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Foreword 

If one were to try and pin down origins of the field of people analytics, I would 
propose we start in the year 1911 when three events that represent the foundational 
ingredients to our emerging profession took place. In this year, Fredrick Taylor 
published his seminal Principles of Scientific Management, Charles Finley merged 
three firms into the Computing-Tabulating-Recording Company (later renamed 
International Business Machines), and Karl Pearson founded the world’s first 
university statistics department at the City University of London. Mix the scientific 
method applied to organizations, scaling data systems, and advanced statistical 
knowledge in about equal parts, give them a bit over a century to simmer, distill, 
and age and voila, you have modern people analytics! Readers will find all three of 
these ingredients mixed with a few more contemporary spices in The Fundamentals 
of People Analytics. 

This book is timely because more and more companies are investing in people 
analytics as a capability. In my view, this is attributed to three primary forces. First, 
organizations are simply more complex and in many industries that complexity is 
increasingly wrapped up in collaboration by employees with scarce skill sets. It is 
not an accident that the modern rise of people analytics started and has been most 
prevalent in large tech companies where skill scarcity and collaborative production 
are high. However, it has become clear that people analytics has much to offer, 
whether a company is full of software engineers or frontline service workers. This 
has been highlighted in recent years as the COVID pandemic brought significant 
labor shortage and reevaluation across a broader range of industries. Even as the 
pandemic recedes, other macro trends are conspiring to make all sorts of labor 
scarcer and more valuable. It is fair to say that in many industries, finding and 
optimizing human resources are already the most difficult constraint firms must 
solve for. I predict this will become more widespread and acute across the economy, 
driving continued investment in people analytics as a field. 

Second, data are simply cheaper and more accessible than they have ever been, 
including data about people and the production process. While any people analytics 
practitioner will be quick to tell you that the most convenient data are not always 
the right data, there are so much relevant data available for people analytics that 
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we now have the fortunate problem of how to collect, munge, and analyze them at 
speed and scale. We are only getting more with major progress being made in such 
core areas as collaboration and skills data. As the data accumulate, they will require 
analysts and leaders with more sophisticated data skillsets. We are rapidly moving 
toward a world where some skills in spreadsheets or basic data visualization, while 
valuable, are no longer adequate for advancing in a people analytics career. We are 
in desperate need to create higher skilled analysts without having to send everyone 
back for a PhD or relying on generalized data science programs. I am excited to hand 
this book to any number of young and mid-career people analysts in my network to 
provide them a curated and structured guide to efficiently building the most relevant 
skills on one of the most relevant statistical platforms in R. I hope many Masters 
of HR programs adopt this text in place of more generalized statistical training they 
tend to provide today. 

Finally, in my view much of the initial and ongoing investments in people 
analytics by firms is driven by the normative pressure that comes from requiring the 
appearance of data-driven decision-making. It is simply no longer acceptable as an 
executive leading any function, including HR, to show up without data and analysis 
when recommending key decisions—whether it is used or not or whether it is correct 
or not. This provides a concrete floor to investment in the field of people analytics, 
even if in many instances it may be performative. However, people analytics also 
has a high ceiling where the insights we produce can significantly enable decision 
makers at all levels to create more resilient, innovative, efficient, and humane 
organizations. To move from performative to effective people analytics is itself a 
complex technical and organizational task. This book is filled with not only the core 
technical knowledge, but also much hard-won craft knowledge required to make 
this leap. I believe readers will find themselves referring to the more conceptual and 
strategic chapters again and again for their concise but multilayered insights and 
frameworks to realize the full and growing potential of people analytics. 

Ryan Hammond, PhD 

Ryan holds a BS and MS from Cornell’s School of Industrial and Labor Relations 
and a PhD from the MIT Sloan School of Management. He has founded two early 
people analytics startups and helped firms from 1,000 to 70,000 employees stand up 
people analytics capabilities. He has published in top-tier journals on subjects such 
as the link between network collaboration and firm performance as well as gender 
pay equity in startups. 



Preface 

Twenty years ago, I was an unlikely author of this book. My first statistics course in 
college was dreadful. On day one, my professor entered our lecture hall and shared 
some grim stats: “Based on historical data, half of you won’t make it to the midterm 
and of those who do, half won’t receive a passing grade in the end.” This was both 
discouraging and motivating. Stats was a required course for my major, so failure 
wasn’t an option; I had to pass. I attended weekly study sessions with classmates 
and studied a lot independently to learn the material. I saw no applications for 
statistics to anything I planned to do with my degree, so the course was reduced 
to memorization of equations. I passed the course with a B, and I was determined to 
never open another stats book. 

You may be wondering what changed to motivate authoring a book involving 
this insufferable subject. The short answer is that I discovered the very important 
applications to a discipline I truly love, people analytics. The practical applications 
were altogether absent from my undergraduate stats course. As I began to think 
about complex and nuanced challenges in social science contexts, it became clear 
that I would not only need to reengage with stats; I would need to develop 
an authentic appreciation for the discipline. Over the past decade, I have taken 
the journey of “relearning” statistics and developing a deep understanding of 
how statistical methodologies can be applied to various organizational problem 
statements. 

My purpose in writing this book is to help make this content—which may 
unfortunately be intimidating to many—both accessible and exciting. In addition to 
my roles in people analytics, I have taught a graduate-level business analytics course 
for Finance and MBA students for many years and have developed several teaching 
strategies through this experience that have proven successful in demystifying 
statistical concepts. In addition to applying these strategies, this book makes a 
unique contribution in curating what I consider to be the most salient topics for 
people analytics practitioners along with step-by-step instructions on the technical 
implementations. There are many texts available for deeper treatments of individual 
subjects covered in this book, but as of this writing, none organize within a single 
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text both theoretical and applied instruction spanning the whole of the people 
analytics lifecycle. 

Thus, this book represents my earnest attempt to provide a concise—yet ade-
quately comprehensive—treatment of the concepts and methods I’ve found to be 
most important for success in people analytics. My hope is that this book will ignite 
within you the same passion for analytics I have discovered over the past decade. 

St. Louis, MO, USA Craig Starbuck, PhD 
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Getting Started 

People analytics is the evidence-based practice of surfacing actionable insights 
from data to help people and organizations thrive. Relative to other functions such 
as Finance and Marketing, data-informed decisions in the talent domain is a recent 
concept. People analytics has the power to transform organizations by surfacing 
subtle barriers to success, optimizing conditions for sustained effectiveness, and 
increasing shareholder value. 

The importance of the future of work, employee well-being, candidate and 
employee experience, worker productivity and collaboration, diversity, equity, 
inclusion, and belonging (DEIB), and retention of critical talent has resulted in 
companies making growing investments in people analytics capabilities. The nature 
of workforce challenges is increasingly too complex and nuanced for traditional HR 
skills, and the ability to extract intelligence from workforce data to inform strategic 
talent decisions is critically important. 

Many organizations struggle to progress beyond basic operational reporting and 
dashboards, but reports and dashboards are not people analytics; they merely help 
inform what questions to ask based on unanticipated observations (e.g., surprising 
changes and trajectories) which are often the impetus for people analytics projects. 
The ability to think critically and reason through the available data to properly 
frame problems and theoretical explanations are perhaps the most essential skills 
for success in people analytics. 

This book will cut through the fluff and teach you how to do stuff. Knowledge 
of concepts is futile without an understanding of how to apply them to people 
analytics use cases. The goal of this book is not to boil the ocean by implementing 
an exhaustive set of analysis methods in every tool. This book is guided by a 
goal of optimizing for the fewest number of concepts and applications required 
to successfully design and execute the majority of projects in the people analytics 
domain. While this is a technical book, it indexes more heavily on concepts and 
practical applications to people analytics than on mathematical underpinnings. 
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2 Getting Started

Whether you are a people leader, individual contributor, or aspiring analytics 
practitioner, this book is for you. This book will serve as a guide through the 
analytics lifecycle, curating the key concepts and applications germane to common 
questions and hypotheses within people analytics and providing a repeatable 
framework for successful analytics projects. 

Guiding Principles 

Among the many principles guiding how analytics teams operate, there are three 
that I have found to be universally applicable and fundamental to the success of an 
analytics capability. 

Pro-Employee Thinking 

With great power comes great responsibility. 

“Pro-employee” thinking is addressed first and for good reason. People analytics 
has the power to improve the lives of people in meaningful ways. Whether we 
are shedding light on an area of the business struggling with work-life balance 
or identifying developmental areas of which a group of leaders may be unaware, 
people analytics ideally improves employee well-being and effectively, the success 
of the business. It is important to embrace a pro-employee philosophy, as newfound 
knowledge could also have damaging repercussions if shared with the wrong people 
or if findings are disseminated without proper instruction on how to interpret and act. 

One way to error on the side of caution when considering whether to disseminate 
insights is to ask the following: “With this knowledge, could the recipient act in a 
manner that is inconsistent with our pro-employee philosophy?” If the answer to 
this question is not a clear no, discuss with your HR, legal, and privacy partners 
and together determine how best to proceed. The decision may be to not share the 
findings with the intended audience at all or to develop a proper communication and 
training plan to ensure there is consistency in how recipients interpret the insights 
and act in response. Employment Law and Data Privacy Counsel are our friends, 
and it is important to build strong relationships with these critical partners. 

Quality 

Garbage in, garbage out. 

Never compromise quality for greater velocity. If quality falls to the bottom of the 
priority list, all other efforts are pointless. It is unlikely that requestors of data and 
analytics will ever ask us to take longer to prepare the information. The onus is on us



Guiding Principles 3

as analytics professionals to level set on a reasonable timeline for analyses based on 
many factors that can impact the quality of analyses and insights. A single instance 
of compromised quality can have lasting damage on the reputation of the analytics 
function and cause consumers of insights to view all findings as suspect. Be sure 
quality is consistently a top value and guard your team’s reputation at all costs. If 
stakeholders lose trust, there will likely be additional data requests for validation; 
this is wasteful to both you and your user community and detracts from the bigger 
story that needs to be communicated. 

Trustworthy results are highly dependent on the quality of data in source systems. 
If tight controls do not exist within source applications to support data integrity, 
downstream data cleaning efforts can only go so far in delivering reliable and 
valid findings. It is often the analysts who identify data integrity issues due to the 
nature of their work; therefore, close relationships should be formed with source 
application owners to put into place validation rules that proactively prevent the 
entry of erroneous data or at the very least, exception/audit reports to identify and 
address the issues once they are observed. 

Prioritization 

If everything is a priority, nothing is a priority. 

Analyses should always have a strong value proposition—a clear expectation of 
how an analysis will support a General Manager, People Partner, Salesperson, or 
other member of the organization. Nothing in this book will increase the value of 
an analysis no one needs. There should be a clear business need and commitment 
to action before implementing an analysis. While curiosity is important, it is not a 
justification for an analysis. 

It is crucial to be relentless about prioritizing strategically important projects 
with “measurable” impact over merely interesting questions that few care to answer. 
According to the Pareto Principle, 80% of outcomes (or outputs) result from 20% 
of causes (or inputs). In analytics, it is important to be laser focused on identifying 
the 20% of inputs that will result in disproportionate value creation for stakeholders. 
There are some general customer-oriented questions I have found to be helpful in 
the intake process to optimize the allocation of time and resources: 

1. Does this support a company or departmental objective? If not, why should 
this be prioritized over something else? 

2. Who is the executive sponsor? Really important projects will have an 
executive-level sponsor. 

3. What quantitative and/or qualitative data can be provided as a rationale for 
this request? Is there data to support doing this, or is the problem statement 
rooted merely in theories and anecdotes? 

4. Will this mitigate risk or enable opportunities? 
5. What actions can or will be taken as a result of this analysis?
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6. What is the scale of impact (# of impacted people)? 
7. What is the depth of impact (minimum—> significant)? 
8. Is this a dependency or blocker for another important deliverable? 
9. What is the impact of not doing (or delaying) this? 
10. What is the request date? Is there flexibility in this date and/or scope of the 

request (e.g., what does MVP look like)? 

These questions can be weighted and scored as well to support a more automated 
and algorithmic approach to prioritization. 

Tooling 

Applications in this book are demonstrated in R, which is open-sourced statistical 
and data visualization software that can be downloaded free of charge. It is 
incredibly powerful, and there is a package (or at least the ability to easily create 
one) for every conceivable statistical method and data visualization. R is also widely 
used in highly regulated environments (e.g., clinical trials). 

As of this writing, R Markdown—the dynamic document creator in which this 
book is written—allows for coding in 56 different languages! Therefore, debating 
whether to use Python, Julia, or other software is unproductive; we need not sacrifice 
the advantages of other languages by choosing one. All code in this book is fully 
reproducible, and it is recommended that you implement the analysis methods on 
your machine as you progress. 

Software such as R allows analysts to organize and annotate steps of the 
analytical process in a manner that is both logical and reproducible. End-to-end 
analytics workflows (data extraction—> wrangling—> cleaning—> analysis—> 
visualization) can be fully automated and executed in R without opening the script, 
mitigating the risk of inadvertently modifying data or formulas. This is one of the 
many reasons tools like Excel will not be covered in this book. 

Please note that while R basics are covered, this is not a book on how to code. 
An introductory programming course is highly recommended, and this is one of the 
best investments you can make for a successful career in analytics. The ability to 
write code is now table stakes for anyone in an analytics-oriented field, as this is 
the best way to develop reproducible analyses. Coding is to analytics professionals 
what typing was for Baby Boomers decades ago; a lack of coding proficiency is a 
major limiting factor on one’s potential in this field. 

The goal of the code provided in this book is not to represent the most performant, 
succinct, or productionalizable approaches. The code herein is intended only to 
facilitate understanding and demonstrate how concepts can be implemented in 
people analytics settings. The most performant approaches are often at odds with 
more intuitive alternatives. Programming expertise is important for optimizing these 
approaches for production applications.
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Data Sets 

Several data sets are leveraged throughout this book to demonstrate how to 
implement various analysis methods. All data sets are available in the R package 
named peopleanalytics. Instructions on installing this package and loading the 
data sets will be covered in chapter “Introduction to R”. 

Employees 

The primary data set used in this book is employees, which contains information on 
active and terminated employees. Fields are defined in the data dictionary provided 
below: 

• employee_id: Unique identifier for each employee 
• active: Flag set to Yes for active employees and No for inactive employees 
• stock_opt_lvl: Stock option level 
• trainings: Number of trainings completed within the past year 
• age: Employee age in years 
• commute_dist: Commute distance in miles 
• ed_lvl: Education level, where 1 = High School, 2 =  Associate Degree, 3 =  

Bachelor’s Degree, 4 =  Master’s Degree, and 5 =  Doctoral Degree 
• ed_field: Education field associated with most recent degree 
• gender: Gender self-identification 
• marital_sts: Marital status 
• dept: Department of which an employee is a member 
• engagement: Employee engagement score measured on a 4-point Likert scale, 

where 1 = Highly Disengaged and 4 = Highly Engaged 
• job_lvl: Job level, where 1 = Junior and 5 = Senior 
• job_title: Job title 
• overtime: Flag set to Yes if the employee is nonexempt and works overtime and 

No if the employee does not work overtime 
• business_travel: Business travel frequency 
• hourly_rate: Hourly rate calculated irrespective of hourly/salaried employees 
• daily_comp: Hourly rate * 8 
• monthly_comp: Hourly rate * 2080 / 12 
• annual_comp: Hourly rate * 2080 
• ytd_leads: Year-to-date (YTD) number of leads generated for employees in 

Sales Executive and Sales Representative positions 
• ytd_sales: Year-to-date (YTD) sales measured in USD for employees in Sales 

Executive and Sales Representative positions 
• standard_hrs: Expected working hours over a two-week payroll cycle
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• salary_hike_pct: The percent increase in salary for the employee’s most 
recent compensation adjustment (whether due to a standard merit increase, off-
cycle adjustment, or promotion) 

• perf_rating: Most recent performance rating, where 1 = Needs Improvement, 
2 =  Core Contributor, 3 =  Noteworthy, and 4 = Exceptional 

• prior_emplr_cnt: Number of prior employers 
• env_sat: Environment satisfaction score measured on a 4-point Likert scale, 

where 1 = Highly Dissatisfied and 4 = Highly Satisfied 
• job_sat: Job satisfaction score measured on a 4-point Likert scale, where 1 = 

Highly Dissatisfied and 4 = Highly Satisfied 
• rel_sat: Colleague relationship satisfaction score measured on a 4-point Likert 

scale, where 1 = Highly Dissatisfied and 4 =  Highly Satisfied 
• wl_balance: Work-life balance score measured on a 4-point Likert scale, where 

1 =  Poor Balance and 4 = Excellent Balance 
• work_exp: Total years of work experience 
• org_tenure: Years at current company 
• job_tenure: Years in current job 
• last_promo: Years since last promotion 
• mgr_tenure: Years under current manager 
• interview_rating: Average rating across the interview loop for the onsite 

stage of the employee’s recruiting process, where 1 = Definitely Not and 5 = 
Definitely Yes 

Most of these fields have also been broken into separate topical data sets to 
support data wrangling examples in chapter “Introduction to SQL”: benefits, 
demographics, job, payroll, performance, prior_employment, status, 
survey_response, and tenure. 

Turnover Trends 

The turnover_trends data set contains turnover rates for each month across a 
five-year period. Fields are defined in the data dictionary provided below: 

• year: Integer representing the year, which ranges from 1 (earliest) to 5 (most 
recent) 

• month: Integer representing the month, which ranges from 1 (January) to 12 
(December) 

• job: Job title 
• level: Job level, where 1 = Junior and 5 = Senior 
• remote: Flag set to Yes for a remote worker and No for a non-remote worker 
• turnover_rate: monthly turnover rate, calculated by dividing the termination 

count into the average headcount (beginning headcount + ending headcount / 2) 
for the respective month
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Survey Responses 

The survey_responses data set contains responses to various survey items. Each 
observation represents a unique anonymized survey respondent. 

• belong: Belonging score measured on a 5-point Likert scale, where 1 = Highly 
Unfavorable and 5 = Highly Favorable 

• effort: Discretionary Effort score measured on a 5-point Likert scale, where 1 
= Highly Unfavorable and 5 = Highly Favorable 

• incl: Inclusion score measured on a 5-point Likert scale, where 1 = Highly 
Unfavorable and 5 = Highly Favorable 

• eng_1: Engagement score on item 1 of 3 measured on a 5-point Likert scale, 
where 1 = Highly Disengaged and 5 = Highly Engaged 

• eng_2: Engagement score on item 2 of 3 measured on a 5-point Likert scale, 
where 1 = Highly Disengaged and 5 = Highly Engaged 

• eng_3: Engagement score on item 3 of 3 measured on a 5-point Likert scale, 
where 1 = Highly Disengaged and 5 = Highly Engaged 

• happ: Happiness score measured on a 5-point Likert scale, where 1 = Highly 
Unfavorable and 5 = Highly Favorable 

• psafety: Psychological Safety score measured on a 7-point Likert scale, where 
1 =  Highly Unfavorable and 7 = Highly Favorable 

• ret_1: Retention score on item 1 of 3 measured on a 5-point Likert scale, where 
1 =  Highly Unfavorable and 5 = Highly Favorable 

• ret_2: Retention score on item 2 of 3 measured on a 5-point Likert scale, where 
1 =  Highly Unfavorable and 5 = Highly Favorable 

• ret_3: Retention score on item 3 of 3 measured on a 5-point Likert scale, where 
1 =  Highly Unfavorable and 5 = Highly Favorable 

• ldrshp: Senior Leadership score measured on a 5-point Likert scale, where 1 = 
Highly Unfavorable and 5 = Highly Favorable 

4D Framework 

In practical analytics settings, we generally operate with respect to five primary 
constraints: timeliness, client expectation, accuracy, reliability, and cost (Bartlett, 
2013). Adherence to a lightweight framework over hastily rushing into an analysis 
full of assumptions generally lends to better outcomes that respect these constraints. 
A framework ensures (a) the problem statement is understood and well-defined; (b) 
relevant literature and prior research are reviewed; (c) the measurement strategy is 
sound; (d) the analysis approach is suitable for the hypotheses being tested; and (e) 
results and conclusions are valid and communicated in a way that resonates with 
the target audience. This chapter will outline a recommended framework as well as 
other important considerations that should be reviewed early in the project. 

It is important to develop a clear understanding of the key elements of research. 
Scientific research is the systematic, controlled, empirical, and critical investigation
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of natural phenomena guided by theory and hypotheses about the presumed relations 
among such phenomena (Kerlinger and Lee, 2000). In other words, research is an 
organized and systematic way of finding answers to questions. If you are in the 
business of analytics, I encourage you to think of yourself as a research scientist— 
regardless of whether you are wearing a lab coat or have plans to publish. 

As we will discover when exploring the laws of probability in a later chapter, 
there is a 1 in 20 chance of finding a significant result when none exists. 
Therefore, it is important to remain disciplined and methodical to protect against 
backward research wherein the researcher mines data for interesting relationships or 
differences and then develops hypotheses which they know the data support. There 
have been many examples of bad research over the years, which often presents in 
the form of p-hacking or data dredging: the act of finding data to confirm what 
the researcher wants to prove. This can occur by running an exhaustive number of 
experiments to find one that supports the hypothesis or by using only a subset of 
data which features the expected patterning. 

Academics at elite research institutions are often under immense pressure to pub-
lish in top-tier journals that have a track record of accepting new ground-breaking 
research over replication studies or unsupported hypotheses, and incentives have 
unfortunately influenced some to compromise integrity. As my PhD advisor told me 
many years ago, an unsupported hypothesis—while initially disappointing given 
the exhaustive literature review that precedes its development—is a meaningful 
empirical contribution given theory suggests the opposite should be true. 

If you participated in a science fair as a child, you are likely already familiar with 
the scientific method. The scientific method is the standard scheme of organized 
and systematic inquiry, and this duly applies to people analytics practitioners in the 
promotion of robust analyses and recommendations. 

An important feature of the Scientific Method, as reflected in Fig. 1, is that the 
process never ends. New knowledge resulting from hypothesis testing prompts a 

Fig. 1 The Scientific Method
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Fig. 2 4D framework 

new set of questions and hypotheses, which initiates a new lifecycle of scientific 
inquiry. 

Over the years, I have adapted the scientific method into a curtailed four-
step framework to promote a rigorous and disciplined approach to the end-to-end 
analytical process. This framework is summarized in Fig. 2, and the four steps are 
(a) Discover, (b) Design, (c) Develop, and (d) Deliver. 

The 4D framework, for which there is a detailed checklist in the Appendix, 
provides a method of structuring analytics projects to ensure they are anchored in 
well-defined problem statements and proactively consider the key elements at each 
stage of the analytics lifecycle to increase the likelihood of meaningful ROI. 
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Introduction to R 

This chapter covers how to install R, R Studio, and required packages for replicating 
examples in this book. This chapter also covers R basics such as objects, data 
structures, and data types that are fundamental to working in R. In addition, many 
common functions will be covered in this chapter, and many more will be introduced 
throughout later chapters. 

Getting Started 

This section will cover some fundamental concepts and best practices for working 
in R. 

Installing R 

R can be compiled and run on a variety of platforms including UNIX, Windows, 
and MacOS. R can be downloaded here: https://www.r-project.org/. 

When installing R, you will need to select a CRAN mirror. The Comprehensive 
R Archive Network (CRAN) is a network of servers around the world that store 
identical, current versions of code and documentation for R. You should select the 
CRAN mirror nearest you to minimize network load. 
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Installing R Studio 

R Studio is an Integrated Development Environment (IDE) for R. This IDE  
provides a console with syntax editing that is helpful for debugging code as well 
as tools for plotting, history, and workspace management. Both open source and 
commercial editions are available, but the open-source option is sufficient for 
replicating everything in this book. 

R Studio can be downloaded here: https://posit.co/download/rstudio-desktop/# 
download. 

Installing Packages 

This book will utilize libraries from many R packages, and all are available on 
CRAN. The line of code below can be executed within either the R console or IDE 
to install all at once: 

install.packages(c("peopleanalytics", "tidyverse", "corrplot", 
"psych", "moments", "ggpubr", "ggdist", "GGally", 
"networkD3", "sqldf", "caret", "car", "reshape2", 
"effsize", "lmtest", "pwr", "nnet", "MASS", "brant", 
"lme4", "lmerTest", "rpart", "rpart.plot", "lavaan", 
"lavaanPlot", "factoextra", "cluster"), dependencies = 
TRUE, repos = "http://cran.us.r-project.org")

↪→
↪→
↪→
↪→
↪→
↪→ 

Loading Data 

To load the data sets for this book from the peopleanalytics package, we need 
to load the library using the library() function and then load the data using the 
data() function. 

# Load library 
library(peopleanalytics) 

# Load data set named "employees" 
data("employees")

https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
https://posit.co/download/rstudio-desktop/#download
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To view a list of available data sets, execute data(package = "peopleanalyt 
ics"). 

Files stored locally, or hosted on an online service such as GitHub, can be 
imported into R using the read.table() function. For example, the following 
line of code will import a comma-separated values file named employees.csv 
containing a header record (row with column names) from a specified GitHub 
directory, and then store the data in a R object named data: 

# Load data from GitHub file 
data <- read.table(file = 

'https://raw.githubusercontent.com/crstarbuck/peopleanalytics/data/employees.csv', 
header = TRUE, sep = ",")

↪→
↪→ 

Case Sensitivity 

It is important to note that everything in R is case-sensitive. When working with 
functions, be sure to match the case when typing the function name. For example, 
Mean() is not the same as mean(); since mean() is the correct case for the function, 
capitalized characters will generate an error when executing the function. 

Help 

Documentation for functions and data is available via the ? command or help() 
function. For example, ?sentiment or help(sentiment) will display the avail-
able documentation for the sentiment data set, as shown in Fig. 1. 

Objects 

Objects underpin just about everything we do in R. An object is a container for 
various types of data. Objects can take many forms, ranging from simple objects 
holding a single number or character to complex structures that support advanced 
visualizations. The assignment operator <- is used to assign values to an object, 
though = serves the same function. 

Let us use the assignment operator to assign a number and character to separate 
objects. Note that non-numeric values must be enveloped in either single ticks '' or 
double quotes "": 

obj_1 <- 1 
obj_1
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Fig. 1 R documentation for sentiment data set 

## [1] 1 

obj_2 <- 'a' 
obj_2 

## [1] "a" 

Several functions are available for returning the type of data in an object, such as 
typeof() and class(): 

typeof(obj_2) 

## [1] "character" 

class(obj_2) 

## [1] "character"
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Comments 

The # symbol is used for commenting/annotating code. Everything on a line that 
follows # is treated as commentary rather than code to execute. This is a best 
practice to aid in quickly and easily deciphering the role of each line or block of 
code. Without comments, troubleshooting large scripts can be a more challenging 
task. 

# Assign a new number to the object named obj_1 
obj_1 <- 2 

# Display value in obj_1 
obj_1 

## [1] 2 

# Assign a new character to the object named obj_2 
obj_2 <- 'b' 

# Display value in obj_2 
obj_2 

## [1] "b" 

In-line code comments can also be added where needed to reduce the number of 
lines in a script: 

# Assign a new number to the object named obj_1 
obj_1 <- 3 

obj_1 # Display value in obj_1 

## [1] 3 

# Assign a new character to the object named obj_2 
obj_2 <- 'c' 

obj_2 # Display value in obj_2 

## [1] "c"
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Testing Early and Often 

A best practice in coding is to run and test your code frequently. Writing many 
lines of code before testing will make debugging issues far more difficult and time-
intensive than it needs to be. 

Vectors 

A vector is the most basic data object in R. Vectors contain a collection of data 
elements of the same data type, which we will denote as .x1, x2, . . . , xn in this book, 
where n is the number of observations or length of the vector. A vector may contain 
a series of numbers, set of characters, collection of dates, or logical TRUE or FALSE 
results. 

In this example, we introduce the combine function c(), which allows us to fill 
an object with more than one value: 

# Create and fill a numeric vector named vect_num 
vect_num <- c(2,4,6,8,10) 

vect_num 

## [1] 2 4 6 8 10 

# Create and fill a character vector named vect_char 
vect_char <- c('a','b','c') 

vect_char 

## [1] "a" "b" "c" 

We can use the as.Date() function to convert character strings containing dates 
to an actual date data type. By default, anything within single ticks or double 
quotes is treated as a character, so we must make an explicit type conversion from 
character to date. Remember that R is case-sensitive. Therefore, as.date() is not 
a valid function; the D must be capitalized. 

# Create and fill a date vector named vect_dt 
vect_dt <- c(as.Date("2021-01-01"), as.Date("2022-01-01")) 

vect_dt
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## [1] "2021-01-01" "2022-01-01" 

We can use the sequence generation function seq() to fill values between a start and 
end point using a specified interval. For example, we can fill vect_dt with the first 
day of each month between 2021-01-01 and 2022-01-01 via the seq() function 
and its by = "months" argument: 

# Create and fill a date vector named vect_dt 
vect_dt <- seq(as.Date("2021-01-01"), as.Date("2022-01-01"), 

by = 'months')↪→ 

vect_dt 

## [1] "2021-01-01" "2021-02-01" "2021-03-01" "2021-04-01" "2021-05-01" 
## [6] "2021-06-01" "2021-07-01" "2021-08-01" "2021-09-01" "2021-10-01" 
## [11] "2021-11-01" "2021-12-01" "2022-01-01" 

We can also use the : operator to fill integers between a starting and ending 
number: 

# Create and fill a numeric vector with values between 1 and 
10↪→ 

vect_num <- 1:10 

vect_num 

##  [1]  1 2 3 4 5 6 7 8 9  10  

We can access a particular element of a vector using its index. An index 
represents the position in a set of elements. In R, the first element of a vector has an 
index of 1, and the final element of a vector has an index equal to the vector’s length. 
The index is specified using square brackets, such as [5] for the fifth element of a 
vector. 

# Return the value in position 5 of vect_num 
vect_num[5] 

## [1] 5 

When applied to a vector, the length() function returns the number of elements 
in the vector, and this can be used to dynamically return the last value of vectors. 

# Return the last element of vect_num 
vect_num[length(vect_num)] 

## [1] 10
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Vectorized Operations 

Vectorized operations (or vectorization) underpin mathematical operations in 
R and greatly simplify computation. For example, if we need to perform a 
mathematical operation to each data element in a numeric vector, we do not need 
to specify each and every element explicitly. We can simply apply the operation at 
the vector level, and the operation will be applied to each of the vector’s individual 
elements. 

# Create a numeric vector named x and fill with values between 
1 and 10↪→ 

x <- 1:10 

# Add 2 to each element of x 
x_plus2 <- x+2 

x_plus2 

## [1] 3 4 5 6 7 8 9 10 11 12 

# Multiply each element of x by 2 
x_times2 <- x*2 

x_times2 

## [1] 2 4 6 8 10 12 14 16 18 20 

# Square each element of x 
x_sq <- xˆ2 

x_sq 

## [1] 1 4 9 16 25 36 49 64 81 100 

Many built-in arithmetic functions are available and compatible with vectors: 

# Aggregate sum of x elements 
sum(x) 

## [1] 55
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# Count of x elements 
length(x) 

## [1] 10 

# Square root of x elements 
sqrt(x) 

## [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 
## [9] 3.000000 3.162278 

# Natural logarithm of x elements 
log(x) 

## [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101 
## [8] 2.0794415 2.1972246 2.3025851 

# Exponential of x elements 
exp(x) 

## [1] 2.718282 7.389056 20.085537 54.598150 148.413159 
## [6] 403.428793 1096.633158 2980.957987 8103.083928 22026.465795 

We can also perform various operations on multiple vectors. Vectorization will 
result in an implied ordering of elements, in that the specified operation will be 
applied to the first elements of the vectors and then the second, then third, etc. 

# Create vectors x1 and x2 and fill with integers 
x1 <- 1:10 
x2 <- 11:20 

# Store sum of vectors to new x3 vector 
x3 <- x1 + x2 

x3 

## [1] 12 14 16 18 20 22 24 26 28 30 

Using vectorization, we can also evaluate whether a specified condition is true or 
false for each element in a vector:
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# Evaluate whether each element of x is less than 6, and store 
results to a logical vector↪→ 

logical_rslts <- x<6 

logical_rslts 

## [1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE 
FALSE 

Matrices 

A matrix is like a vector in that it represents a collection of data elements of the 
same data type; however, the elements of a matrix are arranged into a fixed number 
of rows and columns. 

We can create a matrix using the matrix() function. Per ?matrix, the nrow and 
ncol arguments can be used to organize like data elements into a specified number 
of rows and columns. 

# Create and fill matrix with numbers 
mtrx_num <- matrix(data = 1:10, nrow = 5, ncol = 2) 

mtrx_num 

## [,1] [,2] 
## [1,] 1 6 
## [2,] 2 7 
## [3,] 3 8 
## [4,] 4 9 
## [5,] 5 10 

As long as the argument values are in the correct order per the documentation, 
the argument names are not required. Per ?matrix, the first argument is data, 
followed by nrow and then ncol. Therefore, we can achieve the same result using 
the following: 

# Create and fill matrix with numbers 
mtrx_num <- matrix(1:10, 5, 2) 

mtrx_num
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## [,1] [,2] 
## [1,] 1 6 
## [2,] 2 7 
## [3,] 3 8 
## [4,] 4 9 
## [5,] 5 10 

Several functions are available to quickly retrieve the number of rows and 
columns in a rectangular object like a matrix: 

# Return the number of rows in mtrx_num 
nrow(mtrx_num) 

## [1] 5 

# Return the number of columns in mtrx_num 
ncol(mtrx_num) 

## [1] 2 

# Return the number of columns and rows in mtrx_num 
dim(mtrx_num) 

## [1] 5 2 

The head() and tail() functions return the first and last pieces of data, 
respectively. For large matrices (or other types of objects), this can be helpful for 
previewing the data: 

# Return the first five rows of a matrix containing 1,000 rows 
and 10 columns↪→ 

head(matrix(1:10000, 1000, 10), 5) 

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 
## [1,] 1 1001 2001 3001 4001 5001 6001 7001 8001 9001 
## [2,] 2 1002 2002 3002 4002 5002 6002 7002 8002 9002 
## [3,] 3 1003 2003 3003 4003 5003 6003 7003 8003 9003 
## [4,] 4 1004 2004 3004 4004 5004 6004 7004 8004 9004 
## [5,] 5 1005 2005 3005 4005 5005 6005 7005 8005 9005 

# Return the last five rows of a matrix containing 1,000 rows 
and 10 columns↪→ 

tail(matrix(1:10000, 1000, 10), 5)
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## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 
## [996,] 996 1996 2996 3996 4996 5996 6996 7996 8996 9996 
## [997,] 997 1997 2997 3997 4997 5997 6997 7997 8997 9997 
## [998,] 998 1998 2998 3998 4998 5998 6998 7998 8998 9998 
## [999,] 999 1999 2999 3999 4999 5999 6999 7999 8999 9999 
## [1000,] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Using vectorization, we can easily perform matrix multiplication. 

# Create 3x3 matrix 
matrix(1:9, 3, 3) 

## [,1] [,2] [,3] 
## [1,] 1 4 7 
## [2,] 2 5 8 
## [3,] 3 6 9 

# Multiply each matrix value by 2 
matrix(1:9, 3, 3) * 2 

## [,1] [,2] [,3] 
## [1,] 2 8 14 
## [2,] 4 10 16 
## [3,] 6 12 18 

Factors 

A factor is a data structure containing a finite number of categorical values. Each 
categorical value of a factor is known as a level, and the levels can be either ordered 
or unordered. This data structure is a requirement for several statistical models we 
will cover in later chapters. 

We can create a factor using the factor() function: 

# Create and fill factor with unordered categories 
education <- factor(c("undergraduate", "post-graduate", 

"graduate"))↪→ 

education 

## [1] undergraduate post-graduate graduate 
## Levels: graduate post-graduate undergraduate
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Since education has an inherent ordering, we can use the ordered and levels 
arguments of the factor() function to order the categories: 

# Create and fill factor with unordered categories 
education <- factor(education, ordered = TRUE, levels = 

c("undergraduate", "graduate", "post-graduate"))↪→ 

education 

## [1] undergraduate post-graduate graduate 
## Levels: undergraduate < graduate < post-graduate 

The ordering of factors is critical to a correct interpretation of statistical model 
output as we will cover later. 

Data Frames 

A data frame is like a matrix in that it organizes elements within rows and columns 
but unlike matrices, data frames can store multiple types of data. Data frames are 
often the most appropriate data structures for the data required in people analytics. 

A data frame can be created using the data.frame() function: 

# Create three vectors containing integers (x), characters 
(y), and dates (z)↪→ 

x <- 1:10 
y <- c('a','b','c','d','e','f','g','h','i','j') 
z <- seq(as.Date("2021-01-01"), as.Date("2021-10-01"), by = 

'months')↪→ 

# Create a data frame with 3 columns (vectors x, y, and z) and 
10 rows↪→ 

df <- data.frame(x, y, z) 

df 

## x y z 
## 1 1 a 2021-01-01 
## 2 2 b 2021-02-01 
## 3 3 c 2021-03-01 
## 4 4 d 2021-04-01 
## 5 5 e 2021-05-01 
## 6 6 f 2021-06-01
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## 7 7 g 2021-07-01 
## 8 8 h 2021-08-01 
## 9 9 i 2021-09-01 
## 10 10 j 2021-10-01 

The structure of an object can be viewed using the str() function: 

# Describe the structure of df 
str(df) 

## 'data.frame': 10 obs. of 3 variables: 
##  $ x: int  1 2 3 4 5 6 7 8 9 10  
## $ y: chr "a" "b" "c" "d" ... 
## $ z: Date, format: "2021-01-01" "2021-02-01" ... 

Specific columns in the data frame can be referenced using the operator $ 
between the data frame and column names: 

# Return data in column x in df 
df$x 

##  [1]  1 2 3 4 5 6 7 8 9  10  

Another method that allows for efficient subsetting of rows and/or columns is 
the subset() function. The example below illustrates how to subset df using 
conditions on x and y while only displaying z in the output. The logical operator | 
is used for OR conditions, while & is the logical operator for AND conditions: 

# Return z values for rows where x is at least 7 OR y is a, b, 
or c.↪→ 

subset(df, x >= 7 | y %in% c('a','b','c'), select = z) 

## z 
## 1 2021-01-01 
## 2 2021-02-01 
## 3 2021-03-01 
## 7 2021-07-01 
## 8 2021-08-01 
## 9 2021-09-01 
## 10 2021-10-01
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Lists 

Lists are versatile objects that can contain elements with different types and lengths. 
The elements of a list can be vectors, matrices, data frames, functions, or even other 
lists. 

A list can be created using the list() function: 

# Store vectors x, y, and z as well as df to a list 
lst <- list(x, y, z, df) 

str(lst) 

## List of 4 
## $ : int [1:10] 1 2 3 4 5 6 7 8 9 10 
## $ : chr [1:10] "a" "b" "c" "d" ... 
## $ : Date[1:10], format: "2021-01-01" "2021-02-01" ... 
## $ :'data.frame': 10 obs. of 3 variables: 
## ..$ x: int [1:10] 1 2 3 4 5 6 7 8 9 10  
## ..$ y: chr [1:10] "a" "b" "c" "d" ... 
## ..$ z: Date[1:10], format: "2021-01-01" "2021-02-01" ... 

Unlike vectors, accessing elements of a list requires double brackets, such as 
[[3]] for the third element. 

# Return data from the third element of lst 
lst[[3]] 

## [1] "2021-01-01" "2021-02-01" "2021-03-01" "2021-04-01" "2021-05-01" 
## [6] "2021-06-01" "2021-07-01" "2021-08-01" "2021-09-01" "2021-10-01" 

Loops 

In many cases, the need arises to perform an operation a variable number of times. 
Loops are available to avoid the cumbersome task of writing the same statement 
many times. The two most common types of loops are while and for loops. 

Let us use a while loop to square integers between 1 and 5: 

# Initialize variable 
i <- 1 

# Using a 'while' loop, square the values 1 through 5 and 
print results to the screen↪→
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# 'i' is a variable that takes on a value between 1 and 5 for 
the respective loop↪→ 

while (i < 6) {  

print(iˆ2) 
i <- i + 1 # increment i by 1 

} 

## [1] 1 
## [1] 4 
## [1] 9 
## [1] 16 
## [1] 25 

With a while loop, we needed to initialize the variable i as well as increment it 
by 1 within the loop. With a for loop, we can accomplish the same goal with less 
code: 

# Using a 'for' loop, square the values 1 through 5 and print 
results to the screen↪→ 

for (i in 1:5) {  

print(iˆ2) 

} 

## [1] 1 
## [1] 4 
## [1] 9 
## [1] 16 
## [1] 25 

User-Defined Functions (UDFs) 

Though many built-in functions are available, R provides the flexibility to create our 
own. 

Functions can be an effective alternative to loops. For example, here is a basic 
function that achieves the same goal as our while and for loop examples (i.e., 
squaring integers 1 through 5):
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# Create a function named square.val() with one argument (x) 
that squares given x values↪→ 

square.val <- function(x) { 

xˆ2 
} 

# Pass integers 1 through 5 into the new square.val() function 
and display results↪→ 

square.val(1:5) 

## [1] 1 4 9 16 25 

While many projects warrant UDFs and/or loops, we do not actually need either 
to square a set of integers thanks to vectorization. As you gain experience writing R 
code, you will naturally discover ways to write more performant and terse code: 

# Square integers 
(1:5)ˆ2 

## [1] 1 4 9 16 25 

Graphics 

While base R has native plotting capabilities, we will use more flexible and 
sophisticated visualization libraries such as ggplot2 in this book. ggplot2 is one 
of the most versatile and popular data visualization libraries in R. 

We can load the ggplot2 library by executing the following command: 

# Load library 
library(ggplot2) 

When working with functions beyond what is available in base R, entering :: 
between the library and function names is a best practice for efficient coding. R 
Studio will provide a menu of available functions within the specified library upon 
typing library_name::. 

The ggplot2 library contains many types of visualizations. For example, we can 
build a line chart to show how the values of vector x relate to values of vector y in a 
data frame named data:
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# Create data frame containing two related columns, combining 
columns via the cbind() function↪→ 

x <- 1:10 
y <- (1:10)ˆ2 
data <- as.data.frame(cbind(x, y)) 

# Produce line chart 
ggplot2::ggplot(data, aes(x =  x, y =  y)) + 
ggplot2::geom_line() 
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Furthermore, we can use ggplot parameters and themes to adjust the aesthetics of 
visuals: 

# Produce line chart 
ggplot2::ggplot(data, aes(x =  x, y =  y)) + 
ggplot2::geom_line(size = .4, colour = "blue") + # Reduce line 

thickness and change color to blue↪→ 

ggplot2::theme(panel.background = element_blank()) + # Remove 
the default grey background↪→ 

ggplot2::labs(title = 'Chart Title', # Assign a chart title 
x =  'Title for x-axis', # Title the x-axis 
y =  'Title for y-axis') # Title the y-axis
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ggplot2::theme(plot.title = element_text(hjust = 0.5)) # 
Center plot title↪→ 

Review Questions 

1. What is the difference between a factor and character vector? 
2. What is vectorization? 
3. How do data frames differ from matrices? 
4. Does executing the Sum() function achieve the same result as executing sum()? 
5. Does seq(1,10) return the same output as 1:10? 
6. Is the following command sufficient for creating a vector recognized by 

R as having three dates: dates <- c("2022-01-01", "2022-01-02", 
"2022-01-03"). 

7. How are while and for loops different? 
8. If vectors x1 and x2 each hold 100 integers, how can we add each element of 

one to the respective element of the other using a single line of code? 
9. How are slots in a list object referenced? 

10. What are some examples in which a user-defined function (UDF) is needed?
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Introduction to SQL 

Structured Query Language (SQL) is the most common language used to extract 
and wrangle data contained in a relational database. SQL is an essential skill for 
anyone working in analytics. 

Basics 

There are three main clauses in a SQL query: (a) SELECT, (b)  FROM, and (c) WHERE. 
The SELECT and FROM clauses are required, though the optional WHERE clause is 
frequently needed. 

• SELECT: Specifies the columns to include in the output
• FROM: Specifies the table(s) in which the relevant data are contained
• WHERE: Specifies the rows to search 

Despite the clauses being ordered as shown above (SELECT then FROM then 
WHERE), the FROM clause is the first to execute since we first need to identify the 
relevant table(s) before filtering rows and selecting columns. The SELECT clause is 
the last to execute. 

Additional clauses are available for grouping and sorting data.

• GROUP BY: Specifies the columns by which data should be grouped when 
using aggregate functions

• HAVING: Specifies conditions for filtering rows based on aggregate functions
• ORDER BY: Specifies how data should be sorted in the output 

When implementing aggregate functions in a SELECT clause, such as counting, 
summing, or averaging a numeric field, all other non-aggregated fields must be 
included in the GROUP BY clause. 
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When working with large data sets, it is best to filter records on the database side 
to avoid reading superfluous records into an analytics tool such as R only to then 
filter data to the relevant subset. For example, if we are performing an analysis on 
employees in the Research & Development department, we should ideally filter to 
this subset on the database side rather than loading data on the entire workforce and 
then paring down to the relevant records within R. Fewer records can help enhance 
the performance of R scripts—especially when R is running on a local machine, 
such as a laptop, rather than on a more powerful server. 

Though it is important to execute SQL queries directly on the database to 
minimize the amount of data read into R, we will use the sqldf library within 
R to demonstrate the mechanics of a SQL query for easily replicable examples. 
The sqldf library allows us to write SQL to query data frames via an embedded 
database engine (SQLite by default). In a practical setting, we would pass a string 
containing the SQL query, execute it directly against the database, and then store 
the query’s results to an object within R. While the syntax of SQL may vary by 
database, the core structure of queries is universal. 

First, let us load the data sets: 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 
data("benefits") 
data("demographics") 
data("job") 
data("payroll") 
data("performance") 
data("prior_employment") 
data("sentiment") 
data("status") 
data("tenure") 

# Return row and column counts 
dim(employees) 

## [1] 1470 36 

Next, we will apply the sqldf() function to our data frame to extract specific 
rows and columns. In addition to the SELECT, FROM, and WHERE clauses, we will 
use the LIMIT clause to limit the number of rows that are displayed given the data 
frame’s size (.n = 1, 470). In a practical setting, the LIMIT clause is only used 
for efficient data profiling and troubleshooting, as we would not want to arbitrarily 
truncate a data set used for analysis.



Basics 33

A best practice in writing SQL is to capitalize the names of clauses and functions 
and to use separate lines and indentation to make the SQL statements more readable: 

# Load library 
library(sqldf) 

# Store SQL query as a character string using the paste() 
function↪→ 

sql_string <- paste("SELECT 
employee_id 

FROM 
employees 

WHERE 
dept = 'Research & Development' 

LIMIT 10") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## employee_id 
## 1 1002 
## 2 1003 
## 3 1004 
## 4 1005 
## 5 1006 
## 6 1007 
## 7 1008 
## 8 1009 
## 9 1010 
## 10 1011 

This query returned a list of employee ids for employees in the Research & 
Development department. 

To optimize query performance, it is important to order conditions in the WHERE 
clause beginning with the condition that will exclude the largest number of records. 
Conditions are executed sequentially, and each subsequent condition must evaluate 
all records that remain following any preceding filtering. Limiting the number of 
records that must be searched when evaluating each condition will reduce the time 
it takes the query to return results. For example, if two conditions are needed and 
one excludes 5000 records while the other excludes 10, the condition that excludes 
5000 records should be listed first in the WHERE clause.
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Aggregate Functions 

Next, let us take a look at average organization tenure by job for those in the 
Research & Development department: 

# Store SQL query as a character string 
sql_string <- paste("SELECT 

job_title, 
AVG(org_tenure) 

FROM 
employees 

WHERE 
dept = 'Research & Development' 

GROUP BY 
job_title") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title AVG(org_tenure) 
## 1 Healthcare Representative 8.618321 
## 2 Laboratory Technician 5.019305 
## 3 Manager 13.673077 
## 4 Manufacturing Director 7.600000 
## 5 Research Director 10.937500 
## 6 Research Scientist 5.113014 
## 7 Vice President 9.500000 

There are 7 distinct job titles among employees in the Research & Development 
department, and the average organization tenure for these ranges from 5 to 13.7 
years. 

Since there could be a small number of employees in certain jobs, in which case 
average organization tenure may not be as meaningful, we can use the COUNT(*) 
function to count the number of rows for each group. In this case, COUNT(*) 
will return the number of employees in each job in the Research & Development 
department. We can also assign column aliases via AS in the SELECT clause to assign 
different names to the output fields: 

# Store SQL query as a character string 
sql_string <- paste("SELECT 

job_title, 
COUNT(*) AS employee_cnt, 
AVG(org_tenure) AS avg_org_tenure 

FROM
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employees 
WHERE 

dept = 'Research & Development' 
GROUP BY 

job_title 
ORDER BY 

job_title") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title employee_cnt avg_org_tenure 
## 1 Healthcare Representative 131 8.618321 
## 2 Laboratory Technician 259 5.019305 
## 3 Manager 52 13.673077 
## 4 Manufacturing Director 145 7.600000 
## 5 Research Director 80 10.937500 
## 6 Research Scientist 292 5.113014 
## 7 Vice President 2 9.500000 

The output shows that there are only 2 Vice Presidents in the Research & 
Development department, while other job titles are much more prevalent. 

Since relatively few employees are Vice Presidents, let us use the HAVING clause 
to only show average organization tenure for Research & Development department 
jobs with more than 10 employees. We can also use the ROUND() function to truncate 
average organization tenure to one significant digit: 

# Store SQL query as a character string 
sql_string <- paste("SELECT 

job_title, 
COUNT(*) AS employee_cnt, 
ROUND(AVG(org_tenure), 1) AS 

avg_org_tenure↪→ 

FROM 
employees 

WHERE 
dept = 'Research & Development' 

GROUP BY 
job_title 

HAVING 
COUNT(*) > 10 

ORDER BY 
job_title")
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# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title employee_cnt avg_org_tenure 
## 1 Healthcare Representative 131 8.6 
## 2 Laboratory Technician 259 5.0 
## 3 Manager 52 13.7 
## 4 Manufacturing Director 145 7.6 
## 5 Research Director 80 10.9 
## 6 Research Scientist 292 5.1 

Joins 

In a practical setting, the required data are rarely contained within a single table. 
Therefore, we must query multiple tables and join them together. 

Figure 1 illustrates how worker, position, and recruiting schemas may be related. 
For example, a candidate submits a job application to a posted requisition, which is 
connected to an open position Finance approved as part of the company’s workforce 
plan; when the selected candidate is hired, they become a worker with one or many 
events (hire, promotion, transfer, termination) and activities (learning, performance 
appraisals, surveys) during their tenure with the company. 

Tables are related using a set of keys. Each table needs a Primary Key (PK), 
which is a unique identifier for each row in the table. A PK may be a single 
column or multiple columns; a multi-column PK is known as a composite key. It is  
generally best to leverage non-recyclable system-generated ids for PKs. A Foreign 
Key (FK) is a column whose values correspond to the values of a PK in another 
table. Referential integrity is the logical dependency of a FK on a PK, and this is 

Fig. 1 Related tables organized within schemas
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Fig. 2 Entity Relationship Diagram (ERD) 

an important concept in the context of relational data structures. Referential integrity 
constraints protect against orphaned FK values in child tables by deleting PK values 
from an associated parent table. 

Figure 2 shows an Entity Relationship Diagram (ERD) that depicts PK/FK 
relationships among the Position, Worker, and Requisition tables. Notice that the 
PK for each table shown in Fig. 1 is listed as a FK in related tables. 
With knowledge of the keys required to connect records across tables, there are 
several methods of joining the tables. Figure 3 illustrates SQL join types using Venn 
diagrams. Both the join type and keys for related tables need to be specified in the 
SQL statement. The structure of SQL queries for each method of joining Table A 
and Table B is represented in the following code blocks: 

LEFT INCLUSIVE 

# SELECT [Output Field List] 
# FROM A 
# LEFT OUTER JOIN B 
# ON A.Key = B.Key
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Fig. 3 Types of SQL joins 

LEFT EXCLUSIVE 

# SELECT [Output Field List] 
# FROM A 
# LEFT OUTER JOIN B 
# ON A.Key = B.Key 
# WHERE B.Key IS NULL 

FULL OUTER INCLUSIVE 

# SELECT [Output Field List] 
# FROM A 
# FULL OUTER JOIN B 
# ON A.Key = B.Key 

FULL OUTER EXCLUSIVE 

# SELECT [Output Field List] 
# FROM A 
# FULL OUTER JOIN B 
# ON A.Key = B.Key 
# WHERE A.Key IS NULL OR B.Key IS NULL
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RIGHT INCLUSIVE 

# SELECT [Output Field List] 
# FROM A 
# RIGHT OUTER JOIN B 
# ON A.Key = B.Key 

RIGHT EXCLUSIVE 

# SELECT [Output Field List] 
# FROM A 
# LEFT OUTER JOIN B 
# ON A.Key = B.Key 
# WHERE A.Key IS NULL 

INNER JOIN 

# SELECT [Output Field List] 
# FROM A 
# INNER JOIN B 
# ON A.Key = B.Key 

To illustrate how SQL joins work, we will leverage three of the data sets used to 
produce the consolidated employees data set that will be leveraged throughout this 
book: job, tenure, and demographics. In a people analytics context, employee 
id is often the PK since this identifier should not be shared by two or more 
employees—past, present, or future. Email or network id may also be a suitable PK. 
We will use the employee_id column in each of the three data frames to facilitate 
joins. 

Let us query these data frames to return the average organization tenure and 
average commute distance for employees in the Research & Development depart-
ment, grouped by jobs with more than 10 employees. To accomplish this, we will 
leverage an INNER JOIN, which will return records only for employee ids which are 
present in all three data frames. For example, if a record exists in demographics 
and tenure for a particular employee id, but there is no corresponding record in 
job, that employee id would not be included in the output. 

# Store SQL query as a character string 
sql_string <- paste("SELECT 

job_title, 
COUNT(*) AS employee_cnt, 
ROUND(AVG(org_tenure), 1) AS 

avg_org_tenure,↪→ 

ROUND(AVG(commute_dist), 1) AS 
avg_commute_dist↪→
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FROM 
demographics 

INNER JOIN 
tenure 

ON 
demographics.employee_id = 

tenure.employee_id↪→ 

INNER JOIN 
job 

ON 
demographics.employee_id = 

job.employee_id↪→ 

WHERE 
dept = 'Research & Development' 

GROUP BY 
job_title 

HAVING 
COUNT(*) > 10 

ORDER BY 
job_title") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title employee_cnt avg_org_tenure avg_commute_dist 
## 1 Healthcare Representative 131 8.6 9.8 
## 2 Laboratory Technician 259 5.0 9.4 
## 3 Manager 52 13.7 7.2 
## 4 Manufacturing Director 145 7.6 9.5 
## 5 Research Director 80 10.9 8.4 
## 6 Research Scientist 292 5.1 9.0 

Note that the INNER JOIN in this SQL query was structured such that both 
tenure and job were joined to demographics via the employee_id column. 
We could have instead joined job to tenure since we joined tenure to 
demographics; this would have achieved the same result since all employee 
ids exist in each of the three data frames. 

If it were possible for all employee ids to exist in demographics but not in 
either tenure or job, we could leverage a LEFT JOIN to ensure all records from 
demographics are included in the output irrespective of whether they have matches 
in tenure or job: 

# Store SQL query as a character string 
sql_string <- paste("SELECT 

job_title, 
COUNT(*) AS employee_cnt,
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ROUND(AVG(org_tenure), 1) AS 
avg_org_tenure,↪→ 

ROUND(AVG(commute_dist), 1) AS 
avg_commute_dist↪→ 

FROM 
demographics 

LEFT JOIN 
tenure 

ON 
demographics.employee_id = 

tenure.employee_id↪→ 

LEFT JOIN 
job 

ON 
demographics.employee_id = 

job.employee_id↪→ 

WHERE 
dept = 'Research & Development' 

GROUP BY 
job_title 

HAVING 
COUNT(*) > 10 

ORDER BY 
job_title") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title employee_cnt avg_org_tenure avg_commute_dist 
## 1 Healthcare Representative 131 8.6 9.8 
## 2 Laboratory Technician 259 5.0 9.4 
## 3 Manager 52 13.7 7.2 
## 4 Manufacturing Director 145 7.6 9.5 
## 5 Research Director 80 10.9 8.4 
## 6 Research Scientist 292 5.1 9.0 

In this case, if demographics is the base data set which contains all employee ids 
(i.e., the “LEFT” data set), it is important for tenure and job to be joined to it. 
Joining job to tenure may result in information loss if an employee id exists in 
demographics and job but not in the intermediate tenure data set. 

When integrating data within R, the tidyverse provides a more efficient and 
parsimonious method of joining many data sets using various join types. Within this 
framework, components are chained together via the |> operator. Though slightly 
less efficient, the legacy %>% operator could be used as an alternative. The example 
below joins nine data sets into a single employees data frame using a left join on 
the employee_id column:



42 Introduction to SQL

# Load library 
library(tidyverse) 

employees <- list(demographics, 
status, 
benefits, 
job, 
payroll, 
performance, 
prior_employment, 
sentiment, 
tenure) |> 
purrr::reduce(left_join, by = "employee_id") 

Subqueries 

Subqueries are queries nested within other queries. Subqueries are often referred to 
as inner queries, while the main queries are referred to as outer queries. 

For example, if we are interested in performing an analysis on employees with 
more than a year of organization tenure, we can use a subquery to pass a list of 
employee ids that meet this criterion into the outer query for filtering. In this case, 
we would not need to include tenure in the join conditions of our main query: 

# Store SQL query as a character string 
# Note: Since employee_id exists in multiple data sets, we 

would need to specify the data set to include this field 
in the outer query

↪→
↪→ 

sql_string <- paste("SELECT 
job_title, 
COUNT(*) AS employee_cnt, 
ROUND(AVG(commute_dist), 1) AS 

avg_commute_dist↪→ 

FROM 
demographics 

LEFT JOIN 
job 

ON 
demographics.employee_id = 

job.employee_id↪→ 

WHERE 
demographics.employee_id IN (SELECT 

employee_id FROM tenure WHERE org_tenure > 1)↪→
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AND 
dept = 'Research & Development' 

GROUP BY 
job_title 

HAVING 
COUNT(*) > 10 

ORDER BY 
job_title") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title employee_cnt avg_commute_dist 
## 1 Healthcare Representative 118 9.7 
## 2 Laboratory Technician 198 9.6 
## 3 Manager 49 6.9 
## 4 Manufacturing Director 133 9.7 
## 5 Research Director 74 8.3 
## 6 Research Scientist 238 9.2 

Virtual Tables 

An alternative to a subquery is creating a virtual table in the FROM clause. When 
using an INNER JOIN to connect demographics to the virtual table ids, which 
provides a list of employee ids for those with more than a year of organization 
tenure, any records in demographics or job that do not relate to employees with at 
least a year of organization tenure will be dropped. This is true even though a LEFT 
JOIN is used to join job to demographics since records in demographics will 
be filtered based on employee_id matches in the virtual table. With this approach, 
our WHERE clause is limited to the department = 'Research & Development' 
condition: 

# Store SQL query as a character string 
sql_string <- paste("SELECT 

job_title, 
COUNT(*) AS employee_cnt, 
ROUND(AVG(commute_dist), 1) AS 

avg_commute_dist↪→ 

FROM 
demographics 

LEFT JOIN 
job
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ON 
demographics.employee_id = 

job.employee_id↪→ 

INNER JOIN 
(SELECT employee_id FROM tenure WHERE 

org_tenure > 1) ids↪→ 

ON 
demographics.employee_id = 

ids.employee_id↪→ 

WHERE 
dept = 'Research & Development' 

GROUP BY 
job_title 

HAVING 
COUNT(*) > 10 

ORDER BY 
job_title") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title employee_cnt avg_commute_dist 
## 1 Healthcare Representative 118 9.7 
## 2 Laboratory Technician 198 9.6 
## 3 Manager 49 6.9 
## 4 Manufacturing Director 133 9.7 
## 5 Research Director 74 8.3 
## 6 Research Scientist 238 9.2 

As you can see, the output of the query using a virtual table matches the results 
from the preceding approach that utilized a subquery. 

Window Functions 

Window functions are used for performing calculations over a set of rows without 
collapsing the records. Unlike the aggregate functions we have covered, window 
functions do not collapse rows into a single value; the calculated value is returned 
for each of the rows over which the calculation is performed. 

For example, we can assign an organization tenure rank by Research & Devel-
opment job using the RANK() and OVER() functions in the SELECT clause. The 
PARTITION BY argument functions like a GROUP BY clause but without collapsing
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rows, while the ORDER BY argument sorts the records in ascending (ASC) or  
descending (DESC) order for proper ranking: 

# Store SQL query as a character string 
# Limit output to 10 records since query does not collapse 

records↪→ 

sql_string <- paste("SELECT 
demographics.employee_id, 
job_title, 
commute_dist, 
RANK () OVER (PARTITION BY job_title 

ORDER BY commute_dist DESC) AS commute_dist_rank↪→ 

FROM 
demographics 

LEFT JOIN 
job 

ON 
demographics.employee_id = 

job.employee_id↪→ 

INNER JOIN 
(SELECT employee_id FROM tenure WHERE 

org_tenure > 1) ids↪→ 

ON 
demographics.employee_id = 

ids.employee_id↪→ 

WHERE 
dept = 'Research & Development' 

ORDER BY 
job_title, 
commute_dist_rank 

LIMIT 10") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## employee_id job_title commute_dist commute_dist_rank 
## 1 2325 Healthcare Representative 29 1 
## 2 1414 Healthcare Representative 28 2 
## 3 1010 Healthcare Representative 27 3 
## 4 1573 Healthcare Representative 27 3 
## 5 2200 Healthcare Representative 26 5 
## 6 1730 Healthcare Representative 25 6 
## 7 1833 Healthcare Representative 25 6 
## 8 1993 Healthcare Representative 25 6 
## 9 2415 Healthcare Representative 25 6 
## 10 1164 Healthcare Representative 24 10
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Notice that in the case of commute distance ties, the RANK() function assigns the 
same rank and then adds the number of ties to that rank to determine the rank for 
the next highest value of commute distance. 

We can also treat this query as a virtual table, and then filter on the derived 
commute_dist_rank field to return the highest commute distance for each job. We 
can add a DISTINCT() function in the SELECT clause to collapse jobs for which 
there are more than one employee with the max commute distance and display the 
number of ties for each using the COUNT(*) function: 

# Store SQL query as a character string 
sql_string <- paste("SELECT 

DISTINCT(job_title) AS job_title, 
COUNT(*) AS employee_count, 
commute_dist 

FROM 
(SELECT 

demographics.employee_id, 
job_title, 
commute_dist, 
RANK () OVER (PARTITION BY job_title 

ORDER BY commute_dist DESC) AS commute_dist_rank↪→ 

FROM 
demographics 

LEFT JOIN 
job 

ON 
demographics.employee_id = 

job.employee_id↪→ 

INNER JOIN 
(SELECT employee_id FROM tenure 

WHERE org_tenure > 1) ids↪→ 

ON 
demographics.employee_id = 

ids.employee_id↪→ 

WHERE 
dept = 'Research & Development' 

ORDER BY 
job_title, 
commute_dist_rank) tbl 

WHERE 
tbl.commute_dist_rank = 1 

GROUP BY 
job_title")
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# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title employee_count commute_dist 
## 1 Healthcare Representative 1 29 
## 2 Laboratory Technician 6 29 
## 3 Manager 2 29 
## 4 Manufacturing Director 4 29 
## 5 Research Director 3 28 
## 6 Research Scientist 4 29 
## 7 Vice President 1 8 

Common Table Expressions (CTEs) 

An alternative to the virtual table approach is to use a common table expression 
(CTE), which is the result set of a query that exists temporarily and only for use in 
a larger query. Like the virtual table example, CTEs do not persist data in objects or 
tables; the data exist only for the duration of the query. 

# Store SQL query as a character string 
sql_string <- paste("WITH max_commute_job 

AS 
(SELECT 

demographics.employee_id, 
job_title, 
commute_dist, 
RANK () OVER (PARTITION BY job_title 

ORDER BY commute_dist DESC) AS commute_dist_rank↪→ 

FROM 
demographics 

LEFT JOIN 
job 

ON 
demographics.employee_id = 

job.employee_id↪→ 

INNER JOIN 
(SELECT employee_id FROM tenure 

WHERE org_tenure > 1) ids↪→ 

ON 
demographics.employee_id = 

ids.employee_id↪→ 

WHERE
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dept = 'Research & Development' 
ORDER BY 

job_title, 
commute_dist_rank) 

SELECT 
DISTINCT(job_title) AS job_title, 
COUNT(*) AS employee_count, 
commute_dist 

FROM 
max_commute_job 

WHERE 
commute_dist_rank = 1 

GROUP BY 
job_title") 

# Execute SQL query 
sqldf::sqldf(sql_string) 

## job_title employee_count commute_dist 
## 1 Healthcare Representative 1 29 
## 2 Laboratory Technician 6 29 
## 3 Manager 2 29 
## 4 Manufacturing Director 4 29 
## 5 Research Director 3 28 
## 6 Research Scientist 4 29 
## 7 Vice President 1 8 

Review Questions 

1. What two clauses must always be present in a SQL query? 
2. What SQL clause is executed first at run time? 
3. To optimize the performance of a SQL query, how should conditions in the 

WHERE clause be ordered? 
4. How do aggregate functions differ from window functions in SQL? 
5. What is a subquery? 
6. What is the difference between an INNER JOIN and LEFT JOIN? 
7. What is the purpose of a common table expression (CTE)? 
8. What does the PARTITION BY function do?
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9. Why is it important for queries to limit records on the database side before 
reading into R? 

