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Preface

The present monograph aims to provide an account of the basic results obtained
in the exploration of the subject of nuclear superfluidity, placing special emphasis
on recent developments coming out from ongoing research, in particular medium
polarization and pairing in exotic nuclei.

The marked mass dependence of the abundance of nuclear species testifies
to the fact that nucleons in nuclei move essentially independently of each other
in an average potential produced by the effect of all the other nucleons. Spe-
cial stability is ascribed to the closing of shells in correspondence with magic
numbers. Adding nucleons to a closed shell system polarizes the shells, lead-
ing eventually to deformations. The best studied of these phase transitions are
associated with deformations in: (a) three-dimensional space (violating angular
momentum conservation, i.e. rotational invariance), (b) gauge space (violating
particle number conservation, i.e. gauge invariance).

The phenomenon of spontaneous symmetry breaking in gauge space (i.e.
the fact that the Hamiltonian describing a system is symmetric with respect to
gauge transformations while the state is not) is intimately connected with nuclear
superfluidity. This is the subject of Chapters 1, 2 and 3.

While potential energy always prefers special arrangements and thus leads to
the spontaneous symmetry-breaking phenomena, fluctuations favour symmetry,
leading to collective modes (intimately connected with symmetry restoration):
pairing rotations and pairing vibrations, analogues in gauge space to rotations
in three-dimensional space of the system as a whole, as well as to (multipole)
surface vibrations respectively. This is the subject of Chapters 4, 5, and 6.
Pairing also plays a central role in phenomena like exotic decay, alpha decay
and fission where a nucleus divides into two smaller subsystems. Some aspects
of this important subject are taken up in Chapter 7.

Associated with spontaneous symmetry breaking the system acquires emer-
gent properties not contained in the Hamiltonian describing it, nor in the particles

xi
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composing it, in particular, an order parameter and a generalized rigidity. The
order parameter measures the magnitude of the distortion: e.g. the quadrupole
moment (which measures the number of aligned single-particle orbitals) in the
case of deformed nuclei in normal space, the pairing gap (which measures the
‘binding energy’ of pairs of nucleons moving in time-reversal states and forming
Cooper pairs, the building blocks of fermion superfluidity) in the case of gauge
deformations. Generalized rigidity indicates the fact that pushing a deformed
nucleus at one of the tips (through, e.g. a time-dependent Coulomb field induced
by the passage of a heavy ion), the push is propagated over the whole system and
one can set the nucleus into rotation. Two-particle transfer reactions provide the
push to set a superfluid nucleus into rotation in gauge space, as was first found
by Josephson in connection with superconductivity in condensed matter. This
brings us to the subtitle of the present monograph: pairing in finite systems.

Although one can draw many analogies between the behaviour of infinite and
of finite many-body systems (FMBS), there are also major differences. In par-
ticular, while in transition between the normal and superfluid phase taking place
in infinite systems, all particles moving close to the Fermi surface play a similar
role, in the case of FMBS very few orbitals control the phenomenon, providing
also most of the stability of the new phase. This fact provides the possibility,
among other things, of studying superfluidity in terms of individual orbitals,
both in the case of the (standard) s-wave pairing as well as in the case of d-wave
pairing. At variance to the case of infinite systems where pairing vibrations are
hard to observe, FMBS provide the framework to study the spectrum of pairing
vibrations both in superfluid as well as in normal nuclei, their interweaving and
resulting anharmonicity phenomena which are at the basis of the condensation of
Cooper pairs and thus of superfluidity. The ubiquitous role played by pairing vi-
brations (Chapter 5) in nuclear structure (pairing phase transition, dealignment,
nuclear masses, etc.) is discussed in detail in Chapters 6 and 8.

A microscopic calculation of superfluidity in nuclei starts from a mean-field
calculation which provides the single-particle levels of the bare nucleons.
Bouncing inelastically off the nuclear surface, nucleons can excite a collective
vibration at a given instant of time and reabsorb it at a later time. Through this
process the bare nucleons become dressed. Physically, this means that what
one measures (the experimental single-particle energies, closely related to the
effective mass of a nucleon inside the nucleus) is not the bare mass but something
else which includes the effect of the virtual processes mentioned above.

Collective surface vibrations excited by a nucleon at a given time may also
be reabsorbed by another nucleon at a later time. Such a process turns out to
be of importance in renormalizing the bare nucleon–nucleon pairing interaction
arising from the exchange of mesons, and is the subject of Chapters 8, 9 and 10.

Because halo nuclei (i.e. nuclei where the excess of one type of nucleons
forces the least bound particles into very extended orbits) are highly polarizable,
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they provide a particularly testing ground and novel framework to assess the role
polarization effects play in pairing correlations in nuclei. This is the subject of
Chapter 11.

A number of important themes are not covered in any detail by the present
monograph: in particular, two-neutron transfer reactions and proton–neutron
pairing. Concerning the first subject an extensive literature is available, including
review papers and chapters of books. Concerning the second subject, although
much theoretical work has been published on T = 0 p-n pairing, the experimental
evidence remains, to date, circumstantial at best. There is an extensive literature
on T = 1 n-p pairing, which includes several detailed review papers.

It could be remarked that the present treatise also does not cover all the work
of large shell model studies of pairing in nuclei. This is true. One has to
remember, however, that nuclear field theory (NFT) used in connection with the
Bloch–Horowitz (perturbation theory) formalism, or with the Dyson equation,
leads also to an (essentially) exact diagonalization of pairing as well as of mean
field. What is accomplished in one approach (shell model) using very large
configuration spaces, is obtained in the second approach (NFT) by accurately
dressing the elementary modes of nuclear excitation (single-particle motion and
collective vibrations) and the vertex controlling their mutual interweaving.

We feel uncomfortable about not including a chapter on pairing at finite tem-
perature and on pairing in other FMBS, such as atomic clusters or quantum dots.
However, this feeling is partially mitigated by the fact that the first subject is
standard in any book on condensed matter physics, and the results can essentially
be taken over to the case of atomic nuclei (see Brink (1994)). The second sub-
ject can be found among the topics covered by recently published books, written
also by practitioners of nuclear physics (see e.g. Lipparini (2003), Broglia et al.
(2004)).

Over the years we have received much illumination on the subject dealt
with in the present monograph from a number of people. DMB would like
to acknowledge stimulating discussions with physicists at the European Center
for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) in Trento,
Italy and especially with Ben Mottelson, Renzo Leonardi, Sandro Stringari and
Aage Winther. He also achieved a deeper understanding of nuclear structure as
a result of discussions with George Bertsch in Seattle, Brian Buck in Oxford and
members of the theory groups in many laboratories including Catania, Kyushu,
Kyoto, Lund, MSU, Orsay, Milan. Padova, Pisa, Saclay, Sapporo, Surrey and
Tokyo. RAB wishes to acknowledge the debt he owes to George Bertsch, Ole
Hansen and Claus Riedel. The interaction and collaboration with Aage Bohr and
Ben Mottelson, started in 1965 and continued through the years, has been a major
source of inspiration. At that time, when he arrived at the Niels Bohr Institute of
Copenhagen, the main foundations of nuclear superfluidity were already solidly
established. Nonetheless pairing was again a major subject of research. In fact,
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the exploration of the collective degrees of freedom was under way, triggered
also, as has always happened in connection with major developments in nuclear
physics, by the availability of new experimental data. This time, two-neutron
transfer data came from the group of Ole Hansen and Ove Nathan. RAB was
fortunate to participate closely in this exploration with Daniel Bes (teacher, col-
laborator and friend from whom he learned so much through the years) as well
as with Ole Hansen. RAB wishes also to thank Ben Bayman, Gerry Brown, Bob
Schrieffer, Peter Schuck, Vladimir Zelevinsky and Witek Nazariewicz for much
illumination. His debt to Francisco Barranco is very large, and increases as each
day goes by, as a consequence of our common striving to understand pairing in
a variety of FMBS setups. Thanks are also due to Pier Francesco Bortignon and
to Gianiuca Coló for advice and collaboration on particular subjects discussed
in this book, and to Enrico Vigezzi for useful criticism. RAB also acknowledges
a most fruitful, lifelong collaboration with Aage Winther. During the many ver-
sions of the book Francesco Marini has taken care of all the technical aspects of
the manuscript. His help has been invaluable to us. Last but not least, thanks
are also due to all the students of the fourth year course of ‘Nuclear Structure
Theory’, which RAB has delivered since 1986 at the Department of Physics of
the University of Milan, building on the wealth of experience gathered in pre-
vious years at the Niels Bohr Institute and at Stony Brook (State University of
New York) in the presentation of particular subjects covered in the present book.

David Brink Ricardo A. Broglia
Oxford, May 2004 Milan, May 2004



1
Introduction

1.1 Pairing in nuclei, superconductors, liquid 3He and neutrons stars

If one sweeps a magnetic field through a metallic ring (e.g. a ring made out
of lead) immersed in liquid helium (T ∼ 4 K) it induces a current which does
not show any measurable decrease for a year, and a lower bound of 105 years
for its characteristic decay time has been established using nuclear resonance
to detect any slight decrease in the field produced by the circulating current
(File and Mills (1963)). If a torus-shaped vessel filled with liquid helium below
the critical temperature Tc = 2.17 K (known as He II) and packed with porous
material, which provides very narrow capillary channels, is rotated around its
axis of symmetry and then brought to rest, the liquid continues to flow (Reppy and
Depatie (1964)), showing no reduction in the angular velocity over a twelve-hour
period, and indicating that He II can flow without dissipation. Using an adiabatic
cooling apparatus, Osheroff et al. (1972 a,b) found two anomalies in the pressure–
time curve of liquid 3He, when the volume was changed at a constant rate. At the
critical temperature Tc = 2.7 mK the slope of the curve suffered a discontinuity,
and at about Tc = 1.8 mK there was a singularity involving hysteresis (see also
Osheroff (1997) and Lee (1997)). If a deformed nucleus in its ground state
is set into a state of rotation by the action of a non-uniform, time-dependent
Coulomb field, it displays rotational bands with a moment of inertia which is a
fraction (between one-half to one-third) of the rigid moment of inertia (Belyaev
(1959), Bohr and Mottelson (1975)). Rotating neutron stars (pulsars) display
marked glitches, that is, sudden increases in the frequency of the emitted pulses
of radiation (McKenna and Lyne (1990), McCullough et al. (1990), Flanagan
(1990), Anderson et al. (1982)). All the above observations are examples of
phenomena known as superconductivity and superfluidity.

From a microscopic point of view, helium atoms are structureless spherical
particles interacting via a two-body potential. The attractive part of this potential,

1



2 Introduction

arising from weak Van der Waals-type dipole, quadrupole, etc. forces, causes
helium gas to condense, at normal pressure, into a liquid at temperatures of 3.2 K
and 4.2 K for 3He and 4He respectively.

The striking difference in the behaviour of 3He and 4He at even lower tem-
peratures, in particular the fact that the critical temperature for 3He to become
superfluid is roughly one thousandth of the transition temperature of 4He, is a
consequence of the fact that 3He is composed of an odd number of fermions (two
protons, one neutron and two electrons), and is thus also a fermion, while 4He,
containing one more neutron, is a boson. Since in a Bose system single-particle
states may be multiply occupied, at low temperatures this system has a tendency
to condense into the lowest-energy single-particle state (Bose–Einstein conden-
sation). It is believed that the superfluid transition in 4He is a manifestation of
Bose–Einstein condensation (see e.g. Leggett (1989), Pitaevskii and Stringari
(2003), Pethick and Smith (2002)).

The basic feature of the Bose condensate is its phase rigidity, i.e. the fact that
it is energetically favourable for the particles to condense into a single-particle
state of fixed quantum-mechanical phase, such that the global gauge symmetry is
spontaneously broken. For three-dimensional (3D-) systems, macroscopic flow
of the condensate is (meta) stable, giving rise to the phenomenon of superfluidity
(frictionless flow).

In a Fermi system, on the other hand, the Pauli exclusion principle allows only
single occupation of fermion states. In the simplest approximation the fermions
move independently in an average potential and occupy the lowest available
single-particle states up to a Fermi energy εF. Fermions with energy near εF are,
in a variety of systems, subject to a pairing residual interaction. The associated
pairing correlations are important for understanding the structure of the low-
lying states of nuclei, the properties of neutron stars and those of metals and
of liquid helium 3He at low temperatures. The relevant fermions are nucleons
in nuclei, and in neutron stars, electrons in superconductors and 3He atoms in
liquid helium.

The pairing interaction leads to pairs of fermions bound in states coupled
to integer spin (zero or one). These pairs, whose structure is different for each
physical system, behave like bosons, and can at low temperatures Bose-condense,
the condensate being characterized by macroscopic quantum coherence leading
to the superconducting or superfluid phase. The mechanism and the consequences
of this condensation in the case of nuclei is the subject of the present monograph.

Particular emphasis is placed on the study of quantal-size-effects (QSE). These
effects are due to the fact that the nucleus is a finite many-body system where the
surface plays a paramount role. In fact, the nuclear surface is not only the source
of space quantization and thus of the discreteness of the single-particle levels,
but also, by vibrating as a whole, of the existence of collective surface modes.
Furthermore, because the length at which Cooper pairs are correlated is much
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larger than the nuclear dimension, the nuclear superfluid can be viewed as a zero-
dimensional system. Because the number of pairs which build the condensate is
small, fluctuations become very important.

1.2 Macroscopic wavefunction and phase rigidity

The central idea of the macroscopic quantum state is represented by assigning a
macroscopic number of particles to a single wavefunction (�̃) (see e.g. Anderson
(1964, 1984), Mercerau (1969), Tilley and Tilley (1974), Bruus and Flensberg
(2004)). These particles are assumed to have condensed into a single state. This
condensation results in a macroscopic density of particles (ρs) sharing the same
quantum phase (
). The resulting wavefunction is then �̄ = � exp (i
). In this
form ρs = (�̄∗�̄) is not the usual probability of finding a particle but, owing to
the macroscopic number of particles involved, is actually the effective particle
density. Both � and 
 may be functions of space and time and their variations
will therefore determine the motion of the quantum fluid.

In what follows we shall be more interested in understanding the consequences
the r-dependence of
 has on the behaviour of the system and somewhat neglect
the r-dependence of �. Since, by definition, the particles are in precisely the
same state and must therefore behave in an identical fashion, the equations of
motion for the macrostate must also be identical to the equations of motion
for any single particle in this state. Because the phase is common to so many
particles, its effects do not average out on a macroscopic scale, but remain to
fundamentally determine the behaviour of the system.

Changes in the wavefunction are of course determined by the Schrödinger
equation. In particular, the centre of mass velocity ( 	V ) can be calculated for this
wavefunction from the velocity operator (	v) common to all the particles

	v = − 1

m∗
(i� 	∇ + e∗ 	A)

where e∗ and m∗ are, respectively, the (effective) charge and mass of the particles
and 	A is the vector potential. The centre of mass velocity is

	V = 1
2

{
�̄ 	v +�̄ + + �̄ +	v�̄}

/
(
�̄ +�̄

)
giving a current

	J = e∗ρs 	V = e∗ρs

m∗
(
� 	∇
− e∗ 	A

)
. (1.1)

By taking the curl of this equation one can derive another equation of signifi-
cance, namely

	∇ × 	J + ρse∗
2

m∗c
	B = 0. (1.2)



4 Introduction

This is the solution found by F. London and H. London (London, 1954) of the
relation

∂

∂t

(
	∇ × 	J + ρse∗

2

m∗c
	B
)
= 0. (1.3)

This equation together with the Maxwell equation

	∇ × 	B = 4π

c
	J , (1.4)

characterizes a medium that conducts electricity without dissipation. In fact, in
such circumstances, electrons under the effect of an electric field will be freely
accelerated without dissipation so that their mean velocity 	vs will satisfy

m∗
d 	vs

dt
= −e∗ 	E .

Since the current density carried by these electrons is 	J = −e∗vsρs, the above
equation can be written as

d

dt
	J = ρse∗2

m∗
	E . (1.5)

The Fourier transform of this equation gives the ordinary AC conductivity for
an electron gas of density ρs in the Drude model, when the relaxation time τ
becomes infinitely large, that is,

	J = σs(ω)E(ω)

where

σs(ω) = lim
τ→∞ σ (ω)

is the frequency dependent (or AC) conductivity

σ (ω) = σ0

1− iωτ
,

the zero-frequency conductivity being

σ0 = ρse∗
2
τ

m∗
.

Substituting equation (1.5) into Faraday’s induction law

∇ × 	E = −1

c

∂ 	B
∂t
,

one finds equation (1.3). In other words, 	∇ × 	J + ρse∗2

m∗c
	B = C characterizes a

non-dissipative electric medium. The more restrictive London equation, which
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specifically characterizes superconductors and distinguishes them from mere
perfect conductors, requires in addition C = 0.

The reason for replacing (1.3) by (1.2) is that the latter equation leads directly
to essential experimental facts, by forbidding currents or magnetic fields internal

to the superconductor except within a layer of thickness � =
(

m∗c2

4πρse∗2

)1/2
≈

42
(

rs
a0

)3/2 (
ρ

ρs

)1/2
(London penetration depth) of the surface, r0 = aBrs being

the Wigner-Seit cell radius of the system under consideration, defining the density
ρ (r0 = (4πρ/3)−1/3). In fact, equations (1.2) and (1.4) imply

∇2 	B = 4πρse∗2

m∗c2
	B,

∇2 	J = 4πρse∗2

m∗c2
	J ,

where the relation 	∇ × ( 	∇×) = 	∇( 	∇·)− ∇2 was used. Assuming a semi-infinite
superconductor occupying the half space x > 0,

B(x) = B(0)e−x/�,

and

J (x) = J (0)e−x/�.

Thus, the London equation implies the Meissner effect, along with a specific
picture of the surface currents that screen out the applied field. These currents
occur within a surface layer of thickness 102 − 103 Å. Within this same surface
layer the field drops continuously to zero, predictions which are confirmed,
among other things, by the fact that the field penetration is not complete in
superconducting films as thin as or thinner than the penetration depth �.

Let us now return to equation (1.1). This relation can be obtained by minimiz-
ing the free energy of the system with respect to the phase 
. In other words,
subject to a phase gradient, the system minimizes its energy by carrying a current
even in thermodynamical equilibrium, and such a current is always dissipation-
less. This is true both for charged systems (like, e.g., metals where e∗ = 2e and
m∗ = 2me), as well as for neutral systems (like, e.g., He II, where e∗ = 0 and
m∗ = m4).

Of course there is an energy cost for the system to carry the current, but
as long as this cost is smaller than the alternative which is to go out of the
superfluid or superconducting state, the current carrying state is chosen. The
critical current is reached when the energies are equal (and equal to the value of
the gap, see Sections 1.4 and 1.5 and Figs. 1.6 and 1.7), and then the superfluid
or superconductor goes into the normal state (see equations (1.17) and (1.21),
respectively).



6 Introduction

Within this context, it should be noted that the appearance of the excitation
gap is not the reason for the superfluidity or superconductivity itself, but a con-
sequence of the spontaneous symmetry breaking of gauge invariance. In fact,
gapless superconductors do exist (in this connection see Sections 5.3 and 6.2.1).

1.3 Broken symmetry and collective modes

In many phase transitions, such as that to the ferromagnetic state, or from the
normal to the superconducting state, or again from a spherical to a deformed
nucleus, the ground state of the low-temperature phase has a lower symmetry
than the Hamiltonian used to describe the system. The situation is one of broken
symmetry. In cases where the symmetry group that is broken is continuous
(e.g. the rotation group), a new collective mode appears, whose frequency, in
the absence of long-range forces, goes to zero in the long wavelength limit
(Anderson Goldstone Nambu (AGN) mode (see Chapter 4)). For the ferromagnet,
the elementary excitations required by Goldstone’s theorem (Goldstone, 1961)
are Bloch’s spin waves (magnons), in which the magnetization precesses about
its direction in the ground state (see Figs. 1.1 and 1.2).

Superconductors furnish an example of a system in which the excitations
required by the symmetry-breaking process have a finite frequency in the

(c)
a a a

(a) (b) (c)

Figure 1.1. (a) Classical picture of the ground state of a simple ferromagnet; all spins are par-
allel. (b) A possible excitation; one spin is reversed. (c) The low-lying elementary excitations
are spin waves. The ends of the spin vectors precess on the surfaces of cones, with successive
spins advanced in phase by a constant angle (after C. Kittel (1968)). From Introduction to
Solid State Physics, 7th edition, by Charles Kittel, Copyright 1995 John Wiley & Sons Inc.
Reprinted with permission of John Wiley & Sons Inc.

a
(a)

(b)

Figure 1.2. A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins
viewed from above, showing one wavelength. The wave is drawn through the ends of the
spin vectors (after Kittel (1968)). From Introduction to Solid State Physics, 7th edition, by
Charles Kittel, Copyright 1995 John Wiley & Sons Inc. Reprinted with permission of John
Wiley & Sons Inc.
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Figure 1.3. Excitation spectrum of density fluctuations in a quantum plasma with the density
of Al, as calculated in the random phase approximation. Plasmons are essentially undamped
(see also Section 8.3.4) for wavevectors less than qc, and are strongly damped (Landau
damping) beyond qc by the single particle–hole excitations, whose energies lie within the
hatched region (after Pines (1963)).

long wavelength limit (because of the infinite range of the Coulomb force):
the corresponding Goldstone mode is the familiar plasma oscillation (see
Fig. 1.3).

For a neutral fermion superfluid, on the other hand, the collective mode is the
zero-sound mode proposed by Anderson (1958) and Bogoliubov (1958a), which
has a vanishing frequency at long wavelengths (see Section 4.3.1).

An example of AGN boson in a neutral system is provided by the fourth sound
in superfluid 3He, which corresponds to the oscillatory motion of the superfluid
phase in a confined geometry (superleak) where the normal fluid is clamped. For
example, assume a porous medium. In it, the normal-fluid fraction (see equation
(1.12)) is clamped by the scattering of quasiparticles with the surface of the
very narrow channels. The superfluid fraction is barely affected by the confining
walls, provided that the channel diameter is greater than the coherence length
ξ (T ) (equation (1.32)), and thus may move freely. The oscillatory motion of
the superfluid phase in such a confined geometry is called fourth sound (see
Vollhardt and Wölfle (1990)). In the case of atomic nuclei, the very occurrence
of collective rotational degrees of freedom may be said to originate in a breaking
of rotational invariance, which introduces a ‘deformation’ that makes it possible
to specify an orientation of the system (Bohr and Mottelson, 1975). Rotation
(see Fig. 1.4) represents the collective mode associated with such a spontaneous
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Figure 1.4. Schematic representation of the (discrete) energy levels of the (ground state) rota-
tional band of a quadrupole deformed atomic nucleus as a function of the angular momentum
I (E = (�2/2I )I (I + 1), where I is the moment of inertia).

symmetry breaking (AGN boson). The full degrees of freedom associated with
rotations in three-dimensional space come into play if the deformation com-
pletely breaks the rotational symmetry, thus permitting a unique specification
of the orientation. If the deformation is invariant with respect to a subgroup of
rotations, the corresponding elements are part of the intrinsic degree of freedom,
and the collective rotational modes of excitation are correspondingly reduced,
disappearing entirely in the limit of spherical symmetry.

1.4 Superfluid 4He (He II)
4He becomes liquid under its own vapour pressure at 4.21 K. The liquid phase at
this temperature, helium I, behaves like a normal liquid, but at 2.17 K it shows
a further phase transition – to helium II. Helium II is a most peculiar liquid: it
shows superfluidity, i.e. a lack of viscosity when flowing through a narrow slit
or capillary. At 2.17 K the specific heat shows a very strong pronounced peak,
resembling the Greek letter λ, whence Ehrenfest suggested the name λ-point for
the transition point (see Fig. 1.5).

The theory developed by Landau (Landau (1941, 1947)) was constructed
upon the basic idea that the equilibrium properties of liquid helium below the
λ-point could be expressed in terms of the energy spectrum of the elementary
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Figure 1.5. Specific heat of 4He (after Atkins (1959)).

excitations possible in helium, namely phonons and rotons. Landau considers the
quantization of liquids and reaches the conclusion that there are states possible
in the liquid for which

curl 	v = 0, (1.6)

where 	v is the velocity of the liquid. Note that this relation is obtained from
equation (1.1) for e∗ = 0 (neutral system). Such states correspond to potential
flow, as would be the case in classical hydrodynamics, because, just as there is
no continuous transition in quantum mechanics between states with zero angular
momentum and with non-vanishing angular momentum, in the same way there
may be no continuous transition between states with curl 	v = 0 and those with
curl 	v �= 0. Consequently, one concludes that there will be an energy gap �
between the lowest energy level corresponding to potential flow and the lowest
energy level of vortex motion (curl 	v �= 0). In order that the liquid be superfluid,
it is necessary that the vortex motions start at a higher energy than the potential
flow motions.

The spectrum of helium II can thus be seen as a superposition of two continuous
spectra: one corresponding to potential flow and one corresponding to vortex
motion. The potential flow part of the spectrum corresponds to longitudinal
waves, i.e. sound waves. The elementary excitations are thus phonons, the energy
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p0 p

ε

Figure 1.6. Phonon–roton spectrum suggested by Landau. Broken lines indicate superfluid
critical velocities. Dotted line shows free-particle parabola for comparison.

spectrum of which is known to be (Fig. 1.6)

εph = cs p,

where p is the momentum of the excitation while cs is the sound velocity.
The elementary excitations of the vortex motion were called rotons by Tamm.

The roton spectrum is given by

εr = �+ (p − p0)2

2μ
, (1.7)

where � is the energy gap mentioned above while μ is the inertia of the rotons.
It should be emphasized that the above two equations (see also Fig. 1.6) give

the energy of the excitation spectrum of the elementary excitations of the helium
II and not the energy spectrum of the single helium atoms

εsp = p2

2m4
.

Note that given the dispersion relation shown in Fig. 1.6 it is difficult to speak
strictly of rotons and phonons as qualitatively different types of excitations. It
could be more correct to speak simply of the long wave (small p) and short wave
(p in the neighbourhood of p0) excitations. In any case, there is an essential
difference between phonons and rotons. Phonons can have zero energy in the
long wavelength limit and thus qualify as AGN modes (Anderson (1952, 1963),
Nambu (1959, 1960)), while rotons have always an energy ≥ � and can thus
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never be an example of Goldstone’s theorem (Goldstone (1961), Goldstone et al.
(1962)).

At finite temperature and assuming it to be sufficiently low, one can consider
the excitation of He II to be that of a perfect gas of phonons and rotons. This
means that one neglects the interaction between the elementary excitations. If
one assumes that the presence of excitations does not affect the spectrum of
any new excitation, one can prove (see below) that new phonon and rotons
cannot be excited if the liquid moves with V < (Vc)phon,rot (see equations (1.17)
and (1.19)) through a capillary. However, the phonon and roton gas will not be
superfluid. Landau showed indeed that this gas will stick to the walls and behave
like an ordinary liquid. This leads to the conclusion that at finite, not too high,
temperatures, part of the liquid behaves normally while the remainder shows
superfluidity.

In other words in a quantum liquid such as helium both normal and superfluid
motion can occur and while there is no real division of the liquid into two parts,
such that some atoms belong to the superfluid liquid and others to the normal
liquid, it is possible to assign to each of the two liquids its own mass. In fact, the
density of the normal liquid at a given temperature can be defined as the effective
mass of the roton and phonon gases.

To evaluate these masses, we consider the liquid moving at a velocity 	V . Since
the phonons are bosons, their distribution function is {expβ[ε − ( 	p · 	V )]− 1}−1,
where β = 1/T . The total momentum per unit volume is then

	Pph = 1

(2πh)3

∫ 	p d3 p

eβ[ε− 	p· 	V ] − 1
. (1.8)

The effective phonon mass density ρph can then be defined through the relation

	Pph = ρph 	V . (1.9)

For small 	V one can expand the denominator in the integral and retain only the
linear term in 	V . This leads to

ρph = 4

3
ρ

Eph

c2
s

, (1.10)

where ρ is the total density of the liquid and Eph the energy of the phonon gas
which is proportional to T 4.

One can evaluate the effective roton mass density ρr in a similar way. Having
found ρr and ρph one has determined the normal fluid density,

ρn = ρr + ρph, (1.11)

as well as the superfluid density

ρs = ρ − ρn. (1.12)
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Landau suggests that the λ-point can be defined as that for which the temperature
is such that ρn = ρs.

The basic idea of Landau is thus that the equilibrium properties of He II can
be expressed as a gas consisting of (non-interacting) phonons and rotons, and
is based on the fact that the only system statistical mechanics can deal with
satisfactorily is a perfect gas. In other words, for sufficiently low temperatures
one may assume that the excitation of the liquid helium can be considered to be
a gas of phonons and rotons and, moreover, a perfect gas of these elementary
excitations.

Let us now consider the question of superfluidity at absolute zero temperature.
One must show that when helium flows through a capillary at a constant velocity
	V it cannot be slowed down by exciting an elementary excitation, provided 	V
is smaller than some critical velocity. In order to see this, let us find the energy
necessary to create an excitation of momentum 	p. Suppose a body of velocity
	V and mass M creates an excitation and ends up moving with velocity 	V ′. From
momentum conservation

M 	V = M 	V ′ + 	p, (1.13)

so that the new kinetic energy of the body is

1

2M
(MV ′)2 = M

2
V ′2 = 1

2M
(M 	V − 	p)2 = 1

2
MV 2 − 	V · 	p + p2

2M
. (1.14)

If ε( 	p) is the energy of an elementary excitation of momentum 	p, this excita-
tion cannot be created unless

1

2
MV 2 ≥ 1

2
MV ′2 + ε( 	p). (1.15)

Consequently

ε(p) ≤ 1

2
MV 2 − 1

2
MV ′2 = 	V · 	p − p2

2M
. (1.16)

For large M , ε(p) ≤ 	V · 	p. Thus, the critical velocity necessary to create an ele-
mentary excitation in He II is then derived by drawing a tangent to the dispersion
relation ε(p) versus p (see Fig. 1.6), i.e.

Vc = ε(p)

p
. (1.17)

There are two solutions of this relation. One occurs at the origin,

(Vc)phon = cs, (1.18)

which indicates that the critical velocity for the creation of phonons is the velocity
of first sound (239 m s−1).

To find the second solution of (1.16), one draws the straight line which passes
through the origin and touches the curve close to the roton minimum. This
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leads to

(Vc)rot ≈ �

p0
= 58 m s−1. (1.19)

Because (Vc)rot < (Vc)phon, (Vc)rot is the critical velocity for superfluidity.
Note also that the condition given in equation (1.17) for the case of the free-

particle parabola (see Fig. 1.6) is

(Vc)sp = 0. (1.20)

A critical velocity of zero means that superfluidity is impossible in any system
where free-particle motion can take place. Thus, it is the energy gap�, together
with the lack of any other thermal excitation below the dispersion relation shown
in Fig. 1.6, which ensures a finite value of the critical velocity in He II. Detailed
calculations of the dispersion relations shown in Fig. 1.6 have been carried out
starting from the classical papers of Feynman (1972), see also Belyaev (1958a,
1958b), Hugenholtz and Pines (1959), Brueckner and Sawada (1957a, 1957b),
Alberico et al. (1976) and references therein.

1.5 Critical velocity for superconductors

The excitation spectrum of a superconducting metal worked out by Bardeen,
Cooper and Schrieffer (Bardeen et al., 1957a,b; Chapter 3) is shown in Fig. 1.7.

The Landau criterion for superconductivity gives the critical velocity

(Vc)sc = �

�kF
. (1.21)

Figure 1.7. Sketch of the BCS excitation spectrum (full line) Ek =
√

(ε2
k +�2), with the

normal spectrum |εk | (broken line). The normal spectrum is εk = �
2k2/2me − �

2k2
F/2me

which can be approximated by εk = ν ′F(|k| − kF) with ν ′F = �kF/me.



14 Introduction

Using the values for Sn

kF = 1.64× 108 cm−1, (1.22)

Tc = 3.72 K = 0.32 meV, (1.23)

and the BCS relation (Section 1.7)

2�(0)

Tc
= 3.5, (1.24)

one obtains

(Vc)sc = �

�kF
= 51.2 m s−1 (1.25)

where use was made of �c ≈ 2× 10−2 meV cm and c = 3× 108 m s−1. For the
case of nuclei see Appendix K.

The use of � for both the (BCS) superconducting energy gap (see Fig. 1.7)
and the roton energy minimum in neutral superfluids (see Fig. 1.6) is so well
established in the literature that it is preferable to retain this double usage, at the
risk (hopefully slight) of confusion.

1.6 Pairing in nuclei

The shell model potential is the average potential for a nucleon moving in a
nucleus. It has a central and a spin-orbit component and, in a spherical nucleus,
the individual nucleon states are specified by an orbital angular momentum l,
a total angular momentum j(= l ± 1

2 ) and an eigenvalue m of jz (Brink and
Satchler, 1968). The nucleons interact through a strong, short-range, attractive
nuclear force which contributes both to the shell model potential and to the
residual interaction between nucleons. Two neutrons (or two protons) can best
take advantage of the residual interaction to minimize their energy by moving in
time-reversed orbits, i.e. states with the same j but equal and opposite m. The
residual interaction (being time-reversal invariant) preserves the time-reversed
motion because when such a pair of nucleons interact they scatter into time-
reversed states. The total angular momentum of the pair is zero.

The ground state of a nucleus with an even number of neutrons and protons
is obtained by coupling like nucleons in states with energies near the Fermi
energy to form zero angular momentum pairs. Excited states are formed by
breaking pairs, and the lowest states are constructed by breaking one pair. These
states have an excitation energy of about 2� which is the pair binding energy
(see Fig. 1.8).
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Figure 1.8. Schematic picture of the ground state and of the lowest excited states with angular
momentum zero and positive parity in a system with an even number of fermions moving in
a set of single-particle levels, assumed to be double degenerate.
Ground state: the ground state is obtained, in this extreme independent particle model, by
filling the lowest orbitals compatible with the Pauli principle. The large energy gap observed
in the nuclear spectrum is understood assuming a large energy loss not only to the breaking of
a pair, but also to the lifting of pairs from one level to another; these two process are indicated
in (b). That is, in the case where pairing correlations are taken into account, the ground state
is a linear combination of pairs of particles in time-reversal states distributed over all the
available levels. Thus the pair-correlated ground state consists of pairs scattering across the
diffuse Fermi surface, a basic feature which is reflected in the occupation number shown to
the far right (c).
Excited states: excited states can thus only be generated by breaking a pair of particles in
any two levels, as shown in the lower part of the figure. Because the energy associated with
each particle of the pair is Eν =

√
(εν − λ)2 +�2, where εν is the single-particle energy, λ

is the Fermi energy and � the pairing gap, the minimum excitation energy is 2�, as shown.
Note that the radius of the circle is the pairing gap, which measures the diffusivity of the
Fermi surface. To the far left and right we show the extreme single-particle configurations
associated with the two quasiparticle states shown close to the pairing gap circle, as well as
the two-particle and two-quasiparticle excitation energy (after Nathan and Nilsson (1965)).
Reprinted from Alpha- Beta- and Gamma-Ray Spectroscopy, Vol. 1, Nathan, H. and Nilsson,
S. G., Editor Siegbahn, H., page 601, Copyright 1965, with permission from Elsevier.

The odd nucleon in a nucleus with an odd number of neutrons or protons
must remain unpaired. One can obtain a qualitative description of the low states
of such a nucleus in terms of the orbits available to the unpaired nucleon. In
this approximation the degrees of freedom of the paired nucleons are neglected.
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Figure 1.9. Ground state and excited states in the extreme independent single-particle model
and in the pairing-correlated, superfluid model in the case of a system with an odd number of
particles. In the first case, the energy of the ground state of the odd system differs from that of
the even with one particle fewer by the energy difference εν − εν ′ , while in the second case
by the energy Eν =

√
(εν − λ)2 +�2 ≈ �, associated with the fact the odd particle has no

partner. Excited states can be obtained in the independent particle case by promoting the odd
particle to states above the level εν , or by exciting one particle from the state below to the
state εν or to one above it. To the left only a selected number of these excitations are shown.
In the superfluid case excited states can be obtained by breaking of pairs in any orbit. The
associated quasiparticle energy is drawn also here by an arrow of which the thin part indicates
the contribution of the pairing gap and the thick part indicates the kinetic energy contribution,
i.e. the contribution arising from the single-particle motion. Note the very different density
of levels emerging from these two pictures, which are shown at the far left of the figure (after
Nathan and Nilsson (1965)). Reprinted from Alpha- Beta- and Gamma-Ray Spectroscopy,
Vol. 1, Nathan, H. and Nilsson, S. G., Editor Siegbahn, H., page 601, Copyright 1965, with
permission from Elsevier.

When pairing correlations are taken into account this system in its ground state
has an excitation energy of the order of � compared with the even system (see
Fig. 1.9).

This effect leads to an odd–even staggering in nuclear masses and nucleon
separation energies. If B(N , Z ) is the binding energy of a nucleus with Z protons
and N neutrons then the energy required to separate the last neutron is

Sn(N , Z ) = B(N , Z )− B(N − 1, Z ). (1.26)

Similarly the separation energy for the last proton is

Sp(N , Z ) = B(N , Z )− B(N , Z − 1). (1.27)

On average the neutron separation energy Sn(N , Z ) should be larger for a
nucleus with even N compared with a nucleus with odd N by the neutron pairing
energy 2�. Fig. 1.10 shows the neutron separation energy for a sequence of nuclei
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Figure 1.10. The neutron separation energies, Sn, are taken from the compilation by J. H. E.
Mattauch, W. Thiele and A. H. Wapstra, Nuclear Phys. 67, 1 (1965) (after Bohr and Mottelson
(1969)).

with N − Z = 21, 23, i.e. in the neighbourhood of the N = 82 closed shell.
There is a general tendency for Sn to increase as N increases but super-imposed
on this trend there is a clear odd–even staggering effect due to pairing.

Values for the neutron pairing energy, known as the pairing gap, can be ob-
tained from measured separation energies by using the formula

�n = 1
4 {2Sn(N , Z )− Sn(N + 1, Z )− Sn(N − 1, Z )}

= 1
4{B(N − 2, Z )− 3B(N − 1, Z )+ 3B(N , Z )− B(N + 1, Z )} ,

(1.28)

where N is even. Similarly, the proton separation energy is given by

�p = 1
4

{
2Sp(N , Z )− Sp(N , Z + 1)− Sp(N , Z − 1)

}
= 1

4{B(N , Z − 2)− 3B(N , Z − 1)+ 3B(N , Z )− B(N , Z + 1)}. (1.29)

Empirical values of the pairing energy parameters�n and�p are collected in
Fig. 1.11. The general trend with mass number A can be fitted by the formula
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Figure 1.11. The odd–even mass differences for neutrons and protons are based on the analysis
of Zeldes et al. (1967) (after Bohr and Mottelson (1969)).

(see Bohr and Mottelson (1969)).

� ≈ 12/A
1
2 MeV. (1.30)

Conspicuous local variations of the pairing gap with the number of neutrons
or protons are observed, which cannot be fitted in detail by the smooth behaviour
given by expression (1.30) (see e.g. Fig. 10.6). This A-dependence of � corre-
lates, as a rule, with the collectivity displayed by low-lying surface vibrations
of the different isotopes or isotones (see e.g. Fig. 10.7). This correlation testifies
to the fact that, in addition to the bare nucleon–nucleon force, the exchange of
collective surface vibrations between nucleons moving in time-reversal states
close to the Fermi energy contributes to nuclear pairing correlations. The rel-
ative importance of this induced pairing interaction compared with the bare
nucleon–nucleon interaction is a subject which is discussed in Chapters 8, 9, 10
and 11.
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1.7 Superconductivity

Electrons near the Fermi surface in a superconductor interact to form correlated
pairs. This idea was first suggested by Cooper (1956) and the pairs are often
called ‘Cooper pairs’. Cooper pairs are constructed from states in which the two
electrons have zero total spin and equal and opposite linear momentum k and−k.
The interaction which produces pairing correlations in a normal superconductor
is a coupling between electrons via the positive ions of the crystal lattice. The
electrons are coupled to the lattice by electrostatic forces. An electron moving
through a crystal distorts the lattice and this distortion influences the motion of
other electrons. Another way of expressing this is to say that an electron can
emit or absorb a virtual phonon. The effective interaction between electrons is a
result of the virtual emission of a phonon by one electron and its absorption by
another. This interaction causes scattering of an electron pair from states (k,−k)
to states (k′,−k′) with an amplitude Vk′k which depends on the electron–phonon
coupling and on the phonon spectrum (see Fig. 1.12).

The interaction which produces pairing correlations in a normal superconduc-
tor is the result of a delicate balance between Coulomb repulsion screened by
dynamical polarization effects of both electrons (plasmons) and ions (phonons).
The screening of the Coulomb repulsion due to the exchange of plasmons
(measured by the dimensionless parameterμ∗) plays an equally important role in
determining the properties of superconductors as the effective interaction arising
from the exchange of phonons (measured by the dimensionless parameter λ).
Systems displaying small (� 1) values of μ∗ and large (� 0.3− 0.4) values
of λ are expected to be normal or incipient high-Tc superconductors, such as

′

Figure 1.12. Schematic representation of the Cooper pair phenomenon. In (a) a transition is
illustrated in which one pair of electrons moving in time-reversal states above the Fermi sea
and carrying zero centre-of-mass momentum interact, exchanging momentum 	q. The carriers
of this interaction are the lattice phonons which are exchanged between the two electrons, as
shown in (b).
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alkaline doped fullerides, i.e. materials made out of e.g. C60 fullerenes, in which
case μ∗ ≈ 0.3 and λ ≈ 1 (Gunnarsson (1997), (2004), Broglia et al. (2004)).

In the nuclear case the situation is quite different, as the strong force is (for
relative distances � 0.75 fm) attractive in the s-wave channel (see Figs. 8.2 and
8.5). Consequently, the main origin of nuclear pairing is due to the nucleon–
nucleon strong force.

It is found, however, that the exchange of collective surface vibrations be-
tween pairs of nucleons moving in time-reversal states lying close to the Fermi
energy seems to play a role which cannot be neglected in a quantitative de-
scription of pairing in nuclei (Chapters 8, 9, 10 and 11). The main differences
between the phonon exchange in solids and in nuclei is that nuclear vibrations
can be viewed as coherent motion of nucleons. To take care of Pauli principle
violations as well as to avoid double counting of the same degrees of free-
dom, nuclear field theoretical methods have to be used in the calculation of
the coupling of nucleons to nuclear surface vibrations leading to an induced
pairing interaction (see Bes et al. (1976a,b), Bortignon et al. (1977), see also
Appendix F).

Returning now to the case of superconductors, each Cooper pair has a binding
energy 2� which is much smaller than the Fermi energy εF. The main compo-
nents of the pair wavefunction come from electron states with energies ε within
� of the Fermi energy,

εF −� < ε < εF +�. (1.31)

The energy spread δε ≈ 2� corresponds to a momentum range δp ≈ 2�/vF

where vF is the Fermi velocity. The uncertainty relation δx ≈ �/δp ≈ �vF/2�
gives an estimate of the size of a Cooper pair. The quantity

ξ = �vF

2�
(1.32)

is called the coherence length or correlation length of the superconductor, and is
a measure of the size of a Cooper pair. The coherence length ξ is much larger than
the crystal lattice spacing (∼5 Å) in Type I superconductors. The Fermi velocity
of electrons in these materials is normally large (vF ≈ 106 m s−1) and the energy
gap is small, leading to a large coherence length. For example ξ ≈ 10714 Å for Sn
and ξ ≈ 4615 Å for Pb. Type II superconductors have a much smaller coherence
length (ξ ≈ 50 Å). This is partly because the electrons in these materials have
a large effective mass and a small Fermi velocity (vF ≈ 104 m s−1). Also, the
energy gap is usually larger.

Bardeen, Cooper and Schrieffer (1957a,b) and Schrieffer (1964) developed a
microscopic theory of superconductivity which incorporated the idea of Cooper
pairs and gave a consistent treatment of the Pauli principle. The theory (called the
BCS theory) has also been used to describe pairing in nuclei (Bohr, Mottelson
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and Pines (1958)) and is discussed in Chapter 3 of this book. According to the
BCS theory all electrons near the Fermi surface in the ground state of a super-
conductor form correlated Cooper pairs. Excited states are formed by breaking
pairs and there is an energy gap 2� between the ground state and the lower
excited states (Fig. 1.8). It is this energy gap which stabilizes the superconduct-
ing state. Thermal effects can break pairs, and in BCS theory the presence of
unpaired electrons reduces the binding of those pairs which remain. Thus the
gap parameter 2� is temperature dependent and decreases as T increases. At a
critical temperature Tc the energy gap becomes zero, the pairs are broken and
there is a phase transition from the superconducting phase into the normal phase.
BCS theory predicts a definite relation between the transition temperature Tc and
the energy gap �(0) at T = 0, namely,

2�(0)

Tc
= 3.51. (1.33)

This relation can be checked experimentally because both�(0) and Tc can be
measured. For most normal superconductors the ratio lies in the range 3.2–4.6
and is close to the BCS value.

These concepts have had also a profound influence on the theory of ele-
mentary particles. The Nambu–Jona-Lasinio model (1961a,b) was the first to
pursue such matters, assuming that a kind of superconducting material occu-
pied the whole Universe. This corresponds to the Higgs field introduced in later
developments. In this world, particles and antiparticles, e.g. quarks and anti-
quarks, are the constituents of the Cooper pairs. Breaking one of these pairs
produces a massive quark and a massive antiquark. Disturbing the distribution
of the pairs creates waves (Anderson–Nambu–Goldstone modes) which can be
interpreted as bosons, e.g. pions (see Chapter 4). The role which gauge invari-
ance (charge conservation) plays in the BCS theory is played here by chiral
invariance (invariance with respect to left-handedness and right-handedness
operations).

Leggett (1989) points out that the Cooper pairs in the BCS theory of the super-
conducting state must all behave in exactly the same way, not only as regards their
internal structure but also as regards their centre of mass motion. Each Cooper
pair is made up of two fermions and therefore the pairs behave like bosons. From
this point of view superconductivity is due to Bose condensation of the pairs.
The analogy is not complete. In a Bose liquid such as 4He the bosons exist even
when they are not all condensed, while in the superconducting state either the
Cooper pairs are condensed or they do not exist. Such a picture should, however,
be modified for finite systems like nuclei, as well as for superconductors around
the critical temperature and for superconducting metal clusters (see Section 1.9).
In the nucleus, pairing vibrations (Chapter 5), i.e. collective modes which change
the number of pairs, play an important role. They can be viewed as bound states
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Figure 1.13. A system of independent Cooper pairs (Schafroth pairs). This situation cor-
responds to the incoherent solution of the many Cooper pair problem, the so called Fock
state.

at the top of the Fermi surface (Anderson (1958), Högaasen-Feldman (1961),
Bes and Broglia (1966)). In finite systems the presence of incipient Cooper pairs
smooths out the sharp phase transition predicted by BCS theory.

There is another important fact to be considered in connection with the descrip-
tion of superconductors in terms of electron pairs. As pointed out by Schrieffer
(1964) the pairs could be treated as independent if they were well separated
(see Fig. 1.13), and Cooper’s discussion would be appropriate for Schafroth
(1955) pairs, see also Ogg (1946), Blatt and Butler (1955); note also the re-
newed interest in Schafroth pairs in connection with high Tc superconductivity
(Alexandrov, 2003). However, actual superconductors differ in a fundamental
manner from a bound-pair model in which the pairs are well separated in space
and weakly interacting. The pairs overlap strongly and there are, in a supercon-
ducting metal, on average one million bound pairs (eliminating electrons deep
in the Fermi sea) which have their centres of mass falling within the region
occupied by a given pair wavefunction (see Fig. 1.14).

The study of Bose–Einstein condensation (BEC) has opened new interest
on the study of the two, widely different, regimes schematically depicted in
Figs. 1.13 and 1.14. In particular, with the possibility of studying ultracold Fermi
gases of, for example, alkali metal atoms (Jochim et al. (2003), Greiner et al.
(2003), Zwierlein et al. (2003), Regal et al. (2004)) like potassium or lithium,
whose nucleus has an even integer spin but an odd number of protons and of
neutrons (40

19K21,
6
3Li3). A notable property of these atomic gases is the pres-

ence of scattering resonances, so called Feshbach resonances. A Feshbach res-
onance is an enhancement in the scattering amplitude of a particle incident on a
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Figure 1.14. There are about 1018 Cooper pairs per cm3 in a superconducting metal. A Cooper
pair has a spatial extension of about 10−4 cm. Thus a given Cooper pair will overlap with
106 other Cooper pairs, leading to strong pair–pair correlation, as schematically shown. This
solution corresponds to the coherent solution of the many Cooper pair problem (coherent
state).

target – for instance, a nucleon scattering from a nucleus or an atom scattering
from another atom – when it has approximately the energy needed to create a
quasi-bound state of the two-particle system.

If a pair of ultracold atoms happens to have a bound state (molecular state)
close to zero energy, then during collisions they will stick together for a while
as they undergo a Feshbach resonance. While few molecules have a bound
state near zero energy, Feshbach resonances can be produced using an external
magnetic field (Zeeman tuning). The resonance is induced in the scattering be-
tween two atoms in different internal states, typical hyperfine states, and results
in the divergence in the two-body s-wave scattering length αF (the interaction
between a pair of ultracold atoms is directly proportional to αF). Feshbach
resonances allow the experimental study of a Fermi gas at various interaction
regimes. By varying the value of αF (atoms repel if αF is positive and attract if it
is negative), one can explore different kinds of fermionic superfluidity, ranging
from the BCS superfluidity, to BEC. Momentum correlations in Cooper-paired
particles extend over long distances, whereas correlations in a molecule are
short range. Consequently, the diatomic molecules do not constitute Cooper
pairs. However, the molecules can be dissociated by moving the system back
across the Feshbach resonance into the atomic regime. Interest in the transition
from BEC-like behaviour to BCS-like behaviour was discussed, even before the
discovery of Bose–Einstein condensation, by Leggett (1980).
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Superconductors have unusual magnetic properties. When a sample of su-
perconductor is placed in a magnetic field supercurrents are developed inside
it which exclude the magnetic flux. Type I superconductors exclude the mag-
netic flux B completely for applied fields H less than a critical field Hc. This
is the Meissner effect (Meissner and Ochsenfeld (1933)). Above Hc there is
complete flux penetration and the normal state is restored. The Meissner effect
is more complicated in a Type II superconductor in that there are two critical
fields Hc1 < Hc2. There is complete exclusion of flux if H < Hc1 and partial
penetration for Hc1 < H < Hc2 The critical field Hc2 depends on temperature
and goes to zero at the critical temperature Tc. Magnetic fields reduce or destroy
superconductivity because they break time reversal invariance and reduce the
binding of the Cooper pairs. When discussing magnetic effects it is important
to make a distinction between the fields H and B. A number of conventions
are possible depending on whether the supercurrent is regarded as an external
current or a magnetization current. One convention which is commonly used
is that H is generated by external currents and is unaffected by the presence of
the superconductor. Supercurrents are considered to be magnetization currents
which modify the flux B, but do not affect H.

The Ginzburg–Landau (1950) theory is a phenomenological theory of super-
conductivity which is based on Landau’s theory of second order phase transitions
(see e.g. Patashinskii and Pokrovskiĭ (1979) and refs. therein). Landau had argued
that such a transition is characterized by an order parameter in a simple way.
Ginzburg and Landau applied the method to superconductors. They introduced a
complex order parameterψ which could be interpreted as a kind of macroscopic
wavefunction for the superconductor. In the presence of a magnetic field the free
energy density is

f (r) = f0 + α|ψ(r )|2 + 1

2
β|ψ(r )|4 + 1

2m∗
|(−i� 	∇ψ − qAψ)|2 + 1

2
μ0B2.

(1.34)

Here A is the vector potential of the magnetic field B, q is the charge of the
carriers of the supercurrent, and α and β are temperature-dependent constants.
The Ginzburg–Landau theory is gauge-invariant provided that a gauge transfor-
mation of the vector potential is associated with a change in the phase of the
order parameter. One can check that the gauge transformation

ψ ′ = eiχ , A′ = A+ � 	∇χ/q (1.35)

leaves the free energy invariant. The electric current density is (see also
Section 1.2)

J(r) = q�

2m∗i
(ψ∗ 	∇ψ − ψ 	∇ψ∗ − 2iqAψ∗ψ/�), (1.36)
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and is also invariant with respect to the gauge transformation given in equation
(1.35). The quantity m∗ is the effective mass of the carriers. The Ginzburg–
Landau theory gives a good description of the magnetic properties of both Type I
and Type II superconductors and predicts that magnetic flux is quantized in
certain situations.

The magnetic flux trapped in a superconducting ring is quantized and the quan-
tization condition can be derived from the form (1.36) of the supercurrent and the
condition that the order parameter is single valued. There may be supercurrents
in the surface of a ring enclosing magnetic flux but the current in the interior is
zero. Also, the magnitude of the order parameter will be approximately constant
in the interior of the material of the ring. If we write ψ = |ψ |exp (iφ) then the
condition that the current density (1.36) is zero gives

�∇φ − qA = 0. (1.37)

If ψ is single valued then φ can be changed by an integer multiple of 2π
around the ring. Integrating equation (1.37) along a path C inside the ring gives
the flux quantization condition


 =
∮

C
A · dl = n2π�/q (1.38)

where n is an integer.
The quantum 2π�/q of magnetic flux has been measured (Parks and Little

(1964)) with the result that the charge of the carriers of the supercurrent is
|q| = 2e, that is e∗ (Section 1.2). This result indicates that the carriers of the
supercurrent are the Cooper pairs of the BCS theory. The absence of electrical
resistance in a superconductor is due to the binding energy 2� of the pairs.
Because of this binding the electrons cannot scatter individually (note, however,
the discussion at the end of Section 1.2).

The BCS theory describes a superconductor in equilibrium. An extension to
include departures from equilibrium using the time-dependent mean-field ap-
proximation was made by Gor′kov (1960a,b) who established a connection be-
tween the BCS microscopic theory and the phenomenological Ginzburg–Landau
theory. Gor′kov introduces a pair-field � (r) which in general is complex and
position-dependent. In an equilibrium situation 2�(r) is the BCS energy gap
between the ground state and excited states. Gor′kov showed that the pair field
� (r) is essentially the same as the order parameterψ(r) of the Ginzburg–Landau
theory except for a constant factor due to the different normalization of ψ (see
also Bes et al. (1970)).

1.8 Superfluidity of liquid 3He

When the effective interaction Vk,k′ for scattering of an electron pair from a
state (k, −k) to a state (k′, −k′) is independent of the angle between k and k′
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then the Cooper pairs have zero orbital angular momentum and the pairing is
called s-wave pairing. The Pauli principle requires that the pair wavefunction
should be antisymmetric. As the orbital state is symmetric, the spin state must
be antisymmetric and the pair must be in singlet state with spin S = 0. Most
superconductors have s-wave pairing, but there could be a component of d-wave
pairing due to crystal field effects. Pairing in nuclei is essentially s-wave pairing,
although there is also evidence for d-wave pairing (Section 5.3 and Section
6.2.2). Furthermore, because of the presence of two types of fermions (protons
and neutrons), the isospin dependence of pairing is important in nuclei (Bohr
(1968), Nathan (1968), Bayman et al. (1969), Bes et al. (1977)).

The situation is different in the superfluid state of liquid 3He because the in-
teraction potential between 3He atoms is strongly repulsive at small separations.
This repulsion inhibits s-wave pairing and favours pairs with non-zero orbital
angular momentum. Experimental and theoretical work has shown that p-wave
pairing is important. In this case the orbital wave function of a pair of 3He atoms
is antisymmetric. Then the Pauli principle requires the spin of the pair to be
symmetric with S = 1 and there is spin triplet pairing.

Triplet pairing is more complicated than singlet pairing. A pair has spin angular
momentum S = 1 and orbital angular momentum L = 1 and there are several
ways in which S and L can couple. The Ginzburg–Landau order parameter has
nine complex components. It is for this reason that the superfluid phases of 3He
have a very rich structure. There are many superfluid phases. Two of them are
the A-phase and the B-phase. In the A-phase the spin part of the wavefunctions
is | ↑↑〉 or | ↓↓〉 while in the B-phase the pairing includes the combination
| ↑↓〉 + | ↓↑〉. The structure of the phases is anisotropic on a small scale due
to various spin alignment correlations (see Vollhardt and Wölfle (1990) and
refs. therein). The phase structure of 3He was predicted by Leggett (1972) see
also Anderson and Morel (1961), Balian and Werthamer (1963), Anderson and
Brinkman (1973), (1975) and Ambegaokar and Mermin (1973)).

1.9 Comparison of pairing in nuclei with superconductivity

In this section we point out some of the differences between pairing properties of
nuclei and superconductors. The coherence length in a superconductor is defined
in equation (1.32). It measures the size of a Cooper pair. In both Type I and Type
II superconductors the coherence length is large compared with the interatomic
spacing in the material but small compared with the typical size of a piece of
superconducting material. The situation is very different in a nucleus. Using the
appropriate Fermi wave number (kF ≈ 1.36 fm−1) we get �υF = 54 MeV fm.
Then equation (1.32) gives a coherence length

ξ ≈ 27

�
fm, (1.39)
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the gap being in units of MeV. For a typical nucleus with A = 140,� ≈ 1 MeV,
ξ ≈ 27 fm. This compares with a nuclear radius R = 1.2A1/3 fm ≈ 6.3 fm for
medium heavy nuclei (A ≈ 120). Thus the coherence length is larger than the
nuclear radius. The same result holds for all nuclei in the periodic table. In a
nucleus the size of a Cooper pair is given by the nuclear size rather than by the
coherence length.

Quantum size effects can modify the properties of a superconductor if its
dimensions are small enough. The first changes occur when the size is small
compared with the coherence length but is still large in comparison with inter-
atomic distances. In principle such a superconductor has the same properties as
a bulk sample so long as it is not in a magnetic field. The behaviour in a strong
field has interesting features. For example, the energy gap in the energy spectrum
disappears at a certain value of the field. However, this field is not yet strong
enough to break the Cooper pairs, and other properties of the superconducting
state are retained. When the field is increased further there is a second-order
phase transition to the normal state. These and other properties of small super-
conducting particles have been reviewed by Perenboom et al. (1981) (see also
Kubo (1962), Black et al. (1996), Ralph et al. (1997), Farine and Schuck (2002)).

Properties of a sample of a superconductor depend on its dimension. A two-
dimensional film or a one-dimensional wire behave differently from a three-
dimensional sample. The meaning of a thin film is that the thickness is small com-
pared with the coherence length. Similarly, a wire is effectively one-dimensional
if its radius is small compared with the coherence length. Using the same criteria
a nucleus should be regarded as a zero-dimensional superconductor (Chapter 4).

If the dimensions of a superconducting particle become much smaller than the
coherence length other effects come into play. Anderson (1959) suggested that
there is a lower limit in size for a particle still to be superconducting. A relevant
parameter for this regime is the ratio of the mean spacing of single particle states
δ with the same spin to the transition temperature Tc

δ = δ

Tc
= 2

ρ(εF)Tc
, (1.40)

where ρ(εF) is the density of states at the Fermi level. Mühlschlegel et al. (1972)
and Lauritzen et al. (1993) have calculated the effects of thermal fluctuations
on the superconducting phase transitions using Ginzburg–Landau theory, path
integral methods plus RPA theory, respectively. They show that the fluctuations
smooth out the discontinuity in the thermal capacity at the transition temperature.
The smoothing is complete when δ = 1, but is already significant if δ ≈0.01. This
smoothing has been observed experimentally by Tsuboi and Suzuki (1977). They
measured the electronic specific heat of small particles of Sn with an average
diameter ranging from 25 nm up to 220 nm. Some of their results are shown in
Fig. 1.15.
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Figure 1.15. Measured normalized difference (CS − CN)/CN(Tc) of the specific heat in the
superconductive and normal state respectively, for tin particles with different diameters, as
a function of the reduced temperature. The measurements are normalized to CN(Tc) = γ Tc,
with γ = 1.78× 10−3 JK−2 mol−1. The ensemble of tin particles, isolated from each other
by an oxide layer, was prepared by depositing tin islands in vacuum and then oxidising their
surfaces repeatedly. From Tsuboi and Suzuki (1977).

Quantum size effects are also significant in nuclei and no sharp pairing phase
transition is expected. Pairing correlations should definitely become weaker
as the excitation energy is increased but there will be no sudden transition
(Chapter 6).

Mottelson and Valatin (1960) argued that there is a close formal correspon-
dence between the equations of motion in a constant magnetic field and those in
a rotating reference system. They suggested that critical magnetic field phenom-
ena in superconductors should have their counterpart in the rotational spectra
of nuclei. The Coriolis forces in a rotating nucleus tend to decouple pairs of
particles in time-reversal states. When the angular velocity is sufficiently large
then pairing correlations should be destroyed completely. Mottelson and Valatin
estimated a critical angular velocity ωc above which there would no longer be
any pairing correlation. This is analogous to the critical magnetic field Bc for a
superconductor.
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The correspondence between the effect of a magnetic field on a superconductor
and the influence of rotations on pairing in a nucleus is not complete. The London
penetration depth is destroyed by an applied magnetic field in two stages. In the
absence of a magnetic field all the electrons are paired in the superconducting
ground state. Excited states are formed by breaking pairs. The two-quasiparticle
states have an excitation energy and so on. The magnetic field produces a Zeeman
splitting of the excited states and reduces the energy gap. The splitting is largest
in a quasiparticle state with maximum angular momentum. This is kF R, where
R is the radius of the particle and kF is the Fermi momentum. When the field has
a strength B1 given by:

e�

2m
(2kF R)B1 = 2�, (1.41)

the lowest two-quasiparticle state becomes degenerate with the fully paired
ground state. In these circumstances the field is strong enough to reduce the
energy gap to zero but not strong enough to destroy the superconductivity. It is
an example of gapless superconductivity (Perenboom et al. (1981)).

The two-quasiparticle state with highest angular momentum has a mag-
netic moment (e�/2m)2kF R, while the largest magnetic moment of a four-
quasiparticle state is almost twice that value. Thus, when the field increases
slightly above B1, the four-quasiparticle state becomes degenerate with the fully
paired state. As the field increases further, more and more pairs are broken. The
resultant blocking reduces the effective strength of the pairing interaction and
eventually the pairing disappears. Calculations reviewed in Perenboom et al.
(1981) based on the BCS theory with a Fermi gas density of states and including
no shell effects, give the critical field as

Bc = 2.6B1. (1.42)

The first of these size effects exists in rotating nuclei. As discussed in Brink
(1994), the largest two-quasiparticle angular momentum is j1 + ( j1 − 1) =
2 j1 − 1, where j1 is the maximum single-particle angular momentum avail-
able near the Fermi level. Normally it corresponds to the intruder state with
jmax = lmax + 1/2 which is pushed down from the next shell by the spin–orbit
interaction. This two-quasiparticle state is split by the rotation and becomes
degenerate with the fully paired state when

�ω1 = 2�

2 j1 − 1
. (1.43)

Physically this size effect is associated with the band crossing (or ‘backbend’,
see Chapter 6, Fig. 6.3) observed in rotating nuclei and ω1 should be indentified
with the band crossing frequency. The two quasiparticlcs align their angular
momentum with the rotational axis of the nucleus.

Backbending is a striking effect which is observed in the rotational spectrum of
many deformed nuclei. The corresponding effect is much more difficult to detect



30 Introduction

in superconductors because the critical field B1 (see equation (1.41)) depends on
the radius of the sample and it is difficult to obtain grains of uniform size. As well
as producing backbending, rotations tend to quench the pair correlations in a nu-
cleus. There should be a phase transition to an unpaired state at a critical rotational
frequency ωc. Analogy with the superconducting case equation (1.42) suggests
ωc ≈ 2.6ω1. Making use of equation (1.43) with typical values of� ≈ 1.2 MeV
and j1 ≈ 13/2 for medium heavy nuclei (A ≈ 150), leads to �ωc ≈ 0.5 MeV.

As in the case of the critical temperature, finite size effects will smooth out any
sudden phase transition. Pairing correlations should definitely be reduced as the
angular velocity increases but they are unlikely to vanish suddenly at ω ≈ ωc.

Finite size effects in nuclei smooth out some of the striking effects associated
with phase transitions in superconductors, but at the same time there are new
phenomena associated with the finite size which are unknown in superconduc-
tors. Shell effects are a consequence of the finite size of nuclei. The spacing �w0

between major shells in a nucleus can be estimated from the formula (Bohr and
Mottelson (1969))

�w0 ≈ 41A−1/3 MeV ≈ 49

R
MeV fm, (1.44)

where we have used R = 1.2A1/3fm. Equations (1.39) and (1.44) give a relation

R

ξ
≈ 1.8

�

�w0
. (1.45)

Thus the condition that the nuclear radius is small compared with the coherence
length is related to a condition that the pairing strength 2� is less than the shell
spacing �w0. Consequently, a phase transition from normal into superfluid states
can take place at T = 0, as a function of particle number. In fact in closed shell
nuclei �� δ ≈ 0.5�w0 while in open shell nuclei � > δ ≈ �w0/10. Spatial
quantization in atomic nuclei leads to single-particle states with quite different
angular momenta. Cooper pairs based on large angular momenta levels and
lying close to the Fermi energy feel the action of nuclear rotation stronger than
Cooper pairs based on low angular momenta levels. Consequently, the breaking
of Cooper pairs takes place in atomic nuclei as a function of rotational frequency,
stepwise. This interplay between pairing and shell effects is responsible for the
band crossing or ‘backbending’ phenomena observed in rotating deformed nuclei
(Stephens and Simon (1972), Bohr and Mottelson (1974, 1981), Broglia et al.
(1974a), (1975)) (see Chapter 6).

1.10 Neutron stars

Atoms dissolve when ordinary matter is compressed to a very high density,
namely when the separation of the nuclei is smaller than the atomic size. The
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positive charged nuclei move in a plasma of free electrons. For such an assembly
the lowest energy state is reached for a system of 56

26Fe nuclei because they are
the nuclei with the largest binding energy. If the matter is compressed to a still
higher density the electron Fermi energy increases and the electrons become
relativistic. For a sufficiently large density it becomes energetically favourable
for the electrons to combine with the bound nuclear protons to form neutrons
by inverse β-decay. This moves the equilibrium nuclear composition away from
56
26Fe to more neutron-rich nuclei. Coulomb forces play a weaker role than in
isolated atomic nuclei. When the density increases to ∼ 4× 1011 g cm−3 (note
that saturation nuclear density corresponds to ρ = 2.8× 104 g cm−3), the ratio
n/p reaches a critical level. Any further increase in the density leads to ‘neutron
drip’, that is, a two-phase system in which electrons, nuclei, and free neutrons
coexist and together determine the state of lowest energy. Increasing the density
above 4× 1011 g cm−3 leads to higher n/p ratios and more and more free neu-
trons. Finally, when the density exceeds about 4× 1012 g cm−3, more pressure
is provided by neutrons than by electrons (Shapiro and Teukolsky (1983)).

Pulsars are astronomical objects emitting periodic pulses of radio waves. It is
thought that the objects are neutron stars. The near simultaneous discoveries of
the Crab and Vela pulsars (Hewish et al. (1968), Gold (1969)), provided evidence
for the formation of neutron stars in supernova explosions. At the relatively
low temperatures (≤keV) expected for all but the youngest neutron stars, one
expects to find neutron superfluidity in the crust and interior (see Fig. 1.16).
One also expects the remaining protons in the interior to be paired and hence

Figure 1.16. Cross-section of neutron stars (after Pines (1980)).
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superconducting (Shaham (1980)). It is unlikely, however, that the electrons are
superconducting because the electron–phonon coupling is too weak.

Calculations suggest that at least three distinct hadronic superfluids exist inside
a neutron star (Pines et al. (1980)):

1. In the inner crust (4.3× 1011g cm−3 < ρ < 2× 1014 g cm−3, the free neu-
trons may pair in a 1S0 state to form a superfluid amid the neutron-rich nuclei.

2. In the quantum liquid regime (ρ ≥ 2× 1014 g cm−3), where the nuclei have
dissolved into a degenerate fluid of neutrons and protons, the neutron fluid is
likely to be paired in a 3P2 state.

3. The protons in the quantum liquid are expected to be superconducting in a
1S0 state.

There are a number of important consequences of hadron superfluidity and
superconductivity, which may lead to observational effects. In particular the
cooling time scale of pulsars (Pizzochero et al. (2002)), as well as the sudden
changes in the pulsar periods known as glitches (Anderson et al. (1982), Pines,
Tamagaki and Tsuruta (1992)).
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The pairing force and seniority

2.1 Evidence for pairing correlations

The nucleus 208Pb is well described by the independent particle model in terms
of closed shells in both neutrons and protons. The absence of low-lying states
supports this hypothesis. The shell model would then describe the low-lying
levels of 207Pb in terms of the states of a single neutron hole. The observed
energies, angular momenta and parities are in good accord with this picture,
although small admixtures of more complicated configurations must be invoked
to account for some fast electromagnetic decays (see Sections 9.1 and 9.2). The
next step is to interpret the levels of 206Pb in terms of two holes, which are
combinations of the single-hole states of 207Pb, interacting through a residual
interaction. The dramatic effect of the internucleon force is shown by the fact that
there is only one excited state below 1.2 MeV, compared with the five we would
get in the independent hole approximation (see Fig. 2.1). This becomes even
more striking in 204Pb, where the independent hole picture predicts about thirty
levels within 1 MeV of the ground state, whereas again only one is observed
(Mottelson (1996)).

Another indication of the importance of the residual interaction among nucleon
pairs is the well-known difference in physical properties between even and odd
nuclei. For example, studies of cosmic abundances show that nuclei with even
proton and neutron numbers are much more abundant, and thus more stable,
indicating stronger binding energies.

Fig. 2.2 shows a typical trend in binding energies as a function of the num-
ber of nucleons (see also Fig. 1.10). The binding energies of the even nuclei
(N0, N0 ± 2, . . .) give rise to the lower line and odd nuclei to the upper line. The
ordinate is E − λ (N − N0) where E is the energy and λ is the chemical poten-
tial. The term λ (N − N0) subtracts the average dependence of the energy on the
particle number so that the odd–even fluctuations show more clearly. The energy

33
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Figure 2.1. Level spectrum of 206Pb. The experimental spectrum together with the observed
spin and parities are shown on the left. On the right the different possible configurations ( j1 j2)
are drawn with excitation energies equal to E( j1)+ E( j2) as obtained from 207Pb. The spin
and parities of the different levels that can be obtained from coupling j1 and j2 connect these
asignments with the appropriate levels in the observed spectrum (after Mottelson (1996)).

Figure 2.2. Binding energies (−E) as a function of the number of neutrons. The quantity−λ
is the average binding energy per added neutron, that is λ = chemical potential.
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difference between the lines is �. Whether this quantity reflects the binding
energy associated with a pair interaction between nucleons or not depends on its
magnitude. This is because the quantization of the independent particle model
also implies an extra binding energy for the even system compared with the odd
system. The magnitude of this effect can be estimated in the Fermi gas model
(see equations (2.4)–(2.7)).

The spacing d between states at the Fermi energy with the same spin and
isospin quantum numbers can be written in terms of the total level density sum
of the proton and neutron level densities ρ = 3A/2εF as

d = 4

ρ(εF)
= 8εF

3A
. (2.1)

The factor of 4 is due to the fact that each level can be occupied by two protons
and two neutrons (with spin up and spin down). If the levels are equally spaced
the total energy is

E(N ) = 1
4 d(N − 1)2 − 1

4 d δ(N , even), (2.2)

for each type of particle, as can be seen from Fig. 2.3. Making use of the relations
given in equations (1.28) and (2.2) and of the fact that B(N ) = −E(N ), one finds

0 10 15
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 (

N
)
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Figure 2.3. Energy E(N ) =∑N
i=1 εi associated with the motion of N identical independent

particles moving in the set of equidistant two-folded single-particle levels shown in upper left
corner. Under close inspection, there is an odd–even staggering as described by equation (2.2).
The dots and the crosses represent the even and odd systems respectively. The continuous
curve corresponds to the expression given by equation (2.2).
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that the effective gap parameter in this model is (Bohr and Mottelson (1969))

(�)kin = 2× d

8
� 2εF

3A
∼ 25

A
MeV. (2.3)

The observed pairing energies are shown in Fig. 1.11 and can be parame-
trized according to equation (1.30). For a 160Dy nucleus (A = 160) we have
(�)kin � 0.16 MeV and� ≈ 0.95 MeV. Thus� is almost an order of magnitude
larger than (�)kin (see also Satula et al. (1998) and Rutz et al. (1999)).

The large observed odd–even effect may be described in terms of pairwise
correlations of identical particles. These contribute an additional binding energy
for each pair of nucleons near the top of the Fermi distribution coupled to angular
momentum zero. This can be seen from the spectra shown in Fig. 2.1. Giving an
extra binding energy to the p2

1/2(0+) configuration is equivalent to moving up all
the excited states by the same amount. In this way overall agreement between
theory and experiment is obtained.

We conclude this section by collecting together some numerical values of
Fermi gas parameters which will be used in this chapter and in other parts of the
book. The average particle density of nuclear matter is taken to be

ρ(0) = 0.17 nucleons fm−3, (2.4)

i.e.

ρ(0) = 2.8× 1014 gm cm−3, (2.5)

which corresponds to a nuclear radius R = r0 A
1
3 , with r0 = 1.1 fm. The Fermi

wave number is

kF = 1.36 fm−1 , (2.6)

(an average value for neutrons and protons, N = Z = A/2) and the Fermi energy
is

εF = �
2k2

F

2m
� 37 MeV. (2.7)

This value of εF has been used in equation (2.3).

2.2 The pairing interaction

The idea of a pairing interaction was already present in the early developments
of the shell model (Mayer and Jensen (1955)). The purpose of this section is to
identify two general properties of a pairing force interaction. The first is that it
is short range and the second that it has a multipole expansion containing high
angular momentum components (Belyaev (1959), Bayman (1960), Mottelson
(1962)). Both of these properties are illustrated by the example of a delta function
potential discussed at the end of this section and in Section 2.3. The second is
important for understanding the induced pairing interaction in Chapters 8, 10
and 11.
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q12 ∼ (I + 1)

I

Z

R

m

(I + 1) R

−m

q
12

∼ 1

Figure 2.4. Schematic representation of two time-reversed orbits coupled to angular momen-
tum I = 0 and I �= 0. Two identical nucleons are assumed to move in time-reversal orbits
labelled by the orbital angular momentum � and the projection m. When the two particles
are coupled to angular momentum zero their orbits wobble within an angle θ12 ∼ 1/�. This
is required by the Heisenberg uncetainty principle within conjugated variables, in the present
case ��z�θ12 � 1. In a simple classical picture where the particles are concentrated at a
radius R, such wobbling results in a typical distance between the two particles of the order of
R/�. The larger the angular momentum the closer is the system to the classical limit and larger
will be the probability that the particles are on top of each other. When the relative motion
of the particles are coupled to a finite value I of the total angular momentum, aside from the
quantal wobbling, there will be a further tilting of the single-particle orbital proportional to
I/�. This will add, on average, a distance RI/� between the two particles.

Consider two particles in the same �-orbit coupled to various total angular
momenta L = 0, 1, 2, . . . . The radial dependence of the single-particle wave-
functions will, in most cases, describe particles moving in orbits with a radius
of the order of the nuclear radius. The main degree of freedom available to the
particles corresponds to different possible orientations of the orbital planes. The
associated particle correlations are mainly correlations in angle. This is illus-
trated in Fig. 2.4. Two identical nucleons are assumed to move in time-reversed
orbits labelled by the orbital angular momentum � with projections m and −m.
When the two particles are coupled to an angular momentum L = 0 their orbits
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wobble within an angle θ12 ∼ 1/�. This is required by the Heisenberg uncertainty
relation for conjugate variables�� �θ12 ∼ 1. In a simple classical picture where
the particles are located at a radius R such a wobbling results in a typical distance
between the particles of the order of R/�.

If we now consider a state of the �2 configuration with I �= 0 (but still I �
l) then the average angle θ12 between the particles will be larger. This will
increase their average separation by a distance of the order of RI/�, giving a
total separation ∼ R(I + 1)/�. Consequently, if the range of the force is small
compared with R/�, the states with I = 2 will have an interaction energy which
is a fraction (∼ 1/3) of that in the I = 0 state.

Let us now expand a general interaction in multipoles (Brink and Satchler
(1968))

V (r12) = V (| 	r1 − 	r2|) =
∑
λ

Jλ(r1, r2)
∑
μ

Yλμ(r̂1)Y ∗λμ(r̂2)

=
∑
λ

2λ+ 1

4π
Jλ(r1, r2)Pλ(cos θ12)

=
∑
λ

Vλ(r1, r2)Pλ(cos θ12). (2.8)

If particles 1 and 2 are in orbitals confined to a fairly restricted radial region,
the dependence on r1, r2 may be ignored for a particular λ. The function Pλ drops
from its maximum at θ12 = 0 in an angular distance 1/λ (Fig. 2.5). Thus 1 and 2
interact through the component λ only if r12 in equation (2.8) fulfils r12 < R/λ,

angular spread of s.p.
wavefunction~(1/  )1/2

1 / 

q12

2 +1
4p( )

1/2

Figure 2.5. Schematic picture indicating the angular spread of the wavefunction of two parti-
cles coupled to angular momentum I = 0. Particle 1 is moving in an orbital with m = �while
particle 2 has m = −�. These one-particle states correspond to wavefunctions concentrated
in the equatorial plane, but possessing an angular spreading ∼ (�)−1/2 due to quantal zero
point fluctuations (after Mottelson (1962)). Copyright © Società italiana di Fisica.
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where R is the mean value of the radii 	r1 and 	r2. Thus, as λ increases, the effective
forces range decreases. This leads to the expectation that the strength of the λ
terms increases as the range of V (r12) decreases. For a force of range much
greater than the nuclear size, only the λ = 0 monopole part is important. At the
other extreme, a δ-function force has coefficients Vλ(r1, r2) that increase with λ,
as can be seen from the relation

Vλ = (2λ+ 1)

4πr2
1

δ(r1 − r2). (2.9)

Pairing force effects come from all the high λ terms, representing the short-
range effects of V (r12).

2.3 The δ-function nucleon–nucleon potential

As discussed in Section 2.2, the δ-function potential

V (r12) = −4πV0 δ(	r1 − 	r2), (2.10)

is a simple representation of a short-range attractive effective interaction between
identical valence nucleons. Two identical nucleons in a shell model orbit with an-
gular momentum j coupled to a total angular momentum I have a wavefunction
| j j I M〉 and the interaction energy EI is

EI = 〈 j j I M |V | j j I M〉.
The matrix element can be evaluated to give

EI = − (2 j + 1)

2
V0 I ( j)|〈I j 0 1

2 | j 1
2〉|2, (2.11)

where

I ( j) =
∫

R4
j r

2dr,

is an integral depending on the radial wavefunction R j of the level j , and
〈I j 0 1

2 | j 1
2〉 is a Clebsch–Gordon coefficient. The details of the derivation

of equation (2.11) are given e.g. in Bayman (1960), Brink and Satchler (1968)
de-Shalit and Talmi (1963), Lawson (1980) and Heyde (1990). When the total
angular momentum I = 0, the energy E0 in equation (2.11) simplifies to

E0 = − (2 j + 1)

2
V0 I ( j). (2.12)

The radial integral I ( j) can be estimated by assuming that R j is constant inside
the nuclear radius R0 and is zero outside. Normalizing the wavefunction gives

R j =
√

3/R3
0,
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and

I ( j) ≈ 3/R3
0 .

If one corrects this estimate for the spillout of the nucleons (see Appendix D,
Section D.2), one has to divide the result by (1+ a/R)3 ≈ 1.4, thus leading to

I ( j) ≈ 1.2 fm−3/A, (2.13)

if R0 = 1.2A
1
3 fm. In the limit j � I the Clebsch–Gordon coefficient in equation

(2.11) can be estimated by using its semiclassical limit

lim
j�I
〈 j 1

2 I 0| j 1
2〉 ≈ PI (0) = (−1)I/2 I !

2I (I/2)!(I/2)!
. (2.14)

Substituting I = 0, 2, 4 and 6 into equation (2.14) gives

E2 ∼ (1/4) E0, E4 ∼ (9/64) E0, E6 ∼ (25/256)E0, (2.15)

showing that pairing is much stronger for the state with I = 0 than for other
values of I . The spectrum (2.15) is illustrated in Fig. 2.6.

The pairing force is an approximation to a short-range potential like the
δ-function interaction, and is defined so that the energy EI of a pair is large
when I = 0 and is zero for I �= 0. It can be expressed in second quantized form
by using the pair-creation operator (see Appendix A)

P†
j =

∑
m>0

(−1) j−ma†
jma†

j−m, (2.16)

and the corresponding pair-annihilation operator

Pj =
∑
m>0

(−1) j−ma j−ma jm . (2.17)

Figure 2.6. Spectrum of two particles moving in a single- j orbital coupled to angular mo-
mentum I and interacting through a contact nucleon–nucleon potential.
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The operator P†
j creates a pair of identical nucleons (say neutrons) with total

angular momentum I = 0 and the normalized pair state |( j j)0〉 can be written as

|( j j)0〉 = 1√
j + 1

2

P†
j |0〉. (2.18)

The pairing force interaction potential is defined as

V = −G P†
j Pj , (2.19)

and with this potential the interaction energy of a pair is

EI =
{
−G( j + 1

2 ) if I = 0,

0 if I �= 0.
(2.20)

The pairing potential can be generalized to the case where the nucleon pair
can occupy one of several j-orbits. The generalization is

V = −
∑

j j ′
G( j j ′)P†

j Pj ′ . (2.21)

To understand the physical properties of the pairing potential in another way we
write

a†
jm = a†

ν and (−1) j−ma†
j−m = a†

ν (2.22)

The operator a+ν creates a nucleon in a single-particle state |ν〉 = | jm〉 and a+ν
creates an identical nucleon in the time-reversed state |ν〉 = (−1) j−m | j − m〉
(see Appendix A). The generalized pairing potential is

V = −
∑
νν ′>0

Gνν ′P
†
ν Pν ′, (2.23)

where P†
ν = a†

νa
†
ν̄ and Pν = aν̄aν . The sum in equation (2.23) is over ν > 0 and

ν ′ > 0 which corresponds to m and m ′ positive. The pairing strength Gν,ν ′ is
an amplitude for a nucleon pair in the state |ν ′〉 and the time-reversed state |ν ′〉
to make a transition to the state |ν〉 and its time-reversed state |ν〉. The pairing
force potential produces correlations between pairs of nucleons in time-reversed
states.

