the correlation
among these subjects, including the training data and the coming patient (the testing
data), is an important but difficult task.

66 4 Hypergraph Modeling

Fig. 4.14 An example of hypergraph modeling for computer-aided diagnosis

Here, a hypergraph at the subject level, i.e., each vertex stands for a subject,
can be generated, where the hyperedges can be created using the distance-based
method or attribute-based method. Given the MR images or other medical data, the
features can be used to measure the distance between each two subjects. Then, the
k-NN scheme can be used to select nearest neighbors for a centroid vertex and then
generate a corresponding hyperedge, as shown in Fig. 4.14.

Another type of applications is to model the inter-correlation in one medical
image, such as gigapixel whole-slide histopathological images (WSIs). Survival
prediction is an important task in medical image analysis, which targets on modeling
the life duration of a patient using WSIs. Different from traditional images, WSIs
are with very large size and rich details. Therefore, traditional image representation
methods do not work well in this task. To formulate the inter-correlation inside a
WSI, a hypergraph can be generated, which the patch correlations are generated.
A group of patches can be sampled from the original WSI, such as 2000 or
8000 patches. Then, these patches are represented as vertices in the corresponding
hypergraph. The hyperedges can be generated based on either the visual feature of
these patches or the spatial information, or both of them, using the distance-based
hypergraph generation methods.

4.4.4 Brain Network

Recently, the development of neuroimaging techniques has provided a way to
understand the brain network on a large scale. Studies have shown that the
interaction relationships in the brain, from neuronal information flow to whole-
brain functional networks, are the basis of its functionality. Therefore, formulating

4.5 Hypergraph Modeling in Next Stage 67

Fig. 4.15 An example of hypergraph modeling for brain network

the brain as a complex network and decoding its signals may further deepen
our understanding of the human cognitive processes. The conventional functional
network is usually modeled and represented based on pairwise correlations between
two brain regions. However, neurologically, a brain region predominantly interacts
with one or more other brain regions.

When using hypergraphs to model a single brain network, the vertices denote
brain regions, and the hyperedges represent the interactions among multiple regions.
Each element in the incidence matrix corresponds to the contribution of the brain
region to the specific function, as shown in Fig. 4.15. In this process, each region
can be selected as the centroid, and its nearest neighbor regions in the feature space
can be selected and connected by a corresponding hyperedge.

4.5 Hypergraph Modeling in Next Stage

In this part, we discuss future research topics of hypergraphs modeling to render
them more accurate and flexible, including adaptive hypergraph modeling, genera-
tive hypergraph modeling, and knowledge hypergraph generation.

4.5.1 Adaptive Hypergraph Modeling

Having initialized the hypergraph structure, the structure is fixed during the learning
process. However, the initial hypergraph structure constructed by existing hyper-
graph modeling methods contains many noisy connections that may be destructive
for the learning process. Therefore, the original structure needs to be optimized
according to the data and downstream tasks to cut down on structure noise. Although

68 4 Hypergraph Modeling

there are some existing work on hypergraph structure optimization, these efforts are
still far from reaching the goal of accurately modeling of complex data correlations.

At this stage, the selection of hypergraph generation methods still depends on
experience, rather than a theoretical strategy. A possible route to conduct automate
hypergraph generation is to create various hypergraphs via different approaches
and then group them together to obtain a more complex but relatively complete
hypergraph. The grouping weights can be learned in the training stage. Another
way is to update the incidence matrix of hypergraph structure, which can be
either directly optimized as learnable parameters or indirectly optimized via metric
learning.

4.5.2 Generative Hypergraph Modeling

The generative models are a set of models that learn the distribution from the
observed data and generate new data instances based on probability. They have
been widely used in different tasks such as generation, synthesis, translation,
reconstruction, prediction, etc. In recent years, with the development of deep
graph representation learning, deep graph generative models have attracted much
attention. Given a series of training graph data (assumed to be taken from the same
distribution), the neural network is trained as a graph generation model. Inspired
by these generative models, building a hypergraph by estimating the distribution
of latent structures from observed data may be a viable way. Given a set of training
hypergraphs or sampling signals from every vertex, the distribution can be implicitly
or explicitly derived by combining hypergraph embeddings and generative models.

However, there is still a long way to go for hypergraph generative models to
become practical. Unlike simple graphs whose distributions are the joint distribu-
tions of all pairwise correlations between data, the distribution of a hypergraph
structure is the joint distribution of all high-order correlations among data. There-
fore, the joint distribution is high dimension, and the variables are dependent on each
other. Estimating the density function is intractable with considerable complexity.
Furthermore, due to the high-dimensional issue, a large amount of observed data
is required to make the density estimate closer to the true distribution, which is
difficult to obtain in practical applications. Despite the above obstacles, generative
hypergraph modeling is an area worth exploring in the future and will become useful
in many areas, such as simulations of complex physical systems, trajectory tracking
system identification, and community detection.

4.5.3 Knowledge Hypergraph Generation

Knowledge hypergraph has attracted much attention in recent years since it can
store facts using high-arity relations. In a knowledge hypergraph .H = (V ,E),

References 69

the vertices represent the set of entities, and hyperedges demonstrate the high-arity
relations. The basic unit is a fact based on a high-arity relation. Unlike knowledge
graph that only uses binary relations, the relations in knowledge hypergraph are
defined on any number of entities.

Although there have been several pieces of work targeting at knowledge hyper-
graph embedding and completion, such as Multi-fold TransH (m-TransH) [21],
Hyper-relational Knowledge Graph Embedding (HINGE) [22], N-ary Link Pre-
diction (NaLP) [23], they are mostly based on the assumption that there exists an
initial knowledge hypergraph or some hyper-relational links. Few efforts have been
made on the initial knowledge hypergraph generation. Actually, manually mining
the hyper-relations among entities requires much time and effort. Therefore, it is
of great significance to study the knowledge hypergraph generation methods for
efficient and comprehensive knowledge inference.

4.6 Summary

In this section, we introduce the hypergraph modeling methods, which are cate-
gorized as the implicit type and the explicit type. The implicit hyperedges can
be used in tasks in which we can represent each subject and develop metrics to
evaluate sample similarity. By using the sparse representation, representation-based
approaches might mitigate the impact of the noise vertices in comparison with
distance-based ones. Explicit hyperedges are more appropriate when input data may
already have certain structural details. In general, choosing a suitable hyperedge
generation method is important for a specific task. Finally, adaptive and generative
hypergraph modeling are worth further exploring to adjust hypergraph structures
based on the data and the on-going tasks.

References

1. Y. Gao, Z. Zhang, H. Lin, X. Zhao, S. Du, C. Zou, Hypergraph learning: methods and practices.
IEEE Trans. Pattern Analy. Mach. Intell. 44(5), 2548–2566 (2022)

2. Y. Gao, M. Wang, D. Tao, R. Ji, Q. Dai, 3-D object retrieval and recognition with hypergraph
analysis. IEEE Trans. Image Process. 21, 4290–4303 (2012)

3. C. Zu, Y. Gao, B. Munsell, M. Kim, Z. Peng, Y. Zhu, W. Gao, D. Zhang, D. Shen, G.
Wu, Identifying high order brain connectome biomarkers via learning on hypergraph, in
Proceedings of the Machine Learning in Medical Imaging (2016), pp. 1–9

4. S. Ji, Y. Feng, R. Ji, X. Zhao, W. Tang, Y. Gao, Dual channel hypergraph collaborative filtering,
in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (2020), pp. 2020–2029

5. Y. Gao, Y. Feng, S. Ji, R. Ji, HGNN+: general hypergraph neural networks. IEEE Trans. Pattern
Analy. Mach. Intell. 45(3), 3181–3199 (2023)

6. Y. Huang, Q. Liu, D. Metaxas, Video object segmentation by hypergraph cut, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 1738–1745

70 4 Hypergraph Modeling

7. M.Wang, X. Liu, X.Wu, Visual classification by �1-hypergraph modeling. IEEE Trans. Knowl.
Data Eng. 27, 2564–2574 (2015)

8. T. Jin, Z. Yu, Y. Gao, S. Gao, X. Sun, C. Li, Robust �2-hypergraph and its applications. Inf.
Sci. 501, 708–723 (2019)

9. Q. Liu, Y. Sun, C. Wang, T. Liu, D. Tao, Elastic net hypergraph learning for image clustering
and semi-supervised classification. IEEE Trans. Image Process. 26, 452–463 (2017)

10. S. Huang, M. Elhoseiny, A. Elgammal, D. Yang, Learning hypergraph-regularized attribute
predictors, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (2015), pp. 409–417

11. Y. Fang, Y. Zheng, Metric learning based on attribute hypergraph, in Proceedings of the IEEE
International Conference on Image Processing (2017), pp. 3440–3444

12. D. Yang, B. Qu, J. Yang, P. Cudre-Mauroux, Revisiting user mobility and social relationships in
lbsns: A hypergraph embedding approach, in Proceedings of the World Wide Web Conference
(2019), pp. 2147–2157

13. N. Franzese, A. Groce, T.M. Murali, A. Ritz, Hypergraph-based connectivity measures for
signaling pathway topologies. PLOS Comput. Biol. 15(10), e1007384 (2019)

14. Q. Fang, J. Sang, C. Xu, Y. Rui, Topic-sensitive influencer mining in interest-based social
media networks via hypergraph learning. IEEE Trans. Multimedia 16, 796–812 (2014)

15. S. Klamt, U.-U. Haus, F. Theis, Hypergraphs and cellular networks. PLoS Comput. Biol. 5(5),
e1000385 (2009)

16. M.S. Bartlett, J.R. Movellan, T.J. Sejnowski, Face recognition by independent component
analysis. IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002)

17. Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph CNN
for learning on point clouds. ACM Trans. Graph. 38, 1–12 (2019)

18. R.Q. Charles, H. Su, M. Kaichun, L.J. Guibas, PointNet: Deep learning on point sets for 3D
classification and segmentation, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2017), pp. 652–660

19. H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks
for 3d shape recognition, in Proceedings of the IEEE International Conference on Computer
Vision (2015), pp. 945–953

20. Y. Feng, Z. Zhang, X. Zhao, R. Ji, Y. Gao, GVCNN: Group-view convolutional neural networks
for 3d shape recognition, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2018), pp. 264–272

21. J. Wen, J. Li, Y. Mao, S. Chen, R. Zhang, On the representation and embedding of knowledge
bases beyond binary relations, in Proceedings of the International Joint Conference on
Artificial Intelligence (2017), pp. 1300–1307

22. P. Rosso, D. Yang, P. Cudré-Mauroux, Beyond triplets: Hyper-relational knowledge graph
embedding for link prediction, in Proceedings of the Web Conference (2020), pp. 1885–1896

23. S. Guan, X. Jin, Y. Wang, X. Cheng, Link prediction on n-ary relational data, in Proceedings
of the World Wide Web Conference (2019), pp. 583–593

References 71

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 5
Typical Hypergraph Computation Tasks

Abstract After hypergraph structure generation for the data, the next step is how
to conduct data analysis on the hypergraph. In this chapter, we introduce four
typical hypergraph computation tasks, including label propagation, data clustering,
imbalance learning, and link prediction. The first typical task is label propagation,
which is to predict the labels for the vertices, i.e., assigning a label to each
unlabeled vertex in the hypergraph, based on the labeled information. In general
cases, label propagation is to propagate the label information from labeled vertices
to unlabeled vertices through structural information of the hyperedges. In this part,
we discuss the hypergraph cut on hypergraphs and random walk interpretation of
label propagation on hypergraphs. The second typical task is data clustering, which
is formulated as dividing the vertices into several parts in a hypergraph. In this part,
we introduce a hypergraph Laplacian smoothing filter and an embedded model for
hypergraph clustering tasks. The third typical task is cost-sensitive learning, which
targets on learning with different mis-classification costs. The fourth typical task
is link prediction, which aims to discover missing relations or predict new coming
hyperedges based on the observed hypergraph.

5.1 Introduction

In previous chapters, we have introduced how to generate the hypergraph struc-
ture given observed data. After the hypergraph generation step, how to use this
hypergraph for different applications becomes the key task. Hypergraph has the
potential to be used in different areas, such as social medial analysis, medical and
biological applications, and computer vision. We notice most of the applications
can be categorized into several typical tasks and follow similar application patterns.
In this chapter, we introduce several typical hypergraph computational tasks, which
can be used for different applications.

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5
https://doi.org/10.1007/978-981-99-0185-2_5

74 5 Typical Hypergraph Computation Tasks

More specifically, four typical tasks, including label propagation, data clustering,
cost-sensitive learning, and link prediction, are introduced in this chapter. The first
typical task is label propagation, which is also one of the most widely used methods
in machine learning. The objective of label propagation is to assign a label to each
unlabeled data. In general cases, label propagation on hypergraph is to propagate
the label information from labeled vertices to unlabeled vertices through structural
information of the hyperedges. Random walk is a basic processing for information
propagation, which also plays a fundamental role in this process. We then review
the hypergraph cut on hypergraphs and random-walk-based label propagation on
hypergraphs. We introduce the label propagation process on single hypergraph and
multi-hypergraphs [1, 2], respectively, in this part.

The second typical task is data clustering, targeting on grouping data into
different clusters. We introduce how to conduct data clustering using hypergraph
computation. The hypergraph structure can be used as guidance to the clustering
criteria. Two types of hypergraph clustering methods are introduced, including
structural hypergraph clustering and attribute hypergraph clustering, due to the
different data information in the hypergraph. In structural hypergraph, the clustering
tasks only use structural information, while in attribute hypergraph, each vertex is
usually accompanied by attribute information from the real world. We introduce
a hypergraph Laplacian smoothing filter and an embedded model specifically
for hypergraph clustering tasks that named adaptive hypergraph auto-encoder
(AHGAE) [3].

The third typical task is cost-sensitive learning, which is to solve the learning task
under the scenario with different mis-classification costs, such as confronting the
imbalanced data distribution issue. Here, we introduce two hypergraph computation
methods, i.e., cost-sensitive hypergraph computation [4] and cost interval optimiza-
tion for hypergraph computation [5]. First, we introduce a cost-sensitive hypergraph
modeling method, in which the cost for different objectives is fixed in advanced.
As the exact cost value may be not easy to be determined, we then introduce a cost
interval optimization method, which can utilize the cost chosen inside the interval
while generating data with high-order relations.

The fourth typical task is link prediction, which is to predict data relationship
and can be used for recommender system and other applications. Here, the
hypergraph link prediction is to mine the missing hyperedges or predict new coming
hyperedges based on the observed hypergraph. We introduce a variational auto-
encoder for heterogeneous hypergraph link prediction [6]. It aims to learn the
low-dimensional heterogeneous hypergraph embedding based on the Bayesian deep
generative strategy. The heterogeneous encoder generates the vertex embedding
and hyperedge embedding, and the hypergraph embedding is the combination of
them. The hypergraph decoder reconstructs the incidence matrix based on the vertex
embedding and the hyperedge embedding, and the heterogeneous hypergraph is
generated based on the reconstructed incidence matrix.

Part of the work introduced in this chapter has been published in [1–6].

5.2 Label Propagation on Hypergraph 75

5.2 Label Propagation on Hypergraph

This section mainly introduces the label propagation task on hypergraph. We first
introduce the basic assumptions of the label propagation process. Given a set of
vertices on a hypergraph, a part of vertices is labeled, while other vertices are
unlabeled. The task is to predict the label information of these unlabeled data given
the label information and the hypergraph structure. Figure 5.1 shows that the label
propagation process is to propagate the label information from these labeled vertices
to the unlabeled vertices.

When propagating label information, vertices within the same hyperedge are
more likely to have the same label because they characterize themselves with similar
attributes in some aspects, and therefore, they have a higher probability of sharing
the same label. Under this assumption, the label propagation task can be transformed
into a hypergraph cut. In a hypergraph cut, the goal is to make the cut edges as sparse
as possible, with each vertex set after the cut as dense as possible. After cutting the
hypergraph, different sets of vertices have different labels. This approach satisfies
the goal based on the above assumption. The form of the hypergraph cut can be
described below.

Suppose a vertex set .S ∈ V and its compliment . S. There is a cut that splits the . V
into S and . S. A hyperedge e is cut if it is incident with the vertices in both S and . S.
Define the hyperedge boundary . ∂S as the cut hyperedges, i.e., . ∂S = {e ∈ E |e∩S �=
∅, e ∩ S �= ∅}, and the volume of S, .vol(S), be the sum of the degrees of vertices
in S, i.e., .vol(S) = ∑

v∈S Dv(v). It can be shown as

.vol(∂S) =
∑

e∈∂S

w(e)
|e ∩ S||e ∩ S|

De(e)
. (5.1)

The derivation is shown as follows, and the details can be found in [7]. Suppose
that hyperedge e is a clique, i.e., a fully connected graph. To avoid confusion, the
edges in the clique are called subedges. Then, the weight . w(e)

De(e)
is assigned to each

subedge. When the hyperedge e is cut, .|e∩S|×|e∩S| subedges are cut. The volume
of the cut is the sum of the weights over these subedges. Recall that our goal is to
make the cut edges as sparse as possible, with each vertex set after the cut as dense

Fig. 5.1 An illustration of
the label propagation on
hypergraphs

76 5 Typical Hypergraph Computation Tasks

Fig. 5.2 An illustration of
the hypergraph label
propagation based on random
walks

as possible. Based on the goal, the objective partition formula is written as

. arg min
S⊂V

c(S) = vol(∂S)

(
1

vol(S)
+ 1

vol(S)

)

. (5.2)

There are many methods to propagate label information on a hypergraph, and
the propagation based on random walks is the most widely used. The following
describes the label propagation by random walk, and the illustration is shown as
Fig. 5.2. Suppose that the current position is .u ∈ V , and at first, we walk to a
hyperedge e over all hyperedges incident with u with probability .w(e), and then
we sample a vertex .v ∈ e uniformly. By generalizing from typical random walks
on graphs, we use . P as the transition probability matrix of the random walk on a
hypergraph, and the element .p(u, v) is defined as follows:

.p(u, v) =
∑

e∈E

w(e)
H(u, e)

Dv(u)

H(v, e)

De(e)
. (5.3)

The formula can be organized into a matrix form as .P = D−1
v HWD−1

e H�. The
stationary distribution . π of the random walk is defined as

.π(v) = d(v)

vol(V)
, (5.4)

where .Dv(v) is denoted by .d(v) for short and .vol(.) is the volume of the vertices in
set S, defined as .vol(S) = ∑

v∈S d(v). The formula can be derived from

.

∑

u∈V

π(u)p(u, v) =
∑

u∈V

d(u)

vol(V)

∑

e∈E

w(e)
H(u, e)

Dv(u)

H(v, e)

De(e)

= 1

vol(V)

∑

e∈E

w(e)
∑

u∈V

H(u, e)
H(u, e)

De(e)

= 1

vol(V)

∑

e∈E

w(e)H(v, e) = d(v)

vol(V)
.

(5.5)

5.2 Label Propagation on Hypergraph 77

The objective function Eq. (5.2) can be written as

.c(S) = vol(∂S)

vol(V)

(
1

vol(S)/vol(V)
+ 1

vol(S)/vol(V)

)

, (5.6)

and then we arrive at

.
vol(S)

vol(V)
=

∑

v∈S

d(v)

vol(V)
=

∑

v∈V

π(v), (5.7)

where .
vol(S)
vol(V)

is the probability of random walks to vertex in S. It can then be shown
as

.

vol(∂S)

vol(V)
=

∑

e∈∂S

w(e)

vol(V)

|e ∩ S||e ∩ S|
δ(e)

=
∑

e∈∂S

∑

u∈e∩S

∑

v∈e∩S

w(e)

vol(V)

H(u, e)H(v, e)

δ(e)

=
∑

e∈∂S

∑

u∈e∩S

∑

v∈e∩S

w(e)
d(u)

vol(V)

H(u, e)

d(u)

H(v, e)

δ(e)

=
∑

u∈e∩S

∑

v∈e∩S

d(u)

vol(V)

∑

e∈∂S

w(e)
H(u, e)

d(u)

H(v, e)

δ(e)

=
∑

u∈S

∑

v∈S

π(u)p(u, v),

(5.8)

where the ratio . vol(∂S)
vol(V)

is the probability with the random walk from a vertex in S
to . S under the stationary distribution. It can be seen that the hypergraph normalized
cut criterion is to search a cut such that the probability with which the random walk
crosses different clusters is as small as possible, while the probability with which
the random walk stays in the same cluster is as large as possible.

Let us review the objective function Eq. (5.2). Note that it is NP complete, while
it can be relaxed into the following optimization problem as

.

arg min
f∈R|V |

Ω(f) = 1

2

∑

e∈E

∑

{u,v}∈e

w(e)

δ(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

,

s.t.
∑

v∈V

f2(v) = 1,
∑

v∈V

f(v)
√

d(v) = 0,

(5.9)

where . f is the to-be-learned score vector. Since the goal is label propagation, it
can be arrived at for some labeled data. The optimization problem becomes the

78 5 Typical Hypergraph Computation Tasks

transductive inference problem as

. arg min
f∈R|V |

{Ω(f) + λRemp(f)}, (5.10)

where the regularizer term is .Ω(f), the empirical loss term is . Remp(f) = ‖f −y‖2 =∑
v∈V (f(v) − y(v))2, .y ∈ R

|V | is the label vector, and . λ is the balance parameter.
Let us assume that the i-th vertex is labeled, and the elements of . y are all 0 except
the i-th value that is 1. The regularizer .Ω(f) can be turned into

.

Ω(f) =1

2

∑

e∈E

∑

{u,v}∈e

w(e)

δ(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

=
∑

e∈E

∑

{u,v}∈V

w(e)H(u, e)H(v, e)

δ(e)

(
f2(u)

d(u)
− f(u)f(v)√

d(u)d(v)

)

=
∑

u∈V

f2(u)
∑

e∈E

w(e)H(u, e)

d(u)

∑

v∈V

H(v, e)

δ(e)

−
∑

e∈E

∑

u,v∈V

f(u)H(u, e)w(e)H(v, e)f(v)√
d(u)d(v)δ(e)

=f�(I − Θ)f,

(5.11)

where .Θ = D
− 1

2
v HWD−1

e H�D− 1
2

v . The hypergraph Laplacian is denoted by . Λ =
I − Θ . Therefore, the objective function can be rewritten as

.Ω(f) = f�Λf. (5.12)

The optimization function can be turned into

. arg min
f∈R|V |

{f�Λf + λ‖f − y‖2}. (5.13)

There are two ways to solve the above problem. The first one is differentiating
the objective function in Eq. (5.13) with respect to f , and it can be obtained as

.f =
(

I + 1

λ
Λ

)−1

y. (5.14)

The second one is an iterative method. Similar to the iterative approach in [8],
Eq. (5.13) can be efficiently solved by an iterative process. The process is illustrated
in Fig. 5.3. The .ft+1 can be obtained from the last iterative . ft and . y, and the
procedure is repeated until convergence.

5.2 Label Propagation on Hypergraph 79

Fig. 5.3 The iterative solution of Eq. (5.13). This figure is from [1]

This process will converge to the solution Eq. (5.14). To prove it, we first prove
that the eigenvalues of . Θ are in .[−1, 1]. Since .Θ = D−1/2

v HWD−1
e H�D−1/2

v , we
find that its eigenvalues are in .[−1, 1]. Therefore, (.I±Θ) are positive semi-definite.

The convergence of the iterative process is proved in [1]. Without loss of
generality, we assume .f(0) = y. From the iterative process, it can be obtained that

.

f(t) =
(

λ

1 + λ

) t−1∑

i=0

(
1

1 + λ
Θ

)i

y+
(

1

1 + λ
Θ

)t

y

=(1 − ζ)

t−1∑

i=0

(ζΘ)iy + (ζΘ)ty,

(5.15)

where .ζ = 1
1+λ

. Since .0 < ζ < 1, and the eigenvalues of . Θ are in .[−1, 1], it can be
derived that

. lim
t→∞ (ζΘ)t = 0 (5.16)

and

. lim
t→∞

t−1∑

i=0

(ζΘ)i = (I − ζΘ)−1. (5.17)

Then, it turns out

.f = lim
t→∞ f(t) = (1 − ζ)(I − ζΘ)−1y =

(

I + 1

λ
Δ

)−1

y. (5.18)

Therefore, the convergence of . f is proved to be equal to the closed-form solution
Eq. (5.14).

The random-walk-based method is the most commonly used approach in label
propagation on hypergraphs. It has the advantages of being simple to implement
and theoretically verifiable.

In many cases, different hypergraphs may be generated based on different
criteria. Under such circumstances, we need to conduct label propagation on
multi-hypergraph. Here, we briefly introduce the cross diffusion method on multi-
hypergraph [2]. We assume that there are T hypergraphs, and the t-th hypergraph is

80 5 Typical Hypergraph Computation Tasks

denoted as .G t = (V t ,E t ,Wt), where . V t is the vertex set, . E t is the hyperedge set,
and . Wt is a diagonal matrix, representing the weights of hyperedges.

The transition matrix is first generated for each hypergraph. The label propaga-
tion process on hypergraph is based on the assumption that the local similarities
could approximate the long-range similarities, and therefore, the local similarities
are more important than far-away vertices. The similarity matrix among vertices of
the t-th hypergraph is shown as follows:

.Λt(u, v) =
∑

e∈E t

Wt (e)Ht (u, e)Ht (v, e)

δ(e)
, (5.19)

or in the matrix form:

.Λt = HtWtDt
e
−1Ht�. (5.20)

The transition matrix . Pt is the normalized similarity matrix:

.Pt (i, j) = Λt(i, j)
∑

w∈V t Λt (i, w)
(5.21)

and

.Pt = Dt−1
Λt, (5.22)

where . Dt is a diagonal matrix with the i-th diagonal element . Dt (i, i) =
∑|V t |

j=1 Λt(i, j).
The element of the transition matrix .Pt (i, j) represents the probability of

transition from the vertex i to the vertex j , and . Pt could be regarded as the Parzen
window estimators on hypergraph structure. After the generation of the transition
matrix, the cross label propagation process is applied to the multi-hypergraph
structure.

Denote . Y0 as the initial label matrix. For labeled vertices, the i-th row of . Y0 is
the one-hot label of the i-th vertex, while for the unlabeled vertices, all elements
of the i-th row are . 0.5, indicating that there is no prior knowledge of the label. We
denote the labeled part of the initial label matrix as . YL

0 .
For simplicity, we assume the number of hypergraphs T is 2. The label

propagation process for multi-hypergraph uses the output of one hypergraph as the
input of the other hypergraph, which repeats until the output converges. The process
could be formulated as

.Y1
d+1 ← P1Y2

d , . (5.23)

Y1L
d+1 ← YL

0 (5.24)

5.2 Label Propagation on Hypergraph 81

Fig. 5.4 An illustration of the diffusion process on multi-hypergraph. This figure is from [2]

and

.Y2
d+1 ← P2Y1

d , . (5.25)

Y2L
d+1 ← YL

0 , (5.26)

where . Yk
d denotes the label matrix of the k-th hypergraph after d times of label

propagation. This process is shown in Fig. 5.4.
The overall matrix could be calculated according to the label matrix of each

hypergraph after convergence:

.Yf inal = 1

T

T∑

i=1

Yi
d . (5.27)

For more complicated scenarios, where more than two hypergraphs are available,
the label propagation process can repeat that, and the output of one hypergraph can
be used as the input of other hypergraphs.

This diffusion process can also be used for a single hypergraph, and the
framework can be described in Fig. 5.5.

Fig. 5.5 An illustration of the diffusion process on a single hypergraph

82 5 Typical Hypergraph Computation Tasks

5.3 Data Clustering on Hypergraph

Data clustering is a typical machine learning task that aims to group data into
clusters. In this section, we introduce hypergraph-based data clustering methods,
which can utilize the hypergraph structure for better finding correlations behind
the data. For hypergraph clustering, two types of information can be used, including
structural hypergraph clustering and attribute hypergraph clustering according to the
data information in the hypergraph. In structural hypergraph, the clustering tasks
only use structural information. For example, the hypergraph spectral clustering
method[7] is extended on the basis of graph, which uses the hypergraph Laplacian to
learn complex relations between nodes in the hypergraph. And some auto-encoder-
based techniques[9] are also applied to structural clustering. In attribute hypergraph,
each vertex is usually accompanied by attribute information from the real world.
There are two assumptions as follows:

• Vertices in the same hyperedge have similar attributes.
• Vertices with similar features have similar attributes.

How to balance graph structure information and node feature information is a study
focus of attributed graph clustering [10]. In this way, hypergraphs can utilize the
features, attributes, and structured information of vertices to conduct data clustering
task.

In this section, we introduce a hypergraph Laplacian smoothing filter and
an embedded model called adaptive hypergraph auto-encoder (AHGAE) that is
designed specifically for hypergraph clustering tasks [3]. First, we describe the
hypergraph Laplacian smoothing filter and derive its low-pass filtering properties
in the frequency domain. Then, we analyze the influence of each vertex on the
attributes of its connected hyperedges and the feature of neighbor vertices. Finally,
we introduce the detailed procedure and framework of the adaptive hypergraph auto-
encoder.

The hypergraph Laplacian smoothing filter, as shown in Fig. 5.6, first merges the
vertex features into hyperedge features, and the feature of hyperedge . ek is defined
as

.
E(t)

k = 1

|N (ek)|
∑

vj ∈N(ek)

X(t)
j =

∑

vj ∈V

h(j, k)

de(k)
X(t)

j , (5.28)

where . ek denotes the k-th hyperedge in the hyperedge set . E , . vi denotes the i-th
vertex in the vertex set . V , t represents the order, .N (ek) is the vertex set in hyperedge
. ek , . Ek describes the hyperedge . ek feature, and . Xj describes the feature of the vertex
. vj .

5.3 Data Clustering on Hypergraph 83

Fig. 5.6 An illustration for hypergraph Laplacian smoothing filter. This figure is from [3]

After aggregating the vertex features to get the hyperedge features, we can further
combine the vertex features according to the hyperedge weights:

.

X(t+1)
i = (1 − γ)X(t)

i + γ
∑

ek∈N(vi)

h(i, k)w(k)

dv(i)
E(t)

k

= (1 − γ)X(t)
i + γ

∑

vj ∈V

∑

ek∈E

h(i, k)w(k)h(j, k)

dv(i)de(k)
X(t)

j ,

X(t+1) = (1 − γ)X(t) + γD−1/2
v HWD−1

e H�D−1/2
v X(t),

(5.29)

where .N(v) represents the hyperedge connected to vertex v, and .γ ∈ [0, 1] is the
weight coefficient of the filter. . Dv denotes the diagonal matrix of the vertex degrees,
. De denotes the diagonal matrix of the hyperedge degrees, and . H is the incidence
matrix of the hypergraph. In order to make the spectral radius less than 1, we can
replace .D−1

v HWD−1
e H� with symmetric normalized form:

.

X(t+1) = (1 − γ)X(t) + γD−1/2
v HWD−1

e H�D−1/2
v X(t)

= X(t) − γ
(
I − D−1/2

v HWD−1
e H�D−1/2

v

)
X(t).

(5.30)

Then, the multi-order hypergraph Laplacian smoothing filter can be written as

.X(t) = (I − γL)tX. (5.31)

After decomposing the eigenvalues of the hypergraph Laplacian operator . L =
UΛU−1, the diagonal elements of the diagonal matrix . Λ are eigenvalues of . L. The

84 5 Typical Hypergraph Computation Tasks

Fig. 5.7 The framework of the adaptive hypergraph auto-encoder framework. This figure is from
[3]

frequency response function is as

.p(Λ) = diag
(
p (λ1) , . . . , p

(
λ|V |

))
, (5.32)

.p(λ) = 1 − γ λ, γ ∈ [0, 1]. (5.33)

Due to the eigenvalue of the hypergraph Laplacian .λ ∈ [0, 1], .p(Λ) is a positive
semi-definite matrix, and the value of .p(λ) decreases as . λ increases. Therefore,
the hypergraph Laplacian smoothed filtered can effectively suppress high-frequency
signals:

.F = Up(Λ)U−1 = U(I − γΛ)U−1 = I − γL. (5.34)

Figure 5.7 illustrates how to use the relational reconstruction auto-encoder after
getting the smoothed feature matrix to conduct vertex representation learning in
low-dimensional environments without losing information. First, the incidence

5.3 Data Clustering on Hypergraph 85

matrix is used to generate the adjacency matrix:

.A = ε
(
HH�)

, (5.35)

.ε(x) =
{
1, x > 0
0, x = 0

. (5.36)

A single fully connected layer is used to compress the filtered feature matrix:

.Z = scale (XsmΘ) , (5.37)

. scale(x) = x − min(x)
max(x) − min(x)

, (5.38)

where . Z represents the vertex embedding matrix, which includes both structural and
feature information, and . Θ is the learnable parameter that is used to extract features
from the vertices. In order to rescale the range of vertex characteristics to .[0, 1],
. scale (·) represents a normalization function. So the following is the similarity
matrix for vertex features:

.S = sigmoid
(
ZZ�)

, (5.39)

. sigmoid(x) = 1

1 + e−x
. (5.40)

This is the inner product decoder used to reconstruct vertex and its neighbors. The
objective is to minimize the error between the adjacency matrix . A and the similarity
matrix . S. However, using Eq. (5.35) to construct an adjacency matrix leads to a
problem: the number of edges is too large when the hyperedge degree increases. To
solve this problem, the elements in matrix . A are weighted as

.Wij =
{ |V |2−∑∑

Aij∑ ∑
Aij

,Aij = 1

1 ,Aij = 0
. (5.41)

The reconstruction loss can be calculated by using the weighted binary cross-
entropy function:

.Lre = 1

|V |2
|V |∑

i=1

|V |∑

j=1

−Wij

[
Aij logSij + (

1 − Aij

)
log

(
1 − Sij

)]
. (5.42)

The relational reconstruction auto-encoder can be trained to produce the learned
vertex embeddings, and the spectral clustering technique can be further used to
obtain the final clustering results.

86 5 Typical Hypergraph Computation Tasks

5.4 Cost-Sensitive Learning on Hypergraph

Most of the machine learning applications may suffer from cost-sensitive scenarios.
It is noted that different types of faults in real-world jobs might result in losses
with varying severity. In diagnostic work, for example, misdiagnosing a patient as a
healthy person is significantly more erroneous than classifying a healthy individual
as a patient, as shown in Fig. 5.8. Similar cases also happen in the application of
software defect prediction. Misjudging the flaws of software modules as a good
one may destroy the software system and have disastrous repercussions in software
defect prediction. In these cases, cost-sensitive learning methods [11–13] have been
developed to deal with these issues.

In many cases, the data from a group of categories may be enough, while the data
from other categories may be very limited. These imbalanced data distributions lead
to different costs for the classification performance of different categories. Under
such circumstances, imbalanced learning [13, 14] attracts much attention, which
aims to attain a predictive prediction using imbalanced sampling data. In traditional
methods, sampling methods [15, 16] are used to over-sample the minority class and
under-sample the majority class to solve the imbalanced sample problem. Another
way is to conduct cost-sensitive learning that can focus more on the minority class.

To confront the cost-sensitive issue in hypergraph computation, in this section,
we introduce cost-sensitive hypergraph computation framework [4] and cost interval
optimization for hypergraph computation [5], respectively. First, we describe how
to quantify cost in the hypergraph modeling procedure [4], in which a fixed cost
value is provided for modeling, and thereafter, we illustrate how to use the cost-
sensitive hypergraph computation approach to tackle imbalanced problems. As the
cost value for mis-classification results may not be feasible in practice, we then
introduce the hypergraph computation method with cost interval optimization [5],
which can utilize the cost chosen inside the interval while generating data with
high-order relations. Figure 5.9 shows the frameworks of hypergraph computation
under cost-sensitive scenarios, from traditional hypergraph modeling, hypergraph
modeling with cost matrix, to hypergraph modeling with cost matrix using cost
interval.

Fig. 5.8 A medical example of cost-sensitive classification scenario

5.4 Cost-Sensitive Learning on Hypergraph 87

Fig. 5.9 The frameworks of hypergraph computation under cost-sensitive scenarios

(1) Cost-Sensitive Hypergraph Computation

In this part, we introduce a cost-sensitive hypergraph computation method [4],
and Fig. 5.10 shows the framework of this method. This framework consists of
two stages to handle the cost-sensitive issue: F-measure is used in the initial step
to calculate candidate cost information for cost-sensitive learning, and then the
hypergraph structure is utilized to model the high-order correlations among the data
in the second stage.

First, we introduce the hypergraph modeling with cost matrix. In traditional
hypergraph modeling, each vertex represents a subject, and the hyperedges con-
nect related vertices. To introduce cost information in hypergraph modeling, a
cost matrix is associated with each vertex, indicating different costs for mis-
classification, as shown in Fig. 5.11 for a binary classification task. The definition
of cost matrix is as follows.

As shown in Fig. 5.11, the cost matrix is a .2×2 matrix, including the true positive
cost .CT P , the true negative cost .CT N , the false positive cost .CFP , and the false
negative cost .CFN , respectively. The true positive cost and the true negative cost are
mostly 0 in the matrix since that denotes the correct prediction. The cost-sensitive
hypergraph’s propensity for each class is achieved by giving various values to the
false positive cost and the false negative cost in the cost matrix. A special case is
that, if the false positive cost and the false negative cost are equal, then the cost-
sensitive hypergraph reduces to traditional hypergraph modeling.

We generate candidate cost information at first and then apply F-measure to
reduce the expense for both binary and multi-class data. For a classifier h, we can
define the error profile as

.Ψ (h) = (
FN1(h),FP1(h), . . . ,FNNc(h),FPNc(h)

)
, (5.43)

where . Nc represents the number of classes, and .FN and . FP represent the false
negative and the false positive probabilities. For simplicity, we let .ψ2k−1 represent
the FN possibility of the k-th class and .ψ2k represent the FP possibility of the k-th

88 5 Typical Hypergraph Computation Tasks

F
ig
. 5

.1
0

T
he
 f
ra
m
ew

or
k
of
 c
os
t-
se
ns
iti
ve
 h
yp
er
gr
ap
h
co
m
pu
ta
tio

n
fr
am

ew
or
k.
 T
hi
s
fig

ur
e
is
 f
ro
m
 [
4]

5.4 Cost-Sensitive Learning on Hypergraph 89

F
ig
. 5

.1
1

A
n
ill
us
tr
at
io
n
of
 h
yp

er
gr
ap
h
m
od

el
in
g
w
ith

 c
os
t m

at
ri
x

90 5 Typical Hypergraph Computation Tasks

class. The F-measure for binary classification can be defined as

.Fβ(Ψ) =
(
1 + β2

)
(P1 − ψ1)

(
1 + β2

)
P1 − ψ1(h) + ψ2(h)

, (5.44)

where . Pk represents the marginal probability of class k. Similarly, the micro-F-
measure for multi-class classification can be defined as

.mcFβ(Ψ) =
(
1 + β2

) (
1 − P1 − ∑C

k=2 ψ2k−1

)

(
1 + β2

)
(1 − P1) − ∑C

k=2 ψ2k−1 + ψ1
. (5.45)

We can further divide the F-measure values in the region .[0, 1] into a collection of
equally spaced values .F = {fi} to calculate the cost of various mis-classifications.
The cost function . Υ is then used to construct the cost vector using every . fi . For
binary classification, we constrain the denominator of Eq. (5.44) to be positive and
.Fβ(Ψ) ≤ fi for a value c of the F-measure:

.

(
1 + β2 − f

)
ψ1 + f ψ2 +

(
1 + β2

)
P1(f − 1) ≥ 0. (5.46)

Therefore, the cost of . ψ1 and . ψ2 can be allocated according to f and .1+β2−f ,
and the cost function can be written as follows:

.Υ
Fβ

i =
⎧
⎨

⎩

1 + β2 − f, if sample from class 1
f, if sample from class 2
0, otherwise

. (5.47)

Similarly, the cost function of multi-class classification can be written as follows:

. Υ
mlFβ

i =
⎧
⎨

⎩

1 + β2 − f, if sample from odd class and not from class 1
f, if sample from class 1
0, otherwise

.

(5.48)

The cost of F-measure optimization is added to the optimization function to
increase the efficacy of the hypergraph computation method in imbalanced data. We
first regard each data to be a vertex of the hypergraph and then apply the k nearest
neighbor algorithm to construct the hypergraph. The cost-sensitive hypergraph
differs in that it includes the cost matrix information of each vertex in addition
to the original hypergraph correlation structure. With training and testing samples

5.4 Cost-Sensitive Learning on Hypergraph 91

represented by . O, cost-sensitive hypergraph computation function can be expressed
as

.

argmin
ω,W

{
μΩ(ω) + Remp(ω) + λΦ(W)

}
,

s.t.

