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1

Opening remarks

The discovery in the late 1990s of the AdS/CFT correspondence, as well as its sub-
sequent generalizations now referred to as the gauge/string duality, have provided
a novel approach for studying the strong coupling limit of a large class of non-
Abelian quantum field theories. In recent years, there has been a surge of interest
in exploiting this approach to study properties of the plasma phase of such theo-
ries at nonzero temperature, including the transport properties of the plasma and the
propagation and relaxation of plasma perturbations. Besides the generic theoretical
motivation of such studies, many of the recent developments have been inspired by
the phenomenology of ultra-relativistic heavy ion collisions. Inspiration has acted
in the other direction too, as properties of non-Abelian plasmas that were deter-
mined via the gauge/string duality have helped to identify new avenues in heavy ion
phenomenology. There are many reasons for this at-first-glance surprising interplay
among string theory, finite-temperature field theory, and heavy ion phenomenology,
as we shall see throughout this book. Here, we anticipate only that the analysis of
data from the Relativistic Heavy Ion Collider (RHIC) had emphasized the impor-
tance, indeed the necessity, of developing strong coupling techniques for heavy ion
phenomenology. Now, this case is further strengthened by data from the CERN
Large Hadron Collider (LHC). For instance, in the calculation of an experimen-
tally accessible transport property, the dimensionless ratio of the shear viscosity to
the entropy density, weak and strong coupling results turn out to differ not only
quantitatively but parametrically, and data favor the strong coupling result. Strong
coupling presents no difficulty for lattice-regularized calculations of QCD ther-
modynamics, but the generalization of these methods beyond static observables
to characterizing transport properties has well-known limitations. Moreover, these
methods are quite unsuited to the study of the many and varied time-dependent
problems that heavy ion collisions are making experimentally accessible. It is in
this context that the very different suite of opportunities provided by gauge/string
calculations of strongly coupled plasmas have started to provide a complementary
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2 Opening remarks

source of insights for heavy ion phenomenology. Although these new methods
come with limitations of their own, the results are obtained from first-principles
calculations in non-Abelian field theories at nonzero temperature.

This book aims to provide an introductory exposition of the results obtained
from the interplay between gauge/string duality, lattice QCD and heavy ion phe-
nomenology within the past decade. It is written in a form accessible to graduate
students seeking to enter this field of research from any direction. At the same
time, it includes a comprehensive coverage that will be beneficial to established
researchers from either community. It is a book about a newly emerging research
field at the intersection of two domains that were until recently completely sep-
arate. As such, it does not attempt to cover the many aspects of these research
fields that are of interest in their own terms, focusing on those aspects of each
field that are relevant for understanding their new interplay. The introductions to
heavy ion phenomenology (Chapter 2) and lattice QCD (Chapter 3) are thus writ-
ten for beginners in these fields (whether graduate students or experienced string
theorists) and they focus mainly on topics that have recently made contact with
techniques from gauge/string duality. Analogously, Chapters 4 and 5 provide a tar-
geted introduction to the principles behind the gauge/string duality with a focus on
those aspects relevant for calculations at nonzero temperature. These chapters are
for beginners too, again whether these beginners are graduate students or experts in
heavy ion physics or lattice QCD. With the groundwork on both sides in place, we
then proceed with a comprehensive exposition of gauge/string calculations of bulk
thermodynamic and hydrodynamic properties (Chapter 6); of far-from-equilibrium
dynamics and its late-time evolution to hydrodynamics (Chapter 7); of the propa-
gation of probes (heavy or energetic quarks, and quark–antiquark pairs) through a
strongly coupled non-Abelian plasma and the excitations of the plasma that result
(Chapter 8); and a detailed analysis of mesonic bound states and spectral functions
in a deconfined plasma (Chapter 9).

This book aims at covering the main developments of the interplay between hot
QCD, heavy ion phenomenology and the gauge/string duality in a way that enables
the reader to follow also other parts of the literature on applications of gauge/string
duality to heavy ion phenomenology and hot QCD. We aimed at a comprehen-
sive exposition but we had to make choices on what to cover. One important
decision was to focus on insights that have been obtained from calculations that
are directly rooted in quantum field theories analyzed via the gauge/string dual-
ity. Consequently, we have omitted the so-called AdS/QCD approach that aims to
optimize ansätze for gravity duals that do not correspond to known field theories,
in order to best incorporate known features of QCD in the gravitational descrip-
tion [343, 304, 518, 55, 201, 415, 416, 417, 508, 115, 689, 181, 182]. We are
confident, however, that a reader of this book will be well-positioned to understand
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the motivations for research in this vast subject, as well as the main tools and
techniques used in this research. Similarly, a reader of this book will have learned
the tools needed to follow the broad and rapidly expanding range of string the-
ory approaches in which dual gravitational descriptions are being developed not
just for the strongly coupled plasma and its properties, that we focus on in this
book, but also for the dynamics of how the plasma forms, equilibrates, expands,
and cools after a collision. Our discussion of this vast topic in Chapter 7 highlights
only a fraction of the many developments. Last but not least, we have omitted any
discussion of the physics of saturation in QCD and its application to understanding
the initial conditions for heavy ion collisions [374, 431, 432, 630, 128, 34, 300].
Here, our main reason was that a self-contained introduction to this subject in QCD
would have required significant space, while its connection to the gauge/string
duality rests at present on relatively few tentative, albeit very interesting, works.
In short, neither this book, nor the list of omissions presented in this paragraph,
should be regarded as being complete.

The existence of a textbook is a hallmark for the development of a research
topic into a research field. There are several good textbooks in the field of
finite temperature and lattice QCD, the field of heavy ion phenomenology and
the field of gauge/string duality. However, aspects of the intersection between
these fields have been covered so far only in scientific reviews, for example
focussing on the techniques for calculating finite-temperature correlation functions
of local operators from the gauge/string duality [749], or on the phenomenological
aspects of perfect fluidity and its manifestation in different systems, including the
quark–gluon plasma produced in heavy ion collisions and strongly coupled fluids
made of trapped fermionic atoms that are more than twenty orders of magnitude
colder [730]. There are also a number of shorter topical reviews that provide basic
discussions of the duality and its most prominent applications in the context of
heavy ion phenomenology [672, 601, 340, 398, 410]. We hope that beyond serving
as an overview of what has been achieved already in this newly emerging field, our
book will serve as a springboard for great achievements yet to come, in particular
from its readers.



2

A heavy ion phenomenology primer

What macroscopic properties of matter emerge from the fundamental constituents
and interactions of a non-Abelian gauge theory? The study of ultra-relativistic
heavy ion collisions addresses this question for the theory of the strong interaction,
Quantum Chromodynamics, in the regime of extreme energy density. To do this,
heavy ion phenomenologists employ tools developed to identify and quantify col-
lective phenomena in collisions that have many thousands of particles in their final
states. Generically speaking, these tools quantify deviations with respect to bench-
mark measurements (for example in proton–proton and proton–nucleus collisions)
in which collective effects are absent. In this chapter, we provide details for three
cases of current interest: (i) the characterization of azimuthally anisotropic flow,
which teaches us how soon after the collision matter moving collectively is formed
and which allows us to constrain the value of the shear viscosity of this matter; (ii)
the characterization of jet quenching, which teaches us how this matter affects and
is affected by a high-velocity colored particle plowing through it; and (iii) the char-
acterization of the suppression of quarkonium production, which has the potential
to teach us about the temperature of the matter and of the degree to which it screens
the interaction between colored particles.

2.1 General characteristics of heavy ion collisions

In a heavy ion collision experiment, large nuclei, such as gold (at RHIC) or lead (at
the CERN SPS and LHC), are collided at an ultra-relativistic center of mass energy√

s. The reason for using large nuclei is to create as large a volume as possible of
matter at a high energy density, to have the best chance of discerning phenomena or
properties that characterize macroscopic amounts of strongly interacting matter. In
contrast, in energetic elementary collisions (say electron–positron collisions but to
a good approximation also in proton–proton collisions) one may find many hadrons
in the final state but these are understood to result from a few initial partons that
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2.1 General characteristics of heavy ion collisions 5

each fragment rather than from a macroscopic volume of interacting matter. Many
years ago Phil Anderson coined the phrase “more is different” to emphasize that
macroscopic volumes of (in his case condensed) matter manifest qualitatively new
phenomena, distinct from those that can be discerned in interactions among few
elementary constituents and requiring distinct theoretical methods and insights for
their elucidation [53]. Heavy ion physicists do not have the luxury of studying
systems containing a mole of quarks, but by using the heaviest ions that nature
provides they go as far in this direction as is possible.

The purpose of building accelerators that achieve heavy ion collisions at higher
and higher

√
s is simply to create matter at higher and higher energy density. A

simple argument to see why this may be so arises upon noticing that in the center-
of-mass frame we have the collision of two Lorentz-contracted nuclei, pancake-
shaped, and increasing the collision energy makes these pancakes thinner. Thus,
at t = 0 when these pancakes are coincident the entire energy of the two incident
nuclei is found within a smaller volume for higher

√
s. This argument is overly

simple, however, because not all of the energy of the collision is transformed into
the creation of matter; much of it is carried by the debris of the two colliding nuclei
that spray almost along the beam directions.

The question of how the initial state wave function of the colliding nuclei deter-
mines precisely how much matter, containing how much entropy, is produced soon
after the collision, and consequently determines the number of particles in the final
state, is a subject of intense theoretical interest. We shall not describe this branch
of heavy ion phenomenology in any detail, but it is worth having a quantitative
sense of just how many particles are produced in a typical heavy ion collision.
In Fig. 2.1 we show the multiplicity of charged particles per unit pseudorapidity
for RHIC collisions at four different values of

√
s. Recall that the pseudorapidity

η is related to the polar angle θ measured with respect to the beam direction by
η = − log tan(θ/2). Note also that, by convention, the incident ions in these col-
lisions have a velocity such that individual nucleons colliding with that velocity
would collide with a center of mass energy of

√
s. Since each gold nucleus has 197

nucleons and each Pb nucleus has 208 nucleons, the total center of mass energy in
a heavy ion collision at the top RHIC energy is about 40 TeV and it rises to about
600 TeV at the current LHC energy. By integrating under the curve in Fig. 2.1, one
finds that a heavy ion collision at top RHIC energy yields 5060 ± 250 charged par-
ticles [94, 95]. The multiplicity measurement is made by counting tracks, meaning
that neutral particles (like π0s and the photons they decay into) are not counted. So,
the total number of hadrons is greater than the total number of charged particles. If
all the hadrons in the final state were pions, and if the small isospin breaking intro-
duced by the different number of protons and neutrons in a gold nucleus can be
neglected, there would be equal numbers of π+, π− and π0 meaning that the total
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Figure 2.1 Charged particle multiplicity distributions for central nucleus–nucleus
collisions (i.e. the 5% or 6% of collisions that have the smallest impact parameter)
over more than two orders of magnitude in

√
sNN. Data taken from Refs. [263]

and [94].

multiplicity would be 3/2 times the charged multiplicity. In reality, this factor turns
out to be about 1.6 [96], meaning that heavy ion collisions at the top RHIC energy
each produce about 8000 hadrons in the final state. At the LHC, the corresponding
pseudorapidity distribution is known so far only in a range around mid-rapidity
(see Fig. 2.1), with d Nch/dη = 1584 ± 4(stat) ± 76(sys) at η = 0 in the 5% or
6% of collisions with

√
s = 2.76 TeV that have the smallest impact parameter [4].

We see from Fig. 2.1 that this multiplicity grows with increasing collision energy
by a factor of close to 2.5 from the top RHIC energy to LHC at

√
s = 2.76 GeV.

The multiplicity per unit pseudorapidity is largest in a range of angles centered
around η = 0, meaning θ = π/2. Moreover, the distribution extends with increas-
ing center of mass energy to larger values of pseudorapidity, so that the total event
multiplicity at LHC is estimated to be a factor ∼ 5 larger than at RHIC, lying in
the ballpark of ∼25 000 charged particles in central collisions. The illustrations in
Fig. 2.2 provide an impression of what collisions with these multiplicities look like.

The large multiplicities in heavy ion collisions indicate large energy densities,
since each of these particles carries a typical (mean) transverse momentum of sev-
eral hundred MeV. There is a simple geometric method due to Bjorken [165], that
can be used to estimate the energy density at a fiducial early time, conventionally
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Figure 2.2 Event displays illustrating heavy ion collisions as seen by the STAR
detector at RHIC (upper panel) and the ALICE detector at the LHC (lower panel).
Nuclei (gold above; lead below) collided at the center of each image, and the
resulting tracks made by those charged particles produced in the collision that pass
through the STAR and ALICE time-projection chambers and the ALICE inner
tracker are shown, projected onto the page in the upper image and in perspective
in the lower image. Figures courtesy of Brookhaven National Laboratory (above)
and the ALICE Collaboration and CERN (below).

chosen to be τ0 = 1 fm. The smallest reasonable choice of τ0 would be the thick-
ness of the Lorentz-contracted pancake-shaped nuclei, for instance ∼ (14 fm)/107
at RHIC since gold nuclei have a radius of about 7 fm and the Lorentz factor is
set by energy of the incident nucleons and their mass in the center-of-mass frame,
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γ ∼ mN/E . But, at these early times ∼ 0.1 fm the matter whose energy density
one would be estimating would still be far from equilibrium. We shall see below
that data on azimuthally anisotropic flow indicate that by ∼ 1 fm after the colli-
sion, matter is flowing collectively like a fluid in local equilibrium. The geometric
estimate of the energy density is agnostic about whether the matter in question is
initial state partons that have not yet interacted and are far from equilibrium or
matter in local equilibrium behaving collectively; because we are interested in the
latter, we choose τ0 = 1 fm. Bjorken’s geometric estimate can be written as

εBj = d ET

dη

∣∣∣∣
η=0

1

τ0πR2
, (2.1)

where d ET /dη is the transverse energy
√

m2 + p2
T of all the particles per unit

rapidity and R ≈ 7 fm is the radius of the nuclei. The logic is simply that at time
τ0 the energy within a volume 2τ0 in longitudinal extent between the two receding
pancakes and πR2 in transverse area must be at least 2d ET /dη, the total transverse
energy between η = −1 and η = +1. At RHIC with d ET /dη ≈ 800 GeV [95],
we obtain εBj ≈ 5 GeV/fm3. In choosing the volume in the denominator in the
estimate (2.1) we neglected transverse expansion because τ0 � R. But, there is
clearly an arbitrariness in the range of η used; if we had included particles produced
at higher pseudorapidity (closer to the beam directions) we would have obtained a
larger estimate of the energy density. Note also that there is another sense in which
(2.1) is conservative. If there is an epoch after the time τ0 during which the matter
expands as a hydrodynamic fluid, and we shall later see evidence that this is so,
then during this epoch its energy density drops more rapidly than 1/τ because as
it expands (particularly longitudinally) it is doing work. This means that by using
1/τ to run the clock backwards from the measured final state transverse energy
to that at τ0 we have significantly underestimated the energy density at τ0. It is
striking that even though we have deliberately been conservative in making this
underestimate, we have found an energy density that is about five times larger
than the QCD critical energy density εc ≈ 1 GeV/fm3, where the crossover from
hadronic matter to quark–gluon plasma occurs, according to lattice calculations of
QCD thermodynamics [129].

As shown in Fig. 2.3, the spectrum in a nucleus–nucleus collision extends to
very high momentum, much larger than the mean. However, the multiplicity of
high-momentum particles drops very fast with momentum, as a large power of pT .
We may separate the spectrum into two sectors. In the soft sector, spectra drop

exponentially with
√

m2 + p2
T as in thermal equilibrium. In the hard sector, spec-

tra drop like power laws in pT as is the case for hard particles produced by high
momentum-transfer parton–parton collisions at τ = 0. The bulk of the particles



2.1 General characteristics of heavy ion collisions 9

pT (GeV/c)

scaled pp reference

sNN = 2.76 TeVPb-Pb   

1/
N

ev
t 1

/(
2π

 p
T
) 

(d
2 
N

ch
) 

/ (
dη

 d
p T

) 
(G

eV
/c

)–2

104

105

103

102

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

10

1

0 5 10 15 20

0 – 5%

70 – 80%

Figure 2.3 Charged particle spectrum as function of pT in Pb+Pb collisions at
LHC energy for nearly head-on (the 5% of collisions with the lowest impact
parameter) and grazing collisions, compared to the corresponding spectrum in
p+p collisions with an appropriately scaled normalization. Figure taken from
Ref. [7].

have momenta in the soft sector; hard particles are rare in comparison. The separa-
tion between the hard and the soft sectors, which is by no means sharp, lies in the
range of a few (say 3–6) GeV.

There are several lines of evidence that indicate that the soft particles in a heavy
ion collision, which are the bulk of all the hadrons in the final state, have rescattered
many times and come into local thermal equilibrium. The most direct approach
comes via the analysis of the exponentially falling spectra of identified hadrons.
Fitting a slope to these exponential spectra and then extracting an “effective tem-
perature” for each species of hadron yields different “effective temperatures” for
each species. This species dependence arises because the matter produced in a
heavy ion collision expands radially in the directions transverse to the beam axis;
perhaps explodes radially is a better phrase. This means that we should expect
the pT spectra to be a thermal distribution boosted by some radial velocity. If
all hadrons are boosted by the same velocity, the heavier the hadron the more its
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proton collisions at the same energy

√
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momentum is increased by the radial boost. Indeed, what is found in data is that the
effective temperature increases with the mass of the hadron species. This can be
seen at a qualitative level in Fig. 2.4a: in the soft regime, the proton, kaon and pion
spectra are ordered by mass, with the protons falling off most slowly with pT , indi-
cating that they have the highest effective temperature. Quantitatively, one uses the
data for hadron species with varying masses to first extract the mass-dependence of
the effective temperature, and thus the radial expansion velocity, and then to extrap-
olate the effective “temperatures” to the mass → zero limit, and in this way obtain
a measurement of the actual temperature of the final state hadrons. This “kinetic
freezeout temperature” is the temperature at the (very late) time at which the gas
of hadrons becomes so dilute that elastic collisions between the hadrons cease,
and the momentum distributions therefore stop changing as the system expands.
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momentum is increased by the radial boost. Indeed, what is found in data is that the
effective temperature increases with the mass of the hadron species. This can be
seen at a qualitative level in Fig. 2.4a: in the soft regime, the proton, kaon and pion
spectra are ordered by mass, with the protons falling off most slowly with pT , indi-
cating that they have the highest effective temperature. Quantitatively, one uses the
data for hadron species with varying masses to first extract the mass-dependence of
the effective temperature, and thus the radial expansion velocity, and then to extrap-
olate the effective “temperatures” to the mass → zero limit, and in this way obtain
a measurement of the actual temperature of the final state hadrons. This “kinetic
freezeout temperature” is the temperature at the (very late) time at which the gas
of hadrons becomes so dilute that elastic collisions between the hadrons cease,
and the momentum distributions therefore stop changing as the system expands.
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In heavy ion collisions at the top RHIC energy, models of the kinetic freezeout
account for the data with freezeout temperatures of ≈ 90 MeV and radial expan-
sion velocities of 0.6 c for collisions with the smallest impact parameters [16]. With
increasing impact parameter, the radial velocity decreases and the freezeout tem-
perature increases. This is consistent with the picture that a smaller system builds
up less transverse flow and that during its expansion it cannot cool down as much
as a bigger system, since it falls apart earlier.

The analysis just described is unique to heavy ion collisions: in elemen-
tary electron–positron or proton–(anti)proton collisions, spectra at low transverse
momentum may also be fit by exponentials, but the “temperatures” extracted in
this way do not have a systematic dependence on the hadron mass, see Fig. 2.4b.
Simply seeing exponential spectra and fitting a “temperature” therefore does not
in itself provide evidence for rescattering and equilibration. Making that case in
the context of heavy ion collisions relies crucially on the existence of a collective
radial expansion with a common velocity for all hadron species.

Demonstrating that the final state of a heavy ion collision at the time of kinetic
freezeout is a gas of hadrons in local thermal equilibrium emboldens us to ask
whether the material produced in these collisions reaches local thermal equilib-
rium at an earlier time, and thus at a higher temperature. The best evidence for
an affirmative answer to this question comes from the analysis of “elliptic flow”
in collisions with nonzero impact parameter. We shall discuss this at length in the
next section.

We close this section with a simpler analysis that lays further groundwork by
allowing us to see back to a somewhat earlier epoch than that of kinetic freeze-
out. If we think of a heavy ion collision as a “little bang”, replaying the history
of the big bang in a small volume and with a vastly accelerated expansion rate,
then kinetic freezeout is the analogue of the (late) cosmological time at which
photons and electrons no longer scatter off each other. We now turn to the ana-
logue of the (earlier) cosmological epoch of nucleosynthesis, namely the time at
which the composition of the final state hadron gas stops changing. Experimental-
ists can measure the abundance of more than a dozen hadron species, and it turns
out that all the ratios among these abundances can be fit upon assuming thermal
distributions with some temperature T and some baryon number chemical poten-
tial μB , as shown in Fig. 2.5. This is a two parameter fit to about a dozen ratios.
The temperature extracted in this way is called the chemical freezeout temperature,
since one interpretation is that it is the temperature at which the hadronic matter
becomes dilute enough that inelastic hadron–hadron collisions cease to modify the
abundance ratios. The chemical freezeout temperature in heavy ion collisions at
top RHIC energies is about 155–180 MeV [193, 56]. This is interesting for sev-
eral reasons. First, it is not far below the QCD phase transition temperature, which
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Figure 2.5 So-called thermal fit to different particle species. The relative abun-
dance of different hadron species produced in RHIC collisions at

√
s = 200 GeV

is well-described by a two-parameter grand canonical ensemble in terms of a
temperature, T , and a chemical potential for baryon number, μB [56].

means that the appropriateness of a hadron gas description of this epoch may be
questioned. Second, within error bars it is the same temperature that is extracted
by doing a thermal model fit to hadron production in electron–positron collisions,
in which final state rescattering, elastic or inelastic, can surely be neglected. So,
by itself the success of the thermal fits to abundance ratios in heavy ion collisions
could be interpreted as telling us about the statistical nature of hadronization, as
must be the case in electron–positron collisions. However, given that we know that
in heavy ion collisions (and not in electron–positron collisions) kinetic equilibrium
is maintained down to a lower kinetic freezeout temperature, and given that as we
shall see in the next section approximate local thermal equilibrium is achieved at
a higher temperature, it does seem most natural to interpret the chemical freeze-
out temperature in heavy ion collisions as reflecting the temperature of the matter
produced at the time when species-changing processes cease.

We have not yet talked about the baryon number chemical potential extracted
from the thermal fit to abundance ratios. As illustrated in Fig. 2.6a, this μB

decreases with increasing collision energy
√

s. This energy-dependence has two
origins. The dominant effect is simply that at higher and higher collision energies
more and more entropy is produced, while the total net baryon number in the col-
lision is always 197+197. At top RHIC energies, these baryons are diluted among
the 8000 or so hadrons in the final state, making the baryon chemical potential
much smaller than it is in lower energy collisions where the final state multiplicity
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Figure 2.6 (a) Chemical potential extracted from thermal fits at different center
of mass energies [56]. (b) The number of protons minus number of antiprotons
per unit rapidity for central heavy ion collisions [132]. This net proton number
decreases with increasing center of mass energy from

√
s = 5 GeV (at the AGS

collider at BNL), via
√

s = 17 GeV (at the SPS collider at CERN) to
√

s =
200 GeV (at RHIC). (For each collision energy, yp indicates the rapidity of a
hypothetical proton that has the same velocity after the collision as it did before.)

is much lower. The second effect is that, in the highest energy collisions, most of
the net baryon number from the two incident nuclei stays at large pseudorapidity
(meaning small angles near the incident beam directions). These two effects can
be seen directly in the data shown in Fig. 2.1 and Fig. 2.6b: as the collision energy
increases, the total number of hadrons in the final state grows while the net baryon

900

µ b
 (M

eV
)

800

700

600

500

400

300

200

100

0
1 10

√sNN (GeV)

102

2.1 General characteristics of heavy ion collisions 13

AGS yp

SPS yp

RHIC yp

900

(a)

μ b
 (M

eV
)

800

700

600

500

400

300

200

100

0
1 10

√sNN (GeV)

102

yCM

–4 –2 0 2 4

dN
/d

y 
ne

t-
pr

ot
on

s

0

20

40

60

80

(b)

AGS
(E802, E877, E917)

SPS
(NA49)

RHIC
(BRAHMS)

Figure 2.6 (a) Chemical potential extracted from thermal fits at different center
of mass energies [56]. (b) The number of protons minus number of antiprotons
per unit rapidity for central heavy ion collisions [132]. This net proton number
decreases with increasing center of mass energy from

√
s = 5 GeV (at the AGS

collider at BNL), via
√

s = 17 GeV (at the SPS collider at CERN) to
√

s =
200 GeV (at RHIC). (For each collision energy, yp indicates the rapidity of a
hypothetical proton that has the same velocity after the collision as it did before.)

is much lower. The second effect is that, in the highest energy collisions, most of
the net baryon number from the two incident nuclei stays at large pseudorapidity
(meaning small angles near the incident beam directions). These two effects can
be seen directly in the data shown in Fig. 2.1 and Fig. 2.6b: as the collision energy
increases, the total number of hadrons in the final state grows while the net baryon
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number at mid-rapidity drops.1 This experimental fact that baryon number is not
“fully stopped” teaches us about the dynamics of the earliest moments of a hadron–
hadron collision. (In this respect, heavy ion collisions are not qualitatively different
than proton–proton collisions.) In a high energy proton–proton collision, particle
production at mid-rapidity is dominated by the partons in the initial state that carry
a small fraction of the momentum of an individual nucleon – small Bjorken x .
And, the small-x parton distribution functions that describe the initial state of the
incident nucleons or nuclei are dominated by gluons and to a lesser extent by
quark–antiquark pairs; the net baryon number is at larger x .

We shall not focus here on the many interesting questions related to the early-
time dynamics in heavy ion collisions. Because QCD is asymptotically free, it is
natural to expect that during the earliest moments of a sufficiently energetic heavy
ion collision, the physics should not be thought of as strongly coupled. The relevant
length scale at the moment of the collision between two highly Lorentz-contracted
nuclei is the mean spacing between gluons in the transverse plane (the inverse
of this length scale is called the saturation momentum) and in the high collision
energy limit this length scale is short and the physics is weakly coupled. The anal-
ysis of this weak coupling, but strong field, regime is the subject of much active
research that we shall not describe. One of the goals of this effort is to under-
stand how rapidly local thermal equilibrium can be established. We shall see in
Chapter 7 that calculations done via gauge/string duality have shed light on this
particular question.

In the next section we turn to the evidence that local thermal equilibrium is
established quickly, and therefore at a high temperature. This means that heavy ion
collisions can teach us about properties of the high temperature phase of QCD,
namely the quark–gluon plasma. And, we shall see later, so can calculations done
via gauge/string duality. We shall henceforth always work at μB = 0. This is a good
approximation as long as μB/3, the quark chemical potential, is much less than the

1 The data in Fig. 2.6b are plotted versus rapidity

y ≡ 1

2
ln

(
E + pL

E − pL

)
, (2.2)

where E and pL are the energy and longitudinal momentum of a proton in the final state. Recall that rapidity

and pseudorapidity η ≡ − ln tan(θ/2) = 1
2 ln

(
p+pL
p−pL

)
(used in the plot in Fig. 2.1) become the same in the

limit in which E and pL are much greater than the proton mass and the three-momentum p approximates E .
For smaller particle momenta, however, the transformation between η and y involves a non-trivial Jacobian.
As a consequence, the pseudorapidity and rapidity distributions d Nch/dη and d Nch/dy have different shapes.
In ultra-relativistic heavy ion collisions, d Nch/dη looks somewhat trapezoidal, with an approximately flat
plateau around η ∼ 0 as in Fig. 2.1, while d Nch/dy is closer to Gaussian in shape. In these high energy
collisions, it is a reasonable rule of thumb that one can estimate d Nch/dy at y = 0 by multiplying d Nch/dη
at η = 0 by about 1.1. When one plots data for all charged hadrons, as in Fig. 2.1, only pseudorapidity can be
defined since the rapidity of a hadron with a given polar angle θ depends on the hadron mass. When one plots
data for identified protons, pseudorapidity can be converted into rapidity.
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temperature T . The results in Fig. 2.6a show that this is a very good approximation
at top RHIC energies and at the LHC.

2.2 Flow

2.2.1 Introduction and motivation

The word “flow” refers here to a suite of experimental observables in heavy ion
physics that utilize the experimentalists’ ability to select events in which the impact
parameter of the collision lies within some specified range and use these events to
study how the matter produced in the collision flows collectively. The basic idea is
simple. Suppose we select events in which the impact parameter is comparable to
the nuclear radius. Now, imagine taking a beam’s eye view of one of these colli-
sions. The two Lorentz-contracted nuclei (think circular “pancakes”) collide only
in an “almond-shaped” region, see Fig. 2.7. The fragments of the nuclei outside
the almond that did not collide (“spectator nucleons”) fly down the beam pipes. All
the few thousand particles at mid-rapidity in the final state must have come from the
few hundred nucleon–nucleon collisions that occurred within the almond. If these
few thousand hadrons came instead from a few hundred independent nucleon–
nucleon collisions, just by the central limit theorem the few thousand final state
hadrons would be distributed uniformly in azimuthal angle φ (angle around the
beam direction). This null hypothesis, which we shall make quantitative below, is
ruled out by the data as we shall see. If, on the other hand, the collisions within the
almond yield particles that interact, reach local equilibrium, and thus produce some
kind of fluid, our expectations for the “shape” of the azimuthal distribution of the
final state hadrons is quite different. The hypothesis that is logically the opposite
extreme to pretending that the thousands of partons produced in the hundreds of
nucleon–nucleon collisions do not see each other is to pretend that what is produced
is a fluid that flows according to the laws of ideal, zero viscosity, hydrodynamics,
since this extreme is achieved in the limit of zero mean free path. In hydrodynam-
ics, the almond is thought of as a drop of fluid, with zero pressure at its edges and a
high pressure at its center. This droplet of course explodes. And, since the pressure
gradients are greater across the short extent of the almond than they are across its
long direction, the explosion is azimuthally asymmetric. The first big news from
the RHIC experimental program, now also seen at LHC energies, was the discov-
ery that these azimuthal asymmetries can be large: the explosions can blast with
summed transverse momenta of the hadrons that are twice as large in the short
direction of the almond as they are in the long direction. Moreover, while the form
of the nuclear overlap is almond-shaped if averaged over many events (left-hand
side of Fig. 2.7), the initial distributions of individual collisions are expected to
show event-wise fluctuations that deviate from an almond shape (right-hand side



16 A heavy ion phenomenology primer

x

y

φ

ψ2

Figure 2.7 Sketch of the collision of two nuclei, shown in the transverse plane
perpendicular to the beam. Left: the event-averaged overlap of the two nuclei is
limited to an interaction almond with φ → φ + π symmetry in the center of the
transverse plane. Figure taken from Ref. [661]. Right: individual collisions show
fluctuations around the event-averaged distribution. The yellow and orange circles
depict spectator nucleons that do not participate in the collision. Participating
nucleons are in violet color. Figure taken from Ref. [588].

of Fig. 2.7). As we shall see, it turns out that ideal hydrodynamics does a surpris-
ingly good job of describing these asymmetric explosions of the matter produced
in heavy ion collisions with nonzero impact parameter. Even the deviations from
an almond-shaped distribution of final hadronic fragments are consistent with the
fluid dynamic propagation of initial event-wise fluctuations like the ones shown in
Fig. 2.7. This phenomenological success of fluid dynamics has implications which
are sufficiently interesting that they motivate our describing this story in consider-
able detail over the course of this entire section. We close this introduction with a
sketch of these implications.

First, the agreement between data and ideal hydrodynamics teaches us that the
shear viscosity η of the fluid produced in heavy ion collisions must be low; η

enters in the dimensionless ratio η/s, with s the entropy density, and it is η/s that
is constrained to be small. A fluid that is close to the ideal hydrodynamic limit,
with small η/s, requires strong coupling between the fluid constituents. Small η/s
means that momentum is not easily transported over distances that are long com-
pared to ∼ s−1/3, which means that there can be no well-defined quasiparticles
with long mean free paths in a low viscosity fluid since, if they existed, they would
transport momentum and damp out shear flows. No particles with long mean free
paths means strongly coupled constituents. We shall return to this implication of the
smallness of η/s at many points in this book, including in particular in Section 6.3.

Second, we learn that the strong coupling between partons that results in
approximate local equilibrium and fluid flow close to that described by ideal
hydrodynamics must set in very soon after the initial collision. If partons moved
with significant mean free paths for many fm of time after the collision, delaying
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equilibration for many fm, the almond would circularize to a significant degree dur-
ing this initial period of time and the azimuthal momentum asymmetry generated
by any later period of hydrodynamic behavior would be less than that observed.
When this argument is made quantitative, the conclusion is that RHIC collisions
produce strongly coupled fluid in approximate local thermal equilibrium within
close to or even somewhat less than 1 fm after the collision [543]. Reaching
approximate local thermal equilibrium and hence hydrodynamic behavior within
less than 1 fm after a heavy ion collision has been thought of as “rapid equilibra-
tion”, since it is rapid compared to weak coupling estimates [102]. This observation
has launched a large effort (that we shall not review) towards explaining equilibra-
tion as originating from weakly coupled processes that arise in the presence of
the strong color fields that are present in the initial instants of a heavy ion col-
lision. Recent calculations that we shall describe in Chapter 7 indicate, however,
that the observed equilibration time may not be so rapid after all. We shall see
in that chapter that when initially far-from-equilibrium matter thermalizes in a
strongly coupled theory, for a very wide variety of initial states it does so on a
time scale that is of order the inverse of the temperature in the final equilibrated
state. Furthermore, we shall also see that in a strongly coupled field theory with
a dual gravitational description, when two sheets of energy density with a finite
thickness collide at the speed of light a hydrodynamic description of the plasma
that results becomes reliable only ∼ 3 sheet-thicknesses after the collision. And,
a Lorentz-contracted incident gold nucleus at RHIC has a maximum thickness
of only 0.14 fm. So, if the equilibration processes in heavy ion collisions could
be thought of as strongly coupled throughout, perhaps local thermal equilibrium
and hydrodynamic behavior would set in even more rapidly than is indicated by
the data.

We can begin to see that the circle of ideas that emerge from the analysis of flow
data is what makes heavy ion collisions of interest to the broader community of
theoretical physicists. These analyses justify the conclusion that only 1 fm after
the collision the matter produced can be described by using the language of ther-
modynamics and hydrodynamics. And, we have already seen that at this early time
the energy density is well above the hadron–QGP crossover in QCD thermodynam-
ics which is well-characterized in lattice calculations. This justifies the claim that
heavy ion collisions produce quark–gluon plasma. Furthermore, the same analyses
teach us that this quark–gluon plasma is a strongly coupled, low viscosity, fluid
with no quasiparticles having any significant mean free path. Lattice calculations
have recently begun to cast some light on these transport properties of quark–gluon
plasma, but these lattice calculations that go beyond Euclidean thermodynam-
ics are still in their pioneering epoch. Perturbative calculations of quark–gluon
plasma properties are built upon the existence of quasiparticles. The analyses of
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elliptic flow data thus cast doubt upon their utility. And, we are motivated to
study the strongly coupled plasmas with similar properties that can be analyzed
via gauge/gravity duality, since these calculational methods allow many questions
that go beyond thermodynamics to be probed rigorously at strong coupling.

2.2.2 Relating flow observables to spatial asymmetries

We want to study the dependence of collective flow in heavy ion collisions on
the size and anisotropy of the nuclear overlap in the transverse plane, as seen in the
qualitative beam’s eye view sketch in Fig. 2.7. To this end, it is obviously necessary
to bin heavy ion collisions as a function of this impact parameter. This is possible in
heavy ion collisions, since the number of hadrons produced in a heavy ion collision
is anticorrelated with the impact parameter of the collision. For head-on collisions
(conventionally referred to as “central collisions”) the multiplicity is high; the mul-
tiplicity is much lower in collisions with impact parameters comparable to the radii
of the incident ions (often referred to as “semi-peripheral collisions”); the multi-
plicity is lower still in grazing (“peripheral”) collisions. Experimentalists therefore
bin their events by multiplicity, using that as a proxy for impact parameter. The
terminology used refers to the “0%–5% centrality bin” and the “5%–10%” central-
ity bin and . . ., meaning the 5% of events with the highest multiplicities, the next
5% of events with the next highest multiplicity, . . .. The correlation between event
multiplicity and impact parameter is described well by the so-called Glauber the-
ory of multiple scattering [156], which we shall not review here. Suffice to say that
even though the absolute value of the event multiplicities is the subject of much
ongoing research, the question of what distribution of impact parameters corre-
sponds to the 0%–5% centrality bin (namely the most head-on collisions) is well
established. Although experimentalists cannot literally pick a class of events with
a single value of the impact parameter, by binning their data in multiplicity they
can select a class of events with a reasonably narrow distribution of impact para-
meters centered around any desired value. This is possible only because nuclei are
big enough: in proton–proton collisions, which in principle have impact parameters
since protons are not pointlike, there is no operational way to separate variations
in impact parameter from event-by-event fluctuations in the multiplicity at a given
impact parameter.

Suppose that we have selected a class of semi-peripheral collisions. Since these
collisions have a nonzero impact parameter, the impact parameter vector together
with the beam direction define a plane, conventionally called the reaction plane.
The event-averaged almond-shaped nuclear overlap depicted in Fig. 2.7 is then
often characterized roughly in terms of averages of the initial transverse energy
density ρ(x, y)
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ε2 e2 i �2 ≡ −{r2 e2 i φ}
{r2} , {. . . } ≡

∫
dx dy ρ(x, y) . . .∫

dx dy ρ(x, y)
. (2.3)

Here, ε2 and �2 denote the standard participant eccentricity and the participant
plane, respectively. They have a straightforward interpretation as characterizing
the azimuthal orientation and eccentricity ε2 = {y′2}−{x ′2}

{y′2}+{x ′2} of the ellipsoid that best
fits the initial transverse energy density distribution (where x ′, y′ denote trans-
verse coordinates along the main axes of the ellipsoid). However, since event-wise
fluctuations can lead to significant deviations from an elliptic shape, the elliptic
eccentricity ε2 and second order reaction plane �2 are in general not sufficient. For
a more complete characterization of spatial eccentricities from fluctuations in the
initial state, one defines

εn ei n �n ≡ −{rn ei n φ}
{rn} . (2.4)

For a large class of semi-peripheral collisions, the elliptic coefficient ε2 will natu-
rally characterize the dominant spatial asymmetry, as it captures the main features
of the almond-like shape of the event-averaged nuclear overlap. However, in more
central, almost head-on, collisions, when the event-averaged nuclear overlap shows
only small azimuthal asymmetries, higher order terms characterizing fluctuations,
and in particular ε3, can be of the same magnitude if not larger than ε2. We note
that spatial eccentricities are typically defined in a coordinate system that is shifted
in the transverse plane such that (2.4) vanishes for n = 1. This does not imply that
the distribution ρ(x, y) cannot have non-vanishing first moments. It just indicates
that the ansatz (2.4) is too limited to characterize them. A complete ansatz could be
based for instance on the two-parameter set of moments εn,m ≡ −{rn ei mφ}/{rn}
that contains the subset εn ≡ εn,n of (2.4). In this framework, the components
εn,1, n 
= 1 would characterize first harmonics of the spatial distribution, see e.g.
Ref. [778]. A discussion of such refined characterizations of ρ(x, y) lies beyond
our scope.

The central question is now how the dynamics of relativistic heavy ion collisions
propagates the spatial eccentricities of the initial energy density distribution into
the observable momentum spectra. More specifically, as the azimuthal directions
within the transverse plane of Fig. 2.7 are not equivalent, we can ask for example
to what extent the multiplicity and momentum of hadrons flying across the short
direction of the collision almond (in the reaction plane) differs from that of the
hadrons flying along the long direction of the collision almond (perpendicular to
the reaction plane). And if the initial nuclear overlap shows a significant triangu-
larity ε3, or higher moments ε4, ε5, ε6, . . ., we can ask which imprints these have
on the measured spectra.
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To address this question, we characterize now the dependence on the reaction
plane for the case of the single inclusive particle spectrum d N/d3p of a particular
species of hadron. The three-momentum p of a particle of mass m is parametrized
conveniently in terms of its transverse momentum pT , its azimuthal angle φ, and
its rapidity y which specifies its longitudinal momentum. Specifically,

p =
(

pT cosφ, pT sinφ,

√
p2

T + m2 sinh y

)
. (2.5)

The energy of the particle is E =
√

p2
T + m2 cosh y. The single particle spectrum

can then be written as

dN

d2pt dy
= 1

2πpT

dN

dpT dy
[1 + 2v1 cos(φ − �1) + 2v2 cos 2(φ − �2) + · · · ] ,

(2.6)

where the �n denote explicitly the azimuthal orientations of the corresponding
flow component in the transverse plane. Thus, the azimuthal dependence of particle
production is characterized by the harmonic coefficients

vn ≡ 〈exp [i n (φ − �n)]〉 =
∫

d N
d3p ei n (φ−�n) d3 p∫

d N
d3p d3 p

. (2.7)

The coefficients vn are referred to generically as nth order flow. In particular, v1

is referred to as “directed flow”, v2 as “elliptic flow”, and v3 as “triangular flow”.
In general, the vn can depend on the transverse momentum pT , the rapidity y, the
impact parameter of the collision, and they can differ for different particle species.

We can now make our question about the relation between flow observables and
spatial asymmetries of the initial energy density more precise. We ask how the flow
harmonics vn depend on the spatial eccentricities εn of the initial transverse energy
density distribution. We have two principal reasons to limit this discussion to the
moments n ≥ 2. First, as mentioned already, defining first moments of the spatial
distribution would require going beyond the ansatz (2.4). Second, the measured v1

is known to be sensitive not only to medium response, but also to global constraints
from energy–momentum conservation. For instance, if the total momentum of all
particles in some rapidity window (in some pT range) points along φ = 0 and
defines a positive v1, energy–momentum conservation implies that it must point in
some other rapidity window (in some other pT range) along φ = π , corresponding
to a negative v1. In short, the relation between first moments of the spatial eccen-
tricities of the initial energy density distribution and the observable momentum
spectra is complicated by confounding factors. In principle, these can be analyzed
and controlled, but that requires a more extended analysis than we present that is
not yet standard in comparisons between measurements of v1 and fluid dynamic
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Figure 2.8 Transverse momentum dependence of the elliptic flow v2(pT ) for
different centrality bins. Measurements made by the ALICE Collaboration at
the LHC (colored points) are compared with parametrized data from the STAR
Collaboration at RHIC (gray shaded bands). We see v2 increasing as one goes
from nearly head-on collisions to semi-peripheral collisions. Figure taken from
Ref. [5].

simulations of the type we shall discuss below. We shall therefore only discuss the
dynamical understanding of how the εn are related to the vn for the moments with
n ≥ 2. We shall first consider an event-averaged almond-shaped nuclear overlap
zone (left-hand side of Fig. 2.7), before we turn to a discussion of the novel oppor-
tunities arising from a study of event-by-event fluctuations (like those illustrated
on the right-hand side of Fig. 2.7).

A Discussion for event-averaged spatial asymmetries

In Fig. 2.8, we show data for the transverse momentum dependence of the elliptic
flow v2(pT ) measured for different centrality classes in Au+Au collisions at RHIC
and in Pb+Pb collisions at the LHC. It is striking that the v2(pT ) measured at√

s = 2.76 TeV by ALICE in three different impact parameter bins agrees within
error bars at all values of pT with that measured at

√
s = 200 GeV by the STAR

collaboration at RHIC out to beyond 4 GeV in pT . On a qualitative level, this
indicates that the quark-gluon plasma produced at the LHC is comparably strongly
coupled, with comparably small η/s, to that produced and studied at RHIC.

Heavy ion collisions at both RHIC and the LHC feature large azimuthal asym-
metries. To appreciate the size of the measured elliptic flow signal, we read from
(2.6) that the ratio of d N/d3p in whatever azimuthal direction it is largest to
d N/d3p ninety degrees in azimuth away is (1 + 2v2)/(1 − 2v2), which is a factor
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of 2 for v2 = 1/6. Thus, a v2 of the order of magnitude seen in semi-peripheral col-
lisions at RHIC and LHC for pT ∼ 2 GeV, as illustrated in Fig. 2.8, corresponds to
collisions that are azimuthally asymmetric by more than a factor of 2. In addition to
being large, this flow signal displays a characteristic centrality dependence, as we
discuss now. The azimuthal asymmetry v2 of the final state single inclusive hadron
spectrum is maximal in semi-peripheral collisions. v2 is less for more central col-
lisions. Therefore, the measured elliptic flow v2 traces the event-averaged spatial
eccentricity of the initial condition at least qualitatively: the initial event-averaged
geometric asymmetry is less for more central collisions since the almond-shaped
collision region becomes closer to circular as the impact parameter is reduced.

One can make the relation between spatial ellipticity and measured elliptic flow
more quantitative by modeling the elliptic eccentricity ε2 of the spatial energy den-
sity distributions, sketched for example in Fig. 2.7. While v2 is measured directly,
the value of ε2 will have some model uncertainty. It turns out, however, that this
uncertainty is relatively small, and ε2 is determined predominantly by the impact
parameter of the collision which in turn is constrained by the event multiplicity
which is directly measurable. As a consequence, one finds strong support for a
model-independent picture according to which the pT -averaged elliptic flow v2

traces the initial elliptic eccentricity ε2. For two different models of ε2, this is shown
in the upper panel of Fig. 2.9. Elliptic flow and initial elliptic eccentricity show an
approximately linear relation for different centrality classes

v2 ∝ ε2 . (2.8)

Here, “approximate” means that the proportionality factor differs by less than a
factor 2 as a function of centrality and model-dependent uncertainties. In the ide-
alized case of zero impact parameter and vanishing initial state fluctuations, v2 due
to collective effects should vanish. The reason that v2 is not even smaller in the
sample of the 5% most head-on collisions is that this sample includes events with
a distribution of impact parameters in the range 0 < b < 3.5 fm. Moreover, event-
by-event fluctuations can introduce ellipticity even in the most central, head-on,
collisions. We turn in the next subsection to experimental information about these
fluctuations.

We mention as an aside that there are azimuthal asymmetries in particle produc-
tion that are not related to flow. For instance, a jet produced at azimuthal angle φ

will often recoil against a jet at angle ∼ (φ + π). Such a dijet event introduces an
azimuthal asymmetry that results obviously from energy–momentum conservation
in the transverse plane, and is not related to collective dynamics. There are several
techniques to disentangle such sources of asymmetry from the signals of collective
dynamics that one is interested in. One option is to use data at high rapidity to deter-
mine the �ns, and then to measure the vn by applying (2.7) to mid-rapidity data.
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Figure 2.9 Top: the centrality dependence of second and third order flow traces
approximately the centrality dependence of the corresponding initial spatial
eccentricities ε2, ε3 although the precise value of εn depends on details of model-
ing (two models εCGC

n and εW
n are shown). Bottom: the centrality-dependence of

pT -averaged flow harmonics v2, v3, v4. Triangular flow is finite if measured with
respect to the third order reaction plane but vanishes if measured with respect to
the second order reaction plane. Figures taken from Ref. [6].

This eliminates the contribution of all statistical fluctuations uncorrelated with the
reaction plane unless these fluctuations introduce correlations between particles in
the mid-rapidity and high rapidity regions of the detector. An alternative method is
to use the fact that particle correlations resulting from a dijet or some other source
of microscopic dynamics affect only a small subset of all particles in a collision,
while an asymmetry resulting from the response to an initial spatial asymmetry can
affect all particles in an event. Therefore, these effects will scale differently with
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event multiplicity in the measured particle correlations. By a suitable so-called
cumulant analysis of 2-, 4-, and 6- particle correlations, it is then possible to dis-
entangle these two effects [177]. The values v2{2}, v2{4} and v3{2}, v3{4} shown
in Figs. 2.8 and 2.9 refer to such an analysis based on 2- and 4-particle correla-
tions, respectively. For practical purposes, results of second order cumulants can
be regarded as being contaminated by a significant (∼ 20%) contribution from
effects that do not arise from collective dynamics (“non-flow” effects). That mea-
surements based on fourth order cumulants, like v2{4} and v3{4} are corrected for
all non-flow effects can be seen from the fact that these values then agree with
those obtained by other complementary techniques for measuring v2.

In summary, the empirical observation that v2 ∝ ε2 shows that the azimuthal
momentum anisotropies have a geometrical origin. The large value of v2 provides
evidence that the underlying collective dynamics is very efficient in translating
initial spatial anisotropies into momentum anisotropies. And, as we shall dis-
cuss further below, a strongly coupled fluid that flows with little dissipation is
needed to explain such an efficient translation of spatial anisotropies into observed
momentum anisotropies.

B Spatial asymmetries including initial event-by-event fluctuations

In the absence of initial event-by-event fluctuations, the collision region of identical
nuclei at mid-rapidity is symmetric under φ → φ+π and all odd spatial eccentric-
ities ε1, ε3, . . . must vanish. Since dynamics cannot break a φ → φ+π asymmetry
of the initial state, all odd flow harmonics should vanish in this case. Measuring
odd flow harmonics at mid-rapidity is therefore direct evidence for initial state
fluctuations. As depicted on the right-hand side of Fig. 2.7, fluctuations in the ini-
tial conditions of individual nucleus–nucleus collisions can break the φ → φ + π

symmetry of the event-averaged almond-like nuclear overlap. Recently, significant
experimental evidence has accumulated that these fluctuations around the event-
averaged distribution are themselves propagated into event-by-event fluctuations
of the final-state momentum anisotropies as the fluid produced in heavy ion col-
lisions expands. Here, we discuss these data and the promise that they represent,
namely the promise of further refining our understanding of hot QCD matter.

As seen in Fig. 2.9, higher harmonics of the flow (v3, v4, . . .) are indeed nonzero
in heavy ion collisions at mid-rapidity. For the most central Pb+Pb collisions at the
LHC, v2 and v3 are of comparable strength and non-vanishing higher harmonics v4,
v5, . . . are needed to account for the measured azimuthal distribution of produced
particles. Consistent with the picture that v3 depends purely on initial state fluctu-
ations, the azimuthal orientation �3 of the measured triangularity is not correlated
with the orientation of the event-averaged almond-like nuclear overlap and there-
fore is not correlated to the orientation �2 of the elliptic flow. Third order flow
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therefore vanishes if reconstructed with respect to the standard participant plane
�2 = �PP, see lower panel of Fig. 2.9. Also, the centrality dependence of higher
flow harmonics is much flatter than that of v2, exactly because higher harmonics
have a stronger dependence on fluctuations and a weaker dependence on changes in
the shape of the almond-like event-averaged nuclear overlap. From model studies
of the event-by-event fluctuations in the initial energy density distribution, one con-
cludes that although the origins of v3 and v2 are different, v3 is nevertheless related
approximately linearly to the third order eccentricity, v3 ∝ ε3, as seen in the upper
panel of Fig. 2.9. This provides a strong indication that collective dynamics is
also very efficient in translating higher order spatial eccentricities into momentum
anisotropies.