We finish this section by making an estimate of the pairing force strength
parameter G. By comparing equations (2.12) and (2.20) we see that

G = V0 I ( j) ≈ 1.2 fm−3 V0/A. (2.24)
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To estimate V0 we use the δ-function potential to relate V0 to the strength of the
shell model single-particle potential U (r ) by writing (see equation (A.28))

U (r ) = −4π
∫

d3r ′V0δ(r− r′)ρ(r ′) = −4πV0ρ(r ), (2.25)

where ρ(r ) is the nucleon density inside a nucleus. If ρ(r ) = ρ0 is constant then

ρ0 = A/(
4π

3
R3

0) � 0.17 fm−3.

Hence

V0 ≈ − U0

4πρ0
= 50 MeV fm3

4π × 0.17
= 294

4π
MeV fm3, (2.26)

and (see Section 2.5)

G ≈ 28

A
MeV. (2.27)

This estimate should not be taken too seriously because the real nucleon–nucleon
interaction is much more complicated than that defined in equation (2.10) (see
Chapter 8, Section 8.1). We shall, however, see in the following sections that the
estimate (2.27) is not unreasonable.

2.4 The degenerate model and quasi-spin

A simple shell model Hamiltonian for a number of identical nucleons outside
a closed shell and interacting by a pairing force residual interaction can be
written as

H =
∑

j

N jε j −
∑

j j ′
G j j ′P

†
j Pj ′, (2.28)

where ε j is the energy of the single-particle orbit j while N j = a†
j a j . There is a

simple limiting case of this Hamiltonian for which the eigenvalues and eigenvec-
tors can be found analytically. This is the degenerate model (see Appendix H),
where all the single-particle energies are the same and all the pairing strengths
are equal

ε j = ε; G j j ′ = G. (2.29)

In this case several j-levels are degenerate and the total degeneracy is∑
j

(2 j + 1) = 2�.

The Hamiltonian (2.28) can be written as

H = εN − GS+S− = εN − G P†P, (2.30)
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where

S+ = P† =
�∑
ν=1

a†
νa

†
ν and S− = P =

�∑
ν=1

aν aν, (2.31)

and N̂ is the number operator for the total number of nucleons outside the closed
shells

N̂ =
�∑
ν=1

(a†
νaν + a†

ν aν). (2.32)

The operators S+, S− and Sz = 1
2 (N̂ −�) satisfy the commutation relation

[S+, S−] = −2Sz = �− N̂ ,

[S+, Sz] = Sz, [S−, Sz] = −Sz. (2.33)

These are the same as the commutation relation for the angular momentum
operators J+, J− and Jz and for this reason they are called quasi-spin operators.
The quasi-spin method was introduced by Anderson (1958) and used by Ichimura
(1964), Lawson(1980) and others. Angular momentum methods can be used to
find the eigenvalues and eigenvector of the simplified Hamiltonian (2.28). The
operator

S2 = S+S− + Sz(Sz − 1), (2.34)

which is the analogue of the square of the total angular momentum, commutes
with S+, S− and also with H .

The Hamiltonian (2.28) can be written as

H = εN̂ − G

(
S2 − Sz(Sz − 1)

)
, (2.35)

and the eigenvalues are

E = εN̂ − G

(
S(S + 1)− Sz(Sz − 1)

)
= εN̂ − G(S + Sz)(S − Sz + 1). (2.36)

The standard convention is to write

S = 1
2 (�− υ) , (2.37)

where the quantum number υ is called the seniority, a concept which was intro-
duced by Racah (1942, 1943) in papers on the group theoretical classification of
atomic wavefunctions (see de Shalit and Talmi (1963)). One can then write

(S + Sz) = 1
2 (N̂ − υ) and (S − Sz) = �− 1

2 (N̂ + υ), (2.38)
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and

E = εN − E(N , υ),

with

E(N , υ) = − 1
4 G(N − υ)(2�− N − υ + 2). (2.39)

The combination (S + Sz) must be an integer, hence N − υ is an even integer.
It is useful to consider the cases where N is even and N is odd.

(i) N-even: The ground state has υ = 0 and has energy

E(N , 0) = − 1
4 G(2N�− N 2 + 2N ). (2.40)

The first excited state has υ = 2 with excitation energy

�E = G� = 2�. (2.41)

High excited states have υ = 4, 6, . . .
(ii) N-odd: The ground state has υ = 1 and energy

E(N , 1) = −G

4
(N − 1)(2�− N + 1), (2.42)

and the first excited state has υ = 3 again with excitation energy

�E = G� = 2�. (2.43)

This excitation energy is the pairing energy and the gap parameter � is
analogous to the gap parameter appearing in the BCS theory of pairing to be
discussed in Chapter 3 (see also Appendix G, in particular equation (G.10);
see also Appendix H, equation (H.4)).

2.5 Pairing binding energy formula

The lowest eigenvalue of the pairing Hamiltonian (2.25) can be written as

Eg = εN + 1
4 G N (N − 1)− 1

4 G(2�+ 1)[N ], (2.44)

where

[N ] = N if N is even,

[N ] = N − 1 if N is odd. (2.45)

An accurate binding energy formula (Talmi (1972)) follows from (2.44) by
adding an average interaction E between all pairs of nucleons. The result is

Eg = εN + 1
2αN (N − 1)+ 1

2β[N ], (2.46)



2.6 Quasi-spin wavefunctions 45

where

α = 1
2 G + E and β = − 1

2 G(2�+ 1). (2.47)

The last term in equation (2.47) is the pairing energy term found in the sys-
tematics of nuclear binding energies which depends on the evenness or oddness
of the number of protons and neutrons. The large observed odd–even effect is
a consequence of the pair correlations induced by the pairing force. Using the
expression given in equation (1.28) to extract a pairing energy from equation
(2.46), the terms proportional to ε and α cancel and there is a contribution only
from the third term and we obtain

� = − 1
2β = 1

4 G(2�+ 1). (2.48)

The empirical fit to� given in equation (1.30) can be used to obtain an estimate
of the pairing force parameter G.

When � is large the value (2.48) for � obtained from the binding energy
formula given in equation (2.46) is almost equal to the gap parameter (2.43)
from excitation energies. They differ by a factor (1+ 1/2�) (see also equation
(H.4)).

Lawson (1980) has fitted Talmi’s formula to the binding energies of
Ca isotopes and obtained

β = −3.23 MeV, � = 1.62 MeV. (2.49)

Equation (1.30) gives � = 1.81 MeV for A = 44, which is close to Lawson’s
number. Using � = j + 1

2 = 4 for the 7/2 shell, (2.48) and (2.49) yield a value
of G = 0.72 MeV, which corresponds to a relation G ≈ 31/A MeV (see equation
(2.27)).

2.6 Quasi-spin wavefunctions

States in a quasi-spin multiplet have the same value of S but different values of
Sz . In other words, they have the same seniority but different particle number.
The operator S+ increases Sz by one unit and the particle number by two units
without changing S or υ. In a similar way S− conserves S and υ but reduces the
particle number by 2 units.

We consider some special cases. When υ = 0 the quasi-spin quantum number
S = 1

2�. This case gives the ground state of even nuclei. The state |0〉 with
N = 0 corresponds to Sz = −S = − 1

2�. The ground state with N nucleons and
υ = 0 is obtained by creating N/2 pairs with the pair-creation operator S+,

|N , 0〉 = A(N , 0)SN/2
+ |0〉, (2.50)

where A(N , 0) is a normalization constant. Next we consider the case where
υ = 2 and S = 1

2�− 1. A state with Sz = −S has nucleon number N = 2 and
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the property

S−|N = 2, υ = 2〉 = 0. (2.51)

This state is highly degenerate, because all two-nucleon states where the nucleons
are not paired have this property. Each of the unpaired nucleon states leads to a
sequence of states with the same seniority and different particle number. Thus the
general state with seniority υ should be written as |N , υ, α〉 where the quantum
number α distinguishes between states with the same particle number and the
same seniority. The energies do not depend on α and the pair operators S+ and
S− do not change α. The state with lowest seniority for any particular N and α
has N = υ unpaired nucleons and

S−|υ, υ, α〉 = 0. (2.52)

The state |N , υ, α〉 can be obtained from it by adding (N − υ)/2 pairs

|N , υ, α〉 = A(N , υ)S(N−υ)/2
+ |υ, υ, α〉. (2.53)

The following physical picture emerges from the arguments in this section. An
eigenstate |N , υ, α〉 of the quasi-spin Hamiltonian has υ unpaired nucleons. The
state of these nucleons is labelled by the quantum numbersα. The remaining N −
υ nucleons form coherent pairs, with properties contained in the pair-creation
operator S+. The ground state in any nucleus is the state with the maximum
number of pairs or alternatively the smallest number υ of unpaired nucleons.

From angular momentum theory (Brink and Satchler (1968)) the matrix ele-
ments of the ladder operator S+ and S− between normalized states are

〈S, Sz + 1|S+|S, Sz〉 =
√

(S − Sz)(S + Sz − 1), (2.54)

〈S, Sz − 1|S−|S, Sz〉 =
√

(S + Sz)(S − Sz + 1).

In the following we write the matrix elements in terms of the particle number N
and the seniority υ and replace the quasi-spin raising and lowering operators by
the pair-creation and pair-annihilation operators P+ = S+ and P = S− so that
they become

〈N + 2, υ, α|P†|N , υ, α〉 = 1
2

√
(2�− N − υ)(N − υ + 2), (2.55)

〈N − 2, υ, α|P|N , υ, α〉 = 1
2

√
(N − υ)(2�− N − υ + 2).

The matrix elements (2.55) are called pair-transfer matrix elements and involve
the addition or removal of a correlated pair from the initial state. Transitions
with large neutron pair-transfer matrix elements have large cross-sections in
two-neutron transfer reactions, for example in (t, p) or (p, t) reactions. The
cross-section is proportional to the square of the magnitude of the pair-transfer
matrix element.
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Pairing correlations enhance pair-transfer processes (Broglia et al. (1973)).
Consider, for example, the pair-addition matrix element between states of se-
niority υ = 0. The basic matrix element is between an initial state with N = 0
and a final state with N = 2. Its value from equation (2.55) is

〈2, 0|P†|0, 0〉 =
√
�. (2.56)

The corresponding matrix element for adding a pair to the state with N/2 corre-
lated pairs is

〈N + 2, 0|P†|N , 0〉 = 1
2

√
(2�− N )(N + 2). (2.57)

The enhancement of the transfer cross-section is given by∣∣∣∣〈N + 2, 0|P†|N , 0〉
〈2, 0|P†|0, 0〉

∣∣∣∣2

= (2�− N )(N + 2)

2�
≈ N + 2

2
, (2.58)

when 2�� N . In this limit the enhancement is proportional to the number of
pairs in the final state. The pair-transfer operators S+ and S− do not change the
seniority. Hence pair-transfer cross-sections which involve a change in seniority
should be small (see Chapter, 4, equation (4.52), Fig. 4.2).

2.7 Pairing rotations

The expression (2.39) for the energy in the degenerate pairing model can also be
written in terms of the seniority and the number π of pairs missing or in excess
of the middle of the shell. The energy eigenvalues in this representation are

E(υ, π ) = − 1
4 G(�− υ)(�+ 2− υ)+ Gπ (π + 1) . (2.59)

The dependence of the energy and of the transfer matrix element on v and π
exhibits a natural grouping of levels. States with the same seniority and different
number of particles can be interpreted as members of a collective band. Their
energy displays a smooth dependence on π and they are connected by enhanced
and fairly constant matrix elements of the two-nucleon transfer operator. States
belonging to different bands are widely separated in energy and are not connected
by the pairing operator. In fact the bands resemble those of a rotor and we can call
them pairing rotational bands (Bohr (1968), Bes and Broglia (1966), Belyaev
(1972)). Later we shall see that they can be interpreted as rotational bands in
gauge space (Chapter 4).

Because of nuclear shell structure, the j-shells are bunched together within
a major shell, and a general tendency towards the degenerate pairing model is
realized in some nuclei, especially in single closed-shell nuclei.

The main term in nuclear binding energies is linear in the number of particles
and this must be subtracted before a comparison with pairing rotations can be
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made. The experimental binding energies of some Sn-isotopes with this sub-
traction are displayed in Fig. 4.2 (see Bes and Broglia (1977)). They follow the
rotational parabola closely. The available data on two-neutron transfer cross-
sections is also given in the same figure. These should be proportional to the
squares of the matrix elements of P+. Two important features of the band de-
scription are well satisfied, namely (i) the cross-sections between ground states
are much stronger than those linking ground and excited states and (ii) the ground
state cross-sections are rather constant (see Appendix H, Section H.3).

2.8 Exact solution of the pairing Hamiltonian

Exact solutions of the pairing problem have been studied by a number of authors
(Kerman et al. (1960), Lipkin (1960), Nogami (1963, 1964)). In what follows we
will discuss an exact solution of the pairing force problem for a non-degenerate
set of single-particle levels ε j and a constant pairing strength G j j ′ = G
(Richardson (1963, 1965, 1977), Richardson and Sherman (1964)). The method
did not involve diagonalizing the pairing Hamiltonian, but instead led to a set
of non-linear equations for parameters in the pairing wavefunctions. Recently
there has been renewed interest in Richardson’s method both for condensed
matter and nuclear physics applications (Sierra et al. (2000), Dukelsky et al.
(2002)). Also new and efficient algorithms for solving Richardson’s equations
have been developed. This section introduces Richardson’s method and draws
attention to some recent developments. Here we quote some of the important
equations and refer to the original papers for details.

The Hamiltonian in question is

H =
∑

j

N jε j − G
∑

j j ′
P†

j Pj , (2.60)

the exact eigenstates with n pairs being

ψ =
n∏
α

[∑
j

1

2ε j − eα
P†

j

]
|0〉, (2.61)

where |0〉 is a state without any paired particles. This wavefunction has a very
interesting structure. It depends on the single-particle energies and on parameters
eα. For example, in a system with 8 pairs distributed among 16 pair levels
Richardson’s wavefunction for the ground state depends on only 8 parameters.
On the other hand, the dimension of the shell model space for the seniority zero
levels is about 12 000.
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The quantities eα in the above wavefunction are solutions of a set of n non-
linear equations which can be written as∑

j

d j

2ε j − eα
+

n∑
β �=α

1

eβ − eα
+ 1

2G
= 0. (2.62)

The parameters d j = (ν j −� j )/2 depend on the pair degeneracies� j = (2 j +
1)/2. The seniority ν j is the number of unpaired particles in the level j . This
condition allows for the blocking of single-particle levels by unpaired particles.
The notation here is the one used by Dukelsky et al. (2002). The total energy of
the state ψ is

E(eα) = 〈0|H |0〉 +
∑
α

eα. (2.63)

In the ground state, pairs fill up the lowest available levels up to the Fermi level
when the interaction strength G is zero. When the interaction strength is small the
pair-occupation numbers for pair states below the Fermi level are almost unity
and the occupation numbers of states above the Fermi level are small. When the
interaction strength increases, the occupation numbers change smoothly from
unity to zero as ε j increases through the Fermi energy. The pair-occupation
numbers are given by

n j = ∂E(eα)

∂ε j
=

∑
α

∂eα
∂ε j

. (2.64)

Differentiating equation (2.62) with respect to ε j yields a set of linear equations
for the derivatives ∂eα/∂ε j (Richardson (1977)).

The solutions eα may be real or complex. Complex solutions occur in
complex conjugate pairs. Until recently most numerical applications have fo-
cused on problems with doubly degenerate single-particle levels and have used
Richardson’s (1977) technique for solving the equations of the theory, but re-
cently problems of more direct relevance to nuclear structure have been studied.
Dukelsky et al. (2002) have solved the pairing force problem for 114Sn and
116Sn in a large basis of single-particle states (d5/2, g7/2, s1/2, d3/2 and h11/2)
and calculated the occupation numbers of the single-particle states as a func-
tion of the pairing strength G. Their calculations illustrate how the eα move in
the complex plane as G changes. As Richardson’s method is exact the energies
and occupation numbers vary smoothly with G. More recently Rombouts et al.
(2004) have found a new method for solving Richardson’s equations which is
especially convenient for shell model applications where the single-particle lev-
els are degenerate. The studies in these last two references provide interesting
insights into the variation of the eα with the coupling strength G. One disad-
vantage of Richardson’s method is that the parameters eα do not seem to have a
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simple physical interpretation. Another is that, although physical quantities like
energies and occupation numbers vary smoothly with the interaction strength G,
the eα can have a singular cusp-like behaviour for certain values of G. Ways of
avoiding this problem have been developed by Rombouts et al. (2004).

In 1977 Richardson was able to show that his theory was equivalent to the BCS
theory in a suitable large N limit by using an analogue with a two-dimensional
electrostatic problem. The energy levels j were represented by a system of fixed
negative charges d j and positions ε j on the y-axis and the eα were represented
by n movable positive charges with positions xα, yα in the x–y plane equal
to the real and imaginary parts of eα. The attractive coupling strength G was
represented by a uniform electric field 1/2G acting in the negative y-direction.
The real and imaginary parts of the eα correspond to the x- and y-coordinates of
the charges. Equation (2.62) is the equilibrium equation for the forces acting on
the positive charge α. The electrostatic potential energy of the movable charges
corresponding to the force equation (2.62) is

U =
∑

j

d j ln |2ε j − eα| −
∑
α �=β

ln |eα − eβ | +
∑
α

eα/2G. (2.65)

Stationary points of the electrostatic energy U are solutions of Richardson’s
equations. This electrostatic analogy was exploited by Dukelsky et al. (2002)
in the solution of the pairing problem for 114Sn and 116Sn. It allows one to get
a physical picture of the solutions of Richardson’s equations. It also points to
possible instabilties because the stationary points of U are saddle points rather
than minima. Recently Volya et al. (2001) have developed a method based on
quasi-spin for diagonalizing the Hamiltonian of a system with a constant pairing
interaction. It is an alternative to solving Richardson’s equations and can be
extended to include other terms in the nuclear Hamiltonian (see Volya et al.
(2002)).

2.8.1 The degenerate case

The pairing force problem for a set of degenerate single-particle levels was solved
with the quasi-spin method in Section 2.4. Richardson’s equations (2.62) also
have a simple solution in this case. The solution gives the energy eigenvalues
E(eα) with seniority υ when there are n pairs in a level with degeneracy �. The
total number of particles N is related to the number of pairs by n = (N − υ)/2. If
one takes the energy of the degenerate single-particle state to be ε0 = 0, equation
(2.62) reduces to

�− υ
2eα

+
∑
β �=α

1

eβ − eα
+ 1

2G
= 0. (2.66)
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Multiplying by eα and summing over α gives

E(eα) =
n∑
1

eα = −2G

(
n(�− ν)

2
−

∑
β �=α

eα
eα − eβ

)
(2.67)

= −G (n(�− υ)− n(n − 1)) (2.68)

= −G

4
(N − υ)(2�− N − υ + 2), (2.69)

which is identical to equation (2.39) in Section 2.4. In this example the
Richardson wavefunction (2.61) does not depend on the individual eα and re-
duces to the simple pairing force wavefunction in equation (2.50). When there
is more than one single-particle level, as in the case of 116Sn, the interplay be-
tween the different eα and single-particle energies determines the structure of
the pairing wavefunction.



3
The BCS theory

3.1 The BCS wavefunction

To deal with realistic situations, the degenerate model of Section 2.4 has to be
generalized for more realistic applications than those discussed in Chapter 2.
We need to consider not only the case where several nucleons outside a closed
shell occupy non-degenerate single-particle levels, but also the situation where
the matrix elements Gνν ′ of the pairing interaction are not necessarily equal. There
is no analytical method for finding the energy levels and wavefunctions of the
more general pairing Hamiltonian defined in equation (2.28) but the BCS method
gives the solution to this problem in the mean-field approximation (Bardeen,
Cooper and Schrieffer (1957a,b)).

One way to generalize the ground-state wavefunction of the degenerate model
discussed in Chapter 2 is to define an operator

B† =
∑
ν

gνa
†
νa

†
ν̄ , (3.1)

which creates a correlated pair of nucleons analogous to a Cooper pair. The
coefficents gν specify its structure. In a spherical nucleus the binding is strongest
for an s-pair with total angular momentum zero. In this case the pair-creation
operator can be written in terms of the operators P†

j defined in equation (2.16)

B† =
∑

j

g j P†
j . (3.2)

A completely antisymmetric state 
n with n pairs outside a closed inert core
|0〉 is approximated by


n = Nn(B†)n|0〉, (3.3)

52
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where Nn is a normalization constant. The wavefunction (3.3) can be used as
a trial wavefunction in a variational principle and the coefficients g j treated as
variational parameters (de Gennes (1966)). The wavefunction (3.3) is not very
easy to work with. One can consider instead a generating function


 = C�ν>0(1 + eiφgνa
†
νa

†
ν̄)|0〉, (3.4)

where C is chosen so that 
 is normalized. In equation (3.4) ν refers to the
quantum numbers of the single-particle states | j,m〉 and ν̄ to the time-reversed
states (−1) j−m | j − m〉 (see Appendix A, Section A.2).

The product in equation (3.4) is over ν > 0, where the notation indicates that
only a single term is included for each pair of degenerate levels. For example, in
a spherical nucleus the product is taken only over positive values of the magnetic
quantum numbers m. Negative values of m are included automatically because
a†
ν a†

ν̄ creates a pair in the state ν and its time reverse ν̄. The state 
 is not an
eigenstate of the particle number. However the state 
n can be projected out
of 
 by picking out the coefficient of exp(inφ) in the expansion of (3.4) (see
equations (4.45), (4.46) and subsequent discussion).

The BCS wavefunction is obtained by writing 
 in a slightly different way
by incorporating the normalization constant into the product (see Appendix G,
Section G.4)


 = �ν>0 (Uν + Vν a†
ν a†

ν̄)|0〉, (3.5)

with

Vν/Uν = eiφgν, |Uν |2 + |Vν |2 = 1. (3.6)

In general the coefficients Uν and Vν are complex but in Sections 3.2–3.7 they
are taken to be real quantities restricted only by the normalization condition in
equation (3.6), which ensures that
 is normalized to unity. The phase φ will re-
emerge in Section 3.8 and will play an important role as a gauge angle (see also
Chapters 1, 4 and Appendix I). The wavefunction
was introduced by Bardeen,
Cooper and Schrieffer (1957a) in their fundamental paper on superconductivity.

The wavefunction 
 does not have a definite number of particles, but it can
be written as a linear combination of the normalized eigenstates 
n with the
particle number N = 2n


 =
∑

n

an
n.

The average number of particles is

〈N 〉 = 2〈n〉 = 2
∑
ν>0

|Vν |2, (3.7)
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and the width �N of the probability distribution |an|2 is given by

(�N )2 = 〈N 2〉 − 〈N 〉2 = 4
∑
ν>0

|Uν |2|Vν |2. (3.8)

To estimate�N assume that the single nucleon states |ν〉 (i.e. the states | jm〉
with positive m) have an average spacing d and are partially occupied over an
energy range 2�. Then

(�N )2 � 2 �/d � 〈Np〉 (3.9)

where 〈Np〉 is the average number of particles occupying single-particle levels
with energy lying in this energy range.

In a superconductor 〈Np〉 � 1 so that

〈N 〉 > 〈Np〉 � �N � 1. (3.10)

Typical numbers are 〈Np〉 � 1016, �N ∼ 108. In these circumstances the
probability distribution of the number of pairs has a very sharp maximum, but
an still has a rather smooth dependence on n in the sense that

an ≈ an+p, (3.11)

if p is not too large. This result means that expectation values of simple operators
can be calculated accurately with the wavefunction 
. Suppose F conserves
particle number. Then

〈
|F |
〉 =
∑
|aN/2|2〈N |F |N 〉. (3.12)

If 〈N |F |N 〉 is slowly varying on the scale of�N , then N may be replaced by
its average value 〈N 〉 = N ∗, and the matrix element taken outside the summation
so that

〈
|F |
〉 ≈ 〈N ∗|F |N ∗〉, (3.13)

In the same way if F acting on a state with N particles gives a state with
N + 2 particles then

〈
|F |
〉 =
∑

N

a∗( N+2
2 )a( N

2 )〈N + 2|F |N 〉

≈
∑

N

|aN/2|2〈N ∗ + 2|F |N ∗〉

≈ 〈N ∗ + 2|F |N ∗〉. (3.14)

The situation in a nucleus is different because in a typical case 〈Np〉 � 10
and �N ∼ 3. The relations (3.10) are not very well satisfied and the
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formulae (3.13) and (3.14) are not so accurate. They are, however, still use-
ful for making semi-quantitative estimates. If more accurate values are needed
then there are two ways to proceed. Either the number projected wavefunctions

n must be used, or the particle number fluctuations in 
 must be taken into
account (see Chapter 4 and Appendix I, Section I.4, see also Appendix J). Both
procedures lead to equivalent results (see Section 6.6). The number projected
wavefunctions
n have exactly the form of equation (3.3) with gν = Vν/Uν (see
Section 4.2).

3.2 The energy

The best wavefunction 
n of the form (3.3) is obtained by minimizing the
expectation value 〈
n|H |
n〉 with respect to the coefficients gν . When using
the wavefunction
 the procedure is different because the number of particles is
not fixed. The expectation value 〈
|H |
〉 has to be minimized with a constraint
that the average number of particles has a definite value. This can be done by
minimizing

〈
|H − λN |
〉, (3.15)

where λ is a Lagrange multiplier. Physically λ is the Fermi energy. The
Hamiltonian H contains the single-particle term and the pairing interaction de-
fined in equation (2.28) and is

H =
∑
ν>0

εν(a
†
νaν + a†

ν̄aν̄)−
∑
νν ′>0

Gνν ′P
†
ν Pν ′ . (3.16)

The expectation value of H − λN can be calculated in a straightforward way
using equation (3.5) for 
. The result is

〈
|H − λN |
〉 =
∑
ν>0

2V 2
ν (εν − λ)−

∑
νν ′>0

Gνν ′UνVνUν ′Vν ′ −
∑
ν>0

Gνν |Vν |4.

(3.17)

Here we have used the relations

〈
|P†
ν |
〉 = 〈
|Pν |
〉 = UνVν, (3.18)

where Uν and Vν are taken to be real and positive.
The last term proportional to |Vν |4 in equation (3.17) is essentially a Hartree–

Fock self-consistent field contribution to the single-particle energy. Its main
effect is to give a small renormalization of the single-particle energies. It
complicates the theory without giving any important physical effects and is
usually neglected because the aim of the simple BCS theory is to focus on the
effects of pairing (see Appendix G, Section G.3). We omit it in the subsequent
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discussions. Any more general interaction would have other Hartree–Fock con-
tributions.

The stationary condition with respect to variations of Uν and Vν

δ〈
|H − λ|
〉 = 0

with the constraint UνδUν + VνδVν = 0, coming from the normalization condi-
tion on Uν and Vν , leads to the equation

2(εν − λ)UνVν −
∑
ν ′>0

Gνν ′(U
2
ν − V 2

ν )Uν ′Vν ′ = 0. (3.19)

This equation can be simplified by setting

Uν = sin θν, Vν = cos θν, (3.20)

where 0 ≤ θν ≤ π /2 so that Uν ≥ 0 and Vν ≥ 0. This representation was used
by Anderson (1958) in his paper on collective excitations in superconductors.

The normalization condition for Uν and Vν is satisfied automatically by this
choice and

2UνVν = sin 2θν, |Uν |2 − |Vν |2 = cos 2θν. (3.21)

Then the variational equations (3.17) reduce to

2(εν − λ)tan 2θν =
∑
ν ′>0

Gνν ′sin 2θν ′ . (3.22)

Equation (3.22) can be written in the form

tan 2θν = �ν

εν − λ, (3.23)

with

�ν = 1

2

∑
ν ′>0

Gνν ′sin 2θν ′ =
∑
ν ′>0

Gνν ′Uν ′Vν ′ . (3.24)

The angles θν are real and lie in the range 0 ≤ θν ≤ π/2. Hence the �ν are
real and positive if Gνν ′ > 0.

Equations (3.23) is equivalent to the relations

sin 2θν = �ν
Eν
, cos 2θν = (εν − λ)

Eν
, (3.25)

where

Eν =
√

(εν − λ)2 +�2
ν > 0. (3.26)

We also have

|U 2
ν | =

1

2

(
1+ εν − λ

Eν

)
, |V 2

ν | =
1

2

(
1− εν − λ

Eν

)
. (3.27)
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Note that |Vν |2 > 1
2 if the state εν is below the Fermi level λ.

Inserting equations (3.25) into equations (3.24) leads to

�ν = 1

2

∑
ν ′>0

Gν ′ν�ν ′√
(εν ′ − λ)2 +�2

ν ′

. (3.28)

These equations have to be solved simultaneously with

N = 〈N 〉 ≈
∑
ν>0

[
1− εν − λ√

(εν − λ)2 +�2
ν

]
, (3.29)

which can be considered as an equation for the Fermi energy λ. This condition
comes from the constraint that the mean number of particles in 
 should equal
the actual number N in the system. The minimum value of the energy which
corresponds to the above set of variational equations is

〈E〉 =
∑
ν>0

2|Vν |2εν − 1

4

∑
μν>0

Gμν

�μ

Eμ

�ν

Eν
. (3.30)

An important special case is the constant pairing model, where the pairing
matrix elements are Gμν = G for single-particle statesμ and ν lying in a certain
range around the Fermi level, and are zero if μ or ν lie outside that range. In this
case the�ν = � are all equal and the set of equations (3.28) reduces to a single
equation

1 = G

2

∑
ν>0

1√
(εν − λ)2 +�2

= G

2

∑
ν

1

Eν
. (3.31)

This is the well-known gap equation which is the starting point of much of
the theory of pairing in nuclei. The total energy equation (3.30) simplifies to

〈E〉 = 2
∑
ν>0

|Vν |2εν − �
2

G
. (3.32)

The mean square fluctuation in the nucleon number (3.8) is

(�N )2 =
∑
ν>0

�2

E2
ν

. (3.33)

An alternative approach to BCS theory is given in Appendix G.

3.3 Excited states and quasiparticles

The wavefunction 
 is a linear combination of states with an even number of
particles and is appropriate as an approximation to the ground state of a system
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with N even. A possible trial wavefunction for an odd nucleus with a single
nucleon in the state μ is


μ = �ν>0,ν �=μ(Uν + Vνa
†
ν̄a

†
ν)a

†
μ|0〉. (3.34)

The expectation value of (H − λN ) in this state can be obtained from equation
(3.17) by replacing the term 2 |Vν |2(εμ − λ) in the sum over single-particle
energies by (εμ − λ) and by omitting the terms with ν or ν ′ equal to μ in the
potential energy terms. The result reduces to

〈
μ|H − λN |
μ〉 − 〈
|H − λN |
〉 = Eμ, (3.35)

where Eμ is given by equation (3.26). It is the energy needed to place an odd
particle in the state μ. The actual situation is more complicated because the
argument assumes that adding the extra particle does not change�ν or λ. In fact
there are changes in both equation (3.28) and equation (3.29) which determine
�ν and λ. The term ν = μ is omitted in equation (3.28), and in equation (3.29) N
must be replaced by N + 1 and the term ν = μ omitted in the sum on the right-
hand side. For a system like a superconductor, where the fluctuations are small,
the changes in λ and �μ are negligible but in a nucleus they can be important.
The changes in excitation energies and wavefunctions due to the fact that the
state μ is occupied by a single nucleon are called ‘blocking effects’.

If blocking effects are neglected, then the wavefunction 
μ defined in equa-
tion (3.34) can be written in another way by introducing quasiparticle creation
and annihilation operators by the Valatin (1958)–Bogoliubov (1958a,b) trans-
formations

α†μ = Uμa†
μ − Vμaμ̄, (3.36a)

α
†
μ̄ = Uμa†

μ̄ + Vμaμ, (3.36b)

αμ̄ = Uμaμ̄ + Vμa+μ , (3.36c)

αμ = Uμaμ − Vμa+μ̄ . (3.36d)

In a spherical nucleus the coefficients (Uμ, Vμ) should depend on j but not
on m. Using the phases introduced in equation (2.22), equation (3.36a) can be
written as

α
†
jm = U j a

†
jm − Vj (−1) j−ma j−m . (3.37a)

Equation (3.36b) becomes

(−1) j+mα
†
j−m = (−1) j+mU j a

†
j−m + Vj a jm . (3.37b)

These two equations are consistent for both positive and negative m.
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The quasiparticle operators in equations (3.37) have the properties


μ = α+μ
 , (3.38a)

αμ
 = 0 , (3.38b)

{αμ, α+ν } = δμν. (3.38c)

The operators α†μ and αμ obey fermion commutation relations and are called
quasiparticle creation and annihilation operators. Because of condition (3.38b)

 is the quasiparticle vacuum state, and
μ defined by equation (3.38a) is a one-
quasiparticle state with a quasiparticle in the state μ. The quasiparticle energy
is

Eμ =
√

(εμ − λ)2 +�2 , (3.39)

its minimum value being �.
The wavefunction
 gives an approximate description of the ground state of an

even (open shell) nucleus. The one-quasiparticle state α†μ
 is an approximation
to a state of an odd nucleus. The two-quasiparticle state


μν = α†μα†ν
, (3.40)

with excitation energy

Eμ + Eν ≥ 2�, (3.41)

is an approximation to an excited state of an even nucleus.
Thus BCS theory with constant pairing predicts that there is an energy gap

of at least 2� between the ground state and the two-quasiparticle states. For
a metal, this implies that electrons can move without resistance, provided the
temperature is low so the probability of collisions with an energy exchange of
2� is low (see Chapter 1, see also discussion end Section 1.2). The system
is then said to be in a superconducting state. In the nuclear case the relation
(3.41) implies, for example, that the moment of inertia of a deformed system is
considerably smaller than the rigid value, provided that the angular momentum
is low so that the effect of the Coriolis force is smaller than 2� (see Chapter 6).

The concept of a quasiparticle state is simple only if blocking effects are
neglected and the values of � and λ are kept constant for the ground state and
for excited states. Blocking effects become more and more important as more
quasiparticles are excited and in the end are responsible for the phase transition
from the superconducting to the normal phase when the temperature, magnetic
field or angular velocity are increased beyond critical values. As the temperature
of a superconductor is increased, more and more quasiparticles are excited and
the pairing gap 2� is reduced because of blocking. As the pairing gap is reduced
it is easier to excite quasiparticles. At the critical temperature the blocking effects
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are catastrophic, the pairing gap goes to zero and superconductivity disappears
(see Fig. 1.15).

3.4 The mean-field Hamiltonian

The single-particle states in the Hartree–Fock theory are eigenstates of the mean-
field Hamiltonian. The mean-field potential in this Hamiltonian describes the
average interaction of a nucleon with all the other nucleons in the nucleus. In the
same way it is possible to introduce a mean field to describe the average pairing
interaction. In what follows we give a heuristic approach which is specific for
the BCS model with a constant pairing strength.

The procedure is to introduce a pair-potential which is analogous to the
Hartree–Fock self-consistent field (see also Appendix G)

Vpair = −�(P† + P) with � = G〈P†〉 = G〈P〉. (3.42)

In this equation 〈P†〉 is shorthand for 〈
0|P†|
0〉 and P† is the pair-creation
operator

P† =
∑
ν>0

a†
νa

†
ν̄ . (3.43)

With the sign convention of Section 3.2, � and 〈P†〉 = 〈P〉∗ are real and
positive. A notable feature of the pair-potential (3.42) is that it does not conserve
particle number. This is not unexpected because the BCS ground state does not
have a good particle number in any case.

The mean-field Hamiltonian is

h′ =
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄)−�(P† + P). (3.44)

When h′ is written in terms of the quasiparticle operators (3.36) it reduces to

h′ =
∑
ν

Eν(α
†
ναν + α†ν̄αν̄)+ h0, (3.45)

where Eν are the quasiparticle energies, α†ν , αν are the quasiparticle creation
and annihilation operators and h0 is a constant. The quasiparticle operators (3.36)
satisfy Fermi commutation relations. Hence (see (A.69))

[h′, α†ν] = Eνα
†
ν and [h′, αν] = −Eναν. (3.46)

Substituting the expression (3.44) for h′ and (3.36) for α†ν we find that (3.44)
and (3.45) are consistent provided Uν and Vν satisfy the matrix equations(

εν − λ �

� − (εν − λ)

)(
Uν
Vν

)
= Eν

(
Uν
Vν

)
. (3.47)
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The positive eigenvalue of equation (3.47) is the quasiparticle energy

Eν =
√

(εν − λ)2 +�2,

and the coefficients (Uν, Vν) satisfy

�Vν = (Eν − (εν − λ)) Uν.

Combining this with the normalization condition (U 2
ν + V 2

ν ) = 1 gives

U 2
ν − V 2

ν =
2(εν − λ)

�
UνVν, (3.48)

which is consistent with equations (3.21) and (3.25) (see Appendix G).
We conclude this section with some general remarks about mean-field poten-

tials. Suppose h′ includes a deformation potential as well as a pairing potential.
A possible form is

h′ =
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄)− K 〈Q〉Q − G
(〈P†〉P + 〈P〉P†). (3.49)

The first term in (3.49) contains the single-particle energies in a spherical po-
tential. The second is a quadrupole deformation field proportional to a quadrupole
moment operator Q of the nucleons in occupied orbitals. It arises from an effec-
tive quadrupole–quadrupole interaction between nucleons and is self-consistent
in the sense that it is proportional to the average quadrupole moment of the
nucleus (Bohr and Mottelson (1975)). The first two terms in (3.49) together cor-
respond to the Nilsson shell-model potential for a deformed nucleus (Nilsson
(1955), Nilsson and Ragnarsson (1995)). The third term is the pairing potential.

The total energy of a nucleus with mean-field Hamiltonian (3.49) is

〈(H − λN )〉 =
∑

(εν − λ)〈Nν〉 − 1
2 K 〈Q〉.〈Q〉 − G〈P†〉〈P〉. (3.50)

The factor 1
2 in the second term arises because the quadrupole–quadrupole

force is a two-body effective interaction and the term −K 〈Q〉.〈Q〉 counts the
energy of each pair twice. A similar argument explains the relation between the
coefficients of the pairing terms in the mean field and in the total energy.

3.5 The correlation energy

The pair-correlation energy of a many-particle system is the difference between
the energies with and without pairing. If the pairing strength is constant, the
energy including pair correlations is

Ep =
∑
ν>0

2|Vν |2εν −�2/G, (3.51)
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while the energy without correlations is

E0 =
∑
ν>0

2|V 0
ν |2εν. (3.52)

The occupation probabilities |V 0
ν |2 in equation (3.52) are unity below the Fermi

level and zero above. In both equations (3.51) and (3.52) the Fermi energy εF

has to be chosen to give the correct number of particles. The correlation energy
is

Ecorr = Ep − E0. (3.53)

This energy must be negative if the pairing correlations are to be stable. The
correlation energy can also be written as

Ecorr = Es −�2/G (3.54)

where

Es =
∑
ν>0

2(|Vν |2 − |V 0
ν |2)εν. (3.55)

The correlation energy can be estimated in a closed form when the single-
particle levels which contribute to the pairing are uniformly spaced between
εF −� and εF +� and the pairing strength is constant in this range and zero
outside. We choose εF = 0 and denote the single-particle level density by g. The
level ν and its time reverse ν̄ are degenerate so the density of levels with ν > 0 is
g/2. Note that for a uniform level distribution g/2 = 1/d, where d is the energy
difference between two successive levels (see Fig. 2.3). The gap equation (3.31)
can be written as an integral equation

gG

4

∫ �

−�

dε√
ε2 +�2

= 1, (3.56)

provided that the gap parameter� is large compared with the spacing of single-
particle levels (g�� 1). The integral can be evaluated to give

gG

2
sinh−1(�/�) = 1. (3.57)

This equation yields a formula for the gap parameter

� = �/ sinh(2/gG) ≈ 2�e−2/gG, (3.58)

where the last formula is valid in the weak coupling limit 2/gG � 1 or�� �.
With the same approximation the single-particle part of the correlation energy
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is given by

Es = g

2

[ ∫ �

−�

(
1− ε√

ε2 +�2

)
εdε − 2

∫ 0

−�
εdε

]
= g

2

[
�2 −�

√
�2 +�2

]
+�2/G

≈ �2/G − g�2/4, if �� �. (3.59)

Substituting this expression in equation (3.54) gives the BCS expression for
the correlation energy

Ecorr = −g
�2

4
. (3.60)

In the case of a uniform level (g = 2/d) distribution Ecorr = −�2/2d.
At this stage we give some estimates of the parameters in equation (3.58).

The total level density for neutrons and protons for a nucleus with N = Z in the
Fermi gas model is

gn + gp = 3A

2εF
≈ A

25
MeV−1, (3.61)

making use of the Fermi energy εF = 37 MeV. Empirical evidence shows that
the value given in equation (3.61) is an underestimate. A better estimate which
takes surface effects into account (see Chapter 9 and Appendix B) is gn + gp =
A/16 MeV−1 (see Bohr and Mottelson (1969), Bortignon, Bracco and Broglia
(1998)). In this section we use

gn = N/16 MeV−1, gp = Z/16 MeV−1, (3.62)

for the neutron and proton level densities (see Section 8.2).
The monopole pairing force constants used in the rare earth region to reproduce

the empirical value of the pairing gap are (Nilsson and Ragnarsson (1995), see
also equation (2.27))

Gn = 20.5/A MeV, Gp = 26/A MeV. (3.63)

The parameter combination in the gap equation (3.58) is 2/gG. In the rare
earth region this combination does not have a strong A dependence and the values
for neutrons and protons are

2/(gnGn) = 2.7, 2/(gpGp) = 2.9. (3.64)

They are consistent with the weak coupling limit (3.58). Bohr and Mottelson
(1975) choose � = �ωc where �ωc = 41A−1/3 MeV is the major shell spacing
in the harmonic oscillator shell model. For a nucleus with A = 160 we have
� = 7.6 MeV which leads to a gap parameter �n = 1.0 MeV for neutrons. The
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global empirical formula given in equation (1.28) gives �n = 0.95 MeV which
is close to the value calculated from the gap equation.

For the same mass number the numerical values of the terms in (3.59) for one
type of particle are

�2/G ≈ 7.8 MeV, g�2/4 ≈ 1.5 MeV,

where the values of Gn and gn from equations (3.63) and (3.62) have been used.
In this last equation the empirical value N = 0.6A was used.

The total pairing energy�2/G is quite large but in the correlation energy it is
partially cancelled by a similar term describing the fact that, in the BCS ground
state, particles moving in levels close to the Fermi energy are partially excited
across the Fermi surface, in keeping with the fact that V 2

ν changes smoothly from
1 to 0 around λ, being equal to 1

2 at the Fermi energy. The overall result Ecorr ≈
−g�2/4 ≈ −1.5 MeV, corresponds to a considerably smaller (in absolute value)
contribution.

3.6 Pairing correlations in the wavefunction

If the nucleus has many nucleons outside closed shells the pairing interaction
can produce strong correlations in the wavefunction. The matrix element

α0 = 〈
|P†|
〉 (3.65)

of the pair addition operator P† is non-zero and gives a measure of the pair
correlations in the BCS wavefunction. The operator P† increases the number of
particles by 2 and, according to the arguments in Section 3.1,

α0 = 〈
|S+|
〉 ≈ 〈N ∗ + 2|P†|N ∗〉. (3.66)

The matrix element (3.65) can be easily calculated and the result is

α0 =
∑
ν>0

UνVν = �
2

∑
ν>0

1

Eν
= �

G
. (3.67)

Because UνVν is peaked at the Fermi energy, one can replace the state dependent
value of this quantity by 1/2. Consequently 2α0 = �.

Thus, the quantity α0 can be used to give an estimate of the number of corre-
lated pairs in the BCS ground state.

In the rare earth region (A ∼ 170) Gn ≈ 0.12 MeV, Gp ≈ 0.15 MeV and�n ≈
�p ≈ 0.92 MeV and the pairing-correlation parameters for neutrons and protons
are estimated as

(α0)n ≈ 8, (α0)p ≈ 6. (3.68)

Thus the number of correlated neutron and proton pairs is small, and pairing
is a relatively weak effect in nuclei. Consequently, one expects that pairing
fluctuations, which play a minor role in macroscopic systems, become important
in nuclei (see Chapter 5 and Section 8.4).
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3.7 The degenerate model in the BCS approximation

The pairing model with degenerate single-particle levels was solved analytically
by the quasi-spin method in Section 2.4. Expressions were given for the energy
levels, wavefunctions, and pair-distortion matrix elements. In this section we test
the accuracy of the BCS method by comparing the BCS approximation with the
exact results of the quasi-spin approach (see also Appendix H).

The exact ground-state energy of a system with an even number of particles
is given in equation (2.39) as

Eex = Nε − 1
4 G N (2�− N + 2), (3.69)

where 2� is the degeneracy of the level with energy ε. To obtain the BCS
approximation to the ground-state energy we note that, as all the single-particle
energies εν are equal, the quasiparticle energies Eν and occupation probabilities
|Vν |2 are independent of ν. The gap equation (3.31) reduces to a simple algebraic
equation for the quasiparticle energy

E =
√

(ε − λ)2 +�2 = 1
2�G. (3.70)

The constraint (3.7) on the total particle number gives the BCS occupation
probability

V 2 = N

2�
. (3.71)

The Fermi energy and gap parameter are given by

ε − λ = 1
2 G(�− N ), �2 = 1

4 G2 N (2�− N ). (3.72)

Using these in equation (3.32) for the BCS ground-state energy we get

EBCS = Nε − 1
4 G N (2�− N ). (3.73)

To assess the accuracy of the BCS method one can look at the ratio

Eex − EBCS

Eex − Nε
= 2

2�− N + 2
. (3.74)

As an example, one can consider the case of 116Sn where there are N = 16 va-
lence neutrons occupying the orbits g7/2, h11/2, d5/2, d3/2 and s1/2 (see Fig. 10.2).
If all these levels are assumed to be degenerate then� = 16 and the ratio (3.74)
is 0.11 or 11%.

The first excited states in the exact solution are the seniority v = 2 states while
in the BCS method they are the two-quasiparticle states. The excitation energy is
�E = G� in both cases. The pair-transfer amplitude is the BCS pair-distortion
parameter (3.67)

α0 = �/G = 1
2

√
N (2�− N ),
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which agrees well with (2.57) if N and � are reasonably large. For the 116Sn
example the ratio α0/〈N + 2, 0|P+|N , 0〉 is equal to (16/18)1/2 = 0.94, im-
plying a 6% error of the BCS estimate. However, the measurable quantity is
the ratio of the two-particle transfer cross-sections. In this case, the ratio is
16/18 = 0.89, corresponding again to an 11% error. Note that if one con-
siders the Hartree–Fock self-consistent field contribution in equation (3.17),
(3.73) becomes EBCS = NE − 1

4 G N (2�− N + N/�). The ratio (3.74) is equal
to (2− N/�)/(2�− N + 2) (Lawson (1980)) which has the value 0.06 for
� = N = 16.

3.8 Gauge invariance

There is a close analogy between the BCS wavefunction for a system with
pairing and the Hartree–Fock wavefunction of a deformed nucleus (Bes and
Broglia (1966)). In both cases there is a broken symmetry, which is the topic
of discussion of the next chapter, and which is briefly touched upon in this section.
First we recall some properties of a deformed Hartree–Fock wavefunction.

The Hartree–Fock method approximates the ground-state wavefunction of a
nucleus by a Slater determinant which minimizes the expectation value of the
Hamiltonian (see Appendix A). The nuclear Hamiltonian is rotationally invariant
and its exact eigenstates are also eigenstates of angular momentum. On the
other hand, in many cases, the Hartree–Fock state is deformed and is not an
angular momentum eigenstate. Symmetry is broken because the Hartree–Fock
wavefunction has a lower symmetry than the original Hamiltonian. Rotational
symmetry is still present in the sense that there are many degenerate solutions
of the Hartree–Fock equations. Rotating one solution yields another with the
same energy. States with definite angular momentum, which are approximations
to the states in the lowest rotational band of the nucleus, can be projected out
of a deformed Hartree–Fock wavefunction. The Hartree–Fock state is called the
intrinsic state of the rotational band (Nilsson (1955), Bohr and Mottelson (1975),
see equation (3.50)).

The BCS wavefunction has analogous properties. The pairing Hamiltonian
conserves particle number and if N is the particle number operator

[N , H ] = 0 or U †(χ )HU (χ ) = 1, (3.75)

where the unitary gauge operator is defined as

U (χ ) = e−iNχ/2. (3.76)

The relations (3.75) express the fact that H is invariant for rotations in gauge
space. The general BCS wavefunction is


 = �ν>0(Uν + eiφVνa
†
νa

†
ν̄)|0〉, (3.77)
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where Uν and Vν are chosen to be real. The gauge operator acting on 
 gives

U (χ )
 = �ν>0(Uν + ei(φ−χ )Vνa
†
νa

†
ν̄)|0〉. (3.78)

The BCS state 
 does not have a definite particle number and can be called
a ‘deformed state in gauge space’. The angle φ specifies the orientation of the
BCS state
 in gauge space and U (χ ) rotates it through an angle χ in that space.
Invariance of H for rotations in gauge space implies that the energy expectation
value is independent of φ or χ . The BCS wavefunction (3.77) can be thought
of as being deformed in gauge space. The α0 in equation (3.65) gives a measure
of the deformation. For this reason it is sometimes called the pair-distortion
parameter.

As discussed in Section 3.1 the BCS state can be written as a linear combination
of normalized states 
n with a definite number of pairs n = N/2,


 =
∑

aneinφ
n. (3.79)

Projection of a state with definite particle number n means to pick out the com-
ponent 
n from 
. It is the term with coefficient proportional to einφ in the
expansion (3.79).

The gauge angle χ is the conjugate variable to the number n of pairs. One
can transform from a pair number to a gauge angle representation by making a
Fourier transformation (see discussion after equation (4.46), Section 4.2)


(χ ) =
∑

n

einφ
n. (3.80)

Then the gauge angle χ is a dynamical variable conjugate to the number of pairs
n. In the gauge angle representation the operator can be written as

n = −i
∂

∂χ
. (3.81)

There is an uncertainty relation between χ and n

�χ�n ∼ 1, (3.82)

which has to be understood with the same qualifications as for the angle –
angular momentum uncertainty relation because χ is restricted to the range
0 ≤ χ < 2π . These subjects are taken up in further detail in the next chapter
(see also Appendix I).

3.9 Matrix elements of one-body operators

Formulae for matrix elements of one-body operators in the BCS theory are
derived in Lane (1964), Kisslinger and Sorensen (1963), Rowe (1970), Bes
and Sorensen (1969), Ring and Schuck (1980), Bohr and Mottelson (1975).
For completeness we summarize some of the important results here. In second
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quantization the one-body operator F̂ is

F =
∑
μν

〈μ|F |ν〉a†
μaν. (3.83)

Expressing the particle-creation and annihilation operators in terms of
quasiparticle operators this equation becomes

F =
∑
μν

〈μ|F |ν〉 (Uμα†μ + Vμαμ̄
) (

Uναν + Vνα
†
ν̄

)
= F0qp + F1qp + F2qp + F†

2qp. (3.84)

Here

F0qp =
∑
ν

〈ν|F |ν〉V 2
ν ,

F1qp =
∑
μν

〈μ|F |ν〉
(

UμUνα
†
μαν − VμVνα

†
ν̄αμ̄

)
,

F2qp =
∑
μν

〈μ|F |ν〉UμVνα
†
μα

†
ν̄ , (3.85)

where the Bogoliubov amplitudes Uν and Vν are real.
The operator F0qp does not depend on the quasiparticle operators and may have

a non-zero expectation value in the BCS vacuum state |BCS〉. The F1qp operator
has matrix elements between one-quasiparticle states while the operators F2qp

and F†
2qp create and annihilate pairs of quasiparticles respectively.

When the operator F has the time-reversal properties (τ−1 Fτ )† = −cF then
the analysis carried out in Appendix A, Section A.2 shows that

〈μ̄|F |ν̄〉 = −c〈ν|F |μ〉 and 〈μ|F |ν̄〉 = c〈ν|F |μ̄〉. (3.86)

Using these relations we get

F0qp =
∑
ν>0

V 2
ν (〈ν|F |ν〉 + 〈ν̄|F |ν̄〉) =

∑
ν>0

V 2
ν (1− c)〈ν|F |ν〉. (3.87)

The expression for F1qp can be simplified by making a change of summation
variables ν̄ → μ and μ̄→ ν in the second term. It reduces to

F1qp =
∑
μν

〈μ|F |ν〉 (UμUνα
†
μαν + cVμVνα

†
ναν

)
. (3.88)

In a similar way

F2qp =
∑
μ>ν

(
UνVμ − cUμVν

) 〈μ|F |ν̄〉α†μα†ν. (3.89)

Matrix elements of F between states with the same number of quasiparti-
cles or with quasiparticle number differing by 2 can be calculated from these
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expressions. Pair correlations can enhance or suppress matrix elements depend-
ing on the time-reversal properties of the operator.

One example is the influence of pairing correlations on matrix elements
of single-particle multipole operators in one-quasiparticle states in a spheri-
cal nucleus. The reduced matrix element of the operator Fλμ in a quasiparticle
state j̄ is related to the corresponding single-particle reduced matrix element
by

〈 j̄‖Fλ‖ j̄〉 = (
U 2

j + cV 2
j

) 〈 j‖Fλ‖ j〉. (3.90)

The quadrupole operator Q2μ is time-even and has c = −1. Hence quadrupole

matrix elements in one-quasiparticle states are modified by a factor
(

U 2
j − V 2

j

)
.

This factor is positive if the quasiparticle state is above the Fermi level and
negative if it is below. On the other hand the magnetic moment operator M1μ is

time-odd, has c = 1 and the corresponding factor is
(

U 2
j + V 2

j

)
= 1. Thus the

magnetic moment of a quasiparticle state is the same as for a particle state.
Another example is the effect of pairing on the moment of inertia of a deformed

nucleus. The cranking moment of inertia in a nucleus with pairing is (Belyaev
(1959), Migdal (1959), Bohr and Mottelson (1975))

I = 2�
2
∑
μν

|〈μν| jy|BC S〉|2
Eμ + Eν

, (3.91)

where the sum is taken over two-quasiparticle states. Using the relation between
two-quasiparticle matrix elements and particle matrix elements we have

|〈μν| jy|BC S〉|2 = |〈μ| jy|ν̄〉|2
(
UμVν −UνVμ

)2
(3.92)

because jy is a time-odd operator and c = 1. The cranking formula gives a mo-
ment of inertia equal to the rigid value when there are no pairing correlations.
Pairing correlations reduce the moment of inertia partly because the energy de-
nominators are increased (the quasiparticle excitation energies are larger than the
corresponding particle excitations) and partly because the two-quasiparticle ma-
trix elements of jy are smaller than the corresponding particle matrix elements.

3.10 Pairing and isospin

An important nuclear symmetry property manifests itself in the conservation of
isospin: a nuclear state is characterized by the total isospin quantum number as
well as by the total angular momentum, the number of pairs of particles, etc. The
existence of the isospin symmetry requires that the Hamiltonian describing the
nuclear system should be invariant under rotations in isospace. The isospin sym-
metry is violated by a pairing interaction acting only between identical nucleons,
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as was the case considered in the previous sections. Thus an invariant pairing
force must, in addition to the nn and pp terms, contain pn components. One
may distinguish between an isoscalar (T = 0) and an isovector (T = 1) pairing
interaction. The isoscalar pairing interaction acts only between np pairs coupled
to T = 0. The isovector interaction has equal matrix elements between pp, np
and nn pairs coupled to T = 1 (see e.g. Bohr (1968), Nathan (1968), Bayman et
al. (1969), Bes et al. (1977), Dussel et al. (1970), Garrido et al. (1999)).

Parikh (1965) gave an exact solution of the pairing problem for a system of
neutrons and protons in a degenerate single-particle level interacting with an
isovector pairing force by generalizing the quasi-spin methods using identical
nucleons. The role of the seniority υ is played by two quantum numbers, namely
the seniority itself and the reduced isospin t (which is the isospin of the unpaired
nucleons). Within each representation (υ, t), the states are labelled by the total
number of nucleons N , the total isospin T and its z-component Tz . The energy
eigenvalues are given by

E (υ, t ; N , T ) =−G1

2

[
N

(
�− N − 6

4

)
− v

(
�− υ − 6

4

)
+ t (t + 1)− T (T + 1)

]
(3.93)

This expression reduces to equation (2.39) in the case of identical nucleons by
putting T = N/2 and t = υ/2. If υ = 0 only even (odd) values of T are allowed
if the number of pairs is even (odd).

3.10.1 T = 0 and T = 1 pairing co-existence

All the discussion in the previous sections of this chapter relate to isovector
pairing. The strength of the two-body nucleon–nucleon interaction is comparable
in T = 0 and T = 1 states so there is no a priori reason why pairing should be
more important for isovector pairs than for isoscalar pairs. To give an idea of
the issues involved we refer to a selection of the many papers written on this
subject.

Engel et al. (1997) examined the possible co-existence of isovector and
isoscalar pairing in an exactly solvable model. They considered a degener-
ate model with a Hamiltonian containing both isovector (T = 1, S = 0) and
isoscalar pairing (T = 0, S = 1) pairing. The Hamiltonian contains a parameter
x which fixes the relative strengths of the isovector and isoscalar pairing; x = −1
is pure isovector pairing, x = 1 is pure isoscalar while for x = 0 the isovector
and isoscalar strengths are equal. They calculated the overlap between the exact
ground state and the pure isovector spin-singlet paired state as a function of x
in a T = 0 nucleus with an even number of pairs. They found that there is a
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relatively sharp phase transition as x increases through zero. The ground state is
a rather pure isovector paired state for x < 0 and changes to an isoscalar paired
state as x increases through zero. There is a strong mixing for x = 0 and for this
value of x the Hamiltonian has Wigner SU(4) supermultiplet symmetry.

Goodman (1998) solved the isospin generalized BCS and Hartree–Fock–
Bogoliubov equations for the ground states of even–even N = Z nuclei with
mass numbers A = 76–96. His calculations included both isovector and isoscalar
pairing. He found a transition from isovector pairing at the beginning of the iso-
tope sequence to isoscalar pairing near the middle of the sequence. These results
indicate that T = 0 and T = 1 pairing can co-exist and that T = 0 pairing can
be dominant in some nuclei. This result is consistent with the findings of Engel
et al. (1997). In a recent paper Bes et al. (2000) found a more general class of
solutions to the BCS equations in the presence of isovector and isoscalar pairing
correlations.

One indication of np pairing comes from the Wigner energy. This is an ad-
ditional binding energy of an N = Z nucleus relative to its neighbours which
appears as a spike in the isobaric mass parabola as a function of T3 = |N − Z | /2.
Satula et al. (1997a) used a standard form for the Wigner energy and extracted
its parameters from experimental binding energies. Then they made shell model
calculations in the s-d and p-f shells using standard interactions which include
both T = 1 and T = 0 components. The parameters of the Wigner energy
extracted from the shell model binding energies fit the experimental values (see
also Goriely et al. (2001, 2002)). The authors repeated the shell model calcula-
tions with the T = 0 components removed. By comparing the results of the two
calculations they found that most of the Wigner energy in the shell model calcula-
tions comes from the T = 0 neutron–proton interaction and that the interaction
between deuteron-like (J = 1) and ‘stretched’ (Jmax) pairs are of comparable
importance. Within this context, it may be possible to create a T = 0 nuclear
vortex (see Appendix K, and Ramon Wyss, Key Topics in Nuclear Structure,
Abstracts, Paestum 23–27 May 2004, p. 73, as well as Satula and Wyss (2001a)
and Frauendorf and Sheikh (2000)).

Satula and Wyss (1997b) studied the competition between T = 0 and T = 1
pairing in N ≈ Z nuclei in a cranked mean field calculation (see also Satula and
Wyss (2001b)). They found that the sudden phase transition between T = 0 and
T = 1 pairing is a generic feature of the BCS approximation for N = Z nuclei.
This phase transition is smeared out if a good particle number is projected out
by the Lipkin (1960), Nogami (1964) method. Then the T = 0 and T = 1 pairing
correlations can co-exist even at non-zero rotational frequencies. For N �= Z nu-
clei T = 0 and T = 1 pairing correlations can co-exist even in the BCS approxi-
mation but are confined to a narrow region along the N = Z line. The additional
binding arising from these correlations can be viewed as a microscopic origin of
the Wigner energy in even nuclei.



4
Spontaneous symmetry breaking

4.1 General background

As already mentioned in previous chapters, the nuclear structure exhibits many
similarities with the electron structure of metals. In both cases, one is dealing with
systems of fermions which may be characterized in a first approximation in terms
of independent particle motion. However in both systems, important correlations
in the particle motion arise from the action of the forces between particles. In
particular, it is well established that nucleons moving close to the Fermi energy
in time-reversal states have the tendency to form Cooper pairs which eventually
condense (Bohr, Mottelson and Pines (1958), Bohr and Mottelson (1975)). This
phenomenon, which has its parallel in low-temperature superconductivity, mod-
ifies the structure of nuclei in an important way. In particular it influences the
occupation numbers of single-particle levels around the Fermi surface (Chap-
ter 3), the moment of inertia of deformed nuclei (Chapter 3), the lifetime of
alpha and cluster decay and fission processes (Chapter 7), the depopulation of
superdeformed configurations (Chapter 6) and the cross-sections of two-nucleon
transfer reactions (Chapter 5).

While one does not expect the transition between the normal and the super-
fluid phases of the atomic nucleus to be sharp because of finite size effects and
the central role played by fluctuations (see Chapter 6), there is a strong anal-
ogy between phenomena in nuclei and the corresponding phenomena in bulk
superconductors. Spontaneous symmetry breaking is important in both nuclei
and superconductors. We focus our attention on one of the fingerprints of the
broken symmetry, namely the consequences it has for the energy level spectra
of the systems.

The phenomenon of spontaneous symmetry breaking had been known for a
long time before the formulation of the BCS theory of superconductivity in 1957.
An example is the Jahn–Teller effect in solid state physics; if the symmetry of
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a crystal is such that ground-state degeneracy of electron states at a crystal site
is not the Kramers minimum then it is energetically favourable for the crystal
to distort in such a way as to lower the symmetry enough to remove the degen-
eracy. The same phenomenon is the origin of deformed shapes in nuclei (see
Reinhardt and Otten (1984)). The Hartree–Fock single-particle states in a spher-
ical potential for a nucleus with neutron and proton numbers far from closed
shells are degenerate or almost degenerate. The energy is reduced by allowing
the self-consistent potential to deform to remove the degeneracy. Even though
the nuclear Hamiltonian is rotationally invariant the Hartree–Fock wavefunction
of a deformed nucleus is not an eigenstate of angular momentum. The theory
produces a nucleon density distribution which is deformed and has a definite
orientation in space. A rotation applied to a Hartree–Fock state produces an
equivalent state with the same energy as the original state. This idea is the ba-
sis of Bohr and Mottelson’s (1953) and Nilsson’s (1955) theory of deformed
nuclei.

The situation is similar with Bardeen, Cooper and Schrieffer’s (1957a,b) the-
ory of superconductivity. The Hamiltonian of the BCS theory commutes with
the electron number operator N̂ . The ground state of a finite superconductor
should be an eigenstate of N̂ but the BCS wavefunction does not have this prop-
erty. A gauge transformation applied to the BCS ground state produces another,
different, BCS state with the same ground-state energy. There are an infinite
number of equivalent states connected by gauge transformations. The BCS the-
ory predicts that there is an energy gap 2� between the ground state and excited
two-quasiparticle states. Anderson (1958) investigated corrections to the BCS
theory using the random phase approximation (RPA). He found a dispersion
relation predicting a phonon-like collective mode related to zero sound with en-
ergies within the BCS energy gap. He related this collective excitation to the
gauge symmetry breaking. Similar results were obtained by a different method
at about the same time by Bogoliubov et al. (1958). His approach was based on
a development of his quasiparticle theory (Bogoliubov (1958b)).

The connection between the gauge symmetry breaking and Anderson’s col-
lective states (Anderson (1958)) was studied in more detail by Nambu (1959). He
argued that the phonon-like collective states are essential to the gauge-invariant
character of the theory and that they are a necessary consequence of the gauge
invariance. He showed that gauge invariance, the energy gap and the collective
states are related to each other. In a subsequent paper Nambu (1960) extended
his ideas to a γ5-invariant theory with zero-mass fermions. There γ5-symmetry
breaking (or chiral symmetry breaking) leads to non-zero baryon masses (analo-
gous to the BCS energy gap) and zero-mass pseudoscalar mesons (analogous to
Anderson’s collective states). Nambu’s ideas were incorporated in the Nambu,
Jona-Lasinio (1961a,b) model of baryons and mesons which was motivated by
the BCS theory of superconductors.
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Nambu’s (1959) paper is based on a mean field generalization of the BCS
theory with RPA corrections (see also Eguchi and Nisijima (1995)). Goldstone
(1961) extended Nambu’s work in a paper on symmetry breaking with the title
‘Field theories with “superconductor” solutions’. He considered several simple
covariant models and conjectured that, whenever the original Lagrangian has a
continuous symmetry group and the new solutions have a reduced symmetry,
then the theory must contain massless bosons. The models he considered were
renormalizable, so that Goldstone’s result might be very general, and apply not
only to approximate mean field solutions, but also to exact solutions.

Goldstone’s conjecture was put on a firmer footing by Goldstone, Salam and
Weinberg (1962). They proved by three different methods that, if there is a
continuous symmetry transformation under which the Lagrangian is invariant,
then either the vacuum state is also invariant, or there must exist spinless bosons
of zero mass. In particle physics these bosons are called Goldstone bosons. We
refer to them as Anderson, Goldstone, Nambu (AGN) bosons because analogous
excitations were discovered in theories of superconductivity by Anderson and
Nambu and their relation to gauge symmetry breaking was recognized by those
authors.

In the following discussion we distinguish between large and small systems,
or more properly between three-dimensional (3D-) and zero-dimensional (0D-)
systems. We make use of the random phase approximation treatment of pairing
developed by Anderson (1958) for the case of a large neutral system and by
Högaasen-Feldman (1961) and Bes and Broglia (1966) for the case of the atomic
nucleus (see also Scadron (1985) and Broglia et al. (2000)).

4.1.1 Infinite systems and finite systems

As discussed in Section 1.7, in normal metals at low temperature the coherence
length ξ is of the order of 103 Å. This quantity is much larger than the spacing
between electrons (rs ≈ 1–3 Å) where

rs =
(

3

4πn

)1/3

, (4.1)

is the Wigner–Seitz radius, while n is the electron density of the system. At the
same time, the quantity ξ is also much smaller than the physical dimension L
of a typical macroscopic sample. The inequalities rs � ξ � L are typical of
three-dimensional (3D-) superconductors. In keeping with these results, within
the region occupied by any given pair will be found the centre of mass of many
(of the order of 106) pairs. In a superconductor the pair phase φ(	r ) (gauge angle)
is approximately constant over spatial regions characteristic of the correlations
in the superconducting phase, and a supercurrent with gauge-invariant velocity
v s = −�/2me(∇φ − 2e/�cA) where A is the vector potential, can be defined.
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It is obtained by multiplying the wavefunctions of all the effectively interacting
particles by approximately the same phase factor. In an anisotropic superfluid
such as 3He-A the order parameter not only has a phase but also has an orientation,
the preferred direction of l, the relative orbital angular momentum of the l = 1
Cooper pairs. In this system the superfluid velocity depends not only on the spatial
change of the phase φ, but also on that of l. Parametrizing l by the azimuthal (β)
and the polar (α) angles, v s now takes the form v s = �/2m3(∇φ − cosβ∇α),
where m3 is the mass of the 3He atom (Vollhardt and Wölfle (1990)).

The situation is quite different in nuclei, where ξ ≈ 30 fm (see equation
(1.39)), a quantity which is much larger than the average distance between nucle-
ons (≈2 fm) (see Appendix C). On the other hand, pairs must be located inside
the nucleus (radius R ≈ 5–7 fm for medium heavy nuclei). Thus a nucleus
can be viewed as a 0D-system, where the phenomenon of quantized superflow
observed in infinite 3D-systems does not seem to have a counterpart. Superflow
may, on the other hand, play an important role in the dynamics of nuclear matter
occurring in neutron stars (see Section 1.10 and Ruderman (1972), Anderson
et al. (1982), Pines et al. (1980), (1992) and references therein).

The BCS solution of the pairing problem in a finite nucleus has been presented
in Chapter 3 and Appendix G. In the next section we will discuss the RPA
(collective) modes which are built on it (see Appendices I and J) with special
reference to spontaneous symmetry breaking. Then in Section 4.3 we will make a
comparison with Anderson’s (1958) derivation of collective modes in infinite 3D
neutral superconductor and comment on the similarities and differences between
the finite and infinite cases.

4.2 Pairing in atomic nuclei (0D systems; ξ�R)

The present section is concerned with gauge symmetry breaking in a system of
neutrons or protons interacting with a pairing force. We begin it by dividing the
Hamiltonian into a mean field part and a fluctuating part. The ground state of
the mean field part is represented by a BCS wavefunction. The original Hamil-
tonian is invariant with respect to rotations in gauge space but the mean field
Hamiltonian and the BCS wavefunction are not (see Section 3.8). There is a
discussion of the transformation properties under rotations in gauge space. The
next step is to derive the RPA equations for the fluctuations about the mean field
wavefunctions. The RPA equations can be solved exactly for the simple pairing
problem. The gauge invariance of the original Hamiltonian requires that the RPA
equations must have a zero-frequency mode. This mode comes out automatically
from the explicit solution of the RPA equations, but it can also be found by a
general argument from gauge symmetry (Section 4.2.3). The zero-frequency
mode is related to pair addition and removal processes (Section 4.2.4). The nu-
cleon number dependence of the ground-state energy is contained in the Fermi
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energy, which gives a linear dependence, and a ‘moment of inertia’ which gives a
quadratic dependence. The arguments are illustrated by a simple schematic model
in Section 4.2.5, and by Weinberg’s (1996) discussion of symmetry breaking in
macroscopic systems. Section 4.2.6 presents a comparison with experiment.

4.2.1 Deformation in gauge space: mean-field approximation

Our Hamiltonian describes the motion of independent particles interacting
through a pairing force,

H = Hsp + Hp. (4.2)

Here

Hsp =
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄) , (4.3)

is the single-particle Hamiltonian. The operator a†
ν creates a particle (fermion)

with quantum numbers ν. For spherical nuclei, ν stands for n, l, j and m, i.e. the
number of nodes, the orbital angular momentum, the total angular momentum
and its projection, respectively. The state |ν̄〉 is obtained from the state |ν〉 by the
operation of time reversal. The condition ν > 0 means m > 0, where m is the
magnetic quantum number. The single-particle energies εν are measured from
the Fermi energy λ. The pairing Hamiltonian

Hp = −G P†P, (4.4)

is written in terms of the pair operator

P† =
∑
ν>0

a†
νa

†
ν̄ , (4.5)

which creates a pair of particles in time-reversal states. In a spherical nu-
cleus these are coupled to angular momentum zero. The BCS solution of this
Hamiltonian provides a mean-field approximation to H , where the pairing gap
parameter,

� = Gα0, (4.6)

plays a central role in determining the properties of the system. The quantity

α0 = 〈BCS|P†|BCS〉 (4.7)

is the average value of the pair transfer operator in the pairing mean-field ground
state |BCS〉.

As a function of these parameters, the total Hamiltonian

H = HMF + Hfluct, (4.8)
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can be written as a sum of a mean field term

HMF = Hsp −�(P† + P)+ �
2

G
(4.9)

and a fluctuation term

Hfluct = −G(P† − α0)(P − α0). (4.10)

BCS theory assumes α0� (P† − α0)(P − α0) and solves the reduced Hamilto-
nian HMF making an ansatz for |BCS〉.

As in Chapter 3 we make a special choice of gauge and define a standard BCS
wavefunction as

|BCS〉K =
∏
ν>0

(Uν + Vνa
†
νa

†
ν̄)|0〉, (4.11)

where Uν and Vν are real. This wavefunction does not have a fixed number of
particles and selects a privileged orientation in gauge space. The Hamiltonian
H (equations (4.2) or (4.8)) is invariant with respect to rotations in gauge space
generated by the operator

G(φ) = e−
iN̂
2 φ, (4.12)

where N̂ =∑
ν a†

νaν is the particle number operator. The state

|BCS (φ)〉K = G(φ)
∏
ν>0

(Uν + Vνa
†
νa

†
ν̄)|0〉 (4.13)

=
∏
ν>0

(Uν + e−iφVνa
†
νa

†
ν̄)|0〉 (4.14)

is obtained from the standard state |BCS〉K by rotating it through an angle φ in
gauge space. The new BCS state has the same energy and a similar structure as
|BCS〉K. The rotated state can be written in another way as

|BCS (φ)〉K = |BCS〉K′ =
∏
ν>0

(Uν + Vνa
′†
ν a′†ν̄ )|0〉, (4.15)

in terms of rotated creation operators

a′†ν = G(φ)a†
νG−1(φ) ,

= e−
i
2φa†

ν. (4.16)

This allows us to define an intrinsic (body-fixed) coordinate frame K′ (see
Fig. 4.1), in terms of the primed operators.

The state |BCS(φ)〉K with gauge angle φ with respect to the laboratory coor-
dinate system K has the angle φ = 0 with respect to the intrinsic system K′.
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z (  : laboratory frame)

( ′ : body-fixed,
intrinsic system)

f
z′

Figure 4.1. Schematic representation of a deformation in gauge space defining a privileged
orientation z′ in the two-dimensional space and thus an intrinsic, body-fixed, coordinate
system of reference K′, making an angle φ with the laboratory frame of reference K.

The mean-field pairing Hamiltonian becomes diagonal in the quasiparticle
basis, i.e.

HMF = U + H11, (4.17)

where

U = 2
∑
ν>0

(εν − λ)V 2
ν −

�2

G
(4.18)

and

H11 =
∑
ν

Eνα
†
ναν. (4.19)

The quasiparticle creation operator

α†ν = Uνa
†
ν − Vνaν̄ (4.20)

is defined in terms of the BCS theory Uν and Vν occupation numbers, the state
|BCS〉 is the quasiparticle vacuum. The quasiparticle energy is

Eν =
√

(εν − λ)2 +�2 . (4.21)

We shall see that restoration of symmetry is obtained by diagonalizing the resid-
ual interaction acting among the quasiparticles associated with the terms H ′′p in
the expression (Anderson (1958), Bes and Broglia (1966), Broglia (1985))

Hfluct = H ′p + H ′′p + C, (4.22)
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where

H ′p = −
G

4

(∑
ν>0

(U 2
ν − V 2

ν )(�†
ν + �ν)

)2

(4.23)

and

H ′′p =
G

4

(∑
ν>0

(�†
ν − �ν)

)2

, (4.24)

with

�†
ν = α†ν α†ν̄ . (4.25)

The term C in equation (4.22) stands for constant terms, as well as for terms
proportional to the number of quasiparticles, and which consequently vanish
when acting on the BCS ground state (see Appendices I and J). Neglecting terms
proportional to the number of quasiparticles is an important approximation in
the RPA and it has to be done consistently. The structure displayed by H ′p and
H ′′p is a consequence of the fact that, neglecting terms of type C , one can write

P† + P =
∑
ν>0

(U 2
ν − V 2

ν )(�†
ν + �ν) (4.26)

and

P† − P =
∑
ν>0

(U 2
ν + V 2

ν )(�†
ν − �ν) =

∑
ν>0

(�†
ν − �ν). (4.27)

In other words, there are two fields which can create (annihilate) two quasiparti-
cles, namely U 2

ν and V 2
ν . These fields can be combined in a symmetric (U 2

ν + V 2
ν )

and in an antisymmetric (U 2
ν − V 2

ν ) fashion with respect to the Fermi surface.
Making use of the approximate commutation relation (see Appendix A, Sec-

tion A.4)

[�ν, �
†
ν ′] = δ(ν, ν ′), (4.28)

which neglects terms proportional to the number of quasiparticles, the solutions
of

H̃ = HMF + H ′p + H ′′p , (4.29)

in particular the collective modes, can be obtained in the harmonic approximation
(RPA), through the equations of motion (see Appendix A)

[H̃ , �†
n] = �ωn�

†
n (4.30)

and

[�n, �
†
n′] = δ(n, n′), (4.31)
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where

�†
n =

∑
ν

(anν�
†
ν + bnν�ν), (4.32)

is the creation operator of the nth vibrational mode. Equations (4.30) and (4.31)
lead to a dispersion relation and to the normalization condition of the eigenstates,
which determine the frequenciesωn = (Cn/Dn)1/2, the RPA energies Wn = �ωn ,
and the zero point fluctuations (�/2ωn Dn)1/2 associated with the modes, and
thus the restoring force (Cn) and inertia (Dn) parameters for the corresponding
harmonic motion.

Note that to neglect C in equation (4.22) is equivalent to a quasi-boson ap-
proximation. In fact, defining the conjugate variables

qν = 1√
2

(�†
ν + �ν), pν = − i√

2
(�†
ν − �ν),

fulfilling the condition (see equation (4.28))

[qν, pν ′] = iδ(ν, ν ′),

one can write

H ′p + H ′′p = −
G

2

[(∑
ν>0

(U 2
ν − V 2

ν )qν
)2
+

(∑
ν>0

pν
)2]
.

This is diagonalized by the transformation (equivalent to equations (4.30) and
(4.31))

Qn =
∑
ν ′
λnν ′qν ′, Pn =

∑
ν ′
μnν ′ pν ′,

so that

H̃ =
∑

n

( P2
n

2Dn
+ Cn

2
Q2

n

)
and

[Qn, Pn′] = iδ(n, n′), [Qn, H̃ ] = i
Pn

Dn
, [Pn, H̃ ] = −iCn Qn,

implying that the eigenvalues are Wn = �(Cn/Dn)1/2.

4.2.2 Solution of the RPA equations

In what follows we do not diagonalize the full Hamiltonian HMF + H ′p + H ′′p
but discuss two special cases (for the simultaneous diagonalization of HMF, H ′p
and H ′′p we refer the reader to Appendix J). As a first case we consider the
Hamiltonian (see equations (4.17) and (4.23)) HMF + H ′p where the odd term H ′p
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in the interaction is antisymmetric with respect to the Fermi surface. The even
term H ′′p is neglected. Equation (4.30) leads, in this case, to the dispersion relation∑

ν>0

2Eν(U 2
ν − V 2

ν )2

(2Eν)2 − (W ′
n)2
= 1

G
. (4.33)

Making use of the BCS relation

U 2
ν − V 2

ν =
εν − λ

Eν
, (4.34)

which is equivalent to the BCS gap equation, it can be shown that the lowest
energy solution of equation (4.33) is W ′

1 = �ω1 = 2�. These pairing vibrations
(Bes and Broglia (1966)) have been studied extensively through two-nucleon
transfer processes (see e.g. Broglia et al. (1973) and references therein) and
found to be weakly collective, a property also shared with the pairing vibration
of a 3D-system (Anderson (1958)). However, they become very collective in
the case of normal nuclei, where multiphonon pairing vibration states have been
strongly excited through two-particle transfer reaction (see Chapter 5, see also
Section 8.4). These modes have not been observed in normal infinite systems.

The second special case includes the even-interaction H ′′p which is symmetric
with respect to the Fermi surface and neglects the odd term H ′p. The Hamiltonian
is (see equations (4.17) and (4.24)) HMF + H ′′p . Equation (4.30) leads to∑

ν>0

2Eν
(2Eν)2 − (W ′′

n )2
= 1

G
. (4.35)

Using the gap equation ∑
ν>0

1

Eν
= 2

G
, (4.36)

this reduces to ∑
ν>0

1

2Eν

(W ′′
n )2

(2Eν)2 − (W ′′
n )2
= 0. (4.37)

The lowest energy solution of this equation is W ′′
1 = 0. The general amplitudes

associated with the one-phonon amplitude (see equation (4.32)) are

anν = �′′n
2Eν −W ′′

n

, bnν = �′′n
2Eν +W ′′

n

. (4.38)

The normalization factor

�′′n =
1

2

(∑
ν>0

2Eν�ω′′n(
(2Eν)2 − (�ω′′n)2

)2

)−1/2

(4.39)
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is proportional to the zero-point fluctuation of the corresponding vibrational
mode. In the case of the zero-frequency mode �′′1 is infinite. The amplitudes of
the zero-frequency mode are a1ν = b1ν ∝ 1/Eν but cannot be normalized.

4.2.3 The zero-frequency mode

There is a more general way of looking at the zero-frequency mode. The operator
N̂ which counts the number of nucleons is

N̂ =
∑
ν

a†
νaν =

∑
ν

(
Uνα

†
ν + Vναν̄

) (
Uναν + Vνα

†
ν̄

)
. (4.40)

The RPA approximation Ñ for N̂ can be written in terms of the quasiboson
operators introduced in (4.25) as

Ñ = 2
∑
ν>0

UνVν(�
†
ν + �ν)+ N0

= �
∑
ν>0

1

Eν
(�†
ν + �ν)+ N0, (4.41)

where N0 = 2
∑
ν>0 V 2

ν is the average number of particles in the quasiparticle
vacuum state. Terms proportional to the number of quasiparticles have been
neglected. The operator N̂ commutes with the exact Hamiltonian and it is easy
to check that Ñ commutes with the RPA Hamiltonian defined in equation (4.29).
In fact, because [(�ν + �†

ν), (�ν ′ + �†
ν ′)] = 0, one can show that [H′p, Ñ ] = 0.

Furthermore, because 2Uν�ν = �/Eν and the quasiparticle energies satisfy
the gap equation (4.36) one can demonstrate that [HMF + H

′′
p, Ñ ] = 0 (see

Appendix I). There are two conclusions to be drawn from these results. One is
that particle number conservation is restored, by taking into account the fluctu-
ations of the pairing mean field around the static deformation α0, in the RPA (in
particular those associated with H

′′
p ). The other is that the operator (N̂ − N0)

is the creation operator of the zero-frequency mode of the RPA equation of
motion (4.30).

In fact, the one-phonon state associated with the zero-frequency mode is

|1′′〉 = �†
1|0′′〉 ∼ �′′1

∑
ν>0

1

2Eν
(�†
ν + �ν)|0′′〉 (4.42)

= �′′1
2�

(N̂ − N0)|0′′〉, (4.43)

where |0′′〉 is the ground state of the RPA Hamiltonian. The first line in the
above equation is obtained from (4.38) by putting W ′′

1 = 0, and the second line
is from equation (4.41). In equation (4.42) �†

1 is a boson creation operator and
should be finite. On the other hand the normalization constant �′′1 →∞ for
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the zero energy mode. This is possible only if in (4.43) (Ñ − N0)→ 0 which
is another demonstration that particle number conservation is restored in the
RPA approximation. This, together with equation (4.45), are the basic equations
which testify to the fact that gauge symmetry is being restored.