10. In which clause are filter conditions applied to aggregate functions (e.g., 
COUNT(*) > 5, AVG(salary) < 100000)? 
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Research Design 

The importance of appropriate research methods and designs cannot be overstated. 
Research methods and designs help us achieve an accurate understanding of various 
phenomena and ensure conclusions are justified. 

Research Questions 

Research questions are fundamental to all research projects. Research questions 
help focus the study, determine the appropriate methodology, and guide each stage 
of inquiry, analysis, and reporting. Some examples of research questions germane 
to people analytics include: 

• . Q1: Why has there been an increase in attrition over the past quarter? 
• . Q2: How equitable are promotion nominations across the organization? 
• . Q3: Are there meaningful differences in the favorability of experiences for 

remote vs. non-remote employees? 
• . Q4: Do new joiners have the training and resources they need to be successful? 
• . Q5: What portion of team performance is attributable to leadership effective-

ness? 

Research Hypotheses 

Research hypotheses are testable statements about the expected outcome of a 
research project or experiment. 

• . H1: Manager satisfaction is a significant predictor of voluntary attrition. 
• . H2: Promotion nomination rates are not significantly different by gender and 

ethnicity. 
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• . H3: Employee experience favorability is not significantly different between 
remote and non-remote workers. 

• . H4: New hire training perceptions are positively associated with onboarding 
experience favorability. 

• . H5: Leadership effectiveness perceptions explain significant variation in team 
performance. 

Internal and External Validity 

Internal validity refers to the extent to which confounding variables are controlled. 
In other words, internal validity reflects the robustness of the study. 

For example, if a study finds a significant relationship between work location and 
attrition but considers no other factors or explanations, this would not be a robust 
study.Work location may emerge significant because certain roles for which attrition 
is higher are more concentrated in one or more geographies. It could also be the 
case that the company has made acquisitions in new geographies, and the acquired 
employees have significantly different experiences (and attrition rates) relative to 
non-acquired employees. 

Confounding variables are critically important in the context of internal validity. 
A confounding variable is an extraneous variable whose presence impacts the 
variables being studied such that results do not reflect the actual relationships. 
Studies with weak internal validity often result in spurious associations that 
confound the true relationship between two variables, leading to invalid conclusions 
and recommendations. 

External validity refers to the extent to which study conclusions will hold in 
other contexts (for other people, in other places, at other times). Randomization 
is fundamental to our ability to generalize and apply findings to other groups or 
contexts. 

If we survey employees to understand sentiments about recent changes in 
business strategy but exclude groups for which there may be different impacts or 
perceptions, conclusions about the collective sentiment would be suspect at best. 

Research Methods 

There are three major categories of research methods: (1) quantitative, (2)  qualita-
tive, and (3) mixed methods. 

1. Quantitative 

• Addresses what questions 
• Utilizes numerical data (e.g., surveys, systems) 
• Primarily deductive
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• Used to test hypotheses 
• Involves statistical analyses 
• More objective 
• More generalizable 

2. Qualitative 

• Addresses how and why questions 
• Utilizes text data (e.g., focus groups, interviews, open-ended feedback) 
• Primarily inductive 
• Used to formulate theory or hypotheses 
• Involves organizing data into categories or themes 
• More subjective 
• Less generalizable 

3. Mixed Methods 

• Integrates the strengths of both quantitative and qualitative methods within 
a single study, often leading with qualitative approaches to build theory and 
hypotheses followed by quantitative methods to test hypotheses 

Research Designs 

In addition to determining whether a quantitative, qualitative, or mixed methods 
study is most appropriate, researchers also need to decide on the type of study within 
each of these three. Research designs are the types of inquiry within quantitative, 
qualitative, and mixed methods approaches that issue specific direction for the 
research procedures (Creswell & Creswell, 2018). There are multiple taxonomies 
for research designs, and we will simplify to the most common types. 

Within the quantitative category, there are three types of designs: (a) experi-
mental, (b)  quasi-experimental, and (c) non-experimental. As shown in Fig. 1, it  
is important to understand the centrality of randomization in this decision.

Fig. 1 Quantitative research 
designs
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Experimental Research 

Experimental research is concerned with casual (internal) validity. Randomized 
experimental designs provide the most rigor with regard to causal validity. However, 
in social science research contexts, true experiments often are not possible due to 
ethical considerations. 

For example, if we were interested in understanding the causal effect leadership 
quality has on employee engagement, based on a hypothesis that poor leadership 
decreases employee engagement, we would need to randomly assign employees 
to one of two groups that are identical on the basis of all variables that could 
theoretically explain why employees vary in their levels of engagement. Then, we 
would need to manipulate the variable of interest (leadership quality) to evaluate 
if the group of employees subjected to poor leadership (treatment group) reports 
significantly different levels of engagement relative to the group of employees for 
whom leadership quality has not been manipulated (control group). In a practical 
setting, it would of course be unethical to purposefully subject employees to 
poor leadership with the expectation of reducing engagement—and consequently, 
productivity, retention, and impact to the organization. 

Clinical trials are a common setting for true experiments, as isolating the 
effects of an experimental drug can be a matter of life or death. In a randomized 
clinical trial, patients are randomly assigned to an experimental group (patients 
who receive the drug) or control group (patients who receive a placebo). To protect 
against placebo effects biasing the results, patients do not know if they receive the 
experimental treatment or the placebo. Done correctly, these experiments have the 
highest level of internal validity. 

Another example of an experimental design is A/B testing. A/B testing is often 
performed in the context of website optimization, in which two or more versions 
of the site are shown to customers to identify which version impacts key success 
metrics more positively. In a people analytics context, we may create two versions 
of a dashboard and randomly assign the permissioned users to each. We could then 
assess whether utilization rates, average usage time, repeat usage, among other 
success measures are significantly different between the two groups of users to 
inform which design is most effective. 

In experimental research, it is important to consider the potential influence of the 
Hawthorne Effect, which refers to the tendency of some individuals to modify 
their behavior in response to the awareness that they are being observed. This 
term was coined during experiments at Western Electric’s factory in the Hawthorne 
suburb of Chicago in the late 1920s and early 1930s. One of many studies 
conducted to understand how work environments effect productivity was known 
as the “Illumination Experiment.” During this study, researchers experimented with 
a number of lighting levels in a warehouse in which workers made electrical relays. 
The researchers found that any change in the lighting—even when introducing poor 
lighting—led to favorable changes in output. However, these productivity gains 
disappeared once the attention faded (Roethlisberger and Dickson, 1939).
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In a people analytics context, if we inform employees that we are going to 
monitor productivity over a period of time, it is likely that at least some employees 
will attempt to modify their behavior in order to increase productivity levels. After 
all, higher productivity is generally regarded as an ideal across companies and 
industries. In this case, manipulating some aspect of the typical work context to 
study a treatment effect, such as flexible work arrangements, may be impacted 
by this phenomenon; that is, observed differences in productivity may not be 
attributable to flexible work arrangements but merely due to employees knowing 
they are being observed. 

Quasi-Experimental Research 

Quasi-experimental research is an experiment in which participants cannot be 
randomly assigned. 

In the case of our leadership quality example, a quasi-experiment may examine 
engagement differences between two groups of employees who rate their leader 
either favorably (Group A) or unfavorably (Group B). A key limitation of this 
approach is that the groups may be different in important ways beyond leader 
perception incongruities. For example, Group A employees may be concentrated 
within a single department, whereas Group B employees may span all other 
departments. This would indicate that the difference in leadership—and presumably 
engagement—is driven by factors unique to the department, making it more 
challenging to isolate the effects of leadership quality on engagement. Perhaps the 
department with unfavorable leader perceptions has seen significant attrition, or the 
department is largely first-time people leaders in need of coaching and support. 

Another example of quasi-experiments is a pretest-posttest setting in which there 
are multiple measures. Random assignment could be used in pretest-posttest con-
texts, in which case this would be characterized as a true experiment, but often this 
approach is implemented without random assignment. For example, we could test 
the hypothesized effect of leadership quality on engagement via a pretest-posttest 
approach. If leaders are selected for a leadership development workshop, we could 
survey the leaders’ teams and collect data on leader effectiveness perceptions and 
self-reported engagement prior to (baseline) and after the workshop. It is unlikely 
that leaders were selected for this workshop by a random process; there were likely 
criteria driving the selection, such as leaders who were identified as critical talent or 
who achieved a certain performance level. If this study finds that improvements in 
leadership effectiveness correlate with improvements in engagement, there would 
be some evidence favoring investments in leadership development; however, this 
would not be sufficient evidence for a causal effect. 

Though quasi-experiments are not as robust as true experiments, they are 
usually more feasible in a people analytics context. True experiments control 
for confounding variables by way of the research design (randomization ensures 
equivalent groups), while these factors must be controlled statistically in quasi-



56 Research Design

experimental contexts. In chapter “Linear Regression”, we will discuss how to 
model relationships among multiple variables in order to study how one variable 
influences another while holding constant variables that may influence the outcome 
but are not the primary focus of the research. 

Non-Experimental Research 

Unlike experimental and quasi-experimental designs, non-experimental research 
does not involve the manipulation of a variable. The goal of non-experiments is 
not to provide evidence for causal effects, but to study measured variables as they 
naturally occur and disentangle patterns in the data. 

Given the potential for alternative explanations of any observed differences or 
relationships, non-experimental research tends to have lower internal validity than 
experimental and quasi-experimental designs. As we have discussed, it is often not 
possible or ethical to manipulate aspects of a person’s work context or to randomly 
assign people to groups. In addition, the nature of research questions does not always 
warrant experiments. In these cases, one of three non-experimental approaches may 
be considered: (a) cross-sectional, (b)  correlational, and (c) observational. 

Cross-sectional research compares two or more natural groups of people. For 
example, we may examine differences in engagement between employees in the 
Engineering department relative to employees in the Product department. In this 
case, we would neither manipulate one’s department to determine how department 
influences engagement nor randomly assign employees to these departments. 
Department membership exists apart from the research, so these naturally occurring 
groups can be leveraged for comparisons. There are of course many examples of 
naturally occurring groups that we would not manipulate, such as gender, ethnicity, 
generation, education, job family, job level, location, and tenure band. When 
participant characteristics are used to create groups, these variables are sometimes 
referred to as experimenter-selected—rather than experimenter-manipulated. 

Correlational research involves studying the statistical relationship between 
two variables without manipulating some aspect of a person’s natural context. The 
relationship between leadership quality and engagement could be evaluated using 
correlational research. However, we would be unable to leverage a correlational 
design to test a hypothesis positing a causal effect of leadership quality on 
engagement. We would be limited to understanding how leadership quality and 
engagement covary; that is, to what extent a change in one variable is associated 
with a change in the other. Engagement may tend to increase as leadership quality 
increases, but a correlational design does not lend to understanding the direction of 
causal influence—if such an effect exists. 

Observational research refers to studies in which the researcher gathers infor-
mation without research subjects being explicitly involved in the recording of data. 
Collecting data from the company’s Human Capital Management (HCM) system 
could be an observational research method. For example, if we access data on
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terminations to determine the rate of attrition over a specified period, we would 
not need to interfere by asking past or present employees for this information. We 
would also do so without manipulating any aspect of the ordinary environment, 
tagging people to naturally occurring or artificially created groups, or evaluating the 
association of attrition with another variable. The reality is that such an approach 
would not be too actionable, however, as this would offer no understanding of what 
may be influencing attrition. 

Review Questions 

1. What type of research method and design would be best suited for a study 
aiming to understand the effect of stay interviews on employee attrition? 

2. Why are quasi-experiments less rigorous than true experiments? 
3. When evaluating the effectiveness of a new program, what are some reasons an 

experimental design would not be implemented? 
4. What is the role of research questions? 
5. What is the role of research hypotheses? 
6. What is the difference between internal and external validity, and why are these 

concepts important in research? 
7. What is an example of a mixed methods study? 
8. What is the key difference between experimental and non-experimental 

research designs? 
9. What are the differences between cross-sectional, correlational, and observa-

tional non-experimental designs? 
10. How can the Hawthorne Effect impact the integrity of an experiment? 
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Measurement and Sampling 

This chapter will cover variable types, measurement scales, errors, sampling 
methods, and scale reliability and validity. 

Variable Types 

The framing of variables in research hypotheses guides the treatment of each in 
our analyses. This section explores the function of independent, dependent, control, 
moderating, and mediating variables as well as the broader classification of these 
variables as either endogenous or exogenous. 

Independent Variables (IV) 

An Independent Variable (IV) is a variable which is assumed to have a direct effect 
on another variable. IVs are sometimes referred to as predictors, factors, features, 
antecedents, or  explanatory variables, and these terms will be used interchangeably 
throughout this book. 

Let us consider a scenario in which we wish to examine whether an inclusion 
training program given to a random sample of leaders has a positive effect on 
team-level belonging. In a true experimental design, participation in the inclusion 
training would be the only difference between the treatment (teams whose leaders 
who participate in the training) and the control (teams whose leaders who do not 
participate in the training). In this case, inclusion training participation is the IV 
(the variable we are manipulating). 

IVs are also present in non-experimental designs. For example, we may survey 
employees and ask them to rate how inclusive their leader is and also provide 
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self-reported belonging ratings. In this context, leader inclusiveness (rather than an 
inclusion training) is the IV. If we find that average team-level belonging scores 
tend to be higher when leader inclusiveness scores are higher, this may indicate that 
leader inclusion has some influence on team-level belonging. Of course, there could 
be alternative explanations for any observed differences in team-level belonging, 
which is why experimental designs tend to provide stronger evidence for an IV’s 
effect. 

Dependent Variables (DV) 

A Dependent Variable (DV) is a variable that is dependent on the IV. DVs are also 
referred to as outcome, response, or  criterion variables. 

In our leader inclusion example, team-level belonging is the DV since this 
variable is assumed to depend on the level of team leaders’ inclusiveness. It is 
important to note that regardless of a study’s results, it is the positioning of the 
variables in the study’s hypotheses (rooted in theory) that determines the type of 
variable. If we hypothesize that leader inclusion training has a positive effect on 
team-level belonging, but the study finds no such effect, the inclusion intervention 
is still the IV and team-level belonging the DV. 

Control Variables (CV) 

A Control Variable (CV) is a variable that is held constant in research. The 
unchanging state of a CV allows us to understand the extent to which the IV has 
a unique and independent effect on the DV. 

In an experimental context, control variables represent a researcher’s attempt 
to control for alternative explanations so that the IV’s main effect on the DV 
can be isolated. In our leader inclusion example, we would seek to determine 
whether the reason for any observed differences in team-level belonging can be 
attributed to leader inclusion training rather than other factors that theoretically 
may explain the differences. In this setting, we should ensure that the two groups 
are similar with respect to characteristics such as gender and ethnicity, since 
underrepresented groups (URGs) may have different experiences independent of 
any training programs. Gender and ethnicity would be CVs in this case. 

While we control for the effects of alternative explanations by way of the 
research design in an experimental context, we will discuss ways to control for 
these statistically in chapter “Linear Regression” for correlational designs. CVs are 
equally important in experimental and non-experimental contexts.
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Moderating Variables 

A Moderating Variable influences the strength of the effect of an IV on a DV. The 
effect of a moderating variable is often referred to as an interaction effect or in the 
context of a model, an interaction term. 

Moderating variables may augment (strengthen) or attenuate (weaken) the effect 
one variable has on another. Interactions are widely understood in the context of 
medications; one drug may independently have a positive effect on one’s health 
but when combined with another medication, the interaction can behave very 
differently—and may even be lethal. In our inclusive leadership example, we may 
find that the strength of the training’s effect on team-level belonging varies based on 
a leader’s span of control (SoC). It stands to reason that leaders with a lower SoC 
may find it easier to cultivate a climate of inclusivity and belonging, while leaders 
with a higher SoC may have more scope/projects and team dynamics to manage 
and may find it more difficult to consistently apply strategies covered during the 
training. 

Interactions between variables are vital to our understanding of nuance and com-
plexity in the dynamics influencing outcomes in organizational settings. Chapter 
“Linear Regression” will cover how to test whether an interaction is meaningful or 
observed merely due to chance. 

Mediating Variables 

A Mediating Variable explains the how or why of an IV’s effect on a DV. It may 
be helpful to think of mediating variables as a “go-between”—a part of the causal 
pathway of an effect. 

In the case of inclusive leadership training, effects on belonging are likely not 
the result of the training itself. More likely, the training raised awareness and helped 
leaders develop strategies to cultivate team inclusivity. One strategy endorsed during 
the training may be participative decision making, and the implementation of this 
strategy may explain why the training has a positive effect on team-level belonging. 
There may be multiple mediators of any observed effect of the intervention on team-
level belonging depending on training outcomes. 

Variables in these more complex relationship paths are sometimes characterized 
as having proximal or distal effects. Proximal effects are those which directly 
influence an outcome, such as the impact of participative decision making on team 
belonging. Distal effects are upstream effects that indirectly influence an outcome, 
such as inclusion training participation. 

Mediating variables may fully or partially mediate the relationship between an 
IV and DV. Full mediation indicates that the mediator fully explains the effect; in 
other words, without the mediator in the model, there is no relationship between 
an IV and a DV. Partial mediation indicates that the mediator partially explains the
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Fig. 1 Conceptual model of hypothesized relationships among variables 

effect; that is, there is still a relationship between an IV and DV without the mediator 
in the model. Partial mediation indicates that there are additional explanations for 
how or why observed effects exist, such as the implementation of additional team 
inclusion strategies influencing team belonging. In chapter “Linear Regression”, we 
will discuss how to test for both full and partial mediation. 

Translating research hypotheses into conceptual models of hypothesized rela-
tionships is helpful in visually representing the function of each variable in the 
study. Figure 1 illustrates how each type of variable is depicted using our inclusive 
leadership example. 

Endogenous vs. Exogenous Variables 

In the context of regression models, which will be covered in later chapters, vari-
ables are sometimes categorized as either endogenous or exogenous. Endogenous 
and exogenous variables are especially important in econometrics and economic 
modeling in which analysts seek to understand causal factors influencing outcomes. 

An endogenous variable is a dependent variable whose values can be deter-
mined or explained based on the other variables in a statistical model. In other 
words, values of the dependent variable change predictably with values of other 
variables in the model. By contrast, an exogenous variable is an independent 
variable on which other variables in the model have no direct or systematic impact. 

For example, if we are interested in studying the factors influencing year-to-date 
(YTD) sales among salespeople, we may consider an independent variable such as 
years of sales experience. If YTD sales is a function of one’s sales experience, YTD 
sales is an endogenous variable since its values can be explained—at least in part—
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by the values of the independent factor (sales experience). Since one’s experience 
in sales is independent of other variables in the model (i.e., YTD sales does not 
influence a person’s years of experience), experience is an exogenous variable. 

Measurement Scales 

Measurement scales are used to categorize and quantify variables. There are 
two major categorizations—discrete and continuous—and these, together with the 
research hypotheses, help determine appropriate types of analyses to perform. 

Discrete Variables 

Discrete variables are also known as categorical or qualitative variables. Categor-
ical variables have a finite or countable number of values associated with them, and 
these can be further categorized as either nominal or ordinal. 

Nominal 

A nominal variable is one with two or more categories for which there is no intrinsic 
ordering to the categories. Examples of nominal variables include office locations, 
departments, and teams. A dichotomous variable is a specific type of nominal 
variable which has only two unordered categories. Examples of dichotomous 
variables include people leader vs. individual contributor, active vs. inactive status, 
and remote worker vs. non-remote worker. 

Ordinal 

An ordinal variable is like a nominal variable with one important difference: ordinal 
variables have ordered categories. Examples of ordinal variables include education 
levels, job levels, and survey variables measured on Likert-type scales. 

Continuous Variables 

Continuous variables are also known as quantitative variables. Continuous vari-
ables can assume any real value in some interval, and these can be further 
categorized as either interval or ratio variables.
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Interval 

Variables measured on an interval scale have a natural order and a quantifiable 
difference between values but no absolute zero value. Examples include SAT scores, 
IQ scores, and temperature measured in Fahrenheit or Celsius (but not Kelvin). In 
these examples, 0 is either not an option (i.e., SAT and IQ) or does not represent the 
absence of something (e.g., 0 degrees is a temperature). 

Ratio 

Variables measured on a ratio scale have the same properties as data measured on 
an interval scale with one important difference: ratio data have an absolute zero 
value. Examples include compensation, revenue, and sales; a zero in these contexts 
is possible and would indicate a true absence of something. 

Sampling Methods 

The goal of research is to understand a population based on data from a subset 
of population members. In practice, it is often not feasible to collect data from 
every member of a population, so we instead calculate sample statistics to estimate 
population parameters. 

While the population represents the entire group of interest, the sampling frame 
represents the subset of the population to which the researcher has access. In an ideal 
setting, the population and sampling frame are the same, but they are often different 
in practice. For example, a professor may be interested in understanding student 
sentiment about a new school policy but only has access to collect data from students 
in the courses she teaches. In this case, the entire student body is the population 
but the students she has access to (those in the courses she teaches) represent the 
sampling frame. The sample is the subset of the sampling frame that ultimately 
participates in the research (e.g., those who complete a survey or participate in a 
focus group). 

Sampling methods are categorized as either probability or non-probability, and 
this section will cover the types and implementations within each. 

Probability Sampling 

Probability sampling can help us gain insight into the probable. Probability 
sampling is intended to facilitate inferences since data collected through random 
selection methods are more likely to be representative of the population.
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It is important to understand the centrality of randomness in probability sam-
pling. Randomization protects against subjective biases, self-validates the data, and 
is the key ingredient that defines the representative means of extracting information 
(Kahneman, 2011). Sample data that are not representative of the population of 
interest can lend to anomalies—mere coincidences. While non-random data can 
be leveraged for directionally correct insights, randomness is required to make 
inferences about a broader population with a reasonable degree of confidence. 

Let us consider an example from Kahneman (2011) in which six babies are 
born in sequence at a hospital. The gender of these babies is of course random and 
independent; the gender of one does not influence the gender of another. Consider 
the three possible sequences of girls (G) and boys (B) below: 

• BBBGGG 
• GGGGGG 
• BGBBGB 

Though it may initially be counter-intuitive, since the events are independent and 
the outcomes (B and G) are (approximately) equally likely, any possible sequence 
of births is as likely as any other. 

Sample size (colloquially referred to as the n-count) is another important factor 
in sampling as this can have a material influence on the representativeness of sample 
data—and consequently, the veracity of results and conclusions based on them. 
As we will explore further in chapter “Statistical Inference”, as the sample size 
increases, so too does our confidence that estimates based on sample data reflect 
population parameters. 

To illustrate the effects of sample sizes, let us consider a hypothetical study in 
which the promotion rate in an organization is found to be lowest in divisions that 
are primarily software engineers, low diversity, small, and geographically dispersed. 
Which of these characteristics might offer an explanation? Let us assume that this 
study also found that the divisions with highest promotion rates have identical char-
acteristics: software engineers, low diversity, small, and geographically dispersed. 
The key piece of information here is that the divisions are small. 

Small samples yield extreme results more often than large samples. Small 
samples neither cause nor prevent outcomes; they merely allow the incidence of 
the outcome to be much higher (or much lower) than it is in the larger population 
(Kahneman, 2011). 

Simple Random Sampling 

Simple random sampling is a method in which each member of the population has 
the same probability of being selected for a sample. An example of simple random 
sampling is randomly selecting a specified number (or percent) of employees from 
the workforce to participate in a survey without regard for tenure, department, level, 
or other characteristics.
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We can use the sample() function in R to randomly select from a vector of 
elements: 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 

# Set seed for reproducible results 
set.seed(1234) 

# Sample 10 employees randomly 
n = 10 
sample(employees$employee_id, n, replace = F) 

## [1] 2308 2018 2125 2004 1623 1905 1645 1934 1400 1900 

The replace = F argument in the sample() function indicates that we want to 
sample without replacement (i.e., we do not want an employee to be selected twice 
in the sample). If we draw multiple names from a hat without replacement, we will 
not put names back into the hat once they are drawn; each has a chance of being 
selected only once. 

While sampling with replacement would not make sense for applications such as 
pulse survey participation, as we would not want a given employee to take a survey 
multiple times, replace = T can be applied if the application requires it (e.g., a 
lottery in which employees can win more than once). 

Stratified Random Sampling 

Stratified random sampling is a sampling method in which the population is first 
divided into strata. Then, a simple random sample is taken from each stratum—a 
homogeneous subset of the population with similar characteristics with regard to the 
variable of interest. The combined results constitute the sample. 

To ensure samples do not comprise a larger proportion of employees from a 
particular department, education level, tenure band, generational cohort, or other 
variable deemed useful in explaining differences in response scores, researchers can 
randomly select members for each stratum based on the proportion in the respective 
stratum in the larger population. For example, if 30% of all employees are in the 
Engineering department, the researcher could randomly select a calculated number 
of employees from the Engineering department such that 30% of employees in the 
sample come from this department. 

Let us demonstrate stratified random sampling in R by sampling . 
1
2 of employees 

within each department. First, we can review counts of employees for each
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department using the group_by() and summarise() functions from the dplyr 
library. 

# Load library 
library(dplyr) 

# Return employee counts by department 
employees |> 
dplyr::group_by(dept) |> 
dplyr::summarise(n =  dplyr::n()) 

## # A tibble: 3 x 2 
## dept n 
## <chr> <int> 
## 1 Human Resources 63 
## 2 Research & Development 961 
## 3 Sales 446 

Next, we will randomly select . 12 of employees within each department using the 
group_by() and sample_frac() functions from the dplyr library. We will store 
the selected employees’ records in a data frame and then query it to validate that the 
counts are roughly . 

1
2 the total count observed for each department. 

# Obtain and store stratified random sample 
strat_sample <- employees |> 

dplyr::group_by(dept) |> 
dplyr::sample_frac(size = .5) 

# Return sample counts by department 
strat_sample |> 
dplyr::group_by(dept) |> 
dplyr::summarise(n =  dplyr::n()) 

## # A tibble: 3 x 2 
## dept n 
## <chr> <int> 
## 1 Human Resources 32 
## 2 Research & Development 480 
## 3 Sales 223 

Cluster Sampling 

Cluster sampling is a sampling method often used in market research in which the 
population is first divided into clusters. Then, a simple random sample of clusters
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is taken. All the members of the selected clusters together constitute the sample. 
Unlike stratified random sampling, it is the clusters that are selected at random— 
not the individuals. It is assumed that each cluster by itself is representative of the 
population (i.e., each cluster is heterogeneous). 

Employees may be partitioned into clusters based only on their geographic 
region, for example. Since there is not further partitioning on other variables, 
each cluster is expected to be heterogeneous on the basis of variables other than 
geographic region—unless geography is related to other variables (e.g., call center 
employees are all located in a company’s Pacific Northwest region). By selecting a 
random set of clusters, the combination of employees across the selected clusters is 
expected to be representative of the population. 

Let us demonstrate how to implement cluster sampling in R: 

# Randomly assign each employee to 1 of 10 clusters (groups) 
employees$cluster <- sample(1:10, size = nrow(employees), 

replace = T)↪→ 

# Randomly select 5 clusters 
clusters <- sample(unique(employees$cluster), size = 5, 

replace = F)↪→ 

# Store cluster sample 
clust_sample <- employees |> 

dplyr::filter(cluster %in% clusters) 

# Display dimensions of the cluster sample object 
dim(clust_sample) 

## [1] 748 37 

Systematic Sampling 

Systematic sampling involves selecting sample members from a population accord-
ing to a random starting point and a fixed, periodic interval known as a sampling 
interval. The sampling interval is computed by taking the population size and 
dividing it by the desired sample size. The resulting number is the interval at which 
population members are selected for the sample. 

For example, if there are 10,000 employees and our desired sample size is 500, 
the sampling interval is 20. Therefore, we would select every 20th employee for 
our sample. It is important that the sequence does not represent a standardized 
pattern that would bias the data; this process needs to be random. For example, if the 
employee id generated by the HCM system increases with time, we would expect 
employees with longer tenure to have lower employee ids while new joiners would
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have higher employee ids. Ordering employees by employee id prior to selection 
could bias the sample on the basis of variables related to tenure (e.g., aggressive 
periods of hiring in a particular department). 

Let us walk through the step-by-step process for implementing the systematic 
sampling procedure in R: 

# Specify desired sample size 
n = 100 

# Determine population size 
N = nrow(employees) 

# Compute sampling interval, rounding up to nearest whole 
number via the ceiling() function↪→ 

si = ceiling(N/n) 

# Randomly select value between 1 and the sampling interval 
for starting value↪→ 

strt = sample(1:si, 1) 

# Increment starting value by the sampling interval until the 
desired sample size is achieved, and hydrate index vector 
with the selected indices

↪→
↪→ 

index = seq(strt, strt + si * (n - 1), si) 

# Store systematic sample 
syst_sample <- employees[index, ] 

Non-Probability Sampling 

Non-probability sampling can help us gain insight into the possible. The  main  
difference between non-probability and probability sampling is that non-probability 
sampling does not involve random selection and probability sampling does. There-
fore, we cannot make inferences based on data collected through non-probability 
sampling methods since the sample is unlikely to be representative of the population. 

Convenience (Accidental) Sampling 

Convenience sampling is the most common type of nonprobabilistic sampling. This 
sampling method involves taking samples that are conveniently located around a 
specific location (physical or virtual).
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If we were to study employee sentiment about new benefit plans by polling 
employees walking through the lobby of a particular office building one morning, 
this would represent convenience sampling. Aside from the risk of employees 
sharing socially desirable responses in such a setting and invalidating the results, 
a major shortcoming of this approach is that we are only capturing the sentiment of 
those who happen to walk into one particular building during one limited window 
of time. This would not capture the sentiment of those working remotely, working 
in another office location, on PTO, taking a sick day, attending an offsite conference 
or meeting, or stuck in traffic and running late. 

Quota Sampling 

Quota sampling is a nonprobabilistic sampling method in which researchers assign 
quotas to a group of people to create subgroups of individuals that reflect the 
characteristics of the population. This is nonprobabilistic since researchers choose 
the sample rather than randomly selecting it. 

If the characteristics of the employee population are known, the researcher 
polling employees in the office lobby about benefit plans could collect some 
additional information (e.g., department, job, tenure) to achieve a commensurate 
proportion of each in the sample. If 30% of all employees are in the Engi-
neering department, the researcher could assign a quota—such as 3 in every 10 
participants—to choose a sample in which 30% of employees come from the 
Engineering department. 

Purposive (Judgmental) Sampling 

The main goal of purposive sampling is to construct a sample by focusing on 
characteristics of a population that are of interest to the researcher. Purposive 
sampling is often used in qualitative or mixed methods research contexts in which 
a smaller sample is sufficient. Since it is a nonprobabilistic sampling method, 
purposive sampling is highly prone to researcher bias. 

For example, the People Team may be interested in understanding what is top-of-
mind for employees in order to design a survey with relevant items. The team may 
choose people to participate in focus groups to surface qualitative themes—not for 
the purpose of generalizing findings but to guide survey item selection efforts. 

Sampling and Nonsampling Error 

Sampling and nonsampling errors are general categorizations of biases and error 
in research (Albright and Winston, 2016). It is important to understand these and 
proactively mitigate the risks they present to research integrity.
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Sampling Error 

Sampling error is the inevitable result of basing inferences on a random sample 
rather than the entire population. The twomain contributors to sampling error are the 
size of the sample and variation in the underlying population. The risk of sampling 
error decreases as the sample size approaches the population size; however, it is 
usually not feasible to gain information from the entire population, so sampling 
error is generally a concern. 

Selection Bias 

Selection bias is the bias introduced by a non-random method of selecting data for 
analysis, which can systematically skew results in a particular direction. Selection 
bias may result in observed relationships or differences that are not due to true 
relationships or differences in the underlying populations, but to the way in which 
participants or data were selected for the research. 

A type of selection bias that is especially important to consider in people 
analytics is survival bias. In people analytics, survival bias is the logical error of 
focusing only on people who made it past some selection process while overlooking 
those who did not. For example, to gain an accurate understanding of the number of 
employees who survive to each tenure milestone (e.g., 1 year, 2 years, 3 years, etc.), 
we need to study both active and inactive people to avoid biased results. We may 
find a significant drop in the percent of active employees who survive from 3 to 4 
years, for example, but without information on inactive employees we do not know 
if this is a function of hiring (i.e., relatively few hired more than 3 years ago) or due 
to a spike in attrition beyond 3 years of tenure. 

The work of a mathematician named Abraham Wald during World War II is a 
classic example of survival bias. Wald was a member of the Statistical Research 
Group (SRG) at Columbia University that examined damage to returning aircraft 
(Wald, 1943). Rather than focusing on the areas with damage, Wald recommended 
a different way of looking at the data, suggesting that the reason certain parts of 
planes were not covered in bullet holes was because planes that were shot in these 
areas did not return. In other words, locations with bullet holes represented locations 
that could sustain damage and still return home. This insight led to armor being 
reinforced in areas with no bullet holes (Fig. 2). 
Missing data can sometimes be more valuable than the data we have, and it is critical 
to promote a representative data generative process to prevent biased selection and 
results.
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Fig. 2 Hypothetical data for damaged portions of returning WWII planes. Image courtesy of 
Cameron Moll (2005) 

Nonsampling Error 

There are many types of nonsampling error that can invalidate results beyond the 
sampling procedure, and we will focus on several that are particularly germane to 
people analytics: nonresponse bias, nontruthful responses, measurement error, and 
voluntary response bias. 

Nonresponse Bias 

As discussed in the context of sampling error, we usually do not have access to 
information on entire populations of interest, so we must consider the possibility 
that those for whom we are missing data may have common qualities, perceptions, 
or opinions that differ from those for whom we do have data. This is known as 
nonresponse bias. 

Surveys are a staple in the set of data sources leveraged for people analytics. 
While survey data provide unique attitudinal and perceptive signals that can help 
explain future behavior and events, surveys tend to be far more susceptible to 
nonsampling error than other data sources. If we administer an employee experience 
survey to the entire organization and receive a 60% response rate, the reality is 
that we do not know how the 40% of nonrespondents would have responded. It 
is possible that nonrespondents represent highly disengaged employees, in which 
case their responses may have materially influenced results and conclusions in an 
unfavorable direction. It is also possible that nonrespondents did not participate 
because they were busy, away on vacation, cynical to the confidentiality language 
in the communications, or any number of other reasons which may or may not have 
resulted in significantly different feedback relative to respondents. 

As an aside, nonrespondents can actually function as an important variable in 
analyses. In some contexts, nonrespondents may be at greater risk of voluntary 
attrition than those who respond unfavorably on a stay intentions survey item such 
as, “I plan to be working here in one year.” Evaluating response rate distributions
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across departments, divisions, roles, and other dimensions may be an insightful 
endeavor. 

Nonresponse bias is not limited to surveys. For example, self-reported demo-
graphics such as gender and ethnicity may not be disclosed by all employees in the 
HCM system. This can bias segmentations based on these categorical dimensions. 
While there are strategies to address this, such as visual ID or applying models 
trained to infer missing values (which may be necessary to fulfill EEOC reporting 
requirements), there may still be error in the imputed values. 

Nontruthful Responses 

While high response rates may reduce nonresponse bias, this is not always 
something to celebrate. Organizations that incentivize participation in surveys often 
do so at the risk of people responding in socially desirable ways and providing 
nontruthful responses to achieve some defined target. If an employee has an 
unhealthy relationship with his manager and does not trust that managers will not 
have access to individual-level responses, the employee may decide to indicate on 
the survey that everything is highly favorable to help the team win the month of 
casual days leadership promised. This can skew and invalidate results. 

While survey participation should be strongly encouraged since higher response 
rates can mitigate the risk of certain types of bias and increase confidence that the 
survey is representative of the collective organization’s sentiments, incentivizing 
participation can be dangerous. 

Measurement Error 

Measurement error relates to errors stemming from confusing questions, survey 
fatigue, and low-quality scales used to measure multidimensional psychological 
constructs. The field of psychometrics is a vast scientific discipline concerned with 
the development of assessment tools, measurement instruments, and formalized 
models to understand latent psychological constructs such as engagement, belong-
ing, purpose, and wellbeing using observable indicators. 

The measurement method can affect observed data either by changing the 
underlying construct of interest or by distorting the measurement process without 
impacting the construct itself (Spector, 2006). Common method variance (CMV), 
also known as monomethod bias, relates to a widely held belief that relationships 
between variables measured using the same method are inflated. The idea that the 
measurement method itself introduces a degree of variance in measures has been 
cited in the organizational literature for decades, and it is raised almost exclusively 
when cross-sectional, self-reported surveys are utilized. Though controversial, there 
is generally a consensus that where it is possible to do so, it is preferable to leverage 
multiple measurement methods.
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My doctoral dissertation research explored how implicit voice theories, which 
are deep-seated beliefs about the risks involved in speaking up to those higher in 
the organizational hierarchy (e.g., negative career consequences), influenced the 
extent to which individual contributors actually speak up in prosocial ways to their 
leaders (Starbuck, 2016). Since the individual contributors are best placed to provide 
information on the implicit beliefs they maintain, the IV was measured using cross-
sectional self-reports. At the same time, I surveyed the immediate supervisor for 
each individual contributor and asked them to rate each of their direct reports using 
a leader-directed voice scale; these supervisor-reports of leader-directed voice were 
used as the DV in this study. To investigate CMV, which was a tangential interest to 
the primary research objective, I also included the leader-directed voice scale (using 
self-reported language) on the survey administered to individual contributors. 

For the 1032 employees from whom I collected data in an investment firm 
context (individual contributors: n = 696; supervisors: n = 336), I was surprised to 
find only a weak correlation between self-reported voice and supervisor-reported 
voice (r = .26, p < .01). On average, self-reported voice was higher with less 
variation (. x̄ = 5.91, s = 1.15) relative to supervisor-reported voice (. x̄ = 5.69, 
s = 1.34). Interestingly, there was support for almost none of the hypothesized 
relationships when supervisor-reported voice was positioned as the DV, though most 
were supported when self-reported voice was substituted as the DV in post-hoc 
analyses. 

Given the prevalence of monomethod self-reports in the social sciences, the 
influence of CMV is an important consideration. 

Scale Reliability and Validity 

While an exhaustive treatment of psychometrics is beyond the scope of this book, 
reliability and validity are two broad sets of methods designed to increase the 
robustness of psychological instrumentation which will be reviewed in this section. 

It may be helpful to consider a weight scale to understand differences between 
reliability and validity. A weight scale is designed to provide an accurate measure-
ment of one’s weight, and we expect measurements to be consistently accurate over 
time. If a 150 lb. person steps onto a weight scale and receives a reading of 180 lbs., 
the scale is not valid as the person actually weighs 30 lbs. less than the reading. If 
the person steps onto the scale a second time moments later and receives a reading 
of 200 pounds, the scale is not reliable either (inconsistent measurements). 

Figure 3 visually depicts differences between reliability and validity. As 
researchers, it is critical to measure what we intend to measure (validity) and 
do it with consistency (reliability). Survey items with poor psychometric properties 
can lend to invalid conclusions due to measurement error. Even slight adjustments 
to validated instrumentation—such as changing the number of scale anchors (e.g., 
increasing from a 5-point to 7-point Likert scale), tweaking item language, or
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Fig. 3 Visual depiction of reliability and validity 

modifying which items are included in a composite scale—generally warrant 
reliability and validity analyses. 

Reliability 

Reliability describes the quality of measurement (i.e., the consistency or repeata-
bility of measures). Types of reliability include: 

• Inter-Rater or Inter-Observer Reliability: the degree to which different 
raters/observers give consistent estimates of the same phenomenon. 

• Test-Retest Reliability: the consistency of a measure from one time to 
another. 

• Parallel-Forms Reliability: the consistency of the results of two tests 
constructed in the same way from the same content domain. 

• Internal Consistency Reliability: the consistency of results across items 
within a test. 

Validity 

Validity describes how well a concept was translated into a functioning and 
operating reality (operationalization). There are four main types of validity: (a) face 
validity, (b)  content validity, (c)  construct validity, and (d) criterion-related validity. 

Face validity 

Face validity is an assessment of how valid a measure appears on the surface. In 
other words, face validity represents whether the measurement approach on its face 
is a good translation of the construct. This is the least scientific method of validity 
and should never be accepted on its own merits.
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Content Validity 

Content validity is a somewhat subjective assessment of whether a measure covers 
the full content domain. Content validity relies on people’s perceptions to measure 
constructs that would otherwise be difficult to measure. 

For example, a panel of experts may gather to discuss the various dimensions of a 
theoretical construct. The psychometrician may then use this information to develop 
survey items that tap these dimensions to achieve a comprehensive measure of the 
construct. 

Construct Validity 

In social science, constructs are often measured using a collection of related indica-
tors that together, cover the various dimensions of the theoretical idea. Constructs 
may manifest in a set of behaviors, which provide evidence for their existence. 
Construct validity represents the degree to which a collection of indicators and 
behaviors—the operationalization of the concept—truly represents theoretical 
constructs. 

Psychological safety, a belief that a context is safe for interpersonal risk-taking 
(Edmondson, 1999), has no direct measure. However, there are indicators and 
behaviors that are helpful in understanding the extent to which an environment 
is psychologically safe. We may ask employees whether they are able to bring 
up problems to decision makers or whether it is safe to take risks on their team. 
Based on the theoretical conception of psychological safety, these would be helpful 
(though not collectively exhaustive) indicators of the construct in an organizational 
setting. 

Construct validity can be partitioned into two types: 

• Convergent validity: the degree to which the operationalization is similar to 
(converges on) other operationalizations to which it theoretically should be 
similar. 

• Discriminant validity: the degree to which the operationalization is not 
similar to (diverges from) other operationalizations to which it theoretically 
should not be similar. 

A nomological network is central to providing evidence for a measure’s 
construct validity. The nomological network is an idea developed by Cronbach and 
Meehl (1955) to represent the constructs of interest, their observable manifestations, 
as well as the interrelationships among them. The term “nomological” is derived 
from the Greek word meaning “lawful”; therefore, the nomological network aims 
to make clear what a construct means so that laws (nomologicals) can be applied. 
Simply put, the nomological network attempts to link the conceptual and theoretical 
realm to the observable one to provide a practical methodology for assessing a 
measure’s construct validity.
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If psychological safety theory suggests the construct should be positively 
associated with leader openness and negatively related to employee withholding 
(silence), we can use validated measures of openness and withholding to test for 
these theoretical relationships with psychological safety and substantiate construct 
validity. 

Criterion-Related Validity 

Criterion-related validity, sometimes referred to as instrumental validity, 
describes how well scores from one measure are adequate estimates of performance 
on an outcome measure (or criterion). 

There are two types of criterion-related validity: 

• Predictive validity: the operationalization’s ability to predict something it 
should theoretically be able to predict. 

• Concurrent validity: the operationalization’s ability to distinguish between 
groups that it should theoretically be able to distinguish between. 

If psychological safety should positively influence employee voice, there would 
be support for predictive validity if we find that employees who report more 
favorable perceptions of psychological safety are more willing to speak up. If 
we administer a new scale to measure psychological safety and at the same time 
(concurrently) administer an existing, validated measure of the same construct, 
highly correlated results would lend support for the new measure’s concurrent 
validity. 

For detailed instruction on the survey scale development process, see DeVellis 
(2012). 

Review Questions 

1. What are the differences between parameters and statistics? 
2. How does a sampling frame differ from a sample? 
3. How does cluster sampling differ from stratified random sampling? 
4. What is the primary benefit of probabilistic sampling methods over nonproba-

bilistic sampling? 
5. Is nonresponse bias only applicable in the context of surveys? 
6. What type of variable influences the strength of the effect one variable has on 

another? 
7. 100 randomly selected employees in the Marketing department of an organi-

zation participated in a survey on career pathing for marketing professionals. 
What is the sample and what is the population in this case?
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8. How does the meaning of zero differ between interval and ratio-scaled vari-
ables? 

9. Can discrete variables have more than 2 values? 
10. What are some examples of nonprobabilistic sampling methods? 
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Data Preparation 

To begin a data analysis, we must first extract, combine, organize, and clean the 
requisite data. As depicted in Fig. 1, these data preparation tasks account for a large 
part of the work analytics professionals do. 

Data Extraction 

To properly and efficiently extract data—often through the use of SQL as covered 
in chapter “Introduction to SQL”—it is important to first understand some common 
ways in which data are stored and structured. 

Data Architecture 

Data are generally extracted directly from the source systems in which they are 
generated or from downstream repositories such as a data lake, data warehouse, or  
data mart. 

Data Lake 

A data lake stores myriad types of data—both structured and unstructured—in its 
native format until needed. Structured data refers to data that fits a predefined 
data model, such as hire dates formatted as MM/DD/YYYY or zip codes stored as a 
five-digit string. Unstructured data has no predefined data model, such as audio 
and video files, free-form performance review comments, emails, or digital exhaust 
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Fig. 1 How analytics professionals spend their time 

from messaging tools; it is difficult to structure this type of data within a set of 
related tables. 

Data are often stored in a data lake so that they are available when use cases are 
defined for them, at which time a data model is designed and developed outside the 
data lake to facilitate the requirements. 

Data Warehouse 

Data in a data warehouse (DW) are structured and organized into schemas of 
related tables based on business requirements and use cases. The main difference 
between a data lake and data warehouse is the type of data they are designed to 
store. A DW is designed to support analytics across large collections of data, such as 
transactional data (e.g., point-of-sale systems), point-in-time snapshots (e.g., month-
end close reports), survey responses, spreadsheets, and more. 

A DW can contain many different types of tables, but this chapter will focus on 
the two most common which are known as Type 1 and Type 2 tables. These tables 
are sometimes referred to as slowly changing dimensions (SCD). 

A Type 1 table is created on a regular cadence (usually daily or monthly) 
and contains no history—only current values. For example, a Type 1 table may 
contain the latest known attributes for each active and terminated worker such as 
job, location, and manager. Type 1 tables are sometimes archived and appended to
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prior snapshots with an effective date, and this design has utility when a view of the 
workforce is required as of a past date or when an analysis calls for querying across 
multiple point-in-time snapshots (e.g., computing trailing 12-month attrition rates 
using average monthly headcount). 

It is important to note that leveraging snapshots for trending analyses has some 
notable deficiencies given the large number of retroactive transactions processed in 
HCM systems that are not captured if prior snapshots are not updated. Below are 
some examples: 

• Org changes for which incorrect manager assignments are later identified and 
corrected 

• Back-dated compensation changes 
• Job profile attribute updates, resulting in incorrect values across snapshots 

prior to the update date 
• Edits to hire, promotion, transfer, and termination events after completing the 

business process in the system (e.g., delayed start date) 

While a past date may be set as the effective date for these transactions, snapshots 
would incorrectly indicate that the change was effective on the date they were 
entered into the system (i.e., when the value first changed across snapshots), 
resulting in misalignment with the system of record. This can result in inaccurate 
metrics related to headcount, hires, career moves, and terminations in a given 
period. This type of data leakage can quickly become a larger issue as the size 
and complexity of the workforce grows. Even a few discrepancies relative to 
what managers see in the source system can create mistrust in data solutions and 
hamstring progress up the analytics value chain. 

A Type 2 table is a table in which a new record is inserted when a change occurs 
for one or more specified dimensions. Jobs, managers, and locations are examples 
of slowly changing dimensions but unlike the Type 1 table which contains only 
the latest information, the Type 2 table houses a start date and end date for each 
worker and dimension to facilitate reporting and analysis on changes to attribute 
values over time. This concept of storing attribute values for the period of time 
during which they were effective is known as effective dating, and the inclusion of 
effective-dated logic in queries is fundamental to how data are accurately extracted 
for a particular date of interest. 

Figure 2 illustrates the design of a Type 2 SCD for an active worker’s job, 
manager, and location changes. As the data show, worker 123 was promoted from 
Data Analyst to Sr. Data Analyst 1.5 years after joining, began reporting to their 
original manager (456) after a short stint reporting to someone else (789), and has 
worked remotely throughout their entire tenure with the company. 

Note that rows where end_date = '12/31/9999' indicate current attributes 
for active workers. For inactive workers, end_date would be set to the worker’s 
termination date for rows that represent last known attributes. 
Constructing a view of the workforce as of a particular effective date involves 
selecting rows where the effective date is on or after start_date and on or prior to
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Fig. 2 Type 2 SCD 

Fig. 3 Type 1 SCD 

end_date. In a SQL query, this logic can be specified in the WHERE clause, which 
defines the rows to search. 

To construct a view of the last known attributes for each worker in this table, 
we could select rows where the current date is on or after start_date and on or 
prior to end_date for active workers and then select the most recent rows (max 
end_date) for each inactive worker. However, using a Type 1 table simplifies this 
task since each dimension value is stored in a separate column and there is only one 
row per employee. Figure 3 shows how the current record for worker 123 would 
look in a Type 1 SCD. 

Data Mart 

A data mart is a subset of a DW designed to easily deliver specific information 
to a certain set of users on a particular subject or for a well-defined use case. For 
example, in a people analytics context a diversity data mart could be developed to 
better isolate and secure restricted data such as gender and ethnicity. This data may 
be used to support diversity descriptives and trends for a limited audience approved 
by Data Privacy and Legal counsel based on legitimate business needs. 

Database Normalization 

Normalization is the process of partitioning data into multiple tables to reduce data 
redundancy and promote data integrity. Conversely, denormalization combines 
data into a single table to facilitate easier and faster data retrieval. 

The tables used to explain SQL joins in chapter “Introduction to SQL” are  
examples of normalized data. Normalized tables introduce more complexity for 
analysts since data organized across tables need to be joined together to create a 
flat data structure that is easier to work with for analytics. However, normalized 
tables have a key advantage in accounting for past-dated changes since the latest
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data are retrieved from the various tables when needed rather than leveraging 
immutable snapshots that only reflect data as of the date and time they were 
created. For example, if a worker snapshot was created yesterday, and today a 
change is processed in the system to rename location id MA123 from Cambridge 
Office to Boston HQ with an effective date of yesterday, a static worker snapshot 
created yesterday would show Cambridge Office as the location while querying 
normalized tables would incorporate the updated Boston HQ location name. 

One way to address the shortcomings of snapshots without the data engineering 
overhead is to perform destructive loads. Destructive loads, sometimes referred 
to as a truncate and reload approach, involves destroying prior snapshots and 
rebuilding them for each effective date. For example, if there is a policy that 
retroactive changes cannot be processed in the system prior to the past six months, a 
destructive load could be performed for a rolling six months of snapshots to ensure 
they reflect any past-dated worker events and non-worker attribute changes (e.g., 
department, location, job, position). 

Modern Data Infrastructure 

Though a deep treatment of data architecture is beyond the scope of this book, 
it is important to acknowledge the significant advancements in infrastructure and 
computation—and the important implications for analytics—since SCD architec-
tures were first introduced by Ralph Kimball decades ago. These developments 
have greatly improved the efficiency with which analysts can translate data into 
information and insight. 

With modern cloud environments, the significant investment associated with 
humans designing, developing, and maintaining these complex architectures is 
often difficult to justify given how inexpensive storage and compute have become. 
Increasingly, the heavy computational tasks have migrated out of data pipelines 
and into the analytics layer wherein analytics teams have more flexibility and 
control. Today, daily snapshots containing all current and historical records can be 
copied and stored within partitioned DW tables for a negligible increase in storage 
costs, and this greatly simplifies data pipeline complexity and engineering support 
requirements. This changing dynamic has given rise to a new breed of data engineers 
focused on optimizing the heavy computation requirements of analytics teams. 

Data Screening and Cleaning 

Once data are extracted and organized in a flat data structure, the initial data review 
process can commence. This process is often referred to as exploratory data 
analysis (EDA). EDA involves investigating patterns, completeness, anomalies, and 
assumptions using summary statistics and graphical representations. An analytics 
ideal is unimpeachable data quality, which is to say that the rigor of upstream
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business processes and downstream data screening is such that stakeholders become 
confident enough to channel more energy towards actioning on results than ques-
tioning the quality. Suspect data quality is often surfaced during the initial EDA step 
and affords the opportunity to address and avoid stakeholders discounting results 
during later phases of the project. 

A handy function in base R for initial data screening is summary(). This function 
returns measures of central tendency (mean and median) and spread (min, max, and 
1st/3rd quartiles) for each numeric variable. 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 

# Summarize df 
summary(employees) 

## employee_id active stock_opt_lvl trainings 
## Min. :1001 Length:1470 Min. :0.0000 Min. :0.000 
## 1st Qu.:1368 Class :character 1st Qu.:0.0000 1st Qu.:2.000 
## Median :1736 Mode :character Median :1.0000 Median :3.000 
## Mean :1736 Mean :0.7939 Mean :2.799 
## 3rd Qu.:2103 3rd Qu.:1.0000 3rd Qu.:3.000 
## Max. :2470 Max. :3.0000 Max. :6.000 
## 
## age commute_dist ed_lvl ed_field 
## Min. :18.00 Min. : 1.000 Min. :1.000 Length:1470 
## 1st Qu.:30.00 1st Qu.: 2.000 1st Qu.:2.000 Class :character 
## Median :36.00 Median : 7.000 Median :3.000 Mode :character 
## Mean :36.92 Mean : 9.193 Mean :2.913 
## 3rd Qu.:43.00 3rd Qu.:14.000 3rd Qu.:4.000 
## Max. :60.00 Max. :29.000 Max. :5.000 
## 
## gender marital_sts dept engagement 
## Length:1470 Length:1470 Length:1470 Min. :1.00 
## Class :character Class :character Class :character 1st Qu.:2.00 
## Mode :character Mode :character Mode :character Median :3.00 
## Mean :2.73 
## 3rd Qu.:3.00 
## Max. :4.00 
## 
## job_lvl job_title overtime business_travel 
## Min. :1.000 Length:1470 Length:1470 Length:1470 
## 1st Qu.:1.000 Class :character Class :character Class :character 
## Median :2.000 Mode :character Mode :character Mode :character 
## Mean :2.064 
## 3rd Qu.:3.000 
## Max. :5.000 
## 
## hourly_rate daily_comp monthly_comp annual_comp 
## Min. : 30.00 Min. :240.0 Min. : 5200 Min. : 62400
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## 1st Qu.: 48.00 1st Qu.:384.0 1st Qu.: 8320 1st Qu.: 99840 
## Median : 66.00 Median :528.0 Median :11440 Median :137280 
## Mean : 65.89 Mean :527.1 Mean :11421 Mean :137054 
## 3rd Qu.: 83.75 3rd Qu.:670.0 3rd Qu.:14517 3rd Qu.:174200 
## Max. :100.00 Max. :800.0 Max. :17333 Max. :208000 
## 
## ytd_leads ytd_sales standard_hrs salary_hike_pct perf_rating 
## Min. :11.00 Min. : 15496 Min. :80 Min. :11.00 Min. :3.000 
## 1st Qu.:45.00 1st Qu.: 56997 1st Qu.:80 1st Qu.:12.00 1st Qu.:3.000 
## Median :59.00 Median : 73505 Median :80 Median :14.00 Median :3.000 
## Mean :55.84 Mean : 77124 Mean :80 Mean :15.21 Mean :3.154 
## 3rd Qu.:65.00 3rd Qu.: 96002 3rd Qu.:80 3rd Qu.:18.00 3rd Qu.:3.000 
## Max. :95.00 Max. :281499 Max. :80 Max. :25.00 Max. :4.000 
## NA's :1061 NA's :1061 
## prior_emplr_cnt env_sat job_sat rel_sat 
## Min. :0.000 Min. :1.000 Min. :1.000 Min. :1.000 
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 
## Median :2.000 Median :3.000 Median :3.000 Median :3.000 
## Mean :2.693 Mean :2.722 Mean :2.729 Mean :2.712 
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 
## Max. :9.000 Max. :4.000 Max. :4.000 Max. :4.000 
## 
## wl_balance work_exp org_tenure job_tenure 
## Min. :1.000 Min. : 0.00 Min. : 0.000 Min. : 0.000 
## 1st Qu.:2.000 1st Qu.: 6.00 1st Qu.: 3.000 1st Qu.: 2.000 
## Median :2.000 Median :10.00 Median : 5.000 Median : 3.000 
## Mean :1.841 Mean :11.28 Mean : 7.032 Mean : 4.229 
## 3rd Qu.:2.000 3rd Qu.:15.00 3rd Qu.: 9.000 3rd Qu.: 7.000 
## Max. :2.000 Max. :40.00 Max. :72.000 Max. :18.000 
## 
## last_promo mgr_tenure interview_rating 
## Min. : 0.000 Min. : 0.000 Min. :2.000 
## 1st Qu.: 0.000 1st Qu.: 2.000 1st Qu.:3.600 
## Median : 1.000 Median : 3.000 Median :4.100 
## Mean : 2.188 Mean : 4.123 Mean :3.989 
## 3rd Qu.: 3.000 3rd Qu.: 7.000 3rd Qu.:4.500 
## Max. :15.000 Max. :17.000 Max. :5.000 
## 

Note that fields with NA values contain missing values. Also, by default 
employee_id is treated as an integer in R, which is why descriptive statistics 
appropriate for numeric data are provided. Despite the absence of characters, 
employee_id should be treated as a character string since we will not perform any 
arithmetic operations using these ids. 

Missingness 

Before considering whether and how to handle missing data, it is important to 
distinguish between structural missingness and informative missingness (Kuhn and 
Johnson, 2013).
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Structural missingness relates to data that are missing for a logical reason. For 
example, we would not expect a new joiner with a few days of tenure to have a 
performance score. Likewise, we would not expect an active employee who is not 
a rehire to have a termination date. Therefore, it would not make sense to define a 
value to address missing data in these cases. 

Informative missingness relates to missing data that is informative regarding an 
outcome of interest. For example, in a survey context we may find a relationship 
between missing values on manager effectiveness questions and unfavorability on 
a psychological safety scale. This may indicate that employees who are fearful 
of retaliation are uncomfortable providing honest feedback about their managers, 
while employees who feel it is safe to speak up about issues are more comfortable 
responding in prosocial ways. 

In some cases, we have the luxury of simply removing observations with missing 
values and using the remaining complete cases for analysis—assuming there are 
relatively few observations with missing values and no systematic missingness 
patterns that could bias analyses. However, since we are often working with wide 
data sets containing relatively few observations in a people analytics setting, this 
may not be feasible. As we will cover in later chapters, sample size considerations 
are fundamental to achieving adequate power in statistical testing, so case removal 
is only possible with larger data sets. 

Data imputation refers to the methods by which missing data are replaced with 
substituted values when case removal is not appropriate. The most common data 
imputation method is replacing missing values with a descriptive statistic such as 
the mean, median, or mode based on available data. For example, if most employees 
have an age in the system, the average, median, or most frequent age could be used 
in place of the cases with a missing age. To be more precise, the average, median, 
or most frequent age of those with similar values for variables believed to correlate 
with the missing variable may be used (e.g., similar years of experience, job, level). 
We would expect there to be less variability in age within a well-defined segment 
relative to the entire employee population, so this would likely be a more accurate 
estimate of an individual’s actual age. 

Let us evaluate the employees data frame for missing annual_comp values 
using the logical is.na() function and return values of variables relevant in 
determining one’s annual compensation. The subset() function can be used to 
select a subset of data from a data frame. 

# Store original annual comp for sample employee 
orig_comp <- subset(employees, employee_id == '2176', select = 

annual_comp)↪→ 

# Create a NA in lieu of annual comp for illustrative 
purposes↪→ 

employees[employees$employee_id == '2176', 'annual_comp'] <-
NA↪→
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# Return relevant employee characteristics where annual comp 
is missing↪→ 

subset(employees, is.na(annual_comp), select = c(employee_id, 
job_title, job_lvl))↪→ 

## employee_id job_title job_lvl 
## 1176 2176 Manufacturing Director 2 

Next, we will impute the average value of annual_comp based on employees 
with the same values for the relevant variables. The sapply() function can be used 
in conjunction with the mean() function to apply the average to the subsetted data 
frame. The sapply() function is a member of a broader set of apply() functions 
in R, and the s indicates that the result of applying the specified function is a scalar 
object that holds a single value, such as a number (mean value in this case). 

# Return average annual comp for employees with similar 
characteristics, excluding employees with missing comp 
values

↪→
↪→ 

imputed_comp <- sapply(subset(employees, job_title == 
'Manufacturing Director' & job_lvl == 2, select = 
annual_comp), mean, na.rm = TRUE)

↪→
↪→ 

# Impute missing comp for relevant segment 
employees[employees$employee_id == '2176', 'annual_comp'] <-

imputed_comp↪→ 

# Display absolute difference between original and imputed 
comp↪→ 

round(abs(orig_comp - subset(employees, employee_id == '2176', 
select = annual_comp)), 0)↪→ 

## annual_comp 
## 1176 1169 

While this approach should help in demonstrating the mechanics of imputing 
a missing value on a case-by-case basis, a more scalable solution is needed for 
data with a large number of missing values across employees with different values 
of these variables. There are more sophisticated methods of data imputation that 
involve models to estimate missing values, such as linear regression which will be 
introduced in chapter “Linear Regression”. Modeling techniques leverage a similar 
approach to the method outlined above in that the target values of cases with similar 
characteristics to those with missing values are used to aid estimation. Multiple 
imputation builds upon this approach by combining the information from multiple 
data sets imputed using different methods with a goal of minimizing the potential 
bias introduced by a singular method of imputation.
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Outliers 

The treatment of outliers is one of the most enduring and pervasive methodological 
challenges in organizational research. A literature review by Aguinis et al. (2013) 
uncovered 14 unique definitions of outliers, 39 outlier identification techniques, 
and 20 different ways of addressing them. Appropriate methods for defining and 
addressing outliers are domain-specific, and there are many important considera-
tions that should inform whether and how outliers should be handled. 

The water crisis in Flint, Michigan is a tragic example of a series of statistical 
mishaps involving poor sampling methodology and outlier handling. As the story 
goes, Flint stopped paying the Detroit Water and Sewer Department to source water 
from Lake Huron and began sourcing it from the Flint River as a cost-cutting 
measure in April 2014 (Langkjår-Bain, 2017). Residents of Flint began showing 
signs of lead poisoning, and authorities denied residents’ claims that their tap water 
was to blame—despite some extreme cases in which the tap water was colored 
orange. 

Water companies routinely add chemicals to water to prevent pipe corrosion 
which can cause lead to seep into drinking water. In Flint’s hurry to switch water 
sources, they failed to address the fact that the Flint River is naturally high in 
chloride—a chemical that corrodes pipes. According to the Lead and Copper Rule 
(LCR) of 1991, lead consumption should not exceed 15 parts per billion (ppb) in 
more than 10% of homes tested—though no quantity of lead is considered safe to 
ingest. If the 90th percentile value for sampled homes is greater than 15 ppb, action 
is required. 

Two initial samples of tap water were taken from a concerned resident’s home; 
one measured 104 ppb (6X higher than the LCR threshold) and the other measured 
397 ppb (25X higher than the LCR threshold). Authorities dismissed these samples 
as outliers, citing old led pipes in the resident’s home. Authorities collected samples 
of their own and despite federal guidelines requiring .n ≥ 100 samples, an under-
powered analysis was performed using only 71 samples. Of the 71 samples, two 
with levels above the 15 ppb threshold were discarded, and the removal of these 
outliers resulted in aggregate lead levels falling beneath the action threshold. 

In the end, the tenacity of the growing number of residents with health concerns 
resulted in new samples being analyzed by a team of researchers at Virginia Tech 
University. Researchers found that the 90th percentile value among the sample 
of households—which included homes with non-lead pipes and water filtration 
systems—was 26.8 ppb and the highest individual sample was 158 ppb! The city 
switched back to the Lake Huron water source in October 2015 (18 months later), 
and a state of emergency was declared. The State of Michigan has brought numerous 
criminal charges against state and local officials which include misconduct in office, 
tampering with evidence, willful neglect of duty, and various counts of conspiracy. 
Residents also launched a series of class action lawsuits against the Governor 
(Langkjår-Bain, 2017).
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This may seem like a dramatic appeal, but the importance of investigating outliers 
cannot be overstated. Simply discarding outliers may truly be a grave mistake! If 
outliers are attributable to measurement error, it may be appropriate to discard them. 
If outliers represent properly measured values, they should be investigated. As we 
will discuss further in chapter “Descriptive Statistics”, a common method of outlier 
detection is identifying values which fall outside the following interval: 

. I = Q1 − 1.5 ∗ IQR;Q3 + 1.5 ∗ IQR

Low Variability 

Variables with low variability often do not provide sufficient information for 
identifying patterns in data. For example, if we are interested in using information 
on stock options to understand why employees vary in their levels of retention risk 
but find that the employee stock purchase plan (ESPP) terms are identical for nearly 
all employees, including a stock option variable in the analysis is unlikely to provide 
any meaningful signal. 