N∑

j=1

Wj,j = 1,∀ Wj,j ≥ 0,
(5.49)

where .Ω(ω) = (Oω)�Δ(Oω) represents the hypergraph Laplacian regularized with
hypergraph Laplacian . Δ, .Remp(ω) = ‖Υ (Oω − y)‖22 = ∑N

i=1

(
Υi,i (oiω − yi)

)2 is
the empirical loss using cost information with diagonal matrix . Υ that .Υi,i represents
the cost of the i-th data, .Φ(W) = λ‖W‖2F stands for the hypergraph regularization,
. ω represents the mapping vector to be learnt, . W is a diagonal matrix representing
hyperedge weights, and . μ and . λ are the trade-off hyperparameter. We first fix . W to
optimize . ω, and then the optimization equation can be expressed as

. argmin
ω

{
‖Υ (Oω) − y‖22 + μ(Oω)�Δ(Oω)

}
. (5.50)

The optimal . ω can be obtained as

.ω =
(
O�Υ 2O + μO�ΔO

)−1 (
O�Υ y

)
. (5.51)

Following that, we fix . ω to enhance . W:

.

argmin
W

{
μ(Oω)�Δ(Oω) + λ‖W‖2F

}
.

s.t.

N∑

j=1

Wj,j = 1,∀ Wj,j ≥ 0.
(5.52)

We can have . W as

.W = μΛ�Λ(De)
−1 − ηI

2λ
, (5.53)

where . η can be calculated as .η = μΛ(De)
−1Λ�−2λ
N

, and . Λ can be calculated as
.Λ = (Oω)� (Dv)

−1/2H. The optimized mapping vector . ω allows sample . ζi in the
test set to obtain the classification result .γ = ζiω.

Each piece of potential cost information . ci generates a cost matrix . Υ , which is
then used to build a cost-sensitive hypergraph structure . Gi . The model then employs
an efficient collection to choose the cost-sensitive hypergraph with the greatest F-
measure as the best choice.

92 5 Typical Hypergraph Computation Tasks

(2) Cost Interval Optimization for Hypergraph Computation

As the cost value for cost-sensitive hypergraph modeling is not easy to be deter-
mined in practice, in this part, we introduce a cost interval optimization method
for hypergraph computation [5], in which the fixed cost value is replaced by a cost
interval, which is much easier to be provided than a fixed cost value.

Given a hypergraph .G = (V ,E ,W), the regularization foundation of the cost-
sensitive hypergraph can be divided into three components, i.e., empirical loss
using cost information, the hypergraph Laplacian regularizer, and the hypergraph
regularization, in order to optimize the overall cost by adding the mis-classification
costs of various categories to the hypergraph framework.

The empirical loss using cost information can be formulated as

.Remp(ω) = ‖Φ(Sω − y)‖22 =
Nv∑

i=1

(
Φi,i (siω − yi)

)2
, (5.54)

where . ω represents the mapping vector, and . Φ is a diagonal matrix representing mis-
classification cost weights. The hypergraph Laplacian regularizer can be written as

.
Ω(ω) = 1

2

∑

e∈E

∑

vi ,vj ∈V

W(e)H (vi, e)H
(
vj , e

)

δ(e)

⎛

⎝ ωsi√
d (vi)

− ωsj
√

d
(
vj

)

⎞

⎠

2

= (Sω)�Δ(Sω).

(5.55)

To adjust the hyperedges weights and hence the hypergraph classification ability,
the hypergraph regularization is written as .Ψ (W) = ‖W‖2F . It is noted that this part
can be removed in different applications, if not required.

Combining the above three, the whole optimization task for cost-sensitive
hypergraph computation can be written as

.

argmin
ω,W

{
‖Φ(Sω − y)‖22 + μ(Sω)�Δ(Sω) + λ‖W‖2F

}
,

s.t.

Ne∑

j=1

Wj,j = 1,∀ Wj,j ≥ 0,
(5.56)

where . μ and . λ are the trade-off hyperparameters.
The precise cost of each category is required for cost-sensitive hypergraph

computation, but the cost is frequently impossible to be obtained, and it can only
be known that the cost is within a cost interval .[Cmax, Cmin]. Therefore, a simple
idea is to attempt all values inside the cost interval and minimize the overall cost.
However, this is inefficient given the possibly huge cost interval. As the actual cost

5.5 Link Prediction on Hypergraph 93

is difficult to establish, we need to find a surrogate cost . c∗ to guide the optimization
procedure, and the surrogate classifier . h∗ is supposed to be as successful as the true
cost classifier . ht . In this way, the problem can be formulated as

.

min
h,c∗ L(h, c∗),

s.t. p(L(h, c) < θ) > 1 − ϕ,∀ c ∈ [Cmin, Cmax], Cmin ≤ c∗ ≤ Cmax,

(5.57)

where .L(h, c) is the empirical risk. .L(h, c) is formulated as . L(h, c) =
∑Nv

i=1 cI (ρi �= y ∧ y = +) + I (ρi �= y ∧ y = −), where .ρi = siω is the i-th
data labeling in the test set, and . + and . − represent the label of the important class
and the unimportant class, respectively.

The worst-case risk is considered first to guarantee that all limitations can be
fulfilled. The worst-case classifier . h∗ can be written as

.h∗ = arg min
h

sup
c

L(h, c) (5.58)

and

.p

(

sup
c

L (h∗, c) < θ

)

> 1 − ϕ. (5.59)

We have .p (L (h∗, c) < θ) > 1 − ϕ for any c. The worst-case risk is attained
when the surrogate cost . c∗ equals .Cmax . However, only a solution that meets the
requirements can be acquired in this manner, and the cost cannot be guaranteed to
be close to the true cost. As the average cost is the smallest maximum distortion
of the genuine risk, it is another good choice, which can be calculated as . Cmean =
0.5(Cmax + Cmin).

With the use of alternative costs .Cmax and .Cmean, we can conduct cost interval
optimization. First, .Cmax is used as a surrogate cost, and a collection of cost-
sensitive hypergraph structures with varying parameter values is learned in the first
stage. Then, .Cmean is used as a surrogate cost to determine the lowest overall cost on
the valid dataset, and then we choose the hypergraph structure as the final solution.

In this section, we describe cost-sensitive hypergraph computation methods.
Imbalanced data issue is very common in many applications. The cost-sensitive
hypergraph computation methods introduce cost matrix in hypergraph modeling,
and both fixed cost value and cost interval can be used in the learning process.

5.5 Link Prediction on Hypergraph

Link prediction is a fundamental task in network analysis. The objective of link
prediction is to predict whether two vertices in a network may have a link. Link
prediction has wide applications in different domains, such as social relation

94 5 Typical Hypergraph Computation Tasks

exploration [17, 18], protein interaction prediction [19, 20], and recommender
system [21, 22], which has attracted much attention in the past decades.

Link prediction on hypergraph aims to discover missing relations or predict
new coming hyperedges based on the observed hypergraph, where hypergraph
computation can be used to deeply exploit the underneath high-order correlations
among these data. Unlike the link prediction task on the graph structure [23, 24],
the hypergraph models the high-order correlation among the data, which is hetero-
geneous in many applications, as the vertices are in different types. For example,
in a bibliographic network, the vertex can represent a paper, an author, or a venue,
while the hyperedge represents the relation where the paper is written by multiple
authors and published in a venue. These different types of vertices do not necessarily
share the same representation space. The heterogeneous hypergraph consists of two
kinds of vertex in the view of the hypergraph event, i.e., identifier vertex and slave
vertex. Identifier vertex is the vertex that determines a hyperedge uniquely, while
slave vertex is the other vertex except for the identifier vertex. In this section, we
introduce the Heterogeneous Hypergraph Variational Auto-encoder (HeteHG-VAE)
method [6] for heterogeneous hypergraph link prediction task.

The overview of HeteHG-VAE can be found in Fig. 5.12. HeteHG-VAE aims
to learn the low-dimensional heterogeneous hypergraph embedding based on the
Bayesian deep generative strategy. The input hypergraph is represented by the
incidence matrix . H, whose sub-hypergraph represents the hypergraph generated
by different types of slave vertices. The heterogeneous encoder can project the
vertices and the hyperedges to the vertex embedding and hyperedge embedding,
respectively. The hypergraph embedding is the combination of the vertex embedding
and the hyperedge embedding, which can be used for reconstructing the incidence
matrix by the hypergraph decoder.

In the following part of this section, we first introduce the variational evidence
lower bound with the task specific derivation. Then, the inference model, including
the heterogeneous vertex encoder and the heterogeneous hyperedge encoder, is
presented. At last, the generative model and the link prediction method are
introduced.

Denote .{xk}Kk=1 as the observed data with the total number K , .ZV
k as the

latent vertex embedding, and . ZE as the latent hyperedge embedding. HeteHG-VAE
assumes that . ZV

k and . ZE are drawn i.i.d. from a Gaussian prior, i.e., . ZV
k ∼ p0(ZV

k)

and .ZE ∼ p0(ZE), and . xk are drawn from the conditional distribution, . xk ∼
p(xk|ZV

k , ZE; λk), where . λk is the parameter of the distribution. The objective of
HeteHG-VAE is to maximize the log-likelihood of the observed data by optimizing

5.5 Link Prediction on Hypergraph 95

F
ig
. 5

.1
2

A
n
ill
us
tr
at
io
n
of
 th

e
H
et
eH

G
-V
A
E
 m

et
ho
d.
 T
hi
s
fig

ur
e
is
 f
ro
m
 [
6]

96 5 Typical Hypergraph Computation Tasks

. λk as follows:

.

logp(x1, · · · , xK ; λ)

= log
∫

ZV
1

· · ·
∫

ZV
K

∫

ZE

p(x1, · · · , xK,ZV
1 , · · · ,ZV

K,ZE; λ)dZV
1 · · · dZV

KdZE

≥ Eq

(

log
p(x1, · · · , xK,ZV

1 , · · · ,ZV
K,ZE; λ)

q(ZV
1 , · · · ,ZV

K,ZE |x1, · · · , xK ; θ)

)

:= L (x1, · · · , xK ; θ, λ),

(5.60)

where .q(·) is the variational posterior for the estimation of the true posterior
.p(ZV

1 , . . . ,ZV
K,ZE |x1, . . . , xK), which is inaccessible, and . θ is the parameter to

be estimated. Then, .L (x1, . . . , xK ; θ, λ) is the evidence lower bound of the log
marginal likelihood. Based on the evidence lower bound, an inference encoder is
presented to parameterize q, and a generative decoder is used to parameterize p.

The inference encoder of HeteHG-VAE consists of two main parts, i.e., the
heterogeneous vertex encoder and the heterogeneous hyperedge encoder. Hetero-
geneous vertex encoder first maps the observed data . xk to a latent space . Z̃V

k , which
can be written as

.Z̃V
k = f V (xkWV

k + bV
k), (5.61)

where .WV
k and . bV

k are the to-be-learned weights of the model, and . f V is a nonlinear
activation function. Two separated linear layers map the latent representation of the
means . μV

k and variances . σV
k of q:

.μV
k = Z̃V

k W
V μ
k + b

V μ
k , . (5.62)

σV
k = Z̃V

k W
V σ
k + bV σ

k , (5.63)

where .WV μ
k , .bV μ

k , .WV σ
k , and .bV σ

k are learnable parameters. The vertex embedding
is the sample from the Gaussian distribution .N (μV

k , σV
k).

Heterogeneous hyperedge encoder first maps the observed data . xk to a latent
space . Z̃E

k , which can be written as

.Z̃E
k = f E(x�

k WE
k + bE

k), (5.64)

where .WE
k and . bE

k are the to-be-learned weights of the model, and . f E is a nonlinear
activation function. Then, the importance of different types of vertices is learned by
the hyperedge attention mechanism, which can be written as

.α̃k = Tanh(Z̃E
k W

Eα
k + bEα

k)P, (5.65)

5.6 Summary 97

where .WEα
k , . bEα

k , and . P are learnable parameters. The attention score . αk is obtained
by normalizing . ̃αk , and the hyperedge embedding can be written as

.Z̃E =
K∑

k=1

αkZ̃E
k . (5.66)

Similarly, two separated linear layers map the latent representation of the means . μE

and variances . σE of the distribution q:

.μE = Z̃EWEμ + bEμ, . (5.67)

σE = Z̃EWEσ + bEσ , (5.68)

where .WEμ, .bEμ, .WEσ , and .bEσ are learnable parameters. The vertex embedding
is the sample from the Gaussian distribution .N (μE, σE).

The incidence matrix is sampled from a Bernoulli distribution parameterized by
. Hk:

.p(Hij |ZV
k,i ,Z

E
k,j ; λk) = Ber(Hij), (5.69)

where .Hij is the dot product of the vertex embedding and the hyperedge embedding:

.Hij = Sigmoid(ZV
k,i(Z

E
j)�). (5.70)

The likelihood of the connection among vertices could be obtained based on the
vertex embedding and hyperedge embedding as follows:

.pconn(ZV
i ,ZE

j) = ||ZV
i ,ZE

j ||2. (5.71)

In this section, we have introduced the Heterogeneous Hypergraph Variational
Auto-encoder method [6] for the task of link prediction on hypergraph, which
captures the high-order correlations among the data while preserving the origin low-
order topology. Link prediction on hypergraph has shown superior performance in
different experiments and can be further used in other applications.

5.6 Summary

In this chapter, we introduce four typical hypergraph computation tasks, including
label propagation, data clustering, imbalance learning, and link prediction. Label
propagation on hypergraph is to predict the labels for the vertices on a hypergraph,
i.e., assigning a label to each unlabeled vertex in the hypergraph, based on
the labeled information. Data clustering on hypergraph divides the vertices in a

98 5 Typical Hypergraph Computation Tasks

hypergraph into several groups. Imbalanced learning on hypergraph considers the
imbalanced data distributions and introduces cost-sensitive hypergraph computation
methods. Link prediction on hypergraph discovers missing relations or predicts
new coming hyperedges based on the observed hypergraph. We note that these
four tasks are typical ways to use hypergraph computation in practice. Other
tasks can also be deployed under the hypergraph computation framework, such
as data regression, data completion, and data generation. Following these typical
hypergraph computation tasks, we can use them in different applications, such as
social media analysis and computation vision.

References

1. Y. Gao, M. Wang, D. Tao, R. Ji, Q. Dai, 3-D object retrieval and recognition with hypergraph
analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

2. Z. Zhang, H. Lin, J. Zhu, X. Zhao, Y. Gao, Cross diffusion on multi-hypergraph for multi-
modal 3d object recognition, in Proceedings of Pacific Rim Conference on Multimedia (2018),
pp. 38–49

3. Y. Hu, X. Li, Y. Wang, Y. Wu, Y. Zhao, C. Yan, Y. Gao, Adaptive hypergraph auto-encoder for
relational data clustering. IEEE Trans. Knowl. Data Eng. (2021)

4. N. Wang, R. Liang, X. Zhao, Y. Gao, Cost-sensitive hypergraph learning with F-measure
optimization. IEEE Trans. Cyber. (2021) pp. 1–12

5. X. Zhao, N. Nan, H. Shi, H. Wan, J. Huang, Y. Gao, Hypergraph learning with cost interval
optimization, in Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(2018), pp. 4522–4529

6. H. Fan, F. Zhang, Y. Wei, Z. Li, C. Zou, Y. Gao, Q. Dai, Heterogeneous hypergraph variational
autoencoder for link prediction. IEEE Trans. Pattern Analy. Mach. Intell. 44(8), 4125–4138
(2021)

7. D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: clustering, classification, and
embedding, in Proceedings of Advances in Neural Information Processing Systems (2006), pp.
1601–1608

8. D. Zhou, O. Bousquet, T. Lal, J. Weston, B. Schölkopf, Learning with local and global
consistency, in Proceedings of the Advances in Neural Information Processing Systems (2003),
pp. 321–328

9. F. Ye, C. Chen, Z. Zheng, Deep autoencoder-like nonnegative matrix factorization for commu-
nity detection, in Proceedings of the 27th ACM International Conference on Information and
Knowledge Management (2018), pp. 1393–1402

10. T. Yang, R. Jin, Y.Chi, S. Zhu, Combining link and content for community detection: a
discriminative approach, in Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2009), pp. 927–936

11. C. Elkan, The foundations of cost-sensitive learning, in Proceedings of the International Joint
Conference on Artificial Intelligence (2001), pp. 973–978

12. C. Zhang, K. Tan, H. Li, G. Hong, A cost-sensitive deep belief network for imbalanced
classification. IEEE Trans. Neural Netw. Learn. Syst. 30(1), 109–122 (2018)

13. D. Tomar, S. Agarwal, Prediction of defective software modules using class imbalance
learning, in Proceedings of the Applied Computational Intelligence and Soft Computing (2016)

14. N. Wang, X. Zhao, Y. Jiang, Y. Gao, Iterative metric learning for imbalance data classification,
in Proceedings of the 27th International Joint Conference on Artificial Intelligence (2018),
pp. 2805–2811

References 99

15. S. Barua, Md.M. Islam, X. Yao, K. Murase, MWMOTE–majority weighted minority over-
sampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng. 26(2),
405–425 (2012)

16. P. Sobhani, H. Viktor, S. Matwin, Learning from imbalanced data using ensemble methods and
cluster-based undersampling, in Proceedings of the International Workshop on New Frontiers
in Mining Complex Patterns (2014), pp. 69–83

17. D. Liben-Nowell, J. Kleinberg, The link-prediction problem for social networks, in Proceed-
ings of the 2003 ACM International Conference on Information and Knowledge Management
(2003), pp. 556–559

18. L. Liao, X. He, H. Zhang, T. Chua, Attributed social network embedding. IEEE Trans. Knowl.
Data Eng. 30(12), 2257–2270 (2018)

19. A. Clauset, C. Moore, M.E. Newman, Hierarchical structure and the prediction of missing links
in networks. Nature 453(7191), 98–101 (2008)

20. M. Zitnik, M. Agrawal, J. Leskovec, Modeling polypharmacy side effects with graph convolu-
tional networks. Bioinfor. 34(13), 457–466 (2018)

21. W. Feng, J. Wang, Incorporating heterogeneous information for personalized tag recommen-
dation in social tagging systems, in Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2012), pp. 1276–1284

22. C. Shi, B. Hu, W. X. Zhao, P.S. Yu, Heterogeneous information network embedding for
recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2019)

23. A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(2016), pp. 855–864

24. M. Zhang, Y. Chen, Link prediction based on graph neural networks, in Proceedings of the
Advances in Neural Information Processing Systems (2018), pp. 5165–5175

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 6
Hypergraph Structure Evolution

Abstract In practice, noise exists in the process of data collection and hyper-
graph construction. Therefore, missing, abundant, and noisy connections may be
introduced into the generated hypergraph structure, which may lead to inaccurate
inference on hypergraph. Another issue comes from the increasing data stream,
which is also very common in many applications. It is important to consider the
structure evolution methods on the hypergraph, which optimize the hypergraph
structure accordingly. Early hypergraph computation methods mainly rely on static
hypergraph structure, which may suffer from the limitation of the static mechanism
when confronting random and increasing data scenarios. In this chapter, we intro-
duce dynamic hypergraph structure evolution methods, including both hypergraph
component optimization and hypergraph structure optimization. Finally, we briefly
introduce the incremental learning method on growing data.

6.1 Introduction

The hypergraph structure models the high-order and complex correlations among
data, and thus the quality of topology structure plays an important role in learning
tasks on hypergraph. As shown in the previous chapter, there have been implicit
and explicit methods of hypergraph generation from observed data. However, the
generated hypergraph may contain abundant, missing, and noisy connections due
to the disturbances in the process of data collection and hypergraph construction.
In other words, there may exist biases between the generated hypergraph and the
ground truth structure. Under such circumstances, it is essential to optimize the
hypergraph structure to make it fit the ground truth high-order correlation more
accurately. The quality of a hypergraph can be directly qualified by comparing with
the ground truth structure if available, or indirectly evaluated by the performance
of downstream applications. Most existing hypergraph computation methods rely
on static hypergraph structure, such as k-nn-based method [1], cluster-based

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_6

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6
https://doi.org/10.1007/978-981-99-0185-2_6

102 6 Hypergraph Structure Evolution

method [2], and spare representation-based method [3]. These methods may suffer
from the inaccurate hypergraph structure that exists in practice. In this chapter, we
introduce hypergraph structure evolution methods under the dynamic hypergraph
structure learning mechanism. Hypergraph structure evolution can be divided into
two main categories, i.e., hypergraph component optimization and hypergraph
structure optimization. The problem of hypergraph structure evolution is usually
integrated with the learning process and formulated as a bi-level optimization
problem. Part of the work introduced in this chapter has been published in [4–7].

6.2 Hypergraph Component Optimization

Besides the main structure of a hypergraph, i.e., the incidence matrix, a hypergraph
is also composed of a group of components such as the weights for hyperedges,
vertices, and even sub-hypergraphs, which play an important role on the hyper-
graph structure. Hypergraph component optimization aims to explore the optimal
components of the hypergraphs, i.e., hyperedge weights, vertices weights, and
sub-hypergraph weights. The hyperedge weights represent the strength of each high-
order correlation among data, while the vertex weights represent the importance
of different samples on the structure. In many cases, we may construct multiple
hypergraphs using multi-modal data or different criteria, which can be regarded as
sub-hypergraphs. The sub-hypergraph weights are used to measure the importance
of different sub-hypergraphs on the overall structure. The optimization procedure
adjusts the hyperedge weights, the vertex weights, and sub-hypergraph weights
during the training process in order to improve the performances on the downstream
applications.

6.2.1 Hyperedge Weight Optimization

The hyperedge is a basic component of the hypergraph, representing the high-order
complex correlation among data. The initial hypergraph usually assigns an identical
weight to all hyperedges. However, hyperedges actually have different effects for a
given task. The hyperedge weights indicate the importance of different hyperedges
contributing to the whole structure. In this section, we introduce the hyperedge
weight learning methods [4], in which the weights of hyperedges are adaptively
adjusted during the training process, and thus the importance of different hyperedges
can be automatically modulated.

6.2 Hypergraph Component Optimization 103

We assume that there are m hyperedges in the hypergraph, denoted by
.{e1, e2, . . . , en}. The weights of the hyperedges are defined by the .n × 1 vectors
.w = [w1, w2, . . . , wn]�. There is usually a constraint on the hypergraph weights
that their sum is equal to one, i.e., .

∑n
i=1 ωi = 1. We use . F to denote the output of

hypergraph learning. The problem of learning hyperedge weights can be formulated
in a dual-optimization form mathematically

.

argmin
F,w

Ψ (F) := {
Ω(F) + λRemp(F) + μΦ(w)

}
,

s.t.
∑

e∈E

W(e) = 1.
(6.1)

Here, .Ω(F) and .Remp(F) are the regularizer and empirical loss of . F, respectively.
.Φ(w) is the regularizer on w. . λ and . μ are the scalars controlling the relative
importance of these three items.

The general formulation can be implemented by specifying the functions .Ω(·),
.Remp(·) and .Φ(·). As said before, . F is the to-be-learned labels in the node
classification task. The regularizer .Ω(F) can be defined as .F�ΔF, where . Δ is the
Laplacian matrix. The empirical loss .Remp(F) in the general form can be instantiated
by the difference between the learned . F and observed labels of training data . Y,
which are called the least residuals. The regularizer on w is a 2-norm. The general
formulation can be written as

.

argmin
F,w

Ψ (F) :=
{

F�ΔF + λ‖F − Y‖2 + μ

n∑

i=1

w2
i

}

,

s.t.
n∑

i=1

w2
i = 1.

(6.2)

The aim of the learning process is to search the optimal solution of . F and w to
minimize the cost function in Eq. (6.2).

There are two variables to be optimized in Eq. (6.2), which can be solved by
the alternating optimization algorithm. For each instant in time, one variable is
optimized, while the other is kept constant for the to-be-learned two variables . F and
w. The details of the alternating optimization strategy are introduced as follows.

Given the initial hyperedge weights, the first step is fixing w and optimizing
.Ω(F). The sub-problem is written as

. argmin
F

Ψ (F) = argmin
F

{
F�ΔF + λ‖F − Y‖2

}
. (6.3)

104 6 Hypergraph Structure Evolution

A closed-form solution of Eq. (6.3) has already been achieved from the traditional
hypergraph learning. The solution is written as

. F =
(

I + 1

λ
Δ

)−1

Y

=
(

I + 1

λ
(I − Θ)

)−1

Y

= λ + 1

λ

(

I − 1

λ + 1
Θ

)−1

Y. (6.4)

Let .ζ = 1
λ+1 , and Eq. (6.4) can be rewritten as

.F = 1

1 − ξ
(I − ξΘ)−1Y. (6.5)

With the updated . F, the next step is fixing . F while optimizing w, and the sub-
problem about w is

.

argmin
w

Ψ (F) = argmin
F

{

F�ΔF + μ

n∑

i=1

w2
i

}

,

s.t.
n∑

i=1

wi = 1, μ > 0.

(6.6)

The Lagrangian multipliers method is employed here, and the sub-problem is
replaced with

. argmin
w,η

F�ΔF + μ

n∑

i=1

w2
i + η

(
n∑

i=1

wi − 1

)

= argmin
w,η

F�
(

I − D
− 1

2
v HWD−1

e H�D− 1
2

v

)

F + μ

n∑

i=1

w2
i + η

(
n∑

i=1

wi − 1

)

.

(6.7)

Let .Γ = D
− 1

2
0 H, and it can be shown that

.η = F�Γ F − 2μ

n
(6.8)

6.2 Hypergraph Component Optimization 105

and

.wi = 1

n
− F�ΓD−1

e Γ �F
2nμ

+ F�ΓiD−1
e (i, i)Γ �

i F

2μ
. (6.9)

Here, . Γi defines the i-th column of . Γ .
In this way, . F and w are alternatively updated until convergence. Finally, the

optimal values of . F and w are obtained. We note that the above method is a typical
way to optimize the hyperedge weights using the .l2-norm. Other methods can also
be used to learn the hyperedge weights using different constraints.

6.2.2 Vertex Weight Optimization

Early hypergraph computation methods may not take the importance of vertices
into account and mainly focus on the weights of hyperedges. However, the vertex
set in the hypergraph may have heterogeneous, unbalanced, and outlier problems,
resulting in performance degeneration of learning process. Therefore, it is highly
required to consider the weights of vertices to define the impact of different subjects
during the learning process. For example, vertices belonging to the minority class
may require larger weights and vice versa for imbalanced data. In this part, we
introduce the vertex-weighted hypergraph learning method [5], which can update
the vertex weights during the learning process.

The aim of vertex-weighted hypergraph learning algorithm is to emphasize the
vertices with distinguishable information and disregard the redundant vertices that
bring in bias and noise instead of useful information. On the basis of learning
hyperedge weights, vertex-weighted learning algorithm further considers the vertex
weights. Here let .{v1, v2, . . . , vn} denote all n vertices in the hypergraph. The
corresponding weight for vertex . vi is represented by . ui . Let . U denote the diagonal
matrix of vertex weights. The overall cost function is similar to learning hyperedge
weights, but with the impact of . U simultaneously taken into consideration. The
general formulation is written as

.

argmin
F,w

ΨU(F) := {
ΩU(F) + λRemp(F) + μΦ(w)

}
,

s.t.W(e) ≤ 0,
∑

e∈E

H(v, e)W(e) = Dv(v).
(6.10)

The key point of vertex weight optimization is to design a reasonable vertex
weighting scheme that scores the importance of each subject during the learning
process. First, the pairwise distances between vertices are calculated based on the
features. Let . dij denote the distances between vertices . vi and . vj , and . d̂i declares the
mean distance between . vi and all other training vertices with the same label. The

106 6 Hypergraph Structure Evolution

vertex weight is then defined as

.ui = d̂i
∑ntrain

j=1 d̂j

, (6.11)

where .ntrain denotes the number of training samples. It is noted that only the
training data are labeled and further weighted. The unlabeled vertices are initialized
with an identical weight. Normalization is then applied to the vertex weights. This
weighting scheme can assign higher weights to vertices that are far from other intra-
class vertices and vice versa. Therefore, the importance of repeated/close samples
is relatively smaller than the outliers during the hypergraph learning process.

Since the hypergraph structure is updated with vertex weights, the hypergraph
structure regularizer is different from the initial one. As stated already, the hyper-
graph regularizer is defined based on the cut cost. Here, the cut cost is related to
not only just the hyperedge weights but to the vertex weights. In general, the higher
the weight of two vertices, the higher the cut cost. Therefore, the regularizer of the
hypergraph structure .ΨU(F) is rewritten as

. Ω(F) =
C∑

k=1

∑

e∈E

∑

u,v∈V

W(e)U(u)H(u, e)U(v)H(v, e)

2δ(e)

(
F(u, k)√

d(u)
− F(v, k)√

d(v)

)2

=
C∑

k=1

∑

e∈E

∑

u,v∈V

W(e)U(u)H(u, e)U(v)H(v, e)

δ(e)

×
(
F(u, k)2

d(u)
− F(u, k)F(v, k)√

d(u)d(v)

)

=
C∑

k=1

{
∑

u∈V

U(u)F(u, k)2
∑

e∈E

W(e)H(u, e)

d(u)

∑

v∈V

H(v, e)U(v)

δ(e)

−
∑

e∈E

∑

u,v∈V

F(u, k)U(u)H(u, e)W(e)H(v, e)U(v)F(v, k)√
d(u)d(v)δ(e)

⎫
⎬

⎭

=
C∑

k=1

F(:, k)�ΔUF(:, k)

= F�ΔUF. (6.12)

Here, .F(:, k) is the k-th column of . F and C is the number of data categories. . ΔU is
the vertex-weighted hypergraph Laplacian, which can be defined as

.ΔU = U − Θ = U − D−1/2
v UHWDe

−1H�UDv
−1/2. (6.13)

6.2 Hypergraph Component Optimization 107

Compared with the traditional hypergraph Laplacian . Δ = I−D
− 1

2
v HWDe

−1H�

Dv
− 1

2 , the hypergraph Laplacian with weighted vertices takes different weights
of vertices into consideration during the evaluation of the cost on the hypergraph
structure. Therefore, the learning task can be further defined as

.

argmin
F,W

Ψ (F) :=
{

F�ΔUF + λ‖F − Y‖2 + μ
∑

e∈E

W(e)2

}

,

s.t. W(e) ≥ 0,
∑

e∈E

H(v, e)W(e) = Dv(v).

(6.14)

The above optimization problem can be solved by the alternative optimization
algorithm. The sub-problem about . F has the closed-form solution as in traditional
hypergraph learning. The sub-problem about . W is written as

.

argmin
F,W

Ψ (F) :=
{

F�ΔUF + μ
∑

e∈E

W(e)2

}

,

s.t. W(e) ≥ 0,
∑

e∈E

H(v, e)W(e) = Dv(v).

(6.15)

The above optimization task can be solved via quadratic programming, since it is
convex on . W. Through vertex weight optimization, the vertex-weighted hypergraph
structure takes the contribution of each vertex to the whole hypergraph structure
into consideration, and thus it can model the high-order relevance among objects
more accurately. During the learning process, the impact of low-quality training
samples on the structure and subsequent classification tasks decreases continuously,
while high-quality training data, which account for a minority, can be given greater
importance. On the other hand, the minority of training data can have greater
importance. The additional vertex weights lead to an optimal Laplacian matrix
of hypergraph that measures data correlation better than the traditional one and
consequently lead to improvement of the classification performance.

6.2.3 Sub-hypergraph Weight Optimization

Given multiple sub-hypergraphs that are used to jointly formulate the correlation
among data, it is important to measure how these sub-hypergraphs work in the
main task. Sub-hypergraph weight optimization adjusts the importance of the sub-
hypergraphs, which models the complex correlation among the multi-model data.
In this part, we introduce the inductive multi-hypergraph learning (iMHL) [7] to
learn the weights of the model and adjust the weights of the sub-hypergraphs during
the training process simultaneously, which models the high-order correlation of

108 6 Hypergraph Structure Evolution

Fig. 6.1 The framework of inductive multi-hypergraph learning method. This figure is from [7]

the multi-model data with the multi-hypergraph, diffuses the sub-hypergraphs as
the modality weight, and learns the map from the data to the labels under the
supervised setting. Given testing data, the learning projection can be used to predict
corresponding labels. The framework of iMHL is illustrated in Fig. 6.1, where the
offline training and online training are both supported by the inductive learning
process, which can easily handle new coming data efficiently.

Here, we denote m as the total number of all sub-hypergraphs and . Gi =
(Vi ,Ei ,Wi) as the i-th hypergraph for the i-th modality. The projection matrices
. Mi are combined as per the sub-hypergraph weights and are used to map the data
to the label for prediction. The combination weights .ω = [ω1, · · · , ωm] are another
object to be optimized, which represents the weight of the corresponding modality,
subject to .

∑m
i=1 ωi = 1 and .ω ≥ 0.

The loss function . Ψ̄ for learning all . Mi can be formulated as

.Ψ̄ =
m∑

i=1

ωi{Ω(Mi) + λRemp(Mi) + μΦ(Mi)} + ηΓ (ω), (6.16)

which consists of two main parts, i.e., the summation of the cost of each sub-
hypergraph and the regularization on the sub-hypergraph weights . ω. .Φ(M) is the
regularizer on the projection matrix. We assume that the vertices with similar labels
are connected strongly, and .Ω(M) can then be written as

. Ω(M) = 1

2

c∑

k=1

∑

e∈E

∑

u,v∈V

W(e)H(u, e)H(v, e)

δ(e)

(
X�M(u, k)√

d(u)
− X�M(v, k)√

d(v)

)2

= tr(M�XΔX�M), (6.17)

where . Δ denotes the normalized hypergraph Laplacian,

.Δ = I − D−1/2
v HWD−1

e H�D−1/2
v . (6.18)

6.2 Hypergraph Component Optimization 109

The empirical loss term .Remp(M) can be written as

.Remp(M) = ||X�M − Y||2. (6.19)

.Φ(M) can be formulated as the .�2,1-norm of . M,

.Φ(M) = ||M||2,1, (6.20)

which produces row sparsity for more informative features. .Γ (ω) is the .�2-norm of
the sub-hypergraph weights

.Γ (ω) = ||ω||2, (6.21)

which aims to learn the optimal weights for each sub-hypergraph.
The inductive multi-hypergraph learning task can be formulated as

.

arg min
Mi ,ω≥0

m∑

i=1

ωi

(
Ω(Mi) + λRemp(Mi) + μΦ(Mi)

) + ηΓ (ω),

s.t.

m∑

i=1

ωi = 1.

(6.22)

It is observed that Eq. (6.22) could be split into .m+1 independent sub-problems,
each . Mi is optimized individually, and the combination weights . ω are optimized to
fuse all multi-hypergraphs.

The optimization of . Mi shown below can be solved by iterative algorithm.

. argmin
Mi

Ω(Mi) + λRemp(Mi) + μΦ(Mi). (6.23)

The optimization problem of . ω can then be written as

.

argmin
ω≥0

m∑

i=1

ωi

(
Ω(Mi) + λRemp(Mi) + μΦ(Mi)

) + η||ω||2,

s.t.

m∑

i=1

ωi = 1.

(6.24)

110 6 Hypergraph Structure Evolution

We denote .Υi = Ω(Mi) + λRemp(Mi) + μΦ(Mi), and Eq. (6.24) can be
simplified to

.

argmin
ω≥0

m∑

i=1

ωiΥi + η||ω||2,

s.t.

m∑

i=1

ωi = 1.

(6.25)

The Lagrangian algorithm can be applied to solve Eq. (6.25), which can be
formulated as

. argmin
ω,ζ

m∑

i=1

ωiΥi + η||ω||2 + ζ

(
m∑

i=1

ωi − 1

)

. (6.26)

Then, we can have

.ζ = −∑m
i=1 Υi − 2η

m
(6.27)

and

.ωi = 1

m
+

∑m
i=1 Υi

2mη
− Υi

2η
. (6.28)

Given the testing sample .xt = {xt
1, · · · , xt

m} features for each modality, the
prediction of the corresponding label can be achieved by

.C(xt) = argmax
k

m∑

i=1

ωix
t
i
�Mi . (6.29)

The overall algorithm is shown in Fig. 6.2. The optimization of sub-hypergraph
weights is effective as the incorporation of the multi-modal data via multiple sub-
hypergraphs can make it flexible to investigate the contributions of different data or
information on the learning process.

6.3 Hypergraph Structure Optimization

Although the above component optimization methods can modify the weights of
hyperedges, vertices, or sub-hypergraphs, it is not easy to precisely adjust the
inappropriate or wrong connections since the intersections between vertices and
hyperedges cannot be changed, i.e., the incidence matrix of the hypergraph is

6.3 Hypergraph Structure Optimization 111

Fig. 6.2 The workflow for the sub-hypergraph weight optimization method

fixed. To solve this challenge and further optimize the hypergraph structure, it
is imperative to investigate how to finely optimize the hypergraph structure and
dynamically learn the high-order relationship. It can be regarded as finding the
optimal hypergraph structure in a hypergraph space, as shown in Fig. 6.3.

In this part, we introduce the dynamic hypergraph structure learning method [6],
and Fig. 6.4 shows the framework of this method. Different from the above methods,
structure optimization on incidence matrix aims to optimize the incidence matrix . H.

Fig. 6.3 An illustration of hypergraph structure evolution

112 6 Hypergraph Structure Evolution

F
ig
. 6

.4

T
he
 f
ra
m
ew

or
k
of
 d
yn
am

ic
 h
yp
er
gr
ap
h
st
ru
ct
ur
e
le
ar
ni
ng
 m

et
ho
d.
 T
hi
s
fig

ur
e
is
 f
ro
m
 [
6]

6.3 Hypergraph Structure Optimization 113

The output . F and the incidence matrix . H are jointly optimized by the dual-
optimization method. The objective function of the joint learning can be formulated
as

. arg min
F,0�H�1

Ψ (F) := {
Ω(F,H) + λRemp (F) + μΦ(H)

}
. (6.30)

There are three terms in the objective function, explained as follows:

• First, .Ω(F,H) is the regularizer related to . F and . H. The output . F is the to-
be-learned label vectors of vertices. Therefore, smoothness is expected to be
conducted on the hypergraph structure, where the commonly used regularizer
of hypergraph smoothness can be written as

.Ω(F,H) = tr
(
F� (

I − D−1/2
v HWD−1

e H�D−1/2
v

)
F
)

. (6.31)

However, the regularizer in the previous methods is a function only of . F, while
. H is a stable parameter. Here, the regularizer is a function of both . F and . H.

• Second, the empirical loss .Remp (F) is the .l2-norm between . F and . Y.
• Third, .Φ(H) is the regularizer only related to . H to additionally constrain . H to

satisfy the prior knowledge. For instance, given the feature information of data,
the hypergraph structure is expected to preserve smoothness not just in the label
space but in the feature space as well. Let . X denote the features of vertices, and
the regularizer can be formulated as

.Φ(F) = tr
(
X� (

I − D−1/2
v HWD−1

e H�D−1/2
v

)
X

)
. (6.32)

To summarize, the general objective function in Eq. (6.30) for dynamic hyper-
graph structure learning is instantiated as

. arg min
F,0�H�1

Ψ (F) := tr
((

I − D−1/2
v HWD−1

e H�D−1/2
v

) (
FF� + μXX�))

+ λ‖F − Y‖2. (6.33)

Similar to the previous methods, the alternative optimization algorithm is applied
to solve the dual-optimization problem. The sub-problem about . F has the same
closed-form solution as traditional hypergraph learning [8].

The most important point that is different from the previous one is the sub-
problem about . H, which is written as

. arg min
0�H�1

Q(H) = Ω(H) + μΦ(H)

= tr
((

I − D−1/2
v HWD−1

e H�D−1/2
v

)
K

)
, (6.34)

114 6 Hypergraph Structure Evolution

where .K = FF�+μXX�. The projected gradient method is employed here because
Eq. (6.34) is a complex function of . H with a bound constraint. The gradient is
derived as

. ∇Q(H) =J
(
I ⊗ H�D−1/2

v KD−1/2
v H

)
WD−2

e

+ D−3/2
v HWD−1

e H�D−1/2
v KJW − 2D−1/2

v KDv
−1/2HWD−1

e ,

(6.35)

where .J = 11�. The detailed derivation process can be found in [6]. The step size of
learning . H is set as . α. Since . H is required to be in the range of .[0, 1], the projection
P on the feasible set is conducted after each update. Therefore, . H is updated by

.Hk+1 = P [Hk − α∇Q (Hk)] , (6.36)

where

.P
[
hij

] =

⎧
⎪⎪⎨

⎪⎪⎩

hij if 0 ≤ hij ≤ 1

0 if hij < 0

1 if hij > 1

. (6.37)

In this way, we can alternately optimize . F and . H until the objective function
converges.