While we shall not give a detailed account of the dynamical propagation of
higher order eccentricities in the following, we would like to emphasize here the
generic interest in these studies. In general, any asymmetry in the initial spatial
density distribution translates into pressure gradients that will propagate as per-
turbations. Whether such perturbations are damped out or propagate unattenuated
in a heavy ion collision will depend on the dissipative properties of the QCD
medium through which they propagate. It is widely known from studies of the
cosmic microwave background that the analysis of fluctuations that are propagated
fluid dynamically gives access to measures of the matter content of the Universe.
In close analogy, one expects that in the coming years the analysis of the event-
by-event fluctuations seen in ultra-relativistic heavy ion collisions will provide
stringent and complementary tests of the paradigm that the QCD matter produced
in ultra-relativistic nucleus–nucleus collisions is a strongly coupled almost ideal
liquid and will tighten the determination of the parameter η/s that characterizes
the (small) amount of dissipation that arises as it flows.

2.2.3 Calculating elliptic flow using (ideal) hydrodynamics

We have now seen that the azimuthal asymmetry in space present at the start of the
little explosions created by heavy ion collisions with nonzero impact parameter,
is subsequently converted by collective dynamics into an asymmetry in momentum
space. This conversion of initial spatial anisotropy into final momentum anisotropy
is characteristic of any explosion – one shapes the explosive in order to design
a charge that blasts with greater force in some directions than others. Hydrody-
namics provides the natural language for describing such processes: the initial
spatial anisotropy corresponds to anisotropic pressure gradients. Let us assume
first that event-by-event fluctuations in the initial state are absent and that the
nuclear overlap is almond-shaped. The pressure is then maximal at the center
of the nuclear overlap and zero at its edge, the gradient is greater across the
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almond (in the reaction plane) than along it (perpendicular to the reaction plane).
The elliptic flow v2 measures the extent to which these pressure gradients lead
to an anisotropic explosion with greater momentum flow in the reaction plane;
it characterizes the efficiency of translating initial pressure gradients into col-
lective flow. In the presence of initial state fluctuations, the same logic applies
to higher order flow harmonics vn and their relation to higher order initial spa-
tial eccentricities εn . For concreteness, we focus in the following only on elliptic
flow, which was also historically the first example of azimuthal anisotropy that
was analyzed. By doing hydrodynamic calculations and comparing the calculated
v2 to that in the data (and also comparing the final state radial flow velocity
to that determined from the single-particle spectra as described in the previ-
ous section) one can constrain the input quantities that go into a hydrodynamic
description.

The starting point in any hydrodynamic analysis is to consider the limit of ideal,
zero viscosity, hydrodynamics. In this limit, the hydrodynamic description is spec-
ified entirely by an equation of state, which relates the pressure and the energy
density, and by the initial spatial distribution of energy density and fluid veloc-
ity. In particular, in ideal hydrodynamics one is setting all dissipative coefficients
(shear viscosity, bulk viscosity, and their many higher order cousins) to zero. If the
equation of state is held fixed and viscosity is turned on, v2 must decrease: turning
on viscosity introduces dissipation that has the effect of turning some of the initial
anisotropy in pressure gradients into entropy production, rather than into directed
collective flow. So, upon making some assumption for the equation of state and for
the initial energy density distribution, setting the viscosities to zero yields an upper
bound on the v2 in the final state. Ideal, inviscid, hydrodynamics has therefore
long been used as a calculational benchmark in heavy ion physics. As we shall see
below, in heavy ion collisions at RHIC energies ideal hydrodynamics does a good
job of describing v2(pT ) for pions, kaons and protons for transverse momenta pT

below about 1–2 GeV. This motivates an ongoing research program in which one
begins by comparing data to the limiting case of ideal, inviscid, hydrodynamics and
then turns to a characterization of dissipative effects, asking how large a viscosity
will spoil the agreement with data. In this subsection, we sketch how practition-
ers determine the equation of state and initial energy density profile, and we recall
the basic principles behind the hydrodynamic calculations on which all these stud-
ies rest. In the next subsection, we summarize the current constraints on the shear
viscosity that are obtained by comparing to v2 data.

The equation of state relates the pressure P to the energy density ε. P is a
thermodynamic quantity, and therefore can be calculated by using the methods
of lattice quantum field theory, as we describe in Chapter 3. Lattice calcula-
tions (or fits to them) of P(ε) in the quark–gluon plasma and in the crossover
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regime between QGP and hadron gas are often used as inputs to hydrodynamic
calculations. At lower energy densities, practitioners either use a hadron resonance
gas model equation of state, or match the hydrodynamic calculation onto a hadron
cascade model. One of the advantages of focusing on the v2 observable is that it
is insensitive to the late time epoch of the collision, when all the details of these
choices matter. This insensitivity is easy to understand. v2 describes the conversion
of a spatial anisotropy into anisotropic collective flow. As this conversion begins,
the initial almond-shaped collision explodes with greater momentum across the
short direction of the almond, and therefore circularizes. Once it has circularized,
no further v2 can develop. Thus, v2 is generated early in the collision. By the late
times when a hadron gas description is needed, v2 has already been generated. In
contrast, the final state radial flow velocity reflects a time integral over the pressure
built up during all epochs of the collision.

The discussion above reminds us of a second sense in which the ideal hydro-
dynamic calculation of v2 is a benchmark: ideal hydrodynamics requires local
equilibrium. It therefore cannot be valid from time t = 0. By using an ideal hydro-
dynamic description beginning at t = 0 we must again be overestimating v2, and
so we can ask how long an initial phase during which partons stream freely with-
out starting to circularize the almond-shaped region and generating any momentum
anisotropy, can be tolerated without spoiling the agreement between calculations
and data.

After choosing an equation of state, an initialization time, and viscosities (zero
in the benchmark calculation), the only thing that remains to be specified is the
distribution of energy density as a function of position in the almond-shaped col-
lision region. (The transverse velocities are assumed to be zero initially.) In the
simplest approach, called the Glauber model, this energy density is proportional
to the product of the thickness of the two nuclei at a given point in the trans-
verse plane. It is thus zero at the edge of the almond, where the thickness of one
nucleus goes to zero, and maximum at the center of the almond. The proportional-
ity constant is determined by fitting to data other than v2, see e.g. Ref. [542]. The
assumptions behind this Glauber approach to estimating how much energy density
is created at a given location as a function of the nuclear thickness at that loca-
tion are assumptions about physics of the collision at t = 0. There are alternative
model parametrizations. Here, we mention a second one for which the energy den-
sity rises towards the center of the almond more rapidly than the product of the
nuclear thicknesses. This parametrization is referred to as the CGC initial condi-
tion, since it was first motivated by ideas of parton saturation (called “color glass
condensate”) [456]. The Glauber and CGC models for the initial energy density
distribution are often used as benchmarks in the hope that they bracket nature’s
choice.
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A Hydrodynamics – generalities

We turn now to the formulation of the hydrodynamic equations of motion. Hydro-
dynamics is an effective theory which describes the small frequency and long
wavelength limit of an underlying interacting dynamical theory [355]. It can be
used to describe motions of the fluid that occur on macroscopic length scales and
time scales associated with how the fluid is “stirred”, scales that are long com-
pared to any microscopic scales characterizing the fluid itself. It is a classical field
theory, where the fields can be understood as the expectation values of certain quan-
tum operators in the underlying theory. In the hydrodynamic limit, since the length
scales under consideration are longer than any correlation length in the underlying
theory, by virtue of the central limit theorem all n-point correlators of the under-
lying theory can be factorized into one point functions. The fluctuations on these
average values are small, and a description in terms of expectation values is mean-
ingful. If the underlying theory admits a (quasi)particle description, this statement
is equivalent to saying that the hydrodynamic description involves averages over
many of these fundamental degrees of freedom and is valid only on length scales
that are long enough for this to be an appropriate procedure.

The hydrodynamic degrees of freedom include the expectation values of con-
served currents such as the stress tensor T μν or the currents of conserved charges
JB , which fulfill the conservation equations

dμT μν = 0 , (2.9)

dμ Jμ

B = 0 , (2.10)

where dμ is the covariant derivative. As a consequence of these conservation laws,
long wavelength excitations of these fields can only relax on long timescales, since
their relaxation must involve moving stress–energy or charges over distances of
order the wavelength of the excitation. As a consequence, these conservation laws
lead to excitations whose lifetime diverges with their wavelength. Such excitations
are called hydrodynamic modes.

It is worth pausing to explain why we have introduced a covariant derivative,
even though we will only ever be interested in heavy ion collisions – and thus
hydrodynamics – occurring in flat spacetime. It is nevertheless often convenient
to use curvilinear coordinates with a non-trivial metric. For example, the longitu-
dinal dynamics is more conveniently described using proper time τ = √

t2 − z2

and spacetime rapidity ξ = arctanh(z/t) as coordinates rather than t and z. In
these “Milne coordinates”, the metric is given by gμν = diag(gττ , gxx , gyy, gξξ ) =
(−1, 1, 1, τ 2). These coordinates are useful because boost invariance simply trans-
lates into the requirement that ε, as well as the fluid velocity uμ and �μν , the
contribution to the stress tensor from gradients, must all be independent of ξ ,
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depending on τ only. In particular, if the initial conditions are boost invariant then
the fluid dynamic evolution will preserve this boost invariance, and the numerical
calculation reduces in Milne coordinates to a 2 + 1-dimensional problem. Boost-
invariant initial conditions have often been used as a simplifying assumption for
hydrodynamics ever since they were introduced in this context in Ref. [165], but
fully 3 + 1-dimensional calculations that do not assume boost invariance can also
be found in the literature [455, 424, 654, 710].

If the only long-lived modes are those from conserved currents, then hydrody-
namics describes a normal fluid. However, there can be other degrees of freedom
that lead to long-lived modes in the long wavelength limit. For example, in a phase
of matter in which some global symmetry is spontaneously broken, the Goldstone
boson(s) is (are) also hydrodynamic modes [355]. The classic example of this is
a superfluid, in which a global U (1) symmetry is spontaneously broken. Chiral
symmetry is spontaneously broken in QCD, but there are two reasons why we
can neglect the potential hydrodynamic modes associated with the chiral order
parameter [746]. First, explicit chiral symmetry breaking gives these modes a mass
(the pion mass) and we are interested in the hydrodynamic description of physics
on length scales longer than the inverse pion mass. Second, we are interested in
temperatures above the QCD crossover, at which the chiral order parameter is dis-
ordered, the symmetry is restored, and this question does not arise. So, we need
only consider normal fluid hydrodynamics. Furthermore, as we have discussed in
Section 2.1, the matter produced in ultra-relativistic heavy ion collisions has only
a very small baryon number density, and it is a good approximation to neglect Jμ

B .
The only hydrodynamic degrees of freedom are therefore those described by T μν .

At the length scales at which the hydrodynamic approximation is valid, each
point of space can be regarded as a macroscopic fluid cell, characterized by its
energy density ε, pressure P , and a velocity uμ. The velocity field can be defined
by the energy flow together with the constraint u2 = −1. In the so-called Landau
frame, the four equations

uμT μν = −εuν . (2.11)

determine ε and u from the stress tensor.
Hydrodynamics can be viewed as a gradient expansion of the stress tensor (and

any other hydrodynamic fields). In general, the stress tensor can be separated into
a term with no gradients (ideal) and a term which contains all the gradients:

T μν = T μν

ideal + �μν . (2.12)

In the rest frame of each fluid cell (ui = 0), the ideal piece is diagonal and isotropic
T μν

ideal = diag (ε, P, P, P). Thus, in any frame,

T μν

ideal = (ε + P)uμuν + Pgμν , (2.13)
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where gμν is the spacetime metric.
If there were a nonzero density of some conserved charge n, the velocity field

could either be defined in the Landau frame as above or may instead be defined
in the so-called Eckart frame, with Jμ = nuμ. In the Landau frame, the definition
(2.11) of uμ implies �μνuν = 0 (transversality). Hence, there is no heat flow but
there can be currents of the conserved charge. In the Eckart frame, the velocity
field is comoving with the conserved charge, but there can be heat flow.

Ideal hydrodynamics is the limit in which all gradient terms in T μν are neglected.
Corrections to ideal hydrodynamics – namely the gradient terms in �μν that we
shall discuss shortly – introduce internal length and time scales, including time
scales for relaxation of perturbations away from local thermal equilibrium, and
length scales associated with mean free paths. Hydrodynamics works on longer
length scales than these. Introducing the gradient terms that correct ideal hydrody-
namics also introduces dissipation and introduces the possibility of hydrodynamic
flows in which the pressure is not isotropic. At long enough time scales, how-
ever, gradients become unimportant, hydrodynamics becomes ideal, the pressure
P in the rest frame of each fluid cell becomes isotropic, and ε and P are related
by the equilibrium equation of state. This equation of state can be determined by
studying a homogeneous system at rest with no gradients, for example via a lattice
calculation.

The range of applicability of hydrodynamics can be characterized in terms of the
isotropization scale τiso and the hydrodynamization scale τhydro. The isotropization
scale measures the characteristic time over which an initially anisotropic stress
tensor becomes isotropic in the local fluid rest frame, to within some criterion that
must be defined. The hydrodynamization scale measures the characteristic time
after which the flow of the fluid is well described (again to within some criterion
that must be defined) by the equations of (possibly viscous) hydrodynamics. In
different contexts, the two time scales τiso and τhydro can be ordered in either way.
If τiso < τhydro, as may be the case for a sufficiently weakly coupled plasma [79],
there is a period of time when the plasma is isotropic but is not yet described by
ideal hydrodynamics with P and ε related by the equilibrium equation of state. In
some circumstances [79], ideal hydrodynamics may nevertheless be used during
this period of time, as long as P(ε) is replaced by some non-equilibrium “equation
of state” that will depend on exactly how the system is out of thermal equilibrium.
It is also possible that during this period of time the production of entropy may not
yet have ceased. If τhydro < τiso, on the other hand, there is a period of time when the
way in which the plasma flows is described well by viscous hydrodynamics even
though gradients in the flow remain important, entropy is still being produced, and
the pressure in the local fluid rest frame is not isotropic. We shall return to these
considerations at length in Chapter 7 where we shall see that calculations done
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via gauge/string duality indicate that when a strongly coupled plasma is produced
it hydrodynamizes first and isotropizes later. This conclusion has been reached
for hydrodynamization starting from a wide variety of far-from-equilibrium states.
Although this could in principle have been considered as a possibility beforehand,
in fact it was the analysis using gauge/string duality of many explicit examples in
which this conclusion was manifest that brought it to the fore and that has yielded
the insight that hydrodynamization before isotropization may be a generic feature
of the production of strongly coupled plasma.

B First order dissipative fluid dynamics

Going beyond the infinite wavelength limit requires the introduction of viscosities.
To first order in gradients, the requirement that �μν be transverse means that it
must take the form

�μν = −η(ε)σμν − ζ(ε)�μν ∇ · u , (2.14)

where η and ζ are the shear and bulk viscosities, ∇μ = �μνdν , with dν the
covariant derivative and

�μν = gμν + uμuν , (2.15)

σμν = �μα�νβ
(∇αuβ + ∇βuα

) − 2

3
�αβ ∇ · u . (2.16)

The operator �μν is the projector onto the space components of the fluid rest frame.
Note that in this frame the only time derivatives or spatial gradients that appear in
Eq. (2.14) are spatial gradients of the velocity fields. By symmetry, time derivatives
of the velocity fields and spatial gradients of ε cannot arise in �μν to first order in
gradients. The reason that time derivatives of ε do not appear is that they can be
eliminated in the first order equations by using the zeroth order equation of motion

Dε = −(ε + P)∇μuμ, (2.17)

where D = uμdμ is the time derivative in the fluid rest frame. (Similarly, time
derivatives of the energy density can be eliminated in the second order equations
that we shall give below using the first order equations of motion.)

It is often convenient to phrase the hydrodynamic equations in terms of the
entropy density s. In the absence of conserved charges, i.e. with baryon chemi-
cal potential μB = 0, the entropy density is s = (ε+ P)/T . Using this and another
fundamental thermodynamic relation, DE = T DS − P DV (where E/V ≡ ε)
the zeroth order equation of motion (2.17) becomes exactly the equation of entropy
flow for an ideal isentropic fluid

D s = −s ∇μuμ . (2.18)
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Repeating this analysis at first order, including the viscous terms, one easily derives
from uμ ∇ν T μν = 0 that

D s

s
= − ∇μuμ − 1

s T
�μν ∇νuμ . (2.19)

A similar analysis of the other three hydrodynamic equations then shows that they
take the form

Duα = − 1

T s
�αν

(
∇ν P + ∇μ�

μν

)
. (2.20)

It then follows from the structure of the shear tensor �μν (2.14) that shear viscosity
and bulk viscosity always appear in the hydrodynamic equations of motion in the
dimensionless combinations η/s and ζ/s. The net entropy increase is proportional
to these dimensionless quantities. Gradients of the velocity field are measured in
units of 1/T .

In a conformal theory, ζ = 0 since �μν must be traceless. There are a number
of indications from lattice calculations that as the temperature is increased above
(1.5–2)Tc, with Tc the crossover temperature, the quark–gluon plasma becomes
more and more conformal. The equation of state approaches P = 1

3ε [277, 179].
The bulk viscosity drops rapidly [615]. So, we shall set ζ = 0 throughout the
following, in so doing neglecting temperatures close to Tc. One of the things that
makes heavy ion collisions at the LHC interesting is that in these collisions the
plasma that is created is expected to be better approximated as conformal than is
the case at RHIC, where the temperature at τ = 1 fm is thought to be between
1.5Tc and 2Tc.

Just like the equation of state P(ε), the shear viscosity η(ε) is an input to the
hydrodynamic description that must be obtained either from experiment or from
the underlying microscopic theory. We shall discuss in Section 3.2 how trans-
port coefficients like η are obtained from correlation functions of the underlying
microscopic theory via Kubo formulae.

C Second order dissipative hydrodynamics

Even though hydrodynamics is a controlled expansion in gradients, the first order
expression for the tensor �μν , Eq. (2.14), is unsuitable for numerical computations.
The problem is that the set of equations (2.9) with the approximations (2.14) leads
to acausal propagation. Even though this problem only arises for modes outside of
the region of validity of hydrodynamics (namely high momentum modes with short
wavelengths of the order of the microscopic length scale defined by η), the numer-
ical evaluation of the first order equations of motion is sensitive to the acausality
in these hard modes. This problem is solved by going to one higher order in the
gradient expansion. This is known as second order hydrodynamics.
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There is a phenomenological approach to second order hydrodynamics due
to Müller, Israel and Stewart aimed at explicitly removing the acausal propa-
gation [631, 485, 486]. In this approach, the tensor �μν is treated as a new
hydrodynamic variable and a new dynamical equation is introduced. In its simplest
form this equation is

τ�D�μν = −�μν − ησμν, (2.21)

where τ� is a new (second order) coefficient. Note that as τ� → 0, Eq. (2.21) coin-
cides with Eq. (2.14) with the bulk viscosity ζ set to zero. Eq. (2.21) is such that
�μν relaxes to its first order form in a (proper) time τ�. There are several variants
of this equation in the literature, all of which follow the same philosophy. They
all introduce the relaxation time as the characteristic time in which the tensor �μν

relaxes to its first order value. The variations arise from different ways of fixing
some pathologies of Eq. (2.21), since as written Eq. (2.21) does not lead to a trans-
verse stress tensor (although this is a higher order effect) and is not conformally
invariant. Since in this approach the relaxation time is introduced ad hoc, it may not
be possible to give a prescription for extracting it from the underlying microscopic
theory.

The systematic extraction of second order coefficients demands a similar anal-
ysis of the second order gradients as was done at first order. The strategy is, once
again, to write all possible terms with two derivatives which are transverse and con-
sistent with the symmetries of the theory. As before, only spatial gradients (in the
fluid rest frame) are considered, since time gradients can be related to the former
via the zeroth order equations of motion.

In a conformal theory, second order hydrodynamics simplifies. First, only terms
such that �μ

μ = 0 are allowed. Furthermore, the theory must be invariant under
Weyl transformations

gμν → e−2ω(x)gμν (2.22)
which implies

T → eω(x)T, uμ → eω(x)uμ, T μν → e(d+2)ω(x)T μν, (2.23)

where T is the temperature and d the number of spacetime dimensions. The Weyl
transformation of the stress tensor can be derived from its definition in terms of the
action S, which is Weyl invariant: T μν = (2/

√
g) δS/δgμν . The normalization of

the velocity field, uμuμ = −1, fixes its Weyl transformation. Finally, the transfor-
mation of the stress tensor together with the relation (2.13) and the fact that in a
conformal theory ε ∼ T d yield the Weyl transformation of T .

It turns out that there are only five operators that respect these constraints [107].
The second order contributions to the tensor �μν are linear combinations of these
operators, and can be cast in the form [107, 155]
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�μν = −ησμν − τ�

[
〈D�μν 〉 + d

d − 1
�μν(∇·u)

]
+ κ

[
R〈μν〉 − (d − 2)uα Rα〈μν〉βuβ

]
+ λ1

η2
�〈μ

λ�
ν〉λ − λ2

η
�〈μ

λ�
ν〉λ + λ3�

〈μ
λ�

ν〉λ . (2.24)

Here, Rμν is the Ricci tensor, the indices in brackets are the symmetrized traceless
projectors onto the space components in the fluid rest frame, namely

〈 Aμν 〉 ≡ 1

2
�μα�νβ(Aαβ + Aβα) − 1

d − 1
�μν�αβ Aαβ ≡ A〈μν〉 , (2.25)

and the vorticity tensor is defined as

�μν ≡ 1

2
�μα�νβ(∇αuβ − ∇βuα) . (2.26)

In deriving (2.24), we have replaced ησμν by �μν on the right-hand side in places
where doing so makes no change at second order. We see from (2.24) that five new
coefficients τ�, κ , λ1, λ2, and λ3 arise at second order in the hydrodynamic descrip-
tion of a conformal fluid, in addition to η and the equation of state which arise at
first and zeroth order respectively. The coefficient κ is not relevant for hydrody-
namics in flat spacetime. The λi coefficients involve nonlinear combinations of
fields in the rest frame and, thus, are invisible in linearized hydrodynamics. Thus,
these three coefficients cannot be extracted from linear response. Of these three,
only λ1 is relevant in the absence of vorticity, as in the numerical simulations that
we will describe in the next subsection. These simulations have also shown that, for
physically motivated choices of λ1, the results are insensitive to its precise value,
leaving τπ as the only phenomenologically relevant second order parameter in the
hydrodynamic description of a conformal fluid. In a generic, nonconformal fluid,
there are nine additional transport coefficients [715].

For more in-depth discussions of second order viscous hydrodynamics and its
applications to heavy ion collisions, see e.g. Refs. [632, 776, 633, 634, 106, 105,
716, 754, 333, 752, 589, 753, 625, 755, 590, 756, 757, 442, 714, 779, 735, 758].

2.2.4 Comparing elliptic flow in heavy ion collisions
and hydrodynamic calculations

For the case of ideal hydrodynamics, the hydrodynamic equations of motion are
fully specified once the equation of state P = P(ε) is given. A second order
dissipative hydrodynamic calculation also requires knowledge of the transport
coefficients η(ε) and ζ(ε) (although in practice the latter is typically set to zero)
and the relaxation time τ� and the second order coefficient λ1 entering Eq. (2.24).
(Note that κ would enter in curved spacetime, and λ2 and λ3 would enter in the
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presence of vorticity.) All these parameters are well-defined in terms of correlation
functions in the underlying quantum field theory. In this sense, the hydrodynamic
evolution equations are model-independent.

The output of any hydrodynamic calculation depends on more than the evolu-
tion equations. One must make model assumptions about the initial energy density
distribution. As we have discussed in Section 2.2.2, there are two benchmark mod-
els for the energy distribution across the event-averaged almond-shaped collision
region. More recent analyses also include initial event-by-event fluctuations around
these event-averaged density profiles [458]. These model variations give us a sense
of the degree to which results are sensitive to our lack of knowledge of the details
of this initial profile. Often, the initial transverse velocity fields are set to zero
and boost invariance is assumed for the longitudinal velocity field and the evolu-
tion. For dissipative hydrodynamic simulations, the off-diagonal elements of the
energy–momentum tensor are additional hydrodynamic fields which must be ini-
tialized. The initialization time τ0, at which these initial conditions are fixed, is an
additional model parameter. It can be viewed as characterizing the isotropization
time, at which hydrodynamics starts to apply but collective flow has not yet devel-
oped. In addition to initial state sensitivity, results depend on assumptions made
about how the system stops behaving hydrodynamically and freezes out. In prac-
tice, freezeout is often assumed to happen as a rapid decoupling: when a specified
criterion is satisfied (e.g. when a fluid cell drops below a critical energy or entropy
density) then the hydrodynamic fields in the unit cell are mapped onto hadronic
equilibrium Bose/Fermi distributions. This treatment assumes that hydrodynamics
is valid all the way down to the kinetic freezeout temperature, below which one has
noninteracting hadrons. Alternatively, at a higher temperature close to the crossover
where hadrons are formed, one can map the hydrodynamic fields onto a hadron
cascade which accounts for the effects of rescattering in the interacting hadronic
phase without assuming that its behavior is hydrodynamic [121, 775]. Indeed,
recent work suggests that hadronization may be triggered by cavitation induced
by the large bulk viscosity in the vicinity of the crossover temperature [702].
As we have discussed, v2 is insensitive to details of how the late-time evolution
is treated because v2 is generated during the epoch when the collision region is
azimuthally anisotropic. Nevertheless, these late-time issues do matter when one
does a global fit to v2 and the single-particle spectra, since the latter are affected by
the radial flow which is built up over the entire history of the collision. Finally, the
validity of results from any hydrodynamic calculation depends on the assumption
that a hydrodynamic description is applicable. This assumption can be checked
at late times by checking the sensitivity to how freezeout is modeled and can be
checked at early times by confirming the insensitivity of results to the values of the
second order hydrodynamic coefficients and to the initialization of the higher order
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Figure 2.10 The elliptic flow v2 versus pT for a large number of identified
hadrons (pions, kaons, protons, �s) showing the comparison between an ideal
hydrodynamic calculation to data from RHIC. Figure taken from Ref. [440].

off-diagonal elements of the energy–momentum tensor: if hydrodynamics is valid,
the gradients must be small enough at all times that second order effects are small
compared to first order effects.

In practice, the dependence of physics conclusions on all these model assump-
tions has to be established by systematically varying the initial conditions and
freezeout prescriptions within a wide physically motivated parameter range, and
comparing to data on both the single-particle spectra (i.e. the radial velocity) and
the azimuthal flow anisotropy coefficients. At the current time, several generic
observations have emerged from pursuing this program in comparison to data from
RHIC and LHC.

(1) Perfect fluid dynamics approximately reproduces the size and centrality depen-
dence of v2

RHIC and LHC data on single inclusive hadronic spectra d3N/pT dpT dy and
their leading azimuthal dependence v2(pT ) can be reproduced approximately
in magnitude and shape by ideal hydrodynamic calculations, for particles with
pT < (1–2)GeV, see Fig. 2.10. The hydrodynamic picture is expected to
break down for sufficiently small wavelength, i.e. high momenta, consistent
with the observation that significant deviations occur for pT > 2 GeV, see
Fig. 2.10 again. The initialization time for these calculations is τ0 = 0.6–1 fm.
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Figure 2.11 Centrality dependence of the pT -averaged elliptic (v2) and triangular
(v3) flow. The plot compares fluid dynamic simulations to the ratio of data on vn
over eccentricity εn , the latter being calculated in two different models of fluctu-
ating initial conditions (MC-KLN and MC-Glb) that formulate opposite extreme
assumptions about the radial dependence of the initial transverse energy density.
The figures show that data on v2 alone cannot differentiate between these two dif-
ferent assumptions about the initial energy density profile, since each can fit the
v2 data comparably well upon making very different choices for η/s. The analy-
sis indicates that using data on v3 in addition can result in separate constraints on
both η/s and initial conditions. Figure taken from Ref. [701].

If τ0 is chosen larger, the agreement between ideal hydrodynamics and data is
spoiled. This gives significant support to a picture in which thermalization is
achieved within 1 fm after the collision. Historically, the agreement between
ideal hydrodynamic calculations and experimental measurements of v2 pro-
vided the first indication that the shear viscosity of the fluid produced at RHIC
must be small.

(2) The mass ordering of identified hadron spectra
The pT -differential azimuthal asymmetry v2(pT ) of identified single inclu-
sive hadron spectra shows a characteristic mass ordering in the range of
pT < 2 GeV: at small pT , the azimuthal asymmetry of light hadrons is sig-
nificantly more pronounced than that of heavier hadrons, see e.g. Fig. 2.10.
This qualitative agreement between hydrodynamic simulations and experimen-
tal data supports the picture that all hadron species emerge from a single fluid
moving with a common flow-velocity field.

(3) Data on v2 and v3 support small dissipative coefficients such as shear viscosity
Above the crossover temperature, the largest dissipative correction is expected
to arise from shear viscosity η, which enters the equations of motion of
second order dissipative hydrodynamics in the combination η/s, where s is
the entropy density. Figure 2.11 shows a comparison of data on v2 and v3

with model simulations that include the major physics effects considered so
far, including initial event-by-event fluctuations with different initial density
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profiles, viscous hydrodynamic evolution, and the interface between hydro-
dynamic evolution and hadronic freezeout at late times. Viscous corrections
generically decrease the observed v2 or v3 for a given initial eccentricity ε2 or
ε3, because dissipation results in the production of more heat and less collec-
tive flow. So, for example, v2 decreases with increasing η/s. Hydrodynamic
analyses of heavy ion collision data have put increasingly tight constraints on
η/s [589, 475, 756, 757] and most recent analyses favor nonzero but small
values in the range 1/(4π) < η/s < 2/(4π) [701]. Analyses at the current
frontier seek to use data on several vns to constrain how different harmon-
ics are sourced differently by initial state fluctuations and damped differently
by the effects of η/s. It is anticipated that these analyses will further tighten
constraints on η/s in coming years, while at the same time yielding experi-
mental insights into the initial fluctuations. Also, comparison of the analyses
of heavy ion collisions at RHIC and the LHC may begin to teach us about
the temperature dependence of η/s. The smallness of η/s is remarkable, since
almost all other known liquids have η/s > 1 and most have η/s � 1. The one
liquid that is comparably close to ideal is an ultracold gas of strongly coupled
fermionic atoms, whose η/s is also well below 1 and may be comparably small
to that of the quark–gluon plasma produced at RHIC [235]. Both these fluids
are much better described by ideal hydrodynamics than water is. Both have
η/s comparable to the value 1/4π , as we shall comment on below.

We close this section by noting that while hydrodynamic calculations reproduce
elliptic flow, a treatment in which the Boltzmann equation for quark and gluon
(quasi)particles is solved, including all 2 → 2 scattering processes with the cross-
sections as calculated in perturbative QCD, fails dramatically. It results in values of
v2 that are much smaller than in the data. Agreement with data can only be achieved
if the parton scattering cross-sections are increased ad hoc by more than a factor of
10 [624]. With such large cross-sections, a Boltzmann description cannot be reli-
able since the mean free path of the particles becomes comparable to or smaller
than the interparticle spacing. Another way of reaching the same conclusion is to
note that if a perturbative description of the QGP as a gas of interacting quasiparti-
cles is valid, the effective QCD coupling αs describing the interaction among these
quasiparticles must be small, and for small αs perturbative calculations of η/s are
controlled and yield parametrically large values [75]

η

s

∣∣∣∣
perturbatively

∝ 1

α2
s ln

[
1/αs

] . (2.27)

It is not possible to get as small a value of η/s as the data requires from the pertur-
bative calculation without increasing αs to the point that the calculation is invalid.
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In contrast, as we shall see in Section 6.2, any gauge theory with a gravity dual must
have η/s = 1/(4π) in the large-Nc and strong coupling limit and, furthermore, the
plasma fluids described by these theories in this limit do not have any well-defined
quasiparticles. This calculational framework thus seems to do a much better job
of capturing the qualitative features needed for a successful phenomenology of
collective flow in heavy ion collisions.

2.3 Jet quenching

Having learned that heavy ion collisions produce a low viscosity, strongly coupled,
fluid we now turn to experimental observables with which we may study properties
of the fluid beyond just how it flows. There are many such observables available.
In this section and the next we shall describe two classes of observables, selected
because in both cases there is (the promise of) a substantive interplay between
data from RHIC and the LHC and qualitative insights gained from the analysis of
strongly coupled plasmas with dual gravity descriptions.

Jet quenching refers to a suite of experimental observables that together reveal
what happens when a very energetic quark or gluon (with momentum much
greater than the temperature) plows through the strongly coupled plasma. Some
measurements focus on how rapidly the energetic parton loses its energy; other
measurements give access to how the strongly coupled fluid responds to the ener-
getic parton passing through it. These energetic partons are not external probes;
they are produced within the same collision that produces the strongly coupled
plasma itself.

In a small fraction of proton–proton collisions, partons from the incident pro-
tons scatter with a large momentum transfer, producing back-to-back partons in the
final state with transverse momenta of the order of ten or a few tens of GeV. These
“hard” processes are rare, but data samples are large enough that they are neverthe-
less well studied. The high transverse momentum partons in the final state manifest
themselves in the detector as jets. Individual high pT hadrons in the final state come
from such hard processes and are typically found within jets. In addition to copious
data from proton-(anti)proton collisions, there is a highly developed quantitatively
controlled calculational framework built upon perturbative QCD that is used to cal-
culate the rates for hard processes in high energy hadron–hadron collisions. These
calculations are built upon factorization theorems. Consider as an example the sin-
gle inclusive charged hadron spectrum at high pT , see Fig. 2.3. That is, consider the
production cross-section for a single charged hadron with a given high transverse
momentum pT , regardless of what else is produced in the hadron–hadron colli-
sion. This quantity is calculated as a convolution of separate (factorized) functions
that describe different aspects of the process: (i) the process-independent parton
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distribution function gives the probability of finding partons with a given momen-
tum fraction in the incident hadrons; (ii) the process-dependent hard scattering
cross-section gives the probability that those partons scatter into final state partons
with specified momenta; and (iii) the process-independent parton fragmentation
functions that describe the probability that a final state parton fragments into a jet
that includes a charged hadron with transverse momentum pT . Functions (i) and
(iii) are well measured and at high transverse momentum function (ii) is both sys-
tematically calculated and well measured. This body of knowledge provides a firm
foundation, a well-defined baseline with respect to which we can measure changes
if such a hard scattering process occurs instead in an ultra-relativistic heavy ion
collision.

In hard scattering processes in which the momentum transfer Q is high enough,
the partonic hard scattering cross-section (function (ii) above) is expected to be the
same in an ultrarelativistic heavy ion collision as in a proton–proton collision. This
is so because the hard interaction occurs on a timescale and length scale ∝ 1/Q
which is too short to resolve any aspects of the hot and dense strongly interact-
ing medium that is created in the same collision. The parton distribution functions
(function (i) above) are different in nuclei than in nucleons, but they may be mea-
sured in proton–nucleus, deuteron–nucleus, and electron–nucleus collisions. The
key phenomenon that is unique to ultra-relativistic nucleus–nucleus collisions is
that after a very energetic parton is produced, unless it is produced at the edge of
the fireball heading outwards it must propagate through as much as 5–10 fm of
the hot and dense medium produced in the collision. These hard partons therefore
serve as well-calibrated probes of the strongly coupled plasma whose properties
we are interested in. The presence of the medium results in the hard parton losing
energy and changing the direction of its momentum. The change in the direction of
its momentum is often referred to as “transverse momentum broadening”, a phrase
which needs explanation. “Transverse” here means perpendicular to the original
direction of the hard parton. (This is different from pT , the component of the
(original) momentum of the parton that is perpendicular to the beam direction.)
“Broadening” refers to the effect on a jet when the directions of the momenta of
many hard partons within it are kicked; averaged over many partons in one jet, or
perhaps in an ensemble of jets, there is no change in the mean momentum but the
spread of the momenta of the individual partons broadens.

Because the rates for hard scattering processes drop rapidly with increasing pT ,
energy loss translates into a reduction in the number of partons produced with a
given pT . (Partons with the given pT must have been produced with a higher pT ,
and are therefore rarer than they would be in proton–proton collisions; as a con-
sequence, the yield of high pT hadrons is rarer since it results from hadronization
of highly energetic partons.) Transverse momentum broadening, on the other hand,
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Figure 2.12 CMS data showing a highly unbalanced dijet event in a Pb+Pb colli-
sion at

√
sNN = 2.76 TeV. Tower heights denote the sum of transverse energy

deposited in the electromagnetic and hadron calorimeters in a particular seg-
ment of azimuthal angle φ and pseudo rapidity η. The reconstructed jets, in
red, are labeled with their corrected jet transverse momentum. Figure taken from
Ref. [264].

carries part of the jet energy away from the jet axis and thus also leads to a reduc-
tion in the rate of jets observed at a given jet energy. Furthermore, the hard parton
dumps energy into the medium, which motivates the use of observables involving
correlations between soft final state hadrons and a high momentum hadron. Most
generally, “jet quenching” refers to the whole suite of medium-induced modifica-
tions of high pT processes in heavy ion collisions and modifications of the medium
in heavy ion collisions in which a high pT process occurs, all of which have their
origin in the propagation of a highly energetic parton through the strongly coupled
plasma.

As we discuss in the following, one of the most detailed experimental sets of
information about jet quenching is provided by the medium-induced suppression
of single inclusive hadron spectra first discovered at RHIC. A more recent, and
arguably more pictorial, manifestation of jet quenching in heavy ion collisions is
provided by the CMS event display shown in Fig. 2.12. This Pb+Pb event was
selected by triggering on a “leading jet” (i.e. a highly collimated spray of ener-
getic particles that may be thought of as arising from the fragmentation of a single
highly energetic parent parton). By momentum conservation, the total transverse
momentum of this leading jet must be balanced by recoil in the opposite azimuthal
hemisphere. However, the subleading jet seen in Fig. 2.12 in the opposite azimuthal
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hemisphere at �φ ≈ π balances only approximately one third of the momentum
of the leading jet. Since no other jet structure is visible, a total recoil transverse
momentum of 205 − 70 = 135 GeV must have been lost in this particular event by
the recoiling parent parton and must reside in many soft fragments that are, in the
present plot, indistinguishable from the background in a high multiplicity heavy ion
collision. Therefore, qualitatively, Fig. 2.12 illustrates the case of a Pb+Pb collision
at the LHC in which one parton escaped relatively unscathed while its back-to-back
partner was very significantly degraded by the presence of the medium.

We shall limit our presentation to several generic features of jet quenching that
have been established at the LHC and at RHIC.

(1) Characteristic strong centrality dependence of dijet asymmetry AJ

The imbalance between the transverse energy of the leading jet ET 1 and that of
the recoil jet ET 2 can be characterized by measuring the normalized difference
AJ = ET 1−ET 2

ET 1+ET 2
. We caution the reader that Fig. 2.12 does not imply that the

recoiling jet has lost 205−70 = 135 GeV by interactions with the surrounding
medium. Even in the absence of medium effects, one finds in “elementary”
p+p or p+p̄ collisions that dijet events are broadly distributed in AJ . This can
be understood in perturbative QCD as a consequence of perturbative parton
branching processes, due to which the recoil is taken by more than one jet or
due to which energy is put outside the recoiling jet cone. The main finding of
first measurements at the LHC is, however, that the effects of this perturbative
fragmentation are by far not sufficient to understand the distribution of dijet
asymmetries measured in central Pb+Pb collisions at the LHC. More precisely,
by varying the centrality of a heavy ion collision, one changes the typical in-
medium path length over which hard partons produced in these collisions must
propagate through the dense matter. For the most central head-on collisions,
corresponding to the longest in-medium path lengths for the hard partons, the
dijet asymmetry distribution in Pb+Pb collisions is significantly broader than
in the baseline p+p collisions. In contrast, the dijet asymmetry distribution
has a comparable width in p+p and peripheral Pb+Pb collisions [2, 264]. This
establishes that there is jet quenching: a significant fraction of the recoiling jet
energy must be transported outside the jet cone by effects due to the presence
of the medium produced in heavy ion collisions.

(2) Absence of azimuthal decorrelation of dijets
In p+p collisions, momentum conservation dictates that in dijet events the jets
recoil against each other with an angular distribution that peaks at azimuthal
angle �φ = π . Deviations from this back-to-back correlation can arise in
p+p collisions, for instance from the presence of three-jet events. Since the
medium transfers momentum to the dijet system, it is in principle conceivable
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that this dijet angular correlation broadens, but such an effect is not observed
in Pb+Pb collisions. Indeed, the �φ-distribution in Pb+Pb collisions is inde-
pendent of centrality and comparable in width and shape to the one seen in p+p
collisions [2, 264]. This provides important constraints on the dynamics of jet
quenching. For instance, the recoiling jet cannot lose its energy by radiating
a single high energy particle outside the jet cone, since the recoil from such
radiation would necessarily broaden the �φ-distribution. The additional lost
jet energy must be distributed amongst many soft fragments.

(3) Soft jet fragments transported to large angles outside jet cone
By analyzing the soft background in wide phase-space regions around the sub-
leading jet in dijet events, the CMS collaboration has found the apparently
missing energy that is lost from the recoiling jet [264]. As expected from the
absence of azimuthal decorrelation of dijets, this energy is indeed distributed
over many low energy particles. Furthermore, it is broadly distributed in η and
φ over the azimuthal hemisphere (π/2 < �φ < 3π/2) opposite to the leading
jet. This means, in particular, that the recoiling jet cannot lose its energy by
radiating particles that stay almost collinear with it.

These generic findings show that jet quenching occurs via a mechanism that
degrades the energy of the hardest jet fragments significantly and that transports
this energy into soft fragments moving at large angles relative to the direction
in which the initial parton was propagating through the medium. The quenching
of calorimetrically reconstructed jets is a rapidly progressing subject of ongoing
research in which many further characteristics of medium-modified jet fragmenta-
tion are just becoming available. Further qualitative advances are also expected in
the coming years from the study of jets recoiling against isolated high energy pho-
tons or Z -bosons. In such events, the initial energy (and direction) of the recoiling
jet must be the same as (opposite to) that of the photon or Z -boson – which can-
not be affected by the presence of the strongly coupled plasma since photons and
Z -bosons interact only via the electromagnetic and weak interactions. So, once
statistically significant samples of such events become available they will yield
samples of jets whose initial energy and direction are known with much higher pre-
cision than at present. A more detailed account of these developments lies outside
the scope of this book. In the following, we limit our discussion of jet quenching
mainly to the study of leading hadron spectra and their modeling.

2.3.1 Single inclusive high pT spectra and “jet” measurements

The RHIC and LHC heavy ion programs have established that the measurement of
single inclusive hadronic spectra yields a generic and quantitative manifestation of
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jet quenching. Because the spectra in hadron–hadron collisions are steeply falling
functions of pT , if the hard partons produced in a heavy ion collision lose energy as
they propagate through the strongly coupled plasma shifting the spectra leftward –
to lower energy – is equivalent to depressing them. This effect is quantified via
the measurement of the nuclear modification factor Rh

AB , which characterizes how
the number of hadrons h produced in a collision between nucleus A and nucleus
B differs from the number produced in an equivalent number of proton–proton
collisions:

Rh
AB(pT , η, centrality) =

dN AB→h
medium

dpT dη

〈N AB
coll 〉 dN pp→h

vacuum
dpT dη

. (2.28)

Here, 〈N AB
coll 〉 is the average number of inelastic nucleon–nucleon collisions in A+B

collisions within a specified range of centralities. This number is typically deter-
mined by inferring the transverse density distribution of nucleons in a nucleus from
the known radial density profile of nuclei, and then calculating the average number
of collisions with the help of the inelastic nucleon–nucleon cross-section. This so-
called Glauber calculation can be checked experimentally by independent means,
for instance via the measurement of the nuclear modification factor for photons or
Z -bosons discussed below.

The nuclear modification factor depends in general on the transverse momentum
pT and pseudorapidity η of the particle, the particle identity h, the centrality of the
collision and the orientation of the particle trajectory with respect to the reaction
plane (which is often averaged over). If RAB deviates from 1 this reflects either
medium effects or initial state effects – the parton distributions in A and B need
not be simply related to those in correspondingly many protons. Measurements of
RpA in proton–A collisions (or Rd A in deuteron–A collisions which is a good proxy
for RpA) are used to determine whether an observed deviation of RAA from 1 is due
to initial state effects or the effects of parton energy loss in medium.

At mid-rapidity, RHIC data on RAA show the following generic features.

(1) Characteristic strong centrality dependence of RAA

By varying the centrality of a heavy ion collision, one changes the typical in-
medium path length over which hard partons produced in these collisions must
propagate through the dense matter. For the most central head-on collisions
(e.g. 0%–10% centrality), the average L is large. For a peripheral collision
(e.g. 80%–92% centrality), the average L is small. RHIC and LHC data (see
Fig. 2.13) for charged hadrons show that for the most peripheral centrality bin,
the nuclear modification factors are consistent with the absence of medium
effects, while RAA decreases monotonically with increasing centrality and
reaches a suppression of about 0.2 (0.13) at RHIC (LHC) for pT ∼ 5–10 GeV
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results from RHIC and LHC. Figures taken from [7].
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Figure 2.14 The nuclear modification factor RAA in the range up to transverse

momenta mT =
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T of 100 GeV for the 10% most central Pb+Pb col-

lisions at the LHC. Data are shown for charged hadrons, b-quarks identified via
secondary J/ψ-decays, as well as for photons and the electroweak gauge bosons
W and Z . The latter do not interact strongly with the medium and can hence
emerge from heavy ion collisions unsuppressed and without energy loss. Data
were compiled by the CMS collaboration from Refs. [265, 271, 267, 270, 272].

in the most central collisions.The suppression increases mildly with transverse
momentum and persists up to the highest pT experimentally measured so far,
see Fig. 2.14. Figures 2.13 and 2.14 illustrate a direct manifestation of jet
quenching: for RAA = 0.2, 80% of the energetic hadrons that would be seen in
the absence of a medium are gone.

(2) Jet quenching is not observed in Rd Au and RpPb

In deuteron–gold collisions at RHIC, Rd Au is consistent with or greater than 1
for all centralities and all transverse momenta. Jet quenching is not observed.
Very first data for RpPb at the LHC support this conclusion [12]. In fact, the
centrality dependence measured at RHIC is opposite to that seen in gold–
gold collisions, with Rd Au reaching maximal values of around 1.5 for pT =
3–5 GeV/c in the most central collisions [23, 15]. The high pT hadrons are
measured at or near mid-rapidity, meaning that they are well separated from
the fragments of the struck gold nucleus. And, d-Au collisions produce at best
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a much smaller volume of hot matter in the final state. In these collisions, there-
fore, the partons produced in hard scattering processes and tallied in Rd Au do
not have to propagate any significant distance through matter after they are pro-
duced. The fact that Rd Au is consistent with or greater than 1 in these collisions
therefore demonstrates that the jet quenching measured in RAu Au is attributable
to the propagation of the hard partons produced in heavy ion collisions through
the medium that is present only in those collisions.

(3) Photons, Z- and W-bosons are not quenched
For single inclusive photon spectra in heavy ion collisions at RHIC, the nuclear
modification factor shows only mild deviations from Rγ

Au Au ≈ 1 [484]. Within
errors, these are consistent with perturbative predictions that take into account
the nuclear modifications of parton distribution functions (mainly the isospin
difference between protons and nuclei) [64]. These statements apply also to
photons produced in heavy ion collisions at LHC energies and to the elec-
troweak gauge bosons produced in those collisions also, see Fig. 2.14. Since
photons and electroweak gauge bosons, unlike partons or hadrons, do not
interact strongly with the medium, this gives independent support that the jet
quenching observed in heavy ion collisions is a final state effect. And, it pro-
vides experimental evidence in support of the Glauber-type calculation of the
factor 〈N AA

coll 〉 in (2.28) discussed above. (That is, it provides experimental con-
firmation that the p+p data in Fig. 2.3 have indeed been scaled appropriately
in order to use these data as a reference for nucleus–nucleus collisions with
varying impact parameter.)

(4) Species-independent suppression of RAA at high pT

Rh
Au Au is independent of the species of the hadron h [24]. This eliminates the

possibility that hadrons are formed within the medium and then lose energy
upon propagating through the medium, since different hadrons would have
different cross-sections for interaction with the medium. These data support
the picture that the origin of the observed suppression is energy loss by a parton
propagating through the medium prior to its hadronization.

(5) RAA for heavy-flavored and light-flavored hadrons is comparable.
On general grounds in QCD, one expects that light-flavored partons lose more
energy in the medium than heavy quarks [327]. At the time of this writ-
ing, there is no unambiguous experimental evidence for this mass hierarchy
of parton energy loss. It is a matter of ongoing discussion to what extent
the uncertainties in the existing data on the parton-mass dependence of jet
quenching observables are already small enough to put interesting contraints
on models of parton energy loss. More progress can be expected in the near
future, once detector upgrades at RHIC and measurements at the LHC allow
for differentiation of bottom quarks and charm quarks.
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In short, these observations support a picture in which highly energetic par-
tons are produced in high momentum transfer processes in heavy ion collisions
as if they were produced in vacuum, but instead they find themselves propagat-
ing through a strongly coupled medium which causes them to lose a significant
fraction of their initial energy. Jet quenching is a partonic final state effect that
depends on the length of the medium through which the parton must propagate.
It is expected to have many consequences in addition to the strong suppression of
single inclusive hadron spectra, which tend to be dominated by the most ener-
getic hadronic fragments of parent partons. As discussed at the beginning of
this section, the entire parton fragmentation process is expected to be modified,
with consequences for observables including multi-particle jet-like correlations
and for calorimetric jet measurements including the dijet imbalance shown in
Fig. 2.12.