When working with survey data, checking for straightlining should be an early 
data screening step. Straightlining refers to a constant response across all survey 
items, which may be evidence that the respondent lost motivation or was not 
attentive and thoughtful when taking the survey. Since straight-line responses may 
influence results, it is often best to discard these cases—especially when the sample 
size is adequately large for the planned analyses without them. If the same response 
is given for both positively and negatively worded versions of a question (e.g., 
comparing “I plan to be here in a year” to “I do not plan to be here in a year”), 
which we expect to be inversely related, this gives added support for discarding 
these responses. 

Fields with low variability can be easily identified using descriptive statistics 
from the summary() function. If the Min and Max values are equal, there is no 
variability in the field’s values. Based on the following descriptives, we should 
remove standard_hrs from the data: 

# Return descriptives to understand distribution of standard 
hours↪→ 

summary(employees$standard_hrs) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 80 80 80 80 80 80 

Given that the data dictionary in chapter “Getting Started” indicates performance 
ratings range from 1 to 4, the following descriptives should raise red flags:
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# Return descriptives to understand distribution of standard 
hours↪→ 

summary(employees$perf_rating) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 3.000 3.000 3.000 3.154 3.000 4.000 

Assuming not everyone in the company is a stellar performer (i.e., only Notewor-
thy and Exceptional ratings), we may be working with a partial data set that could 
bias analyses. This may be due to poor integrity of performance data in the source 
system or repository from which the data were pulled, or the query written to extract 
data from the source may be flawed. 

Inconsistent Categories 

Inconsistent categories impact aggregation and trending by categorical dimen-
sions. It is often necessary to create mappings based on logical rules in order to 
standardize dimension values across time. In the case of reorgs, a department may be 
disbanded, renamed, or integrated into one or multiple other departments. Therefore, 
when working with historical data, records may contain legacy department names 
that do not align with the current organizational taxonomy. Mapping from former to 
current departments may require logic based on manager ids, divisions, job profiles, 
or other variables depending on the nature of reorgs over time. 

Job architecture projects often introduce the need for mappings as well. Jobs and 
levels may completely change for all employees with a job architecture revamp, in 
which case trending along job and level dimensions (e.g., attrition by job or level 
over multiple years) is only possible with logic that clarifies how legacy jobs and 
levels map to those in the new career framework. 

Changes to allowable values in source systems often result in inconsistent cate-
gorical data over time. For example, the education field may switch from a free-form 
text field in which employees can enter any value (e.g., B.S., B.A., BS, BA, Bachelor 
of Science, Bachelor of Arts, Bachelor’s, Bachelors, Bachelor’s Degree, Bachelor 
Degree, undergraduate degree, 4-year degree, four-year degree) to a standardized 
solution in which there is a clean and well-defined set of allowable values from 
which employees can choose (e.g., Bachelor’s Degree, Master’s Degree, Doctoral 
Degree). This warrants either a one-time historical cleanup upon implementing the 
allowable values or downstream logic to tidy up data for analytics. A best practice 
is to address data quality issues upstream (e.g., in the source system) to avoid 
duplicative data cleaning procedures across downstream applications.
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Data Binning 

Data binning refers to the process by which larger high-level groups of values are 
defined and constructed. As a general rule, extremely granular categories should 
be avoided—especially when there is no theoretical basis for such categories 
facilitating a project’s objectives or deepening insights. Where the n-count is 
expected to be consistently low for a defined categorical bin, it is usually best to 
define a larger bin. For example, a variable measuring highest level of educational 
attainment that contains 9th, 10th, 11th, and 12th grade categories may be converted 
into higher-level “High School Not Completed” and “High School Completed” bins. 

For modeling applications, it is important to let the algorithm determine the 
cutpoints for numeric data in relation to the outcome. For example, if organization 
tenure is measured in years, arbitrarily defining bin sizes of “Less Than 1 Year,” 
“1–5 Years,” and “More Than 5 Years” will likely result in information loss. Any 
variability within these bins that may be useful in explaining variance in the outcome 
would be lost with such wide bins. The machine learning (ML) models that will be 
covered in chapter “Predictive Modeling” are great for algorithmically determining 
cutpoints for binning numeric data across descriptive, diagnostic, and predictive 
projects alike. 

One-Hot Encoding 

One-hot encoding, also known as dummy coding, involves transforming a categor-
ical variable into numeric values on which statistical procedures can be performed. 
For EDA, this is not required, as counts and percent of total metrics can be calculated 
on these dimensions for descriptive purposes. However, for modeling applications, 
unordered categorical variables must be converted into .k − 1 variables, where k is 
the number of categories, using binary (1/0) coding. 

Understanding how categorical data are coded is critical to a correct interpre-
tation of output. For example, if a remote work variable exists with “Remote” or 
“Non-Remote” values, we may code “Remote” values as 1 and “Non-Remote” 
values as 0. We could then evaluate the statistical relationship of this transformed 
categorical variable with other numeric variables. 

If an unordered categorical variable has more than 2 values, we must create a 
separate 1/0 field for each value and omit one category for use as a reference group. 
As we will cover in chapter “Linear Regression”, one of several assumptions in 
linear regression is that independent variables are not collinear; that is, no pair of 
independent variables is highly correlated. Without an omitted category, each of the 
one-hot encoded fields will be perfectly correlated with the others. When the field 
representing category A is 1, the fields for other categories will always be 0. As  
illustrated in Fig. 4, by omitting a category there will be cases when all fields have
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Fig. 4 One-hot encoding 

a 0 value (i.e., rows where the value is the omitted category), which will reduce the 
strength of the bivariate correlations. 
For a categorical variable with only two values, the ifelse() function can be 
leveraged to assign values: 

# Return unique values of gender field with unique() function 
unique(employees$gender) 

## [1] "Female" "Male" 

# Gender one-hot encoding 
employees$gender_ohe <- ifelse(employees$gender == 'Female', 

1, 0)↪→ 

# Preview records 
head(subset(employees, select = c(employee_id, gender_ohe))) 

## employee_id gender_ohe 
## 1 1001 1 
## 2 1002 0 
## 3 1003 0 
## 4 1004 1 
## 5 1005 0 
## 6 1006 0 

For variables with more than 2 unordered categories, we can leverage the 
model.matrix() function for one-hot encoding. Let us illustrate by encoding 
locations. As we can see, Human Resources is the smallest department (.n = 63) 
in these data.
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# Return counts by department 
employees |> dplyr::count(dept, sort = TRUE) 

## dept n 
## 1 Research & Development 961 
## 2 Sales 446 
## 3 Human Resources 63 

By default, the model.matrix() function will produce a matrix of 1/0 values 
for .k−1 categories. The first column in the matrix is an intercept column containing 
a value of 1 for each row to ensure linear independence, and the default behavior 
results in the first value of the factor being the omitted group. For more flexibility 
over which value is omitted, we can drop the intercept using -1 in the first argument 
passed to model.matrix() and then choose the reference group for the analysis in 
a subsequent step. 

# Department one-hot encoding 
dept_ohe <- model.matrix(~dept-1, data = employees) 

# Preview data 
head(dept_ohe) 

## deptHuman Resources deptResearch & Development deptSales 
## 1 0 0 1 
## 2 0 1 0 
## 3 0 1 0 
## 4 0 1 0 
## 5 0 1 0 
## 6 0 1 0 

We will drop the department with the lowest n rather than the more arbitrary 
method based on the first value of the factor. Since departments are coded as either 1 
or 0, we can use the colSums() function to sum each column and the which.min() 
function to identify which has the lowest sum (i.e., smallest department by employee 
count). 

# Drop department with lowest sum (lowest n-count) 
dept_ohe <- dept_ohe[, -which.min(colSums(dept_ohe))] 

# Preview refined one-hot encoded data 
head(dept_ohe) 

## deptResearch & Development deptSales
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## 1 0 1 
## 2 1 0 
## 3 1 0 
## 4 1 0 
## 5 1 0 
## 6 1 0 

As expected, the Human Resources department was dropped via the n-count 
selection criterion. We can now integrate these one-hot encoded fields into the 
original data frame for analysis. 

# Combine employees and matrix containing one-hot encoded 
departments↪→ 

employees <- cbind(employees, dept_ohe) 

# Drop original department field 
employees <- subset(employees, select = -c(dept)) 

Feature Engineering 

Level one people analytics tends to utilize only the delivered fields from the HCM 
system (e.g., location, job profile, org tenure), but a good next step is to derive 
smarter variables from these fields. These can then be used to cut data differently 
or as inputs in models. Below are some examples of how basic data available 
in the HCM system can be transformed into new variables that provide different 
information. This can be easily accomplished using the arithmetic functions we have 
covered. 

• Number of jobs per unit of tenure (larger proportions tend to see greater career 
pathing) 

• Office/remote worker (binary variable dummy coded as 1/0) 
• Local/remote manager (binary variable dummy coded as 1/0) 
• Hire/Rehire (binary variable dummy coded as 1/0) 
• Hired/acquired (proxy for culture shock effects) 
• Gender isolation (ratio of employee’s gender to number of the same within 

immediate work group) 
• Generation isolation (comparison of age bracket to most frequent generational 

bracket within immediate work group) 
• Ethnic isolation (ratio of employee’s ethnicity to number of the same within 

immediate work group) 
• Difference between employee and manager age 
• Percentage change between last two performance appraisal scores (per com-

petency and/or overall)
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• Team and department quit outbreak indicators (ratio of terms over x months 
relative to average headcount over x months) 

• Industry experience (binary or length in years) 

Review Questions 

1. What are the differences between data lakes, data warehouses, and data marts? 
2. What is the difference between a Type 1 and Type 2 table in a DW? 
3. In what ways has modern cloud computing influenced data architecture? 
4. Why is it dangerous to address missing values without domain knowledge of 

how the data are generated? 
5. How can missing values be addressed when impacted records cannot be 

eliminated from a data set? 
6. When is one-hot encoding required for categorical variables? 
7. When one-hot encoding a categorical variable with more than two categories, 

why is an omitted category important? 
8. When binning numeric data, what are some considerations in determining the 

size of each bin? 
9. Why should variables with low to no variability be dropped? 

10. Where are validation rules ideally situated to limit downstream data cleaning 
tasks and ensure consistent categorical dimension values? 
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Descriptive Statistics 

This chapter reviews essential univariate and bivariate analysis concepts that 
underpin the more complex statistical methods in subsequent chapters of this book. 
Univariate and bivariate analyses can be either descriptive or inferential; this chapter 
will cover descriptive techniques while chapter “Statistical Inference” will cover 
inferential methods. 

Descriptive statistics are rudimentary analysis techniques that help describe and 
summarize a variable’s data in a meaningful way. Descriptive statistics do not allow 
us to draw any conclusions beyond the available data but are helpful in interpreting 
the data at hand. 

Univariate Analysis 

Univariate analysis is the simplest form of statistical analysis, which explores each 
variable independently. 

There are two categories of univariate analyses: (a) measures of central 
tendency describe the central position in a set of data, and (b) measures of spread 
describe how dispersed the data are. 

Measures of Central Tendency 

Mean 

Perhaps the most intuitive measure of central tendency is the mean, which is often 
referred to as the average. The mean of a sample is denoted by . x̄ and is defined by: 
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. x̄ =

n∑

i=1

xi

n

The population mean is denoted by . μ and is defined by: 

. μ =

n∑

i=1

xi

N

The mean of a set of numeric values can be calculated using the mean() function 
in R: 

# Fill vector x with integers 
x <- c(1, 2, 3, 3, 100, 200, 300) 

# Calculate average of vector x 
mean(x) 

## [1] 87 

Median 

The median represents the midpoint in a sorted vector of numbers. For vectors with 
an even number of values, the median is the average of the middle two numbers; it 
is simply the middle number for vectors with an odd number of values. When the 
distribution of data is skewed or there is an extreme value, the median may be a 
better measure of central tendency. 

The median() function in R can be used to handle the sorting and midpoint 
selection: 

# Calculate median of vector x 
median(x) 

## [1] 3 

In this example, the median is only 3 while the mean is .x̄ = 87. Large 
deltas between mean and median values provide important information about the 
distribution of data. 

Here, a single value has significant leverage on these measures of central 
tendency. To demonstrate, let us eliminate one instance of 3 from the vector and 
recalculate the mean and median:
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# Fill vector x1 with integers 
x1 <- c(1, 2, 3, 100, 200, 300) 

# Calculate mean of vector x1 
mean(x1) 

## [1] 101 

# Calculate median of vector x1 
median(x1) 

## [1] 51.5 

By removing a single value from this vector, the mean increased from .x̄ = 87 to 
.x̄ = 101 and the median from 3 to 51.5! 

Note that differences in mean and median values for x and x1 are not due to an 
extreme value (outlier), as 3 is similar to half of the values in the vector. However, in 
some cases extreme values may be the cause of large discrepancies between mean 
and median values since the mean can be sensitive to extreme values. Consider the 
following set of values: 

# Fill vector x2 with integers 
x2 <- c(1, 2, 3, 4, 5, 1000) 

# Calculate mean of vector x2 
mean(x2) 

## [1] 169.1667 

# Calculate median of vector x2 
median(x2) 

## [1] 3.5 

In this case, the value of 1000 has a significant influence on the mean (.x̄ = 169.2) 
but the median of 3.5 is representative of the middle of values in this vector. 

The reality is that both the mean and median can be misleading—and even 
inappropriate. It is important to understand how the data are distributed around 
these centers. It would not be too useful to calculate median organization tenure, for 
example, for a hyper-growth company that has hired the majority of its workforce 
in the past few months; long-tenured employees would be lost in this metric.
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The larger the n-count, the less influential an extreme value will be on . x̄. As we  
will learn in chapter “Statistical Inference”, sample size is fundamental to our ability 
to achieve precise estimates of population parameters based on sample statistics. 

While the focus of this section is central tendency, it is important to recognize that 
outlying values are often the more actionable data points in an analysis since these 
cases may represent those with significantly different experiences relative to the 
average employee. Understanding the distribution of data is critical, and the spread 
of data around measures of central tendency will receive considerable attention 
throughout this book. 

Mode 

The mode is the most frequent number in a set of values. 
While mean() and median() are standard functions in R, mode() returns the 

internal storage mode of the object rather than the statistical mode of the data. We 
can easily create a function to return the statistical mode(s): 

# Fill vector x2 with integers 
x3 <- c(1, 2, 3, 3, 100, 200, 300, 300) 

# Create function to calculate statistical mode(s) 
stat.mode <- function(x) { 

ux <- unique(x) 
tab <- tabulate(match(x, ux)) 
ux[tab == max(tab)] 

} 

# Return mode(s) of vector x3 
stat.mode(x3) 

## [1] 3 300 

In this case, we have a bimodal distribution since both 3 and 300 occur most 
frequently. 

Range 

The range is the difference between the maximum and minimum values in a set of 
numbers. 

The range() function in R returns the minimum and maximum numbers: 

# Return lowest and highest values of vector x 
range(x)
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## [1] 1 300 

We can leverage the max() and min() functions to calculate the difference 
between these values: 

# Calculate range of vector x 
max(x, na.rm = TRUE) - min(x, na.rm = TRUE) 

## [1] 299 

In people analytics, there are many conventional descriptive metrics—largely 
counts, percentages, and averages cut by various time (e.g., day, month, quarter, 
year) and categorical (e.g., department, job, location, tenure band) dimensions. Here 
is a sample of common measures:

• Time to Fill: average days between job requisition posting and offer accep-
tance

• Offer Acceptance Rate: percent of offers extended to candidates that are 
accepted

• Pass-Through Rate: percent of candidates in a particular stage of the recruiting 
process who passed through to the next stage

• Progress to Goal: percent of approved positions that have been filled
• cNPS/eNPS: candidate and employee NPS (.−100 to 100)
• Headcount: counts and percent of workforce across worker types (employee, 

intern, contingent)
• Diversity: counts and percent of workforce across gender, ethnicity, and 

generational cohorts
• Positions: count and percent of open, committed, and filled seats
• Hires: counts and rates
• Career Moves: counts and rates
• Turnover: counts and rates (usually terms/average headcount over the period)
• Workforce Growth: net changes over time, accounting for hires, internal 

transfers, and exits
• Span of Control: ratio of people leaders to individual contributors
• Layers/Tiers: average and median number of layers removed from CEO
• Engagement: average score or top-box favorability score 

Measures of Spread 

Variance 

Variance is a measure of variability in the data. Variance is calculated using the 
average of squared differences—or deviations—from the mean.



102 Descriptive Statistics

Variance of a population is defined by: 

. σ 2 =

n∑

i=1

(xi − μ)2

N

Variance of a sample is defined by: 

. s2 =

n∑

i=1

(xi − x̄)2

n − 1

It is important to note that since differences are squared, the variance is always 
non-negative. In addition, we cannot compare these squared differences to the 
arithmetic mean since the units are different. For example, if we calculate the 
variance of annual compensation measured in USD, variance should be expressed 
as .USD2 while the mean exists in the original USD unit of measurement. 

In R, the sample variance can be calculated using the var() function: 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 

# Calculate sample variance for annual compensation 
var(employees$annual_comp) 

## [1] 1788038934 

Sample statistics are the default in R. Since the population variance differs from 
the sample variance by a factor of .s2( n−1

n
), it is simple to convert output from var() 

to the population variance: 

# Store number of observations 
n = length(employees$annual_comp) 

# Calculate population variance for annual compensation 
var(employees$annual_comp) * (n - 1) / n 

## [1] 1786822581
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Standard Deviation 

The standard deviation is simply the square root of the variance. 
The standard deviation of a population is defined by: 

. σ =

√√√√√√

n∑

i=1

(xi − μ)2

N

The standard deviation of a sample is defined by: 

. s =

√√√√√√

n∑

i=1

(xi − x̄)2

n − 1

Since a squared value can be converted back to its original units by taking its 
square root, the standard deviation expresses variability around the mean in the 
variable’s original units. 

In R, the sample standard deviation can be calculated using the sd() function: 

# Calculate sample standard deviation for annual compensation 
sd(employees$annual_comp) 

## [1] 42285.21 

Since the population standard deviation differs from the sample standard devia-

tion by a factor of .s

√
n−1
n

, it is simple to convert output from sd() to the population 
standard deviation: 

# Calculate population standard deviation for annual 
compensation↪→ 

sd(employees$annual_comp) * sqrt((n - 1) / n) 

## [1] 42270.82 

Quartiles 

A quartile is a type of quantile that partitions data into four equally sized parts after 
ordering the data. Each quartile is equally sized with respect to the number of data 
points—not the range of values in each. Quartiles are also related to percentiles. 
For example, Q1 is the 25th percentile—the value at or below which 25% of values
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lie. Percentiles are likely more familiar than quartiles, as percentiles show up in the 
height and weight measurements of babies, performance on standardized tests like 
the SAT and GRE, among other things. 

The Interquartile Range (IQR) represents the difference between Q3 and Q1 
cut point values (the middle two quartiles). The IQR is sometimes used to detect 
extreme values in a distribution; values less than .Q1 − 1.5 ∗ IQR or greater than 
.Q3 + 1.5 ∗ IQR are generally considered outliers. 

In R, the quantile() function returns the values that bookend each quartile: 

# Return quartiles for annual compensation 
quantile(employees$annual_comp) 

## 0% 25% 50% 75% 100% 
## 62400 99840 137280 174200 208000 

Based on this output, we know that 25% of people in our data earn annual com-
pensation of .99,840 USD or less, .137,280 USD is the median annual compensation, 
and 75% of people earn annual compensation of .174,200 USD or less. 

We can also return a specific percentile value using the probs argument in the 
quantile() function. For example, if we want to know the 80th percentile annual 
compensation value, we can execute the following: 

# Return 80th percentile annual compensation value 
quantile(employees$annual_comp, probs = .8) 

## 80% 
## 180960 

In addition, the summary() function returns several common descriptive statis-
tics for an object: 

# Return common descriptives 
summary(employees$annual_comp) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 62400 99840 137280 137054 174200 208000 

Box plots are a common way to visualize the distribution of data. Box plots are not 
usually found in presentations to stakeholders, since they are a bit more technical 
and often require explanation, but these are very useful to analysts for understanding 
data distributions during the EDA phase. 

Let us visualize the spread of annual compensation by education level and gender 
using the geom_boxplot() function from the ggplot2 library:
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# Load library 
library(ggplot2) 

# Produce box plots to visualize compensation distribution by 
education level and gender↪→ 

ggplot2::ggplot(employees, aes(x =  as.factor(ed_lvl), y =  
annual_comp, color = gender)) +↪→ 

ggplot2::geom_boxplot() + 
ggplot2::labs(x =  "Education Level", y =  "Annual 

Compensation") +↪→ 

ggplot2::guides(col = guide_legend("Gender")) + 
ggplot2::theme_bw() 
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Box plots can be interpreted as follows: 

• Horizontal lines represent median compensation values.
• The box in the middle of each distribution represents the IQR.
• The end of the line above the IQR represents the threshold for outliers in the 

upper range: .Q3 + 1.5 ∗ IQR.
• The end of the line below the IQR represents the threshold for outliers in the 

lower range: .Q1 − 1.5 ∗ IQR.
• Data points represent outliers: .x > Q3 + 1.5 ∗ IQR or .x < Q1 − 1.5 ∗ IQR. 

While box plots are pervasive in statistically oriented disciplines, they can be 
misleading. Figure 1 illustrates how information about the shape of a distribution
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Fig. 1 The number range with the highest frequency (0–9) is not as apparent with a box plot (left) 
relative to the bar chart (right) 

can be lost on a box plot. The range with the highest frequency (0–9) is not as 
obvious in the box plot relative to the bar chart. 
Box plot alternatives such as violin plots, jittered strip plots, and raincloud plots 
are often more helpful in understanding data distributions. Figure 2 shows the 
juxtaposition of a raincloud plot against a box plot. While it may seem like an 
oxymoron, in this case the spread of data is clearer in the rain. 

Skewness 

Skewness is a measure of the horizontal distance between the mode and mean— 
a representation of symmetric distortion. In most practical settings, data are not 
normally distributed. That is, the data are skewed either positively (right-tailed 
distribution) or negatively (left-tailed distribution). The coefficient of skewness is 
one of many ways in which we can ascertain the degree of skew in the data. The 
skewness of sample data is defined as: 

.Sk = 1

n

n∑

i=1

(xi − x̄)3

s3
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Fig. 2 Raincloud plot superimposed on a box plot to illustrate the data distribution 

A positive skewness coefficient indicates positive skew, while a negative coef-
ficient indicates negative skew. The order of descriptive statistics can also be 
leveraged to ascertain the direction of skew in the data:

• Positive skewness: mode < median < mean
• Negative skewness: mode > median > mean
• Symmetrical distribution: mode = median = mean 

Figure 3 illustrates the placement of these descriptive statistics in each of the 
three types of distributions. The magnitude of skewness can be determined by 
measuring the distance between the mode and mean relative to the variable’s scale. 
Alternatively, we can simply evaluate this using the coefficient of skewness:

• If skewness is between . −0.5 and 0.5, the data are considered symmetrical.
• If skewness is between . −0.5 and .−1 or 0.5 and 1, the data are moderately 

skewed.
• If skewness is < .−1 or > 1, the data are highly skewed. 

Since there is not a base R function for skewness, we can leverage the moments 
library to calculate skewness:
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Fig. 3 Skewness 

# Load library 
library(moments) 

# Calculate skewness for org tenure, rounded to two 
significant figures via the round() function↪→ 

round(moments::skewness(employees$org_tenure), 2) 

## [1] 2.27 

Statistical Moments, after which this library was named, play an important role in 
specifying the appropriate probability distribution for a set of data. Moments are a 
set of statistical parameters used to describe the characteristics of a distribution. 
Skewness is the third statistical moment in the set; hence the sum of cubed 
differences and cubic polynomial in the denominator of the formula above. The 
complete set of moments comprises: (1) expected value or mean, (2) variance and 
standard deviation, (3) skewness, and (4) kurtosis. 

We can verify that the skewness() function from the moments library returns 
the expected value (per the aforementioned formula) by validating against a manual 
calculation: 

# Store components of skewness calculation 
n = length(employees$org_tenure) 
x = employees$org_tenure
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x_bar = mean(employees$org_tenure) 
s = sd(employees$org_tenure) 

# Calculate skewness manually, rounded to two significant 
figures via the round() function↪→ 

round(1/n * (sum((x - x_bar)ˆ3) / sˆ3), 2) 

## [1] 2.27 

A skewness coefficient of 2.27 indicates that organization tenure is positively 
skewed. We can visualize the data to confirm the expected right-tailed distribution 
(Fig. 4): 

# Produce histogram to visualize sample distribution 
ggplot2::ggplot() + 
ggplot2::aes(employees$org_tenure) + 
ggplot2::labs(x =  "Organization Tenure", y =  "Density") + 
ggplot2::geom_histogram(aes(y =  ..density..), fill = 

"#414141") +↪→ 

ggplot2::geom_density(fill = "#ADD8E6", alpha = 0.6) + 
ggplot2::theme_bw() 

Kurtosis 

While skewness provides information on the symmetry of a distribution, kurtosis 
provides information on the heaviness of a distribution’s tails (“tailedness”). 
Kurtosis is the fourth statistical moment, defined by: 

. K = 1

n

n∑

i=1

(xi − x̄)4

s4

Note that the quartic functions characteristic of the fourth statistical moment are 
the only differences from the skewness formula we reviewed in the prior section 
(which featured cubic functions). 

The terms leptokurtic and platykurtic are often used to describe distributions 
with light and heavy tails, respectively. “Platy-” in platykurtic is the same root as 
“platypus,” and I have found it helpful to recall the characteristics of the flat platypus 
when characterizing frequency distributions as platykurtic (wide and flat) vs. its 
antithesis, leptokurtic (tall and skinny). The normal (or Gaussian) distribution is 
referred to as a mesokurtic distribution in the context of kurtosis. 

Figure 5 illustrates the three kurtosis categorizations.
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Kurtosis is measured relative to a normal distribution. Normal distributions have 
a kurtosis coefficient of 3. Therefore, the kurtosis coefficient is greater than 3 for 
leptokurtic distributions and less than 3 for platykurtic distributions. 

The moments library can also be used to calculate kurtosis in R: 

# Calculate kurtosis for org tenure, rounded to one 
significant figure↪→ 

round(moments::kurtosis(employees$org_tenure), 1) 

## [1] 13.4 

We can verify that the kurtosis() function returns the expected value (per the 
aforementioned formula) by validating against a manual calculation: 

# Calculate kurtosis manually, rounded to one significant 
figure↪→ 

round(1/n * (sum((x - x_bar)ˆ4) / sˆ4), 1) 

## [1] 13.4 

Our kurtosis coefficient of 13.4 indicates a leptokurtic distribution which is 
supported by the visual in Fig. 4. 

It is important not to characterize a distribution based on a single isolated metric; 
we need the complete set of statistical moments to fully understand the distribution 
of data. 

Bivariate Analysis 

As we covered, univariate analysis explores a single variable. This section will cover 
bivariate analysis, which explores statistical relationships between two variables. 

Covariance 

While variance provides an understanding of how values for a single variable vary, 
covariance is an unstandardized measure of how two variables vary together. Values 
can range from .−∞ to .+∞, and these values can be used to understand the 
direction of the linear relationship between variables. Positive covariance values 
indicate that the variables vary in the same direction (e.g., tend to increase or 
decrease together), while negative covariance values indicate that the variables vary 
in opposite directions (e.g., when one increases, the other decreases, or vice versa). 

Covariance of a sample is defined by:
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. covx,y =

n∑

i=1

(xi − x̄)(yi − ȳ)

n − 1

It is important to note that while covariance aids our understanding of the 
direction of the relationship between two variables, we cannot use it to understand 
the strength of the association since it is unstandardized. Due to differences in 
variables’ units of measurement, the strength of the relationship between two 
variables with large covariance could be weak, while the strength of the relationship 
between another pair of variables with relatively small covariance could be strong. 

In R, we can compute the covariance between a pair of numeric variables by 
passing the two vectors into the cov() function: 

# Calculate sample covariance between annual compensation and 
age using complete observations (missing values will cause 
issues if not addressed)

↪→
↪→ 

cov(employees$annual_comp, employees$age, use = 
"complete.obs")↪→ 

## [1] 9381.677 

In this example, using the default method the covariance between annual com-
pensation and age is 9381.7. The positive value indicates that annual compensation 
is generally higher for older employees and lower for younger employees. 

Just as we multiplied the sample variance by .(n − 1)/n to obtain the population 
variance, we can apply the same approach to convert the sample covariance returned 
by cov() to the population covariance: 

# Calculate population covariance between annual compensation 
and age↪→ 

cov(employees$annual_comp, employees$age, use = 
"complete.obs") * (n - 1) / n↪→ 

## [1] 9375.295 

Rather than looking at isolated pairwise relationships, we can produce a covari-
ance matrix to surface pairwise associations among many variables by passing a 
data frame or matrix object into the cov() function: 

# Generate a covariance matrix among select continuous 
variables↪→ 

cov(subset(employees, select = c("annual_comp", "age", 
"org_tenure", "job_tenure", "prior_emplr_cnt", 
"commute_dist")), use = "complete.obs")

↪→
↪→
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## annual_comp age org_tenure job_tenure 
## annual_comp 1.788039e+09 9381.6772019 -3921.9601469 -3693.1960749 
## age 9.381677e+03 83.4550488 17.9255146 7.0467503 
## org_tenure -3.921960e+03 17.9255146 39.7967987 16.9797312 
## job_tenure -3.693196e+03 7.0467503 16.9797312 13.1271220 
## prior_emplr_cnt 2.340406e+03 6.8377387 -1.8547177 -0.8213802 
## commute_dist 1.067158e+04 -0.1248728 0.7746438 0.5535206 
## prior_emplr_cnt commute_dist 
## annual_comp 2340.4057552 10671.5790741 
## age 6.8377387 -0.1248728 
## org_tenure -1.8547177 0.7746438 
## job_tenure -0.8213802 0.5535206 
## prior_emplr_cnt 6.2400490 -0.5923586 
## commute_dist -0.5923586 65.7212510 

Using the default Pearson method, the cov() function will return sample 
variances for each variable down the diagonal, since covariance is not applicable 
in the context of a variable with itself. We can confirm by calculating the variance 
for age and comparing it to the value at the intersection of the row and column 
corresponding to age in the matrix: 

# Return sample variance for age 
var(employees$age) 

## [1] 83.45505 

As expected, the variance for age (.s2 = 83.5) matches the value found in the age 
x age cell of the covariance matrix. 

Correlation 

Correlation is a scaled form of covariance. While covariance provides an unstan-
dardized measure of the direction of a relationship between variables, correlation 
provides a standardized measure that can be used to quantify both the direction 
and strength of bivariate relationships. Correlation coefficients range from .−1 to 1, 
where .−1 indicates a perfectly negative association, 1 indicates a perfectly positive 
association, and 0 indicates the absence of an association. Pearson’s product-
moment correlation coefficient r is defined by: 

. rx,y =

n∑

i=1

(xi − x̄)(yi − ȳ)

√√√√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

In R, Pearson’s r can be calculated using the cor() function:
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Fig. 6 Proper applications of correlation coefficients 

# Calculate the correlation between annual compensation and 
age↪→ 

cor(employees$annual_comp, employees$age, use = 
"complete.obs")↪→ 

## [1] 0.02428654 

While we already know that the relationship between annual compensation and 
age is positive based on the positive covariance coefficient, Pearson’s r of 0.02 
indicates that the strength of the positive association is weak (r = 0 represents the 
absence of a relationship). Though there are no absolute rules for categorizing the 
strength of relationships, as thresholds often vary by domain, the following is a 
general rule of thumb for interpreting the strength of bivariate associations:

• Weak = Absolute value of correlation coefficients between 0 and 0.3
• Moderate = Absolute value of correlation coefficients between 0.4 and 0.6
• Strong = Absolute value of correlation coefficients between 0.7 and 1 

There are several correlation coefficients, and the measurement scale of x and y 
determine the appropriate type (Fig. 6). Pearson’s r can be used when both variables 
are measured on continuous scales or when one is continuous and the other is 
dichotomous (point-biserial correlation). 

When one or both variables are ordinal, we can leverage Spearman’s . ρ or 
Kendall’s . τ , which are both standardized nonparametric measures of the association 
between one or two rank-ordered variables. Let us look at Spearman’s . ρ, which is 
defined as: 

.ρ = 1 − 6
∑

d2
i

n(n2 − 1)
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Fig. 7 2. ×2 table for random 
variables x and y 

We can override the default Pearson method in the cor() function to implement 
a specific form of rank correlation using the method argument: 

# Calculate the correlation between job level and education 
level using Spearman's method↪→ 

cor(employees$job_lvl, employees$ed_lvl, method = "spearman", 
use = "complete.obs")↪→ 

## [1] 0.1074192 

The . ρ coefficient of 0.11 indicates that the positive association between job level 
and education level is weak. We could also pass method = "kendall" to this 
cor() function to implement Kendall’s . τ . 

The Phi Coefficient (. φ), sometimes referred to as the mean square contingency 
coefficient or Matthews correlation in ML, can be used to understand the 
association between two dichotomous variables. 

For the 2. ×2 table for two random variables x and y depicted in Fig. 7, the . φ

coefficient is defined as: 

. φ = (AD − BC)√
(A + B)(C + D)(A + C)(B + D)

To illustrate, let us examine whether there is a relationship between gender and 
performance after transforming performance from its ordinal form to a dichotomous 
variable (high vs. low performance). We can leverage the psych library to calculate 
. φ in R: 

# Set females to 1 and everything else to 0 
employees$gender_code <- ifelse(employees$gender == 'Female', 

1, 0)↪→ 

# Set stock options to 1 if level > 0 
employees$stock_option_code <- ifelse(employees$stock_opt_lvl 

> 0, 1, 0)↪→ 

# Create a 2x2 contingency table
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contingency_tbl <- table(employees$gender_code, 
employees$stock_option_code)↪→ 

# Calculate the Phi Coefficient between dichotomous variables 
psych::phi(contingency_tbl) 

## [1] -0.01 

. φ is essentially 0, which means stock options are distributed equitably across 
gender categories (good news!). While there are not differences in the proportion 
of males and females who receive at least some stock options, examining whether 
there is equity in the amount of stock grants and refreshes may be a good next step. 

A correlation matrix can be produced to surface associations among many 
variables by passing a data frame or matrix object into the cor() function: 

# Generate a correlation matrix among select continuous 
variables↪→ 

cor(subset(employees, select = c("annual_comp", "age", 
"org_tenure", "job_tenure", "prior_emplr_cnt", 
"commute_dist")), use = "complete.obs")

↪→
↪→ 

## annual_comp age org_tenure job_tenure prior_emplr_cnt 
## annual_comp 1.00000000 0.02428654 -0.01470248 -0.02410622 0.02215688 
## age 0.02428654 1.00000000 0.31104359 0.21290106 0.29963476 
## org_tenure -0.01470248 0.31104359 1.00000000 0.74288567 -0.11769547 
## job_tenure -0.02410622 0.21290106 0.74288567 1.00000000 -0.09075393 
## prior_emplr_cnt 0.02215688 0.29963476 -0.11769547 -0.09075393 1.00000000 
## commute_dist 0.03113059 -0.00168612 0.01514695 0.01884500 -0.02925080 
## commute_dist 
## annual_comp 0.03113059 
## age -0.00168612 
## org_tenure 0.01514695 
## job_tenure 0.01884500 
## prior_emplr_cnt -0.02925080 
## commute_dist 1.00000000 

Based on this correlation matrix, most pairwise associations are weak with the 
exception of the relationship between org_tenure and job_tenure (.r = 0.7). 
The values down the diagonal are 1 because these represent the correlation between 
each variable with itself. You may also notice that the information above and below 
the diagonal is identical and, therefore, redundant. 

A great R library for visualizing correlation matrices is corrplot. Several argu-
ments can be specified for various visual representations of the relationships among 
variables, as illustrated in Fig. 8.
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Fig. 8 Corrplot correlation matrix 

# Store correlation matrix to object M 
M <- cor(subset(employees, select = c("annual_comp", "age", 

"org_tenure", "job_tenure", "prior_emplr_cnt", 
"commute_dist")), use = "complete.obs")

↪→
↪→ 

# Visualize correlation matrix 
corrplot::corrplot(M, method = "color", 

type = "upper", order = "hclust", # Apply 
hierarchical clustering for ordering 
coefficients above the diagonal

↪→
↪→ 

addCoef.col = "black", # Add correlation 
coefficient↪→ 

tl.col = "grey", tl.srt = 45, # Label color 
and rotation↪→ 

diag = FALSE # Hide correlation coefficient 
on the principal diagonal↪→ 

) 

The GGally library produces a variety of useful information, including correla-
tion coefficients, bivariate scatterplots, and univariate distributions, as illustrate in 
Fig. 9:
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Fig. 9 GGpairs bivariate correlations and data distributions 

# Visualize correlation matrix 
GGally::ggpairs(subset(employees, select = c("annual_comp", 

"age", "org_tenure", "job_tenure", "prior_emplr_cnt", 
"commute_dist")))

↪→
↪→ 

We may find that these bivariate associations look quite different for certain 
business areas or jobs, assuming departments and jobs were created at different 
points in the company’s history. There is often a lot of noise in data at the broader 
company level, so understanding the nature and nuance of associations is important. 

A classic example of this is a statistical phenomenon known as Simpson’s 
Paradox, which is particularly common in the social sciences. Simpson’s Paradox 
occurs when a correlation is present in subsets of data but disappears or reverses 
when the subsets are combined. The prototypical case is a study of gender 
discrimination at the University of California, Berkeley (Bickel et al., 1975). The 
overall data indicated that men were more likely than women to gain admission to 
the university’s graduate programs, though there was no evidence of bias in any 
individual department. Upon closer evaluation, researchers found that women were 
more likely to apply to departments with lower acceptance rates while men tended 
to apply to less selective departments. The more nuanced relationships, such as
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conferrals (r = 0.96) 

the association between gender and the partitioning variable (department) in this 
example, can lead to incorrect conclusions when examining relationships only at 
the broader population level. We will explore how to control for this in the context 
of linear regression beginning in chapter “Linear Regression”. 

Finally, it is important to remember that correlation is not causation. Correlations 
can be spurious (variables related by chance), and drawing conclusions based 
on bivariate associations alone—especially in the absence of sound theoretical 
underpinnings—can be dangerous. Figures 10 and 11 are two examples of nearly 
perfect correlations between variables for which there is likely no true direct 
association. 

Neither covariance nor correlation alone is sufficient for determining whether an 
observed association in sample data is also present in the population. For this, we 
need to graduate from descriptive to inferential statistics.
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Review Questions 

1. How does the mean and median compare with respect to sensitivity to extreme 
values (outliers)? 

2. What does the standard deviation tell us about the spread of data, and how does 
it compare to the variance? 

3. How does the order of the mean, median, and mode differ between positively 
and negatively skewed distributions? 

4. Do large covariance coefficients always indicate strong bivariate associations? 
Why or why not? 

5. What information is represented in box plots? 
6. Do quartiles relate to percentiles? 
7. What type of correlation coefficient should be used when evaluating the 

relationship between a pair of rank-ordered variables? 
8. What type of correlation coefficient should be used when evaluating the 

relationship between a pair of dichotomous variables? 
9. How would you characterize the shape of platykurtic, leptokurtic, and mesokur-

tic distributions? 
10. When using the Pearson method, what do the values down the diagonal of a 

covariance matrix represent? 
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Statistical Inference 

The objective of inferential statistics is to make inferences –with some degree of 
confidence– about a population based on available sample data. In people analytics, 
a population often refers to all employees—past, present, and future; therefore, 
inferential statistics are appropriate even when data are accessible for every current 
employee. Several related concepts are fundamental to this goal and will be covered 
here. 

Introduction to Probability 

Randomness and uncertainty exist all around us. In probability theory, random 
phenomena refer to events or experiments whose outcomes cannot be predicted 
with certainty (Pishro-Nik, 2014). If you have taken a course in probability, there 
is a good chance you have considered the case of a fair coin flip—one of the most 
intuitive applications of probability. In the absence of information on how the coin 
is flipped, we cannot be certain of the outcome. What we can be certain of is that 
with a large number of coin flips, the proportion of heads will become increasingly 
close to 50%, or . 12 . 

The Law of Large Numbers (LLN) is an important theorem for building 
an intuitive understanding of how probability relates to the statistical inference 
concepts we will cover. In the case of a fair coin flip, it is possible to observe 
many consecutive heads by chance. This is because small samples can lend to 
anomalies. However, as the number of flips increases, we will undoubtedly observe 
an increasing number of tails; we expect a roughly equal number of heads and tails 
with a large enough number of flips. 
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Probability Distributions 

Probability distributions are statistical functions that yield the probability of 
obtaining possible values for a random variable. Probabilities range from 0 to 1, 
where the probability of a definite event is 1 and the probability of an impossible 
event is 0. The empirical probability (or experimental probability) of an event 
is the fraction of times it occurred relative to the total number of repetitions. Since 
a probability distribution defines the likelihood of observing all possible outcomes 
of an event or experiment, the sum of all probabilities for all possible values must 
equal 1. 

For example, let us look at how org tenure is distributed across employees. We 
can understand the general shape of the distribution using descriptive statistics: 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 

# Produce descriptive stats for org tenure 
summary(employees$org_tenure) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 0.000 3.000 5.000 7.032 9.000 72.000 

Comparing the higher mean value of 7.03 to the median value of 5 indicates there 
are larger values skewing the mean upward which is further evidenced in the large 
delta between Q3 and max values. 

Beyond descriptives, visuals are often helpful in understanding a variable’s 
distribution. As shown in Fig. 1, it is clear that org tenure is positively skewed, and 
understanding the shape (or spread) of this distribution enables us to identify which 
values are most likely in order to estimate the likelihood of different results: 

# Load library 
library(ggplot2) 

# Visualize org tenure distribution 
ggplot2::ggplot() + 
ggplot2::aes(employees$org_tenure) + 
ggplot2::labs(x =  "Org Tenure", y =  "Density") + 
ggplot2::geom_histogram(aes(y =  ..density..), fill = 

"#414141") +↪→ 

ggplot2::geom_density(fill = "#ADD8E6", alpha = 0.6) + 
ggplot2::theme_bw()
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Fig. 1 Organization tenure distribution 

You can likely imagine the shape of probability distributions for many common 
events. If we consider the probability of employees exiting an organization, the 
outcome is binary. That is, employees either leave or stay; there are no options 
between these extremes. However, the distribution of performance scores will 
likely look quite different. Most organizations have expected –or even forced– 
distributions in which an average rating is awarded most frequently and low and 
high performance ratings less frequently. This would start to look more like a bell 
curve as the number of performance levels increases. 

Just as we grouped variables into discrete and continuous categories in chapter 
“Measurement and Sampling”, this is also how probability distributions are cat-
egorized. If you read chapter “Measurement and Sampling”, you likely already 
have some a priori expectations about the characteristics of discrete and continuous 
distributions. 

The shape of a probability distribution is defined by parameters, which represent 
its essential properties (e.g., measures of central tendency and spread). These 
probability distributions underpin the many types of statistical tests covered in this 
book.
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Discrete Probability Distributions 

Discrete probability distributions, also known as Probability Mass Functions 
(PMF), can be leveraged to model different types of nominal and ordinal variables. 
Some common discrete distributions include:

• Bernoulli: probability of success or failure for a single observation with two 
outcomes

• Binomial: number of successes and failures in a sequence of independent 
observations with two outcomes (collection of Bernoulli trials)

• Multinomial: generalization of the binomial distribution for observations 
with more than two outcomes

• Negative Binomial (Pascal): a version of the binomial distribution for a fixed 
number of observations (this is positively skewed despite what the name might 
suggest)

• Poisson: probability of a given number of events occurring over a specified 
period

• Geometric: special case of the negative binomial distribution that repeats 
observations until a success is observed (rather than a fixed number of times) 

Several functions are available in R to simulate PMFs. The precise shape of a 
distribution depends on the parameters, but we will simulate and visualize these 
common PMFs to illustrate differences in the general shape of each. First, let us 
simulate the distributions by drawing 1000 random values from each with a specified 
set of parameters: 

# Set seed for reproducible random distribution 
set.seed(1234) 

# Simulate bernoulli distribution 
bernoulli_dist <- rbinom(1000, 1, prob = .5) 

# Simulate binomial distribution 
# Notice the important difference relative to the Bernoulli 

simulation (100 trials vs. 1)↪→ 

binomial_dist <- rbinom(1000, 100, prob = .5) 

# Simulate negative binomial distribution 
nbinomial_dist <- rnbinom(1000, 100, prob = .5) 

# Simulate multinomial distribution with varying probabilities 
per level↪→ 

multinomial_dist <- rmultinom(1000, 4, prob = c(.4, .3, .2, 
.6))↪→
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Fig. 2 Discrete probability distributions 

# Simulate poisson distribution 
poisson_dist <- rpois(1000, 10) 

# Simulate geometric distribution 
geometric_dist <- rgeom(1000, prob = .2) 

Next, we will visualize each distribution (Fig. 2): 

# Load library 
library(ggpubr) 

# Create user-defined function (UDF) to simplify probability 
distribution visualization↪→ 

# Function arguments: 
# (1) data = object containing random distribution values 
# (2) type = 'discrete' or 'continuous' probability 

distribution↪→ 

# (3) title = name of distribution 
dist.viz <- function(data, type, title) { 

if (type == "discrete"){
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# Discrete distribution 
viz <- ggplot2::ggplot() + 

ggplot2::aes(data) + 
ggplot2::labs(title = paste(title), x =  "x", y =  

"count") +↪→ 

ggplot2::geom_histogram(fill = "#414141") + 
ggplot2::theme_bw() + 
ggplot2::theme(plot.title = element_text(hjust = 

0.5))↪→ 

} else { 

# Continuous distribution 
viz <- ggplot2::ggplot() + 

ggplot2::aes(data) + 
ggplot2::labs(title = paste(title), x =  "x", y =  

"density") +↪→ 

ggplot2::geom_histogram(aes(y =  ..density..), fill 
= "#414141") +↪→ 

ggplot2::geom_density(fill = "#ADD8E6", alpha = 
0.6) +↪→ 

ggplot2::theme_bw() + 
ggplot2::theme(plot.title = element_text(hjust = 

0.5))↪→ 

} 

return(viz) 
} 

# Call UDF to build visualizations and store to objects 
p_bernoulli <- dist.viz(data = bernoulli_dist, type = 

"discrete", title = "Bernoulli")↪→ 

p_binomial <- dist.viz(data = binomial_dist, type = 
"discrete", title = "Binomial")↪→ 

p_nbinomial <- dist.viz(data = nbinomial_dist, type = 
"discrete", title = "Negative Binomial")↪→ 

p_multinomial <- dist.viz(data = multinomial_dist, type = 
"discrete", title = "Multinomial")↪→ 

p_poisson <- dist.viz(data = poisson_dist, type = "discrete", 
title = "Poisson")↪→ 

p_geometric <- dist.viz(data = geometric_dist, type = 
"discrete", title = "Geometric")↪→
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# Display distribution visualizations 
ggpubr::ggarrange(p_bernoulli, p_binomial, p_nbinomial, 

p_multinomial, p_poisson, p_geometric,↪→ 

ncol = 3, nrow = 2) 

Continuous Probability Distributions 

Continuous probability distributions, also known as Probability Density Func-
tions (PDF), can be leveraged to model different types of interval and ratio 
variables. Some common continuous distributions include:

• Normal (Gaussian): distribution characterized by a mean and standard 
deviation for which the mean, median, and mode are equal

• Uniform: values of a random variable with equal probabilities of occurring
• Log-Normal: normal distribution of log-transformed values
• Student’s t : similar to the normal distribution but with thicker tails 

(approaches normal as n increases)
• Chi-Square: similar to the t distribution in that the shape approaches normal 

as n increases
• F: developed to examine variances from random samples taken from two 

independent normal populations 

The normal distribution is colloquially known as a bell curve. It is important 
to note that a normal distribution and standard normal distribution are not one-
and-the-same. The standard normal distribution is a special case of the normal 
distribution which has no free parameters; its parameters are always .μ = 0 and 
.σ = 1. The parameters of a normal distribution are unspecified, and . μ and . σ can 
take on values other than 0 and 1, respectively. 

A number of functions are available in R to simulate PDFs. While the precise 
shape of a distribution is parameter dependent, we will simulate and visualize these 
common PDFs to illustrate differences in the general shape of each. Let us first draw 
1,000 random values from each distribution with a specified set of parameters: 

# Set seed for reproducible random distribution 
set.seed(1234) 

# Simulate normal distribution 
normal_dist <- rnorm(1000, mean = 50, sd = 5) 

# Simulate log-normal distribution 
lnormal_dist <- rlnorm(1000, meanlog = 0, sdlog = 1)
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# Simulate uniform distribution 
uniform_dist <- runif(1000, min = 1, max = 100) 

# Simulate student's t distribution 
t_dist <- rt(1000, df = 5) 

# Simulate chi-square distribution 
chisq_dist <- rchisq(1000, df = 5) 

# Simulate F distribution 
f_dist <- rf(1000, df1 = 5, df2 = 200) 

Next, we will visualize each distribution. Since these continuous distributions are 
probability density functions, we will superimpose density plots over each (Fig. 3): 

# Call UDF to build visualizations and store to objects 
# Note that as long as the arguments are in the order 

specified in the function (see our UDF definition above), 
the argument names do not need to be specified. To 
illustrate, we will drop the argument names from these 
function calls:

↪→
↪→
↪→
↪→ 

p_normal <- dist.viz(normal_dist, "continuous", "Normal") 
p_lnormal <- dist.viz(lnormal_dist, "continuous", 

"Log-Normal")↪→ 

p_uniform <- dist.viz(uniform_dist, "continuous", "Uniform") 
p_t <- dist.viz(t_dist, "continuous", "Student's T") 
p_chisq <- dist.viz(chisq_dist, "continuous", "Chi-Square") 
p_f <- dist.viz(f_dist, "continuous", "F") 

# Display distribution visualizations 
ggpubr::ggarrange(p_normal, p_lnormal, p_uniform, p_t, 

p_chisq, p_f,↪→ 

ncol = 3, nrow = 2) 

The distribution of data is critically important in statistics. The accuracy of many 
statistical tests is based on assumptions rooted in underlying data distributions, 
and violating these assumptions can result in serious errors due to misaligned 
probability distributions. Though there are many more discrete and continuous 
probability distributions, we will leverage several of these common types to assess 
the likelihood of differences, effects, and associations in later chapters of this book.
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Fig. 3 Continuous probability distributions 

Conditional Probability 

Conditional probability reflects the probability conditioned on the occurrence of a 
previous event or outcome. For example, we may find that the proportion of heads 
is greater or less than . 12 with a large number of fair coin flips when the coin is 
consistently heads up when flipped. The outcome is, therefore, conditioned on the 
fixed –rather than random– positioning of the coin when flipped. 

Formally, Bayes’ Theorem (alternatively, Bayes’ Rule) states that for any two 
events A and B wherein the probability of A is not 0 (.P(A) �= 0): 

. P(A|B) = P(B|A)P (A)

P (B)
,

where:

• .A = an event
• .B = another event
• .P(A|B) = conditional probability that event A occurs, given event B occurs 

(posterior)
• .P(B|A) = conditional probability that event B occurs, given event A occurs 

(likelihood)
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• .P(B) = normalizing constant, constraining the probability distribution to 
sum to 1 (evidence)

• .P(A) = probability event A occurs before knowing if event B occurs (prior) 

Bayes’ Rule allows us to predict the outcome more accurately by conditioning 
the probability on known factors rather than assuming all events operate under the 
same conditions. Bayes’ Rule is pervasive in people analytics, as the probability of 
outcomes can vary widely when conditioned on a person’s age, tenure, education, 
job, perceptions, relationships, and many other factors. For example, if we consider 
a company with 100 terminations over a 12-month period and average headcount 
of 1,000, the probability of attrition not conditioned on any other factor is 10%, or 
. 
1
10 . Aside from trending this probability over time to identify if overall attrition 
is becoming more or less of a concern, this is not too helpful at the company 
level. However, if we condition the probability of attrition on an event –such as 
a recent manager exit– and find that the probability of attrition among those whose 
manager has left in the last six months is 70%, or . 

7
10 , this is far more actionable (and 

concerning). 
The Monty Hall Problem is an excellent example of how our intuition is often 

at odds with the laws of conditional probability. 
In the classic game show, Let’s Make a Deal, Monty Hall asks contestants to 

choose one of three closed doors. Behind one door is a prize while the other two 
doors contain nothing. After the contestant selects a door, Monty opens one of the 
other two doors which does not contain a prize. At this point, there are two closed 
doors: the door the contestant selected and another for which the content remains 
unknown. All that is known at this point is that the prize is behind one of the two 
closed doors. 

It is at this juncture that Monty introduces a twist by asking if the contestant 
would like to switch doors. Most assume that the two closed doors have an equal 
(50/50) chance of containing the prize, because we generally think of probabilities 
as independent, random events. However, this is incorrect. Contestants who switch 
from their original selection have a 66% chance (rather than 50%) of winning. This 
may be counterintuitive, because the brain wants to reduce the problem to a simple 
coin flip. There is a major difference between the Monty Hall problem and a coin 
flip; for two outcomes to have the same probability, randomness and independence 
are required. In the case of the Monty Hall problem, neither assumption is satisfied. 

When all three doors are closed, each has the same probability of being selected. 
The probability of choosing the door with a prize is 0.33. Monty’s knowledge of the 
door containing the prize does not impact the probability of selecting the winning 
door. This is because the choice is completely random given we have no information 
that would increase the probability of a door containing the prize. The process is no 
longer random when Monty uses his insider knowledge about the prize’s location 
and opens a door he knows does not contain the prize. The probabilities change. 
Since Monty will never show the door containing the prize, he is careful to always 
open a door that has nothing behind it. If he was not constrained by the requirement 
to not reveal the prize’s location and instead chose to open one of the remaining
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doors at random, the probabilities would be equal (and he may end up opening the 
door that contains the prize). 

Seeing is believing, so let us prove this with a simulation in R: 

# Set seed for reproducible simulations 
set.seed(12345) 

# Set number of simulations 
trials = 10000 

# Store switch/keep decisions 
decisions = c("switch", "keep") 

# Store integer for each door 
doors = 1:3 

# Initialize empty data frame for results 
results = NULL 

for (n in 1:trials){ 

for (decision in decisions){ 

# Select correct door 
correct_door <- sample(doors, 1, replace = T) 

# Contestant chooses a door at random 
selected_door <- sample(doors, 1, replace = T) 

# Open door that was neither selected by the contestant 
nor contains the prize↪→ 

# Choose one door to open if multiple remain without the 
prize (i.e., the contestant didn't initially select 
the door containing the prize)

↪→
↪→ 

remaining_doors <- which(!doors == correct_door & !doors 
== selected_door)↪→ 

open_door <- sample(remaining_doors, 1, replace = T) 

# Contestant makes decision to switch doors or keep with 
the originally selected door↪→ 

selected_door <- ifelse(decision == "switch", which(!doors 
== selected_door & !doors == open_door), selected_door)↪→ 

# Store results in data frame 
results <- rbind(results, cbind.data.frame( 

trial = n,
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decision = decision, 
result = ifelse(correct_door == 

selected_door, "win", "lose")))↪→ 

} 
} 

# Calculate percentage difference in wins for switch vs. keep 
decisions↪→ 

switch_wins <- nrow(results[results$decision == "switch" & 
results$result == "win", ])  / nrow(results) * 100↪→ 

keep_wins <- nrow(results[results$decision == "keep" & 
results$result == "win", ])  / nrow(results) * 100↪→ 

round((switch_wins - keep_wins) / keep_wins * 100, 0) 

## [1] 45 

As we can see, wins occur nearly 50% more often when contestants switch doors. 
This exercise hopefully demonstrates the importance of conditional probability and 
statistical assumptions like randomness. Also, if ever you find yourself playing Let’s 
Make a Deal, switch doors. 

Central Limit Theorem 

The Central Limit Theorem (CLT) is a mainstay of statistics and probability and 
fundamental to understanding the mechanics of statistical inference. 

Coined by a French-born mathematician named Abraham De Moivre in the 
1700s, the CLT states that given a sufficiently large sample size, the average of 
independent random variables tends to follow a normal (or Gaussian) distribution 
as the number of samples increases. The distribution of sample means approaches 
a normal distribution regardless of the shape of the population distribution from 
which the samples are drawn. This is important because the normal distribution has 
properties that can be used to test the likelihood that an observed value, difference, 
or relationship in a sample is also present in the population (Fig. 4). 

Let us begin with an intuitive example of CLT. Imagine that we have a reliable 
way to measure how fun a population is on a 100-point scale, where 100 indicates 
maximum fun (life of the party) and 1 indicates maximum boringness. Consider that 
a small statistics conference is in progress at a nearby convention center, and there 
are 40 statisticians in attendance. In a separate room at the same convention center, 
there is also a group of 40 random people (non-statisticians) who are gathered to 
discuss some less interesting topic. Our job is to walk into one of the rooms and
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Fig. 4 The empirical rule 

determine –based on the fun factor alone– whether we have entered the statistics 
conference or the other, less interesting gathering of non-statisticians. 

Instinctively, we already know the statisticians will be more fun than the other 
group. However, let us assume we need the mean fun score and standard deviation of 
these two groups for this example. The group of statisticians have, on average, a fun 
score of 85 with a standard deviation of 2, while the group of non-statisticians are 
a bit less fun with a mean score of 65 and a standard deviation of 4. With a known 
population mean and standard deviation, the standard error (SE) –the standard 
deviation of sample means– provides the ability to calculate the probability that 
the sample (the room of 40 people) belongs to the population of interest (fellow 
statisticians). 

The SE is defined by: 

. SE = σ√
n

Herein lies the beauty of the CLT: roughly 68% of sample means will lie 
within one standard error of the population mean, roughly 95% within two standard 
errors of the population mean, and roughly 99% within three standard errors of the 
population mean. Therefore, any room whose members have an average fun score 
that is not within two standard errors of the population mean (between 84.37 and 
85.63 for our statisticians) is statistically unlikely to be the group of statisticians 
for which we are searching. This is because in less than 5 in 100 cases could we 
randomly draw a reasonably sized sample of statisticians with an average fun score 
so extremely different from the population average. 

Because small samples lend to anomalies, we could –by chance– select a single 
person who happens to fall in the tails (extremely boring or extremely fun); however, 
as the sample size increases, it becomes more and more likely that the observed 
average reflects the average of the larger population. It would be virtually impossible 
(in less than 1 in 100 cases) to draw a random sample of statisticians from the 
population with average funness that is not within three standard errors of the 
population mean (between 84.05 and 85.95). Therefore, if we find that the room 
of people have an average fun score of 75, we will likely have far more fun in the 
other room! 

Let us now see the CLT in action by simulating a random uniform population 
distribution from which we can draw random samples. Remember, the shape of the
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Fig. 5 Uniform population distribution (.N = 1000) 

population distribution does not matter; we could simulate an Exponential, Gamma, 
Poisson, Binomial, or other distribution and observe the same behavior (Fig. 5). 

# Set seed for reproducible random distribution 
set.seed(1234) 

# Generate uniform population distribution with 1000 values 
ranging from 1 to 100↪→ 

rand.unif <- runif(1000, min = 1, max = 100) 

# Calculate population mean 
mean(rand.unif) 

## [1] 51.22007 

# Calculate population variance 
N = length(rand.unif) 
var(rand.unif) * (N - 1) / N 

## [1] 830.3155
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# Produce histogram to visualize population distribution 
ggplot2::ggplot() + 
ggplot2::aes(rand.unif) + 
ggplot2::labs(x =  "x", y =  "Density") + 
ggplot2::geom_histogram(aes(y =  ..density..), fill = 

"#414141") +↪→ 

ggplot2::geom_density(fill = "#ADD8E6", alpha = 0.6) + 
ggplot2::theme_bw() 

As expected, these randomly generated data are uniformly distributed. Next, we 
will draw 100 random samples of various sizes and plot the average of each. 

# Define number of samples to draw from population 
distribution↪→ 

samples <- 10000 

# Populate vector with sample sizes 
sample_n <- c(1:5,10,25,50) 

# Initialize empty data frame to hold sample means 
sample_means = NULL 

# Set seed for reproducible random samples 
set.seed(456) 

# For each n, draw random samples 
for (n in sample_n) { 

for (draw in 1:samples) { 

# Store sample means in data frame 
sample_means <- rbind(sample_means, cbind.data.frame( 

n =  n, 
x_bar = mean(sample(rand.unif, n, 

replace = TRUE, prob = 
NULL))))

↪→
↪→ 

} 
} 

# Produce histograms to visualize distributions of sample 
means, grouped by n-count↪→ 

sample_means |> ggplot2::ggplot() + 
ggplot2::aes(x =  x_bar, fill = n) + 
ggplot2::labs(x =  "x-bar", y =  "Density") +
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Fig. 6 Distribution of 10,000 sample means of varied size 

ggplot2::geom_histogram(aes(y =  ..density..), 
fill = "#414141") +↪→ 

ggplot2::geom_density(fill = "#ADD8E6", alpha 
= 0.6) +↪→ 

ggplot2::theme_bw() + 
ggplot2::facet_wrap(~n) 

Per the CLT, we can see that as n increases, the sample means become more 
normally distributed (Fig. 6). 

Confidence Intervals 

A Confidence Interval (CI) is a range of values that likely contains the value of an 
unknown population parameter. These unknown population parameters are often . μ
or . σ , though we will also leverage CIs in later chapters for regression coefficients, 
proportions, rates, and differences. 

If we draw random samples from a population, we can compute a CI for each 
sample. Building on the CLT, for a given confidence level (usually 95%, though 99% 
or 90% are sometimes used), the specified percent of sample intervals is expected 
to include the estimated population parameter. For example, for a 95% CI we would
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Fig. 7 Intervals for 95% confidence level 

expect 19 in every 20 (or 95 in every 100) intervals across the samples to include 
the true population parameter. This is illustrated in Fig. 7. 

It is important to note that CIs should not be applied to the distribution of sample 
values; CIs relate to population parameters. A common misinterpretation of a CI is 
that it represents an interval within which a certain percent of sample values exists. 
Because this misinterpretation is so prevalent, there is a good chance you will be 
tested on your understanding of CIs when applying to positions involving statistical 
analyses! 

The standard error is fundamental to estimating CIs. While the standard deviation 
is a measure of variability for a random variable, the variability captured by the SE 
reflects how well a sample represents the population. Since sample statistics will 
approach the actual population parameters as the size of the sample increases, the 
SE and sample size are inversely related; that is, the SE decreases as the sample size 
increases. 

Since the CLT is fundamental to inferential statistics, let us validate that our 
simulated distribution of sample means adheres to the properties of normally 
distributed data per the Empirical Rule: 

# Store sample means with n = 50 
x_bars <- sample_means[sample_means$n == 50, "x_bar"] 

# Store sample size 
n <- length(x_bars) 

# Calculate percent of sample means within +/- 2 SEs 
length(subset(x_bars, x_bars < mean(x_bars) + 2 * sd(x_bars) & 

x_bars > mean(x_bars) - 2 * sd(x_bars))) / n * 100↪→ 

## [1] 95.35 

95% of sample means are within 2 SEs, which is what we expect per the 
characteristics of the normal distribution.
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# Calculate percent of sample means within +/- 3 SEs 
length(subset(x_bars, x_bars < mean(x_bars) + 3 * sd(x_bars) & 

x_bars > mean(x_bars) - 3 * sd(x_bars))) / n * 100↪→ 

## [1] 99.79 

Nearly all of the sample means are within 3 SEs, indicating that it would be 
highly unlikely –nearly impossible even– to observe a sample mean from the same 
population that falls outside this interval. 

Now, let us illustrate the relationship between CIs and standard errors using 
sample data from our uniform population distribution. In our example, both . μ and 
. σ are known and our sample size n is at least 30; therefore, we can use a Z-test to 
calculate the 95% CI. A z score of 1.96 corresponds to the 95% CI for a two-tailed 
distribution; that is, we are looking for significantly different values in either the 
larger or smaller direction. The 95% CI represents the range of values we would 
expect to include . μ in at least 95 of 100 random samples taken from the population. 

The CI in this case is defined by: 

. CI = x̄ ± zα/2

σ√
n

Let us randomly take n = 100 from the population and compute sample statistics 
to estimate the 95% CI: 

# Set seed for reproducible random samples 
set.seed(456) 

# Sample 100 values from uniform population distribution 
x <- sample(rand.unif, 100, replace = TRUE, prob = NULL) 

# Calculate 95% CI 
ci95_lower_bound <- mean(x) - 1.96 * (sd(x) / sqrt(100)) 
ci95_upper_bound <- mean(x) + 1.96 * (sd(x) / sqrt(100)) 

# Print lower bound for 95% CI 
ci95_lower_bound 

## [1] 47.90733 

# Print upper bound for 95% CI 
ci95_upper_bound
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## [1] 58.98773 

Our known . μ is 51.2, which is covered by our 95% CI (47.9–59.0). Per the CLT, in 
less than 5% of cases would we expect to draw a random sample from the population 
that results in a 95% CI which does not include . μ. Note that our CI narrows with 
larger samples since our confidence that the range includes . μ increases with more 
data. 