The dynamic hypergraph structure learning method can outperform the tradi-
tional hypergraph learning consistently. This is due to the fact that the dynamic
hypergraph structure can fit the data better and formulate the high-order correlation
more effectively. Furthermore, both the feature and the label information are
applied for the hypergraph structure optimization. Therefore, the learned hypergraph
structure is smooth on the feature space and the label space. In other words,
the vertices with the same labels have stronger high-order connections, which
benefit the downstream task. We also note that the above dynamic hypergraph
structure optimization method is with relatively high computational complexity, as
it optimizes the whole incidence matrix H.

6.4 Incremental Learning on Growing Data

Most of the existing methods consider the static structures with fixed sets of vertices
and edges, while the data are generally dynamic in real-world applications. Under
such circumstances, the vertices and connections can be added or removed, and
the vertex attributes and connects weights change during the dynamic procedure.
Generally, there are two typical ways of dynamic structure learning, i.e., using
recurrent architectures [9, 10] and capturing temporal patterns [11, 12]. However,

6.4 Incremental Learning on Growing Data 115

the efficient learning of temporally growing structure has not been explored yet,
where the vertex and edge sets are expanding over time. Taking the citation network
into consideration, new publications and citation links are continuously added into
the network.

The incremental subgraph is the subgraph with the newly appeared vertices
and related new edges in the given growing graph at each time step. The edges
connecting the vertices from the same incremental subgraph are denoted as intra-
edges, while the edges connecting the vertices from different incremental subgraphs
are denoted as inter-edges. The incremental learning method aims to update the
model based on the incremental subgraphs at each time step and perform on the
entire graph consistently. The challenge of the incremental graph learning method
is how to design the efficient strategy to update the model with incremental data and
maintain the performance on the whole dataset.

The main differences between incremental graph learning and existing incremen-
tal learning methods are as follows:

• Incremental learning on growing graphs should store the observed vertices,
which may be connected with the newly coming vertices, while existing incre-
mental learning methods always drop the old samples under some scenarios.

• Considering the effect of the inter-edges on training, it is also essential to use
previous data when updating models with newly appeared data.

There are two straightforward solutions of incremental graph learning. First, the
static graph learning methods can directly be applied on the whole graph at each
time step, which suffers from a high computation cost. Second, only learn from the
incremental subgraph, which leads to bias to the newly coming subgraphs and loses
the information of the inter-edges.

In this section, we introduce incremental learning for graphs on the growing
data. During training, a graph . G L

t with a smaller number of vertices and edge sets
from the growing graph .{Gt } is generated for updating current model, which can
be implemented by existing GNN methods for specified graph learning task and
can perform on the entire observed graph at any time. Vertices and edges within
restricted numbers from the old graph are selected and combined with new subgraph
into . G L

t . Therefore, . G L
t is unbiased to the entire graph and enough inter-edges are

preserved. The overview of the IGL is shown in Fig. 6.5.
To address these issues of subgraph bias and inter-edges missing, the following

conditions should be considered for generating learning.

Unbiased Estimation of Neighboring Aggregation To alleviate the bias of subgraph,
the aggregation results of vertices in . G L

t should be unbiased estimations of them in
the entire graph, i.e., .∀v ∈ Vt ,

.E

(
agg

(
v,Nt (v) ∩ V L

t

)
| v ∈ V L

t

)
= agg (v,Nt (v)) , (6.38)

116 6 Hypergraph Structure Evolution

F
ig
. 6

.5

T
he
 f
ra
m
ew

or
k
of
 th

e
in
cr
em

en
ta
l g

ra
ph
 le
ar
ni
ng
 m

et
ho
d

6.4 Incremental Learning on Growing Data 117

where .agg(v,N) is the aggregator function of GNN to aggregate vertex embed-
dings from . N to . v, and .Nt (v) = {u ∈ Vt | (u, v) ∈ Et } is the neighborhood set of
vertex . v. Thus, .Nt (v) ∩ V L

t represents the sampled neighboring vertices in . G L
t .

Preservation of Inter-edges Since the missing of inter-edges may seriously affect
training, we aim at preserving more edges of .E inter

t in .ΔE L
t , which can be

formulated as

.

max
ΔE L

t

|ΔE L
t ∩ E inter

t |.

s.t. |ΔE L
t | ≤ Emax.

(6.39)

The edge preservation can be required as a definite optimization problem in
Eq. (6.39) or sampling problem with priority to vertices with higher degrees so that
.P(u ∈ V L

t) ∝ |{(u, v) ∈ E inter
t | v ∈ V new

t }|.
IGL is based on the unbiased and edge-preserved conditions. In the presentation

of method, we follow the memory constraint .Vmax and set . Emax = (|V new
t | +

Vmax)
2 − |E intra

t | by default. The generated edges can be uniformly sampled if
a smaller .Emax is required. The sample-based strategy is presented to select a
subgraph from the previous graph for learning. The following cluster-based strategy
is presented to construct a cluster graph that satisfies both the unbiased and edge-
preserved conditions in midway. The presented strategies are illustrated in Fig. 6.6.

(1) Sample-Based Strategy
The strategy of sampling a representative subgraph from previous data based on the
required conditions is studied first. We assume that a subset .ΔV L

t from .Vt−1 in size
of .Vmax is sampled, and all the related edges are preserved, i.e.,

.

ΔV L
t = Sample (Gt−1, Vmax),

ΔE L
t = {(u, v) ∈ E inter

t | u ∈ ΔV L
t , v ∈ V new

t },
(6.40)

Fig. 6.6 An illustration of the sample-based and cluster-based strategies

118 6 Hypergraph Structure Evolution

where .Sample() denotes the sampling function. Considering the required condi-
tions, we explore the following pragmatic methods for appropriate sampling:

• Random selection is for the unbiased condition that uniformly selects . Vmax

vertices from .Vt−1. However, it cannot preserve enough edges for efficient
training, especially in sparse graphs.

• Random jump is a traversal-based sampling, and we adapt it in the following
steps. Starting out with any vertex in .V new

t , we either randomly walk to a
neighboring vertex in .Vt−1 with probability p and select it, or randomly jump
to a vertex in .V new

t with probability .(1− p). We repeat to fill the sampled set. It
has been proved that the probability of sampling a vertex tends to be proportional
to its degree, which works under the edge-preserved condition.

• Degree-based selection is for the edge-preserved condition that samples vertices
with priority to those connected with more inter-edges. Let . Dt(u) = |{(u, v) ∈
Et }| be the degree of . u, and we define .Dnew

t (u) = Dt (u)−Dt−1(u)

Dt (u)
,∀u ∈ Vt−1 as

the new degree of vertices to measure their closeness to the new subgraph through
inter-edges. We then select top-.Vmax vertices in .Vt−1 by their new degrees.

The above methods take into consideration only part of required conditions. It
can be proved that, ignoring the ideal case when all the vertices in .Vt−1 connect
with the same number of vertices in .V new

t , sampling in Eq. (6.40) satisfies the two
required conditions when all the vertices have been sampled, i.e., joint training.

(2) Cluster-Based Strategy
The sample-based strategy selects a subgraph from the previous graph for learning.
However, in such a process, .Gt−1 is not completely covered, and some important
vertices might be dropped. Then, the selected subgraph cannot perform full
communication with the new subgraph. The assumption of sampling that . G L

t must
be a subgraph of . Gt is relaxed, and a cluster graph is constructed. Technically, we
first arrange vertices in .Vt−1 into K cluster sets .{C t−1

i }Ki=1 with centers . {ct−1
i }Ki=1

in average values of clusters. We set the number of clusters .K = Vmax . The cluster
graph is therefore defined as

.

ΔV L
t = {ct−1

1 , ..., ct−1
K },

ΔE L
t = {(ct−1

i , v) | v ∈ V new
t , ∃ u ∈ C t−F1

i , (u, v) ∈ E inter
t } ∪

{(ct−1
i , ct−1

j) | ∃ u1 ∈ C t−1
i ,u2 ∈ C t−1

j , (u1,u2) ∈ Et−1},
(6.41)

which suggests that the cluster centers be added as new cluster vertices, and the
edges connecting to any vertex in .Vt−1 be directly transferred to the corresponding
cluster vertex. It is noted that the additional edge sets in Eq. (6.41) represent . E inter

t

and .Et−1, respectively.

Due to the continued growth of the graph, direct clustering on the entire graph is
time-consuming. For an approximate but efficient clustering with a balanced size,
we first conduct clustering on the new vertices .V new

t into cluster sets . {ΔC t
i }Ki=1

with centers .{ĉt
i}Ki=1. The bipartite matching algorithm is applied to optimize a

References 119

bijective matching function .M(·) : {1, ..., K} → {1, ..., K} for the objective:
.minm(·) ΣK

k=1‖ct−1
k − ĉt

m(k)‖22, which assigns new clusters to be closer with old
clusters. Then, we merge the clusters as .C t

k = C t−1
k ∪ ΔC t

m(k) and update the value
of centers . ct

k .
In a word, incremental graph learning (IGL) is a general framework for efficient

learning on growing graphs in an incremental manner, which has the following
advantages. First, IGL is more suitable in real-world applications, since the dynamic
graphs are commonly appeared. Second, the sample-based and cluster-based strate-
gies significantly improve the efficiency when the large scale graph grows. However,
only the incremental of the nodes and edges are considered, while the deletion are
ignored, which limits the application of the method. The general dynamic patterns
are worth studying in the future works.

6.5 Summary

In this chapter, we introduce hypergraph structure evolution methods, i.e., hyper-
edge weight optimization, vertex weight optimization, sub-hypergraph weight
optimization, dynamic hypergraph learning, and the techniques for incremental
learning on growing graphs. The hyperedge weight optimization adjusts weights
of each hyperedge for different contributions, while the vertex weight optimization
considers the different importance of vertices on hypergraph. The sub-hypergraph
weight optimization method further combines multiple hypergraphs for multi-modal
data with learned weights. Dynamic hypergraph learning optimizes the hypergraph
structure by modifying the inappropriate connections, which can partially solve
the missing and incorrect connection issue. Finally, we introduce the incremental
learning method on growing graphs, which can update the data structure under the
incremental scenario.

It is noted that the optimization of hypergraph, either component or the structure,
will bring in extra computational cost and lead to potentially high computation
complexity in practice. How to effectively and efficiently adjust the hypergraph
structure is still a challenging problem, which requires further investigation in
future.

References

1. Y. Huang, Q. Liu, D. Metaxas, Video object segmentation by hypergraph cut, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2009), pp. 1738–1745

2. Y. Gao, M. Wang, D. Tao, R. Ji, Q. Dai, 3-D object retrieval and recognition with hypergraph
analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

3. Q. Liu, Y. Sun, C. Wang, T. Liu, D. Tao. Elastic net hypergraph learning for image clustering
and semi-supervised classification. IEEE Trans. Image Process. 26(1), 452–463 (2017)

120 6 Hypergraph Structure Evolution

4. Y. Gao, M. Wang, Z.-J. Zha, J. Shen, X. Li, X. Wu, Visual textual joint relevance learning for
tag-based social image search. IEEE Trans. Image Process. 22(1), 363–376 (2013)

5. L. Su, Y. Gao, X. Zhao, H. Wan, M. Gu, J. Sun, Vertex weighted hypergraph learning for multi-
View object classification, in Proceedings of the International Joint Conference on Artificial
Intelligence (2017), pp. 2779–2785

6. Z. Zhang, H. Lin, Y. Gao, Dynamic hypergraph structure learning, in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (2018), pp. 3162–
3169

7. Z. Zhang, H. Lin, X. Zhao, R. Ji, Y. Gao, Inductive multi-hypergraph learning and its
application on view-based 3D object classification. IEEE Trans. Image Process. 27(12), 5957–
5968 (2018)

8. D. Zhou, J. Huang, B. Scholkopf. Learning with hypergraphs: clustering, classification, and
embedding, in Proceedings of the Advances in Neural Information Processing Systems (2007),
pp. 1601–1608

9. F. Manessi, A. Rozza, M. Manzo, Dynamic graph convolutional networks. Pattern Recogn. 97,
107000 (2020)

10. A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T.B. Schardl,
C.E. Leiserson, EvolveGCN: Evolving graph convolutional networks for dynamic graphs, in
Proceedings of the AAAI Conference on Artificial Intelligence (2020), pp. 5363–5370

11. S. Yan, Y. Xiong, D. Lin, Spatial temporal graph convolutional networks for skeleton-based
action recognition, in Proceedings of the AAAI Conference on Artificial Intelligence (2018),
pp. 7444–7452

12. D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, K. Achan, Inductive representation learning on
temporal graphs, in Proceedings of the International Conference on Learning Representations
(2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 7
Neural Networks on Hypergraph

Abstract With the development of deep learning on high-order correlations,
hypergraph neural networks have received much attention in recent years. Generally,
the neural networks on hypergraph can be divided into two categories, including the
spectral-based methods and the spatial-based methods. For the spectral-based meth-
ods, the convolution operation is formulated in the spectral domain of graph, and we
introduce the typical spectral-based methods, including hypergraph neural networks
(HGNN), hypergraph convolution with attention (Hyper-Atten), and hyperbolic
hypergraph neural network (HHGNN), which extend hypergraph computation to
hyperbolic spaces beyond the Euclidean space. For the spatial-based methods, the
convolution operation is defined in groups of spatially close vertices. We then
present spatial-based hypergraph neural networks of the general hypergraph neural
networks (HGNN+) and the dynamic hypergraph neural networks (DHGNN). Addi-
tionally, there are several convolution methods that attempt to reduce the hypergraph
structure to the graph structure, so that the existing graph convolution methods
can be directly deployed. Lastly, we analyze the association and comparison
between hypergraph and graph in the two areas described above (spectral-based,
spatial-based), further demonstrating the ability and advantages of hypergraph on
constructing and computing higher-order correlations in the data.

7.1 Introduction

Hypergraph has demonstrated its ability to model and learn complex correlations in
recent years. Zhou et al. [1] introduced the hypergraph learning, which conducts
transductive learning and propagates information on the hypergraph structure.
Transductive inference on the hypergraph aims to minimize the label difference
between vertices with stronger connections. There has been extensive development
and application of hypergraph learning in several fields over the past few years.

In addition, hypergraph has been investigated in deep learning applications.
Based on the hypergraph Laplacian and the Chebyshev formula, Feng et al. [2]
first introduced hypergraph neural networks (HGNN). The hypergraph Laplacian is
synthesized using predictions in Yadati et al. [3], while Bai et al. [4] defined two

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_7

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7
https://doi.org/10.1007/978-981-99-0185-2_7

122 7 Neural Networks on Hypergraph

neural hypergraph operators based on [5, 6]. However, they do not implement high-
order learning algorithms by introducing only vertex functions, even though they
construct a simple weighted graph and apply mature graph learning algorithms. A
lack of powerful tools for expressing hyperstructure and a wealth of graph literature
motivated the work of [7]. Additionally, recent successes with graph representation
learning have been achieved by using neural operators (convolution, attention,
spectral, etc.). Generally, the neural networks on hypergraph can be divided into two
categories, including the spectral-based methods and the spatial-based methods.

For the spectral-based methods, Feng et al. [2] introduced the hypergraph
neural networks (HGNN) for modeling and learning beyond pairwise complex
correlations. Different from the traditional graph neural networks (GNN), HGNN
learns its data representation by iteratively propagating the vertex–hyperedge–
vertex information pattern. Additionally, the hypergraph Laplacian is first approx-
imated and introduced into the deep hypergraph learning method to speed up
the learning process. Following [2], Bai et al. [4] developed an attention module
based on hypergraph convolution patterns (Hyper-Atten). Hyper-Atten introduced
a hyperedge–vertex attention learning module that adaptively identifies the impor-
tance of different vertices in a hyperedge, thus revealing the intrinsic correlations
between vertices.

Using the spatial methods, Atwood et al. [8] made use of transition matrices
to determine where vertices are located. The generalization of convolution in
the spatial domain is achieved using Gaussian mixture models based on local
path operators. A graph-based attention-based architecture was built in work [9]
for analyzing vertices on graph using attention mechanism. A dynamic change
in hypergraph structure was taken into considerations in [6]. The framework
introduced in [6], which is more versatile than HGNN [2]. A unified hypergraph is
then constructed by merging the correlations from different modalities/types using
an adaptive hyperedge grouping strategy. To learn a general data representation for
various tasks, a hypergraph convolution scheme [6] was performed in the spatial
domain.

Hypergraph spectral graph theory [10] has been explored far less in other
methods. The concept of hypergraph learning was first introduced by Zhou et al. [1],
where it was presented as a propagation process. The Laplacian matrix, however,
is equivalent to pairwise operations according to [11]. There have been several
studies addressing non-pairwise relationships since then, including developing non-
linear Laplacian operators [12, 13], learning the optimal parameters of hyperedges
[13, 14], as well as utilizing random walking techniques [10]. Hyperedges can be
regarded as connectors in these algorithms, which explicitly break the bipartite
property of hypergraph by focusing on vertices.

In this chapter, we systematically introduce the above three types of neural
networks on hypergraph and show the comparison between graph neural networks
and hypergraph neural networks from both spectral and spatial aspects. Part of the
work introduced in this chapter has been published in [2, 15, 16].

7.2 Spectral-Based Neural Networks on Hypergraph 123

7.2 Spectral-Based Neural Networks on Hypergraph

The spectral neural networks methods have attracted much attention since Bruna
et al. [17] and Kipf et al. [18] simplified them in a graph convolutional network
pattern. The data are transformed from the common domain to the spectral domain
to be processed with according to map theory and the convolution theorem, and it
then gets transformed back to the common domain. In other words, first we convert
the signal from the common domain to the frequency domain (Fourier transform
implementation) and then multiply it by the phase. Then, we convert the result
of the phase multiplication back to the common domain again (Fourier inverse
transform implementation). We will present spectral-based hypergraph neural net-
works methods, including hypergraph neural networks (HGNN) [2], hypergraph
convolution with attention (Hyper-Atten) [3], and hyperbolic hypergraph neural
networks (HHGNN) [19]. In particular, HHGNN extends hypergraph learning to
the hyperbolic spaces beyond the Euclidean space.

7.2.1 Hypergraph Neural Networks

Given a hypergraph .G = (V ,E ,Δ) with N vertices, the hypergraph Laplacian
. Δ is an .N × N positive semi-definite matrix. The orthonormal eigen vectors
.Φ = diag(φ1, . . . , φN) and a diagonal matrix .Λ = diag(λ1, . . . , λN), which
contains the corresponding non-negative eigenvalues, are obtained by employing
the eigendecomposition .Δ = ΦΛΦ�. .x̂ = Φ�x defines the Fourier transform for
a signal .x = (x1, . . . , xN) in the hypergraph. It is assumed that the eigenvectors
represent the Fourier bases and the eigenvalues represent the frequencies. The
spectral convolution of signal . x and filter g can be denoted as

.g � x = Φ((Φ�g) � (Φ�x)) = Φg(Λ)Φ�x, (7.1)

where . � denotes the element-wise Hadamard product and . g(Λ) = diag(g(λ1), . . . ,

g(λn)) indicates a function of the Fourier coefficients. However, in the forward and
inverse Fourier transforms, the computational cost is .O(n2), which is high. To solve
this problem, Defferrard et al. [20] parameterize .g(Λ) with K-order polynomials,
and one such polynomial is the truncated the Chebyshev expansion. Chebyshev
polynomials .Tk(x) are computed by the formula of .Tk(x) = 2xTk−1(x) − Tk−2(x),
with .T0(x) = 1 and .T1(x) = x. After that, the .g(Λ) can be computed by

.g � x ≈
K∑

k=0

θkTk(Δ̃)x, (7.2)

124 7 Neural Networks on Hypergraph

where .Tk(Δ̃) denotes the Chebyshev polynomial of order k with scaled Laplacian
.Δ̃ = 2

λmax
Δ−I . In Eq. (7.2), matrix powers, additions, and multiplications are com-

bined instead of expansive computation of Laplacian Eigen vectors, thus improving
computation complexity even further. Since that the Laplacian in hypergraph can
already represent the high-order correlations among nodes, it can further limit the
order of convolution operation to .K = 1. It is suggested by Kipf et al. [18] that
.λmax ≈ 2 for the scale adaptability of neural networks. After that, the convolution
operation can be simplified to

.g � x ≈ θ0x − θ1D−1/2
v HWD−1

e H�D−1/2
v x, (7.3)

where . θ0 and . θ1 represent the parameters of all node filters. In addition, a single
parameter . θ is used to avoid the overfitting problem, which is defined as

.

{
θ1 = − 1

2θ

θ0 = 1
2θD

−1/2
v HD−1

e H�D−1/2
v .

(7.4)

Thereafter, the convolution process can be simplified to the following function:

.
g � x ≈ 1

2θD
−1/2
v H(W + I)D−1

e H�D−1/2
v x

≈ θD−1/2
v HWD−1

e H�D−1/2
v x,

(7.5)

where .(W+ I) can be regarded as the weight of the hyperedges. In the initialization
of . W, the hyperedges can be all assigned with equal weights as an identity matrix.

When having a hypergraph signal . Xt for the t-th layer, the hyperedge convolution
layer HGNNConv can be formulated by

.Xt+1 = σ(D−1/2
v HWD−1

e H�D−1/2
v XtΘ), (7.6)

where . Θ is the parameter to be learned during the training process. To extract
features from a hypergraph, the filter . Θ is applied to the vertices. After convolution,
.Xt+1, which can be used for further processing.

The framework of the abovementioned HGNN model is shown in Fig. 7.1.
HGNN is able to address the challenges of learning representations for complex
data by incorporating such data structures into hypergraph, which are more flexible
and effectively confronting practical data.

The HGNN calculation stages are shown in Fig. 7.2, and the three processes are
directly projected to the functions. We can observe that there are vertex feature
transform, hyperedge feature gathering, and vertex feature aggregating steps in this
framework.

7.2 Spectral-Based Neural Networks on Hypergraph 125

F
ig
. 7

.1

T
he
 f
ra
m
ew

or
k
of
 th

e
H
G
N
N
 m

od
el

126 7 Neural Networks on Hypergraph

F
ig
. 7

.2

T
he
 c
al
cu
la
tio

n
pr
oc
es
s
of
 th

e
H
G
N
N
 f
ra
m
ew

or
k

7.2 Spectral-Based Neural Networks on Hypergraph 127

7.2.2 Hypergraph Convolution and Hypergraph Attention

Based on the study of hypergraph neural networks [2], Bai et al. [4] introduced
hypergraph convolution and hypergraph attention (Hyper-Atten) by introducing
attention mechanism in the framework.

In this method, an explicit magnitude of importance is assigned to the afferent
and efferent information flow for non-binary values of the transition probability
between vertices for a given vertex. However, such an attention mechanism must
work after the graph structure (the incidence matrix . H) is given, instead of learning
a dynamic incidence matrix. It is easier to reveal the intrinsic relationship between
vertices using a dynamic transition matrix than by using a fixed incidence matrix. An
attention learning module could be imposed on . H, which does not treat each vertex
as being connected by a hyperedge or which does not assign non-binary and real
values when measuring the degree of connectivity. Following [6] when the vertex
set and the edge set are comparable, the attention score between a given vertex . xi

and its associated hyperedge . xj can be written as

.Hij = exp
(
σ

(
sim

(
xiP, xjP

)))
∑

k∈Ni
exp (σ (sim (xiP, xkP)))

, (7.7)

where .σ(·) is a nonlinear activation function. The weight matrix between the .(l)-th
and .(l + 1)-th layers is denoted as .P ∈ R

F (l)×F (l+1)
. . Ni is the neighborhood set of

. xi . The pairwise similarity of two vertices is computed with this similarity function

.sim(·):

. sim
(
xi, xj

) = a� [
xi‖xj

]
. (7.8)

Operation .[, ‖,] indicates concatenation, and notation . a is a weight vector for
outputting a scalar similarity value.

When following Eq. (7.6) to learn the intermediate embedding of vertices layer
by layer, hypergraph attention also propagates gradients to . H in addition to . X(l)

and . Θ . Therefore, Eq. (7.7) means the share of hyperedge . xj in the neighbors of
the vertex . xi , which indicates the relative importance . xj of . xi . More categorical
embeddings can be learned by the probabilistic model, and the relationship between
vertices can be described more accurately.

In order to further enhance the capability of representation learning, the method
uses hypergraph attention mechanisms based on the basic formulation of performing
convolutions.

128 7 Neural Networks on Hypergraph

7.2.3 Hyperbolic Hypergraph Neural Networks

The hyperbolic space is a manifold with constant Gaussian negative curvature
everywhere, which has several models. Similar to [21, 22], the work is based on
the Poincaré ball model for its well-suited for gradient-based optimization. The
Poincaré ball model with constant negative curvature .−1/k(k > 0) corresponds
to the Riemannian manifold .

(
P

n,k, gP
x
)
. .Pn,k = {x ∈ R

n : ‖x‖ < 1} is an open
n-dimensional unit ball, where . ‖.‖ denotes the Euclidean norm. Its metric tensor
is .gP

x = λ2xg
E, where .λx = 2

1−k‖x‖2 is the conformal factor and .gE = In is
the Euclidean metric tensor. Then, we define the Möbius addition of two points
.x, y ∈ P

n,k as follows:

.x ⊕k y =
(
1 + 2k〈x, y〉 + k‖y‖2) x + (

1 − k‖x‖2) y
1 + 2k〈x, y〉 + k2‖x‖2‖y‖2 . (7.9)

The distance between two points .x, y ∈ P
n,k is calculated by integration of the

metric tensor, which is given as

.dk
P
(x, y) = (2/

√
k) tanh−1

(√
k ‖−x ⊕k y‖

)
. (7.10)

Here we can denote point .z ∈ TxP
n,k as the tangent (Euclidean) space centered

at any point . x in the hyperbolic space. For the tangent vector .z �= 0 and the point
.y �= 0, the exponential map .expx : TxP

n,k → P
n,k and the logarithmic map . logx :

P
n,k → TxP

n,k are given for .y �= x by

. expk
x(z) = x ⊕k

(
tanh

(√
k
λk
x‖z‖
2

)
z√
k‖z‖

)
(7.11)

and

. logk
x(y) = 2√

kλk
x

tanh−1
(√

k ‖−x ⊕k y‖
) −x ⊕k y

‖−x ⊕k y‖ . (7.12)

The transformation between the tangent space and the hyperbolic space is shown
in Fig. 7.3. Leverage the operations of exp and log maps, so that we can use the
tangent space .TxP to perform transformations such as convolution and activation
in Euclidean space. In the convolution, vertex information is first gathered to the
hyperedge for storage, and then each vertex aggregates the information of the
connected hyperedge.

It is noted that initial data are on the Euclidean space and need to be converted
into embeddings on the hyperbolic space, so then first project the data on the
previously obtained Euclidean space onto the hyperbolic manifold space in order
to use the spectral-based hypergraph hyperbolic convolutional network to learn the
information to update the node embeddings. Set .t := {√k, 0, 0, . . . , 0} ∈ P

d,k

7.2 Spectral-Based Neural Networks on Hypergraph 129

Fig. 7.3 The transformation between the tangent space and the hyperbolic space

as a reference point to perform tangent space operations. The above condition
makes .〈(0, x0,E), t〉 = 0 hold, so .(0, x0,E) can be regarded as the initial embedding
representation of the hypergraph structure on the tangent plane of the hyperbolic
manifold space .TtP

d,k . The initial hypergraph structure embedding is then mapped
onto the hyperbolic manifold space . P following [19]:

.

x0,P = expk
t

((
0, x0,E

))

=
(√

k cosh

(∥∥x0,E
∥∥
2√

k

)
,
√

k sinh

(∥∥x0,E
∥∥
2√

k

)
x0,E‖x0,E‖2

)
.

(7.13)

Unlike the previous study [23] that simply generates the hyperedge structure for
common domain convolution, combined with the inspiration provided by HGNN
[2], hypergraph computation from the perspective of spectral convolution can be
conducted.

Given hyperbolic curvatures .−1/k�−1,−1/k� at layers .�− 1 and . �, respectively,
then the hyperbolic hypergraph convolution of the hypergraph input signal . xP with
filter . g can be defined as

.

xP ∗ g = expk�
x

(
Φ

((
Φ�

(
logk�−1

x

(
xP

)))
� (

Φ�g
)))

= expk�
x

(
Φg(Λ)Φ�

(
logk�−1

x

(
xP

)))
,

(7.14)

130 7 Neural Networks on Hypergraph

where . � is the element-wise product, .g(Λ) = diag(θ), and .θ = [θ1, · · · , θn] is the
parameters to be learned. Leverage the operations of exp and log maps, so that the
tangent space .T0P

d,k can be used to perform Euclidean transformations. It operates
in the tangent space of each center point . xP because the Euclidean approximation is
best [19].

Considering the high computational complexity of the Fourier transform and
inverse Fourier transform, this convolution method is very expensive to calculate.
Convolutions can be computed more efficiently by truncating Chebyshev polyno-
mials as [2]. It can be simply expressed as

.xP ∗ g ≈ expk�
x

(
θD−1/2

v HWD−1
e H�D−1/2

v

(
logk�−1

x

(
xP

)))
, (7.15)

where . W is the initial weight of hyperedges. The above equation uses the hyper-
graph Laplacian matrix to calculate the total gain obtained after a small perturbation
of a point. For a hypergraph with n vertices, the convolution layer can be denoted as
following formulation:

.X� = expk�

x�,E

(
σ

(
A

(
logk�−1

x�−1,P

(
X�−1,P

))
Θ

))
, (7.16)

where .Θ ∈ R
c(�−1)×c(�) is the parameter to be learned during the training process,

which is applied over the vertices in the hypergraph to extract features. c indicates
the size of the embedding dimension, . σ denotes the nonlinear activation function,
and .A = D−1/2

v HWD−1
e H�D−1/2

v .
The hyperbolic operation is accomplished by conducting feature mapping

between the Euclidean space and the hyperbolic space. The framework of the
above spectral-based hyperbolic hypergraph convolution is shown in Fig. 7.4.

Fig. 7.4 The framework of the spectral-based hyperbolic hypergraph convolution method

7.3 Spatial-Based Neural Networks on Hypergraph 131

7.3 Spatial-Based Neural Networks on Hypergraph

To show the spatial-based neural networks on hypergraph, we first briefly review
the definition of spatial-based graph convolution. The processing on an image is
taken as an example. The pixel in an image can be represented as vertices in a grid
graph, where each vertex only connects its neighbor vertices in the spatial–closed
region where it is located. A C-channel feature can be accordingly generated for
each vertex (pixel) in the image. The process of filtering an image can be viewed
as an average aggregation of neighbors’ features after a central vertex transforms
their features. Similar to convolution neural networks in image processing, spatial-
based graph convolution combines the neighbors of the central vertex to produce
a new representation. Spatial-based graph convolution runs from neighbor vertices
to center vertices, which is similar to the definition of a path in a simple graph. A
path in graph is defined as .P(v1, vk) = (v1, v2, . . . , vk). Vertices in the sequence
are adjacent to each other, so that every vertex in the sequence is adjacent to every
other vertex. It means that all the vertex pairs of i and .i + 1 (.1 ≤ i ≤ k − 1) have
the neighbor relation.

Similar to the spatial-based graph convolution, spatial-based hypergraph neural
networks also consider the neighbor information when learning representation.
Following, we introduce two typical spatial-based hypergraph neural networks,
including general hypergraph neural networks (HGNN. +) [16] and dynamic hyper-
graph neural networks (DHGNN) [15].

7.3.1 General Hypergraph Neural Networks

In this part, the general framework [16] for modeling representation learning
using hypergraph neural networks on given raw data is introduced. Figure 7.5
demonstrates the framework of general hypergraph neural networks, which also
consists of two procedures, i.e., hypergraph modeling and hypergraph convolution.
In the hypergraph modeling step, data issued to generate the high-order correlations,
which are represented as a hypergraph. Similar to previous tasks, hyperedge
groups can be generated as pairwise edges, k-Hop, and neighbors in the feature
space. As a result of this procedure, all types of hyperedge groups (if they are
available) are generated and concatenated in a hypergraph for the purpose of
data correlations modeling. Hypergraph convolution is the process of creating a
set of hypergraph convolutions on a given set of hypergraph, i.e., the spectral-
based convolution and the spatial-based hypergraph convolution for representation
learning on hypergraph. As a result of these convolution procedures, they can
generate much more accurate representations of multi-modal data and high-order
correlations using this information.

132 7 Neural Networks on Hypergraph

F
ig
. 7

.5

A
n
ill
us
tr
at
io
n
of
 th

e
ge
ne
ra
l h

yp
er
gr
ap
h
ne
ur
al
 n
et
w
or
k
fr
am

ew
or
k
(H

G
N
N
. +
).
 T
hi
s
fig

ur
e
is
 f
ro
m
 [
16

]

7.3 Spatial-Based Neural Networks on Hypergraph 133

(1) Hypergraph Modeling
The first step is to construct a flexible hypergraph from raw data if there is no
hypergraph existed, and the data correlations can be modeled using a hypergraph
structure. The ability to generate a suitable hypergraph structure is critical to exploit
the high-order correlations among the data. Generally, hypergraph structures are
not explicit in most cases. Therefore, different strategies are needed to generate the
hypergraph. Hypergraph generation from scratch usually involves a combination
of three scenarios, namely, data with graph structure, data without graph struc-
ture, and data with multi-modal/multi-type representations. Hyperedge generation
strategies, which employ pairwise edges, k-Hop, and neighbors in the feature space,
respectively, are introduced here. The strategies of using pairwise edges and k-Hop
are utilized for hyperedge group generation from the data with a graph structure,
and those of using neighbors in feature space are employed for hyperedge group
generation from the data without graph structure. Finally, all the hyperedge groups
are further concatenated to generate the overall hypergraph.

The above strategies can be used here to generate a number of hyperedge groups.
A final hypergraph is then generated by further combining generated or natural
hyperedge groups. Supposing there are K hyperedge groups .{E1,E2, . . . ,EK}, K
indicates incidence matrices .Hk ∈ {0, 1}N×Mk , respectively. For the hypergraph . G ,
the simplest fusion way to construct the incidence matrix is directly concatenating
all the hyperedge groups as .H = H1||H2|| · · · ||HK , where . ·||· is the matrix
concatenation operation. These hyperedges weight matrices of hypergraph can be
assigned a value of 1 in order to treat them equally. This simplest fusion way can be
called as coequal fusion.

It is noted that other combination strategies can be also used according to
different application scenarios. As the multi-modal hybrid high-order correlations
cannot be fully exploited by a simple coequal fusion, due to differences in
information richness between hyperedge groups, an adaptive strategy for the fusion
of hyperedge groups, namely Adaptive Fusion, was introduced in [16]. Specifically,
each hyperedge group is associated with a trainable parameter that can be used to
adjust the effect of multiple hyperedge groups on the final vertex embedding in an
adaptive manner, which can be defined as

.

⎧
⎪⎨

⎪⎩

wk = copy(sigmoid(wk),Mk)

W = diag(w1
1, . . . ,w

M1
1 , . . . ,w1

K, . . . ,wMK

K)

H = H1||H2|| · · · ||HK

, (7.17)

where .wk ∈ R is a trainable parameter that is shared by all hyperedges inside a
specified hyperedge group k. .sigmoid(·) is an element-wise normalization function.
.wk = (w1

k, · · · ,wMk

k) ∈ R
Mk denotes the generated weight vector for hyperedge

group k. .copy(a, b) function returns a vector of size b, and the value of which is
padded by copying a by b times. Let .M = M1 + M2 + · · · + MK denote the
summation of the hyperedges in all hyperedge groups. .W ∈ R

M×M is a diagonal
matrix that indicates the weight matrix of hypergraph, and each entry .Wii denotes

134 7 Neural Networks on Hypergraph

the weight of the corresponding hyperedge . ei . By concatenating (. ·||·) the incidence
matrices of multiple hyperedge groups, .H ∈ {0, 1}N×M can denote the incidence
matrix of the hypergraph generated.

Multi-model/multi-type data can be analyzed to generate multiple hyperedge
groups. From the constructed hyperedge groups, the hypergraph incidence matrix
. H and hyperedge weight matrix . W can be generated, which can then be fed into the
hypergraph convolution layer for further processing.

(2) Hypergraph Convolution
Following Definitions 1, 2, 3, an aggregation of neighbor vertex messages via
hyperpath is introduced for one spatial hypergraph convolution layer. Given a vertex
.α ∈ V of hypergraph .G = {V ,E ,W}, aggregating messages from its hyperedge
inter-neighbor set .Ne(α) is the aim. In order to obtain those hyperedge messages of
each hyperedge . β in the hyperedge inter-neighbor set .Ne(α), aggregating messages
from its vertex inter-neighbor set .Nv(β). After that, the two steps of hypergraph
convolution make a closed loop from vertex feature sets . Xt to .Xt+1. A general
spatial hypergraph convolution in the t-th layer can be defined as

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mt
β = ∑

α∈Nv(β)

Mt
v(x

t
α)

yt
β = Ut

e(wβ,mt
β)

⎫
⎬

⎭ Stage 1

mt+1
α = ∑

β∈Ne(α)

Mt
e(x

t
α, yt

β)

xt+1
α = Ut

v(x
t
α,mt+1

α)

⎫
⎬

⎭ Stage 2

, (7.18)

where .xt
α ∈ Xt denotes the input feature vector of vertex .α ∈ V in layer

.t = 1, 2, . . . , T , and .xt+1
α denotes the updated feature of vertex . α. .mt

β denotes
the message of hyperedge .β ∈ E , and .wβ denotes a weight associated to
hyperedge . β. .mt+1

α denotes the message of vertex . α. . yt
β denotes the hyperedge

feature of hyperedge . β that denotes an element of hyperedge feature set . Y t =
{yt

1, y
t
2, . . . , y

t
M }, .yt

i ∈ R
Ct in layer t . .Mt

v(·), Ut
e(·),Mt

e(·), Ut
v(·) are the vertex

message function, hyperedge update functions, hyperedge message function, and
vertex update function in . tth layer, respectively, which can be defined for specified
applications.

With the high-order relationship in the hypergraph structure, the spatial hyper-
graph convolution layer is designed for high-level representation learning. In
comparison with the graph convolution that consists of a single stage of message
passing, the spatial hypergraph convolution is composed of four flexible operations
with learned differentiable functions. As neighbor relations in graph, there is no
natural ordering in inter-neighbors between vertices and hyperedges. Therefore,
a summation operation is used to aggregate vertex–hyperedge messages from
.Mt

v(·)/.Mt
e(·) operation.

A simple spatial hypergraph convolution layer (named HGNNConv. +) via spec-
ifying the message-update functions (vertex message function .Mt

v(·), hyperedge

7.3 Spatial-Based Neural Networks on Hypergraph 135

update function .Ut
e(·), hyperedge message function .Mt

e(·), and vertex update
function .Ut

v(·)) is introduced as

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mt
v(x

t
α) = xt

α|Nv(β)|
Ut

e(wβ,mt
β) = wβ · mt

β

Mt
e(x

t
α, yt

β) = yt
β

|Ne(α)|
Ut

v(x
t
α,mt+1

α) = σ(mt+1
β · Θt)

, (7.19)

where .Θt ∈ R
Ct×Ct+1

denotes a trainable parameter of layer t , learned in training
phase. .σ(·) denotes an arbitrary nonlinear activation function such as .ReLU(·), etc.
Note that in Eq. (7.19), .xt

α/|Nv(β)| and .yt
β/|Ne(α)| denote the normalized vertex–

hyperedge feature, of which convergence is accumulated and jittering is somewhat
minimized.