2.3.2 Analyzing jet quenching

For concreteness, we shall focus in this section on those aspects of the analysis of
jet quenching that bear upon the calculation of the nuclear modification factor RAA

defined in (2.28). We shall describe other aspects of the analysis of jet quenching
more briefly, as needed, in subsequent sections. The single inclusive hadron spectra
which define RAA are typically calculated upon assuming that the modification of
the spectra in nucleus–nucleus collisions relative to that in proton–proton collisions
arises due to parton energy loss. This assumption is well supported by data, as we
have described above. But, from a theoretical point of view it is an assumption,
not backed up by any formal factorization theorem. Upon making this assumption,
we write

dσ AA→h+rest
(med) =

∑
f

dσ AA→ f +X
(vac) ⊗ Pf (�E, L , q̂, . . .) ⊗ D(vac)

f →h(z, μ
2
F) . (2.29)

Here, ⊗ denotes convolution in the energy fraction of the parton f and

dσ AA→ f +X
(vac) =

∑
i jk

fi/A(x1, Q2) ⊗ f j/A(x2, Q2) ⊗ σ̂i j→ f +k , (2.30)

where fi/A(x, Q2) are the nuclear parton distribution functions and σi j→ f +k are the
perturbatively calculable partonic cross-sections. The medium dependence enters
via the function Pf (�E, L , q̂, . . .), which characterizes the probability that a
parton f produced with cross-section σi j→ f +k loses energy �E while propagat-
ing over a path length L in a medium. This probability depends of course on
properties of the medium, which are represented schematically in this formula
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by the symbol q̂, the jet quenching parameter. We shall see below that in the
high parton energy limit, the properties of the medium enter Pf only through
one parameter, and in that limit q̂ can be defined precisely. At non-asymptotic
parton energies, q̂ in (2.29) is a place-holder, representing all relevant attributes
of the medium. It is often conventional to refer to the combination of Pf and
D(vac)

f →h together as a modified fragmentation function. It is only in the limit of
high parton energy where one can be sure that the parton emerges from the
medium before fragmenting into hadrons in vacuum that these two functions can
be cleanly separated as we have done in (2.29). This aspect of the ansatz (2.29)
is supported by the data: as we have described above, all hadrons exhibit the
same suppression factor indicating that RAA is due to partonic energy loss, before
hadronization.

The dynamics of how parton energy is lost to the medium is specified in terms
of the probability Pf (�E, L , q̂, . . .). In the high parton energy limit, the par-
ton loses energy dominantly by inelastic processes that are the QCD analog of
bremsstrahlung: the parton radiates gluons as it interacts with the medium. It
is a familiar fact from electromagnetism that bremsstrahlung dominates the loss
of energy of an electron moving through matter in the high energy limit. The
same is true in calculations of QCD parton energy loss in the high energy limit,
as established first in Refs. [421, 98, 817]. The hard parton undergoes multiple
inelastic interactions with the spatially extended medium, and this induces gluon
bremsstrahlung. Here and throughout, by the high parton energy limit we mean the
combined set of limits that can be summarized as:

E � ω � |k|, |q| ≡ |
∑

i

qi | � T ,�QCD, (2.31)

where E is the energy of the high energy projectile parton, where ω and k are
the typical energy and momentum of the gluons radiated in the elementary radia-
tive processes q → qg or g → gg, and where q is the transverse momentum
(transverse to its initial direction) accumulated by the projectile parton due to many
radiative interactions in the medium, and where T and �QCD represent any energy
scales that characterize the properties of the medium itself. This set of approxima-
tions underlies all the pioneering analytical calculations of radiative parton energy
loss [98, 817, 797, 420, 414, 794]. The premise of the analysis is the assumption
that QCD at scales of order |k| and |q| is weakly coupled, even if the medium
(with its lower characteristic energy scales of order T and �QCD) is strongly cou-
pled. We shall spend most of this section on the analysis valid in this high parton
energy limit, in which case all we need to ask of analyses of strongly coupled gauge
theories with gravity duals is insight into those properties of the strongly coupled
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medium that enter into the calculation of jet quenching in QCD. However, the
analysis based upon the limits (2.31) may not be under quantitative control when
applied to data, since gluon radiation outside the eikonal region E � ω � |k| may
be relevant for parton energy loss even at very high parton energies. Moreover, in
Section 8.1 we shall see that for partons with low enough energy E physics at all
scales in the problem up to E is strongly coupled and new approaches are needed.
(This applies for any E in a conformal theory like N = 4 SYM.)

A Gluon production in the eikonal limit and q̂

In the discussion above, we have argued that in the eikonal limit of asymptotic
parton energies, a single jet quenching parameter q̂ may characterize the medium-
modification of gluon radiation. We now discuss an illustrative calculation in which
this relation can be made explicit. We start by considering a high energy par-
ton. In the rest frame of this parton, the target that is spatially extended but of
finite thickness appears Lorentz contracted, so in the projectile rest frame the par-
ton propagates through the target in a short period of time and the transverse
position of the projectile does not change during the propagation. So, at ultra-
relativistic energies, the main effect of the target on the projectile is a “rotation”
of the parton’s color due to the color field of the target. These rotation phases
are given by Wilson lines along the (straight line) trajectories of the propagating
projectile:

W (x) = P exp{i
∫

dz−T a A+
a (x, z−)} . (2.32)

Here, x is the transverse position of the projectile – which does not change as
the parton propagates at the speed of light along the z− ≡ (z − t)/

√
2 lightlike

direction. A+ is the large component of the target color field and T a is the generator
of SU (N ) in the representation corresponding to the given projectile – fundamental
if the hard parton is a quark and adjoint if it is a gluon. The eikonal approach
to scattering treats the (unphysical, in the case of colored projectiles) setting in
which the projectile impinges on the target from outside, after propagating for an
arbitrarily long time and building up a fully developed coherent Coulomb cloud
∼ g xi

x2 of gluons dressing the bare projectile. (This cloud is often referred to as a
non-Abelian Weizsäcker–Williams field). The interaction of this dressed projectile
with the target results in an eikonal phase (Wilson line) for the projectile itself and
for each gluon in the cloud. Gluon radiation then corresponds to the decoherence
of components of the dressed projectile that pick up different phases. Analysis of
this problem yields a calculation of Nprod(k), the number of radiated gluons with
momentum k, with the result:
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Nprod(k) =
αs CF

2π

∫
dx dy eik·(x−y) x · y

x2 y2

[
1 − 1

N 2 − 1
〈Tr

[
W A †(x) W A(0)

]〉
− 1

N 2 − 1
〈Tr

[
W A †(y) W A(0)

]〉
+ 1

N 2 − 1
〈Tr

[
W A †(y) W A(x)

]〉] , (2.33)

where the CF prefactor is for the case where the projectile is a quark in the funda-
mental representation, where the projectile is located at transverse position 0, and
where the 〈. . .〉 denotes averaging over the gluon fields of the target. If the target
is in thermal equilibrium, these are thermal averages. (See Refs. [548, 550] for
details.)

Although the simple result (2.33) is not applicable to the physically relevant
case, as we shall describe in detail below, we can nevertheless glean insights from
it that will prove relevant. We note that the entire medium-dependence of the gluon
number spectrum (2.33) is determined by target expectation values of the form
〈Tr

[
W A †(x) W A(y)

]〉 of two eikonal Wilson lines. The jet quenching parameter q̂
that will appear below defines the fall-off properties of this correlation function in
the transverse direction L ≡ |x − y|:

〈Tr
[
W A(C)

]〉 ≈ exp

[
− 1

4
√

2
q̂ L− L2

]
(2.34)

in the limit of small L , with L− (the extent of the target along the z− direction)
assumed large but finite [582, 584]. Here, the contour C traverses a distance L−

along the light cone at transverse position x, and it returns at transverse position
y. These two long straight light-like lines are connected by short transverse seg-
ments located at z− = ±L−/2, far outside the target. We see from the form of
(2.33) that |k| and L are conjugate: the radiation of gluons with momentum |k| is
determined by Wilson loops with transverse extent L ∼ 1/|k|. This means that in
the limit (2.31), the only property of the medium that enters (2.33) is q̂. Further-
more, inserting (2.34) into (2.33) yields the result that the gluons that are produced
have a typical k2 that is of order q̂ L−. This suggests that q̂ can be interpreted as
the transverse momentum squared picked up by the hard parton per distance L−

that it travels, an interpretation that can be validated more rigorously via other
calculations [251, 317].

B Parton energy loss in a finite medium

The reason that the eikonal formalism cannot be applied verbatim to the problem
of parton energy loss in heavy ion collisions is that the high energy partons we
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wish to study do not impinge on the target from some distant production site. They
are produced within the same collision that produces the medium whose properties
they subsequently probe. As a consequence, they are produced with significant
virtuality. This means that even if there were no medium present, they would
radiate copiously. They would fragment in what is known in QCD as a parton
shower. The analysis of medium-induced parton energy loss then requires under-
standing the interference between radiation in vacuum and the medium-induced
bremsstrahlung radiation. It turns out that the resulting interference resolves lon-
gitudinal distances in the target [98, 817, 797, 420], meaning that its description
goes beyond the eikonal approximation. The analysis of parton energy loss in the
high energy limit (2.31) must include terms that are subleading in 1/E , and there-
fore not present in the eikonal approximation, that describe the leading interference
effects. To keep these O(1/E) effects, one must replace eikonal Wilson lines by
retarded Green’s functions that describe the propagation of a particle with energy E
from position z−

1 , x1 to position z−
2 , x2 without assuming x1 = x2 [817, 544, 798].

(In the E → ∞ limit, x1 = x2 and the eikonal Wilson line is recovered.) It nev-
ertheless turns out that even after Wilson lines are replaced by Green’s functions
the only attribute of the medium that arises in the analysis, in the limit (2.31), is
the jet quenching parameter q̂ defined in (2.34) that already arose in the eikonal
approximation [817, 797].

We shall not present the derivation, but it is worth giving the complete (albeit
somewhat formal) result for the distribution of gluons with energy ω and transverse
momentum k that a high energy parton produced within a medium radiates:

ω
d I

dω dk
= αs CR

(2π)2 ω2
2Re

∫ ∞

ξ0

dyl

∫ ∞

yl

d ȳl

∫
du e−ik·u exp

[
−1

4

∫ ∞

ȳl

dξ q̂(ξ) u2

]

× ∂

∂x
· ∂

∂u

∫ u≡r(ȳl )

x≡r(yl )≡0
Dr exp

[∫ ȳl

yl

dξ

(
i ω

2
ṙ2 − 1

4
q̂(ξ)r2

)]
. (2.35)

We now walk through the notation in this expression. The Casimir operator CR is
in the representation of the projectile parton. The integration variables ξ , yl and ȳl

are all positions along the z− lightcone direction. ξ0 is the z− at which the projec-
tile parton was created in a hard scattering process. Since we are not taking this to
−∞, the projectile is not assumed on shell. The projectile parton was created at the
transverse position x = 0. The integration variable u is also a transverse position
variable, conjugate to k. The path integral is over all possible paths r(ξ) going from
r(yl) = 0 to r(ȳl) = u. The derivation of (2.35) proceeds by writing d I/dω dk in
terms of a pair of retarded Green’s functions in their path-integral representations,
one of which describes the radiated gluon in the amplitude, radiated at yl , and the
other of which describes the radiated gluon in the conjugate amplitude, radiated at
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ȳl . The expression (2.35) then follows after a lengthy but purely technical calcu-
lation. The properties of the medium enter (2.35) only through the jet quenching
parameter q̂(ξ). There are many, closely related formulations of parton energy loss.
The first works on this subject are by Baier, Dokshitzer, Mueller, Peigné, Schiff
(BDMPS) [98] and independently by Zakharov (Z) [817]. The expression (2.35)
was derived in the so-called path-integral approach in Refs. [817, 797]. This and
related approaches to parton energy loss in QCD have been developed by many
authors [101, 414, 795, 76, 97, 551, 422, 796, 710, 821, 592, 700, 818, 122, 68, 13,
790, 463, 276, 591, 236]. Recent reviews include [251, 799].

The result (2.35) is both formal and complicated. However, its central qualitative
consequences can be characterized almost by dimensional analysis. For simplicity,
we consider first the case that the jet quenching parameter does not depend on the
position in the medium, q̂ = q̂(ξ) (for a generalization, see the next subsection).
All dimensionful quantities can be scaled out of (2.35) if ω is measured in units of
the so-called characteristic gluon energy

ωc ≡ q̂(L−)2 , (2.36)

and the transverse momentum k2 in units of q̂ L− [724]. In a numerical analysis
of (2.35), one finds that the transverse momentum distribution of radiated glu-
ons scales indeed with q̂ L−, as expected for the transverse momentum due to
the Brownian motion in momentum space that is induced by multiple small angle
scatterings. If one integrates the gluon distribution (2.35) over transverse momen-
tum and takes the upper limit of the k-integration to infinity, one recovers [724]
an analytical expression first derived by Baier, Dokshitzer, Mueller, Peigné and
Schiff [98]:

ω
d IBDMPS

dω
= 2αsCR

π
ln

∣∣∣∣cos

[
(1 + i)

√
ωc

2ω

]∣∣∣∣ , (2.37)

which yields the limiting cases

ω
d IBDMPS

dω
� 2αsCR

π

{ √
ωc
2ω

for ω � ωc ,

1
12

(
ωc
ω

)2
for ω � ωc ,

(2.38)

for small and large gluon energies. In the soft gluon limit, the BDMPS spectrum
(2.37) displays the characteristic 1/

√
ω dependence, which persists up to a gluon

energy of the order of the characteristic gluon energy (2.36). Hence, ωc can be
viewed as an effective energy cut-off, above which the contribution of medium-
induced gluon radiation is negligible. These analytical limits provide a rather
accurate characterization of the full numerical result. In particular, one expects
from the above expressions that the average parton energy loss 〈�E〉, obtained by
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integrating (2.35) over k and ω, is proportional to ∝ ∫ ωc

0 dω
√
ωc/ω ∝ ωc. One

finds indeed

〈�E〉BDMPS ≡
∫ ∞

0
dωω

d IBDMPS

dω
= αsCR

2
ωc = αsCR

2
q̂
(
L−)2

. (2.39)

This is the well-known (L−)2-dependence of the average radiative parton energy
loss [99, 98, 817]. In summary, the main qualitative properties of the medium-
induced gluon energy distribution (2.35) are the scaling of k2 with q̂ L− dictated by
Brownian motion in transverse momentum space, the 1/

√
ω dependence of the k-

integrated distribution characteristic of the non-Abelian Landau–Pomerantschuk–
Migdal (LPM) effect, and the resulting (L−)2-dependence of the average parton
energy loss.

C From medium-induced gluon radiation to jet quenching models

We now discuss how to relate calculations of medium-induced gluon radiation to
data on jet quenching in heavy ion collisions. To this end, we recall first how in
QCD in the vacuum, partons produced with high transverse energy in hadronic
collisions evolve into hadronic fragments. Such highly energetic partons typically
undergo a so-called parton shower, that is a series of partonic 1 → 2 splittings in
which they degrade their high initial virtuality. It is only at the end of this parton
shower that hadronization, i.e. the transition from partonic to hadronic degrees of
freedom, sets in. This vacuum parton shower is calculable in QCD perturbation the-
ory and it is theoretically well-understood. It determines, for instance, the so-called
scale dependence of fragmentation functions (i.e. the μ2

F dependence in Eq. (2.29)),
as well as many characteristics of the distribution of the hadronic fragments of jets.
Most generally, the phenomenology of jet quenching aims at modeling how the
passage through dense matter affects this QCD parton shower and what it reveals
about the properties of the matter through which it passes. The theorist’s task is
therefore to formulate a medium-modified parton shower that is consistent with
QCD-based calculations of parton energy loss. Since the theoretical understanding
of jet quenching is still incomplete, this task requires elements of phenomeno-
logical modeling to relate QCD-based calculations to jet quenching data. Here,
we discuss one particularly simple and widely used jet quenching model in some
detail. We then comment on open challenges and further developments.

As explained above, the basic building block of a QCD parton shower in the
vacuum is the elementary partonic 1 → 2 splitting function. The splittings of
a quark into a quark and a gluon (q → q g) and of a gluon into two gluons
(g → g g) dominate kinematically. Both processes can be viewed as gluon radia-
tion of a parent parton in the vacuum. One particularly simple way of formulating
a medium-modified parton shower is then to replace the 1 → 2 splitting in the
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vacuum by a calculation of medium-induced 1 → 2 splitting. In particular, our
derivation (2.35) of medium-induced gluon radiation of a quark or gluon can be
used in this set-up as a medium-induced 1 → 2 splitting. This idea has been imple-
mented in several Monte Carlo programs that simulate the entire parton shower,
see e.g. [818, 67]. A discussion of the complexity of Monte Carlo programs for
final state parton showers and the technical and conceptual differences in exist-
ing Monte Carlo implementations lies outside the scope of this book. Instead, we
restrict our discussion to a version of such jet quenching models that is limited to
describing single inclusive hadron spectra in nucleus–nucleus collisions. As seen
from expression (2.29), the quenching of such spectra can be descibed by the prob-
ability P(�E) that the initial parton loses a fraction �E/E of its total energy via
medium effects. We now sketch how the resulting P(�E) in (2.29) can be esti-
mated. If gluons are emitted independently, P(�E) is the normalized sum of the
emission probabilities for an arbitrary number of n gluons which carry away the
total energy �E [103]:

P(�E) = exp

[
−
∫ ∞

0
dω

d I

dω

] ∞∑
n=0

1

n!

[
n∏

i=1

∫
dωi

d I (ωi )

dω

]
δ

(
�E −

n∑
i=1

ωi

)
.

(2.40)

Here, the factor exp
[− ∫ ∞

0 dω d I
dω

]
denotes the probability that no energy loss occurs.

This factor ensures that P(�E) is properly normalized, namely
∫

d�E P(�E)=1.
Equation (2.40) thus resums the effects that arbitrarily many independent medium-
induced gluon radiations (2.35) have on the energy of the most energetic parton in
the shower. On average, this parton will suffer an additional medium-induced mean
energy loss

〈�E〉 =
∫

d�E (�E) P(�E) =
∫

dωω
d I

dω
, (2.41)

which is consistent with (2.39) above.
The phenomenological strategy for constraining the jet quenching parameter q̂

is then based on comparing the single inclusive hadron spectrum (2.29) in nucleus–
nucleus collisions to data. Here, the jet quenching parameter q̂ enters via the
probability P(�E) that the initial parton loses a fraction �E/E of its total energy
via medium effects. We note, however, that such a program of determining q̂ has
to control various complications.

In particular, as seen from Fig. 2.3, single inclusive hadron spectra are distri-
butions which fall steeply with pT . Since P(�E) is a very broad distribution, not
peaked around its mean, the modifications which parton energy loss induce on
spectra cannot be characterized by an average energy loss. Rather, what matters for
a steeply falling distribution is not how much energy a parton loses on average, but
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which fraction of all the partons escapes with much less than the average energy
loss [103]. This so-called trigger-bias effect is quantitatively very important, and
can be accounted for by the probability distribution (2.40). However, this trigger-
bias effect is also a surface-bias effect: those partons that escape with the smallest
in-medium path length have the highest probability of contributing to the single
inclusive hadron spectrum. As a consequence, it is important that jet quenching
models embed the propagation of the highly energetic parton in a realistic spatial
and temporal structure of a heavy ion collision. This includes a suitable probability
distribution of the production points of the hard partons in the transverse plane, and
a resulting realistic distribution of the in-medium path lengths L− over which the
parton propagates through the medium.

Another important aspect is that as a consequence of longitudinal and transverse
flow, the density of the medium degrades significantly during this time period L−,
and approximating q̂(ξ) by a constant value q̂ is not a good approximation. In
general, this motivates the formulation of jet quenching models for which the prob-
ability of interactions between the medium and the jet decreases with time. For the
medium-induced gluon radiation (2.35), analytical solutions in the saddle point
approximation are known if one approximates the ξ dependence of the jet quench-
ing parameter as q̂(ξ) = q̂0 (ξ0/ξ)

α [100] with α between 1 and 3. This range of
αs scans the range of phenomenologically relevant cases between one-dimensional
longitudinal expansion (α = 1; “Bjorken expansion”) and scenarios which also
account for the transverse expansion 1 < α < 3. Remarkably, one finds that irre-
spective of the value of α, for fixed in-medium path length L−/

√
2 the transverse

momentum integrated gluon energy distribution (2.35) has the same ω-dependence
if q̂(ξ) is simply replaced by a constant given by the linear line-averaged transport
coefficient [723]

〈q̂〉 ≡ 1

2 L−2

∫ ξ0+L−

ξ0

dξ (ξ − ξ0) q̂(ξ) . (2.42)

In practice, this means that comparisons of different parton energy loss calculations
to data can be performed as if the medium were static. The line-averaged transport
coefficient 〈q̂〉 determined in this way can then be related via (2.42) to the trans-
port coefficient at a given time, once a model for the expansion of the medium is
specified. Hence, we can continue our discussion for the case q̂(ξ) = q̂ without
loss of generality.

Historically, the first class of jet quenching models proceeded by implementing
P(�E) in a model in which hard scattering events are distributed with suitable
probability at locations in the transverse plane, and are then propagated through
the medium. To this end, the expanding and cooling plasma was given either by
a simple parametrization, or it was modeled hydrodynamically. The jet quenching
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parameter was assumed for instance to be given in terms of the time-dependent
energy density ε,

q̂ = 2K ε3/4 , (2.43)

and the parameter K was then obtained by comparing jet quenching calculations to
data. For a weakly coupled quark–gluon plasma, Baier had argued that K ≈ 1 [97].
In contrast, in fitting to data from PHENIX and STAR at RHIC, several studies
obtained significantly larger values. For instance, the PHENIX collaboration [20]
use the jet quenching model from Ref. [305] and quote a jet quenching parameter
which is constrained by the experimental data to lie within the range 13.2+2.1

−3.2 or
13.2+6.3

−5.2 GeV2/fm at the one or two standard deviation levels, respectively. This
translates into the estimate

K = 4.1 ± 0.6 , (2.44)

at one standard deviation. It is important to realize that the quoted errors arise
only from the experimental uncertainties and do not incorporate the “systematic
uncertainty” arising from the choices made in the formulation of the theoretical
model to which the PHENIX authors compare their data. We will compare the
result (2.44) to calculations done for strongly coupled plasmas in gauge theories
with dual gravitational descriptions in Section 8.5.

As mentioned already, we have limited our presentation in this section to one
particularly simple jet quenching model in order to showcase an example of an
explicit connection between a property of dense QCD matter, namely q̂, and the
measurement of quenched hadron spectra. The large values of q̂ extracted from
several model comparisons with data motivate the need to turn to strong coupling
techniques for describing jet–medium interactions. Theoretical work is currently
under way to improve on significant assumptions of the simple model approach
discussed here, for example the assumption that a calculation of parton energy
loss in the eikonal limit (2.31) can provide sufficiently accurate results for the
phenomenologically relevant kinematics [70] or the assumption that effects of mul-
tiple gluon emission can be taken into account probabilistically via (2.40) without
accounting for (destructive) quantum interference in the emission of more than
one gluon and without tracing the energy loss of the projectile after a gluon emis-
sion. Many of the resulting model uncertainties can only be controlled by going
beyond the kinematical limit (2.31). Going beyond this limit is also required if
one is to assess the possible role of parton energy loss via elastic interactions with
the medium. Another current challenge is to go beyond single inclusive hadron
spectra and to formulate models that can account for the medium-modified frag-
mentation of entire jets as seen in Fig. 2.12. All these open questions are subjects of
ongoing research and they lie outside the scope of the present book. As described
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in this section, the basic problem is to understand how a QCD final state parton
shower is modified in the presence of a hot and dense plasma. In the coming years,
progress on this question can be expected from a tight interplay between theory
and experiment that includes a more and more detailed characterization of parton
fragmentation via a suite of upcoming further measurements including jet fragmen-
tation functions, γ - or Z -triggered jet distributions, heavy flavored single inclusive
hadron spectra and b-tagged jets.

2.4 Quarkonia in hot matter

One way of thinking about the operational meaning of the statement that quark–
gluon plasma is deconfined is to ask what prevents the formation of a meson within
quark–gluon plasma. The answer is that the attractive force between a quark and
an antiquark which are separated by a distance of order the size of a meson is
screened by the presence of the quark–gluon plasma between them. This poses a
quantitative question: how close together do the quark and antiquark have to be
in order for their attraction not to be screened? How close together do they have
to be in order for them to feel the same attraction that they would feel if they
were in vacuum? It was first suggested by Matsui and Satz [609] in 1986 that
measurements of how many quarkonia – mesons made of a heavy quark–antiquark
pair – are produced in heavy ion collisions could be used as a tool with which to
answer this question, because they are significantly smaller than typical mesons or
baryons.

The generic term quarkonium refers to the charm–anticharm or charmonium,
mesons (J/ψ , ψ ′, χc, . . .) and the bottom–antibottom, or bottomonium, mesons
(ϒ , ϒ ′, . . .). The first quarkonium state that was discovered was the 1s state of
the c c̄ bound system, the J/ψ . It is roughly half the size of a typical meson like
the ρ. The bottomonium 1s state, the ϒ , is smaller again by roughly another fac-
tor of two. It is therefore expected that if one can study quark–gluon plasma in a
series of experiments with steadily increasing temperature, J/ψ mesons survive as
bound states in the quark–gluon plasma up to some dissociation temperature that
is higher than the crossover temperature (at which generic mesons and baryons
made of light quarks fall apart) and ϒ mesons survive as bound states up to some
even higher temperature. More realistically, what Matsui and Satz suggested is that
if high energy heavy ion collisions create deconfined quark–gluon plasma that is
hot enough, then color screening would prevent charm and anticharm quarks from
binding to each other in the deconfined interior of the droplet of matter produced in
the collision, and as a result the number of J/ψ mesons produced in the collisions
would be suppressed. However, bottomonium mesons in the ϒ 1s state should
be able to bind, and the rate of production of these mesons should therefore not
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r
Q QQQ

Figure 2.15 Schematic picture of the dissociation of a Q Q̄-pair in hot QCD mat-
ter due to color screening. Figure taken from Ref. [728]. The straight black lines
attached to the heavy Q and Q̄ indicate, that these quarks are external probes,
in contrast to the dynamical quarks within the quark–gluon plasma. Figure taken
from Ref. [728].

be suppressed, until such high temperatures are achieved that the quark–antiquark
attraction is screened even on the short length scale corresponding to the size of
the ϒ meson in its 1s state.

To study this effect, Matsui and Satz suggested comparing the temperature
dependence of the screening length for the quark–antiquark force, which can be
obtained from lattice QCD calculations, with the J/ψ meson radius calculated in
charmonium models. They then discussed the feasibility to detect this effect clearly
in the mass spectrum of e+ e− dilepton pairs. Between 1986, when Matsui and Satz
launched this line of investigation, suggesting it as a quantitative means of charac-
terizing the formation and properties of deconfined matter, and today we know
of no other measurement that has been advocated as a more direct experimental
signature for the deconfinement transition. And, there is hardly any other measure-
ment whose phenomenological analysis has turned out to be more involved. In this
section, we shall describe both the appeal of studying quarkonia in the hot matter
produced in heavy ion collisions and the practical difficulties. The theoretical basis
for the argument of Matsui and Satz has evolved considerably within the last two
decades [728]. Moreover, the debate over how to interpret these measurements is
by now informed by data on J/ψ suppression in nucleus–nucleus collisions at the
CERN SPS [43, 72], at RHIC [19] and at the LHC [1]. There is also a good pos-
sibility that qualitatively novel information will become accessible in future high
statistics runs at RHIC and LHC.

A sketch of the basic idea of Matsui and Satz is shown in Fig. 2.15. In very
general terms, one expects that the attractive interaction between the heavy quark
and antiquark in a putative bound state is sensitive to the medium in which the
heavy particles are embedded, and that this attraction weakens with increasing tem-
perature. If the distance between the heavy quark and antiquark is much smaller
than 1/T , there will not be much quark–gluon plasma between them. Equivalently,
typical momentum scales in the medium are of order the temperature T , and so the
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medium cannot resolve the separation between the quark–antiquark pair if they are
much closer together than 1/T . However, if the distance is larger, then the bound
state is resolved, and the color charges of the heavy quarks are screened by the
medium, see Fig. 2.15. For the temperatures T that one expects to attain in a heavy
ion collision in which quark–gluon plasma with a temperature T is created, only
those quarkonia with radii that are smaller than some length scale of order 1/T can
form. These basic arguments support the idea that quarkonium production rates are
an indicator of whether quark–gluon plasma is produced, and at what temperature.

In Section 3.3, we review lattice calculations of the heavy quark static free
energy FQQ̄(r). This static potential is typically defined via how the correlation
function of a pair of Polyakov loops, namely test quarks at fixed spatial positions
whose worldlines wrap around the periodic Euclidean time direction, falls off as the
separation between the test quarks is increased. This static potential is renormalized
such that it matches the zero temperature result at small distances. Calculations of
FQQ̄(r) were the earliest lattice results which substantiated the core idea that a
quarkonium bound state, placed in hot QCD matter, dissociates (“melts”) above a
critical temperature. As we now discuss, phenomenological models of quarkonium
in matter are based upon interpreting FQQ̄(r) as the potential in a Schrödinger
equation whose eigenvalues and eigenfunctions describe the heavy Q–Q̄ bound
states. There is no rigorous basis for this line of reasoning, and if pushed too far
it faces various conceptual challenges as we shall discuss in Section 3.3. However,
these models remain valuable as a source of semi-quantitative intuition.

At zero temperature, lattice results for FQQ̄(r) in QCD without dynamical
quarks are well approximated by the ansatz FQQ̄(r) = σ r − α

r , where the lin-
ear term that dominates at long distance is characterized by the string tension
σ � 0.2 GeV2 and the perturbative Coulomb term α/r is dominant at short dis-
tances. In QCD with dynamical quarks, beyond some radius rc the potential flattens
because as the distance between the external Q and Q̄ is increased, it becomes
energetically favorable to break the color flux tube connecting them by producing
a light quark–antiquark pair from the vacuum which, in a sense, screens the poten-
tial. With increasing temperature, the distance rc decreases, that is, the colors of Q
and Q̄ are screened from each other at increasingly shorter distances. This is seen
clearly in the Fig. 3.5 in Section 3.3. These lattice results are well parametrized by
a screened potential of the form [728, 521]

FQQ̄(r) = −α

r
+ σ r

(
1 − e−μ r

μ r

)
, (2.45)

where μ ≡ μ(T ) can be interpreted at high temperatures as a temperature-
dependent Debye screening mass. For suitably chosen μ(T ), this ansatz reproduces
the flattening of the potential found in lattice calculations at the finite large distance
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value FQQ̄(∞) = σ/μ(T ). Taking this Q Q̄ free energy FQQ̄(r, T ) as the poten-
tial in a Schrödinger equation, one may try to determine which bound states in
this potential remain, as the potential is weakened as the temperature increases.
Such potential model studies have led to predictions of the dissociation tempera-
tures Td of the charmonium family, which range from Td(J/ψ) � 2.1 Tc for J/ψ
to Td(ψ

′) � 1.1 Tc for the more loosely bound and therefore larger 2s state. The
deeply bound, small, 1s state of the bottomonium family is estimated to have a
dissociation temperature Td(ϒ(1S))) > 4 Tc, while dissociation temperatures for
the corresponding 2s and 3s states were estimated to lie at 1.6 Tc and 1.2 Tc respec-
tively [728, 521]. Because the leap from the static quark–antiquark potential to a
Schrödinger equation is not rigorously justified, the uncertainties in quantitative
results obtained from these potential models are difficult to estimate. (For more
details on why this is so, see Section 3.3.) However, these models with their inputs
from lattice QCD calculations do provide qualitative support for the central idea of
Matsui and Satz that quarkonia melt in hot QCD matter, and they provide support
for the qualitative expectation that this melting proceeds sequentially, with smaller
bound states dissociating at a higher temperature.

Figure 2.16 shows data of the Upsilon resonances 1s, 2s and 3s in the dimuon
invariant mass distribution measured by the CMS collaboration in p+p and Pb+Pb
collisions at the LHC. While all three resonance states are clearly visible in p+p
collisions, the higher excited 2s and 3s states are strongly suppressed if not absent
in Pb+Pb collisions. These data are the most direct experimental support to date for
the sequential quarkonium suppression pattern which is a generic prediction of all
models of quarkonium suppression, and according to which only the tightly bound
1s state with Td(ϒ(1S)) > 4 Tc is expected to survive in the hot and dense QCD
matter produced at the LHC. A more detailed discussion of these data requires the
understanding of so-called feed-down corrections, which are contributions to the
1s yield from the decay of higher excited states. In proton–proton collisions, a sig-
nificant fraction (∼ 40%) of the observed ϒ(1s) mesons arises from the production
of the excited 2s and 3s states which subsequently decay to ϒ(1s). Therefore, if the
higher excited states melt in the hot matter, one expects that their “feed-down” to
the ϒ(1s) state is absent and the measured yield of ϒ(1s) is reduced accordingly.
Indeed, despite significant experimental uncertainties that still exist for these very
first data, there is already evidence for a reduction in the number of ϒ(1s) mesons
produced in Pb+Pb collisions that can be explained in just this way. The analogous
argument has also been instrumental in interpreting earlier data on the suppres-
sion of the yield of J/ψ mesons in nucleus–nucleus collisions at the CERN SPS
[43, 72] and at RHIC in terms of the dissociation of higher excited states like the
ψ ′ and χc whose decays contribute to the J/ψ yield in proton–proton collisions.
In particular, assuming that directly produced 1s charmonium states survive and
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Figure 2.16 The invariant mass distribution of dimuons in Pb+Pb (above) and
p+p (below) collisions measured by the CMS collaboration. In comparison to the
benchmark measurement in p+p, the higher ϒ resonances are strongly suppressed.
Figures taken from Ref. [269].

higher excited states melt completely at CERN SPS and RHIC energies provides a
natural interpretation for the fact that the suppression of the J/ψ yield and its cen-
trality dependence in nucleus–nucleus collisions at the CERN SPS and RHIC are
comparable. However, since these earlier studies did not have experimental access
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to the excited quarkonium states, their support for a picture of sequential melting
was less direct.

The analysis of data on charmonium has to take into account a significant num-
ber of important confounding effects. Here, we cannot discuss the phenomenology
of these effects in detail, but we provide a list of the most important ones.

(1) Cold nuclear matter effects
The interaction of the heavy quark–antiquark pair with ordinary confined
hadronic matter can be a significant source of quarkonium dissociation [202].
The operational procedure for separating such hadronic phase effects (often
referred to as “cold nuclear matter effects”) is to measure them separately in
proton–nucleus collisions [525], and to establish then to what extent the num-
ber of J/ψ mesons produced in nucleus–nucleus collisions drops below the
yield extrapolated from proton–nucleus collisions [26].

(2) Collective dynamics of the heavy ion collision: “explosive expansion”
Lattice calculations are done for heavy quark bound states that are at rest in
a hot, static, medium. In heavy ion collisions, however, even if the droplet
of hot matter equilibrates rapidly, its temperature drops quickly during the
subsequent explosive expansion. The observed quarkonium suppression must
therefore result from a suitable time average over a dynamical medium. This
is challenging in many ways. One issue that arises is the question of how long
a bound state must be immersed in a sufficiently hot heat bath in order to melt.
Or, phrased better, how long must the temperature be above the dissociation
temperature Td in order to prevent an heavy quark and antiquark produced at
the initial moment of the collision from binding to each other and forming a
quarkonium meson?

(3) Collective dynamics of the heavy ion collision: “hot wind”
Another issue that faces any data analysis is that quarkonium mesons may
be produced moving with significant transverse momentum through the hot
medium. In their own reference frame, the putative quarkonium meson sees
a hot wind. Phenomenologically, the question arises whether this leads to a
stronger suppression since the bound state sees some kind of blue-shifted heat
bath (an idea which we will refine in Section 8.7), or whether the bound state
is less suppressed since it can escape the heat bath more quickly.

(4) Formation of quarkonium bound states
Neither quarkonia nor equilibrated quark–gluon plasma are produced at time
zero in a heavy ion collision. Quarkonia have to form, for instance by a colored
c c̄ pair radiating a gluon to turn into a color-singlet quarkonium state. This
formation process is not fully understood in elementary interactions or in heavy
ion collisions. However, since the formation process takes time, it is a priori
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unclear whether any observed quarkonium suppression is due to the effects of
the hot QCD matter on a formed quarkonium bound state or on the precursor
of such a bound state, which may have different attenuation properties in the
hot medium. And, it is unclear whether the suppression is due to processes
occurring after the liquid-like strongly coupled plasma reaches approximate
local thermal equilibrium or earlier, before equilibration.

(5) Recombination as a novel mechanism of quarkonium formation
QCD is flavor neutral and thus charm is produced in c c̄ pairs in primary inter-
actions. If the average number of pairs produced per heavy ion collision is � 1,
then all charmonium mesons produced in heavy ion collisions must be made
from a c and a c̄ produced in the same primary interaction. At RHIC and even
more so at the LHC, however, more than one c c̄ pair is produced per collision,
raising the possibility of a new charmonium production mechanism in which a
c and a c̄ from different primary c c̄ pairs meet and combine as the quark–
gluon plasma falls apart into hadrons to form a charmonium meson [780].
If this novel quarkonium production mechanism were to become significant,
it could reduce the quarkonium suppression or even turn it into quarkonium
enhancement. Since there are more c and c̄ produced in heavy ion collisions at
LHC energies than at RHIC energies, and more at low transverse momentum
pT than at high pT , and more in central collisions than in peripheral collisions,
one seeks signatures of this recombination mechanism in particular in the low-
pT -dominated total J/ψ yields in sufficiently central heavy ion collisions at
the LHC [1].

As discussed in Section 8.7 and Chapter 9, calculations based on the AdS/CFT
correspondence can provide information relevant for phenomenological modeling,
in particular by calculating heavy quark potentials within a moving heat bath and
by determining meson dispersion relations. The above discussion illustrates the
context in which such information is useful, but it also emphasizes that such infor-
mation is not sufficient. An understanding of quarkonium production in heavy ion
collisions relies on phenomeological modelling as the bridge between experimental
observations and the theoretical analysis of the underlying properties of hot QCD
matter.
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Results from lattice QCD at nonzero temperature

At very high temperature, where the QCD coupling constant g(T ) is perturbatively
small, hard thermal loop resummed perturbation theory provides a quantitatively
controlled approach to QCD thermodynamics. However, in a wide temperature
range around the QCD phase transition which encompasses the experimentally
accessible regime, perturbative techniques become unreliable. Nonperturbative
lattice-regularized calculations provide the only known, quantitatively reliable,
technique for the determination of thermodynamic properties of QCD matter
within this regime.

We shall not review the techniques by which lattice-regularized calculations are
implemented. We merely recall that the starting point of lattice-regularized cal-
culations at nonzero temperature is the imaginary time formalism, which allows
one to write the QCD partition function in Euclidean spacetime with a periodic
imaginary time direction of length 1/T [541]. Any thermodynamic quantity can
be obtained via suitable differentiation of the partition function. At zero baryon
chemical potential, the QCD partition function is given by the exponent of a real
action, integrated over all field configurations in the Euclidean spacetime. Since
the action is real, the QCD partition function can then be evaluated using standard
Monte Carlo techniques, which require the discretization of the field configurations
and the evaluation of the action on a finite lattice of spacetime points. Physi-
cal results are obtained by extrapolating calculated results to the limit of infinite
volume and vanishing lattice spacing. In principle, this is a quantitatively reliable
approach. In practice, lattice-regularized calculations are CPU-expensive: the size
of lattices in modern calculations does not exceed 483 × 64 [332] and these cal-
culations nevertheless require the most powerful computing devices (currently at
the multi-teraflop scale). In the continuum limit, such lattices correspond typically
to small volumes of ≈ (4 fm)3 [332]. This means that properties of QCD matter
which are dominated by long-wavelength modes are difficult to calculate with the
currently available computing resources and there are only first exploratory studies.

65
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For the same reason, it is in practice difficult to carry out calculations using light
quark masses that yield realistically light pion masses at zero temperature. Light
quarks are also challenging because of the CPU-expensive complications which
arise from the formulation of fermions on the lattice.

In addition to the practical challenges above, conceptual questions arise in two
important domains. First, at nonzero baryon chemical potential the Euclidean
action is no longer real, meaning that the so-called fermion sign problem precludes
the use of standard Monte Carlo techniques. Techniques have been found that evade
this problem, but only in the regime where the quark chemical potential μB/3 is
sufficiently small compared to T [352, 312, 45, 315, 353, 46, 371, 372, 313]. Sec-
ond, conceptual questions arise in the calculation of any physical quantities that
cannot be written as derivatives of the partition function. Many such quantities are
of considerable interest. Calculating them requires the analytic continuation of lat-
tice results from Euclidean to Minkowski space (see below) which is always under-
constrained since the Euclidean calculations can only be done at finitely many val-
ues of the Euclidean time. This means that lattice-regularized calculations, at least
as currently formulated, are not optimized for calculating transport coefficients and
answering questions about, say, far-from-equilibrium dynamics or jet quenching.

We allude to these practical and conceptual difficulties to illustrate why alterna-
tive strong coupling techniques, including the use of the AdS/CFT correspondence,
are and will remain of great interest for the study of QCD thermodynamics and
quark–gluon plasma in heavy ion collisions, even though lattice techniques can be
expected to make steady progress in the coming years. In the remainder of this
chapter, we discuss the current status of lattice calculations of some quantities of
interest in QCD at nonzero temperature. We shall begin in Section 3.1 with quanti-
ties whose calculation does not run into any of the conceptual difficulties we have
mentioned, before turning to those that do.

3.1 The QCD equation of state from the lattice

The QCD equation of state at zero baryon chemical potential, namely the relation
between the pressure and the energy density of hot QCD matter, is an example of a
quantity that is well-suited to lattice-regularized calculation since, as a thermody-
namic quantity, it can be obtained via suitable differentiations of the Euclidean
partition function. And, the phenomenological motivation for determining this
quantity from first principles in QCD is strong since, as we have seen in Section 2.2,
it is the most important microphysical input for hydrodynamic calculations. Accu-
rate calculations of the thermodynamics of pure glue QCD (N f = 0) have existed
for a long time [184], but the extraction of the equation of state of quark–gluon
plasma with light quarks having their physical masses, and with the continuum
limit taken, has become possible only recently [59, 129, 179]. This illustrates the
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Figure 3.1 Results from a lattice calculation of QCD thermodynamics with phys-
ical quark masses (N f = 3, with appropriate light and strange masses). Upper
panel: temperature dependence of the pressure in units of T 4. Lower panel: the
trace anomaly (ε − 3P) in units of T 4. Data are for lattices with the same tem-
poral extent, meaning the same temperature, but with varying numbers of points
in the Euclidean time direction Nτ . The continuum limit corresponds to taking
Nτ → ∞. Figures taken from Ref. [179].

practical challenges of doing lattice-regularized calculations with light quarks that
we have mentioned above.

The current understanding of QCD thermodynamics at the physical point [179]
is summarized in Fig. 3.1. In the upper panel, the pressure of QCD matter (in ther-
mal equilibrium, with zero baryon chemical potential) is plotted as a function of its
temperature. In order to provide a physically meaningful reference, it is customary
to compare this quantity to the Stefan–Boltzmann result
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PSB = 8π2
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for a free gas of noninteracting gluons and massless quarks. This benchmark is indi-
cated by the arrow in the figure. As illustrated by this plot, the number of degrees of
freedom rises rapidly above a temperature Tc ∼ 170 MeV; at higher temperatures,
the pressure takes an almost constant value which deviates from that of a nonin-
teracting gas of quarks and gluons by approximately 20%. This deviation is still
present at temperatures as high as 1 GeV, and convergence to the noninteracting
limit is only observed at asymptotically high temperatures (T > 108 GeV [354])
which are far from the reach of any collider experiment. The lower panel shows the
trace anomaly, ε − 3P , in units of T 4 in the same range of temperatures. ε − 3P
is often called the “interaction measure”, but this terminology is quite misleading
since both noninteracting quarks and gluons on the one hand and very strongly
interacting conformal matter on the other have ε − 3P = 0, with ε/T 4 and P/T 4

both independent of temperature. Large values of (ε − 3P)/T 4 necessarily indi-
cate significant interactions among the constituents of the plasma, but small values
of this quantity should in no way be seen as indicating a lack of such interac-
tions. We see in the figure that (ε − 3P)/T 4 rises rapidly in the vicinity of Tc.
This rapid rise corresponds to the fact that ε/T 4 rises more rapidly than 3P/T 4,
approaching roughly 80% of its value in an noninteracting gas of quarks and glu-
ons at a lower temperature, between 200 and 250 MeV. At higher temperatures, as
3P/T 4 rises toward roughly 80% of its noninteracting value, (ε − 3P)/T 4 falls
off with increasing temperature and the quark–gluon plasma becomes more and
more conformal. Remarkably, after a proper rescaling of the number of degrees of
freedom and Tc, all the features described above remain the same when the number
of colors of the gauge group is increased and extrapolated to the Nc → ∞ limit
[198, 306, 663].

The central message for us from these lattice calculations of the QCD equa-
tion of state is that at high enough temperatures the thermodynamics of the QCD
plasma becomes conformal while deviations from conformality are most severe at
and just above Tc. This suggests that the use of conformal theories (in which cal-
culations can be done via gauge/gravity duality as described in much of this book)
as vehicles by which to gain insights into real-world quark–gluon plasma may be
more quantitatively reliable when applied to data from heavy ion collisions at the
LHC than when applied to those at RHIC. In this respect, it is also quite encourag-
ing that the charged particle elliptic flow v2(pT ) measured very recently in heavy
ion collisions at

√
s = 2.76 TeV at the LHC [5] is, within error bars, the same as

that measured at RHIC. On a qualitative level, this indicates that the quark–gluon
plasma produced at the LHC is comparably strongly coupled to that at RHIC.
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One of the first questions to answer with a calculation of the equation of state
in hand is whether the observed rapid rise in ε/T 4 and P/T 4 corresponds to a
phase transition or to a continuous crossover. In QCD without quarks, a first order
deconfining phase transition is expected due to the breaking of the ZN center sym-
metry. This symmetry is unbroken in the confined phase and broken above Tc by
a nonzero expectation value for the Polyakov loop [388, 769]. The expected first
order phase transition is indeed seen in lattice calculations [184]. The introduc-
tion of quarks introduces a small explicit breaking of the ZN symmetry even at low
temperatures, removing this argument for a first order phase transition. However, in
QCD with massless quarks there must be a sharp phase transition (first order with
three flavors of massless quarks, second order with two) since chiral symmetry is
spontaneously broken at low temperatures and unbroken at high temperatures. This
argument for the necessity of a transition vanishes for quarks with nonzero masses,
which break chiral symmetry explicitly even at high temperatures. So, the question
of what happens in QCD with physical quark masses, two light and one strange,
cannot be answered by any symmetry argument. Since both the center and chiral
symmetries are explicitly broken at all temperatures, it is possible for the transition
from a hadron gas to quark–gluon plasma as a function of increasing temperature
to occur with no sharp discontinuities. And, in fact, lattice calculations have shown
that this is what happens: the dramatic increase in ε/T 4 and P/T 4 occurs contin-
uously [59]. This is shown most reliably via the fact that the peaks in the chiral
and Polyakov loop susceptibilities are unchanging as one increases the physical
spatial volume V of the lattice on which the calculation is done. If there were a
first order phase transition, the heights of the peaks of these susceptibilities should
grow ∝ V in the large V limit; for a second order phase transition, they should
grow proportional to some fractional power of V . But, for a continuous crossover
no correlation length diverges at Tc and all physical quantities, including the heights
of these susceptibilities, should be independent of V once V 1/3 is larger than the
longest correlation length. This is indeed what is found [59]. The fact that the tran-
sition is a continuous crossover means that there is no sharp definition of Tc, and
different operational definitions can give different values. However, the analysis
performed in [178] indicates that the chiral susceptibility and the Polyakov loop
susceptibility peak in the range of T = 150–170 MeV.

Despite the absence of a phase transition in the mathematical sense, well above
Tc QCD matter is deconfined, since the Polyakov loop takes on large nonzero
values. In this high temperature regime, the matter that QCD describes is best
understood in terms of quarks and gluons. This does not, however, imply that the
interactions amongst the plasma constituents is negligible. Indeed, we have already
seen in Section 2.2 that in the temperature regime accessible in heavy ion colli-
sions at RHIC, the quark–gluon plasma behaves like a liquid, not at all like a gas
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of weakly coupled quasiparticles. And, as we will discuss in Section 6.1, explicit
calculations done via the AdS/CFT correspondence show that in the large-Nc limit
in gauge theories with gravity duals which are conformal, and whose coupling can
therefore be chosen, the thermodynamic quantities change by only 25% when the
coupling is varied from zero (noninteracting gas) to infinite (arbitrarily strongly
coupled liquid). This shows that thermodynamic quantities are rather insensitive
to the strength of the interactions among the constituents (or volume elements) of
quark–gluon plasma.

Finally, we note that calculations of QCD thermodynamics done via perturba-
tive methods have been compared to the results obtained from lattice-regularized
calculations. As is well known (see for example [556] and references therein), the
expansion of the pressure in powers of the coupling constant g is a badly con-
vergent series and, what is more, cannot be extended beyond order g6 log(1/g),
where nonperturbative input is required. This means that perturbative calculations
must resort to resummations and indeed different resummation schemes have been
developed over the years [185, 507, 454, 166, 50, 51, 52]. The effective field the-
ory techniques developed in [185, 507], in particular, exploit a fundamental feature
of any perturbative picture of the plasma: at weak coupling, the Debye screening
mass μD ∝ gT and these methods all exploit the smallness of μD relative to T
since the basis of their formulation is that physics at these two energy scales is well
separated. As we will see in Section 6.3, this characteristic is in fact essential for
any description of the plasma in terms of quasiparticles. The analysis performed in
Ref. [454] showed that in the region of T ∼ (1–3) Tc these effective field theory
calculations of the QCD pressure become very sensitive to the matching between
the scales μD and T , which indicates that there is no separation of these scales.
This was foreshadowed much earlier by calculations of various different correla-
tion lengths in the plasma phase which showed that at T = 2Tc some correlation
lengths that are ∝ 1/(g2T ) at weak coupling are in fact significantly shorter than
others that are ∝ 1/(gT ) at weak coupling [425], and showed that the perturba-
tive ordering of these length scales is only achieved for T > 102Tc. Despite the
success of other resummation techniques [166] in reproducing the main features
of QCD thermodynamics, the absence of any separation of scales indicates that
there are very significant interactions among constituents and casts doubt upon any
approach based upon the existence of quasiparticles.

3.1.1 Flavor susceptibilities

The previous discussion focused on thermodynamics in the absence of expectation
values for any of the conserved (flavor) charges of QCD. As is well known, these
charges are a consequence of the three flavor symmetries that QCD possesses: the
U (1) symmetries generated by electric charge, Q, and baryon number, B, and a
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global SU (3) flavor symmetry. Within SU (3) there are two U (1) subgroups which
can be chosen as those generated by Q and by strangeness S. Conservation of Q is
fundamental to the standard model, since the U (1) symmetry is a gauge symmetry.
Conservation of S is violated explicitly by the weak interactions and conservation
of B is violated by exceedingly small nonperturbative weak interactions, and per-
haps by yet to be discovered beyond standard model physics. As we are interested
only in physics on QCD time scales, we can safely treat S and B as conserved.
Instead of taking B, Q and S as the conserved quantities, we can just as well choose
the linear combinations of them corresponding to the numbers of up, u, down, d,
and strange quarks, s. With three conserved quantities, we can introduce three inde-
pendent chemical potentials. In spite of the difficulties in studying QCD at nonzero
chemical potential on the lattice, derivatives of the pressure with respect to these
chemical potentials at zero chemical potential can be calculated. These derivatives
describe moments of the distributions of these conserved quantities in an ensem-
ble of volumes of quark–gluon plasma, and hence can be related to event-by-event
fluctuations in heavy ion collision experiments.