Next, let us look at a 99% CI. We will enter 2.576 for z: 

# Calculate 99% CI 
ci99_lower_bound <- mean(x) - 2.576 * (sd(x) / sqrt(100)) 
ci99_upper_bound <- mean(x) + 2.576 * (sd(x) / sqrt(100)) 

# Print lower bound for 99% CI 
ci99_lower_bound 

## [1] 46.16612 

# Print upper bound for 99% CI 
ci99_upper_bound 

## [1] 60.72893 

Like the 95% CI, this slightly wider 99% CI (46.2–60.7) also includes our . μ of 
51.2. 

If . σ is not known, and/or we have a small sample (n < 30), we need to use a 
t-test to calculate the CIs. In a people analytics setting, the reality is that population 
parameters are often unknown. For example, if we knew how engagement scores 
vary in the employee population, there would be no need to survey a sample of 
employees and make inferences about said population. 

As we will see, the t-test underpins many statistical tests and models germane to 
the people analytics discipline since we are often working with small data sets, so 
it is important to understand the mechanics. As shown in Fig. 8, the  t distribution 
is increasingly wider and shorter relative to the normal distribution as the sample 
size decreases; this is also characteristic of the sampling distribution of means for 
smaller samples we observed in our CLT example. Specifically, degrees of freedom 
(df) is used to determine the shape of the probability distribution. Degrees of 
freedom represents the number of observations in the data that are free to vary when 
estimating statistical parameters, which is a function of the sample size (.n − 1). For 
example, if we could choose 1 of 5 projects to work on each day between Monday 
and Friday, we would only be able to choose 4 out of the 5 days; on Friday, only 1 
project would remain to be selected, so our degrees of freedom (the number of days 
in which we have a choice between projects) would be 4.
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Fig. 8 t distribution shape by 
degrees of freedom 

When estimating the CI for smaller samples, we need to leverage the wider, more 
platykurtic t distribution to achieve greater accuracy. Therefore, the CI for a two-
tailed test in this case is defined by: 

. CI = x̄ ± tα/2

σ√
n

Let us compare CIs calculated using a t-test to those calculated using the Z-Test. 
While a fixed  z score can be used for each CI level when n > 30, the t statistic varies 
based on both the CI level and df . Though R will determine the correct t statistic 
for us, let us reference the table shown in Fig. 9 to manually lookup the t statistic. 

For illustrative purposes, let us draw a smaller sample of n = 25 from our uniform 
population distribution and calculate the 95% CI using the t statistic from the table 
(df = 24). The t statistic for this CI and df is 2.064: 

# Set seed for reproducible random samples 
set.seed(456) 

# Sample 25 values from uniform population distribution 
x <- sample(rand.unif, 25, replace = TRUE, prob = NULL) 

# Calculate 95% CI 
ci95_lower_bound <- mean(x) - 2.064 * (sd(x) / sqrt(25)) 
ci95_upper_bound <- mean(x) + 2.064 * (sd(x) / sqrt(25)) 

# Print lower bound for 95% CI 
ci95_lower_bound 

## [1] 35.24305
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Fig. 9 Critical values of 
student’s t distribution 

# Print upper bound for 95% CI 
ci95_upper_bound 

## [1] 59.60959 

As expected, the 95% CI using the t statistic is much wider (35.2–59.6), 
acknowledging the increased uncertainty in estimating population parameters given 
the limited information in this smaller sample. To increase our confidence to the 
99% level, the interval widens even further (30.9–63.9): 

# Calculate 99% CI 
ci99_lower_bound <- mean(x) - 2.797 * (sd(x) / sqrt(25)) 
ci99_upper_bound <- mean(x) + 2.797 * (sd(x) / sqrt(25))



142 Statistical Inference

# Print lower bound for 99% CI 
ci99_lower_bound 

## [1] 30.91633 

# Print upper bound for 99% CI 
ci99_upper_bound 

## [1] 63.93631 

Hypothesis Testing 

Hypothesis testing is how we leverage CIs to test whether a significant difference 
or relationship exists in the data. Sir Ronald Fisher invented what is known as the 
null hypothesis, which states that there is no relationship/difference; disprove me if 
you can! The null hypothesis is defined by: 

. H0 : μA = μB

The objective of hypothesis testing is to determine if there is sufficient evidence 
to reject the null hypothesis in favor of an alternative hypothesis. The null hypothesis 
always states that there is nothing of significance. For example, if we want to 
test whether an intervention has an effect on an outcome in a population, the 
null hypothesis states that there is no effect. If we want to test whether there is a 
difference in average scores between two groups in a population, the null hypothesis 
states that there is no difference. 

An alternative hypothesis may simply state that there is a difference or relation-
ship in the population, or it may specify the expected direction (e.g., Population A 
has a significantly larger or smaller average value than Population B; Variable A is 
positively or negatively related to Variable B). Therefore, alternative hypotheses are 
defined by: 

. HA : μA �= μB

. HA : μA < μB

.HA : μA > μB
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Alpha 

The alpha level of a hypothesis test, denoted by . α, represents the probability of 
obtaining observed results due to chance if the null hypothesis is true. In other 
words, . α is the probability of rejecting the null hypothesis (and therefore claiming 
that there is a significant difference or relationship) when in fact we should fail to 
reject it because there is insufficient evidence to support the alternative hypothesis. 

. α is often set at 0.05 but is sometimes set at a more rigorous 0.01, depending 
upon the context and tolerance for error. An . α of 0.05 corresponds to a 95% CI (1– 
0.05), and 0.01 to a 99% CI (1–0.01). With non-directional alternative hypotheses, 
we must divide . α by 2 (i.e., we could observe a significant result in either tail of the 
distribution), while one-tailed tests position the rejection region entirely within one 
tail based on what is being hypothesized. 

At the 0.05 level, we would conclude that a finding is statistically significant if 
the chance of observing a value at least as extreme as the one observed is less than 
1 in 20 if the null hypothesis is true. Recall that we observed this behavior with 
our simulated distribution of sample means. While we could observe more extreme 
values by chance with repeated attempts, in less than 1 in every 20 times would we 
expect a 95% CI that does not capture . μ. Moreover, in less than 1 in every 100 times 
should we expect a sample with a 99% CI that does not capture . μ. 

Type I & II Errors 

A Type I error is a false positive, wherein we conclude that there is a significant 
difference or relationship when there is not. A Type II error is a false negative, 
wherein we fail to capture a significant finding. . α represents our chance of making 
a Type I error, while . β represents our chance of making a Type II error. I once had 
a professor explain that committing a Type I error is a shame, while committing a 
Type II error is a pity, and I have found this to be a helpful way to remember what 
each type of error represents (Fig. 10). 

Fig. 10 Type I and II errors
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p-Values 

In statistical tests, the p-value is referenced to determine whether the null hypothesis 
can be rejected. We generally rely on the availability of a theoretical null 
distribution to obtain a p-value associated with a particular test statistic. The p-
value represents the probability of obtaining a result at least as extreme as the 
one observed if the null hypothesis is true. As a general rule, if p < 0.05, we can 
confidently reject the null hypothesis and conclude that the observed difference or 
relationship was unlikely a chance observation. 

While statistical significance helps us understand the probability of observing 
results by chance when there is no difference or effect in the population, it does 
not tell us anything about the size of the difference or effect. Analyses should never 
be reduced to inspecting p-values; in fact, p-values have been the subject of much 
controversy among researchers and practitioners in recent years. Later chapters will 
cover how to interpret results of statistical tests to surface the story and determine if 
there is anything “practically” significant among statistically significant findings. 

Bonferroni Correction 

One caveat when leveraging a p-value to determine statistical significance is that 
when multiple testing is performed –that is, multiple tests using the same sample 
data– the probability of a Type I error increases by a factor equivalent to the number 
of tests performed. Though there is not agreement among statisticians about how (or 
even whether) the p-value threshold for statistical significance needs to be adjusted 
to account for this increased risk, we will cover a conservative approach known as 
the Bonferroni Correction to mitigate this risk. 

Thus far, we have only discussed statistical significance in the context of a per 
analysis error rate—that is, the probability of committing a Type I error for a single 
statistical test. However, when two or more tests are being conducted on the same 
sample, the familywise error rate is an important factor in determining statistical 
significance. The familywise error rate reflects the fact that as we conduct more and 
more analyses on the same sample, the probability of a Type I error across the set 
(or family) of analyses increases. The familywise error rate can be calculated by: 

. αFW = 1 − (1 − αPC)C

where c is equal to the number of comparisons (or statistical tests) performed, and 
.αPC is equal to the specified per analysis error rate (usually 0.05). For example, if 
.α = 0.05 per analysis, the probability of a Type I error with three tests on the same 
data increases from 5% to 14.3%: .1 − (1 − 0.05)3 = 0.143.
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The most common method of adjusting the familywise error rate down to the 
specified per analysis error rate is the Bonferroni Correction. To implement this 
correction, we can simply divide . α by the number of analyses performed on the 
data set—such as .α/3 = 0.017 in the case of three analyses with .α = 0.05. This  
means that for each statistical test, we must achieve p < 0.017 to report a statistically 
significant result. An alternative which allows us to achieve the same number of 
statistically significant results is to multiply the unadjusted per analysis p-values for 
each statistical test by the number of tests. For example, if we run three statistical 
tests and receive .p = 0.014, .p = 0.047, and .p = 0.125, we would achieve one 
significant result with the first method (p < 0.017) as well as with the alternative 
since the first statistical test satisfies the per analysis error rate (p < 0.05): . p =
0.014 ∗ 3 = 0.042. 

Perneger (1998) is one of many who oppose the use of the Bonferroni Correction, 
suggesting that these “adjustments are, at best, unnecessary and, at worst, dele-
terious to sound statistical inference.” The Bonferroni Correction is controversial 
among researchers because while applying the correction reduces the chance of a 
Type I error, it also increases the chance of a Type II error. Because this correction 
makes it more difficult to detect significant results, it is rare to find such a correction 
reported in published research—though research often involves multiple testing 
on the same sample. Perneger suggests that simply describing the statistical tests 
that were performed, and why, is sufficient for dealing with potential problems 
introduced by multiple testing. 

Statistical Power 

Whereas . α is the probability of a Type I error, Beta . β is the opposite: the probability 
of accepting . H0 when it is false (Type II error). 

. β is related to the power of the analysis, which is calculated by 1—. β and reflects 
our ability to detect a difference or relationship if one exists. If a study has 80% 
power, for example, it has an 80% chance of detecting an effect if one actually 
exists in the population. Power analysis helps with defining the optimal n-count 
for detecting a population effect in sample data (i.e., correctly rejecting a false . H0). 
Increasing the power of a statistical test decreases the probability that we will fail to 
detect a significant effect present in the population. 

At this point, it should be intuitive that larger samples increase our chances of 
detecting significant results when they exist. As we observed in the t-test example, 
CIs for small samples (n < 30) are quite wide relative to those for large samples; 
therefore, the power of the analysis to detect significance is limited given how 
different the values of x must be to observe non-overlapping CIs.
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Fig. 11 Cohen’s conventional effect sizes by statistical test 

Before diving into the mechanics of power analysis, it is important to understand 
the three important –and interrelated– considerations in hypothesis tests that 
influence whether effects are real or a product of random sampling error:

• Effect size: Larger differences and stronger relationships are less likely 
random sampling error

• Sample size: Larger samples can detect smaller differences and weaker 
relationships (though they may be too small or weak to be meaningful)

• Variability: Greater variability in the data is likely to result in differences that 
are attributable to random sampling error 

Power analysis may be thought of as an optimization problem. The goal is to 
achieve a large enough sample size to detect meaningful effects –but not wastefully 
large as data collection can be expensive– whilst protecting against an underpowered 
analysis with a low probability of detecting an important effect (Type II error). 

To estimate the sample size needed to achieve a given power level, one must 
use domain expertise to specify parameters. The effect size parameter varies based 
on the statistical test but when in doubt, we can use Cohen’s (1988) conventional 
effect sizes which are defined in Fig. 11. The effect size for a particular test can also 
be retrieved using the cohen.ES() function. For example, the following command 
returns 0.25 as the medium effect size threshold for ANOVA: cohen.ES(test = 
"anov", size = "medium"). 

Let us illustrate by calculating the sample size required for a one-way ANOVA 
that involves four groups. We will set .α = 0.05 and specify an 80% chance 
(power . = 0.8) of detecting a moderate population effect. We can leverage the pwr 
library in R to perform power analysis. Executing ?pwr will provide package 
documentation that clarifies what function to execute to calculate the sample size 
requirement for various statistical tests.
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# Load library 
library(pwr) 

# Calculate sample size for one-way ANOVA 
# k = 4 indicates we plan to compare 4 groups 
# f = .25 indicates we wish to detect a medium effect 
pwr::pwr.anova.test(k =  4, f =  .25, sig.level = .05, power = 

.8)↪→ 

## 
## Balanced one-way analysis of variance power calculation 
## 
## k = 4  
## n = 44.59927 
## f = 0.25 
## sig.level = 0.05 
## power = 0.8 
## 
## NOTE: n is number in each group 

The power analysis for this one-way ANOVA shows that we need a minimum 
of .n = 45 within each of the four groups to achieve an 80% chance of detecting a 
medium population effect across the four groups when setting .α = 0.05. 

Review Questions 

1. What are some examples of a null hypothesis? 
2. What is the difference between Type I and Type II errors? 
3. What is the primary purpose of inferential statistics, and how does it differ from 

descriptive statistics? 
4. What is the Central Limit Theorem (CLT), and why is it important? 
5. Is randomness a requirement for probabilistic methods? Why or why not? 
6. What does the Bonferroni Correction seek to achieve? 
7. What is a confidence interval (CI)? 
8. What are some examples of how the context influences what level of confidence 

is appropriate for statistical significance testing? Should we always use a 95 CI?
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9. When population parameters are unknown, which test would be appropriate for 
testing the following null hypothesis: μA = μB? 

10. According to the Empirical Rule, 95% of normally distributed data lie within 
how many standard deviations of the mean? 
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Analysis of Differences 

There are many statistical tests that can be used to test for differences within 
or between two or more groups. This chapter will cover common contexts for 
differences in people analytics and the tests applicable to each. 

Parametric vs. Nonparametric Tests 

In the context of data measured on a continuous scale (quantitative), we will 
cover parametric tests along with their nonparametric counterparts. When the 
hypothesis relates to average (mean) differences and n is large, parametric tests 
are preferred as they generally have more statistical power. Nonparametric tests 
are distribution-free tests that do not require the population’s distribution to be 
characterized by certain parameters, such as a normal distribution defined by a mean 
and standard deviation. Nonparametric tests are great for qualitative data since the 
distribution of non-numeric data cannot be characterized by parameters. 

Beyond ensuring the data were generated from a random and representative 
process as discussed in chapter “Measurement and Sampling”, as well as following 
the data screening procedures outlined in chapter “Data Preparation” (e.g., address-
ing concerning outliers), parametric tests of differences generally feature three key 
assumptions: 

1. Independence: Observations within each group are independent of each 
other. 

2. Homogeneity of Variance: Variances of populations from which samples 
were drawn are equal. 

3. Normality: Residuals must be normally distributed (with mean of 0) within 
each group. 
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While homogeneity of variance assumes the variances across multiple groups are 
equal, parametric tests are generally robust to violations of equal variances when 
the sample sizes are large. Also, you may recall that . μ and . σ are sufficient to 
characterize a population distribution when data are situated symmetrically around 
the mean. However, the mean can be sensitive to outliers so if outliers are present 
in the data, the median may be a better way of representing the data’s center (i.e., 
nonparametric tests); just remember that the use of nonparametric tests requires 
hypotheses to be modified to adjust for median –rather than mean– centers. 

You may be wondering whether the magical elixir that is the CLT, which we 
covered in chapter “Statistical Inference”, influences our ability to utilize parametric 
tests with respect to the assumption of normality. It is important to remember 
that the normal distribution properties under the CLT relate to the sampling 
distribution of means—not to the distribution of the population or to the data for 
an individual sample. The CLT is important for estimating population parameters, 
but it does not transform a population distribution from non-normal to normal. If we 
know the population distribution is non-normal (e.g., ordinal, nominal, or skewed 
data), nonparametric tests should be considered. This is why we used Spearman’s 
correlation coefficient –a nonparametric test– in chapter “Descriptive Statistics” to  
evaluate the relationship between job level and education; these ordinal data are not 
normally distributed in the population. 

Differences in Discrete Data 

Nonparametric tests are generally best when working with data measured on a 
discrete scale since these data do not come from normally distributed populations. 
The two most commonly used tests to analyze variables measured on a discrete scale 
are the nonparametric Chi-square test and Fisher’s exact test (Fig. 1). 
Both tests organize data within 2x2 contingency tables which enables us to 
understand interrelations between variables. 

Fig. 1 Chi-square and Fisher exact test criteria for discrete data
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Chi-Square Test 

The Chi-Square Test of Independence evaluates patterns of observations to 
determine if categories occur more frequently than we would expect by chance. 
The Chi-square statistic is defined by: 

. χ2 =
∑ (Oi − Ei)

2

Ei

where . Oi is the observed value, and . Ei is the expected value. 
.H0 states that each variable is independent of one another (i.e., there is no 

relationship). In addition to the . χ2 test statistic, df for the contingency table defined 
by .df = (rows − 1) ∗ (columns − 1), is required to determine whether we reject 
or fail to reject . H0. 

While there is not consensus on the minimum sample size for this test, it is impor-
tant to note that the . χ2 statistic follows a chi-square distribution asymptotically. This  
means we can only calculate accurate p-values for larger samples, and a general rule 
of thumb is that the expected value for each cell needs to be at least 5. The challenge 
with small n-counts is illustrated in Fig. 2; the chi-square distribution approaches a 
vertical line as df drops below 5. 
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We will demonstrate how to perform a chi-square test of independence by 
evaluating whether exit rates are independent of whether an employee works 
overtime. Let us first construct a .2×2 contingency table using the table() function: 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 

# Create contingency table 
cont_tbl <- table(employees$active, employees$overtime) 

cont_tbl 

## 
## No Yes 
## No 110 127 
## Yes 944 289 

A mosaic plot is a great way to visualize the delta between expected and 
observed frequencies for each cell. This can be produced using the mosaicplot() 
function from the graphics library: 

In Fig. 3, blue indicates that the observed value is higher than the expected 
value, while red indicates that the observed value is lower than the expected value. 
Based on this plot, there appears to be some meaningful patterns and departures 
from expected values in both the high and low directions. There are more inactive 
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employees than expected in the overtime group, and more active employees than 
expected in the no overtime group. These large standardized residuals are indicative 
of meaningful relationships between the two categorical variables. 

Let us run the chi-square test of independence to determine whether these 
residuals are statistically significant. This test can be performed in R by passing 
the contingency table into the chisq.test() function: 

# Perform chi-square test of independence 
chisq.test(cont_tbl) 

## 
## Pearson's Chi-squared test with Yates' continuity correction 
## 
## data: cont_tbl 
## X-squared = 87.564, df = 1, p-value < 2.2e-16 

Based on the results, exit rates are not independent of overtime (. χ2(1) =
87.56, p < 0.05). Therefore, there is a statistically significant relationship between 
an employee working overtime and the rate at which they change from active to 
inactive statuses—confirming what was evident in the mosaic plot. 

Fisher’s Exact Test 

When the sample size is small, Fisher’s Exact Test can be used to calculate the 
exact p-value rather than the approximation characteristic of many statistical tests 
such as the chi-square test. 

.H0 for Fisher’s exact test is the same as .H0 for the chi-square test of indepen-
dence: There is no relationship between the two categorical variables (i.e., they 
are independent). We can perform Fisher’s exact test using the fisher.test() 
function in R: 

# Perform Fisher's exact test 
fisher.test(cont_tbl) 

## 
## Fisher's Exact Test for Count Data 
## 
## data: cont_tbl 
## p-value < 2.2e-16 
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval: 
## 0.1969101 0.3572582
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Fig. 4 .2 × 2 contingency 
table of overtime for active 
and inactive workers 

## sample estimates: 
## odds ratio 
## 0.2654384 

Note the odds ratio shown in this output. The odds ratio represents the ratio 
of positive to negative cases, which is the ratio of overtime for active and inactive 
workers in this example. The odds ratio is defined by: 

. OR = a ∗ d

b ∗ c

An odds ratio of 1 indicates no difference in overtime frequency between active 
and inactive workers. Figure 4 illustrates the cells for the odds ratio calculation for 
the .2 × 2 contingency table of overtime for active and inactive workers. 

Since the 95% CI for the odds ratio does not include 1, we reject the null 
hypothesis and conclude that exit rates are related to working overtime; this is 
consistent with results from the chi-square test of independence. Since overtime 
was indicated far more often for inactive workers than for active workers, it is no 
surprise that the denominator of our ratio is larger than the numerator (i.e., OR < 
1). 

As discussed in chapter “Descriptive Statistics”, we can produce a . φ coefficient 
to understand the strength of the association by passing the contingency table into 
the phi function from the psych library: 

# Calculate the Phi Coefficient 
psych::phi(cont_tbl) 

## [1] -0.25 

The relationship between active status and overtime is negative, and the strength 
of the relationship is weak (.φ = −0.25). 

Another common method of measuring the strength of the association between 
two categorical variables is Cramer’s V, which ranges from 0 (no association) to 1 
(strong association). In the interest of not muddying the waters with an exhaustive 
set of alternative methods, the implementation will not be covered.
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Fig. 5 Parametric and nonparametric tests of differences for continuous data 

Differences in Continuous Data 

A variety of parametric and nonparametric tests are available for evaluating 
differences between variables measured on a continuous scale. Figure 5 provides 
a side-by-side of these parametric and corresponding nonparametric tests of differ-
ences. 

Independent Samples t-Test 

When evaluating differences between two independent samples, social psychology 
researchers generally select from two tests: Student’s t-test and Welch’s t-test. There 
are other alternatives, such as Yuen’s t-test and a bootstrapped t-test, but these are 
less commonly reported in scholarly social science journals and will not be covered 
in this book. 

The Student’s t-test, which was introduced in chapter “Statistical Inference”, 
is a parametric test whose assumptions of equal variances seldom hold in people 
analytics. Welch’s t-test is generally preferred to the Student’s t-test because it has 
been shown to provide better control of Type 1 error rates when homogeneity of 
variance is not met, whilst losing little robustness (e.g. Delacre et al., 2017). When 
n is equal between groups, the Student’s t-test is known to be robust to violations 
of the equal variance assumption, as long as n is sufficiently large to accurately 
estimate parameters and the underlying distribution is not characterized by high 
skewness or kurtosis. 

Let us explore the mechanics of independent samples t-tests. Figure 6 illustrates 
mean differences (MD) for nine Welch’s t-tests based on random sample data
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Fig. 6 Density plots comparing distributions with a mean of 100 (blue) and 120 (grey) with sample 
sizes of 100, 1000, and 10,000 (rows) and standard deviations of 25, 50, and 75 (columns). Dashed 
vertical lines represent distribution means 

generated from independent normal populations. Remember that statistical power 
increases with a large n, as  t distributions approximate a normal distribution with 
larger df . In the context of analysis of differences, this translates to an increase in 
the likelihood of detecting statistical differences in the means of two distributions. 
Note that for the two cases where both MD and n are relatively small, mean 
differences are not statistically significant (p >= 0.05). You may also notice that as 
the t-statistic approaches 0, statistical differences become less likely since a smaller 
absolute t-statistic indicates a smaller difference between mean values. 

Next, we will walk through the steps involved in performing Welch’s t-test. Let 
us first visualize the distribution of data for each group using box plots (Fig. 7). 

While the median –rather than the mean which is being evaluated with Welch’s t-
test– is shown in these box plots, this is a great way to visually inspect whether there 
are meaningful differences in the distribution of data between groups (in addition 
to identifying outliers). We could of course use density plots or histograms as an 
alternative. As we can see, annual compensation for employees with a Manager job 
title tends to be slightly higher than for those with a Research Scientist job title, 
and the variance in annual compensation appears to be fairly consistent between the 
groups.
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Fig. 7 Annual compensation distributions for managers and research scientists 

There are several alternatives to a visual inspection of normality, such as the . χ2

Goodness-of-Fit test (Snedecor and Cochran, 1980), Kolmogorov-Smirnov (K-S) 
test (Chakravarti et al., 1967), or Shapiro-Wilk test (Shapiro and Wilk, 1965). The 
general idea is consistent for each of these tests: compare observed data to what 
would be expected if data are sampled from a normally distributed population. The 
. χ2 Goodness-of-Fit test compares the count of data points across the range of values 
relative to what would be expected in each for a sample with the same dimensions 
taken from a normal distribution. For example, if data are sampled from a normally 
distributed population, it follows that roughly half the values should exist below the 
mean and half above the mean. The K-S test evaluates how the observed cumulative 
distribution compares to the properties of a normal cumulative distribution. The 
Shapiro-Wilk test is based on correlations between observed and expected data. 

We will test for normality using the Shapiro-Wilk test. The null hypothesis for 
the Shapiro-Wilk test is that the data are normally distributed, so a high p-value 
indicates that the assumption of normality is satisfied (i.e., failure to reject the null 
hypothesis of normally distributed data). We can use the with() function together 
with the shapiro.test() function to run this test in R: 

# Compute Shapiro-Wilk test of normality for each group 
with(employees, shapiro.test(annual_comp[job_title == 

'Manager']))↪→
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## 
## Shapiro-Wilk normality test 
## 
## data: annual_comp[job_title == "Manager"] 
## W = 0.93546, p-value = 0.000103 

with(employees, shapiro.test(annual_comp[job_title == 
'Research Scientist']))↪→ 

## 
## Shapiro-Wilk normality test 
## 
## data: annual_comp[job_title == "Research Scientist"] 
## W = 0.96002, p-value = 3.427e-07 

Based on these tests, distributions of annual compensation for Managers and 
Research Scientists are non-normal (p < 0.05). 

While we should not proceed with performing Welch’s t-test due to unequal 
variances, let us do so merely to illustrate how the test is implemented in R. To 
perform Welch’s t-test in R, we can simply pass into the t.test() function a 
numeric vector for each of the two groups. 

# Create compensation vectors for two jobs 
comp_mgr <- unlist(subset(employees, job_title == 'Manager', 

select = annual_comp))↪→ 

comp_rsci <- unlist(subset(employees, job_title == 'Research 
Scientist', select = annual_comp))↪→ 

# Run Welch's t-test 
t.test(comp_mgr, comp_rsci) 

## 
## Welch Two Sample t-test 
## 
## data: comp_mgr and comp_rsci 
## t = 0.22623, df = 159.55, p-value = 0.8213 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
## -8860.685 11153.244 
## sample estimates: 
## mean of x mean of y 
## 139900.8 138754.5 

If the data adhered to the assumptions of Welch’s t-test, we would conclude that 
the mean difference between annual compensation for Managers (.x̄ = 139,901) and 
Research Scientists (.x̄ = 138,755) is not significant (.t (159.55) = 0.23, .p = 0.82).
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Note that we can access specific metrics from this output by storing results to an 
object and then referencing specific elements by name or index: 

# This assigns each element of results from Welch's t-test to 
an indexed position in the object↪→ 

t_rslts <- t.test(comp_mgr, comp_rsci) 

t_rslts$statistic # t-statistic 

## t 
## 0.2262262 

t_rslts$parameter # df  

## df 
## 159.5544 

t_rslts$p.value # p-value 

## [1] 0.8213151 

t_rslts$method # type of t-test 

## [1] "Welch Two Sample t-test" 

When object elements are referenced by index, the element name is displayed in 
the output to clarify what the metric represents: 

t_rslts[1] # t-statistic 

## $statistic 
## t 
## 0.2262262 

t_rslts[2] # df  

## $parameter 
## df 
## 159.5544
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t_rslts[3] # p-value 

## $p.value 
## [1] 0.8213151 

t_rslts[9] # type of t-test 

## $method 
## [1] "Welch Two Sample t-test" 

Given df = 159.55, you may be wondering how df is calculated for Welch’s t-
test given that thus far, we have only discussed the basic df calculation outlined in 
chapter “Statistical Inference”; namely, .df = n − 1. Welch’s t-test uses the Welch-
Satterthwaite equation for df (Satterthwaite, 1946; Welch, 1947). This equation 
approximates df for a linear combination of independent sample variances, which 
means that if samples are not independent, this approximation may not be valid. The 
Welch-Satterthwaite equation is defined by: 

. df =

(
s2
1

n1
+ s2

2
n2

)2

1
n1−1

(
s2
1

n1

)2

+ 1
n2−1

(
s2
2

n2

)2

Cohen’s . d is a standardized measure of the difference between two means 
that helps us understand the size (or practical significance) of observed mean 
differences. Cohen’s d is defined by: 

. d = x̄1 − x̄2

sp

where . sp represents the pooled standard deviation defined by: 

. sp =
√

s2
1 + s2

2

2

Cohen’s d can be produced using the cohen.d() function from the effsize 
package in R. The following thresholds can be referenced as a general rule of thumb 
for interpreting effect size:

• Small . = 0.2
• Medium . = 0.5
• Large . = 0.8
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# Load library 
library(effsize) 

# Perform Cohen's d 
effsize::cohen.d(comp_mgr, comp_rsci) 

## 
## Cohen's d 
## 
## d estimate: 0.0273669 (negligible) 
## 95 percent confidence interval: 
## lower upper 
## -0.2004390 0.2551728 

Not only are the differences statistically insignificant, Cohen’s . d = 0.03
indicates a negligible difference. Therefore, there is nothing of interest based on 
these statistical and practical significance tests. 

Mann-Whitney U Test 

A popular nonparametric (distribution-free) alternative to Welch’s t-test is the 
Mann-Whitney U Test, also referred to as the  Wilcoxon Rank-Sum Test. Rather 
than comparing the mean between two groups, like the Student’s t-test or Welch’s 
t-test, the Mann-Whitney U test considers the entire distribution by evaluating the 
extent to which the ranks are consistent between groups (i.e., similarity in the 
proportion of records with each value). When distributions are similar, the medians 
of the two groups are compared. 

The wilcox.test() function is used to run this test in R. Let us illustrate by 
examining whether engagement (an ordinal variable in our data set) is significantly 
different between those who have been promoted in the past year and those who 
have not: 

# Create dummy-coded promotion variable 
employees$promo <- ifelse(employees$last_promo == 1, 1, 0) 

# Create numeric engagement vectors for promo groups 
no_promo <- unlist(subset(employees, promo == 0, select = 

engagement))↪→ 

promo <- unlist(subset(employees, promo == 1, select = 
engagement))↪→
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# Perform the Mann-Whitney U (aka Wilcoxon rank-sum) test 
wilcox.test(no_promo, promo) 

## 
## Wilcoxon rank sum test with continuity correction 
## 
## data: no_promo and promo 
## W = 196056, p-value = 0.6707 
## alternative hypothesis: true location shift is not equal to 0 

Based on these results, we fail to reject the null hypothesis, which states that 
there is no difference in engagement between those with and without promotions 
(.W = 196,056, .p = 0.67). Note the reference to continuity correction in the 
output. Continuity correction is applied when using a continuous distribution 
to approximate a discrete distribution. The Mann-Whitney U test we performed 
approximated a continuous distribution for testing differences between our ordinal 
(discrete) engagement data by applying this continuity correction. 

Just as Cohen’s d is used to measure the magnitude of difference between a pair 
of means, Cliff’s delta can be leveraged to evaluate the size of differences between 
ordinal variables. Cliff’s delta measures how often a value in one distribution is 
higher than values in another, and this is appropriate in situations in which a 
nonparametric test of differences is used. This statistic can be produced using the 
cliff.delta() function from the effsize package in R. 

# Calculate Cliff's Delta 
effsize::cliff.delta(no_promo, promo) 

## 
## Cliff's Delta 
## 
## delta estimate: -0.0131625 (negligible) 
## 95 percent confidence interval: 
## lower upper 
## -0.07329491 0.04706528 

Some (e.g., Vargha and Delaney, 2000) have endeavored to categorize the Cliff’s 
delta statistic, which ranges from .−1 to 1, into effect size buckets. However, such 
categorizations are far more controversial than thresholds attributed to Cohen’s d. 
Nevertheless, the near-zero delta estimate of .−0.01 indicates a negligible difference.
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Paired Samples t-Test 

A Paired Samples t-Test is used to compare means between pairs of measurements. 
This test is known by many other names, such as a dependent samples t-test, 
paired-difference t-test, matched pairs t-test, and repeated-samples t-test. 

The assumption of normality in the context of a paired samples t-test relates to 
normally distributed paired differences. This is important, as the p-value for the test 
statistic will not be valid if this assumption is violated. 

To illustrate, let us design an experiment. Let us assume morale has declined for 
employees who travel frequently, and several actions have been proposed by a task 
force to help address this. The task force has decided to pilot a new flexible work 
benefit over a six-month period to determine if it has a meaningful effect on morale. 
This new benefit is piloted to a random sample of frequent travelers, and our task is 
to test whether the outcomes warrant a broader rollout to frequent travelers. 

Our DV (happiness) will be measured using a composite index derived from 
individual engagement, environment satisfaction, job satisfaction, and relationship 
satisfaction scores. Our objective is to determine if there is a significant improve-
ment in this happiness index for the treatment group (those who are part of the 
flexible work pilot) relative to the pre/post difference for the control group (those 
not selected for the flexible work pilot). 

While we could simply look at the pre/post differences for the treatment group, 
we understand from chapter “Research Design” that this would be a weak design 
that may lead to inaccurate conclusions. There could be alternative explanations for 
any observed increases in happiness that are unrelated to the intervention itself. 
For example, between time 1 and time 2, travel frequency may have decreased 
for everyone, which may contribute to overall happiness. By comparing pre/post 
differences between the treatment and control groups, we gain more confidence 
in isolating the effect of the flexible work benefit on happiness since alternative 
explanations should be reflected in any pre/post changes observed for the control 
group. 

Let us prepare the data for this experiment. Since employees is a cross-
sectional data set (single point-in-time), we will generate simulated data for repeated 
measures (i.e., post-intervention scores). 

# Set seed for reproducible results 
set.seed(1234) 

# Derive happiness index from survey variables 
employees$happiness_ind <- (employees$engagement + 

employees$env_sat + employees$job_sat + employees$rel_sat) 
/ 4

↪→
↪→ 

# Sample size of frequent travelers 
n = nrow(subset(employees, business_travel == 

'Travel_Frequently', select = employee_id))↪→
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# Randomly assign half of frequent travelers to treatment and 
control groups↪→ 

treat_ids <- sample(unlist(subset(employees, business_travel 
== 'Travel_Frequently', select = employee_id)), floor(n * 
.5))

↪→
↪→ 

ctrl_ids <- unlist(subset(employees, business_travel == 
'Travel_Frequently' & !employee_id %in% treat_ids, select 
= employee_id))

↪→
↪→ 

# Initialize dfs for pre/post metrics 
treat_metrics = data.frame(pre_ind = length(treat_ids), 

rand_num = rnorm(length(treat_ids), 
mean = 15, sd = 5) * .001,↪→ 

post_ind = length(treat_ids), 
diff = length(treat_ids)) 

ctrl_metrics = data.frame(pre_ind = length(ctrl_ids), 
rand_num = rnorm(length(ctrl_ids), 

mean = 0, sd = 1) * .001,↪→ 

post_ind = length(ctrl_ids), 
diff = length(ctrl_ids)) 

# Store happiness indices for treatment and control groups 
treat_metrics$pre_ind <- unlist(subset(employees, employee_id 

%in% treat_ids, select = happiness_ind))↪→ 

ctrl_metrics$pre_ind <- unlist(subset(employees, employee_id 
%in% ctrl_ids, select = happiness_ind))↪→ 

# Create vectors with artificially inflated post-intervention 
happiness indices↪→ 

treat_metrics$post_ind <- treat_metrics$pre_ind + 
treat_metrics$rand_num↪→ 

ctrl_metrics$post_ind <- ctrl_metrics$pre_ind + 
ctrl_metrics$rand_num↪→ 

It is important to remember that a paired samples t-test requires that each of the 
paired measurements be obtained from the same subject. Therefore, if an employee 
terms between time 1 and time 2, or does not provide the survey responses needed 
to calculate the happiness index at both time 1 and time 2, the employee should be 
removed from the data since paired measurements will not be available. 

The variance is not assumed to be equal for a paired test; therefore, the 
homogeneity of variance assumption is not applicable in this context. 

Next, we will evaluate whether paired differences are normally distributed using 
the Shapiro-Wilk test. While individual survey items are measured on an ordinal
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scale, our derived happiness index is the average of multiple ordinal items and can be 
considered an approximately continuous variable. There are .2p−p−1 combinations 
of scores, where p is the number of variables. For our happiness index, there are 
.24 − 4 − 1 = 11 combinations. 

# Load library 
library(ggpubr) 

# Calculate pre/post differences 
treat_metrics$diff <- treat_metrics$post_ind -

treat_metrics$pre_ind↪→ 

ctrl_metrics$diff <- ctrl_metrics$post_ind -
ctrl_metrics$pre_ind↪→ 

# Histogram for distribution of pre/post treatment group 
differences↪→ 

p_treat <- ggplot2::ggplot() + 
ggplot2::aes(treat_metrics$diff) + 
ggplot2::labs(title = "Treatment Group", x =  

"Happiness Index Differences", y =  "Frequency") +↪→ 

ggplot2::geom_histogram(fill = "#414141") + 
ggplot2::theme_bw() + 
ggplot2::theme(plot.title = element_text(hjust = 

0.5))↪→ 

# Histogram for distribution of pre/post control group 
differences↪→ 

p_ctrl <- ggplot2::ggplot() + 
ggplot2::aes(ctrl_metrics$diff) + 
ggplot2::labs(title = "Control Group", x =  

"Happiness Index Differences", y =  "Frequency") +↪→ 

ggplot2::geom_histogram(fill = "#414141") + 
ggplot2::theme_bw() + 
ggplot2::theme(plot.title = element_text(hjust = 

0.5))↪→ 

# Display histograms side-by-side 
ggpubr::ggarrange(p_treat, p_ctrl, ncol = 2, nrow = 1) 

Based on a visual inspection (Fig. 8), the distributions of differences appear to be 
roughly normal. This should not be surprising given random values were sampled 
from normal distributions to derive artificial post-intervention happiness indices. 

Let us test for normality by performing the Shapiro-Wilk test on vectors of 
differences:
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Fig. 8 Pre/post differences for treatment and control groups 

# Compute Shapiro-Wilk test of normality 
shapiro.test(treat_metrics$diff) 

## 
## Shapiro-Wilk normality test 
## 
## data: treat_metrics$diff 
## W = 0.98936, p-value = 0.3738 

shapiro.test(ctrl_metrics$diff) 

## 
## Shapiro-Wilk normality test 
## 
## data: ctrl_metrics$diff 
## W = 0.99096, p-value = 0.5134 

Since .p >= 0.05 for both tests, the assumption of normally distributed 
differences is met. Given the data generative process implemented for this example, 
differences would become increasingly normal as the sample size increases. We now 
have the greenlight to perform the paired samples t-test.
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We can run a paired samples t-test in R by passing paired = TRUE as an 
argument to the same t.test() function used for the independent samples t-test. 
Since we are investigating whether the average post-intervention happiness index 
is significantly greater than the average pre-intervention happiness index, we also 
need the alternative = "greater" argument since the default two-tailed test 
only evaluates whether the average indices are significantly different (regardless of 
whether the pre- or post-intervention index is larger). 

# Perform one-tailed paired samples t-test for treatment 
group↪→ 

t.test(treat_metrics$post_ind, treat_metrics$pre_ind, paired = 
TRUE, alternative = "greater")↪→ 

## 
## Paired t-test 
## 
## data: treat_metrics$post_ind and treat_metrics$pre_ind 
## t = 35.906, df = 137, p-value < 2.2e-16 
## alternative hypothesis: true mean difference is greater than 0 
## 95 percent confidence interval: 
## 0.01490482 Inf 
## sample estimates: 
## mean difference 
## 0.01562551 

These results indicate that the post-intervention happiness index is significantly 
larger than the pre-intervention happiness index. This is encouraging with respect 
to the potential efficacy of the flexible work pilot, but the question about whether 
the control group experienced a commensurate improvement over the observation 
period remains unanswered. 

Let us run the same paired samples t-test using the control group indices: 

# Perform one-tailed paired samples t-test for control group 
t.test(ctrl_metrics$post_ind, ctrl_metrics$pre_ind, paired = 

TRUE, alternative = "greater")↪→ 

## 
## Paired t-test 
## 
## data: ctrl_metrics$post_ind and ctrl_metrics$pre_ind 
## t = 0.59995, df = 138, p-value = 0.2748 
## alternative hypothesis: true mean difference is greater than 0 
## 95 percent confidence interval: 
## -8.719262e-05 Inf 
## sample estimates: 
## mean difference 
## 4.953658e-05
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Since .p >= 0.05, we can conclude that there was not a significant increase 
in happiness indices for the control group, which provides additional –but not 
conclusive– support for the effectiveness of the flexible work benefit. 

Chapter “Linear Regression” will introduce linear regression, which is a powerful 
modeling tool for people analytics that helps control for multiple alternative 
explanations of associations with the DV in order to isolate the unique effects of 
each IV. 

Difference-in-differences (DiD) estimation is an alternative quasi-experimental 
approach that originated from econometrics for evaluating the effects of interven-
tions like these, but it is beyond the scope of this book. Angrist and Pischke (2009) 
is an excellent resource for learning about these methods. 

We can evaluate the magnitude of mean differences for these paired samples by 
passing the paired = TRUE argument to the same cohen.d() function used for 
independent samples: 

# Perform Cohen's d 
effsize::cohen.d(treat_metrics$post_ind, 

treat_metrics$pre_ind, paired = TRUE)↪→ 

## 
## Cohen's d 
## 
## d estimate: 0.03132117 (negligible) 
## 95 percent confidence interval: 
## lower upper 
## 0.02960345 0.03303890 

Though pre/post indices are statistically significant for the treatment group, the 
size of the difference is negligible (d = 0.03). 

Wilcoxon Signed-Rank Test 

The Wilcoxon Signed-Rank Test is the nonparametric alternative to the paired 
samples t-test. This distribution-free test does not require normally distributed 
differences. 

The matched Wilcoxon Signed-Rank test is performed in R using the same 
wilcox.test() function used to perform the unmatched Wilcoxon Rank-Sum test. 
Though we can use a paired samples t-test to test differences for our flexible work 
benefit study since the assumption of normally distributed differences is met, let us 
run a Wilcoxon Signed-Rank test for demonstrative purposes:
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# Perform Wilcoxon Signed-Rank test 
wilcox.test(treat_metrics$post_ind, treat_metrics$pre_ind, 

paired = TRUE)↪→ 

## 
## Wilcoxon signed rank test with continuity correction 
## 
## data: treat_metrics$post_ind and treat_metrics$pre_ind 
## V = 9591, p-value < 2.2e-16 
## alternative hypothesis: true location shift is not equal to 0 

# Perform Wilcoxon Signed-Rank test 
wilcox.test(ctrl_metrics$post_ind, ctrl_metrics$pre_ind, 

paired = TRUE)↪→ 

## 
## Wilcoxon signed rank test with continuity correction 
## 
## data: ctrl_metrics$post_ind and ctrl_metrics$pre_ind 
## V = 5166, p-value = 0.5275 
## alternative hypothesis: true location shift is not equal to 0 

Consistent with results from the paired samples t-tests, significantly higher post-
intervention happiness indices were observed for the treatment group but not for the 
control group. 

We can evaluate the magnitude of differences for these paired samples by passing 
the paired = TRUE argument to the same cliff.delta() function used for 
independent samples: 

# Run Cliff's Delta 
effsize::cliff.delta(treat_metrics$post_ind, 

treat_metrics$pre_ind, paired = TRUE)↪→ 

## 
## Cliff's Delta 
## 
## delta estimate: 0.1544844 (small) 
## 95 percent confidence interval: 
## lower upper 
## 0.01652557 0.28667094 

With Cliff’s delta, we observe a small difference between pre/post indices for the 
treatment group (delta estimate . = 0.15).
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Analysis of Variance (ANOVA) 

Analysis of Variance (ANOVA) is used to determine whether the means of scale-
level DVs are equal across nominal-level variables with three or more independent 
categories. 

It is important to understand that . H0 in ANOVA not only requires all group means 
to be equal but their complex contrasts as well. For example, if we have four groups 
named A, B, C, and D, .H0 requires that .μA = μB = μC = μD is true as well 
as the various complex contrasts such as .μA,B = μC,D and .μA = μB,C,D and 
.μD = μB,C . Therefore, a difference between one or more of these contrasts results 
in a decision to reject .H0 in ANOVA. As a result, we may find a significant F -
statistic but no significant differences between pairwise means. 

It is also possible to find a significant pairwise mean difference but a non-
significant result from ANOVA. As you may recall from chapter “Statistical 
Inference”, multiple comparisons reduce the power of statistical tests. Since mul-
tiple tests of mean differences are performed with ANOVA, the familywise error 
rate is used to adjust for the increased probability of a Type I error across the set of 
analyses. Since the power of a single pairwise test is greater relative to the power of 
familywise comparisons, we may find a significant result for the former but not the 
latter. 

ANOVA requires IVs to be categorical (nominal or ordinal) and the DV to be 
continuous (interval or ratio). A one-way ANOVA is used to determine how one 
categorical IV influences a continuous DV. A two-way ANOVA is used to determine 
how two categorical IVs influence a continuous DV. A three-way ANOVA is used 
to evaluate how three categorical IVs influence a continuous DV. An ANOVA 
that uses two or more categorical IVs is often referred to as a factorial ANOVA. 
As discussed in chapter “Getting Started”, it is important to remain grounded in 
specific hypotheses, as a significant ANOVA may not actually test what is being 
hypothesized. 

ANOVA is not a test, per se, but a F -test underpins it. The mathematical 
procedure behind the F -test is relatively straightforward: 

1. Compute the within-group variance, which is also known as residual 
variance. Simply put, this tells us how different each member of the group 
is from the average. 

2. Compute the between-group variance. This represents how different the 
group means are from one another. 

3. Produce the F -statistic, which is the ratio of within-group variance to 
between-group variance. 

More formally, the F -statistic is defined by: 

.F = MSbetween
MSwithin
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where: 

. MSbetween = SSbetween
dfbetween

,

. MSwithin = SSwithin
dfwithin

,

. SSbetween =
p∑

j=1

nj (x̄j − x̄)2,

. SSwithin =
p∑

j=1

nj∑

i=1

(xij − x̄j )
2

One-Way ANOVA 
To illustrate how to perform a one-way ANOVA, we will test the hypothesis that 
mean annual compensation is equal across job satisfaction levels. 

Each observation in employees represents a unique employee, and a given 
employee can only have one job satisfaction score and one annual compensation 
value. The assumption of independence is met since each record exists independent 
of one another and each job satisfaction group is comprised of different employees. 

Levene’s test (Levene, 1960) can be used to test the homogeneity of variance 
assumption—even with non-normal distributions. This can be performed in R using 
the leveneTest() function from the car package: 

# Perform Levene's test for homogeneity of variance 
car::leveneTest(annual_comp ~ as.factor(job_sat), data = 

employees)↪→ 

## Levene's Test for Homogeneity of Variance (center = median) 
## Df F value Pr(>F) 
## group 3 0.3293 0.8042 
## 1466 

The test statistic associated with Levene’s test relates to the null hypothesis that 
there are no significant differences in variances across the job satisfaction levels. 
Since .p >= 0.05, we fail to reject this null hypothesis and can assume equal 
variances. 

Next, let us test the assumption of normality. It is important to note that the 
assumption of normality does not apply to the distribution of the DV but to the 
distribution of residuals for each group of the IV. Residuals in the context of ANOVA 
represent the difference between the actual values of the continuous DV relative to 
its mean value for each level of the categorical IV (e.g., .y − ȳA, .y − ȳB , .y − ȳC).
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In ANOVA, we expect the residuals to be normally distributed around a mean of 0 
(the balance point) when the data are normally distributed within each IV category; 
the more skewed the data, the larger the average distance of each DV value from the 
mean. 

# Create function to visualize distribution 
dist.viz <- function(data, x) { 

viz <- ggplot2::ggplot() + 
ggplot2::aes(data) + 
ggplot2::labs(title = paste("Job Sat = ", x), x =  

"Annual Compensation", y =  "Frequency") +↪→ 

ggplot2::geom_histogram(fill = "#414141") + 
ggplot2::theme_bw() + 
ggplot2::theme(plot.title = element_text(hjust = 0.5)) 

return(viz) 
} 

# Produce annual compensation vectors for each job 
satisfaction level↪→ 

# Unlist() is needed to convert the default object from 
subset() into a numeric vector↪→ 

group_1 <- unlist(subset(employees, job_sat == 1, select = 
annual_comp))↪→ 

group_2 <- unlist(subset(employees, job_sat == 2, select = 
annual_comp))↪→ 

group_3 <- unlist(subset(employees, job_sat == 3, select = 
annual_comp))↪→ 

group_4 <- unlist(subset(employees, job_sat == 4, select = 
annual_comp))↪→ 

# Call UDF to build annual comp histogram for each job 
satisfaction level↪→ 

viz_1 <- dist.viz(data = group_1, x =  1) 
viz_2 <- dist.viz(data = group_2, x =  2) 
viz_3 <- dist.viz(data = group_3, x =  3) 
viz_4 <- dist.viz(data = group_4, x =  4) 

# Display distribution visualizations 
ggpubr::ggarrange(viz_1, viz_2, viz_3, viz_4, 

ncol = 2, nrow = 2)
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Fig. 9 Annual compensation distribution by job satisfaction level 

As we can see in Fig. 9, annual compensation data are not normally distributed 
within job satisfaction groups. Therefore, we would not expect the distribution of 
residuals to be normally distributed within these groups either. 

To test whether the assumption of normality is met, we will first produce and 
review a quantile-quantile (Q-Q) plot. A Q-Q plot compares two probability 
distributions by plotting their quantiles (data partitioned into equal-sized groups) 
against each other. After partitioning annual compensation into groups differentiated 
by job satisfaction level, we can use the ggqqplot() function from the ggpubr 
library to build a Q-Q plot and evaluate the distribution of residuals. 

# Generate residuals for each group 
residuals <- c(group_1 - mean(group_1), group_2 -

mean(group_2), group_3 - mean(group_3), group_4 -
mean(group_4))

↪→
↪→ 

# Create a Q-Q plot of residuals 
ggpubr::ggqqplot(residuals) 

To satisfy the assumption of normality, residuals must lie along the linear line. 
Based on the Q-Q plot in Fig. 10, there is a clear departure from normality at both 
ends of the theoretical range. 

Let us test for normality using the Shapiro-Wilk test:
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# Compute Shapiro-Wilk test of normality 
shapiro.test(residuals) 

## 
## Shapiro-Wilk normality test 
## 
## data: residuals 
## W = 0.95874, p-value < 2.2e-16 

Since p < 0.05, we reject the null hypothesis of normally distributed data, which 
indicates that the assumption of normality is violated. This should not be surprising 
based on the deviation from normality we observed in Fig. 10. 

Because the assumption of normality is violated, we have two options. First, we 
can attempt to transform the data so that the residuals using the transformed values 
are normally distributed. If the data are resistant to transformation, we can leverage 
a nonparametric alternative to ANOVA. 

Let us first try several common data transformations and then examine the 
resulting Q-Q plots: 

# Build a linear model using the natural logarithm of annual 
comp↪→ 

ln.model <- lm(log(annual_comp) ~ job_sat, data = employees) 
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Fig. 10 Q-Q plot of annual compensation residuals
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# Build a linear model using the log base 10 of annual comp 
log10.model <- lm(log10(annual_comp) ~ job_sat, data = 

employees)↪→ 

# Build a linear model using the square root of annual comp 
sqrt.model <- lm(sqrt(annual_comp) ~ job_sat, data = 

employees)↪→ 

# Store Q-Q plots to viz objects 
ln.viz <- ggpubr::ggqqplot(residuals(ln.model)) + 

ggplot2::ggtitle("Natural Log")↪→ 

log10.viz <- ggpubr::ggqqplot(residuals(log10.model)) + 
ggplot2::ggtitle("Log Base 10")↪→ 

sqrt.viz <- ggpubr::ggqqplot(residuals(sqrt.model)) + 
ggplot2::ggtitle("Square Root")↪→ 

# Display Q-Q plots of residuals 
ggpubr::ggarrange(ln.viz, log10.viz, sqrt.viz, 

ncol = 3, nrow = 1) 

Even with these transformations, there is still a clear S-shaped curve about 
the residuals (Fig. 11). Though we cannot proceed with ANOVA due to violated 
assumptions, let us demonstrate the implementation steps for ANOVA. Performing 
ANOVA involves pairing the aov() function with the summary() function to 
display model output: 

# One-way ANOVA investigating mean differences in annual comp 
by job satisfaction↪→ 

one.way <- aov(annual_comp ~ as.factor(job_sat), data = 
employees)↪→ 

summary(one.way) 

## Df Sum Sq Mean Sq F value Pr(>F) 
## as.factor(job_sat) 3 1.494e+10 4.980e+09 2.795 0.039 * 
## Residuals 1466 2.612e+12 1.782e+09 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The Kruskal Wallis H Test is the nonparametric alternative to a one-way 
ANOVA (Daniel, 1990) and an appropriate alternative for investigating median 
differences in annual comp by job satisfaction in our data. This test can be performed 
using the kruskal.test() function in R: 

# Nonparametric Kruskal one-way ANOVA 
kruskal.test(annual_comp ~ job_sat, data = employees)
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Fig. 11 Q-Q plots of transformed annual compensation residuals 

## 
## Kruskal-Wallis rank sum test 
## 
## data: annual_comp by job_sat 
## Kruskal-Wallis chi-squared = 8.3242, df = 3, p-value = 0.03977 

Since p < 0.05, we can conclude that there are significant differences in median 
compensation across the groups. However, this test does not indicate which groups 
are different. We can utilize the pairwise.wilcox.test() function to compute 
pairwise Wilcoxon rank-sum tests to identify where differences exist: 

pairwise.wilcox.test(employees$annual_comp, employees$job_sat, 
p.adjust.method = "BH")↪→ 

## 
## Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data: employees$annual_comp and employees$job_sat 
## 
## 1 2 3 
## 2 0.298 - -
## 3 0.041 0.298 -
## 4 0.041 0.298 0.879 
## 
## P value adjustment method: BH 

Based on the results, there are significant pairwise differences in median annual 
compensation for job satisfaction levels 3 and 4 relative to level 1.
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Factorial ANOVA 

Factorial ANOVA is any ANOVA which uses two or more categorical IVs, such as a 
two-way or three-way ANOVA. The following output reflects the cross-tabulation of 
average annual compensation for each combination of two factors—job satisfaction 
and stock option level. 

# Calculate mean for each IV pair 
combos <- aggregate(annual_comp ~ job_sat + stock_opt_lvl, 

employees, mean)↪→ 

combos 

## job_sat stock_opt_lvl annual_comp 
## 1 1 0 141254.0 
## 2 2 0 138753.3 
## 3 3 0 132159.2 
## 4 4 0 132227.0 
## 5 1 1 141763.9 
## 6 2 1 135494.5 
## 7 3 1 135235.7 
## 8 4 1 135569.0 
## 9 1 2 146240.0 
## 10 2 2 146432.0 
## 11 3 2 145080.0 
## 12 4 2 143019.3 
## 13 1 3 154844.4 
## 14 2 3 144254.1 
## 15 3 3 135672.7 
## 16 4 3 127102.9 

As we have already discussed, a difference between one or more of these 
contrasts may result in a decision to reject .H0 in ANOVA. We may also find a 
significant pairwise difference but a non-significant result from ANOVA since the 
familywise error rate adjustment is applied in the context of multiple comparisons 
which reduces statistical power. 

Factorial ANOVA can be performed by chaining together variables with a + 
operator within the same aov() function used for one-way ANOVA: 

# Factorial ANOVA investigating mean differences in annual 
comp by job satisfaction and stock option level↪→ 

factorial <- aov(annual_comp ~ as.factor(job_sat) + 
as.factor(stock_opt_lvl), data = employees)↪→ 

summary(factorial)
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## Df Sum Sq Mean Sq F value Pr(>F) 
## as.factor(job_sat) 3 1.494e+10 4.980e+09 2.803 0.0386 * 
## as.factor(stock_opt_lvl) 3 1.260e+10 4.201e+09 2.365 0.0694 . 
## Residuals 1463 2.599e+12 1.777e+09 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

While mean annual compensation is significantly different across job satisfaction 
levels, this output alone is not too helpful in understanding the nature of the 
differences. These statistical significance markers indicate that there are meaningful 
differences that warrant a deeper understanding. Relationships of job satisfaction 
and stock option level with annual compensation are illustrated more effectively in 
Fig. 12. 

As we can see, there is a strong negative relationship between job satisfaction and 
average annual compensation among employees with the highest stock option level 
(3). The relationship between job satisfaction and average annual compensation 
appears to be negative for employees with other stock option levels as well, albeit 
much weaker. 

These relationships may initially seem counterintuitive, as one might expect 
higher levels of job satisfaction to contribute to higher performance and con-
sequently, higher compensation. There may be other variables that happen to 
be correlated with job satisfaction and/or stock option level that are the actual 
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Fig. 12 Relationships of job satisfaction and stock option level with annual compensation
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determinants of annual compensation. For example, there may be a relationship 
between jobs that each feature a stock option level of 3 but for which there are 
markedly different average job satisfaction scores and annual compensation among 
workers in these jobs. Without accounting for additional variables that may explain 
why employees vary in the amount of annual compensation they earn, the limited set 
of relationships shown in Fig. 12 may lead to a flawed understanding and inaccurate 
conclusions. 

Three-way factorials (and beyond) become difficult to visualize and understand 
in the way one-way ANOVA and two-way factorials have been explained in this 
chapter. In chapter “Linear Regression”, we will discuss how to create linear com-
binations of many IVs and parse the output to understand how they independently 
and jointly help explain variation in the DV. 

Review Questions 

1. What are the main differences between a Chi-square test and Fisher’s exact test? 
2. Why is it problematic to test for significant differences using the χ2 statistic 

with extremely small samples (e.g., n < 5)?  
3. What are the general assumptions of parametric tests? 
4. What is a benefit of Welch’s t-test over the Student’s t-test? 
5. How does a paired samples t-test differ from an independent samples t-test? 
6. In what ways does the Wilcoxon signed-rank test differ from the paired samples 

t-test? 
7. How can the magnitude of differences (i.e., practical significance) be quantified 

when working with data measured on a continuous scale? 
8. How can the magnitude of differences (i.e., practical significance) be quantified 

when working with data measured on an ordinal scale? 
9. What null hypothesis does ANOVA test? 

10. What are some ways to better understand the nature of statistical differences 
indicated in the output of ANOVA? 
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Linear Regression 

Regression is perhaps the most important statistical learning technique for people 
analytics. If you have taken a statistics course at the undergraduate or graduate 
levels, you have surely already encountered it. Let us first develop an intuitive 
understanding of the mechanics of regression. 

Imagine we are sitting at a large public park in New York City on a nice fall 
afternoon. If asked to estimate the annual compensation of the next person to walk 
by, how would you estimate this in the absence of any additional information? 
Most would likely estimate the average annual compensation of everyone capable 
of walking by. Since this would include both residents and visitors, this would 
be a very large population of people! The obvious limitation with this approach 
is that among the large group of people capable of walking by, there is likely a 
significant range of annual compensation values. Many walking by may be children, 
unemployed, or retirees who earn no annual compensation, while others may be 
highly compensated senior executives at the pinnacle of their careers. Since the 
range of annual compensation could be zero to millions of dollars, estimating the 
average of such a large population is likely going to be highly inaccurate without 
more information. 

Let us consider that we are sitting outside on a weekday afternoon. Should this 
influence our annual compensation estimate? It is likely that we can eliminate a large 
segment of those likely to walk by, as we would expect most children to be in school 
on a typical fall weekday afternoon. It is also less likely that those who are employed 
and not on vacation will walk by on a fall weekday afternoon. Therefore, factoring 
in that it is a weekday should limit the size of the population which in turn may 
reduce the range of annual compensation values for our population of passersby. 

Let us now consider that the park is open only to invited guests for a symposium 
on people analytics. Though it may be difficult to believe, a relatively small 
subset of the population is likely interested in attending such a symposium, so 
this information will likely be quite helpful in reducing the size of the population 
who could walk by. This should further reduce the range of annual compensation 
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since we probably have a good idea of the profile of those most likely to attend. 
This probably also lessens (or altogether eliminates) the importance of the weekday 
factor in explaining why people vary in the amount of compensation they earn each 
year. That an important variable may become unimportant in the presence of another 
variable is a key feature of regression. 

In addition, let us consider that only those who reside in NYC and Boise, Idaho 
were invited, and that the next person to walk by resides in Boise. Most companies 
apply a cost of living multiplier to the compensation for those in high-cost locations 
such as NYC, resulting in a significant difference in compensation relative to those 
residing in a lower-cost location like Boise—all else being equal. Therefore, if 
we can partition attendees into two groups based on their geography, this should 
significantly limit the range of annual compensation within each—making the 
average compensation in each group a more nuanced and reasonable estimate. 

What if we also learn the specific zip code in which the next passerby from 
Boise resides? The important information is likely captured at the larger city level 
(NYC vs. Boise), as the compensation for the specific zip codes within each city are 
unlikely to vary to a meaningful degree. Assuming this is true, it probably would not 
make sense to consider both the city name and zip code since they are effectively 
redundant pieces of information with regard to explaining the variance in annual 
compensation. 

What if we learn that the next person to walk by will be wearing a blue shirt? 
Does this influence your estimate? Unless there is research to suggest shirt color and 
earnings are related, this information will probably not contribute any significant 
information to our understanding of why people vary in the amount of compensation 
they earn and should, therefore, not be considered. 

You can probably think of many relevant variables that would help further narrow 
the range of annual compensation. These may include job, level, years of experience, 
education, among other factors. The main thing to understand is that for each 
group of observations with the same characteristics—such as senior analysts with a 
graduate degree who reside in NYC—there is a distribution of annual compensation. 
This distribution reflects unexplained variance. That is, we do not have information 
to explain why the compensation for each and every person is not the same and in 
social science contexts, it simply is not practical to explain 100% of the variance in 
outcomes. For example, two people may be similar on dozens of factors (experience, 
education, skills) but one was a more effective negotiator when offered the same 
role and commanded a higher salary. It is likely we do not have data on salary 
negotiation ability so this information would leave us with unexplained variance in 
compensation. The goal is to identify the variables that provide the most information 
in helping us tighten the distribution so that estimating the expected (average) value 
will generally be an accurate estimate for those in the larger population with the 
same characteristics. 

While we can generally improve our estimates with more relevant information 
(not shirt color or residential zip code in this case), it is important to understand that 
samples which are too small (.n < 30) lend to anomalies; modeling noise in sparse 
data can result in models that are unlikely to generalize beyond the sample data. For
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example, if the only people from Boise to attend the people analytics symposium 
happen to be two ultra wealthy tech entrepreneurs who earn millions each year, 
it would not be appropriate to use this as the basis for our estimates of all future 
attendees from Boise. 

This is the essence of linear regression modeling: find a limited number of 
variables which independently and/or jointly provide significant information that 
helps explain (by reducing) variance around the average value. As illustrated in this 
example, adding additional variables (information) can impact the importance of 
other variables or may offer no incremental information at all. In this chapter, we 
will cover how to identify which variables are important and how to quantify the 
effect they have on an outcome. 

Assumptions and Diagnostics 

As we learned in the context of power analysis in chapter “Statistical Inference”, the 
sample size needs to be large enough to model and detect significant associations 
of one or more predictors with the response variable. In practice, people analytics 
practitioners are often constrained by the data at hand, which is to say that one 
generally has little control over the amount of data that can be collected. For 
example, despite the most earnest participation campaigns, only a subset of invited 
employees are likely to complete a survey, so collecting additional data to achieve a 
larger sample is likely not a viable option. It is important to establish a minimum— 
and realistic—n-count threshold during the planning stage of a project based on the 
research objectives and variables that need to be factored into the analysis. 

Consistent with the assumptions of parametric tests covered in chapter “Analysis 
of Differences”, there are several assumptions that need to be validated to determine 
if a linear model is appropriate for understanding relationships in the data. These 
assumptions largely relate to the residuals (.ŷ − y): 

1. Independence: Residuals are independent of each other; consecutive residu-
als in time series data are unrelated. 

2. Homoscedasticity: Variance of residuals is constant across values of X. 
3. Normality: Residuals must be normally distributed (with mean of 0) across 

values of X. 
4. Linearity: Relationship between X and Y is linear. 

Beyond these core assumptions for linear models, additional diagnostics are 
important to incorporate into the early data screening stage: 

1. High Leverage Observations: Influential data that significantly changes the 
model fit. 

2. Collinearity: Independent variables that are highly correlated (these should 
be independent).
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Sample Size 

While a general rule-of-thumb for regression analysis is a minimum of a 20:1 
ratio of observations to IV, chapter “Statistical Inference” covered a more rigorous 
approach for calculating the sample size needed to observe significant effects. 