For faster forward propagation of HGNNConv. + in GPU/CPU devices, here
rewrite it in the matrix format. Consider . Xt as the input vertex feature set of
layer t . From Definitions 1, 2, .H� ∈ {0, 1}M×N can control the hyperedge inter-
neighbor of each vertex feature in . Xt . Hence, it can be used to guide each vertex
to aggregate and generate the hyperedge feature set . Y t , which can be formulated as
.Yt = WD−1

e H�Xt . In a similar way, the process of updating vertex feature set . Xt+1

from hyperedge feature set . Yt can be formulated as .Xt+1 = σ(D−1
v HYtΘt). Thus,

the matrix format of HGNNConv. + can be written as

.Xt+1 = σ(D−1
v HWD−1

e H�XtΘt). (7.20)

Similar to HGNN, .Xt+1 can be obtained after convolution, which can be used
for further learning. As an extension of HGNN [2], this method employs a broad
multi-modal/multi-type data correlation model to learn an adaptive weight for each
modality/type representation using a single hypergraph model.

7.3.2 Dynamic Hypergraph Neural Networks

Dynamic hypergraph neural networks (DHGNN) [15] is a kind of neural networks
modeling dynamically evolving hypergraph structures, which is composed of the
stacked layers of two modules: dynamic hypergraph construction and hypergraph
convolution. The dynamic hypergraph construction module dynamically updates
hypergraph structures on each layer as initially constructed hypergraph may not
be an appropriate representation for data. After that, hypergraph convolution is
introduced as a means of encoding high-order correlations between data points
within a hypergraph. There are two phases in the hypergraph convolution module:

136 7 Neural Networks on Hypergraph

vertex convolution and hyperedge convolution, each of which is designed to
aggregate features among vertices and hyperedges, respectively.

(1) Dynamic Hypergraph Construction
Symbol .Con(e) is used to denote the vertex set that a hyperedge e contains, and the
symbol .Adj(v) is used to denote the hyperedge set where all hyperedges containing
the vertex v:

.Con(e) = {
v1, v2, . . . , vke

}
, (7.21)

.Adj(v) = {
e1, e2, . . . , ekv

}
(7.22)

where . ke and . kv are the number of vertices in hyperedge e, and the number of
hyperedges containing vertex v. v is defined as the centroid vertex of the hyperedge
set .Adj(v). Here, traditional k-NN methods and k-means clustering methods can
be combined for dynamic hypergraph construction to exploit local and global
structures. On the one hand, it has computed the k-1 nearest neighbors for each
vertex v. These neighborhood vertices, along with the vertex v, form a hyperedge in
.Adj(v). On the other hand, it has conducted k-means algorithm on the whole feature
map of each layer according to the Euclidean distance. For each vertex, the nearest
.S − 1 clusters are assigned as to be the adjacent hyperedges of this vertex. Here,
.|Adj (v)| denotes the size of adjacent hyperedge set, . xe denotes adjacent hyperedge
features, and . xv denotes centroid vertex feature. . W and . b are learnable parameters.

Such a procedure on the feature embedding of each layer is performed. Espe-
cially, it initializes hypergraph structures with the input feature embedding. There-
fore, the hyperedge set is dynamically adjusted as the feature embedding evolves
with network going deeper. In this way, it is able to obtain better hypergraph
structures for high-order data correlation modeling with deep neural networks.

(2) Dynamic Hypergraph Convolution
Hypergraph convolution is composed of two sub-modules: vertex convolution sub-
module and hyperedge convolution sub-module. By using vertex convolution, vertex
features are aggregated to the hyperedge, and then by using hyperedge convolution,
adjacent hyperedge features are aggregated to the center vertex.

There are several methods of pooling that can be used, including maximum pool-
ing and average pooling. Vertex aggregation in state-of-the-art algorithms involves a
fixed, pre-computed transform matrix generated from graph or hypergraph structure.
Nevertheless, such methods cannot effectively model discriminative information
among vertex features. For feature permutation and weighting, learn the transform
matrix . T from the vertex features. Information can flow within and between
channels using the transform matrix. Using multi-layer perception (MLP), obtain
the transform matrix . T and compress the transformed features by using convolution
as follows:

.T = MLP (Xv) (7.23)

7.4 Comparison Between Graph and Hypergraph Neural Networks 137

and

.xe = conv (T · MLP (Xv)) . (7.24)

(3) Hyperedge Convolution
Here, the hyperedge convolution is following the spatial convolution strategy,
which consists of the aggregation of hyperedge features to center vertex features.
Hyperedge convolution employs multi-layer perception to generate weight scores
for each hyperedge. As a weighted sum of input hyperedge features, the center
vertex feature is computed as an output. This procedure can be formulated as
follows:

.w = softmax (xeW + b) (7.25)

and

.xv =
|Adj(v)|∑

i=0

wixi
e. (7.26)

As a result of these deep learning techniques, graph/hypergraph structure is
taken into consideration as prior knowledge to the training of the model. There
are, however, a number of hidden and important relationships that are not directly
represented in the inherent structure. For vertex convolution, a transform matrix
is employed to permute and weight vertices within hyperedges; for hyperedge
convolution, an attention mechanism is employed to aggregate adjacent hyperedge
features. Figure 7.6 shows the architecture of the DHGNN. The first part of
the figure illustrates the process of the hyperedge construction. There are two
hyperedges generated from two clusters (dashed ellipses), for example. In the
second part, vertices within a hyperedge are aggregated to form a hyperedge
feature through vertex convolution, and vertices within adjacent hyperedges are
aggregated to form a center vertex feature via hyperedge convolution. In the third
part, after performing such operations on all vertices in the current layer feature
embedding, the new layer feature embedding and the new hypergraph structure can
be constructed.

7.4 Comparison Between Graph and Hypergraph Neural
Networks

After the previous introduction to the spectral-based and spatial-based hypergraph
neural networks methods, we have a basic understanding of the implementation
of these methods. In this section, we compare hypergraph neural networks with
simple graph neural networks according to spectral and spatial areas to discover the

138 7 Neural Networks on Hypergraph

F
ig
. 7

.6

T
he
 D
H
G
N
N
 f
ra
m
ew

or
k.
 T
hi
s
fig

ur
e
is
 f
ro
m
 [
15

]

7.4 Comparison Between Graph and Hypergraph Neural Networks 139

connections and differences between them. The most typical methods of the two
neural networks are chosen, the hypergraph neural networks model and the graph
neural networks model, as a way to compare the most typical relationships and
differences. HGNN [2] and HGNN. + [16] are used to compare them in the spectral
and spatial domains, respectively. In terms of convolution, GNN is the classical
operator designed to operate on graph, such as [6, 18, 24, 25]. In this subsection,
the HGNN [2] and HGNN. + [16] are compared with GNN [18] from the spectral
perspective and spatial perspective, respectively. Furthermore, the extended learning
domain of the hypergraph emphasizes the connection.

7.4.1 Spectral Perspective

It can be proved that the GNN can be mathematically viewed as a special case of
HGNN. Based on the assumption that every hyperedge connects only two nodes and
has a weight equal to that of others, the simple hypergraph (2-uniform hypergraph)
can also be expressed as a graph that has a graph adjacency matrix . A and a vertex
degree matrix . D, which is a construction similar to .Epair. It is indicated by the
hypergraph incidence matrix . H, the vertex degree matrix . Dv , the hyperedge degree
matrix . De, and the hyperedge weight matrix . W. Under such circumstances, then the
following formulations can reduce the simple hypergraph:

.

⎧
⎪⎪⎨

⎪⎪⎩

HH� = A + D

D−1
e = 1

2 I

W = I

. (7.27)

This can be reduced as follows using the hypergraph convolution:

.

Xt+1 = σ(D−1/2
v HWD−1

e H�D−1/2
v XtΘt)

= σ(D−1/2
v H(12 I)H

�D−1/2
v XtΘt)

= σ(12D
−1/2(A + D)D−1/2XtΘt)

= σ(12 (I + D−1/2AD−1/2)XtΘt)

= σ(D−1/2ÂD−1/2Xt Θ̂ t)

, (7.28)

where .Â = I + D−1/2AD−1/2 and .Θ̂t = 1
2Θ

t . The extra . 12 can be absorbed by the
learnable parameter . Θ . It appears that in modeling the simple graph, the spectral-
based hypergraph convolution in HGNN [2] exhibits the same formation as the
graph convolution in GCN [18]. Due to its powerful expressive capabilities, the
hypergraph convolution not only models and learns the high-order correlation in the
hypergraph, but also it has the ability to handle simple graph.

140 7 Neural Networks on Hypergraph

7.4.2 Spatial Perspective

Learning to embed the rooted subtree in low-dimensional space can be viewed
as a powerful GNN model [26]. Not only can rooted subtree [27] describe the
connections of local vertices, but it can also describe message passing paths in a
graph. The rooted subtree can therefore be used to compare HGNN. + [16] with
GNN [18]. In hypergraph, the node in the rooted subtree of hypergraph can either
be a vertex or a hyperedge in order to satisfy the path definition (also known as the
message passing path).

Comparing graph structures that are isomorphic is more straightforward. There-
fore, 2-uniform hypergraph (each hyperedge connects only two vertices) is com-
pared. Figure 7.7 displays the rooted subtree for HGNN. + [16] and GNN [18]
for a specified vertex, which can also be expressed as the message path in graph
and hyperpath in hypergraph. It is obvious that in graph convolution, the vertex
features of the neighbors are taken into account. These features are then aggregated
to update the central vertex feature at the end of the process. This layer can be
described as a hierarchical structure that enables the development of more powerful
expressions and modeling capabilities. HGNN. + [16] performs a two stage, i.e.,
vertex–hyperedge–vertex, transformation. As formulated in Eq. (7.18), the first
stage of the procedure generates a hyperedge feature based on the vertex inter-
neighboring of the vertex. As a result, the hyperedge inter-neighbor’s features
are aggregated to get the updated features of the vertices. Additionally, multi-
layer hypergraph convolution has much more message interactions than graph
convolution. The rooted vertex appears more frequently in the HGNN. + [16] path
of subtrees (like a latent extra self-loop), which accounts for its better performance.
In comparison with graph convolution, hypergraph convolution can efficiently
extract low- and high-order correlations on hypergraph via vertex–hyperedge–vertex
transformation.

7.5 Summary

In this chapter, we introduce two types of hypergraph neural networks learning:
spectral-based and spatial-based methods. In spectral-based methods, the hyper-
graph transforms the nodes in the common and spectral domains by computing the
Laplacian matrix. In the spatial-based methods, each node is updated by aggregating
information from the nodes on the spatial domain. Then, we consider that most
learning methods in graph learning are still simple graph neural networks.

Finally, we also compare hypergraph neural networks and graph neural networks
on the previous spectral-based spatial-based and others. According to the compari-
son of the convolutional computation coefficients, the hypergraph convolution can
not only have the comparable expressive ability of GCN when handling a simple
graph, but also is capable of modeling and learning high-order correlations within

7.5 Summary 141

F
ig
. 7

.7

C
om

pa
ri
so
n
of
 r
oo
te
d
su
bt
re
e
of
 g
ra
ph
 a
nd
 2
-u
ni
fo
rm

 h
yp
er
gr
ap
h.
 T
hi
s
fig

ur
e
is
 f
ro
m
 [
16

]

142 7 Neural Networks on Hypergraph

the hypergraph. Comparing hypergraph convolution with graph convolution based
on spatial domain comparison, we can find that hypergraph convolution layer can
efficiently extract both low-order and high-order correlations on hypergraph using
the vertex–hyperedge–vertex transformation.

References

1. D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: Clustering, classification, and
embedding, in Proceedings of the Advances in Neural Information Processing Systems (2006),
pp. 1601–1608

2. Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in Proceedings of the
AAAI Conference on Artificial Intelligence (2019), pp. 3558–3565

3. N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, P. Talukdar, HyperGCN: A new
method for training graph convolutional networks on hypergraphs, in Proceedings of the
Advances in Neural Information Processing Systems (2019)

4. S. Bai, F. Zhang, P.H. Torr, Hypergraph convolution and hypergraph attention. Pattern Recogn.
110, 107637 (2021)

5. M. Welling, T.N. Kipf, Semi-supervised classification with graph convolutional networks, in
Proceedings of the International Conference on Learning Representations (2016)

6. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention
networks, in Proceedings of the International Conference on Learning Representations (2017)

7. C. Yang, R. Wang, S. Yao, T. Abdelzaher, Hypergraph learning with line expansion (2020).
Preprint arXiv:2005.04843

8. J. Atwood, D. Towsley, Diffusion-convolutional neural networks, in Proceedings of the
Advances in Neural Information Processing Systems (2016)

9. F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, M.M. Bronstein, Geometric deep
learning on graphs and manifolds using mixture model cnns, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017), pp. 5115–5124

10. U. Chitra, B. Raphael, Random walks on hypergraphs with edge-dependent vertex weights, in
Proceedings of the International Conference on Machine Learning (2019), pp. 1172–1181

11. S. Agarwal, K. Branson, S. Belongie, Higher order learning with graphs, in Proceedings of the
International Conference on Machine Learning (2006), pp. 17–24

12. T.-H.H. Chan, A. Louis, Z.G. Tang, C. Zhang, Spectral properties of hypergraph laplacian and
approximation algorithms. J. Appl. Comput. Mech. 65(3), 1–48 (2018)

13. P. Li, O. Milenkovic, Inhomogeneous hypergraph clustering with applications, in Proceedings
of the Advances in Neural Information Processing Systems (2017)

14. P. Li, O. Milenkovic, Submodular hypergraphs: p-laplacians, cheeger inequalities and spectral
clustering, in Proceedings of the International Conference on Machine Learning (2018), pp.
3014–3023

15. J. Jiang, Y. Wei, Y. Feng, J. Cao, Y. Gao, Dynamic hypergraph neural networks. in Proceedings
of the International Joint Conference on Artificial Intelligence (2019), pp. 2635–2641

16. Y. Gao, Y. Feng, S. Ji, R. Ji, HGNN+: General hypergraph neural networks. IEEE Trans. Pattern
Analy. Mach. Intell. 45(3), 3181–3199 (2023)

17. J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks
on graphs (2013). Preprint arXiv:1312.6203

18. T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in
Proceedings of the International Conference on Learning Representations (2017)

19. I. Chami, Z. Ying, C. Ré, J. Leskovec, Hyperbolic graph convolutional neural networks, in
Proceedings of the Advances in Neural Information Processing Systems (2019)

References 143

20. M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs
with fast localized spectral filtering, in Proceedings of the Advances in Neural Information
Processing Systems (2016)

21. M. Nickel, D. Kiela, Poincaré embeddings for learning hierarchical representations, in
Proceedings of the Advances in Neural Information Processing Systems (2017)

22. O. Ganea, G. Bécigneul, T. Hofmann, Hyperbolic neural networks, in Proceedings of the
Advances in Neural Information Processing Systems (2018)

23. A. Li, B. Yang, H. Chen, G. Xu, Hyperbolic neural collaborative recommender. IEEE Trans.
Knowl. Data Eng. 1–12 (2021). https://doi.org/10.1109/TKDE.2022.3221386

24. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for
quantum chemistry, in Proceedings of the International Conference on Machine Learning
(2017), pp. 1263–1272

25. W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in
Proceedings of the Advances in Neural Information Processing Systems (2017)

26. K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?, in
Proceedings of the International Conference on Learning Representations (2019)

27. H.E. Manoochehri, S.S. Kadiyala, M. Nourani, Predicting drug-target interactions using
weisfeiler-lehman neural network, in Proceedings of International Conference on Biomedical
& Health Informatics (2019), pp. 1–4

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/TKDE.2022.3221386
https://doi.org/10.1109/TKDE.2022.3221386
https://doi.org/10.1109/TKDE.2022.3221386
https://doi.org/10.1109/TKDE.2022.3221386
https://doi.org/10.1109/TKDE.2022.3221386
https://doi.org/10.1109/TKDE.2022.3221386
https://doi.org/10.1109/TKDE.2022.3221386
https://doi.org/10.1109/TKDE.2022.3221386
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 8
Large Scale Hypergraph Computation

Abstract As introduced in the previous chapters, the complexity of hypergraph
computation is relatively high. In practical applications, the hypergraph may not
be in a small scale, where we often encounter the scenario that the size of
the hypergraph is very large. Therefore, hypergraph computation confronts the
complexity issues in many applications. Therefore, how to handle large scale data is
an important task. In this chapter, we discuss the computation methods for large
scale hypergraphs and their applications. Two types of hypergraph computation
methods are provided to handle large scale data, namely the factorization-based
hypergraph reduction method and hierarchical hypergraph learning method. In
the factorization-based hypergraph reduction method, the large scale hypergraph
incidence matrix is reduced to two low-dimensional matrices. The computing
procedures are conducted with the reduced matrices. This method can support
the hypergraph computation with more than 10,000 vertices and hyperedges. On
the other hand, the hierarchical hypergraph learning method splits all samples as
some sub-hypergraphs and merges the results obtained from each sub-hypergraph
computation. This method can support hypergraph computation with millions of
vertices and hyperedges.

8.1 Introduction

Hypergraph computation has been used in many areas such as image analysis [1–3]
and recommendation [4–6]. In practical applications, the hypergraph may not be in a
small scale, and the size of the hypergraph could be very large in many cases, where
hypergraph computation confronts the complexity issues [7–13]. For instance, in
medical image analysis, hypergraphs can be used to model the relationship among
case patches within an image or different images. Here we take the gigapixel whole-
slide histopathological images (WSIs) as an example. The large scale of pixels
in WSIs leads to a great challenge for medical image analysis. If we generate a
hypergraph for such pixels in WSIs, the scale of vertices tends to be in billion
level. Even we sample patches in WSIs, this number can be still around tens of
thousands, or in million level. The conventional hypergraph modeling methods are

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_8

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8
https://doi.org/10.1007/978-981-99-0185-2_8

146 8 Large Scale Hypergraph Computation

highly unlikely able to analyze such large scale pixels. Another example is the
recommender system. In recommender system, graphs or hypergraphs have been
very widely used with their superior structural modeling capabilities. Meanwhile,
the number of uses and items in the Internet or the recommender systems can be
in million to billions level, and even keep increasing. Consequently, recommender
systems are one of the typical playgrounds for large scale hypergraph applications.
The large scale problem of hypergraphs is encountered in many other areas, such as
social network analysis, protein relations prediction, and so on.

Under such circumstances, hypergraph computation confronts the large scale
issue, as the modeling and computing on hypergraph are with high complexity
in general. To help solve the large scale problem, we introduce two types of
hypergraph computational methods to handle large scale data in this chapter, namely
the factorization-based hypergraph reduction method and hierarchical hypergraph
computation method. We also introduce their applications in medical image anal-
ysis and recommender systems, respectively. The factorization-based hypergraph
reduction reduces the large scale hypergraph incidence matrix . H to two low-
dimensional matrices, leading to the reduction of the complexity. This method can
support the hypergraph computation with tens of thousands vertices. The other
method, i.e., the hierarchical hypergraph computation, splits the vertices to several
subsets and computes each sub-hypergraph, respectively. The results from these sub-
hypergraphs can be further combined following a hierarchical strategy. This method
can support the hypergraph computation with millions of vertices and hyperedges.
Part of the work introduced in this chapter has been published in [8].

8.2 Factorization-Based Big-Hypergraph Modeling

The complexity of the incident matrix .H ∈ R
N×E is .O(N2), which rises rapidly

with respect to the increasing of the number of vertices (.|V | = N) and the number
of hyperedges (.|E | = N). Although hypergraphs can model high-order complex
associations well, the incidence matrix cannot take up a sizable number of vertices
in traditional hypergraph modeling and transductive computation strategy. This is
one typical bottleneck that limits the applications of hypergraph computation. To
address this problem, the factorization-based hypergraph reduction method [8] is
introduced to handle hypergraph modeling and computing with tens of thousands
vertices.

It is an effective way to reduce dimensionality by conducting matrix decompo-
sition of matrices with high dimensionality into the product of matrices with small
dimensionality and has been applied in different areas such as spectral clustering
[14] and recommendation algorithms [15]. For a large-dimensional incidence matrix
. H for a hypergraph, matrix decomposition can also be used to find the low-
dimensional embeddings of each vertex and hyperedge and support large scale
hypergraph computation.

8.2 Factorization-Based Big-Hypergraph Modeling 147

Fig. 8.1 The pipeline of the factorization-based hypergraph reduction method. This figure is from
[8]

As illustrated in Fig. 8.1, the factorization-based hypergraph reduction incor-
porates a factor embedding component that encodes the relationships between
hyperedges and vertices into two latent semantic spaces. Due to the low dimension
of the latent semantic space, it can handle more vertices and hyperedges accordingly.

The purpose of factorization is to reduce the dimension of the incident matrix
. H to two semantic spaces, including vertex-belonging hyperedge represented by
.Hv∈Ev

∈ R
N×ϕ and hyperedge-containing-vertices represented by .He⊃Ve

∈ R
E×ϕ ,

where . Ev and . Ve represent the hyperedge set containing vertex v and vertex set
in hyperedge e, respectively, and . ϕ is a hyperparameter that represents the latent
semantic space dimension. Figure 8.1 illustrates that the two latent semantic spaces
aim to express all connections between vertices and hyperedges. This procedure is
formulated as below:

. arg min
Hv∈Ev ,He⊃Ve

{
||H − Hv∈Ev

H�
e⊃Ve

||22
}
. (8.1)

Consequently, the corresponding loss generated by the hypergraph dimensional-
ity reduction can be written as

.Lγ = ||H − Hv∈Ev
H�

e⊃Ve
||22. (8.2)

The hypergraph Laplacian matrix . L is another crucial component of hypergraph
computation, with the ordinary form is .L = I − D−1/2

v HWD−1
e H�D−1/2

v . Since
the incident matrix . H has two low-dimensional latent semantic spaces, the low-
dimensional hypergraph factorization-based Laplacian .LF is formulated as

.LF = I − D−1/2
v Hv∈Ev

H�
e⊃Ve

WD−1
e He⊃Ve︸ ︷︷ ︸

Σ∈Rϕ×ϕ

H�
v∈Ev

D−1/2
v , (8.3)

where .Σ = H�
e⊃Ve

WD−1
e He⊃Ve

is an intermediate latent feature multiplication term
of dimension . ϕ. Because the latent semantic space dimension . ϕ is significantly
smaller than the total amount of vertices and hyperedges, the multiplication
intermediate term . Σ functions as an extended control coefficient matrix.

148 8 Large Scale Hypergraph Computation

Fig. 8.2 (a) The whole-slide image for survival prediction; (b) Local feature extraction with con-
volution networks; (c) Feature aggregation with pairwise relation; (d) Global feature representation
with high-order relation and multiple spaces. This figure is from [1]

The factorization-based hypergraph reduction can be used in hypergraph neural
networks to support large scale computation, which can be used for more than
10,000 vertices and hyperedges.

Here we illustrate an application of hypergraph computation for large scale
medical image analysis using whole-slide histopathology images for survival pre-
diction. The goal is to make predictions by extracting valid survival-specific features
reflecting the survival status of a patient based on a whole section histopathology
image. Unlike conventional images, WSI data can be very large, i.e., a single image
may have billions of pixels, and the correlations of these data are very complicated.
Therefore, hypergraph computation in this application meets the large scale issue.
The existing medical image analysis models are designed for analyzing natural
images with a much smaller size, such as .256px × 256px or more. In order for the
model to handle these WSI data, a number of patches of a moderate size are usually
sampled first. Some patches of a moderate size (e.g., .256 × 256) are extracted from
each WSI, and then these patches are stacked up and fed into a CNN-based feature
extractor (e.g., VGG) to generate a global representation, as shown in Fig. 8.2.
Subsequently, a regression model is applied to the global features to predict the
survival score. These methods have an obvious drawback that the structure of the
entire histopathological image is broken into pieces by patch sampling.

It may be unrealistic to extract all of the structural information at the cellular
level from gigapixel images because there is an apparently massive amount of pixel
data that are included in a single histopathological image. A small number of image
patches can be selected to generate graph-based models. The global feature can
be extracted by this method. However, the number of sampled patches limits the
sampling area’s coverage to the original image’s informative regions, which causes
a serious portion of fields with pathological features to be missing. The incident
matrix, which represents the connectivity between vertices and hyperedges, is an
essential component of the hypergraph neural network. The large scale vertices and
hyperedges in the constructed hypergraph limit the application of HGNN [16].

Here, we introduce the Big-Hypergraph Factorization Neural Network (b-
HGFN) [8], which uses factorization-based hypergraph reduction to address the
above issue. It incorporates a factor embedding component that encodes the

8.2 Factorization-Based Big-Hypergraph Modeling 149

relationships between hyperedges and vertices into two latent semantic spaces, as
illustrated in Fig. 8.3. Due to the low dimension of the latent semantic space, b-
HGFN can handle more vertices and hyperedges. With the hypergraph reduction,
b-HGFN can provide more accurate feature representations of histopathological
images from more densely sampled patches. Consequently, the first loss generated
by the hypergraph dimensionality reduction can be written as Eq. (8.2). The
hypergraph Laplacian matrix . L is another crucial component of b-HGFN, and the
low-dimensional hypergraph factorization Laplacian .LF is formulated as Eq. (8.3).
A standard hypergraph neural network layer is represented as

.HGFConv(·) = D
[
σ(Θ(·)X(·)(I − LF))

]
, (8.4)

where . σ stands for the nonlinear activation function, and D represents the dropout
layer. Convolution operations are embedded into the implicit latent semantic space
by modifying the convolution network’s specifics, which are denoted as

.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

HGFConv(0) = D
[
σ(Θ(0)X(0)D−1/2

v Hv∈Ev
Σ)

]

HGFConv(1) = D[σ(Θ(1)X(1)Σ)]
. . .

HGFConv(L − 1) = D[σ(Θ(L−1)X(L−1)Σ)]
HGFConv(L) = D

[
σ(Θ(L)X(L)ΣH�

v∈Ev
D−1/2

v)
]

. (8.5)

According to the HGFConv mentioned above, the hypergraph’s high-dimensional
connection relations can be embedded in the low-dimensional latent semantic
spaces. To represent global features (i.e., .X ∈ R

1×CL+1) at the histopathological
image level, the output of the last layer of HGFConv (i.e., .X(L+1)) is squeezed by a
pooling layer after a complete b-HGFN.

The patient survival duration prediction is calculated using a fully connected
neural network after obtaining the histopathological image’s feature representation.
The hierarchical loss, which incorporates list-wise loss, pairwise loss, and point-
wise loss, has been experimentally demonstrated to be more effective for b-HGFN
than using the simply pairwise Bayesian Concordance Readjust (BCR) loss func-
tion. The point-wise loss function applies negative Cox log partial likelihood loss
as

.Lα =
∑

δi

⎛
⎝−si + log

∑
j∈{j :tj ≤ti }

exp(tj)

⎞
⎠ , (8.6)

where . si and . ti represent the predicted duration and the truth, while the pairwise loss
and list-wise loss refer to NDCGLoss2 derived by LambdaLoss [17] and BCR loss
[2]. Taken into consideration the loss function of hypergraph dimension reduction,

150 8 Large Scale Hypergraph Computation

F
ig
. 8

.3

A
n

ill
us

tr
at

io
n

of
 th

e
B

ig
-H

yp
er

gr
ap

h
Fa

ct
or

iz
at

io
n

N
eu

ra
l N

et
w

or
k

(b
-H

G
FN

) t
ha

t e
xt

ra
ct

s
gl

ob
al

 re
pr

es
en

ta
tio

n
fe

at
ur

es
 fr

om
 in

fo
rm

at
iv

e
sa

m
pl

in
g

pa
tc

he
s.

 T
hi

s
fig

ur
e

is
 f

ro
m

 [
8]

8.3 Hierarchical Hypergraph Modeling 151

the combination of all loss functions can be expressed as

.

⎧⎨
⎩

Lλ = λLα + (1 − λ)Lβ

Lβ = {NDCGLoss2(S,G), BCRLoss(S,G)}
Lall = Lγ + Lλ

. (8.7)

The factorization-based hypergraph reduction incorporates a factor embedding
component that encodes the relationships between hyperedges and vertices into two
latent semantic spaces. Due to the low dimension of the latent semantic space,
it can handle more vertices and hyperedges. The factorization-based hypergraph
reduction can be used in HGNN [16] to solve the large scale problem. The method
can effectively solve the hypergraph analysis problem with almost 10,000 vertices
and hyperedges.

8.3 Hierarchical Hypergraph Modeling

The factorization-based hypergraph reduction can effectively analyze the hyper-
graph with almost 10,000 vertices and hyperedges, while it stretches its limit when
the size extends to hypergraph with millions of vertices or hyperedges. Figure 8.4
shows a hierarchical hypergraph learning method for large scale hypergraphs with
hierarchical labels. The hierarchical hypergraph can handle the hypergraph neural
network with millions of data points. In the following, it is introduced in detail.

For million-scale unstructured data, it is impractical to convert the whole dataset
into a single large hypergraph to represent the correlations of samples or conduct
the factorization-based reduction, which would require an unrealistically large
incidence matrix or a significant cost of computing memory. If there are hierarchical
labels in the dataset, hierarchical hypergraph learning can be adopted to solve the

Fig. 8.4 An illustration of the hierarchical hypergraph learning

152 8 Large Scale Hypergraph Computation

problem. The original dataset .X ∈ R
N×d can be randomly divided uniformly into

several subsets with smaller and more affordable scales, with that N denotes the
scale of dataset and d denotes the dimension of sample. Then, each sample in
the dataset forms vertices and hyperedges. In each subset, we construct a sub-
hypergraph using the K nearest neighbors algorithm (kNN), which is based on
the Euclidean distance between the representations of each pair of vertices. The
incidence matrix .Hi ∈ R

|Vi |×|Ei | serves as the role of indicating the correlation
among vertices and the hyperedges, of values consisting of 0 and 1.

Given the initial feature matrix of vertices . X as well as the corresponding
incidence matrix . H, we use .Gi = 〈Vi ,Ei〉, (i = 1, 2, 3, . . . , m) to represent the i-th
hypergraph that contains .|Vi | vertices and .|Ei | hyperedges. In order to weaken the
loss of feature over-smooth in the convolutional operations, the residual connection
[4] can be adopted to generate the updated vertex representations for the next layer
of convolution, formulated as follows:

.̂Xi = σ(D
−1/2
i HiWiD

−1
i H�

i D
−1/2
i XiΘi + Xi), (8.8)

where .Di ∈ R
|Vi |×|Vi | and .Di ∈ R

|Ei |×|Ei | are degree matrices of vertex and
hyperedge. .Wi = diag(w1, w2, . . . , w|Ei |) and .Θi ∈ R

d×d indicate the trainable
weight parameters of the hyperedges and trainable weight matrix for feature
transformation.

Note that here we assume that each sample has two hierarchical labels, named
secondary label and primary label, and in which secondary label is the fine-grained
category of the primary label. One special component in this first step is the “vertex
belonging matrix,” denoted as .Γi ∈ R

|Vi |×N2 , where .N2 is the number of secondary
labels. The matrix . Γi is generated by the labels in the training set and serves as the
input for the transductive learning method.

The global labels shared by all the subsets are usually in the magnitude of
hundreds, making it feasible to combine the independently learned label features of
different groups. Obtaining the local latent high-order representations of subsets in
the previous hypergraph learning step, two aggregating operations can be conducted
here for primary and secondary labels classification, respectively. The aggregation
of local secondary labels can be formulated as follows:

.Si = Γ �
i X̂i , (8.9)

where . Xi denotes the aggregated local representation for secondary label, whose
dimension is .RN2×d . Each row of the matrix . Si represents the latent feature for
each specific category of secondary label in the i-th subset.

We then concatenate all of the local high-order vertices’ features . ̂Xi to generate
the global high-order vertices’ features .̂X ∈ R

|V|×d as follows:

.̂X =
[
X̂�

1 ‖X̂�
2 ‖ · · · ‖X̂�

m

]�
, (8.10)

8.3 Hierarchical Hypergraph Modeling 153

where . ·‖· denotes the concatenating operation between two matrices. The local
aggregated secondary features .Si ∈ R

N2×d can be further fused to form the global
secondary features .S ∈ R

N2×d by average pooling, formulated as follows:

.S = S1 ⊕ S2 ⊕ · · · ⊕ Sm, (8.11)

where . ⊕ denotes the average pooling operation, calculating the mean value of the
corresponding latent features from the local secondary labels.

The global high-order representation of primary labels (.P ∈ R
N1×d) is yielded

from the global features of secondary labels, formulated as

.P = ΦS, (8.12)

where .Φ ∈ R
N1×N2 denotes the owning relations between secondary and primary

labels.
Based on the results of the hypergraph convolution and global aggregation, the

classifier consisting of the fully connected layers can be trained by concatenating
the updated vertices’ high-order representations and the global classification. The
augmented representations of vertices are shown below:

.

{
X̃<1>

i = X̂i ‖ 1
N1

∑N1
j=1 Pj

X̃<2>
i = X̂i ‖ 1

N2

∑N2
j=1 Sj

. (8.13)

Then the aggregated features can be used for some tasks and trained with the
hierarchical labels in training set. In the following, we introduce the hierarchical
hypergraph learning in recommendation.

Here, we introduce an application of hierarchical hypergraph learning for large
scale user retrieval intention detection. Figure 8.5 shows the layout, which mainly
consists of three steps: data division and local hypergraph modeling, latent high-
order feature aggregation, and user intention prediction, respectively.

First, we randomly divide the original dataset uniformly into several subsets.
In our work, every query log and the relationships between numerous query logs
form vertices and hyperedges. As shown in Fig. 8.5, the whole original dataset and
the divided subsets are, respectively, denoted as . V and . Vi , where .i ∈ [1, 2, . . . , m].
And in each subset, a sub-hypergraph can be constructed, which is introduced above.
Note that the initial semantic embeddings of vertices (.Xi ∈ R

|Vi |×d) are extracted
by the well-known pre-trained models, such as BERT [18], where d denotes the
dimension of embeddings.

The hierarchical hypergraph learning can then be used to conduct the user
intention prediction. In our research, the user intentions are categorized into two
levels, i.e., the primary label and the secondary label, which is the fine-grained
category of the primary label. After applying the hierarchical model, the features
.̃X<1>

i and .̃X<2>
i can be obtained.

154 8 Large Scale Hypergraph Computation

F
ig
. 8

.5

A
n

ill
us

tr
at

io
n

of
 h

et
er

og
en

eo
us

 h
yp

er
gr

ap
h

ne
ur

al
 n

et
w

or
k

fo
r

ex
tr

ac
tin

g
th

e
hi

gh
-o

rd
er

 u
se

r
be

ha
vi

or
 r

ep
re

se
nt

at
io

ns
 f

ro
m

 th
e

pa
ge

-v
ie

w
 le

ve
l d

at
a

8.4 Summary 155

In this application, the multi-classification can be converted into multiple
binary classification problems to improve the effect of the model. We use . C =
{C1,C2, . . . ,CN } ,N ∈ (N1,N2) to denote the collection of the user intentions.
Therefore, the original multiple labels are converted into two labels: 0 and 1. For
instance, we traverse all the data with l intentions to label 1, and others to label
0. Each classifier is trained using multi-layer perceptron (MLP) and the sigmoid
activation function to implement label prediction based on the newly allocated
binary label, formulated as follows:

.

{
Ŷ1 = σ(X̃<1>

i Θf 1 + b1)

Ŷ2 = σ(X̃<2>
i Θf 2 + b2),

(8.14)

where .Θf 1 and .Θf 2 are the trainable transformation matrices. . b1 and . b2 are the
biases. . σ is the activation function. . Ŷ1 and . Ŷ2 denote the prediction of the primary
and secondary user intentions, respectively.

To supervise and optimize the trainable parameters, we apply the cross-entropy
loss function in the training procedure:

.L = CE(Y1, Ŷ1) + CE(Y2, Ŷ2), (8.15)

where .Y1 and .Y2 denote the ground truth of the primary and secondary user
intentions, respectively. When all of the classifiers have been trained completely,
each test sample can be predicated to obtain a list of scores for both primary and
secondary user intentions.

To summarize, the hierarchical hypergraph learning method can handle large
scale hypergraphs with hierarchical labels, which divides a dataset into multiple sub-
hypergraphs, and hierarchical aggregation is performed based on hierarchical labels.
The hierarchical hypergraph can integrate with the hypergraph neural network to
handle millions of data points.

8.4 Summary

This chapter describes two kinds of large scale hypergraph computation methods,
i.e., factorization-based hypergraph reduction and hierarchical hypergraph learn-
ing. The factorization-based hypergraph reduction is based on the strategy of
factorization, which decomposes the large scale hypergraph into low-dimensional
embeddings of vertices and hyperedges. It can support the processing of hyper-
graphs with nearly 10,000 vertices or hyperedges. The hierarchical hypergraph
learning is used to analyze hypergraphs with hierarchical labels, which divides a
dataset into multiple sub-hypergraphs, and hierarchical aggregation is performed
based on hierarchical labels. This method can support millions of data points. We
also introduce two applications as examples, i.e., whole-slide image analysis and
recommendation, to illustrate the usage of these two algorithms in practice. There

156 8 Large Scale Hypergraph Computation

are some other large scale hypergraph application scenarios, such as community
discovery [19], spectral clustering [20], etc.

References

1. D. Di, C. Zou, Y. Feng, H. Zhou, R. Ji, Q. Dai, Y. Gao, Generating hypergraph-based high-
order representations of whole-slide histopathological images for survival prediction. IEEE
Trans. Pattern Analy. Mach. Intell. (2022), pp. 1–16

2. D. Di, S. Li, J. Zhang, Y. Gao, Ranking-based survival prediction on histopathological whole-
slide images, in Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention (2020), pp. 428–438

3. J. Yu, D. Tao, M. Wang, Adaptive hypergraph learning and its application in image classifica-
tion. IEEE Trans. Image Process. 21(7), 3262–3272 (2012)

4. S. Ji, Y. Feng, R. Ji, X. Zhao, W. Tang, Y. Gao, Dual channel hypergraph collaborative filtering,
in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2020), pp. 2020–2029

5. Y. Liu, F. Wu, Y. Zhang, J. Shao, Y. Zhuang, Tag clustering and refinement on semantic unity
graph, in Proceedings of the IEEE International Conference on Data Mining (2011), pp. 417–
426

6. E. Poirson, C.D. Cunha, A recommender approach based on customer emotions. Expert Syst.
Appl. 122, 281–288 (2019)

7. Y. Zhang, S. Ji, C. Zou, X. Zhao, S. Ying, Y. Gao, Graph learning on millions of data in
seconds: label propagation acceleration on graph using data distribution. IEEE Trans. Pattern
Analy. Mach. Intell. 45(2), 1835–1847 (2022)

8. D. Di, J. Zhang, F. Lei, Q. Tian, Y. Gao, Big-hypergraph factorization neural network for
survival prediction from whole slide image. IEEE Trans. Image Process. 31, 1149–1160 (2022)

9. M. Liu, N. Veldt, H. Song, P. Li, D.F. Gleich, Strongly local hypergraph diffusions for
clustering and semi-supervised learning, in Proceedings of the Web Conference (2021),
pp. 2092–2103

10. S. Maleki, U. Agarwal, M. Burtscher, K. Petrank, BiPart: a parallel and deterministic
hypergraph partitioner, in Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (2021), pp. 161–174

11. S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz, P. Sanders, High-quality
hypergraph partitioning. ACM J. Exper. Algorith. 27, 1–39 (2022)

12. C. Mayer, R. Mayer, S. Bhowmik, L. Epple, K. Rothermel, HYPE: massive hypergraph par-
titioning with neighborhood expansion, in Proceedings of the IEEE International Conference
on Big Data (2018), pp. 458–467

13. W. Jiang, J. Qi, J.X. Yu, J. Huang, R. Zhang, HyperX: a scalable hypergraph framework. IEEE
Trans. Knowl. Data Eng. 31(5), 909–922 (2019)

14. M. Filippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral methods for
clustering. Pattern Recogn. 41(1), 176–190 (2008)

15. H. Guo, R. Tang, Y. Ye, Z. Li, X. He, DeepFM: a factorization-machine based neural
network for CTR prediction, in Proceedings of the International Joint Conference on Artificial
Intelligence (2017), pp. 1725–1731

16. Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence (2019), pp. 3558–3565

17. X. Wang, C. Li, N. Golbandi, M. Bendersky, M. Najork, The lambdaloss framework for ranking
metric optimization, in Proceedings of the 27th ACM International Conference on Information
and Knowledge Management (2018), pp. 1313–1322

References 157

18. J. Devlin, M. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transform-
ers for language understanding, in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies
(2019), pp. 4171–4186

19. P. Chodrow, N. Veldt, A. Benson, Generative hypergraph clustering: from blockmodels to
modularity. Sci. Adv. 7(28), eabh1303 (2021)

20. Y. Yang, S. Deng, J. Lu, Y. Li, Z. Gong, L. Hou U, Z. Hao, GraphLSHC: towards large scale
spectral hypergraph clustering. Inf. Sci. 544, 117–134 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 9
Hypergraph Computation for Social
Media Analysis

Abstract Social media, such as Twitter and Weibo, have grown rapidly over the
past decade. Large numbers of active social media users produce a voluminous
amount of data each day, from which important insights can be drawn. Several
applications, such as recommender system and sentiment analysis, have been
developed to help study the users’ intension and portrait. One common challenge
faced by these social media applications is how to leverage the complex and multi-
modal data on social networks and model the higher-order associations hidden in
the data. Hypergraph computation has the huge potential to be used in such analysis.
In this chapter, we introduce three typical applications of hypergraph computation,
i.e., recommender system, sentiment analysis, and emotion recognition, from which
hypergraph computation has shown great value on social media analysis.