When all three chemical potentials vanish, the lowest nonzero moments are
the quadratic charge fluctuations, i.e. the diagonal and off-diagonal susceptibilities
defined as

χ X
2 = 1

V T

∂2

∂μX∂μX
log Z(T, μX , . . .) = 1

V T 3
〈N 2

X 〉 , (3.2)

χ XY
11 = 1

V T

∂2

∂μX∂μY
log Z(T, μX , μY , . . .) = 1

V T 3
〈NX NY 〉 , (3.3)

where Z is the partition function and the NX are the numbers of u, d or s quarks
(or, equivalently, B, Q or S charge) present in the volume V . The diagonal suscep-
tibilities quantify the fluctuations of the conserved quantum numbers in the plasma
and the off-diagonal susceptibilities measure the correlations among the conserved
quantum numbers, and are more sensitive to the nature of the charge carriers [540].

Lattice results for these quantities [180, 130] are shown in Fig. 3.2. In the top
panel, the diagonal strange quark number susceptibility is shown as a function of
temperature, at different lattice spacings and extrapolated to the continuum limit.
The susceptibility is compared to its value in a noninteracting gas of gluons and
quarks (dashed line) and to the expectation from a hadron resonance gas, which
correctly describes the results of the lattice calculation at low temperature. Sim-
ilarly to the case of the pressure, there is rapid rise in the susceptibility above
Tc followed by saturation at high temperatures to a constant value that is below
what it would be in a noninteracting gas. This rise, which reflects the liberation of
s-quarks from hadrons, occurs over a similar range of temperatures as the rise in
the pressure. The high temperature value of the susceptibility is about 90% of the
Stefan–Boltzmann value, closer but not significantly closer to the noninteracting
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Figure 3.2 Top: quadratic fluctuations of the strange quark number. Bottom:
off-diagonal susceptibility χus

11 . In both panels the different symbols correspond
to different lattice spacings. The red band is the continuum extrapolation. The
continuous black line is the expectation from a hadron resonance gas and the
dashed black line corresponds to the Stefan–Boltzmann (i.e. noninteracting) limit.
Figures taken from [180].

limit than is the case for the pressure. Similar results are obtained for the u and d
quark number susceptibilities [180]. In the bottom panel, one of the off-diagonal
susceptibilities, χus

11 , is shown. In a noninteracting plasma, the off-diagonal suscep-
tiblities would all vanish. The results of these lattice calculations show significant
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deviation from zero, with the off-diagonal value comparable to its value in a hadron
resonance gas up to temperatures as high as 1.5 Tc and gradually approaching zero
at higher temperatures.

The lattice calculations of susceptibilities further illustrate the fact that thermo-
dynamic properties alone do not resolve the structure of the QGP, since they do not
yield an answer to as simple a question as whether it behaves like a liquid or like a
gas of quasiparticles. On the one hand, the diagonal susceptibilities seem close to
the noninteracting limit and are, in fact, not incompatible with hard thermal loop
computations [170], which supports a quasiparticle interpretation of the plasma
already at these rather low temperatures. On the other hand, the off-diagonal sus-
ceptibilities are too large to be accommodated in perturbative calculations and it
has even been suggested that they point towards the presence of meson-like states
above deconfinement [707] (see also [740]). We will come back to the apparently
contradictory pictures suggested by the different static properties of the plasma in
Section 6.1.2.

3.2 Transport coefficients from the lattice

We turn now to lattice calculations that further determine the structure of the
plasma via studying dynamical quantities rather than just static ones. The lattice
calculation of dynamical quantities, which require time and therefore Minkowski
spacetime in their formulation, are subject to the conceptual challenges that we
described at the beginning of this section, meaning that the lattice results that we
are going to discuss now come with caveats that we shall describe.

Transport coefficients, such as the shear viscosity, are essential in the description
of the real time dynamics of a system, since they describe how small deviations
away from equilibrium relax towards equilibrium. As we have discussed in Sec-
tion 2.2, the shear viscosity plays a particularly important role as it provides the
connection between experimental data on azimuthally asymmetric flow and con-
clusions about the strongly coupled nature of the quark–gluon plasma produced
in RHIC collisions. In this section we describe how transport coefficients can be
determined via lattice gauge theory calculations.

Transport coefficients can be extracted from the low momentum and low fre-
quency limits of the Green’s functions of a suitable conserved current of the theory,
see Appendix A. To illustrate this point, we concentrate on two examples: the stress
tensor components T xy , and the longitudinal component of some conserved U (1)
current J i (ω,k) which can be written J (ω, k) k̂, with ω, k the Fourier modes, and
k̂ a vector of unit length. The stress tensor correlator determines the shear viscosity;
the current–current correlator determines the diffusion constant for the con-
served charge associated with the current. (The conserved charge could be baryon
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number, strangeness or electric charge in QCD or could be some R-charge in a
supersymmetric theory.) The retarded correlators of these operators are defined by

Gxy xy
R (t, x) = −iθ(t)

〈[
T xy(t, x), T xy(0, 0)

]〉
, (3.4)

G J J
R (t, x) = −iθ(t) 〈[J (t, x), J (0, 0)]〉 . (3.5)

And, according to the Green–Kubo relation (A.9) the low momentum and low
frequency limits of these correlators yield

η = − lim
ω→0

Im Gxy xy
R (ω, k = 0)

ω
, (3.6)

Dχ = − lim
ω→0

Im G J J
R (ω, k = 0)

ω
, (3.7)

where η is the shear viscosity, D is the diffusion constant of the conserved charge,
and χ is the charge susceptibility. Note that χ is a thermodynamic quantity which
can be extracted from the partition function by suitable differentiation and so is
straightforward to calculate on the lattice, while η and D are transport properties
which describe small deviations from equilibrium. In general, for any conserved
current operator O whose retarded correlator is given by

G R(t, x) = −iθ(t) 〈[O(t, x),O(0, 0)]〉 , (3.8)

if we define a quantity μ by

μ = − lim
ω→0

Im G R(ω, k = 0)

ω
, (3.9)

then μ is a transport coefficient, possibly multiplied by a thermodynamic quantity.
Transport coefficients can be computed in perturbation theory. However, since

the quark–gluon plasma not too far above Tc is strongly coupled, it is preferable
to extract information about the values of the transport coefficents from lattice
calculations. Doing so is, however, quite challenging. The difficulty arises from
the fact that lattice quantum field theory is formulated in such a way that real time
correlators cannot be calculated directly. Instead, these calculations determine the
thermal or Euclidean correlator

GE(τ, x) = 〈OE(τ, x)OE(0, 0)〉 , (3.10)

where the Euclidean operator is defined from its Minkowski counterpart by

Oμ1...μn
M ν1..νm (−iτ, x) = (−i)r (i)sOμ1..μn

E ν1..νm (τ, x) , (3.11)

where r and s are the number of time indices in {μ1 . . . μn} and {ν1 . . . νm}
respectively. Using the Kubo–Martin–Schwinger relation

〈O(t, x)O(0, 0)〉 = 〈O(0, 0)O(t − iβ, x)〉 , (3.12)

the Euclidean correlator GE can be related to the imaginary part of the retarded
correlator,
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ρ(ω, k) ≡ −2 Im G R(ω, k) , (3.13)

which is referred to as the spectral density. The relation between GE (which can be
calculated on the lattice) and ρ (which determines the transport coefficient) takes
the form of a convolution with a known kernel:

GE(τ, k) = (−1)r+s
∫ ∞

0

dω

2π

cosh
(
ω
(
τ − 1

2T

))
sinh

(
ω

2T

) ρ(ω, k) . (3.14)

A typical lattice computation provides values (with errors) for the Euclidean cor-
relator at a set of values of the Euclidean time, namely {τi ,GE (τi , k)}. In general,
it is not possible to extract a continuous function ρ(ω) from a limited number of
points on GE(τ ) without making assumptions about the functional form of either
the spectral function or the Euclidean correlator. Note also that the Euclidean cor-
relator at any one value of τ receives contributions from the spectral function at
all frequencies. This makes it hard to disentangle the low frequency behavior of
the spectral function from a measurement of the Euclidean correlator at a limited
number of values of τ .

The extraction of the transport coefficient is also complicated by the fact that
the high frequency part of the spectral function ρ typically makes a large contribu-
tion to the measured GE . At large ω, the spectral function is the same at nonzero
temperature as at zero temperature and is given by

ρ(ω, k = 0) = A ω2�−d , (3.15)

where � is the dimension of the operator O and d is the dimension of spacetime. In
QCD, the constant A can be computed in perturbation theory. For the two examples
that we introduced explicitly above, the spectral functions are given at k = 0 to
leading order in perturbation theory by

ρ J J
R (ω, k = 0) = Nc

6π
ω2 , (3.16)

ρ
xy,xy
R (ω, k = 0) = π(N 2

c − 1)

5(4π)2
ω4 , (3.17)

where Nc is the number of colors. These results are valid at any ω to leading
order in perturbation theory; because QCD is asymptotically free, they are the
dominant contribution at large ω. This asymptotic domain of the spectral func-
tion does not contain any information about the transport coefficients, but it makes
a large contribution to the Euclidean correlator. This means that the extraction
of the contribution of the transport coefficient, which is small in comparison and
τ -independent, requires very precise lattice calculations.

The results of lattice computations for the shear correlator are shown in the top
panel of Fig. 3.3. The finite temperature Euclidean correlator is normalized to the
free theory correlator at the same temperature. The measured correlator deviates
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Figure 3.3 Top panel: ratio of the stress tensor Euclidean correlator calculated on
the lattice in Ref. [614] to that in the free theory for QCD with three colors and
zero flavors at four values of the Euclidean time x0 = τ and two temperatures T .
This theory has a first order deconfinement transition, and T is given in units of the
critical temperature Tc for this transition. Bottom panel: stress tensor Euclidean
correlator for N = 4 SYM from Ref. [777]. The solid red line corresponds to
infinite coupling and the dashed black line corresponds to the free theory. The
solid curves are the zero temperature potential.

from the free one only by about 10%–20%. The statistical errors in the numerical
computation illustrate that it is hard to distinguish the computed correlator from
the free one, specially at the higher temperature. It is important to stress that the
fact that the measured correlator is close to the free one comes from the fact that
both receive a large contribution from the large ω region of the spectral function,
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and therefore cannot be interpreted as a signature of large viscosity. To illustrate
this point, it is illuminating to study N = 4 supersymmetric Yang–Mills (SYM)
theory as a concrete example in which we can compare weak and strong coupling
behavior with both determined analytically. We shall introduce this theory and its
strongly coupled plasma in subsequent chapters. As we will discuss in Section 6.2,
in this theory the AdS/CFT correspondence allows us to compute ρ in the limit
of infinite coupling, where the viscosity is small. From this AdS/CFT result, we
can then compute the Euclidean correlator via Eq. (3.14). The result is shown in
the bottom panel of Fig. 3.3. In the same figure, we show the Euclidean correlator
at zero coupling – noting that in the zero coupling limit the viscosity diverges as
does the length scale above which hydrodynamics is valid. As in the lattice com-
putation in the top panel of the figure, the difference between the weak coupling
and strong coupling Euclidean correlator is small and is only significant around
τ = 1/(2T ), where GE is smallest and the contributions from the small-ω region
of ρ are most visible against the “background” from the large-ω region of ρ. For
this correlator in this theory, the difference between the infinite coupling and zero
coupling limits is only at most 10%. Thus, the N = 4 SYM theory calculation
gives us the perspective to realize that the small deviation between the lattice and
free correlators in QCD must not be taken as an indication that the QGP at these
temperatures behaves as a free gas. It merely reflects the lack of sensitivity of the
Euclidean correlator to the low frequency part of the spectral function.

The extraction of transport information from the four points in the upper panel
of Fig. 3.3, as done in Ref. [614], requires assumptions about the spectral den-
sity. Since the high frequency behavior of the spectral function is fixed due to
asymptotic freedom, a first attempt can be made by writing

ρ(ω)

ω
= ρL F(ω)

ω
+ θ(ω − �)

ρH F(ω)

ω
, (3.18)

where

ρH F(ω) = π(N 2 − 1)

5(4π)2

ω4

tanhω/4T
(3.19)

is the free theory result at the high frequencies where this result is valid. In the
analysis performed in [614], the parameter � is always chosen to be ≥ 5T . The
functional form of the low frequency part ρL F should be chosen such that ρL F

vanishes at high frequency. A Breit–Wigner ansatz

ρL F/ω = η

π(1 + b2ω2)
= ρBW/ω (3.20)

provides a simple example with which to start (and is in fact the form that arises in
perturbation theory [10]). This ansatz does not provide a good fit, but it nevertheless
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yields an important lesson. Fitting the parameters in this ansatz to the lattice results
for GE at four values of τ favors large values (larger than T ) for the width � = 2/b
of the low frequency Breit–Wigner structure. This result motivates the assumption
that the width of any peak or other structure at low frequency must be larger than T .
From this assumption, a bound may be derived on the viscosity as follows. Since a
wider function than a Breit–Wigner peak of width � = T would lead to larger value
of ρL F for ω <

√
2T and since the spectral function is positive definite, we have

GE

(
1

2T
, k = 0

)
≥ 1

T 5

[∫ 2T

0
ρBW (ω) +

∫ ∞

�

ρH F(ω)

]
dω

sinhω/2T
. (3.21)

From this condition and the measured value of GE(
1

2T , k = 0), an upper bound on
the shear viscosity η can be obtained, resulting in

η/s <

{
0.96 (T = 1.65Tc)

1.08 (T = 1.24Tc),
(3.22)

with s the entropy density [614]. The idea here is: (i) we know how much the ω>�

region contributes to the integral
∫

dωρ(ω)/ sinhω/2T which is what the lattice
calculation determines, and (ii) we make the motivated assumption that the nar-
rowest a peak at ω = 0 can be is T , and (iii) we can therefore put an upper bound
on ρ(0) by assuming that the entire contribution to the integral that does not come
from ω > � comes from a peak at ω = 0 with width T . The bound is conservative
because it comes from assuming that ρ is zero at intermediate ω between T and �.
Surely ρ receives some contribution from this intermediate range of ω, meaning
that the bounds on η/s obtained from this analysis are conservative.

Going beyond the conservative bound (3.22) and making an estimate of η is
challenging, given the finite number of points at which GE(τ ) is measured, and
relies on physically motivated parameterizations of the spectral function. A sophis-
ticated parameterization was introduced in Ref. [614] under the basic assumption
that there are no narrow structures in the spectral function, which is supported by
the Breit–Wigner analysis discussed above. In Ref. [614], the spectral function was
expanded in an ordered basis of orthonormal functions with an increasing number
of nodes, defined and ordered such that the first few functions are those that make
the largest contribution to the Euclidean correlator; in other words the latter is
most sensitive to the contribution of these functions. Owing to the finite number of
data points and their finite accuracy, the basis has to be truncated to the first few
functions, which is a way of formalizing the assumption that there are no narrow
structures in the spectral function. The analysis based on such parameterization
leads to small values of the ratio of the shear viscosity to the entropy density. In
particular,
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η/s =
{

0.134(33) (T = 1.65Tc)

0.102(56) (T = 1.24Tc) .
(3.23)

Both statistical errors and an estimate of those systematic errors due to the trunca-
tion of the basis of functions used in the extraction are included. The results of this
study are compelling since, as discussed in Section 2.2, they are consistent with
the experimentally extracted bounds on the shear viscosity of the QGP via hydro-
dynamical fits to data on elliptic flow in heavy ion collisions. These results are also
remarkably close to η/s = 1/4π ≈ 0.08, which is obtained in the infinite coupling
limit of N = 4 SYM theory and which we will discuss extensively in Section 6.2.

The lattice studies to date must be taken as exploratory, given the various dif-
ficulties that we have described. As explained in Ref. [616], there are ways to do
better (in addition to using finer lattices and thus obtaining GE at more values of τ ).
For example, a significant improvement may be achieved by analyzing the spec-
tral function at varying nonzero values of the momentum k. One can then exploit
energy and momentum conservation to relate different Euclidean correlators to the
same spectral function, in some cases constraining the same spectral function with
50–100 quantities calculated on the lattice rather than just four. Furthermore, the
functional form of the spectral function is predicted order by order in the hydro-
dynamic expansion and this provides guidance in interpreting the Euclidean data.
These analyses are still in progress, but results reported to date [616] are consistent
with (3.23), given the error estimate therein.

Let us conclude the discussion by remarking on the main points. The Euclidean
correlators calculated on the lattice are dominated by the contribution of the
temperature-independent high frequency part of the spectral function, reducing
their sensitivity to the transport properties that we wish to extract. This fact,
together with the finite number of points on the Euclidean correlators that are avail-
able from lattice computations, complicates the extraction of the shear viscosity
from the lattice. Under the mild assumption that there are no narrow structures in
the spectral function, an assumption that is supported by the lattice data themselves
as we discussed, current lattice computations yield a conservative upper bound
η/s < 1 on the shear viscosity of the QGP at T = (1.2–1.7)Tc. A compelling but
exploratory analysis of the lattice data has also been performed, yielding values of
η/s ≈ 0.1 for this range of temperatures. In order to determine η/s with quanti-
tative control over all systematic errors, however, further investigation is needed –
integrating information obtained from many Euclidean correlators at nonzero k as
well as pushing to finer lattices.

3.3 Quarkonium spectrum from the lattice

Above the critical temperature, quarks and gluons are not confined. As we have
discussed at length in Chapter 2, experiments at RHIC have taught us that in this
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regime QCD describes a quark–gluon plasma in which the interactions among the
quarks and gluons are strong enough to yield a strongly coupled liquid. It is also
possible that these interactions can result in the formation of bound states within the
deconfined fluid [739]. This observation is of particular relevance for quarkonium
mesons formed from heavy quarks in the plasma, namely quarks with M � T .
For these quarks, αs(M) is small and the zero temperature mesons are, to a first
approximation, described by a Coulomb-like potential between a Q−Q̄ pair. Thus,
the typical radius of the quarkonium meson is rM ∼ 1/αs M � 1/T . As a conse-
quence, the properties of these quarkonium mesons cannot be strongly modified in
the plasma. Quarkonia are therefore expected to survive as bound states up to a tem-
perature that is high enough that the screening length of the plasma has decreased
to the point that it is of order the quarkonium radius [609].

The actual masses of the heavy quarks that can be accessed in heavy ion
collisions, the charm and the bottom, are large enough that charmonium and
bottomonium mesons are expected above the deconfinement transition, but they
are not so large that these mesons are expected to be unmodified by the quark–
gluon plasma produced in ultra-relativistic heavy ion collisions. As discussed in
detail in Section 2.4, data indicate that heavy ion collisions at RHIC (at the LHC)
reach temperatures high enough to dissociate all but the lowest lying 1s charmo-
nium (bottomonium) states, see also Fig. 2.16. Moreover, while charmonia are not
expected to survive in the quark–gluon plasma produced at the LHC, they may be
regenerated when the plasma hadronizes since several dozen charm and anticharm
quarks are expected in each LHC collision. It is a non-trivial challenge to deter-
mine what QCD predicts for the temperatures up to which a particular quarkonium
meson survives as a bound state, and above which it dissociates. In this section, we
describe the results of lattice QCD calculations done with this goal in mind. This
is a subject of ongoing research, and definitive results for the dissociation temper-
atures of various quarkonia are not yet in hand. For an example of a recent review
on this subject, see Ref. [131].

Some of the earliest [609, 520] attempts to describe the in-medium heavy
mesons are based on solving the Schrödinger equation for a pair of heavy quarks
in a potential determined from a lattice calculation. These approaches are known
generically as potential models. In this approach, it is assumed that the interactions
between the quark–antiquark pairs and the medium can be expressed in the form of
a temperature-dependent potential. The mesons are identified as the bound states of
quarks in this potential. Such an approach has been very successful at zero temper-
ature [335] and in this context it can be put on firm theoretical grounds by means of
a non-relativistic effective theory for QCD [681, 188]. However, at nonzero tem-
perature it is not clear how to determine this potential from first principles. (For
some attempts in this direction, see Ref. [189].)
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Figure 3.4 Wilson line representing the propagation of a heavy quark–antiquark
pair. The line at −r/2 is the heavy quark propagator in imaginary time while the
line at r/2 is the antiquark. The space links ensure gauge invariance. The singlet
free energy is obtained by setting τ = β.

If the binding energy of the quarkonium meson is small compared to the temper-
ature and to any other energy scale that characterizes the medium, the potential
can be extracted by analyzing a static (infinitely massive) Q − Q̄ pair, in the
color-singlet representation, separated by a distance r . In this limit, both the quark
and the antiquark remain static on the time scale over which the medium fluctu-
ates, and their propagators in the medium reduce to Wilson lines along the time
axis. In the imaginary time formalism, these two Wilson lines wind around the
periodic imaginary time direction and they are separated in space by the distance r .
These quark and antiquark Wilson lines are connected by spatial links to ensure
gauge invariance. These spatial links can be thought of as arising via applying
a point-splitting procedure at the point where the quark and antiquark pair are
produced by a local color singlet operator. A sketch of this Wilson line is shown
in Fig. 3.4.

At zero temperature, the extension of the Wilson lines in the imaginary time
direction τ can be taken to infinity; this limit yields Wilson’s definition of the
heavy quark potential [800]. In contrast, at nonzero temperature the imaginary time
direction is compact and the imaginary time τ is bounded by 1/T . Nevertheless,
inspired by the zero temperature case the early studies postulated that the potential
should be obtained from the Wilson line with τ = β = 1/T . This Wilson line
can be interpreted as the singlet free energy of the heavy quark pair, i.e. the energy
change in the plasma due to the presence of a pair of quarks at a fixed distance and
at fixed temperature [680, 641].

Lattice results for the singlet free energy are shown in Fig. 3.5. In the upper
panel we show results for the gluon plasma described by QCD without any quarks
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Figure 3.5 Lattice results for the singlet free energy F1(r, T ) as a function
of the distance r for different temperatures T , quoted as fractions of the crit-
ical temperature Tc at which the crossover from hadron gas to quark–gluon
plasma occurs. The solid curves are the zero temperature potential. The upper
panel shows results for QCD without quarks [502, 503, 504] and the lower
panel for 2+1 flavor QCD [505]. The fact that below Tc the free energy goes
above the zero temperature result is a lattice artifact [189]. Figures taken from
Refs. [131, 678].

[502, 503, 504]. The solid black line in this figure denotes the T = 0 result, which
rises linearly with the separation r at large r , as expected due to confinement. The
potential is well approximated by the ansatz

F1(r) = σ r − α

r
, (3.24)
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where the linear long-distance part is characterized by the string tension
√
σ =

420 MeV [647] and the perturbative 1/r piece describes the short-distance regime.
Below Tc, as the temperature increases the theory remains confined but the string
tension decreases. For temperatures larger than Tc, the theory is not confined and
the free energy flattens to a finite value in the large-r limit. At these temperatures,
the color charge in the plasma screens the interaction between the heavy Q and
Q̄. In QCD with light dynamical quarks, as in the lower panel of Fig. 3.5 from
Ref. [505], the situation is more complicated. In this case, the free energy flattens
to a finite limit at large distance even at zero temperature, since once the heavy
quark and antiquark have been pulled far enough apart it becomes favorable to
produce a light q–q̄ pair from the medium (in this case the vacuum) which results
in the formation of Qq̄ and Q̄q mesons that can then be moved far apart with-
out any further expenditure of energy. In vacuum this process is usually referred
to as “string-breaking”. In vacuum, at distances that are small enough that string-
breaking does not occur the potential can be approximated by (3.24), but with a
reduced string tension

√
σ ≈ 200 MeV [277]. Above Tc, the potential is screened

at large distances by the presence of the colored fluid, with the screening length
beyond which the potential flattens shrinking with increasing temperature, just as in
the absence of quarks. As a consequence, in the lower panel of the figure the poten-
tial evolves relatively smoothly with increasing temperature, with string-breaking
below Tc becoming screening at shorter distance scales above Tc. The decrease in
the screening length with increasing temperature is a generic result, and it leads us
to expect that quarkonium mesons dissociate when the temperature is high enough
that the vacuum quarkonium size corresponds to a quark–antiquark separation at
which the potential between the quark and antiquark is screened [609].

After precise lattice data for the singlet free energy became available, several
authors have used them to solve the Schrödinger equation. Since the expectation
value of the Wilson loop in Fig. 3.4 leads to the singlet free energy and not to
the singlet internal energy, it has been argued that the potential to be used in the
Schrödinger equation should be that obtained after first subtracting the entropy
contribution to the free energy, namely

U (r, T ) = F(r, T ) − T
d F(r, T )

dT
. (3.25)

Analyses performed with this potential indicate that the J/ψ meson survives
deconfinement, existing as a bound state up to a dissociation temperature that lies
in the range Tdiss ∼ (1.5–2.5) Tc [806, 39, 740, 621, 40]. It is also a generic fea-
ture of these potential models that, since they are larger in size, other less bound
charmonium states like the χc and ψ ′ dissociate at a lower temperature [520], typ-
ically at temperatures as low as T = 1.1 Tc. Let us state once more that these
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ρ/ω

2M2M−Eb0 ω

Figure 3.6 Schematic view of the current–current spectral function as a function
of frequency for heavy quarks. The structure at small frequency ω ∼ 0 is the
transport peak which is due to the interaction of the external current with heavy
quarks and antiquarks from the plasma. At ω = 2M there is a threshold for pair
production. An in-medium bound state, like a quarkonium meson, appears as a
peak below the threshold.

calculations are based on two key model assumptions: first, that the charm and
bottom quarks are heavy enough for a potential model to apply and, second, that
the potential is given by Eq. (3.25). Neither assumption has been demonstrated
from first principles.

Given that potential models are models, there has also been a lot of effort to
extract model-independent information about the properties of quarkonium mesons
in the medium at nonzero temperature by using lattice techniques to calculate the
Euclidean correlation function of a color-singlet operator of the type

J�(τ, x) = ψ̄(τ, x)�ψ(τ, x) , (3.26)

where ψ(τ, x) is the heavy quark operator and � = 1, γμ, γ5, γ5γμ, γμγν corre-
spond to the scalar, vector, pseudoscalar, pseudovector and tensor channels. As in
the case of the transport coefficients whose analysis we described in Section 3.2,
in order to obtain information about the in-medium mesons we are interested
in extracting the spectral functions of these operators. As in Section 3.2, the
Minkowski space spectral function cannot be calculated directly on the lattice; it
must instead be inferred from lattice calculations of the Euclidean correlator

GE(τ, x) = 〈J�(τ, x)J�(0, 0)〉 , (3.27)

which is related to the spectral function as in Eq. (3.14).
The current–current correlator can be understood as describing the interaction

of an external vector meson which couples only to heavy quarks in the plasma.
This interaction can proceed by scattering with the heavy quarks and antiquarks
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present in the plasma or by mixing the singlet quarkonium meson with (light quark)
states from within the plasma that have the same quantum numbers as the exter-
nal quarkonium. The first physical process leads to a large absorption of those
vector mesons in which the ratio ω/q matches the velocity of heavy quarks in
the medium, yielding the so-called transport peak at small ω. The second phys-
ical process populates the near-threshold region of ω ∼ 2M . Since the thermal
distribution of the velocity of heavy quarks and antiquarks is Maxwellian with a
mean velocity v ∼ √

T/M , the transport peak is well-separated from the thresh-
old region. Thus, the spectral function contains information not only about the
properties of mesons in the medium, but also about the transport properties of the
heavy quarks in the plasma. A sketch of the general expectation for this spectral
function is shown in Fig. 3.6. Given these expectations, the extraction of proper-
ties of quarkonium mesons in the plasma from the Euclidean correlator must take
into account the presence of the transport peak. It is worth mentioning that for
the particular case of pseudoscalar quarkonia, the transport peak is suppressed by
mass [9]; thus, the extraction of meson properties is simplest in this channel. All
other channels, including in particular the vector channel, include contributions
from the transport peak.

From the relation (3.14) between the Euclidean correlator and the spectral
function, it is clear that the Euclidean correlator has two sources of temperature
dependence: the temperature dependence of the spectral function itself which is of
interest to us and the temperature dependence of the kernel in the relation (3.14).
Since the latter is a trivial kinematical factor, lattice calculations of the Euclidean
correlator are often presented compared to

Grecon(τ, T ) =
∫ ∞

0
dω

cosh(ω(τ − 1/2T ))

sinh(ω/2T )
ρ(ω, T = 0) , (3.28)

which takes into account the modification of the heat kernel. Any further tem-
perature dependence of GE relative to that in Grecon is due to the temperature
dependence of the spectral function.

In Fig. 3.7 we show the ratio of the computed lattice correlator GE to Grecon

defined in (3.28) in the pseudoscalar and vector channels for charm quarks [491].
The temperature dependence of this ratio is due only to the temperature depen-
dence of the spectral function. The pseudoscalar correlator shows little temperature
dependence up to temperatures as high as T = 1.5 Tc while the vector correlator
varies significantly in that range of temperatures. Since, as we have already men-
tioned, the transport peak is suppressed in the pseudoscalar channel, the lack of
temperature dependence of the Euclidean correlator in this channel can be inter-
preted as a signal of the survival of pseudoscalar charmed mesons (the ηc) above
deconfinement. However, the Euclidean correlator is a convolution integral over
the spectral density and the thermal kernel, and in principle the spectral density
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Figure 3.7 The ratio of the Euclidean correlator GE to Grecon defined in (3.28) in
the pseudoscalar (top) and vector (bottom) channels for charm quarks versus the
imaginary time τ [491]. Note that the transport contribution is suppressed by the
mass of the charmed quark only in the pseudoscalar channel. Figure taken from
Ref. [491].

can change radically while leaving the convolution integral relatively unchanged.
So, the spectral function must be extracted before definitive conclusions can be
drawn.

There has been a lot of effort towards extracting these spectral densities in
a model-independent way directly from the Euclidean correlators. The method
that has been developed the furthest is called the Maximum Entropy Method
(MEM) [81]. It is an algorithm designed to find the most probable spectral func-
tion compatible with the lattice data on the Euclidean correlator. This problem is
underconstrained, since one has available lattice calculations of the Euclidean cor-
relator only at finitely many values of the Euclidean time τ , each with error bars,
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and one is seeking to determine a function of ω. This means that the algorithm
must take advantage of prior information in the form of a default model for the
spectral function. Examples of priors that are taken into account include informa-
tion about asymptotic behavior and sum rules. The MEM method has been very
successful in extracting the spectral functions at zero temperature, where it turns
out that the extracted functions have little dependence on the details of how the pri-
ors are implemented in a default model for the spectral function. The application
of the same MEM procedure at nonzero temperature is complicated by two facts:
the number of data points is smaller at finite temperature than at zero temperature
and the temporal extent of the correlators is limited to 1/T , which is reduced as
the temperature increases. The first problem is a computational problem, which
can be ameliorated over time as computing power grows by reducing the temporal
lattice spacing and thus increasing the number of lattice points within the extent
1/T . The second problem is intrinsic to the nonzero temperature calculation; all
the structure in the Minkowski space spectral function, as in the sketch in Fig. 3.6,
gets mapped onto fine details of the Euclidean correlator within a small interval of
τ meaning that at nonzero temperature it takes much greater precision in the cal-
culation of the Euclidean correlator in order to disentangle even the main features
of the spectral function.

To date, extractions of the pseudoscalar spectral density at nonzero temperature
via the MEM indicate, perhaps not surprisingly, that the spectral function includ-
ing its ηc peak remains almost unchanged up to T ≈ 1.5 Tc [80, 308, 491, 11],
especially when the comparison that is made is with the zero temperature spectral
function extracted from only a reduced number of points on the Euclidean corre-
lator. The application of the MEM to the vector channel also indicates survival of
the J/ψ up to T ≈ 1.5–2 Tc [80, 308, 491, 11, 322], but it fails to reproduce the
transport peak that must be present in this correlator near ω = 0. It has been argued
that most of the temperature dependence of the vector correlator seen in Fig. 3.7
is due to the temperature dependence of the transport peak [782]. (Note that since
the transport peak is a narrow structure centered at zero frequency, it corresponds
to a temperature-dependent contribution to the Euclidean correlator that is approx-
imately τ -independent.) This is supported by the fact that the τ -derivative of the
ratio of correlators is much less dependent on T [307] and by the analysis of the
spectral functions extracted after introducing a transport peak in the default model
of the MEM [322, 325]. When the transport peak is taken into account the MEM
also shows that J/ψ may survive at least up to T = 1.5 Tc [322]. However, above
Tc both the vector and the pseudoscalar channels show strong dependence (much
stronger than at zero temperature) on the default model via which prior informa-
tion is incorporated in the MEM [491, 322], which makes it difficult to extract
solid conclusions on the survival of charmonium states from this method. For the
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bottomonium family, the difficulties which arise from the presence of a transport
peak remain. However, their influence on the lattice determination of the survival
of the different states is reduced as a result of the larger mass of the b-quark, which
suppresses this contribution. The large b-quark mass also makes it possible to per-
form a different set of lattice studies in which these uncertainties are reduced by
starting from a non-relativistic effective field theory for the bottomonia states in
which the transport and bound state regions of the spectral function are explicitly
decoupled. This method provides access not only to the ground states of the dif-
ferent bottomonium channels but also to their excited states. In the vector channel,
in particular, the calculations in Ref. [8] indicate that the ϒ survives up to temper-
atures higher than 2 Tc while the first excited state, the ϒ(2S), disappears below
1.5 Tc. Notwithstanding the uncertainties of the method, the conclusions of the
MEM analyses agree with those reached via analyses of potential models in which
the internal energy (3.25) is used as the potential. However, before this agreement
can be taken as firm evidence for the survival of the different quarkonia states well
above the phase transition, it must be shown that the potential models and the lattice
calculations are compatible in other respects. To this we now turn.

Potential models can be used for more than determining whether a temperature-
dependent potential admits bound states: they provide a prediction for the entire
spectral density. It is then straightforward to start with such a predicted spectral
density and compute the Euclidean correlator that would be obtained in a lattice
calculation if the potential model correctly described all aspects of the physics. One
can then compare the Euclidean correlator predicted by the potential model with
that obtained in lattice computations like those illustrated in Fig. 3.7. Following this
approach, the authors of Refs. [623, 622] have shown that neither the spectral func-
tion obtained via identifying the singlet internal energy as the potential nor the one
obtained via identifying the singlet free energy as the potential correctly reproduce
the Euclidean correlator found in lattice calculations. This means that conclusions
drawn based upon either of these potentials cannot be quantitatively reliable in
all respects. These authors then proposed a more phenomenological approach,
constructing a phenomenological potential (containing many of the qualitative fea-
tures of the singlet free energy but differing from it) that reproduces the Euclidean
correlator obtained in lattice calculations at the percent level [623, 622]. These
authors also point out that at nonzero temperature all putative bound states must
have some nonzero thermal width, and states whose binding energy is smaller than
this width should not be considered bound. These considerations lead the authors
of Refs. [623, 622] to conclude that the J/ψ and ηc dissociate by T ∼ 1.2Tc while
less bound states like the χc or ψ ′ do not survive the transition at all. These con-
clusions differ from those obtained via the MEM. Although these conclusions are
dependent on the potential used, an important and lasting lesson from this work is
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that the spectral function above Tc can be very different from that at zero temper-
ature even if the Euclidean correlator computed on the lattice does not show any
strong temperature dependence. This lesson highlights the challenge, and the need
for precision, in trying to extract the spectral function from lattice calculations of
the Euclidean correlator in a model independent fashion.

Finally, we note once again that there is no argument from first principles for
using the Schrödinger equation with either the phenomenological potential of
Refs. [623, 622] or the internal energy or the free energy as the potential. To
conclude this section, we would like to add some remarks on why the identifi-
cation of the potential with the singlet internal or singlet free energy cannot be
correct [563, 137]. If the quarkonium states can be described by a Schrödinger
equation, the current–current correlator must reduce to the propagation of a quark–
antiquark pair at a given distance r from each other. The correlator must then
satisfy (

−∂τ + ∇2

2M
− 2M − V (τ, r)

)
GM(τ, r) = 0, (3.29)

where we have added the subscript M to remind the reader that this expression is
only valid in the near-threshold region. From this expression, it is clear that the
potential can be extracted from the infinitely massive limit, where the propagation
of the pair is given by the Wilson line WM in Fig. 3.4 (up to a trivial phase factor
proportional to 2Mt). In this limit, the potential in the Euclidean equation (3.29) is
then defined by

− ∂τ WM(τ, r) = V (τ, r)WM(τ, r) , (3.30)

where τ and r are the sides of the Wilson loop in Fig. 3.4. In principle, the correct
real time potential V (t, r) should then be obtained via analytic continuation of
V (τ, r). And, for bound states with sufficiently low binding energy it would then
suffice to consider the long time limit of the potential, V∞(r) ≡ V (t = ∞, r).

The difficulty of extracting the correct potential resides in the analytic continu-
ation from V (τ, r) to V (t, r). At zero temperature, τ is not periodic and we can
take the τ → ∞ limit and relate what we obtain to V∞. At nonzero temperature,
τ is periodic and so there is no τ → ∞ limit. It is also apparent that V∞ need
not coincide with the value of V (β, r) as postulated in some potential models; in
fact, due to the periodicity of τ a lot of information is lost by setting τ = β [137].
Explicit calculations within perturbative thermal field theory, where the analytic
continuation can be performed, show that V∞ does not coincide with the internal
energy (3.25) and, what is more, the in-medium potential develops a r -dependent
imaginary part which can be interpreted as the collisional dissociation of the state
in the plasma via processes in which momentum is exchanged with the plasma
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constituents [563]. Potential model analyses, analogous to those described above
but which use complex potentials inspired by the perturbative quantum field the-
oretical calculations, show that the imaginary part of the potential dominates the
melting process of the different quarkonia states, since they become broad well
before their binding energy vanishes [563] and before their size becomes com-
parable to the Debye screening length of the plasma [219].1 Nevertheless, the
Euclidean correlators extracted from these potentials deviate from those obtained
in lattice calculation [679], as expected since the calculation of these potentials
assumes a weakly coupled medium while the lattice calculations include the full
thermodynamics of the strongly coupled plasma in QCD.

If the log of the Wilson loop WM is a quadratic function of the gauge potential,
as in QED or in QCD to leading order in perturbation theory, then it is possible to
show that the real part of the potential agrees with the singlet free energy [137];
however, this is not the case in general and an analysis which goes beyond per-
turbation theory is needed. Complementary to the analysis of current correlators,
there have been some attempts to extract the heavy quark potential from lattice
studies [717, 221]. These analyses are based on an analytical continuation of the
numerical computation of the potential (3.30) to real time via a spectral analysis of
the lattice Wilson loop

WM(τ, r) =
∫ ∞

−∞
dω e−ωτρM(ω, r) . (3.31)

The numerical inversion of this integral poses the same challenges as the extrac-
tion of the spectral density from the meson correlators we have described above.
Nevertheless, current attempts in determining V∞ from this spectral analysis show
that the real part of the potential does indeed deviate from the singlet free energy
above Tc, and also show a very strong increase in the imaginary part of the potential
at large distances, r . While further studies are needed before V∞ can be extracted
accurately from the lattice, these calculations show that the many-body effects that
lead to complex potentials are indeed of relevance for the dynamics of quarkonium
mesons in the plasma. For this reason, in recent years a new approach to these
dynamics based on describing the heavy quark pair as an open quantum system

1 If the plasma is weakly coupled, and if the quark mass M is heavy enough that the quarkonium mesons are
small enough that physics at the scales given by both their size and their binding energy is weakly coupled,
then all the relevant scales are distinct. In this case, the Debye screening length of the plasma would become
comparable to the size of the quarkonium meson at a temperature that is of order gM but the imaginary part
of the potential becomes comparable to the binding energy of the meson first, at a lower temperature that is

of order g4/3
(
log 1

g

)−1/3
M [344, 562]. In a strongly coupled plasma in which g is large, these scales need

not be separated. Indeed, the calculations that we shall describe in Section 9.4.2 indicate that in the strongly
coupled plasma in N = 4 SYM theory in which the physics of “quarkonium” mesons can be investigated
using gauge/gravity duality there is no parametric difference between the scales where the imaginary part of
the potential gets large and where the screening length of the plasma becomes comparable to the meson size.
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has been pursued. This approach has great potential for the description of the real-
time evolution of heavy states in plasma since it is based on a stochastic approach.
A detailed description of this method [814, 813, 176, 31] goes beyond the scope of
this book.

Finally, the collisional dissociation processes that lead to imaginary potentials
have also impacted the modern description of quarkonium production in heavy
ion collisions. In current modeling, these dynamics have been introduced either by
including collisional dissociation processes into the traditional rate equations for
the different states [337, 759], or via new attempts to describe the entire quarko-
nium evolution via a potential approach [766, 765, 248]. The latter approach, which
is particularly suitable for bottomonium states due to their larger masses, has been
very successful in describing the suppression pattern of the ϒ family in heavy ion
collisions at the LHC, which we have described in Section 2.4.



4

Introducing the gauge/string duality

Chapters 4 and 5 together constitute a primer on gauge/string duality, written for a
QCD audience.

Our goal in this section is to state what we mean by gauge/string duality, via a
clear statement of the original example of such a duality [594, 392, 803], namely
the conjectured equivalence between a certain conformal gauge theory and a certain
gravitational theory in anti-de Sitter (AdS) spacetime. We shall do this in Sec-
tion 4.3. In order to get there, in Section 4.1 we will first motivate from a gauge
theory perspective why there must be such a duality. Then, in Section 4.2, we will
give the reader a look at all that one needs to know about string theory itself in
order to understand Section 4.3, and indeed to read this book.

Since some of the contents of this chapter are by now standard textbook material,
in some cases we will not give specific references. The reader interested in a more
detailed review of string theory may consult the many textbooks available such as
[386, 587, 685, 501, 823, 532, 133, 321]. The reader interested in complementary
aspects or extra details about the gauge/string duality may consult some of the
many existing reviews, e.g. [29, 319, 596, 749, 672, 601, 340, 398, 730, 687].

4.1 Motivating the duality

Although the AdS/CFT correspondence was originally discovered [594, 392, 803]
by studying D-branes and black holes in string theory, the fact that such an
equivalence may exist can be directly motivated from certain aspects of gauge
theories and gravity.1 In this section we motivate such a direct path from gauge
theory to string theory without going into any details about string theory and
D-branes.

1 Since string theory is a quantum theory of gravity and the standard Einstein gravity arises as the low energy
limit of string theory, we will use the terms gravity and string theory interchangeably below.

92
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4.1.1 An intuitive picture: geometrizing the renormalization group flow

Consider a quantum field theory (more generally, a many-body system) in d-
dimensional Minkowski spacetime with coordinates (t, �x), possibly defined with
a short-distance cut-off ε. From the work of Kadanoff, Wilson and others in the
1960s, a good way to describe the system is to organize the physics in terms of
length (or energy) scales, since degrees of freedom at widely separated scales are
largely decoupled from each other. If one is interested in properties of the system
at a length scale z � ε, instead of using the bare theory defined at scale ε, it is
more convenient to integrate out short-distance degrees of freedom and obtain an
effective theory at length scale z. Similarly, for physics at an even longer length
scale z′ � z, it is more convenient to use the effective theory at scale z′. This pro-
cedure defines a renormalization group (RG) flow and gives rise to a continuous
family of effective theories in d-dimensional Minkowski spacetime labeled by the
RG scale z. One may now visualize this continuous family of d-dimensional theo-
ries as a single theory in a (d + 1)-dimensional spacetime with the RG scale z now
becoming a spatial coordinate.2 By construction, this (d + 1)-dimensional theory
should have the following properties.

(1) The theory should be intrinsically non-local, since an effective theory at a
scale z should only describe physics at scales longer than z. However, there
should still be some degree of locality in the z-direction, since degrees of free-
dom of the original theory at different scales are not strongly correlated with
each other. For example, the renormalization group equations governing the
evolution of the couplings are local with respect to length scales.

(2) The theory should be invariant under reparametrizations of the z-coordinate,
since the physics of the original theory is invariant under reparametrizations of
the RG scale.

(3) All the physics in the region below the Minkowski plane at z (see Fig. 4.1)
should be describable by the effective theory of the original system defined at
a RG scale z. In particular, this (d + 1)-dimensional description has only the
number of degrees of freedom of a d-dimensional theory.

In practice, it is not yet clear how to ‘merge’ this continuous family of d-
dimensional theories into a coherent description of a (d + 1)-dimensional system,
or whether this way of rewriting the renormalization group gives rise to some-
thing sensible or useful. Property number (3) above, however, suggests that if
such a description is indeed sensible, the result may be a theory of quantum grav-
ity. The clue comes from the holographic principle [771, 767] (for a review, see

2 Arguments suggesting that the string dual of a Yang–Mills theory must involve an extra dimension were put
forward in [694].
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Figure 4.1 A geometric picture of AdS5. Figure adapted from Ref. [601].

[183]), which says that a theory of quantum gravity in a region of space should be
described by a non-gravitational theory living at the boundary of that region. In
particular, one may think of the quantum field theory as living on the z = 0 slice,
the boundary of the entire space.

We now see that the gauge/gravity duality, when interpreted as a geometrization
of the RG evolution of a quantum field theory, appears to provide a specific realiza-
tion of the holographic principle. An important organizing principle which follows
from this discussion is the UV/IR connection [768, 671] between the physics of
the boundary and the bulk systems. From the viewpoint of the bulk, physics near
the z = 0 slice corresponds to physics near the boundary of the space, i.e. to large-
volume or IR physics. In contrast, from the viewpoint of the quantum field theory,
physics at small z corresponds to short-distance physics, i.e. UV physics.

4.1.2 The large-Nc expansion of a non-Abelian gauge theory vs. the string
theory expansion

The heuristic picture of the previous section does not tell us for which many-
body system such a gravity description is more likely to exist, or what kind of
properties such a gravity system should have. A more concrete indication that a
many-body theory may indeed have a gravitational description comes from the
large-Nc expansion of a non-Abelian gauge theory.

That it ought to be possible to reformulate a non-Abelian gauge theory as a
string theory can be motivated at different levels. After all, string theory was first
invented to describe strong interactions. Different vibration modes of a string pro-
vided an economical way to explain many resonances discovered in the 1960s
which obey the so-called Regge behavior, i.e. the relation M2 ∝ J between the
mass and the angular momentum of a particle. After the formulation of QCD as
the microscopic theory for the strong interactions, confinement provided a physi-
cal picture for possible stringy degrees of freedom in QCD. Owing to confinement,
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gluons at low energies behave to some extent like flux tubes which can close on
themselves or connect a quark-antiquark pair, which naturally suggests a possi-
ble string formulation. Such a low-energy effective description, however, does not
extend to high energies if the theory becomes weakly coupled, or to non-confining
gauge theories.

A strong indication that a fundamental (as opposed to effective) string theory
description may exist for any non-Abelian gauge theory (confining or not) comes
from ’t Hooft’s large-Nc expansion [770]. Owing to space limitations, here we
will not give a self-contained review of the expansion (see e.g. [801, 297, 599] for
reviews) and will only summarize the most important features. The basic idea of
’t Hooft was to treat the number of colors Nc for a non-Abelian gauge theory as a
parameter, take it to be large, and expand physical quantities in 1/Nc. For example,
consider the Euclidean partition function for a U (Nc) pure gauge theory with gauge
coupling g:

Z =
∫

D Aμ exp

(
− 1

4g2

∫
d4x TrF2

)
. (4.1)

Introducing the ’t Hooft coupling

λ = g2Nc , (4.2)

one finds that the vacuum-to-vacuum amplitude log Z can be expanded in 1/Nc as

log Z =
∞∑

h=0

N 2−2h
c fh(λ) = N 2

c f0(λ) + f1(λ) + 1

N 2
c

f2(λ) + · · · , (4.3)

where fh(λ), h = 0, 1, . . . are functions of the ’t Hooft coupling λ only. What
is remarkable about the large-Nc expansion (4.3) is that, at a fixed λ, Feynman
diagrams are organized by their topologies. For example, diagrams which can
be drawn on a plane without crossing any lines (“planar diagrams”) all have
the same Nc dependence, proportional to N 2

c , and are included in f0(λ). Simi-
larly, fh(λ) includes the contributions of all diagrams which can be drawn on a
two-dimensional surface with h holes without crossing any lines. Given that the
topology of a two-dimensional compact orientable surface is classified by its num-
ber of holes, the large-Nc expansion (4.3) can be considered as an expansion in
terms of the topology of two-dimensional compact surfaces.

This is in remarkable parallel with the perturbative expansion of a closed string
theory, which expresses physical quantities in terms of the propagation of a string in
spacetime. The worldsheet of a closed string is a two-dimensional compact surface3

3 With external legs contracted to points, as can be done thanks to the conformal invariance of the string
worldsheet. For details see any of the standard textbooks on string theory cited above.
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and the string perturbative expansion is given by a sum over the topologies of two-
dimensional surfaces. For example, the vacuum-to-vacuum amplitude in a string
theory can be written as

A =
∞∑

h=0

g2h−2
s Fh(α

′) = 1

g2
s

F0(α
′) + F1(α

′) + g2
s F2(α

′) + · · · , (4.4)

where gs is the string coupling, 2πα′ is the inverse string tension, and Fh(α
′) is the

contribution of two-dimensional surfaces with h holes.
Comparing (4.3) and (4.4), it is tempting to identify (4.3) as the perturbative

expansion of some string theory with

gs ∼ 1

Nc
(4.5)

and the string tension given as some function of the ’t Hooft coupling λ. Note
that the identification of (4.3) and (4.4) is more than just a mathematical anal-
ogy. Consider for example f0(λ), which is given by the sum over all Feynman
diagrams which can be drawn on a plane (which is topologically a sphere). Each
planar Feynman diagram can be thought of as a discrete triangulation of the sphere.
Summing all planar diagrams can then be thought of as summing over all possible
discrete triangulations of a sphere, which in turn can be considered as summing
over all possible embeddings of a two-dimensional surface with the topology of
a sphere in some ambient spacetime. This motivates the conjecture of identifying
f0(λ) with F0 for some closed string theory, but leaves open what the specific string
theory is.