For linear regression, power analysis involves a comparison of model fit between 
a model with a full set of predictors relative to one with only a subset of the full 
model’s predictors. The function from the pwr library to call is pwr.f2.test(u = 
, v = , f2 = ,  sig.level = , power = ), where u and v are the numerator 
and denominator degrees of freedom, respectively, and f2 is defined as: 

. f 2 = R2
AB − R2

A

1 − R2
AB

where .R2
AB represents the variance accounted for by a full model with all predictors, 

and . R2
A represents the variance accounted for by a model containing only a subset 

of the full model’s predictors. Power analysis can be leveraged in determining the 
sample size needed for detecting the incremental main effects for a set of predictors 
beyond the variance accounted for by a set of controls. 

Simple Linear Regression 

Simple linear regression is a simple technique for estimating the value of a 
quantitative DV, denoted as Y , on the basis of a single IV, denoted as X. It is  
assumed that there is an approximately linear relationship between X and Y . Often, 
this relationship is expressed as regressing Y onto X and is defined mathematically 
as: 

. Y = β0 + β1X + ε,

where . β0 is the expected value of Y when .X = 0 (the intercept), and . β1 represents 
the average change in Y for a one-unit increase in X (the slope). . β0 and . β1 are 
unknown parameters or coefficients. The error term, . ε, acknowledges that there is 
variation in Y not accounted for by this simple linear model—unexplained variance. 
In other words, it is highly unlikely that there is a perfectly linear relationship 
between X and Y , as additional variables not included in the model are likely to 
also influence Y . 

Once we estimate the unknown model coefficients, . β0 and . β1, we can estimate Y 
for a particular value of X by calculating: 

.ŷi = β̂0 + β̂1xi
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where . ŷ represents an estimate of Y for the i-ith value of .X = x. The hat . ̂ symbol is 
used to denote an estimated value of an unknown coefficient, parameter, or outcome. 

The earliest form of linear regression is the least squares method, which was 
developed at the beginning of the nineteenth century and applied to astronomy 
problems (James et al., 2013). While there are several approaches to fitting a linear 
regression model, ordinary least squares (OLS) is the most common. OLS selects 
coefficients for . β̂0 and . β̂1 that minimize the residual sum of squares (RSS) defined 
by: 

. RSS = (y1 − β̂0 − β̂1x1)
2 + (y2 − β̂0 − β̂1x2)

2 + . . . + (yn − β̂0 − β̂1xn)
2

For each value of X, OLS fits a model for which the squared difference between 
the predicted (.β̂0 + β̂1xi) and actual (. yi) values are as small as possible. Figure 1 
illustrates the result of minimizing RSS using OLS. The minimizers for the least 
squares coefficient estimates are defined by: 

. β̂1 =

n∑

i=1

(xi − x̄)(yi − ȳ)

n∑

i=1

(xi − x̄)2
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Fig. 1 Minimizing RSS with Ordinary Least Squares (OLS) fit
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Fig. 2 Left: Least squares regression model fit to .n = 2 observations. Right: Least squares 
regression model fit to .n = 20 observations 

. β̂0 = ȳ − β̂1x̄

where . x̄ and . ȳ are sample means. 
It is important to understand the role sample size plays in achieving accurate 

estimates of Y . Figure 2 illustrates the impact of fitting a model to too few 
observations. With .n = 2, it would be easy to fit a perfect model to the data; that 
is, one representing a line that connects the two data points. However, it is highly 
unlikely that these data points represent the best model for a larger sample, as there 
would likely be some distribution of Y for each value of X. 
In R, we can build (or fit) a simple linear regression model using the lm() function. 
The syntax is lm(Y ~ X, dataset): 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 
# Subset employees data frame; leads are only applicable for 

those in sales positions↪→ 

data <- subset(employees, job_title %in% c('Sales Executive', 
'Sales Representative'))↪→
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# Regress YTD leads on engagement 
slm.fit <- lm(ytd_leads ~ engagement, data) 

In practice, linear assumptions are rarely—if ever—perfectly met, but there must 
be evidence that the assumptions are generally satisfied. 

Before performing model diagnostics, it is important to note the following: 

1. Collinearity diagnostics are only applicable in the context of multiple regres-
sion, as simple linear models have only one IV (this will be covered later in 
the chapter). 

2. Outliers are not always an issue, as we discussed in chapter “Data Prepa-
ration”. Figure 3 illustrates differences between an outlier that does not 
influence the model fit (left) relative to one which has significant leverage 
on the model fit (right). 

We can conveniently perform linear model diagnostics using the plot() function 
in conjunction with the object holding linear model results (slm.fit). This 
produces the following standard plots shown in Fig. 4: 

• Residuals vs Fitted: Shows how residuals (y-axis) vary across the range of 
fitted values (x-axis) 
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Fig. 3 Left: Model fit with non-influential outlier. Right: Model fit with high leverage outlier. 
Outlier shown in red. Black solid line represents model fit without outliers. Red dashed line 
represents model fit with outliers
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Fig. 4 Simple linear regression model diagnostics 

• Normal Q-Q: Compares two probability distributions by plotting their quan-
tiles (data partitioned into equal-sized groups) against each other 

• Scale-Location: Shows how standardized residuals (y-axis) vary across the 
range of fitted values (x-axis) 

• Residuals vs Leverage: Shows the leverage of each data point (x-axis) against 
their standardized residuals (y-axis) 

The Residuals vs Fitted and Scale-Location plots help evaluate assumptions of 
homoscedasticity, linearity, and normality—which are intricately linked. Data are 
heteroscedastic if there is flaring or funnel patterning about the residuals across 
the range of fitted values. That is, there must be constant variance with respect to 
the residual errors in order for the assumption of homoscedasticity to be met. This 
occurs when there is a linear relationship between X and Y , in which case residuals 
will be normally distributed around a mean of 0. While the spread of residuals is 
greater for larger fitted values in this model, resulting in the lower standardized 
residual error for smaller fitted values indicated in the Scale-Location plot, the slope 
of the line in the Residuals vs Fitted plot is effectively flat which indicates that the 
model does not perform significantly better for certain fitted values relative to others. 

Cook’s distance, shown in the Residuals vs Leverage plot, provides a measure 
of how much our model estimates for all observations change if high leverage 
observations are removed from the data. Higher numbers indicate stronger influence. 
R conveniently labels the three observations with the highest leverage, though the 
degree of leverage is only problematic for observations beyond the dashed Cook’s
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distance line. In this case, there are no observations with enough leverage for the 
dashed Cook’s distance line to show on the plot, so no action is warranted. 

In addition to the visual inspection, we can perform the Breusch-Pagan test 
using the bptest() function from the lmtest library to test the null hypothesis 
that the data are homoscedastic. If .p < 0.05 for the test statistic, we reject the null 
hypothesis and conclude that there is evidence of heteroscedasticity in the data. 

# Run the Breusch-Pagan test for evaluate homoscedasticity 
lmtest::bptest(slm.fit) 

## 
## studentized Breusch-Pagan test 
## 
## data: slm.fit 
## BP = 0.07603, df = 1, p-value = 0.7828 

Since .p >= 0.05, we fail to reject the null hypothesis of homoscedasticity; 
therefore, this assumption is satisfied. If this was not the case, a common approach 
to addressing heteroscedasticity is transforming the response variable by taking the 
natural logarithm (log()) or square root (sqrt()) of  Y . While transformations 
may be correct for violations of linear model assumptions, they also result in a less 
intuitive interpretation of model output relative to the raw untransformed data. 

Let us illustrate how to transform the response variable: 

# Square root transformation of YTD leads 
slm.fit.trans <- lm(sqrt(ytd_leads) ~ engagement, data) 

# Natural logarithmic transformation of YTD leads 
slm.fit.trans <- lm(log(ytd_leads) ~ engagement, data) 

The Normal Q-Q Plot in Fig. 4 is used to test the assumption of normally 
distributed model residuals. A perfectly normal distribution of residuals will result 
in data lying along the line situated at 45. ◦ from the x-axis. Based on a visual 
inspection, our residuals appear to be normally distributed, as there are only a small 
number of minor departures in the upper and lower ends of the quantile range. 

We can also visualize the distribution of model residuals using a histogram. In 
the majority of cases, the residual should be 0; this indicates the model correctly 
estimates YTD leads, resulting in no difference between estimated and observed 
values (.ŷ − y = 0) (Fig. 5). 

# Produce histogram to visualize distribution of model 
residuals↪→ 

ggplot2::ggplot() + 
ggplot2::aes(slm.fit$residuals) + 
ggplot2::labs(x =  "YTD Leads Residuals", y =  "Density") +
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Fig. 5 Distribution of model residuals 

ggplot2::geom_histogram(aes(y =  ..density..), fill = 
"#414141") +↪→ 

ggplot2::geom_density(fill = "#ADD8E6", alpha = 0.6) + 
ggplot2::theme_bw() 

Based on both the Normal Q-Q Plot and histogram, the residuals conform to the 
assumption of normality. We can confirm using the Shapiro-Wilk test, in which a 
non-significant test statistic (.p >= 0.05) is sufficient evidence of normality: 

# Compute Shapiro-Wilk test of normality 
shapiro.test(slm.fit$residuals) 

## 
## Shapiro-Wilk normality test 
## 
## data: slm.fit$residuals 
## W = 0.99339, p-value = 0.07029 

Next, let us display our simple linear model results:
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# Produce model summary 
summary(slm.fit) 

## 
## Call: 
## lm(formula = ytd_leads ~ engagement, data = data) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -14.8236 -3.7591 0.1118 3.1764 13.1764 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.6301 0.9970 1.635 0.103 
## engagement 20.0645 0.3571 56.193 <2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 5.095 on 407 degrees of freedom 
## Multiple R-squared: 0.8858, Adjusted R-squared: 0.8855 
## F-statistic: 3158 on 1 and 407 DF, p-value: < 2.2e-16 

There are several important pieces of information in this output: 

• Estimate: Unstandardized Beta coefficient associated with the predictor 
• Std. Error: Average distance between the observed and estimated values 

per the fitted regression line 
• t value: Test statistic calculated by Estimate / Standard Error. Larger 

values provide more evidence for a non-zero coefficient (relationship) for the 
respective predictor in the population. 

• Pr(>|t|): p-value for evaluating whether there is sufficient evidence in the 
sample that the coefficient (relationship) between the respective predictor and 
response variable is not 0 in the population (i.e., x has a relationship with y) 

• Intercept: Mean value of the response variable when all predictors are equal 
to 0. Note that the interpretation of the intercept is often nonsensical since 
many predictors cannot have 0 values (e.g., age, day, month, quarter, year). 

• Signif. codes: Symbols to quickly ascertain whether predictors are signif-
icant at key levels, such as .p < 0.001 (***), .p < 0.01 (**), or . p < 0.05
(*). 

• Residual standard error: Measure of model fit which reflects the stan-
dard deviation of the residuals (.

√∑
(y − ŷ)2/df ) 

• Degrees of freedom: .n − p, where n is the number of observations and p 
is the number of predictors 

• Multiple R-squared: Percent of variance in y (when multiplied by 100) 
explained by the predictors in the model. This is also known as the Coefficient 
of Determination. For simple linear regression, this is simply the squared 
value of Pearson’s r for the bivariate relationship between the predictor 
and response (execute cor(data$engagement, data$ytd_leads)ˆ2 to 
validate).
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• Adjusted R-squared: Modified version of . R2 that adjusts the estimate 
for non-significant predictors. A large delta between . R2 and Adjusted . R2

coefficients generally indicates a model containing a larger number of non-
significant predictors. 

• F-statistic: Statistic used in conjunction with the p-value for testing 
differences between the specified model and an intercept-only model (a model 
with no predictors). This test helps us evaluate whether our predictors are 
helpful in explaining variance in y. 

The output of this simple linear regression model indicates that for each one-unit 
increase in engagement, the average increase in YTD leads is about 20 (.β = 20.1, 
.t (407) = 56.2, .p < 0.001). Had we transformed the response variable from 
its original unit of measurement, the interpretation would be expressed in the 
transformed units (e.g., . β is the square root or natural log of the average change 
in leads for a one-level increase in engagement). 

With these normally distributed residuals, we can draw upon the properties of the 
CLT and conclude that the true relationship between engagement and YTD leads in 
the population is statistically unlikely to be 0 since the 95% CI (.β ± 2SE) does not 
include 0. 

While it may be tempting to conclude that employee engagement has a significant 
influence on leads based on the model output, we know that bivariate relationships 
may be spurious; that is, engagement may be correlated with another variable that 
is actually influencing leads. In practice, a simple linear model is rarely sufficient 
for explaining a meaningful percent of variance in a response variable—especially 
in a social science context. Additional predictors are usually needed to capture the 
complex and nuanced relationships characteristic of people analytics problems. 

The . R2 value indicates that 8.9% of the variance in leads can be explained by the 
variation in engagement levels. Put differently, this simple model does not account 
for 91.1% of variation in leads. Since a large portion of the variance in leads is 
unexplained, we need signal from additional predictors to understand the other 
dimensions along which leads vary. 

Figure 6 illustrates how the regression equation for this simple linear model 
(.y = 20.1x + 1.6) fits the data points for sales employees. The distribution of 
leads at each engagement level indicates that there are other factors that explain 
variance in leads that need to be accounted for in the regression equation to achieve 
more accurate estimates. The reduction in the spread of leads for a combination of 
significant predictor values increases . R2 (explained variance in YTD leads). 

Multiple Linear Regression 

Multiple linear regression extends the simple linear model to one with two or more 
predictor variables. Assuming the multiple predictors add meaningful information,
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Fig. 6 Simple linear model fit line for . y = 20.1x + 1.6

multiple regression models generally explain more variance in the response relative 
to simple linear models and are defined by: 

. Y = β0 + β1X1 + β2X2 + . . . + βpXp + ε

Once we estimate the unknown model coefficients, . β0 through . βp, we can 
estimate Y for a particular combination of values for . X1 through . Xp by calculating: 

. ŷi = β̂0 + β̂1xi1 + β̂2xi2 + . . . + β̂pxip

Collinearity Diagnostics 

In addition to the assumptions we tested in the context of the simple linear model, 
multiple linear regression warrants collinearity diagnostics. Collinearity refers to 
situations in which predictors that are related to the response variable also have 
strong associations with one another. In practice, there is usually some level of 
collinearity between variables, so the goal of collinearity diagnostics is to identify 
and address problematic levels of collinearity. 

Models should be built with predictors that have a strong association with the 
outcome but not with one another. If predictors are highly correlated with each 
other, it indicates that they are redundant and do not provide unique information.
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A large amount of collinearity can cause serious issues with the underlying calculus 
of a regression model, which can manifest in the form of effects of significant 
predictors being masked or suppressed or a negative sign/effect showing in the 
output when a positive association between the predictor and the response actually 
exists (or vice versa). As a result, it would be premature to fit a linear model before 
running collinearity diagnostics, as there may be false negatives—predictors that 
appear unimportant but are actually statistical drivers of the response. If problematic 
collinearity is not addressed, false conclusions may be drawn from the model output 
which may lead to bad business decisions. 

Kuhn & Johnson (2013) recommend the simple procedure outlined below to 
identify and address problematic collinearity: 

1. Determine the two predictors associated with the largest absolute pair-
wise correlation (whether they are positively or negatively related does not 
matter)—call them predictors A and B. 

2. Determine the average absolute correlation between predictor A and the other 
variables. Do the same for predictor B. 

3. If predictor A has a larger average absolute correlation, remove it; otherwise, 
remove predictor B. The exception to this rule is when predictors A and B 
have similar average absolute correlations with all other predictors but the 
predictor with the slightly higher correlation is a key variable that, if dropped, 
will prevent you from addressing one or more stated objectives or hypotheses. 

4. Repeat steps 1–3 until . |r| < 0.7 for each pair of predictors. 
Let us demonstrate the procedures and mechanics for multiple linear regression 

by estimating YTD sales using multiple predictor variables. While not appropriate 
in practice, we will select a subset of the available predictors from data to simplify 
this example. In chapter “Predictive Modeling”, we will discuss the use of machine 
learning (ML) models for more efficient and comprehensive variable selection. 

We can leverage the ggpairs() function from the GGally library introduced 
in chapter “Descriptive Statistics” to efficiently compute bivariate correlations and 
visualize relationships (Fig. 7). 

Based on the correlations, org_tenure is highly correlated with job_tenure, 
mgr_tenure, and work_exp. These relationships indicate that job and manager 
changes for those in sales roles have been infrequent since joining the organization, 
and that a large portion of their work experience has been with this organization. 
Since org_tenure has the strongest relationship with our response, ytd_sales, 
we will drop job_tenure, mgr_tenure, and work_exp. 

Since . |r| < 0.7 for all pairwise relationships, let us fit the more parsimonious 
multiple regression model using the resulting subset of predictors. We can chain 
together multiple predictors in the model using the + symbol in the lm() function: 

# Regress YTD sales on a combination of predictors 
mlm.fit <- lm(ytd_sales ~ engagement + job_lvl + stock_opt_lvl 

+ org_tenure, data)↪→
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Fig. 7 GGpairs bivariate correlations and data distributions 

While Kuhn and Johnson’s procedure is a good first step, this may not eliminate 
what is known as multicollinearity, which is collinearity among three or more 
predictors. It is possible for collinearity to exist between three or more variables, 
even in the absence of a strong correlation for a pair of variables. We can evaluate 
the Variance Inflation Factor (VIF) for the predictors that remain following 
the bivariate correlation review to ensure multicollinearity is not present. V IF  is 
defined by: 

. V IF(β̂j ) = 1

1 − R2
Xj |X−j

where the denominator, .R2
Xj |X−j

, is the  . R2 from regressing .Xj onto all other 
predictors. The smallest value of V IF  is 1, which indicates a complete absence 
of collinearity. Problematic collinearity exists if V IF  for any variable exceeds 5. 

We can produce V IF  for each variable using the vif() function from the car 
library: 

# Load library 
library(car) 

# Produce VIF for each predictor 
car::vif(mlm.fit)
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Fig. 8 Multiple linear regression model diagnostics 

## engagement job_lvl stock_opt_lvl org_tenure 
## 1.001459 1.407192 1.009435 1.395797 

Based on the output, V IF  < 5 for each predictor, which indicates that multi-
collinearity is not an issue. 

Next, let us evaluate the linear model assumptions (Fig. 8) to validate that fitting 
a linear model to these data is appropriate. Based on these visuals, there are obvious 
violations of linear model assumptions that need to first be addressed. 

First, given the long right tail for the ytd_sales distribution shown in Fig. 8, let  
us apply a square root transformation to the response variable: 

# Regress YTD sales on a combination of predictors 
mlm.fit <- lm(sqrt(ytd_sales) ~ engagement + job_lvl + 

stock_opt_lvl + org_tenure, data)↪→ 

Additionally, the diagnostic plots indicate that there are data points with high 
leverage on the fit. Let us address using Cook’s distance as the criterion: 

# Remove high leverage observations per Cook's distance 
w <- abs(rstudent(mlm.fit)) < 3 & abs(cooks.distance(mlm.fit)) 

< 4/nrow(mlm.fit$model)↪→ 

mlm.fit <- update(mlm.fit, weights = as.numeric(w))
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Fig. 9 Multiple linear regression model diagnostics (post-transformation) 

Fig. 10 Distribution of model residuals 

Now we can produce a refreshed set of diagnostic plots to evaluate the impact of 
transforming the response variable and removing high leverage observations (Figs. 9 
and 10). There is a clear improvement towards satisfying linear model assumptions.
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Let us perform the Breusch-Pagan test to validate that the assumption of 
homoscedasticity is met: 

# Run the Breusch-Pagan test for evaluate homoscedasticity 
lmtest::bptest(mlm.fit) 

## 
## studentized Breusch-Pagan test 
## 
## data: mlm.fit 
## BP = 2.2111, df = 4, p-value = 0.697 

Next, let us ensure residuals are normally distributed around 0: 

# Produce histogram to visualize distribution of model 
residuals↪→ 

ggplot2::ggplot() + 
ggplot2::aes(mlm.fit$residuals) + 
ggplot2::labs(x =  "YTD Sales Residuals", y =  "Density") + 
ggplot2::geom_histogram(aes(y =  ..density..), fill = 

"#414141") +↪→ 

ggplot2::geom_density(fill = "#ADD8E6", alpha = 0.6) + 
ggplot2::theme_bw() 

# Compute Shapiro-Wilk test of normality 
shapiro.test(mlm.fit$residuals) 

## 
## Shapiro-Wilk normality test 
## 
## data: mlm.fit$residuals 
## W = 0.99342, p-value = 0.07202 

Based on the diagnostic plots and statistical tests, our data satisfy the require-
ments for building a multiple linear regression model. 

Variable Selection 

Next, we need to reduce our model to the subset of predictors with statistically 
significant relationships with the response variable. Backward Stepwise Selection 
is a common and simple variable selection procedure, and the steps are outlined 
below:
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1. Remove the predictor with the highest p-value greater than the critical value 
(.α = 0.05). 

2. Refit the model, and repeat step 1. 
3. Stop when all p-values are less than the critical value. 

Each predictor in our model has a statistically significant relationship with 
ytd_sales—indicating that the slope of the relationships with the response is 
unlikely 0 in the population—so further variable reduction is not required. 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ engagement + job_lvl + stock_opt_lvl + 
## org_tenure, data = data, weights = as.numeric(w)) 
## 
## Weighted Residuals: 
## Min 1Q Median 3Q Max 
## -66.31 -16.01 0.00 16.72 78.50 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 125.9807 6.9032 18.250 < 2e-16 *** 
## engagement 10.1046 1.9742 5.118 4.93e-07 *** 
## job_lvl 33.7679 2.4254 13.922 < 2e-16 *** 
## stock_opt_lvl 5.1662 1.6211 3.187 0.00156 ** 
## org_tenure 6.8118 0.3414 19.952 < 2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 26.15 on 375 degrees of freedom 
## Multiple R-squared: 0.7783, Adjusted R-squared: 0.7759 
## F-statistic: 329.1 on 4 and 375 DF, p-value: < 2.2e-16 

Based on the model output, the combination of predictors explains about 78% 
of the variance in YTD sales (.R2 = 0.778). In people analytics settings, it is 
rare to explain three-quarters of the variance for an outcome given people data are 
especially noisy. 

By default, the coefficients on the predictors are unstandardized; that is, they 
represent the average change in the square root transformed response for each one-
unit increase for the respective predictor. Since the predictors have different units 
of measurement, such as stock_opt_lvl ranging from 0 to 3 and org_tenure 
ranging from 0 to 40, the unstandardized coefficients cannot be compared to 
determine which variable has the largest effect on YTD sales. We must standardize 
these coefficients and adjust for differences in the units of measurement for an 
apples-to-apples comparison. 

We can scale variables by subtracting the variable’s mean from x and dividing 
the difference into the variable’s standard deviation: 

.xscaled = xi − x̄

s
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We can leverage the scale() function to standardize the predictors’ units of 
measurement and determine which has the largest effect on ytd_sales: 

## 
## Call: 
## lm(formula = ytd_sales ~ engagement + job_lvl + stock_opt_lvl + 
## org_tenure, data = data_std) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.47125 -0.28770 -0.04054 0.30025 2.26587 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -3.313e-18 2.606e-02 0.000 1.00000 
## engagement 1.247e-01 2.611e-02 4.777 2.49e-06 *** 
## job_lvl 3.845e-01 3.095e-02 12.423 < 2e-16 *** 
## stock_opt_lvl 6.788e-02 2.622e-02 2.589 0.00997 ** 
## org_tenure 5.637e-01 3.083e-02 18.285 < 2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.527 on 404 degrees of freedom 
## Multiple R-squared: 0.7249, Adjusted R-squared: 0.7222 
## F-statistic: 266.2 on 4 and 404 DF, p-value: < 2.2e-16 

Based on the standardized coefficients in the regression output, org_tenure has 
the largest effect (.β = 0.56, .t (404) = 18.29, .p < 0.001) and job_lvl has the 
second largest effect (.β = 0.39, t(404) = 12.42, .p < 0.001). 

Moderation 

As discussed in chapter “Measurement and Sampling”, a moderating variable is a 
third variable which amplifies (strengthens) or attenuates (weakens) the relationship 
between an IV and the response. Accounting for a moderating variable in a linear 
model requires an interaction term, which is the product of the two variables (. X1
* . X2). 

Let us examine whether org_tenure influences the strength of the relationship 
between job_lvl and sqrt(ytd_sales). We would generally expect sales to 
increase as the job level of salespeople increases, and longer tenure may amplify 
the strength of this association. Step one is testing whether the interaction term 
is statistically significant, and step two is determining the nature of any observed 
statistical interaction. Including the interaction term in the model (job_lvl * 
org_tenure) will add the predictors independently and jointly: 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ job_lvl * org_tenure, data = data) 
##



Moderation 201

## Residuals: 
## Min 1Q Median 3Q Max 
## -89.090 -16.918 -0.589 17.490 107.461 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 123.8354 6.2497 19.815 < 2e-16 *** 
## job_lvl 50.5727 3.0119 16.791 < 2e-16 *** 
## org_tenure 12.4813 0.8653 14.425 < 2e-16 *** 
## job_lvl:org_tenure -2.5142 0.2996 -8.393 8.01e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 29.4 on 405 degrees of freedom 
## Multiple R-squared: 0.7412, Adjusted R-squared: 0.7393 
## F-statistic: 386.6 on 3 and 405 DF, p-value: < 2.2e-16 

The results show that both the main and interaction effects are statistically 
significant (.p < 0.001). 

Since interaction terms can be highly correlated with independent predictors, it 
is good to check for collinearity: 

# Produce VIF for each model term 
car::vif(mlm.fit.int) 

## job_lvl org_tenure job_lvl:org_tenure 
## 2.189565 9.246489 12.308142 

V IF  is greater than 5 for both org_tenure and the interaction term; therefore, 
there is a problematic level of collinearity between these variables. 

A common method of addressing collinearity in the context of interaction testing 
is variable centering, in which each value of the predictor is subtracted from its 
mean (.x − x̄). Unlike other transformations we have explored, centering does not 
impact the interpretation of model coefficients. Coefficients continue to represent 
the average change in the response for a one-unit change in a predictor, as the 
range of values for centered variables is consistent with the range for untransformed 
variables. However, the coefficients on centered variables may be considerably 
different relative to the model with untransformed variables due to the effects of 
high collinearity. 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ job_lvl_cntrd * org_tenure_cntrd, 
## data = data) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -89.090 -16.918 -0.589 17.490 107.461 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 276.5606 1.5653 176.680 < 2e-16 *** 
## job_lvl_cntrd 34.0427 2.4065 14.146 < 2e-16 *** 
## org_tenure_cntrd 7.2623 0.3789 19.165 < 2e-16 *** 
## job_lvl_cntrd:org_tenure_cntrd -2.5142 0.2996 -8.393 8.01e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 29.4 on 405 degrees of freedom 
## Multiple R-squared: 0.7412, Adjusted R-squared: 0.7393 
## F-statistic: 386.6 on 3 and 405 DF, p-value: < 2.2e-16 

# Produce VIF for centered variables 
car::vif(mlm.fit.int) 

## job_lvl_cntrd org_tenure_cntrd 
## 1.397803 1.773279 
## job_lvl_cntrd:org_tenure_cntrd 
## 1.337702 

After centering the variables, V IF  is well beneath the threshold of 5. 
Comparing the regression output with centered predictors to the output with 

untransformed predictors, we can observe that the main effects for job_lvl and 
org_tenure are inflated—and population parameter estimates less precise (larger 
SE)—when high collinearity is present. 

To better understand the nature of the interaction effect (.β = −2.51, . t (405) =
−8.39, .p < 0.001), two equations can be built to evaluate changes in the slope of 
the relationship with high (.x̄ + 1s) and low (.x̄ − 1s) organization tenure: 

• High organization tenure: . Y = −2.51(6.57 + 5.12)X + 276.56
• Low organization tenure: . Y = −2.51(6.57 − 5.12)X + 276.56,

where 6.57 is mean(data$org_tenure), 5.12 is  sd(data$org_tenure), X is a 
vector of values for job_lvl, and 276.56 is the y-intercept. 
As shown in Fig. 11, the slope of both regression lines is negative. However, the 
drop in sales is much more significant as job level increases for those with high 
(.x̄ + 1s) organization tenure relative to those with low (.x̄ − 1s) organization tenure. 
Perhaps those with longer tenure in the organization gain additional responsibilities 
beyond selling (e.g., mentoring junior salespeople) as they are promoted into higher 
job levels. 

Mediation 

As discussed in chapter “Measurement and Sampling”, mediating variables may 
fully or partially mediate the relationship between a predictor and response. Full 
mediation indicates that the mediator fully explains the effect; in other words, 
without the mediator in the model, there is no relationship between an IV and DV.
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Fig. 11 Regression of square root transformed YTD sales onto job level . × organization tenure 
interaction term. High organization tenure (red line): .Y = −2.51(6.57 + 5.12)X + 276.56. Low  
organization tenure (blue line): . Y = −2.51(6.57 − 5.12)X + 276.56

Fig. 12 Paths for mediation 
analysis 

Partial mediation indicates that the mediator partially explains the effect; that is, 
there is still a relationship between an IV and DV without the mediator in the model. 

Baron and Kenny’s (1986) four-step approach involves several regression analy-
ses to examine paths a, b, and c shown in Fig. 12. 

• Step 1: Fit a simple linear regression model with X predicting Y (path c), 
.Y = β0 + β1X + ε. 

• Step 2: Fit a simple linear regression model with X predicting M (path a), 
.M = β0 + β1X + ε. 

• Step 3: Fit a simple linear regression model with M predicting Y (path b), 
.Y = β0 + β1M + ε. 

• Step 4: Fit a multiple linear regression model with X and M predicting Y 
(paths b and c), .Y = β0 + β1X + β2M + ε. 

The purpose of Steps 1–3 is to determine if zero-order relationships exist. If one 
or more of these relationships is non-significant, mediation is unlikely—though not 
impossible. Mediation exists if the relationship between M and Y (path b) remains
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significant after controlling for X in Step 4. If X is no longer significant in Step 
4, support for full mediation exists; if X remains significant, support for partial 
mediation exists. 

Let us illustrate the implementation of this approach in R by testing the following 
hypothesis: Job level mediates the relationship between education level and YTD 
sales. Stated differently, the relationship between job level and YTD sales exists 
because those with more education tend to have higher job levels, and those in higher 
job levels tend to have stronger sales performance. 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ ed_lvl, data = data) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -138.34 -36.55 0.50 34.72 249.05 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 245.229 8.472 28.945 < 2e-16 *** 
## ed_lvl 9.072 2.740 3.311 0.00101 ** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 56.89 on 407 degrees of freedom 
## Multiple R-squared: 0.02623, Adjusted R-squared: 0.02384 
## F-statistic: 10.96 on 1 and 407 DF, p-value: 0.001012 

## 
## Call: 
## lm(formula = job_lvl ~ ed_lvl, data = data) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.19782 -0.19782 -0.08516 0.14016 2.14016 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.74717 0.10522 16.605 < 2e-16 *** 
## ed_lvl 0.11266 0.03403 3.311 0.00101 ** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.7065 on 407 degrees of freedom 
## Multiple R-squared: 0.02623, Adjusted R-squared: 0.02384 
## F-statistic: 10.96 on 1 and 407 DF, p-value: 0.001012 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ job_lvl, data = data) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -85.572 -28.593 -2.794 25.059 148.629 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 152.761 6.156 24.81 <2e-16 ***
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## job_lvl 57.294 2.804 20.43 <2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 40.51 on 407 degrees of freedom 
## Multiple R-squared: 0.5063, Adjusted R-squared: 0.5051 
## F-statistic: 417.4 on 1 and 407 DF, p-value: < 2.2e-16 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ ed_lvl + job_lvl, data = data) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -87.177 -29.481 -3.048 23.932 146.922 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 146.220 7.805 18.734 <2e-16 *** 
## ed_lvl 2.688 1.975 1.361 0.174 
## job_lvl 56.668 2.839 19.961 <2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 40.47 on 406 degrees of freedom 
## Multiple R-squared: 0.5085, Adjusted R-squared: 0.5061 
## F-statistic: 210 on 2 and 406 DF, p-value: < 2.2e-16 

Output from these models show significant paths for Steps 1–3 but when adding 
both ed_lvl and job_lvl in the multiple regression model in Step 4, ed_lvl is no 
longer significant. Therefore, support for full mediation exists. 

Review Questions 

1. What is Ordinary Least Squares (OLS) regression, and how does it work? 
2. What assumptions must be satisfied to fit a linear model? 
3. What does a statistically significant result for the Breusch-Pagan test indicate 

about linear model assumptions? 
4. What does a statistically significant result for the Shapiro-Wilk test indicate 

about linear model assumptions? 
5. In what ways can high collinearity among predictors impact the quality of 

model results? 
6. When are outliers problematic for fitting a regression model? 
7. How is unstandardized β interpreted in the output of a linear model? 
8. How does the delta between R2 and Adjusted R2 change as additional non-

significant variables are included in a model? 
9. How does the backward stepwise variable selection procedure work? 

10. What is the purpose of interaction effects in a regression model?
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Linear Model Extensions 

This chapter covers several techniques for expanding the linear regression frame-
work covered in chapter “Linear Regression” to test hypotheses with more nuance 
and complexity. 

Model Comparisons 

Assuming it is warranted by the research objective, it is sometimes helpful to subset 
data and compare coefficients between models to determine how the strength of 
associations between predictors and the response compares between cohorts. This is 
a common approach in pay equity studies, as it clearly highlights differences in how 
a particular factor such as job level, job profile, or geography impacts compensation 
for male vs. female employees or across ethnic groups. 

To illustrate, let us fit a multiple regression model to understand drivers of YTD 
sales for salespeople with overtime relative to those without overtime: 

# Subset employees data frame; leads are only applicable for 
those in sales positions↪→ 

data <- subset(employees, job_title %in% c('Sales Executive', 
'Sales Representative'))↪→ 

# Partition data into overtime and non-overtime groups 
data_ot <- subset(data, overtime == 'Yes') 
data_nonot <- subset(data, overtime == 'No') 

# Regress transformed YTD sales on a combination of predictors 
for overtime and non-overtime groups↪→ 

© The Author(s) 2023 
C. Starbuck, The Fundamentals of People Analytics, 
https://doi.org/10.1007/978-3-031-28674-2_11

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28674-2protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11


208 Linear Model Extensions

mlm.fit.ot <- lm(sqrt(ytd_sales) ~ engagement + job_lvl + 
stock_opt_lvl + org_tenure, data_ot)↪→ 

mlm.fit.nonot <- lm(sqrt(ytd_sales) ~ engagement + job_lvl + 
stock_opt_lvl + org_tenure, data_nonot)↪→ 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ engagement + job_lvl + stock_opt_lvl + 
## org_tenure, data = data_ot) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -80.927 -22.171 -1.383 19.740 106.769 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 121.815 14.767 8.249 3.27e-13 *** 
## engagement 13.171 4.569 2.883 0.00472 ** 
## job_lvl 35.983 4.754 7.570 1.10e-11 *** 
## stock_opt_lvl 7.139 3.342 2.136 0.03481 * 
## org_tenure 5.369 0.722 7.437 2.15e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 32.78 on 113 degrees of freedom 
## Multiple R-squared: 0.688, Adjusted R-squared: 0.6769 
## F-statistic: 62.29 on 4 and 113 DF, p-value: < 2.2e-16 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ engagement + job_lvl + stock_opt_lvl + 
## org_tenure, data = data_nonot) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -81.952 -19.422 0.136 20.813 96.003 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 132.3391 8.6695 15.265 < 2e-16 *** 
## engagement 9.8523 2.4721 3.985 8.56e-05 *** 
## job_lvl 33.1396 3.0014 11.042 < 2e-16 *** 
## stock_opt_lvl 4.6377 2.1587 2.148 0.0325 * 
## org_tenure 6.0435 0.4039 14.964 < 2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 29.98 on 286 degrees of freedom 
## Multiple R-squared: 0.7332, Adjusted R-squared: 0.7295 
## F-statistic: 196.5 on 4 and 286 DF, p-value: < 2.2e-16 

Since we are comparing two models, we need not scale the variables since 
comparing a specific predictor’s relationship with the response in the overtime 
model can be juxtaposed against the same predictor in the non-overtime model using 
the original units of measurement.
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Based on the regression output, the model for salespeople who worked overtime 
explains more variance in square root transformed ytd_sales (. R2 = 0.73) relative 
to the model for salespeople without overtime (. R2 = 0.69). 

We can see that engagement has a larger effect on the transformed response 
among salespeople who worked overtime (.β = 13.17, .t (113) = 2.88, .p < 0.01) 
relative to those who worked no overtime (.β = 9.85, .t (286) = 3.99, .p < 0.001). 
In addition, job_lvl has a stronger association with the response in the overtime 
group (.β = 35.98, .t (113) = 7.57, .p < 0.01) relative to the non-overtime group 
(.β = 33.14, .t (286) = 11.04, .p < 0.001). Given that the intercept (average square 
root of ytd_sales when the values of all predictors are set to 0) is higher for the 
non-overtime group (.β = 132.34, .t (286) = 15.27, .p < 0.001) than for the overtime 
group (.β = 121.82, .t (113) = 8.25, .p < 0.001), differences in the coefficients on 
job_lvl may indicate that one’s job level is a proxy for skill and capacity to sell 
more in fewer hours. 

Hierarchical Regression 

A multiple model approach can also be useful for understanding the incremental 
value a given variable—or set of variables—provides above and beyond a set of 
control variables. Hierarchical regression is a method by which variables are added 
to the model in steps, and changes in model statistics are evaluated after each step. 
Let us use hierarchical regression to test the hypothesis below. 

H1: Among salespeople who work overtime, engagement has a significant 
positive relationship with YTD sales after controlling for job level, stock 
option level, and organization tenure. 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ job_lvl + stock_opt_lvl + org_tenure, 
## data = data_ot) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -73.279 -23.803 -0.339 23.017 96.742 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 154.6969 9.6759 15.988 < 2e-16 *** 
## job_lvl 37.5715 4.8707 7.714 5.02e-12 *** 
## stock_opt_lvl 5.2397 3.3794 1.550 0.124 
## org_tenure 5.4935 0.7434 7.389 2.64e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 33.81 on 114 degrees of freedom 
## Multiple R-squared: 0.665, Adjusted R-squared: 0.6562 
## F-statistic: 75.44 on 3 and 114 DF, p-value: < 2.2e-16 

##
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## Call: 
## lm(formula = sqrt(ytd_sales) ~ engagement + job_lvl + stock_opt_lvl + 
## org_tenure, data = data_ot) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -80.927 -22.171 -1.383 19.740 106.769 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 121.815 14.767 8.249 3.27e-13 *** 
## engagement 13.171 4.569 2.883 0.00472 ** 
## job_lvl 35.983 4.754 7.570 1.10e-11 *** 
## stock_opt_lvl 7.139 3.342 2.136 0.03481 * 
## org_tenure 5.369 0.722 7.437 2.15e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 32.78 on 113 degrees of freedom 
## Multiple R-squared: 0.688, Adjusted R-squared: 0.6769 
## F-statistic: 62.29 on 4 and 113 DF, p-value: < 2.2e-16 

Comparing the output from these two regression models, we can determine that 
the addition of engagement to the control set explains an additional 2% of the 
variance in YTD sales (.�R2 = 0.69 − 0.67 = 0.02). 

In addition, the controls-only model output shows that without engagement in 
the model, stock_opt_lvl is not significant. This is a good reminder that regres-
sion does not examine bivariate relationships of each predictor with the response 
independent of other variables; rather, the relationships among all variables in the 
model impact which predictors emerge as having a statistical association with the 
response. 

Multilevel Models 

The models covered thus far have focused only on observation-level effects. That is, 
there has been an inherent assumption that predictor variables have fixed effects 
on the outcome and these effects do not vary based on group(s) to which the 
observations belong. These models are sometimes referred to as fixed effects 
models. 

It is often the case, however, that the strength and nature of predictors’ effects 
on an outcome vary across categorical dimensions. For example, estimating the 
number of requisitions that can be filled by a Talent Acquisition team over a certain 
period may require inputs such as the number of recruiters and position backfill 
expectations based on attrition assumptions. However, the model should probably 
account for how these factors impact recruiter productivity at the intersections of 
group-level factors such as geography, job family, and job level as well. Estimates 
for recruiters who are focused on filling executive-level positions in geographies 
with a limited talent pool or fiercely competitive labor market will look quite 
different relative to recruiters focused on entry-level, low-skilled positions that are
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location agnostic. Failure to incorporate these group-level effects may result in 
inaccurate estimates or incorrectly concluding that variables are not significant in 
explaining why recruiters vary in the number of requisitions they can fill. 

You may wonder how this concept is different from simply including dummy-
coded variables in the model to reflect the groups to which individual observations 
belong. The difference is that the average value of Y when all predictors are set 
to 0—namely the Y -intercept . β0—does not vary by group with dummy-coded 
categorical variables. In a multilevel model, the intercept is random rather than 
fixed for each group. Group-level effects can also be modeled for select (or all) 
X variables in addition to varying . β0 for each group. 

Consider a linear model constructed to test hypothesized relationships of every 
X variable with an outcome Y . This is the equivalent of building G independent 
models, where G is the number of groups, using data subsetted for the respective 
group: 

. YG = βG0 + βG1X1 + βG2X2 + . . . + βGpXp + ε

In this case, it is easy to consider wrapping the lm() function within a loop 
that iterates through each G group, filtering to each of the respective group’s 
data in turn. However, if we hypothesize that the effects of only certain variables 
depend on the G group, we need to estimate both group-level and observation-
level effects within the same model. A multilevel model featuring this mixture 
of fixed and random effects is known as a mixed effects model. This is also 
known as Hierarchical Linear Modeling (HLM), which is materially different 
from Hierarchical Regression covered in the prior section, which compared nested 
regression models. 

A model in which group-level effects are hypothesized for . β0 and .X1 and 
observation-level effects are hypothesized for all other predictors is expressed as: 

. YG = βG0 + βG1X1 + β2X2 + . . . + βpXp + ε

To fit a linear mixed effects model in R, we can leverage the lmer() function 
from the lmerTest package. Let us demonstrate how to fit a model to understand 
the random effects of stock_opt_lvl and fixed effects of engagement, job_lvl, 
and org_tenure on sqrt(ytd_sales): 

# Load library 
library(lmerTest) 

# Fit linear mixed model 
lme.fit <- lmerTest::lmer(sqrt(ytd_sales) ~ engagement + 

job_lvl + (1 | stock_opt_lvl) + org_tenure, data_ot)↪→ 

# Summarize model results 
summary(lme.fit)
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## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula: sqrt(ytd_sales) ~ engagement + job_lvl + (1 | stock_opt_lvl) + 
## org_tenure 
## Data: data_ot 
## 
## REML criterion at convergence: 1141.3 
## 
## Scaled residuals: 
## Min 1Q Median 3Q Max 
## -2.52388 -0.63661 0.00411 0.61215 3.13684 
## 
## Random effects: 
## Groups Name Variance Std.Dev. 
## stock_opt_lvl (Intercept) 51.16 7.152 
## Residual 1069.27 32.700 
## Number of obs: 118, groups: stock_opt_lvl, 4 
## 
## Fixed effects: 
## Estimate Std. Error df t value Pr(>|t|) 
## (Intercept) 133.6129 14.5677 88.8995 9.172 1.67e-14 *** 
## engagement 12.0038 4.5140 113.9662 2.659 0.00896 ** 
## job_lvl 35.8950 4.7470 112.4054 7.562 1.17e-11 *** 
## org_tenure 5.2542 0.7265 113.5918 7.232 5.94e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Correlation of Fixed Effects: 
## (Intr) enggmn jb_lvl 
## engagement -0.727 
## job_lvl -0.445 -0.110 
## org_tenure 0.046 -0.054 -0.463 

The results of lmer() contain sections for both fixed and random effects. 
Consistent with the interpretation of linear regression model output, we can see 
that the fixed effects of each predictor are statistically significant. The key difference 
here is that the variance shown for the intercept of the random effects model is large. 
This indicates that there are meaningful differences in the relationships between 
predictors and sqrt(ytd_sales) across the levels of stock_opt_lvl that would 
be missed without a mixed model that accounts for these group-level effects. 

For a more comprehensive treatment on multilevel models, see Gelman and Hill 
(2006). 

Polynomial Regression 

Linear regression is a powerful approach to understanding the relative strength 
of predictors’ associations with a response variable. While linear models have 
advantages in interpretation, inference, and implementation simplicity, the linearity 
assumption often limits predictive power since this assumption is often a poor
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approximation of actual relationships in the data. In this section, we will discuss 
how to extend the linear regression framework and relax linear model assumptions 
to handle non-linear relationships. 

In a people analytics context, many data sets are cross-sectional and time-
invariant, meaning they represent data collected at a single point in time. However, 
data collected across multiple points in time (time series data) are needed for 
forecasting future values of a dependent variable (e.g., a workforce planning model 
that estimates hires by month). 

There is often a seasonality element inherent in the relationship between time 
and the outcome that is being estimated, which requires accounting for time-variant 
features (e.g., monthly attrition rate assumptions). Seasonality is the variation that 
occurs at regular intervals within a year. For example, companies with an annual 
bonus often experience a seasonal spike in voluntary attrition following bonus 
payouts (beginning in March for many organizations). Accounting for seasonality 
in models helps reduce error, but it requires estimating a more complex set of model 
coefficients relative to a more naive linear projection. 

The simple linear regression equation, .Y = β0 +β1X+ε, can be easily extended 
to include higher-order polynomial terms and achieve a more flexible fit. This is 
known as polynomial regression.

• Quadratic (2nd Order Polynomial) Regression Equation: .Y = β0+β1X+β2X
2+

ε

• Cubic (3rd Order Polynomial) Regression Equation: . Y = β0 + β1X + β2X
2 +

β3X
3 + ε

Figure 1 illustrates how higher-order polynomial functions can fit more curvilin-
ear trends relative to a simple linear projection. 

It is important to note that adding higher-order terms to the regression equation 
usually increases .R2 due to a more flexible fit to the data, but the additional 
coefficients are not necessarily significant. .R2 will approach 1 as the power of x 
approaches .n − 1 since the fit line will connect every data point. However, a model 
that results in a perfect—or near perfect—fit is likely too flexible to generalize 
well to other data. This problem is known as overfitting and will be covered in 
chapter “Predictive Modeling”. As a general rule, it is best not to add polynomial 
terms beyond the second or third orders to protect against overfitting the model. 

Comparing the Adjusted .R2 for models with higher-order terms to one with 
only linear terms will help in determining whether higher-order polynomials add 
value to the model in explaining incremental variance in the response. Evaluating 
whether the coefficients on higher-order polynomials are statistically significant is 
important in determining which variables are contributing to any observed increases 
in Adjusted . R2.
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Fig. 1 Left: Linear turnover trend for .y = 0.75x + 3.5. Middle: Quadratic turnover trend for 
.y = 7.3x−0.53x2−6.97. Right: Cubic turnover trend for . y = −12.48x+2.47x2 −0.13x3+31.01

Let us demonstrate how to fit a regression model with polynomial terms in R 
using the turnover_trends data set. First, we will subset this data frame to level 
4 People Scientists who work remotely, based on the notion that turnover varies by 
level and remote, and then visualize the turnover trend to understand month-over-
month variation across years. 

As we can see in Fig. 2, the relationship between month and turnover rate is 
non-linear, and level 4 People Scientists who work remotely leave at lower rates 
relative to those who do not work remotely. There is a clear seasonal pattern that 
is consistent across all five years as well as remote vs. non-remote groups; namely, 
there is a spike in turnover between March and June as well as later in the year 
(November/December). Fitting a model to these data will require non-linear terms. 

Adding polynomial terms requires an indicator variable I() in which the value 
of x is raised to the desired order (e.g., . x2 = I(xˆ2)). Let us start by fitting linear, 
quadratic, and cubic regression models (to compare performance) using only month 
as a predictor. Notice that the shape of the trends resemble the cubic function shown 
in Fig. 1 in that there are two discernible inflection points at which the trend reverses 
directions: 

# Fit linear, quadratic, and cubic models to ps_turnover data 
ps.lin.fit <- lm(turnover_rate ~ month, data = ps_turnover)
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Fig. 2 Year 1–5 turnover trends for level 4 People Scientists, stratified by remote (dark grey line) 
vs. non-remote (light grey line) 

ps.quad.fit <- lm(turnover_rate ~ month + I(monthˆ2), data = 
ps_turnover)↪→ 

ps.cube.fit <- lm(turnover_rate ~ month + I(monthˆ2) + 
I(monthˆ3), data = ps_turnover)↪→ 

## 
## Call: 
## lm(formula = turnover_rate ~ month, data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -3.2807 -1.3007 -0.3407 0.9218 4.5293 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 4.85067 0.35047 13.84 <2e-16 *** 
## month 0.04000 0.04762 0.84 0.403 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.801 on 118 degrees of freedom 
## Multiple R-squared: 0.005944, Adjusted R-squared: -0.00248 
## F-statistic: 0.7056 on 1 and 118 DF, p-value: 0.4026 

## 
## Call:
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## lm(formula = turnover_rate ~ month + I(month^2), data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -2.9140 -1.2790 -0.3990 0.9535 4.6560 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 4.24400 0.58692 7.231 5.35e-11 *** 
## month 0.30000 0.20758 1.445 0.151 
## I(month^2) -0.02000 0.01554 -1.287 0.201 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.796 on 117 degrees of freedom 
## Multiple R-squared: 0.01981, Adjusted R-squared: 0.003058 
## F-statistic: 1.182 on 2 and 117 DF, p-value: 0.3101 

## 
## Call: 
## lm(formula = turnover_rate ~ month + I(month^2) + I(month^3), 
## data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.924 -1.464 -0.114 0.486 3.666 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.514000 0.873921 1.732 0.0859 . 
## month 2.410000 0.558831 4.313 3.41e-05 *** 
## I(month^2) -0.410000 0.097879 -4.189 5.49e-05 *** 
## I(month^3) 0.020000 0.004963 4.030 0.0001 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.689 on 116 degrees of freedom 
## Multiple R-squared: 0.1402, Adjusted R-squared: 0.1179 
## F-statistic: 6.304 on 3 and 116 DF, p-value: 0.0005334 

The linear (.F(1, 118) = 0.71, .p = 0.40) and quadratic (.F(2, 117) = 1.18, 
.p = 0.31) models are not significant. However, as expected based on the shape of 
the turnover trend, the cubic model is significant (.F(3, 116) = 6.30, .p < 0.001) 
and the linear (month), quadratic (I(monthˆ2)), and cubic (I(monthˆ3)) terms all 
provide significant information in estimating turnover rates (.p < 0.001). 

While the cubic model achieved statistical significance at the .p < 0.001 level, 
86% of the variance in monthly turnover rates remains unexplained (.1−R2 = 0.86). 
To improve the performance of the model, our model needs to reflect the fact that 
turnover varies as a function of year and remote in addition to month. 

As shown in Fig. 3, the multidimensional data vary widely around estimates 
produced by the two-dimensional models (i.e., turnover_rate predicted on the 
basis of month). While the cubic regression model reflects the seasonality in month-
over-month turnover, there are notable differences between remote and non-remote 
turnover rates as well as differences across years.
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Fig. 3 Linear, quadratic, and cubic models fitted to turnover data (red dashed lines). Remote 
workers are represented in dark grey points, and non-remote workers in light grey points 

Let us add remote to the cubic regression model to see how performance 
changes. 

# Fit linear, quadratic, and cubic models to ps_turnover df 
ps.cube.fit <- lm(turnover_rate ~ month + I(monthˆ2) + 

I(monthˆ3) + remote, data = ps_turnover)↪→ 

# Produce model summary 
summary(ps.cube.fit) 

## 
## Call: 
## lm(formula = turnover_rate ~ month + I(month^2) + I(month^3) + 
## remote, data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.104 -0.764 -0.644 -0.334 2.846 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.334000 0.775051 3.011 0.0032 ** 
## month 2.410000 0.488069 4.938 2.70e-06 *** 
## I(month^2) -0.410000 0.085485 -4.796 4.89e-06 *** 
## I(month^3) 0.020000 0.004335 4.614 1.03e-05 ***
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## remoteYes -1.640000 0.269344 -6.089 1.54e-08 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.475 on 115 degrees of freedom 
## Multiple R-squared: 0.3498, Adjusted R-squared: 0.3272 
## F-statistic: 15.47 on 4 and 115 DF, p-value: 3.758e-10 

As shown in the regression output, accounting for remote status increases 
explained variance by 21% (.�R2 = 0.35 − 0.14). In addition to the increase in 
explained variance, the coefficient on remote is statistically significant (.β = −1.64, 
.t (115) = −6.09, .p < 0.001). On average, the turnover rate for remote People 
Scientists is 1.64% lower than the turnover rate for non-remote People Scientists. 

Next, let us include year as a linear term in the model since turnover rates also 
vary along this dimension. 

# Fit linear, quadratic, and cubic models to ps_turnover df 
ps.cube.fit <- lm(turnover_rate ~ year + month + I(monthˆ2) + 

I(monthˆ3) + remote, data = ps_turnover)↪→ 

# Produce model summary 
summary(ps.cube.fit) 

## 
## Call: 
## lm(formula = turnover_rate ~ year + month + I(month^2) + I(month^3) + 
## remote, data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.419 -1.104 0.321 0.666 1.536 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 0.36900 0.63650 0.580 0.563 
## year 0.65500 0.07338 8.926 8.71e-15 *** 
## month 2.41000 0.37609 6.408 3.43e-09 *** 
## I(month^2) -0.41000 0.06587 -6.224 8.28e-09 *** 
## I(month^3) 0.02000 0.00334 5.988 2.53e-08 *** 
## remoteYes -1.64000 0.20755 -7.902 1.90e-12 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.137 on 114 degrees of freedom 
## Multiple R-squared: 0.6173, Adjusted R-squared: 0.6005 
## F-statistic: 36.77 on 5 and 114 DF, p-value: < 2.2e-16 

Explained variance increases to 62% by adding year to the model. While the 
coefficient on year is statistically significant (.β = 0.66, .t (114) = 8.93, . p <

0.001), the change in attrition by year is not linear. Visualizing the distribution of 
turnover rates by year will provide evidence that a linear year-over-year growth 
factor will result in some large residuals since it will not capture the more complex 
trend present in these data (Fig. 4).
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Fig. 4 Turnover rate distribution by year for remote (left) and non-remote (right) groups. Red 
dashed line reflects linear relationship between year and turnover rate, with y-intercept lowered 
1.64% for remote group 

Given the cubic nature of the change in turnover year-over-year, let us add 
quadratic and cubic terms for year to examine changes in model performance: 

## 
## Call: 
## lm(formula = turnover_rate ~ year + I(year^2) + I(year^3) + month + 
## I(month^2) + I(month^3) + remote, data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -0.0025714 -0.0004286 -0.0004286 0.0017143 0.0017143 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -1.866e+00 1.875e-03 -995.2 <2e-16 *** 
## year 5.906e+00 2.179e-03 2710.7 <2e-16 *** 
## I(year^2) -2.712e+00 8.087e-04 -3353.4 <2e-16 *** 
## I(year^3) 3.625e-01 8.929e-05 4060.0 <2e-16 *** 
## month 2.410e+00 5.491e-04 4388.7 <2e-16 *** 
## I(month^2) -4.100e-01 9.618e-05 -4262.8 <2e-16 *** 
## I(month^3) 2.000e-02 4.877e-06 4100.8 <2e-16 *** 
## remoteYes -1.640e+00 3.030e-04 -5411.7 <2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 0.00166 on 112 degrees of freedom 
## Multiple R-squared: 1, Adjusted R-squared: 1
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## F-statistic: 1.996e+07 on 7 and 112 DF, p-value: < 2.2e-16 

The inclusion of higher-order polynomials on year results in a perfect fit to these 
data (.R2 = 1). Albeit a statistical improbability in practice, this indicates that the 
slope of the relationship between month and turnover_rate is perfectly consistent 
across years within remote and non-remote groups. 

Our resulting equation for estimating turnover_rate on the basis of a combi-
nation of linear and non-linear values of year, month, and remote is defined by: 

. ŷ = −1.87 + 5.91 year − 2.71 year2 + .36 year3 + 2.41 month − .41 month2

+ .02 month3 − 1.64 remote + ε

The performance of this model may initially seem like a cause for celebration, 
but the probability is low that this model would estimate future turnover with 
such a high degree of accuracy. While these data were generated with a goal to 
simplify illustrations and facilitate a working knowledge of polynomial regression 
mechanics, data which conform to such a constant pattern of seasonality across 
multiple years is a highly improbable situation in practice. As stated earlier in this 
chapter, a model that results in a perfect fit is likely too flexible to generalize well 
to other data, and methods of evaluating how well models are likely to perform on 
future data will be covered in chapter “Predictive Modeling”. 

Review Questions 

1. What are some people analytics applications for comparing output from several 
regression models? 

2. What modeling technique is appropriate for understanding an independent 
variable’s contribution to a model’s R2 beyond a set of control variables? 

3. In the context of Hierarchical Regression, what is the indicator that �R2 

is statistically significant when evaluating whether a particular independent 
variable provides meaningful information beyond a set of controls? 

4. What are some examples of hypotheses that would warrant a linear mixed 
effects model over a general linear model? 

5. What are the differences between Hierarchical Linear Modeling (HLM), which 
is also referred to as multilevel or mixed effects modeling, and Hierarchical 
Regression? 

6. In what ways does polynomial regression differ from linear regression? 
7. Why is it important to evaluate the nature of relationships at various levels of a 

categorical or time variable? 
8. What shape characterizes a quadratic function?
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9. If the coefficient on the cubic term is not statistically significant (p >= 0.05) 
in a cubic regression model, but the linear and quadratic terms are statistically 
significant (p <  0.05), what does this indicate about the model’s fit to the data? 

10. Why might adding higher-order polynomial terms to a model be problematic, 
even though the additional terms increase the model’s R2? 
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Logistic Regression 

Logistic regression is a type of generalized linear model, which is a family of 
models for which key linear assumptions are relaxed. Logistic regression is an 
excellent tool for modeling relationships with outcomes that are not measured 
on a continuous scale (a key requirement for linear regression). Logistic regres-
sion is often leveraged to model the probability of observations belonging to 
different classes of a categorical outcome, and this type of modeling is known 
as classification. The context for classification can be binomial for two classes 
(e.g., active/inactive, promoted/not promoted), multinomial for multiple unordered 
classes (e.g., job family, location), or ordinal for multiple ordered classes (e.g., 
survey items measured on a Likert scale, performance level, education level). 
Regardless of the outcome variable’s classes, logistic regression is in fact a 
type of regression analysis, which by definition returns a numeric outcome—and 
probabilities are numeric. Logistic regression accomplishes this by using a link 
function to generalize the linear model for non-continuous outcomes. 

You may be wondering why linear regression cannot be implemented when the 
categorical outcome is dummy coded as outlined in chapter “Data Preparation”. 
In a binary case, in which the categorical response has been coded as 1/0, least 
squares regression would produce an estimate for .β̂X that represents the estimated 
probability of the outcome coded as 1 given X. For example, if attrition is the 
binary outcome and .Y = 1 for employees who left and .Y = 0 for employees 
who stayed, .Ŷ > 0.5 could lend to a termination prediction assuming this is an 
appropriate probability threshold. Linear regression may produce estimates lower 
than 0 and higher than 1, however, which complicates the interpretation of estimates 
as probabilities. 

This issue is not limited to binary categorical outcomes. Response variables with 
more than 2 categories cannot naturally be converted into quantitative values that are 
appropriate for linear regression. Instead of modeling the response directly as in lin-
ear regression, logistic regression models the probability of an outcome’s class given 
values for one or more predictors. For example, we can leverage our employees 
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data set to model the probability of active given a value for  interview_rating, 
which would be written as Pr(active = Yes  |  interview_rating) or simply  
p(inteview_rating). A probability of active = Yes will be estimated for a 
given value of interview_rating, and the probability threshold for determining 
the predicted class needs to be defined based on the business context. If we want 
to minimize false positives (i.e., incorrectly flagging at-risk employees who do not 
actually leave), we may set the threshold to something north of 0.5 (e.g., 0.7) to gain 
more confidence that those classified into the termination class are highly likely to 
exit. 

Binomial Logistic Regression 

Since estimating a binary outcome using linear regression can result in .p(X) < 0 for  
some values of X and p(X) > 1 for others, we need a function that constrains the 
output to a [0,1] interval. For logistic regression, the logistic function is used. This 
function converts the linear model, .p(X) = β0 + β1X, to the following form: 

. p(X) = eβ0+β1X

1 + eβ0+β1X

Irrespective of the value of X, the logistic function will always produce a 
sigmoidal (S-shaped) curve. 

Taking the ratio of . p(X)
1−p(X)

will give the odds of the outcome, which ranges 

between 0 (very low) and . ∞ (very high). The logarithm of this ratio, .log( p(X)
1−p(X)

), 
is known as the log odds or logit and is fundamental to logistic regression. Log odds 
is a monotonic transformation, meaning the greater the odds, the greater the log of 
odds (and vice versa). 

Recall that in linear regression, the coefficient . β on a predictor is interpreted as 
the average change in Y for a one-unit increase in the respective predictor’s value. 
In logistic regression, the interpretation is similar but rather than . β representing the 
average change in Y , and it represents the average unit change in the log of the odds 
for a one-unit increase in the predictor’s value. 

In R, the glm() function is used in conjunction with the family = binomial 
argument to fit a logistic regression model. As we covered in chapter “Statistical 
Inference”, discrete probability distributions can be leveraged to model different 
types of nominal variables, and the binomial distribution is appropriate for a 
sequence of independent observations with only two outcomes—such as our 
active variable featuring only yes and no values. Therefore, we need to pass 
the family = binomial argument into the glm() function. The formula passed 
into the function is structured consistent with the lm() function used for linear 
regression: glm(y ~ x, data).
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## 
## Call: 
## glm(formula = active ~ interview_rating, family = "binomial", 
## data = employees) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -3.03045 0.00000 0.00002 0.00531 2.06562 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) -74.486 10.333 -7.208 5.67e-13 *** 
## interview_rating 21.963 2.997 7.329 2.32e-13 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 1298.58 on 1469 degrees of freedom 
## Residual deviance: 103.27 on 1468 degrees of freedom 
## AIC: 107.27 
## 
## Number of Fisher Scoring iterations: 11 

The logistic regression output has some differences relative to the output of a 
linear regression model. 

• Estimate: Average change in the log of odds for each one-unit increase in 
the value of the predictor 

• z value: Ratio of Estimate / Standard Error. Assuming .α = 0.05, a .|z-
value. | >= 2 (2s of the mean) is a good rule of thumb for achieving statistical 
significance per the properties of the normal distribution. 

• Null deviance: Measure of how well the response can be predicted by a 
model with only an intercept term; the lower the number, the better the fit. 

• Residual deviance: Measure of how well the response can be predicted 
by a model with p predictors; the lower the number, the better the fit. The 
larger the delta between residual and null deviance, the better the model with 
p predictors relative to the intercept-only model. 

Given the positive coefficient on interview_rating, we can interpret this to 
mean that for each one-unit increase in the average interviewer rating during the 
onsite stage of the employee’s recruiting process, the log of the odds of the employee 
staying with the organization (active status of Yes coded as 1) increases by 21.96. 

To illustrate why the logistic function is necessary, let us demonstrate differences 
in applying linear and logistic regression models by regressing a binary outcome 
active onto interview_rating.
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Fig. 1 Linear (left) and logistic (right) functions applied to models regressing active status (1/0) 
onto median interviewer rating 

Figure 1 illustrates that for high values of interview_rating, a linear model 
would estimate probabilities for active that are greater than 1. Since probabilities 
range from 0 (impossible) to 1 (certain), anything outside the [0,1] interval does not 
make sense. On the other hand, the logistic function produces the S-shaped curve 
described previously. Using the logistic function, the probabilities are constrained 
to the [0,1] interval, and the visual reflects the fact that active can be perfectly 
predicted for low and high values of interview_rating, but it is a mixed bag for 
values in the middle of the range (3.3–3.6). 

It is often helpful to explain the relationship between a predictor and binary 
outcome in terms of a percentage increase or decrease. When .β = 1, this indicates 
that the likelihood of the outcome is identical between the two groups of the 
predictor. If we exponentiate the coefficients, we can convert the log odds into odds 
ratios to facilitate a more intuitive interpretation. Therefore, . (exp(β) − 1) ∗ 100
will provide the percentage increase or decrease in the odds of the included group 
relative to the omitted group. 