9.1 Introduction

With the fast development of information technologies, social media data have
increased rapidly. Social media platforms provide new ways to produce and receive
content, especially user-generated content. Users can shop, watch movies, and
instantly participate in the propagation, interaction, and sharing of news events on
the Internet. Rich behavioral data on social media platforms are generated by great
numbers of users every day, which support different downstream applications and
provide insights for better understanding of users’ intension and portrait.

A typical social media analysis application is the so-called recommender sys-
tem [1]. When listening to music, shopping, watching movies on the Internet, or
looking for friends on social network services, users are likely to be drowned in an
unprecedented amount of information. This is what we call “information overload.”
To address this issue, recommender systems have been developed for decades. The
main goal of recommender systems is to forecast how users would react to a product
by better understanding their preferences based on the user’s historical interaction
data, user profile, item attributes, context data, and other information. This could
help predict whether the users like an item or not. For example, in the movie
recommender system, the user profile may contain user ID, age, gender, income,

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_9

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9
https://doi.org/10.1007/978-981-99-0185-2_9

160 9 Hypergraph Computation for Social Media Analysis

marital status, and more. The movie (item) attributes’ information may include
movie ID, name, genre, director, released time, actors, and more. Interactive data
contain the movies which users have seen and even provided comments. The goal
of the movie recommender system is to integrate this information to recommend
movies that users might like.

Another popular social media analysis application is sentiment analysis [2]. The
uses on social media platforms have generated a large amount of opinion data
every moment in recent years, which helps to decode and mine users’ attitudes
on specific topics. Researchers have begun to look at sentiment analysis of users
in social media contexts. In economics, stock price fluctuations can be forecast to
some extent by analyzing the sentiment of social media users. In politics, social
media posts can reflect public opinions. Users’ sentiments may also affect their
behaviors, for example, emotionally charged people are more likely to forward and
repost tweets. Therefore, sentiment analysis plays an important role in social media
analysis. However, sentiment analysis is challenging due to the multi-modality and
complexity of social media data. For example, a tweet may include text, images,
videos, and possibly more. Furthermore, there exist complex correlations among
posts in various areas, such as the dimensions of time, location, and user preferences.
The interaction among these users further increases the challenges in this task.

In addition to the posts on social media, physiological signals can also be used
to analyze the emotion of people [3]. Compared with text, facial expressions, and
other data, physiological signals are not easy to disguise and can better reflect real
emotions of people. Therefore, emotion recognition based on physiological signals
plays an important role in many applications such as clinical diagnosis, which also
has played a significant role on social media analysis when these data are available.
Physiological signals of different modalities contain complementary information
representations of human emotions. It is of great significance to discover and utilize
the correlations among these representations to improve the accuracy of emotion
recognition.

From the above examples, it can be readily seen that one important issue of
social media analysis is how to model complex correlations among data and to make
use of the complementary information among multi-modal representations to better
understand data. Hypergraphs have been widely used in social media computing in
recent years because of their usefulness in complex data modeling. In the following,
we discuss three applications of hypergraph computation in social media analysis:
recommender system, sentiment analysis, and emotion recognition. In the recom-
mender system, we discuss hypergraph-based collaborative filtering [4] and attribute
inference. We then present sentiment prediction [5] and social event detection using
hypergraph computation [6] for sentiment analysis. In the third section, we introduce
two different hypergraph computation methods of emotion recognition using multi-
modal physiological signals [7–9]. Part of the work introduced in this chapter has
been published in [4–9].

9.2 Recommender System 161

9.2 Recommender System

In recent years, the Internet has become an integral part of people’s daily life—
shopping, watching the news, listening to music, etc., on the Internet. However, with
the explosion of information, people find it is increasingly difficult to sift through
the massive volumes of data on the Internet to access the needed information. For
example, when a user wants to watch a movie online and access the movie site, the
user is likely to drown in thousands of movies and cannot find the one in mind. This
is called the “information overload” issue.

Recommender systems emerge under such circumstances. Recommender sys-
tems are a powerful tool for reducing the problem of information overload since
they may assist users to find useful information and assist service providers to boost
profits. Recommender systems have been used in many online systems, from general
platforms including e-commerce, social media, and content sharing to vertical
services such as movie, news, and music websites.

The core of the recommender system is to understand the users through their
attribute information and historical interactions and then predict whether they would
like one item. It is worth noticing that the user-side information, the item-side
information, as well as the interaction data, play a vital role in this process. The
user-side information, including gender, age, personality, etc., often reflects the
users’ preference. For example, male users may be more likely to read military
and political news, while female users may prefer fashion and entertainment news.
The item-side information, such as the category, text description, image, etc.,
can characterize the attribute of the item. Such attribute information may suggest
potential consumer groups. For instance, health supplements may be bought more
often by the elderly, while electronics are more likely to be purchased by younger
people. Historical interactions also involve potential users’ preferences, which
are suggested by the assumption that “behavioral similar users may have similar
preferences on items.” Figure 9.1 shows an example for recommender system based
on similar patterns.

We can find from these examples that what recommender systems actually do is
to distinguish similar users from different perspectives based on complex, multi-
modal given data. Therefore, one key problem is how to model and learn the
complex relationship between users and items. Recently, hypergraph computation
has attracted much attention and has been applied to recommender systems to
help solve this problem. The hypergraph can naturally integrate the user-side
information, item-side information, as well as the interaction data, thanks to flexible
hyperedges and especially hyperedge groups. Therefore, similar users/items can be
connected in different areas. In this section, we discuss two examples of applying
hypergraph computation in recommender system, i.e., collaborative filtering and
attribute inference.

162 9 Hypergraph Computation for Social Media Analysis

Fig. 9.1 An example of recommender system based on similar patterns

9.2.1 Collaborative Filtering

In the past decades, collaborative filtering (CF), a crucial, popular recommendation
technique, has been extensively used in various recommender systems. The funda-
mental assumption of CF is that consumers who engage in similar behaviors, for
example, reading the same kind of news frequently, are likely to have similar tastes
for items, such as games, movies, and commodities. A common CF-based solution
goes through the following two steps: first, it uses historical interactions to identify
similar users and items; and second, it makes suggestions for users based on the
information acquired in the last step.

Since people and things have topological links that the network can describe,
graph-based CF approaches have attracted a lot of interest in recent years. Although
graph-based CF approaches have been explored for a long time and produced
respectable performance, there are still certain restrictions. First, the high-order
correlations in the user–item network are modeled and utilized insufficiently.
For example, CF methods hope to find a group of behavior-similar users. Such
associations between users are group-level (beyond pairwise) and cannot be well-
captured by the graph structure since only pairwise correlations can be modeled in
a graph. Second, when users and things are represented by a graph in graph-based
approaches, there are no fundamental distinctions between them. When an item has
many users connected to it, it is a popular item. In contrast, being connected to a
variety of items does not necessarily mean that a user is well-liked.

Under these circumstances, more adaptable and appropriate user and item
modeling is required. Thanks to its adaptable hyperedges, the hypergraph structure,
as opposed to the graph structure, offers a more natural approach for representing
such high-order and intricate relationships. In this subsection, we present a dual
channel hypergraph collaborative filtering (DHCF) framework [4] to solve the

9.2 Recommender System 163

Fig. 9.2 An example of hypergraph modeling for user–item network

aforementioned problems. In the following, we introduce how to model the user–
item interactions and learn the high-order connectivity with dual hypergraphs.

(1) Hypergraph Modeling of High-Order Connectivity
Given a user–item network, the high-order connectivity is captured by some self-
defined association rules. Based on these rules, several hyperedge groups can be
constructed, which can capture higher-order correlations rather than pairwise rela-
tionships, e.g., by linking users who behave similarly but without direct connections.
For example, we can connect the users who have purchased the same item with a
hyperedge, as shown in Fig. 9.2. In addition to the interactions that are apparently
visible in the observed data, these rules may also be thought of as a high-order
perspective to describe the otherwise raw data. Here we introduce a way to capture
the high-order connectivity with hypergraphs for users and items, separately.

User Hypergraph Construction We first define the k-order neighbors for items. If
there is a path between .itema and .itemb that consists of a series of adjacent vertices
and has fewer users than k, then we can say .itema (. itemb) is .itemb (.itema)’s k-
order reachable neighbor in the user–item network.

We then define the .k-order neighbor users for items. If there are direct paths
between .usera and .itema and .itema is .itemb’s k-order neighbor, then .usera is
k-order neighbor for .itemb.

The .Bk
u(i) symbol represents the set of k-order .Bk

u(i) users for item i. A
hypergraph can be defined mathematically as a set family where each set indicates a
hyperedge. As a result, a hypergraph may be built using the k-order neighbor users
set of an object. By using the above definitions, the corresponding hyperedge group

164 9 Hypergraph Computation for Social Media Analysis

may be constructed as follows:

.EBk
u

= {Bk
u(i) | i ∈ I }. (9.1)

The k-order accessible matrix of items is denoted by .Ak
i ∈ {0, 1}M×M , which

can be written as follows:

.Ak
i = Min(1, power(H� · H, k)), (9.2)

where the function .pow(M, k) determines the k power of the matrix M in question.
The incidence matrix of the user–item network is represented by .H ∈ {0, 1}N×M ,
where N and M are the numbers of users and items, respectively. Then, the
incidence matrix of the hyperedge group has the following form:

.HBk
u

= H · Ak−1
i . (9.3)

The hypergraph . Gu can capture the overall high-order correlations among users
by fusing multiple hyperedge groups that are constructed via .k-order reachable rule.
Therefore, the . Hu can be written as

.Hu = f
(
E

B
k1
u

,E
B

k2
u

, . . . ,E
B

ka
u

) = H
B

k1
u

||H
B

k2
u

|| . . . ||H
B

ka
u︸ ︷︷ ︸

a

, (9.4)

where . ·||· is the concatenation operation, which is an example of hyperedge groups
fusion function .f (·).
Item Hypergraph Construction Here the high-order connectivity for items is
defined in a similar way. The k-order accessible matrix of user . Ak

u ∈ {0, 1}N×N

is defined as

.Ak
u = Min(1, power(H · H�, k)). (9.5)

The incidence matrix .HBk
i

∈ {0, 1}M×N can be written as

.HBk
i

= H� · Ak−1
u . (9.6)

By assuming that we have b hyperedge groups, the item’s hypergraph incidence
matrices . Hi are similarly formulated as follows:

.Hi = f
(
E

B
k1
i

,E
B

k2
i

, . . . ,E
B

kb
i

) = H
B

k1
i

||H
B

k2
i

|| . . . ||H
B

kb
i︸ ︷︷ ︸

b

. (9.7)

In this way, the high-order connectivity for both users and items is captured with
a hypergraph. Figure 9.3 gives one example of the defined high-order connectivity

9.2 Recommender System 165

⎡

⎢⎢⎢⎢⎣

· · · 1 · · ·
· · · 0 · · ·
· · · 1 · · ·
· · · 0 · · ·
· · · 0 · · ·

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

· · · 1 · · ·
· · · 1 · · ·
· · · 1 · · ·
· · · 0 · · ·
· · · 0 · · ·

⎤

⎥⎥⎥⎥⎦

ith

ith

itemi

itemj

itemk

user1

user3

user1

user2

HB1
u

HB2
u

user3

user1
user2
user3

user1

user5

user1
user2
user3

user1

user5

Fig. 9.3 The illustration of high-order connectivity for users

for users [4]. Subsequently, two embedding look-up tables (. Eu = [eu1 , . . . , euN
]

and .Ei = [ei1 , . . . , eiM]) are constructed to describe both users and items, which,
together with the hypergraph structure, are prepared for later learning.

(2) High-Order Information Passing
When mixed high-order correlations have been obtained, the neighboring messages
are aggregated using the high-order information passing technique, which can be
expressed as

.

{
Mu = HyConv(Eu,Hu)

Mi = HyConv(Ei,Hi)
, (9.8)

where .HyConv(·, ·) can be any hypergraph convolution operation as that specified
in HGNN (HGNNConv for short). Through information passing from high-order
neighbors, the complex correlations between vertices have been encoded to the
aggregated messages of users (. M ′

u) and items (. M ′
i), respectively. It should be noted

that the high-order neighbor mentioned here is not a fixed concept of the direct
interactions in user–item network, but an abstract description that can link the
similar users/items in latent behavior–attribute space.

To provide an example of high-order information passing, we present the
jump hypergraph convolution (JHyConv) in this part. Inspired by some pre-
vious work [10], the JHyConv operator creates the learned representations by

166 9 Hypergraph Computation for Social Media Analysis

concatenating a vertex’s current representation with its aggregated neighborhood
representation. The JHyConv is written as

.X(l+1) = σ
(
D−1/2

v HD−1
e H�D−1/2

v X(l)Θ(l) + X(l)
)

, (9.9)

where all symbols follow existing notations consistently.
In contrast to conventional HGNNConv, the jump hypergraph convolution

enables the model to take into account both its representation and aggregated high-
order representations. The messages .Mu and .Mi are then used to jointly update . Eu

and . Ei .

(3) Joint Information Updating
The goal of the joint information updating is to extract information that is discrimi-
natory for users and items, which is formulated by

.

{
E′

u = JMU(Mu,Mi)

E′
i = JMU(Mi,Mu)

, (9.10)

where any learnable feed-forward neural network may be used for .JMU(·, ·).
Updated embeddings for users and items are termed as .E′

u and . E′
i , respectively.

Here, a shared fully connected layer is applied.

(4) Overall DHCF Layer
The two stages of DHCF framework are illustrated in Figs. 9.4 and 9.5, respectively.
The high-order information passing and joint information updating constitute an
integrated DHCF layer, which, thanks to its powerful hypergraph structure, can
directly model and encode the high-order connectivity.

With the specified .HyConv and .JMU, a DHCF configuration can be formulated
as follows:

.

⎧
⎨

⎩

f (. . .) = ·||·
HyConv(·, ·) = JHyConv(·, ·)

JMU(·, ·) = MLP1(·)
, (9.11)

where .MLP1(·) is a fully connected layer, . Θ is trainable parameters, and . ·||· is the
concatenation operation.

9.2 Recommender System 167

Fig. 9.4 The first stage of the DHCF framework

Fig. 9.5 The second stage of the DHCF framework

168 9 Hypergraph Computation for Social Media Analysis

The matrix form of the embedding propagation on hypergraph can be written as
follows:

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hu = H|| (H(H�H)
)

Hi = H�|| (H�(HH�)
)

}

hypergraph setup

M(l)
u = D−1/2

uv
HuD−1

ue
H�

u D
−1/2
uv

E(l)
u + E(l)

u

M(l)
i = D−1/2

iv
HiD

−1
ie

H�
i D

−1/2
iv

E(l)
i + E(l)

i

⎫
⎬

⎭
Phase 1

E(l+1)
u = σ(M(l)

u Θ(l))

E(l+1)
i = σ(M(l)

i Θ(l))

⎫
⎬

⎭
Phase 2

, (9.12)

where .Duv , .Due and . Div , .Die are vertex degree and hyperedge degree matrices of
user hypergraph .Hu and item hypergraph . Hi , respectively. .E(l)

u and .E(l)
i are the

inputs for layer l, while .E(l+1)
u and .E(l+1)

i are the outputs for layer l.

With the introduced framework, the collaborative signals in the user–item
network are modeled and captured, thus achieving better representation.

9.2.2 Attribute Inference

A CF-based recommender system has the cold-start problem when there is a
lack of historical behavior data of users, making it challenging to personalize
recommendations to individual users. Making use of user and item attribute data is
a potential answer to this issue. The attribute information of users usually includes
gender, age, occupation, etc. The attribute information of an item can be the genre
of a movie or music, or the classification of an item on an e-commerce website,
etc. According to the principle of CF, similar users will choose similar items,
and the attribute information can then be used to establish the similarity between
users or items. The addition of attribute information can build up the association
between users and items in the absence of user historical behaviors, which can well
alleviate the cold-start problem. In other words, attribute information can assist in
collaborative filtering.

However, attribute information is often insufficient, as many people are reluctant
to provide true personal information. Therefore, attribute inference becomes an
important task. It is mutually reinforcing with the recommendation task, as high-
quality attributes can help better with collaborative filtering, while more accurate
user behavior can also help infer attributes of users and items.

In this section, we discuss a framework of multi-task learning that combines the
attribute inference task with the recommendation task. The framework first utilizes
multi-channel hypergraph CF for representation learning, performs two downstream

9.2 Recommender System 169

Fig. 9.6 The pipeline of multi-channel hypergraph neural networks for recommendation and
attribute inference

tasks simultaneously, and lastly optimizes the model by downstream tasks. The
pipeline of the framework is presented in Fig. 9.6.

(1) Multi-Channel Hypergraph Collaborative Filtering

Multi-Channel Hypergraph Construction In order to model the higher-order
interactions and attributes between users and items, two hypergraphs, named
Interaction Hypergraph and Attribute Hypergraph, are constructed and denoted as I
and A for simplicity.

The structure of I is generated through the interaction between users and items.
The implicit interaction matrix is represented as .R ∈ R

nu×nv , where . nu and
. nv denote user and item numbers, respectively. With the k-order reachable rule
introduced in the previous subsection, we generate the hyperedges by connecting
the user’s and item’s 1-order reachable users and items. The incidence matrix can
be expressed as

.

Hu
I (i, j) =

{
1 useri interacted with itemj

0 otherwise.

Hv
I (i, j) =

{
1 itemi interacted with userj
0 otherwise.

(9.13)

It is obvious that .Hu
I = R and .Hv

I = R�.

The structure of A is generated through the attribute information of users and
items. The user and item binary attribute matrices are denoted by .X ∈ R

nu×np and
.Y ∈ R

nv×nq , where . np and . nq denote user and item attribute numbers, respectively.

170 9 Hypergraph Computation for Social Media Analysis

Attributes represent hyperedges, and vertices with the same attributes are connected
by hyperedges. The incidence matrix can be formulated as

.

Hu
A(i, j) =

{
1 useri has attributej

0 otherwise.

Hv
I (i, j) =

{
1 itemi has attributej

0 otherwise.

(9.14)

Here we can have .Hu
A = X and .Hv

I = Y.

Multi-Channel Hypergraph Learning When the hypergraph structure has been
generated, the multi-channel hypergraph convolution is performed separately. It can
be written as

.X(k+1) = σ(D−1/2
v HD−1

e H�D−1/2
v X(k)), (9.15)

where .X(k) denotes the vertex embeddings after k-layer convolution, and it should
be replaced by .U(k)

c and .V(k)
c for user and item embeddings on channel .c ∈ {A, I } in

our case. To bypass the over-smoothing problem, the results obtained from K-layer
propagation are averaged as below:

.U∗
c = 1

K + 1

K∑

l=0

U(k)
c ,V∗

c = 1

K + 1

K∑

l=0

V(k)
c . (9.16)

Moreover, to aggregate information from different channels, a channel attention
mechanism is leveraged to generate the comprehensive user and item embeddings.
It is defined as

.αc
u =fa(U∗

c) = exp(a�
u · Wc,u

a U∗
c)∑

cexp(a�
u · Wc,u

a U∗
c)

, . (9.17)

αc
v =fa(V∗

c) =
exp(a�

v · Wc,v
a V∗

c)∑
cexp(a�

v · Wc,v
a V∗

c)
, (9.18)

where .Wa ∈ R
d×d is the trainable parameter, and d denotes the embedding

dimension. The comprehensive representations can be formulated as

.U∗ =
∑

c

αc
uU

∗
c ,V

∗ =
∑

c

αc
vV

∗
c , (9.19)

where .c ∈ {Au, Iu,Av, Iv}.

9.2 Recommender System 171

The graph convolution is leveraged in order to further exploit the interaction data
between users and items. It can be formulated as

.

(
U∗(j+1)

V∗(j+1)

)
= D−1/2

(
0 R
R� 0

)
D−1/2

(
U∗(j)

V∗(j)

)
, (9.20)

.Û = 1

J + 1

J∑

l=0

U∗(j), V̂ = 1

J + 1

J∑

l=0

V∗(j), (9.21)

where J is the number of graph convolution layers.

(2) Recommendation Task and Attribute Inference Task
Following up the representation learning through multi-channel hypergraph collab-
orative filtering, the two downstream tasks can be performed simultaneously.

First, based on the idea of matrix factorization, the user and item interaction can
be predicted as

.R̂ = ÛV̂�. (9.22)

Next, we consider the nature of the relationship between attributes and vertices,
and a subtle method of attribute inference is discussed. Also inspired by matrix
factorization, the attribute matrix can be regarded as the product of two low-rank
matrices. It can be formulated as

.X̂ = ÛP�, Ŷ = V̂Q�, (9.23)

where .P ∈ R
np×d and .Q ∈ R

nq×d are the user and item attribute representations.
The use of matrix factorization for attribute inference is very reasonable because
attributes are influenced by the properties of vertices and the properties of attribute
themselves; one cannot be presented without the other. In conclusion, the benefit
of processing two distinct tasks concurrently with this method is that it permits
information sharing while allowing a high degree of autonomy between the two
training activities.

(3) Joint Optimization
A paired loss called Bayesian Personalized Ranking (BPR) promotes observable
behavior predictions to outperform unobserved ones, and it is utilized to optimize
the recommendation task. It can be written as

.Lr =
∑

j∈I (i),k /∈I (i)

−logσ(r̂i,j − r̂i,k) + λ‖Φr‖2
2, (9.24)

where .Φr represents the model parameters and .r̂i,j = u�
i vj represents the

probability that .useri is interested in .itemj . The sigmoid function is denoted as .σ(·).

172 9 Hypergraph Computation for Social Media Analysis

Next, the attribute inference task can be regarded as an attribute categories
classification problem. The cross-entropy loss is then leveraged for optimizing the
attribute inference task. It can be written as

.

L u
i = − 1

nu

∑

i

np∑

j=1

xij log(x̂ij),

L v
i = − 1

nv

∑

i

nq∑

j=1

yij log(ŷij),

Li = L u
i + L v

i ,

(9.25)

where .x̂i,j = u�
i pj is the inference score of .useri on .user attributej , and . ̂yi,j =

v�
i qj is the inference score of .itemi on .item attributej .

Finally, the sum of the losses from the two tasks is the overall loss. It can be
written as

.L = Lr + γ · Li , (9.26)

where . γ is the hyperparameter for balancing the two different losses.
Although in this section we only discuss two instances, i.e., collaborative filtering

and attribute inference, applications of hypergraph computation in recommender
system do not end there. In collaborative filtering, only the historical interaction data
are utilized, and the hypergraph is constructed upon the similarity of users/items in
behavior space. In attribute inference, the attribute information of users and items
is further utilized to solve the cold-start problem. In this case, the hypergraph is
constructed based on both behaviors and attributes. In addition to the behavior and
attribute data, the context data, such as the time, location, weather, etc., can also be
integrated, and hypergraph can also be applied to model the complex correlations
among these data. Also, the user–item network sometimes can be multiplex, that is,
there may exist various kinds of interactions between users and items, e.g., a user
may view, click, and purchase an item. How to adopt the hypergraph to model such
multiplex connections also remains to be explored.

9.3 Sentiment Analysis

The emergence of Twitter and Sina Weibo has given social media users a place to
share their thoughts and emotions about particular occurrences. At the same time,
this information is rapidly and widely disseminated throughout social networks.
Therefore, how to analyze the information in social media becomes an important
issue.

First, sentiment dimension, event monitoring, social network analysis, and
business advice all have numerous potential applications for microblog sentiment

9.3 Sentiment Analysis 173

research. By analyzing the sentiment of massive data, we can get the emotional
attitude of netizens toward relevant events. Second, real-time multimedia data may
travel quickly and widely throughout the social network in terms of the temporal
dimension, having a significant impact on society. Therefore, efficient real-time
temporal detection can help government organizations with macroeconomic control
and marketing management at huge corporations.

There are multi-modal data among Twitter data, including text, images, emojis,
videos, etc. The higher-order association between different modalities can be
well modeled by hypergraphs to extract sentiment information. In the following
subsections, we provide two examples to analyze the sentiment of microblog data
in two dimensions using hypergraphs, respectively, [5, 6].

9.3.1 Sentiment Prediction

Predicting multi-modal sentiment of tweets is not an easy task. Most sentiment
analysis models focus on textual or visual channels only. However, in human emo-
tional perception, different moods have their own characteristics so that sentiment
analysis should be based on multiple perspectives. Even with multi-channel data,
it is uncertain whether the emotions of different channels are related. Moreover,
there are cases where some channels are missing. To address these problems, a
two-layer multi-modal hypergraph learning framework [5] is introduced to create
a multi-modal sentiment prediction.

This framework’s objective is to forecast the sentiment of provided multi-modal
microblog data (e.g., a Weibo tweet) that include text, visuals, and emoticons.
The bag-of-textual-words feature .Fbotw

i = {wt
i , . . . , w

t
mt

} is extracted for textual
modality. The visual modality feature .Fbovw

i = {wv
i , . . . , wv

mv
} is extracted from

the i-th image. Furthermore, an emoticon dictionary is defined for the emotical
modality, which forms the bag-of-emoticon-words feature .Fboew

i = {we
i , . . . , w

e
me

}.
A corresponding sentiment score .st

k, s
v
k , se

k is assigned to .wt
k,w

v
k , we

k , respectively.
Consequently, the tweet . xi can be denoted as .{Fbotw

i , F bovw
i , F boew

i }. Through
investigating .Fbotw

i , F bovw
i and .Fboew

i simultaneously, the sentiment of . xi can be
predicted.

(1) Multi-Modal Hypergraph Learning
To create the incidence matrix of the hypergraph, the correlation between each tweet
and the “centroid” tweets of various modalities is first computed. Each tweet is
treated as a vertex and the hyperedges connecting its k nearest neighbors in each
modality. It is important to note that each vertex can be thought of as a centroid.
The incidence matrix can be defined as

.H(vi, ej) =
{

s(j, i) if vi ∈ ej

0 otherwise
, (9.27)

174 9 Hypergraph Computation for Social Media Analysis

where .s(j, i) = exp(− dist (i,j)2

σ d̂2) is the correlation between . vi and . ej . .dist (i, j) is

the distance in Euclidean terms between . vi and the centroid vertex of . ej . . d̂ is the
average pairwise distance for the corresponding modality, and the parameter . σ is
empirically set to modify the normalization of the tweet relevance. Each hyperedge’s
weight starts out at 1.

In multi-modal hypergraph learning (MHG) [5], guided inference is used to
perform hypergraph learning. It calculates the relevance scores of tweets with
varying attitudes by iteratively updating the relevance score vector . f and the
hyperedge weights . W. It accomplishes the aforementioned objectives by optimizing
the loss functions:

.
arg min

f,W
{Ω(f) + λRemp(f) + μ

ne∑

i=1
w2

i },
s.t.

∑ne

i=1 wi = 1,

(9.28)

where . f is the learned relevance score, .Ω(f) is a regularizer built on the Hypergraph

Normalized Laplacian, .Remp(f) = ‖f − y‖2 denotes the empirical loss, and .
ne∑

i=1
w2

i

is the regularizer. .Ω(f) can be formulated as

.Ω(f) = 1

2

e∈E∑ ∑

u,v∈V

w(e)h(u, e)h(v, e)

δ(e)
×

(
f(u)√
d(u)

− f(v)√
d(v)

)2

, (9.29)

where .d(v) = ∑

e∈E
W(e)h(v, e) denotes vertex degree and . δ(e) = ∑

v∈V
h(v, e)

denotes hyperedge degree. Let .Θ = D−1/2
v HWD−1

e H�D−1/2
v and .Δ = I − Θ be

the hypergraph Laplacian. The diagonal matrices of .d(v) and .δ(e) are represented
as . Dv and . De, respectively. The normalized cost function can be expressed as

.Ω(f) = f�Δf. (9.30)

The two parameters . W and . f are optimized iteratively using the following two
functions:

. arg min
f

Φ(f) = arg min
f

{f�Δf + λ ‖f − y‖2}, (9.31)

.

arg min
W

Φ(W) = arg min
W

{f�Δf + μ
ne∑

i=1
w2

i },

s.t.
ne∑

i=1
wi = 1.

(9.32)

9.3 Sentiment Analysis 175

As shown above, MHG simulates the sample–sample relation for the purpose of
hypergraph construction. The properties of modalities and their relevance to one
another, however, are not fully utilized.

(2) Dual-Layer Multi-Modal Hypergraph Learning
Dual-layer multi-modal hypergraph learning is composed of 2 hypergraph layers,
.G1 = (V1,E1,W) for tweet-level hypergraph and .G2 = (V2,E2,M) for feature-
level hypergraph, respectively.

To allow multi-modal features to be adopted more explicitly and to directly
construct multi-modal hypergraphs for modal correlation, each hypergraph layer
of dual-layer multi-modal hypergraph learning uses relations between vertex and
hyperedge to represent sample features or relations between features and samples,
rather than relations between samples in MHG.

The sentiment label vector of tweets and the sentiment label vector of multi-
modal sentiment words are denoted, respectively, by y and t in distinct hypergraph
layers. Therefore, in two hypergraph layers, . f and . g started out originally as
vectors representing the relevance scores of tweets and multi-modal features/words,
respectively. It is said that . M can be regarded as the confidence ratings of the
sentiment labels . y, which correspond to . f in the hypergraph of tweet level. Two
hypergraph layers are connected, and the multi-modal relevance of features is
transferred to the tweet-level hypergraph in order to help predict tweet sentiment.

The probabilistic incidence matrix of a hypergraph is written as

.H∗(vi, ej) =
{

1 if vi ∈ ej

0 otherwise
, (9.33)

where . ∗ denotes either 1 or 2, and the same applies below.

The following loss function can be optimized to represent the learning process:

.

arg min
f,g,W,M

{Ω1(f)+λ1Remp1(f) + μ1

ne1∑

i

W2
i + Ω2(g) + λ2Remp2(g) + μ2

ne2∑

i

M2
i },

s.t.

{∑ne1
i=1 Wi = 1

∑ne2
i=1 Mi = 1

,

(9.34)

where .Ω1(f) and .Ω2(g) are regularizers based on the normalized Laplacian on
hypergraph, .Remp1(f) = ‖f − y ◦ M‖2 and .Remp2(g) = ‖g − t‖2 are the empirical

losses, and .
∑ne1

i=1 Wi and .
∑ne2

i=1 Mi are the .L2 regularizers on the hyperedge

176 9 Hypergraph Computation for Social Media Analysis

weights. In this scenario, empirical loss is represented as . Remp1(f) = ‖f − y ◦ M‖2

and .Remp2(g) = ‖g − t‖2, and .
∑ne1

i=1 Wi and .
∑ne2

i=1 Mi are the . L2 regularizers on
the hyperedge weights. The normalized Laplacian on hypergraph regularizers . Ω1(f)
and .Ω2(g) are further described as follows:

.
Ω1(f) = f�(I − D−1/2

v1 H1WD−1
e1 H

�
1 D

−1/2
v1)f,

Ω2(g) = g�(I − D−1/2
v2 H2MD−1

e2 H
�
2 D

−1/2
v2)g.

(9.35)

The loss function then has the following form in terms of .f,W, g, and M:

. L (f,W, g,M) =Ω1(f) + λ1Remp1(f) + μ1

ne1∑

i

W2
i

+ Ω2(g) + λ2Remp2(g) + μ2

ne2∑

i

M2
i (9.36)

+ η1

(
ne1∑

i=1

Wi − 1

)

+ η2

(
ne2∑

i=1

Mi − 1

)

.

To summarize, we introduced a two-layer multi-modal hypergraph learning
framework that models correlations among visual, textual, and emoji modalities
while allowing input from missing modalities to achieve document sentiment
prediction for multi-modal tweets.

9.3.2 Social Event Detection

The expanding visual content of microblogs and the inter-connectedness of diverse
data have received less attention from existing methods, while social event iden-
tification as a crucial social media analysis problem has received much attention
in recent years. Figure 9.7 presents an example of real-time social event. In social
media platforms, event detection is a difficult issue due to the distinctiveness of
social media data for the following reasons. First, it is required to explore a set
of posts that are significantly related to one another and discuss a common issue
because social media postings are noisy and do not include enough substantial
material to provide full information. Second, social media posts can come in a
variety of multimedia formats and include information such as images, timestamps,
locations, user preferences, and social connections in addition to text. Finally,
social posts are real time, and these large scale, real-time data make social events
difficult to detect. Hypergraph, due to its natural structural advantages, can establish
higher-order correlations between data of different posts, different modalities, and
different times, thus enabling real-time event detection. In this subsection, we

9.3 Sentiment Analysis 177

Fig. 9.7 An example of a real-time social event. (a) Conversational text. (b) Heterogeneous
content. (c) Continuously growing real-time data. Parts of this figure are from [6]

Fig. 9.8 Overall framework of the real-time social event detection. This figure is from [6]

introduce a hypergraph-based method for real-time social event detection. The
overall framework is shown in Fig. 9.8.

(1) Microblog Clique Generation
Microblog clique (MC), which consists of a collection of closely connected tweets,
is constructed as a basic unit rather than a single microblog in order to make up for
the lack of information. These microblogs cover the same subject in short time.

A hypergraph is used to describe the relationship between heterogeneous data
of various tweets. A set of microblogs is denoted as .M = {m1,m2, . . . , mn}. The
constructed hypergraph .GH = {V ,E ,W}, where a vertex v represents a microblog
and a hyperedge e represents a subset of microblogs. The hyperedge weight is
denoted as .w(e), and its diagonal matrix is formed as . W. The similarity between
two microblogs . mi and .mj is first determined using the following heterogeneous
features in order to generate hyperedges.

178 9 Hypergraph Computation for Social Media Analysis

The cosine similarity function is used for computing textual and visual simi-
larities. The Haversine formula is used for measuring the geographical similarity.
The pairwise temporal similarity is calculated by .sT I (mi,mj) = 1 − |t ii ,tji |

τ
. The

timestamps of . mi and .mj are . t ii and . tji , while . τ denotes a normalized constant.
Measures of the pairwise social similarity are

. sS(mi,mj) =
⎧
⎨

⎩

1, if ui = uj

0.5, if ui and uj are linked through the social platform
0, otherwise

,

(9.37)

where . ui is the owner of . mi .
Two hyperedges are created by connecting each microblog . mi with its neighbors

as per geographic distance and middle position of location and time information. For
each microblog . mi , the top N nearest microblogs in terms of textual information and
visual content are chosen. Finally, all microblogs of the same user are connected to
generate a hyperedge. The incidence matrix, vertex degree, and edge degree of the
hypergraph are defined in the same way as above.

Next, MC is generated by dividing microblogs into groups of the same topic
through the hypergraph cut approach. Assume S and . S̄ are the results of .GH through
the two-way partition, and the hypergraph cut can be described as

.
CutH (S, S̄) := ∑

e∈∂S

w(e)
|e∩S||e∩S̄|

d(e)
,

∂S := {e ∈ E|e ∩ S
= ∅, e ∩ S̄
= ∅}.
(9.38)

The definition of the two-way normalized partition is

.NCutH (S, S̄) := CutH (S, S̄)

(
1

vol(S)
+ 1

vol(S̄)

)
, (9.39)

where the volume of S is denoted by .vol(S) = ∑

v∈S

D(v). A real-valued optimization

work can be relaxed from the normalized cut issue. By choosing the eigenvectors
corresponding to the smallest non-zero eigenvalues of the hypergraph Laplacian,
.Δ = I − D−1/2

v HWD−1
e H�D−1/2

v , and the solution can be found. The input
tweets M are split into two groups, and then a bidirectional normalized partitioning
is carried out recursively in each new set until the best partitioning outcome is
attained. Based on the representation capacity of the various partitions as achieved
by Bayesian Information Criteria (BIC), this best partitioning result is determined.

9.3 Sentiment Analysis 179

BIC is used to choose the optimal hypergraph partitioning results. For . M =
{m1,m2, . . . , mn}, with .P = {P1, P2, . . . , Pm} as a set of partitions, the BIC score
is determined by

.

BIC = llh(M) − Np

2 log n,

llh(M) = ∑

i

(
1√

2πθ̂Np
− 1

2θ̂2

∥∥d(mi, cmi
)
∥∥2 + log ni

n

)
,

θ̂2 = 1
n−m

∑

i

d(mi, cmi
)2,

(9.40)

where .Np represents the parameter number and the microblog features’ dimension,
n is the microblogs number, and . ni is the count of corresponding partition of . mi .

Following the division of the provided microblogs into a group of MCs, the MCs
offer more sensible information by examining a collection of strongly correlated
microblogs rather than individual microblogs, which can express more meaningful
and pertinent material in the succeeding event detection technique.

(2) Detection of Social Events in Real Time

Event Detection by Using MC For .MC = {MC1, . . . , MCp} and corresponding
microblogs .M = {m1, . . . , mn}, there are two observations as follows. First off,
inside a single MC, and microblogs frequently refer to the same event (MC cues).
Second, MCs with similar features tend to be associated with the same event
(smoothness cues).

If a microblog is integrated into an MC, it is connected to the MC to impose
MC cues. In order to enforce smoothness cues, pairwise MCs that are close to one
another in feature space are connected. Formally, a bipartite graph . GB = {X, Y,B}
is used to express MC and M, and two vertex sets are expressed as X and Y , where
.X := MC ∩ M, Y := MC, with .|X| = |MC| + |M| and .|Y | = |MC| vertices,
respectively. The definition of the across-affinity matrix B between X and Y is as
follows:

.Bij =
⎧
⎨

⎩

η, if xi ∈ M, xi ∈ yj , yj ∈ MC
e−γ dij , if xi ∈ MC, yj ∈ MC
0, otherwise

, (9.41)

where . dij is the distance between two MCs, and . η and . γ are the two parameters that
balance the inner-MC correlation and the between-MC smoothness.

The bipartite graph .GB and the necessary number of partitions K are used as the
basis for the transfer cut method to partition MCs. First, assume . GBY = {Y,WY }
contains only vertices of the MC. .LY = DY − WY is the graph Laplacian of .GBY ,
where .DY = diag(B�1), .WY = B�D−1

X B. Assume that .{λi, vi}K1 are the K smallest

180 9 Hypergraph Computation for Social Media Analysis

eigenpairs of . GB . They can be calculated as

.
0 ≤ ξi ≤ 1, ξi(2 − ξi) = λi,

ui = 1
1−ξi

Qvi , fi = (u�
i , v�

i)�,
(9.42)

where .Q = D−1
X B is the corresponding transition probability matrix from X to Y .

Second, .{f1, . . . , fK} are K-spectra clustered and the best K is selected by BIC.
Assume that .K0 is the count of existing events. It is started at 0. Furthermore,
suppose that the biggest number for incoming data is not larger than .K0 + nnew/tm,
where the threshold . tm is used to decide the minimum microblog number. Therefore,
the bipartite graph is segmented .nnew/tm + 1 times, and the segmentation result
is selected as the event detection result using BIC. Suppose .{Γ1, . . . , ΓK} are the
detected K events in the last process. The key MCs are found by MC selection for
each . Γi , and the number of each MC is measured in terms of importance. Finally,
the top .nsMC MCs are selected to describe each . Γi .

Detection of Incremental Social Events The real-time detection method is defined
as follows. Assume that event detection is run at time . t0, with generated MCs, i.e.,
.MC = {MC1, . . . , MCp}, detected events .{Γ1, . . . , Γq}, and noisy data. New data
arrive continuously from moment . t0, and it can be processed a short time gap t .
In other words, event detection can be run at every .t0 + x × t , where x equals to
.1, 2, In this instance, .t0 + Δt is used as an example, and .Mnew stands for newly
arriving microblogs. The two steps that make up event detection are MC generation
and event partition.