One can also include quarks, or more generally matter in the fundamental rep-
resentation. Since quarks have Nc degrees of freedom, in contrast with the N 2

c

carried by gluons, including quark loops in the Feynman diagrams will lead to
1/Nc suppressions. For example, in a theory with N f flavors, the single-quark loop
planar-diagram contribution to the vacuum amplitude scales as log Z ∼ N f Nc

rather than as N 2
c as in (4.3). In the large-Nc limit with finite N f , the contribu-

tion from quark loops is thus suppressed by powers of N f /Nc. Feynman diagrams
with quark loops can also be classified by using topologies of two-dimensional
surfaces, now with inclusion of surfaces with boundaries. Each boundary can be
identified with a quark loop. On the string side, two-dimensional surfaces with
boundaries describe worldsheets of a string theory containing both closed and open
strings, with boundaries corresponding to the worldlines of the endpoints of the
open strings.
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4.1.3 Why AdS?

Assuming that a d-dimensional field theory can be described by a (d + 1)-
dimensional string or gravity theory, we can try to derive some properties of the
(d + 1)-dimensional spacetime. The most general metric in d + 1 dimensions
consistent with d-dimensional Poincare symmetry can be written as

ds2 = �2(z)
(−dt2 + d �x2 + dz2

)
, (4.6)

where z is the extra spatial direction. Note that in order to have translational sym-
metries in the t, �x directions, the warp factor �(z) can depend on z only. At
this stage not much can be said of the form of �(z) for a general quantum field
theory. However, if we consider field theories which are conformal (CFTs), then
we can determine �(z) using the additional symmetry constraints! A conformally
invariant theory is invariant under the scaling

(t, �x) → C(t, �x) (4.7)

with C a constant. For the gravity theory formulated in (4.6) to describe such a
field theory, the metric (4.6) should respect the scaling symmetry (4.7) with the
simultaneous scaling of the z coordinate z → Cz, since z represents a length scale
in the boundary theory. For this to be the case we need �(z) to scale as

�(z) → C−1�(z) under z → Cz . (4.8)

This uniquely determines

�(z) = R

z
, (4.9)

where R is a constant. The metric (4.6) can now be written as

ds2 = R2

z2

(−dt2 + d �x2 + dz2
)
, (4.10)

which is precisely the line element of (d + 1)-dimensional anti-de Sitter space-
time, AdSd+1. This is a maximally symmetric spacetime with curvature radius R
and constant negative curvature proportional to 1/R2. See e.g. [436] for a detailed
discussion of the properties of AdS space.

In addition to Poincare symmetry and the scaling (4.7), a conformal field theory
in d dimensions is also invariant under d special conformal transformations, which
altogether form the d-dimensional conformal group SO(2, d). It turns out that the
isometry group4 of (4.10) is also SO(2, d), precisely matching that of the field
theory. Thus one expects that a conformal field theory should have a string theory
description in AdS spacetime!

4 Namely the spacetime coordinate transformations that leave the metric invariant.
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Note that it is not possible to use the discussion of this section to deduce the pre-
cise string theory dual of a given field theory, nor the precise relations between their
parameters. In next section we will give a brief review of some essential aspects
of string theory which will then enable us to arrive at a precise formulation of the
duality, at least for some gauge theories.

4.2 All you need to know about string theory

Here we will review some basic concepts of string theory and D-branes, which
will enable us to establish an equivalence between IIB string theory in AdS5 × S5

and N = 4 SYM theory. Although some of the contents of this section are not
indispensable to understanding some of the subsequent chapters, they are important
for building the reader’s intuition about the AdS/CFT correspondence.

4.2.1 Strings

Unlike quantum field theory, which describes the dynamics of point particles, string
theory is a quantum theory of interacting, relativistic one-dimensional objects. It is
characterized by the string tension, Tstr, and by a dimensionless coupling constant,
gs , that controls the strength of interactions. It is customary to write the string
tension in terms of a fundamental length scale  s , called string length, as

Tstr ≡ 1

2πα′ with α′ ≡  2
s . (4.11)

We now describe the conceptual steps involved in the definition of the theory,
in a first-quantized formulation, i.e. we consider the dynamics of a single string
propagating in a fixed spacetime. Although perhaps less familiar, an analogous
first-quantized formulation also exists for point particles [693, 242], whose second-
quantized formulation is a quantum field theory. In the case of string theory, the
corresponding second-quantized formulation is provided by string field theory,
which contains an infinite number of quantum fields, one for each of the vibra-
tion modes of a single string. In this book we will not need to consider such a
formulation. For the moment we also restrict ourselves to closed strings – we will
discuss open strings in the next section.

A string will sweep out a two-dimensional worldsheet which, in the case of
a closed string, has no boundary. We postulate that the action that governs the
dynamics of the string is simply the area of this worldsheet. This is a natural gen-
eralization of the action for a relativistic particle, which is simply the length of its
worldline. In order to write down the string action explicitly, we parametrize the
worldsheet with local coordinates σα, with α = 0, 1. For fixed worldsheet time,
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σ 0 = const., the coordinate σ 1 parametrizes the length of the string. Let x M , with
M = 0, . . . , D − 1, be spacetime coordinates. The trajectory of the string is then
described by specifying x M as a function of σα. In terms of these functions, the
two-dimensional metric gαβ induced on the string worldsheet has components

gαβ = ∂αx M∂βx N gM N , (4.12)

where gM N is the spacetime metric. (If x M are Cartesian coordinates in flat space-
time then gM N = ηM N = diag(− + · · · +).) The action of the string is then
given by

Sstr = −Tstr

∫
d2σ

√−detg . (4.13)

In order to construct the quantum states of a single string, one needs to quan-
tize this action. It turns out that the quantization imposes strong constraints on the
spacetime one started with; not all spacetimes allow a consistent string propaga-
tion – see e.g. [386]. For example, if we start with a D-dimensional Minkowski
spacetime, then a consistent bosonic string theory (4.13) exists only for D = 26.
Otherwise the spacetime Lorentz group becomes anomalous at the quantum level
and the theory contains negative norm states.

Physically, different states in the spectrum of the two-dimensional worldsheet
theory correspond to different vibration modes of the string. From the spacetime
viewpoint, each of these modes appears as a particle of a given mass and spin.
The spectrum typically contains a finite number of massless modes and an infinite
tower of massive modes with masses of order ms ≡  −1

s . A crucial fact about a
closed string theory is that one of the massless modes is a particle of spin two, i.e.
a graviton. This is the reason why string theory is, in particular, a theory of quantum
gravity. The graviton describes small fluctuations of the spacetime metric, implying
that the fixed spacetime that we started with is actually dynamical.

One can construct other string theories by adding degrees of freedom to the
string worldsheet. The theory that will be of interest here is a supersymmetric
theory of strings, the so-called type IIB superstring theory [385, 731], which can
be obtained by adding two-dimensional worldsheet fermions to the action (4.13).
Although we will of course be interested in eventually breaking supersymmetry in
order to obtain a dual description of QCD, it will be important that the underlying
theory be supersymmetric, since this will guarantee the stability of our construc-
tions. For a superstring, absence of negative-norm states requires the dimension of
spacetime to be D = 10. In addition to the graviton, the massless spectrum of IIB
superstring theory includes two scalars, a number of antisymmetric tensor fields,
and various fermionic partners as required by supersymmetry. One of the scalars,
the so-called dilaton �, will play an important role here.
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Figure 4.2 ‘Geometrical’ interactions in string theory: two strings in initial states
i and j can join into one string in a state k (left) or vice versa (right).

Figure 4.3 Sum over topologies contributing to the two-to-two amplitude.

Interactions can be introduced geometrically by postulating that two strings can
join together and that one string can split into two through a vertex of strength
gs – see Fig. 4.2. Physical observables like scattering amplitudes can be found by
summing over string propagations (including all possible splittings and joinings)
between initial and final states. After fixing all the gauge symmetries on the string
worldsheets, such a sum reduces to a sum over the topologies of two-dimensional
surfaces, with contributions from surfaces of h holes weighted by a factor g2h−2

s .
This is illustrated in Fig. 4.3 for the two-to-two amplitude.

At low energies E � ms , one can integrate out the massive string modes and
obtain a low energy effective theory for the massless modes. Since the massless
spectrum of a closed string theory always contains a graviton, to second order in
derivatives, the low energy effective action has the form of Einstein gravity coupled
to other (massless) matter fields, i.e.

S = 1

16πG

∫
d Dx

√−gR + · · · , (4.14)

where R is the Ricci scalar for the metric with D spacetime dimensions and where
the dots stand for additional terms associated with the rest of massless modes. For
type IIB superstring theory, the full low energy effective action at the level of two
derivatives is given by the so-called IIB supergravity [733, 732], a supersymmetric
generalization of (4.14) (with D = 10). The higher order corrections to (4.14) take
the form of a double expansion, in powers of α′E2 from integrating out the massive
stringy modes, and in powers of the string coupling gs from loop corrections.

We conclude this section by making two important comments. First, we note that
the ten-dimensional Newton’s constant G in type IIB supergravity can be expressed
in terms of the string coupling and the string length as
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graviton

(b)(a)

Figure 4.4 (a) Tree-level contribution, of order g2
s , to a two-to-two scattering pro-

cess in string theory. The low energy limit of this tree-level diagram must coincide
with the corresponding field theory diagram depicted in (b), which is proportional
to Newton’s constant, G.

16πG = (2π)7g2
s  

8
s . (4.15)

The dependence on  s follows from dimensional analysis, since in D dimen-
sions Newton’s constant has dimension (length)D−2. The dependence on gs follows
from considering two-to-two string scattering. The leading string theory diagram,
depicted in Fig. 4.4a, is proportional to g2

s , since it is obtained by joining together
the two diagrams of Fig. 4.2. The corresponding diagram in supergravity is drawn
in Fig. 4.4b, and is proportional to G. The requirement that the two amplitudes
yield the same result at energies much lower than the string scale implies G ∝ g2

s .
Second, the string coupling constant gs is not a free parameter, but is given by

the expectation value of the dilaton field � as gs = e�. As a result, gs may actu-
ally vary over space and time. Under these circumstances we may still speak of
the string coupling constant, e.g. in formulas like (4.15) or (4.19), meaning the
asymptotic value of the dilaton at infinity, gs = e�∞ .

4.2.2 D-branes and gauge theories

Perturbatively, string theory is a theory of strings. Non-perturbatively, the theory
also contains a variety of higher-dimensional solitonic objects. D-branes [686] are a
particularly important class of solitons. To be definite, let us consider a superstring
theory (e.g. type IIA or IIB theory) in a ten-dimensional flat Minkowski spacetime,
labeled by time t ≡ x0 and spatial coordinates x1, . . . , x9. A Dp-brane is then a
“defect” where closed strings can break and open strings can end that occupies a
p-dimensional subspace – see Fig. 4.5, where the x-directions are parallel to the
branes and the y-directions are transverse to them. When closed strings break, they
become open strings. The end points of the open strings can move freely along the
directions of the D-brane, but cannot leave it by moving in the transverse directions.
Just like domain walls or cosmic strings in a quantum field theory, D-branes are
dynamical objects which can move around. A Dp-brane then sweeps out a (p +
1)-dimensional worldvolume in spacetime. D0-branes are particle-like objects, D1-
branes are string-like, D2-branes are membrane-like, etc. Stable Dp-branes in Type
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Figure 4.5 Stack of D-branes. Figure adapted from Ref. [601].

IIA superstring theory exist for p = 0, 2, 4, 6, 8, whereas those in Type IIB have
p = 1, 3, 5, 7 [686].5 This can be seen in a variety of (not unrelated) ways, two
of which are: (i) in these cases the corresponding Dp-branes preserve a fraction of
the supersymmetry of the underlying theory; (ii) in these cases the corresponding
Dp-branes are the lightest states that carry a conserved charge.

Introducing a D-brane adds an entirely new sector to the theory of closed strings,
consisting of open strings whose endpoints must satisfy the boundary condition that
they lie on the D-brane. Recall that in the case of closed strings we started with a
fixed spacetime and discovered, after quantization, that the close string spectrum
corresponds to dynamical fluctuations of the spacetime. An analogous situation
holds for open strings on a D-brane. Suppose we start with a Dp-brane extend-
ing in the xμ = (x0, x1, . . . , x p) directions, with transverse directions labeled as
yi = (x p+1, . . . , x9). Then, after quantization, one obtains an open string spectrum
which can be identified with fluctuations of the D-brane.

More explicitly, the open string spectrum consists of a finite number of massless
modes and an infinite tower of massive modes with masses of order ms = 1/ s . For
a single Dp-brane, the massless spectrum consists of an Abelian gauge field Aμ(x),
μ = 0, 1, . . . , p, 9−p scalar fields φi (x), i = 1, . . . , 9−p, and their superpartners.
Since these fields are supported on the D-brane, they depend only on the xμ coordi-
nates along the worldvolume, but not on the transverse coordinates. The 9−p scalar
excitations φi describe fluctuations of the D-brane in the transverse directions yi ,
including deformations of the brane’s shape and linear motions. They are the exact
parallel of familiar collective coordinates for a domain wall or a cosmic string in

5 D9-branes also exist, but additional consistency conditions must be imposed in their presence. We will not
consider them here.
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a quantum field theory, and can be understood as the Goldstone bosons associ-
ated to the subset of translational symmetries spontaneously broken by the brane.
The presence of a U (1) gauge field Aμ(x) as part of collective excitations lies at
the origin of many fascinating properties of D-branes, which (as we will discuss
below) ultimately lead to the gauge/string duality. Although this gauge field is less
familiar in the context of quantum field theory solitons (see e.g. [298, 489, 703]),
it can nevertheless be understood as a Goldstone mode associated to large gauge
transformations spontaneously broken by the brane [231, 512, 22].

Another striking new feature of D-branes, which has no parallel in field theory,
is the appearance of a non-Abelian gauge theory when multiple D-branes become
close to one another [802]. In addition to the degrees of freedom pertaining to
each D-brane, now there are new sectors corresponding to open strings stretched
between different branes. For example, consider two parallel branes separated from
each other by a distance r , as shown in Fig. 4.6. Now there are four types of open
strings, depending on which brane their endpoints lie. The strings with both end-
points on the same brane give rise, as before, to two massless gauge vectors, which
can be denoted by (Aμ)

1
1 and (Aμ)

2
2, where the upper (lower) numeric index

labels the brane on which the string starts (ends). Open strings stretching between
different branes give rise to two additional vector fields (Aμ)

1
2 and (Aμ)

2
1, which

have a mass given by the tension of the string times the distance between the
branes, i.e. m = r/2πα′. These become massless when the branes lie on top of
each other, r = 0. In this case there are four massless vector fields altogether,
(Aμ)

a
b with a, b = 1, 2, which precisely correspond to the gauge fields of a non-

Abelian U (2) gauge group. Similarly, one finds that the 9− p massless scalar fields
also become 2 × 2 matrices (φi )a

b, which transform in the adjoint representation
of the U (2) gauge group. In the general case of Nc parallel coinciding branes one
finds a U (Nc) multiplet of non-Abelian gauge fields with 9 − p scalar fields in
the adjoint representation of U (Nc). The low-energy dynamics of these modes can

D-brane 1 D-brane 2

Figure 4.6 Strings stretching between two D-branes.
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be determined by integrating out the massive open string modes, and it turns out to
be governed by a non-Abelian gauge theory [802]. To be more specific, let us con-
sider Nc D3-branes in type IIB theory. The massless spectrum consists of a gauge
field Aμ, six scalar fields φi , i = 1, . . . , 6 and four Weyl fermions, all of which are
in the adjoint representation of U (Nc) and can be written as Nc × Nc matrices. At
the two-derivative level the low energy effective action for these modes turns out
to be precisely [802] the N = 4 super-Yang–Mills theory with gauge group U (Nc)

in (3+1) dimensions [199, 380] (for reviews see e.g. [545, 319]), the bosonic part
of whose Lagrangian can be written as

L = − 1

g2
Tr

(
1

4
Fμν Fμν + 1

2
Dμφ

i Dμφi + [φi , φ j ]2

)
, (4.16)

with the Yang–Mills coupling constant given by

g2 = 4πgs . (4.17)

Equation (4.16) is in fact the (bosonic part of the) most general renormalizable
Lagrangian consistent with N = 4 global supersymmetry. Owing to the large
number of supersymmetries the theory has many interesting properties, including
the fact that the beta function vanishes exactly [86, 387, 745, 259, 466, 598, 200]
(see section 4.1 of [687] for a one-paragraph proof). Consequently, the coupling
constant is scale-independent and the theory is conformally invariant.

Note that the U (1) part of (4.16) is free and can be decoupled. Physically, the
reason for this is as follows. Excitations of the overall, diagonal U (1) subgroup
of U (Nc) describe motion of the branes’ centre of mass, i.e. rigid motion of the
entire system of branes as a whole. Because of the overall translation invariance,
this mode decouples from the remaining SU (Nc) ⊂ U (Nc) modes that describe
motion of the branes relative to one another. This is the reason why, as we will see,
IIB strings in AdS5 × S5 are dual to N = 4 super-Yang–Mills theory with gauge
group SU (Nc).

The Lagrangian (4.16) receives higher-derivative corrections suppressed by
α′E2. The full system also contains closed string modes (e.g. gravitons) which
propagate in the bulk of the ten-dimensional spacetime (see Fig. 4.7) and the full
theory contains interactions between closed and open strings. The strength of inter-
actions of closed string modes with each other is controlled by Newton’s constant
G, so the dimensionless coupling constant at an energy E is GE8. This vanishes
at low energies and so in this limit closed strings become noninteracting, which is
essentially the statement that gravity is infrared-free. Interactions between closed
and open strings are also controlled by the same parameter, since gravity couples
universally to all forms of matter. Therefore at low energies closed strings decou-
ple from open strings. We thus conclude that at low energies the interacting sector
reduces to an SU (Nc) N = 4 SYM theory in four dimensions.
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Figure 4.7 Open and closed string excitations of the full system. Figure adapted
from Ref. [601].

Before closing this section we note that, for a single Dp-brane with constant
Fμν and ∂μφ

i , all higher order α′-corrections to (4.16) (or its p-dimensional gen-
eralizations) can be resummed exactly into the so-called Dirac–Born–Infeld (DBI)
action [575]

SDBI = −TDp

∫
d p+1x e−�

√
−det

(
gμν + 2π 2

s Fμν

)
, (4.18)

where

TDp = 1

(2π)p gs 
p+1
s

(4.19)

is the tension of the brane, namely its mass per unit spatial volume. In this action,
� is the dilaton and gμν denotes the induced metric on the brane. In flat space, the
latter can be written more explicitly as

gμν = ημν + (2π 2
s )

2∂μφ
i∂νφ

i . (4.20)

The first term in (4.20) comes from the flat spacetime metric along the
worldvolume directions, and the second term arises from fluctuations in the trans-
verse directions. Expanding the action (4.18) to quadratic order in F and ∂φ one
recovers the Abelian version of Eq. (4.16). The non-Abelian generalization of the
DBI action (4.18) is not known in closed form – see, for example, [781] for a
review. Corrections to (4.18) beyond the approximation of slowly varying fields
have been considered in [54, 536, 93, 384].
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4.2.3 D-branes as spacetime geometry

Owing to their infinite extent along the x-directions, the total mass of a Dp-brane
is infinite. However, the mass per unit p-volume, known as the tension, is finite
and is given in terms of fundamental parameters by Eq. (4.19). The dependence
of the tension on the string length is dictated by dimensional analysis. The inverse
dependence on the coupling gs is familiar from solitons in quantum field theory
(see e.g. [298, 489, 703]) and signals the nonperturbative nature of D-branes, since
it implies that they become infinitely massive (even per unit volume) and hence
decouple from the spectrum in the perturbative limit gs → 0. The crucial differ-
ence is that the D-branes’ tension scales as 1/gs instead of the 1/g2 scaling that
is typical of field theory solitons. This dependence can be anticipated based on
the divergences of string perturbation theory [736] and, as we will see, is of great
importance for the gauge/string duality.

In a theory with gravity, all forms of matter gravitate. D-branes are no exception,
and their presence deforms the spacetime metric around them. The spacetime met-
ric sourced by Nc Dp-branes can be found by explicitly solving the supergravity
equations of motion [377, 369, 462]. For illustration we again use the example of
D3-branes in type IIB theory, for which one finds:

ds2 = H−1/2
(−dt2 + dx2

1 + dx2
2 + dx2

3

) + H 1/2
(
dr2 + r2d�2

5

)
. (4.21)

The metric inside the parentheses in the second term is just the flat metric in
the y-directions transverse to the D3-branes written in spherical coordinates, with
radial coordinate r2 = y2

1 + · · · + y2
6 . The function H(r) is given by

H = 1 + R4

r4
, (4.22)

where

R4 = 4πgs Nc 
4
s . (4.23)

Let us gain some physical intuition regarding this solution. Since D3-branes
extend along three spatial directions, their gravitational effect is similar to that of
a point particle with mass M ∝ NcTD3 in the six transverse directions. Thus the
metric (4.21) only depends on the radial coordinate r of the transverse directions.
For r � R we have H � 1 and the metric reduces to that of flat space with a small
correction proportional to

R4

r4
∼ Ncgs 

4
s

r4
∼ GM

r4
, (4.24)
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Figure 4.8 Excitations of the system in the closed string description. Figure
adapted from Ref. [601].

which can be interpreted as the gravitational potential due to a massive object of
mass M in six spatial dimensions.6 Note that in the last step in Eq. (4.24) we have
used the fact that G ∝ g2

s  
8
s and M ∝ NcTD3 ∝ Nc/gs 

4
s – see (4.15) and (4.19).

The parameter R can thus be considered as the length scale characteristic of
the range of the gravitational effects of Nc D3-branes. These effects are weak for
r � R, but become strong for r � R. In the latter limit, we may neglect the “1”
in Eq. (4.22), in which case the metric (4.21) reduces to

ds2 = ds2
AdS5

+ R2d�2
5 , (4.25)

where

ds2
AdS5

= r2

R2

(−dt2 + dx2
1 + dx2

2 + dx2
3

) + R2

r2
dr2 (4.26)

is the metric (4.10) of five-dimensional anti-de Sitter spacetime written in terms of
r = R2/z. We thus see that in the strong gravity region the ten-dimensional metric
factorizes into AdS5 × S5.

We conclude that the geometry sourced by the D3-branes takes the form dis-
played in Fig. 4.8: far away from the branes the spacetime is flat, ten-dimensional

6 Recall that a massive object of mass M in D spatial dimensions generates a gravitational potential GM/r D−2

at a distance r from its position.
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Minkowski space, whereas close to the branes a “throat” geometry of the form
AdS5 × S5 develops. The size of the throat is set by the length-scale R, given
by (4.23). As we will see, the spacetime geometry (4.21) can be considered as
providing an alternative description of the D3-branes.

4.3 The AdS/CFT conjecture

In the previous two sections we have seen two descriptions of D3-branes. In the
description of Section 4.2.2, which we will refer to as the open string description,
D-branes correspond to a hyperplane in a flat spacetime. In this description the
D-branes’ excitations are open strings living on the branes, and closed strings
propagate outside the branes – see Fig. 4.7.

In contrast, in the description of Section 4.2.3, which we will call the closed
string description, D-branes correspond to a spacetime geometry in which only
closed strings propagate, as displayed in Fig. 4.8. In this description there are no
open strings. In this case the low energy limit consists of focusing on excitations
that have arbitrarily low energy with respect to an observer in the asymptotically
flat Minkowski region. We have here two distinct sets of degrees of freedom, those
propagating in the Minkowski region and those propagating in the throat – see
Fig. 4.8. In the Minkowski region the only modes that remain are those of the
massless ten-dimensional graviton supermultiplet. Moreover, at low energies these
modes decouple from each other, since their interactions are proportional to GE8.
In the throat region, however, the whole tower of massive string excitations sur-
vives. This is because a mode in the throat must climb up a gravitational potential
in order to reach the asymptotically flat region. Consequently, a closed string of
arbitrarily high proper energy in the throat region may have an arbitrarily low
energy as seen by an observer at asymptotic infinity, provided the string is located
sufficiently deep down the throat. As we focus on lower and lower energies these
modes become supported deeper and deeper in the throat, and so they decouple
from those in the asymptotic region. We thus conclude that in the closed string
description, the interacting sector of the system at low energies reduces to closed
strings in AdS5 × S5.

These two representations are tractable in different parameter regimes. For
gs Nc � 1, we see from Eq. (4.23) that R �  s , i.e. the radius characterizing
the gravitational effect of the D-branes becomes small in string units, and closed
strings feel a flat spacetime everywhere except very close to the hyperplane where
the D-branes are located. In this regime the closed string description is not use-
ful since one would need to understand sub-string-scale geometry. In the opposite
regime, gs N � 1, we find that R �  s and the geometry becomes weakly
curved. In this limit the closed string description simplifies and essentially reduces
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to classical gravity. Instead, the open string description becomes intractable, since
gs Nc controls the loop expansion of the theory and one would need to deal with
strongly coupled open strings. Note that both representations exist in both limiting
regimes, and in between.

To summarize, the two descriptions of Nc D3-branes that we have discussed and
their low energy limits are as follows.

(1) A hyperplane in a flat spacetime with open strings attached. The low energy
limit is described by N = 4 SYM theory (4.16) with a gauge group SU (Nc).

(2) A curved spacetime geometry (4.21) where only closed strings propagate. The
low energy limit is described by closed IIB string theory in AdS5 × S5.

It is natural to conjecture that these two descriptions are equivalent. Equating in
particular their low energy limits, we are led to conjecture that{

N = 4 SU (Nc) SYM theory
}

=
{
IIB string theory in AdS5 × S5

}
. (4.27)

From Eqs. (4.17) and (4.23) we find how the parameters of the two theories are
related to one another:

gs = g2

4π
,

R

 s
= (g2Nc)

1/4 . (4.28)

One can also use the ten-dimensional Newton constant (4.15) in place of gs in the
first equation above and obtain equivalently

G

R8
= π4

2N 2
c

,
R

 s
= (g2Nc)

1/4 . (4.29)

Note that, in particular, the first equation in (4.28) implies that the criterion that
gs Nc be large or small translates into the criterion that the gauge theory ’t Hooft
coupling λ = g2Nc be large or small. Therefore the question of which representa-
tion of the D-branes is tractable becomes the question of whether the gauge theory
is strongly or weakly coupled. We will come back to this in Chapter 5.

The discussion above relates string theory to N = 4 SYM theory at zero tem-
perature, as we were considering the ground state of the Nc D3-branes. On the
supergravity side this corresponds to the so-called extremal solution. The above
discussion can easily be generalized to a nonzero temperature T by exciting the
degrees of freedom on the D3-branes to a finite temperature, which corresponds
[391, 804] to the so-called non-extremal solution [462]. It turns out that the net
effect of this is solely to modify the AdS part of the metric, replacing (4.26) by

ds2 = r2

R2

(− f dt2 + dx2
1 + dx2

2 + dx2
3

) + R2

r2 f
dr2 , (4.30)
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where

f (r) = 1 − r4
0

r4
. (4.31)

Equivalently, in terms of the z-coordinate of Section 4.1 we replace (4.10) by

ds2 = R2

z2

(
− f dt2 + dx2

1 + dx2
2 + dx2

3 + dz2

f

)
, (4.32)

where

f (z) = 1 − z4

z4
0

. (4.33)

These two metrics are related by the simple coordinate transformation z = R2/r ,
and represent a black brane in AdS spacetime with a horizon located at r = r0 or
z = z0 which extends in all three spatial directions of the original brane. As we will
discuss in more detail in the next chapter, r0 and z0 are related to the temperature
of the N = 4 SYM theory as

r0 ∝ 1

z0
∝ T . (4.34)

Thus we conclude that N = 4 SYM theory at finite temperature is described by
string theory in an AdS black brane geometry.

To summarize this section, we have arrived at a duality (4.27) of the type antici-
pated in Section 4.1, that is, an equivalence between a conformal field theory with
zero β-function and trivial RG-flow and string theory on a scale-invariant metric
that looks the same at any z. In the finite-temperature case, Eqn. (4.34) provides
an example of the expected relationship between energy scale in the gauge theory,
set in this case by the temperature, and position in the fifth dimension, set by the
location of the horizon.
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A duality toolbox

5.1 Gauge/gravity duality

In the previous chapter we outlined the string theory reasoning behind the equiv-
alence (4.27) between N = 4 SU (Nc) SYM theory and type IIB string theory
on AdS5 × S5. N = 4 SYM theory is the unique maximally supersymmetric
gauge theory in (3 + 1) dimensions, whose field content includes a gauge field,
six real scalars, and four Weyl fermions, all in the adjoint representation of the
gauge group. The metric of AdS5 × S5 is given by

ds2 = ds2
AdS5

+ R2d�2
5 , (5.1)

with

ds2
AdS5

= r2

R2
ημνdxμdxν + R2

r2
dr2 , r ∈ (0,∞) . (5.2)

In the above equation xμ = (t, �x), ημν is the Minkowski metric in four spacetime
dimensions, and d�2

5 is the metric on a unit five-sphere. The metric (5.2) covers
the so-called “Poincaré patch” of a global AdS spacetime, and it is sometimes
convenient to rewrite (5.2) using a new radial coordinate z = R2/r ∈ (0,∞), in
terms of which we have

ds2
AdS5

= gM N dx Mdx N = R2

z2

(
ημνdxμdxν + dz2

)
, x M = (z, xμ) , (5.3)

as used earlier in (4.10).
In (5.3), each constant-z slice of AdS5 is isometric to four-dimensional

Minkowski spacetime with xμ identified as the coordinates of the gauge theory (see
also fig. 4.1). As z → 0 we approach the “boundary” of AdS5. This is a boundary
in the conformal sense of the word but not in the topological sense, since the pref-
actor R2/z2 in (5.3) approaches infinity there. Although this concept can be given a
precise mathematical meaning, we will not need these details here. As motivated in
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Section 4.1.1 it is natural to imagine that the Yang–Mills theory lives at the bound-
ary of AdS5. For this reason, below we will often refer to it as the boundary theory.
As z → ∞, we approach the so-called Poincaré horizon, at which the prefactor
R2/z2 and the determinant of the metric go to zero.

5.1.1 UV/IR connection and renormalization group flow

Owing to the warp factor R2/z2 in front of the Minkowski metric in (5.3), energy
and length scales along Minkowski directions in AdS5 are related to those in the
gauge theory by a z-dependent rescaling. More explicitly, consider an object with
energy EYM and size dYM in the gauge theory. These are the energy and the size of
the object measured in units of the coordinates t and �x . From (5.3) we see that the
corresponding proper energy E and proper size d of this object in the bulk are

d = R

z
dYM , E = z

R
EYM , (5.4)

where the second relation follows from the fact that the energy is conjugate to time,
and so it scales with the opposite scale factor than d. We thus see that physical pro-
cesses in the bulk with identical proper energies but occurring at different radial
positions correspond to different gauge theory processes with energies that scale
as EYM ∼ 1/z. In other words, a gauge theory process with a characteristic energy
EYM is associated with a bulk process localized at z ∼ 1/EYM [594, 768, 671].
This relation between the radial direction z in the bulk and the energy scale of the
boundary theory makes concrete the heuristic discussion of Section 4.1.1 that led
us to identify the evolution of the bulk metric along the z-direction with the renor-
malization group flow of the gauge theory. In particular the high energy (UV) limit
EYM → ∞ corresponds to z → 0, i.e. to the near-boundary region, while the low
energy (IR) limit EYM → 0 corresponds to z → ∞, i.e. to the near-horizon region.

In a conformal theory, there exist excitations of arbitrarily low energies. This is
reflected in the bulk in the fact that the geometry extends all the way to z → ∞. As
we will see in Section 5.2.2, for a confining theory with a mass gap m, the geometry
ends smoothly at a finite value z0 ∼ 1/m. Similarly, at a finite temperature T ,
which provides an effective IR cut-off, the spacetime will be cut-off by an event
horizon at a finite z0 ∼ 1/T (see Section 5.2.1).

There is a large literature on what is often referred to as the “holographic
renormalization group”, namely mapping the radial evolution in the bulk gravity
theory to the renormalization group flow equations of its dual boundary theory.
For examples, see Refs. [33, 47, 379, 326, 112, 359, 310]. The basic goal is to
relate the Einstein equations that describe how the bulk geometry changes as a
function of position in the radial direction to the renormalization group equations
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that describe how the boundary quantum field theory changes as a function of
energy scale, given that the boundary energy scale E is associated with a radial
position z(E) ∼ 1/E . Indeed, there have been recent efforts to develop pre-
cise parallels between the Wilsonian procedure of integrating out high energy
degrees of freedom and integrating out a part of the bulk geometry near the bound-
ary [438, 348]. One identifies the boundary theory Wilsonian effective action
obtained by integrating out modes with energies larger than E with a bulk the-
ory effective action obtained by integrating over all the bulk fields including the
metric in the region of the bulk geometry that lies between the boundary at z = 0
and z(E). The result of doing this partial path integral is an effective action defined
on the z = z(E) slice which governs the dynamics of the remaining bulk fields in
the unintegrated part of the geometry and which can be mapped onto the boundary
theory Wilsonian effective action. There has also been progress toward deriving the
bulk gravity theory from the Wilsonian renormalization group flow of a boundary
theory [572, 329, 574, 573].

5.1.2 Strong coupling from gravity

N = 4 SYM theory is a scale-invariant theory characterized by two parameters: the
Yang–Mills coupling g and the number of colors Nc. The theory on the right-hand
side of (4.27) is a quantum gravity theory in a maximally symmetric spacetime
which is characterized by the Newton’s constant G and the string scale  s in units of
the curvature radius R. The relations between these parameters are given by (4.29).
Recalling that G ∼  8

p, with  p the Planck length, these relations imply

 8
p

R8
∝ 1

N 2
c

,
 2

s

R2
∝ 1√

λ
, (5.5)

where λ = g2Nc is the ’t Hooft coupling and we have omitted only purely
numerical factors.

The full IIB string theory on AdS5×S5 is rather complicated and right now a sys-
tematic treatment of it is not available. However, as we will explain momentarily,
in the limit

 8
p

R8
� 1 ,

 2
s

R2
� 1 (5.6)

the theory dramatically simplifies and can be approximated by classical super-
gravity, which is essentially Einstein’s general relativity coupled to various matter
fields. An immediate consequence of the relations (5.5) is that the limit (5.6)
corresponds to

Nc � 1 , λ � 1 . (5.7)
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Equation (4.27) then implies that the planar, strongly coupled limit of the SYM
theory can be described using just classical supergravity.

Let us return to why string theory simplifies in the limit (5.6). Consider first the
requirement  2

s � R2. This can be equivalently rewritten as m2
s � R or as Tstr �

R, where R ∼ 1/R2 is the typical curvature scale of the space where the string
is propagating. The condition m2

s � R means that one can omit the contribution
of all the massive states of microscopic strings in low energy processes. In other
words, only the massless modes of microscopic strings, i.e. the supergravity modes,
need to be kept in this limit. This is tantamount to treating these strings as pointlike
particles and ignoring their extended nature, as one would expect from the fact
that their typical size,  s , is much smaller than the typical radius of curvature of
the space where they propagate, R. The so-called α′-expansion on the string side
(with α′ =  2

s ), which incorporates stringy effects associated with the finite length
of the string in a derivative expansion, corresponds on the gauge theory side to an
expansion around infinite coupling in powers of 1/

√
λ.

The extended nature of the string, however, cannot be ignored in all cases. As
we will see in the context of the Wilson loop calculations of Section 5.4 and in
many other examples in Chapter 8, the description of certain physical observables
requires one to consider long, macroscopic strings whose typical size is much
larger than R – for example, this happens when the string description of such
observables involves non-trivial boundary conditions on the string. In this case
the full content of the second condition in (5.6) is easily understood by rewriting it
as Tstr � R. This condition says that the tension of the string is very large com-
pared to the typical curvature scale of the space where it is embedded, and therefore
implies that fluctuations around the classical shape of the string can be neglected.
These long strings can still break and reconnect, but in between such processes
their dynamics is completely determined by the Nambu–Goto equations of motion.
In these cases, the α′-expansion (that is, the expansion in powers of 1/

√
λ) incor-

porates stringy effects associated with fluctuations of the string that are suppressed
at λ → ∞ by the tension of the string becoming infinite in this limit. From this
viewpoint, the fact that the massive modes of microscopic strings can be omitted in
this limit is just the statement that string fluctuations around a pointlike string can
be neglected.

Consider now the requirement  8
p � R8. Since the ratio  8

p/R8 controls the
strength of quantum gravitational fluctuations, in this regime we can ignore quan-
tum fluctuations of the spacetime metric and talk about a fixed spacetime like
AdS5 × S5. The quantum gravitational corrections can be incorporated in a power
series in  8

p/R8, which corresponds to the 1/N 2
c expansion in the gauge theory.

Note from (4.28) that taking the Nc → ∞ limit at fixed λ corresponds to taking the
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string coupling gs → 0, meaning that quantum corrections corresponding to loops
of string breaking off or reconnecting are suppressed in this limit.

In summary, we conclude that the strong coupling limit in the gauge theory
suppresses the stringy nature of the dual string theory, whereas the large-Nc limit
suppresses its quantum nature. When both limits are taken simultaneously the full
string theory reduces to a classical gravity theory with a finite number of fields.

Given that the S5 factor in (5.1) is compact, it is often convenient to express a
ten-dimensional field in terms of a tower of fields in AdS5 by expanding it in terms
of harmonics on S5. For example, the expansion of a scalar field φ(x, �) can be
written schematically as

φ(x, �) =
∑
 

φ (x)Y (�) , (5.8)

where x and � denote coordinates in AdS5 and S5 respectively, and Yl(�) denote
the spherical harmonics on S5. Thus, for many purposes (but not all) the orig-
inal duality (4.27) can also be considered as the equivalence of N = 4 SYM
theory (at strong coupling) with a gravity theory in AdS5 only. This perspective
is very useful in two important aspects. First, it makes manifest that the dua-
lity (4.27) can be viewed as an explicit realization of the holographic principle
mentioned in Section 4.1.1, with the bulk spacetime being AdS5 and the bound-
ary being four-dimensional Minkowski spacetime. Second, as we will mention in
Section 5.2.3, this helps to give a unified treatment of many different examples of
the gauge/gravity duality. In most of this book we will adopt this five-dimensional
perspective and work only with fields in AdS5.

After dimensional reduction on S5, the supergravity action can be written as

S = 1

16πG5

∫
d5x

[
Lgrav + Lmatt

]
, (5.9)

where

Lgrav = √−g

(
R + 12

R2

)
(5.10)

is the Einstein–Hilbert Lagrangian with a negative cosmological constant
� = −6/R2 and Lmatt is the Lagrangian for matter fields. In the general case, the
latter would include the infinite towers φ (x) coming from the expansion on the
S5. The metric (5.3) is a maximally symmetric solution of the equations of motion
derived from the action (5.9) with all matter fields set to zero.

The relation between the effective five-dimensional Newton’s constant G5 and
its ten-dimensional counterpart G can be read off from the reduction of the
Einstein–Hilbert term,
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1

16πG

∫
d5xd5�

√−g10 R10 = R5�5

16πG5

∫
d5x

√−g5 R5 + · · · , (5.11)

where �5 = π3 is the volume of a unit S5. This implies

G5 = G

�5 R5
= G

π3 R5
, i.e.

G5

R3
= π

2N 2
c

, (5.12)

where in the last equation we made use of (4.29).

5.1.3 Symmetries

Let us now examine the symmetries on both sides of the correspondence. The N =
4 SYM theory is invariant not only under dilatations but under Conf(1, 3)×SO(6).
The first factor is the conformal group of four-dimensional Minkowski space,
which contains the Poincaré group, the dilatation symmetry generated by D, and
four special conformal transformations whose generators we will denote by Kμ.
The second factor is the R-symmetry of the theory under which the φi in (4.16)
transform as a vector. In order to provide an analogy of the baryon number in QCD,
we will often select a U (1) subgroup within the R-symmetry group and define
a conserved, Abelian R-charge from its associated Noether current. In addition,
the theory is invariant under sixteen ordinary or “Poincaré” supersymmetries, the
fermionic superpartners of the translation generators Pμ, as well as under 16 special
conformal supersymmetries, the fermionic superpartners of the special conformal
symmetry generators Kμ.

The string side of the correspondence is of course invariant under the group of
diffeomorphisms, which are gauge transformations. The subgroup of these consist-
ing of large gauge transformations that leave the asymptotic (i.e. near the boundary)
form of the metric invariant is precisely SO(2, 4)× SO(6). The first factor, which
is isomorphic to Conf(1, 3), corresponds to the isometry group of AdS5, and the
second factor corresponds to the isometry group of S5. As usual, large gauge trans-
formations must be thought of as global symmetries, so we see that the bosonic
global symmetry groups on both sides of the correspondence agree. In more detail,
the Poincaré group of four-dimensional Minkowski spacetime is realized inside
SO(2, 4) as transformations that act separately on each of the constant-z slices
in (5.3) in an obvious manner. The dilation symmetry of Minkowski spacetime
is realized in AdS5 as the transformation (t, �x) → C(t, �x), z → Cz (with C a
positive constant), which indeed leaves the metric (5.3) invariant. The four special
conformal transformations of Minkowski spacetime are realized in a slightly more
involved way as isometries of AdS5.

An analogous statement can be made for the fermionic symmetries. AdS5 ×S5 is
a maximally supersymmetric solution of type IIB string theory, and so it possesses
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32 Killing spinors which generate fermionic isometries. These can be split into two
groups that match those of the gauge theory.1

We therefore conclude that the global symmetries are the same on both sides
of the duality. It is important to note, however, that on the gravity side the global
symmetries arise as large gauge transformations. In this sense there is a correspon-
dence between global symmetries in the gauge theory and gauge symmetries in the
dual string theory. This is an important general feature of all known gauge/gravity
dualities, to which we will return below after discussing the field/operator cor-
respondence. It is also consistent with the general belief that the only conserved
charges in a theory of quantum gravity are those associated with global symmetries
that arise as large gauge transformations.

5.1.4 Matching the spectrum: the field/operator correspondence

We now consider the mapping between the spectra of the two theories. To motivate
the main idea, we begin by recalling that the SYM coupling constant g2 is identified
(up to a constant) with the string coupling constant gs . As discussed below (4.15),
in string theory this is given by gs = e�∞ , where �∞ is the value of the dilaton at
infinity, in this case at the AdS boundary, ∂AdS. This suggests that deforming the
gauge theory by changing the value of a coupling constant corresponds to changing
the value of a bulk field at ∂AdS. More generally, one may imagine deforming the
gauge theory action as

S → S +
∫

d4x φ(x)O(x) , (5.13)

where O(x) is a local, gauge-invariant operator and φ(x) is a possibly point-
dependent coupling, namely a source. If φ(x) is constant, then the deformation
above corresponds to simply changing the coupling for the operator O(x). The
example of g suggests that to each possible source φ(x) for each possible local,
gauge-invariant operator O(x) there must correspond a dual bulk field �(x, z)
(and vice versa) such that its value at the AdS boundary may be identified with
the source, namely:

φ(x) = �|∂AdS (x) ≡ lim
z→0

zα��(x, z) . (5.14)

The power α� in the last expression is chosen so that the limit is well-defined, and
is thus determined by the boundary asymptotic behavior of �(x, z). The explicit
asymptotic behavior of various types of fields, and hence the values of their α�,
will be discussed below and in the next subsection.
1 In both boundary and bulk, bosonic and fermionic symmetries combine together to form a supergroup

SU (2, 2|4).
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This one-to-one map between bulk fields in AdS and local, gauge-invariant oper-
ators in the gauge theory is known as the field/operator correspondence. The field
and the operator must have the same quantum numbers under the global symme-
tries of the theory, but there is no completely general and systematic recipe to
identify the field dual to a given operator. Fortunately, an additional restriction is
known for a very important set of operators in any gauge theory: conserved cur-
rents associated to global symmetries, such as the SO(6) symmetry in the case of
the N = 4 SYM theory. The source aμ(x) coupling to a conserved current Jμ(x) as∫

d4x aμ(x)Jμ(x) (5.15)

may be thought of as an external background gauge field, and we can view it as the
boundary value of a dynamical gauge field AM(x, z) in AdS, i.e.

aμ(x) = lim
z→0

Aμ(z, x) , (5.16)

meaning that, in the notation of (5.14), a gauge field has αA = 0. The identifi-
cation (5.16) is natural given that, as we discussed in Section 5.1.3, continuous
global symmetries in the boundary theory should correspond to large gauge trans-
formations in the bulk. This identification will be confirmed below by examining
the asymptotic behavior of Aμ near the boundary, see (5.32) and the discussion
around it.

An especially important set of conserved currents in any translationally invariant
theory are those encapsulated in the energy–momentum tensor operator T μν(x).
The source hμν(x) coupling to T μν(x) as∫

d4x hμν(x)T
μν(x) (5.17)

can be interpreted as a deformation of the boundary spacetime metric. In the
absence of any such boundary metric deformation, from (5.3) we see that
the asymptotic AdS bulk metric gμν and the boundary Minkowski metric are
related by

gμν(z, x) → R2

z2
ημν, z → 0 . (5.18)

In the presence of a boundary metric deformation hμν it is thus natural to relate the
full boundary metric g(b)

μν = ημν + hμν to the bulk metric as

g(b)
μν (x) = lim

z→0

z2

R2
gμν(z, x) , (5.19)

meaning that for the metric αg = 2. The relation (5.19) should also be valid for hμν

which is not infinitesimal, i.e. for a general curved boundary metric. Given (5.17),
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the identification (5.19) has important implications: the dual of a translationally
invariant gauge theory, in which the energy–momentum tensor is conserved, must
involve gravity.

5.1.5 Normalizable vs. non-normalizable modes and mass–dimension relation

Having motivated the field/operator correspondence, we now elaborate on two
important aspects of this correspondence: how the conformal dimension of an
operator is related to properties of the dual bulk field [392, 803], and how to
interpret normalizable and non-normalizable modes of a bulk field in the boundary
theory [113, 114].

For illustration we will consider a massive bulk scalar field �, dual to some
scalar operator O in the boundary theory. Although our main interest is the case
in which the boundary theory is four-dimensional, it is convenient to present the
equations for a general boundary spacetime dimension d. For this reason we will
work with a generalization of the AdS metric (5.3) in which xμ = (t, �x) denote
coordinates of a d-dimensional Minkowski spacetime.

The bulk action for � can be written as

S = −1

2

∫
dz dd x

√−g
[
gM N∂M�∂N� + m2�2

] + · · · . (5.20)

We have canonically normalized �, and the dots stand for terms of order higher
than quadratic. We have omitted these terms because they are proportional to posi-
tive powers of Newton’s constant, and are therefore suppressed by positive powers
of 1/Nc.

Since the bulk spacetime is translationally invariant along the xμ-directions, it is
convenient to introduce a Fourier decomposition in these directions by writing2

�(z, xμ) =
∫

ddk

(2π)d
eik·x �(z, kμ) , (5.21)

where k · x ≡ ημνkμxμ and kμ ≡ (ω, �k), with ω and �k the energy and the spatial
momentum, respectively. In terms of these Fourier modes the equation of motion
for � derived from the action (5.20) is

zd+1∂z(z
1−d∂z�) − k2z2� − m2 R2� = 0 , k2 = −ω2 + �k2 . (5.22)

Near the boundary z → 0, the above equation can be readily solved perturbatively
in z to obtain the asymptotic behavior:

�(z, k) ≈ A(k)
(
zd−� + · · ·) + B(k)

(
z� + · · ·) as z → 0 , (5.23)

2 For notational simplicity we will use the same symbol to denote a function and its Fourier transform,
distinguishing them only through their arguments.
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where

� = d

2
+ ν , ν =

√
m2 R2 + d2

4
. (5.24)

In (5.23), “+ · · · ” denotes subleading terms in each of the two linearly indepen-
dent solutions. In subsequent equations we shall continue to suppress subleading
terms, displaying only the leading term for each linearly independent solution and
not even writing the “+ · · · ”. Since k enters (5.22) as a parameter, the integration
“constants” A and B in general depend on k.

Fourier transforming (5.23) back into coordinate space, we then find

�(z, x) ≈ A(x) zd−� + B(x) z� as z → 0 . (5.25)

The exponents in (5.25) are real provided

m2 R2 ≥ −d2

4
. (5.26)

In fact, one can show that the theory is stable for any m2 in the range (5.26),
whereas for m2 R2 < −d2/4 there exist modes that grow exponentially in time and
the theory is unstable [194, 195, 617]. In other words, in AdS space a field with
a negative mass-squared does not lead to an instability provided the mass-squared
is not “too negative”. Equation (5.26) is often called the Breitenlohner–Freedman
(BF) bound.

In the stable region (5.26) one must still distinguish between the finite interval
−d2/4 ≤ m2 R2 < −d2/4+1 and the rest of the region, m2 R2 ≥ −d2/4+1. In the
first case both terms in (5.25) are normalizable with respect to the inner product

(�1,�2) = −i
∫
!t

dzd �x √−g gtt(�∗
1∂t�2 − �2∂t�

∗
1) , (5.27)

where !t is a constant-t slice. We will comment on this case at the end of this
section.

For the moment let us assume that m2 R2 ≥ −d2/4 + 1. In this case the first
term in (5.25) is non-normalizable and the second term, which is normalizable,
does not affect the leading boundary behavior. As motivated in the previous sec-
tion, the boundary value of a bulk field � should be identified with the source
for the corresponding boundary operator O. Since in (5.25) the boundary behavior
of � is controlled by A(x), the presence of such a non-normalizable term should
correspond to a deformation of the boundary theory of the form

Sbdry → Sbdry +
∫

dd x φ(x)O(x) , with φ(x) = A(x) . (5.28)

In other words, the non-normalizable term determines the boundary theory
Lagrangian. In particular, we see that in order to obtain a finite source φ(x) for
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a scalar operator O(x) which is dual to an AdS scalar field �(x, z) of mass m,
with m related to � through (5.24), we need to make the identification

φ(x) = �|∂AdS (x) ≡ lim
z→0

z�−d�(z, x) , (5.29)

which is (5.14) with the choice α� = � − d.
In contrast, the normalizable modes are elements of the bulk Hilbert space. More

explicitly, in the canonical quantization one expands � in terms of a basis of nor-
malizable solutions of (5.22), from which one can then build the Fock space and
compute the bulk Green’s functions, etc. The equivalence between the bulk and
boundary theories implies that their respective Hilbert spaces should be identified.
Thus we conclude that normalizable modes should be identified with states of the
boundary theory. This identification gives an important tool for finding the spec-
trum of low energy excitations of a strongly coupled gauge theory. In the particular
example at hand, one can readily see from (5.22) that, for a given �k, there is a con-
tinuous spectrum of ω, consistent with the fact that the boundary theory is scale
invariant.

Furthermore, as will be discussed in Section 5.3 (and in Appendix C), the coeffi-
cient B(x) of the normalizable term in (5.25) can be identified with the expectation
value of O in the presence of the source φ(x) = A(x), namely

〈O(x)〉φ = 2νB(x) . (5.30)

In the particular case of a purely normalizable solution, i.e. one with A(x) = 0,
this equation yields the expectation value of the operator in the undeformed theory.