Let us evaluate the log odds for active regressed onto two binary predictors: 
overtime and job_lvl2plus.
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# Create dummy-coded variable for job level 2+ 
employees$job_lvl2plus <- ifelse(employees$job_lvl > 1, 1, 0) 

# Fit a logistic regression model 
glm.fit <- glm(active ~ overtime + job_lvl2plus, data = 

employees, family = 'binomial')↪→ 

# Produce model summary 
summary(glm.fit) 

## 
## Call: 
## glm(formula = active ~ overtime + job_lvl2plus, family = "binomial", 
## data = employees) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -2.3688 0.3532 0.3532 0.6300 1.1270 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 1.5163 0.1192 12.718 < 2e-16 *** 
## overtimeYes -1.3965 0.1522 -9.176 < 2e-16 *** 
## job_lvl2plus 1.2270 0.1523 8.055 7.93e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 1298.6 on 1469 degrees of freedom 
## Residual deviance: 1149.8 on 1467 degrees of freedom 
## AIC: 1155.8 
## 
## Number of Fisher Scoring iterations: 5 

We can convert these coefficients into odds ratios by exponentiating the coeffi-
cients: 

# Return exponentiated coefficients 
exp(coef(glm.fit)) 

## (Intercept) overtimeYes job_lvl2plus 
## 4.5551147 0.2474668 3.4108303 

The exponentiated coefficient on overtime is .exp(β) = 0.25, so there is a 
.(1−0.25)∗100 = 75% decrease in the odds of being active for employees who work 
overtime (since overtime = Yes is the included group) relative to those who do 
not work overtime. The exponentiated coefficient on job_lvl2plus is . exp(β) =
3.41, so there is a .(3.41 − 1) ∗ 100 = 241% increase in the odds of being active 
for those with a job level of 2 or greater relative to those with a job level of 1 (i.e., 
attrition is a larger concern for level 1 employees).
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Generalized linear mixed models can be fitted using the glmer() function from 
the lme4 library. The syntax is identical to the illustration of lmer() for multilevel 
linear models in chapter “Linear Regression” with the exception of needing to define 
family as an additional argument. 

A comparison of glm() and glmer() fits for logistic regression is shown in the 
following block of code. The mixed model example features an additional random 
(group-level) effect on business_travel via 1 | business_travel and fixed 
(observation-level) effects on remaining predictors which are consistent with the 
standard logistic regression model: 

# Load library 
library(lme4) 

# Logistic model 
glm(active ~ overtime + job_lvl2plus, data = employees, family 

= 'binomial')↪→ 

## 
## Call: glm(formula = active ~ overtime + job_lvl2plus, family = "binomial", 
## data = employees) 
## 
## Coefficients: 
## (Intercept) overtimeYes job_lvl2plus 
## 1.516 -1.396 1.227 
## 
## Degrees of Freedom: 1469 Total (i.e. Null); 1467 Residual 
## Null Deviance: 1299 
## Residual Deviance: 1150 AIC: 1156 

# Logistic mixed model 
lme4::glmer(active ~ overtime + job_lvl2plus + (1 | 

business_travel), data = employees, family = 'binomial')↪→ 

## Generalized linear mixed model fit by maximum likelihood (Laplace 
## Approximation) [glmerMod] 
## Family: binomial ( logit ) 
## Formula: active ~ overtime + job_lvl2plus + (1 | business_travel) 
## Data: employees 
## AIC BIC logLik deviance df.resid 
## 1148.0596 1169.2317 -570.0298 1140.0596 1466 
## Random effects: 
## Groups Name Std.Dev. 
## business_travel (Intercept) 0.4351 
## Number of obs: 1470, groups: business_travel, 3 
## Fixed Effects: 
## (Intercept) overtimeYes job_lvl2plus 
## 1.546 -1.382 1.223
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Multinomial Logistic Regression 

Multinomial logistic regression is used to estimate the probability of an unordered 
categorical response with .K > 2 classes. With an understanding of binomial logistic 
regression, extending the binomial model to a multinomial logistic regression model 
should be relatively intuitive. 

To extend the binomial model to a multinomial context, we need to first identify 
a reference level. This decision may be arbitrary or guided by the research question 
or hypothesis, but the decision is nonetheless important as it impacts how the 
model coefficients are interpreted—always relative to the reference level. With the 
reference level defined, we can then express the multinomial logistic regression 
model as: 

. Pr(Y = k|X = x) = eβk0+βk1x1+...+βkpxp

1 +
K−1∑

j=1

eβj0+βj1x1+...+βjpxp

where K is the reference class, j is a .K−1 non-reference level, and k is the specified 
class for which the probability is being estimated on the basis of values for one or 
more X predictors. 

Consider dept from our employees data, which has values of Research & 
Development, Sales, and Human Resources. This is a nominal variable because 
differences in these levels are not ordered in the same way job levels ranging 
from 1 to 10 or Likert scales ranging from 1 to 5 are. Employees in the Sales 
department may be greater in number relative to employees in the Human Resources 
department, for example, but it would not be appropriate to assign to the Sales 
department a numeric value that indicates it is higher or better relative to the Human 
Resources department. 

Multinomial models are essentially a collection of binomial models which 
compare the log odds of each non-reference category to the specified reference 
category. If the Human Resources department is identified as the reference category 
K , then .βk0 for .k = Sales can be interpreted as the log odds of Sales department 
membership relative to Human Resources department membership in the following 
equation: 

. log

(
Pr(Y = k|X = x)

P r(Y = K|X = x)

)
= βk0 + βk1x1 + . . . + βxpxp

Depending on the research objective, it may be appropriate to compute the odds 
of one category relative to all other categories. This can actually be accomplished 
using binomial regression if the category of interest is coded as 1 and all other 
categories are coded as 0. In this case, the reference for the binomial model is 
a collection of .K − 1 categories. If understanding the odds of each category
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relative to a reference category is more appropriate based on the research objective, 
multinomial logistic regression is the proper model. 

Let us illustrate how to implement multinomial logistic regression by determin-
ing how variables in the employees data set help in classifying employees into 
departments. To build this model in R, we will use the multinom function from 
the nnet package. It is important that the nominal response variable is defined as a 
factor before implementing multinomial logistic regression, so we will first convert 
the data type of dept from its native character type to a factor. We also need to 
identify the reference department against which the probability of each of the other 
departments will be evaluated; we will define this using the ref argument within 
the relevel() function: 

# Load library 
library(nnet) 

# Convert dept to factor 
employees$dept <- factor(employees$dept) 

# Specify reference level 
employees$dept <- relevel(employees$dept, ref = "Human 

Resources")↪→ 

# Fit multinomial logistic regression model 
# An omitted group for categorical variables is defined by 

default↪→ 

multinom.fit <- nnet::multinom(dept ~ overtime + ed_field, 
data = employees)↪→ 

## # weights: 24 (14 variable) 
## initial value 1614.960064 
## iter 10 value 887.448722 
## iter 20 value 833.883230 
## iter 30 value 833.513790 
## final value 833.513639 
## converged 

# Summarize results from model object 
summary(multinom.fit) 

## Call: 
## nnet::multinom(formula = dept ~ overtime + ed_field, data = employees) 
## 
## Coefficients: 
## (Intercept) overtimeYes ed_fieldLife Sciences 
## Research & Development -18.92857 0.1674815 22.19842
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## Sales -19.40948 0.1602262 21.60505 
## ed_fieldMarketing ed_fieldMedical ed_fieldOther 
## Research & Development 25.72879 22.21217 21.93577 
## Sales 37.42515 21.27842 20.96823 
## ed_fieldTechnical Degree 
## Research & Development 22.0455 
## Sales 21.5113 
## 
## Std. Errors: 
## (Intercept) overtimeYes ed_fieldLife Sciences 
## Research & Development 1.808496 0.3917603 1.817514 
## Sales 1.810390 0.4071887 1.819982 
## ed_fieldMarketing ed_fieldMedical ed_fieldOther 
## Research & Development 8.991934 1.820007 1.864206 
## Sales 8.996707 1.823207 1.874536 
## ed_fieldTechnical Degree 
## Research & Development 1.84963 
## Sales 1.85451 
## 
## Residual Deviance: 1667.027 
## AIC: 1695.027 

Notice the output from the multinom() function is quite limited relative to 
glm() and lm(). Coefficients and standard errors are provided, but p-values are 
not available in the output, so we will need to calculate them separately. 

A statistical measure named Akaike Information Criterion (AIC) is included 
in the output of this model, which is a score that is helpful for model selection. AIC 
is calculated by: 

. AIC = −2
�

n
+ 2

k

n
,

where n is the number of observations, k is the number of parameters (predictors + 
intercept), and . � is the log likelihood function where: 

. � = −n

2

(
1 + ln(2π) + ln

(
1

n

n∑

i=1

(yi − ŷi )
2

))

Just as we compared . R2 across linear regression models in chapter “Linear 
Regression”, AIC can be compared across models to determine which one is a better 
fit to the data; lower AIC values indicate better fit. Consistent with how the Adjusted 
. R2 statistic adjusts for variables that do not provide information, AIC penalizes 
models that use more parameters. Therefore, if two models explain the same amount 
of variance in the response, the model with fewer parameters will achieve a lower 
AIC score. 

To determine whether the coefficients are statistically significant, we need to 
perform an additional step to compute p-values using z scores:
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# Calculate z-scores 
z_scores <- summary(multinom.fit)$coefficients / 

summary(multinom.fit)$standard.errors↪→ 

# Produce p-values 
p_values <- (1 - pnorm(abs(z_scores))) * 2 

# Transpose and display rounded p-values 
data.frame(t(round(p_values, 3))) 

## Research...Development Sales 
## (Intercept) 0.000 0.000 
## overtimeYes 0.669 0.694 
## ed_fieldLife Sciences 0.000 0.000 
## ed_fieldMarketing 0.004 0.000 
## ed_fieldMedical 0.000 0.000 
## ed_fieldOther 0.000 0.000 
## ed_fieldTechnical Degree 0.000 0.000 

These p-values indicate that those who work overtime are not significantly more 
likely to work in either the Research & Development or Sales departments relative 
to the Human Resources department. In other words, a considerable portion of 
employees in all three departments work overtime, so this variable is not helpful 
in classifying employees into their correct departments. This is evident in Fig. 2. 

The p-values indicate that educational background is a strong predictor of 
department. This is evidenced in Fig. 3, which shows that each educational field is 
generally dominated by a single department. This means that we can achieve strong 
departmental purity on the basis of ed_field alone. All employees who studied 
Marketing work in Sales and all employees who studied HR work in the HR depart-
ment. However, those who work in R&D have a variety of educational backgrounds, 
so the signal is not as clear for these cases and additional variables would be needed 
to more accurately assign these employees to the correct department. 

As we did for binomial logistic regression, we can compute the exponential of 
model coefficients for the multinomial logistic regression model to convert the log 
odds to more intuitive odds ratios: 

# Return exponentiated coefficients from model object 
# Transpose rows to columns for improved readability 
data.frame(t(exp(coef(multinom.fit))))
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## Research...Development Sales 
## (Intercept) 6.017654e-09 3.720234e-09 
## overtimeYes 1.182323e+00 1.173776e+00 
## ed_fieldLife Sciences 4.371726e+09 2.415207e+09 
## ed_fieldMarketing 1.492349e+11 1.792819e+16 
## ed_fieldMedical 4.432226e+09 1.742213e+09 
## ed_fieldOther 3.361886e+09 1.277572e+09 
## ed_fieldTechnical Degree 3.751786e+09 2.199075e+09 

Consistent with our approach for binomial logistic regression, we can inter-
pret these exponentiated coefficients in terms of having greater or lesser odds. 
Importantly, in the multinomial context, the odds are relative to the reference 
category—the Human Resources department in this case. 

For example, the odds ratio associated with a Medical educational field is 
.exp(β) = 4.43 for Research & Development and .exp(β) = 1.74 for Sales. 
Therefore, those with a Medical education have .(4.43−1)∗100 = 343 greater odds 
of being in the Research & Development department and . (1.74 − 1) ∗ 100 = 74
greater odds of being in the Sales department relative to the Human Resources 
department. We can ignore the odds ratios associated with overtime since this 
variable does not provide significant information. 

Ordinal Logistic Regression 

Many projects in people analytics involve understanding how variables influence 
ordinal outcomes, such as performance ratings or survey items measured on a 
Likert scale. Stepwise changes in the levels of ordinal outcomes may or may not 
be consistent. For example, it may be easy for one to be promoted from job level 
1 to 2 but relatively difficult to progress from 5 to 6. Linear regression should not 
be used in these settings, as linear assumptions are designed for data measured on a 
continuous scale and will not hold for ordinal data. This section will cover ordinal 
logistic regression, which is a modeling technique designed for understanding how 
variables influence stepwise changes in a multi-class ordinal outcome. 

Beyond the universal data screening procedures we have covered, such as 
ensuring problematic collinearity is not present, ordinal logistic regression features 
a unique proportional odds assumption that must be satisfied. This assumption, 
also known as the parallel regression assumption, requires that each independent 
variable has an equal effect at each level of the ordinal outcome. If the effect varies 
across levels of the outcome, separate models are needed to accurately reflect the 
associations with each pair of levels. 

Though other approaches exist for modeling ordinal outcomes, the proportional-
odds model based on cumulative distribution probabilities is the most common. Its 
intercepts are dependent on the j levels, but slopes are equal as defined by:
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. log

(
Pr(Y ≤ j)

P r(Y > j)

)
= βj0 −

n∑

i=1

β1ix1i + . . . + βpixpi

The implementation of ordinal logistic regression will be demonstrated by eval-
uating the statistical drivers of engagement. First, we need to define engagement as 
an ordered factor: 

# Define ordered factor 
employees$engagement <- ordered(employees$engagement, levels = 

c(1, 2, 3, 4, 5))↪→ 

# Verify structure of engagement variable 
str(employees$engagement) 

## Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 3 2 2 3 3 3 4 3 2 3 ...  

Next, the proportional odds assumption will be checked using theBrant test. The  
Brant test is a set of comparisons of the separate binary logistic models underlying 
the overall model (Brant, 1990). This test evaluates whether .βj1 through .βjp are 
consistent across each of the j levels. This is done via a . χ2 test to compare 
coefficients and determine whether observed differences are larger departures from 
what we would expect by chance. The null hypothesis states that coefficients are 
not statistically different across the j levels; therefore, .p < 0.05 indicates that 
significant differences in effects are present across the j levels and, thus, the 
proportional odds assumption is violated. 

We can leverage the brant package in R for this, which is compatible with the 
polr() function from the MASS package that will be used to perform ordinal logistic 
regression. Since we will be evaluating model statistics, rather than merely using 
the model for prediction (the subject of chapter “Predictive Modeling”), we need to 
specify the Hess = TRUE argument in the polr() function to include the Hessian 
matrix (observed information matrix) in the output. 

# Load libraries 
library(MASS) 
library(brant) 

# Fit a ordinal logistic regression model 
ord.fit <- MASS::polr(engagement ~ org_tenure, data = 

employees, Hess = TRUE)↪→ 

# Test proportional odds assumption using the Brant test 
brant::brant(ord.fit)
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## --------------------------------------------
## Test for X2 df probability 
## --------------------------------------------
## Omnibus 0.39 2 0.82 
## org_tenure 0.39 2 0.82 
## --------------------------------------------
## 
## H0: Parallel Regression Assumption holds 

Notice the line in the output for the omnibus test, which shows an identical 
. χ2, df , and p-value to the line associated with org_tenure. Omnibus tests are 
statistical tests which test for the significance of several parameters in a model at 
once. For example, a one-way ANOVA evaluating differences in mean commute 
time across three locations is an omnibus test since it has more than two parameters. 
As we covered in chapter “Analysis of Differences”, the null hypothesis is rejected 
in the context of ANOVA if there is at least one difference in complex contrasts— 
even if the mean commute time is not significantly different between all groups. 
Test statistics are identical for this ordinal logistic regression model because there is 
a single predictor, but Brant’s omnibus test investigates equality of coefficients for 
all predictors jointly in the case of more than two parameters (Martin, 2022). The 
null and alternative hypotheses for Brant’s omnibus test are: 

• . H0: The odds are proportional for all predictors in the model. 
• . HA: The odds are non-proportional for at least one predictor. 

The results of Brant’s test indicate that we fail to reject . H0 since .p = 0.82 for 
the omnibus test, so the proportional odds assumption holds for these data. If the 
model featured more than one predictor, we could also evaluate the statistics on 
individual predictors—but only to determine for which predictor(s) the proportional 
odds assumption is violated if .p < 0.05 for the omnibus test. As the number 
of variables and tests increases, so too does our risk of incorrectly rejecting the 
proportional odds assumption; therefore, decisions regarding the proportional odds 
assumption should not be based on statistics for individual predictors alone. Even if 
the odds are truly proportional for each predictor independently, with 20 predictors 
we would expect to find one by chance for which .p < 0.05 since our tolerance for 
a Type  I error  is  1 in 20 with .α = 0.05. 

Since the proportional odds assumption holds, let us review the model output: 

# Summarize ordinal logistic regression model 
summary(ord.fit) 

## Call: 
## MASS::polr(formula = engagement ~ org_tenure, data = employees, 
## Hess = TRUE) 
## 
## Coefficients: 
## Value Std. Error t value
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## org_tenure -0.006965 0.008032 -0.8671 
## 
## Intercepts: 
## Value Std. Error t value 
## 1|2 -2.8661 0.1271 -22.5423 
## 2|3 -0.8419 0.0804 -10.4703 
## 3|4 2.1711 0.1036 20.9479 
## 4|5 4122.5567 0.1036 39776.9095 
## 
## Residual Deviance: 3084.592 
## AIC: 3094.592 

The output provides the average effect of a one-unit increase in org_tenure (the 
Coefficients section) as well as intercepts on each pair of levels for engagement 
(the Intercepts section). The effect of a one-unit increase in org_tenure in 
moving engagement from one ordinal level to the next is quite small (. β =
−0.007). The intercepts are often referred to as cutpoints and can be roughly 
translated as thresholds. While the intercepts for each cutpoint vary, note that the 
single coefficient on org_tenure is only possible because our proportional odds 
assumption holds and the effect is consistent (proportional) across levels of our 
ordered factor, engagement. 

Consistent with the default output from the multinom() function used for 
multinomial logistic regression, p-values are not provided in the standard output 
from the polr() function. However, we can calculate them for reasonably large 
samples by comparing the t-values against the standard normal distribution: 

# Store coefficients to df 
coef_df <- coef(summary(ord.fit)) 

# Produce p-values 
p <- pnorm(abs(coef_df[, "t value"]), lower.tail = FALSE) * 2 

# Combine p values with coefficients df 
coef_df <- cbind(coef_df, "p value" = p) 

# Display df contents 
coef_df 

## Value Std. Error t value p value 
## org_tenure -0.00696485 0.008032275 -0.867108 3.858828e-01 
## 1|2 -2.86612408 0.127144280 -22.542297 1.598105e-112 
## 2|3 -0.84185679 0.080404351 -10.470289 1.182814e-25 
## 3|4 2.17107818 0.103641956 20.947870 1.962145e-97 
## 4|5 4122.55669611 0.103641956 39776.909511 0.000000e+00



238 Logistic Regression

We can now estimate the likelihood of a particular observation having a specified 
level of Y , such as .Y ≤ 3, as follows: 

. log

(
Pr(Y ≤ 3)

P r(Y > 3)

)
= 2.17 − 0.007xorgtenure

Review Questions 

1. Can linear regression be used when outcome variables are measured on a non-
continuous scale? Why or why not? 

2. What are some examples of hypotheses for which logistic regression would be 
an appropriate model? 

3. Why is it helpful to calculate the exponential of log odds in a logistic regression 
model? 

4. What does an odds ratio of 1.25 indicate in a binomial context? 
5. What does an odds ratio of 0.75 indicate in a multinomial context? 
6. How does Akaike Information Criterion (AIC) compare to R2 with respect to 

its purpose and function? 
7. In what type of R object do ordinal data need to be stored in order to implement 

ordinal logistic regression? 
8. Should linear regression be used to understand associations of predictors with 

an ordinal outcome? Why or why not? 
9. What does the proportional odds (or parallel regression) assumption assume 

about model coefficients? 
10. Why is it important to evaluate Brant’s omnibus test—over the test statistics 

on independent predictors alone—when determining whether the proportional 
odds assumption for ordinal logistic regression holds? 
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Predictive Modeling 

In people analytics, inferential models like those covered in chapters “Linear 
Regression”, “Linear Model Extensions”, and “Logistic Regression” are generally 
warranted by the research objectives. However, there are times when we need to go 
beyond interpreting coefficients to understand relative influences of predictors on 
an outcome and leverage the models to estimate or predict the most likely future 
values. This type of modeling is often referred to as predictive analytics and is the 
subject of this chapter. 

A branch of Artificial Intelligence (AI) known as Machine Learning (ML) 
is often associated with predictive modeling. ML is a set of methods that aim to 
improve performance on a set of tasks by learning from data (Mitchell, 1997). 
ML applications can be found in medical diagnostics, autonomous vehicles, speech 
recognition, automated securities trading, lending decisions, marketing, and many 
other domains. The difference between statistics and ML is largely philosophical. 
Logistic regression, for example, is covered in both statistics and ML textbooks. 
While statistics focuses more on modeling and ML is more algorithmic, both can 
be used for prediction. The broader field of data science often further confounds 
distinctions between these disciplines, though data science represents the entire end-
to-end process—from data extraction and engineering to modeling and analysis. 

A good use case for a predictive model in people analytics is data restatement to 
adjust for reorganizations over time. In this case, accuracy may be more important 
than the explainability of the model. A predictive model may be used to predict 
and assign a current functional executive to historical records to support leader-
wise trending analyses. For example, consider a scenario in which the current VP of 
Product Marketing was hired six months ago to replace the former VP of Product 
Marketing who was in the role for the prior five-year period. If the new VP wants to 
see monthly termination counts for their organization over the past three years, term 
records prior to the VP’s start date need to be associated with the current—rather 
than former—VP of Product Marketing to accomplish this. A model can be trained 
to learn from patterns in the combinations of current workers’ department, leader, 
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and job attributes that can be used to assign current executives to past data (e.g., 
historical termination events, month-end worker snapshots). 

It is important to note that while there are AI/ML applications for people 
analytics, feeding data to black box models without an understanding of how 
the underlying algorithms work is generally a bad idea. Despite the glamour 
predictive analytics has seen in recent years due to the allure of a magical elixir 
that can portend the future, more times than not inferential statistical approaches 
are more appropriate in a people analytics setting (Fig. 1). Unfortunately, the hype 
has given rise to AI snake oil to justify a premium price point for modern HR 
tech solutions, which are often little more than the descriptive statistics covered 
in chapter “Descriptive Statistics”. 

It is both a blessing and a curse that a predictive model can be built with a single 
line of code in R, and it is dangerous to blindly make recommendations on the basis 
of the output. A simpler model that you can understand and explain is generally a 
better option than a more complex one that you cannot. There is a high probability 
that stakeholders will ask deeper questions about why a particular segment of the 
workforce is predicted to exit at higher rates, for example, and answering these 
questions requires a deeper understanding of the factors that led to them being 
classified as such. 

People data are messy, and understanding why people vary in attitudes, percep-
tions, and behaviors is an inherently difficult endeavor. Spoiler alert: there is no 
crystal ball that will soften this reality. 

Cross-Validation 

Predictive modeling involves training a model on a data set referred to as a training 
set and using the model to make predictions for observations on a separate data set 
known as the test set or validation set to evaluate model performance. 

A model is blind to data in the test set, since only the data in the training set 
are used to train the model. Therefore, the test set provides a convenient way to 
compare the actual known values to the predicted values and estimate how well the 
model will generalize to other data. Evaluating model performance on the basis of 

Fig. 1 Satirical illustration 
based on the viral meme of 
2019 which depicts the 
enduring popularity and 
utility of linear regression, 
even in light of the billions 
companies invest in ML each 
year
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training data would be akin to having students take an exam after providing them 
the answers. Strong performance on the training data is almost a certainty, so the 
value of a model rests on its performance on data not used to build it. 

This partitioning procedure is known as cross-validation (CV). While there are 
many methods of splitting data into training and test sets, a common feature among 
all is that the partitioning strategy is random. Without randomization, the model may 
learn patterns characteristic of the training set that result in inaccurate predictions 
for other data which do not feature consistent patterning. 

This section will explore a few of the most common CV methods. 

Validation Set Approach 

The validation set approach is the most basic form of CV. This approach involves 
defining proportions by which to partition data into training and test sets—usually 
2/3 and 1/3, respectively. The model is trained on the training set and then 
differences between actual y and predicted . ŷ values are calculated on the test set 
to evaluate model performance. 

Leave-One-Out 

Leave-one-out CV fits a model using .n − 1 observations n times. The test error is 
then evaluated by calculating differences between actual y and predicted . ŷ values 
for all omitted observations. 

k-Fold 

k-fold CV randomly partitions observations into k groups, or folds, that are 
approximately equal in size. The first fold is treated as the test set, and the model is 
trained on the remaining .k −1 folds. This procedure is repeated k times, each with a 
different set of observations (fold) as the test set. The test error is then evaluated by 
calculating differences between actual y and predicted . ŷ values across all test sets. 

Model Performance 

There are several methods of quantifying how well models perform on test data in 
order to assess the extent to which the model will generalize. Predictive modeling



242 Predictive Modeling

applications will be categorized as either classification or forecasting to reflect the 
families of use cases germane to people analytics. 

Classification 

In a classification setting, predictions are either right or wrong. Therefore, calculat-
ing the overall error rate across test data is straightforward: 

. 
1

n

n∑

i=1

I (yi �= ŷi ),

where I is an indicator variable equal to 1 if .yi �= ŷi and 0 if .yi = ŷi . 
A confusion matrix is often used in classification to parse the overall model 

accuracy rate into component parts and understand whether the model performs 
at a level appropriate to a defined tolerance level per the research objective. In an 
attrition project, it may be more important to correctly predict high performers who 
leave than to correctly predict those who stay, as prediction errors for the former are 
likely far more costly. Several performance metrics are provided by the confusion 
matrix to aid in a more granular understanding of model performance, which are 
represented in Fig. 2:

• True Positive: Number of correct true predictions
• True Negative: Number of correct false predictions
• False Positive: Number of incorrect true predictions (Type 1 error)
• False Negative: Number of incorrect false predictions (Type 2 error)
• Accuracy: Rate of correct predictions overall
• Sensitivity: Rate of actual true cases predicted correctly (also known as 

Recall) 

Fig. 2 Confusion matrix
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• Specificity: Rate of actual false cases predicted correctly
• Precision: Rate of correct predictions among all cases predicted true
• Negative Predictive Value: Rate of correct predictions among all cases 

predicted false 

Forecasting 

While predictions are either right or wrong in a classification context, evaluating 
model performance in a forecasting context involves assessing the magnitude of 
differences between actual y and predicted . ŷ values—usually across time periods. 
There are many methods for assessing forecasting model performance, and we will 
focus on some of the most common.

• Mean absolute deviation (MAD): average absolute difference between actual 
y and predicted . ŷ values 

.MAD =
∑ |yi − ŷi |

n

• Mean square error (MSE): average squared difference between actual y and 
predicted . ŷ values 

. MSE =
∑

(yi − ŷi )
2

n

Squaring differences accomplishes two key objectives: (1) converts negative 
differences to positive (consistent with the MAD approach) and (2) imposes 
a greater penalty on larger differences, which causes error rates to increase 
at an exponential rather than linear rate (e.g., .22 = 4, .32 = 9, .42 = 16). 
MSE is perhaps the most pervasive model performance measure in predictive 
modeling.

• Mean absolute percentage error (MAPE): average absolute difference 
expressed as a percentage 

. MAPE =
(

100

n

) ∑ ∣∣∣∣
yi − ŷi

yi

∣∣∣∣

Bias–Variance Tradeoff 

Bias–variance tradeoff refers to the important endeavor of minimizing two sources 
of error that prevent models from generalizing beyond their training data: bias and 
variance.
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Fig. 3 Bias–variance tradeoff. Dashed line represents optimal model performance

• Bias: Error from erroneous assumptions in the model. High bias results from 
models that are too simplistic to accurately capture the relationships between 
predictors and the outcome; this is known as underfitting.

• Variance: Error from sensitivity to small fluctuations in training data. High 
variance results from models that capture random noise rather than the 
significant patterns in the training data; this is known as overfitting. 

As a general rule, the more flexible the model, the more variance and less bias. 
As shown in Fig. 3, minimizing test error by achieving a model with optimal fit to 
the data requires limiting both bias and variance. 

Tree-Based Algorithms 

While there are many flexible ML algorithms, such as Extreme Gradient Boosting 
(XGBoost), Artificial Neural Networks (ANN), and Support Vector Machines 
(SVM), that tend to perform well across a range of prediction problems, these will 
not be covered as we will focus on more interpretable tree-based algorithms that 
have more applications to people analytics. 

Decision Trees 

In addition to the inferential models covered in the previous chapters, decision trees 
are also excellent tools that lend to simple and effective narratives about factors
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Fig. 4 Conceptual decision tree for employee attrition prediction 

influencing outcomes in either a regression or a classification setting. As illustrated 
in Fig. 4, decision trees resemble a tree that depicts a set of decisions as well as 
consequences of those decisions. The top-level Department variable is known as a 
root node, and the remaining Tenure, Performance Rating, and Remote nodes 
are known as interior nodes. Decisions represented in Active and Inactive boxes 
are referred to as leaf, terminal, or end nodes. 

As evidenced by the inactive status prediction in the leaf node, this decision tree 
shows that employees in the Engineering department are unlikely to stick around 
for two or more years. In addition, employees in other departments terminate if they 
are low performers or if they are high performers who do not work remotely. It is 
important to note that in practice, it is rare to achieve complete purity in leaf nodes, 
as there is usually a mix of results in a given node—though a more frequent class 
or range of values is expected in the presence of meaningful variables. If leaf nodes 
for a classification problem are comprised of a single class, it may be evidence of 
overfitting, especially if the n-count is small. 

Predictions based on a deep tree with an excessive number of partitions and few 
observations will likely be highly inaccurate beyond the training data. The goal of 
decision trees is to arrive at a set of decisions that best delineate one class or range of 
values from others by identifying patterns and natural cutpoints among a reasonably 
large subset of the data at each level. There must be signal in the features used to 
partition the data such that predictions are an improvement over random guessing 
(e.g., 50/50 chance in a binary classification setting).
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Random Forests 

A random forest (RF) is a natural extension of the decision tree. As the name 
implies, a random forest is a large number (forest) of individual decision trees 
that operate as an ensemble. The process of fitting multiple models on different 
subsets of training data and then combining predictions across all models is referred 
to as bagging. This is a case of wisdom of the crowd decision-making in which 
a large number of uncorrelated trees (models) functioning as a committee should 
outperform individual trees. 

To understand the mechanics of a random forest, consider an investment strategy 
in which you diversify an investment portfolio by spreading investments across 
different assets. By investing in assets that are uncorrelated, there is a lower 
likelihood that the portfolio’s value will be negatively impacted by a negative 
event impacting a single holding. In the same way, a random forest constructs an 
ensemble of trees that are each based on different randomized subsets of data and 
combinations of features to amalgamate the information and arrive at more accurate 
predictions. The potential for poor performance from a single tree is mitigated by 
the many trees working in concert with one another. 

Though random forests combine information from many decision trees, there 
are still intuitive ways of understanding which features are most important in 
segmenting employees to understand drivers of various outcomes. 

Predictive Modeling 

We will now integrate these concepts into attrition classification and forecasting 
examples. The high-level prediction workflow will follow four steps:

• Step 1: Partition data into training and test sets for cross-validation.
• Step 2: Build models using training data.
• Step 3: Use models to make predictions on test data.
• Step 4: Evaluate model performance. 

Classification 

To demonstrate the prediction workflow steps for classification, we will leverage 
our employees data set: 

# Load library 
library(peopleanalytics) 

# Load data
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data("employees") 

# Load employee data 
prediction_dat <- employees 

# One-hot encode active outcome variable, setting inactives to 
↪→ 1 and actives to 0

prediction_dat$active <- ifelse(prediction_dat$active == 'No', 
↪→ 1, 0)

Step 1: Partition Data into Training and Test Sets for Cross-Validation 
For this example, we will implement the validation set approach for CV. 

# Load library 
library(dplyr) 

# Set seed for reproducible training and test sets 
set.seed(9876) 

# Randomly select 2/3 of employees for the training set 
training_ids <- sample(prediction_dat$employee_id, size = 

nrow(prediction_dat) * 2/3, replace = FALSE)↪→ 

# Create training data 
training_dat <- prediction_dat |> dplyr::filter(employee_id 

%in% training_ids)↪→ 

# Create test data using remaining 1/3 of observations 
test_dat <- prediction_dat |> dplyr::filter(!employee_id %in% 

training_ids)↪→ 

# Return Boolean to validate that all observations are 
accounted for↪→ 

nrow(training_dat) + nrow(test_dat) == nrow(prediction_dat) 

## [1] TRUE 

Step 2: Build Models Using Training Data 
Machine learning (ML) algorithms are sensitive to imbalanced classes. That is, 

when there is not an equal representation of each class we wish to predict in the 
data (e.g., employees who left and employees who did not), it can adversely impact 
our results. In the case of our employees data set, there are 1233 observations for 
active employees but only 237 observations for inactive employees. Therefore, we 
will introduce a popular technique to address this known as Synthetic Minority
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Oversampling Technique (SMOTE), which will be important for the RF model 
we will train. This technique takes random samples with replacement (i.e., each 
observation may be chosen more than once) from the minority class to augment the 
class’s representation in the data set and achieve balanced classes. 

While functions exist for implementing SMOTE, such as the SMOTE() function 
from the DMwR library, in the spirit of demystifying black box ML approaches we 
will step through this procedure without the use of an available function: 

# Calculate class representation delta in training data 
training_class_delta <- nrow(training_dat |> 

dplyr::filter(active == 0)) - nrow(training_dat |> 
dplyr::filter(active == 1))

↪→
↪→ 

# Copy training data to separate data frame for oversampling 
training_dat_os <- training_dat 

# Set seed for reproducible results 
set.seed(9876) 

# Oversample the underrepresented inactive class by 
training_class_delta to align observation counts with 
active class

↪→
↪→ 

# Note: A loop is not the most efficient -- especially with 
large data sets -- but it is leveraged here to simplify 
instruction on SMOTE mechanics

↪→
↪→ 

for (i in 1:training_class_delta){ 

# Sample employee id from underrepresented class 
oversampled_id <-

sample(training_dat_os[training_dat_os$active == 1, 
'employee_id'], size = 1, replace = TRUE)

↪→
↪→ 

# Store observation for sampled employee id 
new_obs <- unique(training_dat_os |> 

dplyr::filter(employee_id == oversampled_id))↪→ 

# Append sampled observation to training data frame 
training_dat_os <- rbind(training_dat_os, new_obs) 

} 

# Return Boolean to validate that classes are equal in the 
training data↪→ 

nrow(training_dat_os |> dplyr::filter(active == 0)) == 
nrow(training_dat_os |> dplyr::filter(active == 1))↪→
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## [1] TRUE 

Next, we will fit a binomial logistic regression model using a subset of predictors 
from the oversampled training data. For comparison, let us summarize a model using 
original and oversampled data. 

## 
## Call: 
## glm(formula = active ~ overtime + job_lvl + engagement + interview_rating, 
## family = binomial, data = training_dat) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -2.78408 -0.00157 0.00000 0.00000 2.54959 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 85.7594 16.4594 5.210 1.88e-07 *** 
## overtimeYes 2.5156 0.8766 2.870 0.00411 ** 
## job_lvl -0.1372 0.4805 -0.285 0.77528 
## engagement -0.6845 0.6304 -1.086 0.27755 
## interview_rating -24.9181 4.7673 -5.227 1.72e-07 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 869.013 on 979 degrees of freedom 
## Residual deviance: 44.466 on 975 degrees of freedom 
## AIC: 54.466 
## 
## Number of Fisher Scoring iterations: 11 

## 
## Call: 
## glm(formula = active ~ overtime + job_lvl + engagement + interview_rating, 
## family = binomial, data = training_dat_os) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -3.801 0.000 0.000 0.000 2.704 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 131.12905 19.56650 6.702 2.06e-11 *** 
## overtimeYes 2.27109 0.67614 3.359 0.000782 *** 
## job_lvl 0.04793 0.36730 0.130 0.896172 
## engagement -0.41182 0.42738 -0.964 0.335252 
## interview_rating -37.87539 5.64636 -6.708 1.97e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 2276.295 on 1641 degrees of freedom 
## Residual deviance: 88.655 on 1637 degrees of freedom 
## AIC: 98.655 
## 
## Number of Fisher Scoring iterations: 12
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As we can see, results of the two binomial logistic regression models are 
consistent in the sense that only overtime and interview_rating emerge as 
significant in classifying employees into active and inactive classes. Since the 
oversampled data have a larger n-count, there is greater power to detect effects, 
and we see this reflected in the larger coefficients and lower standard errors. 

Using a similar syntax, we can fit an RF using the randomForest() function 
from the package by the same name: 

# Load library 
library(randomForest) 

# Train RF model using original data 
rf.fit <- randomForest::randomForest(active ~ overtime + 

job_lvl + engagement + interview_rating, data = 
training_dat)

↪→
↪→ 

# Train RF model using oversampled data 
rf.os.fit <- randomForest::randomForest(active ~ overtime + 

job_lvl + engagement + interview_rating, data = 
training_dat_os)

↪→
↪→ 

While RFs generally offer a significant lift in performance beyond a single 
decision tree, we could also apply tuning wrappers around the randomForest() 
function to tune the model’s hyperparameters. Experimenting with a range of values 
for parameters, such as mtry for the number of variables to randomly sample and 
ntree for the number of trees to grow, may further improve model performance. 
Hyperparameter tuning is beyond the scope of this book, but Kuhn & Johnson 
(2013) is an excellent resource for a more exhaustive treatment on ML models. 

Step 3: Use Models to Make Predictions on Test Data 
While there are packages in R which provide performance metrics for predictive 

models, we will create a function for greater visibility into how each metric is 
calculated: 

# Develop function that returns a data frame of classification 
model performance statistics↪→ 

classifier.perf <- function(actual, predicted){ 

# Check for missing values; metrics will be computed on 
non-missing values only↪→ 

predicted <- predicted[!is.na(actual)] 
actual <- actual[!is.na(actual)] 
actual <- actual[!is.na(predicted)]
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# Produce counts for model performance metrics 
TP <- sum(actual == 1 & predicted == 1) # true positives 
TN <- sum(actual == 0 & predicted == 0) # true negatives 
FP <- sum(actual == 0 & predicted == 1) # false positives 
FN <- sum(actual == 1 & predicted == 0) # false negatives 
P <- TP + FN # total positives 
N <- FP + TN # total negatives 

# Store rates to variables 
accuracy <- signif(100 * (sum(actual == predicted) / 

↪→ length(actual)), 3)
sensitivity <- signif(100 * (TP / (TP + FN)), 3) 
specificity <- signif(100 * (TN / (TN + FP)), 3) 
precision <- signif(100 * (TP / (TP + FP)), 3) 
neg_pred_val <- signif(100 * (TN / (TN + FN)), 3) 

# Format output 
stat_nm <- c("accuracy", "sensitivity", "specificity", 

↪→ "precision", "neg_pred_val")
stat_vl <- c(accuracy, sensitivity, specificity, precision, 

↪→ neg_pred_val)

# Return model performance statistics in a data frame 
return(data.frame(stat_nm, stat_vl)) 

} 

We can use the predict() function in conjunction with the object holding the 
trained model to predict class values for our test data. For classification, we need 
to define a probability threshold for classifying observations into classes. This is 
an important consideration since we want to avoid investing in retention strategies 
for employees who are not actually going to leave (minimizing false positives), 
while ensuring employees who are truly at risk are flagged as such (maximizing 
true positives). 

We will predict the class using both binomial logistic regression and RF 
models, trained on both balanced (SMOTE) and imbalanced class data, and store 
performance metrics in a single data frame for easy comparison: 

# Initialize empty data frame for model performance stats 
class.perf.metrics <- NULL 

# Set probability threshold for classification 
prob_threshold <- .7
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# Predict with logistic regression model 
class.perf.metrics <- rbind(class.perf.metrics, 
↪→ cbind.data.frame(

model = rep("GLM", nrow(test_dat)), 
classifier.perf( 
actual = test_dat$active, 
predicted = ifelse(predict(glm.fit, 
↪→ test_dat, type = "response") >= 
↪→ prob_threshold, 1, 0))))

# Predict with logistic regression model (SMOTE) 
class.perf.metrics <- rbind(class.perf.metrics, 
↪→ cbind.data.frame(

model = rep("GLM (SMOTE)", 
↪→ nrow(test_dat)),

classifier.perf( 
actual = test_dat$active, 
predicted = ifelse(predict(glm.os.fit, 
↪→ test_dat, type = "response") >= 
↪→ prob_threshold, 1, 0))))

# Predict with RF model 
class.perf.metrics <- rbind(class.perf.metrics, 
↪→ cbind.data.frame(

model = rep("RF", nrow(test_dat)), 
classifier.perf( 
actual = test_dat$active, 
predicted = ifelse(predict(rf.fit, 
↪→ test_dat, type = "response") >= 
↪→ prob_threshold, 1, 0))))

# Predict with RF model (SMOTE) 
class.perf.metrics <- rbind(class.perf.metrics, 
↪→ cbind.data.frame(

model = rep("RF (SMOTE)", 
↪→ nrow(test_dat)),

classifier.perf( 
actual = test_dat$active, 
predicted = ifelse(predict(rf.os.fit, 
↪→ test_dat, type = "response") >= 
↪→ prob_threshold, 1, 0))))
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Fig. 5 Classification performance for binomial logistic regression and RF models using balanced 
(SMOTE) and imbalanced classes 

Step 4: Evaluate Model Performance 
As we can see in Fig. 5, with our stringent probability threshold set at .7 for 

class delineation, all models had perfect specificity (correctly predicting those who 
stay) and precision (all employees who were predicted to attrit did). However, we 
see notable differences in sensitivity across the model types, and this is generally a 
very important performance measure in a predictive attrition project since the cost 
of not flagging employees who attrit can be costly. Sensitivity for the RF model 
trained on balanced classes (SMOTE) performed much better than its imbalanced 
RF counterpart (95.6% vs. 71.6%), reinforcing that ML models are sensitive (no 
pun intended) to imbalanced classes. 

The results also show that there is likely no benefit to compromising model 
interpretability by using a flexible ML model like RF since our trusty binomial 
logistic regression model performs just as well on these data. Nevertheless, we can 
construct what is known as a Variable Importance Plot on RF output using the 
varImpPlot() function from the randomForest library to understand the relative 
importance of each predictor in the model. 

Variable importance plots are based on the mean decrease in Gini importance. 
Gini importance measures the average gain of purity by splits of a given variable. 
In other words, if a variable is useful, it tends to split mixed labeled nodes (nodes 
with both employees who separated and employees who stayed) into pure single 
class nodes. The most important variables are at the top of the variable importance
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Fig. 6 Variable importance plot for Random Forest model 

plot, indicating that without these variables nodes will not be as pure and as a result, 
classification performance will not be as strong. 

Figure 6 shows that interview_rating is far more important than the second 
most important predictor, overtime. This is consistent with what we observed in 
the results of the binomial logistic regression models too. 

Let us compare the information from the RF’s Variable Importance Plot to a 
single decision tree built on training data with balanced classes. We can build and 
visualize a decision tree in R using the rpart() and rpart.plot() functions from 
libraries by the same names. rpart is an acronym for recursive partitioning and 
regression trees: 

# Load libraries 
library(rpart) 
library(rpart.plot) 

# Construct decision tree on balanced training data 
tree <- rpart::rpart(active ~ overtime + job_lvl + engagement 

+ interview_rating, data = training_dat_os, method = 
"class")

↪→
↪→ 

# Visualize decision tree 
rpart.plot::rpart.plot(tree) 

As shown in Fig. 7, the most important predictor for splitting the data is 
interview_rating when using a single decision tree. At the root node, there is a 
50% chance of leaving and staying, which is expected given we balanced the classes
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Fig. 7 Decision tree for 
employee attrition prediction 
using training data with 
balanced classes (SMOTE) interview_rating >= 3.5 
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using SMOTE. A prediction that is no better than a fair coin toss is of course not 
helpful. Walking down to the leaf nodes, we can see that for the 50% of employees 
with interview_rating >= 3.5, the algorithm predicts they will stay (status 
= 0); for the 50% of employees with interview_rating < 3.5, the algorithm 
predicts they will leave (status = 1). Given what we observed in the results of 
the binomial logistic regression output, additional partitioning by overtime may 
further increase node purity on the test data since classes are mixed for those with 
interview ratings between 3.3 and 3.6. However, given the strong performance 
splitting data only on interview_rating, further partitioning will likely result in 
modeling noise and overfitting. 

Forecasting 

To demonstrate the prediction workflow steps for forecasting, we will leverage our 
turnover_trends data set: 

# Store forecasting data 
forecasting_dat <- turnover_trends 

Step 1: Partition Data into Training and Test Sets for Cross-Validation 
Since we have 60 months of data for each combination of values for the 

job, level, and remote variables, we will select a combination for which 
turnover_rate can be projected for future months. To simplify, we will train a 
model using data for the first 48 months and test using the final 12 months. 

# Create training data 
train_dat <- forecasting_dat |> dplyr::filter(job == 'People 

Scientist' & level == 1 & year %in% 1:4)↪→ 

# Create test data 
test_dat <- forecasting_dat |> dplyr::filter(job == 'People 

Scientist' & level == 1 & remote == 'Yes' & year == 5)↪→
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Step 2: Build Models Using Training Data 
Given the significant quadratic and cubic terms identified in chapter “Linear 

Model Extensions”, we will fit a cubic regression model on the training data. 

# Fit cubic model 
train.cube.fit <- lm(turnover_rate ~ year + month + I(monthˆ2) 

+ I(monthˆ3) + remote, data = train_dat)↪→ 

# Produce model summary 
summary(train.cube.fit) 

## 
## Call: 
## lm(formula = turnover_rate ~ year + month + I(month^2) + I(month^3) + 
## remote, data = train_dat) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -0.3360 -0.1605 0.0075 0.1680 0.3210 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.7650000 0.1594281 17.343 < 2e-16 *** 
## year -0.1130000 0.0230955 -4.893 4.33e-06 *** 
## month 2.4100000 0.0935806 25.753 < 2e-16 *** 
## I(month^2) -0.4100000 0.0163907 -25.014 < 2e-16 *** 
## I(month^3) 0.0200000 0.0008311 24.064 < 2e-16 *** 
## remoteYes -1.6400000 0.0516430 -31.756 < 2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 0.253 on 90 degrees of freedom 
## Multiple R-squared: 0.9499, Adjusted R-squared: 0.9471 
## F-statistic: 341.4 on 5 and 90 DF, p-value: < 2.2e-16 

All linear, quadratic, and cubic terms on month are statistically significant at the 
p < 0.001 level. 

Step 3: Use Models to Make Predictions on Test Data 
We will again build a function to evaluate the performance of the fitted models 

applied to test data rather than using delivered functions. The following function 
will return mean absolute deviation (MAD), mean squared error (MSE), and mean 
absolute percentage error (MAPE): 

# Develop function that returns a data frame of forecasting 
model performance statistics↪→ 

forecast.perf <- function(actual, predicted){ 

# Check for missing values; metrics will be computed on 
non-missing values only↪→ 

predicted <- predicted[!is.na(actual)]
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actual <- actual[!is.na(actual)] 
actual <- actual[!is.na(predicted)] 

# Store rates to variables 
mad <- round(mean(abs(actual - predicted)), 2) 
mse <- round(mean((actual - predicted)ˆ2), 2) 
mape <- round(mean(abs((actual - predicted) / actual)) * 

↪→ 100, 2)

# Return model performance statistics in a data frame 
return(data.frame(mad, mse, mape)) 

} 

For this forecast, we will also produce a prediction interval. A prediction 
interval is a range of values that is likely to contain the outcome value for a single 
new observation given a set of predictors. For example, a 95% prediction interval 
of [10 15] indicates that we can be 95% confident that the observation for which 
a prediction is being made will have an actual outcome value between 10 and 15. 
Note that this is very different from a confidence interval in inferential statistics, 
which is a range of values that likely contains the value of an unknown population 
parameter. 

We can produce a prediction interval by passing an additional interval = 
'predict' argument into the predict() function: 

# Initialize empty data frames for model predictions and performance 
stats↪→ 

forecast.metrics <- NULL 
forecast.err.rates <- NULL 

# Predict on test_dat 
forecast.metrics <- rbind(forecast.metrics, cbind.data.frame( 

month = test_dat$month, 
actual = test_dat$turnover_rate, 
predicted = predict(train.cube.fit, 

test_dat, type = "response"),↪→ 
lwr_bound = 

as.data.frame(predict(train.cube.fit, 
test_dat, type = "response", interval = 
"predict"))$lwr,

↪→
↪→
↪→ 
upr_bound = 

as.data.frame(predict(train.cube.fit, 
test_dat, type = "response", interval = 
"predict"))$upr))

↪→
↪→
↪→
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Step 4: Evaluate Model Performance 
Next, we can pass a vector of actual and corresponding predicted values into the 

forecast.perf() function to return MAD, MSE, and MAPE performance metrics 
for the fitted model applied to year 5 data. 

# Calculate error rates for year 5 forecast 
forecast.perf(actual = forecast.metrics$actual, predicted = 

forecast.metrics$predicted)↪→ 

## mad mse mape 
## 1 3.84 14.75 48.39 

Given 95% of the variance in turnover rates was explained by the cubic regression 
model fitted to our training data (.R2 = 0.95), these error rates are surprisingly high 
for the test data. 

Evaluating the average turnover rate by year will help in reconciling the high . R2

on the training data with the high error rates on the test data: 

# Calculate year-wise turnover rate mean 
yr1_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year 

== 1) |> dplyr::summarize(Mean = mean(turnover_rate))↪→ 

yr2_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year 
== 2) |> dplyr::summarize(Mean = mean(turnover_rate))↪→ 

yr3_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year 
== 3) |> dplyr::summarize(Mean = mean(turnover_rate))↪→ 

yr4_avg <- train_dat |> dplyr::filter(remote == 'Yes' & year 
== 4) |> dplyr::summarize(Mean = mean(turnover_rate))↪→ 

yr5_avg <- test_dat |> dplyr::summarize(Mean = 
mean(turnover_rate))↪→ 

# Display year-wise turnover rate mean 
print(c(yr1_avg, yr2_avg, yr3_avg, yr4_avg, yr5_avg)) 

## $Mean 
## [1] 4.506667 
## 
## $Mean 
## [1] 4.816667 
## 
## $Mean 
## [1] 4.046667 
##
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Fig. 8 Left: fitted model (red dashed line) with good fit to year 4 training data (black dots). Right: 
fitted model (red dashed line) with poor fit to year 5 test data (black dots). 95% prediction interval 
is represented by the red shaded area around the fit line 

## $Mean 
## [1] 4.386667 
## 
## $Mean 
## [1] 7.996667 

There is clearly a significant difference in average turnover for year 5 (test data) 
relative to years 1–4 (training data). Since the fitted model had no visibility into 
year 5 data, it did not account for the spike in turnover beyond year 4. Differences 
are further evidenced in Fig. 8, in which actual values for year 5 are far and away 
outside the 95% prediction interval. 

This is an important lesson that highlights the centrality of cross-validation in 
evaluating whether predictive models will generalize beyond the available data. We 
can easily fit a model that performs well on training data and claim that the model 
has exceptional accuracy. However, what matters in predictive modeling is how well 
the model performs on data it has not seen as part of the training process.
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Review Questions 

1. What factors influence the balance between model interpretability and flexibil-
ity? 

2. How does cross-validation (CV) help improve the performance of predictive 
models? 

3. What is bias–variance tradeoff? 
4. In a classification setting, what performance metrics are available in a confusion 

matrix? 
5. What are some measures used to evaluate the performance of a forecast? 
6. What is Synthetic Minority Oversampling Technique (SMOTE), and how does 

it help improve the performance of machine learning (ML) models? 
7. How is the stack ranking of predictors in a variable importance plot determined? 
8. How does a prediction interval differ from a confidence interval? 
9. How can a prediction interval be calculated in R? 

10. What does high R2 on training data and high MSE on test data indicate about 
the utility of a predictive model? 
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Unsupervised Learning 

The inferential and predictive models covered thus far can be categorized as 
supervised learning models. For each observation xi in the data, there is an 
associated response yi in a supervised learning setting, and the goal is to fit a model 
that relates y to one or more predictors to understand relationships or predict future 
values on the basis of the identified associations. However, in an unsupervised 
learning setting, no response yi is associated with xi . As a result, we cannot 
supervise the analysis and are limited to understanding how observations cluster 
or group together based on patterns across the available p attributes. 

People analytics often involves the unique challenge of analyzing high-
dimensional data with a large number of p attributes but relatively few n 
observations—a phenomenon often referred to as the curse of dimensionality. 
Given the sample size requirements covered in previous chapters, we ideally want n 
to be an order of magnitude larger than p to support statistical power and increase 
our chances of detecting meaningful patterns and population effects in sample data. 
Since people data sets are often wide and short, dimension reduction is important 
for reducing the dimensions to a limited subset that captures the majority of the 
information and optimizes the n : p ratio. 

Consider a case in which a colleague uses verbose rhetoric to convey a simple 
message that could be effectively communicated with fewer words. The superfluous 
language is unnecessary and does not provide additional information or value. This 
is analogous to dimension reduction in that we are interested in identifying a limited 
set of meaningful attributes and discarding redundant and unimportant information 
that does not contribute to the analysis objectives. 

Dimensionality reduction techniques project data onto a lower dimensional 
subspace that retains the majority of the variance in the data points. If we take 
a picture of a group of colleagues during a team outing, for example, we would 
lose some 3D information by encoding the information into a 2D image. This 2D 
representation is a subspace of the 3D coordinates. While we would not know how 
far one person is from another in the 2D representation, we could see that people 
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in the back may appear smaller than people in the front. Therefore, the perspective 
in the 2D image would still capture some information about distance. The limited 
information loss in moving from three to two dimensions is likely acceptable, 
assuming the objective is to capture the memory of the team in a photograph. 

Dimension reduction is particularly important in survey research because longer 
surveys are costly and may result in lower response rates due to the increased 
completion time requirements. Survey instrumentation with strong psychometric 
properties features highly correlated survey items for multidimensional constructs 
that are relatively uncorrelated with survey items used to measure other independent 
constructs. Intuitively, we know that highly correlated variables do not capture 
unique information, as one is often a sufficient proxy to capture most of the available 
signal in the larger number of features. As we have covered, models with highly 
correlated variables can create problems due to multicollinearity, and dimension 
reduction is an alternative approach to variable selection techniques such as the 
backward stepwise procedure covered in chapter “Linear Regression”. 

This chapter will cover dimension reduction fundamentals as well as technical 
implementations. 

Factor Analysis 

The development of survey instrumentation, whether a single item or a larger 
multidimensional scale, begins with a good theory. The theory provides conceptual 
support for the construct—the particular dimensions that characterize the construct, 
the antecedent variables which theoretically influence it, and the outcomes it will 
likely drive.With a strong theoretical framework, the researcher can begin proposing 
ways of operationalizing the conceptual scheme into a measurement approach. 

There are clear measurement approaches for business metrics such as leads 
generated, new business growth, cNPS, and net revenue but in the social sciences, 
we often need indicators of latent constructs that are difficult—or impossible— 
to directly measure. If we want to understand the extent to which employees 
are engaged in their work, we need a comprehensive measure that captures 
facets of the theoretical frame. For example, vigor, absorption, and dedication are 
dimensions of Schaufeli et al.’s (2006) conception of work engagement which were 
operationalized in the Utrecht Work Engagement Scale (UWES). 

Quantifying the energy levels one brings to work (vigor), the extent to which 
one feels time passes quickly while working (absorption), and the level of one’s 
commitment to seeing tasks through to completion (dedication) is challenging 
since we cannot leverage transactional data or digital exhaust to directly quantify 
this as we can with operational business metrics. We need a comprehensive—yet 
parsimonious—set of survey items that function as indicators of the dimensions of 
the latent work engagement construct. Constructing a larger aggregate measure from 
the individual indicators, such as the average or sum of all survey items, enables us
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to reduce the number of variables and optimize the n : p ratio in supervised learning 
settings. 

Exploratory Factor Analysis (EFA) 

Exploratory factor analysis (EFA) is a variable reduction technique by which 
factors are extracted from data—usually as part of the development process for new 
survey instruments. 

A researcher may work with a panel of experts in a particular domain to develop 
an inventory of items that tap various aspects of the construct per the theoretical 
framework that underpins it. Based on how the items cluster together, the empirical 
data will be reconciled against the theoretical conception to define dimensions of 
the measure. Within a cluster of highly correlated items for a particular dimension, 
the researcher needs to decide which items are essential and which are redundant 
and eligible for removal. Aside from the principal clusters (or factors), remaining 
items also need to be evaluated for their relevance and support for the underlying 
theory. If items are believed to be members of the theoretical dimensions but do 
not cluster together with other similar items, it may be indicative of poorly written 
items that have different interpretations among survey takers. EFA is the empirical 
process that supports these objectives. 

To illustrate the steps for EFA, we will leverage the survey_responses data. 

# Load library 
library(peopleanalytics) 

# Load data 
data("survey_responses") 

# Store data in df with curtailed name 
survey_dat <- survey_responses 

# Show dimensions of survey data 
dim(survey_dat) 

## [1] 400 12 

EFA is implemented via a three-step procedure: 

1. Assess the factorability of the data. 
2. Extract the factors. 
3. Rotate and interpret the factors.
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Step 1: Factorability Assessment 
With respect to factorability, there needs to be some correlation among variables 
in order for a dimension reduction technique to collapse variables into linear 
combinations that capture a large portion of the variance in the data. The data feature 
sufficient factorability if we achieve a Kaiser–Meyer–Olkin (KMO) statistic of 
at least 0.60 (Kaiser, 1974) and Bartlett’s Test of Sphericity reaches statistical 
significance (Bartlett, 1954). The KMO statistic estimates the proportion of variance 
that may be common variance; the lower the proportion, the greater the factorability. 
Bartlett’s test essentially measures the degree of redundancy in the data, where the 
null hypothesis states that the variables are orthogonal (uncorrelated); rejecting this 
null hypothesis indicates that there is sufficient correlation for dimension reduction. 

The KMO() and cortest.bartlett() functions from the psych library can be 
used for the KMO statistic and Bartlett’s test, respectively: 

# Load library 
library(psych) 

# Kaiser-Meyer-Olkin (KMO) statistic 
psych::KMO(survey_dat) 

## Kaiser-Meyer-Olkin factor adequacy 
## Call: psych::KMO(r = survey_dat) 
## Overall MSA = 0.9 
## MSA for each item = 
## belong effort incl eng_1 eng_2 eng_3 happ psafety ret_1 ret_2 
## 0.94 0.86 0.86 0.86 0.89 0.89 0.92 0.90 0.91 0.89 
## ret_3 ldrshp 
## 0.90 0.93 

# Bartlett's Test of Sphericity 
psych::cortest.bartlett(cor(survey_dat), nrow(survey_dat)) 

## $chisq 
## [1] 2933.161 
## 
## $p.value 
## [1] 0 
## 
## $df 
## [1] 66 

Data satisfy the factorability requirements since KMO = 0.90 (Overall MSA) 
and Bartlett’s test is significant at the p < 0.001 level. 

Step 2: Factor Extraction 
For the second step, we will visually inspect a scree plot and determine how many 
factors are necessary to explain most of the variance in the data. A scree plot is



Factor Analysis 265

a line plot that helps visualize the portion of the total variance explained by each 
factor using eigenvalues. While the linear algebraic underpinnings are out of scope 
for this book, it is important to understand that eigenvectors are vectors of a linear 
transformation which have corresponding eigenvalues λ that represent factors by 
which the vectors are scaled. As a general rule, factors with λ ≥ 1 are extracted 
when running a factor analysis. 

The scree() function from the psych library can be used to generate a scree 
plot: 

# Produce scree plot 
psych::scree(survey_dat, pc = FALSE) 

Based on Fig. 1, factors 1 and 2 appear to provide relatively outsized information 
gain as λ >  1 for both. 

You may notice the pc = FALSE argument in the scree() function call. This 
relates to principal components analysis (PCA), which is an alternative method 
of dimension reduction. Principal components are new independent variables that 
represent linear transformations of scaled ((x − x̄)/s) versions of the observed 
variables. While we will focus on factor analysis and PCA in this section, which 
are most common in the social sciences, there are additional dimension reduction 
techniques one could explore (e.g., parallel analysis). 

Though there are similarities between factor analysis and PCA, the mathematics 
are fundamentally different. PCA approaches dimension reduction by creating one 
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Fig. 1 Scree plot showing eigenvalues by factor relative to the extraction threshold (horizontal 
line)
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or more index variables (linear combinations of original variables) from a larger set 
of measured variables; these new index variables are referred to as components. On 
the other hand, factor analysis can be viewed as a set of regression equations with 
weighted relationships that represent the measurement of a latent variable. Most 
variables are latent in social psychology contexts since we cannot directly measure 
constructs like psychological safety or belonging. 

To illustrate how to extract principal components, we can use base R’s prcomp() 
function: 

# Load library 
library(ggplot2) 

# Perform PCA 
pca <- prcomp(survey_dat, scale = TRUE) 

# Calculate explained variance for each principal component 
pca_var = (pca$sdevˆ2 / sum(pca$sdevˆ2)) * 100 

# Create scree plot 
ggplot2::qplot(1:length(pca_var), pca_var) + 
ggplot2::geom_line() + 
ggplot2::scale_x_continuous(breaks = 1:length(pca_var)) + 
ggplot2::labs(x =  "Principal Component", y =  "Variance 

Explained (%)") +↪→ 

ggplot2::theme_bw() 

Note that while we can theoretically have as many factors as we have variables 
(p = 12), this defeats the purpose of dimension reduction—whether PCA or factor 
analysis. The objective of dimension reduction is to reduce the number of factors 
(or components) to a subset that captures the majority of the information in the data. 

As shown in Fig. 2, principal components are sorted in descending order 
according to the percent of total variance they explain. The first principal component 
alone explains nearly half of the total variance in the data. We are looking for 
the elbow to ascertain the inflection point at which explained variance plateaus. 
It is clear that the slope of the line begins to flatten beyond the third principal 
component, indicating that components 4–12 provide relatively little information. 
Put differently, we could extract only the first three components without sacrificing 
much information and gain the benefit of fewer, more meaningful variables. 

As an aside, in a supervised learning context, we could insert these principal 
components as predictors in a regression model in lieu of a larger number of 
original variables. This is known as principal components regression (PCR). 
However, given the importance of explaining models in a people analytics setting, 
PCR will not be covered since inserting index variables as predictors in the model 
compromises interpretability.
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Fig. 2 Plot showing the percent of total variance explained by 12 principal components 

Step 3: Factor Rotation and Interpretation 
For the third step, we will use an Oblimin method to rotate the factor matrix. The 
Oblimin rotation is an oblique—rather than orthogonal—rotation and is selected 
here since it is best suited when underlying dimensions are assumed to be correlated 
(Hair et al., 2006). 

The fa() (factor analysis) function from the psych package can be used for the 
implementation in R. Based on the scree plot, we will specify three factors for this 
analysis. Note that the Oblimin rotation is the default for factor analysis, while a 
varimax (orthogonal) rotation is the default for PCA. Many other rotations can be 
implemented based on the nature of data and n-count. 

# Principal axis factoring using 3 factors and oblimin 
rotation↪→ 

efa.fit <- psych::fa(survey_dat, nfactors = 3, rotate = 
'oblimin')↪→ 

# Display factor loadings 
efa.fit$loadings 

## 
## Loadings: 
## MR1 MR2 MR3



268 Unsupervised Learning

## belong 0.283 0.456 
## effort -0.114 0.869 
## incl 0.747 
## eng_1 0.886 
## eng_2 0.172 0.782 
## eng_3 0.799 
## happ 0.558 0.355 
## psafety 0.609 
## ret_1 0.791 
## ret_2 0.922 -0.111 
## ret_3 0.822 
## ldrshp 0.556 0.276 
## 
## MR1 MR2 MR3 
## SS loadings 2.906 2.817 1.363 
## Proportion Var 0.242 0.235 0.114 
## Cumulative Var 0.242 0.477 0.590 

The sum of squared loadings (SS loadings) represents the eigenvalues for 
each factor. It is also helpful to review the percent of total variance explained by 
each factor (Proportion Var) along with the cumulative percent of total variance 
(Cumulative Var). We can see that the three factors have λ ≥ 1, which together 
explain 59% of the total variance in the data. 

By reviewing the factor loadings, we gain an understanding of which variables 
are part of each factor (i.e., highly correlated variables which cluster together). 
Factor loadings represent the correlation of each item with the respective factor. 
While there is not a consensus on thresholds, a general rule of thumb is that absolute 
factor loadings should be at least 0.5. Items with lower factor loadings should be 
removed from the measurement model. 

For the first factor MR1, the three retention items cluster together with happiness 
and leadership. This indicates that happier employees who have more favorable 
perceptions of leadership are less likely to leave the organization. 

Loadings for the second factor MR2 indicate that the three engagement items 
cluster together with discretionary effort. This makes intuitive sense, as we would 
expect highly engaged employees to contribute higher levels of effort toward their 
work. 

Loadings for the third factor MR3 show that belonging, inclusion, and psycholog-
ical safety cluster together. In other words, employees who feel a stronger sense of 
belonging and perceive the environment to be more inclusive tend to experience a 
more favorable climate with respect to psychological safety. 