To generate new MCs for previous time periods, . MC∗ = {MC∗
1 ,MC∗

2 ,,

MC∗
ne

} were used as known samples. .MC∗ and .Mnew are used to construct the

incremental microblog hypergraph .G t0+Δt

H . However, it is challenging because there
is no clear distinction between a microblog collection and a microblog. No more
than .3ne representative microblogs get to be chosen since only the three most
representative tweets for each MC are chosen, depending on the amount of retweets
and comments. To create the incremental microblog hypergraph . G t0+Δt

H , they are
merged with . Mnew. New MCs (.MCnew0) are then created from these data using the
hypergraph partition. Based on the representative microblogs, .MCnew0 and . MC∗
are combined together. In this way, .nMCnew new MCs (.MCnew0) are constructed and
utilized for event detection.

For detection in real time, the past events .Γ = {Γ1, . . . , ΓK }are used as
known data in the time period. The corresponding representative MCs in . Γ and
the generated incremental .MCnew are used to jointly construct the next graph. The
difference is that for the identified events, the distance between MCs is set to 0 as
follows:

.dij =
⎧
⎨

⎩

0, if xi ∈ Γk and yj ∈ Γk

min
mxk∈xi
myl∈yj

d(mxk,myl), otherwise , (9.43)

9.4 Emotion Recognition 181

where .k = 1, 2, . . . , K . Therefore, according to the BIC, the bipartite graph can be
partitioned into existing events and new events.

There are still several challenging problems in hypergraph computation for
sentiment analysis tasks that can be continued for more research. First, for the
sentiment recognition task, the case of conflicting multi-modal information can be
considered. Second, further consideration can be given to the information that may
be hidden in broken posts and users for the detection task on real-time social events.
These tasks take into account the positive or negative associations among multiple
entities, where the hypergraph is suitable for modeling such correlations.

9.4 Emotion Recognition

Emotion recognition has gained wide recognition in neuroscience and psychology
research [11], and artificial intelligence offers more reliable and accurate com-
putational models for the identification and study of emotions. It has also been
extensively applied in real life [12], especially in human–computer interaction,
motor vehicle driving assistance training, emotion classification in movies, and other
pertinent similar areas [13].

Emotion recognition has three main goals [14]: first, to enable the understanding,
inference, and recognition of human emotions by intelligent systems; second, to
make it possible for systems to make human-like expressions of emotion in response
to stimuli (e.g., conversational agents or robots); and third, to make it possible
for intelligent systems to actually perceive emotions. Over the past three decades,
researchers from several disciplines have pursued these three goals in different ways,
with the method of recognizing emotions as the central issue of research. Although
it has been studied for many years, progress is still being made. The reality is that
there are various ways for people to convey their emotions, including language,
gestures, facial expressions, and physiological signs [15]. Finding a suitable method
to identify and analyze human emotions may be a long-term problem. Human
volition determines the first three modalities, and there are substantial individual
variances [16]. Because of these, approaches based on these three modalities have
limitations in terms of accuracy and reliability. In contrast, physiological signals
cannot be readily blocked or concealed and are simultaneously governed by the
body’s neurological and hormonal systems. They are also often independent of
human will. Therefore, physiological signals rather than visual or auditory cues may
offer more accurate information about emotions [17]. A multitude of environmental
and psychological elements, including interests and personality, can have an impact
on human emotion, which is a highly subjective phenomenon.

Nonetheless, because of the following factors, recognizing emotions through
physiological signals is still a work in progress:

• Existence of the emotional gap and ambiguity in the concept of emotions [18]
• Potential associations between modality and subject [19]

182 9 Hypergraph Computation for Social Media Analysis

• Specificity of the stimulus response (SR) and individual response (IR) [20]
• Noise and incomplete data in the data [21]
• Multifactorial influences [22]

In this case, the hypergraph structure allows the establishment of complex
correlations that can simultaneously take into account: (a) correlations between
EEG, EOG, and EMG signals, which are signals from several modalities; (b)
correlations between subjects; and (c) patterns of physiological signal changes in
a single subject in response to various stimuli. Two methods are presented for
emotion prediction using hypergraph computation, including multi-modal vertex-
weighted hypergraph learning (MVHL) [7, 8] and multi-hypergraph neural networks
(MHGNN) [9].

(1) Multi-Modal Vertex-Weighted Hypergraph Learning
Hypergraphs have been used to depict the link between physiological data and
personality [7]. In this way, MVHL introduces a multi-modal vertex-weighted
hypergraph learning method for personalized emotion recognition (PER) that takes
into account vertex weights, hyperedge weights, and modal weights. Each vertex
in this method is a composite tuple (subject, stimulus). A hypergraph structure is
used to develop personality correlations between various subjects and physiological
correlations between the corresponding stimuli. Each vertex and hyperedge, as well
as the weights of the various hypergraphs, are automatically learned. Hyperedge
weights are used to create the optimal representation, while vertex weights are
used to describe the impact of various samples and patterns in the learning process.
The calculated factors—known as sentiment relevance—are employed for sentiment
identification and are learned on a multi-modal vertex-weighted hypergraph. The
fact that the vertices are composite with incorporated data from various subjects
allows MVHL to identify numerous subjects’ emotions at once.

The framework of this model is shown as follows. First, a composite tuple of
vertices (subjects, stimuli) is formed using the subjects and the stimuli used to elicit
the subjects’ emotions. Second, multi-modal hyperborders are constructed to form
personality associations among different subjects and physiological associations
among the corresponding stimuli. Finally, after joint learning of vertex-weighted
multi-modal multi-task hypergraphs, PER results can be obtained.

Hypergraph Construction This model constructs the hypergraph structure by
pairwise similarity between different samples. The pairwise similarity of . ui and
. uj ’s personalities is measured by the cosine function:

.sPER(ui, uj) = < pi ,pj >

‖pi‖ · ‖pj‖ , (9.44)

where . ui’s personality vector is denoted by . pi . The centroid is determined by
selecting one vertex at a time, and a hyperedge is built to link the centroid to its
K nearest neighbors in the existing representation space. It should be noted that
personified hyperedges are built using both intra- and inter-subject viewpoints. A

9.4 Emotion Recognition 183

hyperedge links all the vertices from the same subject together. Additionally, based
on personality similarities, the closest K subjects for each subject are chosen, and
all of their vertices are connected by creating another hyperedge.

Assume that the constructed hypergraphs are .Gm = (Vm,Em,Wm), where . Vm

and . Em denote the vertex set and hyperedge set, respectively, and .Wm is the diagonal
hyperedge weight matrix of the m-th hypergraph (.m = 1, 2, . . . , M). The incidence
matrix .Hm can be computed as

.Hm(v, e) =
{

1, if v ∈ e

0, if v /∈ e
. (9.45)

The different weights of the vertices are learned to evaluate their value and
contribution to the learning process. It is distinct from the classic hypergraph
learning method, which simply views all the vertices equally. Assume .Um is the
diagonal matrix of vertex weight. The vertex degree and the hyperedge degree
are defined as .dm(v) = ∑

e∈Em

Wm(e)Hm(v, e) and .δ(e) = ∑

v∈Vm

Um(e)Hm(v, e).

Accordingly, the two diagonal matrices are defined as .Dv
m(i, i) = dm(vi) and

.De
m(i, i) = δm(ei).

Multi-Modal Vertex-Weighted Hypergraph Learning The goal is to simul-
taneously study the correlations among the included physiological signals and
the personality relations across various subjects. The framework of the multi-
modal vertex-weighted hypergraph learning is presented in Fig. 9.9. Given N
subjects .u1, . . . , uN and the involved stimuli .sij (j = 1, . . . , ni) for . ui , we
assume that the c-th emotion category’s compound vertices and associated labels
are .{(u1, s1j)}n1

j=1, . . . , {(uN, sNj)}nN

j=1 and . y1c = [yc
11, . . . , y

c
1n1

]�, . . . , yNc =
[yc

N1, . . . , y
c
NnN

]�, where .c = 1, . . . , ne.
The count of emotion categories is denoted as . ne. The estimated values of

all stimuli associated to the specified users of the c-th emotion category, also

Fig. 9.9 Overall framework of the multi-modal vertex-weighted hypergraph learning. This figure
is from [7]

184 9 Hypergraph Computation for Social Media Analysis

known as emotion relevance, are given by . r1c = [rc
11, . . . , r

c
1n1

]�, . . . , rNc =
[rc

N1, . . . , r
c
NnN

]�. . yc, . rc are denoted by

.yc = [y�
1c, . . . , y

�
Nc]�, rc = [r�

1c, . . . , r
�
Nc]�. (9.46)

Let .Y = [y1, . . . , yc, . . . , yne], .R = [r1, . . . , rc, . . . , rne], where the two trade-off
parameters are . λ and . η. The hypergraph structure’s regularizer is defined as follows:

.Ψ (R,W,U,α) =
ne∑

c=1

r�
c

M∑

m=1

αm(Um − Θm)rc, (9.47)

where .Θm = (Dv
m)−1/2UmHmWm(De

m)−1H�
mUm(Dv

m)−1/2. Then, . Δ =
M∑

m=1
αm(Um − Θm) can be seen as the fused hypergraph Laplacian with vertex

weighting.

(2) Multi-Hypergraph Neural Networks
Multi-hypergraph neural network (MHGNN) uses hypergraph to build complex
correlations and identify emotions by physiological signals, which can take into
account: (a) correlations between signals of various modalities, i.e., z EEG, EOG,
and EMG; (b) relationships between subjects; and (c) patterns of physiological
signal changes in a single person in response to various stimuli. This model groups
each given subject and stimuli to a complex tuple, respectively. Assuming it is a
vertex in the hypergraph, it would generate a hypergraph for each pattern with its
corresponding physiological signal, making use of the term hyperedge to express
the correlations among the physiological signals in response to various stimuli. The
vertices are then categorized within the MHGNN framework in accordance with
the intricate relationships in the data. As a result, the categorization of vertices
in various hypergraphs can be equated to the recognition of emotions. Different
hypergraph neural networks are combined using a fully connected network. The
relative relevance of various multi-modal physiological signals is also taken into
account of this network when classifying emotions. This framework’s primary
benefit is its ability to combine multi-modal data and to represent three intricate
relationships of the data. Figure 9.10 shows the pipeline of the MHGNN framework.

Modeling of Multi-Hypergraph Subject correlation is formulated using a multi-
hypergraph structure given a number of features from various physiological inputs.
Each modality is represented by a separate hypergraph. The connections between
the vertices of the hypergraph are constructed using hyperedges, and each vertex
on the hypergraph represents a topic to be learned with a description of its
corresponding stimuli. The k-NN method is used to generate hypergraphs, where
k is a hyperparameter for assessing the connectivity. The hyperedges are created
after all vertices have acted as the centroid. Each vertex gets chosen as a centroid
once. We assume that .S = S1, S2, . . . , Sn is defined as a training set with modality

9.4 Emotion Recognition 185

Fig. 9.10 The pipeline of multi-hypergraph neural networks

i’s features .X(i) = x(i)
1 , x(i)

2 , . . . , x(i)
n , where vector .x(i)

j is the feature of the
j -th training sample from modality i and . Sj denotes the j -th training sample.
According to the KNN approach, the vertex . vp shares the hyperedge with the k
nearest vertices above and around it. Hyperedge . ep is centered on the vertex . vp.
The Euclidean distance between the corresponding feature vectors represents the
separation between two vertices. The correlation between vertex p and vertex q
is represented by the matrix element .hp,q . As an exponential representation of
Euclidean distance, the correlation can be described as

.h(i)
p,q =

⎧
⎨

⎩
exp(− d

(
x(i)
p ,x(i)

q

)2

d2), q ∈ up

0, q /∈ up

, (9.48)

where .d(x(i)
p , x(i)

q) stands for the feature space Euclidean distance between samples
p and q. The weight matrix .W(i) is set to be an identity matrix in our model because
we lack prior knowledge regarding the significance of hyperedges. As a result, the
incident matrix .H(i) contains all the data for the hypergraph.

An incidence matrix .H(i) is generated for each modality. Finally, m incident
matrices can be generated for m modalities.

Multi-Hypergraph Convolutional Networks The creation of subject representa-
tion and subsequent emotion classification are crucial steps in emotion recognition.
Deep neural networks have made significant progress in the representation of data in
the last few years. However, given the intricacy of data correlations, it is still work
in progress. In order to represent data and recognize emotions, a multi-hypergraph

186 9 Hypergraph Computation for Social Media Analysis

convolutional network framework that can simultaneously take into account several
physiological inputs from different people is developed.

In a hypergraph convolutional network, the spatial convolution is viewed from
the perspective of graph spectral theory as a spectral matrix product, and the
hypergraph Laplacian . Δ is leveraged to convert it from the spatial domain to the
spectral domain. . Δ can be formulated as .Δ = I − D−1/2

v HWD−1
e H�D−1/2

v , where
. De and .Dv are the matrices of hyperedge degree and vertex degree, respectively.
In this case, it is possible to formulate a hypergraph convolutional layer for each
modality as

.X(i)
(l+1) = σ

(
D(i)−1/2

v H(i)W(i)D(i)−1
e H(i)�D(i)−1/2

v X(i)
(l)Θ

(i)
(l)

)
, (9.49)

where .Θ
(i)
(l) is the learnable parameter of the l-th layer in i-th hypergraph neural net-

work (HGNN) and . σ is the activation function. When using hypergraph convolution,
the parameters for .Θ (i) are updated by backpropagating the feature .X(i). Hyper-
graph structure-related parameters, such as .D(i)−1/2

v H(i)W(i)D(i)−1
e H(i)�D(i)−1/2

v ,
are pre-computed and are not trainable in this procedure. The symbol .A(i)

h is used
to represent these parameters for simplification, and the hypergraph convolutional
layer can be rewritten as

.X(i)
(l+1) = σ

(
A(i)

h X(i)
(l)Θ

(i)
(l)

)
. (9.50)

It is important to note that the formulation of graph convolution and hypergraph
convolution is similar. The graph convolution is shown as follows:

.X(i)
(l+1) = σ

(
D(i)−1/2A(i)D(i)−1/2X(i)

(l)Θ
(i)
(l)

)
. (9.51)

Hyperedges built from characteristics of several modalities are concatenated
in traditional models of single hypergraph neural networks. However, because
of their distinct sizes and dimensions, hyperedges have been known of being
inconsistent. Additionally, there could be some variations in the perspectives from
which various modalities approach the work. Some could be crucial, while others
might not be just as important. In a single hypergraph model with identical weights,
such discrepancies are not possible to see. However, simply concatenating distinct
hyperedges makes it difficult to specifically weight them. A multi-hypergraph neural
network structure is introduced to integrate multiple hypergraph structures in order
to address the issue.

To calculate intermediate representations for each modality, m hypergraph neural
network models are built using m hypergraphs for m modalities. The K-layer i-th
hypergraph neural network may be expressed as follows:

.HGNN(H(i),X(i)) = σ
(i)
K

(
A(i)

h (· · · σ (i)
1 (A(i)

h X(i)Θ
(i)
1) · · ·)Θ(i)

K

)
. (9.52)

9.5 Summary 187

The final output is then generated using the m output of intermediate representa-
tions by a fully connected layer. As a fusion layer, the layer dynamically combines
the outcomes of hypergraph convolutions and weights them corresponding to
their contributions. A softmax layer serves as the classifier. In layers of networks
with diverse hypergraph structures, modality characteristics of various sizes and
dimensions are learned. Finally, they are weighted automatically and merged into
the fusion layer.

.Wf and . bf stand for the weights and bias of the fusion layer, respectively. The
model can be expressed as follows:

. MHGNN(X(1),X(2), . . . ,X(m)) =sof tmax
(
WfWm[HGNN(H(1),X(1)),

HGNN(H(2),X(2)), . . . , (9.53)

HGNN(H(m) ,X(m))] + bf

)
,

where the matrix of modality weights is denoted by . Wm = Diag
(
w(1),w(2),

. . . . ,w(m)
)
.

The patterns were discovered to represent a pair of interconnected and mutually
reinforcing interdisciplinary concerns by examining the data findings making use of
the network structure of the hypergraph. Another intriguing occurrence in the exper-
iments was the variations in each subject’s physiological characteristics. Therefore,
what should be considered is to: (a) collect data according to the requirements of
real application scenarios; (b) pay attention to individual differences; (c) analyze
correlations between subjects of training and test samples; and (d) add more
information such as action recognition information. Hypergraphs are considered as
a good tool to discover biological patterns among them.

9.5 Summary

In this chapter, to illustrate the paradigm of using hypergraph computation in social
media analysis, we overview three applications, i.e., recommender system, senti-
ment analysis, and emotion recognition. In recommender system, we discuss two
specific applications: collaborative filtering and attribute inference. Collaborative
filtering only considers the raw user–item network, and hypergraph is used to model
the inter- and intra-domain (user or item) correlations in behavior space. Attribute
inference further takes the attribute information into consideration in addition to
the historical interactions. Besides, context information such as time and location
can also be integrated, which is left to explore. In sentiment analysis, sentiment
prediction and social event detection are covered. The former task mainly concerns
the sentiment conveyed by each multi-modal tweet, while the latter one focuses on
exploring a group of postings that are closely connected and cover the same subjects.

188 9 Hypergraph Computation for Social Media Analysis

Furthermore, recognizing the emotion of people through multi-modal physiological
signals is also presented. There are still many social media analysis applications
worth exploring with hypergraph computation. For example, heterogeneous corre-
lations widely exist in the social media context. How to utilize the complementary
information among these heterogeneous associations with hypergraph computation
has become a key issue. Besides, social media data are always dynamic rather than
static, and the newcoming data may have different distributions compared with the
existing data. Under such circumstances, the static hypergraph computation method
cannot be directly applied, and the dynamic hypergraph computation paradigm is
deserved to be investigated to solve this complex issue.

References

1. S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender system: a survey and new
perspectives. ACM Comput. Surv. 52(1), 1–38 (2019)

2. L. Zhang, S. Wang, B. Liu, Deep learning for sentiment analysis: a survey. Wiley Interdiscip.
Rev. Data Min. Knowl. Discov. 8(4), 1–25 (2018)

3. L. Shu, J. Xie, M. Yang, Z. Li, Z. Li, D. Liao, X. Xu, X. Yang, A review of emotion recognition
using physiological signals. Sensors 18(7), 2074 (2018)

4. S. Ji, Y. Feng, R. Ji, X. Zhao, W. Tang, Y. Gao, Dual channel hypergraph collaborative filtering,
in Proceesings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (2020), pp. 2020–2029

5. R. Ji, F. Chen, L. Cao, Y. Gao, Cross-modality microblog sentiment prediction via bi-layer
multimodal hypergraph learning. IEEE Trans. Multimedia. 21(4), 1062–1075 (2019)

6. S. Zhao, Y. Gao, G. Ding, T.-S. Chua, Real-time multimedia social event detection in
microblog. IEEE Trans. Cybern. 48(11), 3218–3231 (2018)

7. S. Zhao, G. Ding, J. Han, Y. Gao, Personality-aware personalized emotion recognition from
physiological signals, in Proceedings of the 27th International Joint Conference on Artificial
Intelligence (2018), pp. 1660–1667

8. S. Zhao, A. Gholaminejad, G. Ding, Y. Gao, J. Han, K. Keutzer, Personalized emotion
recognition by personality-aware high-order learning of physiological signals. ACM Trans.
Multimedia Comput. Commun. Appl. 15(1s), 1–18 (2019)

9. J. Zhu, Y. Wei, Y. Feng, X. Zhao, Y. Gao, Physiological signals-based emotion recognition
via high-order correlation learning. ACM Trans. Multimedia Comput. Commun. Appl. 15(3s),
1–18 (2019)

10. W.L. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in
Proceedings of the Advances in Neural Information Processing Systems (2017), pp. 1024–1034

11. E. Cambria, Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107
(2016)

12. S. Zhao, X. Zhao, G. Ding, K. Keutzer, EmotionGAN: Unsupervised domain adaptation for
learning discrete probability distributions of image emotions, in Proceedings of the 26th ACM
International Conference on Multimedia (2018), pp.1319–1327.

13. S. Poria, E. Cambria, R. Bajpai, A. Hussain, A review of affective computing: from unimodal
analysis to multimodal fusion. Inf. Fusion. 37, 98–125 (2017)

14. R. Calvo, S. D’Mello, Affect detection: An interdisciplinary review of models, methods, and
their applications. IEEE Trans. Affective Comput. 1(1), 18–37 (2010)

15. S. D’mello, J. Kory, A review and meta-analysis of multimodal affect detection systems. ACM
Comput. Surv. 47(3), 1–36 (2015)

References 189

16. M. Soleymani, S. Asghari-Esfeden, Y. Fu, M. Pantic, Analysis of EEG signals and facial
expressions for continuous emotion detection. IEEE Trans. Affect. Comput. 7(1), 17–28 (2016)

17. Y. Shu, S. Wang, Emotion recognition through integrating EEG and peripheral signals, in
Proceedings of the 42nd IEEE International Conference on Acoustics, Speech and Signal
Processing (2017), pp. 2871–2875

18. S. Zhao, C. Lin, P. Xu, S. Zhao, Y. Guo, R. Krishna, G. Ding, K. Keutzer, CycleEmotion-
GAN: Emotional semantic consistency preserved cycleGAN for adapting image emotions, in
Proceedings of the AAAI Conference on Artificial Intelligence (2019), pp. 2620–2627

19. M. Soleymani, M. Pantic, T. Pun, Multimodal emotion recognition in response to videos. IEEE
Trans. Affect. Comput. 3(2), 211–223 (2012)

20. P. Ekman, R. Levenson, W. Friesen, Autonomic nervous system activity distinguishes among
emotions. Science 221(4616), 1208–1210 (1983)

21. R. Subramanian, J. Wache, M.K. Abadi, R.L. Vieriu, S. Winkler, N. Sebe, Ascertain: emotion
and personality recognition using commercial sensors. IEEE Trans. Affect. Comput. 7(1), 17–
28 (2018)

22. E. Kehoe, J. Toomey, J. Balsters, A. Bokde, Personality modulates the effects of emotional
arousal and valence on brain activation. Soc. Cognit. Affect. Neurosci. 7(7), 858–870 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 10
Hypergraph Computation for Medical
and Biological Applications

Abstract Hypergraph computation, with its superior capability in complex data
modeling, is a powerful tool for many medical and biological applications. In this
chapter, we introduce four typical examples of the use of hypergraph computation
in medical and biological applications, i.e., computer-aided diagnosis, survival
prediction with histopathological images, drug discovery, and medical image seg-
mentation. In each application, we present how to construct the hypergraph structure
with different kinds of medical and biological data and different hypergraph
computation strategies for these tasks respectively. We can notice that hypergraph
computation has shown advantages in these applications.

10.1 Introduction

In the past few decades, massive biological and medical data were generated owing
to the rapid development of big data techniques. These data can be used for tasks of
disease gene analysis, disease risk assessment, targeted drug discovery, etc. The
data further contribute to disease prevention and early diagnosis and treatment
of diseases. The biological and medical data are complex, heterogeneous, and
multi-modal, with widespread inter- and intra-data correlations. For example, in
early disease diagnosis, patients with similar medical image appearance may also
share similar disease conditions; different modalities of the medical image of the
same patient, such as MRI and CT, may also exhibit disease characteristics from
different perspectives; the patches within gigapixel histopathological images may
have implicit collaborative associations that reveal patients’ potential health risks.
Therefore, how to model such correlation behind these data is very important for
medical and biological applications.

Hypergraphs, which own the flexible hyperedges, provide a possible solution
for modeling such complex correlations within medical and biological data. Given
the observed data, the hypergraph structure can be generated using the previously
mentioned methods and naturally incorporate multi-modal or heterogeneous data
by concatenation of hyperedge groups and thus can discriminatively utilize the
complementary information of these data. The applications of hypergraph compu-

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_10

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10
https://doi.org/10.1007/978-981-99-0185-2_10

192 10 Hypergraph Computation for Medical and Biological Applications

tation in medical and biological tasks can be typically summarized as follows: (1)
modeling the medical image, the patches, or the biological entities such as vertices,
and connecting them with hyperedges following their feature similarity or high-
order topological links; (2) exploring the high-order correlations between data using
hypergraph label propagation or hypergraph neural networks so as to enhance the
vertex representations; and (3) deploying these representations on the medical and
biological tasks, such as medical image retrieval, disease identification, cancer tissue
classification, survival prediction, and medical image segmentation.

In this chapter, we discuss five typical applications of using hypergraph com-
putation in medical and biological applications, i.e., computer-aided diagnosis,
survival prediction with histopathological images, drug discovery, and medical
image segmentation. In computer-aided diagnosis, three specific applications are
included, i.e., the identification [1] and medical image retrieval of MCI [2], autism
spectrum disorder identification using brain functional networks [3], as well as
the identification of COVID-19 by CT imaging [4]. For survival prediction with
histopathological images, two techniques targeting different cases are displayed,
including ranking-based survival prediction [5] and multi-hypergraph modeling
for survival prediction [6]. In drug discovery, a heterogeneous hypergraph-based
drug–target interaction prediction technique [7] is presented. For medical image
segmentation, we introduce the hierarchical hypergraph patch labeling method. Part
of the work introduced in this chapter has been published in [1–8].

10.2 Computer-Aided Diagnosis

Computer-aided diagnosis has made clinical diagnosis incredibly convenient with
the advancement of artificial intelligence and owing to the widespread use of
medical imaging data, including MRI, CT scan, histopathological images, and so
on. Its main goal is to pursue a preliminary examination of patients for clinicians in
order to increase diagnostic accuracy, avoid missed illnesses, and improve work
efficiency. Many challenges still exist in the field of computer-aided diagnosis
despite great machine learning and deep learning research advancements. It involves
improper uses of information shared among patients and different forms of medical
images, the continued existence of noisy data (such as variations in varied CT
manufactures and patients’ movement during imaging), and the confusion of cases
in the early stages of illness.

In traditional approaches, the relationships among patients are frequently ignored
in favor of merely taking into account one patient. The illness information of
patients with similar medical images assists to raise the likelihood of computer-
aided diagnosis since it makes sense that if the MRI or CT features of patients
are related, then their disease conditions should also be similar. Therefore, since
hyperedges in hypergraphs, unlike in graphs, can connect two or more vertices,
this presents a potential solution for the first challenge by allowing hypergraphs to
represent high-order illness connections among multiple individuals.

10.2 Computer-Aided Diagnosis 193

Computer-aided diagnosis with medical images frequently consists of three main
steps in order to be more effective. Pre-processing the image is the first step,
which mostly consists of enhancing visual information, filtering out the background,
and separating the region of interest from the blank to lessen interference of
irrelevant areas. The next stage is to extract the region of interest’s features. Imaging
features including infection lesion count, mean lesion area, lesion density, and
morphological aspects must be extracted from images since it is informative and
contains task-independent information. The final step is to use machine learning,
deep learning, or other statistical approaches to diagnose patients and then identify
various types and lesion types with the features gathered in the previous steps.

The use of hypergraph computing techniques in computer-aided diagnosis is
introduced in the subsections that follow. Four specific applications are covered,
namely MCI identification using MRI [1], medical image retrieval [2], COVID-19
identification using CT imaging [4], and ASD identification using brain functional
networks [3]. First, we present a strategy for creating a hypergraph for each MRI
sequence and modeling the best correlation of patients by information shared by
several MRI sequences. It then explains how to generate multi-graph combination
weights to discover the association among query subjects and the existing subject
classes. This enhances the precision of medical image retrieval. In the third
part, the details of the uncertainty vertex-weighted hypergraph learning approach
distinguishing COVID-19 from other types of pneumonia symptoms are described.
Finally, we show the application of dynamic hypergraph learning methods to
diagnose the autism of children using multi-modal functional connectivity.

10.2.1 MCI Identification Using MRI

Identifying the initial phase of Alzheimer’s disease (AD) [i.e., mild cognitive
impairment (MCI)] to support the diagnosis is a proper but challenging task since
AD is a relatively regular dementia in seniors. Taking into consideration that
research has demonstrated that combining data from various data modalities can
improve the accuracy of diagnosing AD/MCI, clinically routine scans are to be used
in the upcoming hypergraph computing approaches to diagnosing AD to capture
multiple MR sequences of various aspects of brain structures or functions and
attempt to combine them optimally.

The centralized hypergraph learning method (CHL) [1] integrates numerous
imaging data in a semi-supervised manner to estimate correlations among various
subjects to indicate the possibility that subjects belong to the same class. This
improves the utilization of multi-modal data, of which the global illustration is
shown in Fig. 10.1. In contrast to the usual graphs, hypergraphs propagate informa-
tion by a group of hyperedges connecting two or more vertices concurrently. They
can also capture higher-order relationships among various subjects by selecting
the nearest neighbors in the feature space, i.e., whether a set of subjects in this
task has common information, therefore allowing each subject to maximize the

194 10 Hypergraph Computation for Medical and Biological Applications

Fig. 10.1 A pipeline to classify MCI or NC from multi-modal imaging data using centralized
hypergraph learning. This figure is from [1]

knowledge from MR sequences by optimizing concurrently the correlation and
hyperedge weights among subjects. The entire process is sequentially presented in
two stages, including the construction of a centralized hypergraph via processing
data, and centralized hypergraph learning, to better introduce the details of using
CHL in this chapter.

Different types of imaging data from patients with MCI and normal control
(NC) need to be pre-processed as features before such data are used to construct
the hypergraphs. Thereafter, a hypergraph .Gi = 〈Vi ,Ei ,Wi〉 is constructed for
every sort of imaging data, where each subject is considered as a vertex, while
the star expansion procedure is used to generate hyperedges. In particular, every
vertex in each feature space is taken into account as the central vertex for generating
a hyperedge, which consists of vertices located within distance .ϕd̄ of the center
vertex, where . ϕ is a hyperparameter and . d̄ is the vertex’s mean distance in
feature space. The hypergraph incidence matrix . Hi produced by the star expansion
procedure is formalized as

.Hi (v, e) =
⎧
⎨

⎩

exp
(

− di (v,vc)

0.1d̄i

)
if v ∈ e

0 otherwise
, (10.1)

where .di(v, vc) represents the length from the vertex v to the correlating center
vertex . vc, and . d̄i is the vertex’s mean distance in feature space of the i-th type
imaging data. It should be noted that the hyperedge weights .Wi start out with the
same value, e.g., 1, when the hypergraph is generated.

10.2 Computer-Aided Diagnosis 195

For the MCI diagnostic work, which is regarded as a binary classification, various
imaging data are employed to construct correlations among subjects using the
centralized hypergraph learning method. Each step selects a hypergraph as the core
hypergraph out of the four that were created from four types of data, with the others
offering additional input for updating the hypergraphs. If hypergraph . Hj is the core,
we obtain the j -th centralized hypergraph, and to understand the relationship of the
vertices, the optimization formula can be written as

.

arg min
Fj ,Wi

{
Ωc

j (Fj) + λRemp(Fj) + μ
∑

i

∑

e∈Ei

Wi (e)
2
}

s.t. Hidiag(Wi) = diag(Dv
i), diag(Wi) ≥ 0,

, (10.2)

where .Ωc
j (Fj) is the regularizer to smooth out the correlations among vertices,

.Remp represents the empirical loss, .
∑

i

∑
e∈Ei

Wi (e)
2 represents an .l2-norm reg-

ularizer, and . Dv
i represents the degree matrix. By assigning different weights . α1, α2

to core hypergraph and others, respectively, the regularizer term can be formulated
as

.Ωc
j (Fj) = α1Ωj(Fj) +

∑

i �=j

Ωj (Fi), (10.3)

where .Ωj(Fj) is equal to .F�
j (I − Θi)Fj with .Θi = D−1/2

v HWD−1
e H�D−1/2

v .

Consequently, regularizer is rewritten as: .Ωc
j (Fj) = F�

j (Δc
j)Fj with . Δc

j = I −
(α1Θj + α2

∑
i �=j Θi).

The optimization of Eq. (10.2) consists of two steps. In the following, we
optimize the relevance matrix . Fj with fixed .Wi as

. arg min
Fj

{
Ωc

j (Fj) + λRemp(Fj)
}
, (10.4)

which results in the closed-form answer for . Fj = λ
1+λ

(I − 1
1+λ

(α1Θj +
α2

∑
i �=j Θi))

−1Y. Following, we optimize the weight of hyperedges .Wi with
fixed . Fj as

.

arg min
Wi

{
Ωc

j (Fj) + μ
∑

i

∑

e∈Ei

Wi (e)
2
}

s.t. Hidiag(Wi) = diag(Dv
i), diag(Wi) ≥ 0.

, (10.5)

which can be optimized by quadratic programming.
To best integrate data from various MRI, we generate the weights to every

centralized hypergraph by minimizing the total hypergraph Laplacian, which is

196 10 Hypergraph Computation for Medical and Biological Applications

expressed as

.

arg min
ρi

{ ∑
ρiΩ

c
i (Fi) + η

∑
ρ2

i

}

s.t.
∑

ρi = 1,

, (10.6)

where . ρi represents the weight of the i-th centralized hypergraph, and . η represents
the trade-off parameter of the Laplacian and .l2-norm regularizer. Determined by
centralized hypergraph weights, the overall relevance matrix is .F = ∑

ρiFi , of
which the matching value can be used to categorize a subject.

In this subsection, we have introduced a centralized hypergraph learning method
to model patient relationships for MCI identification. For each type of data, hyper-
graphs are constructed in the framework. In hypergraph learning, one hypergraph
is chosen as the core hypergraph each time, and the remaining hypergraphs help
the core hypergraph optimize the relevance matrix for prediction. The method not
only takes into account the link among subjects, but it also makes use of a range of
different types of data to increase the identification impact.

10.2.2 Medical Image Retrieval

Medical image retrieval is another crucial application of computer-aided diagnosis
in Alzheimer’s disease, along with the classification of patients with MCI or natural
control introduced above. Its main goal is to offer clinicians with relevant MCI
examples of visually comparable imaging data. Such data can also be provided to
doctors in medical practice for instance thinking or scientific proof medicine.

Two primary stages help compensate for the MCI diagnosis-aided medical
image retrieval technique [2], i.e., query about the class prediction for choosing
candidates and ranking. The first stage involves finding the database’s most relevant
subjects based on the query subject. Such knowledge is then used to predict, under
supervision, the query subject’s category, i.e., the MCI patients or NC in this case.
The graphs based on the pairwise object distance from various data modalities are
combined into a multi-graph to predict the category of the query, after that every
subject falling under the same category as the query is regarded as a potential
subject. Second, the query subject and all of the candidate subjects are represented
together in a new multi-graph. The learning process on the multi-graph reveals how
related each candidate is to the query subject, allowing for ranking depending on
the quality of similarity. The details of the two stages are shown in Fig. 10.2 [2] and
explained below.

The query category is initially expected to use the subjects in the database given
the query imaging data so that candidates can eventually be chosen based on the
result. To analyze the similarity between the query subject and the training subjects
chosen from the database, a graph .Gi = 〈Vi ,Ei ,Wi〉 with .N + 1 vertices is

10.2 Computer-Aided Diagnosis 197

Fig. 10.2 The pipeline for medical image retrieval method. This figure is from [2]

generated for the imaging data of the i-th modality out of .Nmod modalities. The
weight .Wi (vs, vt) of edge .Ei (vs, vt), which connects the s-th and t-th vertices of
the graph . Gi , is given by

.Wi (vs, vt) = exp
(d2(vs, vt)

σ 2
i

)
, (10.7)

where .d(vs, vt) represents the Euclidean distance between vertices . vs and . vt in
the feature space. Similar to the processing of identifying MCI, the optimization
equation for the multi-graph learning task for query category prediction can be
written as

.

arg min
F,ω

{ Nmod∑

i=1

ωiΩi(F) + μR(F) + η‖ω‖2
2

}
,

s.t.
Nmod∑

i=1

ωi = 1,

(10.8)

where . ω and . F represent the weighting parameters and the relevance matrix, respec-
tively, .μ, η represent the trade-off hyperparameters, . R represents the empirical loss,
and . Ωi represents the regularizer term defined as

.Ωi = 1

2

∑

vs ,vt

Wi (vs, vt)‖ F(vs, ·)√
Di (vs, vs)

− F(vt , ·)√
Di (vt , vt)

‖2. (10.9)

198 10 Hypergraph Computation for Medical and Biological Applications

To solve the aforementioned optimization equation, . F and . ω can be optimized
alternatively. When . ω is fixed, the optimization equation for . F is written as

. arg min
F

⎧
⎨

⎩

Nmod∑

i=1

ωiΩi(F) + μR(F)

⎫
⎬

⎭
, (10.10)

which can be solved using the iterative process [9] formulated as

.F(t + 1) = 1

μ + 1

Nmod∑

i=1

ωiΘiF(t) + μ

μ + 1
Y, (10.11)

where .F(t) is the t-th step of the iteration started out with .F(0) = Y. When . F is
fixed, the optimization equation for . ω can be formulated as

.

arg min
ω

⎧
⎨

⎩

Nmod∑

i=1

ωiΩi(F) + η‖ω‖2
2

⎫
⎬

⎭
,

s.t.
Nmod∑

i=1

ωi = 1,

(10.12)

which can be worked on by applying the Lagrangian method. All database subjects
belonging to the same category are employed as candidate retrieval results based on
the learned category of query subject.

Candidates are ranked for the retrieval of the most relevant subjects. Even though
they are related to the same category of query subject, they may still differ from
each other from the viewpoint of imaging appearance. Candidate subjects and query
subjects construct graphs using each of .Nmod modalities, where the i-th graph can
be referred to . Ĝi , in a manner similar to the previous classification step. Since the
graph’s weight . ω has been learned, the optimization equation can be written as

. arg min
f̂

{ Nmod∑

i=1

ωiΩ̂i(f̂) + λ̂R̂(f̂)
}

, (10.13)

where . ̂f and . Ω̂ represent the relevant vector and graph regularizer, respectively. . R̂
is the empirical loss. The optimization task, such as Eq. (10.10), is handled using an
iterative procedure, represented by

.f̂(t + 1) = 1

λ̂ + 1

Nmod∑

i=1

ωiΘ̂i f̂(t) + λ̂

λ̂ + 1
ŷ. (10.14)

10.2 Computer-Aided Diagnosis 199

The ranking of all candidates can be established by sorting based on the correlation
given by . ̂f.

This subsection introduces the process of retrieving data relevant to the query
subject from medical imaging datasets to support the diagnosis of MCI. The first
stage selects the candidate set from the database, and the second stage computes the
correlation between the query subject and all of the subjects in the candidate set and
then ranks the retrieval based on the correlation. Both stages employ multi-graphs
to describe the relationship between subjects, so as to facilitate retrieval tasks.

10.2.3 COVID-19 Identification Using CT Imaging

The COVID-19 pandemic, which has become the most widespread public health
crisis since late 2019, is brought on by an extremely infectious virus and can induce
multiple organ failures and server respiratory distress. Therefore, it is crucial to
correctly distinguish COVID-19 from other forms of pneumonia to help correctly
design pneumonia treatment programs. Nevertheless, the task is complex, as there
are two main difficulties, namely noisy data resulting from the highly varied data
gathered during crises, and confusing cases resulting from the similarity between
COVID-19 and other types of pneumonia cases of the initial phases of symptoms.

Numerous investigations have demonstrated the usefulness of differentiating
between COVID-19 and other types of pneumonia using CT, leading to the intro-
duction of an uncertainty vertex-weighted hypergraph learning strategy to identify
COVID-19 from other types of pneumonia using CT images [4]. It formulates data
correlations among various instances to limit the interference by noisy data and
confusing examples by employing an uncertainty rating quantification module and
a vertex-weighted hypergraph structure. The framework introduction that follows
is divided into three parts, namely pre-processing, measuring data uncertainty, and
hypergraph construction and learning. Figure 10.3 depicts the overall illustration.

Fig. 10.3 An illustration of the uncertainty vertex-weighted hypergraph learning method for
identifying COVID-19 among other types of pneumonia. This figure is from [4]

200 10 Hypergraph Computation for Medical and Biological Applications

Regional features and radiomics features should be collected from the CT
for every patient segregated using VB-Net [10] during the pre-processing stage.
Regional features include the number of infected lesions and the surface area of
the lesions, whereas textural features including the gray-level co-occurrence matrix
are examples of radiomics features. The feature representation . X of a patient’s CT
image is constructed by combining the two categories of features with information
on age and gender.