Equations (5.25), (5.28) and (5.30) imply that �, introduced in (5.24), should be
identified as the conformal dimension of the boundary operator O dual to � [803].
Indeed, recall that a scale transformation of the boundary coordinates xμ → Cxμ

corresponds to the isometry xμ → Cxμ, z → Cz in the bulk. Since � is a scalar
field, under such an isometry it transforms as �′(Cz,Cxμ) = �(z, xμ), which
implies that the corresponding functions in the asymptotic form (5.25) must trans-
form as A′(Cxμ) = C�−d A(xμ) and B ′(Cxμ) = C−�B(xμ). This means that
A(x) and B(x) have mass scaling dimensions d−� and �, respectively. Eqs. (5.28)
and (5.30) are then consistent with each other and imply that O(x) has mass scaling
dimension �.

The mass–dimension relations (5.24), the near-boundary behavior (5.25), and
the identification (5.29) are modified for fields of nonzero spin. For example, for a
massive vector field whose bulk action is given by the Maxwell action plus a mass
term, one finds,

� = d

2
+
√

(d − 2)2

4
+ m2 R2 . (5.31)
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A gauge field AM has m2 = 0, which means � = d −1 as expected for a conserved
boundary current, see Section 5.1.4. By an analysis similar to that discussed above
for the case of a scalar field, it can be shown that, near the boundary the vector
field, AM has the asymptotic behavior

Aμ = aμ + bμzd−2, as z → 0 (5.32)

confirming the identification (5.16).
For the metric (a massless spin-two field), analysis of the Einstein equations

leads to � = d , as expected for the stress–energy tensor. An intuitive way to under-
stand this is to note that just as the transverse traceless part of the graviton behaves
like a massless scalar field in Minkowski space, in AdS space the transverse trace-
less part of a metric fluctuation behaves like a minimally coupled massless scalar,
as we discuss further in Section 6.2.2. More explicitly, when a transverse traceless
metric perturbation is written with one upper and one lower index, it satisfies the
same equation that a massless scalar field does. We then note from (5.19) that any
metric perturbation with one upper and one lower index tends to a finite limit upon
approaching the boundary, just like a massless scalar field. Consequently, the com-
ponent of the boundary theory stress tensor that is dual to the transverse traceless
part of the bulk metric has scaling dimension d. By covariance this means that all
components of the boundary theory stress tensor scale in this way. Note that upon
applying the scaling argument below Eq. (5.30) to Eq. (5.19), one finds that g(b)

μν and
thus hμν does not scale under a scaling transformation, which then gives the correct
scaling dimension for T μν . This provides a quick consistency check of (5.19).

Before closing this section, let us return to the range −d2/4 ≤ m2 < −d2/4+1.
We shall be brief because this is not a case that arises in later sections. Since in
this case both terms in (5.25) are normalizable, either one can be used to build
the Fock space of physical states of the theory [194, 195]. This gives rise to two
different boundary CFTs in which the dimensions of the operator O(x) are � or
d − �, respectively [538]. It was later realized [805, 142] that even more general
choices are possible in which the modes used to build the physical states have
both A and B, nonzero. These choices correspond to different quantizations from
the bulk viewpoint, and to deformations by double-trace operators from the gauge
theory viewpoint.

5.2 Generalizations

5.2.1 Nonzero temperature and nonzero chemical potential

As discussed in Section 4.3, the same string theory reasoning giving rise to the
equivalence (4.27) can be generalized to nonzero temperature by replacing the pure
AdS metric (5.2) by that of a black brane in AdS5 [804], Eq. (4.30), which we
repeat here for convenience:
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ds2 = r2

R2

(− f dt2 + d �x2
) + R2

r2 f
dr2, f (r) = 1 − r4

0

r4
. (5.33)

Equivalently, in terms of the z-coordinate, we replace Eq. (5.2) by Eq. (4.32), i.e.

ds2 = R2

z2

(− f dt2 + d �x2
) + R2

z2 f
dz2, f (z) = 1 − z4

z4
0

. (5.34)

The metrics above have an event horizon at r = r0 and z = z0, respectively, and
the regions outside the horizon correspond to r ∈ (r0,∞) and z ∈ (0, z0). This
generalization can also be directly deduced from (4.27) as the black brane (5.33)–
(5.34) is the only metric on the gravity side that satisfies the following properties:
(i) it is asymptotically AdS5; (ii) it is translationally invariant along all the boundary
directions and rotationally-invariant along the boundary spatial directions; (iii) it
has a temperature and satisfies all laws of thermodynamics. It is therefore natural
to identify the temperature and other thermodynamical properties of (5.33)–(5.34)
with those of the SYM theory at nonzero temperature.

We mention in passing that there is also a nice connection between the
black brane geometry (5.33)–(5.34) and the thermal-field formulation of finite-
temperature field theory in terms of real time. Indeed, the fully extended spacetime
of the black brane has two boundaries. Each of them supports an identical copy of
the boundary field theory which can be identified with one of the two copies of the
field theory in the Schwinger–Keldysh formulation. The thermal state can also be
considered as a specific entangled state of the two field theories. For more details
see [593, 451].

The Hawking temperature of the black brane can be calculated via the stan-
dard method [376] (see Appendix B for details) of demanding that the Euclidean
continuation of the metric (5.34) obtained by the replacement t → −i tE,

ds2
E = R2

z2

(
f dt2

E + dx2
1 + dx2

2 + dx2
3

) + R2

z2 f
dz2 , (5.35)

be regular at z = z0. This requires that tE be periodically identified with a period β

given by

β = 1

T
= π z0 . (5.36)

The temperature T is identified with the temperature of the boundary SYM theory,
since tE corresponds precisely to the Euclidean time coordinate of the bound-
ary theory. We emphasize here that while the Lorentzian spacetime (5.34) can be
extended beyond the horizon z = z0, the Euclidean metric (5.35) exists only for
z ∈ (0, z0) as the spacetime ends at z = z0, and ends smoothly once the choice
(5.36) is made.
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For a boundary theory with a U (1) global symmetry, like N = 4 SYM theory,
one can furthermore turn on a chemical potential μ for the corresponding U (1)
charge. From the discussion of Section 5.1.4, this requires that the bulk gauge field
Aμ which is dual to a boundary current Jμ satisfies the boundary condition

lim
z→0

At = μ . (5.37)

The above condition along with the requirement that the field Aμ should be regular
at the horizon implies that there should be a radial electric field in the bulk, i.e. the
black hole is now charged. We will not write the metric of a charged black hole
explicitly, as we will not use it in this book. For more details and its applications,
see e.g. [261, 262, 393, 228, 302, 303, 426, 483]. Similarly, in the case of theories
with fundamental flavor introduced as probe D-branes, a baryon number chemical
potential corresponds to an electric field on the branes [529, 461, 539, 606, 643,
516, 809, 141, 309, 718, 644, 375, 515].

5.2.2 A confining theory

Although our main interest is the deconfined phase of QCD, in this section we will
briefly describe a simple example of a duality for which the field theory possesses
a confining phase [804]. For simplicity we have chosen a model in which the field
theory is three-dimensional, but all the essential features of this model extend to
the string duals of more realistic confining theories in four dimensions.

We start by considering N = 4 SYM theory at finite temperature. In the
Euclidean description the system lives on R

3×S1. The circle direction corresponds
to the Euclidean time, which is periodically identified with period β = 1/T . As
is well known, at length scales much larger than β one can effectively think of
this theory as the Euclidean version of pure three-dimensional Yang–Mills theory.
The reasoning is that at these scales one can perform a Kaluza–Klein reduction
along the circle. Since the fermions of the N = 4 theory obey antiperiodic bound-
ary conditions around the circle, their zero-mode is projected out, which means
that all fermionic modes acquire a tree-level mass of order 1/β. The scalars of
the N = 4 theory are periodic around the circle, but they acquire masses at the
quantum level. The only fields that cannot acquire masses are the gauge bosons
of the N = 4 theory, since masses for them are forbidden by gauge invariance.
Thus, at long distances the theory reduces to a pure Yang–Mills theory in three
dimensions, which is confining and has a map gap. The Lorentzian version of the
theory is simply obtained by analytically continuing one of the R

3 directions into
the Lorentzian time. Thus, in this construction the “finite temperature” of the origi-
nal four-dimensional theory is a purely theoretical device. The effective Lorentzian
theory in three dimensions is at zero temperature.
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In order to obtain the gravity description of this theory we just need to implement
the above procedure on the gravity side. We start with the Lorentzian metric (5.1)–
(5.2) dual to N = 4 SYM at zero temperature. Then we introduce a nonzero
temperature by going to Euclidean signature via t → −i tE and periodically identi-
fying the Euclidean time. This results in the metric (5.35). Finally, we analytically
continue one of the R

3 directions, say x3, back into the new Lorentzian time:
x3 → i t . The final result is the metric

ds2 = R2

z2

(−dt2 + dx2
1 + dx2

2 + f dt2
E

) + R2

z2 f
dz2 . (5.38)

In this metric the directions t, x1, x2 correspond to the directions in which the effec-
tive three-dimensional Yang–Mills theory lives. The direction tE is now a compact
spatial direction. Note that since the original metric (5.35) smoothly ends at z = z0,
so does (5.38). This leads to a dramatic difference between the gauge theory dual
to (5.38) and the original N = 4 theory: the fact that the radial direction smoothly
closes off at z = z0 introduces a mass scale in the boundary theory. To see this,
note that the warp factor R2/z2 has a lower bound. Thus, when applying the dis-
cussion of Section 5.1.1 to (5.38), EYM in Eq. (5.4) will have a lower limit of order
M ∼ 1/z0, implying that the theory develops a mass gap of this order. This can
also be explicitly verified by solving the equation of motion of a classical bulk field
(which is dual to some boundary theory operator) in the metric (5.38): for any fixed
�k one finds a discrete spectrum of normalizable modes with a mass gap of order M .
(Note that since the size of the circle parametrized by tE is proportional to 1/z0, the
mass gap is in fact comparable to the energies of Kaluza–Klein excitations on the
circle.) As explained in Section 5.1.5, these normalizable modes can be identified
with the glueball states of the boundary theory.

The fact that the gauge theory dual to the geometry (5.38) is a confining theory
is further supported by several checks, including the following two. First, analysis
of the expectation value of a Wilson loop reveals an area law, as will be discussed
in Section 5.4. Second, the gravitational description can be used to establish that
the theory described by (5.38) undergoes a deconfinement phase transition at a
temperature Tc ∼ M set by the mass gap, above which the theory is again described
by a geometry with a black hole horizon [804] (see [601, 672] for reviews).

The above construction resulted in an effective confining theory in three dimen-
sions because we started with the theory on the worldvolume of D3-branes, which
is a four-dimensional SYM theory. By starting instead with the near horizon solu-
tion of a large number of non-extremal D4-branes, which describes a SYM theory
in five dimensions, the above procedure leads to the string dual of a Lorentzian con-
fining theory that at long distance reduces to a four-dimensional pure Yang–Mills
theory [804]. This has been used as the starting point of the Sakai–Sugimoto model
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for QCD [721, 722], which incorporates spontaneous chiral symmetry breaking
and its restoration at high temperatures [30, 670]. For reviews on some of these
topics see for example [601, 672].

5.2.3 Other generalizations

In addition to (4.27), many other examples of gauge/string dualities are known in
different spacetime dimensions (see e.g. [29] and references therein). These include
theories with fewer supersymmetries and theories which are not scale invariant, in
particular confining theories [688, 537, 597] (see e.g. [27, 764] for reviews).

For a d-dimensional conformal theory, the dual geometry on the gravity side
contains a factor of AdSd+1 and some other compact manifold.3 When expanded
in terms of the harmonics of the compact manifold, the duality again reduces to
that between a d-dimensional conformal theory and a gravity theory in AdSd+1. In
particular, in the classical gravity limit, this reduces to Einstein gravity in AdSd+1

coupled to various matter fields with the precise spectrum of matter fields depend-
ing on the specific theory under consideration. For a nonconformal theory the dual
geometry is in general more complicated. Some simple, early examples were dis-
cussed in [487]. If a theory has a mass gap, the dual bulk geometry either closes
off at some finite value of z0 as in the example of Section 5.2.2 or ends in some IR
singularity that can be reached in a finite proper distance.

All known examples of gauge/string dual pairs share the following common
features with (4.27): (i) the field theory is described by elementary bosons and
fermions coupled to non-Abelian gauge fields whose gauge group is specified by
some Nc; (ii) the string description reduces to classical (super)gravity in the large-
Nc, strong coupling limit of the field theory. In this book we will use (4.27) as
our prime example for illustration purposes, but the discussion can be immediately
applied to other examples including nonconformal ones.

5.3 Correlation functions of local operators

In this section we will explain how to calculate correlation functions of local gauge-
invariant operators of the boundary theory in terms of the dual gravity description.
We will mostly focus on one-point and two-point functions, in the latter case in par-
ticular on real time retarded correlators which are important for determining linear
response, transport coefficients, and spectral functions. We will, however, begin
by describing the general prescription for computing n-point Euclidean correlation
functions.

3 Not necessarily in a direct product; the product may be warped.
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5.3.1 General prescription for Euclidean correlators

In view of the field/operator correspondence discussed in Sections 5.1.4 and 5.1.5,
it is natural to postulate that the Euclidean partition functions of the boundary and
bulk theories must agree, namely that [392, 803]

ZCFT [φ(x)] = Zstring
[
�|∂AdS (x)

]
. (5.39)

Both sides of this equation require explanation. The left-hand side of (5.39) is the
most general partition function in the CFT, including a source for each gauge-
invariant operator in the theory, namely

ZCFT [φ(x)] ≡ 〈e
∫
φO〉 . (5.40)

Here one should think of φ(x) in Eq. (5.39) as succinctly indicating the collection
of all such sources. The expectation value 〈· · · 〉 can be in the vacuum or a thermal
state. Since AdS has a boundary, to define the string theory partition function on the
right-hand side of (5.39) one needs to specify a boundary condition for each bulk
field. The collection of all such boundary conditions is indicated by �|∂AdS (x)
in Eq. (5.39). Having parsed both sides of it, the equality in (5.39) makes sense
because both sides of the equation are functionals of the same variables upon the
identification of φ and �|∂AdS (x) in (5.14).

The right-hand side of (5.39) is in general not easy to compute, but it simplifies
dramatically in the classical gravity limit (5.6), where it can be obtained using the
saddle point approximation as

Zstring[φ] � exp
(
S(ren)[�(E)

c ]) , (5.41)

where we have absorbed a conventional minus sign into the definition of the
Euclidean action which avoids having some additional minus signs in various equa-
tions below and in the analytic continuation to Lorentzian signature. In Eq. (5.41),
S(ren)[�(E)

c ] is the renormalized on-shell classical supergravity action [450, 111,
635, 338, 558, 314, 158], namely the classical action evaluated on a Euclidean
solution �(E)

c of the classical equations of motion determined by the boundary
identification with φ, i.e. the Euclidean version of (5.14), and by the requirement
that the solution be regular everywhere in the interior of the spacetime. The on-shell
action needs to be renormalized because it typically suffers from IR divergences
due to the integration region near the boundary of AdS [803]. These divergences
are dual to UV divergences in the gauge theory, consistent with the UV/IR corre-
spondence. The procedure to remove these divergences on the gravity side is well
understood and is referred to as “holographic renormalization”. (It is no more sim-
ilar to the holographic renormalization group that we mentioned in Section 5.1.1
than the renormalization group is to traditional renormalization.) Although holo-
graphic renormalization is an important ingredient of the gauge/string duality, it



128 A duality toolbox

is also somewhat technical. In Appendix C we briefly review it in the context of
a two-point function calculation. The interested reader may consult the literature
cited above, as well as the review [742], for details.

From (5.39) and (5.41) we thus find that in the large-Nc and large-λ limit, the
boundary theory free energy is given by

log ZCFT[φ(x)] = S(ren)[�(E)
c ] . (5.42)

Corrections to Eq. (5.41) can be included as an expansion in α′ and gs , which
correspond to 1/

√
λ and 1/Nc corrections in the gauge theory, respectively. Note

that since the classical action (5.9) on the gravity side is proportional to 1/G5, from
Eq. (5.12) we see that S(ren)[�(E)

c ] ∼ N 2
c , as one would expect for the generating

functional of an SU (Nc) SYM theory in the large-Nc limit. From (5.42), in the
large-Nc and large-λ limit, connected correlation functions of the gauge theory are
given simply by functional derivatives of the on-shell, classical gravity action:

〈O(x1) . . .O(xn)〉 = δn S(ren)[�(E)
c ]

δφ(x1) . . . δφ(xn)

∣∣∣∣
φ=0

. (5.43)

This concludes our general discussion of n-point functions. In Appendix C we give
an explicit computation of the Euclidean two-point function for a scalar operator
in a CFT. For some early work on the evaluation of higher-point functions see
Refs. [358, 581, 260].

5.3.2 One-point functions

Here we describe how to compute the one-point function (i.e. expectation value)
of an operator in a general time-dependent state which may not have a Euclidean
analytic continuation. We first consider a generic scalar operator, and then turn
more specifically to the stress tensor and a conserved current.

From (5.43), the Euclidean one point function of a scalar operator O in the
presence of the source φ is given by

〈O(x)〉φ = δS(ren)[�(E)
c ]

δφ(x)
= lim

z→0
zd−� δS(ren)[�(E)

c ]
δ�

(E)
c (z, x)

, (5.44)

where in the second equality we have used (5.29). In classical mechanics, it is well
known that the variation of the action with respect to the boundary value of a field
results in the canonical momentum � conjugate to the field, where the boundary
in that case is usually a constant-time surface. (See, e.g., Ref. [566].) In the present
case the boundary is a constant-z surface, but it is still useful to proceed by analogy
with classical mechanics and to think of the derivative in the last term in (5.44) as
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the renormalized canonical momentum conjugate to �(E)
c evaluated on the classical

solution:

�(ren)
c (z, x) = δS(ren)[�(E)

c ]
δ�

(E)
c (z, x)

. (5.45)

With this definition, Eq. (5.44) takes the form

〈O(x)〉φ = lim
z→0

zd−��(ren)
c (z, x) (5.46)

which can further be shown to yield

〈O(x)〉φ = 2νB(x), (5.47)

where we have used (5.25) and have identified A(x) in (5.25) with φ(x). See
Appendix C for a discussion. In the absence of a source, i.e. if φ(x) = A(x) =
0, then (5.47) gives the expectation value of O in terms of the fall-off of a
normalizable solution.

The prescription (5.46) or (5.47) requires only knowledge of the asymptotic
boundary behavior of the bulk solution �c and is thus much simpler to com-
pute than (5.44). More importantly, the formulation (5.44) does not generalize to a
generic time-dependent state which does not have a Euclidean analytic continua-
tion, while the expressions (5.46) or (5.47) do have straightforward generalizations.
Recall that a normalizable solution in the bulk is mapped to a state in the boundary.
Evaluating (5.46) or (5.47) for such a bulk solution then gives the expectation value
in the corresponding state on the boundary.

Let us now consider the one-point function of the stress–energy tensor which,
upon making the identification (5.42), can be obtained from the expression

〈T μν(x)〉 = 2√
g(b)(x)

δS(ren)[g(b)]
δg(b)

μν (x)
= lim

z→0

zd+2

Rd+2

2√
detgμν(x, z)

δS(ren)[g]
δgμν(x, z)

,

(5.48)
where g(b)

μν is the metric for the boundary theory and where the various expressions
should all be understood in Euclidean signature. The first equality follows from
the standard field theory definition of the stress tensor and we have used (5.19)
in the second equality. Note that in the last expression det gμν is the determinant
of gμν(x, z), which is the part of the bulk metric along boundary directions or,
equivalently, the induced metric on a constant-z hypersurface.

As in the scalar case, the variation of the bulk on-shell action with respect to the
boundary value of gμν is given by the canonical momentum �μν conjugate to gμν

evaluated on the classical solution:

δS(ren)

δgμν

= �
μν

(ren) =
√

detgμν

16πGN
(Kμν − gμνK ) + δS(ct)[g]

δgμν(x, z)
(5.49)
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with Kμν the extrinsic curvature for a constant-z hypersurface. In (5.49), the first
term is the standard canonical momentum in general relativity, while S(ct)[g] is the
counterterm that must be added to the action in order to make the total action finite.
S(ct)[g] is dimension-dependent for a general curved boundary metric g(b), but has
a universal form when the boundary metric is flat, in which case one has [111]

S(ct) = − 1

8πGN

d − 1

R

∫
z→0

dd x
√

detgμν , (5.50)

where the integral is over a constant-z slice. From (5.48)–(5.50) we thus find that,
if the boundary theory has a flat metric,

〈T μν〉 = lim
z→0

1

8πGN

Rd+2

zd+2

(
Kμν − gμνK − d − 1

R
gμν

)
. (5.51)

As discussed above in the scalar case, the expression (5.51) can be applied to a
general bulk Lorentzian geometry to find the expectation value of the stress tensor
in the corresponding dual state. In particular, it applies to non-equilibrium states.
Equation (5.51) will play an important role in Chapter 7 and in Section 8.3.

Finally we briefly mention the prescription for extracting the expectation value
of a conserved current jμ in a boundary state dual to some given bulk state.
Suppose the corresponding bulk gauge field AM has the Maxwell action

S = −1

4

∫
dz dd x

√−g FM N F M N . (5.52)

The canonical momentum conjugate to Aμ is �μ = −√−gFzμ and (5.46)–(5.47)
then generalize to

〈 jμ〉 = − lim
z→0

√−gFzμ = −(d − 2)Rd−3ημνbμ (5.53)

where bμ is the coefficient of the normalizable term in (5.32) and ημν is the
boundary Minkowski metric.

5.3.3 Real time two-point functions

We now proceed to the prescription for calculating real time correlation func-
tions in equilibrium. We will focus our discussion on retarded two-point functions
because of their important role in characterizing linear response. Also, once the
retarded function is known one can then use standard relations to obtain the other
Green’s functions. The calculation of two-point functions out of equilibrium does
not yield closed form expressions like those we shall find in equilibrium below, and
we shall not present it here. However, for an out-of-equilibrium formulation that
that yields explicit expressions suitable for numerical evaluation, see Ref. [241].
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We start with linear response in Euclidean signature. In momentum space the
response, i.e the expectation value of an operator, is proportional to the corre-
sponding source, and the constant of proportionality (for each momentum) is the
two-point function of the operator:

〈O(ωE , �k)〉φ = GE(ωE , �k)φ(ωE , �k) . (5.54)

Then, Eqs. (5.46)–(5.47) yield

GE(ωE , �k) = 〈O(ωE , �k)〉φ
φ(ωE , �k) = lim

z→0
z2(d−�)�

(ren)
c

�
(E)
c

= 2ν
B(ωE , �k)
A(ωE , �k) , (5.55)

where ωE denotes Euclidean frequency. See Appendix C for further discussion.
If the Euclidean correlation functions GE are known exactly, the retarded

functions G R can then be obtained via the analytic continuation

G R(ω, �k) = GE(−i(ω + iε), �k) . (5.56)

In most examples of interest, however, the Euclidean correlation functions can only
be found numerically and analytic continuation to Lorentzian signature becomes
difficult. Thus, it is important to develop techniques to calculate real time correla-
tion functions directly. Based on an educated guess that passed several consistency
checks, a prescription for calculating retarded two-point functions in Lorentzian
signature was first proposed by Son and Starinets in Ref. [747]. The authors of
Ref. [451] later justified the prescription and extended it to n-point functions. Here
we will follow the treatment given in Refs. [482, 481]. For illustration we consider
the retarded two-point function for a scalar operator O at nonzero temperature,
which can be obtained from the propagation of the dual scalar field � in the geom-
etry of an AdS black brane. The action for � again takes the form (5.20) with gM N

now given by the black brane metric (5.34).
Before giving the prescription, we note that in Lorentzian signature one cannot

directly apply the procedure summarized by Eq. (5.43) to obtain retarded functions.
There are two immediate complications/difficulties. First, the Lorentzian black
hole spacetime contains an event horizon and one also needs to impose appro-
priate boundary conditions there when solving the classical equation of motion
for �. Second, since partition functions are defined in terms of path integrals, the
resulting correlation functions should be time ordered.4 As we now describe, both
complications can be dealt with in a simple manner.

4 While it is possible to obtain Feynman functions this way, the procedure is quite subtle, since Feynman
functions require imposing different boundary conditions for positive- and negative-frequency modes at the
horizon and the choices of positive-frequency modes are not unique in a black hole spacetime. The cor-
rect choice corresponds to specifying the so-called Hartle–Hawking vacuum. For details see Ref. [451]. In
contrast, the retarded function does not depend on the choice of the bulk vacuum in the classical limit as
the corresponding bulk retarded function is given by the commutator of the corresponding bulk field – see
Eq. (5.66).
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The idea is to analytically continue the Euclidean classical solution that we
have denoted �(E)

c (ωE , �k), as well as Eq. (5.55), to Lorentzian signature according
to (5.56). Clearly the analytic continuation of �(E)

c (ωE , �k),
�c(ω, �k) = �(E)

c (−i(ω + iε), �k) , (5.57)

solves the Lorentzian equation of motion. In addition, this solution obeys the
infalling boundary condition at the future event horizon of the black brane met-
ric (5.34). This property is important as it ensures that the retarded correlator is
causal and only propagates information forward in time. This is intuitive since
we expect that, classically, information can fall into the black hole horizon but not
come out, so the retarded correlator should have no outgoing component. Although
it is intuitive, given its importance let us briefly verify that the infalling boundary
condition is satisfied. The Lorentzian equation of motion in momentum space for
�c in the black brane metric (5.34) takes the form

z5∂z

[
z−3 f (z)∂z�

]
+ ω2z2

f (z)
� − �k2z2� − m2 R2� = 0 , (5.58)

where �k2 = δi j ki k j . The corresponding Euclidean equation is obtained by set-
ting ω = iωE . Near the horizon z → z0, since f → 0 the last two terms in
(5.58) become negligible compared with the second term and can be dropped. The
resulting equation (with only the first two terms of (5.58)) then takes the simple
form

Lorentzian : ∂2
ξ � + ω2� = 0 ,

Euclidean : ∂2
ξ � − ω2

E� = 0 , (5.59)

in terms of a new coordinate

ξ ≡
∫ z dz′

f (z′)
. (5.60)

Since ξ → +∞ as z → z0, in order for the Euclidean solution to be regu-
lar at the horizon we must choose the solution with the decaying exponential,
i.e. �(E)

c (ωE , ξ) ∼ e−ωE ξ . The prescription (5.57) then yields �c(ω, ξ) ∼ eiωξ .
Going back to coordinate space we find that near the horizon

�c(t, ξ) ∼ e−iω(t−ξ) . (5.61)

As anticipated, this describes a wave propagating towards the direction in which
ξ increases, i.e. falling into the horizon. Had we chosen the opposite sign in the
prescription (5.57) we would have obtained an outgoing wave, as appropriate for
the advanced correlator which obeys an outgoing boundary condition at the past
event horizon of the metric (5.34), and has no infalling component.
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Given a Lorentzian solution satisfying the infalling boundary condition at the
horizon which can be expanded near the boundary according to (5.23), as empha-
sized below (5.47), Eqs. (5.46)–(5.47) can then be applied directly to such a
Lorentzian solution, yielding the Lorentzian counterpart of (5.55):

G R(ω, �k) = lim
z→0

z2(d−�) �(ren)
c

�c(ω, �k) = 2ν
B(ω, �k)
A(ω, �k) . (5.62)

Incidentally, Eq. (5.62) shows that the retarded correlator possesses a pole precisely
at those frequencies for which A(ω, �k) vanishes. In other words, the poles of the
retarded two-point function are in one-to-one correspondence with normalizable
solutions of the equations of motion which are infalling at the horizon. Owing to the
infalling boundary conditions at the horizon, such modes have a discrete spectrum
and their frequencies have strictly negative imaginary parts. In the gravity literature
such modes are referred to as quasinormal modes. In the field theory context, poles
of retarded Green functions encode much of the physics of a system including the
presence of hydrodynamic modes, the way in which out-of-equilibrium states relax
toward equilibrium and the presence of quasiparticles, if any. We will return to this
discussion at length in the context of strongly coupled N = 4 SYM theory in
Chapter 6 and in particular in Section 6.4.

For practical purposes, let us recapitulate here the main result of this section,
namely the algorithmic procedure for computing the real time, finite-temperature
retarded two-point function of a local, gauge-invariant operator O(x). This consists
of the following steps.

(1) Identify the bulk mode �(x, z) dual to O(x).
(2) Find the Lorentzian-signature bulk effective action for � to quadratic order,

and the corresponding linearized equation of motion in momentum space.
(3) Find a solution �c(k, z) to this equation with the boundary conditions that the

solution is infalling at the horizon and behaves as

�c(z, k) ≈ A(k) zd−� + B(k) z� (5.63)

near the boundary (z → 0), where � is the dimension of O(x), d is the
spacetime dimension of the boundary theory and A(k) should be thought of
as an arbitrary source for O(k). B(k) is not an independent quantity but is
determined by the boundary condition at the horizon and A(k).

(4) The retarded Green’s function for O is then given by

G R(k) = 2ν
B(k)

A(k)
, (5.64)

where ν is defined in Eq. (5.24).
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In Section 9.5.2 we will discuss in detail an example of a retarded correlator of two
electromagnetic currents.

Before closing this section, we note that an alternative way to compute bound-
ary correlation functions which works in both Euclidean and Lorentzian signature
is [118]

〈O(x1) · · ·O(xn)〉 = lim
zi →0

(2νz�1 ) · · · (2νz�n )〈�(z1, x1) · · ·�(zn, xn)〉 (5.65)

where the correlator on the right-hand side is a correlation function in the bulk the-
ory. In (5.65) it should be understood that whatever ordering one wants to consider,
it should be same on both sides. For example, for the retarded two-point function
G R of O

G R(x1 − x2) = lim
z1,z2→0

(2νz�1 )(2νz�2 )GR(z1, x1; z2, x2) , (5.66)

where GR denotes the retarded Green’s function of the bulk field �.

5.4 Wilson loops

The expectation values of Wilson loops

Wr (C) = TrP exp

[
i
∫
C

dxμ Aμ(x)

]
, (5.67)

are an important class of non-local observables in any gauge theory. Here,∫
C denotes a line integral along the closed path C, Wr (C) is the trace of an

SU (N )-matrix in the representation r (one often considers fundamental or adjoint
representations, i.e. r = F, A), the vector potential Aμ(x) = Aa

μ(x) T a can be
expressed in terms of the generators T a of the corresponding representation, and
P denotes path ordering. The expectation values of Wilson loops contain infor-
mation about the nonperturbative physics of non-Abelian gauge field theories and
have applications to many physical phenomena such as confinement, thermal phase
transitions, quark screening, etc. For many of these applications it is useful to think
of the path C as that traversed by a quark. We will discuss some of these applica-
tions in Chapter 8. Here, we describe how to compute expectation values of Wilson
loops in a strongly coupled gauge theory using its gravity description.

We again use N = 4 SYM theory as an example. Now recall that the field
content of this theory includes six scalar fields �φ = (φ1, . . . φ6) in the adjoint
representation of the gauge group. This means that in this theory one can write
down the following generalization of (5.67) [595, 711]:

W (C) = 1

Nc
TrP exp

[
i
∮
C

ds
(

Aμ ẋμ + �n · �φ
√

ẋ2
)]

, (5.68)
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C

Σ

D-brane

Figure 5.1 String worldsheet associated with a Wilson loop.

where �n(s) is a unit vector in R
6 that parametrizes a path in this space (or, more

precisely, in S5), just like xμ(s) parametrizes a path in R
(1,3). The factor of

√
ẋ2

is necessary to make �n · �φ √
ẋ2 a density under worldline reparametrizations. Note

that the operators (5.67) and (5.68) are equivalent in the case of a light-like loop
(as will be discussed in Section 8.5) for which ẋ2 = 0.

An important difference between the operators (5.67) and (5.68) is that (5.67)
breaks supersymmetry, whereas (5.68) is locally 1/2-supersymmetric, meaning that
for a straight-line contour (that is time-like in Lorentzian signature) the operator is
invariant under half of the supercharges of the N = 4 theory.

We will now argue that the generalized operator (5.68) has a dual description
in terms of a string worldsheet. For this purpose it is useful to think of the loop
C as the path traversed by a quark. Although the N = 4 SYM theory has no
quarks, we will see below that these can be simply included by introducing in the
gravity description open strings attached to a D-brane sitting at some radial position
proportional to the quark mass. The endpoint of the open string on the D-brane is
dual to the quark, so the boundary ∂! of the string worldsheet ! must coincide
with the path C traversed by the quark – see Fig. 5.1. This suggests that we must
identify the expectation value of the Wilson loop operator, which gives the partition
function (or amplitude) of the quark traversing C, with the partition function of the
dual string worldsheet ! [595, 711]:

〈W (C)〉 = Zstring[∂! = C] . (5.69)

For simplicity, we will focus on the case of an infinitely heavy (non-dynamical)
quark. This means that we imagine that we have pushed the D-brane all the way to
the AdS boundary. Under these circumstances the boundary ∂! = C of the string
worldsheet also lies within the boundary of AdS.

The key point to recall now is that the string endpoint couples both to the gauge
field and to the scalar fields on the D-brane. This is intuitive since, after all, we
obtained these fields as the massless modes of a quantized open string with end-
points attached to the D-brane. Physically, the coupling to the scalar fields is just a
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reflection of the fact that a string ending on a D-brane “pulls” on it and deforms its
shape, thus exciting the scalar fields which parametrize this shape. The direction
orthogonal to the D-brane in which the string pulls is specified by �n. The coupling
to the gauge field reflects the fact that the string endpoint behaves as a pointlike
particle charged under this gauge field. We thus conclude that an open string end-
ing on a D-brane with a fixed �n excites both the gauge and the scalar fields, which
suggests that the correct Wilson loop operator dual to the string worldsheet must
include both types of fields and must therefore be given by (5.68).

The dual description of the operator (5.67) is the same as that of (5.68) except
that the Dirichlet boundary conditions on the string worldsheet along the S5 direc-
tions must be replaced by Neumann boundary conditions [42] (see also [330]). One
immediate consequence is that, to leading order, the strong coupling results for the
Wilson loop (5.68) with constant �n and for the Wilson loop (5.62) are the same.
However, the two results differ at the next order in the 1/

√
λ expansion, since in

the case of (5.67) we would have to integrate over the point on the sphere where
the string is sitting. More precisely, at the one-loop level in the α′-expansion one
finds that the determinants for quadratic fluctuations are different in the two cases
[331].

In the large-Nc, large-λ limit, the string partition function Zstring[∂! = C]
greatly simplifies and is given by the exponential of the classical string action, i.e.

Zstring[∂! = C] = ei S(C) → 〈W (C)〉 = ei S(C) . (5.70)

The classical action S(C) can in turn be obtained by extremizing the Nambu–Goto
action for the string worldsheet with the boundary condition that the string world-
sheet ends on the curve C. More explicitly, parameterizing the two-dimensional
world sheet by the coordinates σα = (τ, σ ), the location of the string world sheet
in the five-dimensional spacetime with coordinates x M is given by the Nambu–
Goto action (4.13). The fact that the action is invariant under coordinate changes
of σα will allow us to pick the most convenient worldsheet coordinates (τ, σ ) for
each occasion.

Note that the large-Nc and large-λ limits are both crucial for (5.70) to hold.
Taking Nc → ∞ at fixed λ corresponds to taking the string coupling to zero,
meaning that we can ignore the possibility of loops of string breaking off from the
string world sheet. Additionally taking λ → ∞ corresponds to sending the string
tension to infinity, which implies that we can neglect fluctuations of the string world
sheet. Under these circumstances the string worldsheet “hanging down” from the
contour C takes on its classical configuration, without fluctuating or splitting off
loops.

As a simple example let us first consider a contour C given by a straight line
along the time direction with length T which describes an isolated static quark at
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rest. On the field theory side we expect that the expectation value of the Wilson
line should be given by

〈W (C)〉 = e−i MT , (5.71)

where M is the mass of the quark. From the symmetry of the problem, the corre-
sponding bulk string worldsheet should be that of a straight string connecting the
boundary and the Poincaré horizon and translated along the time direction by T .
The action of such a string worldsheet is infinite since the proper distance from the
boundary to the center of AdS is infinite. This is consistent with the fact that the
external quark has an infinite mass. A finite answer can nevertheless be obtained if
we introduce an IR regulator in the bulk, putting the boundary at z = ε instead of
z = 0. From the IR/UV connection this corresponds to introducing a short-distance
(UV) cut-off in the boundary theory. Choosing τ = t and σ = z the string world-
sheet is given by xi (σ, τ ) = const., and the induced metric on the worldsheet is
then given by

ds2 = R2

σ 2
(−dτ 2 + dσ 2) . (5.72)

Evaluating the Nambu–Goto action on this solution yields

S = S0 ≡ − T R2

2πα′

∫ ∞

ε

dz

z2
= −

√
λ

2πε
T , (5.73)

where we have used the fact that R2/α′ = √
λ. Using (5.70) and (5.71) we then

find that

M =
√
λ

2πε
. (5.74)

5.4.1 Rectangular loop: vacuum

Now let us consider a rectangular loop sitting at a constant position on the S5

[711, 595]. The long side of the loop extends along the time direction with length
T , and the short side extends along the x1-direction with length L . We will assume
that T � L . Such a configuration can be though of as consisting of a static quark–
antiquark pair separated by a distance L . Therefore we expect that the expectation
value of the Wilson loop (with suitable renormalization) gives the potential energy
between the pair, i.e. we expect that

〈W (C)〉 = e−i EtotT = e−i(2M+V (L))T = ei S(C) , (5.75)

where Etot is the total energy for the whole system and V (L) is the potential energy
between the pair. In the last equality we have used (5.70). We will now proceed to
calculate S(C) for a rectangular loop.



138 A duality toolbox

z(σ)

AdS boundary
L

Figure 5.2 String (red) associated with a quark–antiquark pair.

It is convenient to choose the worldsheet coordinates to be

τ = t, σ = x1 . (5.76)

Since T � L , we can assume that the surface is translationally invariant along the
τ direction, i.e. the extremal surface should have non-trivial dependence only on
σ . Given the symmetries of the problem we can also set

x3(σ ) = const. , x2(σ ) = const. (5.77)

Thus the only non-trivial function to solve for is z = z(σ ) (see Fig. 5.2), subject to
the boundary condition

z

(
± L

2

)
= 0 . (5.78)

Using the form (5.3) of the spacetime metric and Eqs. (5.76)–(5.77), the induced
metric on the worldsheet is given by

ds2
ws = R2

z2

(−dτ 2 + (1 + z′2)dσ 2
)
, (5.79)

giving rise to the Nambu–Goto action

SNG = − R2T
2πα′

∫ L
2

− L
2

dσ
1

z2

√
1 + z′2 , (5.80)

where z′ = dz/dσ . Since the action and the boundary condition are symmetric
under σ → −σ , z(σ ) should be an even function of σ . Introducing dimensionless
coordinates via

σ = L ξ , z(σ ) = L y(ξ) (5.81)
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we then have

SNG = − 2R2

2πα′
T
L

Q , with Q =
∫ 1

2

0

dξ

y2

√
1 + y′2 . (5.82)

Note that Q is a numerical constant. As we will see momentarily, it is in fact
divergent and therefore it should be defined more carefully. The equation of motion
for y is given by

y′2 = y4
0 − y4

y4
(5.83)

with y0 the turning point at which y′ = 0, which by symmetry should happen at
ξ = 0. Thus, y0 can be determined by the condition

1

2
=

∫ 1
2

0
dξ =

∫ y0

0

dy

y′ =
∫ y0

0
dy

y2√
y4

0 − y4
→ y0 = �( 1

4)

2
√
π�( 3

4)
. (5.84)

It is then convenient to change integration variable in Q from ξ to y to get

Q = y2
0

∫ y0

0

dy

y2
√

y4
0 − y4

. (5.85)

This is manifestly divergent at y = 0, but the divergence can be interpreted as
coming from the infinite rest masses of the quark and the antiquark. As in the
discussion after (5.71), we can obtain a finite answer by introducing an IR cut-off
in the bulk by putting the boundary at z = ε, i.e. by replacing the lower integration
limit in (5.85) by ε. The potential V (L) between the quarks is then obtained by
subtracting 2MT from (5.82) (with M given by (5.74)) and then taking ε → 0 at
the end of the calculation. One then finds the finite answer

V (L) = − 4π2

�4( 1
4)

√
λ

L
, (5.86)

where again we used the fact that R2/α′ = √
λ to translate from gravity to gauge

theory variables. Note that the 1/L dependence is simply a consequence of confor-
mal invariance. The non-analytic dependence on the coupling, i.e. the

√
λ factor,

could not be obtained at any finite order in perturbation theory. From the gravity
viewpoint, however, it is a rather generic result, since it is due the fact that the
tension of the string is proportional to 1/α′. The above result is valid at large λ.
At small λ, the potential between a quark and an antiquark in an N = 4 theory is
given by [342]

E = −πλ

L
(5.87)

to lowest order in the weak coupling expansion.
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It is remarkable that the calculation of a Wilson loop in a strongly interacting
gauge theory has been simplified to a classical mechanics problem no more difficult
than finding the catenary curve describing a string suspended from two points,
hanging in a gravitational field – in this case the gravitational field of the AdS
spacetime.

Note that given (5.86), the boundary short-distance cut-off ε in (5.74) can be
interpreted as the size of the external quark. One might have expected (incorrectly)
that a short distance cut-off on the size of the quark should be given by the Compton
wavelength 1/M ∼ ε/

√
λ, which is much smaller than ε. Note that the size of

a quark should be defined by either its Compton wavelength or by the distance
between a quark and an antiquark at which the potential is of the order of the quark
mass, whichever is bigger. In a weakly coupled theory, the Compton wavelength is
bigger, while in a strongly coupled theory with potential (5.86), the latter is bigger
and is of order ε.

5.4.2 Rectangular loop: nonzero temperature

We now consider the expectation of the rectangular loop at nonzero temperature
[712, 190]. In this case the bulk gravity geometry is given by that of the black
brane (5.34). The set-up of the calculation is exactly the same as in Eqs. (5.76)–
(5.78) for the vacuum. The induced worldsheet metric is now given by

ds2
ws = R2

z2

(
− f (z)dτ 2 +

(
1 + z′2

f

)
dσ 2

)
, (5.88)

which yields the Nambu–Goto action

SNG = − R2T
2πα′

∫ L
2

− L
2

dσ
1

z2

√
f (z) + z′2 . (5.89)

The crucial difference between the equation of motion following from (5.89) and
that following from (5.80) is that in the present case there exists a maximal value
Ls ∼ 1/T beyond which nontrivial solutions cease to exist [712, 190] – see
Fig. 5.3. Instead, the solution beyond this maximal separation consists of two dis-
joint vertical strings ending at the black hole horizon. The physical reason can
be easily understood qualitatively from the figure. At some separation, the lowest
point on the string touches the horizon. Surely at and beyond this separation the
string can minimize its energy by splitting into two independent strings, each of
which falls through the horizon. The precise value of Ls is defined as the quark–
antiquark separation at which the free energy of the disconnected configuration
becomes smaller than that of the connected configuration. This happens at a value
of L for which the lowest point of the connected configuration is close to but still
somewhat above the horizon. Once L > Ls , the quark–antiquark separation can
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Ls

Horizon

Figure 5.3 String (red) associated with a quark–antiquark pair in a plasma with
temperature T > 0. The preferred configuration beyond a certain separation Ls
consists of two independent strings.

then be increased further at no additional energy cost, so the potential becomes
constant and the quark and the antiquark are perfectly screened from each other by
the plasma between them. See, for example, Ref. [108] for a careful discussion of
the corrections to this large-Nc, large-λ result.

5.4.3 Rectangular loop: a confining theory

For comparison, let us consider the expectation value of a rectangular loop in the
2 + 1-dimensional confining theory [804] (for a review see [760]) whose metric is
given by (5.38), which we reproduce here for convenience:

ds2 = R2

z2

(−dt2 + dx2
1 + dx2

2 + f dtE
) + R2

z2 f
dz2, f = 1 − z4

z4
0

. (5.90)

As discussed earlier, the crucial difference between (5.90) and AdS is that the
spacetime (5.90) ends smoothly at a finite value z = z0, which introduces a scale
in the theory. The difference as compared to the finite-temperature case is that in
the confining geometry the string has no place to end, so in order to minimize its
energy it tends to drop down to z0 and to run parallel there – see Fig. 5.4.

Again the set-up of the calculation is completely analogous to the cases above.
The induced worldsheet metric is now given by

ds2
ws = R2

z2

(
−dτ 2 +

(
1 + z′2

f

)
dσ 2

)
, (5.91)

and the corresponding the Nambu–Goto action is

SNG = − R2T
2πα′

∫ L
2

− L
2

dσ
1

z2

√
1 + z′2

f (z)
. (5.92)
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z = z0

z = 0

Figure 5.4 String (red) associated with a quark–antiquark pair in a confining
theory.

When L is large, the string quickly drops to z = z0 and runs parallel there. We
thus find that the action can be approximated by (after subtracting the vertical parts
which can be interpreted as being due to the static quark masses)

− S(C) − 2MT ≈ R2T
2πα′

L

z2
0

, (5.93)

which gives rise to a confining potential

V (L) = σs L , σs =
√
λ

2π z2
0

. (5.94)

The constant σs can be interpreted as the effective string tension. As mentioned
in Section 5.2.2 the mass gap for this theory is M ∼ 1/z0, so we find that
σs ∼ √

λM2. Although we have described the calculation only for one example
of a confining gauge theory, the qualitative features of Fig. 5.4 generalize. In a
confining gauge theory with a dual gravity description, as a quark–antiquark pair
are separated the string hanging beneath them sags down to some “depth” z0 and
then as the separation is further increased it sags no further. Further increasing the
separation means adding more and more string at the same depth z0, which costs
an energy that increases linearly with separation. Clearly, any metric in which a
suspended string behaves like this cannot be conformal; it has a length scale z0

built into it in some way. This length scale z0 in the gravitational description cor-
responds via the IR/UV correspondence to the mass gap M ∼ 1/z0 for the gauge
theory and to the size of the “glueballs” in the gauge theory, which is of order z0.

To summarize, we note that the qualitative behavior of the Wilson loop dis-
cussed in various examples above is only determined by gross features of the bulk
geometry. The 1/L behavior (5.87) in the conformal vacuum follows directly from
the scaling symmetry of the bulk geometry; the area law (5.93) in the confining
case has to do with the fact that a string has no place to end in the bulk when the
geometry smoothly closes off; and the screening behavior at finite temperature is
a consequence of the fact that a string can fall through the black hole horizon. The
difference between Figs. 5.2 and 5.4 highlights the fact that N = 4 SYM theory
is not a good model for the vacuum of a confining theory like QCD. However, as
we will discuss in Section 8.7, the potential obtained from Fig. 5.3 is not a bad
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caricature of what happens in the deconfined phase of QCD. This is one of many
ways of seeing that N = 4 SYM at T 
= 0 is more similar to QCD above Tc than
N = 4 SYM at T = 0 is to QCD at T = 0. A heuristic way of thinking about
this is to note that at low temperatures the putative horizon would be at a zhor > z0,
i.e. it is far below the bottom of Fig. 5.4, and therefore it plays no role while at
large temperatures, the horizon is far above z0 and it is z0 that plays no role. At
some intermediate temperature, the theory has undergone a phase transition from
a confined phase described by Fig. 5.4 into a deconfined phase described by Fig.
5.3.5 Unlike in QCD, this deconfinement phase transition is a first order phase tran-
sition in the large-Nc, strong coupling limit under consideration, and the theory in
the deconfined phase loses all memory about the confinement scale z0. Presumably
corrections away from this limit, in particular finite-Nc corrections, could turn the
transition into a higher order phase transition or even a crossover.

5.5 Introducing fundamental matter

All the matter degrees of freedom of N = 4 SYM, the fermions and the scalars,
transform in the adjoint representation of the gauge group. In QCD, however, the
quarks transform in the fundamental representation. Moreover, most of what we
know about QCD phenomenologically comes from the study of quarks and their
bound states. Therefore, in order to construct holographic models more closely
related to QCD, we must introduce degrees of freedom in the fundamental repre-
sentation. It turns out that there is a rather simple way to do this in the limit in
which the number of quark species, or flavors, is much smaller than the number
of colors, i.e. when N f � Nc. Indeed, in this limit the introduction of N f flavors
in the gauge theory corresponds to the introduction of N f D-brane probes in the
AdS geometry sourced by the D3-branes [28, 517, 513]. This is perfectly consis-
tent with the well-known fact that the topological representation of the large-Nc

expansion of a gauge theory with quarks involves Riemann surfaces with bound-
aries – see Section 4.1.2. In the string description, these surfaces correspond to
the worldsheets of open strings whose endpoints must be attached to D-branes. In
the context of the gauge/string duality, the intuitive idea is that closed strings liv-
ing in AdS are dual to gauge-invariant operators constructed solely out of gauge
fields and adjoint matter, e.g. O = TrF2, whereas open strings are dual to meson-
like operators, e.g. O = q̄q. In particular, the two endpoints of an open string,
which are forced to lie on the D-brane probes, are dual to a quark and an antiquark,
respectively.

5 The way we have described the transition is a crude way of thinking about the so-called Hawking–Page phase
transition between a spacetime without and with a black hole [437, 803].



144 A duality toolbox

Figure 5.5 Excitations of the system in the open string description.

5.5.1 The decoupling limit with fundamental matter

The fact that the introduction of gauge theory quarks corresponds to the introduc-
tion of D-brane probes in the string description can be more “rigorously” motivated
by repeating the arguments of Sections 4.2.2, 4.2.3 and 4.3 in the presence of N f

Dp-branes, as indicated in Fig. 5.5. We shall be more precise about the value of p
and the precise orientation of the branes later; for the moment we simply assume
p > 3.

As in Section 4.2.2, when gs Nc � 1 the excitations of this system are accurately
described by interacting closed and open strings living in flat space. In this case,
however, the open string sector is richer. As before, open strings with both end-
points on the D3-branes give rise, at low energies, to the N = 4 SYM multiplet
in the adjoint of SU (Nc). We see from Eq. (4.17) that the coupling constant for
these degrees of freedom is dimensionless, and therefore these degrees of freedom
remain interacting at low energies. The coupling constant for the open strings with
both endpoints on the Dp-branes, instead, has dimensions of (length)p−3. There-
fore the effective dimensionless coupling constant at an energy E scales as gDp ∝
E p−3. Since we assume that p > 3, this implies that, just like the closed strings,
the p–p strings become noninteracting at low energies. Finally, consider the sector
of open strings with one endpoint on the D3-branes and one endpoint on the Dp-
branes. These degrees of freedom transform in the fundamental of the gauge group
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on the D3-branes and in the fundamental of the gauge group on the Dp-branes,
namely in the bifundamental of SU (Nc)×SU (N f ). Consistently, these 3–p strings
interact with the 3–3 and the p–p strings with strengths given by the correspond-
ing coupling constants on the D3-branes and on the Dp-branes. At low energies,
therefore, only the interactions with the 3–3 strings survive. In addition, since
the effective coupling on the Dp-branes vanishes, the corresponding gauge group
SU (N f ) becomes a global symmetry group. This is the origin of the flavor symme-
try expected in the presence of N f (equal mass) quark species in the gauge theory.