Because a finite (rigid) rotation in gauge space can be generated by a series
of infinitesimal operations of the type defined in equation (4.12), i.e.

G(δφ) ≈ 1− i
N̂

2
δφ , (4.44)

the state |1′′〉 in equation (4.43) is obtained by a gauge rotation of the ground
state.

The zero-point amplitude associated with this state, proportional to the quan-
tity�′′1, diverges (see equation (4.39 )) but nonetheless defines a finite inertia for
pairing rotations (see (I.34)). By a proper inclusion of these fluctuations (of the
orientation angle in gauge space, see also discussion at the end of Appendix I)
one can restore gauge invariance to the |BCS〉K′ state. In fact the states,

|N 〉 ∼
∫

dφ ei N
2 φ|BCS〉K′

=
(∏
ν>0

Uν

)∫
dφ ei N

2 φ

×
⎛⎝1+ e−iφ

∑
ν>0

c(ν)a†
νa

†
ν̄ + e−2iφ

(∑
ν>0

c(ν)a†
νa

†
ν̄

)2

+ · · ·
⎞⎠ |0〉

∼
(∑
ν>0

c(ν)a†
νa

†
ν̄

) N
2

|0〉 , (4.45)

where

c(ν) = Vν
Uν
, (4.46)

are states with fixed number N of particles.∗ They are the members of a pair-
ing rotational band (rotations in gauge space) (Bes and Broglia (1966), see also
Belyaev (1972)). Examples of such a rotational band are provided by the ground
state of even–even nuclei with many particles outside the closed shell (see Sec-
tion 4.2.5 and Fig. 4.2). The operation carried out in equation (4.45) is number
projection. It can be viewed as a change of representation between the conju-
gate variables N and φ, from the φ-representation to the N -representation (see
Anderson (1964)).

∗ See Section 6.6 for a discussion of alternative techniques of projection devised to restore particle number
conservation.
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The BCS wavefunction |BCS〉K′ has a definite orientation in gauge space. The
RPA ground state |0′′〉 in equation (4.42) and the zero-frequency mode built on it
has a uniform distribution in φ-space, corresponding to the RPA representation
of the number projected states |N 〉 given in equation (4.45).

The inertia associated with pairing rotational bands is obtained by recognizing
that the normalization quantity�′′n is also the particle-vibration coupling strength
of the nth mode. Thus

D′′1
�2
= 4

∑
ν>0

U 2
ν V 2

ν

Eν
. (4.47)

This result is derived and discussed in Appendix I. It coincides with the cranking
model moment of inertia (Ring and Schuck (1980), equation (3.91)).

J
�2
= 2

∑
ν>0

∣∣〈νν̄|N̂ |BCS〉∣∣2

2Eν
. (4.48)

We shall see that, although this moment of inertia is finite, the associated rota-
tional energies are much smaller than typical quasiparticle energies, as expected
for a collective mode.

4.2.4 Two-particle transfer reaction

The basic feature characterizing a family of states as belonging to a rotational
(or vibrational) band is the fact that there exists an operator Ô whose matrix
elements between members of the band, aside from displaying very simple rela-
tions, are conspicuosly enhanced with respect to the value of the same operator
between pure particle states. Consequently, the (external) field associated with
the operator Ô constitutes the specific probe to excite the band. In particular, in
the case of rotations in normal space of quadrupole-deformed nuclei, it is the E2-
operator which displays large matrix elements, while Coulomb excitation is the
specific probe of dynamic and static nuclear deformations, and of the associated
collective bands.

The specific probes of the pairing modes are two-nucleon transfer reactions
(see e.g. Lane (1964), Mottelson (1977), Broglia (1985c), Broglia et al. (1985c))
and references therein). In fact, the existence of a large static pair deformation
(pairing gap) manifests itself very directly in the pattern of two-particle transfer
intensities, in keeping with the fact that

〈BCS|P†|BCS〉 = �
G
. (4.49)
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Consequently, the two-particle cross-section between members of the pairing
rotational band is

σrot ∼
(
�

G

)2

∼ A

4
, (4.50)

where use was made of the empirical values � ≈ 12 MeV/
√

A and G ≈
25 MeV/A (Bohr and Mottelson (1975)). The two-particle transfer cross-section
associated with a typical two-quasiparticle state is

σ2qp ∼ 〈νν̄|P†|BCS〉2 = U 4
ν ≈ 1 . (4.51)

From the ratio

R̄ = σrot

σ2qp
∼ A

4
(4.52)

one expects that, in superfluid nuclei, a large fraction of the cross-section associ-
ated with the transfer of two nucleons in time-reversal states connects members
of the same pairing rotational band.

Note that the total two-particle transfer cross-section, once Q-value effects are
eliminated, is the same for a system of nucleons which move independently of
each other in the mean field as it is for the same system of nucleons interacting via
a pairing force; i.e. the same before and after the pairing interaction is switched
on. The basic difference introduced by the presence of U and V factors in
the corresponding cross-sections is that of concentrating a large fraction of the
original strength on the ground-state transition (see Broglia et al. (1972a)).

4.2.5 A schematic model

Let us consider particles moving in a single j-shell with pair degeneracy � =
(2 j + 1)/2. The BCS occupation numbers can be written directly as (Appendix
H, see also Section 3.7)

V =
(

N

2�

)1/2

, U =
(

1− N

2�

)1/2

, (4.53)

and lead to a gap and a Fermi energy

� = G

2

√
N (2�− N ) (4.54)

and

λ = −G

2
(�− N ), (4.55)
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respectively. The quasiparticle energy is given by

E = G�

2
. (4.56)

Typical superfluid nuclei, i.e. nuclei with many particles outside the closed shell
and thus with a large number of 0+ pairs (Cooper pairs) in the ground state,
display a large pairing gap. Within the present simplified model, this situation
corresponds to N ≈ �. In fact, the pairing gap given in equation (4.54) acquires
its largest value � = G�/2 for N = �. In what follows we shall have this
situation in mind in discussing the properties of the excitation spectrum. The
ground-state energy (see Appendices H, I) is

E0 = U + λN = λN + G

4
N 2

= λN + �
2

2J N 2, (4.57)

where n = N/2 is the number of pairs, and where the moment of inertia is
determined by the relation

2J
�2
= 4

G
. (4.58)

This result coincides with that obtained from equation (4.48) making use of the
occupation numbers and quasiparticle energy provided by equations (4.53) and
(4.56) respectively.

From the ratio,

�
2/2J
2E

≈ 1

�
� 1. (4.59)

This indicates that the rotational excitations have an energy which is much
smaller than that associated with the quasiparticle energies, the ratio approaching
zero, as N = �→∞. In this connection, it is illuminating to quote part of the
discussion in Weinberg (1996) on spontaneously broken global symmetries,
where he uses a chair as an example of a macroscopic system:

spontaneous symmetry breaking actually occurs only for idealized systems that
are infinitely large. The appearance of broken symmetry for a chair arises be-
cause it has a macroscopic moment of inertia J , so that its ground state is part
of a tower of rotationally excited states whose energies are separated by only tiny
amounts, of the order of �

2/J . This gives the state vector of a chair an exquisite
sensitivity to external perturbations; even very weak external fields will shift the
energy much more than the energy difference of these rotational levels. In con-
sequence, any rotationally asymmetric external field will cause the ground state
or any other state of the chair with definite angular momentum rapidly to develop
components with other angular momentum quantum numbers. The states of the
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chair that are relatively stable with respect to small external perturbations are not
those with definite angular momentum quantum numbers, but rather those with a
definite orientation, in which the rotational symmetry of the underlying theory is
broken.

Weinberg’s arguments are true for an atomic nucleus only in the limit N →∞
when deformation and rotation are rigorously defined. Nevertheless when one
observes a (pairing) rotational spectrum one can talk about a privileged direction
in gauge space, which can be clamped down in a collision between two superfluid
nuclei (see Broglia and Winther (1991)) resulting in the transfer of a Cooper pair
(this is a Josephson-like phenomenon, see Anderson (1972), Anderson (1964)
p. 134; see also Appendix L).

Broken symmetries in relativistic theories and in many-body systems imply
an Anderson–Goldstone–Nambu (AGN) boson (zero-mass particle or phonon
branch respectively). The analogous property in the case of the RPA description
of pairing in atomic nuclei is the �ω′′1 = 0 solution (see Section 4.2 as well as
equation (4.57)) and the associated pairing rotational band built out of the ground
state of systems with N , N ± 2, N ± 4, . . . , particles. As shall be seen in the
next subsection, there exists strong experimental evidence which testifies to the
validity of this picture.

4.2.6 Comparison with experiment

In Fig. 4.2 we summarize the experimental information concerning the ground-
state energies of one of the longest sequences of isotopes of nuclei with many
nucleons outside a closed shell, that associated with the Sn-isotopes (A

50Sn)
(Broglia et al. (1973), Broglia (1985c), Bes and Broglia (1977)). The data
can be rather accurately fitted, after a linear term has been removed, with the
parabola corresponding to an energy parameter �

2/2J = 0.1 MeV, in overall
agreement with the simple estimate provided by the prefactor of N 2 in equation
(4.57) (G/4 ≈ 28/4A MeV≈ 0.07 MeV, A ≈ 100, see equation (2.27) and Ap-
pendix H). Also displayed in Fig. 4.2 is systematic information on the transfer of
two neutrons in time-reversal states (single Cooper pair transfer). The average
value of R̄ = 24.4 is in overall agreement with the simple estimate provided by
equation (4.52) (R̄ = 25 for A ≈ 100, see also Appendix H).

The diagonalization of the total Hamiltonian H = HMF + H ′p + H ′′p in the
RPA has still a root at ω1 = 0 (corresponding to the ω′′1 = 0 root of the
Hamiltonian HMF + H ′′p ), orthogonal to all the other two-quasiparticle like states
(pairing vibrations), and which are somewhat modified by the Coriolis cou-
pling associated with the rotation of the system in gauge space as a whole
(see Appendix J). Pairing vibrations of superfluid nuclei correspond to the
odd solution discussed by Anderson in his RPA treatment of superconductivity
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Neutron number

Figure 4.2. Experimental energies of the Jπ = 0+ states of the even Sn isotopes excited in
two-particle transfer reactions ((t, p) and (p, t)). The heavy drawn lines represent the values
of the expression E = −B(Sn)+ Eexc + 8.58N + 45.3 (MeV), where the binding energies
B(A) (in MeV) are taken from Wapstra and Gove (1971). The dashed line represents the
parabola 0.10(N − 65.4)2 Also displayed is the excited pairing rotational band associated with
the pairing vibrational mode. In all cases where more than one Jπ = 0+ state has been excited
below 3 MeV in two-neutron transfer processes, the energy

∑
i σ (0i )E(0+i )/

∑
i σ (0+i ) of the

centroid is quoted, as well as the corresponding cross-section
∑

i σ (0+i ). The quantity σ (0+i )
is the relative cross-sections with respect to the ground-state cross-sections. The numbers
along the abscissa are the ground-state (p, t) and (t, p) cross-sections normalized to the
116Sn↔ 118Sn(gs) cross-section. The (t, p) and (p, t) data utilizing in constructing this figure
were taken from Bjerregaard et al. (1968), Bjerregaard et al. (1969), Flynn et al. (1970),
Flemming et al. (1970).

(Anderson (1958)), lying at the top of the pairing gap. These solutions are, as a
rule, both in the 0D and in the 3D systems, almost pure two-quasiparticle states
(see Broglia et al. (1977)). This is the reason why we should not refer to them
further. As will be discussed in Chapter 5 pairing vibrations play an important
role in closed shell (normal) nuclei.

4.3 Infinite 3D neutral superconductors (ξ L)

In this section we follow Anderson (1958) and study the correlated two-
quasiparticle excitations associated with the Hamiltonian

H =
∑
k,σ

εka†
kσakσ + 1

2

∑
k �=k ′,q

∑
σ,σ ′

V (	k, 	k ′)a†
k ′,σ ′a

†
−k ′+q,σa−k+q,σak,σ . (4.60)

�
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Here the (Galilean invariant) Coulomb and induced interactions have been
lumped together in V (k, k ′), while σ denotes the projection of the electron spin.
Making use of the RPA equations of motion for the operators

b̂Q
k = a−k−Q↓ak↑, (4.61)

ρ̂
Q
k = a†

k+Q↑ak↑, (4.62)

and for the corresponding Hermitian, and time-reversal conjugate operators,
Anderson (1958) obtains for the even solution of the Hamiltonian H,∣∣∣∣1− 2VD f l

2VDh 1− g

∣∣∣∣ = 0 , (4.63)

where

f =
∑

k

ωk Qnk Q

(νQ
k )2 − ν2

, (4.64)

g =
∑

k

(−V )νQ
k cos2

[
1
2 (θk − θk+Q)

]
(νQ

k )2 − ν2
, (4.65)

h =
∑

k

(−V )(bk + bk+Q)

(νQ
k )2 − ν2

, (4.66)

l =
∑

k

ω2
k Q(bk + bk+Q)

ν2 − (νQ
k )2

, (4.67)

and where VD indicates the ‘direct’, unscreened interaction. In the above equa-
tions one has used the definitions

bk = 〈a−k↓ak↑〉 = b∗k = Uk Vk, (4.68)

ωk Q = εk+Q − εk, (4.69)

nk Q = nk+Q − nk, (4.70)

ν
Q
k = Ek + Ek+Q,

(
Ek = (ε2

k +�2
k)1/2

)
, (4.71)

cos θk = U 2
k − V 2

k . (4.72)

The collective modes associated with the secular equation (4.63) have entirely
different behaviour, depending on whether we consider the charged or neutral
case. In the charged case, VD is singular and large, and f determines the fre-
quencies. In the neutral case the frequencies are mostly determined by g.

4.3.1 Neutral superconductor

Following Anderson (1958) we assume VD = V as Q→ 0. Since f ∼ Q2, and
thus 1− 2VD f ≈ 1, equation (4.63) can be approximated as

1− g = 2V hl. (4.73)
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Because also l ∼ Q2, in the limit Q → 0 the dispersion relation reads (see (4.35))∑
k

(−V )2Ek

(2Ek)2 − ν2
= 1 , (4.74)

where 2Ek ≈ νQ
k . In keeping with the BCS gap equation, equation (4.74) admits

a solution with ν = 0.
In the following we use the approximation ω2

k Q ≈ 1
3

( kF Q
m

)2
. The factor 1/3

comes from the average 〈cos2 γ 〉 where γ is the angle between 	k and 	Q. Ex-
panding h and l to the lowest non-vanishing order in Q2 and ν2, and g to first
order,

h ≈
∑

k

(−V )2Uk Vk

(2Ek)2
= 2�

∑
k

(−V )

(2Ek)3
, (4.75)

l ≈ −
∑

k

ω2
k Q2Uk Vk

(2Ek)2
= −1

3
k2

F
Q2

m2

∑
k

2Uk Vk

(2Ek)2
, (4.76)

g ≈ 1+ ν2
∑

k

(−V )

(2Ek)3
−

∑
k

(−V )ω2
k Q

(2Ek)3
, (4.77)

the dispersion relation equation (4.73) becomes

1 −
(

1+ ν2
∑

k

(−V )

(2Ek)3
−

∑
k

(−V )ω2
k Q

(2Ek)3

)

= 2V

(
2�

∑
k

(−V )

(2Ek)3

)(
−

∑
k

ω2
k Q2Uk Vk

(2Ek)2

)
, (4.78)

which can also be written as

ν = 1√
3
vF Q

(
1+ 4V�

∑
k

2Uk Vk

(2Ek)2

)1/2

, (4.79)

where the assumption has been made that �k = �. The AGN-phonon velocity
vF/
√

3 seems to be a kinematical ‘ideal gas’ effect, which has also been derived
in a different way by Bogoliubov et al. (1958). It is curious that the term which
modifies the ‘ideal gas’ velocity in equation (4.79) is related to the pairing
moment of inertia (see Appendix H, equation (H.17) and Appendix I, equation
(I.24)) and (4.47),

4V�
∑

k

2Uk Vk

(2Ek)2
= V

I
�2
= V

∂N

∂λ
. (4.80)

An example of an AGN boson in a neutral system is provided by the fourth
sound in superfluid 3He, which corresponds to the oscillatory motion of the
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superfluid phase in a confined geometry (superleak) where the normal fluid
is clamped. The corresponding sound velocity C2

4 = C2
1 ρ̄s/ρ, where ρ̄s is the

superfluid density and ρ the total density of the system, is proportional to the
first sound velocity (Vollhardt and Wölfle (1990)), C2

1 = 1
3v

2
F(1+ Fs

0 )(1+ 1
3 Fs

1 ),
where Fs

l are the spin symmetric l = 0 and l = 1 Landau parameters (see Section
10.5.1).

Let us now return to the main subject discussed above, namely the relation
between the solutions of the dispersion relations given in equations (4.35) and
(4.74) (see also equations (J.27) and (4.63))), solutions which look suggestively
similar (see also equations (4.57) and (4.79)). It has been argued that in relativistic
theory, as well as in 3D many-body systems, the Q → 0 is a proper solution of
the problem (zero-mass particle and phonon branch respectively), while in a 0D
system like the nucleus, it is a spurious solution to be eliminated in terms of
a pairing rotational band whose inertia is that of the ω1 = 0 root or spurious
state (see equation (4.47)). To this line of reasoning one could argue that, had
we used a more powerful technique than RPA to diagonalize the Hamiltonian
H = H0 + H ′p + H ′′p , we would have obtained the modified two-quasiparticle-
like states (pairing vibrations), and the pairing rotational band, without further
ado.

For a discussion of these subjects which goes beyond the RPA, we refer the
reader to Bes and Kurchan (1990).



5
Pairing vibrations

When the strength G of the pairing interaction is greater than a critical value
Gc, the gap equation has a non-zero solution for the gap parameter � and the
BCS ground state of a system of nucleons is stable. Single nucleon levels are
partially occupied in an energy range � around the Fermi energy λ. The BCS
state is not an eigenstate of nucleon number and violates gauge invariance. Pairing
vibrations, which are fluctuations about the BCS state, were studied in Chapter
4 and it was shown that gauge invariance was restored within the framework of
the random phase approximation (RPA). In this chapter we study the question
of pairing vibrations within a more general context, considering also pairing
vibrations in normal nuclei which have pairing strengths G < Gc and� = 0. To
a first approximation single-particle levels are occupied with unit probability up
to the Fermi energy and with zero probability for states above the Fermi level.
Pairing vibrations modify this simple picture and are associated with fields which
change the number of particles by 2. They produce correlations which enhance
or modify pair transfer amplitudes. Parts of this chapter is based on Broglia and
Riedel (1967a,b) and Broglia et al. (1973) (see also Anderson (1958), Högaasen-
Feldman (1961), Bes and Broglia (1966), Bohr and Mottelson (1975), Ring and
Schuck (1980), Wölfle (1972, 1978), Schmidt (1972)).

5.1 The two-level model

The simplest model which displays fluctuations of the pairing gap contains two j-
shells which may have the same or different degeneracy, and which are separated
by a distance D. Pairs of particles are scattered in these orbitals by a pairing force
with constant matrix elements. A solution of the two-level model was given by
Högaasen-Feldman (1961). More generally the exact eigenstates for a pairing
force with constant matrix elements distributed in an arbitrary number of levels
was found by Richardson and Sherman (1964) (see Section 2.8).

92
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The two-level model Hamiltonian can be written as

H = D

2
(N j2 − N j1 )−

1

4
G(P†

j1
+ P†

j2
)(Pj1 + Pj2 ), (5.1)

where

P†
j1
=

∑
m>0

(−1) j+ma†
jma†

j−m = −
√
�[a†

j a
†
j ]

0
0 ,

N j =
∑

m

a†
jma jm, � = 2 j + 1

2
, ( j = j1, j2). (5.2)

The two-level model does not have an analytical solution, although it allows for
a rather simple numerical solution in the orthonormal basis

|m, n − m〉 = M−1
m (P†

j1
)m(P†

j2
)n−m |0〉, (5.3)

n being the total number of pairs of particles in the system. The matrix element
of the Hamiltonian (5.1) in this basis is

〈m ′, n − m ′|H |m, n − m〉 = δ(m,m ′)
× [(n − 2m)D − G(m(�1 + 1− m)+ (n − m)(�2 + 1− n + m))]1/2

− δ(m ′, (m − 1))G[m(�1 + 1− m)(n − m + 1)(�2 − n + m)]1/2

− δ(m ′, (m + 1))G[(m + 1)(�1 − m)(n − m)(�2 + 1− n + m)]1/2. (5.4)

To obtain the solution of the model one has thus to diagonalize a codiagonal
matrix.

As discussed in Chapters 2 and 3, two-particle transfer processes are the spe-
cific tools to study the pairing degrees of freedom, in particular pairing vibrations.
The model operator which induces such processes is defined as

T = P†
1 + P†

2 . (5.5)

In the basis (5.3) the T operator has the following matrix elements

〈m ′, n + 1− m ′|T |m, n − m〉
= δ(m ′,m)[(n − m + 1)(�2 − n + m)]1/2

+ δ(m ′, (m + 1))[(m + 1)(�1 − m)]1/2. (5.6)

The two-particle transfer cross-section can be shown to be proportional to the
square of the matrix element (5.6) (see e.g. Broglia et al. (1973)).

From the commutation relation [Ni , P†
j ] = 2δ(i, j)P†

j one can calculate the
occupation number of the two orbits

〈α|N1|α〉 = 2
∑

m

m|cn,m |2,

〈α|N2|α〉 = 2
∑

m

(n − m)|cn,m |2, (5.7)
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where the eigenfunction of the total Hamiltonian is

|α〉 =
∑

m

cn,m |m, n − m〉. (5.8)

For �1 = �2 = � there are two dimensionless parameters in the model. The
first is chosen to be � (see equation (5.2)) and it gives a measure of the phase
space which the particles have at their disposal to correlate. The second is

x = 2G
�

D
(5.9)

and measures the interplay between the pairing strength and the shell effects.
In Fig. 5.1 we display the energies, cross-sections and occupation amplitudes

associated with a system �1 = �2 = � = 20 and x = 0.5 and x = 2.0 as a
function of the number of pairs n (18 ≤ n ≤ 22). When n = �, the lower level
is full and the upper level is empty in the limit x → 0. In the case x = 0.5
the coupling is weak and there is only one characteristic energy, the spacing D
between the two single-particle levels.

Any level lies at approximately an integer number of times this energy with
respect to the ground state, forming a (harmonic) pairing vibrational band. The
two-nucleon transfer cross-section associated with transitions between ground
states is proportional to |n −�|, i.e. to the absolute value of the number of
pairs missing from or in excess of the closed shell. All the first-excited-state
stripping cross-sections for n −� < 0 are equal and their common value is
close to |〈gs(n = 20)|T | gs(n = 19)〉|2. On the other hand, none of the lowest
excited states with n −� ≥ 0 is populated in such reactions. This is also true for
the second and higher excited states for n −� ≤ 0. A similar pattern is observed
for two-nucleon pickup processes.

For the case of x = 2 the energy of the states follows a parabolic distribution
(pairing rotational band, see Chapter 4) as a function of the number of particles.
There are two characteristic energies, corresponding to interband and intraband
spacing. The situation is very similar to the one encountered in the case of a single
j-shell (see equation (4.57), also Appendix H). In this case, however, there is a
finite cross-section to the excited states, although an order of magnitude smaller
than between states lying in the same energy parabola. The situation for x = 1.2
is intermediate to the one observed for x = 0.5 and x = 2.

The probability amplitude |cn,m |2 associated with the ground state of the
closed-shell system (n −� = 0) is also given in Fig. 5.1 as a function of n − m.
Note that a major change takes place in going from x = 0.5 to x = 2.0, indi-
cating a change in the coupling scheme of the nucleons correlated through the
pairing interaction. Similar results to those displayed in Fig. 5.1 are obtained for
�1 �= �2 (see Broglia and Sørensen (1968)). One can, however, distinguish in
this case two typical energies and two basic two-particle transfer cross-sections,
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(a)

(b)

Figure 5.1. Schematic representation of the solution of the two-level model for�1 = �2 = 20
and for different values of x and n. In (a) the results for x = 0.5 are displayed. Because of
the particular degeneracy of the model, the energy of the ground state of the system with
n = �± 1 pairs of particles is the same when measured with respect to the closed-shell system
(see, however, Sections 5.2 and 8.4). All two-particle transition probabilities are measured in
terms of a = σ (gs(�1)→ gs(�1 + 1)) and of r = σ (gs(�1)→ gs(�1 − 1)). Because of the
particular symmetry of the model a = r . For each level of the spectrum, which is identified
by the quantum numbers (N , n), a schematic representation of the main component of the
wavefunction is shown. The corresponding square amplitudes |cn,m |2 (see equations (5.7) and
(5.8)) associated with the ground state and low excited states of the n = �1 system are also
shown. In (b) the energies and two-particle cross-sections for x = 2.0 associated with the
ground and the first excited states of the systems with n ≥ �1 are displayed. The quantities
|cn,m |2 corresponding to the ground state and two lowest excited states are also displayed.

one associated with the removal of a pair and the other with the addition of a
pair (see Figs. 5.5 and 8.17).

5.1.1 Collective treatment of pairing vibrations; normal systems (x < 1)

The different levels of the pairing spectrum obtained by diagonalizing the Hamil-
tonian defined in equation (5.1) for x < 1 and reported in Fig. 5.1 can be labelled
by the number of pairs n and by a number N indicating their energy sequence
in the spectrum. The lowest state corresponds to a closed-shell system and has
(N = 0, n = �). The two lowest excited states have the same energy E and are
labelled (N = 1, n = �+ 1) and (N = 1, n = �− 1) respectively. The next
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excitation energy is 2E and corresponds to a triplet of states comprising the two
states (N = 2, n = �± 2) and (N = 2, n = �). This spectrum is characteris-
tic of a two-dimensional harmonic oscillator, where N indicates the number of
phonons, while �n plays the role of the angular momentum in two dimensions.
The values of the transfer cross-sections as well as the associated selection rules
further confirm the harmonic structure of the spectrum. One of the degrees of
freedom of the two-dimensional oscillator is associated with the change in the
number of pairs in the shell above the Fermi surface (pair addition mode) and
the other with the change in the number of pairs in the shell below the Fermi
surface (pair removal mode).

It is thus natural to rewrite the Hamiltonian (5.1) as

H = (Wa�
†
a�a +Wr�

†
r�r), (5.10)

where �†
a and �†

r are the creation operators of the pair addition and pair removal
modes, which are expressed in terms of the operators P†

j and Pj as

�†
a = a2 P†

2 + a1 P†
1 ,

�†
r = r1 P1 + r2 P2. (5.11)

Note that the definition introduced in equation (5.10) is equivalent (in the quasi-
beam approximation) to the relations [H, �†

a] = Wa�
†
a and [H, �†

r ] = Wr�
†
r (see

Appendix A, equation (A.68)).
Assuming the relation

[Pj , P†
j ′] = (�− N j )δ( j, j ′) ≈ �δ( j, j ′) (5.12)

to be valid for any state of the system under discussion, one obtains

a2 = r1 = − 2G
√
�

(1− x)1/4(2D −W )
(5.13)

and

a1 = r2 = 2G
√
�

(1− x)1/4(2D +W )
, (5.14)

where

W = Wa = Wr = 2D(1− x)1/2 (5.15)

is the common energy of the pairing modes of excitation. The intensity with
which the pair addition and pair removal modes are excited is

|〈na = 1, nr|T |na = 0, nr〉|2 = (a2 − a1)2�2

= |〈na, nr = 1|T |na, nr = 0〉|2 = (r2 − r1)2�2

= �(1− x)−1/2. (5.16)
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The above results reproduce the main features of the exact calculations for x < 1.
Acting with �†

a and �†
r on the vacuum state, one can build the whole pairing

spectrum. A general state is given by

|na, nr〉 = 1√
na!nr!

(�†
a)na (�†

r )nr |na = 0, nr = 0〉. (5.17)

The RPA solution is valid for small values of x . As x increases, W decreases
and the cross-sections associated with the two modes tend to∞. The transition
between the normal and the superfluid phase takes place for x = 1. Similar fea-
tures to the one discussed above are also observed in the phase transition between
spherical and quadrupole deformed nuclei. In this case the electromagnetic-
transition probability plays the role of the two-nucleon transfer cross-section.
The analogy between surface and pairing modes can be carried quite far as dis-
cussed in Broglia et al. (1973) (see also Belyaev (1972) and Schmidt (1972)).
The theory of pairing vibrations can also be cast in terms of the collective vari-
ables α, φ as done in the case of pairing rotations. In fact, in these variables it is
possible to formulate the problem of the pairing modes through a Hamiltonian
which treats rotations and vibrations on an equal footing (see Bes et al. (1970)).
For� ∼ 0, the energies associated with fluctuations in α and φ are comparable.

5.1.2 Collective treatment of pairing vibrations; superfluid systems (x > 1)

The main static effects of the pairing correlations for x > 1 can be taken
into account through the quasiparticle transformation, which implies a com-
plete hybridization of particles and holes, and thus an intrinsic system
connected with the laboratory system through a rotation in gauge space (see
Chapter 4 and Appendix I). As discussed in Chapter 3 and in Appendix G,
the pairing Hamiltonian approximately reduces to the independent quasiparticle
Hamiltonian

H11 =
∑

j

E j [α
†
jα j ]

0
0, (5.18)

where E j are quasiparticle energies and α†jm, α jm are quasiparticle creation and
annihilation operators respectively. The symbol [ ]0

0 implies that these operators
are coupled to angular momentum zero, and consequently also zero magnetic
quantum number. In the present section we review the different types of collective
modes generated by the residual interaction between the quasiparticles.

We consider the system n = �1 = �2, in which case λ = 0. The BCS occu-
pation parameters are in this case

U 2
2 = V 2

1 =
1

2

(
1− 1

x

)
(5.19)
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and

U 2
1 = V 2

2 =
1

2

(
1+ 1

x

)
, (5.20)

while the quasiparticle energy is

E = G�. (5.21)

The two-level system displays a pairing distortion (gap) of magnitude

� = G〈0|T |0〉 = G�(U1V1 +U2V2)

= G�

(
1− 1

x2

)1/2

, (5.22)

|0 > being the BCS ground state. Note that � is a collective deformation re-
ceiving contributions from all the pairs of particles, and thus is proportional to
�. The expression given in equation (5.22) should coincide with the single j-
shell expression given in equation (H.4) (for N = �, see also Section 3.7) in
the case D = 0. Note, however, that in this case the total degeneracy of the two
degenerate shells is 2�, thus leading to � = G�.

The fluctuations around this equilibrium distortion are induced by the residual
interaction among the quasiparticles H ′p and H ′′p (see equations (4.23) and (4.24))
leading to the secular equation (see Appendix J, equation (J.31))

W 2
n

[(
W 2

n − 4�2
)

A − B
] = 0, (5.23)

where

A =
(∑

i

�i

2Ei (4E2
i −W 2

n )

)2

, (5.24)

B =
(∑

i

�i fi

4E2
i −W 2

n

)2

(5.25)

and

fi = U 2
i − V 2

i . (5.26)

The forward-going and backward-going RPA amplitudes are

ani = �1n fi +�2n

2Ei −Wn

√
�i , (5.27)

bni = −�1n fi +�2n

2Ei +Wn

√
�i , (5.28)
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while

�2n

�1n
= −

∑
i

�i fi

4E2
i −W 2

n

Wn
∑

i
�i

2Ei (4E2
i −W 2

n )

(5.29)

and

�1n = 1

2

[
Wn

(∑
i

f 2
i 2Ei�i

(4E2
i −W 2

n )2

)
+

(∑
i

fi (4E2
i +W 2

n )�i

(4E2
i −W 2

n )2

)
�2n

�1n

+ Wn

(∑
i

2Ei�i

(4E2
i −�i )2

)(
�2n

�1n

)2
]−1/2

. (5.30)

The elements a11 and a22 in the 2× 2 determinant (see equation (J.27)) cor-
respond to the dispersion relations resulting from the linearization conditions
[H11 + H ′p, �

′†
n] = W ′

n�
′†
n and [H11 + H ′′p , �

′′†
n] = W ′′

n �
′′†

n , respectively, the
corresponding collective modes being the pairing vibrations and the Anderson–
Goldstone–Nambu (AGN) mode (see Chapter 4). Aside from the root at Wn = 0,
all roots of (5.23) fulfil the condition Wn ≥ 2�. In fact, because A and B are posi-
tive quantities, the dispersion relation cannot be zero for Wn < 2�. If Wn = 2�
is a possible root, then the coupling term between the AGN and the pairing
vibration, i.e. between the even and odd solutions of the pairing Hamiltonian,
must be zero. Thus∑

i

�i fi

4E2
i −W 2

n

∣∣∣∣∣
Wn=2�

=
∑

i

�i

4Ei (εi − λ)
= 0, (5.31)

which holds true if there is a symmetric distribution of levels around the Fermi
surface. This is the case in the model under discussion. Thus

W = 2� (5.32)

and

�2n/�1n = 0. (5.33)

Utilizing the fact that f1 = − f2 = −ε/G�, and equations (5.20), (5.21) and
(5.30), we obtain

�1n =
[

Wn

2

(∑
i

2Ei�i f 2
i

(4E2
i −W 2

n )2

)]−1/2

= ε
√

G

2�
. (5.34)

Thus

a1 = − ε2

2(G�−�)

√
1

2�G�
= −b1 . (5.35)
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From this result and the expression of the two-body transfer operator

T = √
� jU

2
j

(∑
n

ani�
†
n −

∑
n

bni�n

)
+ √

� j V
2
j

(∑
n

ani�n −
∑

n

bni�
†
n

)
+ � jU j Vj , (5.36)

we obtain

σgs = |〈gs(�)|T |gs(�− 1)〉|2 =
( ∑

j=1,2

� jU j Vj

)2

=
(

1− 1

x2

)
�2 (5.37)

and

σ1 = |〈n = 1(�)|T |gs(�− 1)〉|2 =
[∑

j

√
� j (U

2
j anj + V 2

j bnj )
]2

= �

2x2(1− 1/x2)1/2
, (5.38)

for intraband and cross-over two-particle cross-sections, respectively.
All pairs of particles participate in the transition between members of the

ground-state rotational band, and the cross-section is proportional to �2. This
transition is very large compared with the transition to the pairing vibration. The
corresponding ratio

σ1

σgs
= 1

2x2

(
1+ 3

2

1

x2

)
1

�
(5.39)

is about 10−2 for x = 2 and � ≈ 10, which can be considered typical numbers
for superfluid systems.

Thus, the pairing vibration, which can be viewed as a coherent transfer of
quasiparticles across the Fermi surface, gives rise to a pairing rotational band
weakly connected with the ground-state band (see Chapter 4, in particular
Fig. 4.2).

5.1.3 Pairing phase transitions

In the case of the quadrupole surface modes of excitation, changes of coupling
scheme from the spherical-phonon scheme to the deformed-rotational scheme
take place in different regions of the mass table. This change in coupling scheme
is usually referred to as a quadrupole phase transition (see, e.g. Bohr and Mottel-
son (1975)). The pairing order parameter can also be subjected to a ‘macroscopic’
change and the system undergoes a phase transition from the normal (pairing
vibrational) to the superconducting (pairing rotational) state. In both cases the
polarization effects of particles outside closed shells give rise to a static field
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Figure 5.2. Ratio |< n = 1(�)|T |gs(�− 1) > |2/|< gs(�)|T |gs(�− 1) > |2 calculated by
utilizing the exact functions of the two-level model (� = 20) as a function of x .

which violates, in one case, rotational invariance and, in the other, particle num-
ber conservation, leading to a privileged orientation in normal and in gauge
space. The associated fluctuations which restore rotational and gauge invariance
give rise to quadrupole (see Bohr and Mottelson (1975)) and to pairing rota-
tional bands (Bes and Broglia (1966), Chapter 4). The specific probes to study
quadrupole phase transitions are Coulomb excitation and inelastic scattering. In
a similar way, (t, p) and (p, t) reactions are the specific probes to study the change
in the pairing coupling elements.

The most conspicuous feature associated with a pairing phase transition is
the behaviour of the ratio σ1/σgs. Equation (5.16) shows that σ1/σgs ≈ 1 for the
normal phase while equation (5.39) shows that it tends to zero in the superfluid
phase. The exact variation of this ratio as a function of x for the two-level
model is displayed in Fig. 5.2. Both the RPA pairing vibration scheme for x < 1
(equation (5.16)) and the BCS for x > 1 (equation (5.38)) diverge at x = 1,
while the exact calculation predicts a smooth transition. The approximate results
are in good agreement with the exact ones for x � 0.5 and for x � 1.5.

The variation of the two-particle transition intensities have been studied as a
function of the number n of pairs in Broglia et al. (1968b). The cross-section
σgs from the ground state of the initial nucleus to the ground state of the final
nucleus has a rather smooth variation with n and increases as the strength x of
the pairing interaction increases. The cross-section σ1 associated with the pair
addition mode to the first excited state is strongly affected by the pairing phase
transition. For x > 1.4, the crossing of the closed shell at n = � is smooth while
for x < 1.2 there is a sudden drop in σ1 at n = �. This is because, in the normal
phase, the pairing vibration is a two-phonon state, whereas, in the superfluid
case, it is a one-phonon type of excitation, the closed shell being defined as the
state containing no phonons. In both cases, the two-body transfer operator can
change the number of phonons in one.
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There is a pairing phase transition in high spin states of deformed nuclei
which is induced by the nuclear rotation. The Coriolis field plays the role of an
external magnetic field in a superconductor. This phenomenon will be discussed
in Chapter 6 of this book.

5.2 Applications

In what follows we apply the concepts developed above to the case of pairing
vibration in closed- and in open-shell nuclei.

5.2.1 Normal systems (Pb isotopes)

The nucleus 208Pb provides the best example of a closed-shell nucleus.
There is a neat separation between particles and holes. In fact D ≈ 3 MeV
and 2G� ≈ 0.2× 5 ≈ 1.0 MeV (G ≈ 21.5/A MeV, j1 = p1/2, j2 = g9/2, see
Table 5.1), which results in x ≈ 0.3.

Systematic (t, p) and (p, t) experiments carried out in this region show a well-
developed monopole pairing vibrational band (see Fig. 5.5) which encompasses
states with up to three phonons of the same type (gs(202Pb)) or of different type

Table 5.1. Forward-going and backward-going am-
plitude (5.51) describing the motion of two particles
(210Pb) and two holes (206Pb) around 208Pb. A coupling
constant G = 21.4/A MeV was utilized to reproduce
the extra binding energy (5.46) of 210Pb, while the cor-
responding quantity (5.45) for 206Pb was reproduced
for G = 21.7/A MeV (see also Fig. 8.17).

Single-particle states 206Pb 210Pb

0 h9/2 r1(γ ) 0.11 a1(γ ) 0.09
1 f7/2 0.14 0.10
0 i13/2 0.27 0.16
2 p3/2 0.24 0.10
1 f5/2 0.41 0.14
2 p1/2 0.84 −0.10
1 g9/2 r1(ω) 0.13 a1(ω) 0.82
0 h11/2 0.11 0.44
0 j15/2 0.11 0.35
2 d5/2 0.06 0.20
3 s1/2 0.03 0.09
1 g7/2 0.06 0.17
2 d3/2 0.04 0.11
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(excited state in 206Pb). The identification of 0+ states excited in either (t, p) or
(p, t) reactions is rather simple due to the well-developed diffraction pattern of the
associated angular distribution (see Broglia et al. (1973)). Two quantum numbers
are needed to classify the different states of this two-dimensional harmonic
oscillator. We utilize (nr, na) which indicate the number of pair removal and pair
addition modes in each state.

The energy of the (1, 1) state in 208Pb predicted by the pairing vibrational
model is

W (1, 1) = (B(208)− B(206))− (B(210)− B(208))

= (14.110− 9.123) MeV = 4.987 MeV, (5.40)

where B(A) is the binding energy of the Pb isotope with mass A.
For pedagogical purposes we require the pair addition and pair subtraction

modes to have the same energy. Thus

W = W (0, 1) = W (1, 0) = 2.494 MeV. (5.41)

The excitation energy of any state of the model can be then written as

W (nr, na) = (na + nr)2.494 MeV. (5.42)

The experimental magnitude to be compared is

E(N ) = (B(208Pb)− B(N ))+ 5.808(N − 126) MeV. (5.43)

The linear term ensures E(124) = E(128), which corresponds to the condition
(5.41). The different transitions associated with these states are given in terms
of the basic cross-section

a = σ (gs(208Pb→ gs(210Pb))) and r = σ (gs(208Pb→ gs(206Pb))).

(5.44)

The experimental data associated with (t, p)–(p, t)-reactions on the Pb isotopes
around 208Pb are displayed, in term of these elements, in Fig. 5.5.

A microscopic description of the pair addition and pair subtraction modes
is obtained by diagonalizing the pairing Hamiltonian in the RPA. The particles
and holes are allowed to move in the six levels below and the seven levels
above the Fermi surface which are experimentally known (see Table 5.1). The
discussion here follows Broglia and Riedel (1967a) and Broglia (1985c). The
strength of the coupling constant is determined by fitting the extra binding energy
E(124) = E(128), which corresponds to the condition (5.41).

The pairing energies of the two holes and two particles are

�(206) = 2[B(208)− B(207)]− [B(208)− B(206)]

= 14.750 MeV− 14.110 MeV = 640 keV (5.45)
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and

�(210) = 2[B(210)− B(208)]− [B(209)− B(208)]

= 9123 MeV− 7886 MeV = 1237 keV. (5.46)

The pair addition and pair removal creation operators can be written as

�†
n(β = 2) =

∑
ω

an(ω)�†(ω)+
∑
γ

an(γ )�(γ ) (5.47)

and

�†
n(β = −2) =

∑
γ

rn(γ )�†(γ )+
∑
ω

rn(ω)�(ω), (5.48)

where

�†(ω) = a†(ω)a†(ω̄),

�†(γ ) = a(γ̄ )a(γ ), (5.49)

and n labels the states according to their energy. The indices ω and γ are the
shell model quantum numbers of single-particle orbits above and below the Fermi
surface, while β = 2 refers to pair addition and β = −2 to pair removal modes,
β being the transfer quantum number. The RPA equations are the same as those
given in equations (5.10)–(5.14) but now for a general distribution of single-
particle levels. The energy Wn obtained by linearizing the pairing Hamiltonian
is the nth root of the dispersion relation

1

G(±2)
=

∑
ω

1

2ε(ω)∓Wn(β = ±2)
+

∑
γ

1

2ε(γ )±Wn(β = ±2)
. (5.50)

The coefficients an and rn are equal to (see Table 5.1, as well as Fig. 8.17)

an(ω) = �n(β = 2)

2ε(ω)−Wn(β = 2)
, an(γ ) = − �n(β = 2)

2ε(γ )−Wn(β = 2)
,

rn(ω) = − �n(β = −2)

2ε(ω)−Wn(β = −2)
, rn(γ ) = �n(β = −2)

2ε(γ )−Wn(β = −2)
, (5.51)

where

< 0|�(β = ±2)Hpa†( j)a†( j̄)|0 >= �n(β = ±2)

=
[
±

∑
ω

[2ε(ω)∓Wn(β = ±2)]−2

∓
∑
γ

[2ε(γ )∓Wn(β = ±2)]−2

]−1/2

, (5.52)
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Figure 5.3. Graphical representation of the forward-going and backward-going amplitudes
(5.51) of the pairing modes. The vertex strength is equal to�n(β = ±2) (see equation (5.52)).
The pairing boson is represented by a double arrowed line, while a single arrowed line
represents a fermion.

is the normalization constant of the phonon wavefunction as well as the strength
with which a pair of particles in time-reversed states couples to the pairing mode.

Note that the amplitudes (5.51) are obtained by dividing the normalization
constants �n(β = 2) and �n(β = −2) by the corresponding energy denomina-
tors (see Fig. 5.3). This is a common feature of separable forces. The central role
played by �n(β) in the study of the interplay between the different modes of
excitation will become apparent in the following sections. The cross-section as-
sociated with the transfer of two particles starting from the N0 − 2 ground-state
system and leading to the closed-shell (N0) ground state is

r ≡ σ (0s)((1, 0)→ (0, 0)) ∝ �2
1(β = −2). (5.53)

For the cross-section leading to the pair addition mode one obtains

a ≡ σ (0s)((0, 0)→ (0, 1)) ∝ �2
1(β = 2). (5.54)

The values of the pairing strengths obtained by fitting the energy of the 206 and
210 ground states are G(2) = 0.10 MeV and G(−2) = 0.14 MeV. The resulting
absolute cross-sections are reproduced within a factor of 2. Details of the calcu-
lations of the two-particle transfer cross-section are given in Broglia and Riedel
(1967a), Broglia et al. (1973) and Broglia (1985c). By utilizing the microscopic
results it is possible to give a measure of the collectivity of the pair addition and
pair removal modes by expressing the corresponding cross-sections in terms of
absolute two-particle units. Typical enhancements

ε = σexp/σ2p, (5.55)
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of order 12 are obtained, where σ2p is the average value of the two-particle cross-
section to pure two-particle states (see Broglia et al. (1971d)). This number can
be compared with the value of 10 Bsp which is typical of the B(E2) transition
rate connecting the lowest 2+ with the ground state of spherical nuclei.

Note that the contributions of all the different two-particle and two-hole com-
ponents of the microscopic wavefunction to the corresponding transfer am-
plitudes associated with the excitation of the n = 1 mode are constructively
coherent.

5.2.2 Superfluid systems (Sn isotopes)

The Sn isotopes are probably the best example of superfluid spherical nuclei,
with a large number of particles outside the closed shell and a large value of the
pairing parameter� (≈ 1.4 MeV). (t, p) and (p, t) data is shown in Fig. 5.4 (see
also Fig. 4.2). The ground-state transition dominates the spectrum, the interband-
to-intraband ratio never becoming larger than 0.18. The behaviour of the (t, p) and
(p, t) intensities is rather asymmetric, indicating a competition between pairing
and shell effects, as shown below. We discuss first the reaction 118Sn(t, p)120Sn.

Figure 5.4. Experimental (Bjerregaard et al. (1968, 1969), Flynn et al. (1970) Fleming et al.
(1970)) (solid line and open circles) and theoretical (dashed line and crosses) cross-sections
corresponding to the Jπ = 0+ states below 3 MeV excited in the reactions (a) A+2Sn(p, t)
and (b) A−2Sn(t, p). When more than one excited state was observed, the numbers reported
are the centroid energy and the summed cross-section. The normalization between theory and
experiment was done in both cases to the 118Sn(p, t)→120Sn(p, t) reactions.
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Table 5.2. Wavefunctions (see equations (5.27) and (5.28))) and energies as-
sociated with the lowest Jπ = 0+ states of 118Sn. The valence particles were
allowed to move in the five single-particle states displayed. The corresponding
BCS occupation parameter U is also given for each single-particle state.

2d5/2 1g7/2 3s1/2 2h11/2 2d3/2

U 0.2449 0.3489 0.4438 0.7861 0.8494

0+1 a −0.0143 −0.0278 −0.0212 0.4340 0.9003
W = 2.61 MeV b 0.0122 0.0155 0.0075 −0.0034 −0.0005

0+2 a −0.1903 −0.4773 −0.7384 −0.4128 0.1638
W = 2.73 MeV b 0.0163 0.0160 0.0039 0.0629 −0.0450

0+3 a −0.1768 −0.7429 0.6243 −0.1605 0.0666
W = 3.24 MeV b 0.0050 0.0029 −0.0013 0.0458 −0.0313

The Hamiltonian H = H11 + H ′p + H ′′p (see Section 4.2.1 and Appendix J) was
diagonalized in the RPA. A coupling constant G = 23/A MeV was utilized,
determined by fitting the 118Sn pairing gap (�n = 1.39 MeV). This procedure
yields the occupation parameters, energies and wavefunctions given in Table 5.2
(see also Broglia et al. (1968a)).

Making use of these wavefunctions the following enhancement factors (see
equation (5.55)) were obtained,

ε = 220 (gs), ε = 4 (0+1 ), ε = 4 (0+2 ) . (5.56)

The square root of the value associated with the ground state gives a measure
of the number of twofold degenerate levels contributing to the static pairing
distortion �. This number is ≈ 15 (see (3.68)). Thus, all the levels considered
in solving the BCS equation contribute to the ground-state transition (in fact∑

j ( j + 1/2) = 18). The enhancement factor ε(gs)= 220 associated with an in-
terband transition should be compared with the enhancement factors obtained for
the E2 decay of the 2+member of the ground-state rotational band in quadrupole
deformed nuclei. Typical numbers are 200 Bsp implying that about

√
200 ≈ 14

twofold degenerate levels contribute to the quadrupole static deformation Q0.
The systematic comparison between the intensities predicted by the pairing

vibrational model and the experimental data is carried out in Fig. 5.4. A rather
considerable change of the order parameter �/<δε> takes place through Sn
isotopes. The quantity <δε> is the average distance between the levels around
the Fermi surface. Thus �/<δε> plays a similar role to that played by x in
the case of the two-level model (see Section 5.1, equation (5.9)). It may be
approximated by the number n�(A) of double degenerate single-particle levels
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in the interval �(A) around λ(A). We obtain (see also equation (3.68))

n�(112Sn) = 8, n�(116Sn) = 3 (5.57)

and

n�(120Sn) = 8. (5.58)

These changes in�/<δε> give rise to a partial distinction between particles
and holes and, consequently, to two collective transitions similar to the case of
normal systems, in particular for the case of 114Sn.

5.3 Multipole pairing vibrations

In the previous sections we have concentrated our attention in the monopole
pairing modes. Thus, we have restricted the distortions and vibrations of the
Fermi surface to be isotropic. The condensation in p-wave observed in the case
of 3He gives an example, at the macroscopic scale, of non-isotropic distortions
of the Fermi surface, produced by a pairing interaction acting in an l = 1 state of
relative motion (see Chapter 1). In fact, the three superfluid phases correspond-
ing to ↑↑,↓↓ and ↑↓ (m = ±1, 0) have been observed (see e.g. Vollhardt and
Wölfle (1990)). Experimental evidence indicates that high-Tc superconductors
(cuprates) display a mixture of s- and d-pairing (see, e.g. Tinkham (1996) Sec-
tion 9.6). In nuclei the only component of the short-range part of the residual
interaction which gives rise to a condensate is the monopole pairing force. It is,
however, expected that multipole vibrations, which change the number of parti-
cles by two, can play an important role in the dynamics of the nuclear spectrum
(see also Section 8.4).

5.3.1 Normal systems (Pb isotopes)

There is specific evidence for the existence of multipole pairing vibrations pro-
vided by the strong L = 2, 4 and 6 cross-sections associated with (t, p) and
(p, t) transitions in the Pb isotopes (Bjerregaard et al. (1966b), Igo et al. (1971),
Landford and McGrory (1973)). A microscopic description of these modes can
be obtained as in the case of the monopole pairing vibration, in the framework
of the random-phase approximation, allowing the particles to correlate through
the schematic interaction (Bes and Broglia (1971))

H (2λ) = − πGλ

2λ+ 1

∑
μ

P†
λμPλμ, (5.59)

where

P†
λμ =

∑
j1 j2

< j1||Yλ|| j2 > [a†
j1

a†
j2

]λμ . (5.60)
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Figure 5.5. The many-phonon pairing spectrum around 208Pb. The energies predicted by the
pairing vibrational model are displayed as dashed horizontal lines. The harmonic quantum
numbers (nr, na) are indicated for each level. A schematic representation of the many-particle
many-hole structure of the state is also given. The transitions predicted by the model are
indicated in units of r and a (see equation (5.44)). The corresponding experimental numbers
are also given together with their errors, above each level. The dashed line between the
states (0, 0) and (2, 1) indicates that the 208Pb(p, t)206Pb reaction to the three-phonon state
in 208Pb was carried out and an upper limit of 0.03r for the corresponding cross-section was
determined (see Flynn et al. (1972) Broglia et al. (1973), also Landford and McGrory (1973)).

The coupling constant Gλ can be determined through dispersion relations
similar to that shown in equation (5.50), by fitting the binding energy of the two-
particle and two-hole system, respectively. The resulting values corresponding
to the multipolarities λ = 0, 2, 4 and 6 and to both 206Pb (pair-removal modes)
and 210Pb (pair-addition modes) are very similar to each other and equal to (see
Broglia et al. (1974b))

Gλ ≈ 27/A MeV. (5.61)

Using the corresponding wavefunctions one obtains the (t, p) and (p, t) cross-
sections displayed in Table 5.3.

The quadrupole transition probability between the lowest 2+ and the ground
state of 210Pb is given in the present model by

B(E2; 0→ 2+) = (eeff)
2

[
2
∑
j1 j2

a( j1 j2; 2+)a( j2
1 ; gs)

< j2||r2Y2|| j1 >√
2 j1 + 1

]2

.

(5.62)
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Table 5.3. Ratio of experimental (Landford and McGrory
(1973), Bjerregaard et al. (1966a), Igo et al. (1971)) and the-
oretical (Broglia et al. (1974b)) cross-sections associated with
the reactions 208Pb(t, p)206Pb leading to the lowest states of each
spin and parity.

208Pb(p, t) 206Pb(Jπ ) 208Pb(t, p) 210Pb(Jπ )

Jπ E (MeV) [dσ (Jπ )/d�]exp

[dσ (Jπ )/d�]th
E (MeV) [dσ (Jπ )/d�]exp

[dσ (Jπ )/d�]th

0+ 0.000 0.94 0.000 1.47
2+ 0.803 0.75 0.795 0.78
4+ 1.684 0.88 1.094 1.21
6+ 3.253 0.49 1.193 0.77

Using the calculated amplitudes and the experimental data (B(E2)206 = 7Bsp =
0.5B(E2)210), one obtains for the effective charges (see Bohr and Mottelson
(1975) and references therein)

eeff(
206Pb) = 0.98, eeff(

210Pb) = 1.03. (5.63)

These values are consistent with the effective charges obtained from transitions
among single-particle states in 207Pb and 209Pb (see Bohr and Mottelson (1975)
and references therein). This result provides further support for the description
of the 2+1 of 210Pb as a pairing vibration of 208Pb.

The existence of a μ = 0 quadrupole pairing force of strength approximately
equal to (5.61) has been shown (Ragnarsson and Broglia (1976)) to play a basic
role in the 0+ spectrum of the actinide nuclei (see next section). As discussed in
Hamamoto (1977), the μ = 1 component of the quadrupole pairing force plays
an important role in determining the value of the moment of inertia of deformed
nuclei (see also Migdal (1959) and Belyaev (1961)).

5.3.2 Superfluid systems (heavy deformed nuclei)

In normal spherical nuclei the Hamiltonian (5.59) generates the α ± 2 modes,
but has no systematic effect on the particle–hole states, i.e. states with transfer
quantum number α = 0. The part of the nuclear interaction which generates
isoscalar surface vibrations can be written schematically as (see also Section 3.4)

H (0λ) = −κλ
2

∑
μ

Q†
λμQλμ, (5.64)
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where

Qλμ = − 1√
2λ+ 1

∑
a1a2

< a1||rλYλ||a2 > [a†
1a2]λμ. (5.65)

In superfluid nuclei, because the distinction between particles and holes is lost,
the two-quasiparticle states (λ, π = (−1)λ) are correlated by both the multi-
pole pairing and the particle–hole interaction. Note that while the correlations
generated by (5.59) specifically enhance two-nucleon transfer reactions, (5.65)
enhances inelastic scattering and Coulomb excitation processes (see Broglia et al.
(1971d), (1973)). Consequently, the presence of both particle–hole and multi-
pole pairing interaction lead to ground-state correlations (zero point fluctuations)
which, being opposite to each other (blocking effects), stabilize low-lying vibra-
tions displaying both enhanced B(Eλ) as well as (t, p) and (p, t) cross-sections.
The consequences of the interplay between multipole particle–hole and pairing
(particle–particle) correlations in the nuclear spectrum is still an open question
(see e.g. Volya et al. (2001, 2002), Zelevinsky and Volya (2004)).

Because of the conservation of angular momentum, the BCS pairing gap,
which can be related to the odd–even mass difference, is determined by the
monopole pairing interaction. This is also true, as discussed above, for the fluc-
tuations of the gap giving rise to two-quasiparticle 0+ pairing vibrational states.

For deformed nuclei this restriction is no longer valid. The pairing gap now
receives contributions from different pairing multipoles, i.e.

�i = �0 +
∑
λ>0

�λQ(λ)
i , (5.66)

where

Q(λ)
i = < i ||Yλ||i >, (5.67)

�0 = G0

∑
i

Ui Vi (5.68)

is the standard (monopole) pairing gap and

�λ =
√

π

2λ+ 1
Gλ

∑
i

< i ||Yλ||i > Ui Vi (5.69)

measures the multipole distortion (departure from anisotropy) of the Fermi sur-
face (see Broglia et al. (1969a)). The index i labels Nilsson single-particle levels.
Specialized to the case of λ = 2, the pairing matrix elements are equal to

〈i ĩ |(H (2, 0)+ H (2, 2))| j j̃〉 = −G0 − G2 Qi Q j , (5.70)

where we have used Qi = Q(2)
i . The violation of both angular momentum and

particle number conservation brings a new dimension to the role that multipole
pairing correlations play in nuclear structure (Bes et al. (1972)).
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In particular, the gap (5.66) can become very small for certain levels as well
as the matrix element (5.70). This phenomenon is analogous to the phenomenon
of gapless superconductivity in solid-state physics. There, an impurity traps a
magnetic field which is larger than the critical magnetic field Hc, thus giving
rise to some quasiparticles for which �i ≈ 0. In nuclei, it is the shell structure
which acts as impurity, displaying particular signs of the quadrupole moment
for particular values of the angular momentum (see Sections 6.2.1 and 6.2.2).

One can distinguish two different types of pairing matrix elements: (i) those
that are related with the scattering of particles between pairs of single particles
having the same sign of the quadrupole moment, i.e.

Goo = < ioīo|H (20)+ H (22)|i ′oī ′o >= −Go − G2 Qio Qi ′o, (5.71)

Gop = < ipīp|H (20)+ H (22)|i ′pī ′p >= −Go − G2 Qip Qi ′p, (5.72)

and (ii) those between pairs of orbitals with opposite sign of the quadrupole
moment, i.e.

Gpp =< ipīp|H (20)+ H (22)|i ′pī ′p >= −Go + G2|Qip Qi ′p |. (5.73)

The label o denotes oblate orbitals which have a negative sign of Q, while p
stands for prolate orbitals corresponding to a positive sign.

In general,

|Goo| ≈ |Gpp| � |Gop|. (5.74)

In this case we can distinguish, as in the case of closed-shell system, between
two groups of single-particle levels which are uncoupled from each other. In the
closed-shell system< i ī |H (20)|i ′ī ′ > has similar values for the scattering of any
pair of particles. However, if i > iF, i ′ < iF′ , the scattering amplitude G0/�ε

becomes very small,�ε being twice the single energy gap (for Pb,�ε ≈ 7 MeV
and G ≈ 0.1 MeV). There is thus a static decoupling between the single-particle
levels.

In the case of deformed nuclei, on the other hand, the single-particle levels are
closely spaced and �ε is of order of G (e.g. the average spacing of the single-
particle levels of 234U around the Fermi energy shown in Fig. 5.6 is 360 keV).
However, because of the inequality (5.74), the scattering amplitude between
oblate and prolate single-particle orbitals can become very small. In this case
there is a dynamical decoupling between the single-particle levels due to the
correlations among the particles.

Let us consider the effect of the monopole plus quadrupole pairing force acting
on a system of particles moving in the single-particle levels displayed in Fig.
5.6. Around the Fermi surface there is a predominance of prolate levels, while
≈ 0.7 MeV below the Fermi surface there is a group of oblate single-particle
levels.
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Figure 5.6. The occupation probability V 2
i for levels around the Fermi surface EF of 234U

for G2 = 0.08 MeV (dashed line). For each level the asymptotic quantum numbers are given
as well as the value of the single-particle quadrupole moment in fm2.

When the residual monopole and quadrupole pairing interactions are switched
on, one can construct essentially two ground states. The ground state of nucleus
A, based on the levels around the Fermi surface, and the ground state of the
A − 2 system (pair-removal mode), based on the states with negative value of
the quadrupole moment. Thus, this latter state has a similar relation to its ground
state as the N0 − 2 system has to the closed N0 system ground state. Note that
all the different terms which contribute to the two-nucleon transfer amplitude of
the excited state can produce constructive coherence and still be orthogonal to
the ground state, because the two states have components appreciably different
from zero on different single-particle orbitals and thus are orthogonal ab initio.

Although the deformed nucleus 234U is superfluid, the quadrupole pairing
correlations allow for the existence of real particles (Vi ≈ 1), almost uncoupled
from the superfluid ground state and moving rather close to the Fermi surface.
Because of the non-conservation of the number of particles, the states based on
the oblate orbitals become an excited state of the A-system, namely an isomeric
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pairing state with a rather differerent average value of the gap parameter than
the ground state.

The existence of a pairing isomer in a pairing deformed nucleus is evidenced
by the unusually large two-nucleon transfer cross-section to excited 0+ states, in
a similar way that a shape isomer in a quadrupole deformed nucleus displays a
very retarded electromagnetic-transition probability. Giving the same weight to
the different configurations, we get, for the ground-state (t, p) and (p, t) cross-
sections,

σ (gs→ gs) =
(∑

i

Ui Vi

)2

= (�/G)2. (5.75)

The corresponding cross-sections to an excited 0+ state are given by

σ (p,t)(gs→ 0+) ≈
(

2
∑

i

ai V
2

i

)2

(5.76)

and

σ (t,p)(gs→ 0+) ≈
(

2
∑

i

aiU
2
i

)2

, (5.77)

where ai denotes the two-quasiparticle component (forward-going amplitude)
of the single-particle state i .

In the actinide region a typical value for (5.75) is 100, while (5.76) and (5.77)
depend strongly on the amplitude ai . If the first excited state is below the small-
est two-quasiparticle energy 2Ei and is mainly generated by vibrations of the
monopole pairing gap, all the ai below the Fermi surface have one sign and all
those above the opposite sign. This sign change is necessary for the excited state
to be orthogonal to the ground state. If G2 = 0, the low-lying excited states will
mainly be built out of the states close to the Fermi surface (with Ui ≈ Vi ≈ 0.5),
which means that (5.77) and (5.78) will be about equal and of the order of unity
because of cancellations from states below and above the Fermi surface.

The pairing isomer (G2 ≈ 0.1), on the other hand, is mainly built out of the
oblate levels below the Fermi surface and is, from the start, orthogonal to the
ground state which has very small components on these single-particle levels.
For these oblate levels, V 2

i ≈ 1(εi < εF) and the different contributions to (5.77)
add with the same sign resulting in a large (p, t) cross-section.

In a schematic model where the 0+ state has equal amplitudes on configura-
tions built out of the five oblate orbitals, we find

σ (p,t)(gs→ 0+) ≈
(

2
5∑

i=1

√
1

5

)2

= 20, (5.78)
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Figure 5.7. Dependence of the different parameters associated with the monopole and
quadrupole pairing degree of freedom as a function of G2, and for the nucleus 234U. The
labels n = 1 and n = 2 indicate the first and the second 0+ excited state, respectively.

while the (t, p) cross-section is essentially zero (Ui ≈ 0)(εi < εF) . Moreover, as
the oblate single-particle levels have a small average value of�, the quasiparticle
energies Ei =

√
(εi − λ)2 +�2 will be relatively small implying that the pairing

isomer will be found at a low excitation energy.
In Fig. 5.7 we display the change of the different physical magnitudes

(W, σ (t, p), σ (p, t),�0 and�2) as a function of G2 for fixed values of G0 and
of K2. According to the discussion connected with the results displayed in
Table 5.3, one should choose G2 = G0. For this value of G2 we display in
Table 5.4 the results of the model discussed above for nuclei in the ac-
tinide region, in comparison with the experimental data (see also Casten et al.
(1972)).

Before concluding this section it is interesting to mention the results of a
recent 160Gd(p, t)158Gd experiment by Lesher et al. (2002), in which 13 ex-
cited 0+ states with energy below 3.2 MeV have been observed. Calculations
making use of both particle–hole and pairing multipole interactions seem to be
able to explain the presence of so many low-lying 0+ states (N. Lo Giudice,
A. V. Sushkov and N. Yu. Shirikova, Key Topics in Nuclear Structure, Paestum
23–27 May 2004, abstracts, p. 76). While none of these states is found to lead
to collective electromagnetic transition probabilities, some of them are found
to display collectivity in the pairing channel. Note that Zamfir et al. (2002)
are able to account for essentially all of the 0+ states observed within a basis
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Table 5.4. The experimental (Maher et al. (1970) excitation energies, relative
(p, t) cross-sections and X = ρ2e2 R4

0/B(E2; 2→ 0) values associated with the
low-lying 0+ states are compared with the theoretical calculations (Ragnarsson
and Broglia (1976)) for the actinide region.

Excitation energy

(keV)

σ (excited 0+)

σ (g.s. 0+) X

Nucleus Experimental Theoretical Experimental Theoretical Experimental Theoretical

228Th 830 18 (0.83)
930 13.4 0.33

230Th 636 18 0.22± 0.10
1590 3

1040 16.8 0.35
1270 4.4 0.39

232U 695 13 0.17± 0.04
930 8.5 0.37

234U 812 13 0.50± 0.08
1020 16.5 0.41
1250 2.0 0.46

236U 920 13
950 11.7 0.39

1220 2.1 0.35
1760 1.6 0.97

240Pu 862 15 0.05± 0.01
1091 10

1070 6.0 0.41
1260 1.5 0.40

1450 2.6
242Pu 956 24

1100 9.0 0.39
1210 13.7 0.24

1610 5.9
246Cm 1176 11

1180 4.8 0.42
1300 5.2 0.24
1610 11.1

which include s, d and f bosons. This result seem sensible in keeping with the
fact that if one adds a g boson to the basis, the calculations would be essen-
tially equivalent to those of Lo Giudice et al. mentioned above; see Broglia
(1981).



6
Phase transitions

In the present chapter we shall discuss the consequences the finite number of
particles have in the phenomenon of pairing phase transition in atomic nuclei.
Finite size effects give rise to fluctuations of the pairing gap and thus of the
correlation length (order parameter) ξ . Because ξ is much larger than the size
of the nucleus, it comes as no surprise that in describing the phase transition in
the small-particle superconductors one doesn’t need the non-analytic functions
necessary to account for the condensation in infinite systems. On the other hand,
the phenomena in both systems are closely related and, in a system like the
nucleus, we have the possibility of studying the transition in terms of the spectrum
of individual states. Thus the transition from a pair-correlated to a normal system
with increasing angular momentum involves the coupling between rotational
bands associated with the ground state and with excited (few quasiparticle) states.

Because all the transitions we shall treat are connected with level crossings at
zero temperature, it is more appropriate to talk about quantal phase transitions
(see Sachdev (1999)).

The variation of the moment of inertia I of rotational bands with angular
momentum provides one clue to the variation of the pairing gap with angular
momentum. This is because the moment of inertia has a simple monotonic de-
pendence on �. In characterizing a superfluid nucleus the moment of inertia
I of the rotational bands and the energy of the lowest non-collective excita-
tions 2Eν play a central role. Bohr and Mottelson (1975, equation (4.128)) have
given a qualitative estimate of the effect of pair correlations on the moment of
inertia which depends on a dimensionless parameter x ∼ β2�ω0/2� where β2

is the quadrupole deformation of the system, �ω0 ∼ 41/A1/3 MeV is the en-
ergy between major shells in the single-particle potential, and � is the pairing
gap. Their expression for the relation between the rigid moment of inertia Irig

and the actual moment of inertia of a deformed nucleus is I = Irig(1− g(x))

117
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where

g(x) ≈
ln

(
x +√1+ x2

)
x
√

1+ x2
.

The moment of inertia tends to the rigid value when the pairing is weak and
decreases as � increases (x ≈ β2�ω0/2�). For typical cases (A = 160, β2 ∼
0.3, �ω0 ∼ 7.5,� ∼ 0.9 MeV) one obtains x ∼ 1.25, and g(x) ∼ 0.5. However,
both I and Eν are strongly dependent on the shape of the nucleus, which is
modified by the rotation of the system as a whole, making it difficult to extract
the order parameter from the changes observed in these quantities.

A better probe is the transfer of two nucleons as a function of the angular
momentum. In fact, as already discussed in Chapters 4 and 5, the ratio of the
two-nucleon transfer differential cross-section between the ground states of su-
perfluid nuclei, normalized with respect to the DWBA differential cross-section
calculated making use of a form factor describing the motion of two uncorrelated
particles in a single j-orbit typical of the mass region, is approximately given
by (�/G)2 where G is the pairing coupling constant.

New possibilities have been opened by the observation of tunnelling between
different minima of the potential-energy surface, which displays a very strong
dependence on the rotational frequency. The tunnelling probability depends ex-
ponentially on the pairing gap, making such measurements extremely sensitive
to changes of � as a function of I . The tunnelling probability from a deformed
to a superdeformed configuration (see Section 6.5) can be written in the WKB
approximation, assuming the barrier is well described by an inverted parabola
as a function of the deformation, as (see Chapter 7)

P ∼ exp

[
−2π (EB − E)

�
√

C/D

]
.

The quantity EB is the height of the barrier, E the (zero point) energy of the system
in the deformed minimum, while D and C are the tunnelling mass parameter of
the system and the curvature of the parabola. In Section 7.1.1 it will be shown
that D ∝ �−2 for a superfluid nucleus.

In Sections 6.1–6.5 we discuss the general properties of the pairing phase
transition as a function of I , paying special attention to the energies, alignments
(derivative of the energies with respect to angular momenta) and moments of
inertia. The dependence of the moment of inertia on pair correlations is dis-
cussed in Section 6.2.1 to obtain an estimate of the critical angular momentum
for pair collapse. In Section 6.5 we discuss the role played by pairing in the
tunnelling between superdeformed and normal deformed nuclei, while in the
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last section we discuss the role that pairing fluctuations play in the rotation of
nuclei.

6.1 The experimental situation

There are two mechanisms by which the nucleus can generate high angular
momentum: single-particle alignment along a common axis or by a collective
rotation of the nucleus as a whole. This is illustrated in Fig. 6.1, where level
schemes of 158Er and 147Gd are shown. The 158Er scheme is quite regular and
the dominant behaviour is collective rotation of a body displaying prolate defor-
mation. The spectrum of 147Gd is very irregular, with complicated decay path-
ways and isomeric states. Its dominant behaviour is very likely single-particle
alignment.

In spite of differences, both of these schemes contain elements of the other
type of behaviour. In particular, there are irregularities in the 158Er rotational
pattern at spins around 16 and 26. In fact, as the nucleus de-excites from a high

Figure 6.1. Level scheme for 158Er and 147Gd, together with illustrations of the dominant
source of angular momentum for each case (from Stephens (1985)).
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Figure 6.2. Plots of the rotational period against time for the nucleus 158Er (top) and the
pulsar Vela (bottom) (from Stephens (1985)).

initial spin, the regular increase of the nuclear period (slowing-down) is inter-
rupted occasionally by rather marked decreases. These correspond to internal
rearrangements, ‘nuclear quakes’, and are generally called ‘backbends’. One
may compare them to another type of quakes – ‘star-quakes’. Neutron stars or
‘pulsars’ are also rapidly rotating systems that are slowing down (Chapter 1).
Occasionally they too display sudden speed ups of the rotational motion called
‘glitches’ (see Anderson et al. (1982), Ruderman (1972), Shapiro and Teukolsky
(1983), Pines et al. (1992)).

It is quite common for rapidly rotating objects to modify their internal structure
and thus their moments of inertia, and that these modifications revert back,
often in sudden jumps of the rotational period, as the system slows down. The
interesting question for each system has to do with the nature of the internal
modification. The slowing-down of the nucleus 158Er below spin 20 is compared
with the pulsar Vela in Fig. 6.2. The behaviours are quite similar, though the
percentage change in the nuclear case is much larger. The pulsar glitches are
not too well understood at present – early explanations had to do with a sudden
breaking of the solid crust on the neutron star, but more recent ones involve
vortices in the flow pattern (see e.g. Epstein and Baym (1988), Pizzochero et al.
(1997), Alpar (1977, 1998), Donati and Pizzochero (2003)). The nuclear glitch
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is due to the sudden pairing of two high- j particles. In the case of this first
backbend in 158Er, the particles are i13/2 neutrons. Above I ∼ 14 this pair of
aligned particles contributes 10� along the rotation axis, but this is lost below
I ∼ 14 when the particles suddenly couple to spin nearly zero (decoupling) and
begin to participate in the pairing correlations. The angular momentum has to
be made up by the collective rotation, which must speed up, thereby decreasing
the period.

Such a behaviour is now well studied in nuclei around 158Er, and the change
described above corresponds to a crossing of two rotational bands (Stephens and
Simon (1972)). A band with two aligned i13/2 neutrons crosses the ground-state
band, which has all particles participating in the pairing correlations (pairing
vacuum). Thus the discontinuity actually corresponds to a shift into another
band, though the mixing between these bands gives collective enhancement to
the transition connecting the bands, often to the point where they are stronger
than the ‘in-band’ transitions at the crossing. The energy of the aligned band
relative to the ground band gradually decreases with increasing spin because
of the Coriolis interaction. Just as a gyroscope will attempt to align its rotation
axis with that of its rotating frame, so a pair of high- j particles tends to align
its rotation axis (angular momentum) with that of the rotating nucleus, thereby
decreasing its energy relative to a band without such an alignment.

The shift in angular momentum between the orbital motion of individual
particles and the collective rotation of the nucleus is illustrated in Fig. 6.3,
where the top figure is the moment of inertia plotted against angular frequency
(�ω = Eγ /2) for a nucleus 158Er. The sharp increases in the moment of inertia
due to the alignments are apparent, the first one giving rise to a ‘backbending’
as the sequence shifts bands and the second to an ‘upbend’. In the centre of
Fig. 6.3, spin is plotted against angular frequency. The members of the three
different bands fall rather clearly on separate lines, and the difference in spin
between the lines at a given frequency represents the difference in aligned angular
momentum, �i , between the bands at that frequency. The i13/2 band has about
10� units on angular momentum aligned relative to the ground band of 158Er. The
next higher band has two more particles aligned (four-quasiparticle state), which
are believed to be h11/2 protons, and the additional�i is about 7�. Both the spin
and the angular frequency in Fig. 6.3 are directly measurable quantities. Another
is the interaction of the two bands as they cross. A strong interaction means heavy
mixing of the bands and a ‘smoothed-out’ crossing, whereas weak interactions
are associated with sudden sharp crossings. The crossing of rotational bands is
illustrated in Fig. 6.4 where the energy levels of 160Yb are plotted against spin. In
addition to the two bands crossing along the yrast sequence, there are many band
crossings in the levels above. In the case of 158Er there are three band crossings
in the first few MeV of excitation. The crossing points occur near the backbends
or upbends in Fig. 6.3.
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Figure 6.3. Plots of the moment of inertia (top), spin (middle) and spin alignment (bottom)
against the rotational frequency for the yrast sequence in 158Er (Yrast states are the states
with lowest energy for each angular momentum). The angular velocity is obtained from the
measured γ -ray energies in the collective rotational band by 2�ω = Eγ . The moment of
inertia is defined by I = I/ω. The experimental alignment in the lower part of the figure
is defined by i(ω) = I − Is (ω) where Is (ω) is the angular momentum of a reference band
indicated by the dashed curves in the middle part of the figure. It is fitted to the smoothly
varying parts of the curve of angular momentum I (ω) (after Stephens (1985)).

6.2 Static pairing correlations: the BCS theory of pairing phase
transitions in strongly rotating nuclei

The nucleon orbitals in a static deformed potential are twofold degenerate, corre-
sponding to a time reversal of their motion (Kramers degeneracy). This situation
for an axially symmetric prolate nucleus is illustrated at the top of Fig. 6.5. The
angular momentum, j , of the nucleon has projections ±� along the symmetry
axis and, when occupied by two nucleons, results in total angular momentum
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Figure 6.4. Rotational-band trajectories on an E against I plot for the levels of 160Yb. The
observed levels are indicated by the horizontal marks (after Stephens (1985)).

zero. Every orbital, characterized by j, �, can give rise to such a spin-zero pair.
The nucleons in a filled orbital near the Fermi level can scatter as a pair into a
nearby empty orbital, and the coherent scattering pattern that develops comprises
the nuclear pairing correlation.

These pairing correlations affect the ability of the nucleus to generate angular
momentum. In fact, insofar as the pairs are coupled to spin zero, they can con-
tribute nothing towards generating angular momentum. This causes a reduction
factor of 2–3 in the nuclear moment of inertia, which is given reasonably well by
the BCS model (equation (3.91)). It follows that angular momentum will tend
to weaken the pairing correlations, thus increasing the moment of inertia and
reducing the rotational energy.

The mechanism of this weakening is the Coriolis force, which acts oppositely
on the two members of the pair, lifting their degeneracy. Ultimately the Coriolis
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Figure 6.5. The two important coupling schemes in deformed nuclei. In the absence of
rotation (top) particles with angular momentum j are in time-reversed orbits with projections
±� along the symmetry (z)-axis. At high rotational frequencies the particles couple to a J ,
aligned as well as possible with the rotation (x)-axis, along which they have projection i
(from Stephens (1985)).

force will align the particle angular momentum as well as possible with the
rotation axis, as illustrated at the bottom of Fig. 6.5. This process is analogous
to the effect of a magnetic field on the paired electrons in a superconductor.

6.2.1 Estimate of crossing frequency: gapless superconductivity

Pair correlations lead to a decrease in the rotational moment of inertia and, hence,
to an increase in the rotational energy for given I . Thus, for sufficiently large
rotational frequencies, the gain in energy associated with the pair correlation
is upset by the increased rotational energy, and one expects (Mottelson and
Valatin (1960), Bohr (1977)) a phase transition to normal nuclear matter (see
Fig. 6.6).
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Figure 6.6. Schematic comparison between yrast lines for superfluid and normal systems
(from Bohr and Mottelson (1981)). The quantity�2/2d is the pairing correlation energy (see
Section 3.5).

With pairing included, single-particle motion in a rotating potential can be
described by a Hamiltonian of the form

H ′ = Hsp + Vpair − λN̂ − �ω jx , (6.1)

with

Hsp − λN̂ =
∑
ν>0

2(εν − λ)a†
νaν, (6.2)

Vpair = −�
∑
ν>0

(a†
νa

†
ν̄ + aν̄aν), (6.3)

jx =
∑
ν1ν2

〈ν2| jx |ν1〉a†
ν2

aν1, (6.4)

where ν labels the eigenstates of Hsp and ν̄ is the time reverse of ν. The number
operator is denoted by N̂ . The pair potential includes only the monopole term
that creates and annihilates pairs of particles moving in single-particle states
conjugate under time reversal. Additional terms in the pair potential may be
present. The strength of the pair potential, as well as the shape of the nucleus, is
a function of ω characterizing the equilibrium for given rotational frequency.

The Hamiltonian (6.1) is a bilinear form in the particle creation and an-
nihilation operators a†, a and can be brought to diagonal form by a linear
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transformation to quasiparticle operators

α
†
i =

∑
ν

(Uiνa
†
ν − Viνaν̄), (6.5)

leading to

H ′ = const+
∑

i

E ′iα
†
i αi . (6.6)

The transformation (6.5) is a generalization of the more familiar one which
applies to time-reversal-invariant potentials (Bohr and Mottelson (1974), Bohr
(1977)). Essential new features are that the quasiparticle states no longer have
the twofold degeneracy and that the quasiparticle energies E ′ can be smaller
than � (in analogy to the situation in gapless superconductors (Goswami et al.
(1967))).

We can see the new features most easily for a nucleus rotating about the
symmetry axis. In this case, the eigenstates ν of Hsp are also eigenstates of jx

(with eigenvalue �). The quasiparticle transformation is now the usual one as
for τ -invariant potentials {

α†ν = Uνa†
ν − Vνaν̄ ,

a†
ν = Uνα†ν + Vναν̄,

(6.7)

which leaves the operator jx diagonal

jx =
∑
ν

�a†
νaν =

∑
ν

�α†ναν, (6.8)

and the quasiparticle energies are

E ′ν =
(
(εν − λ)2 +�2

)1/2 − �ω�. (6.9)

The quasiparticle spectrum (6.9) is illustrated schematically in Fig. 6.7. For
an even number of particles, the quasiparticle vacuum (v = 0) is the lowest state
for rotational frequencies that are smaller than the value for which the sum of the
two lowest quasiparticle energies vanishes. For larger ω, this two-quasiparticle
state becomes the lowest (so called ‘yrast’ state, i.e. the set of states that have
the lowest energy for each angular momentum), until the next pair of quasipar-
ticles has zero energy, after which the four-quasiparticle state moves to the yrast
line, etc. The characteristic frequency ω1 for the first of these crossings is of
order

ω1 ∼ �

�max
, (6.10)
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Figure 6.7. Quasiparticle energies E ′ corresponding to a schematic single-particle spectrum
(from Bohr (1977)). Copyright © Società italiana di Fisica.

where �max(= jmax) is the largest single-particle angular momentum near the
Fermi surface. Systematics obtained from experimental data are fitted well by
an empirical relation (see equation (1.43))

�ω1 ≈ 1.67�

j1
.

Estimates for band crossings for some high-j shells are found in Garrett et al.
(1988). Note that the empirical estimate is always larger than the limiting theo-
retical value. This is because band crossing occurs in deformed nuclei and the
limiting value (6.10) assumes a spherical system.

The possibility of negative-energy quasiparticle excitations appears as a gen-
eral feature of pairing in rotating potentials. In fact, the rotational-alignment
effect implies that quasiparticles carry a non-vanishing component �x of angu-
lar momentum; thus the excitation of a quasiparticle, for fixed I , is associated
with a decrease in the collective rotational energy, corresponding to the last term
in (6.9). When the sum of two quasiparticle energies vanishes, one expects a
band crossing on the yrast line. For example, in an even–even nucleus, a v = 2
band with a large value of 〈 j1〉 + 〈 j2〉 may cross the v = 0 band.

For nuclei with mass around A ∼ 150, the first pairs of particles which align
are those associated with the i13/2 orbital. Making use of standard values of
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� ∼ 1.2 MeV for this mass region, one expects the frequency of the first crossing
to be �ω ∼ 1.2 MeV/6 ∼ 0.2 MeV. This rough estimate is consistent with the
observed values. The estimate of Garrett et al. (1988) given by the equation
above for 158Er leads to �ω1 ≈ 0.3 MeV (see Fig. 6.3).