We can visualize this information using the fa.diagram() function from the 
psych library (Fig. 3): 

psych::fa.diagram(efa.fit)
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Fig. 3 Diagram showing 
factor loadings (correlations) 
for each item with the 
respective factor 
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Confirmatory Factor Analysis (CFA) 

Confirmatory factor analysis (CFA) is used to test how well data align with a 
theoretical factor structure. 

We expect items associated with a given construct to be highly correlated with 
one another but relatively uncorrelated with items associated with independent 
constructs. Consider engagement and retention, which are two independent—yet 
likely correlated—constructs. If multiple items are needed to measure the theoretical 
dimensions of both engagement and retention, we would expect the engagement 
items to be more highly correlated with one another than with the retention items. 
Theory may suggest that retention likelihood increases as engagement increases, 
but there are many other factors which also influence one’s decision to leave an 
organization beyond engagement, so we would not expect changes in engagement 
levels to always be associated with a commensurate change in retention. 

We can illustrate using our survey_responses data, which contains three items 
for both engagement and retention. Figure 4 shows pairwise relationships between 
the items. As expected, eng_1, eng_2, and eng_3 have stronger correlations with 
one another (r ≥ 0.70) than with ret_1, ret_2, or  ret_3 (r ≤ 0.52). 

CFA enables us to move beyond inter-item correlations to quantify the extent to 
which latent variables in our data fit an expected theoretical model. We can leverage 
the lavaan package in R to perform CFA, which is implemented via a three-step 
procedure:
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Fig. 4 Bivariate correlations and relationship visualizations for engagement and retention survey 
items 

1. Define the model. 
2. Fit the model. 
3. Interpret the output. 

Step 1: Define the Model 
Step 1 is defining the model within a string per the syntax required by lavaan: 

# Load library 
library(lavaan) 

# Model specification; each line represents a separate latent 
factor↪→ 

model <- paste('engagement =~ eng_1 + eng_2 + eng_3 
retention =~ ret_1 + ret_2 + ret_3') 

Step 2: Fit the Model 
Step 2 is fitting the model to the data using the cfa() function from the lavaan 
package: 

# Fit the model 
cfa.fit <- lavaan::cfa(model, data = survey_dat)
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Fig. 5 Path diagram showing survey items as indicators of latent engagement and retention factors 

We can also create what is known as a path diagram to assist with understanding 
the CFA model. A path diagram is a symbolic visualization of the measurement 
model, with circles depicting latent variables (factors), rectangles representing 
observed indicators (survey items), and arrows indicating paths (relationships) 
between variables. The measurement model (CFA) together with the structural 
(path) model is known as structural equation modeling (SEM); CFA is a subset 
of the SEM umbrella. 

The lavaanPlot() package can be used to create and visualize path diagrams 
in R: 

# Load library 
library(lavaanPlot) 

# Visualize path diagram 
lavaanPlot::lavaanPlot(model = cfa.fit, coefs = TRUE, stand = 

TRUE)↪→ 

Factor loadings are shown for each indicator of the latent variable in Fig. 5. All  
are well above the absolute threshold of 0.5. 

Step 3: Interpret the Model 
Step 3 is interpreting the output of the fitted model: 

cfa.fit <- lavaan::cfa(model, data = survey_dat) 

# Summarize the model 
summary(cfa.fit, fit.measures = TRUE) 

## lavaan 0.6-12 ended normally after 25 iterations 
## 
## Estimator ML 
## Optimization method NLMINB 
## Number of model parameters 13
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## 
## Number of observations 400 
## 
## Model Test User Model: 
## 
## Test statistic 35.477 
## Degrees of freedom 8 
## P-value (Chi-square) 0.000 
## 
## Model Test Baseline Model: 
## 
## Test statistic 1495.174 
## Degrees of freedom 15 
## P-value 0.000 
## 
## User Model versus Baseline Model: 
## 
## Comparative Fit Index (CFI) 0.981 
## Tucker-Lewis Index (TLI) 0.965 
## 
## Loglikelihood and Information Criteria: 
## 
## Loglikelihood user model (H0) -2456.223 
## Loglikelihood unrestricted model (H1) -2438.484 
## 
## Akaike (AIC) 4938.446 
## Bayesian (BIC) 4990.335 
## Sample-size adjusted Bayesian (BIC) 4949.085 
## 
## Root Mean Square Error of Approximation: 
## 
## RMSEA 0.093 
## 90 Percent confidence interval - lower 0.063 
## 90 Percent confidence interval - upper 0.125 
## P-value RMSEA <= 0.05 0.011 
## 
## Standardized Root Mean Square Residual: 
## 
## SRMR 0.040 
## 
## Parameter Estimates: 
## 
## Standard errors Standard 
## Information Expected 
## Information saturated (h1) model Structured



Factor Analysis 273

## 
## Latent Variables: 
## Estimate Std.Err z-value P(>|z|) 
## engagement =~ 
## eng_1 1.000 
## eng_2 0.880 0.044 19.827 0.000 
## eng_3 0.963 0.050 19.355 0.000 
## retention =~ 
## ret_1 1.000 
## ret_2 0.799 0.039 20.384 0.000 
## ret_3 0.699 0.038 18.562 0.000 
## 
## Covariances: 
## Estimate Std.Err z-value P(>|z|) 
## engagement ~~ 
## retention 0.406 0.051 7.932 0.000 
## 
## Variances: 
## Estimate Std.Err z-value P(>|z|) 
## .eng_1 0.235 0.027 8.839 0.000 
## .eng_2 0.188 0.021 9.013 0.000 
## .eng_3 0.265 0.027 9.820 0.000 
## .ret_1 0.482 0.044 10.952 0.000 
## .ret_2 0.095 0.018 5.145 0.000 
## .ret_3 0.215 0.020 10.571 0.000 
## engagement 0.649 0.064 10.188 0.000 
## retention 0.917 0.097 9.458 0.000 

The lavaan package provides many fit measures, but we will focus only on the 
most common for evaluating how well the data fit the measurement model. 

• Model Chi-Square (χ2): Tests whether the covariance matrix derived from the 
model represents the population covariance (Test Statistic under the Model 
Test User Model section of the lavaan output) 

• Comparative Fit Index (CFI): Values range from 0 to 1, with CFI > 0.95 
indicating good fit 

• Tucker Lewis Index (TLI): Values range from 0 to 1, with T LI  >  0.95 
indicating good fit 

• Root Mean Square Error of Approximation (RMSEA): Values of 0.01, 0.05, 
and 0.08 indicate excellent, good, and mediocre fit, respectively (though some 
texts suggest 0.10 is an adequate threshold for mediocre fit) 

• Standardized Root Mean Square Residual (SRMR): Square root of the differ-
ence between residuals of the sample covariance matrix and the hypothesized 
model, with SRMR < 0.08 indicating good fit
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Given data sets are often small in people analytics, it is important to note that 
RMSEA often exceeds thresholds with small df and n—even when the model is 
correctly specified (Kenny et al., 2015). Therefore, it is important to index more 
on fit indices such as CFI and LT I in determining how well the data fit the 
measurement model. 

The χ2 statistic is sometimes referred to as a “badness of fit” measure since 
rejecting the null hypothesis (p < 0.05) indicates a lack of fit. Though χ2 is 
significant (p < 0.001), both CFI (0.98) and TLI (0.97) are above the 0.95 threshold 
for good fit. In addition, SRMR = 0.04 is beneath the threshold of 0.08 and 
RMSEA = 0.09 is between the mediocre fit threshold range of 0.08 and 0.10. 
Therefore, the indicators (survey items) in these data adequately fit the two latent 
constructs defined by this measurement model. 

For more extensive coverage of SEM, Kline (2005) is an excellent resource. 

Clustering 

Clustering is an ML technique that groups observations into clusters which have 
similar characteristics but different characteristics relative to the observations in 
other clusters. Clustering is similar to factor analysis in that it is also unsupervised 
since there is not a response variable, but it differs in that it does not seek to 
find a low-dimensional representation of observations that capture a large portion 
of variance in the data; clustering aims to find homogeneous subgroups among 
observations. 

Clustering is common in marketing in which it is implemented to create customer 
segments with shared characteristics. By grouping customers based on attributes 
such as income, household size, occupation, and geography, companies can tailor 
marketing campaigns to each segment based on what is most likely to appeal to the 
unique needs of each. 

In people analytics, clustering has important applications as well. For example, 
clustering can be implemented to define personas based on unique talent devel-
opment needs (e.g., early tech career, newly promoted people leaders) or attrition 
risk (e.g., rising stars with hot skills, low performers in high churn roles, high 
performers in specialized roles). Grouping employees based on relative attrition risk 
levels is often a more viable path for action planning, as there are important legal 
and privacy considerations when applying predictive model scores at the individual 
level of analysis. 

This section will cover two popular clustering techniques: k-means and hierar-
chical clustering.
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K-Means Clustering 

K-means clustering is a simple approach to grouping observations into K distinct 
clusters. K-means clustering is implemented via a four-step process: 

1. Define K . 
2. Randomly assign observations to one of K clusters. 
3. For each of the K clusters, compute the cluster centroid. 
4. Assign each observation to the cluster with the closet centroid (middle). 

To assign observations to the cluster with the nearest centroid, a distance metric 
needs to be selected in order to measure the distance between each observation 
and cluster centroids. While calculating the distance between observations in two 
dimensions is simple, distance in higher dimensional space is more challenging. We 
will focus on the most common distance metric, Euclidean distance, though there 
are many others (e.g., Manhattan, Jaccard, Minkowski, Cosine). The Euclidean dis-
tance between two data points is the straight line distance based on the observations’ 
coordinates using the Pythagorean theorem: 

. a2 + b2 = c2,

where a and b are sides of a triangle that intersect to form a right angle, and c is the 
hypotenuse (the side opposite the right angle). 

Let us implement K-means clustering using numeric variables in the employees 
data. Since the scale of variables matters when comparing distances between 
observations and cluster centers, we will first scale the variables to have x̄ = 0 
and s = 1 in support of a consistent, apples-to-apples comparison: 

# Filter employee data to numeric variables 
idx <- which(sapply(employees, is.numeric)) # store indices of 

numeric variables↪→ 

employees <- employees[, idx] # filter df using indices 

# Drop unimportant and sparsely populated sales variables 
employees <- subset(employees, select = -c(employee_id, 

standard_hrs, ytd_leads, ytd_sales))↪→ 

# Center and scale data 
employees_trans <- scale(employees, center = TRUE, scale = 

TRUE)↪→ 

Next, we need to define K . One way to determine the optimal number of clusters 
is to leverage the fviz_nbclust() function from the factoextra library to 
visualize the sum of squared differences between observations and cluster centers 
against the range of clusters:
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# Load library 
library(factoextra) 

# Determine optimal number of clusters 
factoextra::fviz_nbclust(employees_trans, kmeans, method = 

"wss")↪→ 

When interpreting Fig. 6, we are looking for the elbow which marks the 
inflection point at which the sum of squares begins to level off. The goal is to 
achieve the fewest number of clusters, optimizing for subgroups that are distinctly 
different between and highly similar within. The elbow indicates the optimal number 
of clusters, as additional clusters beyond the elbow do not offer a meaningful 
improvement in achieving homogeneous subgroups of the observations. 

There is a discernible elbow at three clusters in Fig. 6. Intuitively, fewer clusters 
promote action taking in people analytics since clusters need to be defined, and this 
becomes increasingly challenging as the number of clusters increases. With a large 
number of clusters, it may be difficult to meaningfully tailor career development or 
retention strategies, for example, to the unique needs of employees assigned to each 
cluster as the distinction between each subgroup becomes more opaque. 

We can now implement K-means clustering with K = 3 using  the  kmeans() 
function in base R: 

# Perform K-means clustering 
km <- kmeans(employees_trans, centers = 3) 

# Return n-count of clusters 
km$size 

## [1] 592 603 275
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Of the 1470 employees in our employees data, the n distribution across the 
K = 3 clusters is 592, 603, and 275. 

We can calculate the mean (and other descriptives) for each variable by cluster 
to better understand cluster distinctions: 

# Calculate mean of each cluster using original data 
aggregate(employees, by = list(cluster = km$cluster), mean) 

## cluster stock_opt_lvl trainings age commute_dist ed_lvl engagement 
## 1 1 0.7787162 2.805743 35.31757 8.907095 2.880068 2.685811 
## 2 2 0.7860697 2.781095 35.38474 9.646766 2.854063 2.792703 
## 3 3 0.8436364 2.825455 43.75636 8.810909 3.112727 2.687273 
## job_lvl hourly_rate daily_comp monthly_comp annual_comp salary_hike_pct 
## 1 1.834459 47.09291 376.7432 8162.77 97953.24 15.26520 
## 2 1.724710 83.51078 668.0862 14475.20 173702.42 15.24876 
## 3 3.301818 67.72364 541.7891 11738.76 140865.16 15.00364 
## perf_rating prior_emplr_cnt env_sat job_sat rel_sat wl_balance work_exp 
## 1 3.148649 2.668919 2.746622 2.859797 2.673986 1.824324 9.315878 
## 2 3.159204 2.645108 2.666667 2.665008 2.706468 1.852405 8.684909 
## 3 3.152727 2.850909 2.789091 2.585455 2.807273 1.854545 21.196364 
## org_tenure job_tenure last_promo mgr_tenure interview_rating 
## 1 5.146959 3.452703 1.467905 3.300676 3.979730 
## 2 4.552239 2.827529 1.077944 2.878939 3.952570 
## 3 16.527273 8.974545 6.170909 8.621818 4.090545 

We can see that relative to the first two clusters, the third cluster has—on 
average—an older demographic with more education and a higher job level. In 
addition, employees in the first cluster earn significantly lower compensation, on 
average, which may be correlated with categorical variables that were initially 
dropped such as dept or job_title. 

We can also add a new column in the employees data frame with the cluster 
assignment from K-means to facilitate further analysis: 

# Add cluster assignment to df 
employees <- cbind(employees, km_cluster = km$cluster) 

While K-means clustering is a simple and efficient algorithm (even for large 
data sets), an a priori specification of K is not always ideal. K-means clustering 
will create K clusters—even if they are nonsensical—so caution must be exercised. 
Plotting WSS against cluster count as shown in Fig. 6 can be helpful in defining K , 
but alternative clustering algorithms exist that do not require K to be predefined. 

Hierarchical Clustering 

Like K-means clustering, hierarchical clustering seeks to group observations into 
clusters which have similar characteristics but different characteristics relative to
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the observations in other clusters. However, unlike K-means, the number of clusters 
is not specified prior to implementing the algorithm with hierarchical clustering. 
The optimal number of clusters is determined using a dendrogram, which is a tree 
diagram visualizing the hierarchical relationships in data. 

One key difference between K-means and hierarchical clustering is that hier-
archical clustering involves linkage methods to measure cluster similarity. There 
is not a one-size-fits-all option for linkage, as the performance of a given linkage 
technique can vary based on the structure of the data. Outlined below are the five 
most common types of linkage in hierarchical clustering: 

1. Complete Linkage: the distance between two clusters is defined as the 
maximum distance between any individual data point in cluster A and any 
individual data point in cluster B 

2. Single Linkage: the distance between two clusters is defined as the minimum 
distance between any individual data point in cluster A and any individual 
data point in cluster B 

3. Average Linkage: the distance between two clusters is defined as the average 
distance between data points in cluster A and data points in cluster B 

4. Centroid Method: the distance between two clusters is defined as the 
distance between the centroid of cluster A and the centroid of cluster B 

5. Ward’s Method: ANOVA-based approach in which the distance between 
clusters A and B is based on how the sum of squared distances increases 
when the clusters are merged 

To implement hierarchical clustering, we will leverage the same centered and 
scaled data used for K-means clustering in the prior section. Note that the 
km_cluster column was only added to the original employees data; if this column 
was present in employees_trans, we would need to drop it so that the hierarchical 
clustering algorithm is not influenced by results of another clustering technique (K-
means). 

Since we do not know what linkage method will work best for these data, we will 
also develop a function that enables us to try a range of techniques and select the 
one that performs best. The agnes() function from the cluster library is used to 
implement hierarchical clustering: 

# Load library 
library(cluster) 

# Define linkage methods 
# Note: centroid is not available for agnes() function 
methods <- c("complete", "single", "average", "ward") 
names(methods) <- c("complete", "single", "average", "ward") 

# Create function to compute agglomerative coefficient 
agg_coeff <- function(x) {
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cluster::agnes(employees_trans, method = x)$ac 
} 

# Compute agglomerative coefficient for each linkage method 
sapply(methods, agg_coeff) 

## complete single average ward 
## 0.7990373 0.6248688 0.7582732 0.9571736 

Agglomerative coefficients closer to 1 indicate stronger clustering performance. 
Therefore, Ward’s distance measure performs best on these data, and we will 
implement hierarchical clustering using this linkage option. 

# Perform hierarchical clustering using Ward's linkage method 
hclust <- cluster::agnes(employees_trans, method = "ward") 

To produce a dendrogram, the pltree() function from the cluster library can 
be used in conjunction with the hclust object holding the clustering results: 

cluster::pltree(hclust, main = "Dendrogram") 

At the bottom of the dendrogram shown in Fig. 7, each leaf of the tree represents 
an individual observation. Since n = 1470, the bottom of the tree is too congested to 
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Fig. 7 Dendrogram for hierarchical clustering of employees using Ward linkage
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Fig. 8 Plot of gap statistic against cluster count for hierarchical clustering 

interpret. As we move up the tree, individual observations are fused together based 
on the degree of similarity as defined by Ward’s linkage method. 

To aid in determining the optimal number of clusters, a gap statistic can be 
calculated, which compares the within-cluster variation for different K values to 
reference values for a random uniform distribution with no clustering. We will use 
the clusGap() function from the cluster library to calculate the gap statistic and 
then visualize using the fviz_gap_stat() function from the factoextra library: 

# Calculate gap statistic across 1-10 clusters 
gap_stat <- cluster::clusGap(employees_trans, FUN = hcut, 

nstart = 25, K.max = 10, B =  50)↪→ 

# Generate plot of gap statistic against cluster count 
factoextra::fviz_gap_stat(gap_stat) 

We ideally want to select the value of K that maximizes the gap statistic. 
In practice, however, balancing cluster parsimony with maximization of the gap 
statistic is not always straightforward. Figure 8 indicates that the gap statistic 
increase is fairly constant across the range of K = 2 to  K = 10 clusters. In this 
case, we may look to select a value of K based on an inflection point at which the 
trajectory of increase in the gap statistic begins to slow. Based on this approach, we 
may select K = 7.



Review Questions 281

We can now cut the dendrogram into 7 clusters using the cutree() function and 
then append the cluster to each observation in our original employees data: 

# Compute distance matrix 
d_matrix <- dist(employees_trans, method = "euclidean") 

# Perform hierarchical clustering using Ward's method 
hclust_final <- hclust(d_matrix, method = "ward.D2" ) 

# Cut the dendrogram into 7 clusters 
groups <- cutree(hclust_final, k =  7) 

# Append cluster labels to original data 
employees <- cbind(employees, hier_cluster = groups) 

Review Questions 

1. How can high-dimensional data create problems in analytics, and how do 
dimension reduction techniques remediate these issues? 

2. What is the difference between Exploratory Factor Analysis (EFA) and Confir-
matory Factor Analysis (CFA)? 

3. What is the difference between Exploratory Factor Analysis (EFA) and Princi-
pal Components Analysis (PCA)? 

4. What is Structural Equation Modeling (SEM), and what are some use cases for 
it in people analytics? 

5. How can we test whether data satisfy the eligibility criteria for factor analysis? 
6. How are factor loadings interpreted to ascertain which variables are members 

of each factor? 
7. What is a data-informed approach to selecting the optimal value of K in K-

means clustering? 
8. What is Euclidean distance, and what is its function in clustering? 
9. How is a dendrogram interpreted in the context of hierarchical clustering? 

10. When optimizing for both cluster parsimony and gap statistic maximization 
is not feasible, how can the optimal value of K be determined in hierarchical 
clustering?
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Data Visualization 

Unlike content in the preceding chapters, data visualization is more an art than a 
science. Data visualization is heavily dependent on the type of data being presented, 
key messages that need to be conveyed, the unique characteristics of the audience 
to whom information needs to be communicated, and various contextual features 
germane to a proper interpretation and understanding of material. 

This chapter will provide general best practices as well as strategies specific 
to various types of data that will promote success when communicating data to 
technical and non-technical stakeholders alike. Since there is a considerable amount 
of code required to construct the plethora of graphics in this chapter, only the data 
prep code will be included. You can reference the “Appendix” for a curated set of 
fully reproducible code for each data visualization provided in this chapter. 

Best Practices 

While the type of visual depends on the nature of data being presented, there are 
general best practices for effectively communicating information that are applicable 
for all data types, audiences, and contexts. 

Color Palette 

There are several important considerations when choosing colors for data visualiza-
tion. 

Color Has Meaning 
The meaning of color is not consistent across the world. For example, in Western 
cultures red generally has unfavorable connotations (e.g., off track, danger), while 
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green signals a favorable status (e.g., on track, cash flow positive). However, in 
Asian cultures red indicates success. 

It is important to understand what color indicates in the contexts in which 
information is shared to ensure color choices are consistent with the messages that 
need to be conveyed. 

Respect Color Blindness 
Most estimates indicate that 1 in 12 men (8%) and 1 in 200 women (0.5%) are 
colorblind (~4.5% of the world population). Males are more likely to be colorblind 
because the X chromosome contains the genes responsible for the most common 
forms of color blindness. Trouble distinguishing between red and green is the most 
common manifestation of colorblindness (Gordon, 1998). 

This has important implications for data visualization, and it is generally best 
to avoid the use of red and green. One alternative is to leverage orange to indicate 
unfavorable data points and blue for favorable. This strategy will be implemented 
throughout this chapter. 

Adhere to Brand Colors 
In most organizations, the marketing team defines a color palette consistent with 
the branding used for consumer products and services. In this case, analysts may be 
constrained to the use of colors within the branding palette. 

Be sure to consult with marketing colleagues and adhere to any color palette 
requirements. 

Use Color Consistently 
To support a correct interpretation of information, it is important to use a consistent 
color scheme across the various visuals in dashboards, slides, and documents. 
For example, if blue is assigned to highlight how the Engineering department 
compares to other departments in a particular visual, blue should be assigned to 
the Engineering department in every visual in which department is a grouping 
dimension. The consistent use of color requires the audience to wield less effort 
to understand information, which in turn reduces the risk of incorrect interpretation. 

Chart Borders 

The goal in data visualization is to enable the most important data to take center 
stage. Formatting should support—not detract—from this objective. Chart borders 
are a usual suspect and prime example of formatting that can divert focus away from 
the data. 

Figure 1 illustrates the use of heavy and light borders for a tabular presentation 
of data. Formatting takes center stage in the first table due to heavy borders, while 
formatting is not the focus in the second table given the minimal light gray border.
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Fig. 1 Comparison of data tables with heavy (left) and light (right) borders 
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Fig. 2 Hires by year with zero baseline (left) and non-zero baseline (right) 

Zero Baseline 

The use of a non-zero baseline can exaggerate differences in metrics, resulting in 
misleading conclusions. 

Figure 2 illustrates how minor differences are exaggerated when a non-zero 
baseline is applied to the y-axis. The average number of hires across these four 
years is 1000, and the small variation YoY is accurately reflected in the bar chart 
with a zero baseline.
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Intuitive Layout 

When visualizing data, it is best not to deviate from the way in which the 
audience will naturally interpret the data. Outlined below are a few important 
considerations: 

• Numbers lower on a y-axis will naturally be interpreted to be smaller than 
numbers higher on the y-axis. 

• When there are both positive and negative numbers along an x-axis, negative 
metrics are best placed on the left and positive on the right since people 
naturally consume content from left to right. 

• Rotated axis labels require more time to read and interpret. If labels must be 
rotated to fit along an axis, a 45. ◦ angle is generally preferred over a more 
extreme 90. ◦ rotation. 

Figure 3 shows murders committed using firearms in Florida across time. This 
visual has an inverted y-axis, which is highly misleading since what appears to be 
spikes in murders are actually dips. Irrespective of whether this was politically moti-
vated or simply a failed attempt at creativity, this is a deceptive data visualization. 

Fig. 3 Misleading inverted 
y-axis 
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Fig. 4 The application of 
preattentive attributes to 
highlight labor costs as a key 
driver of increased operating 
expenses 

Preattentive Attributes 

Preattentive attributes signal where to look and help our audience focus on content 
we wish to emphasize (Knaflic, 2015). 

It is important to remember that data do not always need to be visualized with 
a chart. Sometimes communicating with text is a sufficient and effective way to 
convey information. In the case of text, preattentive attributes are often implemented 
using bold text and/or contrasting colors for keywords and phrases that need to take 
center stage. Bolded text is generally more effective than italicizing or underlining, 
as it highlights the chosen elements without unnecessary noise and compromised 
legibility. 

Gray is an important color in the implementation of preattentive attributes as it 
facilitates a move of less important data and design elements to the background 
to make room for more predominate colors to highlight the most important infor-
mation. Figure 4 illustrates the application of preattentive attributes to emphasize 
the key message in a sentence. This is accomplished by pushing the less important 
content to the background using gray text and using bold orange text to highlight 
the labor cost increase. 

Preattentive attributes can also be applied to data visualizations to focus the 
audience’s attention. Figure 5 illustrates the use of preattentive attributes by 
assigning a different color (orange) to the labor cost for the current year and muting 
the labor costs associated with prior years using a less predominate gray. 

Simply put, if something is really important, make sure it is different from other 
content on the page, slide, or section. 

Step-by-Step Visual Upgrade 

Software knows neither what we wish to highlight nor the audience to whom 
we intend to communicate the information. Therefore, regardless of the software, 
design defaults are rarely best. 

This section will implement data visualization best practices step by step to 
improve upon the design defaults for the ggplot2 library.
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Fig. 5 The application of preattentive attributes to highlight labor costs for the current year relative 
to prior years 

Step 1: Build Bar Chart with Defaults 

We will begin by building a bar chart that shows the distribution of active employ-
ees’ educational backgrounds. To simplify the data structure for data visualization, 
let us ingest our employees data and create an aggregated cube with counts by 
ed_field for active employees: 

# Load libraries 
library(peopleanalytics) 
library(dplyr) 

# Load data 
data("employees") 

# Create data cube for active employees 
smmry_ed_field <- employees |> 

dplyr::filter(active == 'Yes') |> 
dplyr::count(ed_field) 

A bar chart can be created using the geom_bar() function, and we will start with 
the ggplot2 library’s design defaults (Fig. 6):
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Fig. 6 Step 1: bar chart with defaults 

Step 2: Remove Legend 

Since the legend is not necessary for interpreting the education field to which each 
bar corresponds, we will remove it using theme(legend.position = "none"). 
Eliminating the legend also provides more real estate for the chart, which helps 
make the x-axis values more legible (Fig. 7). 

Step 3: Assign Colors Strategically 

There is a lot competing for attention due to this vibrant color palette. Let us assume 
that the objective is to highlight the education field pursued by the largest number of 
employees. Preattentive attributes lend well to this, and we can assign specific hex 
color codes to the education categories (Fig. 8). 

Since Life Sciences is the field pursued by the most employees, let us highlight 
the corresponding bar in blue and move the remaining bars to the background 
through the assignment of light gray. One method of accomplishing this is via the 
following explicit category assignments: 

scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 
"Life Sciences" = "#0070C0", "Marketing" = "#BFBFBF", "Medical" 
= "#BFBFBF", "Other" = "#BFBFBF", Technical Degree" = "#BFBFBF"))
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Fig. 7 Step 2: remove legend 

Fig. 8 Step 3: assign colors strategically



Step-by-Step Visual Upgrade 291

Fig. 9 Step 4: add mixed case axis titles and margins 

Step 4: Add Axis Titles and Margins 

Axis titles are the column names by default, which is usually not the most user-
friendly option. We can assign new mixed case axis titles by chaining labs(x = 
'Education Field', y = 'Headcount') to the visualization code. 

Spacing can also be added between the axis titles and labels to improve upon 
the default formatting and reduce text congestion. The ggplot2::element_text 
(margin = margin(t = 0, r = 0, b = 0, l = 0)) parameter can be defined 
for the x and y axes via axis.title.x and axis.title.y, respectively, where: 

• t = space on the top of axis title 
• r = space on the right of axis title 
• b = space on the bottom of axis title 
• l = space on the left of axis title 

Let us create a margin of white space above the x-axis title and to the right of the 
y-axis title by defining the following parameters (Fig. 9): 

• axis.title.x = ggplot2::element_text(margin = margin(t = 
10,  r = 0, b = 0, l = 0))  

• axis.title.y = ggplot2::element_text(margin = margin(t = 
0, r = 10, b = 0, l = 0))
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Fig. 10 Step 5: add title 

Step 5: Add Left-Justified Title 

We can add a chart title via labs(title = 'This is a chart title.'). 
This title can be centered via theme(plot.title = ggplot2::element_text 
(hjust = 0.5), left justified via theme(plot.title = ggplot2::element_ 
text(hjust = 0), or right justified via theme(plot.title = ggplot2::ele 
ment_text(hjust = 1). 

It is a best practice to left justify titles since the readers consume information 
beginning with the left side of the page (like reading a book), and left justifying the 
title increases the probability that the audience will read the title and understand its 
purpose before engaging with the visual. Left justification is the default for ggplot2 
titles. 

It is also a best practice to assign a descriptive title to charts to highlight the key 
message(s) we want to convey to the audience through the visual. For longer titles, 
the new line character \n can be used to break titles into multiple lines (Fig. 10). 

Step 6: Remove Background 

The default gray background is a distraction from the data we need to take 
center stage. We can remove this background using panel.background = 
element_blank() to achieve a cleaner aesthetic and allow the bars in this chart to 
become more pronounced (Fig. 11).
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Fig. 11 Step 6: remove background 

Step 7: Remove Axis Ticks 

Axis ticks add noise to this visual and are not necessary to ascertain to which values 
along the axes the data align. Axis ticks can be removed for each axis independently 
with axis.ticks.x = element_blank() for the x-axis and axis.ticks.y = 
element_blank() for the y-axis (Fig. 12). 

Step 8: Mute Titles 

While the chart and axis titles are important for clarifying what information is 
represented in the visual, these should not be the focus. Just as we pushed the less 
important education categories to the background using gray text, we can mute the 
chart and axis titles with gray text to help draw attention to the data. 

We can change the color of the chart title to light gray with plot.title 
= ggplot2::element_text(colour = "#404040"). The axis titles can be 
changed to the same color using axis.title.x = ggplot2::element_text 
(colour = "#404040") for the x-axis and axis.title.y = ggplot2::element_ 
text(colour = "#404040") for the y-axis (Fig. 13).
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Fig. 12 Step 7: remove axis ticks 

Fig. 13 Step 8: mute titles
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Fig. 14 Step 9: flip axis 

Step 9: Flip Axes 

Flipping the coordinates of axes to convert the default vertical bar chart into a 
horizontal bar chart allows the audience to more easily scan down the right side of 
the visual to quickly identify and understand the relative frequencies of education 
categories (Fig. 14). 

Coordinates can be flipped using coord_flip(). 

Step 10: Sort Data 

This visual can be further simplified by sorting the bars from highest to lowest value. 
With sorted bars, the audience can more easily ascertain the relative ranking of each 
education field. 

We can pass reorder(ed_field, n) into the aes() function to sort the 
education field bars from highest to lowest n-count. If we needed to sort in 
the opposite direction, reorder(ed_field, -n) will reverse the sort direction 
(Fig. 15). 

As shown in Fig. 16, the final visual is a marked improvement over the initial 
design defaults.
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Fig. 15 Step 10: sort data 

Fig. 16 Enhanced design (top). Design defaults (bottom)
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Visualization Types 

There are some highly advanced and interactive data visualizations that can be built 
using JavaScript (JS) libraries such as D3. With some exceptions, JS libraries are 
generally out of scope for this book. ggplot2 is capable of building very elegant 
data visualizations, and this will be the tool used to implement most of the data 
visualizations in this chapter. 

All visuals will have a set of common parameters for design aesthetics, consistent 
with the themes used to produce the enhanced chart design shown in Fig. 16. There-
fore, each section will highlight the differences needed to achieve the respective 
data visualization. For production applications with many visualizations, it may be 
helpful to wrap common ggplot2 design elements in a function to simplify chart 
building. 

Tables 

Tables are the most basic way to organize data. Since tables generally contain many 
metrics, they are usually better situated as reference material in the Appendix of a 
doc/deck or within a metric drill-through in dashboards rather than occupying prime 
real estate that should be leveraged strategically to focus the audience’s attention on 
key messages. 

A simple cube containing employee counts by department and tenure band will 
be constructed for demonstrating how to display tabular output: 

# Append new tenure band column 
employees$tenure_band <- dplyr::case_when( 

employees$org_tenure < 1 ~ "Under 1 Year", 
employees$org_tenure < 2.5 ~ "1-2 Years", 
employees$org_tenure < 5.5 ~ "3-5 Years", 
employees$org_tenure <= 10 ~ "6-10 Years", 
TRUE ~ "Over 10 Years" 

) 

# Store aggregate measures to cube 
dept_tenure <- employees |> 

dplyr::filter(active == 'Yes') |> 
dplyr::group_by(dept, tenure_band) |> 
dplyr::summarise(cnt = dplyr::n()) 

# Specify ordered factor 
dept_tenure$tenure_band <- ordered(dept_tenure$tenure_band, 

levels = c("Under 1 Year", "1-2 Years", "3-5 Years", "6-10 
Years", "Over 10 Years"))

↪→
↪→
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The default display of a tibble (data frame produced by dplyr) is very basic: 

# Display output using default settings 
dept_tenure 

## # A tibble: 14 x 3 
## # Groups: dept [3] 
## dept tenure_band cnt 
## <chr> <ord> <int> 
## 1 Human Resources 1-2 Years 7 
## 2 Human Resources 3-5 Years 19 
## 3 Human Resources 6-10 Years 17 
## 4 Human Resources Over 10 Years 8 
## 5 Research & Development 1-2 Years 148 
## 6 Research & Development 3-5 Years 262 
## 7 Research & Development 6-10 Years 252 
## 8 Research & Development Over 10 Years 148 
## 9 Research & Development Under 1 Year 18 
## 10 Sales 1-2 Years 57 
## 11 Sales 3-5 Years 93 
## 12 Sales 6-10 Years 124 
## 13 Sales Over 10 Years 70 
## 14 Sales Under 1 Year 10 

While these data could easily be copied and pasted into presentation software 
for formatting, additional libraries exist in R for formatting tables. For example, 
R Markdown scripts can leverage the DT package to provide filtering, pagination, 
sorting, search, and other interactive features for HTML output. Field names can 
also be changed to proper case via the dplyr::rename() function (Fig. 17). 

# Assign proper case field names 
dept_tenure_proper <- dept_tenure |> 

rename('Department' = dept, 
'Tenure' = tenure_band, 
'Count' = cnt) 

Heatmaps 

Heatmaps use a shading scheme to highlight the relative magnitude of numbers in 
a tabular format. 

The geom_tile() function can be used to build a heatmap with ggplot2. 
The range of colors can be specified via the scale_fill_continuous(low =
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Fig. 17 Data table 

Fig. 18 Heatmap showing the concentration of employees within departments and tenure bands 

'minimum value color', high = 'maximum value color') function since 
the fill variable defined by aes(fill = cnt) is measured on a continuous scale 
(Fig. 18). 

This heatmap is excellent for focusing attention on the department + tenure 
segments with highest and lowest employee counts. However, if the specific 
employee counts are required, complimenting this heatmap with a basic table of 
metrics is a good option to avoid cluttering the heatmap with .3 ∗ 5 = 15 additional 
numbers.
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Fig. 19 Scatterplot showing the relationship between work experience and YTD sales for active 
salespeople 

Scatterplots 

Scatterplots are useful for visualizing relationships between numeric variables. 
Let us build a scatterplot to visualize the relationship between work_exp and 

ytd_sales, with a goal of focusing the audience’s attention on salespeople whose 
ytd_sales meets or exceeds the full year sales quota of .150,000 USD. Let us first 
subset employees data to active salespeople and append a flag to indicate sales 
quota attainment for use in shading data points in the scatterplot. 

# Subset df to active sales employees 
sales <- subset(employees, dept == 'Sales' & active == 'Yes') 

# Set quote attainment flag for data viz coloring 
sales$quota_flg <- ifelse(sales$ytd_sales >= 150000, 1, 0) 

The geom_point() function is used to create a scatterplot. The scale_y_ 
continuous() function can be used in conjunction with the scales library to 
override the default scale for the y-axis (scientific notation) with more intuitive 
values. 

While the basic scatterplot in Fig. 19 is effective in visualizing the relationship 
between work_exp and ytd_sales, additional design elements are needed to 
highlight the data points that meet or exceed the full year sales quota of . 150,000
USD.
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Fig. 20 Scatterplot with data points colored relative to the full year sales quota of 150k USD 

The color argument for the geom_point() function is used to apply 
preattentive attributes to this visual by specifying the field used for conditional 
data point shading. We can define the color for each of the field’s values using the 
scale_color_manual() function. Additionally, the geom_hline() function is 
used to add a dotted horizontal line at a specified position on the y-axis (at . 150,000
USD), and annotation is added at a specified pair of x and y coordinates using the 
annotate() function (Fig. 20). 

Line Graphs 

Line graphs are used for visualizing continuous data across time. 
When visualizing trended data, it is important to avoid cumulative trends because 

they suggest an upward trajectory (positive slope) even when the corresponding non-
cumulative metrics indicate a declining trend. 

Consider the following data frame with decreasing hire counts by year: 

# Print hires df 
print(hires_dat[order(hires_dat$year, decreasing = FALSE), ]) 

## year hires cum_hires 
## 4 2019 1020 980 
## 3 2020 1010 1970
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Fig. 21 Hires by year (left) and cumulative hires by year (right) 

## 2 2021 990 2980 
## 1 2022 980 4000 

Figure 21 juxtaposes a trended line chart with hires by year (left) against a 
cumulative version of the same (right). Since hires at each year are additive in the 
cumulative line chart, the slope is positive and misleading. 

Single Series 
The most basic type of line graph is a single series line graph, which reflects a 
trend for a single group. 

Let us generate some attrition data for illustrating various types of line graphs: 

# Set seed for reproducibility 
set.seed(1234) 

# Create data 
months = 1:24 
eng_rt = 5 - runif(1, 2.7, 2.9) + 2.41*months - .41*monthsˆ2 + 

.02*monthsˆ3↪→ 

fin_rt = runif(1, 5, 8) - 6.97 + 15*months - .53*monthsˆ2 
ppl_rt = 3 - runif(1, 5, 8) - 6.97 + 12*months - .4*monthsˆ2 
prd_rt = runif(1, 5, 8) - 6.97 + 13*months - .53*monthsˆ2
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Fig. 22 Single series line graph 

# Combine dimensions and metrics within df 
attrition_dat <- data.frame(month = rep(months, 4), 

dept = c(rep('Engineering', 
length(months)),↪→ 

rep('Finance', 
length(months)),↪→ 

rep('People', 
length(months)),↪→ 

rep('Product', 
length(months))),↪→ 

rate = c(eng_rt, 
fin_rt, 
ppl_rt, 
prd_rt)) 

Line graphs can be constructed using the geom_line() function in ggplot2. 
Figure 22 shows a single series line graph built in ggplot2. 

Two Series 
A two series line graph reflects trends for two groups, as shown in Fig. 23. 

The aes(color = group) parameter defines the group by which lines are 
stratified.
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Fig. 23 Two series line graph 

Multiple Series 
A multiple series line graph reflects trends for three or more groups. 

Note the preattentive attributes applied in Fig. 24. If the focus is on how a single 
group (Engineering in this case) compares to two or more other groups, there is no 
need to differentiate the other groups with respect to color—only label. 

Slopegraphs 

Slopegraphs are helpful in illustrating relative changes between two points in time. 
Common applications for slopegraphs in people analytics include survey variable 

score changes between two time periods, pre/post changes to outcome variables in 
an experimental context, and various metrics (e.g., headcount, TTM attrition) for 
which changes need to be evaluated MoM, QoQ, or YoY when data points between 
the start and end points are unimportant. 

The data structure needed to support a slopegraph is consistent with a line graph. 
To illustrate how to construct a slopegraph in R, a data frame will be constructed that 
holds engagement scores for two points in time for both a treatment and a control 
group. 

# Build data frame with YoY headcount metrics by department 
prepost_scores <- data.frame(date = c(rep('Time 1', 2), 

rep('Time 2', 2)),↪→
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Fig. 24 Multiple series line graph 

group = rep(c('Treatment', 
'Control'), 2),↪→ 

score = c(50, 53, 75, 56)) 

In ggplot2, a slopegraph is simply a line graph with only two values on the 
x-axis and some additional formatting including annotations and y-axis removal. 
Figure 25 is a slopegraph comparing the engagement score changes for treatment 
and control groups over an observation period, with preattentive attributes applied 
to focus attention on the treatment group. 

Bar Charts 

Bar charts are used to display categorical data. Four common types of bar charts 
are vertical, horizontal, stacked, and bidirectional. 

Vertical 
A vertical bar chart is the most basic and pervasive method of visualizing 
categorical data. Like line charts, bar charts can be single series, two series, or 
multiple series based on the data that need to be displayed. 

To demonstrate how to build bar charts, departmental engagement data will be 
simulated with some rank variables to support preattentive attributes.
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Fig. 25 Slopegraph 

### Data Prep ### 

# Set seed for reproducibility 
set.seed(1234) 

# Generate favorability distributions 
fav_pct <- round(runif(7, 20, 45), 0) 
neu_pct <- round(runif(7, 20, 45), 0) 
unfav_pct <- 100 - fav_pct - neu_pct 
scores <- c(fav_pct, neu_pct, unfav_pct) 

# Average top box (favorable) score 
topbox_avg <- round(mean(fav_pct), 0) 

# Build data frame with YoY headcount metrics by department 
engagement_scores <- data.frame(dept = rep(c('Engineering', 

'Finance', 'Legal', 'Marketing', 'People', 'Product', 
'Sales'), 3),

↪→
↪→ 

favorability = 
c(rep('Favorable', 7), 
rep('Neutral', 7), 
rep('Unfavorable', 7)),

↪→
↪→
↪→ 

pct = scores)
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# Rank departments by top box score to support sorting 
dept_rank <- engagement_scores |> 

dplyr::filter(favorability == 'Favorable') |> 
dplyr::arrange(desc(pct)) |> 
dplyr::mutate(rank = dense_rank(desc(pct))) |> 
dplyr::select(dept, rank) 

# Flag top department records in df to support conditional 
coloring↪→ 

engagement_scores$top_score = ifelse(engagement_scores$dept == 
dept_rank[1, 'dept'], 1, 0)↪→ 

# Add department rank based on top box scores 
engagement_scores <- left_join(engagement_scores, dept_rank, 

by = "dept")↪→ 

The geom_bar() function can be leveraged to construct a bar chart using 
ggplot2. The  geom_hline() and annotate() functions can be added to include 
a reference line with the average top box score. Preattentive attributes can also be 
applied by setting the derived top_score variable as the fill parameter in the 
aes() function (Fig. 26). 

Fig. 26 Vertical bar chart
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Fig. 27 Horizontal bar chart 

Horizontal 
The horizontal bar cart is a horizontal version of the vertical bar chart, and it tends 
to be easier to read. 

The vertical bar chart can be converted to a horizontal bar chart by adding 
coord_flip() to swap the axes (Fig. 27). 

Stacked 
The stacked bar chart is useful for illustrating the relative contribution of 
subcomponents to a whole. In a people analytics setting, a 100% stacked bar chart 
is an excellent tool for visualizing the favorability distribution across survey items 
and various categorical dimensions (e.g., departments, locations, job profiles). 

The only adjustment needed to build a stacked area chart is to specify 
the variable containing the favorability categories as an ordered factor for the 
fill parameter. Colors can be specified for each favorability category via the 
scale_fill_manual() parameter (Fig. 28). 

Bidirectional 
The bidirectional bar cart is an effective visual for comparing two metrics side by 
side across values of a categorical variable. The bidirectional bar chart is sometimes 
referred to as a divergent bar chart, back-to-back bar chart, ormirror bar chart. 

Let us illustrate two levers of departmental headcount change—hires and 
terminations—using a bidirectional bar chart. While the visualization code is



Visualization Types 309

Fig. 28 100% stacked bar chart 

consistent with that of horizontal bar charts, the data need to be transformed such 
that losses (terms) are negative numbers and gains (hires) are positive numbers. 

# Set seed for reproducibility 
set.seed(1234) 

# Build data frame with hire and term metrics by department 
hires_terms <- data.frame(dept = c('Engineering', 'Finance', 

'Legal', 'Marketing', 'People', 'Product', 'Sales'),↪→ 

metric = rep(c('Hires', 'Terms'), 
7),↪→ 

cnt = round(runif(14, 5, 150), 0)) 

# Append transformed count column to support bidirectional bar 
charts↪→ 

hires_terms$cnt_trans <- ifelse(hires_terms$metric == 'Terms', 
0 - hires_terms$cnt, hires_terms$cnt)↪→ 

Using the cnt_trans field containing both negative and positive integers, we 
can visualize net changes in departmental headcount (Fig. 29).
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Fig. 29 Bidirectional bar chart 

Combination Charts 

Combination charts display data using different types of visualizations within the 
same chart. 

In a people analytics context, we may wish to highlight differences between 
regrettable (bad) and non-regrettable (good) turnover trends relative to total vol-
untary turnover rates. It is usually more difficult to compare the magnitude of 
regrettable and non-regrettable rates across time using a stacked bar chart, and a 
combination chart is often a more intuitive method of presenting this information. 

As illustrated in Fig. 30, we can leverage a two-series line chart for monthly 
regrettable and non-regrettable rates relative to the total voluntary turnover rate 
visualized with a light gray vertical bar chart in the background. 

Waterfall Charts 

Waterfall charts are alternatives to stacked bar charts that aid in understanding 
events between two points in time that explain a change in a starting and ending 
period value. Explaining drivers of headcount changes over time is a common use 
case for waterfall charts in people analytics. 

Building a waterfall chart requires a bit more data prep relative to the data 
structure requirements for a stacked bar chart. Unlike a bar chart, a waterfall chart
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Fig. 30 Combination chart 

needs a start and an end value for each event type so that each bar beyond the first 
begins where the previous bar ends. 

# Generate headcount data with id field to define bar order 
hc_dat <- data.frame(id = 1:6, 

event = c("Starting HC", "Hires", 
"Transfers In", "Transfers Out", 
"Exits", "Ending HC"),

↪→
↪→ 

type = c("Headcount", "Growth", "Growth", 
"Loss", "Loss", "Headcount"),↪→ 

count = c(100, 50, 10, -10, -20, 130), 
start = NA, 
end = NA) 

# Define start and end values to support waterfall chart 
hc_dat$end <- cumsum(hc_dat$count) 
hc_dat$end <- c(head(hc_dat$end, -1), 0) 
hc_dat$start <- c(0, head(hc_dat$end, -1)) 

# Swap start/end values for last record (Ending HC) 
hc_dat[nrow(hc_dat), "end"] <- hc_dat[nrow(hc_dat), "start"] 
hc_dat[nrow(hc_dat), "start"] <- 0
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Fig. 31 Waterfall chart 

With data properly structured, we can use the geom_rect() function to build the 
waterfall chart. Strategies such as labeling only the Beginning HC and Ending HC 
reduces clutter and lends to a cleaner design aesthetic (Fig. 31). 

Waffle Charts 

Waffle charts, also known as square area charts, are well-suited for illustrating 
parts of a whole. 

A common application in people analytics is illustrating candidate movement 
through the recruiting funnel. It is often helpful to visualize a normalized applicant 
pool (e.g., per 100 applicants) to identify where bottlenecks exist across funnel 
stages and how pass-through rates are compared across business areas. 

Waffle charts require some data prep to visualize: 

# Create df with TA funnel metrics 
ta_dat <- data.frame(stage = c("Apply", "Phone Screen", 

"Interview", "Offer Extend", "Offer Accept"),↪→ 

cnt = c(60, 20, 10, 6, 4)) 

# Set depth of waffle chart (# of y-axis rows) 
depth <- 10
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Fig. 32 Waffle chart visualizing pass-through rates across recruitment stages per 100 job appli-
cants 

# Each observation needs an x and y coordinate, and y needs to 
be specified first for a waffle chart with horizontal 
accumulation

↪→
↪→ 

waffle_dat <- expand.grid(y =  1:depth, 
x =  seq_len(ceiling(sum(ta_dat$cnt) 

/ depth)))↪→ 

# Expand the applicant counts into a vector of stage labels 
stages <- rep(ta_dat$stage, ta_dat$cnt) 

# Integrate stages and fill any extra tiles with NA 
waffle_dat$stage <- c(stages, rep(NA, nrow(waffle_dat) -

length(stages)))↪→ 

With this data structure, a waffle chart can be produced using the geom_tile() 
function from ggplot2. 

The waffle chart in Fig. 32 illustrates how candidates for a set of filled requi-
sitions move from application through the phone screen, interview, offer extend, 
and offer acceptance stages of the recruiting lifecycle. Based on this chart, 60% of 
applicants are rejected without a conversation, 40% receive a phone screen, 20% 
land an interview, 10% receive an offer, and 4% accept an offer.
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Sankey Diagrams 

Sankey diagrams, or alternatives such as chord diagrams and alluvial plots, 
are flow diagrams that are particularly effective in depicting a many-to-many 
relationship between two domains. 

Sankey diagrams have many applications in people analytics. For example, 
sankeys may be used to understand internal transfers over a period of time (i.e., 
inflows and outflows among departments) or recruiting sources by which employees 
in various departments have been hired. To demonstrate how to implement a 
sankey diagram, let us use the sankeyNetwork() function from the networkD3 
library to visualize employee transfers between departments. D3 is an advanced 
JavaScript framework for creating interactive visualizations, and the networkD3 
library provides an easy interface for constructing sankey diagrams with interactive 
components. Building a sankey diagram using networkD3 requires data to be 
structured within two data frames: 

• Nodes: Defines the source and destination node names (i.e., the departments 
employees transfer into and out of) 

• Links: Connections between pairs of source and destination nodes using an 
index beginning at 0 to represent the corresponding node from the nodes data 
frame 

# Set seed for reproducibility 
set.seed(1234) 

# Create nodes df 
nodes <- data.frame(name = c('Engineering', 'Finance', 

'Legal', 'Marketing', 'People', 'Product', 'Sales', # 
source

↪→
↪→ 

'Engineering', 'Finance', 
'Legal', 'Marketing', 
'People', 'Product', 
'Sales')) # destination

↪→
↪→
↪→ 

# Create links df 
links <- expand.grid(source = 0:6, target = 7:13) 

# Append employee transfer counts per department pair to links 
df↪→ 

links$value <- ifelse(links$source == links$target-7, 
round(rnorm(1000, 150, 50), 0), round(rnorm(1000, 30, 5), 
0))

↪→
↪→ 

With data properly structured within the nodes and links data frames, these 
data can be passed into the sankeyNetwork() function to construct the sankey
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Fig. 33 Sankey diagram showing employee transfers between departments with default colors 

diagram. As illustrated in Fig. 33, hovering over a connection displays the count of 
employee transfers between the corresponding departments (.n = 222 moves within 
Product). 

Though it can quickly become noisy as the number of nodes increases, coloring 
connections based on the source departments from which each group flows can be 
helpful in tracing the employee flow to the various destination departments. 

A department variable needs to be defined and added to the links data frame 
in order to color connections based on the source department (transfers out). 
The NodeGroup and LinkGroup parameters in the call to the sankeyNetwork() 
function define the column in the nodes and links data frames, respectively, that 
specify the group values by which the nodes and links should be colored. 

# Append source department variable for colored connections 
links$dept <- dplyr::case_when( 

links$source == 0 ~ "Engineering", 
links$source == 1 ~ "Finance", 
links$source == 2 ~ "Legal", 
links$source == 3 ~ "Marketing", 
links$source == 4 ~ "People", 
links$source == 5 ~ "Product", 
links$source == 6 ~ "Sales", 
TRUE ~ "NA" 

)
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Fig. 34 Sankey diagram showing employee transfers between departments with connections 
shaded based on a source department color scheme 

We can add another grouping variable to support coloring intradepartmental 
(within) moves differently from interdepartmental (outside) moves (Fig. 34). 

# Append within/outside department transfer variable for 
colored connections↪→ 

links$wiout_dept <- dplyr::case_when( 
(links$source == 0 & links$target == 7) | (links$source == 1 

& links$target == 8) | (links$source == 2 & links$target 
== 9) | (links$source == 3 & links$target == 10) | 
(links$source == 4 & links$target == 11) | (links$source 
== 5 & links$target == 12) | (links$source == 6 & 
links$target == 13) ~ "Within",

↪→
↪→
↪→
↪→
↪→ 

TRUE ~ "Outside" 
) 

If the focus is on a single department’s transfers, preattentive attributes can 
be applied to help focus the audience’s attention and move the less important 
information to the background to reduce clutter (Figs. 35 and 36). 

To facilitate this, a grouping variable can be defined to differentiate a single 
department, such as Product, from remaining departments. The color of each group 
can then be specified using valid D3 code: d3.scaleOrdinal(["group_1_color", 
"group_2_color"]):
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Fig. 35 Sankey diagram showing employee transfers between departments with connections 
shaded based on an intradepartmental vs. interdepartmental color scheme 

Fig. 36 Sankey diagram with preattentive attributes to highlight employee transfers out of the 
product department
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# Append dichotomous product/other indicator to links and 
nodes data frames↪→ 

links$prod <- ifelse(links$dept == 'Product', 'Product', 
'Other')↪→ 

nodes$prod <- ifelse(nodes$name == 'Product', 'Product', 
'Other')↪→ 

Pie Charts 

Pie charts are rarely an effective way to visualize data, and this book does not 
generally endorse them. Pie charts can be appropriate in cases where there are two or 
three mutually exclusive and collectively exhaustive groups and we need to visualize 
the relative contribution of each to the whole. However, it quickly becomes difficult 
to ascertain relative size beyond a few groups with a pie chart, and labeling many 
slices adds a lot of clutter and noise. Proportions should always sum to 1, so if data 
are not mutually exclusive parts of a whole, a pie chart is not appropriate. 

Figure 37 shows a donut chart—which is simply a pie chart with the center 
cut out—that is intended to show Kane Williamson’s outsized contribution to New 

Fig. 37 Improper use of a 
donut chart
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Fig. 38 Pie chart showing gender representation for active employees 

Zealand’s cricket runs. However, top scorers from other countries are also included 
in this visual, so the metrics do not sum to 100%. Pie and donut charts are not 
appropriate for these data. 

There is no specific geom() function for building pie charts using ggplot2. 
Therefore, we need to create a bar chart and make it circular by adding a 
coord_polar("y", start = 0) transformation. The coord_polar() transfor-
mation complicates the positioning of labels, but we can add a position = 
position_stack(vjust = 0.5)) argument within the geom_text() function 
to easily achieve metric centering within the respective category. We can also easily 
improve the aesthetics with the theme_void() function, which removes the default 
background, grid, and labels (Fig. 38). 

The data need to be structured consistent with the requirements for a bar chart. 
A basic data cube with descriptive statistics by gender category will simplify the 
construction of the pie chart in ggplot2: 

# Create data cube for gender representation among active 
employees↪→ 

smmry_gender <- employees |> 
dplyr::filter(active == 'Yes') |> 
dplyr::group_by(gender) |> 
dplyr::summarise(cnt = dplyr::n()) |> 
dplyr::mutate(pct = round(cnt / sum(cnt) * 

100, 1)) |>↪→ 

dplyr::arrange(desc(pct))
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Fig. 39 Headcount by location misrepresented with a 3D pie chart 

3D Visuals 

An element of uncertainty is inherent in analytics, which is why this book avoids 
the use of categorical terms such as always and never. However, an exception will 
be made for this section. 3D visualizations are never appropriate. 3D visuals often 
misrepresent the data they are intended to visualize and are unnecessarily difficult 
to interpret. 

Figure 39 shows the distribution of headcount across locations using a 3D pie 
chart. Based on this visual, it may not be apparent that Los Angeles (25%) is 
considerably larger than New York (19%). The misleading perspective of this tilted 
visual causes locations on the back side of the pie chart to appear smaller relative to 
locations on the front side. 

A 3D bar chart is not an improvement over a 3D pie chart. As illustrated in 
Fig. 40, bars do not appear to align with the actual corresponding values (e.g., Los 
Angeles . = 25%). This is because software determines the height of bars in a 3D 
bar chart using an invisible tangent plane to intersect the bars at the correct y-axis 
location. 

As shown in Fig. 41, by leveraging a horizontal bar chart with labeled bars 
and preattentive attributes, it becomes easy to understand relative headcount across 
locations. 

Elegant Data Visualization 

This chapter has covered the fundamentals of effective data visualization. Applying 
these best practices will elevate impact when presenting results of analyses to 
stakeholders.
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Fig. 40 Headcount by location visualized with a misleading 3D bar chart 

Fig. 41 Headcount by location properly visualized with a horizontal bar chart 

Figure 42 is an example of an excellent data visualization that brings together 
many of the design elements promoted in this chapter. This visual shows seasonally 
adjusted jobless claims over a period of two decades to highlight the significance of 
the Coronavirus’s impact on the labor market using the following design elements: 

• Larger and darker text for the headline 
• Smaller and lighter text for the commentary 
• Gray axis labels and chart annotations to avoid competing with current 

statistics 
• Low-profile dotted horizontal lines to help connect bars across the long x-axis 

to their corresponding y-axis values 
• Orange coloring to represent jobless claims (an unfavorable event) 
• Creative use of a bar chart resembling an area chart to represent the weekly 

interval for jobless claims over the 20-year period
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Fig. 42 An archetype of data visualization elegance 

• Two helpful reference points to provide perspective: (1) 20-year weekly 
average and (2) cumulative jobless claims during the last significant US 
recession in 2008 

Review Questions 

1. What is the function of preattentive attributes in data visualization? 
2. Why is the use of red and green in data visualization potentially problematic? 
3. Why are horizontal bar charts easier to interpret than pie charts? 
4. What types of data are visualized in scatterplots? 
5. What advantages do heatmaps provide over tables? 
6. What are some people analytics use cases for slopegraphs? 
7. What are some people analytics use cases for sankey diagrams? 
8. Why is it important to use a zero baseline for y-axes? 
9. Why is it a best practice to avoid rotating axis labels? 

10. What is the primary purpose of applying a consistent color palette across 
visuals?
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Data Storytelling 

Like chapter “Data Visualization”, this chapter leans more art than science in the 
coverage of strategies to translate results of analyses into compelling stories that 
have a high probability of landing effectively with target audiences. One may build 
an impressive set of complex models and perform robust analyses, but unless the 
results and recommendations are clear to stakeholders, this is an exercise in futility. 
We need stories to distill analytical output down to a non-technical and logical 
organization of unified ideas that arouse the energy and attention of the audience. 

Know Your Audience 

First, we must remember that we are communicating for the audience, not for 
ourselves. To do this effectively, we need to know the audience—what is important 
to them (e.g., making money, reducing expenses, gaining market share, innovation) 
and how they define and measure success. Knowing what matters to those we seek 
to influence with information enables us to tailor content in a way that appeals to 
the unique needs of those who can ultimately authorize action and drive change. 

A unique challenge for people analytics practitioners is that the audience is 
often non-technical folks in the people organization. The strategies needed to 
communicate effectively to this audience are quite different from those required 
to present an analysis to Finance, for example. Using technical jargon is a sure way 
to quickly lose a non-technical audience and sacrifice what could otherwise be a 
poignant and impactful call to action. Therefore, it is critically important to identify 
and understand the target audience before packaging and delivering results. 

In general, it is best not to assume the audience knows what you know because 
chances are good that no one else has been as deeply immersed in the problem as 
you. 

© The Author(s) 2023 
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Several contextual questions are important to consider: 

1. What essential background information does the audience already have, and 
what additional context needs to be shared? 

2. Does the audience already have access to any relevant data that would 
strengthen or conflict with the messages we need to convey? 

3. Does the audience or decision maker have a known perspective on the topic? 
4. How should the content be messaged to proactively appeal to potential risks 

or biases the audience may possess that could create resistance to the findings 
and/or recommendations? 

5. What is the audience’s preferred format for content sharing (e.g., document 
vs. deck)? 

Production Status 

Prior to documents or decks being circulated to the target audience, there are 
generally several revs to refine the content and storyline in partnership with internal 
analytics colleagues and other stakeholders. If working docs are shared prematurely, 
it can result in the analytics team needing to address unnecessary questions that 
may compromise the project scope and timeline. Stakeholders will naturally have 
questions and ideas for further exploration, and we should always value their 
engagement and enthusiasm for more insights. However, unless there is a critical 
business need to venture down another path, the analytics team must protect the 
project scope and cite in the presentation the need to prioritize the additional 
analyses as a next step. 

It is important to define a production status taxonomy to clarify content readiness. 
The framework below is one example: 

1. Draft: Working document/deck being prepared by the analytics team (do not 
share) 

2. Initial Review: Document/deck suitable for initial input from stakeholders 
3. Final Review: Document/deck reflects feedback from initial review and ready 

for final review and sign off 
4. Complete: Document/deck complete and ready for delivery to target audience 

Structural Elements 

Entrepreneurs pitching to VCs craft a concise elevator pitch that highlights the 
key features of their product or service complemented by data to support the 
unique value proposition and attractive upside of the business (e.g., market size 
and penetration, revenue growth trajectory). In the same way, a good early step
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in storytelling with data is drafting a short story and iterating on it until only the 
essential content remains and it requires no more than a few minutes to read. 

When preparing a presentation, a general rule is to never begin with slides. 
The aesthetics and formatting are of secondary importance to the organization and 
sequencing of content. Begin by outlining the structure and organizing content 
in a way that supports and punctuates the key messages you wish to convey to 
the audience. The outline can then be translated into a presentation-ready deck or 
document, which will support a logical and effective flow of information. 

While the structure and format may vary company to company, and across 
stakeholder groups within a particular company, there are some essential elements 
that will support the effectiveness of an analysis presentation. 

TL;DR 

A TL;DR (too long; don’t read) is an abstract intended to provide a concise 
synopsis of the research objective, high-level approach, key findings, and recom-
mendations and next steps. The TL;DR is popular among tech companies, though 
the general idea is embraced by organizations in other industries under various 
names (e.g., Executive Summary). 

Here is an example of a TL;DR for an analysis intended to support a solution to 
an organization’s location capacity issue: 

Based on our strategic workforce plan, we will exceed the capacity at our HQ 
facility within three years. Labor market analyses indicate that by expanding our 
remote workforce, we can source from a larger pool of talent with the skills we 
need to maintain our competitive position in the market, decrease our average 
time to fill positions, lower our average cost per employee, and solve for the 
impending capacity breach at our HQ facility. A shift to remote-first hiring is 
recommended over the next six months to proactively address both our strategic 
workforce needs and location capacity constraints. 

This short TL;DR led with the problem statement, highlighted a solution and 
associated benefits based on the analysis, and finished with a recommended next 
step and timeline. While this short summary does not provide the intricate details 
of the analysis, in most cases, it should be sufficient to communicate the high-level 
story to those with limited time. This short summary may also function to pique the 
interest of stakeholders who are initially unsure if the analysis warrants their time 
and attention. 

Purpose 

Studies show that our audience determines in 3–8 seconds whether or not to give 
us their attention based on what we have put in front of them (Knaflic, 2015).
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Therefore, it is crucial to let the audience know upfront what we are going to share 
with them and why it matters. 

There is perhaps no more important initial question to answer than “what does a 
successful outcome look like?” To answer this question, we must be able to clearly 
articulate the problem statement. That is, why is it important to perform this analysis 
over the many other analytics opportunities aging on the team’s backlog? 

If we cannot clearly articulate the problem statement and desired success 
outcome(s), the audience will likely be unclear about what we are asking them to 
do and why they should make it a priority. All content and messages should support 
what we want our audience to know or do; therefore, defining what success looks 
like is a prerequisite for outlining and structuring the presentation. 

While the problem statement need not be dramatized, this is an excellent 
opportunity to arouse an emotional response that hooks the audience. Consider the 
following approaches to articulating the same problem statement:

• Option 1: Our offer acceptance rate (OAR) has declined from 80% to 40% 
YoY in Engineering.

• Option 2: To deliver on our strategic workforce plan and support our 
ambitious product roadmap, we need to attract the best and brightest Engi-
neering talent. However, an increasing number of Engineering candidates are 
declining our offers (OAR has declined 50% YoY), and this presents a material 
risk to the guidance issued to shareholders during our most recent earnings 
call. 

The severity of the situation is far more palpable with the framing in Option 2 
relative to the terse and factual approach taken in Option 1. As a result, it stands to 
reason that Option 2 features a higher likelihood of the audience taking seriously 
subsequent content which supports a solution to this problem. 

Methodology 

It is usually appropriate to provide a high-level overview of the analysis approach. 
In doing this, it is important to know what level of information is appropriate for the 
target audience. 