To summarize, when gs Nc � 1 the low energy limit of the D3/Dp system yields
two decoupled sectors. The first sector is free and consists of closed strings in ten-
dimensional flat space and p-p strings propagating on the worldvolume of N f

Dp-branes. The second sector is interacting and consists of a four-dimensional
N = 4 SYM multiplet in the adjoint of SU (Nc), coupled to the light degrees of
freedom coming from the 3–p strings. We will be more precise about the exact
nature of these degrees of freedom later, but for the moment we emphasize that
they transform in the fundamental representation of the SU (Nc) gauge group, and
in the fundamental representation of a global, flavor symmetry group SU (N f ).

Consider now the closed string description at gs Nc � 1. In this case, as in Sec-
tion 4.2.3, the D3-branes may be replaced by their backreaction on spacetime. If we
assume that gs N f � 1, which is consistent with N f � Nc, we may still neglect
the backreaction of the Dp-branes. In other words, we may treat the Dp-branes
as probes living in the geometry sourced by the D3-branes, with the Dp-branes
not modifying this geometry. The excitations of the system in this limit consist
of closed strings and open p–p strings that propagate in two different regions,
the asymptotically flat region and the AdS5 × S5 throat – see Fig. 5.6. As in Sec-
tion 4.2.3, these two regions decouple from each other in the low energy limit. Also
as in Section 4.2.3, in this limit the strings in the asymptotically flat region become
noninteracting, whereas those in the throat region remain interacting because of the
gravitational redshift.

Comparing the two descriptions above, we see that the low energy limit at both
small and large values of gs Nc contains a free sector of closed and open p–p
strings. As in Section 4.3 we identify these free sectors, and we conjecture that
the interacting sectors on each side provide dual descriptions of the same physics.
In other words, we conjecture that the N = 4 SYM coupled to N f flavors of funda-
mental degrees of freedom is dual to type IIB closed strings in AdS5 × S5, coupled
to open strings propagating on the worldvolume of N f Dp-brane probes.

It is worth clarifying the following conceptual point before closing this section.
It is sometimes stated that, in the ’t Hooft limit in which Nc → ∞ with N f fixed,
the dynamics is completely dominated by the gluons, and therefore that the quarks
can be completely ignored. One may then wonder what the interest of introducing
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Figure 5.6 Excitations of the system in the second description.

fundamental degrees of freedom in a large-Nc theory may be. There are several
answers to this. First of all, in the presence of fundamental matter, it is more con-
venient to think of the large-Nc limit à la Veneziano, in which N f /Nc is kept small
but finite. Any observable can then be expanded in powers of 1/N 2

c and N f /Nc.
As we will see, this is precisely the limit that is captured by the dual description in
terms of N f D-brane probes in AdS5 × S5. The leading D-brane contribution will
give us the leading contribution of the fundamental matter, of relative order N f /Nc.
The Veneziano limit is richer than the ’t Hooft limit, since setting N f /Nc = 0 one
recovers the ’t Hooft limit. The second point is that, even in the ’t Hooft limit, the
quarks should not be regarded as irrelevant, but rather as valuable probes of the
gluon-dominated dynamics. It is their very presence in the theory that allows one
to ask questions about heavy quarks in the plasma, jet quenching, meson physics,
photon emission, etc. The answers to these questions are of course dominated by
the gluon dynamics, but without dynamical quarks in the theory such questions
cannot even be posed. There is a completely analogous statement in the dual grav-
ity description. To leading order the geometry is not modified by the presence of
D-brane probes, but one needs to introduce these probes in order to pose questions
about heavy quarks in the plasma, parton energy loss, mesons, photon production,
etc. In this sense, the D-brane probes allow one to decode information already
contained in the geometry.
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5.5.2 Models with fundamental matter

Above, we motivated the inclusion of fundamental matter via the introduction of
N f “flavor” Dp-brane probes in the background sourced by Nc “color” D3-branes.
However, we were deliberately vague about the value of p, about the relative orien-
tation between the flavor and the color branes, and about the precise nature of the
flavor degrees of freedom in the gauge theory. Here we will address these points.
Since we assumed p > 3 in order to decouple the p–p strings, and since we wish to
consider stable Dp-branes in type IIB string theory, we must have p = 5 or p = 7 –
see Section 4.2.2. In other words, we must consider D5- and D7-brane probes.

Consider first adding flavor D5-branes. We will indicate the relative orientation
between these and the color D3-branes by an array like, for example,

D3: 1 2 3 _ _ _ _ _ _
D5: 1 2 _ 4 5 6 _ _ _ .

(5.95)

This indicates that the D3- and the D5-branes share the 12-directions. The 3-
direction is transverse to the D5-branes, the 456-directions are transverse to the
D3-branes, and the 789-directions are transverse to both sets of branes. This means
that the two sets of branes can be separated along the 789-directions, and there-
fore they do not necessarily intersect, as indicated in Fig. 5.7. It turns out that the
lightest states of a D3–D5 string have a minimum mass given by what one would
have expected on classical grounds, namely M = TstrL = L/2π 2

s , where Tstr is
the string tension (4.11) and L is the minimum distance between the D3- and the
D5-branes.6 These states can therefore be arbitrarily light, even massless, provided
L is sufficiently small. Generic excited states, as usual, have an additional mass set
by the string scale alone, ms . The only exception are excitations in which the string
moves rigidly with momentum �p in the 12-directions, in which case the energy
squared is just M2 + �p 2. This is an important observation because it means that
in the decoupling limit, in which one focuses on energies E � ms , only a finite
set of modes of the D3–D5 strings survive, and moreover these modes can only
propagate along the directions common to both branes. From the viewpoint of the
dual gauge theory, this translates into the statement that the degrees of freedom in
the fundamental representation are localized on a defect – in the example at hand,
on a plane that extends along the 12-directions and lies at a constant position in the
3-direction. As an additional example, the configuration

6 In order to really establish this formula one must quantize the D3–D5 strings and compute the ground state
energy. In the case at hand, the result coincides with the classical expectation. The underlying reason is that,
because the configuration (5.95) preserves supersymmetry, corrections to the classical ground state energy
coming from bosonic and fermionic quantum fluctuations cancel each other out exactly. For other brane
configurations like (5.97) this does not happen.
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Figure 5.7 D3–D5 configuration (5.95) with a string (red) stretching between
them. The 12-directions common to both branes are suppressed.

D3: 1 2 3 _ _ _ _ _ _
D5: 1 _ _ 4 5 6 7 _ _

(5.96)

corresponds to a dual gauge theory in which the fundamental matter is localized on
a line – the 1-direction.

We thus conclude that, if we are interested in adding to the N = 4 SYM the-
ory fundamental matter degrees of freedom that propagate in 3+1 dimensions (just
like the gluons and the adjoint matter), then we must orient the flavor D-branes
so that they extend along the 123-directions. This condition leaves us with two
possibilities:

D3: 1 2 3 _ _ _ _ _ _
D5: 1 2 3 4 5 _ _ _ _

(5.97)

and

D3: 1 2 3 _ _ _ _ _ _
D7: 1 2 3 4 5 6 7 _ _ .

(5.98)

So far we have not been specific about the precise nature of the fundamental
matter degrees of freedom – for example, whether they are fermions or bosons,
etc. This also depends on the relative orientation of the branes. It turns out that
for the configuration (5.97), the ground state energy of the D3–D5 strings is (for
sufficiently small L) negative, that is, the ground state is tachyonic, signaling an
instability in the system. This conclusion is valid at weak string coupling, where
the string spectrum can be calculated perturbatively. While it is possible that the
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instability is absent at strong coupling, we will not consider this configuration
further in this book.

We are therefore left with the D3–D7 system (5.98). Quantization of the D3–D7
strings shows that the fundamental degrees of freedom in this case consist of N f

complex scalars and N f Dirac fermions, all of them with equal masses given by

Mq = L

2πα′ . (5.99)

In a slight abuse of language, we will collectively refer to all these degrees of
freedom as “quarks”. The fact that they all have exactly equal masses is a reflec-
tion of the fact that the addition of the N f D7-branes preserves a fraction of the
original supersymmetry of the SYM theory. More precisely, the original N = 4
is broken down to N = 2, under which the fundamental scalars and fermions
transform as part of a single supermultiplet. In the rest of the book, especially in
Chapter 9, we will focus our attention on this system as a model for gauge theories
with fundamental matter.



6

Bulk properties of strongly coupled plasma

Up to this point in this book, we have laid the groundwork needed for what
is to come in two halves. In Chapters 2 and 3 we have introduced the the-
oretical, phenomenological and experimental challenges posed by the study of
the deconfined phase of QCD and in Chapters 4 and 5 we have motivated and
described gauge/string duality, providing the reader with most of the conceptual
and computational machinery necessary to perform many calculations. Although
we have foreshadowed their interplay at various points, these two long intro-
ductions have to a large degree been separately self-contained. In the next four
chapters, we weave these strands together. In these chapters, we shall describe
applications of gauge/gravity duality to the study of the strongly coupled plasma
of N = 4 SYM theory at nonzero temperature, focusing on the ways in which
these calculations can guide us toward the resolution of the challenges described in
Chapters 2 and 3.

The study of the zero temperature vacuum of strongly coupled N = 4 SYM
theory is a rich subject with numerous physical insights into the dynamics of gauge
theories. Given our goal of gaining insights into the deconfined phase of QCD, we
will largely concentrate on the description of strongly coupled N = 4 SYM theory
at nonzero temperature, where it describes a strongly coupled non-Abelian plasma
with O(N 2

c ) degrees of freedom. The vacua of QCD and N = 4 SYM theory have
very different properties. However, when we compare N = 4 SYM at T 
= 0 with
QCD at a temperature above the temperature Tc of the crossover from a hadron gas
to quark–gluon plasma, many of the qualitative distinctions disappear or become
unimportant. In particular, we have the following.

(1) QCD confines, while N = 4 SYM does not. This is a profound difference in
vacuum. But, above its Tc QCD is no longer confining. The fact that its T = 0
quasiparticles are hadrons within which quarks are confined is not particularly
relevant at temperatures above Tc.

150
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(2) In QCD, chiral symmetry is broken by a chiral condensate which sets a scale
that is certainly not present in N = 4 SYM theory. However, in QCD above
its Tc the chiral condensate melts away and this distinction between the vacua
of the two theories also ceases to be relevant.

(3) N = 4 SYM is a scale-invariant theory while in QCD scale invariance is bro-
ken by the confinement scale, the chiral condensate, and the running of the
coupling constant. Above Tc, we have already dispensed with the first two
scales. Also, as we have described in Chapter 3, QCD thermodynamics is sig-
nificantly nonconformal just above Tc ∼ 170 MeV, but at higher temperatures
the quark–gluon plasma becomes more and more scale invariant, at least in its
thermodynamics. (Thermodynamic quantities converge to their values in the
noninteracting limit, due to the running of the coupling towards zero, only at
vastly higher temperatures which are far from the reach of any collider exper-
iment.) So, here again, QCD above (but not asymptotically far above) its Tc is
much more similar to N = 4 SYM theory at T 
= 0 than the vacua of the two
theories are.

(4) N = 4 SYM theory is supersymmetric. However, supersymmetry is explic-
itly broken at nonzero temperature. In a thermodynamic context, this can be
seen by noting that fermions have antiperiodic boundary conditions along the
Euclidean time circle while bosons are periodic. For this reason, supersymme-
try does not play a major role in the characterization of properties of the N = 4
SYM plasma at nonzero temperatures.

(5) QCD is an asymptotically free theory and, thus, high energy processes are
weakly coupled. However, as we have described in Chapter 2, in the regime of
temperatures above Tc that are accessible to heavy ion collision experiments
the QCD plasma is strongly coupled, which opens a window of applicability
for strong coupling techniques.

For these and other reasons, the strongly coupled plasma of N = 4 SYM theory has
been studied by many authors with the aim of gaining insights into the dynamics
of deconfined QCD plasma.

In fairness, we should also mention the significant differences between the two
theories that remain at nonzero temperature.

(1) N = 4 SYM theory with Nc = 3 has more degrees of freedom than QCD with
Nc = 3. To seek guidance for QCD from results in N = 4 SYM, the challenge
is to evaluate how an observable of interest depends on the number of degrees
of freedom, as we do at several points in Chapter 8. The best case scenario is
that there is no such dependence. For example, the ratio η/s between the shear
viscosity and the entropy density that we introduced in Chapter 2 and that we
shall discuss in Section 6.2 is such a case.
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(2) Most of the calculations that we shall report are done in the strong coupling
(λ → ∞) limit. This is of course a feature not a bug. The ability to do
these calculations in the strong coupling regime is a key part of the moti-
vation for all this work. But, although in the temperature regime of interest
g2(T )Nc = 4πNcαs(T ) is large, it is not infinite. This motivates the calcula-
tion of corrections to various results that we shall discuss that are proportional
to powers of 1/λ, for the purpose of testing the robustness of conclusions
drawn from calculations done with λ → ∞.

(3) QCD has Nc = 3 colors, while all the calculations that we shall report are
done in the Nc → ∞ limit. Although the large-Nc approximation is familiar in
QCD, the standard way of judging whether it is reliable in a particular context
is to compute corrections suppressed by powers of 1/Nc. And, determining the
1/N 2

c corrections to the calculations done via the gauge/string duality that we
review remains an outstanding challenge.

(4) Although we have argued above that the distinction between bosons and
fermions is not important at nonzero temperature, the distinction between
degrees of freedom in the adjoint or fundamental representation of SU (Nc) is
important. QCD has N f = 3 flavors in the fundamental representation, namely
N f = Nc. These fundamental degrees of freedom contribute significantly to its
thermodynamics at temperatures above Tc. And, the calculations that we shall
report are either done with N f = 0 or with 0 < N f � Nc. Extending methods
based upon gauge/string duality to the regime in which N f ∼ Nc remains an
outstanding challenge.

The plasmas of QCD and strongly coupled N = 4 SYM theory certainly differ.
At the least, using one to gain insight into the other follows in the long tradition
of modelling, in which a theoretical physicist employs the simplest instance of a
theory that captures the essence of a suite of phenomena that are of interest in order
to gain insights. The gravitational description of N = 4 SYM makes it clear that
it is in fact the simplest, most symmetric, strongly coupled non-Abelian plasma.
The question then becomes whether there are quantities or phenomena that are
universal across many different strongly coupled plasmas. The qualitative, and in
some instances even semi-quantitative, successes that we shall review that have
been achieved in comparing results or insights obtained in N = 4 SYM theory to
those in QCD suggest a positive answer to this question, but no precise definition of
this new kind of universality has yet been conjectured. In the absence of a precise
understanding of such a universality, we can hope for reliable insights into QCD
but not for controlled calculations.

We begin our description of the N = 4 SYM strongly coupled plasma in
this section by characterizing its macroscopic properties, i.e. those that involve
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temporal and spatial scales much larger than the microscopic scale 1/T . In Sec-
tion 6.1 we briefly review the determination of the thermodynamics ofN = 4 SYM
theory. The quantities that we calculate are accessible in QCD, via lattice calcula-
tions as we have described in Chapter 3, meaning that in Section 6.1 we will be
able to compare calculations done in N = 4 SYM theory via gauge/string duality
to reliable information about QCD. In Section 6.2 we turn to transport coefficients
like the shear viscosity η, which govern the relaxation of small deviations away
from thermodynamic equilibrium. Lattice calculations of such quantities remain
challenging for reasons that we have described in Section 3.2 but, as we have seen
in Section 2.2, phenomenological analyses of collective effects in heavy ion colli-
sions in comparison to relativistic, viscous, hydrodynamic calculations are yielding
information about η/s in QCD. Section 6.3 will be devoted to illustrating one of the
most important qualitative differences between the strongly coupled N = 4 SYM
plasma and any weakly coupled plasma: the absence of quasiparticles. As we will
argue in this section, this is a generic feature of strong coupling which, at least
at a qualitative level, provides a strong motivation in the context of the physics
of QCD above Tc for performing studies within the framework of gauge/string
duality. Finally, in Section 6.4 we shall see how long-lived collective hydrody-
namic excitations of the plasma, as well as a plethora of excitations of the plasma
with lifetimes that are short compared to the inverse of their energies, emerge
from the gravitational point of view where they correspond to perturbations of the
metric.

6.1 Thermodynamic properties

6.1.1 Entropy, energy and free energy

As discussed in Section 5.2.1, N = 4 SYM theory in equilibrium at nonzero
temperature is described in the gravity theory by introducing black branes which
change the AdS5 metric to the black brane metric (5.34) with an event horizon
at position z0. As in standard black hole physics, the presence of the horizon
allows us to compute the entropy in the gravity description, which is given by
the Bekenstein–Hawking formula

Sλ=∞ = SBH = A3

4G5
, (6.1)

where A3 is the three-dimensional area of the event horizon of the non-compact
part of the metric and G5 is the five-dimensional Newton constant. This entropy is
to be identified as the entropy of the gauge theory plasma in the strong coupling
limit [391]. The area A3 is determined from a spatial section of the horizon metric,
obtained by setting t = const, z = z0 in Eq. (5.34), i.e.
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ds2
Hor = R2

z2
0

(
dx2

1 + dx2
2 + dx2

3

)
. (6.2)

The total horizon area is then

A3 = R3

z3
0

∫
dx1dx2dx3 , (6.3)

where
∫

dx1dx2dx3 is the volume in the gauge theory. While the total entropy is
infinite, the entropy density per unit gauge theory volume is finite and is given by

sλ=∞ = SBH∫
dx1dx2dx3

= R3

4G5z3
0

= π2

2
N 2

c T 3 , (6.4)

where in the last equality we have used Eqs. (5.12) and (5.36) to translate the
gravity parameters z0, R and G5 into the gauge theory parameters T and Nc. Note
that we would have obtained the same result if we had used the full ten-dimensional
geometry, which includes the S5. In this case the horizon would have been nine-
dimensional, with a spatial area of the form A8 = A3 × S5, and the entropy would
have taken the form

SBH = A8

4G
= A3VS5

4G
, (6.5)

which equals (6.1) by virtue of the relation (5.12) between the ten- and the five-
dimensional Newton constants.

Once the entropy density is known, the rest of the thermodynamic potentials are
obtained through standard thermodynamic relations. In particular, the pressure P
obeys s = ∂P/∂T , and the energy density is given by ε = −P +T s. Thus we find:

ελ=∞ = 3π2

8
N 2

c T 4, Pλ=∞ = π2

8
N 2

c T 4 . (6.6)

The Nc and temperature dependence of these results could have been anticipated.
The former follows from the fact that the number of degrees of freedom in an
SU (Nc) gauge theory in its deconfined phase grows as N 2

c , whereas the latter
follows from dimensional analysis, since the temperature is the only scale in the
N = 4 SYM theory. What is remarkable about these results is that they show that
the prefactors in front of the Nc and temperature dependence in these thermody-
namic quantities attain finite values in the limit of infinite coupling, λ → ∞, which
is the limit in which the gravity description becomes strictly applicable.

It is instructive to compare the above expressions at infinite coupling with those
for the free N = 4 SYM theory, i.e. at λ = 0. Since N = 4 SYM has eight bosonic
and eight fermonic adjoint degrees of freedom and since the contribution of each
boson to the entropy is 2π2T 3/45 whereas the contribution of each fermion is 7/8
of that of a boson, the zero coupling entropy is given by
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sλ=0 =
(

8 + 8 × 7

8

)
2π2

45
(N 2

c − 1)T 3 � 2π2

3
N 2

c T 3 , (6.7)

where in the last equality we have used the fact that Nc � 1. As before, the Nc

and T dependences are set by general arguments. The only difference between
the infinite and zero coupling entropies is an overall numerical factor: comparing
Eqs. (6.4) and (6.7) we find [391]

sλ=∞
sλ=0

= Pλ=∞
Pλ=0

= ελ=∞
ελ=0

= 3

4
. (6.8)

This is a very interesting result: while the coupling of N = 4 SYM changes radi-
cally between the two limits, the thermodynamic potentials vary very mildly. This
observation is, in fact, not unique to the special case of N = 4 SYM theory, but
seems to be a generic phenomenon for field theories with a gravity dual. In fact, in
Ref. [653] it was found that for several different classes of theories, each encom-
passing infinitely many instances, the change in entropy between the infinitely
strong and infinitely weak coupling limit is

sstrong

sfree
= 3

4
h , (6.9)

with h a factor of order one, 8
9 ≤ h ≤ 1.096 62. These explicit calculations strongly

suggest that the thermodynamic potentials of non-Abelian gauge-theory plasmas
(at least for near-conformal ones) are quite insensitive to the particular value of the
gauge coupling. This is particularly striking since, as we will see in Sections 6.2
and 6.3, the transport properties of these gauge theories change dramatically as a
function of coupling, going from a nearly ideal gas-like plasma of quasiparticles
at weak coupling to a nearly ideal liquid with no quasiparticles at strong coupling.
So, we learn an important lesson from the calculations of thermodynamics at strong
coupling via gauge/string duality: thermodynamic quantities are not good observ-
ables for distinguishing a weakly coupled gas of quasiparticles from a strongly
coupled liquid; transport properties and the physical picture of the composition
of the plasma are completely different in these two limits, but no thermodynamic
quantity changes much.

Returning to the specific case of N = 4 SYM theory, in this case the leading
finite-λ correction to (6.8) has been calculated [402] as has the leading finite-Nc

correction [640], yielding

Sλ,Nc→∞
Sλ=0,Nc→∞

= Pλ,Nc→∞
Pλ=0,Nc→∞

= ελ,Nc→∞
ελ=0,Nc→∞

= 3

4

(
1 + 15 ζ(3)

8

1

λ3/2
+ 5

128

λ1/2

N 2
c

+ · · ·
)

, (6.10)
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where ζ is the Riemann zeta function and ζ(3) ≈ 1.20. Note that equation (6.10)
is obtained by taking Nc → ∞ first and then taking λ → ∞. In this limit, the
last term is always much smaller than the other terms despite the λ1/2 factor in
the numerator. Note also that the O(1/N 2

c ) corrections that are zeroth order in
λ have not yet been computed. The expression (6.10) suggests that sλ=∞/sλ=0

increases from 3/4 to 7/8 as λ drops from infinity down to λ ∼ 6, corresponding to
αSYM ∼ 0.5/Nc. This reminds us that the control parameter for the strong coupling
approximation is 1/λ, meaning that it can be under control down to small values
of αSYM.

It is also interesting to compare (6.8) to what we know about QCD thermody-
namics from lattice calculations like those described in Section 3.1. The ratio (6.8)
has the advantage that the leading dependence on the number of degrees of free-
dom drops out, making it meaningful to compare directly to QCD. While theories
that have been analyzed in Ref. [653] are rather different from QCD, the regular-
ity observed in these theories compel us to evaluate the ratio of the entropy density
computed in the lattice calculations to that which would be obtained for free quarks
and gluons. Remarkably, Fig. 3.1 shows that, for T = (2 − 3) Tc, the coefficient
defined in (6.9) is h � 1.07, which is in the ballpark of what the calculations done
via gauge/gravity duality have taught us to expect for a strongly coupled gauge
theory. While this observation is interesting, by itself it is not strong evidence that
the QCD plasma at these temperatures is strongly coupled. The central lesson is,
in fact, that the ratio (6.8) is quite insensitive to the coupling. The proximity of the
lattice results to the value for free quarks and gluons should never have been taken
as indicating that the quark–gluon plasma at these temperatures is a weakly cou-
pled gas of quasiparticles. And, now that experiments at RHIC and at the LHC that
we described in Section 2.2 combined with calculations that we shall describe in
Section 6.2 have shown us a strongly coupled QCD plasma, the even closer prox-
imity of the lattice results for QCD thermodynamics to that expected for a strongly
coupled gauge theory plasma should also not be overinterpreted.

6.1.2 Holographic susceptibilities

The previous discussion focused on a plasma at zero chemical potential μ. While
gauge/gravity duality allows us to explore the phase diagram of the theory at
nonzero values of μ, in order to parallel our discussion of QCD thermodynam-
ics in Chapter 3, in our analysis of strongly coupled N = 4 SYM theory here
we will concentrate on the calculation of susceptibilities. As explained in Sec-
tion 3.1.1, their study requires the introduction of U (1) conserved charges. In
N = 4 SYM, there is an SU (4) global symmetry, the R-symmetry, which in the
dual gravity theory corresponds to rotations in the five-sphere. A chemical poten-
tial for R-charge can be introduced by studying black branes that rotate in these
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coordinates [720, 302, 557, 393]; these solutions demand non-vanishing values of
an Abelian vector potential Aμ in the gravitational theory which, in turn, lead to a
non-vanishing R-charge density n in the gauge theory proportional to the angular
momentum density of the black hole. The chemical potential can be extracted from
the boundary value of the temporal component of the Maxwell field as in (5.37)
and is also a function of the angular momentum of the black hole. The explicit
calculation performed in Ref. [748] leads to

n = N 2
c T 2

8
μ (6.11)

in the small chemical potential limit. Note that, unlike in QCD, the susceptibility
dn/dμ inferred from Eq. (6.11) is proportional to N 2

c instead of Nc. This is a trivial
consequence of the fact that R-symmetry operates over adjoint degrees of freedom.

As in the case of the entropy, the different number of degrees of freedom can be
taken into account by comparing the susceptibility at strong coupling to that in the
noninteracting theory, which yields

χλ=∞
χλ=0

= 1

2
, (6.12)

where χλ=0 = N 2
c T 2/4 [777]. Similarly to the case of the entropy density, the

ratio of susceptibilities between these two extreme limits saturates into an order
one constant. Despite the radical change in the dynamics of the degrees of free-
dom in the two systems, the only variation in this observable is a 50% reduction,
comparable to the 25% reduction of the energy density in the same limit. This 50%
reduction can be contrasted with the results from the lattice calculations reviewed
in Section 3.1.1 which show a slow rise in the quark number fluctuations above Tc,
seemingly saturating at about 90% of their value in the noninteracting limit. As in
the early interpretations of lattice calculations of the energy density and pressure,
the proximity of the diagonal susceptibilities to their Stefan–Boltzmann values
has been interpreted by some as a sign that the QCD quark–gluon plasma is not
strongly coupled [540, 726, 171, 676]. However, although the susceptibilities cal-
culated on the lattice come numerically closer to their values in the noninteracting
limit than in the case of the pressure, their temperature-dependence is qualitatively
quite similar. Therefore, it is not clear whether the values of the susceptibilities
pose any challenge to the interpretation of the QCD plasma as a strongly coupled
one, given the manifest insensitivity of thermodynamic quantities to the coupling.
Furthermore, the value of the ratio of susceptibilities (6.12) is not universal: it can
be different in holographic gauge theories which are closer to QCD than N = 4
SYM. It is tempting to speculate that if it were possible to use gauge/string duality
to analyze strongly coupled theories with N f ∼ Nc and compute the suscepti-
bility for a U (1) charge carried by the fundamental degrees of freedom in such a
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theory, we may be able to find examples in which the susceptibility is as close to its
weak coupling value as is the case in QCD, even when all degrees of freedom are
strongly coupled. Were this speculation to prove correct, it would be an example
of a result from QCD leading to insight into strongly coupled gauge theories with
a gravitational description, i.e. it would be an example of insight in the opposite
direction from that that throughout most of this book.

The study of off-diagonal susceptibilities as in (3.3) requires the introduction
of an additional U (1) × SU (N f ) global symmetry in the plasma, with N f ≥ 2.
(The global SU (4) symmetry that is already a feature of N = 4 SYM theory
cannot be used for this purpose because the off-diagonal susceptibilities of two
commuting U (1) subgroups within SU (4) must vanish.) As explained in Sec-
tion 5.5, fundamental flavor degrees of freedom are introduced in the holographic
set-up via D-branes, which, in addition to a SU (N f ) global symmetry, also lead
to an additional U (1) charge (baryon number). Analogously to the way the diag-
onal susceptibilities are analyzed above, non-vanishing values of the different
chemical potentials arising in off-diagonal susceptibilities (3.3) are associated with
non-vanishing non-Abelian gauge fields in the brane. In the probe approximation
(N f � Nc), the study of susceptibilities corresponds to determining the reaction
of the partition function of the branes to small values of these non-Abelian fields
up to quadratic order. However, off-diagonal susceptibilities are suppressed by an
additional power of Nc with respect to the diagonal susceptibilities, as shown in
Ref. [170]. This can be inferred from the fact that there is no mixing (at quadratic
order) between different gauge fields in the non-Abelian Yang-Mills Lagrangian.
On the gravity side, this means that the off-diagonal susceptibilities vanish at the
classical level and a one-loop calculation is required. While the complete deter-
mination of the one-loop correction to the partition function is technically very
demanding, since it must include an analysis of all the gravitational fields, the
contribution to the flavor correlations that is leading order in Nc can be obtained
by restricting the calculation to open string fluctuations, since closed string modes
cannot distinguish among different flavors. After this simplification, the analysis of
the one-loop determinant in Ref. [250] yields the leading parametric dependence
of the off-diagonal susceptibilities on both λ and Nc.

The main result of the analysis in Ref. [250] is that the ratio of off-diagonal
to diagonal susceptibilities becomes independent of the coupling in the limit
λ → ∞, which is in marked contrast to expectations based upon extending the
perturbative result (which is that the off-diagonal susceptibilities are suppressed
relative to the diagonal ones by a factor of order (λ3/Nc) log(1/g) with g the
gauge coupling constant [170]) to strong coupling. Within the D3/D7 model for
holographic flavor, the off-diagonal susceptibilities as in (3.3) can be expressed
as [250]
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χud
11 = h

(
M

T

)
T 2 , (6.13)

with h
(

M
T

)
a model dependent numerical constant that depends on the mass of the

quarks, M , but has no dependence on either λ or Nc. The fact that in the large λ

limit this thermodynamic quantity becomes independent of coupling and differs
from its value at λ = 0 only by a modest numerical factor reflects, once again, the
insensitivity of thermodynamic potentials to the underlying degrees of freedom.
Furthermore, the rich structure of the D3/D7 model, which will be discussed in
depth in Section 9.3 , allows us to use the opportunity to vary M/T to compare
the off-diagonal susceptibilities in a plasma at large M/T in which these suscep-
tibilities are dominated by quasiparticles (infinitely narrow bound mesons that can
be thought of as analogous to quarkonia) to that in a plasma at small M/T in
which there are no quasiparticles. (In this high temperature phase, the quarkonium-
like mesons have dissolved and there are no quasiparticles.) As inferred from
Eq. (6.13), the off-diagonal susceptibilities remain parametrically the same in the
large and small M/T limits, even given the radical change in the degrees of free-
dom and in the nature of the plasma. From this study, we can conclude that when
we see non-vanishing values of the off-diagonal susceptibilities, as in the lattice
QCD calculations that we have described in Section 3.1.1, this does not imply
the existence of resonances of any type, let alone bound states. The holographic
analysis of susceptibilities in strongly coupled plasma demonstrates that drawing
conclusions about the strength of the coupling constant or about the nature of the
effective degrees of freedom in the QGP from the lattice computation of suscep-
tibilities should be treated with just as much caution as drawing such conclusions
from the values of thermodynamic quantities.

6.2 Transport properties

We now turn to the calculation of the transport coefficients of a strongly coupled
plasma with a dual gravitational description, which control how such a plasma
responds to small deviations from equilibrium. We shall see that in the strong
coupling limit these quantities take on very different values, both parametrically
and numerically, than in a noninteracting plasma. This makes them much better
suited to diagnosing whether a plasma is gas-like or liquid-like, weakly cou-
pled or strongly coupled, than the thermodynamic quantities and susceptibilities
of the previous section. As we have reviewed in Section 3.2, since the relax-
ation of perturbations toward equilibrium is intrinsically a real time process, the
lattice determination of transport coefficients is very challenging. While initial
steps toward determining them in QCD have been taken, definitive results are
not in hand. As a consequence, the determination of transport coefficients via
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gauge/string duality is extremely valuable since it opens up their analysis in a
regime which is not tractable otherwise. A remarkable consequence of this anal-
ysis, which we describe in Section 6.2.2, is a universal relation between the
shear viscosity and the entropy density for the plasmas in all strongly coupled
large-Nc gauge theories with a gravity dual [554, 212, 552, 206]. This finding,
together with the comparison of the universal result η/s = 1/(4π) with val-
ues extracted by comparing data on azimuthally asymmetric flow in heavy ion
collisions to analyses in terms of viscous hydrodynamics as we have described
in Section 2.2, has been one of the most influential results obtained via the
gauge/string duality.

6.2.1 A general formula for transport coefficients

The most straightforward way in which transport coefficients can be deter-
mined using the gauge/gravity correspondence is via Green–Kubo formulas, see
Appendix A, which rely on the analysis of the retarded correlators in the field
theory at small four-momentum. The procedure for determining these correlators
using the correspondence has been outlined in Section 5.3. In this section we will
try to keep our analysis as general as possible so that it can be used for the transport
coefficient that describes the relaxation of any conserved current in the theory. In
addition, we will not restrict ourselves to the particular form of the metric (5.34) so
that our discussion can be applied to any theory with a gravity dual. Our discussion
will closely follow the formalism developed in [482], which builds upon earlier
analyses in Refs. [690, 554, 212, 552, 206, 725, 761, 364].

In general, if the field theory at nonzero temperature is invariant under trans-
lations and rotations, the gravitational theory will be described by a (4 +
1)-dimensional metric of the form

ds2 = −gttdt2 + gzzdz2 + gxxδi j dxidx j = gM N dx Mdx N (6.14)

with all the metric components solely dependent on z. Since a nonzero temperature
is characterized in the dual theory by the presence of an event horizon, we will
assume that gtt has a first order zero and gzz has a first order pole at a particular
value z = z0.

We are interested in computing the transport coefficient χ associated with some
operator O in this theory, namely

χ = − lim
ω→0

lim
�k→0

1

ω
Im G R(ω,k) . (6.15)
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(See Appendix A for the exact definition of G R and for a derivation of this for-
mula.) For concreteness, we assume that the quadratic effective action for the bulk
mode φ dual to O has the form of a massless scalar field1

S = −1

2

∫
dd+1x

√−g
1

q(z)
gM N∂Mφ∂Nφ, (6.16)

where q(z) is a function of z and can be considered a spacetime-dependent cou-
pling constant. As we will see below, Eqs. (6.14) and (6.16) apply to various
examples of interest including the shear viscosity and the momentum broaden-
ing for the motion of a heavy quark in the plasma. Since transport coefficients
are given by the Green–Kubo formula Eq. (6.15), the general expression for the
retarded correlator (5.62) with � = d and m = 0 leads to

χ = − lim
kμ→0

lim
z→0

Im

{
�(z, kμ)

ωφ(z, kμ)

}
= − lim

kμ→0
lim
z→0

�(z, kμ)

iωφ(z, kμ)
, (6.17)

where � is the canonical momentum of the field φ:

� = δS

δ∂zφ
= −

√−g

q(z)
gzz∂zφ . (6.18)

The last equality in (6.17) follows from the fact that the real part of G R(k) vanishes
faster than linearly in ω as k → 0, as is proven by the fact that the final result that
we will obtain, Eq. (6.25), is finite and real.

In (6.17) both � and φ must be solutions of the classical equations of motion
which, in the Hamiltonian formalism, are given by (6.18) together with

∂z� = −
√−g

q(z)
gμνkμkνφ . (6.19)

The evaluation of χ , following Eq. (6.17), requires the determination of both ωφ

and � in the small four momentum kμ → 0 limit. Remarkably, in this limit the
equations of motion (6.18) and (6.19) are trivial2

∂z� = 0 + O(kμωφ) , ∂z(ωφ) = 0 + O(ω�) , (6.20)

and both quantities become independent of z, which allows their evaluation at any
z. For simplicity, and since the only restriction on the general metric (6.14) is that it

1 Note that restricting to a massless mode does not result in much loss of generality, since almost all transport
coefficients calculated to date are associated with operators whose gravity duals are massless fields. The only
exception is the bulk viscosity.

2 Note from (6.18) and (6.19) that the O(kμωφ) terms neglected in the first equation in (6.20) contain a term
multiplied by gtt while the O(ω�) term neglected in the second equation in (6.20) is multiplied by gzz .
Since both quantities diverge at the horizon, Eqs. (6.20) are not valid there. They are valid anywhere outside
the horizon for sufficiently small ω. Note, however, that the ratio in (6.17) does have a well defined limit
approaching the horizon.
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possesses a horizon, we will evaluate them for z → z0 where the infalling boundary
condition should be imposed. Our assumptions about the metric imply that in the
vicinity of the horizon z → z0

gtt = −c0(z0 − z), gzz = cz

z0 − z
, (6.21)

and eliminating � from (6.18) and (6.19) we find an equation for φ given by√
c0

cz
(z0 − z)∂z

(√
c0

cz
(z0 − z)∂zφ

)
+ ω2φ = 0 . (6.22)

The two general solutions for this equation are

φ ∝ e−iωt (z0 − z)±iω
√

cz/c0 . (6.23)

Imposing infalling boundary condition implies that we should take the negative
sign in the exponent. Therefore, from Eq. (6.23) we find that at the horizon

∂zφ =
√

gzz

−gtt
(iωφ) , (6.24)

and using Eqs. (6.18) and (6.23) we obtain

χ = − lim
kμ→0

lim
z→0

�(z, kμ)

iωφ(z, kμ)
= − lim

kμ→0
lim
z→z0

�(z, kμ)

iωφ(z, kμ)
= 1

q(z0)

√
−g

−gzzgtt

∣∣∣∣
z0

.

(6.25)
Note that the last equality in (6.25) can also be written as

χ = 1

q(z0)

A

V
, (6.26)

where A is the area of the horizon and V is the spatial volume of the bound-
ary theory. From our analysis of the thermodynamic properties of the plasma in
Section 6.1, the area of the event horizon is related to the entropy density of the
boundary theory via

s = A

V

1

4GN
. (6.27)

From this analysis we conclude that in theories with a gravity dual the ratio of any
transport coefficient to the entropy density depends solely on the properties of the
dual fields at the horizon,

χ

s
= 4GN

q(z0)
. (6.28)

In the next section we will use this general expression to compute the shear
viscosity of the AdS plasma.
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Finally, we would like to remark that the above discussion applies to more
general effective actions of the form

S = −1

2

∫
dωdd−1k

(2π)d
dz

√−g

[
gzz(∂zφ)

2

Q(z;ω, k)
+ P(z;ω, k)φ2

]
, (6.29)

provided that the equations of motion (6.20) remain trivial in the zero-momentum
limit. This implies that Q should go to a nonzero constant at zero momentum and
P must be at least quadratic in momenta. For (6.29) the corresponding transport
coefficient χ is given by

χ = 1

Q(z0, kμ = 0)

A

V
and

χ

s
= 4GN

Q(z0, kμ = 0)
. (6.30)

6.2.2 Universality of the shear viscosity

We now apply the result of the last section to the calculation of the shear viscosity
η of a strongly coupled plasma described by the metric (6.14). As in Appendix
A we must compute the correlation function of the operator O = Txy , where the
coordinates x and y are orthogonal to the momentum vector. The bulk field φ dual
to O should have a metric perturbation hxy as its boundary value. It then follows
that φ = (δg)x

y −→
z→0

hxy , where δg is the perturbation of the bulk metric. For

Einstein gravity in a geometry with no off-diagonal components in the background
metric, as in (6.14), a standard analysis of the Einstein equations to linear order
in the perturbation, upon assuming that the momentum vector is perpendicular to
the (x, y)-plane, shows that the effective action for φ is simply that of a minimally
coupled massless scalar field, namely

S = − 1

16πGN

∫
dd+1x

√−g

[
1

2
gM N∂Mφ∂Nφ

]
. (6.31)

The prefactor 1/16πGN comes from that of the Einstein–Hilbert action. This
action has the form of Eq. (6.16) with

q(z) = 16πGN = const, (6.32)

which, together with Eq. (6.28), leads to the celebrated result

ηλ=∞
sλ=∞

= 1

4π
(6.33)

that was first obtained in 2001 by Policastro, Son and Starinets [690]. In (6.32), we
have added the subscript λ = ∞ to stress that the numerator and denominator are
both computed in the strict infinite coupling limit. Remarkably, this ratio converges
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to a constant at strong coupling. And, this is not only a feature of N = 4 SYM the-
ory because this derivation applies to any gauge theory with a gravity dual given
by Einstein gravity coupled to matter fields, since in Einstein gravity the coupling
constant for gravity is always given by Eq. (6.32). In this sense, this result is univer-
sal [554, 212, 552, 206] since it applies in the strong coupling and large-Nc limits
to the large class of theories with a gravity dual, regardless of whether the theories
are conformal or not, confining or not, supersymmetric or not and with or without
chemical potential. In particular, if large-Nc QCD has a string theory dual, there
should exist temperature ranges where its η/s is well approximated by 1/(4π) up
to corrections due to the finiteness of the coupling. Even if large-Nc QCD does
not have a string theory dual, Eq. (6.33) may still provide a reasonable approxi-
mation in certain temperature ranges since the universality of this result may be
due to generic properties of strongly coupled theories (for example the absence of
quasiparticles, see Section 6.3) which may not depend on whether they are dual to
a gravitational theory.

The original calculation of η/s and the original demonstration of its universality
were based on the relationship between the absorption cross-section σ for a gravi-
ton incident on a black D3-brane in the limit of zero graviton energy and the shear
viscosity η [690, 552]. These authors showed that η = σ/(16πG), with G being
the ten-dimensional Newton constant. General results from black hole physics
include σ = A, where A is the area of the black brane horizon, and s = A/(4G). So
one then finds η/s = 1/(4π), namely (6.33). This derivation is intuitive and geo-
metrical in the way that it relates dissipation in the gauge theory (η) to falling into a
horizon in the dual gravitational description and in the way that it relates both η and
s to A, thus giving an immediate sense of the universality of the result (6.33). How-
ever, the definition of σ requires considering scattering states in the asymptotically
flat region of the D3-brane that lies beyond the AdS5 × S5 region of the D3-brane
where the physics of actual interest resides. The self-contained derivation that we
have presented in full above refers only to physics in AdS5 × S5 and, as we shall
see, it generalizes immediately to the calculation of other transport coefficients.

The leading finite-coupling and finite-Nc corrections to Eq. (6.33) in N = 4
SYM theory have been computed and are given by [215, 211, 210, 640]

ηNc ,λ→∞
sNc ,λ→∞

= 1

4π

(
1 + 15 ζ(3)

λ3/2
+ 5

16

λ1/2

N 2
c

+ · · ·
)

. (6.34)

The above equation is obtained by taking Nc → ∞ first and then λ → ∞. In
this limit, the last term is always much smaller than the other terms. While the
expression (6.34) is only valid as written for N = 4 SYM theory, if the leading
finite-λ correction proportional to 1/λ3/2 and the finite-Nc correction proportional
to λ1/2/N 2

c are re-expressed instead in terms of the parameters R and ls in the
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gravity theory, in this form the expression would then apply to a larger class of the-
ories (those dual to compactifications of type IIB supergravity on various different
five-dimensional manifolds) [216]. It is also important to stress that the correction
proportional to λ1/2/N 2

c is not the full correction of order 1/N 2
c [640]. The prefac-

tor in front of the order 1/N 2
c correction can be expanded in powers of λ, and the

λ1/2/N 2
c term in (6.34) is the leading term in this expansion. The higher order terms

have not yet been computed. It is interesting to notice that, according to Eq. (6.34)
with Nc set to 3, η/s increases to ∼ 2/(4π) once λ decreases to λ ∼ 7, mean-
ing αSYM ∼ 0.2. This is the same range of couplings at which the finite coupling
corrections (6.10) to thermodynamic quantities become significant. These results
together suggest that strongly coupled theories with gravity duals may yield insight
into the quark-gluon plasma in QCD even down to apparently rather small values
of αs , at which λ is still large.

To put the result (6.33) into further context, we can compare this strong coupling
result to results for the same ratio η/s at weak coupling in both N = 4 SYM
theory and QCD. These have been computed at next to leading log accuracy, and
take the form

ηNc ,λ→∞
sNc ,λ→∞

= A

λ2 log
(

B/
√
λ
) , (6.35)

with A = 6.174 and B = 2.36 in N = 4 SYM theory and A = 34.8 (46.1)
and B = 4.67 (4.17) in QCD with N f = 0 (N f = 3) [78, 474], where we have
defined λ = g2Nc in QCD as in N = 4 SYM theory. Quite unlike the strong
coupling result (6.33), these weak coupling results show a strong dependence on
λ, and in fact diverge in the weak coupling limit. The divergence reflects the fact
that a weakly coupled gauge theory plasma is a gas of quasiparticles, with strong
dissipative effects. In a gas, η/s is proportional to the ratio of the mean free path
of the quasiparticles to their average separation. A large mean free path, and hence
a large η/s, mean that momentum can easily be transported over distances that
are long compared to the average spacing between particles. In the λ → 0 limit
the mean free path diverges. The strong 1/λ2 dependence of η/s can be traced
to the fact that the two-particle scattering cross-section is proportional to g4. It is
natural to guess that the λ-dependence of η/s in N = 4 SYM theory is monotonic,
increasing from 1/(4π) as in (6.34) as λ decreases from ∞ and then continuing to
increase until it diverges according to (6.35) as λ → 0. The weak coupling result
(6.35) also illustrates a further important point: η/s is not universal for weakly
coupled gauge theory plasmas. The coefficients A and B can vary significantly
from one theory to another, depending on their particle content. It is only in the
strong coupling limit that universality emerges, with all large-Nc theories with a
gravity dual having plasmas with η/s = 1/(4π). And, we shall see in Section 6.3
that a strongly coupled gauge theory plasma does not have quasiparticles, which
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makes it less surprising that η/s at strong coupling is independent of the particle
content of the theory at weak coupling.

One lesson from the calculations of η/s is that this quantity changes signifi-
cantly with the coupling constant, going from infinite at zero coupling to 1/(4π) at
strong coupling, at least for large-Nc theories with gravity duals. This is in marked
contrast to the behavior of the thermodynamic quantities described in Section 6.1,
which change only by 25% over the same large range of couplings. Thermody-
namic observables are insensitive to the coupling, whereas η/s is a much better
indicator of the strength of the coupling because it is a measure of whether the
plasma is liquid-like or gaseous.

These observations prompt us to revisit the phenomenological extraction of the
shear viscosity of quark–gluon plasma in QCD from measurements of azimuthally
anisotropic flow in heavy ion collisions, described in Section 2.2. As we saw, the
comparison between data and calculations done using relativistic viscous hydrody-
namic yields the current estimate that η/s seems to lie within the range (1−2)/(4π)
in QCD, in the same ballpark as the strong coupling result (6.33) And, as we
reviewed in Section 3.2, current lattice calculations of η/s in N f = 0 QCD come
with caveats but also indicate a value that is in the ballpark of 1/(4π), likely some-
what above it. Given the sensitivity of η/s to the coupling, these comparisons con-
stitute one of the main lines of evidence that, in the temperature regime accessible
at RHIC and at the LHC, the quark–gluon plasma is a strongly coupled fluid. If we
were to attempt to extrapolate the weak coupling result (6.35) for η/s in QCD with
N f = 3 to the values of η/s favored by experiment, we would need λ ∼ (14−24),
well beyond the regime of applicability of perturbation theory. (To make this esti-
mate we had to set the log in (6.35) to 1 to avoid negative numbers, which reflects
the fact that the perturbative result is being applied outside its regime of validity.)

A central lesson from the strong coupling calculation of η/s via gauge/string
duality, arguably even more significant than the qualitative agreement between the
result (6.33) and current extractions of η/s from heavy ion collision data, is simply
the fact that values of η/s � 1 are possible in non-Abelian gauge theories, and
in particular in non-Abelian gauge theories whose thermodynamic observables are
not far from weak coupling expectations. These calculations, done via gauge/string
duality, provided theoretical support for considering a range of small values of η/s
that had not been regarded as justified previously, and inferences drawn from RHIC
data have now pushed η/s into this regime. The computation of the shear viscos-
ity that we have just described is one of the most influential results supporting
the notion that the application of gauge/string duality can yield insights into the
phenomenology of hot QCD matter.

It has also been conjectured [552] that the value of η/s in Eq. (6.33) is, in
fact, a lower bound for all systems in nature. This conjecture is supported by
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the finite-coupling corrections shown in Eq. (6.34). And, all substances known
in the laboratory satisfy the bound. Among conventional liquids, the lowest η/s
is achieved by liquid helium, but it is about an order of magnitude above 1/(4π);
water – after which hydrodynamics is named – has an η/s that is larger still, by
about another order of magnitude. The best liquids known in the laboratory are
the quark–gluon plasma produced in heavy ion collisions and an ultracold gas of
fermionic atoms at the unitary point, at which the s-wave atom–atom scattering
length has been dialed to infinity [730], both of which have η/s in the ballpark of
1/(4π) but, according to current estimates, somewhat larger.

However, in recent years the conjecture that (6.33) is a lower bound on η/s has
been questioned and counter-examples have been found among theories with grav-
ity duals. As emphasized in Chapter 5, Einstein gravity in the dual gravitational
description corresponds to the large-λ and large-Nc limit of the boundary gauge
theory. When higher order corrections to Einstein gravity are included, which cor-
respond to 1/

√
λ or 1/Nc corrections in the boundary gauge theory, Eq. (6.33) will

no longer be universal. In particular, as pointed out in Refs. [197, 523] and general-
ized in Refs. [203, 204, 229, 373, 662, 737, 49, 205, 234], generic higher derivative
corrections to Einstein gravity can violate the proposed bound. Eq. (6.30) indicates
that η/s is smaller than Eq. (6.33) if the “effective” gravitational coupling for the
hx

y polarization at the horizon is stronger than the universal value (6.32) for Ein-
stein gravity. Gauss–Bonnet gravity as discussed in Refs. [197, 196] is an example
in which this occurs. There, the effective action for hy

x has the form of Eq. (6.29)
with the effective coupling Q(r) at the horizon satisfying [197]

1

Q(r0)
= (1 − 4 λGB)

16πGN
, (6.36)

leading to
η

s
= (1 − 4 λGB)

4π
, (6.37)

where λGB is the coupling for the Gauss–Bonnet higher derivative term. Thus, for
λGB > 0 the graviton in this theory is more strongly coupled than that of Ein-
stein gravity and the value of η/s is smaller than 1/4π . In Ref. [523], an explicit
gauge theory has been proposed whose gravity dual corresponds to λGB > 0. (See
Refs. [640, 217, 639, 741] for generalizations.) It is interesting to note that in all
these examples the bound-violating gauge theory includes degrees of freedom in
the fundamental representation. Indeed, in all the theories that these authors have
investigated that contain fundamental matter, the presence of fundamental matter
pushes η/s toward values below 1/(4π).