An estimate of the critical angular momentum for total pairing collapse can
be obtained making use of Fig. 6.6. Accordingly

�2

2d ≈ (Erot)S − (Erot)N ∼
(

�2

2I� − �2

2Irig

)
I 2
c

≈ (
1

60 − 1
120

)
I 2
c MeV ≈ (

I 2
c /120

)
MeV,

(6.11)

where the values for the moments of inertia were taken from Fig. 6.3. Note
that Irig/�

2 ∼ 60 coincides with the value extracted from the analysis of γ –
γ correlation (Garrett, Hagemann and Herskind (1986)). Making use of � ∼
1.2 MeV and of a standard value d ∼ 0.3− 0.2 MeV, one obtains

Ic ≈ 20�. (6.12)

Making use of the semiclassical relation Iωc = Ic (see (6.45)), where �
2/2I ≈

(1/80) MeV, one obtains �ωc ≈ 0.5 MeV (see Section 1.9 and Fig. 6.3).
Note that relation (6.11) is equivalent to that used in superconductivity in bulk

matter to determine the critical magnetic field.

6.2.2 Pairing in D-states

In Fig. 6.8 the aligned angular momentum i (measured by the difference in
angular momentum between the band under consideration and a reference band)
of two i13/2 neutrons in nuclei around mass 160, is plotted against rotational
frequency (approximately half the rotational γ -ray energy) for three bands. The
critical frequency is about 0.26 MeV and the aligned angular momentum is∼10�

(12� is the maximum for two i13/2 neutrons). The dashed lines are for two bands
in the nucleus 163Yb with one additional neutron located in an orbital labelled
either E or F . These orbitals comprise a time-reversed pair at zero rotational
frequency and are not very pure shell model states, though their dominant compo-
nent is h9/2. In the even–even nucleus 162Yb, this pair of states (E , F) is available
for the pairing correlations, and, in particular, a pair of i13/2 neutrons can scatter
into it. On the other hand, in 163Yb it is blocked by the odd nucleon for the bands
based on either E or F . The pairing correlations are thereby weaker in general,
and in particular for a pair of i13/2 neutrons. It is easier to unpair and align the i13/2

neutrons, and this occurs at a lower rotational frequency,∼0.22 MeV, as seen in
Fig. 6.8. This shift can be related to the change in the pairing correlations involved
and turns out to correspond to a (20÷ 30)% reduction in pairing. Thus we learn
that blocking just one orbital near the Fermi level reduces the pairing correlations
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Figure 6.8. The aligned angular momentum, i , is plotted against rotational frequency, ω,
for the first backbend (i13/2 alignment) region of the lowest-lying (yrast) sequence in 162Yb
(continuous line) and for two bands in 163Yb (labelled E and F). The midpoint of the sharp
rise is approximately the crossing frequency (after Stephens (1985), Garrett et al. (1986)).

appreciably, a result that is confirmed by other kinds of experiments like transfer
of pairs of nucleons and directly from the odd–even mass difference. Pairing
correlations although playing an extremely important role in the structure of
nuclei close to the ground state are weak, and two to three blocked levels of either
type (protons or neutrons) are enough to destroy the correlations for that nucleon
type.

Conspicuous deviations from the systematic discussed above have been ob-
served (see Fig. 6.9) in specific nuclei. In fact, in 161Er, for example, the crossing
of the rotational band based on the [521]3/2− level shows the effect but not
the band based on the [505]11/2− state. In fact, the δ(�ω) associated with the
[521]3/2− orbit is ∼ 40 keV, while δ(�ω) ∼ 0 for [505]11/2−.

Both orbitals are close to the Fermi surface at rotational frequency ω = 0.
However, the [521]3/2− orbital has an intrinsic quadrupole moment qν > 0,
as all the rest of levels in this energy region, while the [505]11/2− orbital has
qν < 0 (see Fig. 6.10).

This has important consequences as the nucleus displays quadrupole pairing
correlations, aside from monopole pairing correlations. The pairing gap is in this
case state dependent (Bes et al. (1972), Van Rij and Kahana (1972) and Shimizu
et al. (1989)), and can be written as (see Section 5.3)

�ν = G0

∑
ν ′>0

Uν ′Vν ′ + G2qν
∑
ν ′>0

Uν ′Vν ′qν ′ . (6.13)
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(a)

(b)

(c)

Figure 6.9. Alignment plot for selected decay sequences of rotational states illustrat-
ing the observed shifts in crossing frequency: (a) curve 1) 181Os (7/2−[514]), curve
2) 181Os (7/2−[521]), curve 3) 182Os (yrast); (b) curve 1) 173W (5/2−[512]), curve 2)
173W (1/2−[521]), curve 3) 172W (yrast); (c) curve 1) 161Er (11/2−[505]), curve 2) 161Er
(3/2−[521]), curve 3) 162Er (yrast). The crossing frequencies are shown by the vertical dashed
lines for the ground-state decay sequences in both even- and odd-N isotopes. Signature zero
and 1/2 decay sequences are indicated by solid sysmbols, and the α = −1/2 sequence is
indicated by open symbols. Reprinted from Physics Letters B, Vol. 118, Garrett et al., ‘Con-
figuration dependent pairing from band crossing frequencies’, page 298, Copyright 1982,
with permission from Elsevier.
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Figure 6.10. Spectrum of neutron Nilsson orbits, identified by the quantum numbers N, nz and
λ (see Nilsson and Ragnarsson (1995)), for rare-earth nuclei calculated assuming β2 = 0.25.
The position of the Fermi surface, λ, for ω = 0.90 MeV is also indicated for odd neutron
numbers. The asymptotic quantum numbers and the quadrupole and hexadecapole moments,
q2(ν) and q4(ν), in units of fm2 and fm4, respectively, are indicated for each configuration
(from Garrett et al. (1982)).

Blocking the orbital νb leads to a change in �ν measured by

δ�ν(νb) = �ν −�ν(νb) = GUνb Vνb (1+ qνqνb ) ≈
G

2
(1+ qνqνb ), (6.14)

where we have assumed Uνb ≈ Vνb ≈ 1/
√

2 (correct for levels close to the Fermi
surface). Making use of the fact that (Nilsson and Ragnarsson (1995))

q ∼ (3nz − N )/(N + 3/2),
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we obtain for the case under discussion

[660] 1/2+ 1.6
[651] 3/2+ 1.2
[642] 5/2+ 0.8

⎫⎬⎭ 1.2,

[521] 3/2− 0.15
[530] 1/2− 0.6

}
0.4,

[505] 11/2− −0.8.

Setting G ≈ 27/A MeV, one obtains

δ�i13/2 ([521]3/2−) ≈ 1

2

(
27

161
MeV

)
× (1+ 1.2× 0.4) ≈ 130 keV,

δ�i13/2 ([505]11/2−) ≈ 1

2

(
27

161
MeV

)
× (1− 1.2× 0.8) ≈ 0 keV. (6.15)

This result implies that two particles moving in time-reversal states in the orbital
[505]11/2− do not feel they are in a superfluid nucleus and thus do not contribute
to the pairing gap.

The correlation between the shape of a valence quasi-neutron orbital and
the shift in band crossing frequencies between neighbouring odd- and even-N
isotopes is shown in Fig. 6.11.

6.2.3 Time-reversal violation due to rotation (the i13/2 model)

In this subsection we discuss some aspects of the phenomenon of pairing collapse
under the influence of strong rotations within a pure i13/2 model (Broglia et al.
(1985a)). We assume the system under study to display axial symmetry around
the z-axis, and moreover symmetry with respect to the (x, y)-plane.

The axis of rotation is chosen to be perpendicular to the symmetry axis, which
leads to collective rotations. The motion of the particles is controlled by the
Nilsson Hamiltonian. The associated single-particle Routhian reads

hωsp = hN(ε)− ω jx , (6.16)

with

hN(ε) = Q j2
x , (6.17)

where Q is proportional to the quadrupole moment of the system. The
Hamiltonian hωsp is invariant under space reflection (parity) and under rotations
through 180◦ about the x-axis, i.e. rotations induced by the operator

Rx = exp[−iπ jx ]. (6.18)
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Figure 6.11. Correlation between δ�ωc (see equation (6.15)) and the quadrupole moment,
q2(ν), of the orbit of the valence quasi-neutron ν: • Er, ◦ Yb, � Hf, � W, � Os (see Fig.
6.10). The asymptotic quantum numbers of the various configurations are given at the top of
the figure. The dashed line is drawn only to guide the eye. Reprinted from Nuclear Physics,
Vol. A400, Garrett et al., ‘The structure of rotating deformed nuclei,’ page 113, Copyright
1982, with permission from Elsevier.

The eigenvalues εων and the eigenstates |νω〉 of the cranking Hamiltonian

hωsp|νω〉 = εων |νω〉 , (6.19)

can thus be labelled by the parity of the state and by the signature quantum number
(Bohr and Mottelson (1974)), which is intimately related to the eigenvalues of
the operator (6.18).

Let us denote by |ν,�ν〉 the eigenstates of the Nilsson Hamiltonian hωN(ε) and
adopt the following phase convention{

Rx |ν,�ν〉 = i(−1)�ν−1/2|ν, �̃ν〉,
Rx |ν, �̃ν〉 = i(−1)�ν+1/2|ν,�ν〉,

(6.20)

where |ν, �̃ν〉 is the time-reversal state to |ν,�ν〉, while �ν is the magnetic
quantum number of the state.
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The states

|χ〉 = 1√
2
{(−1)�ν+1/2|ν,�ν〉 + |ν, �̃ν〉} (6.21)

and

|χ̃〉 = 1√
2
{−|ν,�ν〉 + (−1)�ν−1/2|ν, �̃ν〉}, (6.22)

which are still related by the time-reversal operation, are eigenstates of Rx with
eigenvalues

Rx |χ〉 = −i|χ〉 (6.23)

and

Rx |χ̃〉 = i|χ̃〉. (6.24)

The state (6.21) is said to have signature α = + 1
2 , while the state (6.22) has

signature α = − 1
2 .

In the basis |χ, χ̃〉 the eigenvalue equation (6.19) is block-diagonal, i.e.(
hN − jxω 0
0 hN + jxω

)(
G
H

)
= εω

(
G
H

)
. (6.25)

The resulting eigenstates can be written as

| j〉 = |π, α = 1
2〉 =

∑
χ

G j
χ |χ〉 (6.26)

and

| ĵ〉 = |π, α = − 1
2〉 =

∑
χ

H ĵ
χ̃ |χ̃〉. (6.27)

Note that the states | j〉 and | ĵ〉 are related by the operation of time reversal only
at ω = 0 (zero rotational frequency). The violation of time-reversal symmetry is
measured by the deviation from 1 of the pairing matrix element

〈 j ĵ ′|P†|0〉 =
∑
χχ ′

G j
χH ĵ ′

χ ′ 〈χχ ′|P†|0〉, (6.28)

where

P† =
∑

να>0,νβ>0

〈ν̃β |τ |να〉a†
να

a†
ν̃β

(6.29)

and

〈χχ ′|P†|0〉 = 〈χ ′|τ |χ〉 = �(χ ′, χ̃ ), (6.30)
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Figure 6.12. Eigenvalues εων and alignments iων associated with the eigenstates of the cranked
Hamiltonian, for the case of a 1i13/2 orbital. The eigenvalues are defined through equation
(6.25), while the alignment is given by equation (6.32).

the time-reversal operator having been denoted by τ (see Appendix A). Note
that the pair field (6.29) coincides with the transfer operator which creates two
particles in time-reversal state. From the result (6.30) one obtains

M j ĵ ′ = 〈 j ĵ ′|P†|0〉 =
∑
χ

G j
χH ĵ

χ̃ . (6.31)

The fact that the pairing field only connects states of different signature can be
understood by the fact that at ω = 0, | j〉 → |χ〉 and | ĵ〉 → |χ̃〉 ∼ τ |χ〉, which
are time-reversal states.

In Fig. 6.12 we display the energies εων associated with the diagonalization of
hsp in the i13/2 single-particle orbital as a function of rotational frequency. In the
same figure we also give the alignments

i = −d〈hωsp〉
dω

= 〈 jx〉 (6.32)

associated with each level.
The square of the pairing matrix elements or pairing overlaps are shown in

Fig. 6.13 for a variety of configurations. The most conspicuous features dis-
played by these quantities can be summarized as follows (see also Broglia
(1985c), Nikam and Ring (1987), Nikam et al. (1986, 1987), Vigezzi et al.
(1988)):
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Figure 6.13. Square of the pairing matrix elements as defined in equation (6.31) connecting
different eigenstates of the cranking Hamiltonian, as a function of the rotational frequency.

(a) Matrix elements that start being 1 at ω = 0 decrease with increasing values
of ω, the opposite being true for those matrix elements which are zero at
ω = 0. Many of them become zero again at ω→∞ displaying a maximum
for finite values of ω.

(b) Aside from the matrix elements 〈1, ĵ |P†
2 |0〉 all other matrix elements oscil-

late. The first property can be understood making use of the sum rule∑
j j ′
〈 j ĵ ′|P†|0〉2 = �, (6.33)

where� = j + 1/2 is the number of pairs one can place in the shell, and from
the fact that at ω = 0 the twofold degenerate Nilsson states are time-reversal
partners, while for ω jx � hN(ε), where mx is a good quantum number, the
time-reversal states are those associated with the values±�x of the magnetic
quantum number jx .

6.2.4 Detailed numerical calculations

In Fig. 6.14 self-consistent calculations (Shimizu et al. (1989)) of the BCS
neutron pairing gap and of the alignment as a function of the rotational frequency
are shown for the nucleus 168Yb.
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Figure 6.14. The static (BCS) neutron pair gap � and the alignment of the lowest (π, α) =
(+, 0) configuration of 168

98 Yb. Reprinted with permission from Shimizu et al., Rev. Mod. Phys.
61:131 (1989). Copyright 1989 by the American Physical Society.

A significant decrease, of the order of 400 keV, is predicted at the frequency
of the first crossing (∼0.26 MeV). From here on the pairing gap decreases rather
smoothly until, at ωrot ∼0.45 MeV it goes to zero.

A simple estimate of the crossing frequencies and of the critical valueωc based
on equations (6.10) and (6.11) is shown in Table 6.1 and demonstrates overall
agreement with the detailed calculations.

From the above discussions and the present results, one can conclude that
pairing collapse under the influence of rotation is controlled by the progressive
splitting of signature partners and the associated reduction of the pairing ma-
trix elements (time-reversal overlaps). For definite frequencies these overlaps
become so small that the corresponding state ( j ĵ ′) is blocked, and does not con-
tribute to the sum appearing in the BCS equations of the pairing gap. At the
frequency where two to three signature pairs are blocked, these equations lead
to the trivial solution � = 0.

The phenomenon of pairing collapse can be also viewed in terms of the cross-
ing of 2, 4 . . . quasiparticle bands with the original ground-state band. This is a
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Table 6.1. Alignments and crossing frequencies for particles mov-
ing in a variety of orbitals of 168Yb. The average value 〈 jx〉 =
((l + 1/2)+ (l − 1/2))/2 was used to estimate an average crossing
frequency through equation (6.10). From the analysis of the irregu-
larities in the I − ω relation associated with the first band crossing in
the rare-earth nuclei (i13/2 alignment), it is found that the alignment
is less (∼25%) than the maximun value i = j = 13/2. The particle
retains a strong coupling to the symmetry axis, and it is only the
component of angular momentum along this symmetry axis that can
easily be aligned. The quantity jx = 〈 jx〉 − 25% was used to obtain
somewhat more realistic estimates ω1 of the crossing frequencies (see
discussion following equation (6.10)).

〈 jx 〉(�) 〈ω1〉(MeV) jx (�) ω1(MeV)

i 6 0.20 4.5 0.27
h 5 0.24 3.8 0.32
g 4 0.30 3.0 0.40
f 3 0.40 2.3 0.50

valid interpretation to the extent that one does not require that all bands have a
strict existence at all rotational frequencies. In fact, in the case under discussion
only the first crossing is clearly seen experimentally.

6.3 Pairing fluctuations

For rotational frequencies ω smaller than the critical frequency ωc, where the
BCS gap becomes zero, the pairing contribution to the ground-state energy
is proportional to the square of the number of particles. That is, E0 ∼ G N 2,
typical of a pairing rotational band (see Chapters 4 and 5). The contribu-
tion to E0 of the zero-point fluctuations associated with the pairing modes is
Egsc ∼ G N , leading to a ratio r ∼ Egsc/E0 ∼ N−1. For rotational frequencies
ω > ωc, that is for normal systems, Egsc ∼ G N as before, while E0 ∼ G N typ-
ical of pairing vibrational bands. The ratio r is in this case of order 1. It is thus
expected that the effects of zero-point fluctuations associated with pairing
vibrations will be much more important at rotational frequencies ω � ωc than
at ω < ωc.

In the present subsection we study some of the consequences these fluctuations
have on a variety of properties of strongly rotating nuclei. We carry out our
investigations for high rotational frequencies ω > ωc, i.e. for normal systems.
The calculations are done in the framework of the cranked shell model treating the
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pairing vibrations of the normal system in the RPA. By decreasingω, but keeping
it always larger than ωc, we gradually approach the pairing phase transition.
That is, we study the onset of the normal to superfluid phase transition at zero
temperature, taking into account the fluctuations induced by pairing vibrations
(see Barranco et al. (1987)).

The equations determining the properties of pairing vibrations in normal sys-
tems, i.e. in systems with fixed number of particles, are, in the random-phase
approximation (Broglia et al. (1986), Shimizu et al. (1989)),∑

n(β = +2) = 1

G
, (6.34)

∑
n(β = +2) =∑

kk ′
M2

kk̂ ′
U 2

k U 2
k̂ ′

ek + ek̂ ′ −W+2(n)
+

∑
i î ′

M2
i î ′

U 2
i U 2

î ′

ei + eî ′ +W+2(n)
(6.35)

and ∑
kk ′

X2
kk̂ ′(+2, n)−

∑
i i ′

Y 2
i î ′(+2, n) = 1. (6.36)

The amplitudes X and Y are defined as⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xkk̂ ′(+2, n) = �+2(n)Mkk̂ ′U

2
k U 2

k̂ ′

ek + ek̂ ′ −W+2(n)
,

Yiî ′(+2, n) = �+2(n)Miî ′U
2
i U 2

î ′

ei + eî ′ +W+2(n)
,

(6.37)

the quantity �+2(n) being the particle-vibration coupling strength determined
from the normalization condition (6.36). The quantities Miî ′ are the pairing
matrix elements connecting states with different signatures, while ei and eî ′ are
the associated single-particle energies measured from the Fermi energy. The
pairing vibrations are labelled by the transfer quantum number β = ±2. The
quantities U 2 and V 2 are either 1 or 0 according to the occupancy of the state.
The equations above thus describe the pair addition modes, i.e. vibrations which
increase the number of particles by 2. The index n indicates whether the solution
of equation (6.35) one considers corresponds to the state with lowest energy
(n = 1), next to lowest (n = 2), etc.

Similar equations describe the pair removal modes, i.e. vibrations which di-
minish the number of particles by two units. It is noted that all quantities in
equation (6.35), with the exception of the pairing coupling constant G, depend
on the rotational frequency ω. This is, of course, an oversimplification of the
problem, in view of the fact that a non-negligible contribution to G arises from
the exchange of collective vibrations between pairs of nucleons forming Cooper
pairs (see Chapters 8–10).
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The Mottelson–Valatin (1960) critical rotational frequency for which the BCS
equations have a solution � = 0 coincides with the frequency for which the
energy of the pair-addition and pair-removal modes of the normal system goes
to zero, i.e.

(W+2(n))ωc = (W−2(n))ωc = 0. (6.38)

In fact, in this case equation (6.35) is equivalent to the BCS gap equation if one
interprets the energies e j as quasiparticle energies.

The influence of pairing fluctuations on different nuclear properties can be
calculated in the RPA. In particular, the contribution to the energy of a given
configuration of parity π and signature α is given by (see Section 8.4)

Egsc(π, α) = 1

2

∑
β=±2,n

Wβ(πα; n)− 1

2

∑
j j ′

(e j + e ĵ ′), (6.39)

which is the sum of the energies of the pair-addition and subtraction modes
measured from the energy of the unperturbed two-particle poles (e j + e ĵ ′). With
j we indicate both levels above ( j > k) and below ( j < i) the Fermi energy.
The quantity Egsc is thus equal to the sum of the correlation energies of all
pair-addition and pair-subtraction modes.

The total energy of the variety of configurations calculated in the rotating
frame (‘Routhian’) is

e(π, α) = 〈hωsp〉 + Egsc. (6.40)

The average angular momentum associated with these configurations along the
axis of rotation can be written as

ix (π, α) = −∂e(π, α)

∂ω
= 〈 jc〉 − ∂Egsc

∂ω
. (6.41)

Examples of the quantities, again for 168Yb, are shown in Fig. 6.15. The bands
have different parity signature quantum numbers (π, α).

The ease with which the (+, 0) configuration reacts to pairing correlations,
leading to smaller alignments, reflects the fact that in this configuration the lowest
levels of both even and odd parity are filled with an even number of particles.
Consequently the configuration (+, 0) is the analogue to the BCS vacuum at
ω > ωc.

The configuration (−, 0) or (−, 1) is associated with situations where one
has an odd number of particles in both even- and odd-parity levels. They thus
correspond to two-quasiparticle configurations at ω < ωc, relative to the (+, 0)
configuration. This implies that the (−, 0) and (−, 1) configurations are affected
by a high degree of blocking. Consequently, pairing vibrations typical of normal
systems can develop at a lower frequency than in the case of the (+, 0) configu-
rations. That is, one needs only moderate values of ω to achieve the situation in
which the fluctuations of the pairing gap are as large as its average value.
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Figure 6.15. Comparison of calculated Routhians, with fluctuations (middle portion) and
without fluctuations (top portion), and experimental Routhians (bottom portion), e′ (left-
hand side), and alignments, i (right-hand side), for various configurations in 168

92 Yb. The
(+, 0) configuration is denoted by solid lines and solid dots, (−, 0) by dot-dashed lines and
open triangles and (−, 1) by double-dashed lines and solid triangles. The calculated and
experimental values are referred to reference configurations with constant moment of inertia
of 62�

2 MeV−3 and 66�
2 MeV−1, respectively. Reprinted with permission from Shimizu

et al., Rev. Mod. Phys. 61:131 (1989). Copyright 1989 by the American Physical Society.

6.4 Moments of inertia

As a consequence of the interplay between collective and single-particle mo-
tions, there are a variety of moments of inertia one can measure and compare
with detailed calculations (Broglia et al. (1985b), Szymanski (1985)). The first
distinction to be made is between kinematic and dynamic values (Bohr and
Mottelson (1974)).

The moment of inertia defined as the first derivative of the rotational energy
with respect to spin

I (1)

�2
= I

(
dE

dI

)−1

= I

�ω
(6.42)

is the so-called ‘kinematic’ moment of inertia, because it has to do with the
motion of the system, the ratio of angular momentum to angular frequency. It is
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also apparent that the second derivative leads to the definition

I (2)

�2
=

(
d2 E

dI 2

)−1

= dI

d(�ω)
, (6.43)

where I (2) is called the ‘dynamic’ moment of inertia, because it has to do with
the way the system will respond to a force.

In general I (1) and I (2) are different in rotating nuclei, because of the effect
of the Coriolis term ∼ I · j .

A simple approximation for the rotational energy is

E(I ) = E0 + (I − i0)2

2I , (6.44)

where I is identified as the second moment of inertia. The quantity i0 is related
in some general way to the part of angular momentum carried out by the single-
particle motion. It should not, however, be confused with the actual particle
alignment, as can be seen from Fig. 6.16.
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Figure 6.16. Illustration of apparent alignment i0. Apparent alignment (i0), the ω = 0 inter-
cept of an extrapolation of the local dynamic moment of inertia, I (2), can be defined as the
difference between the kinematic, I (1), and dynamic moments of inertia. The various quanti-
ties entering this definition are indicated in the figure. The Ix (ω) data are for the ground-state,
(−, 1/2) configuration of 159

91 Er. Reprinted with permission from Shimizu et al., Rev. Mod.
Phys. 61:131 (1989). Copyright 1989 by the American Physical Society.
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Figure 6.17. The kinematic and the dynamic moment of inertia, I (1) and I (2), associated with
the superdeformed band of 152Dy (see Fig. 6.18) as functions of the rotational frequency
(for a quadrupole deformation parameter) (ε2 = 0.58): (a) results without taking into account
pairing fluctuations, (b) results including pairing fluctuations: theory: −I (2), −−− I (1);
experiment: • • • I (2), ��� I (1). The absolute value of I is overestimated because the
Strutinsky renormalization of the angular momentum was left out. Reprinted from Physics
Letters B, Vol. 198, Shimizu et al., ‘Role of static and dynamic pairing correlations in the
superdeformed band of 152Dy, page 35, Copyright 1987, with permission from Elsevier.

The parametrization (6.44) arises from the cranking model where the canonical
frequency ω, which determines the magnitude of the rotational perturbation, is
approximately given by

ω = 1

I0
(I − i0) ∼ R

I0
, (6.45)

where R is the angular momentum of the collective rotation and I0 the moment
of inertia of the rotor in the particle-rotor model.

Examples of the role played by pairing fluctuations in the behaviour of I (1)

and I (2) with rotational frequency are shown in Fig. 6.17 for the case of the
superdeformed band of 152Dy.
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6.5 Condensation-induced tunnelling

The interplay between collective degrees of freedom and single-particle motion
common to all many-body systems is encountered in the study of nuclear struc-
ture in a particular concrete form. This is because of the possibility of detailed
studies of individual quantum states, as carried out, for example, in the case of the
nuclear potential energy considered as a function of the shape. While the general
features of this ‘potential-energy function’ can be described in terms of bulk
properties of the nuclear matter such as surface tension and electrostatic energy,
the specific geometry of the quantized orbits of the individual nucleons con-
tributes important anisotropic effects; a striking consequence is the occurrence
of nuclear-equilibrium shapes deviating strongly from spherical symmetry.

The effect of the shell structure on the nuclear potential energy has come into
perspective in the study of superdeformed bands, the first one observed (see
e.g. Nolan and Twin (1988)) being that of the nucleus 152Dy (see Fig. 6.18,
see also Åberg (1987)). Superdeformed states are associated with quadrupole
deformed nuclear shapes, where the ratio between the larger and the smaller
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Figure 6.18. The experimental knowledge about 152Dy includes states at three different defor-
mations: non-collective oblate states, a collective low-deformation band (presumably prolate)
and a collective superdeformed band. Some typical decay paths de-exciting the superdeformed
band to oblate states are illustrated (dots). Reprinted, with permission, from the Annual Review
of Nuclear Science, Volume 23 © 1973 by Annual Reviews www.annualreviews.org
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radii is 2 : 1. This is probably the largest deformation a nucleus can hold without
fissioning, hence the name. The microscopic basis for the appearance of su-
perdeformed configurations reflects a special stability associated with the shell
structure, and is intimately connected with that found for the existence of fission
isomers (Michaudon (1973)).

The nature of these shells can be understood in a simple manner by reference to
one-particle motion in a spheroidal deformed harmonic-oscillator potential. As
illustrated in Fig. 6.19, the degeneracies of the isotropic oscillator are removed
by the deformation, but new major shells (degeneracies) reappear when the
oscillator frequencies in the different directions have rational ratios.

Especially large effects occur for a deformation with the frequency ratio
ω⊥ : ω3 = 2 : 1, and the associated nucleon numbers for closed shells are
N = 80, 110, 140, . . . . The nuclear potential differs from the harmonic oscilla-
tor in the radial dependence and in the occurrence of a large spin-orbit coupling.
The inclusion of these effects leaves intact the main features of the oscillator
shell structure in the 2 : 1 potential, but modifies the closed-shell numbers to
N = . . . , 86, 116, . . . (Bohr and Mottelson (1973)).

Once the superdeformed yrast band of 152Dy is populated with a spin I ∼ 60�,
the nucleus remains in it through eighteen collective E2 transitions (Twin et al.
(1986)) until suddenly at spin I = 24� and about 5 MeV above the yrast line it
terminates within an angular interval �I ∼ (2÷ 4)�. This observation requires
that a mechanism be identified which within a narrow range of 2÷ 4 units of �

can change the tunnelling probability between the superdeformed and the normal
minimum by about six orders of magnitude.

Although the barrier between the superdeformed and the normal minima
changes with spin, all calculations predict a smooth variation of it (Ragnars-
son and Åberg (1986)) (see Fig. 6.20).

The sudden transition out of the superdeformed minimum at spin I = 24�

is likely to be related to the onset of pairing caused by the disalignment of the
lowest pair of j15/2 quasiparticles, taking place at frequency∼0.3 MeV (Shimizu
et al. (1987)) (see Section 6.2), although other mechanisms may play a role (see,
e.g. Åberg (1999), Andreoiu et al. (2003), Sergeant et al. (2002)). This change
in the pairing gap strongly reduces the inertial parameter D (see equations (7.6)
and (7.8)), leading to a large increase of the tunnelling probability, as shown
in Fig. 6.21. It is likely that these results are the clearest indication to date of
a pairing collapse taking place in nuclei as a function of the angular momenta.
The discussion of this subject is continued in Chapter 7.

6.6 Response function technique to calculate RPA fluctuations

In the present section we shall study the behaviour of the pairing correlation
energy, and of the pairing gap of a superfluid, for deformed strongly rotating
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Figure 6.19. Shell structure in anisotropic harmonic-oscillator potential. This figure shows the
single-particle energy levels, as a function of deformation, in a prolate axially symmetric os-
cillator potential. V = (1/2)M(ω2
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3 ), E = �ω⊥(n⊥ + 1)+ �ω3(n3 + 1/2).
The frequencies ω3 and ω⊥ refer to motion parallel and perpendicular to the symmetry axis,
while ω is the mean frequency. The single-particle states can be specified by the number of
quanta n3 and n⊥, and each energy level has a degeneracy 2(n⊥ + 1), due to the spin and
the degeneracy in the motion perpendicular to the axis. Additional degeneracies leading to
the formation of major shells may occur when the ratio of the frequencies ω⊥ :ω3 is equal
to the ratio between integers. The deformations corresponding to the most prominent shell
structure effects are indicated by the arrows labelled by the corresponding frequency ratio.
For the shells with frequency ratio 1 : 1 (spherical shape) and 2 : 1, the figure gives the particle
numbers for closed-shell configurations (from Bohr and Mottelson (1973)). Reprinted, with
permission, from the Annual Review of Nuclear Science, Volume 23 © 1973 by Annual
Reviews www.annualreviews.org

nuclei as a function of the rotational frequency, taking into account pairing
fluctuations in the RPA.

In the quasiparticle basis, the correlation energy takes the form

ERPA
corr =

1

2

[∑
n

ωn −
∑
α<β

Eαβ
]
, (6.46)

www.annualreviews.org
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Figure 6.20. Potential energy of 152Dy as a function of deformation parameter ε2 for different
values of the angular momentum.

where ωn are the RPA eigenfrequencies, Eαβ ≡ Eα + Eβ being the unperturbed
two-quasiparticle energies. Because the different RPA modes contribute demo-
cratically to ERPA

corr , to calculate this quantity one needs to determine very many,
closely spaced, RPA eigenmodes. This is particularly true in the case where
symmetries of the mean field are spontaneously broken, such as in the case of
superfluid and deformed nuclei, where the detailed computation of the contribu-
tion of every single RPA root to ERPA

corr becomes unfeasible. To avoid this problem,
Shimizu et al. (1989) developed a method to calculate the correlation energy,
making use of response function techniques, and applied it to the study of pairing
correlations in rapidly rotating nuclei. The essence of the method consists in ex-
pressing the RPA correlation as an integral in terms of the RPA response function,
which can be calculated without explicitly solving the RPA eigenvalue problem.
These techniques have been extended to deal with the Anderson–Goldstone–
Nambu modes (Donati et al. (1999a)), and to calculate the nucleon effective
mass in superfluid, deformed, rotating nuclei (Donati et al. (1999b)). An equiv-
alent method was developed by Dönau et al. (1999).

Following Shimizu et al. (2000), we start from the Hamiltonian,

H = H0 + V, (6.47)

where H0 is the unperturbed one-body (mean-field) Hamiltonian and V is
the residual two-body interaction, which is assumed to be of multi-separable
form,

V = −1

2

∑
ρ

χρQρQρ, (6.48)
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Figure 6.21. Four different possibilities for the variation of the square of the pairing gap with
angular momentum are considered. (a) illustrates its influence on the barrier penetrability.
Shown in graphs (b) and (c) is the associated variation of the inertial-mass parameter D
and the penetrability factor P(I ). In (d) the relative intensity of the superdeformed band is
shown as a function of the angular momentum in comparison with the experimental datum
in comparison with the experimental data. Reprinted with permission from Herskind et al.,
Phys. Rev. Lett. 59: 2416–19 (1988). Copyright 1988 by the American Physical Society.

with Qρ being a one-body Hermitian operator while χρ is the strength of the
interaction in channel ρ. The associated ground-state energies and state vectors
of H0 and H are denoted E0, |
0〉 and E , |�〉, respectively. Turning on the
interaction adiabatically, the correlation energy can be written as (Fetter and
Walecka (1971))

Ecorr ≡ E − E0 =
∫ 1

0
dλ 〈�(λ)|V |�(λ)〉. (6.49)
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In this equation |�(λ)〉 is the ground state of the λ-scaled Hamiltonian H (λ) ≡
H0 + λV . Within the RPA approximation, the above expression can be rewritten
by making use of a contour integration as

ERPA
corr = −

1

2

∫ 1

0
dλ

∑
ρ,n

χρQ(λ)∗
ρ,n Q(λ)

ρ,n

= − 1

4π i

∫ 1

0
dλ

∮
C

dz
∑
ρ

[
R(λ)
ρρ (z)χρ

]
, (6.50)

in terms of the λ-scaled RPA response function (matrix),

R(λ)
ρσ (ω) ≡

∑
n

[Q(λ)∗
ρ,n Q(λ)

σ,n

ω
(λ)
n − ω

+ Q(λ)
ρ,nQ(λ)∗

σ,n

ω
(λ)
n + ω

]
, (6.51)

whereQ(λ)
ρ,n = 〈n(λ)|Qρ |�(λ)〉RPA, and the contour C encloses all the positive λ-

scaled RPA eigenvalues z = ω(λ)
n clockwise. Note that R(λ)

ρσ (ω) can be calculated
as

R(λ)(ω) = [
1− R(ω) χλ

]−1
R(ω), (6.52)

in terms of χ = (�ρσχρ) and the unperturbed response function (matrix),
Rρσ (ω), which is defined by replacing Q(λ)

ρ,n and ω(λ)
n in equation (6.51) with

unperturbed quantities, qρ,αβ = 〈αβ|Qρ |0〉 and Eαβ .
By choosing a common contour C for all values of 0 < λ < 1, one may ex-

change the order of integration in equation (6.50) (Pines (1963), Appendix C).
The selected path is the one shown in Fig. 6.22 passing through the origin
of the complex z-plane in keeping with the presence of (non-normalizable)
zero-energy modes (the symmetry-recovering or Anderson–Goldstone–Nambu
modes, Chapter 4) in the RPA spectrum (ωn=AGN → 0 as λ→ 1). In this case the
λ-integration in equation (6.50) converges because |Q(λ)

ρ,n=AGN|2 ∼ 1/
√

1− λ as
λ→ 1. After performing the λ-integration analytically, one obtains

ERPA
corr =

1

4π i

∮
C1a

F(z)dz, (6.53)

Figure 6.22. An illustration of the integration contour in the complex z-plane used in equa-
tion (6.53). Crosses denote the positions of all the λ-scaled RPA roots for arbitrary values of
0 < λ < 1, i.e. Re(A2) = Re(B2) > max

n,λ
{ω(λ)

n }.
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where

F(z) ≡ −
∫ 1

0
Tr

[
R(λ)(z)χ

]
dλ = log

(
det

[
1− R(z)χ

])
. (6.54)

Rewriting the determinant as a function of the RPA and unperturbed energies,
one obtains

F(z) =
∑

n

[
log(z − ωn)+ log(z + ωn)

]
−

∑
α<β

[
log(z − Eαβ)+ log(z + Eαβ)

]
. (6.55)

Thus, equation (6.53) is the sum of integrals of the complex multi-valued log-
arithmic functions of type log(z − p), where the real value p (in our case ωn

or Eαβ) indicates a branch point. Here the principal branch of the logarith-
mic function should be taken in accordance with the choice of path C1a , i.e.
−π < arg log(z − p) ≤ π , and the segment of the real axis with z < p is the
branch-cut. One can now integrate equation (6.53) around all the branch points
within C1a by deforming the path and using for each of them a clockwise circular
path C p centred at the point itself, i.e.∫

C p

log(z − p) dz = 2π i Rp, (6.56)

where Rp is the radius of the circle C p. Considering that Rp is ωn or Eαβ ,
it can be shown that equation (6.53) leads to the original expression given in
equation (6.46). The contribution associated with the zero mode vanishes in
keeping with the fact that in this case the path of integration becomes a semicircle.
This can also be seen by direct evaluation of the integral in equation (6.56) in
the case where C p is a semicircle centred at zero with Rp=0 → 0.

Making use of a limiting procedure and the following properties of the function
F(z),

[F(z)]∗ = F(−z∗), F(−z) = F(z), (6.57)

F(z)→ o(1/z2) as |z| → ∞, (6.58)

it can be shown that equation (6.53) can be written as

ERPA
corr =

1

2π
lim
ε→0+

∫ ∞

0
Im

[
F(ω + iε)

]
dω, (6.59)

which is the formula utilized in (Shimizu et al. (1989)). To obtain this result
one deforms the path shown in Fig. 6.22 taking the part A2 and B2 to infinity
and A1B1 infinitely close to the origin (ε→ 0). In this case the contributions
from segments A2B2 and A1B1 vanish, those arising from A1A2 and B1B2 being
equal.
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(a) (b)

Figure 6.23. Modified integration contour from Fig. 6.22 found to be more suitable to cal-
culate the RPA correlation energy. Taking the limit of infinite radius of the semicircle, the
corresponding contribution vanishes.

In order to present a more efficient way to evaluate the RPA correlation energy,
the integration path in Fig. 6.22 is modified to the one shown in Fig. 6.23a. Then
the contribution from the semicircle vanishes as its radius goes to infinity because
of the asymptotic property given in equation (6.58). Using also the properties
given in equation (6.57), we obtain

ERPA
corr =

1

2π

∫ ∞

0
Re

[
F(iω)

]
dω. (6.60)

Note that the modification of the path of integration from one parallel to the
real axis into one parallel to the imaginary axis is quite useful for making the
numerical calculations efficient. This is because ImF(z) is an oscillating func-
tion of Re(z) on the path shown in Fig. 6.22, while ReF(z) is a monotonically
decreasing function along the imaginary axis on the path shown in Fig. 6.23a.
Consequently, the number of mesh points needed in the calculation is strongly
reduced after a suitable transformation of the integration variable.

In Shimizu et al. (1989) and Shimizu and Broglia (1990), pairing correlations
in rapidly rotating nuclei have been studied using the general method discussed
above. In these references, in addition to the RPA correlation energy, another
measure of pairing correlations was introduced, namely the RPA pairing gap,
�RPA (called the ‘effective’ pairing gap). It is defined as

�RPA ≡
√
�2 + 1

2 G2 S0(RPA), (6.61)

with

S0(RPA) ≡
∑

n �=AGN

[
|〈n|P|0〉|2 + |〈n|P†|0〉|2

]
RPA
, (6.62)

where � = G 〈0|P†|0〉HB is the standard, static BCS pairing gap (the order
parameter of mean field), while G is the pairing force strength. The non-energy
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weighted sum rule S0(RPA) describes the contribution of pairing fluctuations,
associated with the monopole pair-transfer operator, P† =∑

i>0 a†
i a†

ĩ
, to the

effective (RPA) gap. Note that
∑

n �=AGN means that the divergent contribution
from the zero energy mode (pairing rotation) is to be excluded, in keeping with
the fact that its contribution to equation (6.61) is included through the static
(BCS) pairing gap�. In Shimizu et al. (1989), S0(RPA) was calculated making
use of the expression

S0(RPA) ≈ 1

π

∫ ∞

ωcut

Im Tr
[R(ω + iε)

]
dω, (6.63)

where R(ω) ≡ R(λ=1)(ω) is the RPA response function, whose dimension is 2
corresponding to Q1 = (P† + P)/

√
2 and Q2 = i(P† − P)/

√
2. A finite value

of ε and a low-energy cutoffωcut are used to get rid of the AGN mode contribution
numerically. This is the same approximation as that used in calculating the RPA
correlation energy, and can then be avoided using the path shown in Fig. 6.23(b).
In this way one avoids the singularity associated with an eventual zero mode, as

Figure 6.24. RPA pairing gap (upper panel) and RPA correlation energy (lower panel) for
neutrons in 164Er as a function of the rotational frequency. Both quantities are in MeV. The
dash-dotted curves denote the results of calculations with ε = 200 keV and �ωcut = 400 keV.
The value of the static (mean-field) pairing gap �, which vanishes at �ωrot = 0.34 MeV, is
also displayed in the upper panel (continuous curve). The results of the number-projection
(NP) calculations are shown as dotted curves.
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in this case R(z) has a second-order pole at the origin (see Donati et al. (1999a)):

S0(RPA) = 1

π

∫ ∞

0
Re Tr

[R(a + iω)
]
dω. (6.64)

Since the function Tr
[R(z)

]
has poles as singularities, the integral is independent

of the choice of a. Summing up, making use of equations (6.60) and (6.64), both
the RPA correlation energy and the RPA pairing gap can be exactly evaluated in
a numerically efficient way.

In Fig. 6.24 we compare the results of the exact and approximate calculations
of both ERPA

corr and �RPA in the case of deformed, superfluid nuclei as a function
of the rotational frequency. The average correlation energy is −4 MeV. This is
much larger than the BCS pair correlation energy (≈ −1.5 MeV) calculated in
Section 3.5. The difference is the RPA correlation energy (see also Section 8.4).

There is another method which allows us to go beyond mean-field approxi-
mation, namely the number-projection (NP) (see e.g. Ring and Schuck (1980),
see also Section 4.2.2, in particular equation (4.45)). In Fig. 6.24 we also in-
cluded the NP results for comparison. The NP correlation energy is defined as
the energy difference between the NP and mean field (Hartree–Bogoliubov),
E (NP)

corr ≡ ENP − EHB (the exchange energy is included in ENP). Although RPA
leads to larger values of the correlations, especially in the superfluid phase, the
rotational frequency dependences are quite similar. The advantage of the NP
method over the RPA is to lead to smooth functions for both the correlation
energy and the pairing gap at the pairing phase-transition point.

Pairing vibrations in the RPA framework have also been considered in the
phase transition of metallic clusters as a function of temperature (see Fig. 1.15
and Mühschlegel et al. (1972), Lauritzen et al. (1993)). Within this context, it is
of interest to consider the effect the dynamical pairing gap (see also Dang and
Arima (1998, 2003)) may have on the width of the giant dipole resonance at low
temperature (see N. Dinh Dang and A. Arima, Key Topics in Nuclear Structure,
Paestum, 23–27 May, 2004, abstracts, p. 63).



7
Plastic behaviour of nuclei and other

finite systems

In some circumstances the nucleus acts as a liquid and in others like an elastic
solid. In general it responds elastically to sudden forces, and it flows plastically
over longer periods of time (Bertsch (1980, 1988)). Examples of this behaviour
are giant resonances and low-lying collective surface vibrations respectively.
In the first case, as we shall see in Section 8.3, pairing plays no role, at least
in the case of nuclei lying along the valley of stability. The nuclear single-
particle states change their shape but the occupation numbers do not change. The
energy of a giant resonance in a nucleus is of the order of the energy difference
between major shells (�ω ≈ 41/A1/3 MeV,≈ 7 MeV, for medium heavy nuclei),
a quantity which is much larger than the pairing gap � ≈ 1–1.5 MeV. Giant
resonances are fast modes, the collective motion is dominated by mean-field
effects and the rigidity is provided by the mean field (Bortignon, Bracco and
Broglia (1998)). On the other hand, low-energy surface modes are associated
with particle–hole excitations which are of the order of the pairing gap. Pairing
plays a dominant role and the collective states are coherent linear combinations
of two-quasiparticle excitations. The situation is, however, different in the case
of exotic nuclei, where the last nucleons are very weakly bound. Nucleon spill
out makes these systems particularly polarizable leading to ‘pigmy resonances’,
whose properties can be influenced by pairing (Frascaria et al. (2004), see also
last paragraph of Chapter 6).

In any case, both giant resonances and surface vibrations can be treated in
the harmonic approximation, and viewed as phonon excitations (see Chapter 8).
Consequently, as in the case of the harmonic oscillator, associated with each
degree of freedom of the vibrations there is a zero-point motion. In other words,
the surface of a nucleus fluctuates in its ground state. The amplitude of these
fluctuations is particularly important for low-lying quadrupole and octupole vi-
brations and somewhat less but still consistent for low-lying vibrations with
multipolarity λ = 4 and λ = 5 (see Appendix C). In general these fluctuations

154
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will be out of phase. However there is a finite although small probability that
the fluctuations act coherently, allowing the system to probe large deformations.
The presence of such deformations in the ground-state wavefunction is rather
difficult to establish, as they act as virtual states which renormalize the properties
of the ground state (see, however, Section 8.4).

7.1 Exotic decay

There are, however, exceptions to this situation, namely, in the case where the
fluctuations lead to shapes corresponding to two daughter nuclei in a touching
configuration, for which the Q-value associated with the division of the system
is positive. In what follows we shall discuss an example of such a situation (see
Fig. 7.1), namely the so-called exotic decay 223Ra→ 14C + 209Pb, a situation
where pairing plays a central role in determining the inertia of the system.

A theory for the decay envisages two stages. In the first stage the nucleus
evolves from a state with a moderate deformation to a cluster configuration like
the one shown in Fig. 7.1 of touching parent–daughter nuclei. During this pro-
cess pairs of nucleons change their states and the initial A-particle wavefunction
φ0 evolves through local minima described by wavefunctions φi , until it reaches
the touching configuration described by the wavefunction φn . In the deformation
process the twofold degenerate single-particle levels (assuming axially symmet-
ric deformation) will change their energy, those with wavefunctions along the
poles decreasing their energy, while those along the equator will increase in
energy as illustrated in the lower part of Fig. 7.2. At each crossing of an empty
downsloping energy level and an occupied upsloping level two particles will

Figure 7.1. Shape transitions for the decay 223Ra → 209Pb + 14C. The original nucleus is
shown dashed; the touching daughter nuclei as heavy solid lines. The transformation described
in the text carries the initial shape to the one shown by the light solid line (after Bertsch (1988),
Barranco et al. (1990)).
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Figure 7.2. (Top) Potential energy curve for the decay 223Ra → 209Pb +14C. The outside
potential is a combination of Coulomb and nuclear heavy ion potentials. The dots show
the assumed Hartree–Fock states describing the shape change in the internal region. (Mid-
dle) Schematic representation of the occupancy of the single-particle levels. (Bottom) Local
Hartree–Fock potential energies as a function of the deformation parameter ξ . Reprinted with
permission from Barranco et al., Phys. Rev. Lett. 60:507–10 (1988a). Copyright 1988 by the
American Physical Society.
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change levels, under the action of the residual nuclear interaction, i.e. the part of
the nuclear interaction not used in producing the mean field.

We assume that the wavefunction describing the evolution from the initial
state φ0 to the final touching state φn is


 =
n∑

i=1

aiφi , (7.1)

where the φi are wavefunctions with pair correlations, like e.g. BCS wavefunc-
tions, but with a number-projection so that there is a definite number of pairs in the
upsloping levels and in the downsloping levels (see equation (4.45)). The suffix n
indicates the number of pairs transferred from the upsloping to the downsloping
levels. The wavefunctionφi describes the i th local minima in the potential energy
diagram in Fig. 7.2 (bottom). The pairing interaction connects wavefunctions φi

where the number of pairs changes from i to i ± 1. Consequently, the equation
determining the ground-state wavefunction is the lowest-energy solution of the
equation ⎡⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
· · · Ei−1 v · · · · · ·
· · · v Ei v · · ·
· · · · · · v Ei+1 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
· · ·

ai−1

ai

ai+1

· · ·

⎤⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎣
· · ·

ai−1

ai

ai+1

· · ·

⎤⎥⎥⎥⎥⎦ . (7.2)

The connection between equation (7.2) and a Schrödinger equation describing
collective motion, (

− �
2

2D

d2

dξ 2
+ V (ξ )

)
ψ(ξ ) = E(ξ ), (7.3)

can be made discretizing equation (7.3) on a grid of step�ξ = 1/n in the interval
0 < ξ < 1, using

d2ψ

dξ 2
≈ ψ(ξi−1)+ ψ(ξi+1)− 2ψ(ξi )

�ξ 2
.

Assuming that the deformation variable ξ takes the value ξ = 0 for 
 = φ0

(223Ra in its configuration of minimum energy), and ξ = 1 for 
 = φn (209Pb
and 14C at touching distance), one can write

M

⎡⎢⎢⎢⎢⎣
· · ·

ψ (ξi−1)
ψ (ξi )
ψ (ξi+1)
· · ·

⎤⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎣
· · ·

ψ (ξi−1)
ψ (ξi )
ψ (ξi+1)
· · ·

⎤⎥⎥⎥⎥⎦ , (7.4)
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where M is the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
V (ξi−1)+ �2

D�ξ 2 − �2

2D�ξ 2 · · ·
− �2

2D�ξ 2 V (ξi )+ �2

D�ξ 2 − �2

2D�ξ 2

· · · − �2

2D�ξ 2 V (ξi+1)+ �2

D�ξ 2

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7.5)

Comparing equations (7.2) and (7.5) one finds that the inertia of the system is

D = −�
2

2v
n2. (7.6)

To use the above equation as a calculational tool we need to know the number
of level crossings n (see also Section 7.3) and the matrix element v. Before
calculating the value of these parameters we note that the structure of this relation
is quite plausible. The inertia is larger the larger the number of particles that have
to be moved around in the motion. On the other hand, the larger the interaction,
the smaller is the inertia, because it is easier to make a pair of particles jump at
a crossing.

7.1.1 Inertia

It is fair to assume that the pairing residual interaction plays a central role in the
process in which pairs of particles moving in time-reversal states change their
state of motion. This is because pairing correlations lead to minimal friction.
The pairing force Hamiltonian is

Hp = −G P†P = −G
(

P†
u + P†

d

)
(Pu + Pd) .

The transition matrix element between two successive states is

v = 〈φi+1

∣∣Hp

∣∣φi 〉 = −G〈φi+1

∣∣∣P†
d Pu

∣∣∣φi 〉,
because a pair moves from an upsloping (u) level to a downsloping (d) level. It
was shown in Chapter 3 that such transfer matrix elements can be estimated by
mean values in BCS wavefunctions so that

v ≈ −G〈BCS
∣∣∣P†

d

∣∣∣ BCS〉〈BCS |Pu|BCS〉 (7.7)

≈ −G

4
〈BCS |P|BCS〉2 = −1

4

�2

G
,

where we have assumed that

〈BCS
∣∣∣P†

d

∣∣∣ BCS〉 = 1
2〈BCS

∣∣P†∣∣ BCS〉 = �

2G
.
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We can state the result given in equation (7.7) in another way: a pairing force
acting among all the downsloping and upsloping levels will give a matrix element
which is the product of three factors: (i) the pairing force constant G, (ii) the
probability (equal to 1/4) that the initial states are occupied and the final is empty
and (iii) the pairing enhancement factor (�/G)2. When both neutron and proton
contributions are taken into account, equation (7.7) is modified to

v = −
(
�2
ν +�2

π

4G

)
. (7.8)

This same result has been derived in another way by Barranco et al. (1990).
Employing the standard values G = 25/A MeV, and�ν = �π = 12/

√
A MeV,

one obtains

v = −2.9 MeV. (7.9)

To calculate D we need now to know n, i.e. the number of pairs of particles
which have to be moved around in 223Ra, to emit a 14C. Because the centre of
mass of the total system has to remain at rest, fourteen particles have to be moved
in one direction and fourteen in the opposite. Consequently, a fair estimate of n
is the reduced mass number of the process, i.e. n ≈ 13. Finally,

D = −�
2n2

2v
= 29.1 �

2 MeV−1. (7.10)

We now proceed to estimate the potential energy V .

7.1.2 Potential energy

Assuming that the energies of the different local minima lie on a parabola (see
Fig. 7.2 (bottom)), one can write

V (ξ ) = 1
2Cξ 2. (7.11)

An expression for the potential at ξ = 1 can be read off from the sketch in the
upper part of Fig. 7.2

V (ξ = 1)+ Q = U c
a A(R0)+U N

a A(R0), (7.12)

where R0 is the distance at which the two densities barely touch, i.e. R0 =
Ra + RA + a, Ri being the radius of 14C (i = a) and of 209Pb (i = A). The
diffusivity of the ion-ion potential U N

a A is denoted by a, while U c
a A is the Coulomb

potential acting between the ions. Finally, the quantity Q = 31.9 MeV is the Q-
value of the decay process.

The decay rate is very sensitive to the parameters of the potential barrier
outside the touching radius. Here we follow Barranco et al. (1988a, 1990), and
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use the Christensen–Winther potential (Broglia and Winther (1991))

U N
a A = S0 R̄a A exp

(
−r − R

a

)
, (7.13)

which gives a good description of heavy ion elastic scattering and fusion reac-
tions. The radius parameters R and R̄a A in (7.13) are defined by

R̄a A = Ra RA

Ra + RA
, R = Ra + RA. (7.14)

where Ra and RA of the two nuclei are parametrized according to

Ri = (1.233A1/3
i − 0.98A−1/3

i ) fm, (7.15)

and the values S0 = − 50 MeV fm−1, a = 0.63 fm are used. Substituting the
numerical values into equation (7.13) one obtains

U N
a A(r ) = −94 exp

(
−r − 9.7

0.63

)
MeV, (7.16)

and

V (ξ = 1) = U c
a A(10.5)+U N

a A(10.5)− 31.6 MeV = 9.2 MeV (7.17)

leading to

C = 18.4 MeV. (7.18)

7.1.3 Formation probability

The wavefunction describing the ground state of the harmonic oscillator is

ψ(ξ ) =
(
α√
π

)1/2

e−
1
2α

2ξ 2
, (7.19)

where

α2 = Dω

�
=

√
DC

�2
=

√
C

2|v|n ≈ 23.2. (7.20)

Consequently, the formation probability is

P = |ψ(ξ = 1)|2 = α√
π

e−α
2 = 2.4× 10−10. (7.21)

That is, the ground state of 223Ra acquires shapes resembling the touching con-
figuration of 209Pb and 14C with the probability (7.21).
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7.1.4 Decay constant

Once the 14C is formed, the decay process can be described in terms of the
standard Gamow theory, i.e. in terms of a knocking rate f and a tunnelling
factor T , the associated decay constant being

λ = P f T . (7.22)

Before proceeding to the calculation of f and T , we want to make a short
remark on the standard theory of alpha decay, where one assumes P = 1. The
reason why this approach to alpha decay is able to provide an overall account
of the experimental findings is because in this case the preformation factor is of
the order of 1 (P ≈ 10−1), and the tunnelling probability T (or γ in the standard
language) is a very sensitive function of the input parameters. Any uncertainty in
P can be compensated by a small change in the radius and height of the Coulomb
barrier.

7.1.5 Knocking rate

To estimate f one makes the standard assumption of motion of a particle of
inertia D in the ground state of a harmonic well. Then

ω =
√

C

D
= 1.2× 1021s−1 (7.23)

and

f = ω

2π
≈ 2× 1020s−1. (7.24)

7.1.6 Tunnelling probability

We have to calculate the probability for tunnelling the Coulomb barrier starting
from the touching distance R0 ≈ 10.3 fm. A convenient analytic formula is
obtained neglecting the nuclear potential (Tonozuka and Arima (1979)):

T = k R0

F2
0 (k R0)+ G2

0(k R0)
, (7.25)

in terms of the regular and irregular Coulomb functions. In equation (7.25) k is
given by

k =
√

2Ma A

(EB − Q)
�2. (7.26)
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The height of the Coulomb barrier is given by (Broglia and Winther (1991))

EB = Za Z Ae2

rB
(1− 0.63

rB
) ≈ 58 MeV, (7.27)

where the associated radius is given by

rB = 1.07(A1/3
a + A1/3

A )+ 2.72 fm ≈ 11.6 fm. (7.28)

One finally obtains from equation (7.25)

T ≈ 10−26. (7.29)

7.1.7 Comparison to experiment

Making use of the relation (7.22) and of the quantities (7.21), (7.24) and (7.29),
one obtains the theoretical value

λth ≈ 10−16 s−1, (7.30)

to be compared with the experimental value (Rose and Jones (1984)) of

λexp = 4.3× 10−16 s−1. (7.31)

One has to keep in mind that no calculation can predict a decay constant with an
accuracy better than 1–2 orders of magnitude.

The theory presented here is based on the idea that the parent nucleus evolves
from an initial state with a moderate deformation to a cluster configuration by a
series of level crossings. The calculated preformation factor is P ≈ 10−10. Other
theories suppose that the cluster structure exists in the parent nucleus so that the
preformation factor P = 1. Theories with widely different preformation factors
are able to fit the data because of the extreme sensitivity of the penetration factor
to the barrier parameters. For example Buck and Merchant (1989) use a potential
with a barrier height of 63.9 MeV and radius 10.2 fm for the cluster decay of 223Ra
instead of the Christensen and Winther values EB = 58 MeV and rB = 11.6 fm.
An increase of the barrier height of 6 MeV decreases the penetration factor by a
factor of 1010 and compensates for the increase in the penetration factor. They
have also been able to fit many other exotic decays. Buck et al. (2000) have
a method for predicting the cluster structure of a nucleus by relating it to the
decay Q-value. One argument in favour of the approach in the present chapter is
that the Christensen-Winther potentials fit heavy ion elastic scattering data. This
aspect has not been studied for the potentials used by Buck and his collaborators.
Another argument is that the superfluid tunnelling model discussed in the present
chapter can also be applied to other processes.
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Table 7.1. The four decay modes of 234U (after Broglia et al. (1993)).

Decay λexp(s−1) λth(s−1) n

4He 9.× 10−14 2.× 10−14 4
24Ne 6.3× 10−26 1.× 10−28 19
28Mg 2.× 10−26 2.× 10−28 23
spont. fission (8.6± 1.8)× 10−24 5.× 10−24 52

7.2 A variety of applications

The superfluid tunnelling model has been applied to a variety of prob-
lems involving the evolution of the nuclear system between two minima. In
particular:

(1) To the calculation of alpha and exotic decay as well as fission, where the
model provides an overall account of the data over twenty orders of magnitude
(Barranco et al. (1990)); in particular a quantitative picture of the four decay
modes of 234U (see Table 7.1) (Barranco et al. (1989)), as well as the correction
of the chart of nuclides regarding the lifetime quoted for the spontaneous fission
of 232U. The model predicts in fact an exotic decay branch 232U → 208Pb +
24Ne which is close to the experimental value (Bonetti et al. (1990)), and to the
1990 ‘fission’ value. The prediction of the model (λSF = 5× 10−24 s−1) of the
spontaneous fission decay rate was found to be in agreement with experiment
(Bonetti et al. (2000)).

(2) To the decay of superdeformed bands (Herskind et al. (1988)). Although the
superdeformed minimum lies, as a rule, above the normal deformed minimum
for spins less than 50 �, its population is not affected down to spin of about
24 �, where the sudden transition out of the superdeformed band observed in
experiment can be related to the onset of pairing caused by the disalignment of
the lowest pair of high- j particles (see Section 6.5).

(3) To the restoration of parity conservation in octupole deformed nuclei
(Barranco et al. (1988b,c)). The potential energy surface of a superfluid nucleus
with an even multipole deformation has, as a rule, a single absolute minimum
as a function of the deformation. For odd multipole deformations, there will
be two minima with mirror image wavefunctions. This is a basic requirement
of quantum mechanics as the physical states must be eigenstates of the parity
operator. In an octupole deformed nucleus, this is achieved by a tunnelling of the
system between the minima. This tunnelling is connected with the interaction
between odd- and even-parity rotational bands. In the particular case of 222Ra
it is experimentally found that the excitation of the first negative parity state
is at �E = 242 keV above the positive 0+ ground state. The model predicts a
value of�E lying between 150 and 500 keV, depending on the potential energy
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surface used. In fact, in this case, because the number of steps is small, the result
is rather sensitive to the details of the calculation.

(4) To the calculation of the lifetime of high K -isomer states in rotating nuclei
(Bengtsson et al. (1989)), such as 182Os. There is overwhelming experimental
evidence which testifies to the fact that cold, deformed nuclei display axially
symmetric quadrupole deformations. Therefore the projection of the angular
momentum on the body-fixed symmetry axis is a conserved quantity, and its value
K is a good quantum number (Bohr and Mottelson (1975)). In keeping with this
fact, excited states with high K-values are often isomeric, decaying only by virtue
of small admixtures of lower-K components. A consequence of the K-selection
rule is that the decay from the high K-states takes place preferentially stepwise,
and degrees of K-forbiddeness vary from 5 to 100 for each step �K = 1. The
decay of an isometric state with I π = 25+ has been observed in 182Os, directly
populating the state of the yrast band (K = 0), with a hindrance factor of 10−8.
One single transition thus changes K dramatically, and with an isomeric lifetime
that is relatively short.

Interpreting the isomer as a rotation around the symmetry axis, i.e. where all
the angular momentum is contributed by the particles (see Fig. 6.1 (right)),
one has to deal with a tunnelling in the gamma degree of freedom (Bohr
and Mottelson (1975)). Estimates making use of the superfluid tunnelling
model lead to a hindrance factor of the order of 10−6–10−9, where the uncer-
tainty is connected with poor knowledge of the potential around the K -isomer
minimum.

(5) To the calculation of the deformation and of the energy of coexistence states
(four-particle–four-hole excitations) in 16O and 40Ca (Bertsch (1980)). The evo-
lution of the system from one local minimum to the next implies a change in the
deformation such that the energy associated with the lowest 2p–2h excitation be-
comes zero. That is, a deformation leading to a crossing between the lowest empty
and the lowest occupied single-particle state. In the case where the deformation
has quadrupole multipolarity, and is axially symmetric, the relation between the
number of level crossings n2 and the deformation β2 in a nucleus of mass number
A is given by β2 = 2(12π/5)1/2n2/A (see equation (7.35)). Because each level
is twofold degenerate, to produce a 4p–4h excitation one needs a deformation
corresponding to n2 = 2. This implies β2 = 0.7 for 16O and β2 = 0.3 for 40Ca,
compared with the values of 0.84 and 0.27 deduced from the experimental evi-
dence. A rough estimate of the energy can be obtained by calculating the change
in surface tension associated with these deformations. Making use of the liquid
drop model (see equation (7.32)), this change is �E = 1/2C2β

2
2 ≈ 2β2

2 R2
0 S,

where R0 = 1.2A1/3 fm is the nuclear radius, S = 0.95 MeV fm−2 is the surface
tension and the Coulomb correction to C2 has been neglected. From this relation
and the above deformation parameters one obtains 8 and 3 MeV respectively,
compared with the experimental values of 6.1 and 3.4 MeV.
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7.3 Low-lying surface vibrations

In most cases the lowest excited states of even–even nuclei have a quadrupole
or octupole character (Bohr and Mottelson (1969, 1975)). Although these states
carry a small fraction (5–10%) of the energy weighted sum rule (see Section
8.3.2), the associated transition probabilities are much larger than that of single-
particle states. Furthermore, they are excited with large cross-section by projec-
tiles which are absorbed at the nuclear surface. They are known as collective
surface vibrations, and are intimately connected with the plastic behaviour of
the atomic nucleus.

Consequently, we shall use, in the calculation of the frequencies of these
modes, the same scheme used to discuss exotic decay in Section 7.1 (Broglia
et al. (1994)). The two parameters entering the model are the restoring force
CL and the inertia DL of the mode. Because we are dealing with the plastic
behaviour of the system one can use the liquid drop model to calculate CL . In
fact, in a vibrational motion where the surface fluctuates with a frequency of the
order of 1021 s−1, the detailed motion of the nucleons associated with frequencies
almost two orders of magnitude larger must be quite irrelevant. Consequently, the
surface tension S (≈ 0.95 MeV fm−2) is sufficient to characterize the deformation
energy of the system, and the restoring force parameter can be written as (Bohr
and Mottelson (1969, 1975)),

CL = S(L − 1)(L + 2)R0
2 − 3

2π

L − 1

2L + 1

e2 Z2

Rc
. (7.32)

The two radii in the expression are the nuclear and the Coulomb radii, R0 =
1.2A1/3 fm and Rc = 1.25A1/3 fm, respectively, A being the mass number. The
quantity Z indicates the proton number of the system. In what follows we shall
use the approximate relation Z ≈ A/2.4 (see Section 3.5). In this way one obtains

CL

A2/3
=

⎧⎪⎨⎪⎩
5.4(1− 0.003A) MeV (L = 2),

13.5(1− 0.002A) MeV (L = 3),

38(1− 0.0005A) MeV (L = 5).

(7.33)

For the inertia we use

DL

�2
= − 1

2v

( dn

dβL

)2
, (7.34)

where v = −2.9 MeV and dn/dβL is the density of level crossings per unit
deformation. In Section 7.1, where the phenomenon of exotic decay has been
discussed, we have used a simplified version dn/dβL which, in that case is
determined by the reduced mass number of the exotic decay products. In the
present case we do not have any direct experimental input to calculate dn/dβL ,
and have to work it out theoretically.
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The quantity dn/dβL can be estimated quite accurately by realizing that the
Fermi distribution in momentum space is spherical for each local minimum
(Bertsch (1980, 1988)). Between crossings, the Fermi surface gets distorted. In
fact, it elongates in correspondence to a spatial reduction of the nuclear radius
and it retracts when the nuclear radius becomes larger. Each time the volume
outside the original Fermi sphere contains two nucleons, it is possible to fill the
depopulated momentum zones below the Fermi energy and restore spherical
symmetry. This means that the system has moved from a local minimum to the
nearest one, and that a pair of nucleons have changed orbital. Making use of such
a model one obtains for L � 5 the approximate expression (Bertsch (1988))

dn

dβL
≈ 1

4

√
2L + 1

3π
A. (7.35)

We are now in a position to calculate the inertia of the modes

DL

�2
≈ (2L + 1)10−3 A2 MeV . (7.36)

The basic frequencies associated with the low-lying collective vibrations L =
2, 3, 4 and 5 are thus

�ωL =
√

�2CL

DL
≈

√
(L − 1)(L + 2)

(2L + 1)
(1− 0.001A)

35

A2/3
MeV . (7.37)

In Figs. 7.3 and 7.4 we show the function given in equation (7.37) for L = 2 and
L = 3 in comparison with the experimental findings. Although large fluctuations
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Figure 7.3. Average energy of the lowest 2+ state in nuclei as a function of the mass number.
The data are taken from Bohr and Mottelson (1969), Table 2.17 p. 196. The dashed line is
to guide the eye. The continuous curve was calculated making use of equation (7.37) setting
L = 2.
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about the theoretical value are observed, because shell effects greatly affect
pairing correlations in nuclei (see also Chapter 10, Figs. 10.6–10.8), the re-
sult given in equation (7.37) provides an overall account of the experimental
findings.

The amplitude of the zero-point motion associated with these modes is given
by

βL√
2L + 1

=
√

�ωL

2CL
= 3.6A−2/3[

(L − 1)(L + 2)(2L + 1)
]1/4 . (7.38)

From the above equation and from equation (7.35) one can estimate that the
number of crossings associated with the vibrational modes of energy given in
equation (7.37) is

n ≈
( (2L + 1)3

(L − 1)(L + 2)

) 1
4
0.3A1/3 ≈ 0.5A1/3. (7.39)

Making use of A1/3 ≈ 5 for medium-heavy nuclei, one obtains n≈ 3, an estimate
which provides a quantitative justification for the use of a large amplitude de-
scription for low-lying surface vibrations of atomic nuclei. A detailed account of
the low-lying collective surface vibrations taking into account shell effects is pro-
vided by the quasiparticle random phase approximation (QRPA) (see equation
(8.47)).
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7.4 Fission in metal clusters

Metal clusters have been investigated systematically during the past years. They
are aggregates of metallic atoms, displaying clear shell structure. In particu-
lar, microclusters of sodium atoms can be viewed as a system of delocalized
electrons, moving in single-particle orbits. An approximation for the description
of the clusters is provided by the jellium model where the positive charge of
the ions is assumed to be uniformly distributed over the cluster volume. The
motion of the electrons can be described by a single-particle potential, arising
from the interplay between the attractive jellium background, the Hartree–Fock
potential and the correlation energy calculated in the local density approximation
(LDA). In particular the shell closures, which in the case of Na clusters start with
the magic numbers 8, 20 and 40, are well reproduced (see de Heer and Knight
(1988), Broglia et al. (2004)).

Based on this picture one can explore analogies between metal clusters and
nuclei. One example is the fission of a metal cluster, called a Coulomb explosion.
The reason for this name is that clusters with almost any number of electrons can
be made to fission, by charging them positively (see Eckhardt (1984)). Local-
spin-density molecular dynamics calculations (Saunders (1990), Barnett et al.
(1991)) predict the asymmetric fission of small doubly charged sodium (Na)
clusters to occur predominantly via Na+2

n → Na+n−3 + Na+3 , for 4 ≤ n ≤ 12.
For n less than or equal to 6, no fission barrier is present, while fission of larger
clusters involves a barrier. The largest barrier for the range of clusters investigated
is in the case of the process

Na+2
10 → Na+7 + Na+3 , (7.40)

and is associated with the closed shell produced by eight electrons. The mean
lifetime τ calculated by Saunders (1990) is

τ ≈ 2× 10−12 s. (7.41)

The deformation of clusters involves the electronic and phononic response of
the system characterized by the times 10−15 s (≈ 1 eV) and 10−13 s (≈ 10 meV).
Both these times are shorter than τ implying that one can use the Born–
Oppenheimer (adiabatic) approximation for the description of a Coulomb ex-
plosion. The path to fission is determined by electronic level crossings rather
than the inertia of the atomic nuclei. The fission decay rate for Na+2

10 clusters is
given by equation (7.22) with a preformation factor P , a knocking rate f and
a barrier penetration T . However, in this particular case, it is easier to calculate
the product PT than to calculate the factors separately. In other words P(n = 3)
(see below) provides a situation where the two clusters Na+7 and Na+3 are beyond
the fission barrier, i.e. a quantity that also contains T .
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Within the framework of the model discussed in the previous section one
expects to find n = 3 level crossings in the process. From the potential energy
surface displayed in Fig. 1 of Saunders (1990), and dividing the interval between
the ground states and scission (≈20 Å) into three equal parts, one can calculate
the restoring force in the harmonic approximation

1
2Cξ 2 = 0.1 eV

(
ξ = 1

3

)
, (7.42)

leading to

C ≈ 2 eV. (7.43)

The inertia of the motion is given by

D

�2
= n2

2|v| =
4.5

|v| , (7.44)

where v is the matrix element responsible for the jump of two electrons from an
occupied to an empty orbital, measured in eV.

Using ω = √C/D the knocking rate is determined by

f = ω

2π
≈ 0.16

√
|v|1015 s−1. (7.45)

The formation probability of the outgoing cluster on the surface of the parent
cluster is determined by the parameter α2 (see equation (7.21)) which in the
present case is given by

α2 =
√

C

2|v|n =
3√|v| , (7.46)

so that

P ≈ 1

|v|1/4 exp
(
− 3√|v|

)
. (7.47)

The lifetime is then given by (see the discussion after equation (7.41) above)

τ = ( f P)−1 =
exp

(
3√|v|

)
|v|1/4 × 6× 10−15 s. (7.48)

Setting this quantity equal to (7.41) one obtains |v| ≈ 0.3 eV. Matrix elements of
the order of 0.3 eV are typical for interaction among electrons. It is still an open
question to what extent such matrix elements are related to pairing in clusters
(Snider and Sorbello (1984), Mottelson (1992), Barranco et al. (1992), a subject
which is closely related to that discussed in connection with equation (2.3) (see
Satula et al. (1998)).
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In general the two-body pairing force is parametrized in terms of: (a) an interac-
tion with constant matrix elements of magnitude G ≈ 25/A MeV, (b) a contact
interaction of strength 294

4π MeV fm2, (c) an effective two-body force (Gogny
(1975), Skyrme (1959)) whose parameters were adjusted so as to reproduce
nuclear observables.

Although these calculations have shed much light on the workings of pairing
correlations in nuclei, they say little concerning the relative importance of the
bare nucleon–nucleon interaction and of the many-body renormalization effects
taking place in the atomic nucleus. To gain insight into this question one has
to proceed in several steps, starting with the bare nucleon–nucleon interaction,
adding the renormalization effects afterwards. It has to be remembered that the
results are not expected to be a simple sum of the different contributions, as the
problem is highly non-linear. Making use of an analogy one can think of a metal,
and of the non-linear effects associated with the simultaneous treatment of the
bare Coulomb interaction, the coupling of electrons to plasmons (screening) and
the coupling of electrons to phonons (Cooper pair formation) (see, e.g. Broglia
et al. (2004)).

In the following three chapters we shall show that the nuclear surface plays a
central role in the pairing phenomenon. This is due to the renormalization effects
arising from the coupling of nucleons to low-lying collective surface vibrations.
The most important effects are: the dressing of particles leading to an effective
mass, and the exchange of vibrations among nucleons, giving rise to an induced
pairing interaction. By taking all these effects into account on equal footing with
the bare nucleon–nucleon interaction a consistent picture of pairing in nuclei is
obtained (see Section 10.4 and Chapter 11).

The present chapter is an introduction to the renormalization problem. The
contribution of the bare nucleon–nucleon (NN) interaction to the pairing gap
is discussed in Sections 8.1 and 8.2. Calculations with a local single-particle
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potential give a pairing gap in agreement with experiment, but non-local ef-
fects reduce this by a factor of 2 (see Figs. 8.6 and 8.9). This is because the
effective k-mass mk ∼ 0.7m increases the spacing of single-particle levels near
the Fermi surface. The role of the non-local effects is analysed in Section 8.2
(see Appendices B and E and H, Section H.4) with the conclusion that coupling
of single-particle motion to low-energy collective modes must lead to important
renormalization effects. Section 8.3 contains an introduction to particle-vibration
coupling (see Appendices D and H, Section H.4) and the microscopic description
of both low-energy and high-energy (giant resonances) collective modes.

Chapter 9 is concerned with the dynamical shell model. Coupling of single-
particle motion to surface vibrations gives a time-dependent component to the
nucleon–nucleus interaction which manifests itself as an energy dependence
in the shell model potential. This energy dependence can be incorporated in
the ω-mass mω > m which modifies the effects of the k-mass, and also of the
occupation factors (see Appendix E and Section H.4).

The remaining contribution of the particle-vibration coupling is included in an
effective interaction due to the exchange of surface phonons. The renormalized
interaction is studied in Chapter 10 for the case of nuclei lying along the stability
valley and in Chapter 11 for halo (exotic) nuclei.

8.1 The bare nucleon–nucleon potential and the pairing interaction

While one does not know how to work out a reliable nucleon–nucleon interaction
at the level of quarks and gluons, phenomenological nucleon–nucleon interac-
tions exist which describe quite accurately the variety of phase shifts obtained
from the analysis of scattering processes in isolated two-nucleon systems (e.g.
np and pp systems) and arising from the exchange of mesons, the carriers of the
strong interaction. In the present context we are interested in the 2S+1L J = 1S0

phase shift, observed in the s-wave channel in the scattering of two identical
(T = 1) nucleons in a singlet spin state.

This phase shift, shown in Fig. 8.1, is large and positive (implying an attractive
interaction) at low relative momenta (typical, in the case of the atomic nucleus,
of the surface region). It decreases as the relative momenta increase becoming
zero and eventually negative (repulsive interaction) at relative momenta typical
of nuclear saturation density.

Conventional models of the NN interaction are based on non-relativistic pro-
tons and neutrons interacting via a two-body potential. Typical NN potentials
contain a strong short-range repulsion, an intermediate-range attraction, and a
long-range one-pion-exchange (OPE) part (see Fig. 8.2(a)). One knows that
such an approach is a great simplification over reality. Nucleons are composite
systems with a rich resonance structure, which can be attributed to constituent
quarks interacting by gluon exchange. Ideally a model of the NN interaction
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Figure 8.1. (Top) Schematic representation of the nuclear density ρ in units of fm−3 plotted
as a function of the distance r (fm) from the centre of the nucleus. (Bottom) Phase shift
δ associated with the elastic scattering of two nucleons moving in a singlet state of spin
zero. Positive values of δ imply an attractive interaction, negative a repulsive one. For kinetic
energies EL associated with low relative velocities, i.e. around the nuclear surface where
the density is low, the 1 S0 phase shift arising from the exchange of mesons (for example
pions, represented by a horizontal dotted line in the scattering diagrams) between nucleons
(represented by upward pointing arrowed lines) is attractive, and nucleons moving in time-
reversal states form Cooper pairs which eventually condense leading to nuclear superfluidity.
This effect is further accentuated because of the exchange of collective surface vibrations
(wavy line in the scattering process) between the members of the Cooper pair.

would start with a field theoretical description of quark–quark interactions, but
no satisfactory theory has yet been developed.

The Argonne v14 potential (Wiringa et al. (1984)) provides a convenient pa-
rametrization of the NN interaction to be used in nuclear structure calculations.
It has the form

v14(i j) =
∑

p=1,14

[v p
π (ri j )+ v p

I (ri j )+ v p
s (ri j )]O p

i j , (8.1)
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Figure 8.2. (a) T = 1, S = 0 central potential associated with the v14 NN interaction. (b)
T = 1, S = 0 1 S0 phase shifts: solid lines and dots are the energy-dependent and energy-
independent phases of Arndt and Roper (1985). The dashed curve is the v14 model phase shift.
Reprinted with permission from Wiringa et al., Phys. Rev. C29: 1207–21 (1984) Copyright
1984 by the American Physical Society.

where

O p=1,14
i, j = 1, 	τi · 	τ j , 	σi · 	σ j , (	σi · 	σ j )(	τi · 	τ j ), Si j , Si j (	τi · 	τ j ),

( 	L · 	S), ( 	L · 	S)(	τi · 	τ j ), 	L2, 	L2(	τi · 	τ j ), 	L2(σi · σ j ),

	L2(	σi · 	σ j )(	τi · 	τ j ), ( 	L · 	S)2, ( 	L · 	S)2(	τi · 	τ j ). (8.2)

Here

Si j = 3(σi · r̂i j )(σ j · r̂i j )− 	σi · 	σ j (8.3)

is a tensor operator, 	L is the relative orbital angular momentum, and 	S is the
total spin of the pair.

The first eight operators of equation (8.2) are the standard ones required to
fit singlet and triplet S- and P-wave data. The 14 operators provide sufficient
freedom to characterize the 14 singlet and triplet S, P, D and F states. The three
radial components include the long-range OPE part v p

π , and phenomenological
intermediate-range and short-range parts v p

I (r ), v p
s (r ). As an example we show

in Fig. 8.2(a) the T = 1, S = 0 central potential. The Argonne v14
1S0 phase

shift fits for the experimental data (see Fig. 8.2(b)) are quite good with only one
short-range functional form.

8.1.1 Calculation of the pairing properties of 120Sn

Hartree–Fock–Bogoliubov-like calculations (Thouless (1961a,b), Ring and
Schuck (1980)) of the pairing properties of the semi-magic nucleus 120

50 Sn70

have been carried out by Barranco et al. (1997), allowing the neutrons to
move in the single-particle states of a Saxon–Woods potential (with parame-
ters V 0 = −55 MeV, r0 = 1.2 fm, a = 0.65 fm) and interacting through a v14
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NN interaction. By solving the matrix equation(
εi − λ �

� −(εi − λ)

)(
Ui

Vi

)
= Ei

(
Ui

Vi

)
(8.4)

self-consistently with the constraint

N = 2
∑
a1>0

Vi
2, (8.5)

which fixes the average number of particles of the system and the Fermi energy
λ, one obtains the quasiparticle energies Ei and occupation amplitudes Vi and
Ui . The state-dependent pairing gap

�a1a2 = −
1

2

∑
b1b2

∑
i

U i
b1

V i
b2
〈a1ã2|v14|b1b̃2〉, (8.6)

with a1 ≡ (n1(l11/2) j1,m1), where n1, l1, j1 and m1 are the number of modes,
the orbital, the total angular momentum and its projection respectively of the
state |a1〉, depends on the matrix elements between two-particle states with the
same or different number of nodes. The state |ã2〉 is obtained from the state |a2〉
by the operation of time reversal.

As seen from the expression for the quasiparticle energy

Ea1 =
√

(εa1 − λ)2 +�2
a1a1
,

the quantity �a1a2 is an energy gap in the spectrum of quasiparticles in the case
of a continuous spectrum. For a discrete spectrum, it is meaningful to speak of
a gap only for values of �a1a2 which are greater than the distances between the
single-particle energies εa1 .

Equations (8.4) and (8.5) always have a trivial solution, namely�a1a2 = 0 and
Ua1 = 1, Va1 = 0 for εa1 > λ and Ua1 = 0, Va1 = 1 for εa1 < λ. However, if the
inequality

−1

2

∑
b1 b2

〈a1ã2|v14|b1b̃2〉√|εb1 − λ||εb2 − λ|
> 1 (8.7)

is fulfilled, then there is also a non-trivial (�a1a1 �= 0) solution of equations (8.4)
and (8.5). This is possible only if the pairing component of the NN potential
has a coherent character for sufficiently many states. In other words, the matrix
elements 〈a1ã2|v14|b1b̃2〉must have the same sign for a sufficiently broad region
of states. If this is not the case cancellations will occur and coherence will be
lost (Belyaev (1959)).
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(a) (b)

(c)

Figure 8.3. (a) NN scattering process through a bare interaction (horizontal dashed line;
nucleons are drawn as arrowed lines). (b) Renormalization of the bare NN interaction due
to core polarization (single particle–hole excitation, bubble). (c) NN interaction arising from
the exchange of a collective vibration (resulting from bubble process summed to all orders
(RPA), see Section 8.3).

Expanding the two-body interaction potential in spherical harmonics (see
Fig. 8.3)

v14(|	r1 − 	r2|) =
∑

L

vL (r1, r2)PL (cos θ12),

helps to understand which parts of the NN interaction contribute to a coherent
pairing interaction (see also Section 2.2). The spherically symmetric or monopole
part of the interparticle interaction contributes to the self-consistent field. The
single-particle levels in this field are degenerate and characterized by the value
of the angular momentum j . Let us consider the particles in the same level j and
neglect the interaction with the particles in other shells. The low-multipolarities
(L � 3–5) are not expected to contribute to the pairing interaction in any sub-
stantial way, because they connect the levels with similar magnetic quantum
numbers |ma1 − mb1 | ≤ L ≈ 3–5 and do not contribute in a significant way to
the inequality equation (8.7). Therefore, the main contribution to the pairing in-
teraction associated with the bare interaction comes from the high harmonics of
the NN potential. This is the standard argument made in connection with pairing
in nuclei (see e.g. Belyaev (1959), Mottelson (1962, 1996)).
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On the other hand, low multipolarities give essential contributions to the mean
field. In particular L = 2, 3 and 4 can lead to spheroidal, octupole and hexade-
capole static or dynamic (surface vibration) distortions. The low multipole com-
ponents of the bare NN interaction give a small contribution to the pairing force,
but the renormalization effects arising from core excitation (polarization) pro-
cesses (Fig. 8.3(b)) are expected to be important (Bohr and Mottelson (1975),
Section 6-5f). This is because such processes receive coherent contributions
from all orders of perturbation (many-bubble processes), leading to collective
surface vibrations of low energy which couple strongly to the nucleons (see
Fig. 8.3(c)).