Data uncertainty measurements are crucial in determining the dependability of
various data throughout the learning process since noise can have an impact on data
quality. The two types of uncertainty measurements are aleatoric and epistemic.
The former one results from data abnormalities, noise, or other issues that lower
the data quality, and the latter one is produced by the case’s features being at the
decision boundary. The goal of parameter estimation under aleatoric uncertainty
is to minimize the KL divergence for both the actual and forecasted distributions,
which can be represented by

.Θ̂ = arg min
Θ

1

N
DKL(PD(Xi)||PΘ(Xi)), (10.15)

where .PD(Xi), PΘ(Xi) represent the real distribution and the predicted distribution,
respectively. By way of optimization, the loss function is expressed as

.L (Θ) = 1

N

N∑

i

(
1

2
exp(−αΘ(Xi))CE (yi , fΘ(Xi)) + 1

2
αΘ(Xi)

)

, (10.16)

where .αΘ(Xi) represents the log value of the estimated variance, and the aleatoric
uncertainty defines as .AΘ(Xi) = exp(αΘ(Xi)). Dropout can be used for inference
to determine the epistemic uncertainty, which can be expressed as the model’s
inability to generate accurate predictions and is written as

. E (f
Θ̂

(Xi)) ≈ 1

K

K∑

k=1

f
Θ̂(ωk)

(Xi)
�f

Θ̂(ωk)
(Xi) − E(f

Θ̂(ωk)
(Xi))

�E(f
Θ̂(ωk)

(Xi)),

(10.17)

where . ω represents the set of random variables and k represents the k-th test with
dropout. Here, the overall uncertainty is .U

Θ̂
(Xi) = A

Θ̂
(Xi) + E (f

Θ̂
(Xi)). With

normalization, the final uncertainty can be formulated as

.Ui = σ
(
λ

U
Θ̂

(Xi) − μe

se

)
, (10.18)

where . μe and . se represent the mean and the standard deviation of . U and . σ stands
for the sigmoid function setting the output between 0 and 1.

10.2 Computer-Aided Diagnosis 201

Each instance is viewed as a vertex in the hypergraph that is constructed to mine
high-order correlations among related patients for more precise prediction. Regional
and radiomics features are used in the construction of hyperedges, respectively. In
the regional features space, every vertex is regarded as a center vertex, and the
nearest neighbor algorithm is used to link K nearest vertices to build a hyperedge.
The similar method is applied to generate hyperedges using the radiomics feature.
The uncertainty hypergraph, in contrast to the usual hypergraph, must take into
account both the connection relationship and the vertex’s uncertainty score, leading
to a more comprehensive explanation of the incident matrix in uncertainty vertex
hypergraph .G = 〈V ,E ,W,U〉 as

.H(vj , ei) =
{

Uj if vj ∈ ei

0 otherwise
. (10.19)

The structure quantifies data uncertainty in comparison to conventional hypergraph
learning strategies, and its optimization objective can be expressed as

.

⎧
⎨

⎩

QU(F) = arg minF{Ω(F) + λRemp(F)}
Ω(F,V ,U,E ,W) = tr(F�(U� − U�ΘUU)F)

Remp(F,U) = ∑K
k=1 ||F(:, k) − Y(:, k)||2

, (10.20)

where .Ω(·) and .Remp(·) represent the regular function and the empirical loss,

respectively, and .ΘU is equal to .D−1/2
v HWD−1

e H�D−1/2
v . It is reasonable to rewrite

the empirical loss as

.Remp(F,U) = tr(F�U�UF + Y�U�UY − 2F�U�UY). (10.21)

The output matrix .F ∈ R
n×K (K representing the number of classes, i.e., .K = 2 in

this case) is thus represented as

.F = λ(U� − U�ΘUU + λU�U)−1U�UY. (10.22)

New coming test cases can be classified as COVID-19 or other pneumonia types
using the output label matrix established above.

10.2.4 ASD Identification Using Brain Functional Networks

Autism spectrum disorder (ASD) is a widespread developmental disorder that
mostly affects children and has negative effects such as social communication
impairments. Because of the rising cases, early identification and treatment of ASD
are crucial in order to provide patients with new skills under clinical supervision.
The diagnosis of ASD is mostly dependent on skilled specialists, and it is difficult

202 10 Hypergraph Computation for Medical and Biological Applications

Fig. 10.4 A pipeline to classify ASD or healthy controls from brain functional networks data using
dynamic hypergraph learning. This figure is from [3]

to identify ASD quickly due to the shortage of experts. The correlation of various
functional connectivity (FC) pattern features in ASD patients can be used for rapid
diagnosis.

The ASD identification method using brain functional networks [3] is divided
into three stages, namely the selection of pre-processed features, hypergraph
construction, and object identification using dynamic hypergraph learning. The
overall process can be referred to Fig. 10.4. Static FC (sFC) and dynamic FC
(dFC) are produced using a sliding window algorithm on the original functional
magnetic resonance imaging time series in the first stage, and Lasso regression is
then employed to accomplish the feature selection. The hypergraph construction
stage creates a hypergraph based on the comparison of image features that represent
data similarity in multiple modalities. Finally, ASD is identified using a multi-
modal dynamic hypergraph learning technique that detects ASD and simultaneously
improves the hypergraph structure.

The feature selection stage aims to discover valuable features in dFC and sFC
sequences. The i-th subject’s sFC sequence of . τ time points is first separated into
n sub-sequences, with the j -th sub-sequence of .{j, n + j, 2n + j, . . .} time points.
Defining . ̄zj

i as the dynamic FC feature of the j -th sub-sequence in subject i, the
Lasso regression model, as the selection operator, can be expressed as

. arg min
β0,β

(1

2τ ′|P|
∑

i∈P

τ ′
∑

j=1

(
yi − β0 − β�z̄j

i

)2 + μ|β|1
)
, (10.23)

where .τ ′ = τ/n is the length of the sub-sequences, . yi represents the label
of the subject, . β is the regression coefficient, and . μ stands for the trade-off
hyperparameter. Features with zero coefficients are discarded, and the remaining
are indicated as . zj

i . Defining . ̄xi as the static FC feature of the i-th subject, the Lasso
regression model is expressed as

. arg min
γ0,γ

(1

2|P|
∑

i∈P

(
yi − γ0 − γ �x̄i

)2 + η|γ |1
)
, (10.24)

10.2 Computer-Aided Diagnosis 203

where . yi represents the label of the subject, . γ is the regression coefficient, and . η
stands for the trade-off hyperparameter. Features with non-zero coefficients in the
sFC selection operator represented as . xi are selected similarly to dFC.

The dFC sub-hypergraph .G1 = (V ,E1) and the sFC sub-hypergraph . G2 =
(V ,E2), whose every vertex stands for a subject’s sub-sequence, are combined
to construct the hypergraph .G = (V ,E), i.e., .E = E1 ∪ E2. Since sFC features
are subject level, the features of sFC sub-sequences inherit the subjects’ static
modality, i.e., .xj

i = xi . Each vertex in each sub-hypergraph is regarded as a central
vertex, and the nearest neighbor algorithm is employed to connect k neighbors
(.k = 2n, 3n, . . . , kmaxn) to create .kmax hyperedges. When the two sub-hypergraphs
are generated, the hypergraph is formed at the same time, and its incident matrix is
expressed as

.H(v, e) =
{

1 if v ∈ e

0 otherwise
. (10.25)

To enhance the structure of hypergraph and to help predict ASD, the potential
equation of hyperedge can be defined as

.f (e) =
∑

u,v∈V

H(u, e)H(v, e)g(u, v)

(a + α1 + α2)δ(e)
, (10.26)

where

.

g(u, v) = ‖ ŷu√
d(u)

− ŷv√
d(v)

‖2
2 + α1‖ xu√

d(u)
− xv√

d(v)
‖2

2

+ α2‖ zu√
d(u)

− zv√
d(v)

‖2
2

. (10.27)

Here .δ(e) represents the degree of hyperedge e, .ŷu, ŷv stand for to-be-learned labels
of .u, v, respectively, and .α1, α2 are the trade-off hyperparameters. It is noted that
the potential function determines the data distribution on the hyperedge jointly
from sFC, dFC, and label space. The dynamic hypergraph learning cost function
is formulated as

.L (ŷ,H) =
∑

e∈E

ω(e)f (e) + θ‖y − ŷ‖2
2 + λ‖H − H0‖2

2, (10.28)

where .ω(e) stands for the hyperedge’s weight, . H0 represents the initial hypergraph,
and . θ and . λ are the trade-off hyperparameters, respectively. The objective function
is shown to be divided into three terms: the first term is the loss function based on
the hypergraph, and the following two terms are the empirical losses of . ̂y and . H.
The optimization of Eq. (10.28) consists of two stages. First, we optimize the to-be-
learned labels . ̂y with the fixed . H. The problem results in the closed-form solution

204 10 Hypergraph Computation for Medical and Biological Applications

as follows:

.ŷ =
(
I + 1

θ(1 + α1 + α2)Δ

)−1
y, (10.29)

where .Δ = I−D−1/2
v HWD−1

e H�D−1/2
v . .I,Dv , and . De represent the identity matrix,

vertex degree diagonal matrix, and hyperedge degree diagonal matrix, respectively.
In the following, we optimize . H with the fixed . ̂y as

.L (H) = tr
(
(I − D−1/2

v HWD−1
e H�D−1/2

v)K
)

+ λ‖H − H0‖2
2, (10.30)

where .K = (ŷŷ� + α1XX� + α2ZZ�)/(1 + α1 + α2), which is optimized using
the projected gradient method. Optimization can be done by the iterative procedure,
formulated as

.

Hk+1 = P[Hk − hk∇L (Hk)]
∇L (H) = 2λ(H − H0) + J(I ⊗ H�D−1/2

v KD−1/2
v H)WD−2

e

+ D−3/2
v HWD−1

e H�D−1/2
v KJW

− 2D−1/2
v KD−1/2

v HWD−1
e

, (10.31)

where .J = 11�, . hk represents optimization step size of the k-th iteration, and . P
stands for the projection on the set .{H|0 � H � 1}. When the iterative process
converges, the labels of its sub-sequences are aggregated, and the result of prediction
is the category with the highest score after aggregation.

In this section, we demonstrate the use of hypergraph-based approaches in
four computer-aided diagnosis applications, namely MCI identification, medical
image retrieval for MCI diagnostic assistance, COVID-19 identification, and ASD
identification. Hypergraphs are employed in applications to represent high-order
connections among subjects when mining complicated links among patients to
gather knowledge than simply their images. In the future, it could be crucial to
use hypergraphs to investigate few-shot learning approaches and transfer learning
strategies in the domain of medical areas, such as MCI, COVID-19, and ASD.

10.3 Survival Prediction with Histopathological Image

Survival prediction is to model survival duration, which is the period that a patient
is followed up on until a certain event, e.g., cancer recurrence or death. Survival
prediction based on histopathological images is to predict the survival duration or
survival risk to a satisfactory degree using only the patient’s images, to estimate the
severity, or to classify high and low risks, which guides the pathologist to evaluate

10.3 Survival Prediction with Histopathological Image 205

the scenario. Since histopathological images typically include gigapixels, which are
far more detailed than regular natural images, i.e., those in ImageNet [11] or MNIST
[12], the main challenge of this work is how to reliably obtain the patient’s feature
representation for regression prediction analysis. Moreover, the relevant information
for cells and tissues may not be readily extracted as it includes complex relationships
and rich morphological structural content in histopathological images.

To overcome the challenge of the large number of pixels, there exists a technique
[13] that randomly chooses patches in histopathological images with a variety of
cells and without blank. It extracts patch features using a pre-trained CNN network
and calculates survival risk using Lasso-Cox [14] regression. To enhance the patient
representation, low-level patch features produced by a pre-trained CNN-based
feature extractor are optimized by a graph convolutional neural network to construct
the intricate relationship between patches [15]. The power of random patch selection
to cover the details of the initial histopathological image and the lack of mutual
information between patches limit the representation learning capabilities of the
non-graph-based method, whereas the method that uses graph modeling applies
pairwise correlations modeling to make up for the loss of structural information
among cells with similar roles. Nevertheless, reducing complex high-order connec-
tions into pairwise relationships inevitably results in inaccurate modeling, losing
data correlations among cells and tissues that are necessary to predict one’s survival.
Hence, the better solution is to model high-order data-associative representations
employing hypergraph computational approaches to meet the challenges.

The following subsection explains how to use hypergraph computing in survival
prediction based on histopathological images with two parts, namely ranking-based
survival prediction [5] and phenotypic and topological hypergraphs-based survival
prediction [6]. In the first part, a nearest-neighbor-based hypergraph modeling
methodology is introduced, and optimization is achieved using a ranking-based
method. In the second part, the hypergraphs are created in the image space and
merged for prediction.

10.3.1 Ranking-Based Survival Prediction

This part describes the three stages required for executing the ranking-based survival
prediction task via hypergraph representation [5], namely pre-processing before
generating hypergraph, learning hypergraph representation, and survival ranking
prediction, as illustrated in Fig. 10.5. It is worth noting that these three components
are related to the framework of the graph-based survival prediction task in general,
not just the rank-based survival hypergraph framework.

In the pre-processing stage, N patches are randomly chosen from each
histopathological image, and each patch has the same size as a typical natural
image (e.g., .224px × 224px). Directly choosing patches at random from the
original image, however, likely picks up the noisy region as well (e.g., erosion and
blank). Therefore, before randomization, the OTSU algorithm [16] is applied to

206 10 Hypergraph Computation for Medical and Biological Applications

Fig. 10.5 A pipeline of ranking-based survival prediction utilizing hypergraph representation,
including pre-processing, hazarding prediction via hypergraph representation, and ranking-based
survival risk prediction. This figure is from [5]

segregate cell tissue samples with rich information. Next, the foremost patch-level
image optical structure features .X(0) ∈ R

N×F are extracted by a pre-trained deep
neural network from ImageNet [11], where F represents the dimension of each
patch feature. Image features, which are appropriate for the strata of complex tissue
patterns, are included in the raw features that are retrieved from the pre-trained
model and reflect the cells and tissues that are present in the patch.

Following pre-processing to extract feature information at the patch level, the
hypergraph computing approach is used to produce the features representing the
histopathological image level for the subsequent prediction of the survival risk
score. Hypergraphs are created using the distance-based hypergraph generation
method since intuitive cells and tissues with similar morphologies have comparable
functionalities. Each patch is regarded as a vertex, and each vertex is considered
as the center vertex to generate a hyperedge. This results in a total of N nodes
and N hyperedges in the hypergraph reflecting the structural information of
the histopathological image. We build hyperedges using the k nearest neighbor
approach, which connects k vertices with the closest Euclidean distance between
raw features from its center vertex. Therefore, the hypergraph incident matrix . H
is obtained. Beyond pairwise graph structures, hierarchical grouping patterns can
be discovered using a hyperedge structure that creates a channel for the transfer
and integration of information from the k nearest morphological patches. The
information fusion among patch vertex is then accomplished using hypergraph
convolutional layers, as shown below:

.X(l+1) = σ
(
D−1/2

v HWD−1
e H�D−1/2

v X(l)Θ(l)
)
, (10.32)

10.3 Survival Prediction with Histopathological Image 207

where .X(l) ∈ R
N×Cl is the l-th layer convolution input feature with N vertices

and . Cl dimensions, .X(l+1) is the l-th layer convolution output feature, . σ stands
for nonlinear activation function, and the l-th layer’s learnable parameters are
represented by .Θ(l). The output .X(L+1) of the last layer is used to forecast survival
duration after L layers of convolution, where N hyperedges might reflect N patterns
of causal variables. The predicted survival risk score is regressed using a fully
connected neural network after .X(L+1) is squeezed into .X ∈ R

1×CL+1 via the
pooling layer representing patient’s representation. The patient’s actual survival
time t can be used to supervise the backpropagation process of the regression.

Ranking information, which can be used to infer the conditions of nearby
patients, is also significant in regression tasks in addition to the specific survival
duration of every single patient. Moreover, the ranking data accurately portray
patients’ ranks for high and low risks. The prediction of survival ranking is intro-
duced at the final, most significant, and enlightening stage. Pairs of histopathological
images (i.e., pairs of patients) should be taken into consideration since models are
trained on a single image currently, and the inability to distinguish the relative
risks of two similar instances is the most frequent reason for inaccurate patient
risk comparisons. To fine-tune the model parameters and enhance the accuracy
of the model’s forecast ranking, a Bayesian-based method known as Bayesian
Concordance Readjust (BCR) is presented. The BCR loss function, which is
employed in pairwise training of histopathological images, embodies the Bayesian
Concordance Readjust and can be formulated as follows:

.L = − log
(
δ(W · (Xi − Xj))

)
, (10.33)

where . Xi and . Xj stand for the feature representation of patients i and j , respectively,
and . W represents the learnable parameters of regression.

In this subsection, we provide a ranking-based survival prediction method for
predicting a patient’s survival hazard score from a single WSI image. The method
first extracts informative patches from WSI images and then applies a hypergraph to
describe the correlations among patches to create overall features of WSI. Finally,
the method considers relative ranking information among various patients and
achieves greater prediction results.

10.3.2 Phenotypic and Topological Hypergraph Modeling

The hypergraph for mining high-order correlations in the data is essential for
accurately generating feature representation of histopathological images. We can
notice that the previously presented ranking-based survival prediction method only
employs the nearest neighbor generation method when constructing a hypergraph.
This method only fine-tunes image features among patches with similar features and
mines high-order relationships from one single perspective, which tends to leave

208 10 Hypergraph Computation for Medical and Biological Applications

Fig. 10.6 Patch sampling and low-level feature extraction. This figure is from [6]

other informative high-order relationships out. Therefore, here we describe a multi-
hypergraph-based learning method for survival prediction [6], which efficiently
achieves a high-order global representation of the histopathological image by using
a variety of edges correlation modeling in several spaces and a basic hypergraph
convolutional network.

The goal of multi-hypergraph modeling is to uncover topological linkages among
patches in image space and high-order connections among patches in latent feature
space. The random sampling approach previously employed cannot be used since it
is essential to analyze the topological connections of the image space; instead, the
sampling is carried out according to the position of the patch in the original image.
Therefore, the sampling process uses a boundary-to-center strategy (shown in
Fig. 10.6) after the OSTU algorithm [16] filters noisy regions to produce informative
regions of interest. In addition to selecting the border . B1 and the center . C of regions
of interest, patches are chosen based on various distance radios of . 34 , . 12 , and . 14 , i.e.,

. B
3
4 , . B

1
2 , and .B

1
4 in Fig. 10.6 from boundary to the center. Patches with the same

percentage of the distance from the border in the same region of interest and centers
among regions can be taken up as correlating in the image space.

A multi-hypergraph .G = (V ,E) is constructed by joining two sub-hypergraphs,
namely a phenotypic sub-hypergraph .Gphe = (V ,Ephe) created from the latent
feature space and a topological sub-hypergraph .Gtop = (V ,Etop) generated from
image space, i.e., .E = Ephe ∪ Etop, as shown in Fig. 10.7. Based on the
Euclidean distances between extracted patch visual features, as explained in the
previous method, the incident matrix of the phenotypic sub-hypergraph .Hphe is built
using the k nearest neighbor method. In the incident matrix of the topological sub-

10.3 Survival Prediction with Histopathological Image 209

Fig. 10.7 Construction of multi-hypergraph, which contains a phenotypic sub-hypergraph and a
topological sub-hypergraph. This figure is from [6]

hypergraph .Htop, each vertex is linked to its neighbors in the topological space, i.e.,

the centers of all regions of interest, . B
1
4 , . B

1
2 , . B

3
4 , and the boundaries of each region

of interest.
The standard hypergraph neural network is modified to the hypergraph max-

mask convolution with an increased number of hyperedges, which can address the
overfitting issue brought up by a lack of training data. Each layer’s convolutional
process consists of four steps, namely hyperedge feature gathering, max-mask
operation, vertex feature aggregating, and vertex feature re-weighting.

The features of each hyperedge .F (l)
e are gathered during the first step from the

vertices that are directly linked to it, which can be written as a product of . H and
.X(l). The hyperedge features .F (l+1)

e of the convolutional layer are then produced
by performing a max-mask operation on the features excluding . λ dominating
hyperedges. In the final two steps, the output vertex features .F̃ (l+1)

v are obtained
by aggregating the hyperedge features by multiplying matrix .H� and re-weighting
them using a learnable parameter .Θ(l), respectively. Therefore, the whole steps of
each layer of the hypergraph neural network in the framework are formulated as

.

{
X(l+1) = σ

[
((I − L)X(l) + H−1(I − L)X(λ))Θ(l)

]

F (l+1)
e = H−1(I − L)X(l) + X(λ)

, (10.34)

210 10 Hypergraph Computation for Medical and Biological Applications

where .X(λ) stands for an offset matrix containing only the data from the dominant
. λ hyperedges, and .H−1(I − L)X(λ) ensures the computing gradients and adjusting
vertex features have no impact on the top . λ hyperedges.

With two learnable weight vectors, the vertex feature matrix .X(L+1) and the
hyperedge matrix .F (L+1)

e of the final layer are squeezed into feature vectors. The
feature fusion module then merges the two vectors to establish a global feature
representation that represents the entire hypergraph, i.e., the histopathological image
for the regression task.

In this subsection, we introduce a general framework and a ranking-based opti-
mization method for the task of survival prediction using histopathological images.
The survival prediction challenges are then addressed by replacing a single nearest
neighbor modeling algorithm with the multiple hypergraphs modeling method. The
transformer network is a commonly used model of long-term sequential data, while
histopathological images also include a significant quantity of sequential topological
histopathological information, making it conceivable to incorporate transformer
to the survival prediction task. Therefore, in future works, we can attempt to
include transformer into the framework’s feature extraction or the construction of
hypergraphs component.

10.4 Drug Discovery

Predicting drug–target interactions (DTIs) is a critical step in the process of discov-
ering new drugs to treat diseases. Nevertheless, the commonly used biochemical
experimental methods in wet laboratories are always costly and tedious. The
development of drug discovery computational methods, of which machine learning
based methods are one of the most promising, has been prompted by the growing
need for low-cost, effective, and efficient DTI prediction methods. The core idea of
these methods is that similar targets may be linked with similar drugs, and for the
drug the assumption is symmetric. This assumption defacto implies the potential
high-order associations between drugs and targets, especially when considering the
complex heterogeneous biological networks that contain different biological entities
such as proteins.

In the DTI network, one single drug may interact with a group of targets,
which can be generalized as a “one-to-many” pattern. When it comes to the
aforementioned heterogeneous biological networks, the interactions between these
biological entities become more complex, emerging as the “many-to-many” pattern.
The hypergraph structure, which can naturally model high-order correlations owing
to its flexible hyperedge, is suitable for modeling such a complex heterogeneous
biological network. It can conveniently incorporate multiple complex interactions
between different biological entities and further utilize the hypergraph computing
technique to learn the correlations.

10.4 Drug Discovery 211

In this section, we present a heterogeneous hypergraph learning method for
the DTI prediction (HHDTI) task [7]. The overall pipeline of the framework is
illustrated in Fig. 10.8. It takes into consideration different types of interactions
between biological entities (e.g., drug–target, drug–disease, and target–disease
interactions) to facilitate DTI predictions.

(1) Heterogeneous Hypergraph Modeling
The overall procedure for modeling biological networks into a heterogeneous
hypergraph is illustrated in Fig. 10.9. Given a heterogeneous biological network
with different kinds of biological entities and interactions among these entities,
the goal of hypergraph modeling is to characterize the heterogeneous biological
network into a heterogeneous hypergraph .G = (V ,E). Here . V = {V1 ∪ V2 ∪ . . . ∪
Vo} indicates the vertex set, and .E = {E1 ∪E2 ∪ . . .∪Er} is the hyperedge set. o and
r are the number of types for entities and interactions, respectively. Specifically, we
have .Vo = {v1, v2, . . . , vMo} with .Mo vertices and .Er = {e1, e2, . . . , eNr } with . Nr

hyperedges.
In the heterogeneous biological network discussed here, the set of entity types

. O contains drug, target, and disease. The set of interaction types . R includes dr–ta,
ta–dr, dr–di, and ta–di interactions.1 Therefore, o is equal to 3 and r is equal to 4.

Moreover, multiple sub-hypergraphs with one sub-hypergraph corresponding to
one type of correlation on the basis of the overall heterogeneous hypergraph can be
constructed. Therefore, four sub-hypergraphs are acquired in all, i.e., four incidence
matrices, which are denoted as .H ∈ R

M×Nj , j ∈ [1, r] and M is the number of two
types of vertices corresponding to the correlation. Specifically, the four incidence
matrices generated based on . R are defined as .(Hdr−ta,Hta−dr ,Hdr−di ,Hta−di).
Figure 10.10 shows an example of a drug hypergraph.

(2) Drug and Target Embedding Learning
The same framework is used to create the overall embeddings for both drugs
and targets. We now briefly introduce how this framework learns drug and target
embeddings.

The overall embeddings are acquired by combining the main embeddings and
the assisted embeddings. Particularly, the primarily vectorized representations for
all drugs and targets are provided by the main embeddings, which are learned using
direct DTIs. Contrarily, the assisted embeddings offer supplementary information
discovered through disease-relevant data, such as dr–di and ta–di connections.

We first take a drug as an example to demonstrate the learning framework.
The drug’s main embeddings .Φk

d are learned from .Hdr−ta using an unsupervised
Bayesian deep generative model, i.e., hypergraph variational auto-encoder, while the
drug assisted embeddings are generated from .Hdr−di by leveraging the hypergraph
neural networks (HGNN) [17]. For the main embeddings learning, given the DTI
sub-hypergraph structure .Hdr−ta , the Bayesian deep generative model serves as a

1 dr, ta, di are abbreviations of drug, target, and disease, respectively.

212 10 Hypergraph Computation for Medical and Biological Applications

F
ig
. 1

0.
8

A
n

ill
us

tr
at

io
n

of
 th

e
H

H
D

T
I

fr
am

ew
or

k.
 T

hi
s

fig
ur

e
is

 f
ro

m
 [

7]

10.4 Drug Discovery 213

Fig. 10.9 The overall procedure for modeling biological networks into a heterogeneous hyper-
graph. This figure is from [7]

Fig. 10.10 An example of a drug hypergraph. Each vertex on the hypergraph represents a drug,
and each hyperedge connects all the drugs that share the same target

vertex encoder [18] to explore the potential associations between drugs linked with
one target. This method conducts a nonlinear mapping to transform the hypergraph
structure .Hdr−ta from the observed space into the shared space .Φ ′

dr−ta as

.Φ ′
dr−ta = f (Hdr−taWdr−ta + bdr−ta) , (10.35)

where the activation function .f (·) is nonlinear.
The hyperbolic tangent .tanh(x)(exp(x) − exp(−x)/exp(x) + exp(−x) is used

here because of its analytic form and efficiency. Learnable weight and bias are
represented by .Wdr−ta ∈ R

Din ×Dout and the .bdr−ta ∈ R
Dout . .Din and .Dout are

the corresponding dimensions of .Hdr−ta and .Φ ′
dr−ta , respectively. Following the

214 10 Hypergraph Computation for Medical and Biological Applications

acquisition of the .Φ ′
dr−ta , two fully connected layers are used to estimate the mean

and variance:

.μdr−ta = f
(
Φ ′

dr−taW
μ
dr−ta + bμ

dr−ta

)
(10.36)

and

.σ dr−ta = f
(
Φ ′

dr−taW
σ
dr−ta + bσ

dr−ta

)
, (10.37)

where .Wμ
dr−ta , .Wσ

dr−ta ∈ R
Dout ×D and .bμ

dr−ta , .bσ
dr−ta ∈ R

D has been indicated
before. The main embeddings .Φk

d are then sampled by

.Φk
d = μdr−ta + σ dr−ta � ε, (10.38)

where . � is the Hadamard product and .ε ∼ N(0, I).
In this way, the high-order structural correlations from the direct DTIs can be

captured by the major embeddings. In addition to such straightforward interactions,
other types of interactions can also contribute to DTI prediction, which has been
validated by recent studies [19]. For instance, phenotypic side effects can be
determined by how similar they are if these two drugs share a target [20, 21]. It has
been verified in the literature that reported that targets can be used as a connection
between drugs and illnesses [22]. Enlightened by these discoveries, auxiliary data
are integrated into HHDTI, which can provide complementary information so as to
improve prediction accuracy and treat extreme cases such as the cold-start problem
(only a few DTIs can be fetched).

Specifically, the dr–di and ta–di correlations are considered here in HHDTI, and
the embeddings learned from the corresponding dr–di incidence matrices .Hdr−di are
called drug assisted embeddings, which serve as the auxiliary representation for the
drug’s main embeddings. The drug assisted embeddings are learned by the HGNN
model [17], with which the high-order correlations are encoded as

. Convh(H,X | W) = f
((
Dv

)−1/2 H
(
De

)−1 H� (
Dv

)−1/2 XW
)

, (10.39)

where .Dv and .De are the degree matrices of vertex and hyperedge, respectively.
The corresponding degree of vertex and hyperedge are .

(
DV

)

k,k
= ∑L

j=1 H
k,j

and .(De)j,j = ∑N
k=1 H

k,j , respectively. The matrix . W is the learnable weight
parameter, and .(·)� is the transposition operator. Specifically, the convolutional
layer used to learn the drug assisted embedding .Φs

d can be formulated as

.Φ
s(l)
d = Convh

(
Hdr−di ,Φ

s(l−1)
d | W(I−1)

)
, (10.40)

where .Φs(l−1)
d , .Φs(I)

d , and .W(I−1) represent the .(l − 1)-th layer’s input, output, and
trainable weight matrix, respectively. Here, the identity matrix is set as the initial

10.4 Drug Discovery 215

value for . X. That is, we have .Φs(0)
d = X = I. To create the overall embeddings, an

attention module is used to combine the main embeddings and assisted embeddings
into a single shared space. By determining the coefficients . ωi , the bi-embedding
attention fusion process is specifically employed to give various weights to the main
embeddings and assisted embeddings:

.ωi = exp
(
f

(
ΦiWi + bi

) · Pi
)

∑
j∈k,s exp

(
f

(
ΦiWj + bi

) · Pi
) , (10.41)

where .Wi ∈ R
D×D′

, .bi ∈ R
D′

, and .Pi ∈ R
D′×1 are trainable parameters. D and

. D′ are the corresponding dimensions. The overall drug embeddings .ΦS can then be
obtained by

.ΦS
d = ωkΦk

d + ωsΦs
d . (10.42)

The overall embeddings of targets .ΦS
d are generated similarly. The main differ-

ence lies in that here the .Hta−dr and .Hta−di are used as inputs. The target main
embeddings .Φk

t are learned using the same vertex encoder as that of drugs. The
HGNN model is also adopted to yield the target assisted embeddings .Φs

t from the
target–disease association hypergraph. Finally, the embedding attention fusion is
run to achieve the overall target embeddings . ΦS

t .

(3) Drug–Target Interactions Prediction
The likelihood of the drug and the target embeddings is calculated to create the
reconstruction space . A, from which the DTI predictions are generated. That is, we
have

.A = Sigmoid

(

ΦS
d

(
ΦS

t

)�)

, (10.43)

where .Sigmoid(·) is the sigmoid function. We then give the variational lower bound
. L , which is optimized by

. L = Eq

[
log p

(
A | Φs

d ,ΦS
t

)]
− β

(
KL

(
q

(
Φk

d | A
)

‖p
(
Φk

d

))

+KL
[
q

(
Φk

t | A
)

‖p
(
Φk

t

)])
, (10.44)

where .KL[q(·)||p(·)] is the metric from distribution .q(·) to .p(·) in Kullback–
Leibler divergence space. Varying b provides different acquired representations by
changing the amount of learning pressure provided during training. Inspired by the
variational auto-encoder, Gaussian priors . p

(
Φk

d

) = ∏
i p

(
ϕd

i

) = ∏
i N

(
ϕd

i | 0, I
)

and .p
(
Φk

t

) = ∏
j p

(
ϕt

j

)
= ∏

j N
(
ϕt

j | 0, I
)

can be taken into consideration.

Here, .Eq [log p(· | ·)] is the likelihood of reconstruction space . A.

216 10 Hypergraph Computation for Medical and Biological Applications

In this part, we introduce a general hypergraph-based framework for DTI
predictions. It is noted that the introduced framework introduced here is neither
restricted to these types of complex interactions nor the DTI prediction task here;
other types of interactions that may contribute to the DTI prediction task or even
other projects containing complex correlations are also thinkable.

In real-world applications, the annotations for such biomedical data are compu-
tationally expensive and time-consuming. Therefore, self-supervised learning has
received a lot of attention recently since it can mine useful information from the
data in an unsupervised way. Under such circumstances, it is of great significance
to further devise the self-supervised hypergraph computation for DTI predictions.

10.5 Medical Image Segmentation

In the field of medical imaging, hypergraph-based image segmentation methods also
play a crucial role, where there are limitations of traditional multi-atlas segmentation
(MAS) methods in segmenting anatomical structures with poor image contrast. The
hypergraph can be used. The hypergraph can model complex subject-within and
subject-to-atlas image voxel relationships and propagate label on atlas image to
target subject images.

This method is named hierarchical hypergraph patch labeling (HHPL) [8], which
characterizes higher-order associations between context features by constructing
a hypergraph, and transforms hypergraph learning into a hierarchical model. At
the same time, a dynamic label propagation strategy is used to augment reliably
identified labels from subject images to help predict labels.

As shown in Fig. 10.11, pairwise relations and complex higher-order associations
in hyperedges are compared when using the MAS method, where . pi is the subject
image voxel, and .Ri(l) is defined as a 3-D cube of side length l centered on
. pi . Image patches are extracted using the target object image at voxel . pi and
the registration atlas image within the corresponding local neighborhood .Rn,i(l).
Hyperedges can be constructed similarly between the atlas image voxels and target
subject image voxels with the high-level context features from the label probability
map.

10.5 Medical Image Segmentation 217

Fig. 10.11 Comparison of a simple pairwise relationship in the conventional MAS methods and
the complex groupwise relationship in hyperedges (with much richer information). This figure is
from [8]

In particular, the subject vertices under the label and the related atlas vertices
with known labels affect the labels on the target topic vertex. The label propagation
process follows two principles: (1) if vertices are grouped in the same hyperedge,
they have the same anatomical label. (2) The label difference between vertices
with known labels before and after label propagation is to be as small as possible.
Therefore, the objective function of hypergraph learning is defined as follows:

. arg min
f

{
‖y − f‖2

2 + λ · Φ (f,H,W,De,D0)
}

. (10.45)

The first term is the control to minimize the difference between the initialization
label vector . y and the prediction vector . f. The second term is the graph balance term
defined as

.

Φ (f,H,W,De,Dv)

= 1
2

∑
e∈ε

∑
v,v′⊆e

w(e)h(v,e)h(v′,e)
δ(e)

(
f (v)√
d(v)

− f (v′)√
d(v′)

)2 . (10.46)

218 10 Hypergraph Computation for Medical and Biological Applications

We can determine the optimal . ̂f by differentiating the objective function with respect
to . f:

.f̂ = (I + λ(I − Θ))−1y. (10.47)

Having obtained the optimized . ̂f, it is easy to obtain the anatomical labels on the
subject image from the symbolic calculation target of the correlation value

.

{
foreground fi > 0
background fi < 0

, i = 1, 2 . . . |P | . (10.48)

In other words, the segmentation can be repeatedly computed to improve the
performance by: (1) hypergraph construction with high-level context features; (2)
label propagation on hypergraph; and (3) the refinement of context features. The
segmentation results can be found in Fig. 10.12.

10.6 Summary

In this chapter, we introduce three typical applications of hypergraph computa-
tion in medical and biological tasks. In computer-aided diagnosis, three specific
applications are covered, i.e., the identification and medical image retrieval of MCI
and the identification of COVID-19 by CT imaging. These examples show how to
adopt hypergraph computation for the tasks of classification and retrieval in medical
and biological fields. For the survival prediction with histopathological images, the
demonstrated hypergraph computation techniques can also be expanded to similar
regression tasks. The introduced paradigm may also be applied to other cases with
complicated connections. In summary, these examples demonstrate the high-order
correlation between medical and biological data, which are modeled and learned by
hypergraph computation. These indeed can contribute to the corresponding study.
In addition to the aforementioned examples, there are many medical and biological
applications that have the potential to be explored with hypergraph computation,
such as medical image enhancement and multi-modal fusion.

10.6 Summary 219

F
ig
. 1

0.
12

V
is

ua
l c

om
pa

ri
so

n
of

 a
ut

om
at

ic
al

ly
 s

eg
m

en
te

d
re

gi
on

s
by

 f
ou

r
m

et
ho

ds
 o

n
a

ty
pi

ca
l s

ub
je

ct
. T

hi
s

fig
ur

e
is

 f
ro

m
 [

8]

220 10 Hypergraph Computation for Medical and Biological Applications

References

1. Y. Gao, C. Wee, M. Kim, P. Giannakopoulos, M. Montandon, S. Haller, D. Shen, MCI identifi-
cation by joint learning on multiple MRI data, in Proceedings of International Conference on
Medical Image Computing and Computer-Assisted Intervention (2015), pp. 78–85

2. Y. Gao, M. Kim, P. Giannakopoulos, S. Haller, D. Shen, Medical image retrieval using multi-
graph learning for MCI diagnostic assistance, in Proceedings of International Conference on
Medical Image Computing and Computer-Assisted Intervention (2015), pp. 86–93

3. Z. Zhang, J. Liu, B. Li, Y. Gao, Diagnosis of childhood autism using multi-modal functional
connectivity via dynamic hypergraph learning, in Proceedings of CAAI International Confer-
ence on Artificial Intelligence (2021), pp. 123–135

4. D. Di, F. Shi, F. Yan, L. Xia, Z. Mo, Z. Ding, F. Shan, B. Song, S. Li, Y. Wei, Y. Shao, M. Han,
Y. Gao, H. Sui, Y. Gao, D. Shen, Hypergraph learning for identification of COVID-19 with CT
imaging. Med. Image Analy. 68, 101910 (2021)

5. D. Di, S. Li, J. Zhang, Y. Gao, Ranking-based survival prediction on histopathological whole-
slide images, in Proceedings of International Conference on Medical Image Computing and
Computer-Assisted Intervention (2020), pp. 428–438

6. D. Di, C. Zou, Y. Feng, H. Zhou, R. Ji, Q. Dai, Y. Gao, Generating hypergraph-based high-order
representations of whole-slide histopathological images for survival prediction. IEEE Trans.
Pattern Analy. Mach. Intell. 1–16 (2022). https://doi.org/10.1109/TPAMI.2022.3209652

7. D. Ruan, S. Ji, C. Yan, J. Zhu, X. Zhao, Y. Yang, Y. Gao, C. Zou, Q. Dai, Exploring complex
and heterogeneous correlations on hypergraph for the prediction of drug-target interactions.
Patterns 2(12), 100390 (2021)

8. P. Dong, Y. Guo, Y. Gao, P. Liang, Y. Shi, G. Wu, Multi-Atlas segmentation of anatomical
brain structures using hierarchical hypergraph learning. IEEE Trans. Neural Netw. Learn. Syst.
31(8), 3061–3072 (2019)

9. D. Zhou, O. Bousquet, T. Lal, J. Weston, B. Schölkopf, Learning with local and global
consistency. in Proceedings of the Advances in Neural Information Processing Systems, vol.
16 (2003)

10. F. Shan, Y. Gao, J. Wang, W. Shi, N. Shi, M. Han, Z. Xue, D. Shen, Y. Shi, Lung
infection quantification of COVID-19 in CT images with deep learning (2020). Preprint
arXiv:2003.04655

11. D. Jia, W. Dong, R. Socher, L. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image
database, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2009), pp. 248–255

12. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document
recognition. Proc. IEEE. 86, 2278–2324 (1998)

13. X. Zhu, J. Yao, F. Zhu, J. Huang, Wsisa: Making survival prediction from whole slide
histopathological images, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017), pp. 7234–7242

14. T. Robert, The lasso method for variable selection in the cox model. Statist. Med. 16(4), 385–
395 (1997)

15. R. Li, J. Yao, X. Zhu, Y. Li, J. Huang, Graph CNN for survival analysis on whole slide
pathological images, in Proceedings of International Conference on Medical Image Computing
and Computer-Assisted Intervention (2018), pp. 174–182

16. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst Man
Cybern. 9(1), 62–66 (1979)

17. Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in Proceedings of the
AAAI Conference on Artificial Intelligence (2019), pp. 3558–3565

18. D. Kingma, M. Welling, Auto-Encoding variational bayes, in Proceedings of International
Conference on Learning Representations (2014)

https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652

References 221

19. N.S. Madhukar, P.K. Khade, L. Huang, K. Gayvert, G. Galletti, M. Stogniew, J.E. Allen,
P.Giannakakou, O. Elemento, A bayesian machine learning approach for drug target identi-
fication using diverse data types. Nat. Commun. 10(1), 5221 (2019)

20. M. Campillos, M. Kuhn, A.C. Gavin, L.J. Jensen, P. Bork, Drug target identification using
side-effect similarity. Science 321(5886), 263–266 (2008)

21. M. Zhou, Y. Chen, R. Xu, A drug-side effect context-sensitive network approach for drug target
prediction. Bioinformatics 35(12), 2100–2107 (2019)

22. Q. Hu, Z. Deng, W. Tu, X. Yang, Z. Meng, Z. Deng, J. Liu, VNP: interactive visual network
pharmacology of diseases, targets, and drugs. CPT Pharmacometrics Syst. Pharmacol. 3(3),
e105 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 11
Hypergraph Computation for Computer
Vision

Abstract In this chapter, the applications of hypergraph computation in computer
vision are introduced. Computer vision is one of the most widely used areas of
hypergraph computation. The hypergraphs can be constructed by modeling the high-
order relationship among inter- or intra-visual samples, and then computer vision
tasks can be solved by hypergraph computation procedures. More specifically, four
typical applications, including visual classification, 3D object retrieval, and tag-
based social image retrieval, are provided, in which hypergraphs are used to model
high-order relationship among samples and solve visual problems by hypergraph
computation. For example, in social image retrieval, hypergraphs are used to model
the high-order relationship among social images based on both visual and textual
information, which is the high-order modeling of elements within samples.