It is easy to provide too much information in this section. For example, does the 
audience need to know that we built a multilevel model with quadratic terms on time 
variables? If the People team is the target audience, there is a good chance that this 
level of information is not appropriate. Sharing that an analysis method was used 
that is well-suited for understanding drivers of the outcome being studied is likely 
sufficient, as the content and presentation should index more on the findings and 
recommended next steps than on methodological details.
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Presenting results of analyses to a non-technical audience using technical 
nomenclature will at best be seen as hubris and create confusion; at worst, the 
important information you need to convey will be completely lost on the audience 
and the efforts to improve the employee experience will be a deplorable miss. In 
general, if information is included in the presentation, we should ask ourselves 
whether the audience really needs to know it. If the key points are likely to land 
without the information, eliminate the superfluous material. To paraphrase a quote 
attributed to Einstein: “Everything should be made as simple as possible, but not 
simpler.” 

Results 

Just as the methodology should not be presented to stakeholders on the People team 
using technical nomenclature, results of statistical analyses also need an appropriate 
translation for the audience. If you are operating in a tech company, it is possible 
that terms like modeling and n-count are broadly understood. This is again a case in 
which it is critical to know your audience to ensure the key messages resonate based 
on their knowledge, vernacular, and delivery preferences. 

Tables containing the output of regression models, for example, should not be 
included in the main body of the document or deck. As we covered in chapter 
“Linear Regression”, regression lends to a highly intuitive interpretation—assuming 
relationships between predictors and the outcome are not modeled using complex 
transformations. Therefore, we can speak to the results using language such as: 

“When controlling for alternative influences such as .X2 . . . Xp, the average 
change in Y for each one-unit increase in .X1 is . β1. The association between . X1
and Y is statistically significant.” 

By replacing .X2 . . . Xp with the names of control variables, .X1 with the 
name of the main predictor variable, Y with the name of the outcome variable, 
and .β1 with the corresponding numerical for the average change, we do not 
need statistical symbols or technical jargon to communicate high-level results of 
regression analyses. 

If data are visualized, this does not require them to be included in the ultimate 
doc or deck presented to stakeholders. Myriad visuals are often generated during 
the EDA phase of analytics projects to understand distributions, relationships, 
differences, density, and trends, but relatively few –and sometimes none– need to 
be shared beyond the project team.
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Limitations 

This is the section in which the limits of the study should be made known to the 
audience. There are limits to every study –even the most rigorous– and the failure 
of a researcher to report them does not change this fact. 

Outlined below are some questions to consider in identifying limitations: 

1. Does the research design support causal effects? 
2. Were there confounding variables that may have compromised the internal 

validity of the research? 
3. Were there data quality issues that may have biased results? 
4. Was low participation a factor, and could feedback from nonrespondents 

materially change the results? 
5. Is the observation window in which data were collected recent enough to 

reflect current sentiments and behaviors? 
6. Were mitigating factors implemented to control for social desirability? 
7. Were strategies deployed to mitigate the risk of common method variance for 

self-reported data collection? 
8. Were employees incentivized to participate, and could this have influenced 

their responses or performance? 
9. Were data dimensions standardized and consistent across time, or were 

data imputation and/or mapping strategies required to support longitudinal 
analyses? 

10. Did time constraints require curtailing the project scope? 

Next Steps 

Presentations should conclude with recommended next steps that are likely to gen-
erate a productive and action-oriented dialogue among the stakeholders. Assuming 
there was a firm commitment to action at the outset of the project (see chapter 
“Getting Started”), there is a good chance the audience does not understand what 
was shared or is not sure what to do next if their only response following the 
presentation is, “That’s interesting!” Leaving the audience with clear answers to 
the following questions will help drive accountability for action:

• What are we asking the audience to do based on the findings?
• What are we –the analytics team– committed to doing as a next step (e.g., 

working with operations teams to improve data quality for future analyses, 
pre/post study on the efficacy of proposed interventions)?

• When is an appropriate time to follow up to help remove any barriers to action 
taking?
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The Appendix 

Given the significant time required to wrangle, model, and analyze data, it is often 
tempting to include in a presentation details associated with every aspect of the 
analytics project of which we are so proud. However, nonessential details will likely 
detract from the key messages we wish to convey. 

Including in the Appendix of a document or deck information that is superfluous 
to the main points ensures the details are available should they be needed in 
addressing the audience’s questions whilst ensuring the audience is focused only 
on the most important elements of the presentation. This may be tables containing 
metrics across various dimensions or results from supplemental analyses adjacent 
to the primary research objective(s). 

Q&A 

It is important to reserve time and be prepared for Q&A with the audience 
when delivering a live presentation. Despite our most earnest planning efforts, the 
likelihood is low that even the most effective presentations will address all the 
questions our audience has. Addressing questions or concerns in the moment, or 
by way of follow up in the case of an asynchronous review of a doc or deck, will 
increase the probability of action being taken on the recommendations. 

Review Questions 

1. Based on research, how long do we have to convince an audience that what we 
plan to present is worth their time and attention? 

2. Why is there no one-size-fits-all approach to storytelling with data? 
3. What are some early contextual considerations as it relates to understanding the 

target audience? 
4. What is the utility of preattentive attributes in storytelling? 
5. What are some strategies for organizing and structuring content to support 

compelling narratives? 
6. What is a TL;DR, and what is its purpose? 
7. Why is it important to clearly define success? 
8. What are some features of an effective conclusion that supports accountability 

for action? 
9. What are some common limitations in people analytics projects, and why is it 

important to note them when presenting results of analyses? 
10. What are some examples of content that should be moved to the Appendix?
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Appendix 

4D Framework 

This section provides a detailed set of considerations and framework for structuring 
analytics projects. 

Discover 

During the Discover phase, it is important to remain in the problem zone; seek to 
understand your clients’ needs through active listening and questions. This is not 
the time for solutioning or committing to any specific deliverables or timelines. If 
the client’s needs are ambiguous, proceeding without clarity is unlikely to result in 
a favorable outcome. 

It is generally helpful to think about analytics solutions—whether a dashboard 
with basic metrics and trends or an advanced analysis—like a Product Owner thinks 
about the initial and subsequent releases of a commercial product. A Minimum 
Viable Product (MVP) is a version of the solution with the minimum number 
of features to be useful to early customers who can provide feedback for future 
enhancements. It is important to clarify that the MVP version of solutions often has 
both a limited number of users and features, which protects against the tendency to 
boil the ocean by striving to address every question for every stakeholder. Breaking 
down large projects into small sets of features that are easier to communicate and 
adopt provides space for agility and real-time adjustments to the product roadmap 
per user feedback. 

There are some initial questions and considerations that will help frame an 
analytics project and support its success. 
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Client 

Who is the client? A client can be a person or organization contracting you for 
consulting services or an internal stakeholder within your organization who has a 
need. What is important to them? 

Primary Objective

• What is the client ultimately hoping to accomplish?
• Is the request merely to satisfy one’s curiosity, or are there actions that can 

realistically be taken to materially influence the stated objective? 

Problem Statement 

One of the most important early steps is clearly defining the problem statement. If 
your understanding of the problem—after translating from the business anecdotes in 
which it was likely initially expressed—is misaligned with the client’s needs, none 
of the subsequent steps matter. 

Guiding Theories

• What theoretical explanations can the client offer as potential rationalizations for 
the phenomena of interest?

• Are there existing theories in the organizational literature that should guide how 
the problem is tackled (e.g., findings from similar research implemented in other 
contexts)? 

Research Questions 

To respect the nuances of the problem statement, it is important to unpack it and 
frame as a set of overarching questions to guide the research.

• Q1: . . .
• Q2: . . .
• Q3: . . .  

To ensure it is possible (and appropriate) to take action in response to these 
questions, consider the following after drafting each question: “what would I do 
if I knew the answer?”
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Research Hypotheses 

Once research questions are developed, what do you expect to find based on 
anecdotal stories or empirical findings? As a next step, these expectations should be 
expressed in the form of research hypotheses. Note that these research hypotheses 
are different from statistical hypotheses.

• H1: . . .
• H2: . . .
• H3: . . .  

To ensure the hypotheses lend to actionable analyses, it is important to consider 
the following: “what does success look like?” In other words, once the project is 
complete, against which success measures will the project’s success be determined? 
Curiosity is not a business reason and hope is not a reasonable strategy. The 
following questions may prove helpful in the promotion of actionable—over merely 
interesting—outcomes:

• What will be done if the hypotheses are supported?
• What will be done if the hypotheses are not supported? 

Assumptions 

At this point, it is helpful to consider what assumptions may be embedded in this 
discovery work. Are the questions and hypotheses rooted in what the client has 
theorized, or are these the product of an ambiguous understanding of the client’s 
needs? 

Cadence

• Is this analysis a one-off, or could there be a need to refresh this analysis on a 
regular cadence?

• Are there dates associated with programs or actions this analysis is intended to 
support? 

Aggregation 

Is there a need for individual-level detail supporting the analysis? Aggregate data 
should generally be the default unless a compelling justification exists and exception 
granted from legal and privacy partners. One important role of analysts is to help 
keep the audience focused on the bigger picture and findings. Access to individual-
level detail can not only introduce unnecessary legal and compliance risk but can
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also lead to questions and probing that can delay taking necessary actions based on 
the results. 

Deliverable 

What is the preferred method of communicating the results of the analysis (e.g., 
interactive dashboard, static slide deck, document)? It is important to determine 
this early so that subsequent efforts can be structured to support the preferred 
deliverable. For example, if an interactive dashboard is preferred, does your 
Engineering department need to prioritize dependent tasks such as data pipelines, 
row-level security, BI development, and migrations to production servers? 

Filters and Dimensions 

How does your client prefer to segment the workforce? Some common grouping 
dimensions are business unit, division, team, job family, location, tenure, and 
management level, but the client may have custom segmentation requirements that 
will be important to identify and define early in the project. 

Design 

Perhaps the most important initial question to answer in the design phase is “does 
anything already exist that addresses part, or all, of the client’s objectives?” If an 
existing solution will suffice or a previous analysis can be easily refreshed with 
recent data, it may be possible to allocate time and resources elsewhere. If related 
or complimentary analyses have already been performed, they may accelerate new 
analyses. 

The end-user experience is of paramount importance during the Design phase, 
as solutions should have a consistent look and feel regardless of who developed 
them. Defining and implementing design guidelines, such as those outlined in 
chapter “Data Visualization”, will ensure consistency across analytics projects as 
well as within large projects in which multiple analysts are collaborating on various 
elements of the solution. 

Data Privacy 

Are there potential concerns with the study’s objective, planned actions, and/or 
requested data elements from an employee privacy or legal perspective? A cross-
functional data governance committee can help with efficient and consistent deci-
sioning on requests for people data and analytics.
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In cases where sensitive attributes such as gender, ethnicity, age, sexual orienta-
tion, and disability status are requested, it is best to consult with legal and privacy 
partners to ensure they green light the intended use of the data. The decision on 
whether or not to include these sensitive data elements is often less about what the 
audience can view (e.g., People Partners may already have access to the information 
at the individual level in the source system) and more anchored in what they plan to 
do with the information. 

Data Sources and Elements 

Is the required data already accessible in a data warehouse or other analytics 
environment? If not, does it need to be? What is required to achieve this?

• What data sources are required?
• What data elements are required? 

Data Quality 

It is important to understand the data generative process and never make assump-
tions about how anomalies or missing data should be interpreted. After identifying 
what data sources will be required for a particular analysis, it is important to meet 
with source system owners and data stewards to deeply understand the business 
processes by which data are generated in the system(s). An ideal should always be 
unimpeachable data quality at the presentation stage, and this begins with an early 
understanding and investigation of data quality in the source systems. Below are 
some helpful questions to consider:

• Is there a better data source, such as data generated further upstream?
• Are the data actively validated with automated data quality checks and regular 

exceptions reports?
• What is the SLA for the data refreshes, and how often is this SLA met?
• Is there a clear (and accessible) data source owner/steward?
• Is there comprehensive documentation and field definitions?
• Do the tables drive business critical deliverables?
• Who are the other consumers of the data? 

Variables 

How will the constructs be measured (e.g., survey instrument, derived attribute, 
calculated field)?
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Analysis Method 

What are the appropriate analysis methods based on the research hypotheses? If 
modeling is required, is it more important to index on accuracy or interpretability? 

Dependencies 

Are other teams required to develop this solution? What is the nature of the 
work each dependent team will perform? Are there required system configuration 
changes? Do these teams have capacity to support? 

Change Management 

Will this solution impact current processes or solutions? If so, what is the change 
management plan to facilitate a seamless transition and user experience? 

Sign-Off 

Generally, it is best for the client to sign off on the problem statement, analysis 
approach, and wire frame for the deliverable (if applicable) before providing an ETA 
and proceeding to the development phase. This ensures alignment on the client’s 
needs and the perceived utility of the solution in addressing those needs. 

Develop 

While development patterns can vary widely across analytics teams, establishing a 
set of standards can pay dividends in the form of greater efficiency and reliability 
over time. Pattern-based development ensures analysts who were not involved in a 
particular project can access the code and easily and quickly understand each step 
of the analysis. 

Development Patterns

• Are there development patterns that should guide the development approach to 
support consistency?

• Are there existing calculated fields that can/should be leveraged for derived data?
• Are there best practices that should be employed to optimize performance (e.g., 

load time for dashboards, executing complex queries during non-peak times)?
• Are there standard color palettes that should be applied?
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Productionalizable Code 

How do models and data science pipelines need to be developed to facilitate a 
seamless migration from lower to upper environments? For example, initial EDA 
may be performed using curated data in flat files for the purpose of identifying 
meaningful trends, relationships, and differences, but where will this data need to 
be sourced in production to automate the refresh of models at a regular interval? 
If the data were provided from multiple source systems, what joins are required to 
integrate the data? What transformation logic or business rules need to be applied to 
reproduce the curated data? 

Unit Testing

• What test cases will ensure the veracity of data?
• Who will perform the testing? 

User Acceptance Testing (UAT) 

In the spirit of agility and constant contact with the client to prevent surprises, it is 
generally a good idea to have the client take the solution for a test run within the 
UAT environment and then provide sign-off before migrating to production. If the 
deliverable is a deck or doc with results from a model, UAT may surface clarifying 
questions that can be addressed before releasing to the broader audience. 

Deliver 

The Deliver phase can take many forms depending on the solution being released. If 
the solution is designed for a large user base, a series of recorded trainings may be in 
order so that there is a helpful reference for those unable to attend the live sessions or 
new joiners in the future. It is important to monitor success measures, which could 
be insights aligned to research hypotheses, dashboard utilization metrics, progress 
following data-informed interventions, or any number of others defined within the 
Discover phase. 

Data Visualization 

This section provides the code needed to reproduce visuals in chapter “Data 
Visualization”.
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Step-by-Step Visual Upgrade 

# Load libraries 
library(dplyr) 
library(ggplot2) 
library(ggpubr) 
library(peopleanalytics) 

# Load data 
data("employees") 

# Create data cube for active employees 
smmry_ed_field <- employees |> 

dplyr::filter(active == 'Yes') |> 
dplyr::count(ed_field) 

# Step 1: Build Bar Chart with Defaults 
ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") 

# Step 2: Remove Legend 
ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") + 
ggplot2::theme(legend.position = "none") 

# Step 3: Assign Colors Strategically 
ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") + 
ggplot2::scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 

"Life Sciences" = "#0070C0", 
"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = "#BFBFBF")) + 

ggplot2::theme(legend.position = "none") 

# Step 4: Add Axis Titles and Margins 
ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") + 
ggplot2::labs(x =  'Education Field', y =  'Headcount') + 
ggplot2::scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 

"Life Sciences" = "#0070C0", 
"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = "#BFBFBF"))+ 

ggplot2::theme(legend.position = "none", 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  0)),↪→ 
axis.title.y = ggplot2::element_text(margin = 

ggplot2::margin(t =  0, r =  10, b =  0, l =  0)))↪→ 

# Step 5: Add Left-Justified Title
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ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 
as.factor(ed_field))) +↪→ 

ggplot2::geom_bar(stat = "identity") + 
ggplot2::labs(title = 'Life Sciences is the most common education field 

\npursued by active employees.', x =  'Education Field', y =  'Headcount') 
+

↪→
↪→ 
ggplot2::scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 

"Life Sciences" = "#0070C0", 
"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = "#BFBFBF"))+ 

ggplot2::theme(legend.position = "none", 
plot.title = ggplot2::element_text(hjust = 0), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  0)),↪→ 
axis.title.y = ggplot2::element_text(margin = 

ggplot2::margin(t =  0, r =  10, b =  0, l =  0)))↪→ 

# Step 6: Remove Background 
ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") + 
ggplot2::labs(title = 'Life Sciences is the most common education field 

\npursued by active employees.', x =  'Education Field', y =  'Headcount') 
+

↪→
↪→ 
ggplot2::scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 

"Life Sciences" = "#0070C0", 
"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = "#BFBFBF")) + 

ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  0)),↪→ 
axis.title.y = ggplot2::element_text(margin = 

ggplot2::margin(t =  0, r =  10, b =  0, l =  0)))↪→ 

# Step 7: Remove Axis Ticks 
ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") + 
ggplot2::labs(title = 'Life Sciences is the most common education field 

\npursued by active employees.', x =  'Education Field', y =  'Headcount') 
+

↪→
↪→ 
ggplot2::scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 

"Life Sciences" = "#0070C0", 
"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = "#BFBFBF")) + 

ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  0)),↪→ 
axis.title.y = ggplot2::element_text(margin = 

ggplot2::margin(t =  0, r =  10, b =  0, l =  0)),↪→ 
axis.ticks.x = ggplot2::element_blank(),
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axis.ticks.y = ggplot2::element_blank()) 

# Step 8: Mute Titles 
ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") + 
ggplot2::labs(title = 'Life Sciences is the most common education field 

\npursued by active employees.', x =  'Education Field', y =  'Headcount') 
+

↪→
↪→ 
ggplot2::scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 

"Life Sciences" = "#0070C0", 
"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = "#BFBFBF")) + 

ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  0), colour = 
"#404040"),

↪→
↪→ 
axis.title.y = ggplot2::element_text(margin = 

ggplot2::margin(t =  0, r =  10, b =  0, l =  0), colour = 
"#404040"),

↪→
↪→ 
plot.title = ggplot2::element_text(hjust = 0, colour = 

"#404040"),↪→ 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

# Step 9: Flip Axes 
ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") + 
ggplot2::coord_flip() + 
ggplot2::labs(title = 'Life Sciences is the most common education field 

\npursued by active employees.', x =  'Education Field', y =  'Headcount') 
+

↪→
↪→ 
ggplot2::scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 

"Life Sciences" = "#0070C0", 
"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = "#BFBFBF")) + 

ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  0), colour = 
"#404040"),

↪→
↪→ 
axis.title.y = ggplot2::element_text(margin = 

ggplot2::margin(t =  0, r =  10, b =  0, l =  0), colour = 
"#404040"),

↪→
↪→ 
plot.title = ggplot2::element_text(hjust = 0, colour = 

"#404040"),↪→ 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

# Step 10: Sort Data 
ggplot2::ggplot(smmry_ed_field, aes(x =  reorder(ed_field, n), y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") +
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ggplot2::coord_flip() + 
ggplot2::labs(title = 'Life Sciences is the most common education field 

\npursued by active employees.', x =  'Education Field', y =  'Headcount') 
+

↪→
↪→ 
ggplot2::scale_fill_manual(values = c("Human Resources" = "#BFBFBF", 

"Life Sciences" = "#0070C0", 
"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = "#BFBFBF")) + 

ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  0), colour = 
"#404040"),

↪→
↪→ 
axis.title.y = ggplot2::element_text(margin = 

ggplot2::margin(t =  0, r =  10, b =  0, l =  0), colour = 
"#404040"),

↪→
↪→ 
plot.title = ggplot2::element_text(hjust = 0, colour = 

"#404040"),↪→ 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

# Pre/post viz comparison 
viz_pre <- ggplot2::ggplot(smmry_ed_field, aes(x =  ed_field, y =  n, fill = 

as.factor(ed_field))) +↪→ 
ggplot2::geom_bar(stat = "identity") 

viz_post <- ggplot2::ggplot(smmry_ed_field, aes(x =  reorder(ed_field, n), y 
= n, fill = as.factor(ed_field))) +↪→ 

ggplot2::geom_bar(stat = "identity") + 
ggplot2::coord_flip() + 
ggplot2::labs(title = 'Life Sciences is the most common 

education field \npursued by active employees.', x =  'Education Field', 
y =  'Headcount') +

↪→
↪→ 

ggplot2::scale_fill_manual(values = c("Human Resources" = 
"#BFBFBF",↪→ 

"Life Sciences" = 
"#0070C0",↪→ 

"Marketing" = "#BFBFBF", 
"Medical" = "#BFBFBF", 
"Other" = "#BFBFBF", 
"Technical Degree" = 

"#BFBFBF")) +↪→ 
ggplot2::theme(legend.position = "none", 

panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 
axis.title.y = ggplot2::element_text(margin = 

ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 
plot.title = ggplot2::element_text(hjust = 0, 

colour = "#404040"),↪→ 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

# Display pre/post visualizations side-by-side 
ggpubr::ggarrange(viz_post, viz_pre, ncol = 1, nrow = 2)



344 Appendix

Tables 

### Data Prep ### 

# Load libraries 
library(dplyr) 
library(peopleanalytics) 

# Load data 
data("employees") 

# Append new tenure band column 
employees$tenure_band <- dplyr::case_when( 

employees$org_tenure < 1 ~ "Under 1 Year", 
employees$org_tenure < 2.5 ~ "1-2 Years", 
employees$org_tenure < 5.5 ~ "3-5 Years", 
employees$org_tenure <= 10 ~ "6-10 Years", 
TRUE ~ "Over 10 Years" 

) 

# Store aggregate measures to cube 
dept_tenure <- employees |> 

dplyr::filter(active == 'Yes') |> 
dplyr::group_by(dept, tenure_band) |> 
dplyr::summarise(cnt = dplyr::n()) 

# Specify ordered factor 
dept_tenure$tenure_band <- ordered(dept_tenure$tenure_band, 

levels = c("Under 1 Year", "1-2 Years", "3-5 Years", "6-10 
Years", "Over 10 Years"))

↪→
↪→ 

# Assign proper case field names 
dept_tenure_proper <- dept_tenure |> 

rename('Department' = dept, 
'Tenure' = tenure_band, 
'Count' = cnt) 

### Data Table ### 

# Load library 
library(DT) 

# Format output with datatable 
DT::datatable(dept_tenure_proper, rownames = FALSE)
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Heatmaps 

### Data Prep ### 

# Load library 
library(dplyr) 

# Append new tenure band column 
employees$tenure_band <- dplyr::case_when( 

employees$org_tenure < 1 ~ "Under 1 Year", 
employees$org_tenure < 2.5 ~ "1-2 Years", 
employees$org_tenure < 5.5 ~ "3-5 Years", 
employees$org_tenure <= 10 ~ "6-10 Years", 
TRUE ~ "Over 10 Years" 

) 

# Store aggregate measures to cube 
dept_tenure <- employees |> 

dplyr::filter(active == 'Yes') |> 
dplyr::group_by(dept, tenure_band) |> 
dplyr::summarise(cnt = dplyr::n()) 

# Specify ordered factor 
dept_tenure$tenure_band <- ordered(dept_tenure$tenure_band, 

levels = c("Under 1 Year", "1-2 Years", "3-5 Years", "6-10 
Years", "Over 10 Years"))

↪→
↪→ 

### Heatmap ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(dept_tenure, aes(x =  tenure_band, y =  dept, 
fill = cnt)) +↪→ 

ggplot2::geom_tile() + 
ggplot2::labs(title = 'A large portion of our workforce has 

between 3 and 10 years\n of company tenure and works 
within R&D.', x =  'Tenure', y =  'Department') +

↪→
↪→ 

ggplot2::guides(fill = guide_legend(title = "Employee Count")) 
+↪→ 

ggplot2::scale_fill_continuous(low = "#F2F2F2", high = 
"#0070C0") +↪→



346 Appendix

ggplot2::theme(panel.background = ggplot2::element_blank(), 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank(), 
plot.title = ggplot2::element_text(hjust = 0, 

colour = "#404040"),↪→ 

axis.title.x = ggplot2::element_text(margin = 
ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"))

↪→
↪→ 

Scatterplots 

### Data Prep ### 

# Load library 
library(peopleanalytics) 

# Load data 
data("employees") 

# Subset df to active sales employees 
sales <- subset(employees, dept == 'Sales' & active == 'Yes') 

# Set quote attainment flag for data viz coloring 
sales$quota_flg <- ifelse(sales$ytd_sales >= 150000, 1, 0) 

### Scatterplots ### 

# Load libraries 
library(ggplot2) 
require(scales) 

# Basic scatterplot 
ggplot2::ggplot(sales, aes(x =  work_exp, y =  ytd_sales, group 

= quota_flg)) +↪→ 

ggplot2::geom_point() + 
ggplot2::labs(title = 'The relationship between work 

experience and YTD sales is positive.', x =  'Work 
Experience', y =  'YTD Sales (USD)') +

↪→
↪→
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ggplot2::scale_y_continuous(labels = scales::comma) + 
ggplot2::theme(panel.background = ggplot2::element_blank(), 

legend.position = "none", 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank(), 
plot.title = ggplot2::element_text(hjust = 0, 

colour = "#404040"),↪→ 

axis.title.x = ggplot2::element_text(margin = 
ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"))

↪→
↪→ 

# Scatterplot with preattentive attributes 
ggplot2::ggplot(sales, aes(x =  work_exp, y =  ytd_sales, group 

= quota_flg)) +↪→ 

ggplot2::geom_point(aes(color = as.factor(quota_flg))) + 
ggplot2::geom_hline(yintercept = 150000, linetype = 'dotted', 

color = "#0070C0") +↪→ 

ggplot2::annotate(geom = "text", x =  2, y =  159000, label = 
"Sales Quota = $150k", color = "#0070C0", size = 3) +↪→ 

ggplot2::labs(title = 'Some employees with more work 
experience have \nalready met the full year sales quota.', 
x =  'Work Experience', y =  'YTD Sales (USD)') +

↪→
↪→ 

ggplot2::scale_color_manual(values = c("0" = "#BFBFBF", 
"1" = "#0070C0")) + 

ggplot2::scale_y_continuous(labels = scales::comma) + 
ggplot2::theme(panel.background = ggplot2::element_blank(), 

legend.position = "none", 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank(), 
plot.title = ggplot2::element_text(hjust = 0, 

colour = "#404040"),↪→ 

axis.title.x = ggplot2::element_text(margin = 
ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"))

↪→
↪→
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Line Charts 

### Data Prep ### 

# Set seed for reproducibility 
set.seed(1234) 

# Create data 
months = 1:24 
eng_rt = 5 - runif(1, 2.7, 2.9) + 2.41*months - .41*monthsˆ2 + 

.02*monthsˆ3↪→ 
fin_rt = runif(1, 5, 8) - 6.97 + 15*months - .53*monthsˆ2 
ppl_rt = 3 - runif(1, 5, 8) - 6.97 + 12*months - .4*monthsˆ2 
prd_rt = runif(1, 5, 8) - 6.97 + 13*months - .53*monthsˆ2 

# Combine dimensions and metrics within df 
attrition_dat <- data.frame(month = rep(months, 4), 

dept = c(rep('Engineering', 
length(months)),↪→ 

rep('Finance', 
length(months)),↪→ 

rep('People', 
length(months)),↪→ 

rep('Product', 
length(months))),↪→ 

rate = c(eng_rt, 
fin_rt, 
ppl_rt, 
prd_rt)) 

# Ordered factor for subsequent layering of lines in graph (last 
value takes the top position)↪→ 

attrition_dat$dept <- factor(attrition_dat$dept, c("Product", 
"Finance", "People", "Engineering"))↪→ 

### Single Series Line Graphs ### 

# Load library 
library(ggplot2) 
ggplot2::ggplot(subset(attrition_dat, dept == 'Engineering'), 

aes(x =  month, y =  rate, group = dept)) +↪→ 

ggplot2::labs(title = 'Engineering attrition has increased 
over the last 24 months, \nlargely due to an exponential 
spike in the last year.', x =  'Month', y =  'Attrition 
Rate') +

↪→
↪→
↪→ 

ggplot2::geom_line(color = '#0070C0', size = 1) + 
ggplot2::scale_x_continuous(limits = c(0, 25), breaks = seq(0, 

24, by = 3)) +↪→
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ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(hjust = 0, 
colour = "#404040"),↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

### Two Series Line Graphs ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(subset(attrition_dat, dept %in% 
c('Engineering', 'Product')), aes(x =  month, y =  rate, 
color = dept)) +

↪→
↪→ 

ggplot2::labs(title = 'The attrition trends for Engineering 
and Product \nare negatively correlated over the last 
year.',

↪→
↪→ 

x =  'Month', 
y =  'Attrition Rate', 
col = 'Department') + 

ggplot2::geom_line(size = 1) + 
ggplot2::scale_x_continuous(limits = c(0, 27), breaks = seq(0, 

24, by = 3)) +↪→ 

ggplot2::annotate(geom = "text", x =  max(attrition_dat$month) 
+ .5, y =  attrition_dat[attrition_dat$dept == 
'Engineering' & attrition_dat$month == 
max(attrition_dat$month), 'rate'], label = 'Engineering', 
color = "#0070C0", size = 4, hjust = 0) +

↪→
↪→
↪→
↪→ 

ggplot2::annotate(geom = "text", x =  max(attrition_dat$month) 
+ .5, y =  attrition_dat[attrition_dat$dept == 'Product' & 
attrition_dat$month == max(attrition_dat$month), 'rate'], 
label = 'Product', color = "#808080", size = 4, hjust = 0) 
+

↪→
↪→
↪→
↪→ 

ggplot2::scale_color_manual(values = c("Engineering" = 
"#0070C0",↪→ 

"Product" = "#BFBFBF")) 
+↪→



350 Appendix

ggplot2::theme(panel.background = ggplot2::element_blank(), 
legend.position = "none", 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(hjust = 0, 
colour = "#404040"),↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

### Multiple Series Line Graphs ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(attrition_dat, aes(x =  month, y =  rate, color 
= dept)) +↪→ 

ggplot2::labs(title = 'The attrition trend for Engineering is 
quite different \nrelative to attrition patterns for other 
departments.',

↪→
↪→ 

x =  'Month', 
y =  'Attrition Rate', 
col = 'Department') + 

ggplot2::geom_line(size = 1) + 
ggplot2::scale_x_continuous(limits = c(0, 27), breaks = seq(0, 

24, by = 3)) +↪→ 

ggplot2::annotate(geom = "text", x =  max(attrition_dat$month) 
+ .5, y =  attrition_dat[attrition_dat$dept == 
'Engineering' & attrition_dat$month == 
max(attrition_dat$month), 'rate'], label = 'Engineering', 
color = "#0070C0", size = 4, hjust = 0) +

↪→
↪→
↪→
↪→ 

ggplot2::annotate(geom = "text", x =  max(attrition_dat$month) 
+ .5, y =  attrition_dat[attrition_dat$dept == 'Product' & 
attrition_dat$month == max(attrition_dat$month), 'rate'], 
label = 'Product', color = "#808080", size = 4, hjust = 0) 
+

↪→
↪→
↪→
↪→ 

ggplot2::annotate(geom = "text", x =  max(attrition_dat$month) 
+ .5, y =  attrition_dat[attrition_dat$dept == 'Finance' & 
attrition_dat$month == max(attrition_dat$month), 'rate'], 
label = 'Finance', color = "#808080", size = 4, hjust = 0) 
+

↪→
↪→
↪→
↪→
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ggplot2::annotate(geom = "text", x =  max(attrition_dat$month) 
+ .5, y =  attrition_dat[attrition_dat$dept == 'People' & 
attrition_dat$month == max(attrition_dat$month), 'rate'], 
label = 'People', color = "#808080", size = 4, hjust = 0) 
+

↪→
↪→
↪→
↪→ 

ggplot2::scale_color_manual(values = c("Engineering" = 
"#0070C0",↪→ 

"Product" = "#BFBFBF", 
"Finance" = "#BFBFBF", 
"People" = "#BFBFBF")) 

+↪→ 

ggplot2::theme(panel.background = ggplot2::element_blank(), 
legend.position = "none", 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(hjust = 0, 
margin = ggplot2::margin(t =  0, r =  0, b =  
20, l =  0), colour = "#404040"),

↪→
↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

Slopegraphs 

### Data Prep ### 

# Build data frame with YoY headcount metrics by department 
prepost_scores <- data.frame(date = c(rep('Time 1', 2), 

rep('Time 2', 2)),↪→ 

group = rep(c('Treatment', 
'Control'), 2),↪→ 

score = c(10, 13, 55, 16)) 

### Slopegraphs ### 

# Load library
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library(ggplot2) 

# Calculate treatment and control group changes for inclusion 
in annotation↪→ 

treatment_chg <- subset(prepost_scores, group == 'Treatment' & 
date == 'Time 2', select = score) - subset(prepost_scores, 
group == 'Treatment' & date == 'Time 1', select = score)

↪→
↪→ 

control_chg <- subset(prepost_scores, group == 'Control' & 
date == 'Time 2', select = score) - subset(prepost_scores, 
group == 'Control' & date == 'Time 1', select = score)

↪→
↪→ 

ggplot2::ggplot(prepost_scores, aes(x =  date, y =  score, group 
= group)) +↪→ 

ggplot2::geom_line(aes(color = group), size = 2) + 
ggplot2::geom_point(aes(color = group), size = 4) + 
ggplot2::expand_limits(y =  0) + 
ggplot2::annotate(geom = "text", x =  2.1, y =  

prepost_scores[prepost_scores$group == 'Treatment' & 
prepost_scores$date == 'Time 2', 'score'] - 2, label = 
paste0(prepost_scores[prepost_scores$group == 'Treatment' 
& prepost_scores$date == 'Time 2', 'score'], "% (", 
ifelse(treatment_chg >= 0, '+', ''), treatment_chg, ")", 
"\nTreatment Group"), color = "#0070C0", size = 4, hjust = 
0) +

↪→
↪→
↪→
↪→
↪→
↪→
↪→ 

ggplot2::annotate(geom = "text", x =  2.1, y =  
prepost_scores[prepost_scores$group == 'Control' & 
prepost_scores$date == 'Time 2', 'score'] - 2, label = 
paste0(prepost_scores[prepost_scores$group == 'Control' & 
prepost_scores$date == 'Time 2', 'score'], "% (", 
ifelse(control_chg >= 0, '+', ''), control_chg, ")", 
"\nControl Group"), color = "#808080", size = 4, hjust = 
0) +

↪→
↪→
↪→
↪→
↪→
↪→
↪→ 

ggplot2::labs(title = ' A more favorable change in 
engagement was observed \n for the treatment 
group relative to \n the control group.', x =  
'Observation Period') +

↪→
↪→
↪→ 

ggplot2::scale_color_manual(values = c("Control" = "#BFBFBF", 
"Treatment" = 

"#0070C0")) +↪→ 

ggplot2::theme(panel.background = ggplot2::element_blank(), 
legend.position = "none", 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank(), 
axis.text.y = ggplot2::element_blank(),
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plot.title = ggplot2::element_text(colour = 
"#404040"),↪→ 

axis.title.x = ggplot2::element_text(margin = 
ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_blank()) 

Bar Charts 

### Data Prep ### 

# Load library 
library(dplyr) 

# Set seed for reproducibility 
set.seed(1234) 

# Generate favorability distributions 
fav_pct <- round(runif(7, 20, 45), 0) 
neu_pct <- round(runif(7, 20, 45), 0) 
unfav_pct <- 100 - fav_pct - neu_pct 
scores <- c(fav_pct, neu_pct, unfav_pct) 

# Average top box (favorable) score 
topbox_avg <- round(mean(fav_pct), 0) 

# Build data frame with YoY headcount metrics by department 
engagement_scores <- data.frame(dept = rep(c('Engineering', 

'Finance', 'Legal', 'Marketing', 'People', 'Product', 
'Sales'), 3),

↪→
↪→ 

favorability = 
c(rep('Favorable', 7), 
rep('Neutral', 7), 
rep('Unfavorable', 7)),

↪→
↪→
↪→ 

pct = scores) 

# Rank departments by top box score to support sorting 
dept_rank <- engagement_scores |> 

dplyr::filter(favorability == 'Favorable') |> 
dplyr::arrange(desc(pct)) |> 
dplyr::mutate(rank = dense_rank(desc(pct))) |>
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dplyr::select(dept, rank) 

# Flag top department records in df to support conditional 
coloring↪→ 

engagement_scores$top_score = ifelse(engagement_scores$dept == 
dept_rank[1, 'dept'], 1, 0)↪→ 

# Add department rank based on top box scores 
engagement_scores <- left_join(engagement_scores, dept_rank, 

by = "dept")↪→ 

### Vertical Bar Charts ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(subset(engagement_scores, favorability == 
'Favorable'), aes(x =  reorder(dept, -pct), y =  pct, fill = 
as.factor(top_score))) +

↪→
↪→ 

ggplot2::labs(title = 'The People team is leading in 
department-level engagement.', x =  'Department', y =  
'Engagement Score') +

↪→
↪→ 

ggplot2::geom_bar(stat = "identity") + 
ggplot2::geom_hline(yintercept = topbox_avg, linetype = 

'dotted', color = "#404040") +↪→ 

ggplot2::annotate(geom = "text", x =  7.1, y =  topbox_avg + 
1.3, label = paste0("Avg = ", topbox_avg), color = 
"#404040", size = 3) +

↪→
↪→ 

ggplot2::scale_fill_manual(values = c("1" = "#0070C0", 
"0" = "#BFBFBF")) + 

ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  0, b =  20, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank())
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### Horizontal Bar Charts ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(subset(engagement_scores, favorability == 
'Favorable'), aes(x =  reorder(dept, pct), y =  pct, fill = 
as.factor(top_score))) +

↪→
↪→ 

ggplot2::labs(title = 'The People team is leading in 
department-level engagement.', x =  'Department', y =  
'Engagement Score') +

↪→
↪→ 

ggplot2::geom_bar(stat = "identity") + 
ggplot2::coord_flip() + 
ggplot2::geom_hline(yintercept = topbox_avg, linetype = 

'dotted', color = "#404040") +↪→ 

ggplot2::annotate(geom = "text", x =  1, y =  topbox_avg + 2.3, 
label = paste0("Avg = ", topbox_avg), color = "#404040", 
size = 3) +

↪→
↪→ 

ggplot2::scale_fill_manual(values = c("1" = "#0070C0", 
"0" = "#BFBFBF")) + 

ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  0, b =  20, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

### Stacked Bar Charts ### 

# Load library 
library(ggplot2) 
ggplot2::ggplot(engagement_scores, aes(x =  reorder(dept,

-rank), y =  pct, fill = factor(favorability, levels = 
c("Unfavorable", "Neutral", "Favorable")))) +

↪→
↪→ 

ggplot2::labs(title = 'Half of Engineering respondents report 
unfavorable engagement.', x =  'Department', y =  
'Engagement Score') +

↪→
↪→
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ggplot2::guides(fill = guide_legend(title = "Favorability")) + 
ggplot2::geom_bar(position = "fill", stat = "identity") + 
ggplot2::coord_flip() + 
ggplot2::scale_fill_manual(values = c("Favorable" = "#0070C0", 

"Neutral" = "#D9D9D9", 
"Unfavorable" = 

"#ED7D31")) +↪→ 

ggplot2::scale_y_continuous(labels = scales::percent) + 
ggplot2::theme(panel.background = ggplot2::element_blank(), 

axis.title.x = ggplot2::element_text(margin = 
ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  0, b =  20, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

### Bidirectional Bar Chart Data Prep ### 

# Set seed for reproducibility 
set.seed(1234) 

# Build data frame with hire and term metrics by department 
hires_terms <- data.frame(dept = c('Engineering', 'Finance', 

'Legal', 'Marketing', 'People', 'Product', 'Sales'),↪→ 

metric = rep(c('Hires', 'Terms'), 
7),↪→ 

cnt = round(runif(14, 5, 150), 0)) 

# Append transformed count column to support bidirectional bar 
charts↪→ 

hires_terms$cnt_trans <- ifelse(hires_terms$metric == 'Terms', 
0 - hires_terms$cnt, hires_terms$cnt)↪→ 

### Bidirectional Bar Charts ### 

# Load library 
library(ggplot2)
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ggplot2::ggplot(hires_terms, aes(x =  reorder(dept,
-cnt_trans), y =  cnt_trans, fill = as.factor(metric))) +↪→ 

ggplot2::labs(title = 'Terms have eclipsed hires in Sales, 
Product, and Engineering \nover the trailing 12-month 
period.', x =  'Department', y =  'Headcount Changes') +

↪→
↪→ 

ggplot2::guides(fill = guide_legend(title = "Metric")) + 
ggplot2::geom_bar(stat = "identity") + 
ggplot2::coord_flip() + 
ggplot2::scale_fill_manual(values = c("Terms" = "#ED7D31", 

"Hires" = "#0070C0")) + 
ggplot2::theme(panel.background = ggplot2::element_blank(), 

axis.title.x = ggplot2::element_text(margin = 
ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  0, b =  20, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

Combination Charts 

### Data Prep ### 

# Set seed for reproducibility 
set.seed(12345) 

# Turnover rates 
reg_rt <- round(runif(24, 5, 15), 1) 
nonreg_rt <- round(runif(24, 1, 5), 1) 
vol_rt <- reg_rt + nonreg_rt 
turnover_dat <- data.frame(month = 1:24, 

reg_rt = reg_rt, 
nonreg_rt = nonreg_rt, 
vol_rt = vol_rt)
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### Combination Charts ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(turnover_dat) + 
ggplot2::labs(title = 'The largest share of monthly voluntary 

attrition over the 24-month period \nhas consistently been 
regrettable terminations.',

↪→
↪→ 

x =  'Month', 
y =  'Attrition Rate') + 

ggplot2::geom_bar(aes(x =  month, y =  vol_rt), fill = 
'#E7E6E6', stat = "identity") +↪→ 

ggplot2::geom_line(aes(x =  month, y =  reg_rt), size = 1, color 
= "#ED7D31", group = 1) +↪→ 

ggplot2::geom_line(aes(x =  month, y =  nonreg_rt), size = 1, 
color = "#9BC2E6", group = 1) +↪→ 

ggplot2::scale_x_continuous(limits = c(0, 27), breaks = seq(0, 
24, by = 3)) +↪→ 

ggplot2::scale_y_continuous(limits = c(0, 20), breaks = seq(0, 
20, by = 5)) +↪→ 

ggplot2::annotate(geom = "text", x =  max(turnover_dat$month) + 
.7, y =  turnover_dat[turnover_dat$month == 
max(turnover_dat$month), 'reg_rt'], label = 'Regrettable', 
color = "#ED7D31", size = 4, hjust = 0) +

↪→
↪→
↪→ 

ggplot2::annotate(geom = "text", x =  max(turnover_dat$month) + 
.7, y =  turnover_dat[turnover_dat$month == 
max(turnover_dat$month), 'nonreg_rt'], label = 
'Not\nRegrettable', color = "#5B9BD5", size = 4, hjust = 
0) +

↪→
↪→
↪→
↪→ 

ggplot2::theme(panel.background = ggplot2::element_blank(), 
legend.position = "none", 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(hjust = 0, 
colour = "#404040"),↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank())
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Waterfall Charts 

### Data Prep ### 

# Generate headcount data with id field to define bar order 
hc_dat <- data.frame(id = 1:6, 

event = c("Starting HC", "Hires", 
"Transfers In", "Transfers Out", 
"Exits", "Ending HC"),

↪→
↪→ 

type = c("Headcount", "Growth", "Growth", 
"Loss", "Loss", "Headcount"),↪→ 

count = c(100, 50, 10, -10, -20, 130), 
start = NA, 
end = NA) 

# Define start and end values to support waterfall chart 
hc_dat$end <- cumsum(hc_dat$count) 
hc_dat$end <- c(head(hc_dat$end, -1), 0) 
hc_dat$start <- c(0, head(hc_dat$end, -1)) 

# Swap start/end values for last record (Ending HC) 
hc_dat[nrow(hc_dat), "end"] <- hc_dat[nrow(hc_dat), "start"] 
hc_dat[nrow(hc_dat), "start"] <- 0 

### Waterfall Chart ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(hc_dat, aes(x =  event, fill = type)) + 
ggplot2::geom_rect(aes(x =  reorder(event, id), 

xmin = id - 0.45, 
xmax = id + 0.50, 
ymin = end, 
ymax = start)) + 

geom_text(aes(id, end, label = ifelse(id %in% c(1,6), end, 
'')), # Only label start and end HC↪→ 

vjust = 1.5) + 
ggplot2::labs(title = 'Hires and inbound transfers have 

outpaced outbound transfers and exits \nin Engineering, 
leading to a net YTD increase in headcount.',

↪→
↪→ 

x =  'Event',
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y =  'Headcount') + 
ggplot2::scale_fill_manual(values = c("Headcount" = "#D9D9D9", 

"Growth" = "#0070C0", 
"Loss" = "#ED7D31")) + 

ggplot2::theme(legend.position = "none", 
panel.background = ggplot2::element_blank(), 
axis.title.x = ggplot2::element_text(margin = 

ggplot2::margin(t =  10, r =  0, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

axis.title.y = ggplot2::element_text(margin = 
ggplot2::margin(t =  0, r =  10, b =  0, l =  
0), colour = "#404040"),

↪→
↪→ 

plot.title = ggplot2::element_text(hjust = 0, 
colour = "#404040"),↪→ 

axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank()) 

Waffle Charts 

### Data Prep ### 

# Create df with TA funnel metrics 
ta_dat <- data.frame(stage = c("Apply", "Phone Screen", "Interview", 

"Offer Extend", "Offer Accept"),↪→ 
cnt = c(60, 20, 10, 6, 4)) 

# Set depth of waffle chart (# of y-axis rows) 
depth <- 10 

# Each observation needs an x and y coordinate, and y needs to be 
specified first for a waffle chart with horizontal accumulation↪→ 

waffle_dat <- expand.grid(y =  1:depth, 
x =  seq_len(ceiling(sum(ta_dat$cnt) / 

depth)))↪→ 

# Expand the applicant counts into a vector of stage labels 
stages <- rep(ta_dat$stage, ta_dat$cnt) 

# Integrate stages and fill any extra tiles with NA 
waffle_dat$stage <- c(stages, rep(NA, nrow(waffle_dat) -

length(stages)))↪→
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### Waffle Chart ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(waffle_dat, aes(x =  x, y =  y, fill = stage)) + 
ggplot2::labs(title = "We select 10 in every 100 applicants. 

\nOur offer acceptance rate (OAR) is 40%.") +↪→ 

ggplot2::geom_tile(color = "white") + 
ggplot2::scale_fill_manual(values = c("Apply" = "#D9D9D9", 

"Phone Screen" = 
"#BFBFBF",↪→ 

"Interview" = "#A6A6A6",
↪→ 

"Offer Extend" = 
"#808080",↪→ 

"Offer Accept" = 
"#0070C0")) +↪→ 

ggplot2::scale_y_reverse() + 
ggplot2::theme_void() + 
ggplot2::theme(legend.title = ggplot2::element_blank(), 

plot.title = ggplot2::element_text(hjust = 0, 
colour = "#404040"))↪→ 

Sankey Diagrams 

### Data Prep ### 

# Load library 
library(dplyr) 

# Set seed for reproducibility 
set.seed(1234) 

# Create nodes df 
nodes <- data.frame(name = c('Engineering', 'Finance', 

'Legal', 'Marketing', 'People', 'Product', 'Sales', # 
source

↪→
↪→
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'Engineering', 'Finance', 
'Legal', 'Marketing', 
'People', 'Product', 
'Sales')) # destination

↪→
↪→
↪→ 

# Create links df 
links <- expand.grid(source = 0:6, target = 7:13) 

# Append employee transfer counts per department pair to links 
df↪→ 

links$value <- ifelse(links$source == links$target-7, 
round(rnorm(1000, 150, 50), 0), round(rnorm(1000, 30, 5), 
0))

↪→
↪→ 

# Append source department variable for colored connections 
links$dept <- dplyr::case_when( 

links$source == 0 ~ "Engineering", 
links$source == 1 ~ "Finance", 
links$source == 2 ~ "Legal", 
links$source == 3 ~ "Marketing", 
links$source == 4 ~ "People", 
links$source == 5 ~ "Product", 
links$source == 6 ~ "Sales", 
TRUE ~ "NA" 

) 

# Append within/outside department transfer variable for 
colored connections↪→ 

links$wiout_dept <- dplyr::case_when( 
(links$source == 0 & links$target == 7) | (links$source == 1 

& links$target == 8) | (links$source == 2 & links$target 
== 9) | (links$source == 3 & links$target == 10) | 
(links$source == 4 & links$target == 11) | (links$source 
== 5 & links$target == 12) | (links$source == 6 & 
links$target == 13) ~ "Within",

↪→
↪→
↪→
↪→
↪→ 

TRUE ~ "Outside" 
) 

# Append dichotomous product/other indicator to links and 
nodes data frames↪→ 

links$prod <- ifelse(links$dept == 'Product', 'Product', 
'Other')↪→ 

nodes$prod <- ifelse(nodes$name == 'Product', 'Product', 
'Other')↪→
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### Sankey Diagrams ### 

# Load library 
library(networkD3) 

# Sankey diagram 1 
networkD3::sankeyNetwork(Links = links, 

Nodes = nodes, 
Source = "source", 
Target = "target", 
Value = "value", 
NodeID = "name", 
fontSize = 12, 
nodeWidth = 30) 

# Sankey diagram 2 
networkD3::sankeyNetwork(Links = links, 

Nodes = nodes, 
Source = "source", 
Target = "target", 
Value = "value", 
NodeID = "name", 
fontSize = 12, 
nodeWidth = 30, 
LinkGroup = "dept") 

# Sankey diagram 3 
networkD3::sankeyNetwork(Links = links, 

Nodes = nodes, 
Source = "source", 
Target = "target", 
Value = "value", 
NodeID = "name", 
fontSize = 12, 
nodeWidth = 30, 
LinkGroup = "wiout_dept") 

# Sankey diagram 4 
# Define color palette 
colorJS <- paste('d3.scaleOrdinal(["#BFBFBF", "#0070C0"])') 

networkD3::sankeyNetwork(Links = links, 
Nodes = nodes, 
Source = "source",
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Target = "target", 
Value = "value", 
NodeID = "name", 
fontSize = 12, 
nodeWidth = 30, 
NodeGroup = "prod", 
LinkGroup = "prod", 
colourScale = colorJS) 

Pie Charts 

### Data Prep ### 

# Create data cube for gender representation among active 
employees↪→ 

smmry_gender <- data.frame(gender = c('Male', 'Female'), 
cnt = c(732, 501), 
pct = c(59.4, 40.6)) 

### Pie Chart ### 

# Load library 
library(ggplot2) 

ggplot2::ggplot(smmry_gender, aes(x =  "", y =  pct, fill = 
as.factor(gender))) +↪→ 

ggplot2::geom_bar(stat = "identity") + 
ggplot2::coord_polar("y", start = 0) + 
ggplot2::geom_text(aes(label = paste0(pct, "%")), color = 

ifelse(smmry_gender$gender == 'Male', 'white', 'black'), 
position = position_stack(vjust = 0.5)) +

↪→
↪→ 

ggplot2::labs(title = 'Nearly 60 percent of active employees 
identify as male.') +↪→ 

ggplot2::scale_fill_manual(values = c("Female" = "#BFBFBF", 
"Male" = "#0070C0")) + 

ggplot2::theme_void() + 
ggplot2::theme(legend.title = ggplot2::element_blank(),
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panel.background = ggplot2::element_blank(), 
axis.ticks.x = ggplot2::element_blank(), 
axis.ticks.y = ggplot2::element_blank(), 
plot.title = ggplot2::element_text(colour = 

"#404040"))↪→
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ggplot2::scale_x_continuous(), 266, 

348–350, 358 
ggplot2::scale_y_continuous(), 347, 

356 
ggplot2::summarise(), 67, 297, 319, 

344, 345 
ggplot2::theme(), 28, 29, 126, 165, 

172, 340–343, 346, 347, 349–352, 
354–358, 360, 361, 364 

ggplot2::theme_bw(), 105, 109, 122, 
126, 135, 136, 165, 172, 190, 198, 266 

ggpubr::ggarrange(), 127, 128, 165, 
172, 175, 343 

ggpubr::ggqqplot(), 173, 175 
glm(), 224, 225, 227, 231, 249, 288 
hclust(), 117, 279, 281 
head(), 21, 92, 93, 311, 359 
help(), 13  
if(), 125 
ifelse(), 92, 115, 131, 132, 161, 227, 

247, 252, 300, 307, 309, 314, 318, 346, 
352, 354, 356, 359, 362, 364 

is.na(), 86, 87, 250, 256, 257 
is.numeric(), 275 
kmeans(),276 
kruskal.test(), 175 
lavaan::cfa(), 270, 271 
lavaanPlot::lavaanPlot(), 271 
length(), 17, 19, 102, 108, 134, 137, 138, 

164, 251, 266, 303, 313, 348 
library(), 12, 27, 32, 33, 42, 66, 67, 
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364 

list(), 25, 42, 277 
lm(), 174, 175, 186, 187, 189, 191, 194, 

196, 199–201, 204, 208–211, 214–219, 
224, 231, 256 

lme4::glmer, 228 
lmerTest::lmer(), 211 
lmtest::bptest(), 189, 198 
log(), 19, 189 
log10(), 175 
matrix(), 20–22 
max(), 100, 101, 349–351, 358 

mean(), 13, 87, 98–100, 109, 134, 135, 
137–141, 173, 202, 258 

median(), 98–100 
min(), 101 
mode(), 100 
model.matrix(), 92, 93 
moments::kurtosis(), 111 
moments::skewness(), 108 
mosaicplot(), 152 
multinom(), 231, 237 
ncol(), 21  
nrow(), 21, 68, 69, 132, 163, 247, 248, 

252, 264, 313, 360 
ordered(), 235, 297, 344, 345 
pairwise.wilcox.test(), 176 
paste(), 33–35, 39, 40, 42, 43, 45–47, 

126, 172, 270, 363 
paste0(), 352, 354, 355, 364 
phi(), 116 
plot(), 187 
pnorm(), 232, 237 
polr(), 235, 237 
prcomp(), 266 
predict(), 251, 257 
print(), 26, 258, 301 
psych::cortest.bartlett(), 264 
psych::fa(), 267 
psych::fa.diagram(), 268 
psych::KMO(), 264 
psych::phi(), 116, 154 
psych::scree(), 265 
purrr::reduce(), 42  
pwr.anova.test(), 147 
quantile(), 104 
randomForest::randomForest(), 250 
randomForest::varImpPlot(), 253 
range(), 100, 101 
rbind(), 131, 135, 248, 252, 257 
rchisq(), 128 
read.table(), 13  
relevel(), 230 
reorder(), 295, 342, 343, 354, 355, 357 
rep(), 252, 303–306, 309, 313, 348, 351, 

353, 356, 360 
residuals(), 173–175 
return(), 126, 172, 251, 257 
rnorm(), 127, 164 
round(), 35, 39, 41–43, 87, 108, 109, 111, 

132, 257, 306, 309, 314, 353, 356, 357, 
362 

rpart.plot::rpart.plot(), 254 
rpart::rpart(), 254 
runif(), 128, 134, 302, 348
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sample(), 66, 68, 69, 131, 138, 140, 164, 

247, 248 
sapply(), 87, 275, 279 
scale(), 200, 275 
sd(), 103, 109, 137–141, 203 
seq(), 17, 23, 69, 348–350, 358 
shapiro.test(), 157, 158, 166, 174, 

190, 198 
signif(), 251 
sqldf::sqldf(), 33–36, 40, 41, 43–45, 

47, 48 
sqrt(), 19, 103, 189, 199–201, 204, 

208–212 
str(), 24, 25, 235 
subset(), 24, 86, 87, 94, 172, 186, 207, 

275, 300, 346, 352 
sum(), 18, 109, 111, 251, 266 
summary(), 84, 89, 90, 104, 122, 175, 177, 

191, 211, 217, 218, 227, 230, 232, 236, 
256, 271 

t(), 232 
table(), 116, 152 
tail(), 21  
t.test(), 158, 159, 167 
typeof(), 14  
unique(), 68, 92, 100, 248 
unlist(), 158, 161, 164, 172 
update(), 196 
var(), 102, 113, 134 
which(), 131, 275 
which.min(), 93  
wilcox.test(), 161, 162, 168, 169 
with(), 157, 158 

Recursive partitioning, 254 
Reference group (reference category), 93 
Referential integrity, 36, 37 
Regression 

binomial logistic, 224–228 
cubic, 213, 214, 216, 217, 221, 256, 258 
hierarchical, 209–210, 220 
multinomial logistic, 229–234, 237 
multiple linear, 192–200 
ordinal logistic, 234–237 
polynomial, 212–220 
principal components (PCR), 265–267 
proportional odds assumption (parallel 

regression), 234–238 
quadratic, 213, 214, 216, 256 
simple linear, 184–192 

Reliability 
internal consistency, 75 
inter-observer, 75 
inter-rater, 75 

parallel-forms, 75 
test-retest, 75 

Repeated-samples t-test, 163 
Report, 1, 3, 54, 74, 77, 80, 145, 337 
Research designs 

correlational, 56, 60 
cross-sectional, 56, 73, 213 
experimental, 54–55 
non-experimental, 56–57, 59 
observational, 56 
quasi-experimental, 55–56 

Research hypothesis (hypotheses), 52, 142 
Research methods 

mixed, 53, 70, 228 
qualitative, 53 
quantitative, 52–53 

Research question, 51, 229, 334, 335 
Residual deviance, 225 
Residual sum of squares (RSS), 185 
Residuals vs. Fitted plot (residuals vs. fitted), 

187 
Residuals vs. Leverage plot (residuals vs. 

leverage), 188 
Response variable, 183, 189, 191, 192, 193, 

196, 197, 198, 212, 223, 230, 274 
Retention, 1, 7, 54, 89, 251, 268–273, 276 
Right join (right inclusive, right exclusive), 39 
R logical operators 

& (and), 24 
|(or), 24 

R Markdown, 4, 298 
R miscellaneous operators 

:, 17 
::, 27 
|>, 41 
%>%, 41 
%in%, 24, 68 
$, 24 

Root Mean Square Error of Approximation 
(RMSEA), 273 

R packages 
brant, 12, 235 
car, 12, 171 
caret, 12  
cluster, 12, 68 
corrplot, 12, 116 
dplyr, 68  
equatiomatic, 12  
factoextra, 12  
ggally, 12  
ggdist, 12  
ggplot2, 27–29, 104, 122, 165, 172, 266, 

287, 288, 291–293, 297, 298, 303, 305, 
307, 313, 319
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ggpubr, 12, 125, 173 
lavaan, 269–271 
lavaanPlot, 271 
lme4, 228 
lmerTest, 211, 212 
lmtest, 189, 198 
MASS, 12, 235 
moments, 12, 108, 111 
networkD3, 314, 363 
nnet, 230 
psych, 154, 264–268 
pwr, 146, 147 
reshape2, 12  
rpart, 254 
rpart.plot, 254 
sqldf, 32–36, 40, 41, 43–45, 47, 48 
tidyverse, 41, 42 

R relational operators 
!. = (not equal to), 153, 162, 169 
<(less than), 13 
<. = (less than or equal to), 272, 297, 344, 

345 
.== (equal to), 86, 87, 92, 100, 115, 125, 

132, 137, 157, 158, 161, 163, 164, 172, 
207, 247, 248, 251, 255, 258, 300, 315, 
316, 318, 344–352, 362 

>(greater than), 41 
>. = (greater than or equal to), 24 

S 
Sample, 59, 86, 97, 121, 149, 182, 237, 248, 

261 
Sample size (n-count), 65 
Sample statistic, 64, 100, 102, 137, 138 
Sampling error, 70–73, 146 
Sampling frame, 64, 77 
Sampling interval, 68, 69 
Sampling without replacement, 66 
Sampling with replacement, 66, 248 
Scale-location plot (scale-location), 188 
Scientific method, 8, 9, 75 
Scientific notation, 300 
Scree plot, 264–267 
Seasonality, 213, 216, 220 
Sensitivity (recall), 242 
Shapiro-Wilk test, 157, 165, 166, 173, 190, 

198, 205 
Simple random sampling, 65–67 
Simpson’s Paradox, 118 
Skewness, 106–109, 155 
Slope, 184, 188, 199, 202, 220, 234, 266, 301, 

302 

Slowly changing dimension (SCD), 80–83 
Software, 4, 65, 287, 298, 320 
Span of control (SoC), 61, 101 
Spearman’s rho (Spearman), 114, 115, 

150 
Specificity, 243, 251, 253 
SQL, 6, 31–49, 79, 82 
SQL clauses 

FROM, 31–35, 39–48 
GROUP BY, 31, 34, 35, 40, 41, 43, 44, 46, 

48 
HAVING, 31, 35, 40, 41, 43, 44 
ORDER BY, 31, 35, 40, 41, 43–48 
SELECT, 31–35, 37–40, 42–48 
WHERE, 31–35, 38–48, 82 

SQL functions 
ASC, 45  
COUNT(), 34, 35, 39, 40 
DESC, 45–47 
DISTINCT(), 46, 48 
OVER(), 44–47 
PARTITION BY, 44–48 
RANK(), 44–47 
ROUND(), 35, 39, 41–43 

Stakeholder, 3, 84, 104, 240, 283, 320, 
325–327, 329, 330, 333, 334 

Standard deviation, 103, 108, 120, 127, 133, 
137, 148, 149, 156, 160, 199 

Standard error (SE), 133, 137, 138, 191, 
199–202, 204, 205, 208–210, 215, 216, 
218, 219, 225, 231, 232, 250, 256, 272 

Standardized root mean square residual 
(SRMR), 272, 273 

Statistical hypothesis (hypotheses), 335 
Statistical moment, 108–111 
Statistical power (power analysis), 145 
Statistical significance, 144, 147, 161, 178, 

216, 225 
Straightlining, 89 
Stratified random sampling, 66–68, 

77 
Structural equation modeling (SEM), 271, 274, 

281 
Structural missingness, 85, 86 
Structured data, 79 
Student’s t-test, 155, 161, 179 
Subquery (subqueries), 42–44, 48 
Supervised learning, 261, 266 
Support vector machines (SVM), 244 
Survey instrument, 262, 263, 337 
Synthetic minority oversampling technique 

(SMOTE), 248, 251–253, 255, 260 
Systematic sampling, 68–69
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T 
Table, 4, 31, 36, 37, 43–44, 46, 47, 80–83, 95, 

115, 140, 150–154, 284, 285, 297–299, 
322, 329, 331, 337, 344–345 

Test set (validation set), 240 
Theoretical null distribution, 144 
Theory, 8, 53, 60, 77, 121, 262, 263, 269 
3D visuals, 320 
Time to fill (TTF), 101 
TL;DR, 327, 331 
Training set, 240, 241, 247 
Transactional data, 80, 262 
Treatment group, 54, 163, 165, 168, 169, 305, 

352 
True negative, 242, 251 
True positive, 242, 251 
t-statistic (t-value, t value, t score), 140, 141, 

191, 199, 200, 201, 204, 205, 208–210, 
212, 215–219, 236, 237, 256 

Tucker–Lewis Index (TLI), 272, 273 
Turnover (attrition), 218 
Type 1 error (false positive), 242 
Type 2 error (false negative), 242 
Type 1 table, 80–82 
Type 2 table, 80, 81, 95 

U 
Underfitting, 244 
Underrepresented group (URG), 60 
Unit testing, 339 
Univariate analysis, 97–111 
Unstructured data, 79 
Unsupervised learning, 261–281 
User acceptance testing (UAT), 339 
User-defined function (UDF), 26–27, 29, 125, 

126, 128, 172 

V 
Validation set approach, 241, 247 
Validity 

concurrent, 77 
construct, 75–77 
content, 75, 76 
convergent, 76 

criterion-related, 75, 77 
discriminant, 76 
external, 52, 57 
face, 75 
instrumental, 77 
internal, 52, 54, 56, 57, 330 
predictive, 77 

Variable centering, 201 
Variable importance plot, 253, 254, 260 
Variable selection (feature selection), 199–201 
Variance, 73, 91, 101–103, 108, 111–113, 120, 

127, 134, 147, 149, 155, 156, 158, 160, 
164, 170, 171, 182–184, 188, 191–193, 
199, 209, 210, 212, 213, 216, 218, 231, 
243, 244, 258, 261, 264–268, 274, 330 

Variance inflation factor (VIF), 195, 201, 202 
Vectorized operation (vectorization), 18–20 
Vectors 

character, 29 
date, 16 
logical, 16 
numeric, 16–18, 158, 172 

Virtual table, 43–44, 46, 47 

W 
Ward’s method, 278, 281 
Welch-Satterthwaite equation, 160 
Welch’s t-test, 155, 156, 158–161, 179 
Wilcoxon Rank-Sum test, 161, 162, 168, 

176 
Wilcoxon Signed-Rank test, 168–169, 179 
Window function, 44–48 
Wisdom of the crowd, 246 
Within-group variance, 170 
Workforce growth, 101 

Y 
Yuen’s t-test, 155 

Z 
z-statistic (z-value, z value, z score), 24, 138, 

140, 225, 227, 231, 232, 249, 273 
Z-test, 138, 140
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