To obtain convergence of the solutions to equations (8.4) and (8.6), jumps
of pairs of nucleons to single-particle orbitals lying as high as 600 MeV from
εF have to be included in the calculations. For this purpose the continuum is
discretized by placing the nucleus in a box. The size of the box is to be changed
until convergence of the results is obtained. In the case of 120Sn this is achieved
for Rbox ≥ 12 fm.

The large value of the energy associated with the two-particle scattering pro-
cesses contributing to �a1a2 is essentially due to the strong repulsion of the
T = 1, S = 0 central potential (see Fig. 8.2) and not to the fact that the most
important contribution to Cooper pair formation is connected with the high mul-
tipoles of the residual interactions, as discussed in connection with the condition
given in equation (8.7). In fact, as seen from the single-particle valence spec-
trum of 120Sn (see Fig. 8.4), levels with total spin as high as 11/2 and 9/2 are
already present in this subspace, thus allowing the particles to profit from the
v14 pairing correlations within this restricted subspace. This fact can be better
appreciated from Fig. 8.5 where typical examples of the pairing matrix ele-
ments 〈(a1a2)0|v14|(b1b2)0〉 are shown as a function of the energy associated
with the (NN) scattering process. The negative (attractive) matrix elements are
all concentrated at low energies (<20 MeV), associated essentially with scatter-
ing processes among valence single-particle orbits.

In Fig. 8.6 we show the diagonal part of the neutron pairing gap �ak (≡
�akak ) associated with the single-particle states of the system (Barranco et al.
(1997)). The results have been averaged over an energy interval of ≈ 1 MeV to
smooth out fluctuations associated with particular shells. The value of the pairing
gap at the Fermi energy is 2.2+0.4

−0.8 MeV, the ‘errors’ reflecting the conspicuous
state dependence of �. This value is of the same order of magnitude as that
extracted from the odd–even mass difference, namely 1.4 MeV. One would then
be tempted to conclude that the bare NN potential explains, even quantitatively,
the values of the odd–even mass difference observed experimentally, and thus
pairing superfluidity in nuclei. As we shall show below, this conclusion is not
correct.
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Figure 8.4. Valence single-particle levels used in the calculation of the pairing parameters of
120Sn, determined using a Saxon–Woods potential with parameters given in equations (8.13)–
(8.16) (V = V 0 = −55 MeV), and two effective k-masses (see equations (8.19) and (8.20)).
The value of the Fermi energy εF(≡ λ) was obtained by solving the BCS number and gap
equations with N = 70. Also indicated is the energy interval ±ω around the Fermi energy
over which the density of levels N (0) is calculated (see the discussion following equation
(8.20)).

8.2 Mean-field theory

Both in previous chapters as well as in solving the matrix eigenvalue relation
given in equation (8.4), the assumption has been made that nucleons move in a
local single-particle potential. This is, however, not correct. The equations which
have to be solved to determine the single-particle energies and the occupation
amplitudes consistently, are the integro-differential Hartree–Fock–Bogoliubov
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Vigezzi).
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Figure 8.6. The state-dependent diagonal pairing gap of 120Sn calculated making use of
equations (8.4) and (8.5) and of the v14 matrix elements of the type shown in Fig. 8.5. The
relation given in equation (8.5) for N = 70 fixes the Fermi energy at εF = −7.2 MeV.
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equations, containing both a local (Hartree) and a non-local (Fock) potential. In
other words, equation (8.4) has to be supplemented so as to be able to calculate
self-consistently the single-particle energies εi . In the following we derive the
corresponding equations.

Mean-field theory is a very useful approximation in the study of the many-
particle system. In the mean-field method one replaces the many-particle
Schrödinger equation,(
−

A∑
i=1

�
2

2m
∇2

i +
A∑

i< j=1

v(|	ri − 	r j |)
)
�n(	r1 . . . 	rA) = En�n(	r1 . . . 	rA), (8.8)

by a single-particle Schrödinger equation,(
− �

2

2m
∇2 +U (r )

)
ϕν j (	r )+

∫
d3 	r ′Ux (	r , 	r ′)ϕν j (	r ′) = εν jϕν j (	r ) (8.9)

and the total wavefunction �n(	r1 . . . 	rA) by the normalized determinant con-
structed out of the single-particle wavefunctions ϕi (	r ).

The two potentials appearing in equation (8.9) are the Hartree (direct) poten-
tial,

U (	r ) =
∫

d3 	r ′�(	r ′)v(|	r − 	r ′|), (8.10)

where

�(	r ) =
∑
νi≤νF

|ϕνi (	r )|2

is the total density of the system, and the Fock (exchange) potential

Ux (	r , 	r ′) = −
∑
νi≤νF

ϕ∗νi
(	r ′)v(|	r − 	r ′|)ϕνi (	r ). (8.11)

This last term is directly connected with the fact that nucleons are fermions and
thus satisfy the Pauli principle. In particular, the exchange potential ensures that
nucleons do not interact with themselves (see Appendix A).

The total energy of the system in the Hartree–Fock ground state |0〉HF =
1√
A!

det(ϕν1 (	r1) . . . ϕνA (	rA)) is given by

E = HF〈0|H |0〉HF =
∑
νi≤νF

〈νi |T |νi 〉 + 1

2

∑
νi ,νi ′≤νF

〈νiνi ′ |v|νiνi ′ 〉a

=
∑
νi≤νF

εi − 1

2

∑
νi ,νi ′≤νF

〈νiνi ′ |v|νiνi ′ 〉a, (8.12)

where νF labels the Fermi level lying, by definition (zero temperature situation),
halfway between the last occupied and the first unoccupied orbitals. In writing
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up the last term of the above equation the self-consistency relation

〈ν2|T |ν1〉 +
∑
νi≤νF

〈νiν2|v|νiν1〉a = 〈ν2|T +U +Ux |ν1〉 = εν1δ(ν1, ν2),

i.e. the matrix expression of equation (8.9), has been used. Note that the
subindex a in the matrix element indicates the antisymmetrized matrix element,
i.e. 〈νiνk |v|νiνk〉a = 〈νiνk |v|νiνk〉 − 〈νiνk |v|νkνi 〉, and thus gives rise to both the
direct and exchange potentials (see equation (A.16)). The factor 1

2 in the last term
of equation (8.12) reflects the fact that the two-particle interaction contributes
to the average potential for both of the interacting particles and is thus counted
twice, if one sums the single-particle energies for the filled orbitals (see equation
(3.50)).

8.2.1 Effective mass (k-mass)

There is extensive experimental evidence showing that single-particle motion in
nuclei is well described by a potential of Saxon–Woods type,

U (r, E) = V0(E) f (r ), (8.13)

where

f (r ) = 1

1+ exp( r−R0
a )

, (8.14)

to which a spin-orbit potential, proportional to ∂ f (r )
∂r , is added (see Bohr and

Mottelson (1969)). The radius and the diffuseness parameters have the values

R = r0 A
1
3 fm, r0 = 1.2 fm, a = 0.65 fm, (8.15)

and, for levels around the Fermi energy (valence orbitals), the strength V0(E)
is a constant. On the other hand, the differential elastic scattering cross-section
and the total nucleon–nucleus cross-section can be accurately described by

V = V0(E) = V 0 + V1
N − Z

A
+ γ E, (8.16)

with V 0 = −55 MeV, γ = 0.3−0.4 and V1 ≈ 30 MeV, provided that one adds to
the potential given in equation (8.13) an imaginary component (see Appendix B).
The same parametrization describes the deeply bound states as shown in
Fig. 8.7.

The relation given in equation (8.16) is valid for |E | > 10 MeV, where the
single-particle energy E (= ε − εF) is measured from the Fermi energy. The va-
lence orbitals (|E | ≤ 5 MeV) of nuclei around closed shells are well reproduced
by the Saxon–Woods potential defined by equations (8.13)–(8.15) but in this
case with V ≈ −55 MeV, independent of energy.
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Figure 8.7. Dependence upon proton-bombarding energy of the depth V0 of the potential well
(defined in equation (8.13)) which reproduces the 40Ca(p, p) differential cross-section for
E > 10 MeV, and the experimental single-proton energies for E < 0 MeV. The full straight
line corresponds (in MeV) to V = V0(E) = −55 MeV+ 0.3E , and the dashed straight line
to V = V0(E) = −55 MeV+ 0.4E (adapted from Bauer et al. (1982)).

The Schrödinger equation (8.9) can, for many purposes, be rewritten to a good
approximation as (Mahaux et al. (1985))(

− �
2

2mk
∇2 + Ũ (r )

)
ϕ j (	r ) = ε jϕ j (	r ) , (8.17)

where the k-effective mass mk , which takes into account many of the effects
associated with the non-local Hartree–Fock potential, has been introduced, and
where the depth of the potential Ũ (r ) is

Ṽ 0 = m

mk
V 0. (8.18)

As shown in Appendix B (note that mk may depend on r ),

mk = m

(
1+ m

�2k

∂V (k)

∂k

)−1

, (8.19)

where V (k) is the Fourier transform of the Fock potential given in equation (8.11).
In Hartree–Fock theory, contributing to the energy dependence of the single-

particle potential are the non-locality of Ux (	r , 	r ′), equivalent to a dependence on
the linear momentum of the particle, and, in many cases, the genuine velocity-
dependence of the two-body interaction. Equation (8.19) with the parametriza-
tion given in equation (8.16) leads to an effective mass m∗ = mk , known as the
k-mass, which is considerably smaller than the bare nuclear mass. In fact,

mk ≈ 0.6m → 0.7m. (8.20)

Consequently, Hartree–Fock theory is able to accurately predict the sequence of
the single-particle levels around the Fermi energy (i.e. |E | ≤ 10 MeV), but not its
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Figure 8.8. Comparison between the experimental single-neutron energies in the valence
shells of 208Pb and the values calculated in the Hartree–Fock approximation with a Skyrme
III (SIII, middle) and a Skyrme V (SV, right) interaction (taken from Quentin and Flocard
(1978)).

density. This is exemplified in Fig. 8.8 (see also Fig. 8.4), where the experimental
values of the single-particle neutron energies of the valence orbitals of 208Pb are
compared with Hartree–Fock results calculated by making use of a particular
parametrization of the effective two-body interaction (all displaying an effective
k-mass smaller than the bare mass).

Making use of the k-mass given in equation (8.20) to calculate the single-
particle energies appearing in equations (8.4), i.e. the solution of equation (8.17)
with mk ≈ 0.7m and with Ũ (r ) = Ṽ 0 f (r ), one obtains �a1 ≈ 0.5 MeV (Bar-
ranco et al. (2004); see Fig. 8.9). This result, compared with the result shown in
Fig. 8.6, can be understood by studying the dependence of the gap on the density
of levels. For this purpose we make use of the results of the single j-shell. In
this case the pairing gap has a simple expression in term of the pairing coupling
constant G, the number of particles N and the pair dependency� = (2 j + 1)/2.
For a half-filled shell (N = �) (see Appendix H)

� = 1

2
G� ≈ G

2
N (0)ω, (8.21)

where N (0) = 2�/2ω is the density of levels at the Fermi energy, and where
2ω is the range of energy around the Fermi energy where pairs of particles
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Figure 8.9. The state-dependent pairing gap of 120Sn for the levels close to the Fermi energy
obtained using BCS theory with the v14 Argonne potential (after Barranco et al. (2004)).

coupled to angular momentum zero are allowed to correlate through the pairing
interaction. In the case under discussion and making use of a typical value of
ω = 8 MeV (see Fig. 8.4), the density of levels (for one spin orientation) changes
from N (0) = 3.4 MeV−1 (m∗ = m) to N (0) = 1.6 MeV−1 (m∗ = mk = 0.7m)
(see (3.61) and (3.62)). Thus, the simple relation given in equation (8.21) predicts
a decrease of a factor of 2 in the pairing gap. Among the limitations of Hartree–
Fock theory to describe the nuclear structure one can mention: low density
of levels, unrealistic occupation factors with values of either 1 or 0, single-
particle states with infinite lifetimes (neglecting electromagnetic decay). These
limitations are connected with the fact that HF is a static approximation to the
many-body problem. That is, an approximation where fluctuations of the different
(order) parameters characterizing the mean field are neglected (see e.g. equation
(4.8) and subsequent discussion).

The presence of a mean field defines a surface which can vibrate. The vibra-
tions renormalize (by coupling to the nucleons) their properties, giving rise to
an effective mass (so-called ω-mass mω), to occupation factors Zω = (m/mω)
as well as to a splitting of the single-particle strength. The corresponding energy
spread �ω determines the lifetime (�/�ω) of the single-particle levels. These
phenomena affect pairing correlations in an important, and sometimes opposite
way. In particular, particles which have to carry a phonon for part of the time
become effectively heavier than free particles. This leads to levels which are
closer to the Fermi energy, and to an increase of the level density over that of HF
theory (see Chapter 9 and Appendix B). The increase of the level density leads
to an increase of the pairing gap. On the other hand, the fact that nucleons are
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for part of the time in configurations containing a phonon means that the bare
nucleon–nucleon interaction is less effective, leading to a decrease of the pairing
correlations. This decrease is accentuated due to the fact that single-particle levels
acquire an effective width due to the coupling to phonons (see equation (9.41)).

A phonon need not be reabsorbed by the same nucleon which has virtually
excited it, but can be exchanged between pairs of nucleons. If these two nucleons
move in time-reversal states, this exchange leads to an effective pairing interac-
tion and thus to an increase of the pairing gap, because the degrees of freedom
of the nucleons and of the collective vibrations overlap to some extent and one
has to eliminate processes which are due to overcompleteness of the basis (see
e.g. Appendix F).

Summing up, the interweaving of particles and vibrations affects pairing cor-
relations in nuclei in a subtle way. This subject is discussed in Chapters 10
and 11.

In what follows we develop the tools to carry out this discussion. That is, we
work out the particle-vibration coupling Hamiltonian. The general rules needed
to calculate the variety of processes arising from the interweaving of nucleons
and vibrations are discussed in Chapter 9 and Appendix D.

8.3 Random phase approximation

In solving the Hartree–Fock equations one has to specify the shape of the nucleus.
The absolute minimum of the energy of a closed-shell system is associated with
a spherical configuration. For nuclei with a number of nucleons outside the
closed shell, or a number of holes in the closed shell, the absolute minimum may
correspond to a deformed configuration. In either case there can be vibrations
about the equilibrium shape which couple to the single-particle motion. The
present section introduces the theory of particle-vibration coupling when the
mean field is spherical. This leads to a microscopic description of the low-
energy surface vibrations in the random phase approximation. The approach in
this section is based on the one developed by Bohr and Mottelson (1975).

There is a simple parametrization of the nuclear radius which can account for
the variety of situations. It is given by

R = R0

(
1+

∑
λμ

αλμY ∗λμ(r̂ )

)
, (8.22)

with the multipolarity λ ≥ 2 and where αλμ are deformation parameters while
Yλμ are spherical harmonics. An adequate parametrization of the potential is still
provided by equation (8.14), but with R0 replaced by R. In the case of axially
symmetric quadrupole deformations, the only deformation parameter different
from zero is α20. The Nilsson model used to describe the single-particle motion
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in quadrupole deformed nuclei is closely related to this potential (see Nilsson
(1955) and Nilsson and Ragnarsson (1995)).

Let us now expand the single-particle potential to first order in the deformation
parameters (α2 � α). One obtains

U (r, R) = U (r, R0)+ δU (r ), (8.23)

where

δU (r ) = −R0
∂U

∂r

∑
λμ

αλμY ∗λμ(r̂ ). (8.24)

It is well established that the nuclear surface can vibrate in certain normal
modes. In this case the quantities αλμ can be viewed as the coordinates of the
harmonic oscillator Hamiltonian associated with the normal modes, i.e.

Hα = �̂2
α

2Dα
+ Cα

2
α̂2, (8.25)

where

α̂ =
√

�ωα

2Cα
(�̂†
α + �α), (8.26)

and �̂α is the momentum variable conjugate to α̂. The quantities �†
α and �α

are boson creation and annihilation operators (Dirac (1935)) of the vibrational
modes. Hereωα =

√
Cα/Dα and the quantity

√
�ωα/2Cα is the amplitude of the

zero-point fluctuations in the ground state (the boson vacuum state |0〉B). The
one-phonon state is

|α〉 = �†
α|0〉B, (8.27)

(see Appendix A). Consequently, the term δU leads to a coupling between the
single-particle motion described in terms of the coordinate 	r , and the collective
vibrations, described in terms of the collective coordinates α̂, which we write as

δU = −κα̂ F̂, (8.28)

where κ is a coupling strength,

F̂ =
∑
ν1ν2

〈ν1|F |ν2〉a†
ν1

aν2, (8.29)

and a†
ν1

and aν2 are creation and annihilation operators of single-particle states.
The dimensionless quantity

F = R0

κ

∂U

∂r
Y ∗λμ(r̂ ) (8.30)
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Figure 8.10. Graphical representation of the process by which a fermion, bouncing inelas-
tically off the surface, sets it into vibration. Particles are represented by an arrowed line,
while the vibration is shown by a wavy line. The black dot represents a nucleon moving in a
spherical mean field of which it excites an octupole vibration after bouncing inelastically off
the surface.

is a single-particle field peaked at the nuclear surface. In a normal self-sustained
mode, there should be a consistency between variations of the density and of
the potential. This is a generalization of the self-consistent condition existing
between potential and density in the static case (see equation (8.10)) As we shall
see in Sections 8.3.1 and 8.3.3, the quantity κ is the proportionality constant
between these two variations.

Here we are treating angular momentum in a very cavalier way. This is done
in order to be able to discuss the main physical consequences of the particle-
vibration coupling Hamiltonian defined in equation (8.28) in simple terms. We
refer the reader to Bohr and Mottelson (1975) and Bortignon et al. (1977) for
the detailed expressions containing the proper angular momentum coupling co-
efficients (see also Chapter 10 and Appendix D).

The basic process described by the particle-vibration coupling Hamiltonian
δU is that of a particle scattering inelastically off the surface and setting it into
vibration, as shown in Fig. 8.10. The ease with which the process takes place
is measured by the matrix element between the single-particle state |νk〉 and the
state |ανk ′ 〉 representing a single particle coupled to a phonon

V (νk, νk ′ ;α) = 〈ανk ′ |δU |νk〉 = �α〈ν ′k |F̂ |νk〉. (8.31)

Here

�α = −κ
√

�ωα

2Cα
= −κβλα√

2λα + 1
(8.32)

is the strength with which the particle couples to the vibration, and

〈ν ′k |F̂ |νk〉 =
∫

d3r ϕ∗ν ′k (	r )F(	r )ϕνk (	r ), (8.33)
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Figure 8.11. Graphical representation of two matrix elements of δU .

where ϕνk (	r ) and ϕν ′k (	r ) are the single-particle wavefunctions, solutions of equa-
tions (8.17)–(8.20).

The quantity βλα is associated with the deformation parameters introduced in
equation (8.22). In particular, for λ = 2 and μ = 0, we have α20 = β2/

√
5. A

similar matrix element can be obtained when the fermion, instead of a particle
above the Fermi surface, is a hole in the Fermi sea (see Appendix A, equations
(A.47), (A.48), for a discussion of the relation between the corresponding matrix
element and the matrix element (8.31)). Aside from these matrix elements, the
particle-vibration coupling Hamiltonian allows for two other matrix elements
(see Fig. 8.11)

〈α|δU |νk(νi )
−1〉 = �α〈ν̃i |F̂ |νk〉, (8.34)

and

〈ανk(νi )
−1|δU |0〉 = �α〈ν̃i |F̂ |νk〉∗, (8.35)

where the symbol |ν−1
i 〉 denotes a hole state while |ν̃i 〉 is the state time-reversed to

the state |νi 〉 (equation (A.41)). The first matrix element corresponds to the pro-
cess in which a particle falls into a hole giving its energy and angular momentum
to a vibrational state |α〉. The matrix element (8.35) is associated with the pro-
cess by which the vacuum becomes virtually excited through the simultaneous
presence of a particle, a hole and a vibration.

8.3.1 RPA dispersion relation

Equation (8.28) for δU describes the coupling of single-particle motion to a
vibrational mode with collective coordinate α. In the random phase approxi-
mation (RPA) a collective vibration can be viewed as a correlated particle–hole
excitation, which, in the independent particle basis, corresponds to a linear com-
bination of particle–hole excitations. A separable version of the RPA can be
derived by recognizing the dual character of equation (8.28) for δU in the sense
that the collective mode can be excited through the field α̂ as well as through the
field F̂ (see Fig. 8.12 and Appendix C, Section C.2). More explicitly we impose
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Figure 8.12. Excitation of the collective vibration in terms of the operators α̂ and F̂ . After
Bohr and Mottelson (1975).

a self-consistency condition that the transition amplitude,

〈α|α̂|0〉 =
√

�ωα

2Cα
, (8.36)

should be equal to (see Fig. 8.12)

〈α|F̂ |0〉 =
∑
νk ,νi

{
〈α|δU |νkν

−1
i 〉〈νkν

−1
i |F̂ |0〉

�ωα − (ενk − ενi )

+ 〈α|F̂ |νkν
−1
i ;α〉〈νkν

−1
i ;α|δU |0〉

−(�ωα + (ενk − ενi ))

}
. (8.37)

This expression for the transition matrix element can be expressed in terms of
RPA amplitudes as

〈α|F̂ |0〉 = −
∑
νk ,νi

(Xα(νkνi )+ Yα(νkνi ))〈ν̃i |F̂ |νk〉,

where

Xα(νkνi )
Yα(νkνi )

}
= ± �α〈ν̃i |F̂ |νk〉

(ενk − ενi )∓ �ωα
. (8.38)

For simplicity, the matrix element 〈ν̃i |F̂ |νk〉 has been assumed to be real. Equat-
ing the relations given in equations (8.36) and (8.37) one obtains the RPA dis-
persion relation

W (�ωα) =
∑
νk ,νi

2(ενk − ενi )|〈ν̃i |F̂ |νk〉|2
(ενk − ενi )2 − (�ωα)2

= 1

κ
. (8.39)

Equation (8.39) can be solved numerically for values of �ωα as illustrated in
Fig. 8.13.
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Figure 8.13. Graphical solution of the RPA dispersion relation, equation (8.39).

In keeping with the relation given in equation (8.37) one can write the phonon
creation operator as

�†
α =

∑
νk ,νi

Xα(νk, νi )�
†
νkνi
+ Yα(νk, νi )�νkνi , (8.40)

where�†
νkνi
= a†

νk
aνi and�νkνi = (a†

νk
aνi )

† are creation and annihilation operators
of pairs of fermions which are assumed to display boson commutation relations
as �†

α and �α do (see Appendix A, Section A.4). This is the essence of the
so-called random phase approximation (RPA). Consequently,

1 = [�α, �
†
α] =

∑
νk ,νi

(X2
α(νk, νi )− Y 2

α (νk, νi )), (8.41)

a relation which ensures that the one-phonon state |α〉 = �†
α|0〉B is normalized.

Equation (8.41) provides the following microscopic expression for the square of
the particle-vibration coupling strength

�2
α =

{
2�ωα

∑
νk ,νi

2(ενk − ενi )|〈ν̃i |F̂ |νk〉|2
[(ενk − ενi )2 − (�ωα)2]2

}−1

= (∂W (E)

∂E

∣∣
E=�ωα

)−1
. (8.42)

Because (�α/κ)2 = (�ωα/2Cα), the above relation also provides the value of
the transition probability 〈α|F̂ |0〉2.

Making use of the relation given in equation (8.41) and of the corresponding
relations obtained from [�α, �α] = [�†

α, �
†
α] = 0, one can invert the equation

(8.40) obtaining

�†
νkνi
=

∑
α

Xα(νk, νi )�
†
α − Yα(νk, νi )�α. (8.43)
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The dispersion relation (8.39) and the expression (8.42) for the normalization
constant �α can also be obtained with a separable interaction

δUs = −κ F̂ F̂+, (8.44)

with

F̂ =
∑
νk ,νi

〈νk |F |νi 〉�†
νkνi
+ 〈ν̃i |F |νk〉�νkνi . (8.45)

Let us comment on the general features of the graphical solutions of equation
(8.39), as schematically displayed in Fig. 8.13. The poles of the dispersion re-
lation W (E) correspond to the values of the particle–hole excitation energies.
Each root �ωα is, in general, bound by two poles and there are as many states
|α〉 as particle–hole states |νkν

−1
i 〉. The collectivity of a state |α〉 is measured

by the normalization constant �2
α given in equation (8.42) which is equal to

the inverse of the derivative of the dispersion relation W (E) with respect to E
at the value E = �ωα. Consequently, roots which are bound by two poles with
similar energies will display little collectivity, as the associated derivative at the
corresponding root is very large. Because of this, a single amplitude Xα(νk, νi )
will dominate the microscopic structure of the associated wavefunction (see
equations (8.27), (8.38) and (8.40)). Collective modes are possible when there
is a gap in the particle–hole excitation spectrum. This can happen either at low
excitation energies (≤ 3–4 MeV), in connection with the spin–orbit splitting of
single-particle levels in medium-heavy nuclei, or at high excitation energies in
connection with the energy separation between major shells.

From equation (8.36) and the RPA self-consistency condition (see Appendix
C, equation (C.5)), the transition amplitude is given by the relation

〈α|F̂ |0〉 = (�ωα/2Cα)1/2 = βα√
(2λα + 1)

. (8.46)

Typical values ofβα associated with these collective states areβα≈0.08–0.1. The
corresponding excitation energies are 1–2 MeV for low-lying surface vibrational
states, and 10–15 MeV for high-lying states (giant resonances).

An interesting feature of the spectrum emerging from the dispersion relation
given in equation (8.39) is the fact that the nucleus displays collective states
with low and high frequencies, compared with the energy difference �ω0(≈
41A−1/3 MeV) between major shells. The low-frequency modes are intimately
connected with deformations (plastic behaviour, Chapter 7). High-frequency
giant resonances are, on the other hand, related to the small amplitude oscillations
(elastic behaviour, see Section 8.3).

To study giant resonances in nuclei lying along the valley of stability, the
independent particle model is quite adequate. For a description of the low part
of the spectrum, the independent particle model breaks down completely. One
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must at least include the pairing interaction in the dynamics of the system (the
same seems to be true in the case of giant resonances in exotic (halo) nuclei,
in connection with the so-called ‘pygmy’ resonances (see, e.g. Frascaria et al.
(2004)). The corresponding theory is called quasiparticle random phase approx-
imation (QRPA, see Section 3.9 and Appendix J), The QRPA dispersion relation
corresponding to equation (8.39) is∑

ν̄ν ′

2(Eν + Eν ′)|〈ν ′ν̄|F̂ |0〉|2
(Eν + Eν ′)2 − (�ωα)2

= 1

κ
, (8.47)

where 〈ν ′ν̄|F̂ |0〉 is the matrix element of the interaction operator between the
BCS vacuum state |0〉 and the two-quasiparticle state

∣∣ν ′ν̄〉. The solutions of the
QRPA dispersion relation associated with the high-lying part of the spectrum
(giant resonances) essentially coincide with those of equation (8.39). The low-
energy part is, however, strongly modified. This is because for levels ν and ν ′

lying close to the Fermi energy the matrix element 〈ν ′ν̄|F̂ |0〉 contains U ,V -
factors which differ strongly from the independent particle model values of 0
or 1. The two-quasiparticle energy Eν + Eν ′ depends on the pairing gap and is
larger than the particle–hole excitation energy ενk − ενi . For simple estimates
one can use the liquid drop model to calculated the restoring force and the pair
hopping model to work out the inertia of the system, as already explained in
Section 7.3.

8.3.2 Sum rules

The random phase approximation provides a diagonalization of the particle-
vibration coupling Hamiltonian within the harmonic approximation. It is then
natural that, as stated before, the number of states |α〉 is equal to the number
of particle–hole states |νkν

−1
i 〉 coupled to the quantum numbers of the vibration

which form the basis states. Provided that the interaction among the fermions
is velocity independent, the product of the energy of these states and the square
of matrix elements between a particle and a hole state of any one-body operator
which only depends on the spatial coordinate is a model-independent quantity,
reflecting very general properties of the system as a whole. This result is known
as an energy weighted sum rule (EWSR). In the case of dipole excitations it is
proportional to the total number of charged particles of the system, being also
proportional to the photoabsorption cross-section. One of the basic conditions
to be fulfilled by any theoretical treatment used to diagonalize the residual in-
teraction between particle–hole states should be to conserve the corresponding
sum rule.

The importance of sum rules in the study of vibrational motion is that they are
connected to basic operator identities which restrict the possible matrix elements
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in a physical system. Also, through the use of sum rules it is possible to assess
the collectivity of a given excitation. Furthermore, sum rules provide an upper
limit to the energy that can be transferred to a nucleus under the action of an
external field (Broglia and Winther (1991)). The subject of sum rules is quite
general and in what follows we will only touch upon it. In particular we will
discuss sum rules associated with spatially dependent single-particle fields.

It is simple to prove the EWSR in the form∑
n

|〈0|F̂ |n〉|2(En − E0) = 1
2〈0|[F̂, [H, F̂]]|0〉, (8.48)

where n labels the complete set of eigenstates of the Hamiltonian H , En are the
corresponding eigenvalues and |0〉 is the exact ground-state wavefunction. An
extension of the energy weighted sum rule to the RPA was proved by Thouless
(1961a). It has the same form as equation (8.48), but the meaning of the terms
is different. The operator F̂ is restricted to be a single-particle operator and the
factors (En − E0) and 〈0|F̂ |n〉 are RPA excitation energies and transition ampli-
tudes. The matrix element on the right-hand side should be evaluated with the
Hartree–Fock self-consistent ground-state wavefunction. There is an analogous
generalization to the quasiparticle RPA. The proof of the RPA sum rule (8.48)
in Thouless (1961a) holds when the potential V is a sum of two-body density-
independent interactions. Problems which arise with density dependent forces
have been discussed by Blaizot and Gogny (1977).

The right-hand side of eq.(8.48) can be simplified if F̂ =  k F(	rk) is a one-
particle operator, depending only on the spatial coordinates, and the potential
energy terms in the Hamiltonian H = T + V are local functions of the coor-
dinates. Then [V, F] = 0 and the double commutator has contributions only
from the kinetic energy part of the Hamiltonian. The double commutator can be
expressed in terms of derivatives of F so that

1
2〈0|[F̂, [H, F̂]]|0〉 = 1

2〈0|[F̂, [T, F̂]]|0〉

= 〈0|
∑

k

�
2

2m
( 	∇k F̂(	rk))2|0〉, (8.49)

where the last term implies the diagonal matrix element in the ground state. The
average in equation (8.49) can be replaced by an integral over the density ρ (r )∑

n

|〈0|F̂ |n〉|2(En − E0) = �
2

2m

∫
d3r | 	∇ F̂ |2�(	r ). (8.50)

There is an analogous classical result for the reaction of a system in equilibrium
to an impulsive field which gives each particle a momentum 	∇ F̂ . On average,
the particles start at rest so their average energy after the sudden impulse is
�

2| 	∇ F̂ |2/2m. This result is consistent with the fact that the energy weighted sum
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rule does not depend on the interactions acting among the nucleons, because the
energy is absorbed in a very short time. On the other hand the nuclear forces
accelerate the nucleons, and a longer time is required to produce a change in
their velocities. Equation (8.48) also holds in the RPA provided that the factors
on the left-hand side are interpreted as RPA energies and transition amplitudes
(see, e.g. Bortignon et al. (1998)).

The energy weighted sum rule most often used for finite systems is associated
with multipole fields, F(	r ) = r LYL M (r̂ ). When the density ρ (r ) is spherically
symmetrical the integral on the right-hand side of equation (8.50) can be simpli-
fied and∑

n

|〈0|r LYL M |n〉|2(En − E0) = �
2

2m

(2L + 1)L

4π

∫
d3r r2L−2�

= �
2

2m
L(2L + 1)

A

4π
〈r2L−2〉. (8.51)

8.3.3 Frequency of the giant quadrupole resonance

The mean energy of the giant quadrupole resonance in a spherical nucleus can be
calculated from the dispersion relation (8.39). In a self-sustained vibration the
changes in the density should be proportional to the changes in the potential. The
coupling constant κ in equation (8.28) provides this proportionality factor. As
discussed in Section 8.3.1 (see Fig. 8.12) and also in Appendix C, the operators
α̂ and F̂ can be viewed as the collective and the single-particle representation of
the same field. In other words, equation (8.28) can also be thought of in terms
of a separable two-body residual interaction (see equation (8.44))

v(	r , 	r ′) = −κ F̂(	r )F̂+(	r ′). (8.52)

The appropriate choice of F̂(	r ) for a quadrupole resonance is the quadrupole
field

F̂(	r ) ≡ F2M (	r ) = r2Y2M (r̂ ).

In the case of an isoscalar giant resonance the coupling constant κ can be
estimated by an argument which has two parts (Bertsch and Broglia (1994)).
The first is the assumption that the time-dependent displacements associated
with this field are those of an irrotational incompressible fluid with a velocity
potential F2M (	r )

	u(	r , t) = α(t)	u0(	r ),

with

	u0(	r ) = 	∇F2M (	r ).
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The time-dependence of 	u(	r , t) is carried by the collective coordinate α(t). The
incompressibility follows from the relation

	∇ · 	u = α∇2 F2M (	r ) = 0. (8.53)

The second assumption is that the transition potential must be consistent with
the change in the single-particle density, i.e. they should be generated by the
same velocity field 	u(	r , t). This requirement is an extension to the dynamical
case of the self-consistent relation between mean field and ground-state density
in Hartree–Fock theory.

Let us carry out the calculations for a generic field FL M = r LYL M and then
particularize it for L = 2. The transition density and potential associated with
the velocity field 	u are

δ� = �(	r + 	u)− �(	r ) = α(t)	u0(	r ) · 	∇� = α(t) 	∇FL M · 	∇�, (8.54)

δU = 	u · 	∇U = α(t) 	∇FL M · mω2
0	r = α(t)mω2

0 L FL M . (8.55)

In this estimate, the harmonic oscillator potential has been used to describe the
static field, i.e. U(r ) = 1

2 mω2
0r2. The transition potential can also be calculated

in terms of the convolution of the transition density and the two-body interaction
using equation (8.10),

δU = −κL FL M (	r )
∫

d3r ′ F∗L M (	r ′)δ�. (8.56)

Equating the results of equations (8.55) and (8.56) one obtains

κL = − Lα(t)mω2
0∫

d3r ′F∗L M (	r ′)δ� . (8.57)

The integral in this equation can be simplified using Gauss’ theorem and the
incompressibility condition equation (8.53)

α(t)
∫

d3r ′ F∗L M
	∇F · 	∇� = −α(t)

∫
d3r ′ |∇F |2�

= −L(2L + 1)α(t)
∫

dr r2L−2�

= −L(2L + 1)α(t)
A

4π
〈r2L−2〉

Inserting the result into equation (8.57) the factor α(t) cancels and the coupling
parameter κL is

κL = 4πmω2
0

(2L + 1)A〈r2L−2〉 . (8.58)
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For L = 2 the coupling parameter is

κ2 = 4πmω2
0

5A〈r2〉 .

Giant quadrupole excitations are produced by promoting particles from an
occupied shell with principal quantum number N (harmonic oscillator) to unoc-
cupied shells with principal quantum numbers N + 2, N + 4, etc. This is because
the parity of the single-particle states is (−1)N . Because in the harmonic oscil-
lator the only non-diagonal matrix elements of the field r2Y2M are

〈N ′|r2|N 〉 ∝ δ(N ′, N ± 2),

the particle–hole excitation energy associated with quadrupole modes is
ενk − ενi = 2�ω0. The dispersion relation given in equation (8.39) can be written
as ∑

νk ,νi
2(ενk − ενi )|〈ν̃i |r2Y2|νk〉|2
(2�ω0)2 − (�ωQ)2

= 1

κ2
.

Making use of the quadrupole energy weighted sum rule (see equation (8.51))∑
νk ,νi

(ενk − ενi )|〈ν̃i |r2Y2|νk〉|2 = 5

4π

�
2

m
A〈r2〉, (8.59)

the factor
〈
r2

〉
cancels and one obtains

�ωQ =
√

(2�ω0)2 − 2(�ω0)2 =
√

2�ω0 = 58

A
1
3

MeV. (8.60)

In Fig. 8.14 we display the systematics of centroids of the giant quadrupole
as a function of mass number. The results are well parametrized by the function

�ωQ ≈ 63

A
1
3

MeV, (8.61)

which is quite close to the theoretical result given in equation (8.60).

8.3.4 Damping of giant vibrations

One can view giant vibrations as a correlated particle–hole excitation built out
of a particle above the Fermi surface and a hole in the Fermi sea. A first estimate
of the damping width of giant vibrations can be obtained by assuming that the
particle and the hole couple to a more complicated configuration acquiring a
width. Then the total width is the sum of individual widths. Because in the
damping process we deal with real processes, i.e. processes where the energy is
conserved, the energy of the resonance has to be shared between the particle and
the hole. The simplest expression one can write for the giant resonance damping
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Figure 8.14. Energy systematics of the giant quadrupole resonance (GQR). (from Bertsch
and Broglia (1994))

width is then

�
↓
GR(�ωGR) = �↓p

(
�ωGR

2

)
+ �↓h

(
�ωGR

2

)
≈ 0.5�ωGR,

(8.62)

where the expressions for �↓p and �↓h given in equation (9.15) have been used.
Making use of the expression �ωQ ≈ 63A−1/3 MeV, the above equation

leads to

�
↓
Q ≈

30

A
1
3

MeV (8.63)

for the damping width of the giant quadrupole resonance. This expression is
shown in Fig. 8.15 compared with the experimental findings. The simple estimate
overpredicts the experimental findings by roughly 50%.

As will be shown below, the relation given by equation (8.62) neglects impor-
tant correlation effects between the particle and the hole (Bortignon and Broglia
(1981), Bortignon et al. (1983), Bertsch et al. (1983)). In fact, this relation im-
plies that either the particle or the hole of the correlated particle–hole pair which
constitutes a resonance can not only excite a surface vibration, which is true,
but also reabsorb the phonon they have excited. This of course is not correct,
in that a surface vibration excited by the inelastic scattering of the particles
off the nuclear surface can be absorbed at a later time by the hole, and vice
versa. In other words, the expression (8.62) takes care only of the (self-energy)
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Figure 8.15. Damping width of the giant quadrupole vibration (see Satchler (1977)). The
continuous curve corresponds to the estimate given in equation (8.63). Copyright © Società
italiana di Fisica.

Figure 8.16. Lowest-order processes by which a resonance (GR) couples to a two-particle–
two-hole intermediate state (doorway state) containing an uncorrelated particle–hole excita-
tion and a surface vibration.

processes (a) and (b) of Fig. 8.16. We shall see that (vertex correction) processes
(c) and (d), where a phonon is exchanged between the fermions, act as a glue
between the particle and the hole, preventing, to a large extent, the decay of the
resonance, and reducing the contributions (a) and (b) to the damping width. In
fact, the self-energy correction to the giant vibration implied by the process of
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Fig. 8.16(a) is

 
p
self-en(GR, ω) =

∑
νk ,νi ,νk′ ,λ

X2
GR(νk, νi )

V 2(νk, νk ′ ; λ)

�ω − ((eνk′ − eνi )+ �ωλ)

=
∑
νk ,νi

X2
GR(νk, νi ) (νk, ω + eνi ), (8.64)

i.e. it is the sum of the contributions of the self-energy of each particle par-
ticipating in the linear combination of particle–hole excitations describing the
resonance. In other words, it is the weighted average of the single-particle self-
energies of all the particle–hole configurations. The weighting factor is the prob-
ability that the giant vibration will be in a given configuration. The particle
self-energies are calculated at an energy (�ω + eνi ), i.e. at an energy lower than
the energy of the giant resonance by the amount eνi (= ενi − εF < 0), which
is the energy taken up by the hole of the different particle–hole excitations. A
similar expression is obtained for the decay of the hole (see Fig. 8.16(b)), i.e.

 �

self-en(GR, ω) =
∑
νk ,νi

X2
GR(νk, νi ) (νi , ω − eνk ) (8.65)

where now eνk = ενk − εF > 0.
Making the ansatz that (a) the giant resonance is a very correlated state such

that one can approximate the amplitudes by |X | ∼ 1√
N

, N being the dimension
of the particle–hole basis where the RPA solution of the giant vibration has been
calculated, and (b) the particle-vibration coupling matrix elements are indepen-
dent of the configuration, one can write, for both of the expressions given in
equations (8.64) and (8.65),

 νself-en(GR, ω) ≈  (ν, ω − |eν ′ |), (8.66)

where ν is either a particle or a hole and ν ′ a hole or a particle respectively. The
imaginary part of the above equation leads to the relation (8.62).

The self-energy associated with the process (d) of Fig. 8.16 is

 vertex(GR, ω) =
∑

νk ,νi ,νk′ ,νi ′
XGR(νkνi )XGR(νk ′νi ′)

× 〈ν
−1
i ′ |F̂ |ν−1

i 〉〈νk ′ |F̂ |νk〉2�2
λ

�ω − ((eνk′ − eνi )+ �ωλ)
, (8.67)

where |ν−1
i 〉 represents a state of a hole and |νi 〉 that of a particle moving in the

same single-particle state. The matrix elements between hole states are related
to those between particle states according to

〈ν−1
i ′ |F̂ |ν−1

i 〉 = c〈νi ′ |F̂ |νi 〉, (8.68)
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where c is a phase (i.e. c2 = 1) defined through the relation (see equation (A.49))

(τ F̂τ−1)† = −cF̂ . (8.69)

Here τ stands for the time-reversal operator and the dagger identifies Hermitian
conjugation. Because an average 〈νi ′ |F |νi 〉 and 〈νk ′ |F |νk〉 have the same order
of magnitude one can approximate the last expression by

 vertex(GR, ω)

≈ c
∑
νk ,νi ,νk′

(XGR(νkνi )
2 V 2(νk ′, νk ; λ)

�ω − ((eνk′ − eνi )+ �ωλ)
. (8.70)

A similar expression is obtained for the process depicted in Fig. 8.16(c).
Consequently,

 vertex

 self-en
≈ c . (8.71)

Because the single-particle field F̂ is a spin-isospin independent field, c = −1.
The physical reason for the minus sign in the phase relating processes (a) and (d)
of Fig. 8.16 is associated with the fact that the multipole moments of a particle
and a hole have different sign, in keeping with the fact that closed-shell systems
are spherical.

Under the approximation leading to equation (8.70), there would be a com-
plete cancellation between the different processes contributing to the self-energy
operator of the giant resonance, and eventually to its damping width. This re-
sult is intimately connected with Furry’s theorem of quantum electrodynamics
(Furry (1937)), as well as with general arguments on particle conservation (Ward
(1950), Takahashi (1957), see also Bortignon et al. (1983)). The fact that the sub-
spaces available to the particles (νk) and to the holes (νi ) are different makes the
approximations used above not quantitatively accurate although they are qualita-
tively sound. The cancellation implied by equation (8.71), although conspicuous,
is not complete (see also discussion following equation (3.90)).

Numerical calculations indicate that the cancellation discussed above implies
a reduction of the contributions stemming from particle- and hole-decay of the
order of 30–50%, bringing theory into overall agreement with the experimental
findings.

8.4 Correlation energy contribution to nuclear masses

In the present section we discuss some of the consequences that the zero-point
fluctuations associated with pairing and surface vibrations have in the nuclear
binding energies. Let us start by briefly commenting on the accuracy modern
mass formulae have in accounting for the experimental findings.
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The best account of the experimental data based on mean-field theory
provides a fitting to the 2135 measured masses with N , Z > 8 with a r.m.s. (root
mean square) error of 0.674 MeV (Goriely et al. (2002)). This has been achieved
by means of Hartree–Fock–Bardeen–Cooper–Schrieffer (HFBCS) calculations
which employ a Skyrme-type zero-range effective force in the mean-field
channel, supplemented by a zero-range pairing interaction. The 14-parameter
set is named BSk2. As a reference point for the work of Baroni et al. (2004)
we discuss below, they have considered a parameter set of almost equal quality,
denoted by MSk7, where the r.m.s. error is 0.738 MeV (see also Goriely et al.
(2001)).

Nuclei display both single-particle and collective degrees of freedom. Conse-
quently, the corresponding ground states and associated nuclear masses reflect
the effect of the zero-point fluctuations (ZPF) associated with these modes. While
mean-field theory includes fluctuations associated with quasiparticles, it is only
time-dependent mean-field theory which takes into account the zero-point fluc-
tuations associated with collective vibrations. The need to consider their effect
was put forward by Bertsch and Hagino (2001). Realistic calculations for the
quadrupole degree of freedom have been performed for light nuclei (Stetcu and
Johnson (2002)) and for a few selected isotopes within the so-called generator
coordinate method (GCM) (Bender et al. (2004)).

Making use of random phase approximation (RPA) Baroni et al. (2004)
calculated the ground-state correlation energies associated with both surface
(quadrupole and octupole modes) and pairing vibrations for the Ca and Pb
isotopes. Because pairing vibrations have a collective character only around
closed-shell nuclei (being essentially pure two-quasiparticle states lying on top
of twice the pairing gap in superfluid systems, see Section 5.2), one expects
the associated ZPF (see e.g. Fig. 5.3, (right)) to lead to important corrections to
the mass formula of Goriely et al. (2002). This is in keeping with the fact that the
largest deviations from experiment found in this mass formula are observed in
closed-shell systems.

To derive the particle–hole RPA equations, use can be made of the quasi-boson
approximation where the RPA ground-state energy is given by (see e.g. Ring and
Schuck (1980) see also Sections 6.3 and 6.6)

ERPA = EHF − (2λ+ 1)
∑
α,n

�ωα(n)
∑

ki

∣∣Y αki (n)
∣∣2
, (8.72)

This relation reflects the fact that the amplitudes Y αki (n) are directly related to the
ground-state correlations induced by the corresponding vibrational modes. The
second term of the right-hand side is called the correlation energy.

We now proceed to discuss the expected contributions to the nuclear mass
arising from monopole and multipole pairing vibrations in Pb isotopes. Let us
start by discussing the monopole pairing-vibration contributions.



8.4 Correlation energy contribution to nuclear masses 201
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Figure 8.17. Monopole pairing–vibration dispersion relation for (a) neutrons and (b) protons
for the nucleus 208Pb. This figure is due to S. Baroni.

Fig. 8.17 shows the dispersion relations given in equation (5.50) calculated
for 208Pb for both protons and neutrons (see Section 5.2.1), making use of the
valence orbitals of this nucleus. Making use of the fact that the sum of the pairing
binding energies of 206Pb and 210Pb (see equations (5.45) and (5.46)) as well as
in 206Hg and 210Po are≈ 2 MeV (in this last case one has to take into account the
Coulomb repulsion between the two protons, see e.g. Bortignon et al. (1977)),
one obtains the values of 2.7 MeV and 2.2 MeV for the neutron pair-addition and
pair-removal energies,∗ the corresponding values for the proton channel being
3.5 MeV and 3.1 MeV respectively. The contributions of the lowest (n = 1) pair-
addition and pair-subtraction modes have been considered in the calculations
because, as a rule, the n �= 1 modes are much less collective.

Inserting the results mentioned above in equation (8.72) and the correspond-
ing Y amplitudes (= a1(ω) for 208Pb and r1(ω) for 206Pb; see Table 5.1, and
equations (6.34)–(6.37)), one obtains the ground-state correlation energy val-
ues −0.399 MeV (neutrons) and −0.449 MeV (protons) respectively. Making
use of similar quantities associated with pairing vibrations with multipolarity
λ �= 0 (see Section 5.3.1), in particular quadrupole and hexadecapole pairing
vibrations, the corresponding contributions have also been calculated.

In Table 8.1 we show these contributions to the ground-state energy (i.e. ERPA

as defined in equation (8.72)) associated with the monopole, quadrupole and

∗ Note that the condition introduced in equation (5.41) (and corresponding to the situation x = 0.5 in the
two-level model of Fig. 5.1, see Section 5.2) to simplify the discussion of the energy spectrum is here not
applicable.
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Table 8.1. Ground-state correlation energies, arising from the neutron (n) and
proton (p) monopole, quadrupole and hexadecapole pairing vibrations in 208Pb.

0+ 2+ 4+

n p n p n p

−0.399 −0.449 −0.609 −0.244 −0.189 −0.092

Table 8.2. Ground-state correlation energies for the Pb isotopes.

204Pb 206Pb 208Pb 210Pb 212Pb

p–h vibrations −2.793 −2.709 −2.237 −2.801 −3.173
Pairing vibrations −0.785 −0.785 −1.981 −0.785 −0.785

hexadecapole pair-addition and pair-removal modes for both neutrons and pro-
tons associated with 208Pb, the summed contribution amounting to−1.981 MeV
(≈ −1.196 MeV −0.785 MeV).

In Table 8.2 we collect the corresponding contribution for a number of Pb iso-
topes. As mentioned above, pairing vibrations are collective modes only around
closed-shell nuclei, where particles and holes can be clearly distinguished. Con-
sequently (see Chapter 5) we have considered the contribution of neutron pairing
vibrations only for the closed-shell system (while the proton pairing vibrations
were taken into account for all isotopes). Also shown in Table 8.2 are the con-
tribution to ERPA arising from the low-lying collective particle–hole vibrations
calculated by making use of the MSk7 interaction to determine the single-particle
states and the particle–hole correlated modes. Quadrupole and octupole vibra-
tions with energy <7 MeV, and exhausting ≥2% of the non-energy weighted
sum rule were included in the calculation of ERPA. These conditions essentially
select the lowest (one or two) states displaying correlated wavefunctions (see
Section 7.3).

Similar calculations were repeated for the calcium isotopes 40−48Ca. In
Table 8.3 the corresponding results are shown, together with the contribution
of the particle–hole vibrational modes. When adding the results of Tables 8.2
and 8.3 to the HFBCS MSk7 mass formula of Goriely et al. (2001), the param-
eters of the Skyrme interaction should be refitted in order to provide the best
reproduction of experimental masses. This should be done on a large sample of
isotopes, a scope which was beyond the purpose of the paper of Baroni et al.
(2004). If one restricts oneself to Ca isotopes (Pb isotopes) the results in Table 8.4
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Table 8.3. Ground-state correlation energies for the Ca isotopes.

40Ca 42Ca 44Ca 46Ca 48Ca

p–h vibrations −0.886 −1.418 −1.606 −1.391 −0.547
pairing vibrations −4.761 −2.978 −3.239 −3.500 −5.823

Table 8.4. (first column) Root mean square error
associated with the HFBCS MSk7 mass formula of
Goriely et al. (2001) and (second column) r.m.s.e.
associated with HFBCS MSk7 mass formula (with
sligthly adjusted parameters) plus the correlation
contributions associated with surface and pair-
ing vibrations calculated in the RPA. The quantity

σ̄ =
(
σ 2

Ca+σ 2
Pb

2

)1/2
is shown in the last line.

σ (MeV)

Pb 0.646 0.543
Ca 1.200 0.466
σ̄ 0.964 0.505

are obtained. Averaging the r.m.s. deviations associated with Ca and Pb isotopes
leads to a value of 0.505 MeV compared with the value of 0.964 MeV obtained
by making use of the results of Goriely et al. (2002). Although a global readjust-
ment of the mean-field parameters should be envisaged, the fact that the locally
extracted r.m.s. deviations have been reduced by a factor of approximately 2 can
be considered meaningful, highlighting the important role that pairing vibrations
play in the ground-state nuclear energies.



9
Beyond mean field

The Hartree–Fock mean field is represented by a static potential. Non-locality
may be approximated by a momentum dependence but the potential is energy
independent. In general, independent particle motion is renormalized by cou-
pling to more complicated degrees of freedom. Such couplings often involve a
time delay and introduce an energy dependence into the single-particle motion.
For example the effective interaction of two nucleons mediated by coupling to
a surface vibration has an energy dependence related to the frequency of the
vibrational mode.

The state of motion of a nucleon in a nucleus may change by a core polarization
process where it promotes a nucleon from a state in the Fermi sea to a state
above the Fermi surface as illustrated in Fig. 9.1 (see also Fig. 8.3(b)), or by an
inelastic collision as illustrated in Fig. 8.10. This is an example of the doorway
phenomenon, the states containing a nucleon and a vibration being the doorway
states. The original formulation of the concepts of doorway state can be found
in Block and Feshbach (1963). The review by Feshbach (1974) contains details
of subsequent developments.

9.1 Doorway states

Through the coupling introduced in equation (8.24) a particle can set the nuclear
surface into vibration. Such process can be repeated, the particle interacting a
second time with the surface and reabsorbing the vibration (see Fig. 9.2). In this
way the particle becomes dressed and the properties characterizing the nucleon,
such as mass, charge, mean free path, occupation number, etc., are modified due
to this coupling.

204
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Figure 9.1. Collision between nucleons where a particle changes state of motion by inducing
a particle–hole core excitation.

(a) (b)

ν1

ν1

ν1

ν1

ν2
ν2

λ

λ

Figure 9.2. The lowest-order process by which the single-particle motion is renormalized
by the coupling to the nuclear surface. In (a) the particle excites the vibration by bouncing
inelastically off the surface. In (b) the vibration is excited by a virtual process (vacuum
fluctuation). Particles are represented by an upwardgoing arrowed line (by a solid dot) while
holes are pictured as a downwardgoing arrowed line (open circle). The surface vibration is
drawn as a wavy line.

9.1.1 The dynamical shell model

The self-energy  of a nucleon in a nucleus is the renormalization of single
particle or single hole energies due to coupling of single-particle motion to
more complicated degrees of freedom. The present chapter will focus on the
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self-energy due to the coupling of single-particle motion to nuclear surface vi-
brations (the coupling to pairing vibrations in rotating nuclei was discussed in
Chapter 6, in particular in Sections 6.3 and 6.4). The relevant processes in lowest
order are illustrated in Fig. 9.2. The corresponding perturbation expression of
the self-energy operator for a particle state is

 (ν1, ω) =
∑
λ,ε2>εF

V 2(ν1, ν2; λ)

ω − (ε2 + ωλ) −
∑
λ,ε2<εF

V 2(ν1, ν2; λ)

−ω + (ε2 − ωλ) , (9.1)

where the minus sign in the second term arises because of fermion exchange
(Pauli principle). Each term of this expression has the typical structure of an
energy correction in second-order perturbation theory, i.e. a square matrix el-
ement divided by an energy denominator. In equation (9.1) ω is the energy of
the initial single-particle state |ν1〉. The phonons associated with the surface
vibrations have energy ωλ and multipolarity λ. The quantities V (ν1, ν2; λ) are
the particle-vibration coupling matrix elements which were defined in equation
(8.31). The energy denominators are the energy differences between the initial
and the intermediate states. The first term in equation (9.1) corresponds to the
polarization graph in Fig. 9.2(a). The energies of both the initial single-particle
state and the intermediate particle state ε2 are both greater than the Fermi energy
εF. The second term illustrated by the graph in Fig. 9.2(b) is associated with
core correlations and the intermediate state |ν−1

2 〉 is a hole state with energy
ε2 < εF.

Some general conclusions can be drawn from the structure of equation (9.1).
The first term is negative for particle states with energies relative to the Fermi
energy which are lower than the phonon energy, ε1 − εF < �ωλ. There is a can-
cellation between negative and positive contributions for high-energy single-
particle states ε1 − εF � �ωλ. The second term is always positive because
ε1 − ε2 > 0 and ωλ > 0. The net result is that low-energy single-particle states
have a negative self-energy and are shifted towards the Fermi level. This shift
has a maximum when ε1 − εF ≈ �ωλ and decreases or even changes sign for
high single-particle states. The self-energy has the opposite sign for hole states
and the resulting effect is to narrow the energy gap between particle states
and hole states. A number of calculations starting from that of Bertsch and
Kuo (1968) support these conclusions (see Mahaux et al. (1985) and references
therein).

Both terms in equation (9.1) are important for an initial state |ν1〉 near the
Fermi level and, in a Fermi gas model, the self-energy  (ν1) ≈ 0 at the Fermi
level due to a cancellation between the two terms. The first term in equation (9.1)
is more important for an initial state |ν1〉 away from the Fermi level because the
energy denominators are smaller. In the following we will make a simple estimate
of the quantity  (ν1) neglecting the second term. The first term can be written
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more explicitly as

 (ν1) =
∑
ν2,λ

V 2(ν1, ν2, λ)

ε1 − (ε2 + �ωλ)

=
∑
ν2λ

β 2
λ

(2 j2 + 1)(2λ+ 1)

〈 j2|R0
∂U
∂r | j1〉2〈l2 j2||Yλ||l1 j1〉2
ε1 − (ε2 + �ωλ)

, (9.2)

where the statistical factors and reduced matrix element of the spherical har-
monic Yλμ associated with angular momentum coupling are shown explicitly
(see Appendix D). There is a parity constraint and l1 + l2 − λ is restricted to
being even.

When ν2 = ν1 the phonon multipolarity λ must be even because of the parity
constraint. Assuming furthermore that j1 � λ, one can use the asymptotic form
of the 3 j-symbols and write (see Appendix D)

〈l1 j1||Yλ||l1 j1〉2 ≈ 0.1(2 j1 + 1), when λ is even. (9.3)

The squared matrix element coupling the nucleon with the vibration can then
be expressed as

V 2(ν1, ν1; λ) = 0.1β 2
λ

(2λ+ 1)
〈 j1|R0

∂U

∂r
| j1〉2, (9.4)

and the quantity  (ν1) becomes

 (ν1) ≈
∑
λ

 λ(ν1), (9.5)

where

 λ(ν1, ω) = −V 2(ν1, ν1; λ)

�ωλ
. (9.6)

The numerators of all the factors appearing in the above equations have a
similar magnitude for both low-lying collective surface vibrations and for high-
lying modes. Because the energy �ωλ is much smaller for low-lying modes than
for giant resonances, we shall consider only the coupling to low-lying vibra-
tional states. In what follows we will estimate (9.6) for the low-lying quadrupole
vibration of 208Pb.

Single-particle levels can be clearly identified in closed-shell nuclei. The nu-
cleus 208

82 Pb is a paradigm of such systems, the single-particle gap for neutrons
(N = 126), i.e. the energy difference between the last occupied 3p1/2 orbital and
the first empty state 2g9/2 is 3.1 MeV. Making use of equations (7.37) and (7.38)
we obtain �ω = 0.7 MeV and β2 = 0.11. An estimate for the radial matrix el-
ement derived in Appendix D is 〈 j |R0∂U/∂r | j〉 ≈ −50 MeV. Substituting into
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equation (9.4) one obtains

V 2(ν1, ν1; λ = 2) = 0.6 MeV2 (9.7)

and

 λ=2(ν1) = −0.9 MeV. (9.8)

The estimate given in equation (9.8) is very sensitive to the parameters used. In
particular a more realistic value of �ω2 as well as ofβ2 will reduce it considerably.

On the other hand the contribution of λ = 4 phonons and other j-values in
the intermediate state would increase the estimate for the level shift. We retain
the value  (ν1) ≈ −0.9 MeV for the purposes of the present section. The self-
energy of a hole level has a similar magnitude but with opposite sign so the
spacing between the occupied and unoccupied neutron levels would be reduced
by 1.8 MeV. The ansatz that this reduction leads to the experimental value of
3.1 MW implies that the single-particle gap predicted by HF theory is 4.9 MeV
(see Section 8.2). Because the density of levels is inversely proportional to the
mass of the particle (see Appendix B) the above result corresponds to an effective
mass (called ω-mass, see next section)

m∗

m
≈ 4.9

3.1
= 1.6. (9.9)

It could be argued that the relation dε/dk ∼ 1/m∗ was obtained for a uniform
system. To bridge the gap between infinite nuclear matter and the case of potential
wells of finite range let us consider a particle of mass m in a one-dimensional
harmonic oscillator, which provides a sensible parametrization of the Saxon–
Woods potential (see Fig. 9.3). It would be argued that in this case the density of
levels is inversely proportional to the square root of the mass of the particle, in
keeping with the fact that �ω0 = �(C/m)1/2, C being the restoring force of the
system. This is not the case as can be seen by writing the above relation in terms
of the unit length parameter b = (�/mω0)1/2, namely �ω0 = �

2/mb2. Requiring
the ground-state wavefunction �0(r ) ∼ exp(−r2/2b2) to have the same radial
spread (b = const.) when one replaces the mass of the particle m by m∗ > m,
the density of levels turns out thus to be proportional to the effective mass, as in
the infinite system discussed in Appendix B.

9.1.2 Motion of a particle in a complex potential

There is extensive experimental evidence showing that a nucleon moving in an or-
bital close to the Fermi energy has a mean free path which is large compared with
the nuclear dimensions and it is effectively in a stationary state. Consequently the
wavefunction can be written as ϕ1(	r , t) = ϕ1(	r )e−iωt . For single-particle levels
progressively removed from the Fermi energy, the probability of finding states
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Figure 9.3. Comparison of a typical Saxon–Woods shell model potential and of a harmonic
oscillator potential whose frequency has been chosen in order to fit the Saxon–Woods poten-
tial. (From Bohr and Mottelson (1969))

with the same energy as the single-particle state becomes sizable, in particu-
lar, states built out of a single particle and a collective surface vibration. Under
these circumstances, the single-particle levels acquire a width and the associ-
ated wavefunction can be written as ϕ1(	r , t) = ϕ1(	r )e−iωt e−

�
2�

t . Consequently,
the probability of finding the state 1 occupied by a particle at time t , when it
was occupied with probability 1 at time t = 0 decays exponentially with time,∫

d3r |ϕ1(	r , t)|2 = exp−
�
�

t . The associated lifetime of the state is connected to
the width � by Heisenberg’s uncertainty relation,

τ = �

�
. (9.10)

The width � is associated with the imaginary part of the self-energy of a
particle. When the energy of the intermediate state ε2 + �ωλ coincides with the
energy ε1 of the initial state the first term in the expression for the self-energy
diverges. The divergence can be avoided by making an energy average, replacing
ω by ω + i I

2 , where I represents the energy interval over which averages are
carried out. The self-energy operator can then be written as

 (1, ω + iI ) = �E(1, ω + iI )− i

2
�(1, ω + iI ), (9.11)

the sum of a real and an imaginary term. The final result, obtained by taking the
limit of  (1, ω + iI ) as I → 0, should not depend on the averaging process.
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It is illuminating to calculate the imaginary part of the self-energy, i.e.

�(1, ω) =
∑
2,λ

V 2(1, 2; λ)
I

(ω − (ε2 + ωλ))2 + ( I
2 )2
. (9.12)

Taking the limit of this function as I → 0 one obtains

�(1, ω) = 2π
∑
2,λ

V 2(1, 2; λ)δ(ω − (ε2 + ωλ)). (9.13)

Approximating V (1, 2; λ) by its average value V leads to the formula

�(1, ω) = 2πV 2�(ω), (9.14)

where the quantity �(ω) =∑
2,λ δ(ω − (ε2 + ωλ)) is the density of final states

per unit energy, into which the particle state can decay. This is just the Golden
Rule and is the basic expression used to describe the decay width of a quantal
state. For scattering states, the quantity− 1

2� can be identified with the imaginary
part of the optical potential.

A simple empirical parametrization of the damping width is provided by the
relation (see Fig. 9.4)

�↓sp ≈ 0.5�ω, (9.15)

where �ω is the single-particle energy measured from the Fermi energy (�ω =
|ε1 − εF|). This parametrization is supported by detailed calculations: Bortignon

EE

Figure 9.4. Full width at half maximum of the strength function associated with deep hole
states, bound states and scattering states in a variety of nuclei. (From Bortignon et al. (1998))
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Figure 9.5. Dependence upon ω = E − εF of the imaginary part of the optical potential for
nuclei with mass number 12 ≤ A ≤ 60. (After Mahaux et al. (1985))

et al. (1986), Donati et al. (1996). Inserting the estimate given in equation (9.7)
of the square of the particle-vibration coupling matrix elements and the empirical
expression equation (9.15) into equation (9.14), we get an estimate for the density
of intermediate states,

�(ω) = 0.5

2π

�ω

V 2
≈ 0.13(�ω) MeV, (9.16)

where �ω is the single-particle energy measured from the Fermi energy expressed
in MeV. In order that the single-particle state |ν〉 can undergo a real transition
into states composed of a particle and a vibration, the density of states should be
sufficiently large (�(ω) � 1 MeV−1). Thus damping will become important when
�ω� 7 MeV. On the other hand, for single-particle levels lying far away from the
Fermi energy the virtual processes become unimportant and the effective mass
of the nucleon coincides with the k-mass, while real processes give a damping
width to these states (see Fig. 9.5).

9.2 Effective mass (ω-mass)

As the graphical perturbation expansion of the single-particle self-energy sug-
gests (see Fig. 9.2 and equation (9.11)), the Hamiltonian describing the single-
particle motion reads (see also equation (8.9)),

Hs.p. =
[
− �

2

2m
∇2 + Ṽ (k)+�E(ω)

]
+U (r )+ iW (ω), (9.17)

where�E(ω) is the real part of the self-energy and W = − 1
2� is the imaginary

part of the optical potential. The dependence of Ṽ (k) on the momentum of the
particle is associated with the non-locality arising from the Pauli principle, and
has been discussed in Section 8.2.1. The dependence of�E(ω) on the frequency
is associated with the non-locality in time generated by the coupling to a surface
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vibration excited by the particle at a given time and reabsorbed at a different
time (virtual, off the energy shell-processes). Effects associated with real, on the
energy shell-processes are described by W(ω).

For many purposes it is possible to rewrite the term in square brackets in
equation (9.17) as a kinetic energy term with an effective mass m∗ (see e.g.
Mahaux et al. (1985)). In fact, requiring that (in keeping with the fact that one
is calculating an inertia, see Appendix B)

d�ω

dk
= �

2k

m∗
,

and calculating

d�ω

dk
= �

2k

m
+ ∂ Ṽ (k)

∂k
+ ∂�E(ω)

∂�ω

d�ω

dk
, (9.18)

which is equivalent to

d�ω

dk
= �

2k

m
(1− ∂�E

∂ω
)−1(1+ m

�2k

∂ Ṽ (k)

∂k
), (9.19)

one obtains

m∗

m
= mk

m

mω

m
. (9.20)

In this equation the ω- and k-masses are given by

mω

m
= (1− ∂�E(ω)

∂�ω
),

mk

m
=

(
1+ m

�2k

∂ Ṽ (k)

∂k

)−1

, (9.21)

where the ω-derivative is to be calculated at the Fermi energy, while mk/m
coincides with the k-mass defined in Section 8.2.1. Consequently,

Hs.p. = − �
2

2m∗
∇2 + Ũ + iW̃ , (9.22)

which is the optical-model Hamiltonian with Ũ = (m/m∗)U and W̃ =
(m/m∗)W . Note that m∗ can have a radial dependence (m∗(r )).

In Fig. 9.6 we display results of calculations of the ω-mass for the single-
particle and single-hole states of 208Pb (see also equation (9.9)). The quantity
mω/m has a peak as a function of the single-particle energy centred around εF,
such that

m∗

m
= mω

m

mk

m
≈ 1.4× 0.7 ≈ 1.

The associated FWHM is approximately 10 MeV, i.e. the ω-mass increase over
the bare mass happens in the interval of energy between −5 MeV and +5 MeV
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Figure 9.6. The ratio mω/m of the ω-mass of a nucleon in 208Pb to the bare nucleon mass as
a function of the energy of the particle measured with respect to the Fermi energy, calculated
within the particle-vibration coupling model. (After Mahaux et al. (1985))

around the Fermi energy. This width is controlled by the frequency of collective
surface vibrations which, in 208Pb, correspond to an energy of the order of a few
MeV. Consequently, for frequencies of the single particle much higher than this
value, the phonons cannot dress the particle in an efficient way any more. Within
the same interval of energy around the Fermi energy for which mω/m > 1, the
imaginary part of the self-energy (see Fig. 9.5 and equation (9.15)) is essentially
zero. This is because no real transitions exist in this energy interval (�(ω) <
1 MeV−1, see equation (9.16)). Furthermore, the result that the ω-mass is larger
than the bare mass has the consequence that the density of levels around the Fermi
energy is larger than that predicted by Hartree–Fock theory, in accordance with
the experimental findings (see Fig. 8.8).

From these results one can understand why the empirical evidence concerning
the energy of single-particle levels around the Fermi energy is well described
by the motion of nucleons in a real, energy-independent, average potential, with
a mass equal to the bare nucleon mass. However, there is a basic difference
between this simple model and the results expressed by equation (9.17). In fact,
in the empirical independent particle model the occupation of each level is either
1 or 0. The situation is more subtle here. Owing to its coupling to the nuclear
surface, a particle which starts in a pure single-particle configuration is forced
into more complicated states of motion. Consequently, the probability of finding
a particle in a single-particle state below the Fermi level is different from 1.
Similarly, unoccupied states at the level of the pure independent particle model
become partially occupied as the particle jumps to these states by exciting a
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surface mode. In fact, the quantity

Zω = (mω/m)−1 (9.23)

is the single-particle spectroscopic factor at the Fermi energy (quasiparticle
strength, see Appendix E, equation (E.18)).

The fact that the ‘more complicated’ states to which the particle states couple
can be at a higher energy than the original energy available to the particle presents
no contradiction, as these are virtual states, i.e. states which last a finite amount of
time (off the energy shell-processes). Because of Heisenberg’s relations, energy
does not need to be conserved within a range which becomes larger the shorter
the time the intermediate state is virtually excited. However, an external field,
such as that produced by a proton, can provide the necessary energy to make
the process real and eventually pick up a neutron in the reaction A(p, d)B from
states above the Fermi energy. Results of calculations of the occupation number

n j =
{

1+ d�E ′
dE j = occ. orbit,

− d�E ′
dE j = empty orbit

(9.24)

are given in Fig. 9.7. In the above equation, the quantity�E ′ is the contribution
associated with Fig. 9.2(b) arising from ground-state correlations.

BBDM

n − 208Pb
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0.00

0.10

0.20

0.80

0.90

1.00

ε (0)
nlj

n n
lj

(MeV)

Figure 9.7. Occupation probability of neutron orbits in the correlated 208Pb nucleus plotted
against the single-particle energy εnl j computed in the Skyrme III-Hartree–Fock approxima-
tion. The calculation is based on equation (9.24). The dots correspond to the 1 f7/2, 2p1/2,
1g7/2, 1h11/2, 1h9/2, 2 f7/2,2 f5/2, 1i13/2, 3p3/2 and 3p1/2 hole states, and to the 2g9/2, 1i11/2,
1 j15/2, 3d5/2, 2g7/2, 4s1/2, 3d3/2, 2h11/2 and 2h9/2 particle states. The dashed curve has been
drawn to guide the eye through the calculated dots in order to exhibit their trend. The arrows
show the location of ε−F = ε3p1/2 and ε+F = ε2g9/2 (After Mahaux et al. (1985))
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The physics which is at the basis of the results displayed in Figs. 9.5 and 9.6
finds a compact expression in the dispersion relation (Mahaux et al. (1985))

�E(ω) ≈ P

π

∫
W (ω′)
ω − ω′ dω

′.

In this equation, P stands for the principal part integral for the real and imaginary
parts of an analytic function (see equation (9.11)), i.e.

P
∫ b

a
f (x)/(x − x0)dx = lim

δ→0+

[∫ x0−δ

a
+

∫ b

x0+δ

]
Because energy-conserving, on-the-energy shell processes are easier to cal-

culate than virtual, off-the-energy shell processes, the dispersion relation above
can be used in calculating the real potential from a known imaginary potential
(see (9.17)).

9.3 The ω-mass and the induced interaction

In this section we obtain an expression for the ω-mass in a simplified version of
the particle-vibration coupling model and show how it is related to the induced
pairing interaction between nucleons resulting from the exchange of surface
phonons. The self-energy of a nucleon is due to the emission and absorption
of a virtual phonon as illustrated in Fig. 9.2 while the induced interaction is
represented by Fig. 8.3(c). The general particle-vibration coupling model is
simplified by considering coupling with only one type of phonon with frequency
ωλ and by assuming that the single nucleon levels are uniformly distributed
around the Fermi level. A more systematic discussion of the induced nucleon–
nucleon interaction due to phonon exchange will be presented in the next chapter.

The single-particle self-energy expression given in equation (9.1) is the sum
of a polarization term  (p) (ω) (Fig. 9.2(a)) and a core correlation term  (c) (ω)
(Fig. 9.2(b)) They give equal contributions to the ω-mass at the Fermi level in
the simplified model considered here. The polarization term is

 (p)
ν (ω) = �E (p) (ω) =

∑
ν ′

V 2(ν, ν ′; λ)

ω − (eν ′ + �ωλ)
, (9.25)

where eν ′ = εν ′ − εF and ω = eν − εF. At the Fermi energy ω = 0 and

∂�E (p)
ν (ω)

∂ω

∣∣∣∣∣
ω=0

= −
∑
ν ′

V 2(ν, ν ′; λ)

(ω − (eν ′ + �ωλ))2

∣∣∣∣∣
ω=0

(9.26)

= −
∑
ν ′

V 2(ν, ν ′; λ)

(eν ′ + �ωλ)2
.
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If the sum is approximated by an integral assuming a density of single-particle
states of one-spin orientation at the Fermi level N (0) (g/2 in equation (3.58),
1/d and 3A/8EF in equation (2.1)) and constant single-particle matrix elements
V we get

∂�E (p)
ν (ω)

∂ω

∣∣∣∣∣ ≈ −N (0)
∫ ∞

0

V 2de

(e + �ωλ)2
(9.27)

= −N (0)
V 2

�ωλ
.

The core correlation part of the self-energy gives an equal contribution so that
the total value is

∂�Eν(ω)

∂ω

∣∣∣∣ = −2N (0)
V 2

�ωλ
. (9.28)

Consequently the ω-mass defined in equation (9.21) is

mω = m

(
1− ∂�E (p)

ν (ω)

∂ω

)
= m(1+ λp-v). (9.29)

The quantity λp-v is defined by

λp-v = N (0)
2V 2

�ωλ
= N (0)gp-v, (9.30)

where

gp-v = 2V 2

�ωλ
, (9.31)

is a particle-vibration coupling parameter. The factor (1+ λp-v) is known as the
mass enhancement factor.

The vibration excited by a nucleon interacting with the surface can be absorbed
by a second nucleon as shown in Fig. 8.3(c), giving rise to an induced interaction.
In this section we are interested in the induced interaction which contributes to
pairing. Nucleons in time-reversed states |ν〉 and |ν̄〉 with energies ε exchange
a phonon and make a transition to final states

∣∣ν ′〉 and
∣∣ν̄ ′〉 with energies ε′ as

illustrated in the inset of Fig. 10.1. The transition matrix element is

vνν ′ = 2V 2(ν, ν ′; λ)

εν − (εν ′ + �ωλ)
. (9.32)

The factor 2 arises because there are two possible processes each giving the same
matrix element: the phonon may be emitted by the state |ν〉 and absorbed by |ν̄〉,
and vice versa. The matrix element is not symmetric in the initial and final state.
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A symmetrized form can be obtained by interchanging the initial and final states
and averaging

vνν ′ = V 2(ν, ν ′; λ)

εν − (εν ′ + �ωλ)
+ V 2(ν, ν ′; λ)

εν ′ − (εν + �ωλ)
(9.33)

= 2�ωλV 2(ν, ν ′; λ)

(εν − εν ′)2 − (�ωλ)2
. (9.34)

For εν ≈ εν ′ ≈ εF and assuming a constant particle-vibration coupling matrix
elements V , one obtains

vνν ′ = −2V 2

�ωλ
= −gp-v. (9.35)

Making use of typical values of λp-v ≈ 0.6 (see equation (9.9) and Fig. 9.6)
and N (0) ≈ 3.4 MeV−1 (e.g. 120Sn, see Fig. 8.4 and discussion following (8.21))
one obtains from equations (9.30) and (9.35) v̄ = −0.2 MeV (see also Section
10.2, discussion in paragraph before equation (10.20)).

The bare nucleon–nucleon interaction is essential for the production of pair
correlations in nuclei, but the induced interaction due to phonon exchange also
contributes. In order to assess the importance of the induced interaction we make
an estimate of the pairing gap, neglecting the bare interaction completely. The
pairing gap equation with the interaction vνν ′ = −gp-v is

� = gp-v

∑
ν>0

�

2Eν
. (9.36)

By approximating the sum by an integral this relation can be written as

1 = gp-v N (0)
∫ ωD

−ωD

de
1√

e2 +�2
≈ gp-v N (0) sinh−1

(ωD

�

)
, (9.37)

where N (0) is the density of levels at the Fermi energy for one-spin orientation,
and ωD is a typical energy associated with surface vibrations. From the relation
above one obtains

� = ωD

(
sinh

(
1

λp-v

))−1

. (9.38)

In the case in which λp-v � 1 (weak coupling limit) one can write (see (3.58))

� = 2ωD exp

(
− 1

λp-v

)
, (9.39)

while

� = ωDλp-v (9.40)
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in the case in which λp-v � 1 (strong coupling limit).
Making use of typical values of λp-v ≈ 0.6 (see (9.9)) and ωD ≈ 1–2 MeV, one

expects from equation (9.39) the induced interaction arising from the exchange
of low-lying collective surface vibrational states to give rise to pairing gaps of
the order of 0.4–0.8 MeV, i.e. pairing gaps which are of the order of 50% of the
empirical value 12/

√
A MeV.

The above treatment of the consequences the fermion–boson (particle–
vibration) coupling has on the properties of the single-particle states neglects
two major effects (see Sections 9.1 and 9.2, see also Schrieffer (1964) equation
(7.83); note that Z (p�) is the inverse of Zω). Firstly, the single-particle strength
is reduced from the value of 1 to a smaller value Zω (see equation (9.23)). Sec-
ondly, the single-particle states acquire a finite width �(ω). These effects can
change quantitatively the estimates given in Equations (9.39) and (9.40). In par-
ticular, considering only the effect of the width, i.e. setting Zω = 1, Morel and
Nozières (1962) found, for the case of an infinite system,

�(	k) =
∫

V
(
	k − 	k ′

) �(k ′)
2Ek ′

[
2

π
tanh−1

(
Ek ′

�k ′

)]
d3k ′

(2π )3
(9.41)

where 	k is the momentum of the single particle and V (	k − 	k ′) is the (state
dependent) two-body interaction. The effect of the bracketed factor is to cut off
the integral when the imaginary part �k reaches the same magnitude as Ek , thus
reducing the prefactor appearing in equations (9.39) and (9.40) (see also Baldo
et al. (2002)).

The fact that there is an explicit relation between the value of the induced
pairing interaction, of the ω-mass, of the occupation number Zω and of the
damping width�(ω) is closely connected to sum rule arguments (Ward identities)
relating self-energy and vertex correction processes to particle conservation (see
Section 8.3.4 and Fig. 8.16) (see also Mahan (1981)).

Note that one has also neglected some of these relations and effects when
discussing the results displayed in Fig. 8.6 and 8.9. They are taken up in Section
10.4, in connection with the results displayed in Fig. 10.16 (see also Appendix H,
Section H.4, as well as Terasaki et al. (2002a, 2002b)).

Let us close this section by relating equation (9.40) to the single j-shell equa-
tion (H.30). Because N (0) =∑

j � j/2ωD = �/2ωD, where� j = (2 j + 1)/2,
equation (9.40) can also be written as

� = 1

2
gp-v�. (9.42)
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Induced interaction

As discussed in the last section of Chapter 9 a pair of nucleons can interact
with each other through the nuclear surface in a process in which one nucleon
excites a vibrational mode which is then absorbed by the other nucleon (see
inset Fig. 10.1). This process leads to a renormalization of the nucleon–nucleon
interaction which, for nucleons close to the Fermi energy, is controlled by the
exchange of low-lying surface collective vibrations. This is because low-energy
surface vibrations match the frequencies of these nucleons and are very col-
lective. This argument is the same as that used to explain the central role of
surface vibrations in renormalizing the single-particle motion. The contribution
of surface vibrations to the single-particle self-energy and to the ω-mass was
analysed in Chapter 9 and a simplified version of the particle-vibration cou-
pling model was introduced in Section 9.3. It gave explicit expressions for both
the ω-mass and the induced pairing interaction and pairing gap due to phonon
exchange. They both have a simple dependence on the coupling strength gp-v

which is defined in equation (9.31). The present chapter extends the discus-
sion of the induced interaction and presents the results of microscopic calcula-
tions. Section 10.3 presents results in a slab model, where the simplicity of the
infinite system is retained (absence of shell structure), without losing surface
effects.

10.1 Simple estimates

Estimates of the induced pairing interaction due to phonon exchange were ob-
tained in Section 9.3 in a model with constant matrix elements and a uniform
distribution of single-particle levels. The present section extends that discussion
by including shell effects (Broglia et al. (2001)). The starting point is a pertur-
bation expression for the induced interaction written in terms of ( j, j) coupled

219
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Figure 10.1. State-dependent pairing gap �ν for the nucleus 120Sn, calculated by making
use of the induced interaction (see inset, where particles are represented by arrowed lines
and phonons by a wavy line) (after Barranco et al. (1999)). Reprinted with permission from
Barranco et al., Phys. Rev. Lett. 83: 2147–50 (1999). Copyright 1999 the American Physical
Society.

matrix elements

v j j ′ ≡ 〈( j j)0|v|( j ′ j ′)0〉 =
∑
λ

vλj j ′, (10.1)

where

vλj j ′ =
2√

(2 j + 1)(2 j ′ + 1)

V 2
(

j, j ′; λ
)

Dλ
. (10.2)

Here v j j ′ is the induced matrix element for scattering of a pair of nucleons from
the state j with energy ε j to the state j ′ with energy ε j ′ . The nucleons are coupled
to a total angular momentum zero in both the initial and final states (see Appendix
D, equations (D.11)–(D.14)). The matrix element v j j ′ is a sum of components
vλj j ′ corresponding to the exchange of phonons with different multipolarities λ
and energies �ωλ. The V 2

(
j, j ′; λ

)
are the square of particle-vibration coupling

matrix elements

V 2
(

j, j ′, λ
) = β2

λ

2λ+ 1
〈 j ′|R0

∂U

∂r
| j〉2〈l ′ j ′||Yλ||l j〉2, (10.3)

introduced in Section 8.3 and defined in Appendix D (equation (D.9)). They
were used in equation (9.6) for the calculation of single-particle self-energies.
The quantity βλ is the root mean square fluctuation of the collective coordinate
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of the phonon of multipolarity λ in the ground state and 〈 j ′|R0∂U/∂λ| j〉 is a
radial coupling matrix element. The energy denominator Dλ in equation (10.2)
can be approximated in different ways. In Section 9.3 (equation (9.34)) it was
written as

1

Dλ
≈ �ωλ(

εi − ε j
)2 − (�ωλ)

2
,

which reduces to Dλ ≈ −�ωλ when εi = ε j . The microscopic calculations pre-
sented in the next section use a more accurate energy denominator from Bloch–
Horowitz perturbation theory (Bloch and Horowitz (1958))

Dλ = E0 − (�ωλ + e j + e j ′), (10.4)

used in Barranco et al. (1999) for calculating the contribution of phonon exchange
to pairing in nuclei. Here e j =

∣∣ε j − εF

∣∣ are single-particle energies measured
from the Fermi energy and E0 is a (negative) BCS correlation energy.