11.1 Introduction

Hypergraphs have demonstrated excellent performance in modeling high-order
relationship of data and have been applied in several fields. In computer vision, this
property of hypergraphs is also promising for a wide range of works, and many
researches focus on how to use hypergraph modeling to solve visual problems.
On one hand, hypergraphs can be used to model high-order relationship of images
within a class or different classes, and then to conduct the hypergraph-based label
propagation procedures, which is useful for visual classification and retrieval. On
the other hand, the relation can be modeled within the elements in a visual object to
exploit the structural information.

In this chapter, we discuss four typical applications of hypergraph computation
in computer vision, i.e., visual classification [1–6], 3D object retrieval [2, 7–12],
and tag-based social image retrieval [13–17]. In these applications, the vertices
represent the visual objects, and a hypergraph is constructed to formulate the high-
order correlations among all the samples by some metric. In this hypergraph, some
vertices are labeled. The prediction of other vertices can be obtained by the label
propagation procedure. Visual classification and retrieval problems can be solved
by this method. The elements within one sample, such as pixels in an image, can

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_11

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11
https://doi.org/10.1007/978-981-99-0185-2_11

224 11 Hypergraph Computation for Computer Vision

also be used to construct the hypergraphs. The properties with each element can be
learned by conducting hypergraph computation, in which the semantic information
can be learnt during this procedure. Part of the work introduced in this chapter has
been published in [1, 2, 13].

11.2 Visual Classification

Visual classification is the most widely used area of hypergraph in computer vision.
Since visual data have a strong clustering characteristic, i.e., visual objects under
one label show a clustered distribution in the feature space, this property is fully
consistent with the hypothesis of hypergraph-based semi-supervised learning, and
therefore, hypergraph-based semi-supervised learning is theoretically well-suited
for image classification. A large number of researches have demonstrated its good
performance [1, 2]. While there are many applications of hypergraph computation
for image classification, they almost follow the same process. It starts out with
hypergraph modeling of visual data. After extracting features by some feature
extractors, the hypergraph is modeled based on the nearest neighbor relationship of
visual features in the Euclidean space, and then label propagation on the hypergraph
is adopted to achieve classification. We use the example of multi-view 3D object
classification to introduce the process in detail.

First, view-based 3D object classification needs to be introduced. Each 3D object
can be represented by a set of views. Compared with the model representation
method, the multi-view representation method is more flexible, with less com-
putational overhead. It also has good representation capability. Classification of
3D objects is illustrated in Fig. 11.1. After obtaining the multi-view 3D object
data, the first step is to extract the features. There are many feature extraction

Fig. 11.1 An illustration of the view-based 3D object classification framework. This figure is from
[1]

11.2 Visual Classification 225

methods for multi-view 3D objects, such as MVCNN [18], Zernike moments,
etc. After obtaining the features of each group of views and each image in
them, hyperedges can be constructed by k-NN with Euclidean distance as the
metric. In fact, if several different features are used, multiple hypergraphs can be
constructed, i.e., each hypergraph is constructed based on one feature. If m features
are used, m hypergraphs can be generated, denoted by . G1 = (V1,E1,W1),G2 =
(V2,E2,W2), . . . ,Gm = (Vm,Em,Wm). After obtaining multiple hypergraphs, a
weight .ωi, i = 1, . . . , m is assigned to each hypergraph . Gi , which constitutes a
weight vector . ω. Up to this point, we obtain m hypergraphs with weights from the
multi-view 3D dataset.

Transductive Hypergraph Computation
After getting multiple hypergraphs, we can get the label of each vertex by the
formula of hypergraph-based semi-supervised learning. The pipeline is shown in
Fig. 11.2a. Note that since we are using multi-modal data, the contribution of
different modalities to the classification may be different, such that we also have

Fig. 11.2 The general frameworks of transductive and inductive multi-hypergraph computation
algorithms. (a) tMHL: transductive multi-hypergraph computation. (b) iMHL: inductive multi-
hypergraph computation. This figure is from [1]

226 11 Hypergraph Computation for Computer Vision

to take into account the influence of different modal weights when calculating the
classification results and updating the weights during the computing process. The
method of weight updating is described in the next section, and the focus here is to
establish the idea of hypergraph processing of multi-modal features.

Inductive Hypergraph Computation
In real-world visual classification endeavors, transductive hypergraph computation
can only be updated globally, and the high time complexity can hardly meet
efficiency requirements of visual classification. To help solve this problem, inductive
hypergraph computation is introduced, which can learn both projections of data to
labels and weight vectors of multiple hypergraphs. It can also achieve real-time
inference performance for newly added data, as shown in Fig. 11.2b. It is described
in the following.

In inductive hypergraph computation, a projection matrix . M is learned, and the
prediction for the unlabeled data is computed by . M.

The objective function for learning . M is illustrated as

. argmin
M

{
Ω (M) + λRemp (M) + μΦ (M)

}
. (11.1)

Under the assumption that it is more likely that the vertices connected with one or
more hyperedges have the same label, the hypergraph Laplacian regularizer . Ω(M)

is defined as follows, and it is in quadratic form of . M:

.

Ω (M) =1

2

c∑

k=1

∑

e∈E

∑

u,v∈V

W (e)H (u, e)H (v, e)

δ(e)
ϑ

=tr
(
M�XΔX�M

)
,

(11.2)

where .ϑ =
(
X�M(u,k)√

d(u)
− X�M(v,k)√

d(v)

)2
. It can be noted that .Ω(M) is in quadratic

form of . M. The empirical loss term .Remp(M) is defined as

.Remp (M) = ||X�M − Y||2. (11.3)

.Φ(M) is an . l2,1 norm regularizer. It is used to avoid overfitting for . M. Meanwhile,
it makes the rows in the matrix more sparse to be informative. It is defined as

.Φ(M) = ||M||2,1. (11.4)

The objective function of inductive hypergraph computation task can be written
as

. argmin
M

{
tr

(
M�XΔX�M

)
+ λ||X�M − Y||2 + μ||M||2,1

}
. (11.5)

11.3 3D Object Retrieval 227

Note that the regularizer .Φ(M) is convex and non-smooth. Therefore, the
objective function can be relaxed to the following:

. argmin
M,U

{
tr

(
M�XΔX�M

)
+λ||X�M−Y||2+μtr

(
M�UM

)}
, (11.6)

where . U is a diagonal matrix, and its elements are defined as

.Ui,i = 1

2||M (i, :) ||22
, i = 1, . . ., d. (11.7)

To solve this optimization problem, . U is set as an identity matrix first, and
the iteratively reweighted least squares method is adopted. More specifically, each
variable is updated alternately with the other fixed until convergence is achieved.
First, . U is fixed, and we derive objection with respect to . M. The closed-form
solution is

.M = λ
(
XΔX� + λXX� + μU

)−1
XY. (11.8)

Then . M is fixed, while . U is updated by Eq. (11.7). The procedure is repeated
until both . U and . M converge.

Given a testing sample . xt , the prediction of . xt can be obtained by

.C(xt) = argmax
k

xt�M. (11.9)

Hypergraph computation can achieve good results in visual classification prob-
lems, where inductive hypergraph computation can achieve real-time online classi-
fication while maintaining good classification performance.

11.3 3D Object Retrieval

3D object retrieval targets on finding similar 3D objects in the database, given
a 3D query. Usually, each 3D object can be described by several different types
of data, such as multiple views, point clouds, mesh, or voxel. The main task of
3D object retrieval is to define an appropriate measure to calculate the similarity
between each pair of 3D objects. Therefore, how to define such measures is the key
for 3D object retrieval. Traditional methods mainly focus on either representation
learning for each type of data or the distance metric for specific features. It is
noted that the correlations among 3D objects are very complex, where the pair
correlations and beyond-pair correlation both exist. To achieve better 3D object
retrieval performance, it is important to take such high-order correlation among 3D
objects into consideration. In this retrieval task, each vertex denotes a 3D object in

228 11 Hypergraph Computation for Computer Vision

Fig. 11.3 An illustration of the hypergraph computation method for 3D object retrieval using
multiple views. This figure is from [2]

the database, and thus the number of vertices is equivalent to the number of objects
in the database.

Hypergraph can be used for such correlation modeling in 3D object retrieval. We
introduce the hypergraph computation method [2] for 3D object retrieval here, and
the framework is shown in Fig. 11.3. First a group of hypergraphs can be generated,
and the learning process is conducted for similarity measurement.

We take the multi-view representation as an example. All views of these 3D
objects are first grouped into clusters. Objects with views in one cluster are then
connected by hyperedges (note that a hyperedge can connect multiple vertices in a
hypergraph). As a result, a hypergraph can be generated, in which vertices represent
objects in a database. A hyperedge’s weight is determined by the visual similarity
between any two views in a cluster. Multiple hypergraphs can be generated by
varying the number of clusters. These hypergraphs encode the relationships between
objects at various granularities. When two 3D objects are connected by more and
stronger hyperedges, they are with higher similarity. Then, these information can be
used for 3D object retrieval.

To generate a 3D object hypergraph, each object is as a vertex in the hypergraph
.G = (V ,E ,W). The generated hypergraph has n vertices if there are n objects in a
database. Each view for these 3D objects can be represented by pre-defined features,
which can be different with respect to various of tasks. Given these features, the K-
means clustering method can be used to group visual objects into clusters. Each
object in a cluster has a corresponding hyperedge connecting them. There are two
diagonal matrices . Dv and . De that represent the vertex and hyperedge degrees,

11.3 3D Object Retrieval 229

Fig. 11.4 An illustration of the hypergraph construction for 3D object hypergraph. (a) Views of
different visual objects. (b) Hyperedges construction by view clusters. This figure is from [2]

respectively, and an incidence matrix . H is generated. The weight of a hyperedge
e can be measured by

.w(e) =
∑

xa,xb∈e

exp

(
−d(xa, xb)

2

σ 2

)
, (11.10)

where .d(xa, xb) is the distance between . xa and . xb, which are two views in the
same view cluster. .d(xa, xb) can be calculated using the Euclidean distance. The
parameter . σ is empirically set to the median distance between all pairs of these
views. The hypergraph generation procedure is shown in Fig. 11.4.

Let .G1 = (V1,E1,W1), .G2 = (V2,E2,W2), . · · · , and . Gng = (Vng ,Eng ,Wng)

denote . ng hypergraphs, and .{Dv1,Dv2 , . . . ,Dvng }, and .{De1,De2 , . . . ,Deng }, and
.{H1,H2, . . . ,Hng } be the vertex degree matrices, hyperedge degree matrices, and
incidence matrices, respectively. The retrieval results are based on the fusion of these
hypergraphs. The weight of the i-th hypergraph is denoted by . αi , where .

∑ng

i=1 αi =
1, and .αi ≤ 0.

It is possible to consider retrieval as a one-class classification problem [19]. As a
result, we formulate the transductive inference in terms of a regularization problem:
.arg minf .{λRemp(f)} + Ω(f), and the regularizer term .Ω(f) is defined by

.
1

2

ng∑

i=1

αi

∑

e∈Ei

∑

u,v∈Vi

wi(e)Hi (u, e)Hi (v, e)

σi(e)
×

(
f(u)√
di(u)

− f(v)√
di(v)

)2

, (11.11)

where vector . f represents the relevance score to be learned.
In this way, the similarity between each object and the query can be calculated

based on the relevance score. It is noted that the feature used in this method can
be selected based on the task itself, and multiple types of representations can also
be used here. Given multiple features for the same data, or different features for
multi-modal data, we can generate the hypergraph(s) using the method introduced
in Chap. 4.

230 11 Hypergraph Computation for Computer Vision

11.4 Tag-Based Social Image Retrieval

User-generated tags are widely associated with the social images, which describe
the content of the images. These tags are useful for the social image retrieval tasks
benefited from the rich contents. Figure 11.5 shows some examples of social images
associated with tags.

The main challenge of applying such tags to social image retrieval is that too
much noise makes it hard to mine the true relation among the tags and images,
and the separation usage of the tags and images leads to a sub-optimal for image
retrieval. In this section, we introduce a visual–textual joint relevance learning
approach using hypergraph computation [13]. Figure 11.6 shows the illustration
of the visual–textual joint relevance learning method on hypergraph for tag-based
social image retrieval. In this method, the features for both the images and the tags
are first extracted, and the hypergraph is constructed based on these features. Then,
the hypergraph learning method is performed, and the learned semantic similarity
can be used for tag-based social image retrieval.

In this example, the bag-of-visual-words feature is selected for image represen-
tation. For the i-th image, the visual content is represented by bag-of-visual-words
.f bow

i , while for the corresponding tags, the bag-of-textual words representation
.f

tag
i is employed. Then, the visual-content-based hyperedges and the tag-based

hyperedges are constructed, respectively. The visual-content-based hyperedges
connect the images that have the same visual word, and the tag-based hyperedges
connect the images that have the same tag word. Figure 11.7 provides the examples
of hyperedge generation process using textual information and visual information,
respectively. Therefore, the overall hypergraph has .ne = nc +nt hyperedges, where
. nc denotes the number of visual words, and . nt denotes the number of tag words.
After the construction of the hypergraph, the images sharing more visual words or
tags are connected by more hyperedges, which can be used for further processing.
Figure 11.8 further shows the connections between two social images, based on the
textual and the visual information, respectively.

Fig. 11.5 Some social image examples with associated with tags. This figure is from [13]

11.4 Tag-Based Social Image Retrieval 231

F
ig
. 1

1.
6

T
he
 f
ra
m
ew

or
k
of
 th

e
vi
su
al
–t
ex
tu
al
 jo

in
t r
el
ev
an
ce
 le
ar
ni
ng
 m

et
ho
d
on
 h
yp
er
gr
ap
h
fo
r
ta
g-
ba
se
d
so
ci
al
 im

ag
e
re
tr
ie
va
l.
T
hi
s
fig

ur
e
is
 f
ro
m
 [
13

]

232 11 Hypergraph Computation for Computer Vision

F
ig
. 1

1.
7

Tw
o
ex
am

pl
es
 o
f
hy
pe
re
dg
e
ge
ne
ra
tio

n.
 (
a)
 s
ho
w
s
hy
pe
re
dg
es
 b
as
ed
 o
n
th
e
te
xt
ua
l
in
fo
rm

at
io
n,
 i
n
w
hi
ch
 t
he
 s
oc
ia
l
im

ag
es
 w

ith
 t
he
 s
am

e
te
xt
ua
l

w
or
ds
 a
re
 c
on
ne
ct
ed
 b
y
a
hy
pe
re
dg
e.
 (
b)
 s
ho
w
s
hy
pe
re
dg
es
 b
as
ed
 o
n
th
e
vi
su
al
 i
nf
or
m
at
io
n,
 i
n
w
hi
ch
 t
he
 s
oc
ia
l
im

ag
es
 w

ith
 t
he
 s
am

e
vi
su
al
 w

or
ds
 a
re

co
nn
ec
te
d
by
 a
 h
yp
er
ed
ge
. T

hi
s
fig

ur
e
is
 f
ro
m
 [
13

]

11.4 Tag-Based Social Image Retrieval 233

Fig. 11.8 An example of connections between two images from textual and visual directions. This
figure is from [13]

Denoting . f as the relevance score vector, . y as the ground truth relevance, and . w
is the weight vector of hyperedges, the hypergraph computation can be formulated
as

.

argmin
f,w

Φ(f) = argmin
f

{

f�Δf + λ||f − y||2 + μ

ne∑

i=1

w(i)2

}

,

s.t.

ne∑

i=1

w(i) = 1,

(11.12)

where . λ and . μ are the weighted parameters. The first term in Eq. (11.12) is the regu-
larizer on the hypergraph structure, which is used to guarantee the smoothness over
the hypergraph. The second term is the empirical loss between the relevance score
vector and the ground truth. The last term represents the . �2 norm of the hyperedge
weights, which is used to learn better combination of different hyperedges. This
optimization task can be easily solved using alternating optimization. First, . w is
fixed, and f is optimized by

. argmin
f

Φ(f) = argmin
f

{
f�Δf + λ||f − y||2

}
, (11.13)

from which we can have

.f = 1

1 − ξ
(I − ξΘ)−1y, (11.14)

where .ξ = 1
1+λ

, .Θ = I − Δ.

234 11 Hypergraph Computation for Computer Vision

Then, . f is fixed, and . w is optimized by

.

argmin
w

Φ(f) = argmin
f

{

f�Δf + μ

ne∑

i=1

w(i)2

}

.

s.t.

ne∑

i=1

w(i) = 1, μ > 0.

(11.15)

The Lagrangian can be applied here, and we have

.w(i) = 1

ne

− f�ΓD−1
e Γ �f

2neμ
+ f�ΓiD−1

e (i, i)Γ �
i f

2μ
, (11.16)

where .Γ = D
− 1

2
v H and . Γi represents the i-th column of . Γ .

The semantic relevance between an image . xi and the query tag . tq is estimated by

.s(xi, tq) = 1

ni

∑

t

stag(tq , t), (11.17)

which denotes the average similarity between . tq and all corresponding tags of . xi ,
and .stag can be calculated as

.stag(t1, t2) = e−FD(t1,t2), (11.18)

where FD represents the Flickr distance [20].
Given these similarities between each image and the query tag, we can have the

retrieval results accordingly. We also note that the features used in this application
can be changed with respect to the requirement of different tasks.

11.5 Summary

In this chapter, we have introduced the applications of hypergraph computation on
computer vision, including visual classification, 3D object retrieval, and tag-based
social image retrieval. For classification and retrieval tasks, hypergraphs can be
used to model the high-order relationships among samples in the feature space and
solve the problem by hypergraph-based label propagation methods. The success of
hypergraphs for computer vision is due to the fact that the feature correlations of
visual data are more complex that are hard to be explored by pairwise correlation
methods. Hypergraph computation can be further used in other computer vision
tasks, such as visual registration, visual segmentation, gaze estimation, etc.

References 235

References

1. Z. Zhang, H. Lin, X. Zhao, R. Ji, Y. Gao, Inductive multi-hypergraph learning and its
application on view-based 3D object classification. IEEE Trans. Image Process. 27(12), 5957—
5968 (2018)

2. Y. Gao, M. Wang, D. Tao, R. Ji, Q. Dai, 3-D object retrieval and recognition with hypergraph
analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

3. J. Yu, D. Tao, M. Wang, Adaptive hypergraph learning and its application in image classifica-
tion. IEEE Trans. Image Process. 21(7), 3262–3272 (2012)

4. D. Di, C. Zou, Y. Feng, H. Zhou, R. Ji, Q. Dai, Y. Gao, Generating hypergraph-based high-order
representations of whole-slide histopathological images for survival prediction. IEEE Trans.
Pattern Analy. Mach. Intell. 1–16 (2022). https://doi.org/10.1109/TPAMI.2022.3209652

5. D. Di, S. Li, J. Zhang, Y. Gao, Ranking-based survival prediction on histopathological whole-
slide images, in Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention, (2020), pp. 428–438

6. D. Di, J. Zhang, F. Lei, Q. Tian, Y. Gao, Big-hypergraph factorization neural network for
survival prediction from whole slide image. IEEE Trans. Image Process. 31, 1149–1160 (2022)

7. J. Bai, B. Gong, Y. Zhao, F. Lei, C. Yan, Y. Gao, Multi-scale representation learning on
hypergraph for 3D shape retrieval and recognition. IEEE Trans. Image Process. 30, 5327–5338
(2021)

8. G.Y. An, Y. Huo, S.E. Yoon, Hypergraph propagation and community selection for objects
retrieval, in Proceedings of the Advances in Neural Information Processing Systems, (2021),
pp. 3596–3608

9. D. Pedronette, L. Valem, J. Almeida, R. Torres, Multimedia retrieval through unsupervised
hypergraph-based manifold ranking. IEEE Trans. Image Process. 28(12), 5824–5838 (2019)

10. L. Nong, J. Wang, J. Lin, H. Qiu, L. Zheng, W. Zhang, Hypergraph wavelet neural networks
for 3D object classification. Neurocomputing. 463, 580–595 (2021)

11. S. Bai, X. Bai, Q. Tian, L.J. Latecki, Regularized diffusion process on bidirectional context for
object retrieval. IEEE Trans. Pattern Analy. Mach. Intell. 41(5), 1213–1226 (2019)

12. F. Chen, B. Li, L. Li, 3D object retrieval with graph-based collaborative feature learning. J.
Visual Commun. Image Represen. 28, 261–268 (2019)

13. Y. Gao, M. Wang, Z. Zha, J. Shen, X. Li, X. Wu, Visual-textual joint relevance learning for
tag-based social image search. IEEE Trans. Image Process. 22(1), 363–376 (2013)

14. Y. Wang, L. Zhu, X. Qian, J. Han, Joint hypergraph learning for tag-based image retrieval.
IEEE Trans. Image Process. 27(9), 4437–4451 (2018)

15. L. Chen, Y. Gao, Y. Zhang, S, Wang, B. Zheng, Scalable hypergraph-based image retrieval
and tagging system, in Proceedings of the 34th IEEE International Conference on Data
Engineering (2018), pp. 257–268

16. N. Bouhlel, G. Feki, C.B. Amar, Visual re-ranking via adaptive collaborative hypergraph
learning for image retrieval, in Proceedings of the Advances in Information Retrieval - 42nd
European Conference on IR Research (2020), pp. 511–526

17. Y. Chu, C. Feng, C. Guo, Social-guided representation learning for images via deep heteroge-
neous hypergraph embedding, in Proceedings of the 2018 IEEE International Conference on
Multimedia and Expo (2018), pp. 1–6

18. H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks
for 3d shape recognition, in Proceedings of the IEEE International Conference on Computer
Vision (2015), pp. 945–953

19. Y. Huang, Q. Liu, S. Zhang, D. Metaxas, Image retrieval via probabilistic hypergraph ranking,
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2010),
pp. 3376–3383

20. L. Wu, X. Hua, N. Yu, W. Ma, S. Li, Flickr distance: a relationship measure for visual concepts,
IEEE Transa. Pattern Analy. Mach. Intell. 34(5), 863–875 (2012)

https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652
https://doi.org/10.1109/TPAMI.2022.3209652

236 11 Hypergraph Computation for Computer Vision

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 12
The DeepHypergraph Library

Abstract This chapter introduces the DeepHypergraph library, which bridges the
hypergraph theory and hypergraph applications. This library provides the generation
of multiple low-order structures (such as graph and directed graph), high-order
structures (such as hypergraph and directed hypergraph), datasets, operations,
learning methods, visualizations, etc. We first introduce the design motivation and
the overall architecture of the library. Then, we introduce the “correlation structure”
and “function library” of the Deephypergraph library, respectively.

12.1 Introduction

We have designed DeepHypergraph (DHG),1 a deep learning library built upon
PyTorch2 for hypergraph computation. It is a general framework that supports both
low-order and high-order message passing such as from vertex to vertex, from
vertex in one domain to vertex in another domain, from vertex to hyperedge, from
hyperedge to vertex, and from vertex set to vertex set. It supports the generation
of a wide variety of structures such as low-order structures (graph, directed graph,
bipartite graph, etc.) and high-order structures (hypergraph, etc.). Various spectral-
based operations (such as Laplacian-based smoothing) and spatial-based operations
(such as message passing from domain to domain) are integrated inside different
structures. It also provides multiple common metrics for performance evaluation
on different tasks. A group of state-of-the-art models has also been implemented
and can be easily used for research. We also provide several visualization tools for
demonstration of both low-order structures and high-order structures. Besides, the
dhg.experiments module (that implements Auto-ML upon Optuna3) can automati-
cally tune the hyperparameters of the models in training and return the model with

1 deephypergraph.org.
2 http://pytorch.org/.
3 https://optuna.org/.

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_12

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 12&domain=pdf
http://deephypergraph.org
http://pytorch.org/
http://pytorch.org/
http://pytorch.org/
https://optuna.org/
https://optuna.org/
https://optuna.org/
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12
https://doi.org/10.1007/978-981-99-0185-2_12

238 12 The DeepHypergraph Library

the best performance. In this chapter, we first introduce the correlation structures in
DHG and then introduce the function library in DHG.

12.2 The Correlation Structures in DHG

The core motivation of designing the DHG library is to attach the spectral-based
and spatial-based operations to each specified structure. When a structure has been
created, these related Laplacian matrices and message passing operations with
different aggregation functions can be called and combined to manipulate different
input features. Figure 12.1 illustrates the architecture of the “correlation structure”
in DHG. Currently, the implemented correlation structures of DHG include graph,
directed graph, bipartite graph, and hypergraph. For each correlation structure,
DHG has developed the corresponding basic operations, such as construction and
structure modification functions, related structure transformation functions, and
learning functions.

The most computation process on those correlation structures (graph, hyper-
graph, etc.) can be divided into two categories: spectral-based convolution and
spatial-based message passing. The spectral-based convolution methods, such as
typical GCN [1] and HGNN [2], learn a Laplacian matrix for a given structure and
perform vertex feature smoothing with the generated Laplacian matrix to embed
low-order and high-order structures to vertex features. The spatial-based message
passing methods, such as typical GraphSAGE [3], GAT [4], and HGNN+ [5],

Fig. 12.1 The architecture of the “correlation structures” in DHG

12.3 The Function Library in DHG 239

perform vertex to vertex, vertex to hyperedge, hyperedge to vertex, and vertex set
to vertex set message passing to embed the low-order and high-order structures
to vertex features. The learned vertex features can also be pooled to generate the
unified structure feature. Finally, the learned vertex features or structure features
can be fed into many downstream tasks, such as classification, retrieval, regression,
and link prediction, and applications including paper classification, movie recom-
mender, drug exploitation, etc.

12.3 The Function Library in DHG

To facilitate the complex and repetition codes of learning on correlation structures,
DHG further provides the function library. As shown in Fig. 12.2, the function
library includes five parts: data module, metric module, visualization module, auto-
ML module, and structure generators module.

In the data module, DHG integrates more than 20 public graph/bipartite
graph/hypergraph datasets and some commonly used pre-process function such
as File Loader and Normalization. By default, DHG can automatically download
the integrated datasets and check the integrity of the downloaded files. You can
also manually construct your own dataset of DHG style with the existing Datapipe
functions in DHG.

Fig. 12.2 The architecture of the “function library” in DHG

240 12 The DeepHypergraph Library

In the metric module, DHG has provided many widely used metrics such as
Accuracy, Recall, and mAP for different tasks. Some encapsulation evaluators for
different tasks such as classification, retrieval, and recommendation have also been
implemented. Besides, DHG provides the structure and feature visualization func-
tions, automatic hyperparameters search function, and random structure generation
functions for different applications.

12.4 Summary

In this chapter, we introduce the DHG library for hypergraph computation. It
simultaneously supports the generation and learning on low-order structures and
high-order structures. Besides, many commonly used functions have also been
integrated in the library.

References

1. T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in
Proceedings of the International Conference on Learning Representations (2016)

2. Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in Proceedings of the
AAAI Conference on Artificial Intelligence (2019), pp. 3558–3565

3. W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in
Proceedings of the Advances in Neural Information Processing Systems, vol. 30 (2017)

4. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, (2017). Graph attention
networks, in Proceedings of the International Conference on Learning Representations (2018)

5. Y. Gao, Y. Feng, S. Ji, R. Ji, HGNN+: General hypergraph neural networks. IEEE Trans. Pattern
Analy. Mach. Intell. 45(3), 3181–3199 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 13
Conclusions and Future Work

13.1 Summary of This Book

Hypergraph computation has attracted much attention and shown apparent advan-
tages in many application fields, such as computer vision, social networks, and
biomedicine. In this book, we systematically introduce the basic knowledge,
algorithms, and applications of hypergraph computation in three parts and discuss
some recent progress in this direction.

In the first part, we mainly introduce the basic knowledge and main concepts
of hypergraphs, including the definitions and symbols of common terms and
the classification of hypergraphs. More importantly, we discuss the differences
between hypergraphs and graphs from several aspects. Following, we introduce
three hypergraph computation paradigms, namely, intra-hypergraph computation,
inter-hypergraph computation, and hypergraph structure computation. In this part,
we can have a general view of the different objectives in hypergraph computation.

In the second part, we specifically introduce a series of algorithms from hyper-
graph modeling to hypergraph neural networks. In hypergraph modeling sections,
we show how to build a hypergraph structure from the collected data. As a typical
and fundamental learning framework, label propagation on hypergraph describes
how to derive the labels for unknown data from the labels for known data on the
structure of a hypergraph. Other typical hypergraph computation tasks, including
data clustering, cost-sensitive learning, and link prediction, are also introduced.
Regarding the potential inaccurate hypergraph structure, we present the hypergraph
structure evolution methods, which optimize the hypergraph structure on the
basis of the initial structure. We further introduce the hypergraph neural network,
which integrates the neural network framework into the hypergraph computation
framework. The large scale hypergraph chapter discusses how to deal with large
scale data for classification and clustering applications.

In the third part, we introduce practical examples of hypergraph computation
in social media analysis, medical and biological applications, and computer vision,

© The Author(s) 2023
Q. Dai, Y. Gao, Hypergraph Computation, Artificial Intelligence: Foundations,
Theory, and Algorithms, https://doi.org/10.1007/978-981-99-0185-2_13

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0185-2protect T1	extunderscore 13&domain=pdf
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13
https://doi.org/10.1007/978-981-99-0185-2_13

242 13 Conclusions and Future Work

including specific tasks such as recommender system, sentiment analysis, computer-
aided diagnosis, and image classification. In these examples, we show how to use
hypergraph for high-order correlation modeling and select computation paradigms
for different objectives. We further introduce the DeepHypergraph library for
hypergraph computation.

13.2 Future Work

Although there have been many efforts to promote the development of hypergraph
computation, there are still many open issues that need deep exploration, for
instance, the mathematical foundations of hypergraph computation, the inter-
pretability issues, and the temporal hypergraph modeling:

1. At present, the theory of hypergraph modeling and optimization is still far
from completeness. As a flexible modeling method for high-order complex
correlations, the hypergraph’s main components, i.e., the number and degree of
hyperedges on hypergraph, are not fixed, and how to measure the complexity of
hypergraph structure is a problem worth further exploring. Previous investigation
has shown superior performance of hypergraph computation in various applica-
tions, while the fundamental reason for this improvement and how much gain
we can have from such high-order correlation modeling are still without a clear
answer. In many tasks such as hypergraph matching, it is necessary to define
the metrics in the hypergraph space. However, the problem is computationally
expensive when the scale of hypergraph is very large. Therefore, efficient
hypergraph matching and other algorithms are in immediate need. Existing
hypergraph modeling methods still lack an evaluation of the quality of high-order
correlation modeling and therefore lack credibility. It is needed to further explore
the relationship between task complexity and structural complexity considering
both the input data and the downstream tasks. It is expected that the hypergraphs
can be generated according to the complexity of specific tasks and data, so as to
achieve more reliable hypergraph modeling and optimization performance.

2. Interpretability is also an important research area of neural network models, and
its purpose is to complete the explanation of black-box models through tech-
niques such as feature masking and visualization. Since the hypergraph structure
provides additional topological information, it brings out new opportunities to
interpretability of hypergraph neural networks. Although there has been some
work on the explanation problems of deep graph models in recent years, it
is still in the infant stage. Interpretability of deep hypergraph model could be
a potential road toward better deep neural network interpretability. There are
two feasible paths to explanation techniques for hypergraph neural networks:
instance-level explanation methods and model-level explanation methods. For
example, it is possible to use different mask generation algorithms to obtain
masks corresponding to vertices, edges, or the incidence matrix and then apply

13.2 Future Work 243

the masks as disturbances to cover the original structure information to study
the effects of different disturbances to the original structure. In addition, for
hypergraphs in biochemistry, neurobiology, ecology, and engineering, of which
the structure is highly correlated with their functions, how to combine domain
knowledge to improve model interpretability is also an important issue. Finally,
for text or image data, humans can easily understand the semantic information.
However, it is difficult to intuitively understand the information of hypergraph
structure. How to visualize the high-order complex correlations for intuitive
understanding remains a challenge.

3. The combination of the temporal sequences and the hypergraph neural networks
is also worth exploring. Recent research mainly focuses on static data and
static hypergraph, where the data and the structure are kept fixed. However, in
real-world applications, data may vary over time, which is called the temporal
sequence, as well as the topology among the data. Therefore, the temporal
information should be considered, and the temporal hypergraph neural networks
aim to combine the temporal and spatial information. According to the variation
of the data and the structure, there exist two main scenarios:

• Time sequence data with static structure. This is a common scenario in the
field of traffic forecasting, action recognition, and anomaly detection.

• Time sequence data with evolving structure. This scenario mostly appears in
the field of stock prediction and video relation detection.

Under the above application circumstances, temporal hypergraph modeling is
worth study. There are multiple challenges for the tasks mentioned above. For the
sensor data, different types of the data are raised by different types of the sensors,
while the typical hypergraph neural networks treat the data of the vertices equally.
Both temporal and spatial high-order relationships vary over time, which makes
the message passing procedure complex. New vertices/hyperedges emerge, and
old vertices/hyperedges dissolve during the variation of the structure, which
makes it complex to continuously model the varying correlation and aggregate
the messages. The vertices/hyperedges may even be completely different at
different time steps, which makes the representation-based method questionable.
In order to model the temporal information, the vertex representations should
be dynamic, and therefore, the representation should be learned on a functional
space, rather than on the common vector space. The temporal information
from both the vertex representation and the structure topology defies extraction.
Considering these challenges, the temporal hypergraph still has a long way to go
and needs further exploration.

Besides the above research directions, there are also several other interesting top-
ics, such as big hypergraph model, hypergraph database, and distributed hypergraph,
which have not been introduced in detail in this book and deserved further study.

244 13 Conclusions and Future Work

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Preface
	Book Organization
	Prerequisites
	Contact Information

	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	1.1 Background
	1.2 The Definition of Hypergraph
	1.3 Applications of Hypergraph
	1.4 The History of Studies on Hypergraph
	1.4.1 Topology and Coloring on Hypergraph
	1.4.2 Hypergraph Partitioning, Clustering, and Machine Learning
	1.4.3 Deep Learning on Hypergraph

	1.5 Hypergraph Computation: Challenges and Objectives
	1.6 Structure of This Book
	1.7 Summary
	References

	2 Mathematical Foundations of Hypergraph
	2.1 Introduction
	2.2 Preliminary Knowledge of Hypergraph
	2.2.1 Undirected Hypergraph
	2.2.2 Directed Hypergraph
	2.2.3 Probabilistic Hypergraph
	2.2.4 K-Uniform Hypergraph
	2.2.5 Hypergraph and Bipartite Graph
	2.2.6 The Weights on Hypergraph

	2.3 Comparison Between Graph and Hypergraph
	2.3.1 Low-Order Versus High-Order Correlations
	2.3.2 Adjacency Matrix Versus Incidence Matrix
	2.3.3 Structure Transformation from Hypergraph to Graph
	2.3.4 Random Walks on Graph and Hypergraph

	2.4 Summary
	References

	3 Hypergraph Computation Paradigms
	3.1 Introduction
	3.2 Intra-hypergraph Computation
	3.3 Inter-hypergraph Computation
	3.4 Hypergraph Structure Computation
	3.5 Summary
	References

	4 Hypergraph Modeling
	4.1 Introduction
	4.2 Implicit Hypergraph Modeling
	4.2.1 Distance-Based Hypergraph Generation
	4.2.2 Representation-Based Hypergraph Generation

	4.3 Explicit Hypergraph Modeling
	4.3.1 Attribute-Based Hypergraph Generation
	4.3.2 Network-Based Hypergraph Generation

	4.4 Typical Examples of Hypergraph Modeling
	4.4.1 Computer Vision
	4.4.2 Recommender System
	4.4.3 Computer-Aided Diagnosis
	4.4.4 Brain Network

	4.5 Hypergraph Modeling in Next Stage
	4.5.1 Adaptive Hypergraph Modeling
	4.5.2 Generative Hypergraph Modeling
	4.5.3 Knowledge Hypergraph Generation

	4.6 Summary
	References

	5 Typical Hypergraph Computation Tasks
	5.1 Introduction
	5.2 Label Propagation on Hypergraph
	5.3 Data Clustering on Hypergraph
	5.4 Cost-Sensitive Learning on Hypergraph
	(1) Cost-Sensitive Hypergraph Computation
	(2) Cost Interval Optimization for Hypergraph Computation

	5.5 Link Prediction on Hypergraph
	5.6 Summary
	References

	6 Hypergraph Structure Evolution
	6.1 Introduction
	6.2 Hypergraph Component Optimization
	6.2.1 Hyperedge Weight Optimization
	6.2.2 Vertex Weight Optimization
	6.2.3 Sub-hypergraph Weight Optimization

	6.3 Hypergraph Structure Optimization
	6.4 Incremental Learning on Growing Data
	6.5 Summary
	References

	7 Neural Networks on Hypergraph
	7.1 Introduction
	7.2 Spectral-Based Neural Networks on Hypergraph
	7.2.1 Hypergraph Neural Networks
	7.2.2 Hypergraph Convolution and Hypergraph Attention
	7.2.3 Hyperbolic Hypergraph Neural Networks

	7.3 Spatial-Based Neural Networks on Hypergraph
	7.3.1 General Hypergraph Neural Networks
	7.3.2 Dynamic Hypergraph Neural Networks

	7.4 Comparison Between Graph and Hypergraph Neural Networks
	7.4.1 Spectral Perspective
	7.4.2 Spatial Perspective

	7.5 Summary
	References

	8 Large Scale Hypergraph Computation
	8.1 Introduction
	8.2 Factorization-Based Big-Hypergraph Modeling
	8.3 Hierarchical Hypergraph Modeling
	8.4 Summary
	References

	9 Hypergraph Computation for Social Media Analysis
	9.1 Introduction
	9.2 Recommender System
	9.2.1 Collaborative Filtering
	9.2.2 Attribute Inference

	9.3 Sentiment Analysis
	9.3.1 Sentiment Prediction
	9.3.2 Social Event Detection

	9.4 Emotion Recognition
	9.5 Summary
	References

	10 Hypergraph Computation for Medical and Biological Applications
	10.1 Introduction
	10.2 Computer-Aided Diagnosis
	10.2.1 MCI Identification Using MRI
	10.2.2 Medical Image Retrieval
	10.2.3 COVID-19 Identification Using CT Imaging
	10.2.4 ASD Identification Using Brain Functional Networks

	10.3 Survival Prediction with Histopathological Image
	10.3.1 Ranking-Based Survival Prediction
	10.3.2 Phenotypic and Topological Hypergraph Modeling

	10.4 Drug Discovery
	10.5 Medical Image Segmentation
	10.6 Summary
	References

	11 Hypergraph Computation for Computer Vision
	11.1 Introduction
	11.2 Visual Classification
	11.3 3D Object Retrieval
	11.4 Tag-Based Social Image Retrieval
	11.5 Summary
	References

	12 The DeepHypergraph Library
	12.1 Introduction
	12.2 The Correlation Structures in DHG
	12.3 The Function Library in DHG
	12.4 Summary
	References

	13 Conclusions and Future Work
	13.1 Summary of This Book
	13.2 Future Work