The diagonal ( j = j ′) induced matrix elements can be estimated from

vλj j = −
2β2
λ

2λ+ 1

〈 j |R0
∂U
∂r | j〉2

(2 j + 1)

〈 j ||Yλ|| j〉2
�ωλ

≈ − 0.2β2
λ

2λ+ 1

(50 MeV)2

�ωλ
, (10.5)

with the approximations Dλ ≈ −�ωλ for the energy denominator and
〈 j ||Yλ|| j〉2 ≈ 0.1 (2 j + 1)) for the square of the reduced matrix element, as well
as 〈 j |R0∂U/∂r || j〉 ≈ −50 MeV (Appendix D). Only even values of λ contribute
when j = j ′ because of the parity selection rule contained in the reduced ma-
trix elements 〈 j ||Yλ|| j〉. There is also an angular momentum constraint λ � 2 j .
For 120Sn, β2 = 0.119 and �ω2 = 1.171 MeV (Beer et al. (1970)), while an
RPA estimate of the corresponding parameters for λ = 4 leads to β4 = 0.07 and
�ω4 = 1.2 MeV (Gori (2002)). Making use of these values one obtains

v2
j j = −1.2 MeV, v4

j j = −0.2 MeV, v j j = −1.4 MeV, (10.6)

a number which is also consistent with the result given in equation (9.8) (note
the difference of a factor of 2 between self-energy and induced interaction; see
equations (9.6) and (9.35) respectively). The same factor occurs in equations
(10.2) and (10.5). It has its origin in the two possible time orderings in the
phonon exchange diagram shown in Fig. 8.3(c) (see inset to Fig. 10.1).

The (typical) matrix element v j j = 〈( j j)0|v|( j ′ j ′)0〉 (= −1.4 MeV) induced
interaction reported in equation (10.6) is found to be of the same order of magni-
tude or even larger than the (attractive) bare interaction matrix elements reported
in Fig. 8.5 (i.e.−1.8 � 〈 j2(0)|v14| j2(0)〉 ≤ 0, j = s1/2, p3/2, d5/2). The fact that
‘The polarization interaction resulting from the coupling to the low frequency
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modes may be considerably larger than the bare force . . . ’ was discussed by
Bohr and Mottelson (1975) in Section 6-5f p.432 (see also Broglia, Paar and Bes
(1971a,b)).

Let us compare the induced interaction with the strength of the typical pairing
force with constant matrix elements G (≈ 25/A MeV) tailored to reproduce the
empirical value of the pairing gap � ≈ 12/

√
A MeV. The pairing strength G is

a matrix element between uncoupled pair states and to make the comparison the
states | ( j j)0〉 with total angular momentum zero have to be written in terms of
uncoupled m-states

| ( j j)0〉 =
∑

m

(−1) j−m

√
2 j + 1

| jm, j − m〉 =
∑

m

1√
(2 j + 1)

| jm, j̃m〉,

where | j̃m〉 is the time reverse of the state | jm〉. The expression for the matrix
element v j j ′ becomes

v j j ′ = 〈( j j)0 |v|
(

j ′ j ′
)

0〉 =
∑
mm ′

1√
(2 j ′ + 1) (2 j + 1)

〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉.

Assuming that the matrix elements in the m-scheme are all equal, an induced
pairing interaction strength can be defined by

G ind = −〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉,
and one obtains (cf. equation (D.15))

〈( j j)0 |v| ( j ′ j ′)0〉 = −
√

(2 j + 1) (2 j ′ + 1)

2
G ind. (10.7)

Consequently, for j = j ′,

G ind = − 2v j j

(2 j + 1)
. (10.8)

The single neutron states near to the Fermi energy in 120Sn are d5/2, h11/2, s1/2,
g7/2 and d5/2, corresponding to an average j̄ = 7/2. Making use of this value,
the relation (10.8) and the estimate given in equation (10.6) one obtains G ind =
0.35 MeV. This number should be compared with the empirical pairing strength
G = (25/A) ≈ 0.21 MeV. In spite of the over-simplifications of this estimate
it surely indicates that the induced pairing interaction due to particle–phonon
coupling can account for a significant fraction of the total pairing interaction.

The estimates of βλ and �ωλ in Section 7.1 have a simple A-dependence
(βλ ∝ A−2/3 and �ωλ ∝ A−2/3). Thus the matrix element

vλj j ≈ −
185 MeV

(λ− 1)(λ+ 2)

(1+ 0.001A)

A2/3
(10.9)



10.2 Microscopic calculations 223

is approximately independent of j . The A-dependence of the induced pairing
interaction strength given in equation (10.8) can be estimated by using this
relation and the average degeneracy (2 j + 1) of a j-orbit near the Fermi level.
This quantity can be calculated in terms of the mean value k̄F = (2/3)kF of the
Fermi momentum (kF = 1.36 fm−1) and of the nuclear radius R = 1.2A1/3 fm
( j ≈ k̄F R) leading to (2 j + 1) ≈ 2.2A1/3. Using this estimate and equations
(10.1), (10.8) and (10.9) (λ = 2 and 4) we get

G ind ≈ 29

A
MeV. (10.10)

This has the same A-dependence as the empirical pairing strength but is some-
what too large.

The following three sections present the results of detailed microscopic calcu-
lations of the induced interaction. The first is a self-consistent calculation of the
pairing gap for the semi-magic nucleus 120Sn as well as for Ca and Ti isotopes
and the second is for a slab-model where shell effects are suppressed. Both of
these calculations use Bloch–Horowitz energy denominators (10.4) which are
always larger than the value �ωλ used for the estimates in this section. In Section
10.4 a calculation is presented based on the Dyson equation, which takes into
account, aside from the bare nucleon–nucleon potential, the induced pairing in-
teraction, on equal footing to the self-energy and vertex corrections. All of these
microscopic theories give induced pairing strengths which are considerably
smaller by a factor of about 2 than the estimate given in equation (10.10).

10.2 Microscopic calculations

In this section the results of a calculation of the state-dependent pairing gap
associated with the induced interaction will be presented. The discussion is
based on Broglia et al. (2001), Barranco et al. (1999). In the following ν refers
to the pair state | ( jν jν)0〉 = | j2

ν (0)〉 with total angular momentum zero and the
matrix element (see Appendix D, equation (D.15))

Gνν ′ = −vνν ′ = − 2〈 j2
ν (0)|v| j2

ν ′(0)〉√
(2 jν + 1) (2 jν ′ + 1)

, (10.11)

so that the normalization of Gνν ′ is the same as the normalization of the induced
interaction in equation (10.8), and can be directly compared with the pairing
coupling constant and G (≈ 25/A MeV) introduced in defining the BCS pairing
Hamiltonian (Chapter 3).

The calculation of the matrix elements uses the perturbation method of Bloch
and Horowitz (1958). The application of this method to nuclear problems is
explained in Appendix B of Bes et al. (1976a). In the Bloch–Horowitz ap-
proach, the exchange of phonons (vibrations) is iterated to infinite order, by the
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self-consistent solution of the set of coupled equations

Gνν ′ = −
∑
λn

4β2
λ(n)

(2 jν + 1) (2 jν ′ + 1) (2L + 1)

〈 jν ′ |R0
∂U
∂r | jν〉2〈 jν ′ ||Yλ|| jν〉2

E0 − [eν + eν ′ + �ωλ(n)]
,

(10.12)

with

E0 = U − Eunp. (10.13)

The energy E0 in equation (10.13) is the pair-correlation energy and is the dif-
ference between the ground-state energy U including pairing correlations and
the unperturbed ground state energy Eunp. The energies U and Eunp are defined
explicitly in the following paragraph (see also Appendix G). The sum in equa-
tion (10.12) is taken over all multipolarities λ. The sum over n allows for the
possibility that there may be several phonons with the same multipolarity. Equa-
tion (10.12) differs from (10.2) and (10.5) in several respects. The normalization
is different because of the normalization (10.11) of Gνν ′ . In Bloch–Horowitz
perturbation theory the energy denominator is the difference between the final
energy of the system E0 and the energy of the, unperturbed, intermediate state
(see Fig. 10.1) eν + eν ′ + �ωλ(n). The dependence on E0 is a feature of the
Bloch–Horowitz perturbation method. The eν and eν ′ are magnitudes of single-
particle energies of the states ν and ν ′ measured from the Fermi energy. As the
correlation energy E0 is negative, the denominator in the last factor in equation
(10.12) is always negative and each term contributing to Gνν ′ is positive. The ex-
pression for Gνν ′ (equation (10.12)) is automatically symmetric in the initial and
final states ν and ν ′. Thus it is not necessary to make the ad hoc symmetrization
as in equations (9.33), (9.34).

The unperturbed ground-state energy in equation (10.13) is

Eunp =
∑

jν
εν < εF

(2 jν + 1) (εν − εF) . (10.14)

where εν are single-particle energies and εF is the Fermi energy. The perturbed
energy is

U =
∑

jν

(2 jν + 1) (εν − εF) V 2
ν −

∑
jν jν′

(2 jν + 1) (2 jν ′ + 1)

4

Gνν ′

4

� jν� jν′

E jν E jν′
.

(10.15)

Thus E0 = U − Eunp is the ground-state correlation energy. The gap parameters
�ν satisfy the gap equation

� jν =
∑

jν′

2 jν ′ + 1

2

Gνν ′� jν′

2E jν′
, (10.16)
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where the quasiparticle energies are given by

E jν =
√(
ε jν − εF

)2 +�2
ν . (10.17)

The BCS occupation probabilities are defined by

V 2
jν =

1

2

(
1− ε jν − εF

E jν

)
,

and the Fermi energy εF is fixed by the condition

N = 2
∑

jν

V 2
jν . (10.18)

By using the gap equation (10.16) the second term in equation (10.15) can be
written as a single sum∑

jν j ′ν

(2 jν + 1) (2 jν ′ + 1)

4

Gνν ′

4

� jν� jν′

E jν E jν′
=

∑
jν

(2 jν + 1)

2

�2
jν

2E jν

(10.19)

The basic ingredients needed in solving these equations are the single-particle
energies εν and the corresponding wavefunctions φν(	r ), as well as the phonon
energies �ωλ(n) and the transition probabilities

B (Eλ : 0→ λ(n)) =
(

3

4π
ZeRλ

)2

β2
λ

of the vibrational modes. The quantities εν and φν(	r ) are calculated assuming nu-
cleons to move in an average field containing a spin-orbit term and parametrized
in terms of a Saxon–Woods potential, with standard parameters. The vibrations
are calculated in the quasiparticle random phase approximation (see equation
(8.47)), adjusting the coupling constant to reproduce the energy and transition
probabilities of lowest-lying vibrational states. The resulting values are, as a
rule, quite close to the self-consistent value relating the potential variation to the
density variation in a self-sustained normal mode of oscillation.

In Fig. 10.1 we show the calculated state-dependent pairing gap for the nu-
cleus 120Sn. The matrix elements Gνν ′ are shown in Fig. 10.2 and Table 10.1.
The corresponding state dependence of �ν is closely connected with the strong
state dependence of Gνν ′ . This dependence reflects the fact that scattering
processes implying spin-flip are essentially possible only because of quantal
fluctuations.

In any case, the average value of these matrix elements associated with states
lying close to the Fermi energy is Ḡ =∑

ν≥ν ′ Gνν ′/15 ≈ 0.11 MeV (see Section
9.3, discussion following equation (9.35), note that Ḡ is to be compared to |v̄|),
while the pairing-correlation energy is E0 ≈ 4 MeV. The value of Ḡ can be
compared with the value G ≈ 0.2 MeV of the standard parametrization G =
25/A MeV. It is seen from Fig. 10.1 that the pairing gap around the Fermi energy
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Table 10.1. Matrix elements Gνν ′ of the induced inter-
action as shown in Fig. 10.2; The corresponding aver-
age value is Ḡ =∑

ν ′≥ν Gνν ′/15 = 0.11 MeV (after Gori
(2002)).

d5/2 g7/2 s1/2 h11/2 d3/2

d5/2 0.08 0.016 0.182 0.158 0.109
g7/2 0.016 0.08 0.05 0.022 0.143
s1/2 0.182 0.05 0 0.124 0.272
h11/2 0.158 0.022 0.124 0.179 0.032
d3/2 0.109 0.143 0.272 0.032 0.167
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d

d

d

d

s
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h

g

s

s

h

d

Figure 10.2. Matrix elements Gνν ′ of the induced interaction defined in equations (10.11)–
(10.12) used in the calculation of the state-dependent pairing gap of 120Sn (equation (10.16))
shown in Fig.10.1 for levels lying close to the Fermi energy εF (εd5/2 = −12.0 MeV, εg7/2 =
−10.9 MeV, εs1/2 = −9.7 MeV, εh11/2 = −9.21 MeV, εd3/2 = −9.0 MeV, ε f7/2 = −4.0 MeV,
εF = −9.2 MeV). The values on the ordinates are in MeV (after Gori (2002)).

is of the order of 0.8 MeV, which is an appreciable fraction of the empirical value
of 1.4 MeV, obtained from the mass table (Audi and Wapstra (1995)) making
use of the relation

� = 1
2 [B (N − 2, Z )+ B (N , Z )− 2B (N − 1, Z )] , (10.20)

where B(N , Z ) is the binding energy of the nucleus with N neutrons and Z
protons.

Fig. 10.3 shows the value of the state-dependent pairing gap averaged over
levels lying in an energy interval of the order of ±2� around the Fermi energy,
for a number of Sn isotopes, in comparison with the corresponding empirical
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A
50

A

Figure 10.3. Average value of the state dependent pairing gap associated with levels lying
close to the Fermi energy of A

50Sn isotopes, calculated making use of the induced pairing in-
teraction Gνν ′ (equations (10.11)–(10.12)), in comparison with the empirical pairing gap (see
equation (10.20)). The results of two calculations are shown, associated with RPA solutions
which fit two different sets of transition probabilities associated with the low-lying quadrupole
and octupole surface vibrations. The first set (also used to obtain the results reported in Fig.
10.1) was taken from Beer et al. (1970), Th. a). The second set is from Jonsson et al. (1981),
Th. b). Reprinted with permission from Barranco et al., Phys. Rev. Lett. 83:2147–50 (1999).
Copyright 1999 by the American Physical Society.

values obtained from equation (10.20) and mass table. In all cases, theory ac-
counts for a consistent fraction of the empirical values of the pairing gaps. If
one were to reproduce this empirical value of�, one would need to add to Gνν ′

an approximately constant quantity, which changes only slightly from isotope
to isotope, and whose average value is G0 ≈ 0.06 MeV. This corresponds to a
parametrization G0 = X/A MeV with X ≈ 7.

The main contribution to the state-dependent pairing gap defined in equation
(10.16) arises from the exchange of low-lying surface collective modes. In fact,
repeating the calculation of �ν but this time including only the lowest-lying
surface vibrations (n = 1, λπ = 2+, 3−, 4+, 5−), one obtains results which co-
incide, within 20%, with those obtained from the full calculation. The main
contributions arise from the exchange of low-lying quadrupole and octupole
vibrations. These results are closely connected with the difference in matrix el-
ements associated with low-lying collective surface vibrations and with giant
resonances. In fact the average value of Gνν ′ resulting from the coupling to vi-
brational states with energy �ωλ(n) ≤ 7 MeV is 0.08 MeV (see Fig. 10.4 and
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Table 10.2. Induced matrix elements (Gνν ′)low (in MeV)
(see Fig. 10.4) (after Gori (2002)).

d5/2 g7/2 s1/2 h11/2 d3/2

d5/2 0.059 0.01 0.156 0.124 0.07
g7/2 0.01 0.062 0.028 0.015 0.12
s1/2 0.156 0.028 0 0.074 0.258
h11/2 0.124 0.015 0.074 0.162 0.02
d3/2 0.07 0.12 0.258 0.02 0.162
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Figure 10.4. Induced interaction matrix elements (Gνν ′ )low (in MeV) associated with the
exchange between nucleons moving in time-reversal states close to the Fermi energy εF of
120Sn of low-lying (�ω(n) ≤ 7 MeV) surface vibrations (λπ = 2+, 3−, 4+, 5−) (after Gori
(2002)).

Table 10.2), while that associated with the coupling to vibrational states with
�ωλ(n) > 7 MeV is 0.03 MeV (see Fig. 10.5 and Table 10.3). One expects that
this small average value would become even smaller by considering the fact that
giant resonances are not sharp states but display a damping width.

Because low-lying surface vibrations are built, to some extent, by the same
valence nucleons which participate in the Cooper pair formation, one would
expect that the values of (Gνν ′)low shown in Fig. 10.4 (and thus the total value
Gνν ′ = (Gνν ′)low + (Gνν ′)high shown in Fig. 10.2 as well as�ν (Fig. 10.1) will be
somewhat modified by Pauli principle corrections. In fact, it is found that these
corrections modify (reduce), as a rule, the value of �ν by about 10% from the
value obtained by making use of equation (10.12) (Appendix F). This correction
is expected to be larger in the case of light, halo nuclei (see next chapter).
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Table 10.3. Matrix elements (Gνν ′)high (in MeV) as shown
in Fig. 10.5 (after Gori (2002)).

d5/2 g7/2 s1/2 h11/2 d3/2

d5/2 0.026 0.007 0.04 0.044 0.048
g7/2 0.007 0.025 0.025 0.009 0.036
s1/2 0.04 0.025 0 0.064 0.046
h11/2 0.044 0.009 0.064 0.042 0.016
d3/2 0.048 0.036 0.046 0.016 0.027
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Figure 10.5. Induced matrix elements (Gνν ′ )high (in MeV) associated with the exchange
of high-lying vibrations (essentially giant resonances) with �ωλ(n) > 7 MeV and (λπ =
2+, 3−, 4+ and 5−) between nucleons moving in time-reversal states close to the Fermi energy
εF of 120Sn (after Gori (2002)).

In Fig. 10.6 the results of calculations of the pairing gap carried out as ex-
plained above for the isotopes ACa and ATi are shown compared with the em-
pirical values obtained with the help of equation (10.20). The average value
of Gνν ′ associated with levels lying close to the Fermi energy is, in this case,
of the order of 0.2 MeV, while E0 is of the order of −3 MeV. The induced
interaction leads to pairing gaps which again, in these cases, account for a
consistent fraction of the empirical value. The results furthermore display a sim-
ilar dependence on A to that displayed by the experimental values, a dependence
which reflects the shell dependence of the collective surface modes. In particular,
the low predicted value of � in 50Ca compared with 42Ca is due to the fact that
the ‘core’ 48Ca is more rigid than the core 40Ca, as can be seen from Fig. 10.7
where theβ2 andβ3 values associated with the different Ca-isotopes are reported.
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A

Figure 10.6. Average value of the state-dependent pairing gap associated with levels lying
close to the Fermi energy of the A Ca- and the ATi-isotopes, compared with the experimental
data calculated by making use of the relation � = 1

2 [B(N − 2, Z )+ B(N , Z )− 2B(N −
1, Z )], where B(N , Z ) is the binding energy of the nucleus with N protons and Z neutrons,
after Gori (2002).

Within this context it is interesting to note that the corresponding quantities for
the Sn-isotopes are essentially constant as a function of A (see Fig. 10.8)), a fact
which is intimately connected with the essential constancy, as a function of A,
observed in the gap of the Sn-isotopes (see Fig. 10.3).

The results discussed in this section may provide, at the microscopic level,
insight into the success found by surface and density-dependent pairing interac-
tions used in the literature to describe the low-energy nuclear structure (Green
and Mozkowski (1965), Faessler (1968), Bertsch and Esbensen (1991)).

Let us conclude this section by noting that, because collective vibrations cou-
ple democratically to all nucleons, regardless of their isospin quantum number,
the induced pairing-force mechanism is expected to lead to a consistent proton–
neutron pairing correlation, as well as to multipole (in particular quadrupole)
pairing correlations. Although the field has not been explored, calculations car-
ried out in 42Sc (Barranco et al. (1999)) indicate this to be the case.



10.3 Slab model 231

2

3

b
b

Figure 10.7. Value of the deformation parameters β2, β3 for the Ca-isotopes (after Gori (2002)).

b
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Figure 10.8. Value of the deformation parameters β2, β3 for the Sn-isotopes (Jonsson et al.
(1981)) (after Gori (2002)).

10.3 Slab model

To assess the universality of the results presented in the previous section, we
shall study the induced pairing interaction in a system free of shell effects, but
retaining the properties associated with the confinement of nucleons by an elastic
surface. For this purpose we use the slab model for semi-infinite nuclear matter
proposed by Esbensen and Bertsch (1984a,b) and Bertsch and Esbensen (1985).
In the present section the aim is to study the induced interaction between nucleons
due to coupling with surface modes. The discussion here is based on the work
of Giovanardi et al. (2002). The collective response of the nuclear surface is
approximated by the RPA response function and the coupling of the nucleon
motion to the surface vibrations is calculated self-consistently.
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In the theory of Esbensen and Bertsch (1984a,b) the nucleons are confined in
the half-space z < 0 by the one-dimensional Fermi-like potential

V (z) = V0(1+ e−z/a)−1. (10.21)

The single-particle wavefunctions in the potential (10.21) can be written as


ν(	r ) = ei	kνp·	rpφν(z). (10.22)

The corresponding energy eigenvalues and momentum parallel to the surface are

εν = �2k2
νp

2m + ενz where 	kνp = (kνx , kνy, 0). The vector 	rp is parallel to the plane
of the surface of the slab (x, y, 0). The wavefunctions φν(z) are solutions of the
single-particle Schrödinger equation(−�

2

2m

d2

dz2
+ V (z)

)
φν(z) = ενzφν(z), (10.23)

normalized so that, for z →−∞,

φν(z) =
√

2 cos(kνzz + θν), (10.24)

where kνz is the asymptotic wavenumber and θν a phase.
The next step in the calculation of the induced interaction consists in deter-

mining the vibrational modes of the system. For this purpose one diagonalizes
the surface-peaked separable interaction

v(	r , 	r ′) = k0g(|	rp − 	r ′p|)V ′(z)V ′(z′), (10.25)

in a particle–hole basis and in the harmonic approximation (RPA). The quantity
V ′(z) is the derivative of the potential defined in equation (10.21). The finite-
range Yukawa interaction acting in the x, y-direction,

g(|	rp − 	r ′p|) =
e|	rp−	r ′p|/ar

2πar |	rp − 	r ′p|
, (10.26)

with ar = 1 fm, has been chosen so as to give a realistic value of the nuclear
surface tension (1 MeV/fm2). The coupling strength κ0 is determined by the
relation

κ−1
0 =

∫
dzρ ′0(z)V ′(z), (10.27)

which expresses the self-consistent condition existing between density and po-
tential fluctuations associated with the normal modes. Diagonalizing the inter-
action given in equation (10.26) in the harmonic approximation (RPA) one can
construct the linear response function

RRPA(K , �ω) = R0(K , �ω)

1− κ0g̃(K )R0(K , �ω)
. (10.28)
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It is written in terms of the unperturbed response R0(K , �ω) which, in the slab
model, can be accurately parametrized by an oscillator response function

R0 (K , �ω) = N

�

(
1

(ω − ω0)+ iγ /2
− 1

(ω + ω0)+ iγ /2

)
. (10.29)

The energy centroid �ω0(K ), the width �γ (K ) and normalization strength N (K )
are functions of K . The function

g̃(K ) = 1√
1+ (ar K )2

(10.30)

is the kernel of the two-dimensional Fourier transform

g(|	rp − 	r ′p|) =
∫

d2 K

(2π )2
ei 	K (	rp−	r ′p) g̃(K ).

The unperturbed strength function is proportional to the imaginary part of
R0 (K , �ω),

S0 (K , �ω) = − 1

π
Im R0 (K , �ω) . (10.31)

It is a symmetric function of K and is antisymmetric in ω.
The RPA strength function is an even function of K and an odd function of

ω. It can be expressed in terms of the unperturbed response as

SRPA (K , �ω) =
(

S0 (K , �ω)(
1+ κ Re R0 (K , �ω)

)2 + (κπ S0 (K , �ω))2

)
, (10.32)

where κ (K ) = κ0g̃(K ). Esbensen and Bertsch showed that the denominator
in equation (10.32) vanishes when ω = 0 and K = 0 because of the self-
consistency condition (10.27). When ω and K are small

SRPA (K , �ω) ∝ ω

ω2 + αK 2
, (10.33)

where α depends on the parameters in S0 and g̃(K ).
Now we consider the process in which pairs of nucleons moving in time-

reversal states exchange the eigenmodes of equation (10.28). We shall denote by
kνp and kν ′p the momentum of the single-particle states in the initial and in the final
channels respectively, in a plane parallel to that of the surface while kνz and kν ′z
denote the asymptotic momentum along the z-direction. The wavenumber 	K of
the exchanged phonon is fixed by the relation expressing the parallel momentum
conservation, i.e.

	K = 	kνp − 	kν ′p.
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The equation corresponding to (10.12) for the induced pairing matrix element
in the microscopic calculation in Section 12.2 can be written as

Gνν ′(K ) = 2(κ0g̃(K ))2 M2
νν ′ ×

∫ ∞

0
d�ω

SRPA(K , �ω)

E0 − (|eν | + |eν ′ | + �ω)
. (10.34)

The single-particle energies are defined by e j ≡ ε j − εF ( j = ν, ν ′), where εF is
the Fermi energy while

εν ≡ ενp + ενz =
�

2k2
νp

2m
+ ενz, (10.35)

εν ′ ≡ εν ′p + εν ′z = �
2

2m

(
	kνp − 	K

)2
+ εν ′z. (10.36)

The surface interaction matrix element is

Mνν ′ =
∫

dz φ∗kν′z (z)V ′(z)φkνz (z). (10.37)

and E0 is the pair-correlation energy. Equation (10.34) has the same Bloch–
Horowitz energy denomination as the induced pairing interaction in Section 10.2.

The total number of particles in the slab is

A = 2V
∫

d3k

(2π )3
V 2(	k), (10.38)

where V is the volume of the system. It is related to the surface area S and the
thickness d of the slab by

V = S · d.
This relation can be used to make a connection with finite nuclei. Putting V =
4
3πR3 and S = 4πR2 in the surface area, one obtains

d = 0.4 A1/3. (10.39)

In the framework of Bloch–Horowitz perturbation theory, the BCS number
and gap equations

N = 2V
∫

d2k

(2π )3
V 2(k), (10.40)

�(	kν) = 2d−1
∫

d3kν ′

(2π )3

Gνν ′ (K )

2
U (	kν ′)V (	kν ′) (10.41)

are solved self-consistently. The induced pairing matrix element Gνν ′(K ) di-
verges when K = 0 because of the 1/ω singularity in the unperturbed strength
function. The approximation (10.33) for SRPA which holds for small values of
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Figure 10.9. (a) Pairing gap of particles as a function of the particle energy ε − εF =
(�kν )2/(2m)− εF, for R = 6 fm. For each energy value, the pairing gap � has been cal-
culatd as an average over the gaps of particles having the same k2

ν . Detailed results for the
nucleus 120Sn are also shown (open dots, see Fig. 10.1). (b) The pairing gap of a particle at
the Fermi energy as a function of the momentum component parallel to the surface of the
slab. The gap goes to zero when (kν )p = 1.337 fm−1, corresponding to the case of particles
moving in a plane parallel to the surface of the slab (kz = 0). Reprinted with permission
from Giovanardi et al., Phys. Rev. C65: 041304 (R) (2002). Copyright 2002 by the American
Physical Society.

ω and K shows that Gνν ′(K ) diverges as ln |K | for small K . Because this di-
vergence is only logarithmic the integral in the gap equation converges. Equa-
tion (10.31) shows that g (K ) = 1 for a zero-range interaction (ar = 0) and that
g(K )∝ 1/ (ar K )2 for large K for a finite range interaction. Hence, because of the
factor g (K ) in equation (10.34), the finite-range Yukawa interaction suppresses
the high K contributions to Gνν ′(K ). This corresponds to the high multipolarity
surface vibrations in finite nuclei.

In the remainder of this section we discuss numerical results obtained by Gio-
vanardi et al. (2002). They take the depth of the potential in equation (10.21) to
be V0 = −45 MeV with a diffusivity a = 0.75 fm. Because of the finite thick-
ness of the slab the pairing gap �(	kν) is not an isotropic function of 	kν . An
energy-dependent pairing gap can be defined by averaging �(	kν) over all the
single-particle states with the same single-particle energy. This state-dependent
pairing gap is shown in Fig. 10.9(a) as a function of ε − εF = (�kν)2/(2m)− εF

for R = 6 fm (A ≈ 120). The results for the nucleus 120Sn from Section 10.2
are also shown (see Fig. 10.1). As expected, the pairing gap peaks at the Fermi
surface, the associated FWHM reflecting the frequency distribution of the linear
response of the system. In Fig. 10.9(b) we display the pairing gap associated
with a particle at the Fermi energy as a function of the momentum component kν
lying in the (x, y)-plane parallel to the surface of the slab. The marked decrease
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Figure 10.10. The experimental pairing gap of neutrons (open dots) and protons (solid dots)
as a function of the mass number A, calculated from the nuclear binding energies (see equation
(10.20)) are described, on average, by the function 12A−1/2 MeV (dotted curve) (Bohr and
Mottelson (1969)). The solid squares show the results of the self-consistent solution of equa-
tions (10.34)–(10.41), results which are well fitted by the expression� = 9.5A−0.62 MeV. In
the inset, the same results are displayed as a function of the nuclear radius R in a log-log
scale, to emphasize the different behaviour of the two power laws. Reprinted with permission
from Giovanardi et al., Phys. Rev. C65: 041304 (R) (2002). Copyright 2002 by the American
Physical Society.

of � as a function of kv testifies to the surface origin of the induced pairing
interaction Gνν ′ (equation (10.34)).

Following equations (10.41) and (10.40) the pairing gap should scale accord-
ing to A−1/3. This is, however, altered by the averaging and by the discrete
spectrum of energies ενz associated with motion in the z-direction.

In Fig. 10.10 we show the pairing gap �slab, obtained by solving equations
(10.34)–(10.41), and averaging �(	kν) over single-particle states with energy
|εν − εF| ≤ 4 MeV. The results are well fitted by the power law

�slab ≈ 9.5

A0.62
MeV, (10.42)

where the exponent of the mass number A is quite close to 2/3, typical of surface
phenomena. In keeping with the fact that the experimental values are reproduced,
on average, by the standard expression given in equation (1.30), i.e.

�exp ≈ 12/
√

A , (10.43)
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Figure 10.11. Plot of ψ2 (equation (10.44)), for R = 6 fm and for particles with zero relative
parallel coordinate (Rp = 0), obtained fixing the coordinate of one particle (z1, solid dot), as a
function of the coordinate of the second particle (z2). The surface of the slab is located at z = 0.
Also shown is the value of ψ2 averaged over an interval of≈ 5 fm (dashed curve). Reprinted
with permission from Giovanardi et al., Phys. Rev. C65: 041304 (R) (2002). Copyright 2002
by the American Physical Society.

one concludes that�slab ≈ (0.45± 0.04)�exp. In other words, the induced pair-
ing interaction leads to pairing gaps which are of the order of 50% of those
experimentally observed, a result which is similar to that obtained in the case of
detailed calculations in finite nuclei.

To account for the experimental pairing gap, one needs to add to the interaction
Gνν ′ an extra contribution which we shall parametrize as G0/A. One finds that
G0 ≈ (0.4± 0.1)G, where G/A is the strength of the pairing interaction which
reproduces the experimental data (see Fig. 10.10, dotted curve). In particular,
in the case of R = 7 fm, i.e. A = 200, one obtains G = 27 MeV, while G0 =
17 MeV.

The results shown in Figs. 10.11 and 10.12 provide further insight into the role
that the surface of a confined Fermi liquid has in the formation of Cooper pairs.
In Fig. 10.11, the modulus squared of the anomalous density (closely connected
with the Cooper pair wavefunction)

ψ(z1, z2, Rp) =
∫

dkp

2π
kp J0(kp Rp)

∫
dkz

2π
φkz (z1)φkz (z2)

×U (kp, kz)V (kp, kz), (10.44)
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Figure 10.12. Pairing gap calculated, for R = 6 fm, as the product of the anomalous density
ψ (equation (10.44)) and the induced interaction v (equation (10.45)), as a function of the
z-coordinate of one of the two particles (z2), giving the coordinate of the other particle (z1)
fixed values. Reprinted with permission from Giovanardi et al., Phys. Rev. C69: 041304 (R)
(2002). Copyright 2002 by the American Physical Society.

is shown as a function of the coordinate z2 of one of the particles, fixing the
coordinate z1(= 0) of the other particle on the surface. In the above equation,
J0 is a Bessel function and Rp is the distance between particles in the direction
parallel to the surface of the slab. Making use of the functionψ we have calculated
the mean square radius< r2 >1/2= (∫

d3r r2|ψ |2/ ∫ d3r |ψ2|)1/2
of the Cooper

pair, obtaining 22 fm. This quantity is closely connected with the coherence
length ξ = �vF/π� of the pair. Because εF ≈ 36 MeV and� ≈ 0.6 MeV at the
Fermi energy, one obtains, from this simple estimate, ξ = 28 fm.

The pairing gap �(z1, z2, Rp) = Gνν ′(z1, z2, Rp)× ψ(z1, z2, Rp) is obtained
by multiplying the anomalous density by the induced interaction, defined in
equation (10.34), a quantity which depends on eν and eν ′ . For single-particle
levels lying close to the Fermi energy we can neglect this dependence and write

G(z1, z2, Rp) = 2
∫

d2 K

2π2
k2

0 g̃(K )
V ′(z1)V ′(z2)

d2
eiK Rp

×
∫

d�ω
ImRRPA(K , ω)

E0 − �ω
. (10.45)
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In Fig. 10.12, the Fourier transform �(z1, z2, kp) of the quantity �(z1, z2, Rp),
in a plane parallel to the surface, and setting kp = 0, is shown as a function of
the z2-coordinate of one of the two particles, and the other coordinate z1 is given
a fixed value. As expected, the probability that the two partners of a Cooper pair
are close together, and thus that the associated pairing gap is large, is higher at
the surface of the slab than elsewhere.

10.4 Induced pairing interaction, effective mass and vertex correction
processes

As discussed in Section 9.3 there is an intimate relation between the self-energy
process renormalizing the mass of the nucleons (ω-mass) and the pairing gap
arising from Cooper pair formation through the exchange of surface vibrations
between nucleons moving in time-reversal states close to the Fermi surface. In the
above calculations the ω-dependence of the effective mass has been neglected.
While this approximation is the same as that employed in the standard treatment
of pairing leading to BCS number and gap equations (see Chapter 3), its range
of validity is an open question. This is because setting m∗ = m implies that
the occupation probability of the single-particle states is either 1 (εν ≤ εF) or
0 (εν > εF). Consequently, they can fully participate in the processes leading
to pair formation and thus to nuclear superfluidity. On the other hand, in the
case in which m∗ = mωmk

m ≈ m, although apparently identical to the previous
one, the spectroscopic factor associated with single-particle states lying close to
the Fermi energy is Zω ≈ (mω/m)−1 (see equation (9.23)). Because mω/m > 1,
Zω < 1, implying that the nucleons spend part of their time in more complicated
configurations, configurations which make use also of empty states within the
independent-particle approximation leading to an effective reduction of the space
available to the particles to correlate (�eff < �). Consequently, these single-
particle states can participate less effectively in producing the nuclear condensate,
a handicap which is further accentuated by taking into account the splitting of
the single-particle strength (see equation (9.41) and Section H.4).

10.4.1 Solution of the Dyson equation for normal and abnormal densities

Barranco et al. (2004) have investigated these questions in the case of a typical
superfluid nucleus, i.e. 120Sn. The formalism used is based on the Dyson equa-
tion (Terasaki et al. (2002a,b), Van der Sluys et al. (1993)). It gives a consistent
description of the dressed, single-particle state ã of an odd nucleon renormalized
by the (collective) response of all the other nucleons (Figs. 10.13(a)–10.13(d)),
the renormalization of the energy �ων (Figs. 10.14(a)–10.14(b)) and of the transi-
tion probability B(Eλ) (Figs. 10.14(c)–10.14(f)) of the collective vibrations of the
even system (correlated particle–hole excitations), and the induced interaction
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Figure 10.13. Renormalization processes arising from the particle-vibration coupling phe-
nomenon. A line indicates quasiparticles obtained from BCS theory, making use of the mean-
field single-particle states of the Skyrme parametrization Sly4 and the nucleon–nucleon v14

Argonne potential. The wavy line indicates the vibrational states (after Broglia et al. (2004)).

(f )(e)(d)
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Figure 10.14. Most relevant processes taken into account in the renormalization of the energy
of the phonon (a,b) and of the associated transition strength (c–f).
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due to the exchange of collective vibrations between pairs of nucleons, moving
in time-reversal states close to the Fermi energy (Figs. 10.13(e)–10.13(g)). It
includes both self-energy and vertex correction processes. Within this frame-
work, the self-consistency existing between the dynamical deformations of the
density and of the potential sustained by ‘screened’ particle-vibration coupling
vertices leads to renormalization effects which stabilize the collectivity and the
self-interaction of the elementary modes of nuclear excitation, in particular of the
low-lying surface vibrational modes. This procedure produces a rather accurate
description of experimental findings, in terms of very few parameters, namely:
the k-mass mk (equations (8.19) and (8.17)) and the particle-vibration coupling
vertex V ( j, j ′ : λ) (see equation (8.31)).

A Skyrme interaction (Sly4 parametrization, with mk ≈ 0.7m) was used to
determine the properties of the bare single-particle states, while the resulting
particles were allowed to interact through the Argonne V14 nucleon–nucleon
interaction, as well as to exchange phonons.

As seen from Fig. 10.15, Hartree–Fock theory is not able to account for the
experimental quasiparticle energies of the low-lying states. Diagonalizing the
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Figure 10.15. The spectra of the lowest quasiparticle states in 120Sn calculated using Hartree–
Fock theory, BCS with the Argonne V14 potential, and after renormalization, are compared
with the experimental levels in the odd neighbouring nuclei 119Sn and 121Sn (after Barranco
et al. (2004)).
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Table 10.4. The energy and reduced E2 transition strength of
the low-lying 2+ state, calculated according to different theo-
retical models, are compared to the experimental values (Stel-
son et al. (1970)) (after Barranco et al. (2004)).

�ω2+ (MeV) B(E2 ↑) (e2 fm4)

RPA (Gogny) 2.9 660
RPA (Sly4) 1.5 890
RPA + renorm 0.9 2150
Exp. 1.2 2030

Argonne V14 nucleon–nucleon potential in the Hartree–Fock basis, within
the framework of the BCS approximation including scattering states up to
800 MeV above the Fermi energy (to achieve convergence, repulsive core) in
a spherical box of radius equal to 15 fm, one obtains the state-dependent pairing
gap shown in Fig. 8.9 (labelled V14). The resulting pairing gap (average value for
levels around the Fermi energy) accounts for about half of the empirical pairing
gap value (≈ 1.4 MeV) obtained from the odd–even mass difference. In keep-
ing with this result, the quasiparticle spectrum (see Fig. 10.15), although being
slightly closer to the experimental findings than that predicted by Hartree–Fock
theory, displays large discrepancies with observations. The situation is rather
similar concerning the low-lying quadrupole vibration of 120Sn calculated in
the QRPA with standard effective nucleon–nucleon interactions like Gogny or
Skyrme forces. While energy is predicted too high, which may not be very im-
portant, the B(E2) value is too small by about a factor of 3 (see Table 10.4), a
result which calls for a better theory.

In fact, renormalizing the energy and the transition strength of the 2+ phonon,
i.e. considering couplings of the type depicted in Fig. 10.14, couplings which
have been shown to be essential in determining, for example, the width of
giant resonances (see Fig. 8.16), one obtains an increase of the B(E2) transi-
tion probability which brings theory essentially in agreement with experiment
(see Table 10.4). The most important processes which renormalize the energy
of the phonon are shown in Figs. 10.14(a) and (b). Other graphs which are
also of fourth order in the particle-vibration coupling vertex, but contain in-
termediate states with more than four quasiparticle states, lead to very small
contributions. This is because these terms not only involve larger denominators,
but also, because of their higher degree of complexity, give rise to contributions
with ‘random’ phases which tend to cancel each other. This is a consequence of
the fact that, while cancellation between the contribution associated with graphs
(a) and (b) of Fig. 10.14 is strong in the particle–hole channel, the opposite is
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e

e

Figure 10.16. The state-dependent pairing gap for the levels close to the Fermi energy ob-
tained using BCS theory with the v14 Argonne potential (circles) is compared with the result
obtained by also including renormalization effects (squares) (after Barranco et al. (2004)).

true in the particle–particle channel (see equations (A.49) and (A.50)), and that
the phonons are calculated in a Bogoliubov–Valatin-quasiparticle basis. In keep-
ing with the above discussion, the most important processes renormalizing the
B(E2) transition probability are those shown in Figs. 10.14(c),(d),(e) and (f).

Solving the Dyson equation by making use of phonons which account for
the experimental findings, the state-dependent pairing gap shown in Fig. 10.16
was obtained. The average value of the resulting state-dependent pairing gap of
120Sn is now close to the value�exp = 1.4 MeV derived from the odd–even mass
difference. In Fig. 10.15 the energy centroid of the peaks carrying the largest
quasiparticle strength are shown, for the orbitals around the Fermi energy. These
results provide an overall account of the lowest quasiparticle states measured
in the odd systems 119Sn and 121Sn. In the case of d5/2 orbital, the associated
quasiparticle strength is strongly fragmented, and displays three low-energy
peaks which collect less than 40% of the single-particle strength. Figures 10.15
and 10.16 show, respectively, the energy and the pairing gap associated with the
lowest of these three peaks.

The results discussed in this section seem to be in contradiction with the results
discussed in connection with Figs. 8.6 and 8.9. In fact, from these two figures
one could expect that essentially the full effect associated with the increase of
the pairing gap arising from the polarization processes, examples of which are
shown in Fig. 10.13, are associated with effective mass processes like those
displayed in Fig. 10.13(a) (see also equation (8.21)), leaving a negligible role to
induced interaction processes like those shown in Fig. 10.13(e). The resolution
of such an apparent contradiction is to be found in the fact that effective mass
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processes simultaneously renormalize the density of levels N(0) and the pairing
interaction G. However, while (N (0))dressed ∼ N (0)/Zω, (G)dressed ∼ Z2

ωG, the
overall effect being (G N (0))dressed ∼ Zω(G N (0)). Because Zω < 1, effective
mass effects lead to a decrease of the pairing gap, decrease which is corrected
to the value to be compared to the experimental data, by the contribution Z2

ωvνν ′

arising from the induced interaction (see equation (9.33)). In fact, a further
decrease of N(0) is associated with fragmentation of the single-particle strength
arising from renormalization processes like the one shown in Fig. 10.13(a) and
measured by the (state dependent) width �( j, ω) (see Sections 9.1.2 and 9.3,
equation (9.41)).

For a detailed account of these effects we refer to Morel and Nozières (1962),
Schrieffer (1964), Mahan (1981) and Baldo et al. (2002). Also to Combescot
(1999). A simple estimate of the relative importance of the different processes
is given in Appendix H (Section H.4).

10.5 Superfluidity in the inner crust of neutron stars

There exists considerable experimental evidence which testifies to the fact that
pulsars are rotating neutron stars (Pines et al. (1992)). It is believed that the
crust of a neutron star is, in its outer part (106 g cm−3 < ρ < 1011 g cm−3 and
a few hundred metres thick), made out of nuclei arranged in a Coulomb lattice
and of a nearly homogeneous background of relativistic electrons. As one goes
deeper into the crust, because of the rising electron Fermi energy, the nuclear
species become progressively more neutron-rich, beginning as 56Fe and going
through 118Kr at mass density ρd = 4.3× 1011g cm−3, at which point neutrons
are barely bound (Negele and Vautherin (1973)). At this density, known as the
‘neutron drip density’, nuclei have become so neutron-rich that, with increasing
density, the neutron states lying in the continuum begin to be filled and the lattice
of neutron-rich nuclei becomes permeated by a sea of free neutrons.

The region of densities ρd < ρ < 0.7ρ0 (where ρ0 = 0.17 nucleons per fm3 ≈
3× 1014 g cm−3 corresponds to saturation density, and where ρd = 4.3× 1011

g cm−3 is the ‘neutron drip’ density) is the so-called ‘inner crust’ (thickness about
one kilometre), where a Coulomb lattice of neutron-rich nuclei is permeated by a
sea of free neutrons. In keeping with the fact that the nuclear interaction is, in this
range of densities, attractive for pairs of nucleons moving in time-reversal states
(1S0 neutron–neutron scattering, see Fig. 8.1) and because of the relatively low
temperatures (≤0.1 MeV) associated with all but the youngest of neutron stars,
the free neutrons are believed to pair and form an isotropic s-wave superfluid.
A proper understanding of the superfluidity properties of neutron-rich nuclei
embedded in a sea of free neutrons (Wigner–Seitz cell) is of importance to
determine the thermal properties of the neutron star crust, which is expected to
play a central role in the early stages (≈102 years since formation) of the cooling
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of neutron stars (Yakovlev and Pethick (2004), Pizzochero et al. (2002)). This
knowledge is also important for the understanding of the vortex motion in the
neutron superfluid within the solid crust of the neutron star, believed to be the
origin of observed sudden decrease of the rotational period (spinup), or glitches
(see Fig. 6.2) observed, for example, in the Crab (|�P|/P ≈ 10−8) and Vela
(|�P|/P ≈ 2× 10−6) pulsar periods P (Alpar (1977), (1998), Anderson and
Itoh (1975), Epstein and Baym (1988), Link and Epstein (1991), Pizzochero
et al. (1997), Donati and Pizzochero (2003)).

Much effort has been concentrated in describing superfluidity of a uni-
form neutron star system using realistic nucleon–nucleon interactions (see e.g.
Kennedy (1968), Sauls (1989), Takahara et al. (1994), Chen et al. (1986),
Takatsuka (1984), Baldo et al. (1990), (1991), Chen et al. (1993), Wambach
et al. (1993), Delion et al. (1995), Schulze et al. (1996), Lombardo and Schulze
(2001), and references therein). However, in all the calculations, the role of im-
purities represented by nuclei in the sea of free neutrons has been neglected.
In keeping with the fact that the pairing gap depends strongly on baryon den-
sity, a proper treatment of superfluidity in the neutron star crust should take into
account the simultaneous presence of the free neutrons as well as the neutrons
bound in the atomic nuclei (see also Delion et al. (1995)). To this purpose, theory
should be able to provide, making use of a realistic interaction, equally reliable
results for the uniform infinite system, as for the isolated atomic nucleus, limiting
situations in which the results can be compared with a variety of calculations
and with experimental data respectively. A unified description of these limiting
situations will lend confidence to the results associated with finite atomic nuclei
embedded in a sea of free neutrons. Contributions to carry out this programme
are found in Barranco et al. (1997) and Gori et al. (2004b) (see also Sandulescu
et al. (2004)).

The quantum mechanical calculations of the pairing gap in the inner crust of
neutron stars were carried out by solving the Hartree–Fock–Boguliubov (HFB)
equations (see Barranco et al. (1997), Barranco et al. (1998) and Section 8.1.1
equations (8.4)–(8.6); see also Dobaczewski et al. (2002), Dobaczezwski and
Nazariewicz (1998)).

In Barranco et al. (1997) the single-particle states |ak〉 = |nk(la1/2) jama〉
describing the motion of nucleons in the mean fields calculated by Negele
and Vautherin (1973) for each Wigner–Seitz cell density with a nucleus at the
centre, and parametrized in terms of a Saxon–Woods potential, are labelled by
the quantum numbers specifying the number of nodes nk , the orbital angular
momentum la , the total angular momentum ja and its third component ma , as
well as the parity (−1)la . The states |ã1〉 are obtained from the original states
by the operation of time reversal. The quantities U i

ak
and V i

ak
are the occupation

amplitudes of the single-particle states while Ei is the quasiparticle energy.
The Argonne v14 potential was used in the calculation of the matrix elements
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Figure 10.17. The pairing gaps obtained in a Wigner–Seitz cell of radius equal to 15 fm,
and εF = 20 MeV, containing the nucleus Sn whose bound states are described in terms
of a Saxon–Woods potential with a radius of 6.26 fm and a depth of 45.5 MeV, are shown
by a solid and dashed curve, respectively for a diffusivity a = 0.67 fm and a = 0 fm. The
gaps obtained for the discrete states have been averaged over 4 MeV. The gaps obtained for
uniform neutron matter are shown by the dashed line (from Barranco et al. (1997)). Reprinted
from Physics Letters B, Vol. 390, Barranco et al., ‘Role of finite nuclei on the pairing gap
of the inner crust of neutron stars’, page 15, Copyright 1997, with permission from Elsevier.

〈a1ã2|v|b1b̃2〉 (see Section 8.1). The quantity εF is the Fermi energy of the system
and thus determines the average number of nucleons. To obtain convergence
of the HFB equations, single-particle states lying as high as 600 MeV have to
be included in the calculations. To this purpose the continuum is discretized by
placing the nucleus in a box. For εF > 0, the radius of the box Rbox coincides with
the Wigner–Seitz cell radius RWS as calculated by Negele and Vautherin (1973).
For εF < 0, Rbox should be varied until convergence of the results is achieved.

A number of situations corresponding to the densities discussed in this refer-
ence have been worked out. Particularly illustrative is the system composed of
a nucleus containing 50 protons placed in the centre of a Wigner–Seitz cell of
radius RWS = 15 fm. Setting the Fermi energy at εF = 20 MeV (ρ = 0.18ρ0),
the Wigner–Seitz cell contains 600 neutrons. That is, we can view the system as
a gigantic neutron-rich nucleus 600

50 Sn. The selected density leads to the largest
value of the pairing gap at the Fermi energy for the system under discussion (see
Fig. 10.18).

Note that the large value of the pairing gap obtained in this calculation is con-
nected with the fact that the single-particle energies were determined by making
use of the bare nucleon mass and not the k-mass (see in this connection Figs.
8.6 and 8.9 as well as Sections 8.2 and 10.4). The same comment applies to
Fig. 10.17, in which we display the diagonal part of the neutron pairing gap
�ak (≡ �akak ) associated with the single-particle states of the system, obtained
by solving equations (8.4)–(8.6) with εF = 20 MeV. The results have been av-
eraged over an energy interval of 4 MeV to smooth out fluctuations associated
with particular shells. The quantity �ak has a peak that corresponds to single-
particle levels just barely unbound (εa1 ≈ 0 MeV). It decreases as εa1 increases,
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Figure 10.18. The dashed curve shows the pairing gaps at the Fermi energy in neutron matter
as a function of the Fermi momentum. The solid dots show the pairing gaps of bound levels
close to the Fermi energy, for different negative Fermi energies in the Saxon–Woods potential
(with a = 0.65 fm) used in connection with Fig. 8.6 to describe 120Sn. The Fermi momentum
is referred to the bottom of the well. The open dots show the pairing gaps of levels close to the
Fermi energy for positive values of εF and for the Wigner-Seitz cell discussed in connection
with Fig. 10.17. Reprinted from Physics Letters B, Vol. 390, Barranco et al., ‘Role of finite
nuclei on the pairing gap of the inner crust of neutron stars’, page 15, Copyright 1997, with
permission from Elsevier.

in keeping with the fact that the content of relative momentum associated with
such configurations also increases (see e.g. Baldo et al. (1990)). The pairing
gap also decreases for bound neutron levels, because the density inside the nu-
cleus is higher than outside it. The fact that the pairing gap does not vanish
for bound levels (εa1 < 0), i.e. levels inside the nucleus, highlights the role the
nuclear surface plays in the pairing phenomenon in atomic nuclei. We also show
in Fig. 10.17 the pairing gap �(k) associated with uniform neutron matter as
a function of the energy ε = �

2k2/2m, calculated again setting εF = 20 MeV.
From these calculations one concludes that the presence of the nucleus in the
sea of free neutrons leads to an overall reduction of the pairing gap in the energy
range 0 < ε < 100 MeV, and the appearance of a broad bump near the edge of
the single-particle potential well.

Results of calculations of the pairing gap for uniform neutron matter as a
function of neutron Fermi wavenumber kFn (as a measure of density) for six
models of crustal superfluidity are shown in Fig. 10.19 (from Lombardo and
Schulze (2001)). The model labelled BCS is the simplest in which the pairing
interaction is taken to be the neutron–neutron interaction in free space (see
also Fig. 10.18). The five others – C86 (Chen et al. (1986)), C93 (Chen et al.
(1993)), A (Ainsworth et al. (1989)), W (Wambach et al. (1993)), and S (Schulze
et al. (1996)) include medium polarization effects which weaken the pairing.
While all curves exhibit the same qualitative behaviour, there are also important
differences. The BCS model is oversimplified, since it does not take into account
effects of the medium.
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Figure 10.19. Energy gaps (left vertical axis) for various models of crustal neutron pairing
as a function of neutron Fermi wavenumber. The vertical dotted line marks the crust–core
interface (after Lombardo and Schulze (2001)).

Concerning the other results, one observes large variations in the predictions
for the upper density at which neutron superfluidity disappears. While the reason
for these differences is unclear, that the neglect of pairing fluctuations, fluctu-
ations which become quite important when the mean-field pairing gap goes to
zero, is likely to be one of the causes (see Section 6.6, Fig. 6.24).

In an infinite (3D) medium (i.e. a system where rs � ξ � L see Sec-
tion 4.1.1, equation (4.1) and subsequent discussion) the gap is affected mainly
by exchange of spin fluctuations, which reduce fluctuations, just as they do
in metals. This is very different from what is found in the case of a finite
(0D) medium (rs < L � ξ ), where density modes have a dominant role. The
difference in the relative role played by density and magnetic modes in 0D and
3D systems is at the basis of the fact that medium polarization enhances the
pairing gap in finite nuclei while it quenches it in the inner crust of neutron stars
(see e.g. Figs. 10.16 and 10.19). This point is taken up in the next section.

10.5.1 Interplay between density and magnetic modes

In this section we discuss the mechanism which is at the basis of the seemingly
contradictory results, namely the fact that while medium effects increase the
nuclear pairing gap, they reduce it in the case of the inner crust of neutron
stars. We shall show that these results are a natural consequence of the different
(relative) collectivity displayed by density S = 0 (mainly surface) and S = 1 spin
(mainly volume) modes in (infinite) neutron matter and in (finite) atomic nuclei
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(Gori et al. (2004b), see also Schrieffer (1994), Gor′kov and Melik-Barkhudrov
(1961), Bortignon et al. (1983)). Strictly speaking, in the case of atomic nuclei,
spin is not a good quantum number with which to identify the polarization
quanta, because of the strong spin-orbit term present in these systems. We have
thus adopted the criterion of distinguishing between natural (π = (−1)J ) and
non-natural (π = −(−1)J ) parity modes, where J indicates the total angular
momentum of the quanta. The classification reduces to that of S = 0 and S = 1
modes in the limit of no spin-orbit interaction.

In the following we address the question on hand within the scenario pro-
vided by the paradigmatic (superfluid) open-shell nucleus 120Sn. The starting
point corresponds to the calculation of the mean-field potential and associated
quasiparticle properties within the framework of Hartree–Fock plus BCS theory
using the SkM∗ force (Bartel et al. (1982)). The polarization quanta were worked
out within the framework of quasiparticle random phase approximation (QRPA)
(see e.g. Coló and Bortignon (2001)) making use of the particle–hole interaction

vph(	r , 	r ′) = δ2 EHF

δρ(	r )δρ(	r ′) (10.46)

= {[
F0 + F ′0	τ · 	τ ′

] + [(
G0 + G ′0	τ · 	τ ′

) 	σ · 	σ ′]} δ(	r − 	r ′) .
In what follows we shall only consider the diagonal part of the 	τ · 	τ terms,

in keeping with the fact that we are here interested in the neutron–neutron pair-
ing interaction. Off-diagonal terms are associated with charge-exchange modes.
Thus, in lowest order, they do not contribute to the neutron–neutron interaction,
but are expected to be of relevance in the discussion of the proton–neutron pairing
interaction.

The functions F0(	r ), F ′0(	r ), G0(	r ) and G ′0(	r ) (see also Section 4.3, discussion
following equation (4.80)), generalized Landau–Migdal (Landau (1959), Migdal
(1967)) parameters controlling the isoscalar and isovector (spin-independent and
spin-dependent) channels are displayed in Fig. 10.20.

Vibrations of multipolarity J = 2, 3, 4 and 5 of both natural and unnatural
parity were worked out. Those having energy ≤30 MeV were used in the cal-
culation of the induced interaction (see Fig. 10.21(a)). The associated transition
densities are

δρi
α(r ) = 1√

2J + 1

∑
1,2

(X1,2(i, α)+ βY1,2(i, α))

× (U1V2 − cU2V1)× 〈 j1||Ôα|| j2〉ϕ1(r )ϕ2(r ), (10.47)

where one can have α = J , β = +1, Ôα = YJ or α = J L , β = −1, Ôα =
[YL × σ ]J (concerning c, see Eq. (3.89)). The index i labels the different
vibrational modes of a given spin and parity in order of increasing energy, while
X and Y are the forwardsgoing and backwardsgoing QRPA amplitudes of the
corresponding modes.



250 Induced interaction

R (fm)

(M
eV

 f
m

3 )

 0 5 10 15

0

500

−500

−1000

−1500

−2000

F

F ′
G
G′

0

0

0

0

2000

1000

−1000

−2000

−3000

0

0 5 10 15

G0

G0

F0

F0

G ′0
G ′0

F ′0

F ′0

+

+

−

−

(n,n)

(n,n)

(n,p)

(n,p)

Figure 10.20. Generalized Landau parameters associated with the interaction SkM∗ defining
the strength of the particle-hole interaction in the isoscalar (F0), isovector (F ′0), spin isoscalar
(G0) and spin isovector (G ′0) channels. In the inset the functions F0 + F ′0 (n–n interaction),
F0 − F ′0 (n–p), G0 + G ′0 (n–n) and G0 − G ′0 (n–p) are also shown. After Gori et al. (2004b).

We now calculate the induced pairing matrix elements associated with the
exchange of polarization quanta between pairs of neutrons moving in time-
reversed states. For this purpose the particle (neutron)-vibration coupling matrix
elements are worked out:

(a) spin independent

〈 j ′m ′, J M | [F0(r )+ F ′0(r )	τ · 	τ ′] δ(	r − 	r ′)| jm〉
∼

∫
drϕ j ′[(F0 + F ′0)δρi

Jn + (F0 − F ′0)δρi
Jp]ϕ j , (10.48)

δρi
Jn and δρi

J p being the neutron and proton contributions to the transition den-
sities defined in equation (10.47),

(b) spin dependent

〈 j ′m ′, J M | [G0(r )+ G ′0(r )	τ · 	τ ′] 	σ · 	σ ′δ(	r − 	r ′)| jm〉
∼

∫
drϕ j ′[(G0 + G ′0)δρi

J Ln + (G0 − G ′0)δρi
J Lp]ϕ j . (10.49)

These particle-vibration coupling matrix elements, together with the energies of
the modes and the HF single-particle energies are the basic ingredients needed to
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Figure 10.21. (a) Diagram depicting the pairing interaction induced by the exchange of
phonons; (b) particle-vibration coupling vertex making explicit the dominant part of the
particle–hole interaction giving rise, through the sum of bubble diagrams, to the corresponding
QRPA modes (wavy line).

calculate the pairing induced interaction vind (see Fig. 10.21(a)). For non-natural
parity modes, only the matrix elements (10.49) contribute. For natural parity
modes, the matrix elements (10.48) are the dominant ones, and one can show
that they are the only ones contributing to the diagonal matrix elements, which are
displayed in Fig. 10.22. In this case it is thus possible to distinguish between the
contributions associated with the exchange of S = 0 (density) and S = 1 (spin)
vibrations. From Fig. 10.22 we can see that the exchange of spin fluctuations
gives rise to repulsive matrix elements, while the exchange of density fluctuations
leads to attractive matrix elements, the net result being predominantly attractive
(in any case around the Fermi energy).

The resulting state-dependent pairing gap obtained by solving the BCS gap
and number equations making use of the (total) induced pairing matrix elements
(S = 0 (density) plus S = 1 (spin) modes) is depicted in Fig. 10.23(a). For
states close to the Fermi energy they account for a consistent fraction of the
experimental value (1.4 MeV). If one solves the BCS equations considering only
the exchange of density modes (i.e. neglecting the contributions from equation
(10.49)), one obtains values which are, on average, larger (see Fig. 10.23(b)).
In fact, the exchange of S = 1 modes quenches the pairing gap arising from the
exchange of only S = 0 modes by roughly 30%.
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Figure 10.22. Diagonal induced pairing matrix elements resulting from the exchange of
phonons with natural parity (solid circles) and those resulting from the exchange of phonons
with non-natural parity vibrations (open circles), displayed as a function of the energy of the
single-particle state εk . Note that the induced matrix elements in this figure can be directly
compared with the empirical constant G = 25/A(≈ 0.2 MeV, A = 120) used to describe
pairing correlations in nuclei within the framework of the BCS theory and a (pairing) force
of constant matrix elements (after Gori et al. (2004b)).

To gain insight into what one would expect from these results in the case
of infinite systems, we study the radial dependence of the particle-vibration
coupling vertices shown in Fig. 10.21(b). The S = 0 modes associated with
induced pairing matrix elements have a clear surface character. In particular, this
is the case for the most attractive pairing matrix element which is associated with
the 1h2

11/2(0) (ε1h11/2 = −8.07 MeV, εF = −8.50 MeV) configuration (see Fig.
10.22). Because of its large centrifugal barrier, the wavefunction of this single-
particle state is mainly concentrated at the nuclear surface. The main contribution
to the corresponding induced pairing matrix element arises from the exchange
of a 2+ phonon (of energy 1.5 MeV) between the two nucleons moving in time-
reversal states in the h11/2 orbital. The associated proton and neutron transition
densities depicted in Fig. 10.24(a) testify to the fact that this phonon has the
character of a surface vibration. Concerning the most repulsive matrix elements,
we have found that the corresponding S = 1 phonons are volume modes. In
particular, the largest (positive) matrix element is associated with the 2d2

3/2(0)
configuration (ε2d3/2 =−8.52 MeV). Because of the low angular momentum, one
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Figure 10.23. (a) The state-dependent pairing gap as a function of the single-particle energies
obtained by solving the BCS equations associated with the total (S = 0)+ (S = 1) induced
interaction matrix elements; (b) same as (a) but for the induced interaction matrix elements
produced only by exchange of density modes (S = 0) (after Gori et al. (2004b)).
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Figure 10.24. (a) The dashed and dot-dashed curves are respectively the neutron and proton
transition densities associated with the 2+ phonon with energy 1.5 MeV while the solid curve
is the wavefunction of the 1h11/2 state (in arbitrary units). (b) The same as (a) but for the 3+

phonon with energy 4.35 MeV and the 2d3/2 state (after Gori et al. (2004b)).

finds that a consistent fraction of the corresponding wavefunction is concentrated
in the interior of the nucleus. This state can thus couple efficiently with phonons
of volume character. In fact, the major contribution to the corresponding matrix
element is due to the exchange of the 3+ vibration (with energy at 4.35 MeV)
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which is a mode with a large volume component as testified by the corresponding
proton and neutron transition densities shown in Fig. 10.24(b). One can conclude
that states lying close to the Fermi energy with high j and thus localized at the
surface mainly feel the (attractive) coupling arising from the exchange of S = 0
phonons. Because the contributions of these states to the gap equation are larger
(statistically) than those associated with low-l states (lying also close to the
Fermi energy), the resulting induced pairing interaction in nuclei is attractive.
The situation is expected to be quite different in the case of infinite neutron
matter. In fact, in going from the finite to the infinite system the collectivity of
the S = 0, mainly surface modes will be strongly reduced, while not much is
expected to happen to the S = 1, mainly volume modes.

Furthermore, in going from nuclear (N = Z ) to neutron matter (N = A),
many attractive contributions vanish. In fact, if we turn off the neutron–proton
interaction contributing to the basic vertices shown in Fig. 10.20, a strongly
net repulsive induced interaction is obtained (see Fig. 10.25), a situation which
much resembles the neutron star case. This result can be understood by realizing
that, while the function F0 + F ′0 (corresponding to the particle–phonon coupling
mediated by δρi

Jn) has a node at the nuclear surface (see inset to Fig. 10.20),
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Figure 10.25. The diagonal matrix elements produced by the exchange of phonons with
natural parity (filled circles) and those produced by the exchange of phonons with non-natural
parity (empty circles) when the proton part of the phonon wavefunction is not included in
the calculation, are displayed as a function of the energy of the single-particle state εk (after
Gori et al. (2004b)).
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G0 + G ′0 (corresponding to the particle-phonon coupling mediated by δρi
J Ln) is

large and positive.
Summing up, the exchange of low-lying vibrations (in which neutrons and

protons participate on equal footing) between pairs of nucleons moving in time-
reversal states close to the Fermi energy leads to a sizeable attractive pairing
interaction which accounts for about 70% of the pairing gap. The inclusion of
spin (volume) modes, reduces that contribution by 30% in the case of finite
nuclei, bringing the induced pairing contribution to the pairing gap to a value of
the order of≈50%, the other half coming from the bare nucleon–nucleon force.
Spin modes overwhelm density modes when the coupling to surface (namely
S = 0) modes as well as the proton–neutron coupling are neglected, a situation
which mimics neutron matter.



11
Pairing in exotic nuclei

Much of the recent research in nuclear structure focuses on nuclei near the neutron
and proton drip lines. These are the loci in the chart of nuclides of the isotopes
and isotones which are stable against neutron and proton emission and which
have the largest number of neutrons and protons respectively. The most exotic of
these nuclei, which have been produced in the laboratory, are light nuclei lying
just within the drip lines. The nucleus 11

3 Li8, containing three protons and eight
neutrons, is bound by only a few hundred keV and is one of the best-studied
examples of a ‘halo’ nucleus to date.

According to the shell model, two of the six neutrons in the 9Li nucleus occupy
the lowest s1/2 orbital while the remaining four neutrons fill the p3/2 orbital. The
separation energy of the last neutron in 9Li is Sn ∼ 4 MeV which is typical for
a light nucleus. The halo nucleus 11Li has two neutrons outside a 9Li core and
the simple shell model predicts that they should fill the p1/2 orbital. A special
feature of 11Li is that the last two neutrons are bound by only 290 keV, while the
last neutron in 10Li is not bound. A consequence of the small binding energy of
the last two neutrons in 11Li is that the radius of the orbital they occupy is much
larger than the radius of the 9Li core. They form a low-density cloud or ‘halo’
around the core.

In simple versions of the shell model the s1/2 level from the s–d shell has
an energy which is significantly larger than the p1/2 level but in light neutron-
rich nuclei the energy difference between these two levels decreases and there
is evidence that in 10Li the s1/2 level lies below the p1/2 level. In that case the
last two neutrons in 11Li might occupy the s1/2 level. Consequently, the 11Li
ground state has a more complicated structure than that predicted by the pure
independent particle model, which involves both the s1/2 and the p1/2 orbitals.
The self-energy due to the neutron–phonon interaction is a possible mechanism
for the change in the relative energies of the s1/2 and p1/2 levels.

257
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It is still an open question which mechanisms provide the glue needed to
bind the two halo neutrons to the tightly bound 9

3Li6 core. To some extent, this
problem seems to be similar to that of the instability of the normal state of
an electron system at zero temperature, solved by Cooper, a solution which
is at the basis of BCS theory of superconductivity. The main difference with
the present case is associated with the shell structure of the system, implying
a threshold in the intensity of the attractive interaction needed to produce a
bound state (see Chapters 1 and 8). The bare nucleon–nucleon interaction is
attractive in the 1S0 channel and, if it was strong enough, it could bind the last
two neutrons in 11Li. Owing to the fact that the angular momentum content of
the space available to the two ‘halo’ neutrons to correlate is low (essentially one
s, p and d-orbitals are involved), the system can hardly profit from the large
pairing component of the nucleon–nucleon potential (see Section 8.1), as, for
example, nucleons in 120Sn can (see Figs. 8.4 and 8.9). On the other hand, 11Li is
highly polarizable displaying a soft dipole mode, as well as collective quadrupole
vibrations. As discussed in Chapter 10 there is an induced neutron–neutron
interaction due to phonon exchange and there is evidence that the enhancement
of the pairing force due to the induced interaction is necessary to bind the 11Li
nucleus.

Phenomena similar to those mentioned in connection with 10
3 Li and 11

3 Li have
also been found in the case of 11

4 Be and 12
4 Be. The main difference with respect

to the case of 11Li is that both s1/2 and p1/2 neutron orbitals are bound in 11
4 Be7,

while they are resonant states in 10
3 Li7. Thus, larger overlaps between the s2, p2

with the d2 two-neutron configurations are found in 12Be compared with 11Li.
The role of the d5/2 configuration in the ground state of 12Be is consequently
quantitatively different than in the case of 11Li. Furthermore, no soft dipole
mode has been observed in 12Be. Renormalization effects are, in this case, due
to quadrupole vibrations.

The focus of this chapter is on the contribution of neutron–phonon coupling
to the neutron single-particle energies in 10Li and 11Be and the binding of 11Li
and 12Be. Our discussion is based on results of a study by Barranco et al. (2001),
Broglia et al. (2002) and Gori et al. (2004a), results which are to be compared
with those of Zukhov (1991, 1993), Esbensen et al. (1997), Bertsch and Esbensen
(1991), Bertsch (1994) and Sagawa et al. (1993).

11.1 The halo nucleus 11Li

The basic experimental facts which characterize 11Li and which are also of par-
ticular relevance in connection with pairing in this system are (see Table 11.1):
(a) 9

3Li6 and 11
3 Li8 are stable, 10

3 Li7 is not; (b) the two-neutron separation energy in
11Li is only S2n = 0.294± 0.03 MeV (Tanihata (1996)) compared with values of
10 to 30 MeV in normal stable nuclei; (c) 10Li displays s- and p-wave resonances
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Table 11.1. Single-particle energies associated with the states s and p in
10Li. Two-neutron separation energy S2n, amplitude of the s2- and of the p2-
configurations in the ground-state wavefunctions, mean square radius 〈r2〉1/2
of 11Li and full width �p⊥ = σ⊥ of the momentum distribution of the neutrons
emitted in the direction perpendicular to the beam during the breakup of 11Li
(after Barranco et al. (2001); see also Broglia et al. (2002)).

Theory

Particle-vibration
Exper. +v14 Mean field

s 0.1–0.2 MeV 0.2 MeV ∼1 MeV
10
3 Li7 (virtual) (virtual)
(not bound) p 0.5–0.6 MeV 0.5 MeV −1.2 MeV

(res.) (bound)

S2n 0.294± 0.03 MeV 0.330 MeV 2.4 MeV
11
3 Li8 s2, p2 50%, 50% 40%, 58% 0%, 100%

(bound) 〈r2〉1/2 3.55± 0.1 fm 3.75 fm

σ⊥ 48± 10 MeV
c 55 MeV

c

at low energy, their centroids lying within the energy range 0.1–0.25 MeV
and 0.5–0.6 MeV respectively (Zinser et al. (1995)), while these orbitals are
well bound in nuclei of the same mass lying along the stability valley; (d) the
mean square radius of 11Li, 〈r2〉1/2 = 3.55± 0.10 fm (Kobayashi et al. (1989),
Al-Khalili and Tostevin (1996), Hansen (1996)), is very large compared with
the value 2.32± 0.02 fm of the 9Li core, and testifies to the fact that the neutron
halo must have a large radius (≈ 6–7 fm); (e) the momentum distribution of the
halo neutrons is very narrow, its FWHM is σ⊥ = 48± 10 MeV/c for the (per-
pendicular) distribution observed in the case of the break-up of 11Li on 12C and
is of the order of one-fifth of that measured during the break-up of normal nuclei
(Kobayashi (1993), Tanihata (1996)); (f) the ground state of 11Li is a mixture
of configurations where the two-halo nucleons move around the 9Li core in s2-
and p2-configurations with almost equal weight (Aoi et al. (1997), Simon et al.
(1999)). The wavefunctions of two-particle-like normal nuclei can be strongly
mixed but are, as a rule, dominated by a single two-particle configuration (see e.g.
Table 5.1 where the ground-state wavefunctions of 210Pb and 206Pb are given).

Two-neutron halo nuclei are commonly described as three-body systems con-
sisting of two valence neutrons interacting with each other and with a structure-
less core (see Esbensen et al. (1997) and reference therein).
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The three-body Hamiltonian can be written as

H = p2
1

2m
+ p2

2

2m
+ Vnc(1)+ Vnc(1)+ Vnn +

( 	p1 + 	p2
)2

2Acm
.

It includes the kinetic energy of each neutron, their interaction Vnc with the core,
the interaction between the two valence neutrons, and the recoil kinetic energy
of the core, which has the mass number Ac.

The single-particle Hamiltonian for a neutron interacting with the core is

hnc = p2

2μ
+ Vnc(r ),

where μ = m Ac/(Ac + 1) is the reduced mass.
The three-body Hamiltonian then takes the form

H = hnc(1)+ hnc(2)+ Vnn + 	p1 · 	p2

Acm
. (11.1)

This Hamiltonian is to be diagonalized in the space of 0+ two-neutron states
with wavefunctions


nn′l j
(	r1, 	r2

) = [
φnl j (	r1)φn′l j (	r2)

]
00 ,

constructed from the eigenstates

φn�jm
(	r) = Rn�(r ) [Y� (r̂ )χ (σ )] j�

of the single-particle Hamiltonian hnc. To do this, one needs to calculate the
matrix elements of Vnn and of 	p1 · 	p2/Acm between all 0+ two-particle states.
Note that 	p1 · 	p2/Acm ∼ 	∇1 · 	∇2. Consequently, the matrix elements of the re-
coil term are intimately connected with the matrix element of the operator (see
Appendix in Esbensen et al. (1997))

r̂1 · r̂2 =
∑

m

Y1m(	r1)Y ∗1m(	r2).

The recoil term, needed to eliminate the spurious centre of mass motion of the
system, is intimately connected to an (isoscalar) dipole–dipole field. In fact, the
self-consistent value of the dipole–dipole residual interaction needed to describe
the giant dipole resonance in the sum-rule conserving RPA leads to a zero-energy
isoscalar dipole mode.

A central issue connected with this model is how accurately one must treat
the various terms appearing in the Hamiltonian given in equation (11.1).

The ground state of 11Li has been studied in several Faddeev and Faddeev-like
three-body calculations (Zhukov (1991, 1993)) which make use of a shallow neu-
tron core potential Vnc and a simple Gaussian interaction Vnn acting between the
valence neutrons (see Table 11.2, lines 1 and 2). Calculations with the same Vnc

but using for Vnn a density-dependent (to quench the interaction inside the core)
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Table 11.2. Comparison of the ground-state properties of 11Li as calculated by making
use of different approaches. Line 5 contains results of nuclear field theory calculations
(NFT) discussed in Section 11.1. These results are compared with results published in
the literature: (I) obtained with a technique based on a density-dependent, cutoff, contact
interaction between the valence neutrons including (lines 3 and 6, Esbensen et al. (1997))
and neglecting (lines 4 and 7, Bertsch and Esbensen (1991)) recoil effects, (II) obtained
by making use of a Faddeev approach based on realistic interactions (lines 1, 2 (Zhukov
(1991), Ian Thompson, see Esbensen et al. (1997)) and 8 (Zhukov (1993))). The basic
quantities that characterize the low-energy nn scattering are the scattering length ann

and the effective range rnn. They are the parameters in the expansion of kcotδ in powers
of the relative momentum k (kcotδ ≈ −1/ann + 1

2rnnk2), where δ is the s-wave phase-
shift. The empirical values are ann = −18.5± 0.5 fm and rnn = 2.8± 0.1 fm (Bertsch
and Esbensen (1991), Zinser et al. (1997)).
The results reported in lines 1 and 2 were obtained by making use of a shallow neutron-
core potential (Vnc(r ) = −7.8 exp[−(r/2.55)] MeV), which does not support any bound
states, and a single Gaussian interaction (Vnn(r12) = −3(exp[−(r12/1.8)2] MeV), lead-
ing to s-wave phase shifts which are in good agreement with the empirical values. The
results quoted in lines 3 and 4 also made use of the shallow neutron–core potential
and a density-dependent contact interaction in the T = 1, S = 0 channel (quenched
inside the core). The two-halo neutrons are allowed to move in a radial box of 40 fm
with a cutoff of 25 MeV (line 3) and 15 MeV (line 4) respectively. The results in line 6
are based on a stronger core–neutron interaction (potential) in even-parity states pro-
ducing an s-wave scattering length of an0 = −5 fm. The results shown in line 7 were
obtained in the non-recoil limit, with a neutron–core p1/2 resonance at 800 keV. A
particular set of Faddeev results, based on a p1/2 resonance at 200 keV and realistic
nn-interaction is shown in line 8. In column 3 we display the low-energy nn-scattering
length ann, in column 4 the two neutron separation energy S2n, in column 6 the neutron
separation 〈r2

n,n〉1/2 = 〈
g.s ||	r1 − 	r2|2|
g.s〉1/2, in column 5 the dineutron core distance
〈r2

c,2n〉1/2 = 〈
g.s |(	r1 + 	r2)2|
g.s〉1/2, while in column 7 we display the mean square

radius 〈r2〉1/2A = (
δ〈r2〉 + Ac

A 〈r2〉Ac

)1/2
where δ〈r2〉 = 1

A

( 2Ac
A 〈r2

c,2n〉 + 1
2 〈r2

n,n〉
)

(Bertsch
and Esbensen (1991)). In columns 8 and 9 we display the probability of the two-particle
configurations to appear in the ground-state wavefunction.

ann S2n 〈r 2
c,2n〉1/2 〈r 2

n,n〉1/2 〈r 2〉1/2A (s1/2)2 (p1/2)2

Line Comments (fm) (keV) (fm) (fm) (fm) % %

1 HMMa −18.5 300 5 7.8 3.59 98.4
2 Faddeeva −18.5 318 5.3 7.9 3.66 95.1
3 Esbensena −15 318 5.2 7.9 3.64 91.1
4 Bertscha −15 318 5.0 8.2 3.63 94.4
5 NFT −18.5 330 5.1 8.6 3.75 40 58
6 Esbensenb −15 295 5.1 6.8 3.52 23.1 61.0
7 Bertschb −15 200 4.9 6.2 3.42 6.1 76.9
8 Q9b −18.5 295 4.6 6.7 3.41

a. Table I Esbensen et al. (1997).
b. Table IV Esbensen et al. (1997).
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contact pairing interaction have also been published (see lines 3 and 4, Table 11.2)
(Esbensen et al. (1997), Bertsch and Esbensen (1991), Bertsch (1994)). Note that
the density-dependent interaction can simulate three-body forces. These forces
have been found, in the most refined many-body calculations of light nuclei
avaliable in the literature (see e.g. Pudliner (1995)), to play an important role in
obtaining the correct binding energy.

In lines 6, 7 and 8 of Table 11.2, the results of contact interactions and realistic
force Faddeev calculations are reported, where the parameters of Vnc and Vnn

were adjusted so as to ensure the observed position of the p1/2 and s1/2 resonances
and of the 1S0 phase shifts.

It is seen that in all cases the observed two-neutron separation energy of 11Li
is adequately reproduced. The associated mean square radii are in reasonable
agreement among each other. Larger variation among the results of the differ-
ent calculations is found for the amplitude with which the s2

1/2(0) and p2
1/2(0)

two-particle configurations enter the ground state of 11Li. To be able to obtain a
sizeable s2

1/2(0) component as required by the experimental findings (Aoi et al.
(1997), Simon et al. (1999)) (see line 6 of Table 11.2) one is forced to use a differ-
ent Vnc interaction for even and for odd single-particle states so as to place both
the p1/2 annd the s1/2 resonances at the observed values (Esbensen et al. (1997)).

None of the above calculations was concerned with the influence that core
polarization effects may have in the properties of the system. In Nuñes et al.
(1996) the three-body model was extended to include explicitly certain core
degrees of freedom and the model was applied to 12Be where sizeable effects
were found (see Section 11.2).

While the calculations discussed in this section provide an overall account of
the experimental findings, they depend on a number of parameters, in particular
those associated with Vnc (and determing the position of the resonant single-
particle state), parameters which are likely to change from case to case, thus
reducing the predictive power of the realistic calculations.

It is likely that much of this ambiguity can be eliminated by properly taking into
account the influence of core polarization effects. In other words, by generalizing
the models discussed above, in particular that of Bertsch and Esbensen (1991)
and Esbensen et al. (1997), allowing the two neutrons to feel not only the 	p1 ·
	p2/Acm, dipole–dipole like interaction, but also to couple to the vibrations of the
core of multipolarities different from L = 1, vibrations which are also strongly
modified by the presence of halo neutrons. This constitutes the essence of the
paper of Barranco et al. (2001) which we discuss in the next section.

11.1.1 Single-particle states in 10Li: effective mass processes

Nuclear field theory (NFT) provides a systematic description of the nuclear
spectrum in terms of the motion of the nucleons, of the collective vibrations
of the system and of their interweaving. While (dressed) single-particle states
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and collective excitations are directly related to the experimental observations,
all the degrees of freedom of the nucleus are already exhausted by the single-
particle degrees of freedom. Consequently, overcompletness and Pauli principle
correction processes are essential in the NFT description of the nuclear structure
(Bes et al. (1976a), (1976b), Bortignon et al. (1977)).

This treatment is, to a large extent, equivalent to a full shell model calculation.
As in the case of such calculations, the mean-field single-particle levels are used
and the coupling to core excitations give rise, through self-energy and Pauli
(blocking) effects, to parity inversion (Sagawa et al. (1993)) (inversion in the
sequence between s1/2 and p1/2 states (resonances)).

Before discussing the sources of pairing correlations in 11Li, one needs to
determine the single-particle resonant spectrum of 10Li. The basis of (bare)
single-particle states used is determined by calculating the eigenvalues and eigen-
functions of a nucleon moving in the mean field of the 9Li core, for which
one can use a Saxon–Woods potential (Bohr and Mottelson (1969)), of depth
U0 = −(51− 30(N − Z )/A)MeV = −41 MeV. The continuum states of this
potential are calculated by solving the problem in a box of radius equal to 40 fm,
chosen to make the results stable. Arising mainly from Pauli principle effects
(Fock potential, see Section 8.2.1) the k-mass is expected to be dependent on the
density of the system. While in nuclei along the stability valley mk ≈ 0.7 m, it
is expected that in ‘halo’ nuclei 0.8 � mk/m � 1.

While mean-field theory predicts the orbital p1/2 to be lower than the s1/2

orbital (see Fig. 11.1, I(a)), experimentally the situation is reversed. Similar
parity inversions have been observed in other isotones of 10

3 Li7, such as 11
4 Be7

(see Section 11.2). Shell model calculations have indicated that the effect of core
excitation, in particular of quadrupole type, plays a central role in this inversion
(Sagawa et al. (1993), see also Vinh Mau (1995)). Within the framework of
Chapters 8 and 9, it is important to study the effect of the coupling of the p1/2

and s1/2 orbitals of 10Li to quadrupole vibrations of the 9Li core on the properties
of the 1/2+ and 1/2− states of this system. Monopole and dipole vibrations have
no low-lying strength in this nucleus and their coupling to the single-particle
states of 10Li lead to negligible contributions. The quadrupole vibrational state
of 9Li can be calculated by diagonalizing, in the random phase approximation
(RPA), a quadrupole–quadrupole separable interaction (see e.g. (8.39)) taking
into account the contributions arising from the excitation of particles into the
continuum states. A natural choice of the coupling constant is the self-consistent
value introduced in equations (8.58) and (10.27). A similar calculation carried
out using this value for the neighbouring nucleus, 10Be, yields good agreement
with the experimentally known transition probability of the quadrupole low-lying
vibrational state (Ajzenberg-Selove (1988, 1990), Raman et al. (1987)).

In the calculation of the renormalization effects of the single-particle res-
onances of 10Li due to the coupling to vibrational states one has to consider
not only the effective-mass-like diagrams (upper part graph of Fig. 11.1, I(b))
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Figure 11.1. (I) Single-particle neutron resonances in 10Li. In (a) the position of the levels
s1/2 and p1/2 calculated using mean-field theory is shown (dotted area and thin horizontal line
respectively). The coupling of a single-neutron (upward-pointing arrowed line) to a vibration
(wavy line) calculated using the Feynman diagrams shown in (b) (schematically depicted
also in terms of either solid dots (neutron) or open circles (neutron hole) moving in a single-
particle level around or in the 9Li core (hatched area)), leads to conspicuous shifts in the energy
centroid of the s1/2 and p1/2 resonances (shown by thick horizontal lines) and eventually to an
inversion in their sequence. In (c) we show the calculated partial cross-section σl for neutron
elastic scattering off 9Li. (II) The two-neutron system 11Li. We show in (a) the mean-field
picture of 11Li, where two neutrons (solid dots) move in time-reversal states around the core
9Li (hatched area) in the s1/2 resonance leading to an unbound s2

1/2(0) state where the two
neutrons are coupled to zero angular momentum. The exchange of vibrations between the
two neutrons shown in the upper part of the figure leads to a density-dependent interaction
which, added to the nucleon–nucleon interaction (v14 Argonne), correlates the two-neutron
system leading to a bound state |0+〉, where the two neutrons move with probability 0.40,
0.58 and 0.02 in the two-particle configurations s2

1/2(0), p2
1/2(0) and d2

5/2(0) respectively (after
Barranco et al. (2001)).
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Table 11.3. RPA wavefunction of the collective low-lying quadrupole vibration
of 9Li (X and Y are the forward-going and backward-going amplitudes respec-
tively, equation (8.38)), calculated using a separable quadrupole–quadrupole
interaction (equation (3.50), see also equation (8.44)) and allowing particles
to move in the levels of the Saxon–Woods potential discussed in the text. The
self-consistent value (κ2 = 0.013 MeV−1; see equation (8.58)) of the coupling
constant has been adopted. The energy of this state is E2+ = 3.3 MeV. All the
listed amplitudes refer to neutron transitions, except for the last two columns.
The resulting value for the quadrupole transition probability corresponds to the
deformation parameter β2 = 0.66. A calculation of the low-lying quadrupole
transition in the neighbouring nucleus 10Be with the same coupling constant
yields the value β2 = 0.9, close to the experimental value β2 = 1.1 (Raman et
al. (1987)).

1p−1
3/21p1/2 1p−1

3/28 f7/2 1p−1
3/29 f7/2 1s−1

1/2d5/2 1p−1
3/2 p1/2 (π ) 1s−1

1/21d5/2 (π )

Xph 1.02 0.07 0.08 0.07 0.15 0.09
Yph 0.28 0.05 0.06 0.06 0.09 0.07

leading to attractive (negative) contributions to the single-particle energies, but
also those couplings leading to ground-state correlation (repulsive) corrections
associated with diagrams containing two particles, one hole and a vibration in
the intermediate states (lower part diagram of Fig. 11.1, I(b) (see Section 9.1,
and Fig. 9.2). Because of such ground-state correlation processes, the p1/2 state
experiences an upward shift in energy. This arises from the coupling of this or-
bital to the p3/2 hole-state through quadrupole vibrational states resulting from
the exchange of the odd particle state p1/2 with that participating in the vibration,
in keeping with the fact that the (p1/2 p−1

3/2) particle–hole excitation constitutes an
important component of the quadrupole vibration wavefunction (see Table 11.3).
As a consequence, the p1/2 state becomes unbound, turning into a low-lying res-
onance with centroid Eres ≈ 0.5 MeV. Owing to the coupling to the vibrations
the s-state is instead shifted downwards. There are essentially no (repulsive)
contributions arising from the ground state correlation-correction processes for
the s-state.

On the other hand (attractive) effective-mass-like processes with intermediate
states consisting of one particle plus a vibrational state of the type (d5/2 × 2+)
lead to a virtual state with Evirt = 0.2 MeV (see Fig. 11.1, I(b)). The above results
provide an overall account of the s- and p-resonances observed experimentally.
The important difference between the distribution of the single-particle strength
associated with the resonant state p1/2 and the virtual state s1/2 can be observed
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in Fig. 11.1, I(c), where the partial cross-section σl for neutron elastic scattering
off 9Li is shown. While σp displays a clear peak at 0.5 MeV, σs is a smoothly
decreasing function of the energy. A small increase in the depth of the potential
felt by the s-neutron will lead to a (slightly) bound state, hence the name of
virtual resonance.

11.1.2 11Li and the Cooper pair problem

In the infinite system bound Cooper pairs exist for an arbitrarily weak interaction
(see Section 1.7), while in the nuclear case this phenomenon occurs only if the
strength of the nucleon–nucleon potential is larger than a critical value related
to the spacing of single-particle levels in the nuclear spectrum (see Section 1.9).
In fact, calculations carried out using v14 Argonne NN potential (see Chapter 8)
show that the nuclear forces are able to bind Cooper pairs in open-shell nuclei
like, for example, 120Sn leading to sizeable pairing gaps (see Figs. 8.6 and 8.9),
but not in closed-shell nuclei.

The situation is quite different in the case of 11Li where the NN-Argonne
potential, is not able to bind the last two neutrons. To calculate the spectrum of
11Li one places two neutrons in the continuum of levels associated with the s1/2

and p1/2 resonances as well as in the d5/2 states, and diagonalizes the v14 NN
potential. The calculations show that the bare nucleon–nucleon interaction is not
able to bind the two last neutrons to the 9Li core. The low-lying states resulting
from the diagonalization of the Argonne nucleon–nucleon force are dominated
by one of the configurations |s2

1/2(0)>, |p2
1/2(0)> or |d2

5/2(0)>. The v14 NN
potential produces almost no mixing between s-waves, p-waves and d-waves,
and only shifts the energy of the unperturbed (resonant) configurations s2

1/2(0)
and p2

1/2(0) by about 80 keV without giving rise to a bound system. The d2
5/2(0)

configurations are essentially not shifted. Making use of the same single-particle
levels and the same matrix elements of the nucleon–nucleon potential to solve
the BCS gap equations, one obtains no solution other than the trivial one of zero
pairing gap (�ν = 0). At the basis of this negative result is the fact that the most
important single-particle states which contribute to correlations between the halo
neutrons of 11Li are the s1/2, p1/2 and d5/2 orbitals. In this low angular momentum
phase space, the two neutrons are not able to profit fully from the strong force-
pairing interaction associated with the v14 NN potential (see equation (8.7)). This
is because only the components of multipolarity L = 0, 1 and 2 of this force are
effective in 11Li because of angular momentum and parity conservation rules.

This negative result together with the fact that 11Li displays strongly collective,
low-lying vibrations suggests that the exchange of these vibrations between the
two outer neutrons of 11Li is likely to be the main source of pairing correlations
in that nucleus (see Fig. 11.2). This effect has been studied by Barranco et al.
(2001). The L = 0, 1 and 2-vibrational spectrum of 11Li needed to calculate the
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Table 11.4. RPA wavefunction of the collective low-lying quadrupole phonon in
11Li, of energy E2+ = 5.05 MeV. All the listed amplitudes refer to neutron transi-
tions, except for the last column. The self-consistent value (κ2 = 0.013 MeV−1)
for the coupling constant was used. The resulting value for the deformation
parameter is β2 = 0.5.

1p−1
3/21p1/2 2s−1

1/25d3/2 1p−1
1/26p3/2 2s−1

1/23d5/2 2s−1
1/25d5/2 1p−1

3/21p1/2 (π )

Xph 0.824 0.404 0.151 0.125 0.126 0.16
Yph 0.119 0.011 −0.002 −0.049 −0.011 0.07

matrix elements of this induced interaction was determined in much the same
way as in 9Li, i.e. making use of the RPA (see Table 11.3) with the same value of
the quadrupole coupling constant. Because the calculations are carried out on the
physical (correlated) 11Li ground state, the particle–hole transitions associated
with the vibrational states involving the p1/2 and the s1/2 states are to be calculated
with the energies and corresponding occupation numbers resulting from the full
diagonalization. The strength of the separable dipole–dipole interaction can be
adjusted to provide an overall account of the experimental dipole response in
11Li. Unperturbed particle–hole excitations up to 70 MeV have been included
and phonon states up to 50 MeV have been considered. Within this space there
are of the order of 102 states, exhausting the associated energy-weighted sum
rule (Section 8.3). The calculated soft dipole response is shown in Fig. 11.3 (see
also Fig. 11.2). The low-lying quadrupole response is concentrated in a single
peak, whose wavefunction is shown in Table 11.4. A Skyrme-type effective
interaction (SLy4) was instead used to calculate the monopole linear response.
The corresponding solutions were obtained in coordinate space making use of a
mesh extending up to a radius of 80 fm. The monopole response exhausts 94%
of the EWSR considering the summed contributions up to 40 MeV of excitation
energy (see Fig. 11.3(c)).

All the resulting vibrational states were coupled to the single-particle
states making use of the corresponding transition densities (formfactors, see
Fig. 11.3(b) and (d)) and associated particle–vibration coupling strengths. In the
monopole case, the response function was discretized in bins of 300 keV.

These calculations, which form the basis of the results shown in Fig. 11.1 and
Table 11.1, allowed the two outer neutrons of 11Li both to exchange phonons
(induced interaction, Fig. 11.1, II(a)), as well as to emit and later reabsorb them
(self-energy correction, Fig. 11.1, I(b)). It was found that the last two neutrons in
11Li form a bound (Cooper) pair, the lowest eigenstate of the associated secular
matrix being Egs =−0.270 MeV. This result is mostly due to the exchange of the
low-lying dipole vibrations shown in Fig. 11.3(a) with associated wavefunction
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Figure 11.2. In the upper part of the figure, the single-particle potential used to describe the
single-particle motion in Li is schematically shown. In the middle left part, the experimental
elements used to calculate the strength of the dipole and quadrupole separable interactions are
shown, while at the right the dependence of the T = 1, S = 0 v14 Argonne potential on the
relative distance r12 is displayed. Scattering events up to 200 MeV are to be considered due
to the repulsive core of v14. In the lower part of the figure, a schematic representation of the
matrices associated with the coupling of neutrons (arrowed lines) through the v14 potential
(dashed line) and through surface vibrations (wavy lines) for 10Li (left) and 11Li (right) are
displayed. The last row shows the basic processes taken into account to all orders in the
diagonalization of the corresponding matrices.
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Figure 11.3. Dipole and monopole linear response functions and transition densities
of 11Li calculated in the RPA. The dipole response (λπ = 1−) was determined making
use of the multipole–multipole separable interaction H = tzκ1(F1(	r1) · F1(	r2))0, with
F1M (	r ) = r ∂U

∂r Y1M . The coupling constant was fixed to provide an overall account of
the experimental findings. For simplicity we show in (a) the overall strength function
(coarse mesh representation) and not the individual states (about 100). The transition
density associated with the state close to the peak, at E1− = 0.75 MeV is shown in (b) (see
equation (10.47)). The corresponding wavefunction is shown in Table 11.5. No experimental
information exists concerning the monopole modes. An effective Skyrme interaction (SLy4)
was used to determine the strength function shown in (c). The transition density at the peak
(E0+ ≈0.5 MeV) is shown in (d) (after Barranco et al. (2001)).

collected in Table 11.5. Adding to the induced interaction the nucleon–nucleon
v14 Argonne potential one obtains Egs = −0.330 MeV, and thus a two-neutron
separation energy quite close to the experimental value. Measured from the
unperturbed energy of a pair of neutrons in the lowest state calculated for 10Li,
namely the s-resonance (Eunp = 2Es1/2 = 400 keV, see Fig. 11.1, I(b)), it leads to
a pairing correlation (Section 3.5) energy E0 = Eunp − Egs = 0.730 MeV (see
Fig. 11.1, II(b)).
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Table 11.5. RPA wavefunction of the strongest low-lying dipole vibration of 11Li
(E1− = 0.75 MeV), contributing most importantly to the pairing induced inter-
action (Fig. 11.1 II). All the listed amplitudes refer to neutron transitions. The
value κ1− = 0.0043 MeV−1 for the isovector coupling constant has been used. It
was determined in order to get a good agreement with the experimental findings.
Note that this value is quite similar to the self-consistent value of 0.0032 MeV−1.
The resulting strength function (see Fig. 11.3(a)) integrated up to 4 MeV gives
7% of the Thomas–Reiche–Kuhn energy weighted sum rule (equation (8.51) with
L = 1), to be compared with the experimental value of 8% (Zinser et al. (1997)).

1p−1
1/22s1/2 1p−1

1/23s1/2 1p−1
1/24s1/2 1p−1

1/21d3/2 1p−1
3/25d5/2 1p−1

3/26d5/2 1p−1
3/27d5/2

Xph 0.847 −0.335 0.244 0.165 0.197 0.201 0.157
Yph 0.088 0.060 0.088 0.008 0.165 0.173 0.138

From the associated two-particle ground-state wavefunction �0(	r1, 	r2)(≡
〈	r1, 	r2|0+〉), Barranco et al. (2001) obtain a momentum distribution (whose
FWHM is σ⊥ = 56 MeV/c, for 11Li on 12C) and ground-state occupation prob-
abilities of the two-particle states s2

1/2(0), p2
1/2(0) and d2

5/2(0) (0.40, 0.58 and
0.02 respectively, see Fig. 11.1, II(b)), which provide an overall account of the
experimental findings. The radius of the associated single-particle distribution
is 7.1 fm. Adding to this density that of the core nucleons one obtains the total
density of 11Li. The associated mean square radius (3.9 fm) is somewhat larger
than the experimental value.

Within the framework of the above discussion it is unlikely that one can obtain
a good description of the medium polarization effects in 11Li by coupling the two-
halo neutrons to vibrations of 9Li. In fact, this model gives very different results
to those obtained by coupling the vibrations of 11Li to the two-halo neutrons,
correcting for Pauli principle violations (Appendix F) (in this connection see
Kuo et al. (1997)).

Also in this connection, we note that Hamamoto and Mottelson (2003) have
studied pairing correlations in weakly bound neutron systems by solving the HFB
equations in coordinate space with the correct asymptotic boundary conditions.
These are systems where the pair field provides a significant coupling between
neutron pairs in the bound state and neutrons moving in the low-energy contin-
uum. Making use of a local pair field of either volume type (that is,�(r ) ∼ f (r ),
see equation (8.14) or surface type�(r ) ∼ rd f (r )/dr ) they found that s1/2 neu-
trons with small binding energies are nearly decoupled from the main pair field.
Because s1/2 neutrons play a central role in halo nuclei, Hamamoto and Mottelson
conclude that the HFB approximation is inadequate to describe these nuclei.

Although the question is quite open, it is likely that this result is another
example of the limitations of static mean-field theories discussed at the end of
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Section 8.2. These limitations are, at least partially, removed by the dynamic shell
model (Mahaux (1985)), taking also into account, in a self-consistent manner,
the induced pairing interaction arising from polarization effects.

In fact, the exchange of vibrations with a long tail form factor (see Fig. 1l.3(b))
give rise to pairing fields which extend far beyond that associated with the density
of the core which is closely connected with the formfactor f (r ) (see Barranco et
al. 2001 as well as Figs. 11.4 and 11.5).

11.1.3 Spatial structure of the Cooper pair

The spatial structure of the Cooper pair described by the wavefunction�0(	r1, 	r2)
is shown in Fig. 11.4. The mean square radius of the centre of mass of the two
neutrons is 〈r2

cm〉1/2 = 5.4 fm. This result demonstrates the importance that the
correlations have in collecting the small (enhanced) amplitudes of the uncorre-
lated two-particle configuration s2

1/2(0) in the region between 4 and 5 fm, a region
in which the p2

1/2(0), helped by the centrifugal barrier, shows a somewhat larger
concentration (see Fig. 11.5). From the above results, it emerges that the exchange
of vibrations between the least bound neutrons leads to a (density-dependent)
pairing interaction acting essentially only outside the core (see also Bertsch and
Esbensen (1991)). Note that the long wavelength behaviour of these vibrations
is connected with the excitation of the neutron halo, the large size of which not
only makes the system easily polarizable but also provides the elastic medium
through which the loosely bound neutrons exchange vibrations with each other.
Because the vibrational states of 11Li are built out of excitations which occupy,
to some extent, the same particle states occupied by the loosely bound neutrons
being studied, the corresponding particle-vibration matrix elements have to be
corrected because of Pauli violating contributions (see Appendix F) following
the nuclear field theory rules (Bes et al. (1976a,b), Bes and Broglia (1977), Bor-
tignon et al. (1977))). In particular, the reduction factors of the particle–vibration
coupling Hamiltonian Hc (see Appendix F) associated with the matrix elements
< s1/2 × 1−|Hc|p1/2 >,< s1/2 × 0+|Hc|s1/2 > and< p1/2 × 0+|Hc|p1/2 > are
0.68, 0.25 and 0.25 respectively.

The average mean square distance between the halo neutrons is 〈r2
12〉1/2 ≈

9.2 fm, a result which is consistent with the fact that the coherence length as-
sociated with Cooper pairs in nuclei is larger than the nuclear dimensions thus
preventing the possibility of a nuclear supercurrent. On the other hand, this value
of<r2

12> does not prevent the two correlated neutrons being close together, the
corresponding (small) probability (see Fig. 11.4) being much larger than that
associated with the uncorrelated neutrons (see Fig. 11.5).

Similar results to those reported above are obtained solving the BCS equa-
tion for the two-neutron system making use of the matrix elements used in
the diagonalization, the sum of those of the nucleon–nucleon v14 Argonne
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Figure 11.4. Spatial structure of two-neutron Cooper pair. The modulus squared wavefunction
|�0(	r1, 	r2)|2 = |〈	r1, 	r2|0+〉|2 (see Fig. 11.1, II (b)) describing the motion of the two-halo
neutrons around the 9Li core (normalized to unity and multiplied by 16π2r2

1 r2
2 ) is displayed

as a function of the cartesian coordinates x2 = r2 cos(θ12) and y2 = r2 sin(θ12) of particle 2,
for fixed value of the position of particle 1 (r1 = 2.5, 5, 7.5 fm) represented in the right panels
by a solid dot, while the core 9Li is shown as a solid curve circle. The numbers appearing on
the z-axis of the three-dimensional plots displayed on the left side of the figure are in units
of fm−2 (after Barranco et al. (2001)).

potential and those of the induced interaction. In this case, the correlation
energy is E0 = −0.7 MeV, the separation energy of the two neutrons becom-
ing S2n = 0.360 MeV. The radial structure of the projected BCS wavefunctions∑
ν>0(Vν/Uν)ϕν(	r1)ϕν(	r2) displays a spatial structure quite similar to�0(	r1, 	r2),

the admixture of s- , p- and d- two-particle configurations being now 46%, 51%
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Figure 11.5. Spatial distribution of the pure two-particle configurations s2
1/2 (0) and p2

1/2(0)
as a function of the x- and y-coordinates of particle 2, for a fixed value of the coordinate
of particle 1 (r1 = 5 fm). For more details see the caption to Fig. 11.4 (after Barranco et al.
(2001)).

and 3% respectively. The coherence length ξ , i.e. the mean square distance be-
tween the two neutrons forming the Cooper pair, is in this case 〈r2

12〉1/2 = 7.8 fm.

11.1.4 Transfer reactions

The specific probe of pairing correlations is two-particle transfer reactions (see
e.g. Broglia et al. (1973) and references therein). Combined with single-particle
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Figure 11.6. (a) Field theoretical representation of the process 11Li(p, d)10Li. A double ar-
rowed line indicates the two-halo neutron Cooper pair, while a single arrowed heavy drawn
curve indicates a nucleon dressed through its coupling to a vibration (wavy line). In paren-
theses a specific contribution to the dressing process is shown. (b) Field theoretical represen-
tation of the two-neutron pick-up process 11Li(p, t)9Li.

stripping and pick-up reactions (see Fig. 11.6) they can provide a stringent test of
the main (microscopic) predictions that nuclear field theory makes concerning
10Li and 11Li, namely

|s̃1/2〉 = a|s1/2〉 + b|d5/2 × 2+; 1
2
+〉 + c|p1/2 × 1−; 1

2
+〉 + . . . , (11.2)

| p̃1/2〉 = A|p1/2〉 + B|p1/2 × 2+; 1
2
−〉 + C |s1/2 × 1−; 1

2
−〉 + . . . , (11.3)

and

|0+〉 = α|s2
1/2(0)〉 + β|p2

1/2(0)〉 + γ |d2
5/2(0)〉 + δ| (s1/2, d5/2

)
2+ × 2+; 0〉

+ γ | (s1/2, p1/2
)

1− × 1−; 0〉 + . . . . (11.4)

In what follows we shall discuss the one-particle spectroscopic factors asso-
ciated with (d, p) and (p, d) reactions and spectroscopic amplitudes associated
with (t, p) and (p, t) reactions. The measurement of these quantities could be,
in principle, attempted by making use of inverse kinematics techniques.
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11.1.5 Spectroscopics factors

Quite generally the 9Li(d, p)10Li reaction may provide information on

|〈ν̃|a+ν |gs
(

9Li
)〉|2 = {

a2 ν = s1/2,

A2 ν = p1/2,
(11.5)

and 11Li(p, d)10Li (see Fig. 11.6 (a)) on

|〈ν̃|aν |0+〉|2 =
{

(αa)2 ν = s1/2,

(βA)2 ν = p1/2.
(11.6)

11.1.6 B-coefficients

The spectroscopic amplitudes associated with the two-particle process
11Li(p, t)9Li is given by (see Fig. 11.6 (b))

Bν
(
0+

) = 〈9Li(gs)| [aνaν]0 |0+〉 =
⎧⎨⎩α ν = s1/2,

β ν = p1/2,

γ ν = d5/2.

(11.7)

The two-particle transfer cross-section is

σ (p, t) ∼
(∑

ν

Bν
(
0+

))2

≈ (α + β + γ )2 . (11.8)

11.2 The halo nucleus 12Be

In what follows we shall study the nuclei 11
4 Be7 and 12

4 Be8, allowing the nucleons
to interact through a nucleon–nucleon realistic potential (Argonne v14) taking
also into account the coupling between single-particle motion and collective vi-
brations of the system as was done in the previous section for the case of 11Li and
12Li. Special emphasis will be made, in the present case, on the calculation of the
spectroscopic factors of 12Be which, together with the ground-state occupation
probabilities of the two-particle configurations s2, p2 and d2, provide the most
sensitive predictions for a detailed comparison with the experimental findings
(Gori et al. (2004a)).

We start by considering the system 11
4 Be7 described as one neutron moving

around the core 10
4 Be6, in keeping with the fact that the value of the neutron

separation energy in 10Be is 6.813 MeV compared with the value of 0.504 MeV
in 11Be. The single-particle levels are determined by solving the Schrödinger
equation (

− �
2

2mk
∇2

r +U ′(r )

)
φ j (r ) = ε jφ j (r ), (11.9)
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Figure 11.7. Schematic representation of the effective matrix used in the Bloch–Horowitz
perturbation theory to calculate the eigenvalues of 11Be (see Section 10.2). An arrowed
line pointing upwards (downwards) indicates a particle (hole), while a wavy line indicates
a collective vibrational state. Reprinted with permission from Gori et al., Phys. Rev. C69:
041302 (R) (2004a). Copyright 2004 by the American Physical Society.

in a spherical box of radius equal to 30 fm so as to discretize the continuum
states. The quantity mk is the k-mass while U ′(r ) = (m/mk)U (r ), U (r ) being a
Saxon–Woods potential with a standard parametrization for the depth (Bohr and
Mottelson (1969))

V = −50.5+ 33
N − Z

A
MeV. (11.10)

In keeping with the fact that the k-mass is directly connected with non-locality
effects (mainly exchange effects associated with the Fock potential), it is expected
to strongly depend on the density of the system. In the case of nuclei along
the stability valley, mk ≈ 0.7m, while in the case of halo nuclei like 11Be, one
expects 0.8m ≤ mk ≤ m. Calculations using both of the limiting values of mk

were carried out, with rather similar results, as explained below.
Making use of the associated particle–hole basis and of a separable multipole–

multipole interaction, the Lπ = 2+ and 3− vibrations were calculated in the
QRPA (equation (8.47)). A self-consistent coupling constant kL (see equation
(10.27)), slightly adjusted to reproduce the energy of quadrupole vibrations, was
used. The range of the associated deformation parameters βL is consistent with
observation (Iwasaki et al. (2000a,b), Raman et al. (1987)).

The eigenvalues of the dressed single-particle states were obtained by diag-
onalizing (energy-dependent) matrices of the order 102 × 102 whose elements
connect a basis of unperturbed states containing both bound and continuum so-
lutions of equation (11.9) with energies up to 350 MeV, with states containing a
particle and a vibration (Fig. (11.7(b)) as well as two particles and a hole plus a
collective mode (Fig. (11.7(c)). The calculations were carried out for states with
quantum number s1/2, p1/2 and d5/2. Similar results were obtained by making use
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Table 11.6. Comparison of experimental binding energy and spectroscopic fac-
tors with those resulting from the NFT calculations (see Table 11.2, also referred
to as particle-vibration +v14 (see Table 11.1)) and from an independent parti-
cle (mean-field) model. The spectroscopic factors are those for the transfer of
one particle on s1/2 and p1/2 states. They were measured for 11Be and 12Be by
Navin et al. (2000) and Iwasaki et al. (2000a,b) respectively. For 12Be, we also
show the components of the resulting ground-state wavefunction (after Gori
et al. (2004a)).

Theory

Exper. Particle-vibration Mean-field

Es1/2 −0.504 MeV −0.48 MeV ∼0.14 MeV
E p1/2 −0.18 MeV −0.27 MeV −3.12 MeV

11
4 Be7 Ed5/2 1.28 MeV(∗) ∼0 MeV ∼2.4 MeV

S
[
1/2+

]
0.77 0.87 1

S
[
1/2−

]
0.96 0.86 1

S
[
5/2+

]
0.72 1

S2n −3.673 MeV −3.58 MeV −6.24 MeV
12
4 Be8 s2, p2, d2 23%, 29%, 48% 0%, 100%, 0%

S
[
1/2+

]
0.42± 0.10 0.31 0

S
[
1/2−

]
0.37± 0.10 0.57 1

∗ Tentative assignment.

of the unperturbed single-particle basis calculated solving equation (11.9) with
mk/m = 1 and mk/m = 0.8, as the larger (absolute) values of the energies ε j are
compensated by the stronger particle-vibration coupling vertices proportional to
βL and to ∂U ′/∂r (see equation (8.18)). In what follows we shall refer to the
results obtained with mk/m = 1, results which are displayed in Table 11.6, com-
pared with the experimental findings. Theory provides an overall account of the
experimental findings, also concerning the spectroscopic factors associated with
the reaction 10Be(d, p)11Be (Zwieglinski et al. (1979)). The way these quantities
were calculated is discussed below in connection with a shell model calculation
carried out in connection with the reaction 12Be(9Be,9Be +n + γ )11Be (Navin
et al. (2000)).

Note that there is experimental evidence of the existence of a resonant d5/2 state
at 1.28 MeV (Zwieglinski et al. (1979), Ajzenberg-Selove (1990)). A calculation
was carried out following the steps discussed in Navin et al. (2000) but setting
the unperturbed energy of the d5/2 resonance at 4.1 MeV, so that the dressed
resonance had an energy of 1.2 MeV. In this case the spectroscopic factors
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Figure 11.8. Schematic representation of the effective matrix used in the Bloch-Horowitz
perturbation theory to calculate the eigenvalues of 12Be. The dashed horizontal line represent
the bare (Argonne v14) nucleon–nucleon potential. Pairs of nucleons are coupled to angular
momentum L = 0. Reprinted with permission from Gori et al., Phys. Rev. C69: 041302 (R)
(2004). Copyright 2004 by the American Physical Society.

associated with 11Be are 0.9, 0.96 and 0.73 respectively, while the 12Be ground-
state wavefunction becomes (s2, p2, d2) 80%, 5%, 15%.

The self-energy (Fig. 11.7(b)) and Pauli principle correction (Fig. 11.7(c))
processes used to describe the dressed single-particle states of 11Be, which even-
tually accounted for the parity inversion experimentally observed, have been in-
cluded in the description of the ground state of 12Be as can be seen from Fig. 11.8,
which shows the effective matrix to be diagonalized in order to describe the
ground-state properties of the correlated three-body system 12Be (similar calcu-
lations carried out by Nuñez et al. (1996) did not include processes of type (c),
Fig. 11.8). The Hilbert space used to describe 12Be is made out of two-particle
states (see Fig. 11.8(a)), two particles and one phonon (Fig. 11.8(b) and Fig.
11.8(d)), and three particles, one hole and one phonon states (Fig. 11.8(c)). All
these configurations are coupled to zero angular momentum and display energies
up to 500 MeV. The effects of v14 and of the particle-vibration coupling in 12Be
are determined by diagonalizing the effective, energy-dependent (≈103 × 103)
matrix. The lowest eigenvalue−3.58 MeV is to be compared with the experimen-
tal two-particle separation energy of −3.67 MeV. The main contribution to the
nucleon–nucleon interaction arises from the induced interaction (Fig. 11.8(d)),
that associated with the bare nucleon–nucleon potential (see Fig. 11.8(a)) being
very small (≈100 keV), a situation already encountered in the study of 11Li and
associated with the small l-content of the s, p, d-subspace.
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The squared amplitudes of the 12Be ground-state wavefunction are shown in
Table 11.6. The large d2

5/2(0)-amplitude predicted for the 12Be ground state (see
also Navin et al. (2000)) compared with that calculated in the case of 11Li can be
understood in terms of the fact that the d5/2 orbital is, in 10Li, much less confined
than in 11Be, thus displaying much smaller overlaps with the 1s1/2 and 0p1/2

orbitals. Furthermore, this result is also connected with the fact that in 11Li the
dipole mode is much softer than in 12Be (Iwasaki et al. (2000a,b)). Using the 12Be
ground-state wavefunction and that obtained for the ground state and the first
excited state of 11Be, one has calculated the spectroscopic factors associated with
the knock-out reaction 12Be (9Be, 9Be +n + γ ) 11Be. The results are compared
in Table 11.6 with the experimental findings (Navin et al. (2000)).



Appendix A
A brief résumé of second quantization

Second quantization provides an economic representation of quantum mechanics which
includes automatically the statistics fulfilled by the particles composing the system. This
appendix summarizes some of the basic results for fermions and bosons.

A.1 Fermions

Let us consider a system of n identical fermions and let�(	r1, 	r2, . . . , 	rn) denote the exact
wavefunction of the system. Let us introduce the state 
(	r1, 	r2, . . . , 	rn), a member of
a complete set of n-particle wavefunctions. It is constructed as a properly symmetrized
product of one-particle wavefunctions ϕν(	r ), which form a complete orthonormal set∫

ϕ∗ν (	r )ϕν ′ (	r ) d3r = δ(ν, ν ′), (A.1)

∑
ν

ϕ∗ν (	r ′)ϕν(	r ) = δ(	r − 	r ′). (A.2)

The function 
(	r1, 	r2, . . . , 	rn), in the case of fermions, is given by the determinant of
the single-particle wavefunctions


(	r1, 	r2, . . . , 	rn) = det√
n!

(ϕν1 (	r1)ϕν2 (	r2) · · ·ϕνn (	rn)). (A.3)

The function � is thus a linear combination of determinants.
We now introduce the creation and annihilation fermion operators a†

ν and aν respec-
tively, acting on the fermion vacuum state |0〉F. These operators satisfy the anticommu-
tation relations

{aν, a†
ν ′ } = aνa

†
ν ′ + a†

ν ′aν = δ(ν, ν ′) (A.4)

and

{aν, aν ′ } = {a†
ν, a

†
ν ′ } = 0. (A.5)

280
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This choice restricts the occupation number of the states ν to 0 or 1 as required by Fermi
statistics and to antisymmetric normalized states. Acting with the creation operator a†

j
on the vacuum one creates a single-particle state

a†
j |0〉F = | j〉, (A.6)

where the r -representation coincides with the single-particle wavefunction

〈	r | j〉 = ϕ j (	r ).

The orthonormalization condition

〈 j | j ′〉 = F〈0|a j a
†
j ′ |0〉F = F〈0|δ( j, j ′)− a†

j ′a j |0〉F
= δ( j, j ′) ≡ F〈0|a j a

†
j ′|0〉F , (A.7)

where the relation given by equation (A.4) has been used together with

a j |0〉F = 0, (A.8)

and

F〈0|0〉F = 1. (A.9)

The symbol in the last term of equation (A.7) denotes a contraction. According to Wick’s
theorem, to calculate overlaps or matrix elements involving a† and a, one should carry
out all possible contractions between creation and annihilation operators, introducing a
minus sign each time that in the contraction one jumps over an odd number of operators,
and a plus sign otherwise.

A two-particle state in this representation reads

a†
j a†

j ′ |0〉F = | j, j ′〉. (A.10)

Making use of the anticommutation relation (A.5) one can show that

| j, j ′〉 = −| j ′, j〉, (A.11)

i.e. the two-particle state is antisymmetric. Consequently,

| j, j〉 = 0, (A.12)

i.e. no two fermions can occupy the same quantal state, as required by the Pauli principle.
The orthonormalization condition of the state | j, j ′〉 is given by the relation

〈 j1, j2| j ′1, j ′2〉 = F〈0| a j2 a j1 a†
j ′1

a†
j ′2
|0〉F (A.13)

= δ( j2, j ′2) δ( j1, j ′1)− δ( j1, j ′2) δ( j ′1, j2). (A.14)

This result can also be obtained directly without using Wick’s theorem by making re-
peated use of the anticommutation relation given in equation (A.4). Equations (A.11),
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(A.12) and (A.14) indicate that

〈	r , 	r ′| j1 j2〉 = 1√
2

∣∣∣∣∣ϕ j1 (	r ) ϕ j2 (	r )

ϕ j1 (	r ′) ϕ j2 (	r ′)

∣∣∣∣∣ . (A.15)

Let us now calculate the matrix element of a two-body interaction

〈 j1 j2|v| j ′1 j ′2〉a =
1

2

∫
d3r d3r ′

∣∣∣∣∣ϕ j1 (	r ) ϕ j2 (	r )

ϕ j1 (	r ′) ϕ j2 (	r ′)

∣∣∣∣∣
∗
v(|	r − 	r ′|)

∣∣∣∣∣ϕ j ′1 (	r ) ϕ j ′2 (	r )

ϕ j ′1 (	r ′) ϕ j ′2 (	r ′)

∣∣∣∣∣
=

∫
d3r d3r ′ϕ∗j1 (	r )ϕ∗j2 (	r ′)v(|	r − 	r ′|)ϕ j ′1 (	r )ϕ j ′2 (	r ′)

−
∫

d3r d3r ′ϕ∗j1 (	r )ϕ∗j2 (	r ′)v(|	r − 	r ′|)ϕ j ′2 (	r )ϕ j ′1 (	r ′). (A.16)

Note that this matrix element changes sign each time two particles are exchanged either
in the initial or in the final states. For example,

〈 j2 j1|v| j ′1 j ′2〉a =
∫

d3rd3r ′ϕ∗j2 (	r )ϕ∗j1 (	r ′)v(|	r − 	r ′|)ϕ j ′1 (	r )ϕ j ′2 (	r ′)

−
∫

d3rd3r ′ϕ∗j2 (	r )ϕ∗j1 (	r ′)v(|	r − 	r ′|)ϕ j ′2 (	r )ϕ j ′1 (	r ′)

=
∫

d3rd3r ′ϕ∗j1 (	r )ϕ∗j2 (	r ′)v(|	r − 	r ′|)ϕ j ′2 (	r )ϕ j ′1 (	r ′)

−
∫

d3rd3r ′ϕ∗j1 (	r )ϕ∗j2 (	r ′)v(|	r − 	r ′|)ϕ j ′1 (	r )ϕ j ′2 (	r ′)
= −〈 j1 j2|v| j ′1 j ′2〉a,

where in going from the first to the second expression one has exchanged 	r to 	r ′.
Consequently,

〈 j1 j2|v| j ′1 j ′2〉a = −〈 j1 j2|v| j ′2 j ′1〉a
= −〈 j2 j1|v| j ′1 j ′2〉a = 〈 j2 j1|v| j ′2 j ′1〉a .

(A.17)

We now proceed to express operators in second quantization. Because a one-body
operator can change, at most, the state of motion of a single particle it must be bilinear
in the creation and destruction operators. Similarly, a two-body interaction which can
change the state of motion of two particles simultaneously must be a quartic function of
the creation and annihilation operators. In particular the Hamiltonian, sum of a kinetic
term and a two-body interaction can be written in second quantization as

H =
∑
j1 j2

〈 j1|T | j2〉a†
j1

a j2 +
1

4

∑
j1 j2
j3 j4

〈 j1 j2|v| j3 j4〉aa†
j2

a†
j1

a j3 a j4 . (A.18)

In Fig. A.1 we schematically display the action of the second term on a pair of particles.
The matrix element 〈 j1 j2|v| j3 j4〉a has been defined in equation (A.16).

We now proceed to derive the Hartree–Fock equation associated with H , which means
to extract the one-body Hartree–Fock Hamiltonian. For this purpose we have to carry
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Figure A.1. (a) Scattering of two nucleons through the bare NN interaction. (b) (1) and (3):
contributions to the (direct) Hartree potential (see equations (A.20) and (A.22) as well as
(A.28)). (2) and (4): contributions to the (exchange) Fock potential (see equations (A.21),
(A.23) and (A.30)).

out single contractions in the second term of H . The first term is already bilinear in the
creation and annihilation operators. The four possible contractions are

a†
j2

a†
j1

a j3 a j4

©1
©2

©3
©4

, (A.19)



284 Appendix A

leading to the four contributions (see Fig. A.1)

©1 = 1

4

∑
j1 j3

∑
i

(εi ≤ εF)

〈 j1 i |v| j3 i〉a a†
j1

a j3 , (A.20)

©2 = −1

4

∑
j1 j4

∑
i

(εi ≤ εF)

〈 j1i |v|i j4〉a a†
j1

a j4 , (A.21)

©3 = 1

4

∑
j2 j4

∑
i

(εi ≤ εF)

〈i j2|v|i j4〉a a†
j2

a j4 , (A.22)

©4 = −1

4

∑
j2 j3

∑
i

(εi ≤ εF)

〈i j2|v| j3i〉a a†
j2

a j3 . (A.23)

Making use of the relations given in equation (A.17), one notes that all the contributions
are equal, their sum being ∑

j1 j2

∑
i

(εi ≤ εF)

〈 j1 i |v| j2 i〉a a†
j1

a j2 . (A.24)

Note that i runs only over occupied states, i.e. εi ≤ εF. This is because to annihilate a
particle (e.g. in the contraction ©1 that is the state j3) the corresponding quantal state
should be occupied.

Equating the sum of the kinetic energy term (see equation in terms of (A.18)) and of
the potential term (equation (A.24)) to a diagonal, single-particle energy, provides the
mean-field Schrödinger equation∑

j1 j2

(
〈 j1|T | j2〉 +

∑
i

(εi ≤ εF)

〈 j1 i |v| j2 i〉a
)

a†
j1

a j2 =
∑
j1 j2

ε j1 a†
j1

a j2δ( j1, j2), (A.25)

that is ∫
d3r ′′ϕ∗j ′ (	r ′ ′)Tϕ j (	r ′ ′)

+
∑

i
(εi ≤ εF)

∫
d3r ′d3r ′′ϕ∗j ′ (	r ′ ′)ϕ∗i (	r ′)v(|	r ′ ′ − 	r ′|)ϕ j (	r ′ ′)ϕi (	r ′)

−
∑

i
(εi ≤ εF)

∫
d3r ′d3r ′′ϕ∗j ′ (	r ′ ′)ϕ∗i (	r ′)v(|	r ′ ′ − 	r ′|)ϕ j (	r ′)ϕi (	r ′ ′)

= ε jδ( j, j ′) (A.26)
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Multiplying from the left by  j ′ϕ j ′ (	r ), one obtains the Hartree–Fock equation in the
r -representation,(

T +U (r )
)
ϕ j (	r )+

∫
d3r ′Ux (|	r − 	r ′|)ϕ j (	r ′) = ε jϕ j (	r ), (A.27)

where

U (r ) =
∫

d3r ′ ρ(r ) v(|	r − 	r ′|) (A.28)

is the Hartree potential associated with processes depicted in graphs (1) and (3) of
Fig. A.1 (see also equations (A.20) and (A.22)). In this expression

ρ(r ) =
∑

i
(εi ≤ εF)

|ϕi (	r )|2, (A.29)

is the density of the system. The term

Ux = −
∑

i
(εi ≤ εF)

ϕ∗i (	r ′) v(|	r − 	r ′|)ϕi (	r ) (A.30)

is the Fock (exchange) potential and has its origin on the Pauli principle (graphs (2) and
(4) of Fig. A.1 and equations (A.21) and (A.23)). This term eliminates contributions to
the mean field arising from the interaction of a fermion with itself. To see this let us
neglect for a moment the exchange potential. Then equation (A.26) can be written as

− �
2

2m
ϕ j (	r )+

∑
i

(εi ≤ εF)

∫
d3r ′ ϕ∗i (	r ′)v(|	r − 	r ′)|ϕi (	r ′)ϕ j (	r ) = ε j ϕ j (	r ). (A.31)

However, because we are dealing with fermions, the product wavefunction ϕi (	r ′)ϕ j (	r )
has to be replaced by ϕi (	r ′)ϕ j (	r ) − ϕi (	r ′)ϕ j (	r ), thus leading to equation (A.27). Con-
sequently, all contributions to the mean field from terms with j = i vanish.

Once diagonalized, the Hartree–Fock Hamiltonian can be written in second quanti-
zation as

Hsp =
∑
ν ′
εν ′ a

†
ν ′ aν ′ . (A.32)

where

Nν = a†
νaν (A.33)

When applied to the state

|ν〉 = a†
ν |0〉F, (A.34)
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one obtains

Hsp|ν〉 =
∑
ν ′
εν ′ a

†
ν ′ aν ′ a

†
ν |0〉F =

∑
ν ′
εν ′ a

†
ν ′
(
δ(ν, ν ′)− a†

ν aν ′
)|0〉F

= εν a†
ν |0〉F = εν |ν〉, (A.35)

making use of the fact that

aν ′ |0〉F = 0. (A.36)

A.2 Particles and holes

The ground (vacuum) state of Hartree–Fock theory can be written, in second quantization,
as

|0〉HF =
∏

i
(εi ≤ εF)

a†
i |0〉F (

∑
i

(εi ≤ εF)

1 = A), (A.37)

where i runs over the quantum numbers of all the occupied states. Assuming the state
|0〉HF to have an even number of particles, in particular to correspond to a closed-shell
system, the total magnetic quantum number is

MF =
∑

i

mi = 0. (A.38)

If one annihilates a particle in the state i with magnetic quantum number mi , the resulting
hole state

ai |0〉HF (A.39)

has projection

Mi =
∑
i ′ �=i

mi ′ = −mi . (A.40)

This is because adding a particle with projection mi to this state, one obtains a state
with zero projection, as expressed by the relation given in equation (A.40). Because the
angular momentum projection of the hole state (A.39) is opposite to that of the angular
momentum of the corresponding particle state and because the third component of the
angular momentum changes sign under time reversal it is possible to relate the creation
operator of a hole in a given quantal state to the annihilation operator of a particle in the
corresponding time-reversal state.

To be more explicit, the time reversal operator τ acting on a single-particle state | jm〉
with angular momentum quantum numbers ( j,m) changes the sign of the projection of
the angular momentum leading to

τ | jm〉 = (−1)p−m | j − m〉 .
The m-dependence of the phase is necessary to maintain the correct angular momentum
transformation properties but the phase p can be chosen in various ways. Bohr and
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Mottelson (1969) choose p = j but other choices are possible. The operation

b†
jm |0〉HF = (−1) j−m a j−m |0〉HF

creates a hole state with angular momentum quantum numbers ( j,m).
More generally, one can define the creation operator of a hole as

b†
i = aı̃ , (A.41)

where |ı̃〉 = τ |i〉 is the time reverse of the state |i〉. The associate hole state is

|i−1〉 = b†
i |0〉HF = aı̃ |0〉HF (εi ≤ εF) . (A.42)

Implicit in equations (A.41) and (A.42) is the requirement that the same phase factors
should be used in the definition of the hole creation operator as for the time-reversal
operator. Note that

b†
ν̃ = a ˜̃ν = −aν (A.43)

because τ 2 = −1.
The economy associated with the concepts of particles and holes is evident. Instead of

having to explicitly describe the motion of all the i ′ �= i particles present in the Hartree–
Fock ground states, one needs to concentrate on the degrees of freedom of the single
one which is missing in describing the behaviour of the hole state |i−1〉. Although not
mentioned explicitly, this approach has already been used in dealing with particle states.
In fact, in describing the state

|k〉 = a†
k |0〉HF (εk > εF), (A.44)

one does not talk about all the A + 1 nucleons participating in this state (A are packed
in |0〉HF) but only about the single-particle state k.

Let us now write the single-particle operator F̂ in terms of creation and annihilation
operators of particles and of holes, i.e.

F̂ =
∑
ν1ν2

〈ν1|F |ν2〉a†
ν1

aν2

=
∑

ν1ν2>νF

〈ν1|F |ν2〉a†
ν1

aν2 +
∑

ν1ν2≤νF

〈ν1|F |ν2〉(−bν̃1 )(−b†
ν̃2

)+ · · · , (A.45)

where the relation (A.42) has been used. The sum ν1ν2 > νF is over single-particle states
with energies larger than εF, while ν1ν2 ≤ νF implies states lying below or at εF. One
can then write

F̂ =
∑
ν1ν2>νF

〈ν1|F |ν2〉a†
ν1

aν2 −
∑
ν1ν2≤νF

〈ṽ1|F |ν̃2〉b†
ν2

bν1 + · · · . (A.46)

The dots in equations (A.45) and (A.46) refer to terms which create or annihilate particle–
hole states.

Consequently

〈ν1|F̂ |ν2〉 = 〈ν1|F |ν2〉 =
∫

d3r ϕ∗ν1
(	r ) F(	r )ϕν2 (	r ), (A.47)
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while

〈ν−1
1 |F̂ |ν−1

2 〉 = −〈ν̃2|F |ν̃1〉 = −〈ν2|τ−1 Fτ |ν1〉 = −〈ν1|(τ−1 Fτ )†|ν2〉. (A.48)

Many single-particle operators have the time-reversal transformation property (Bohr and
Mottelson (1969), Section 3-1b)

(τ−1 Fτ )† = −cF, (A.49)

where c = ±1. For example, time-even operators like the coordinate operator r̂ transform
according to equation (A.49) with c = −1 while time-odd operators like the momentum
p̂ and angular momentum l̂ have c = 1 (see Bortignon et al. (1983)). If an operator has
the time-reversal transformation property (A.49) then the hole and particle state matrix
elements are related by

〈ν−1
1 |F̂ |ν−1

2 〉 = c〈ν1|F |ν2〉. (A.50)

As explained earlier, this result depends on a consistent definition of the phases in the
time-reversal transformation and particle–hole conjugation (see discussions following
equations (3.90) and (8.71)).

A.3 Bosons

In the case of particles fulfilling Bose–Einstein statistics we introduce the boson operators
�†
α , �α which create and annihilate a boson in a state α, and respect the commutation

relations

[�α, �
†
α′ ] = �α�†

α′ − �†
α′�α = δ(α, α′) (A.51)

and

[�α, �α′ ] = [�†
α, �

†
α′ ] = 0. (A.52)

Calling |0〉B the normalized boson vacuum state, i.e.

B〈0|0〉B = 1, (A.53)

one obtains, by definition,

�α|0〉B = 0. (A.54)

The one-phonon state is defined as

�†
α|0〉B = |nα = 1〉, (A.55)

where nα indicates the number of phonons in the quantal state α. This state is normalized.
In fact

〈nα = 1|nα′ = 1〉 = B〈0|�α�†
α′ |0〉B

= B〈0|
(
δ(α, α′)+ �†

α′�α
)|0〉B = B〈0|�α�†

α′ |0〉 = δ(α, α′).
(A.56)
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The last step in equation (A.56) contains a contraction between the boson creation and
annihilation operators. It is the analogue of the contraction between fermion operators
in equation (A.7). There is the Wick theorem for bosons which is the same as the one
for fermions except that there are no sign changes when operators are interchanged. The
commutation relation given in equation (A.51) implies that

�†
α�

†
α|0〉B �= 0, (A.57)

i.e. bosons can occupy the same quantal state. Let us now work out the orthonormalization
of this two-phonon state by carrying out all contractions

B〈0|�α′�α′�†
α�

†
α |0〉B = δ(α, α′) δ(α, α′)+ δ(α, α′) δ(α, α′) = 2δ(α, α′). (A.58)

Consequently, the two-boson state

|nα = 2〉 = 1√
2
�†
α�

†
α|0〉B (A.59)

is a normalized state. Note that

�†
α|n = 1〉 = �†

α�
†
α|0〉B =

√
2 |nα = 1〉 (A.60)

and, in general,

�†
α|nα = N 〉 = √N + 1 |nα=N + 1〉. (A.61)

We will now write the harmonic oscillator Hamiltonian in second quantization as
originally done by Dirac (1935),

H =
∑
α′

�ωα′
(
�
†
α′�α′ + 1

2

)
. (A.62)

The energy of the ground state (vacuum state) is

H |0〉B = E0, (A.63)

where

E0 = 1

2

∑
α′

�ωα′ . (A.64)

It receives a 1
2 �ωα contribution (zero-point fluctuation) for each degree of freedom of

the system.
The one-phonon state has an energy

H |nα = 1〉 =
∑
α′

�ωα′
(
�
†
α′�α′ +

1

2

)
�†
α|0〉B =

∑
α

�ωα′�
†
α′�α′�

†
α |0〉B + E0�

†
α|0〉B

= (
�ωα + E0

)|nα = 1〉. (A.65)
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We will now calculate the commutator

[H, �†
α] =

∑
α

�ωα′ [�
†
α′�α′ , �

†
α]. (A.66)

Making use of the relation

[AB,C] = A[B,C]+ [A,C]B, (A.67)

one obtains

[H, �†
α] =

∑
α′

�ωα′
(
�
†
α′ [�α′ , �

†
α]+ [�†

α′ , �
†
α]�α′

) =∑
α′

�ωα′�
†
α′δ(α, α

′) = �ωα�
†
α.

(A.68)

That is, this expression provides a relation to determine the eigenvalues of a Hamiltonian
H in the harmonic approximation. Of course this approximation becomes exact if H is
the Hamiltonian describing a harmonic oscillator.

A.4 Quasi-bosons

Making use of the relations given in equation (A.67) and those relating commutators to
anticommutators,

[A, BC] = −B{A,C} + {A, B}C, (A.69)

one can calculate

[aν̄aν, a
†
ν ′a

†
ν̄ ′ ] = aν̄[aν, a

†
ν ′a

†
ν̄ ′ ]+ [aν̄ , a

†
ν ′a

†
ν̄ ′ ]aν

= aν̄
(
−a†

ν ′ {aν, a†
ν̄ ′ } + {aν, a†

ν ′ }a†
ν̄ ′

−a†
ν ′ {aν̄ , a†

ν̄ ′ } + {aν̄ , a†
ν ′ }a†

ν̄ ′

)
aν

= aν̄
(
δ(ν, ν ′)a†

ν̄ − a†
νδ(ν, ν

′)
)

aν

= δ(ν, ν ′) (1− Nν − Nν̄) , (A.70)

where Nν = a†
νaν , and where it has been assumed that ν and ν̄ ′ are two different quantal

states, one of the class with positive angular momentum projection and the other with
negative m-value. If this commutator is applied to the vacuum state one obtains

[aν̄aν, a
†
ν ′a

†
ν̄ ′ ]|0〉 = δ(ν, ν ′)|0〉. (A.71)

Consequently, under certain circumstances, a couple of fermions behave like a (quasi-)
boson (see equation (5.12)). Making use of (A.70) one obtains

[P, P†] = δ(ν, ν ′)�
(

1− N̂

�

)
, (A.72)
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where

P =
∑
ν>0

a†
νa

†
ν̂ ,

2� is the number of degenerate single fermion states and N̂ =∑
ν a†

νaν =∑
ν>0

(
a′νaν + a†

ν̄aν̄
)

is the operator number of particles. It is then clear that the last

factor in equation (A.72) arises from the Pauli principle acting between fermions.



Appendix B
Single particle in a non-local potential

The exchange (Fock) term in the single-particle Hartree–Fock equation is non-local in the
position coordinate 	r (see Fig. B.1, see also Fig. A1(4)). A short range non-locality can
be approximated by a momentum dependence which can be included in the Schrödinger
equation by defining a k-effective mass mk . This k-mass approximation was introduced
in Chapter 8. The effective interaction between nucleons due to phonon exchange has
a time dependence, which can be incorporated in an ω-effective mass mω (Chapter 9).
The purpose of this appendix is to discuss some of the properties of these effective
masses.

Let us start with the time-dependent Hartree–Fock equation

i�
∂ϕν(	r , t)
∂t

=
(
− �

2∇2

2m
+U (r )

)
ϕν(	r , t)+

∫
d3r ′Ux (	r , 	r ′)ϕν(	r ′, t), (B.1)

where Ux (	r , 	r ′) is the Fock term in the single-particle potential. Let us assume an infinite
system and U (r ) = V0 (constant) for simplicity. Consequently,

ϕν(	r , t) = ei(	kν ·	r−ωt)/
√

V , (B.2)

where V is the volume of the system.
Replacing this wavefunction in equation (B.1) leads to

�ωei(	kν ·	r−ωt) =
(

�
2k2
v

2m
+ V0

)
ei(	kν ·	r−ωt)

+
∫

d3r ′Ux (	r , 	r ′)ei(	kν ·	r ′−ωt).

Multiplying from the left by e−i(	kν ·	r−ωt) and making use of the fact that Ux (	r , 	r ′) does
not depend on the centre of mass coordinate 	R = (	r + 	r ′)/2 but only on the relative
coordinate � = 	r − 	r ′ and that the Jacobian ∂(	�, 	R)/∂(	r , 	r ′) = 1, one obtains

ε = �
2k2

2m
+ V0 +Ux (k). (B.3)

292
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r r r ′

0

t

t2

1

t

Figure B.1. Coupling of a particle to a vibration (left). Exchange diagram associated with
the Fock potential (right).

Here ε = �ω is the single-particle energy and

Ux (k) =
∫

d3 R

V

∫
d3�e−i( 	kν .	r−ωt)Ux (	r , 	r ′)ei( 	kν .	r ′−ωt)

=
∫

d3�e−i 	kν .	�Ux (	r , 	r ′)

is the Fourier transform of the Fock (exchange) potential. Let us force an independent
single-particle dispersion relation by absorbing the non-local potential in an effective
k-mass

ε = �
2k2

2mk
+ Ṽ0, (B.4)

where Ṽ0 is a constant. From the relation (note that we are determining an inertia, i.e.
studying the reaction of the system to a change in its state of motion)

dε

dk
= �

2k

m
+ ∂Ux

∂k
≈ �

2k

mk
, (B.5)

which assumes that mk is approximately constant, we obtain

mk = m
(

1+ m

�2k

∂Ux

∂k

)−1
. (B.6)

The momentum dependence in equation (B.3) can be replaced by a dispersion relation
for the energy

ε = �
2k2

2m
+U (ε). (B.7)

From equation (B.4) one can write

�
2k2

2m
= mk

m

(
ε − Ṽ0

)
.
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Replacing this relation in equation (B.7) one obtains

U (ε) = ε − mk

m

(
ε − Ṽ0

)
= mk

m
Ṽ0 +

(
1− mk

m

)
ε. (B.8)

Inserting this relation in equation (B.7) and comparing with equation (B.3) one obtains

V0 = mk

m
Ṽ0.

Summing up

ε = �
2k2

2mk
+ m

mk
V0. (B.9)

In other words, equations (B.3) and (B.9) should provide an equivalent description of
the system under consideration. Note that mk may depend on r .

B.1 Single particle in a non-local, ω-dependent potential

The processes depicted in Fig. B.1 give rise to a non-local (k-dependent) and time-
dependent (ω-dependent) potential. In what follows we shall discuss some of its conse-
quences making use of a one-dimensional system. Equation (B.1) becomes

i�
∂ϕν(x, t)

∂t
= − �

2

2m
∇2ϕν(x, t)+

∫
dx ′ dt ′U (x ′ − x, t ′ − t)ϕν(x

′, t ′) . (B.10)

Making use of wavefunctions like the one given in equation (B.2), but in one dimension,
one obtains

ε = �
2k2

2m
+

∫
dx ′ dt ′ ei(k(x ′−x)−ω(t ′−t))U (x ′ − x, t ′ − t),

leading to

�ω = ε = �
2k2

2m
+ V0 +U (k, ω), (B.11)

where U (k, ω) is the Fourier transform of U (x ′ − x, t ′ − t). Again, we impose the single-
particle dispersion relation introducing an effective mass m∗, i.e.

�ω = �
2k2

2m∗
+ Ṽ 0. (B.12)

Taking the derivative of equation (B.11) with respect to k one obtains

dε

dk

(
1− ∂U

∂ε

)
= �

2k

m

(
1+ m

�2k

∂U

∂k

)
. (B.13)

We now make the approximation

dε

dk
= �

2k

m∗
. (B.14)
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One can interpret the left-hand side of this equation as the rate of change in energy
when the momentum changes or, equivalently, when the number of nodes per unit length
changes. Since the latter can be used to label the single-particle states, the energy spacing
between levels, i.e. the density of levels, changes as m∗ changes. Note that this statement
also applies to equation (B.5). Note also that mw may depend on r .

Inserting the relation (B.14) in equation (B.13) one obtains

m∗

m
= mω

m

mk

m
, (B.15)

where

mω

m
=

(
1− ∂U

∂(�ω)

)
(B.16)

and

mk

m
=

(
1+ m

�2k

∂U

∂k

)−1
. (B.17)

Assuming a dispersion relation of the form (B.7) for the energy we get

U (ε) = m∗

m
Ṽ 0 +

(
1− m∗

m

)
ε. (B.18)

From the comparison of equations (B.7) and (B.8) with equation (B.11) one obtains

Ṽ 0 = m

m∗
V 0.

Summing up

ε = �k2

2m∗
+ m

m∗
V0. (B.19)

To bridge the gap between infinite nuclear matter and the case of potential wells of
finite range let us consider a particle of mass m in a one-dimensional harmonic potential
(see Mahaux (1985)). The Hamiltonian describing its motion,

H = p2

2m
+ C

2
x2, (B.20)

leads to discrete energy levels with a constant spacing

�ω0 = �

√
C

m
. (B.21)

It follows from this expression that the density of states is proportional to the square
root of m. We notice, however, that this result is derived by assuming that the potential
remains unchanged if the bare mass is replaced by an effective mass. If this is the case,
the ground-state wavefunction

�0 ∼ exp

(
− x2

2b2

)
(B.22)
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with

b =
√

�2

mC
(B.23)

for a particle of mass m∗ > m will shrink in space compared with the one of mass m and
consequently the mean square radius of the system

〈r2〉 = �

m∗ω0

(
N + 3

2

)
= b2

(
N + 3

2

)
(B.24)

will decrease. This is of course not correct, and one has to impose the condition b2 =
constant. This condition implies that the energy difference between levels is inversely
proportional to the mass (or effective mass) of the system, in keeping with the fact that

�ω0 = �
2

m∗b2
, (B.25)

see equations (B.5) and (B.14), as well as the discussion following equation (9.9).
Because the inverse of the level distance at the Fermi energy is proportional to the

density of levels ρ(εF) (see Eq. (2.1)), ρ(εF) ∼ m∗. Within this context, one can interpret
the left-hand side of Eq. (B.14) as the rate of change in energy when the momentum
changes or, equivalently, when the number of nodes per unit length changes. Since the
latter can be used to label the single-particle states, the energy spacing between levels
decreases for increasing values of m∗. Thus, the density of single-particle levels at the
Fermi energy is proportional to the effective mass. (To be noted that while ρ(εF) =
3A/2εF (εF = �

2k2
F/2m∗) is the total density of single-particle levels (i.e. spin-up and

-down and both protons and neutrons), ρ(εF)/4 is the level density associated with a
single spin orientation and with one type of nucleon (either protons or neutrons).)



Appendix C
Useful relations in the treatment

of collective modes

In this appendix we give some simple relations used in the treatment of collective surface
vibrations in the harmonic approximation.

C.1 Limit on the multipolarity of collective surface vibrations

Collective surface vibrations can be self-sustained modes provided the ripples they pro-
duce on the surface contain many particles, so that the surface can be viewed as a
continuous elastic medium. In other words (see Fig. C.1(a))

2πR

2λ
� d, (C.1)

where R = 1.2A1/3 fm is the nuclear radius, λ is the multipolarity of the surface mode and

d =
( 4π

3 R3

A

)1/3
≈ 2 fm (C.2)

is the mean distance between nucleons. From equations (C.1) and (C.2) one obtains
(see Fig. C.1(b))

λ� 2A1/3 ≈ 10 (C.3)

for a nucleus with mass number A ∼ 120. This result agrees well with the experimental
fact that collective states in medium-heavy mass nuclei have multipolarities λ ≤ 5.

C.2 The relation between F̂ and α̂

The operator F̂ defined in equation (8.29) is restricted, in the random phase approxima-
tion, to either create or destroy particle–hole excitations, i.e.

F̂ =
∑
νk νi

{〈νk |F |ν̃i 〉�†
νk νi
+ 〈ν̃i |F |νk〉�νk νi

}
. (C.4)
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A

A

Figure C.1. (a) Schematic representation of an octupole surface wave. (b) The quantity (A)1/3

as a function of A for medium-heavy nuclei.

Making use of equation (8.43) and the corresponding equation for �νk νi one can write
equation (C.4) in terms of the RPA boson operators �†

α and �α , according to

F̂ =
∑
νk νi
α′

{
�α′ |〈ν̃i |F |νk〉|2

(ενk − ενi )− �ωα′
�
†
α′ −

(
− �α′ |〈ν̃i |F |νk〉|2

(ενk − ενi )+ �ωα′

)
�α′

+ �α′ |〈ν̃i |F |νk〉|2
(ενk − ενi )− �ωα′

�α′ −
(
− �α′ |〈ν̃i |F |νk〉|2

(ενk − ενi )+ �ωα′
�
†
α′

) }

=
∑
α′
�α′

∑
νk νi

|〈ν̃i |F |νk〉|2 2(ενk − ενi )

(ενk − ενi )2 − (�ωα′ )2
(�†
α′ + �α′ )

=
∑
α′

�α′

κ
(�†
α′ + �α′ ) =

∑
α′

√
�ωα′

2Cα′
(�†
α′ + �α′ ) = α̂, (C.5)

where use has been made of equation (8.39).
In other words, F̂ and α̂ are the single-particle and the collective representations of

the same operator.



Appendix D
Particle-vibration coupling

The purpose of this appendix is to summarize results for particle-vibration coupling ma-
trix elements, which are used in Chapters 8, 9 and 10. The particle-vibration interaction
from equation (8.24) is

δU (r ) = −R0
∂U

∂r

∑
L M

αL M Y ∗L M (r̂ ) = −κ
∑
L M

αL M FL M , (D.1)

where the collective coordinates αL M are nuclear deformation parameters. The dimen-
sionless quantity

FL M = R0

κ

∂U

∂r
Y ∗L M (r̂ ) (D.2)

is a single-particle field peaked at the nuclear surface and κ is a constant fixed by a
self-consistency condition discussed in Section 8.3 (see also (10.27)). The coordinate α
is related to phonon creation and annihilation operators by

α̂L M =
√

�ωL

2CL
(�̂†

L M + (−1)M �L−M ), (D.3)

where �ωL is the energy of the phonon with multipolarity L and CL α̂
2/2 is the potential

energy associated with the collective coordinate. The matrix element of the collective
coordinate between the phonon ground state and a one-phonon excited state is

〈L M |α̂L M |00〉 =
√

�ωL

2CL
= 1√

2L + 1
βL . (D.4)

The quantity βL is the reduced matrix element and is known as the multipole deformation
parameter.

The particle-vibration interaction matrix element V
(

jm, j ′m ′, L M
)

from equations
(D.1) and (D.4) is

V
(

jm, j ′m ′, L M
) = − βL√

2L + 1
〈 j ′|R0

∂U

∂r
| j〉〈l ′ j ′m ′|YL M |l jm〉 . (D.5)
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The nucleon self energy and particle-vibration induced interaction involve sums over
magnetic quantum numbers and can be expressed in terms of the quantity∣∣V (

j, j ′, L
)∣∣2 =

∑
mm ′M

β2
L

2L + 1
〈 j ′|R0

∂U

∂r
| j〉2 ∣∣〈l ′ j ′m ′|YL M |l jm〉∣∣2

(D.6)

which is symmetric in j and j ′. Making use of the Wigner–Eckart theorem

〈 j ′m ′|YL M | jm〉 = 〈 jmL M | j ′m ′〉√
2 j ′ + 1

〈l ′ j ′||Y ||l j〉 (D.7)

and the normalization property∑
mm ′

∣∣〈 jmL M | j ′m ′〉∣∣2 =
(
2 j ′ + 1

)
(2L + 1)

(D.8)

of the Clebsch–Gordon coefficients, equation (D.6) simplifies to

V 2
(

j, j ′, L
) = β2

L

2L + 1
〈 j ′|R0

∂U

∂r
| j〉2〈l ′ j ′||YL ||l j〉2, (D.9)

which is equivalent to equation (10.3). The definition (D.7) of the reduced matrix element
is the one used by Bohr and Mottelson (1969).

The self-energy of a nucleon in the single-particle state j is

 j =
∑

j L

1

(2 j + 1)

V 2
(

j, j ′; L
)

ε j − (ε j ′ + �ωL )
, (D.10)

where ε j and ε j ′ are single-particle energies and �ωL are phonon energies. The factor
1/ (2 j + 1) appears because there is an average over the spin orientation m of the initial
state j . The induced interaction matrix element v j j ′ in Chapter 10 involves a scattering
between the normalized two-nucleon initial state | ( j j)0〉 with total angular momentum
J = 0 and the final state | ( j ′ j ′

)
0〉 also with J = 0,

v j j ′ = 〈( j j)0 |v|
(

j ′ j ′
)

0〉 =
∑

mm ′
1

2
√

(2 j ′+1)(2 j+1)
〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉a

=∑
mm ′

1√
(2 j ′+1)(2 j+1)

〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉, (D.11)

where the general structure of the antisymmetrized matrix element 〈|v|〉a has been defined
in equation (A.16).

The uncoupled phonon exchange matrix element has the angular momentum structure

〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉 =
∑
L M

∣∣V (
jm, j ′m ′, L M

)∣∣2

Dλ
, (D.12)

where Dλ is an energy denominator which can be approximated in various ways. The
microscopic calculations reported in Section 10.2 use a Bloch–Horowitz expression for
the energy denominator. In the following equation we substitute the simple estimate
Dλ ≈ −�ωL which is used in Section 10.1. The interaction matrix element reduces to

v j j ′ =
∑

L

vL
j j ′ , (D.13)
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where

vL
j j ′ = −

2√
(2 j ′ + 1) (2 j + 1)

V 2
(

j, j ′, L
)

�ωL
. (D.14)

The factor 2 occurs because two perturbation diagrams (time orderings) contribute to
the induced interaction.

The normalization in the microscopic calculations reported in Section 10.2 is the one
used in Barranco et al. (1999). In their notation the suffix ν refers to a state with a pair
of nucleons with quantum numbers lν jν coupled to zero total angular momentum, and
vνν ′ is defined by

Gνν ′ = −vνν ′ = − 2〈( jν jν)0 |v| ( jν ′ jν ′ )0〉√
(2 jν + 1) (2 jν ′ + 1)

= − 2v jν jν′√
(2 jν + 1) (2 jν ′ + 1)

, (D.15)

where the factor of 2 arises from the antisymmetry of the pairing matrix element (see
equation (A.16)).

Thus the normalization and sign of Gνν ′ is the same as that of the BCS coupling
constant G and the values of Gνν ′ in Tables 10.1, 10.2 and 10.3 can be compared directly
with BCS G-values for 120Sn, G ≈ 27/A = 0.22, where G = Gνν ′ .

D.1 Estimate of 〈l j ||YL||l j〉
The interaction strengths V 2

(
j, j ′, L

)
defined in equation (D.9) are proportional to

squares of reduced matrix elements of spherical harmonics. These can be expressed in
terms of Clebsch–Gordon coefficients and can be calculated using standard formulae.
Some qualitative properties and simple asymptotic expressions are collected in this
appendix.

The reduced matrix elements 〈l ′ j ′||YL ||l j〉 with j = l + 1/2, j ′ = l ′ − 1/2 or j =
l − 1/2, j ′ = l ′ + 1/2 involve a spin-flip at the interaction vertex. There is no spin-
flip in the other two reduced matrix elements. The spin-flip matrix elements are small
compared with the no-spin-flip and become very small when j and j ′ are large. The
spin-flip processes are essentially possible only because of quantal fluctuations, owing
to the parity condition that the matrix elements of YL vanish unless l + l ′ + L is even.
The spin-flip character of the reduced matrix elements 〈l ′ j ′||YL ||l j〉 can be recognized
because j + j ′ + L is even for spin-flip matrix elements and odd for the non-spin-flip
matrix elements.

The square of the reduced matrix element 〈l j ||YL ||l ′ j ′〉 can be expressed in terms of
a Wigner 3- j symbol as

〈l j ||YL ||l ′ j ′〉2 =
(2 j + 1)

(
2 j ′ + 1

)
(2L + 1)

4π

(
j j ′ L
1
2 − 1

2 0

)2

= (2 j + 1) (2L + 1)

4π
〈 j 1

2 L0| j ′ 12 〉2. (D.16)

Diagonal matrix elements have j = j ′ and l = l ′ and the parity condition requires L
to be even. A useful asymptotic formula introduced in equation (10.5) expresses the
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Clebsch–Gordon coefficient in equation (D.16) in terms of a Legendre polynomial

〈 j 1
2 L0| j 1

2 〉 ≈ PL (0) .

This formula is valid when L is even and j � L . Thus

〈 j ||YL || j〉2 ≈ (2 j + 1) (2L + 1)

4π
(PL (0))2 .

Introducing the numerical values of the Legendre polynomial we have

〈 j ||YL || j〉2 ≈ 0.1(2 j + 1) (D.17)

for L = 2, 4 and 6.
The following examples calculated with L = 2 show that this result is quite accurate.

For this purpose, use is made of the relation (Varshalovich et al. (1988), Table 8.4)(
j j ′ 2
1
2 − 1

2 0

)2

= 4( 3
4 − j( j + 1))2

(2 j + 3)(2 j + 2)(2 j + 1)(2 j)(2 j − 1)
.

In the case of j = 11/2( 11
2

11
2 2

1
2 − 1

2 0

)2

= 4( 3
4 − 11

2 × 13
2 )2

14× 13× 12× 11× 10
= 0.02040

and

〈11/2||Y2||11/2〉 = (12)2 × 5

4π
× 0.02040 = 1.17.

In the case j = 7/2,(
7/2 7/2 2

1
2 − 1

2 0

)2

= 4( 3
4 − 7

2 × 9
2 )2

10× 9× 8× 7× 6
= 0.02976.

Thus

〈7/2||Y2||7/2〉2 = 82 × 5

4π
× 0.02976 ≈ 0.76.

In Table D.1 we compare the exact results given in equation (D.16), with the results
obtained from equation (D.17).

There is another approximate relation which is valid for j, j ′ � L when the no-spin-
flip condition is satisfied (when j + j ′ + L is odd or equivalently when j − j ′ + L is
even). The asymptotic formula for the Clebsch coefficients gives (Varshalovich et al.
(1988), Section 8.9) ∣∣〈 j 1

2 L0| j ′ 12 〉
∣∣2 ≈ 4π

2L + 1
(YL M (0, 0))2 , (D.18)

with M = ∣∣ j − j ′
∣∣. When L is large and L + M is even Varshalovich et al. (1988,

Section 5.12) give

(YL M (0, 0))2 ≈ 1

π2
.
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Table D.1. Comparison of the results ob-
tained using the approximate expression
given in equation (D.17) with exact results
obtained using equation (D.16).

〈 j ||Y2|| j〉2

j exact 0.1(2 j + 1)

7/2 0.76 0.8
11/2 1.17 1.2

Combining these results gives a simple approximate expression for the no-spin-flip
reduced matrix elements

〈 j ||YL || j ′〉2 ≈
√

(2 j + 1) (2 j ′ + 1)

π2
≈ 0.1

√
(2 j + 1) (2 j ′ + 1). (D.19)

This is equivalent to equation (D.17) when j = j ′ and is quite accurate even for L � 2
and j and j ′ > 1/2. When j ′ = 1/2 and j = L ± 1/2 then there is an exact formula

〈 j ||YL ||1/2〉2 = 2 j + 1

4π
. (D.20)

D.2 A simple estimate of 〈R0
∂U
∂r 〉

The average 〈R0∂U/∂r〉 will be estimated using a square well approximation for the
Saxon–Woods potential

U (r ) = U0

1+ exp( r−R0
a )
≈ U0"(r − R0), (D.21)

where

"(r − R0) =
{

1 r ≤ R0,

0 r > R0.
(D.22)

Making use of the fact that

∂"(r − R0)

∂r
= δ(r − R0), (D.23)

one can write

〈R0
∂U

∂r
〉 = R0U0

∫
r2 dr R2(r ) δ(r − R0)

= U0 R3
0R2(R0), (D.24)
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where R (r ) is the radial wavefunction. Making use of the fact that (see Bohr and
Mottelson (1969) p. 326, equation (3.22))

R3
0R2(R0) ≈ 1.4, (D.25)

one obtains

〈R0
∂U

∂r
〉 = U0 × 1.4 ≈ −60 MeV, (D.26)

where use was made of U0 ≈ −45 MeV. If one corrects this estimate for the spillout of
the nucleons one has to divide the result shown above by a factor (1+ a/R) ≈ 1.1 (see
Bertsch and Broglia (1994), p. 87), in which case one obtains 〈R0

∂U
∂r 〉 ≈ −50 MeV.



Appendix E
Model of the single-particle strength function

In the extreme single-particle model of nuclear structure, single-particle states are either
occupied or empty. As explained in Chapter 9 the coupling of single-particle motion
to vibrations changes this situation and single-particle states near the Fermi surface are
partially occupied. The spectroscopic factor is a measure of the occupancy of a level. This
appendix presents a simple model (‘picket fence’ model) which relates the spectroscopic
factor to the ω-mass (see Bohr and Mottelson (1969), Mahaux et al. (1985)).

We consider a two-level model where the pure single-particle state |a〉 couples to a
more complicated state |α〉 of which a possible representation could be a single-particle
state coupled to a vibration (see Fig. E.1). We want to diagonalize the Hamiltonian (see
Bohr and Mottelson (1969)),

H = H0 + v, (E.1)

where

H0|a〉 = Ea|a〉 (E.2)

and

H0|α〉 = Eα|α〉. (E.3)

The interaction v couples these states. Assuming

〈a|v|a〉 = 〈α|v|α〉 = 0, (E.4)

and calling

vaα = 〈a|v|α〉, (E.5)

one can write the secular equation associated with H as(
Eα − Ei vaα

vaα Ea − Ei

)(
cα(i)
ca(i)

)
= 0, (E.6)
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a>

|a>
|a>

|

|a>
Figure E.1. The coupling between the state |a〉 and the intermediate state |α〉 associated with
the process in which a nucleon excites a vibrational mode to reabsorb it at a later time.

leading to the two equations

(Eα − Ei )cα(i)+ vaαca(i) = 0, (E.7)

vaαcα(i)+ (Ea − Ei )ca(i) = 0. (E.8)

From the first equation one obtains

cα(i) = − vaα

Eα − Ei
ca(i). (E.9)

From this relation and from

c2
a(i)+ c2

α(i) = 1, (E.10)

one obtains

c2
a(i) =

(
1+ v2

aα

(Eα − Ei )2

)−1
. (E.11)

Inserting equation (E.9) into equation (E.8) leads to

− v2
aα

Eα − Ei
+ (Ea − Ei ) = 0. (E.12)

Thus

Ei = Ea − v2
aα

Eα − Ei
, (E.13)

which is, within the present model, the self-consistent Dyson equation.
In other words, the single-particle self-energy is

�Ea(E) = E − Ea = − v2
aα

Eα − E
. (E.14)

Defining the ω-mass by

mω

m
= 1− ∂�Ea

∂E

∣∣∣∣
E=Ei

, (E.15)
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and making use of the above equation we get

mω

m
= 1+ v2

aα

(Eα − Ei )2
. (E.16)

Comparing with equation (E.11) for c2
a(i) we see that the spectroscopic factor associ-

ated with the quasi-pure single-particle state

|ã〉 = ca(i)|a〉 + cα(i)|α〉 (E.17)

is

Zω = c2
a(i) = (mω

m

)−1
. (E.18)



Appendix F
Simple model of Pauli principle corrections

The induced interaction shown in Fig. F.1(a) leads to the contribution

vkk ′ =
∑
α

V 2(k, k ′α)

εk − (εk ′ + �ωα)
,

while that shown in Fig. F.1(c) leads to

(vkk ′ )Pauli = −
∑
αα′

∑
ik ′′

V (k, k ′α′)V (k, k ′′α)

(εk − (εk ′ + �ωα′ ))

× V (k ′, iα)V (k ′′, iα′)
(εk − (εk ′ + εk ′′ − εi ))(εk − (εk ′′ + �ωα)

. (F.1)

In what follows we shall carry out an order of magnitude estimate of the ratio of
(vkk ′ )Pauli/vkk ′ making use of the schematic two-level model (see Fig. F.2) and nuclear
field theory rules.

The Hamiltonian describing the system

H = Hsp + HTB, (F.2)

is composed of a single-particle Hamiltonian and a two-body interaction. The particle-
vibration coupling matrix element is

V (k, k ′α) = −K0

√
�, (F.3)

and the collective RPA solution of (F.2) has an energy

�ω = ε − K0�. (F.4)

Let us assume �ω ≈ 1
2ε. Thus K0 = ε

2� and

(vkk ′ )Pauli ≈ −vkk ′
V 2(k, k ′α)

�ω × ε ≈ −vkk ′

2�
. (F.5)

308



Simple model of Pauli principle corrections 309

Figure F.1. (a) Induced interaction. (b) Schematic representation of the induced interaction
showing one of the possible bubble contributions to the collective state (RPA). (c) Pauli
principle contribution to the induced interaction arising from the exchange of the particle
moving in the state k ′ in the bubble of graph (b) and in the final state. Note that graph (b)
has been drawn only for the purpose of illustration as this process is forbidden by the rules
of nuclear field theory (Bes et al. (1976a, 1976b)).

Figure F.2. Schematic model used in the estimates. The two orbitals have the same pair
degeneracy � = (2γ + 1)/2. The lowest level is assumed to be filled.

For 11Li, where � = (2 j + 1)/2 ≈ 1 (s1/2 p1/2 single-particle space) one thus obtains

(vkk ′ )Pauli ≈ −0.5vkk ′ . (F.6)

On the other hand, for nuclei lying along the stability valley, where

� ≈ A2/3, (F.7)

one obtains

(vkk ′ )Pauli ≈ vkk ′

2A2/3
. (F.8)

For medium/heavy nuclei (A1/3 ≈ 5) this expansion leads to the ratio

(vkk ′ )Pauli

vkk ′
≈ −2× 10−2. (F.9)



Appendix G
Pairing mean-field solution

G.1 Solution of the pairing Hamiltonian

This appendix gives an alternative derivation of the pairing mean-field Hamiltonian and
the BCS wavefunction to that provided in the text.

Let us start with the Hamiltonian

H = Hsp + Hp,

which is the sum of a single-particle Hamiltonian

Hsp =
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄)

and a pairing interaction with constant matrix elements

Hp = −G
∑
ν > 0
ν ′ > 0

a†
νa

†
ν̄aν̄ ′aν ′ . (G.1)

In what follows we shall solve H in the mean-field approximation. For this purpose
we introduce the pair-creation operator,

P† =
∑
ν>0

a†
νa

†
ν̄ = α0 + (P† − α0)

and add and subtract from it the mean-field value

α0 = 〈BCS|P†|BCS〉 = 〈BCS|P|BCS〉
of the pair transfer operator in the, still unknown, mean-field ground state. This state is
called the |BCS〉 state, because this solution was first proposed by Bardeen, Cooper and
Schrieffer. Note that 〈BCS|BCS〉 = 1. We can now write

Hp = −G(α0 + (P† − α0))(α0 + (P − α0))

= −G(α2
0 + α0(P† + P − 2α0)+ (P† − α0)(P − α0)).
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Assuming that the matrix elements of the operators (P† − α0) and (P − α0) in the
states near to the ground state are much smaller than α0, one obtains the pairing field

Vp = −�(P† + P)+ �
2

G
, � = Gα0 . (G.2)

The mean-field Hamiltonian then becomes

HMF = Hsp + Vp

=
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄)−�
∑
ν>0

(a†
νa

†
ν̄ + aν̄aν)+ �

2

G
.

This is a bilinear expression in the creation and annihilation operators. Consequently, it
can be diagonalized by a rotation in (a†, a)-space. This can be accomplished through the
Bogoliubov–Valatin transformation

α†ν = Uνa
†
ν − Vνaν̄ .

From this definition one can anticipate that the BCS solution does not change the
energies εν of the single-particle levels or the associated wavefunction ϕν(	r ), but the
occupation probabilities for levels around the Fermi energy within an energy range
2�, a quantity much smaller than the Fermi energy εF. What is also changed is the
mechanism by which the system can be excited, which implies, for nucleons moving
around the Fermi energy, the breaking of Cooper pairs.

The creation operator of a quasiparticle α†ν creates a particle in the single-particle state
ν with probability U 2

ν , while it creates a hole (annihilates a particle) with probability V 2
ν .

To be able to create a particle, the state ν should be empty, while to create a hole it has
to be filled, so U 2

ν and V 2
ν are the probabilities that the state ν is empty and is occupied

respectively.
Expressing the creation and annihilation operators (a†

ν, aν) in terms of the quasiparticle
operators (α†ν, αν), and expressing HMF in terms of quasiparticles, one has the parameters
Uν and Vν for each level ν to make this Hamiltonian diagonal (in fact one, see equation
(G.3)).

Making use of the anticommutation relations

{aν, a†
ν ′ } = δ(ν, ν ′)

{aν, aν ′ } = {a†
ν, a

†
ν ′ } = 0,

one obtains

{αν, α†ν ′ } = {(Uνaν − Vνa
†
ν̄), (Uν ′a

†
ν ′ − Vν ′aν̄ ′ )}

= (UνUν ′ + VνVν ′ ) δ(ν, ν
′).

That is, for the quasiparticle transformation to be unitary, the Uν , Vν occupation factors
have to fulfil the relation

U 2
ν + V 2

ν = 1, (G.3)
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implying also that the one-quasiparticle states are orthonormal. In particular

〈ν|ν〉 = 1 = 〈BCS|ανα†ν |BCS〉 = 〈BCS|{αν, α†ν}|BCS〉
= U 2

ν + V 2
ν

implies that the state

|ν〉 = α†ν |BCS〉
is normalized.

Note that |BCS〉 is also the quasiparticle vacuum, i.e.

αν |BCS〉 = 0.

Let us now invert the quasiparticle transformation, i.e. express a†
ν in terms of α†ν and αν̄ .

Multiplying α†ν by Uν and αν̄ by Vν gives

Uνα
†
ν = U 2

ν a†
ν −UνVνaν̄ ,

Vναν̄ = UνVνaν̄ + V 2
ν a†

ν .

Adding these expressions one obtains

a†
ν = Uνα

†
ν + Vναν̄ .

We shall now express a†
νaν in terms of quasiparticles, i.e.

a†
νaν = (Uνα

†
ν + Vναν̄)(Uναν + Vνα

†
ν̄)

= U 2
ν α

†
ναν +UνVνα

†
να

†
ν̄ +UνVναν̄αν + V 2

ν αν̄α
†
ν̄

= U 2
ν α

†
ναν +UνVν(α

†
να

†
ν̄ + αν̄αν)− V 2

ν α
†
ν̄αν̄ + V 2

ν . (G.4)

The time reversal of this expression reads

a†
ν̄aν̄ = U 2

ν α
†
ν̄αν̄ +UνVν(α

†
να

†
ν̄ + αν̄αν)− V 2

ν α
†
ναν + V 2

ν ,

where the phase relation | ˜̃ν >= τ 2|ν >= −|ν > and thus a†
˜̃ν = −a†

ν have been used.
One can then write

(a†
νaν + a†

ν̄aν̄) = (U 2
ν − V 2

ν )(α†ναν + α†ν̄αν̄)
+ 2UνVν(α

†
να

†
ν̄ + αν̄αν)+ 2V 2

ν . (G.5)

Note that

N = 〈BCS|N̂ |BCS〉 = 〈BCS|
∑
ν>0

(a†
νaν + a†

ν̄aν̄)|BCS〉 = 2
∑
ν>0

V 2
ν (G.6)

is the average number of particles in the pairing mean-field ground state (BCS state).
Let us now express the pair-creation field a†

νa
†
ν̄ in terms of quasiparticles

a†
νa

†
ν̄ = (Uνα

†
ν + Vναν̄)(Uνα

†
ν̄ − Vναν)

= U 2
ν α

†
να

†
ν̄ −UνVνα

†
ναν

+ VνUνα
†
ν̄αν̄ − V 2

ν αν̄αν +UνVν . (G.7)
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The Hermitian conjugate of this expression is then

aν̄aν = U 2
ν αν̄αν −UνVν(α

†
ναν + α†ν̄αν̄)− V 2

ν α
†
να

†
ν̄ +UνVν . (G.8)

Summing these expressions leads to

(a†
νa

†
ν̄ + aν̄aν) = (U 2

ν − V 2
ν )(α†να

†
ν̄ + αν̄αν)− 2UνVν(α

†
ναν̄ + α†ν̄αν)+ 2UνVν .

Note that

α0 = 〈BCS|P†|BCS〉 =
∑
ν>0

〈BCS|a†
νaν̄ |BCS〉 =

∑
ν>0

UνVν (G.9)

and

� = Gα0 = G
∑
ν>0

UνVν . (G.10)

Making use of the relations worked out above one can express HMF in terms of
quasiparticles, i.e.

HMF = U + H11 + H20, (G.11)

where

U = 2
∑
ν>0

(εν − λ)V 2
ν −�

∑
ν>0

2UνVν + �
2

G
,

H11 =
∑
ν>0

{
(εν − λ)(U 2

ν − V 2
ν )+�2UνVν

}
(α†ναν + α†ν̄αν̄),

H20 =
∑
ν>0

{
(εν − λ)2UνVν −�(U 2

ν − V 2
ν )

}
(α†να

†
ν̄ + αν̄αν).

In other words, the mean-field pairing Hamiltonian expressed in terms of quasiparticles
is equal to the sum of three terms: one which is a constant, a second one which is diagonal
in the quasiparticle basis, and a third one which, although bilinear in the operators α†

and α, is not diagonal. Consequently, imposing the condition H20 = 0, i.e.

(εν − λ)2UνVν = �(U 2
ν − V 2

ν ), (G.12)

is equivalent to diagonalizing HMF. This relation together with equation (G.3) allows us
to calculate the corresponding coefficients Uν and Vν .

We start by taking the square of the above relation,

(εν − λ)24U 2
ν V 2

ν = �2(U 2
ν − V 2

ν )2. (G.13)

From the normalization relation one can write

(U 2
ν + V 2

ν )2 = 1 = U 4
ν + V 4

ν + 2U 2
ν V 2

ν

and

U 4
ν + V 4

ν = 1− 2U 2
ν V 2

ν .
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Consequently,

(U 2
ν − V 2

ν )2 = U 4
ν +U 4

ν − 2U 2
ν V 2

ν = 1− 4U 2
ν V 2

ν .

Inserting this relation in equation (G.13) leads to

4U 2
ν V 2

ν ((εν − λ)2 +�2) = �2,

a relation which can be rewritten as

2UνVν = �

Eν
, (G.14)

where the+ sign of the square root operation implies the minimization of the ground-state
energy U . The quantity Eν is given by

Eν =
√

(εν − λ)2 +�2. (G.15)

Making use again of the condition H20 = 0 one can write

(εν − λ)
�

Eν
= �(U 2

ν − V 2
ν ),

i.e.

(U 2
ν − V 2

ν ) = εν − λ
Eν

, (G.16)

U 2
ν − V 2

ν = 1− 2V 2
ν =

εν − λ
Eν

,

V 2
ν =

1

2

(
1− εν − λ

Eν

)
,

leading to

Vν = 1√
2

(
1− εν − λ

Eν

)1/2
, (G.17)

Uν = 1√
2

(
1+ εν − λ

Eν

)1/2
. (G.18)

Let us now substitute these expressions in the relation (G.10). One obtains

� = G

2

∑
ν>0

(
1− (εν − λ)2

E2
ν

)1/2
= G

2

∑
ν>0

�

Eν
.

The above equation together with equation (G.6) are the BCS equations, i.e.

N = 2
∑
ν>0

V 2
ν (number equation), (G.19)

1

G
=

∑
ν>0

1

2Eν
(gap equation). (G.20)

These equations allow us to calculate the parameters λ and� from the knowledge of G
and εν , parameters which completely determine the occupation amplitudes Uν and Vν .
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One can now write U in terms of the parameters λ and �, i.e.

U = 2
∑
ν>0

(εν − λ)V 2
ν − 2

�2

G
+ �

2

G

= 2
∑
ν>0

(εν − λ)V 2
ν −

�2

G
.

Making use of equations (G.14), (G.15) and (G.18) one can write H11 in terms of λ
and �,

H11 =
∑
ν>0

{ (εν − λ)2

Eν
+ �

2

Eν

}
(α†ναν + α†ν̄αν̄)

=
∑
ν>0

Eν(α
†
ναν + α†ν̄αν̄) =

∑
ν

Eνα
†
ναν

=
∑
ν

Eν N̂ν, (G.21)

where N̂ν = α†ναν .

G.2 Two-quasiparticle excitations

In the case of a normal system, within the independent-particle model, the lowest exci-
tations are of particle–hole character, i.e.

|ki〉 = a†
kai |0〉HF,

where

|0〉HF =
A∏

i=1

a†
i |0〉 ,

(|0〉HF: Hartree–Fock vacuum, |0〉: fermion vacuum).
Making use of the single-particle Hamiltonian

Hsp =
∑
ν

ενa
†
νaν =

∑
ν

εν N̂ν

one can calculate the energy of the particle–hole states. Let us start with the calculation
of the ground-state energy,

Hsp|0〉HF =
∑
ν

ενNν
A∏

i=1

a†
i |0〉

=
∑
ν

ενa
†
νaν a†

1a†
2 · · · a†

A|0〉

= (εν1 + εν2 + · · · + ενA )|0〉HF = E0|0〉HF.
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Let us now calculate the energy of the particle–hole excitation referred to this energy,
i.e.

(Hsp − E0)|ki〉 =
∑
ν

(εν N̂ν − E0)a†
kai |0〉HF

=
∑
ν

εν(a
†
k

[
N̂ν, ai

]+ [
N̂ν, a

†
k

]
ai )|0〉HF.

We have now to work out the commutation relations appearing in the above equations.
They lead to [

N̂ν, ai
] = [

a†
νaν, ai

] = −{a†
ν, ai }aν = −δ(ν, i)aν,[

Nν, a
†
k

]
=

[
a†
νaν, a

†
k

]
= a†

ν{aν, a†
k} = δ(ν, k)a†

ν,

where use was made of the relations

[AB,C] = A [B,C]+ [A,C] B = ABC − AC B − AC B + C AB

and

[AB,C] = A{B,C} − {A,C}B = ABC + AC B − AC B − C AB.

One can then write

(Hsp − E0)|ki〉 =
∑
ν

ε(a†
k(−δ(ν, i)aν + δ(ν, k)a†

νai )|0〉HF

= (εk − εi )a
†
kai |0〉HF = (εk − εi )|ki〉.

Summing up, the simplest excitation of the |0〉HF vacuum is

a†
kai |0〉HF,

i.e. a particle–hole excitation. The lowest of these excitations connects the last occupied
and the first empty state.

In the case of quasiparticles

Hsp ⇒ H11 +U ; |0〉HF ⇒ |BCS〉
a†

kai ⇒ a†
νaν = (Uνα

†
ν + Vναν̄)(Uναν + Vνα

†
ν̄)

= U 2
ν α

†
ναν +UνVνα

†
να

†
ν̄ + VνUναν̄αν

− V 2
ν α

†
ν̄αν + V 2

ν ,

leading to

a†
kai |0〉HF → UνVνα

†
να

†
ν̄ |BCS〉 ∼ α†να†ν̄ |BCS〉,

in that V 2
ν |BCS〉 is not an excitation. Thus, the simplest excitation of the |BCS〉 vacuum

is

α†να
†
ν̃ |BCS〉 = |νν̃〉,

i.e. a two-quasiparticle state.



Pairing mean-field solution 317

The excitation energy associated with these states is

H11|ν1ν2〉 =
∑
ν

Eν N̂να
†
ν1
α†ν2
|BCS〉

=
∑
ν

Eν[N̂ν1α
†
ν1
α†ν2

]|BCS〉,

in keeping with the fact that N̂ν |BC S〉 = 0. We now calculate

[N̂ν, α
†
ν1
α†ν2

] = α†ν1
[N̂ν, α

†
ν2

]+ [N̂ν, α
†
ν1

]α†α2
,[

N̂ν, α
†
ν2

] = [α†ναν, α
†
ν2

] = α†ν{αν, α†ν2
} − {α†ν, α†ν2

}αν
= δ(ν, ν2)α†ν

and [
N̂ν, α

†
ν1

] = [α†ναν, α
†
ν1

] = α†ν{αν, α†ν1
} − {α†ν, α†ν1

}αν
= δ(ν, ν1)α†ν . (G.22)

Consequently [
N̂ν, α

†
ν1
α†ν2

] = δ(ν, ν2)α†ν1
α†ν + δ(ν, ν1)α†να

†
ν2
.

From these relations one can write

H11|ν1ν2〉 =
∑
ν

Eν
(
δ(ν, ν2)α†ν1

α†ν + δ(ν, ν1)α†ναν2 )|BCS〉

= (Eν1 + Eν2 )α†ν1
α†ν2
|BCS〉 = (Eν1 + Eν2 )|ν1ν2〉.

Because (Eν1 + Eν2 ) ≥ 2�, the lowest excitation in the pairing correlated system lies
at an energy ≥ 2�, i.e. the energy which it takes to break a pair. In fact, in the paired
system, the only excitations possible are those associated with the breaking of pairs of
particles moving in time-reversal states, an operation which takes an energy of the order
of 2�.

G.3 Minimization

Writing the pairing Hamiltonian given in equation (G.1) in terms of quasiparticles one
can calculate the average value in the |BCS〉 ground state, obtaining

〈BCS|Hp|BCS〉 = −G
∑
ν>0

V 4
ν − G

∑
ν,ν ′>0

UνVνUν ′Vν ′

= −G
(∑
ν>0

UνVν
)2 − G

∑
ν>0

V 4
ν

= −�
2

G
− G

∑
ν>0

V 4
ν .

Similarly,

〈BCS|Hsp|BCS〉 = 2
∑
ν>0

(εν − λ)V 2
ν .
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Consequently

E0 = 〈BCS|H |BCS〉 = 2
∑
ν>0

(εν − λ)V 2
ν −

�2

G
− G

∑
ν>0

V 4
ν

= 2
∑
ν>0

(εν − λ)V 2
ν − G(

∑
ν>0

UνVν)
2 − G

∑
ν>0

V 4
ν

≈ 2
∑
ν>0

(εν − λ)V 2
ν − G

(∑
ν>0

UνVν

)2

,

where we have neglected the mean-field pairing contribution to the single-particle energy
(i.e. ε′ν = εν − GV 2

ν /2 ≈ εν), in keeping with the fact that GV 2
ν /2 is small (≈ G

4 ≈ 6
A

MeV ∼ 0.05 MeV, with the ansatz V 2
ν ≈ 1

2 and for A ≈ 120).
Let us minimize E0 with respect to Vν

∂〈BCS|H |BCS〉
∂Vν

= 0,

taking into account the normalization condition,

∂Uν
∂Vν

= ∂

∂Vν
(1− V 2

ν )1/2 = 1

2
(1− V 2

ν )−1/2(−2Vν)

= − Vν
Uν

.

One thus obtains

∂〈BCS|H |BCS〉
∂Vν ′

= 4(εν ′ − λ)V ′ν − 2G

(∑
ν>0

UνVν)(Uν ′ − Vν ′
Vν ′

Uν ′

)

= 4(εν ′ − λ)Vν ′ − 2
�

Uν ′
(U 2
ν ′ − V 2

ν ′ ) = 0,

i.e.

2(εν ′ − λ)Uν ′Vν ′ = �(U 2
ν ′ − V 2

ν ′ ), (G.23)

which is the condition H20 = 0 (see (G.12)).

G.4 BCS wavefunction

The state |BCS〉 is the quasiparticle vacuum, i.e.

αν |BCS〉 = 0.

Consequently, it can be written as

|BCS〉 ∼
∏
ν

αν |0〉 ∼
∏
ν>0

αναν |0〉.

Let us now calculate αναν , i.e. the product of

αν = Uνaν − Vνa
†
ν
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and

αν = Uνaν + Vνa
†
ν .

It leads to

αναν = U 2
ν aνaν +UνVνaνa

†
ν −UνVνa

†
νaν − V 2

ν a†
νa

†
ν

= U 2
ν aνaν +UνVν(1− a†

νaν)−UνVνa
†
νaν + V 2

ν a†
νa

†
ν .

Consequently

|BCS〉 = N
∏
ν>0

(
U 2
ν aνaν +UνVν(1− a†

νaν)−UνVνa
†
νaν + V 2

ν a†
νa

†
ν

)
|0〉

= N
∏
ν>0

(
UνVν + V 2

ν a†
νa

†
ν

)
|0〉

= N
∏
ν>0

Vν
(

Uν + Vνa
†
νa

†
ν

)
|0〉,

where N is a normalization constant, to be determined from the relation

1 = 〈BCS|BCS〉
= N 2〈0|

∏
ν>0

Vν
(

Uν + Vνaνaν
) ∏
ν ′>0

Vν ′
(

Uν ′ + Vν ′a
†
ν ′a

†
ν ′

)
|0〉

= N 2〈0|
∏
ν>0

V 2
ν (U 2

ν + V 2
ν )|0〉,

N =
(∏
ν>0

V 2
ν

)− 1
2 =

(∏
ν>0

Vν
)−1
,

leading to

|BCS〉 =
∏
ν>0

(
Uν + Vνa

†
νa

†
ν

)
|0〉.



Appendix H
Pairing in a single j-shell

H.1 BCS solution

We shall discuss some of the consequences of pairing correlations in the case of particles
moving in a single j-shell. The number of degenerate pair levels (ν, ν̄) which can be
accommodated in the shell is

� = 2 j + 1

2
. (H.1)

The value of the occupation numbers Vν and Uν must be the same for all the orbitals. In
particular, the occupation probability of the level when the system is occupied with N
particles is N/2�. Consequently,

Vν = V =
√

N

2�
(H.2)

and

Uν = U =
√

1− N

2�
, (H.3)

in keeping with the fact that U 2
ν + V 2

ν = 1. Making use of the above relation one finds

� = G
∑
ν>0

UνVν = G�U V

= G

2

√
N (2�− N ). (H.4)

The pairing gap thus achieves its maximum value for the system with N = � particles
(half-filled shell), in keeping with the fact that, owing to the degeneracy of the levels,
pairs of particles and hole states are equivalent as far as pairing correlations are concerned
(see Fig. H.1).

Making use of the condition H20 = 0, i.e.

2(εν − λ)UνVν = �(U 2
ν − V 2

ν ), (H.5)

320
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0
0.5 1

N/2Ω

Δ

GΩ
2

Figure H.1. Schematic representation of the pairing gap as a function of the number of
particles (see equation (H.4)).

and assuming εν = ε = 0, one obtains

− 2λ

2�

√
N (2�− N ) = G

2

√
N (2�− N )

1

�
(�− N ), (H.6)

thus leading to

λ = −G

2
(�− N ). (H.7)

Let us now calculate the ground-state energy

E0 = U + λN = 2
∑
ν>0

ενV 2
ν −

�2

G
.

Consequently,

E0 = −�
2

G
= −G2

4

1

G
N (2�− N )

= −G�

2
N + G

4
N 2. (H.8)

Assuming �� N one obtains from equation (H.7)

λ ≈ −G�

2

and equation (H.8) can be rewritten as

E0 ≈ λN + G

4
N 2. (H.9)
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Interpreting the second term in equation (H.8) or (H.9) as that corresponding to a rotor
in two dimensions with moment of inertia

�
2

2I =
G

4
(H.10)

or

I
�2
= 2

G
(H.11)

we finally write

E0 ≈ λN + �
2

2I N 2, (H.12)

∂E0

∂N

∣∣∣∣
N=0

= λ, (H.13)

∂2 E0

∂N 2
= �

2

I . (H.14)

Making use of the estimate given in equation (2.27) (see also end of Section 2.5) for
G and A ≈ 100 (Sn-isotopes), we obtain �

2/2I ≈ 0.07 MeV. This result is very close to
the value needed to fit the experimental data (see Fig. 4.2, where the pairing rotational
band is fitted with a parabola whose quadratic term is 0.1 MeV N 2).

In the single f-shell model, the quasiparticle energy is given by

Eν =
√

(εν − λ)2 +�2

=
[

G2

4
(�− N )2 + G2

4
N (2�− N )

]1/2

= G

2

[
�2 − 2�N + N 2 + 2�N − N 2

]1/2
,

Eν = E = G�

2
. (H.15)

H.2 Cranking moment of inertia

The cranking formula of the moment of inertia associated with pairing rotations (rotations
in gauge space) is

I = 2�
2
∑
ν>0

|< νν̄|Nν |BCS >|2
2Eν

=
∑
ν

|< νν̄|�Nν |BCS >|2
2Eν

. (H.16)

Making use of the relation

Nν = a†
νaν + a†

ν̄aν̄

= (U 2
ν − V 2

ν )(α†ναν + α†ν̄αν̄)+ 2UνVν(α
†
να

†
ν̄ + αν̄αν)+ 2V 2

ν
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one obtains

〈νν̄ |Nν |BCS〉 = 2UνVν

leading to

I
�2
= 4

∑
ν>0

U 2
ν V 2

ν

Eν
=

∑
ν>0

�2

E3
ν

. (H.17)

Inserting (H.2), (H.3) and (H.15) into equation (H.17) one obtains

I
�2
= 4�

N

2�

(
1− N

2�

)
= 4N

G�

(
1− N

2�

)
. (H.18)

Setting N = �,

I
�2
= 2

G
, (H.19)

which coincides with the result shown in equation (H.11).
Note that

(�2/2I)

(G�/2)
= 1

2�
,

implying that collective pairing rotations have much lower energy than two-quasiparticle
excitation.

H.3 Two-particle transfer

The transfer operator is

P† =
∑
ν>0

a†
νa

†
ν̄

=
∑
ν>0

(
U 2
ν α

†
να

†
ν̄ −UνVν

(
α†ναν + α†ν̄αν̄

)
− V 2

ν αν̄αν +UνVν
)
. (H.20)

Consequently 〈
BCS

∣∣P†∣∣ BCS
〉 =∑

ν>0

UνVν = �
G
, (H.21)

and the two-particle transfer cross-section can be written as

σ (gs→ gs) ≈
(
�

G

)2

=
(

12√
A

A

28

)2

≈ A

4
. (H.22)
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On the other hand 〈
νν̄

∣∣P†∣∣ BC S
〉 = U 2

ν ≈ 1, (H.23)

leading to

σ (gs→ 2qp) ≈ U 4
ν ≈ 1. (H.24)

From the above equations one obtains

R = σ (gs→ gs)

σ (gs→ 2qp)
≈ A

4
. (H.25)

For Sn-isotopes (A ≈ 100) one thus expects

R = 25 (BCS model). (H.26)

Making use of the experimental results displayed in Fig. 4.2 one can calculate the aver-
age value of the ten observed two-particle transfer cross-sections connecting the mem-
bers of the Sn-ground-state pairing rotational band (64 ≤ N ≤ 76), normalized to the
116
50 Sn(gs)↔ 118

50 Sn(gs) (p, t) and (t, p) cross-sections. One obtains,

σ (gs→ gs)exp (H.27)

= 1.3+ 1.2+ 1.0+ 1.3+ 1.5+ 1.1+ 1.4+ 1.1+ 1.2+ 1.1

10
= 1.22.

Similarly, the calculation of the average of the six two-particle (relative) cross-sections
connecting members of the ground-state pairing rotational band to members of the two-
quasiparticle (2qp) pairing vibrational bands leads to

σ (gs→ 2qp)exp = 0.04+ 0.03+ 0.04+ 0.06+ 0.05+ 0.08

6
= 0.05. (H.28)

Consequently,

Rexp ≈ 1.22

0.05
≈ 24.4, (H.29)

essentially as predicted by theory (see also (2.58 )).

H.4 Polarization effects

In the following we summarize in simple terms the results obtained in sub-section 10.4.1.
The relation in equation (H.4) with N = � leads to

� = 1

2
G�. (H.30)

We are particularly concerned with the role of polarization effects on the renormalization
of the value of the pairing gap in a superfluid nucleus like e.g. 120Sn.

We shall call Gb and �b the bare pairing strength and degeneracy (closely related to
the density of levels) associated with an effective mass equal to the k-mass (mk ≈ 0.7 m)
(see equations (8.20) and (8.21)). From the results displayed in Figs. 8.6, 8.9 and 10.1



Pairing in a single j-shell 325

one can write
1

2
Gb�b = 0.5�exp, (H.31)

1

2
Gb�d = 1.4�exp, (H.32)

and
1

2
gp-v�d ≈ 0.8�exp, (H.33)

where �d is the effective (dressed) degeneracy arising from the coupling of single-
particle motion to collective vibrations (ω-effective mass, see Section 9.2), while gp-v

is the induced pairing interaction due to the exchange of vibrations between pairs of
nucleons moving in time-reversal states close to the Fermi energy (see Section 9.3).

In keeping with the results displayed in Fig. 10.16, one can also write

1

2
Gd�d = �exp, (H.34)

where Gd is the dressed pairing interaction. Because the density of levels is proportional
to the ω-mass (see discussion end of Section 9.1.1 as well as equation (9.23)), one can
write

�d ≈ �b

Zω
, (H.35)

where Zω = (mω/m)−1 (see also Section 9.3).
Due to the coupling to vibrations, nucleons spend part of the time in more complicated

configurations than pure single-particle states (see Fig. 9.2). The factor Zω measures the
content of single-particle strength present in levels around the Fermi energy available
to nucleons to interact through a (pairing) force and correlate, eventually giving rise to
a superfluid system. In the case of the dressed pairing coupling constant, one then can
write the expression

Gd = Z2
ω(Gb + gp-v). (H.36)

Making use of this relation and of equation (H.34) one can write

1

2
Gd�d = Zω

1

2
Gb�b + Zω

1

2
gp-v�b. (H.37)

The above relation implies that, without considering the contribution of the induced
pairing interaction to the dressed pairing gap, the increase of the density of levels arising
from the coupling of nucleons to collective vibrations is overcompensated by the reduc-
tion in the single-particle content of these levels, the net result being a decrease of the
pairing gap (from the minimum value it can have in the static mean-field approximation,
i.e. 1

2 Gb�b). On the other hand, relations (H.32) and (H.33) imply

gp-v ≈ 0.6Gb. (H.38)

Summing up, taking into account the renormalization effects leading to an ω-mass, and
thus to an increase of the density of levels, one has to consider, at the same time, the
actual single-particle strength in the levels lying close to the Fermi energy.
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Note that a proper treatment of the dressing of single-particle states not only involves
the Zω-coefficients (arising from�E = Re ), but also the splitting of the single-particle
strength (arising from −2Im , see Section 9.1, equation (9.11), see also (9.14)). This
last effect leads to a further reduction of the ability of time reversal single-particle states
to participate in Cooper pair formation (see equation (9.41)).



Appendix I
Fluctuations and symmetry restoration

This appendix contains some relations on spontaneous symmetry breaking which are
used in Chapter 4.

I.1 Conjugate variables

The uncertainty relation

�x�p ≥ i� (I.1)

specifies the limits within which the particle picture can be applied. Any use of the
word ‘position’ with an accuracy exceeding that given by the above equation is just
meaningless, because quantum mechanical processes can be described equally well in
terms of waves as particles.

Momentum and position are conjugate variables and satisfy commutation relations

[x, p] = i�. (I.2)

In the coordinate representation the wavefunctions ψ (x) are functions of position, and
the momentum operator can be written as

p = −i�
∂

∂x
. (I.3)

The relation

x = i�
∂

∂p
(I.4)

is a valid form of the position operator in the momentum representation.
The Heisenberg equation of motion for an operator A which does not depend explicitly

on the time is

Ȧ = i

�
[H, A] , (I.5)
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where H is the Hamiltonian. If H (p) is a function of the momentum of a particle then
the velocity

ẋ = i

�
[H, x] = ∂H

∂p
, (I.6)

where the first step follows from the Heisenberg equation and the second from the
representation of the position operator. Choosing the special form H = p2/2m we have
ẋ = p/m and

∂ ẋ

∂p
= ∂

2 H

∂p2
= 1

m
. (I.7)

I.2 Rotation about an axis

The situation is similar for the angle and angular momentum of a rigid body rotating
about an axis but there are important differences. This is because the angle is restricted
to the range −π < ϕ � π and the angular momentum L is quantized. In the angle
representation the wavefunctions ψ (ϕ) must be periodic functions with period 2π . The
commutation relation [ϕ, L] = i� must be used with care. The representation of the
angular momentum operator

L = −i�
∂

∂ϕ
(I.8)

is valid when applied to wavefunctions which have the correct periodicity properties but
the representation

ϕ = i�
∂

∂L
(I.9)

is correct only in a heuristic or semiclassical sense. This is because L is quantized and
the derivative is not defined.

Suppose that the rotor has a Hamiltonian H (L) which is a function of L . Heisenberg’s
equation of motion gives

ωrot = ϕ̇ = i

�
[H, ϕ] (I.10)

where ωrot is the rotational frequency. Making use of the semiclassical relation

i

�
[H, ϕ] |ψ 〉 = ∂H

∂L
|ψ 〉, (I.11)

which follows from equation (I.9), we get

�ωrot = �
∂H

∂L
= ∂H

∂ I
= �

2 I

I . (I.12)
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Here we have used L = �I so that L has the dimensions of angular momentum while
I is dimensionless. Equation (I.12) defines a moment of inertia I. Consequently

∂�ωrot

∂ I
= �

2

I =
∂2 H

∂ I 2
, (I.13)

a consequence of the structure of the Hamiltonian. If the moment of inertia is constant
then

H = L2

2I =
�

2 I 2

2I . (I.14)

This last relation is the Hamiltonian of a rigid body. Equations (I.13) and (I.14) are
used in the analysis the rotational spectra of deformed nuclei. As discussed in Chapter 6,
equation (I.13) defines the first moment of inertia and equation (I.13) the second moment
of inertia. For an even nucleus I = 0, 2, 4, . . . , the quantities �ωrot are related to gamma
ray energies and the derivatives are calculated as finite differences.

I.3 Rotations in gauge space

The above discussions concerning rotations about an axis carry over to rotations in
gauge space.∗ In this case the particle number operator N̂ plays the role of the angular
momentum. The gauge angle φ and the particle number operator satisfy the commutation
relation [φ, N̂ ] = i and in the number representation

φ = i
∂

∂N
. (I.15)

The Hamiltonian for the BCS pairing problem is

H = H0 − λN̂ , (I.16)

where H0 includes the kinetic energy of the nucleons and the pairing interaction, N̂ is the
particle number operator and λ is a Lagrange multiplier which is used to fix the number
of nucleons. Physically it is the Fermi energy and is determined by measuring the energy
change of the system when adding and subtracting particles. For example the change in
energy of the nucleus when an even number δN of nucleons are added is

δ 〈E〉 = λδN . (I.17)

The time derivative of the gauge angle is given by Heisenberg’s equation of motion

φ̇ = i

�
[H, φ] = 1

�

∂H

∂N
= 1

�
λ. (I.18)

∗ The role of conjugate variables becomes very intuitive when viewed in terms of the corresponding unitary
transformation leaving invariant the total Hamiltonian: Galilean (translational invariance homogeneity of
space) T = exp(−ipx x), Rotation (rotational invariance, space isotropy) R = exp(−iϕ I ), Gauge
(conservation particle number) G = exp(−iφN ), etc. Nature breaks spontaneously all these symmetries.
The fingerprints of the associated deformations are the families of states corresponding to the quantized
rotation of the system as a whole (AGN modes).
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Thus the combination

2�φ̇ = 2λ = δ 〈E〉 (I.19)

has the physical meaning of the change in energy of the nucleus when a pair (δN = 2)
of nucleons is added to it. Taking the derivative with respect to N

∂φ̇

∂N
= 1

�

∂λ

∂N
= 1

�

∂2 H

∂N 2
= �

I . (I.20)

This equation defines the pairing ‘moment of inertia’ I describing rotations in gauge
space. It is analogous to the moment of inertia for rotations in ordinary space. The
‘pairing moment of inertia’ can also be written as

I
�2
= ∂N

∂λ
. (I.21)

This expression is very general and depends only on λ being a Lagrange multiplier in a
variational principle for the energy. If E (N0) is the energy of a nucleus with N0 nucleons
and if the pairing ‘moment of inertia’ is approximately constant then equation (I.21) can
be integrated to give the energy of nearby nuclei with N nucleons

E (N ) ≈ E (N0)+ λ(N − N0)+ �
2

2I (N − N0)2 . (I.22)

This is the energy dependence of a ‘pairing rotational band’. The importance of the
quadratic term depends on the value of the moment of inertia. The simplest way to
calculate the pairing moment of inertia in the BCS model is to use equation (I.21). The
average number of particles is

N = 2
∑
ν>0

V 2
ν =

∑
ν>0

[
1− εν − λ

Eν

]
, (I.23)

where Eν are the quasiparticle energies. Evaluating the derivative with respect to λ gives

I
�2
= ∂N

∂λ
=

∑
ν>0

�2

E3
ν

+�d�

dλ

∑
ν>0

εν − λ
E3
ν

. (I.24)

The derivative d�/dλ in the second term can be calculated by differentiating the gap
equation. The second term is expected to be small in a situation where the energy level
distribution is more or less symmetrical above and below the Fermi level. It is more
important near the beginning or end of a shell. Neglecting this term we obtain the
cranking formula given in equation (H.17).

I.4 Symmetry restoring fluctuations and pairing rotations

Another method to obtain the pairing moment of inertia is to extract it from the zero
frequency mode of the pairing RPA. The Hamiltonian is

H = HMF + H ′′p (I.25)



Fluctuations and symmetry restoration 331

making the approximation of taking only the even part H ′′p of the fluctuating term H ′p +
H ′′p . Solving the RPA equation of motion

[H, �n
†] = W ′′

n �n
†. (I.26)

The discussion in Section 4.2.2 showed that equation (I.26) has a zero-frequency solution(
W ′′

1 = 0
)

related to the gauge invariance of the original Hamiltonian. The corresponding
creation operator was related to the number operator by

�
†
1 =

�′′1
2�

(
N̂ − N0

)
, (I.27)

where N0 is the average number of nucleons in the BCS state, which is the eigenstate of
the mean-field Hamiltonian HMF and the normalization constant

�′′1 =
1

2

[∑
ν>0

2EνW ′′
1

((2Eν)2 −W ′′
1

2)2

]−1/2

. (I.28)

The normalization constant �′′1 (particle–vibration coupling) diverges for the zero-
frequency mode, but for the moment we assume that W ′′

1 > 0 and then take the limit
W ′′

n → 0 later in the calculation.
Now we make a comparison with an oscillator with Hamiltonian

H = p2

2D′′1
+ 1

2
D′′1ω

′′2
1 q2, (I.29)

and identify the momentum with the number operator, the coordinate with the gauge
angle and the frequency with the RPA energy:

p = �
(
N̂ − N0

)
, q = φ, �ω′′1 = W ′′

1 . (I.30)

The phonon creation operator for the oscillator is

�† =
√

�2

2D′′1 W ′′
1

(
N̂ − N0

)+ iφ

√
D′′1 W ′′

1

2�2
. (I.31)

Comparing the coefficients of
(
N̂ − N0

)
in equations (I.27) and (I.31) and noting that

the coefficient of φ in equation (I.31) vanishes in the limit W ′′
1 → 0, we get an expression

for the mass parameter

�
2

2D′′1 W ′′
1

=
(
�′′1
2�

)2

or
D′′1
�2
= 4�2

2W ′′
1�
′′2
1

. (I.32)

Taking the limit W ′′
1 → 0 we have

1

W ′′
1�
′′2
1

= 4

W ′′
1

[∑
ν>0

2EνW ′′
1

((2Eν)2 −W ′′
1

2)2

]
=

∑
ν

1

2E3
ν

(I.33)
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and the mass parameter reduces to

D′′1
�2
=

∑
ν>0

�2

E3
ν

. (I.34)

This agrees with the previous approximate expressions for the pairing moment of inertia
(see equations (4.47), (H.17)). A more accurate calculation which includes the effect
of the odd part H ′p of the interaction modifies this result and leads to an expression
equivalent to (I.24).

Making use of the above result, and the fact that λ = ∂H/∂N , the energy of the
members of the pairing rotational band can be written as

E = λN + �
2

2I N 2, (I.35)

where

I
�2
= D′′1

�2
=

∑
ν>0

4U 2
ν V 2

ν

Eν
= 2

∑
ν>0

〈νν|N̂ |BC S〉2
2Eν

, (I.36)

which is the cranking formula of the moment of inertia rotations in gauge space.

I.4.1 Demonstration that [HMF + H ′′p , Ñ ] = 0

In what follows we demonstrate that

[HMF + H ′′p , Ñ ] = 0, (I.37)

where (see equations (G.11), (G.12) and (G.21))

HMF = U + H11, (I.38)

U being a constant and

H11 =
∑
ν

Eνα
†
ναν. (I.39)

We do this within the harmonic approximation (RPA), where two-quasiparticle excita-
tions are described in terms of the (quasi-boson) operators

�†
ν = α†να†ν̄ , �ν = αν̄αν, (I.40)

for which we impose the condition (see equation (A.71))

[�ν, �
†
ν ′ ] = δ(ν, ν ′). (I.41)

Within this approximation HMF can be written as

HMF =
∑
ν

2Eν�
†
ν�ν. (I.42)
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Within the same approximation, the relation (G.5) is

a†
νaν + a†

ν̄aν̄ ≈ 2UνVν
(
�†
ν + �ν

)+ 2V 2
ν ,

and the operator number of particles is

Ñ = �
∑
ν>0

1

Eν

(
�†
ν + �ν

)+ N0. (I.43)

Making use of the commutation relations[
�†
ν�ν,

(
�
†
ν ′ + �ν ′

)]
= �ν

[
�ν,

(
�
†
ν ′ + �ν ′

)]
+

[
�†
ν,

(
�
†
ν ′ + �ν ′

)]
�ν

= δ(ν, ν ′) (�†
ν − �ν ′

)
and [(

�†
ν − �ν ′

)
,
(
�
†
ν ′ + �ν ′

)]
= −2δ(ν, ν ′),

one obtains

[HMF, Ñ ] =
∑
ν>0

2Eν
∑
ν ′>0

�

Eν ′

[
�†
ν�ν,

(
�
†
ν ′ + �ν

)]
= 2�

∑
ν>0

(
�†
ν − �ν

)
(I.44)

and

[H ′′p , Ñ ] = G

4

∑
ν ′>0

�

Eν ′

[∑
ν>0

(
�†
ν − �ν

)2
,
(
�†
ν + �ν ′

)]

= G

4

∑
ν ′>0

�

Eν ′
2

(∑
ν>0

(
�†
ν − �ν

))[∑
ν ′′

(
�
†
ν ′′ − �ν ′′

) (
�
†
ν ′ + �ν ′

)]

= −G
∑
ν ′>0

�

Eν ′

∑
ν>0

(
�†
ν − �ν

)
= −2�

∑
ν>0

(
�†
ν − �ν

)
, (I.45)

where in the last step use was made of the BCS gap equation.
From equations (I.44) and (I.45) one obtains

[HMF + H ′′p , Ñ ] = 0. (I.46)

Because [(
�†
ν + �ν

)
,
(
�
†
ν ′ + �ν ′

)]
= −δ(ν, ν ′)+ δ(ν, ν ′) = 0,

[H ′p, Ñ ] = 0. (I.47)

Consequently, H ′′p is the term of the residual interaction among the quasiparticles which,
within the quasi-boson approximation, restores gauge invariance to the symmetry-
breaking BCS Hamiltonian HMF.



334 Appendix I

We now show the quasi-boson approximation is a good approximation provided the
number of quasiparticles excited in the system is small. In fact,

[αν̄αν, α
†
ν ′α

†
ν̄ ′ ] = αν̄[αν, α†ν ′α†ν̄ ′ ]+ [αν̄, α

†
ν ′αν̄ ′ ]αν

= αν̄
{
αν, α

†
ν ′

}
α
†
ν̄ ′ − α†ν ′

{
αν̄, α

†
ν̄ ′

}
αν

= δ(ν, ν ′)(1− Nν − Nν̄), (I.48)

where

Nν = α†ναν. (I.49)

Consequently, the last two terms in the parentheses in equation (I.48) are connected with
the Pauli principle. Furthermore,

[αν̄αν, α
†
ν ′α

†
ν̄ ′ ]|BCS〉 = δ(ν, ν ′)|BCS〉 (I.50)

Let us end this technical section with a physical image. Restoration of gauge symmetry
arises, within the picture of deformation in gauge space developed in Chapter 4 (see Fig.
4.1), in terms of fluctuations in the orientation of the body-fixed system K′ defining a
privileged direction in gauge space. In the present case, this is also the orientation defined
by the symmetry axis of the (static) deformation of the system.

In keeping with the analogies carried out in Section I.1 (Euler angle ϕ ↔ gauge angle
φ, rotational frequency ωrot ↔ Fermi energy in units of Planck’s constant λ/�, angular
momentum I ↔ number of particles N ), and the fact that quantum mechanically a spher-
ical system cannot rotate, one can view the pairing gap � as the deformation in gauge
space (or equivalently α0, see equation (G.2)) corresponding to the static quadrupole
moment Q0 of a deformed nucleus in normal space (axial symmetry has been assumed
for simplicity).

Let us now use this deformed system, which is easy to visualize, to develop the line
of reasoning. For a fixed orientation this system violates rotational invariance. To restore
this symmetry, the privileged orientation has to be averaged out. That is, the system has
to rotate at given frequencies (ωrot = �I/I), tantamount to saying that it has to be in a
state of definite angular momentum I .

Summing up, starting from a rotational invariant Hamiltonian the (mean-field) state
of lowest energy describes a deformed system and thus a privileged orientation in space.
A part of the residual interaction (corresponding to H ′′p in gauge space) gives rise to
a vibrational mode which, in the harmonic approximation, has zero frequency (i.e. its
associated restoring force vanishes) and divergent zero-point fluctuations. Making an
analogy with deformations in three-dimensional space: an axially symmetric quadrupole
vibration defines dynamically a privileged orientation which, changing direction with
time, is averaged out leaving the system in a state of angular momentum L = 2 (surface
wave). As the restoring constant C tends to zero, the time in which a privileged direction
in space is well defined increases. In the limit in which C = 0, one has a deformed
system which rotates as a whole, the resulting lowest energy state having zero angular
momentum.



Appendix J
RPA solution of the pairing Hamiltonian

In this appendix we shall derive in detail the properties of the collective modes associated
with the pairing Hamiltonian

H = Hsp + Hp,

where

Hsp =
∑
ν

(εν − λ)a†
νaν

and

Hp = −G
∑
ν,ν ′

a†
νa

†
ν̄ aν̄ ′aν ′ .

This Hamiltonian becomes, in the quasiparticle basis (Högaasen–Feldman (1961), Bes
and Broglia (1966)),

N=
∑

i

Ei Ni − 1

4
G

(∑
i

√
�i fi

(
�
†
i + �i

))2

+ 1

4
G

(∑
i

√
�i

(
�
†
i − �i

))2

(J.1)

neglecting terms of the order of 1 and of order
√
�i , where

�i = 2 ji + 1

2
,

as well as terms proportional to the quasiparticle number operator

Ni =
∑

m

α
†
imαim . (J.2)

Consistent with this approximation we shall also neglect the Pauli principle among
quasiparticles as expressed in the conmutation relation (see equations (A.72) and
(I.50)), [

�i , �
†
j

]
= δ(i, j)

(
1− Ni

�i

)
, (J.3)
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i.e. assume that [
�i , �

†
j

]
= δ(i, j). (J.4)

This is a good approximation to the extent that the number of quasiparticle excitations
is much smaller than �i , the pair degeneracy of the system.

In the above equations the definitions and relations

Ei =
√

(εi − λ)2 +�2, (J.5)

�
†
j =

1√
� j

∑
m>0

(−1) j−mα
†
j,mα

†
j,−m, (J.6)

fi = U 2
i − V 2

i (J.7)
and [

Ni , �
†
j

]
= δ(i, j)2�†

j (J.8)

have been used.
In what follows we shall also use the phonon-creation operator

�†
n =

∑
i

ani�
†
i +

∑
i

bni�i . (J.9)

We can separate the residual interaction into two parts, one with matrix elements
which are odd with respect to the Fermi energy,

H ′p = −
1

4
G

(∑
i

√
�i fi

(
�
†
i + �i

))2

,

which give rise to pairing vibrations, and one which is even,

H ′′p =
1

4
G

(∑
i

√
�i

(
�
†
i − �i

))2

,

and which is connected with the Anderson–Goldstone–Nambu mode of the system (see
Chapther 4). We are first going to treat both parts separately and then later linearize the
whole Hamiltonian.

J.1 Diagonalization of the H0 + H′
p Hamiltonian (odd solution)

We shall diagonalize the Hamiltonian

H =
∑

i

Ei Ni − 1

4
G

(∑
i

√
�i fi

(
�
†
i + �i

))2

= H0 + H ′p, (J.10)

in the harmonic approximation, thus requiring that (see equation (A.68))[
H, �†

n

] = Wn�
†
n.
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Let us first calculate the commutation with H0,

[
H0, �

†
n

] = [∑
i

Ei Ni ,

(∑
j

anj�
†
j +

∑
j

bnj� j

)]
=

∑
i, j

Ei anj δ(i, j) 2�†
j −

∑
i, j

Ei bnj δ(i, j) 2� j ,

leading to [
H0, �

†
n

] = 2
∑

i

Ei ani�
†
i − 2

∑
i

Ei bni�i . (J.11)

Making use of the Hamiltonian

H ′p = −
1

4
G

(∑
i

√
�i fi (�

†
i + �i )

)2

= −1

4
G

(∑
i

√
�i fi (�
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i + �i )

)(∑
j

√
� j f j (�

†
j + � j )

)
,

we calculate the commutation relation[
H ′p, �

†
n

]
= −1

4
G
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√
�i fi (�

†
i + �i )

)
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[
�i , �

†
k

]
+

∑
k

bnk

[
�
†
i , �k

]}(∑
j

√
� j f j (�

†
j +� j )

)
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= −1

4
G

(∑
i

√
�i fi (�

†
i + �i )

)∑
j

√
� j f j (anj − bnj )

−1

4
G

∑
i

√
�i fi (ani − bni )

(∑
j

√
� j f j (�

†
j + � j )

)
.

Consequently,[
H ′p, �

†
n

]
= 1

2
G

∑
j

√
� j f j (bnj − anj )

(∑
i

√
�i fi (�

†
i + �i )

)
. (J.12)

From equations (J.11) and (J.12) we find[
H, �†

n

] = 2
∑

i

Ei ani�
†
i − 2

∑
i

Ei bni�i + 1

2
G

∑
j

√
� j f j (bnj − anj )

×
(∑

i

√
�i fi (�

†
i + �i )

)

=
∑

i

{
2Ei ani + 1

2
G

(∑
j

√
� j f j (bnj − anj )

)
fi

√
�i

}
�
†
i

+
∑

i

{
−2Ei bni + 1

2
G

(∑
j

√
� j f j (bnj − anj )

)
fi

√
�i

}
�
†
i

= Wn

∑
i

ani�
†
i +Wn

∑
i

bni�i .

Thus,

2Ei ani + G

2

(∑
j

√
� j f j (bnj − anj )

)
fi

√
�i = Wnani ,

−2Ei bni + G

2

(∑
j

√
� j f j (bnj − anj )

)
fi

√
�i = Wnbni .

Defining

�n = G

2

(∑
j

√
� j f j (anj − bnj )

)
, (J.13)

one obtains

2Ei ani −�n fi

√
�i = Wnani ,

−2Ei bni −�n fi

√
�i = Wnbni ,

which lead to

ani = �n fi

√
�i

2Ei −Wn
, bni = −�n fi

√
�i

2Ei +Wn
. (J.14)
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Substituting equations (J.14) in (J.13) one can write

�n = G

2

∑
j

√
� j f j

(
�n f j

√
� j

2E j −Wn
+ �n f j

√
� j

2E j +Wn

)

= G
∑

j

� j f 2
j

(
2E j

4E2
j −W 2

n

)
�n = G

∑
j

2E j� j f 2
j

4E2
j −W 2

n

�n,

leading to

1

G
=

∑
j

2E j� j f 2
j

4E2
j −W 2

n

. (J.15)

The normalization condition[
�n, �

†
n

] = [(∑
i

ani�i +
∑

i

bni�
†
i

)
,

(∑
j

amj�
†
j +

∑
j

bmj� j

)]
gives the relation ∑

i

ani ami −
∑

i

bni bmi = δ(n,m). (J.16)

Consequently ∑
i

(a2
ni − b2

ni ) = 1.

Inserting in this equation the amplitudes defined in equation (J.14) one obtains

�2
n

∑
i

{
f 2
i �i

(2Ei −Wn)2
− f 2

i �i

(2Ei +Wn)2

}
= 1,

�2
n

∑
i

4E2
i + 4Ei Wn +W 2

n − 4E2
i + 4Ei Wn −W 2

n

(2Ei −Wn)2(2Ei +Wn)2
f 2
i �i = 1,

leading to

�2
n

∑
i

f 2
i �i 8Ei Wn

(4E2
i −W 2

n )2
= 1.

Thus

�n = 1

2

[∑
i

f 2
i �i 2Ei Wn

(4E2
i −W 2

n )2

]−1/2

. (J.17)

J.2 Diagonalization of the H0 + H′′
p Hamiltonian (even solution)

Let us now consider the Hamiltonian

H = H0 + H ′′p =
∑

i

Ei Ni + 1

4
G

(∑
i

√
�i (�

†
i − �i )

)2

,
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where

H ′′p =
1

4
G

(∑
i

√
�i (�

†
i − �i )

)2

= 1

4
G

(∑
i

√
�i (�

†
i − �i )

)(∑
j

√
� j (�

†
j − � j )

)
.

We start by calculating the commutation relation

[
H ′′p , �

†
n

]
= 1

4
G

[(∑
i

√
�i (�

†
i − �i )

)(∑
j

√
� j (�

†
j − � j )

)
, �†

n

]
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4
G

(∑
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√
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†
i − �i )

)[(∑
j

√
� j (�

†
j − � j )

)
, �†

n

]

+ 1

4
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√
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†
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)
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n

](∑
j

√
� j (�

†
j − � j )

)

= 1

4
G

(∑
i

√
�i (�

†
i − �i )

)

×
[(∑

j

√
� j (�

†
j − � j )

)
,

(∑
k

ank�
†
k +

∑
k

bnk�k

)]

+ 1

4
G

[(∑
i

√
�i (�

†
i − �i )

)
,

(∑
k

ank�
†
k +

∑
k

bnk�k

)]

×
(∑

j

√
� j (�

†
j − � j )

)

= 1

4
G

(∑
i

√
�i (�

†
i − �i )

)

×
∑

j

√
� j

{
−

∑
k

bn,kδ( j, k)−
∑

k

an,kδ( j, k)

}

+ 1

4
G

∑
i

√
�i

{
−

∑
k

δ(i, k)bn,k −
∑

k

an,kδ(i, k)

}

×
(∑

j

√
� j (�

†
j − � j )

)

= −G

2

(∑
i

√
�i (an,i + bn,i )

)(∑
j

√
� j (�

†
j − � j )

)
.
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That is[
H ′′p , �

†
n

]
= −G

2

(∑
i

√
�i (an,i + bn,i )

)(∑
j

√
� j (�

†
j − � j )

)
. (J.18)

Making use of this relation and equation (J.11), one can write[
H, �†

n

] = 2
∑

i

Ei an,i�
†
i − 2

∑
i

Ei bn,i�i

− 1

2
G

∑
j

√
� j (an, j + bn, j )

∑
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√
�i�

†
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2
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∑
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√
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∑
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√
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=
∑

i

{
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2
G

∑
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√
� j (an, j + bn, j )

}√
�i�

†
i

+
∑

i

{
−2Ei bn,i + 1

2
G

∑
j

√
� j (an, j + bn, j )

}√
�i�i

= Wn

∑
i

an,i�
†
i +Wn

∑
i

bn,i�i .

This relation implies that

2Ei an,i −
(

1

2
G

∑
j

√
� j (an, j + bn, j )

)√
�i = Wnan,i ,

−2Ei bn,i +
(

1

2
G

∑
j

√
� j (an, j + bn, j )

)√
�i = Wnbn,i .

Defining the quantity

�n = 1

2
G

∑
j

√
� j (an, j + bn, j ), (J.19)

the above equations can be written as

2Ei an,i −�n

√
�i = Wnan,i ,

−2Ei bn,i +�n

√
�i = Wnbn,i ,

leading to

(2Ei −WN )an,i = �n

√
�i ,

(2Ei +WN )bn,i = �n

√
�i .
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The colletive phonon forwards-going and backwards-going amplitudes (see Fig. 8.11)
are thus

ani = �n

√
�i

2Ei −Wn
, bni = �n

√
�i

2Ei +Wn
. (J.20)

Replacing these amplitudes in equation (J.19) leads to the relation

�n = 1

2
G

∑
i

√
�i

{
�n

√
�i

2Ei −Wn
+ �n

√
�i

2Ei +Wn

}
,

�n = 1

2
G�n

∑
i

2Ei +Wn + 2Ei −Wn

4E2
i −W 2

n

�i ,

and thus to the dispersion relation

1

G
=

∑
i

2Ei�i

4E2
i −W 2

n

. (J.21)

It can be seen that this equation has, as the lowest root, W1 = 0. In fact, in this case
the above expression leads to

2

G
=

∑
i

�i

Ei
,

which is the BCS gap equation.
From the normalization condition,

1 =
∑

i

(a2
n,i − b2

n,i ) = �2
n

∑
i

{
�i

(2Ei −Wn)2
− �i

(2Ei +Wn)2

}

= �2
n

∑
i

4E2
i + 4Ei Wn +W 2

n − 4E2
i + 4Ei Wn −W 2

n

(4E2
i −W 2

n )2
�i

= �2
n

∑
i

8Ei Wn�i

(4E2
i −W 2

n )2
,

one obtains

�n = 1

2

[∑
i

2Ei Wn�i

(4E2
i −W 2

n )2

]−1/2

. (J.22)
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J.3 Diagonalization of the full Hamiltonian H = H0 + H′
p + H′′

p

We consider now the complete Hamiltonian

H = H0 + H ′p + H ′′p =
∑

i

Ei Ni − 1

4
G
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√
�i fi (�

†
i + �i )
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4
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√
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†
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,

and linearize it, i.e. impose
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†
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†
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†
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∑
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†
i +Wn

∑
i
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From equations (J.11), (J.12) and (J.18) we get,

∑
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∑
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√
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)
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∑
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That is,
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{
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2
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√
� j (anj + bnj )

)√
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+
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{
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2
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√
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∑
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This relation leads to

2Ei ani + 1

2
G

(∑
j

√
� j f j (bnj − anj )

)√
�i fi

−1

2
G

(∑
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√
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)√
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2
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(∑
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√
� j f j (bnj − anj )

)√
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2
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√
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)√
�i = Wnbni .

Defining the quantities

�1n = −1

2
G

(∑
j

√
� j f j (bnj − anj )

)
,

and (J.23)

�2n = 1

2
G

(∑
j

√
� j (anj + bnj )

)
,

one can rewrite the above equations as

2Ei ani −�1n

√
�i fi −�2n

√
�i = Wnani ,

−2Ei bni −�1n

√
�i fi +�2n

√
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leading to
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√
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√
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(2Ei +Wn)bni = −�1n

√
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√
�i ,

from which the RPA amplitudes

ani = �1n fi +�2n

(2Ei −Wn)

√
�i ,

bni = −�1n fi +�2n

(2Ei +Wn)

√
�i , (J.24)

are determined.
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Replacing the amplitudes in equations (J.23) one gets

�1n = − 1
2 G

∑
i

√
�i fi

√
�i
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(
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∑
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and

�2n = 1
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√
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�2n = 0. (J.26)

In order that the system of equations (J.25), (J.26) has a solution we set the determinant
of the coefficients to be zero, i.e.∣∣∣∣∣∣∣∣

(∑
i
�i f 2

i 2Ei

(4E2
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(∑
i

�i fi

(4E2
i −W 2

n )

)
Wn

(∑
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n )
− 1

G

)
∣∣∣∣∣∣∣∣ = 0. (J.27)
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Taking into account that we have previously solved the BCS equations, (in particular
2
G =

∑
i
�i
Ei

), the element
(∑

i
�i 2Ei
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− 1
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)
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In the same way(∑
i
�i 2Ei f 2

i

(4E2
i −W 2

n )
− 1
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)
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i
�i f 2

i 2Ei
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We shall now rewrite the expression
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i ( f 2

i − 1) = 4E2
i ((U 2
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i )2 − 1) = 4E2

i (U 4
i + V 4

i − 2U 2
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making use of the BCS relations

(U 2
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i )2 = 1, U 4
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i V 2

i − 1 = −4U 2
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,

and thus
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i
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G

)
= (W 2
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∑
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2Ei (4E2
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n )
. (J.29)
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Making use of equations (J.28) and (J.29) the determinant (J.27) can be written as∣∣∣∣∣∣∣∣
(W 2

n − 4�2)
∑

i
�i

2Ei (4E2
i −W 2

n )
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∑
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∣∣∣∣∣∣∣∣ = 0, (J.30)
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−
(∑

i
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(4E2
i −W 2

n )

)2
⎤⎦ = 0. (J.31)

Introducing

Y2
n = W 2

n − 4�2,

one can write

4E2
i −W 2

n = 4(εi − λ)2 + 4�2 −W 2
n = 4(εi − λ)2 − Y2

n .

Consequently, equation (J.31) becomes
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which, making use of the relation
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,

leads to

Yn

∑
i

�i

2Ei (4(εi − λ)2 − Y2
n )
=

∑
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Consequently, ∑
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= 0. (J.32)

From equation (J.26)

�2n
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and equation (J.28)
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�1n
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,
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Making use of the normalization condition,
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Appendix K
Vortices in nuclei

In this appendix we follow the argument presented in Bertsch et al. (1988).

K.1 Simple estimates

Nuclei in their ground state can be viewed, in general, as a condensate of pairs of nucleons
coupled to angular momentum zero. Evidence for the existence of multipole (non-zero
J ) pairing has also been found in a variety of nuclear properties (see Section 5.3).
Empirically, d-state pairing correlation of a single pair is about half that of a monopole
pair. The reduction is due to the decrease in phase space for valence pairs with higher J .
This is shown schematically in Fig. K.1.

This situation may be rather different for rapidly rotating nuclei. In this case, large
values of the angular momentum can be built by using a coupling scheme where both
valence and core particles couple pairwise to angular momentum J . The lowest multi-
polarity different from zero to which pairs of particles can couple is J = 1. Under these
circumstances, Galilean invariance allows one to redefine the phase space where dipole
pairing acts, so that the resulting phase space is nearly the same as for J = 0 pairing. To
be able to carry out analytically the different estimates we shall approximate the nucleus
by a cylinder of the same radius as that of the nucleus, and a height such that the volume
is conserved (see Fig. K.2). That is,

v = 4π

3
R3 = πR2 H, (K.1)

leading to

H = 4
3 R. (K.2)

In this way we also conserve density,

ρ0 = m A

v
= M

v
, (K.3)

where m is the nucleon mass and M the total mass of the system.
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(a) (b)

Figure K.1. Phase space for particles in paired wavefunctions. The available momenta for
valence particles in a Fermi system are shown in (a). All momenta are allowed for a particle
in a pair with total momentum zero. When the pair momentum is non-zero, the valence phase
space is reduced as indicated in (b) (after Bertsch et al. (1988)). Copyright ©Società italiana
di Fisica.

R

R

H

Figure K.2. Approximation used to describe vortex motion. The height H is defined such
that πR2 H = (4/3)πR3.

Because of J �= 0 superfluidity, a vortex forms with a cylindrical hole along the axis
of rotation. The velocity field of the fluid in the vortex can be written as

V0 = g

r
, (K.4)

where

g = �

2m
, (K.5)

for J = 1 vorticity (i.e. each Cooper pair carries angular momentum J = 1). In this case
the total angular momentum of the system is

I ≈ A

2
. (K.6)

The energy of the vortex consists of a rotational part and a part associated with the
surface created to generate the hole compatible with the velocity field given in equation
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R

H

a

z

Figure K.3. Atomic nucleus with a vortex, i.e. in a condensed phase of pairs a+j,ma+j,−m+1,
and Iz = A/2.

(K.4). The rotational energy is estimated as

Evortex =
∫

dτ
ρ0V 2

0

2
= ρ0

2

∫ 2π

0
dφ

∫ H

0
dz

∫ R

a
V 2

0 rdr

= ρ0

2
2πHg2

∫ R

a
d ln r = 1

R2 M
L2 ln

R

a
, (K.7)

where

L =
∫

dτρ0r V0 = ρ0

∫ 2π

0
dφ

∫ H

0
dz

∫ R

a
V0r2dr

≈ ρ02πHg
∫ R

a
rdr ≈ ρ0πHgR2 (K.8)

is the angular momentum of the system.
Note that the above relation implies (see Fig. K.3) that

L = M

ν
πR2 H

�

2m
= �

A

2
, (K.9)

as assumed. The extra energy needed to create the hole of radius a is

Esurf = 2πaHσ, (K.10)

where σ is the surface tension (cf. equation (7.32)).
To determine a we minimize the total energy

∂

∂a
(Evortex + Esurf) = − 1

R2 M
L2 1

a
+ 2πHσ = 0, (K.11)
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f = 8 MeV

0
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Figure K.4. Stability against fission for a rotating nucleus. The critical angular momentum
I for which the nucleus becomes unstable against fission has been calculated in the liquid-
drop model as a function of the mass number of the nucleus, and the corresponding curve is
labelled B f = 0. The curve labelled B f = 8 MeV shows the angular momentum for which
the fission barrier is found at an energy of 8 MeV above the ground state corresponding to the
average neutron separation energy. The figure is based on Cohen et al. (1974) (see also Bohr
and Mottelson (1974)). Reprinted from Annals of Physics, Vol. 82, Cohen et al., ‘Equilibrium
configurations of rotating charged or gravitating liquid masses, II’, page 557, Copyright 1974,
with permission from Elsevier.

thus obtaining

a = 1

2πHσ

L2

R2 M

= 1

8σ

A

v

�
2

m
. (K.12)

This now poses the following questions.

1. Does the nucleus allows spins as high as I ∼ A/2?
2. How does the energy cost in forming a vortex compare with the energy gain of pairing?

Making use of the liquid-drop model with a surface tension σ (= 1 MeV fm−1), one
obtains the curves given in Fig. K.4. Thus, a nucleus of A ≈ 150 can, in principle, sustain
about 80 units of angular momentum, i.e. of the order of A/2 ≈ 75 as required to make
a vortex.
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E

E

E

Figure K.5. Schematic representation of rotational bands with superfluid moment of inertia
(Js , dotted curve) and rigid moment of inertia (Jr , continuous curve) as well as roton min-
imum (dashed curve). Also shown is the summed pairing correlation energy (protons plus
neutrons) ≈ �2/d (see Section 3.5).

The answer to question 2 is schematically given in Fig. K.5, where

E1 = Erigid(L = 75)+ |Ecorr|, (K.13)

and

E2 = Evortex + Esurf. (K.14)

The quantity Ecorr is the pairing correlation energy. In other words, question 2 is equiv-
alent to asking whether E1 is smaller or larger than E2.

The pairing correlation energy is given by (see equation (3.60))

Ecorr = −
�2

n +�2
p

2d
, (K.15)

with

�n ≈ �p ≈ 12√
A

MeV (K.16)

and

d ≈ 0.4 MeV. (K.17)

Thus

Ecorr ≈ −�
2

d
≈ −360

A
MeV . (K.18)
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Making use of the fact that

Erigid = L2

M R2
, (K.19)

one obtains for the energy of the vortex measured with respect to Erigid + Ecorr

δE = E2 − E1 = L2

M R2

(
ln

R

a
− 1

)
+ 2πHσa − 360 MeV

A
. (K.20)

Assuming A = 150 and making use of the parameters

R = 1.2A1/3 fm = 6.4 fm, (K.21)

H = 4
3 R ≈ 8.5 fm, (K.22)

a = 1

8× 1 MeV
fm2

× 150

π (6.4 fm)28.5 fm
40 MeV fm2 ≈ 0.7 fm (K.23)

and

L2

M R2
=

(
A

2

)2
�

2

Am

1

R2
= (75)2 × 40 MeV fm2

150× (6.4 fm)2

= 36.6 MeV, (K.24)

δE = 36.6 MeV

(
ln

6.4

0.7
− 1

)
+ 2π8.5 fm

1 MeV

fm2 0.7 fm− 360

150
MeV

= 36.6 MeV× 1.2+ 37.4 MeV− 2.4 MeV

≈ 79 MeV. (K.25)

Thus

E2 > E1 . (K.26)

Consequently, a vortex can, in principle, exist in an atomic nucleus. However, its statis-
tical weight is likely to be too small to be observed, because of its high excitation energy
above the yrast state with the same angular momentum (see, however Section 3.10.1).
One reason for this is that the vortex kinetic energy is about twice the kinetic energy
of rigid rotation (Evortex ≈ 2.2Erigid). The other is the large surface energy of the vortex
core (Esurf ≈ 37 MeV).

K.2 Critical velocity for the excitation of rotons

From the value of the vortex angular momentum

L = p0 R = �k0 R = �I, (K.27)

I ≈ A

2
, (K.28)
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one can determine the associated momentum

k0 = A

2R
≈ A2/3

2.4× fm
, (K.29)

k0 ≈ 0.4× A2/3fm−1. (K.30)

Making use of the excitation energy of the roton (see equations (1.6), (K.25) as well
as Figs. 1.6 and K.5)

� = δE ≈ 79 MeV, (K.31)

(Vcr)vortex = �

�k0
= 79 MeV

(�c)× 0.4A2/3 fm−1 c (K.32)

≈ 79 MeV

200 MeV fm× 0.4A2/3 fm−1 c ≈ c

A2/3
, (K.33)

consequently,

(Vcr)vortex ≈ c

A2/3
≈ c

25
≈ 12× 106 m s−1 . (K.34)

which is the lowest velocity needed to excite a vortex, i.e. one of the elementary modes
of excitation of the system.

K.3 Critical velocity for superfluidity

(Vcr)sup ≈ �

�kF
= 12√

A
MeV×

(
1

200 MeV fm× 1.36 fm−1

)
c

≈ 4× 10−2

√
A

c , (K.35)

where c is the velocity of light. Thus, when A = 150,

(Vc)sup ≈ 1.1× 106 ms−1 , (K.36)

which is the critical velocity to excite quasiparticles, in other words, the lowest velocity
needed to excite one of the elementary modes of the system.

As already stated above, we note that in equation (K.32) � is the gap at the roton
minimum (= δE , equation (K.31)) while in equation (K.35) it is the BCS superfluid
pairing gap of a nucleus (see equation (1.17) as well as (1.21)) (see also the last paragraph
of Section 1.5).

While one does not expect supercurrents to take place in nuclei, the phenomenon
may be realized in neutron stars (see Sections 1.10 and 10.5). In any case, the estimates
given in equations (K.34) and (K.36) can be viewed as an excercise concerning orders
of magnitude within the framework of the discussion carried out in Sections 1.4 and 1.5.



Appendix L
Josephson effect

Josephson (1962) proposed that there should be a contribution to the current through
an insulating barrier between two superconductors which would behave like direct tun-
nelling of condensed pairs from one condensed gas of bound pairs at the Fermi surface to
the other. The measurement of such an effect has provided a beautiful scenario where the
collective rotational degree of freedom in gauge space manifests itself, let alone some
of the most accurate measurements of the electron charge (Anderson (1964)).

Before proceeding further let us briefly discuss a technical detail which, aside from
being essential to microscopically understanding the mechanism which is at the basis of
the effect, also clarifies the long-range order induced by pairing correlations. Because
one is interested in calculating the tunnelling of Cooper pairs across the barrier separating
the two superconductors, it is natural to start by assuming that it is the pairing interaction
that is the source of this transfer, by annihilating a pair in superconductor 2 and creating
a pair in superconductor 1 (see Fig. L.1). Although this is what effectively happens,
it can be shown that the pairing interaction leads to a negligible contribution to pair
transfer, and that essentially all the transfer proceeds through the single-particle mean
field acting twice. Note that this reaction mechanism leading to a (successive) two-
particle tunnelling does not destroy the correlation existing between the pair of fermions
of a Cooper pair participating in the condensate. In fact, aside from the fact that ξ is much
larger than typical particle distances (see equation (1.32) and (1.39)), successive transfer
mediated by the single-particle field is essentially equivalent to simultaneous transfer,
being only one of the different choices of representations used to describe the process
to properly take into account the non-orthogonality of the wavefunctions describing the
motion of the fermions in each of the superconductors: prior-prior, post-prior, post-post
representations (see Cohen et al. (1962), Prange (1963), Anderson and Rowell (1963),
Götz et al. (1975), Broglia and Winther (1991)). Let us now come back to the main
subject of this appendix, i.e. the Josephson effect.

Owing to the macroscopic number of paired electrons which are present in a
superconductor, it is not possible to observe so directly as in the case of a finite sys-
tem like the nucleus the individual states of the (pairing) rotational spectrum (in gauge
space) shown, for example, in Fig. 4.2. The so-called Josephson junction consists of two
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z1

z1′

1 2

φ1 φ
2

z2

z ′2

Figure L.1. Schematic representation of a Josephson junction.

superconductors which are separated by a thin dioxide (insulating) layer, through which
the electrons can penetrate. Each of the superconductors can, because of the analogy
discussed in connection with Fig. 4.1 (see also Sections 1.2, 3.8, 4.2, equation (4.14), as
well as Appendix I), be thought of as a rotor (see Fig. L.1). These two rotors are coupled
together through the exchange of pairs

P†
1 P2 = e2iφ1 P ′1

†e−2iφ2 P ′2, (L.1)

where

a′ν
† = G(φ)a†

νG−1(φ) = e−iφa†
ν, (L.2)

and thus

a†
ν = eiφa′ν

†
. (L.3)

This implies

P†
1 =

∑
ν1>0

a†
ν1

a†
ν̄1
= e2iφP ′1

†
, (L.4)

and similarly for P2.
Consequently, the coupling between the superconductors is

Hcoupl ∼ e2iφ1 e−2iφ2 eiδ + h.c.

∼ cos(2(φ1 − φ2)+ 2δ), (L.5)

where φ1 and φ2 are the gauge phases of the superconductors and δ a phase shift,
associated with barrier penetration. The rate at which the quanta are exchanged between
the two superconductors is thus given by

Ṅ1 = (−Ṅ2) = i

�
[H, N1] = i

�

(
i
∂H

∂φ

)
= −1

�

∂H

∂φ

∼ sin (2(φ1 − φ2)+ 2δ) . (L.6)
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The rotational frequency of the rotors corresponds to the chemical potential of the
superconductors (see Appendix I, Section I.3)

φ̇1 = 1

�

∂H

∂N1
= 1

�
λ1 (L.7)

and

φ̇2 = 1

�

∂H

∂N2
= 1

�
λ2. (L.8)

Introducing φ = φ̇t = λ
�

t in equation (L.6) one obtains

Ṅ1 ∼ sin

(
2

�
(λ1 − λ2) t + 2δ

)
. (L.9)

This means that if there is a difference in chemical potential between the two
superconductors, which can be obtained by applying an external voltage, there will
be an oscillating current running between the superconductors. In terms of the voltage
differential V1 − V2, equation (L.9) can be written as

Ṅ1 ∼ sin

(
2e

�
(V1 − V2) t + 2δ

)
. (L.10)

This shows that the frequency of the oscillating current is determined by the applied
voltage, the carriers having charge 2e. Note that to make this point evident we have used
the function G(φ) = e−iN̂φ to induce a gauge transformation (see equation (L.2)), and

not ei N̂
2 φ as introduced in equation (4.12).

The remarkable confirmation of the picture of deformation and of rotation in gauge
space provided by the Josephson effect is an example of the general fact that, ar-
guably, the most successful approach to physics is a combination of phenomenology
with microscopic theory, and of experiment with both. From this kind of approach one
can arrive at a degree of understanding of phenomena which essentially amounts to
certainty. Superconductivity and superfluidity are likely to belong to this category of
phenomena, of whose basic nature one is virtually certain, primarily because of the
large variety of phenomena which can be correlated by one form or another of BCS
theory.

In general, a condensation phenomenon is characterized by a new parameter in the
condensed phase leading to emergent properties which were not present in the original
system nor in the particles which compose it. For example, below its Curie point a
ferromagnet has magnetization in the absence of a field. The long-range order of a solid
is not present in the liquid. The order parameter of a superconductor is the energy gap
itself.

All these systems and their order parameters have an important feature in common: the
condensed system does not have the full symmetry of the Hamiltonian describing it. Su-
perfluidity and superconductivity can be considered particular examples of this general
theory, letting the order parameter be 〈BCS|G P†|BCS〉 = e2iφ� and fixing the magni-
tude and the phaseφ. Then, it is gauge invariance which is violated in the superconductor.
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Clearly, general gauge invariance is not violated, but from the point of view of individual
fermions it is, in the sense that the phase of the field operator with which we insert
additional particles is relevant.

It is of course physically obvious that the full symmetry of the original Hamiltonian
still governs the system, in the sense that it is only the state of the system which is taken
to be non-invariant, and one considers all other states to which the assumed state can
be carried by symmetry operations as degenerate with a given one (see Section 4.2.1, in
particular equation (4.14)).

These ideas seem rather evident and general. Now, however, one comes to the real
distinction among the different situations. In a few cases – ferromagnetism being an
obvious example – the order parameter is a constant of motion. Then, of course, the non-
invariant states are, rigorously, degenerate eigenstates of H , and no serious questions of
principle arise: all the consequences of the true symmetry of H can be retained in the
most direct fashion.

More common is the opposite case: the order parameter is not a quantum-mechanical
constant of the motion. The orientation of the solid in space, for instance, and its position,
are not constants of the motion; the correct constants are total momentum and angular
momentum. In the superconductor we find the phase variable is not only not a constant
of motion, but is normally assumed to be meaningless.

In the cases of the solid or the ferroelectric one can understand the physics of the
situation. What happens is that the condensation has given the system one form or
another of long-range order, so that ≈ 1023 different atoms must move as a unit rather
than individually. Under such circumstances the system is so large that its behaviour is
essentially classical, and one may fix the value of the order parameter even though it is
not a constant of motion – the coordinate or orientation of the solid, for instance. There
is indeed zero-point motion of a macroscopic solid, but it is so small that one does not
need to deal with it.

Another aspect of the situation is that in general the usual type of condensed system
finds itself in the presence of external fields which fix the order parameter at some
preferred value. Because of the long-range order, only a very small external force is
necessary to do this. A small external field can align a ferromagnet, a small external
force pin down the orientation and position of a crystal (see final paragraph of Section
4.2.4, Weinberg’s chair).

In actual fact one seldom deals with condensed systems in the absence of external
fields, so that one is accustomed to think of such systems as having definite values
of such order parameters as the orientation. But this is because we are accustomed to
working with measuring instruments which are themselve rigid, i.e. have a long-range
positional order. Thus it does not seem extraordinary that a solid has a fixed position
and orientation. In the case of magnets, again one is used to instruments which violate
time-reversal symmetry themselves, and thus we do not find it unusual for a system to
have a definite value of ferromagnetic order.

In the case of superconducting systems things are quite different. The internal long-
range order parameter – the phase – is not a parameter for which suitable measurement
instruments exist. A superconductor, or a superfluid, has rather perfect internal phase
order, but as has been shown in Section 4.2.1 (equation (4.39)) (see also Appendix I),
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the zero-point motion of the total order parameter of an isolated superconductor is large
and rather rapid.

The importance of the Josephson effect is that it provides for the first time an
instrument which can act like a clamp for a solid: it can pin down the order para-
meter, making superfluidity and superconductivity one more example of condensation
phenomena.

Summing up, condensation is a self-consistent choice by the system of a state – and
a corresponding mean self-consistent field – which does not have the full symmetry of
the Hamiltonian. Fluctuations of the order parameter will, in the absence of asymmetric
external forces, restore the original symmetry. The external forces needed to ‘pin down’
the quantum fluctuations can only come from systems which themselves violate the
given symmetry: in the case of a superconductor, another superconductor.

The possibility to study the transfer of Cooper pairs between superfluid nuclei in a
heavy ion collision (transient Josephson junction), has been extensively discussed (see
e.g. von Oertzen (1994), Broglia and Winther (1991) and references therein)
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H. and van den Heuvel, E. P. J., eds. Volume 262, page 457.
Saunders, E. (1990). Phys. Rev. Lett., 64:3046.
Scadron, M. D. (1985). Ann. Phys., 159:184.
Schafroth, M. R. (1955). Phys. Rev., 100, 463.
Schmidt, H. (1972) In Proceedings of the International School of Physics ‘E. Fermi’,

Course LII, Morinaga, H., ed., New York: Academic Press, page 144.
Schrieffer, J. R. (1964). Theory of Superconductivity. Reading, Mass.: Benjamin.
Schrieffer, J. R. (1994). Proceedings of the International School of Physics ‘E. Fermi’

Course CXXI, Broglia, R. A., Schrieffer, J. R., and Bortignon, P.-F. Amsterdam:
North Holland, page 231.

Schulze, H. J., Cugnon, J., Lejeune, A., Baldo, M., and Lomdardo, U. (1996). Phys.
Lett., B375:1.

Sergeant, A. J., Hussein, M. S., Pato, M. P., and Ueda, M. (2002). Phys. Rev., C65:
024302.

Shaham, A. (1980). J. Phys., C2:9.
Shapiro, S. L. and Teukolsky, S. A. (1983). Black Holes, White Dwarfs and Neutron

Stars. New York: Wiley.
Shimizu, Y. R. and Broglia, R. A. (1990). Nucl. Phys., A515:38.



372 References

Shimizu, Y. R., Donati, P., and Broglia, R. A. (2000). Phys. Rev. Lett., 85:2260.
Shimizu, Y. R., Garrett, J. D., Broglia, R. A., Gallardo, M., and Vigezzi, E. (1989). Rev.

Mod. Phys., 61:131.
Shimizu, Y. R., Vigezzi, E., and Broglia, R. A. (1987). Phys. Lett., B198:33.
Sierra, G., Dukelsky, J., Dussel, G. G., van Delft, J., and Braun, F. (2000). Phys. Rev.,

B61, R11:890.
Simon, H., Aleksandrov, D., Aumano, T., Axelsson, L., Baumann, T., Borge, M. J. G.

et al. (1999). Phys. Rev. Lett., 83:496.
Skyrme, T. H. R. (1959). Nucl. Phys., 9:615.
Snider, D. R. and Sorbello, R. S. (1984). Surface Sci., 143.
Stelson, P. H., McGowan, F. K., Robinson, R. L., and Milner, W. T. (1970). Phys. Rev.,

C2:2015.
Stephens, F. (1985) In Frontiers in Nuclear Dynamics, Broglia, R. A. and Dasso, C. H.,

eds. New York: Plenum Press, number 25 in Ettore Majorana, International Science
Series, page 73.

Stephens, F. and Simon, R. S. (1972). Nucl. Phys., A183:257.
Stetcu, I. and Johnson, C. W. (2002). Phys. Rev., C66:034301.
Szymanski, Z. (1985). Nuclear Structure. Amsterdam: Elsevier, page 343.
Takahara, S., Onishi, N., and Tagima, N. (1994). Phys. Lett., B331:261.
Takahashi, H. (1957). Nuov. Cim., 6:370.
Takatsuka, T. (1984). Progr. Theor. Phys., 71:1432.
Talmi, I. (1972). Nucl. Phys., A172:1.
Tanihata, I. (1996). J. Phys. G, 22:157.
Terasaki, J., Barranco, F., Broglia, R. A., Vigezzi, E., and Bortignon, P. F. (2002a). Nucl.

Phys., A697:127.
Terasaki, J., Barranco, F., Vigezzi, E., Broglia, R. A., and Bortignon, P. F. (2002b). Prog.

Theor. Phys., 108:495.
Thouless, D. J. (1961a). Nucl. Phys., 22, 78.
Thouless, D.J. (1961b). The Quantum Mechanics of Many-Body Systems, New York:

Academic Press.
Tilley, D. R. and Tilley, J. (1974). Superfluidity and Superconductivity. New York: Van

Nostrand Reinhold.
Tinkham, M. (1996). Introduction to Superconductivity. New York: Mc-Graw Hill.
Tonozuka, I. and Arima, A. (1979). Nucl. Phys., A323:45.
Tsuboi, T. and Suzuki, T. (1977). J. Phys. Soc. Japan, 42:437.
Twin, P., Nyako, B. M., Nelson, A. H., Simpson, J., Bentley, M. A., Crammer-Gordon,

H. W. et al. (1986). Phys. Rev. Lett., 57:811.
Valatin, D. G. (1958). Nuov. Cim., 7:843.
Van der Sluys, V., van Neck, D., Waroquier, M., and Ryckebusch, J. (1993). Nucl. Phys.,

A551:210.
Van Rij, W. and Kahana, S. (1972). Phys. Rev. Lett., 28:50.
Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K. (1988). Quantum Theory

of Angular Momentum. Singapore: World Scientific.
Vigezzi, E., Bes, D. R., Broglia, R. A., and Frauendorf, S. (1988). Phys. Rev., C38:1448.
Vinh Mau, N. (1995). Nucl. Phys., A592:33.



References 373
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gap equation, 57
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