Despite not being a lower bound, the smallness of η/s in Eq. (6.33), the qualita-
tive agreement between Eq. (6.33) and values obtained from heavy ion collisions,
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and the universality of the result (6.33) which applies to any gauge theory with
a gravity dual in the large-Nc and strong coupling limits, are responsible for the
great impact that this calculation done via gauge/string duality has had on our
understanding of the properties of deconfined QCD matter.

As we have mentioned in Section 2.2, the determination of η/s in hot QCD
matter by comparing data on azimuthally asymmetric heavy ion collisions and
hydrodynamic calculations is rapidly improving, as theorists begin to use very new
data on the damping of higher-order-than-two harmonics of the azimuthal asym-
metry sourced by fluctuations. Looking ahead a few years, we anticipate that η/s
will be sufficiently well understood that effort will then be spent on tightening
constraints on its temperature dependence and on the values of other transport coef-
ficients. Although it remains to be demonstrated, it is certainly possible that in a
few years string theorists could be debating what the then well-determined value of
η/s for the quark–gluon plasma of QCD is telling us about quantum gravity (finite
1/N 2

c ) and stringy (finite coupling) corrections in the as yet unknown dual descrip-
tion of QCD itself. Although current analyses of heavy ion collision data do not
support this speculation, we can also muse about what would happen if η/s were
to turn out to be lower than 1/(4π) in QCD. We would be asking what features of
the gravitational physics dual to QCD, and indeed in QCD itself, yield this result.
We can speculate that, if this were to happen, the culprit on the QCD side could be
N f /Nc, given the presence of fundamental matter in the presently known examples
where η/s < 1/(4π) and given that N f = Nc in the strongly coupled plasma of
QCD. It is worth noting, though, that in the models of Ref. [607] η/s is unaffected
by the presence of fundamental matter at order λN f /Nc, which is the leading order
at which such effects might have arisen. The reduction in η/s that we described
in (6.37), due to Gauss–Bonnet higher derivative terms in the dual gravitational
theory and apparently related to the presence of fundamental matter in the gauge
theory, comes in only at order N f /Nc, with no enhancement by λ. It is difficult
at present to do more than speculate, but perhaps in the strongly coupled plasma
of theories that, like QCD, have N f ∼ Nc any reduction in η/s attributable to the
fundamental matter may turn out not to be large in magnitude. This story remains
to be written, but it seems likely that as the phenomenological determination of
η/s tightens in future, the gauge/string duality will turn data on the gauge side into
insight on the string side, working in the opposite direction to that which motivates
much of our book today.

6.2.3 Bulk viscosity

As we have discussed in Section 2.2, while the bulk viscosity ζ is very small in
the QCD plasma at temperatures larger than 1.5–2 Tc, with ζ/s much smaller than
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1/4π , ζ/s rises in the vicinity of Tc, a feature which can be important for heavy
ion collisions. Since the plasma of a conformal theory has zero bulk viscosity,
N = 4 SYM theory is not a useful example to study the bulk viscosity of a
strongly coupled plasma. However, the bulk viscosity has been calculated both
in more sophisticated examples of the gauge/string duality in which the gauge
theory is not conformal [134, 207, 209, 600, 213], as well as in AdS/QCD mod-
els that incorporate an increase in the bulk viscosity near a deconfinement phase
transition [409, 404, 417].

We will only briefly review what is possibly the simplest among the first type of
examples, the so-called Dp-brane theory. This is a (p + 1)-dimensional cousin of
N = 4 SYM, namely a (p + 1)-dimensional SYM theory (with 16 supercharges)
living at the boundary of the geometry describing a large number of non-extremal
black Dp-branes [487] with p 
= 3. The case p = 3 is N = 4 SYM, while the
cases p = 2 and p = 4 correspond to nonconformal theories in (2 + 1)- and
(4 + 1)-dimensions. We emphasize that we choose this example for its simplicity
rather than because it is directly relevant for phenomenology.

The metric sourced by a stack of black Dp-branes can be written as

ds2 = α′ (dpλ̃z3−p)
1

5−p

z2

(
− f̃ dt2 + ds2

p +
(

2

5 − p

)2 dz2

f̃
+ z2d�2

8−p

)
, (6.38)

where

λ̃ = g2N , f̃ = 1 −
(

z

z0

) 14−2p
5−p

, dp = 27−2pπ
9−3p

2 �

(
7 − p

2

)
(6.39)

and

g2 = (2π)p−2gsα
′3−p

2 (6.40)

is the Yang–Mills coupling constant, which is dimensionful if p 
= 3. For p = 2
and p = 4 there is also a non-trivial profile for the dilaton field but we shall not
give its explicit form here. The metric above is dual to (p + 1)-dimensional SYM
theory at finite temperature.

The bulk viscosity can be computed from the dual gravitational theory via the
Kubo formula (A.10). However this computation is more complicated in the bulk
channel than in the shear channel and we will not reproduce it here. An alternative
and simpler way to compute the bulk viscosity is based on the fact that, in the
hydrodynamic limit, the sound mode has the following dispersion relation:

ω = csq − i

ε + p

(
p − 1

p
η + ζ

2

)
q2 + · · · , (6.41)
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with cs the speed of sound. Thus, ζ contributes to the damping of sound. In the
field theory, the dispersion relation for the sound mode can be found by exam-
ining the poles of the retarded Green’s function for the stress tensor in the sound
channel. As discussed in Section 5.3.1, on the gravity side these poles correspond to
normalizable solutions to the equations of motion for metric perturbations, which
we will describe more explicitly in Section 6.4. The explicit computation of these
normalizable modes for the metric (6.38) performed in Ref. [600] showed that the
sound mode has the dispersion relation

ω =
√

5 − p

9 − p
q − i

2

9 − p

q2

2πT
+ · · · (6.42)

from which one finds that (after using η/s = 1/(4π))

cs =
√

5 − p

9 − p
,

ζ

s
= (3 − p)2

2πp(9 − p)
. (6.43)

The above expressions imply an interesting relation [209]

ζ

η
= 2

(
1

p
− c2

s

)
= 2

(
c2

s,CFT − c2
s

)
, (6.44)

where we have used the fact that the speed of sound for a CFT in (p+1)-dimension
is cs,CFT = 1/

√
p. This result might not seem surprising since the bulk viscosity of

a theory which is close to being conformal can be expanded in powers of c2
s,CFT−c2

s ,
which is a measure of deviation from conformality. The non-trivial result is that
even though the Dp-brane gauge theories are not close to being conformal, their
bulk viscosities are nevertheless linear in c2

s,CFT − c2
s . While this is an interesting

observation, it is not clear to what extent it is particular to the Dp-brane gauge
theories or whether it is more generic.

6.2.4 Relaxation times and other second order transport coefficients

As we have described in Section 2.2.3, transport coefficients correspond to the
leading order gradient expansion of an interacting theory which corrects the ideal
hydrodynamic description. A priori, there is no reason to stop the extraction of
these coefficients at first order, and higher order ones can be (and have been) com-
puted using gauge/string duality. Of particular importance is the determination of
the five second order coefficients, τπ , κ , λ1, λ2, λ3 defined in Eq. (2.24). Unlike
for the first order coefficients, the gravitational computation of these second order
coefficients is quite technical and we shall not review it here. We shall only describe
the main points and refer the reader to Refs. [107, 155] for details.

The strategy for determining these coefficients is complicated by the fact that
the three coefficients λi involve only nonlinear combinations of the hydrodynamic
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fields. Thus, even though formulae can be derived for the linear coefficients τπ

and κ [107, 627], the nonlinear coefficients cannot be determined from two-point
correlators, since these coefficients are invisible in the linear perturbation analysis
of the background. Their determination thus demands the small gradient analysis
of nonlinear solutions to the Einstein equations3 as performed in Ref. [155] (see
also Ref. [107]) which yields

τπ = 2−ln 2
2πT , κ = η

πT , (6.45)

λ1 = η

2πT
, λ2 = − η ln 2

πT , λ3 = 0 .

These results are valid in the large-Nc and strong coupling limit. Finite coupling
corrections to some of these coefficients can be found in Ref. [214]. Addition-
ally, the first and second order coefficients have been studied in a large class of
nonconformal theories with or without flavor in Refs. [162, 160].

To put these results in perspective we will compare them to those extracted in
the weakly coupled limit of QCD (λ � 1) [812]. We shall not comment on the
values of all the coefficients, since, as discussed in Section 2.2.3, the only one with
any impact on current phenomenological applications to heavy ion collisions is the
shear relaxation time τπ . In the weak coupling limit,

lim
λ→0

τπ � 5.9

T

η

s
, (6.46)

where the result is expressed in such a way as to show that τπ and η have the same
leading order dependence on the coupling λ (up to logarithmic corrections). For
comparison, the strong coupling result from (6.45) may be written as

lim
λ�1

τπ = 7.2

T

η

s
, (6.47)

which is remarkably close to (6.46). But, of course, the value of η/s is vastly dif-
ferent in the weak and strong coupling limits. On general grounds, one may expect
that relaxation and equilibration processes are more efficient in the strong coupling
limit, since they rely on the interactions between different modes in the medium.
This general expectation is satisfied for the shear relaxation time of the N = 4
SYM plasma, with τπ diverging at weak coupling and taking on the small value

lim
λ→∞ τπ � 0.208

T
(6.48)

in the strong coupling limit. For the temperatures T > 200 MeV, which are rele-
vant for the quark–gluon plasma produced in heavy ion collisions, this relaxation

3 Kubo-like formulas involving three-point correlators (as opposed to two) can also be used to determine the
coefficients λi [627]. At the time of writing, this approach had not been explored within the gauge/gravity
context.
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time is of the order of 0.2 fm/c or smaller, which is much smaller than perturba-
tive expectations. We have recalled already at other places in this book that caveats
enter if one seeks quantitative guidance for heavy ion phenomenology on the basis
of calculations made for N = 4 SYM plasma. However, the qualitative (and even
semi-quantitative) impact of the result (6.48) on heavy ion phenomenology should
not be underestimated: the computation of τπ demonstrated for the first time that
at least some excitations in a strongly coupled non-Abelian plasma dissipate on
timescales that are much shorter than 1/T , i.e. on time scales much shorter than
1 fm/c. Such small relaxation time scales did not have any theoretical underpinning
before, and they are clearly relevant for phenomenological studies based on vis-
cous fluid dynamic simulations. As we discussed in Section 2.2, the success of the
comparison of such simulations to heavy ion collision data implies that a hydrody-
namic description of the matter produced in these collisions is valid only ∼ 1 fm/c
after the collision. Although this equilibration time is related to out-of-equilibrium
dynamics, whereas τπ is related to near-equilibrium dynamics (only to second
order), the smallness of τπ makes the rapid equilibration time seem less surprising.
We shall return to this subject in Chapter 7, where we shall describe insights com-
ing from holographic analyses of far-from-equilibrium dynamics that corroborate
the conclusions that we have drawn here. As in the case of η/s, the gauge/gravity
calculation of τπ has made it legitimate to consider values of an important param-
eter that had not been considered before by showing that this regime arises in the
strongly coupled plasma of a quantum field theory that happens to be accessible to
reliable calculation because it possesses a gravity dual.

Let us conclude this section by mentioning that the second order transport
coefficients are known for the same nonconformal gauge theories whose bulk
viscosity we discussed in Section 6.2.3. Since conformal symmetry is broken in
these models, there are a total of 15 first and second order transport coefficients,
nine more than in the conformal case (including both shear and bulk viscosities
in the counting) [715]. In addition, the velocity of sound cs is a further indepen-
dent parameter that characterizes the zeroth order hydrodynamics of nonconformal
plasmas, whose equations of state are not given simply by P = ε/3. As for the case
of the bulk viscosity, the variable

(
1
3 − c2

s

)
can be used to parametrize deviations

from conformality, and all transport coefficients can indeed be written explicitly as
functions of

(
1
3 − c2

s

)
[511].

6.2.5 Transport coefficients in charged plasmas, including those with
quantum anomalies

So far, in the discussion of this section we have focused on the transport properties
of non-Abelian plasmas with no conserved charges. Further transport coefficients
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become relevant if we wish to characterize the viscous hydrodynamics of charged
plasmas. For example, one of the new coefficients that arises at first order in a
derivative expansion is the (electric) conductivity. It characterizes how much of
a conserved charge is transported in the presence of gradients in some chemical
potential4 or, if the conserved charge is associated with a gauged U (1) symmetry,
in response to external electric fields. Also, since the rest frames that are locally
comoving with the charge density and the energy density can differ, the description
of transport in charged plasmas requires the introduction of the heat conductivity5

which characterizes the transport of energy density in response to a temperature
gradient relative to the frame that is locally comoving with the charge density.
There are also thermoelectric coefficients that describe the transport of charge den-
sity in the presence of a temperature gradient or the transport of energy density in
the presence of an electric field or a gradient in some chemical potential.

The only one of these transport coefficients that has received some attention in
the context of understanding the properties of quark–gluon plasma is the electric
conductivity σ , which can in principle be determined from lattice calculations,
albeit calculations that face all the difficulties that, as we have seen in Section 3.2,
are associated with constraining Minkowski space spectral functions and transport
coefficients from Euclidean calculations. Current lattice calculations indicate that
the electric conductivity of quark–gluon plasma in the quenched limit in which the
N f = 3 quarks are arbitrarily heavy lies in the range [323]

1

9
� σ

QGP, quenched
electric

2 e2 T
� 1

3
(6.49)

at T � 1.45Tc, where e2 = 4π/137 is the square of the electromagnetic coupling
constant and where the sum of the squares of the electric charges of the quarks
is given by 2

3e2Nc = 2e2. The calculation in Ref. [323] was done only at one
temperature but more recent calculations at one other temperature [324] support
the expectation that σ is proportional to T . And, the first attempt to determine σ for
a quark–gluon plasma containing light quarks (i.e. without making the quenched
approximation) yields an estimate that falls within the range (6.49) [191, 192].

The authors of Ref. [239] have shown how to obtain an analog of the electric
conductivity for the strongly coupled plasma of N = 4 SYM theory by gauging
a U (1) subgroup of the (otherwise global) SU (4) R-symmetry of the theory. In

4 A chemical potential is an intensive thermodynamic variable which, like pressure or temperature or energy
density, varies as a function of space and time in a hydrodynamic fluid. Gradients in a chemical potential drive
flows of the corresponding conserved particle number. The chemical potential or the temperature at any point
in a moving fluid is the same as the chemical potential or the temperature of an external bath in equilibrium
with a static homogeneous fluid with the same values of all intensive thermodynamic variables.

5 The presence of a charge density is a necessary condition for the introduction of a heat conductivity only in
homogeneous and isotropic fluids. In more complicated situations, heat transport may occur in a fluid in the
absence of any charge density. We will not discuss such cases in this book.
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particular, they have chosen a U (1) subgroup such that the sum of the squares of
the charges is 2e2 in N = 4 SYM theory with Nc = 3, as in QCD with Nc =
N f = 3. (It is worth noting, though, that in QCD the electric charge is carried
entirely by fields that are in the fundamental representation of the gauge group
while in N = 4 SYM the R-charge is carried entirely by fields that are in the
adjoint representation of the gauge group.) With an analog of electromagnetism
defined, the computation of the conductivity σ then proceeds along the lines of
the holographic calculations of other transport coefficients that we have described
in Section 6.2.1 since σ is obtained from the zero-frequency limit of the current–
current correlator at vanishing three-momentum. The authors of Ref. [239] obtain

σN=4 SYM
R

2 e2 T
= N 2

c

32π
, (6.50)

which for Nc = 3 lies just below the range (6.49). We also note that the authors
of Ref. [604] have shown how to gauge a U (1) symmetry whose charge is carried
only by fundamental degrees of freedom in a model in which N f � Nc flavors of
fundamental matter, with the sum of the squares of their charges given by e2N f Nc,
have been added to the N = 4 SYM plasma. They have calculated the conductivity
in this case, finding

σN=4 SYM
fundamental

e2 Nc N f T
= 1

4π
, (6.51)

which again lies just below the range (6.49). We shall return to this model at some
length in Chapter 9. Although it is not clear how best to make the comparison
between these theories and QCD, perhaps these results indicate that the quark–
gluon plasma of QCD is not quite as strongly coupled as the N = 4 SYM plasma
in the infinite coupling limit.

The transport coefficients involving a temperature gradient or an energy current
or both have received less attention in the QCD context but, motivated by consid-
erations from condensed matter physics, they have been calculated holographically
in Ref. [427].

For the rest of this section we shall focus on a particularly interesting class
of charged plasmas, namely those with quantum anomalies. Such systems have
been studied using the techniques of gauge/gravity duality [341, 117, 750], and
these calculations illustrate how the first order dissipative hydrodynamics of non-
Abelian plasmas in theories with anomalies features novel transport coefficients
that are not present in traditional textbook presentations of hydrodynamics like
that of Ref. [567]. We hasten to remark that the special role of quantum anomalies
in hydrodynamics was observed already in Refs. [791], and related phenomena
involving parity violating currents in the presence of rotation or in a magnetic
field, which we will refer to below as the chiral vortical and magnetic effects, were
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discovered even earlier in the pioneering work of Refs. [787, 789, 788]. How-
ever, the recent rediscovery of how anomalies influence hydrodynamic flows using
the techniques of gauge/gravity duality has led to a deeper and more systematic
understanding of how quantum anomalies can have macroscopic consequences
at length scales much larger than any mean free path or any other microscopic
length scale. In this sense, what we discuss in the following is another case
where gauge/gravity duality has contributed important qualitative insights into the
behavior of non-Abelian plasmas.

To be specific, consider a system with one global U (1) symmetry which is
anomalous. As discussed in Section 5.1.4, the boundary U (1) symmetry is mapped
to a U (1) gauge symmetry in the bulk with the boundary U (1) current Jμ mapped
to a bulk gauge field AM . That the boundary U (1) symmetry is anomalous is
reflected on the gravity side through the presence of a Chern–Simons term, the
coefficient of which determines the anomaly coefficient. In Chapter 7, we shall
explain in detail how the hydrodynamics of a neutral fluid can be derived in a
derivative expansion of Einstein’s equations for AdS5. The techniques described
there can be generalized to a charged fluid with a quantum anomaly by finding
long wavelength solutions to an Einstein–Maxwell–Chern–Simons theory in AdS5.
In contrast with the derivative expansion of the equations of motion discussed in
Section 7.2.1, such a calculation incorporates variations in space and time of not
only T (xμ) and uμ(xν) but also of the chemical potential μ(xμ) corresponding
to the anomalous global charge. One finds that up to first order in the deriva-
tive expansion, the anomalous charge current jμ ≡ 〈Jμ〉 can be written in the
form [341, 117, 750]

jμ = ρuμ − σT�μν∂ν

(μ
T

)
+ ξωμ, (6.52)

where ρ is the charge density and σ is the charge conductivity that appears at first
order in a derivative expansion. The last term implies a contribution to the current
that is directed parallel to, and is induced by, the vorticity ωμ ≡ 1

2ε
μνλρuν∂λuρ .

This is called the chiral vortical effect. For non-anomalous currents, such a term
is forbidden by the second law of thermodynamics, and that is the reason why it
does not appear in traditional textbooks on hydrodynamics [750]. However, such
currents can in fact arise in rotating systems [787, 789, 788, 791, 792]. It should
therefore not have been a surprise when such a term was found in the hydrodynam-
ics of the charged fluid described above [341, 117] and, as argued most generally
in the analysis of these calculations in Ref. [750], such a term must be present if the
current in question corresponds to an anomalous global symmetry. More precisely,
if the anomaly of Jμ is given by

∂μ Jμ = −1

8
Cεμνλρ Fμν Fαβ , (6.53)
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with F the field strength of an external gauge field coupled to the current Jμ itself,
then the new transport coefficient ξ entering (6.52) is completely determined by
the anomaly coefficient C and is given in the simplest case by [750]

ξ = C

(
μ2 − 2

3

μ3ρ

ε + P

)
. (6.54)

We note that, in addition to the contribution written here, if the U (1) current
features a mixed gravitational anomaly, i.e. if there is an additional term on the
right-hand side of (6.53) proportional to εμνλρ Rα

βμν Rβ

αλρ with R the Riemann
tensor, then ξ includes a term proportional to T 2 that is present even when
μ = 0, as seen in quantum field theoretical derivations of the chiral vortical
effect [791, 569, 568, 381, 570, 497] as well as in derivations of the effect from
kinetic transport theory [366].

The specific instance of a charged non-Abelian plasma that we have discussed
above provides a good illustration of the generic relation between a quantum
anomaly and the vorticity-induced contribution to the corresponding current that
it induces, namely the chiral vortical effect. Further qualitatively new and interest-
ing effects are seen if one considers such charged plasmas embedded in an external
field coupling to the current. In classical textbook presentations of hydrodynamics,
the current (6.52) will acquire in an external electromagnetic field a term propor-
tional to the electric field strength Eμ ≡ Fμνuν . The proportionality constant in
front of Eμ is not an independent transport coefficient; it is the same charge con-
ductivity σ that determines the magnitude of the electric current that flows in the
presence of gradients in the chemical potential. In addition, in the presence of quan-
tum anomalies there is also a contribution to the current (6.52) that is proportional
to the magnetic field strength Bμ ≡ 1

2ε
μναβuν Fαβ denoted by ξB Bμ with

ξB = C

(
μ − 1

2

μ2ρ

ε + P

)
, (6.55)

meaning that ξB is again proportional to the strength C of the quantum anomaly.
This means that a quantum anomaly can induce an electric current in the direction
of an applied external magnetic field. This is called the chiral magnetic effect.

In order to apply these ideas to the QCD plasma they must be generalized
because in these applications the electric and magnetic field strengths of interest
are those of ordinary electromagnetism, whose gauge field couples to the non-
anomalous vector (i.e. electric) current J Vμ, not to the anomalous axial current
J Aμ. In Ref. [750], the analysis is generalized even further to a theory in which
there are arbitrarily many U (1) currents, some or all of which are anomalous, with
the anomaly equation (6.53) replaced by
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∂μ J aμ = −1

8
Cabcεμνλρ Fb

μν Fc
λρ , (6.56)

where the different currents are enumerated by a, b and c and where Cabc is sym-
metric under permutations of its indices. In this context, the chiral vortical effect
for each of the currents is controlled by a coefficient ξ a given by a generalization
of (6.54):

ξ a = Cabcμbμc − 2

3
ρaCbcd μ

bμcμd

ε + P
. (6.57)

And, in the presence of a magnetic field for the bth U (1) the current J aμ for the
ath U (1) receives a contribution ξ ab

B Bbμ with

ξ ab
B = Cabcμc − 1

2
ρaCbcd μ

cμd

ε + P
, (6.58)

which is the generalization of (6.55). If we now specialize to the case that is
relevant for QCD, we have two U (1) currents, J Vμ and J Aμ, the only nonzero
anomaly coefficients are C AV V and permutations, with C AV V = Nc e2/(2π2), and
C AAA = C AV V /3 (see, e.g., [488, 684]), and the only magnetic field strength of
interest to us is BVμ. In QCD, therefore, the chiral vortical effect coefficients are

ξ A = C AV VμVμV + C AAAμAμA − 2

3
ρ A 3C AV VμAμVμV + C AAAμAμAμA

ε + P
(6.59)

and

ξ V = 2C AV VμVμA − 2

3
ρV 3C AV VμAμVμV + C AAAμAμAμA

ε + P
. (6.60)

Note that (6.59) reduces to (6.54) if μV = 0, as it should. The chiral magnetic
effect coefficients are

ξ AV
B = C AV VμV − ρ AC AV V μAμV

ε + P
(6.61)

and

ξ V V
B = C AV VμA − ρV C AV V μAμV

ε + P
(6.62)

in QCD. Because the derivation of the chiral vortical effect does not require a gauge
field coupled to J Vμ, in (6.59) and (6.60) the vector current can be taken to be either
the baryon number current or the electric current, meaning that μV could be either
μB or the chemical potential for electric charge, which is to say the electrostatic
potential. In (6.61) and (6.62), μV is the electrostatic potential.

We note that both the chiral vortical and the chiral magnetic effects are of poten-
tial phenomenological interest. For example, the first term on the right-hand side of



178 Bulk properties of strongly coupled plasma

(6.59) tells us that in a rotating lump of cold dense quark matter in which μB > 0,
as may be found within the core of a neutron star, an axial current will develop
along the rotation axis, meaning that quarks with opposite chirality will move in
opposite directions, parallel and antiparallel to the rotation vector. In this way, an
anomalous current in the direction of the rotation vector will be induced. Similarly,
in a region of quark–gluon plasma in which there is an external magnetic field,
for example sourced by the positively charged spectators in a heavy ion collision
with nonzero impact parameter, the first terms on the right-hand sides of (6.61) and
(6.62) both have striking implications. From (6.62) we see that in a region of the
plasma that is in a magnetic field and in which the density of axial charge happens
to be nonzero there will be a tendency toward developing an electric current parallel
(or antiparallel, depending on the sign of the axial charge density) to the magnetic
field, with positively charged and negatively charged particles moving in opposite
directions, parallel and antiparallel to the magnetic field [527, 526, 528, 365, 467].
And, from (6.61) we see that in a region of the plasma that is in a magnetic field and
in which the density of electric charge happens to be nonzero there will be a ten-
dency toward developing an axial current parallel (or antiparallel) to the magnetic
field, with quarks with opposite chirality moving in opposite directions, parallel
and antiparallel to the magnetic field [222, 220]. The observable consequences of
these anomalous transport phenomena are currently under active investigation and,
although various authors have employed gauge/string duality in their investigations
of the chiral magnetic effect, because the phenomenological side of the story is still
being written we will not present it in this book.

In summary, this discussion of charged non-Abelian plasmas with anomalous
currents illustrates that beyond the by now rather complete understanding of the
effects and importance of shear viscosity in non-Abelian plasmas, there are a
significant number of phenomenologically relevant transport properties to which
studies based on gauge/gravity duality are likely to contribute further in the coming
years.

6.3 Quasiparticles and spectral functions

In Sections 6.1 and 6.2 we have illustrated the power of gauge/string duality by
performing, in a remarkably simple way, computations that via standard field the-
oretical methods either take teraflop-years of computer time or are not accessible.
However, to someone familiar with gauge theory calculations in other contexts it
may seem that the surprising simplicity of the calculations we have done comes
with a price. Because we do the calculations in the dual gravitational descrip-
tion of the theory, the reliable results that we obtain are not accompanied by the
kinds of intuition about what is happening in the gauge theory that we would
get automatically from a field theory calculation done with Feynman diagrams or
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could get with effort from one done on the lattice. The gravitational calculation
yields answers, and new kinds of intuition, but since by using it we are aban-
doning the description of the plasma in terms of quark and gluon quasiparticles
interacting with each other, we are losing our prior sense of how the dynamics
of the gauge theory works. There are two salient responses to this reaction. First,
any description based upon Feynman diagrams and interacting quarks and gluons
was inherently weakly coupled, meaning that once we discover that the quark–
gluon plasma produced in heavy ion collisions is a strongly coupled liquid we must
abandon our prior intuition. In this sense, the price referred to above is one that we
must pay whether or not we explore calculations done via the dual gravitational
description. Second, as we have already begun to see and as we will see again and
again throughout the remainder of this book, the new intuition that comes from the
gravitational calculations, intuition based upon strings and horizons and metric per-
turbations and such, is extraordinarily powerful as a source of insights into strongly
coupled, liquid, plasma. A reasonable skeptic, however, may still ask whether the
liquid that we are describing via the new gravitational language could in fact also
be described on the gauge theory side in familiar terms. In other words, is the
dynamics within a strongly coupled plasma different in a qualitative way from that
in a weakly coupled plasma, or does it merely differ quantitatively? We have given
up the description in terms of quasiparticles, but maybe the familiar quasiparticles
or some new kind of quasiparticles are in fact nevertheless present and, without our
knowing it, are what the gravitational dual is describing. We rule out this possibil-
ity in this section, illustrating that a strongly coupled non-Abelian gauge theory
plasma really is qualitatively different from a weakly coupled one: while in per-
turbation theory the degrees of freedom of the plasma are long-lived quasiparticle
excitations which carry momentum, color and flavor, there are no quasiparticles in
the strongly coupled plasma. The pictures that frame how we think about a weakly
coupled plasma are simply invalid for the strongly coupled case.

Determining whether a theory possesses quasiparticles with a given set of quan-
tum numbers is a conceptually well defined task: it suffices to analyze the spectral
function of operators with that set of quantum numbers and look for narrow peaks
in momentum space. In weakly coupled Yang-Mills theories, the quasiparticles
(gluons and quarks in QCD) are colored and are identified by studying operators
that are not gauge invariant. Within perturbation theory, it can be shown that the
poles of these correlators, which determine the physical properties of the quasi-
particles, are gauge invariant [186]. However, nonperturbative gauge-invariant
operators corresponding to these excitations are not known, which complicates
the search for these quasiparticles at strong coupling. Note, however, that even if
such operators were known, demonstrating the absence of quasiparticles with the
same quantum numbers as in the perturbative limit does not guarantee the absence
of quasiparticles, since at strong coupling the system could reorganize itself into
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quasiparticles with different quantum numbers. Thus, proving the absence of quasi-
particles along these lines would require exploring all possible spectral functions in
the theory. Fortunately, there is an indirect method which can answer the question
of whether any quasiparticles that carry some conserved “charge” (including
momentum) exist, although this method cannot determine the quantum numbers
of the long-lived excitations if any are found to exist. The method involves the
analysis of the small frequency structure of the spectral functions of those con-
served currents of the theory which do not describe a propagating hydrodynamic
mode like sound. As we will see, the presence of quasiparticles leads to a narrow
structure (the transport peak) in these spectral functions [10, 777]. In what follows
we will use this method to demonstrate that the strongly coupled N = 4 SYM
plasma does not possess any colored quasiparticles that carry momentum. In order
to understand how the method works, we first apply it at weak coupling where there
are quasiparticles to find.

6.3.1 Quasiparticles in perturbation theory

We start our analysis by using kinetic theory to predict the general features of
the low frequency structure of correlators of conserved currents in a weakly
coupled plasma. Kinetic theory is governed by the Boltzmann equation, which
describes excitations of a quasiparticle system at scales which are long com-
pared to the inter-particle separation. The applicability of the kinetic description
demands that there is a separation of scales such that the duration of interac-
tions among particles is short compared to their mean free path (λmfp) and that
multiparticle distributions are consequently determined by the single particle dis-
tributions. In Yang–Mills theories at nonzero temperature and weak coupling,
kinetic theory is important since it coincides with the Hard Thermal Loop descrip-
tion [439, 187, 360, 774, 524, 167], which is the effective field theory for physics
at momentum scales of order gT , and the Boltzmann equation can be derived from
first principles [167, 232, 233, 168, 169, 77]. In Yang–Mills theory at weak cou-
pling and nonzero temperature, the necessary separation of scales arises by virtue
of the small coupling constant g, since λmfp ∼ 1/(g4T ) and the time scale of
interactions is 1/μD ∼ 1/(gT ), where 1/μD is the Debye screening length of the
plasma.6 The small value of the coupling constant also leads to the factorization of
higher-point correlation functions.

In the kinetic description, the system is characterized by a distribution function

f (x, p) , (6.63)
6 Strictly speaking, λmfp ∼ 1/(g4T ) is the length-scale over which an order 1 change of the momentum-vector

of the quasiparticles occurs. Over the shorter length scale 1/μD , soft exchanges (of order gT ; not enough to
change the momenta which are ∼ T significantly) occur. These soft exchanges are not relevant for transport.
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which determines the number of particles of momentum p at spacetime position x .
Note that this position should be understood as the center of a region in spacetime
with a typical size much larger, at least, than the de Broglie wavelength of the
particles, as demanded by the uncertainty principle. As a consequence, the Fourier
transform of x , which we shall denote by K = (ω,q), must be much smaller than
the typical momentum scale of the particles, K � |p| ∼ T . (Here and below,
when we write a criterion like K � |p| we mean that both ω and |q| must be
� |p|.) Owing to this separation in momentum scales, the x-dependence of the
distribution functions is said to describe the soft modes of the gauge theory while
the momenta p are those of the hard modes. If K is sufficiently small (smaller
than the inverse inter-particle separation ∼ T ), the mode with four-momentum K
is a collective excitation that involves the motion of many particles, while p is
the momentum of those particles. In this case, the Fourier-transformed distribution
f (K , p) can be interpreted approximately as the number of particles within the
wavelength of the excitation. At the long distances at which the kinetic theory
description is valid, particles are on mass shell, as determined by the position of
the peaks in the correlation functions of the relevant operators (p0 = Ep), and these
hard modes describe particles that follow classical trajectories, at least between the
microscopic collisions. All the properties of the system can be extracted from the
distribution function. In particular, the stress tensor is given by

T μν(x) =
∫

d3 p

(2π)3

pμ pν

E p
f (x, p) . (6.64)

Since all quasiparticles carry energy and momentum, we will concentrate only
on the kinetic theory description of stress tensor correlators. Our analysis is anal-
ogous to the one performed for the determination of the Green–Kubo formulae in
Appendix A, and proceeds by studying the response of the system to small metric
fluctuations. The dynamics are, then, governed by the Boltzmann equation which
states the continuity of the distribution function f up to particle collisions [578]:

E p
d

dt
f (x, p) = pμ∂xμ f (x, p) + E p

dp
dt

∂

∂p
f (x, p) = C

[
f
]
, (6.65)

where C
[

f
]

is the collision term which encodes the microscopic collisions among
the plasma constituents and vanishes for the equilibrium distribution feq(E p)

(which does not depend on x and which does not depend on the direction of p).
In writing (6.65), we are assuming that p = E p vp, where vp is the velocity of the
particle. In curved space, in the absence of external forces, the Boltzmann equation
becomes

pμ∂xμ f (x, p) − �λ
μν pμ pν∂pλ f (x, p) = C

[
f
]
, (6.66)
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where �λ
μν are the Christoffel symbols of the background metric. As in Appendix

A, we shall determine the stress tensor correlator by introducing a perturbation in
which the metric deviates from flat space by a small amount, gμν = ημν + hμν ,
and studying the response of the system. Even though the analysis for a generic
perturbation can be performed, it will suffice for our purposes to restrict ourselves
to fluctuations which in Fourier space have only one non-vanishing component
hxy(K ). We choose the directions x and y perpendicular to the wave vector q,
which lies in the z direction. For this metric, the only Christoffel symbols that are
non-vanishing at leading order in hxy are �t

xy = �x
ty = �

y
tx = −iω hxy/2 and

�x
zy = �

y
zy = −�z

xy = iq hxy/2.
We will assume that prior to the perturbation the system is in equilibrium. In

response to the external disturbance the equilibrium distribution changes

f (x, p) = feq(E p) + δ f (x, p) . (6.67)

In the limit of a small perturbation, the modified distribution function δ f (x, p) is
linear in the perturbation hxy . We will also assume that the theory is rotationally
invariant so that the energy of the particle E p is only a function of the modulus of
p2 = gi j pi p j . As a consequence, the metric perturbation also changes the on-shell
relation, and the equilibrium distribution must also be expanded to first order in the
perturbation, yielding

feq = f0 + f ′
0 px py |vp|

p
hxy ≈ f0 + f ′

0

px py

E p
hxy , (6.68)

where f0 is the equilibrium distribution in flat space, f ′
0(E) = d f (E)/d E , and the

velocity is given by vp = d E p/dp. In the last equality we have again approximated
vp ≈ p/E p.

The solution of the Boltzmann equation requires the computation of the colli-
sion term C. In general this is a very complicated task since it takes into account
the interactions among all the system constituents, which are responsible for
maintaining equilibrium. However, since our only goal is to understand generic
features of the spectral function, it will be sufficient to employ the relaxation time
approximation

C = −E p
f − feq

τR
(6.69)

for the collision term, in which the parameter τR is referred to as the relaxation
time.7 Since small perturbations away from equilibrium are driven back to equi-
librium by particle collisions, the relaxation time must be of the order of the mean

7 In this approximation, this relaxation time coincides with the shear relaxation time: τR = τπ [106]. However,
since τπ is a property of the theory itself (defined as the appropriate coefficient in the effective field theory, also
known as the hydrodynamic expansion) whereas τR is a parameter specifying a simplified approximation to
the collision kernel, which in general is not of the form Eq. (6.69), we will maintain the notational distinction
between τπ and τR .
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free path λmfp (which is long compared to the inter-particle distance). The relax-
ation time approximation is a very significant simplification of the full dynamics,
but it will allow us to illustrate the main points that we wish to make. A com-
plete analysis of the collision term within perturbation theory for the purpose of
extracting the transport coefficients of a weakly coupled plasma can be found in
Refs. [75, 78, 459, 812].

Within the approximation (6.69), upon taking into account that the distribution
function in Eq. (6.66) depends on the energy of the particles only through their
spatial momenta, the solution to the linearized Boltzmann equation is given by

δ f (K , p) = −iωpx py f ′
0(p)

−iω + ivpq + 1
τR

hxy(K )

E p
. (6.70)

Substituting this into Eq. (6.64) we learn that the perturbation of the distribution
function leads to a perturbation of the stress tensor given by

δT μν(K ) =
∫

d3 p

(2π)3

pμ pν

E p
δ f (K , p) = −Gxy,xy

R (K )hxy(K ) , (6.71)

where the retarded correlator is given by

Gxy,xy
R (K ) = −

∫
d3 p

(2π)3
vxvy ω px py f ′

0(p)

ω − qvp + i
τR

. (6.72)

From the definition (3.13), the spectral function associated with this correlator is

ρxy,xy(K ) = −ω

∫
d3 p

(2π)3

(px py)2

E2
p

f ′
0(p)

2
τR

(ω − qvp)
2 + 1

τ 2
R

. (6.73)

Obtaining this spectral function was our goal, because as we shall now see it has
qualitative features that indicate the presence (in this weakly coupled plasma) of
quasiparticles.

To clarify the structure of the spectral function (6.73) we begin by describing the
free theory limit, in which τR → ∞ since the collision term vanishes. In this limit,
the Lorentzian may be replaced by a δ-function, yielding

ρxy,xy(K ) = −ω

∫
d3 p

(2π)3

(px py)2

E2
p

f ′
0(p) 2π δ

(
ω − q · vp

)
. (6.74)

The δ-function arises because, in this limit, the external perturbation (the gravity
wave) interacts with free particles. The δ-function encodes the conservation of the
energy of the free particles in the plasma that absorb the energy and momentum
of the gravity wave. Thus, in the free theory limit, this δ-function encodes the
existence of free particles in the plasma. For an isotropic distribution of particles,
such as the thermal distribution, at any q 
= 0 the integration over angles washes
out the δ-function and one is left with some function of ω that is characterized by
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the typical momentum scale of the particles (∼ T ) and that is not of interest to us
here.8 On the other hand, at q = 0 we find that 1

ω
ρxy,xy(ω, 0) is proportional to

δ(ω). This δ-function at ω = 0 in the low momentum spectral function is a direct
consequence of the presence of free particles in the plasma. As we now discuss,
the effect of weak interactions is to dress the particles into quasiparticles and to
broaden the δ-function into a narrow, tall, peak at ω = 0.

When the interactions do not vanish, we can proceed by relating the relaxation
time to the shear viscosity. To do so, we work in the hydrodynamic limit in which
all momenta must be smaller than any internal scale. This means that we can set q
to zero, but we must keep the relaxation time τR finite. The spectral density at zero
momentum is then given by

ρxy,xy(ω, 0) = −ω

∫
d3 p

(2π)3

(px py)2

E2
p

f ′
0(p)

2
τR

ω2 + 1
τ 2

R

. (6.75)

Note that the spectral density at zero momentum has a peak at ω = 0, and note in
particular that the width in ω of this peak is ∼ 1/τR � T . The spectral density
has vanishing strength for ω � 1/τR . This low frequency structure in the zero-
momentum spectral function is called the “transport peak”. It is clear that in the
τR → ∞ limit it becomes the δ-function that characterizes the spectral density of
the free theory that we described above. Here, in the presence of weak interactions,
this peak at ω = 0 is a direct consequence of the presence of momentum-carrying
quasiparticles whose mean free time is ∼ τR .

The expression (6.75) is only valid for ω � T where the modes are correctly
described by the Boltzmann equation. For ω � T , since the quasiparticles can
be resolved, the structure of the spectral density is close to that in vacuum. The
separation of scales in the spectral density is directly inherited from the separation
of scales which allows the Boltzmann description. Finally, using the Green–Kubo
formula for the shear viscosity (A.9), we find

η = −τR

∫
d3 p

(2π)3

(px py)2

E2
p

f ′
0(p) . (6.76)

Thus, since η is determined by the collisions among the quasiparticles, we
can understand 1/τR as the width that arises because the quasiparticles do not
have well-defined momenta due to the collisions among them. In particular, in
perturbation theory [75, 78]

8 A distinct peak at in the spectral density at some ω 
= 0 could be observed if the initial distribution were very
anisotropic. This can arise if the theory has a (gauged) conserved charge and if the system is analyzed in the
presence of a constant force that acts on this charge – i.e. an electric field.
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1

τR
∼ 1

T
g4 ln

1

g
∼ 1

λmfp
. (6.77)

However, independent of the value of the weak coupling or the details of the under-
lying theory, Eq. (6.76) shows that the presence of quasiparticles in the system, as
assumed in kinetic theory, imposes a strong relation between the shear viscosity of
the plasma and the width of the transport peak. This relation can be further simpli-
fied by assuming that the quasiparticles of the system are massless, which leads to
the conformal equation of state with pressure p = ε/3. Recalling that for a weakly
coupled plasma in equilibrium

∫
d3p p f0(p) = 6π3Ts, we see that Eq. (6.76) can

be recast as

τR = 5

T

η

s
. (6.78)

While this relation is based on an oversimplified relaxation time approach, a more
complete perturbative computation, which takes into account the explicit form of
the interaction kernel as well as the thermal mass corrections to the equilibrium
distributions, leads, at most, to a 20% correction of this result, as we have quoted
in Eq. (6.46) [812].

Let us summarize the main points. The zero-momentum spectral densities of a
plasma with quasiparticles have a completely distinctive structure: there is a sep-
aration of scales between the scale T (the typical momentum of the quasiparticles
in the plasma) and the much lower scale 1/λmfp. In particular, there is a narrow
peak in ρ(ω, 0)/ω around ω = 0 of width τR ∼ 1/λmfp and height 2η. At larger
frequencies, the strength of the spectral function is very small. At the scale of the
mass of the quasiparticles, the spectral function grows again. For massless particles
or those with mass much smaller than any temperature-related scale, the role of the
mass threshold is played by the thermal mass of the particles, gT , which is much
higher than the scale 1/λmfp ∼ g4T associated with the mean free path due to the
weakness of the coupling. Finally, above the scale T the structure of the spectral
function approaches what it would be in vacuum. A sketch of this behavior can be
found in the top panel of Fig. 6.1. These qualitative features are independent of any
details of the theory, and do not even depend on its symmetries. All that matters is
the existence of momentum-carrying quasiparticles. In the presence of quasiparti-
cles, no matter what their quantum numbers are, these qualitative features must be
present in the spectral density.

6.3.2 Absence of quasiparticles at strong coupling

We return now to the strongly coupled N = 4 SYM plasma, with its dual gravita-
tional description, in order to compare the expectation (6.75) for how the spectral
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Figure 6.1 Top: sketch of the spectral function at zero momentum as a function
of frequency for a weakly coupled plasma, as obtained from kinetic theory. The
narrow structure at small frequency is the transport peak with a width 1/τR that
is suppressed by the coupling (1/τR ∼ g4T ). The thermal mass is mth ∝ gT .
Bottom: spectral function for the shear channel in the strongly coupled plasma
of N = 4 SYM theory computed via gauge/string duality [777] (solid red) and a
comparison with the vacuum spectral function (dashed black) which it approaches
at high frequencies. The vertical axis of this figure has been scaled by the shear
viscosity η = s/4π of the strongly coupled plasma. Note that the definition of
ρxyxy = −ImG R/π used in Ref. [777] is different from that in Eq. (3.13) by a
factor of π/2.

density should look if the plasma contains any momentum-carrying quasiparticles
to an explicit computation of the retarded correlator at strong coupling, of course
done via gauge/string duality. In this section we will benefit from the general
analyses of Sections 6.2.1 and 6.2.2. As in the kinetic theory computation, we
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study the response to a metric fluctuation hxy(ω,q) in the boundary theory, with
the same conventions as before. As in Section 6.2.2, the fluctuation in the boundary
leads to a metric perturbation in the bulk, δgy

x , of the form

δgy
x (ω, q, z) = φ(ω, q, z)e−iωt+iqz . (6.79)

The field φ is governed by the classical action (6.31) which yields an equation of
motion for φ(ω, q, z) that is given by

φ′′(ω, q, u) − 1 + u2

u f
φ′(ω, q, u) + w2 − q2(1 − u2)

u f 2
φ(ω, q, u) = 0 , (6.80)

where u = z2, w = ω/(2πT ) and q = q/(2πT ). We may now use the general
program outlined in Section 5.3.3 to determine the retarded correlator. It is given
by Eq. (5.64) which, together with Eqs. (6.18) and (6.32), leads to

Gxy,xy
R = − lim

u→0

1

16πGN

√−gguu∂uφ(w, q, u)

φ0(w, q, u)
, (6.81)

where φ(w, q, u) is the solution to the equation of motion (6.80) with infalling
boundary conditions at the horizon. For arbitrary values of w and q, Eq. (6.80)
must be solved numerically [777, 553]. From the correlator (6.81), the spectral
function is evaluated using the definition (3.13). The result of this computation at
zero spatial momentum q = 0 is shown in the bottom panel of Fig. 6.1, where we
have plotted ρ/ω which should have a peak at ω = 0 if there are any quasiparticles
present.

In stark contrast to the kinetic theory expectation, there is no transport peak in the
spectral function at strong coupling. In fact, the spectral function has no interest-
ing structure at all at small frequencies. The numerical computation whose results
are plotted in the bottom panel of Fig. 6.1 also shows that there is no separation
of scales in the spectral function. In the strong coupling calculation, quite unlike
in perturbation theory, the small and large frequency behaviors join smoothly and
the spectral density is only a function of w = ω/2πT . This could perhaps have
been expected in a conformal theory with no small coupling constant, but note
that a free massless theory is conformal and that theory does have a δ-function
peak in its spectral function at zero frequency. So, having the explicit computation
that gauge/string duality provides is necessary to give us confidence in the result
that there is no transport peak in the strongly coupled plasma. The absence of the
transport peak shows unambiguously that there are no momentum-carrying quasi-
particles in the strongly coupled plasma. Thus, the physical picture of the system
is completely different from that in perturbation theory.

The considerations we have discussed motivate the expectation that the absence
of quasiparticles is a generic property of strong coupling and is not specific to
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any particular theory with any particular symmetries or matter content. To do so,
let us recall that in the kinetic theory calculation the separation of scales required
for its consistency are a consequence of the weak coupling; this is so in pertur-
bative QCD or in perturbative N = 4 or in any weakly coupled plasma. Now,
imagine increasing the coupling. According to kinetic theory, independent of the
symmetries or the matter content of the theory, the width of the transport peak
grows and its height decreases as the coupling increases. This reflects the fact that
as the coupling grows so does the width of the quasiparticles. Extrapolating this
trend to larger and larger couplings leads to the disappearance of the transport peak
which, at a qualitative level, agrees nicely with the strong coupling result for the
N = 4 SYM plasma obtained by explicit computation and shown in the right
panel of Fig. 6.1. As we will argue in the next section, this observation is one of
the most salient motivations for the phenomenological applications of AdS-based
techniques.

6.3.3 Are there quasiparticles in the QGP?

As we have argued extensively in Section 2.2, Chapter 3 and Section 6.2, the
quark–gluon plasma of QCD at temperatures a few times its Tc is strongly cou-
pled. As a consequence, the quasiparticle picture that has conventionally been used
to think about its dynamics is unlikely to be valid in this regime. Taking advantage
of the general discussion of the previous sections, in this section we will provide
further evidence in support of the absence of quasiparticles excitations in the QCD
plasma.

Our first observation is that the quantitative relation (6.78) imposes, in fact, a
very strong constraint on the minimum value of η/s consistent with a quasiparticle
approach. Since the width of the transport peak, 1/τR , must be small for a con-
sistent quasiparticle description, the relaxation time must be long compared to the
inverse temperature, T τR � 1, which, together with Eq. (6.78), implies

η

s
� 1

5
. (6.82)

As we have stressed, this lower bound on η/s arises solely by demanding the
presence of quasiparticles and is independent of the underlying dynamics of the
system. It is instructive to express this bound in units of 1/4π , which shows that
any value of η/s < 2.5/4π is incompatible with a quasiparticle description, which
is consistent with the absence of quasiparticles in strongly coupled N = 4 SYM
discussed in the previous section. Furthermore, the phenomenological fits to flow
data described in Section 2.2 favor η/s values which are smaller than the bound
(6.82), indicating that the relevant degrees of freedom of the QCD plasma in this
region of parameter space cannot be described in terms of quasiparticles.
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The argument above is somewhat indirect, since it utilizes the results of a com-
plicated phenomenological analysis and suffers from the systematic uncertainties
in extracting η/s from experimental data. A much cleaner approach is to try to
directly extract the relevant spectral functions of conserved currents from lattice
QCD. This is a very complicated procedure which suffers from the same numer-
ical complications that affect the extraction of η/s from the lattice, which we
briefly reviewed in Section 3.2. These difficulties notwithstanding, the authors of
Ref. [323] have made the attempt to extract the spectral function of the spatial elec-
tromagnetic current–current correlator 〈Ji (x)Ji (0)〉 with Ji (x) the electromagnetic
current of the different quark fields, from a lattice QCD calculation performed in
the quenched approximation. This spectral function, which is different from the
spectral functions of stress tensor components we studied in the previous section,
is sensitive to the transport of electric charge in the plasma. For a theory with
charged quasiparticles, similar arguments to those in Section 6.3.1 show that this
spectral function must have a transport peak in the low frequency region, signaling
the presence of charged quasiparticles. On the contrary, a strong coupling compu-
tation of this spectral function [777] leads to a structureless behavior with the same
qualitative features as those shown in the lower panel of Fig. 6.1.

The spectral function that best fits the lattice correlator at a fixed temperature
T = 1.45 Tc is shown in Fig. 6.2. In contrast to the general expectation of the
quasiparticle picture, no narrow structure was found at small frequencies. This is
a strong indication that at least charge carriers in the plasma do not behave like
well-defined quasiparticles with lifetimes longer than 1/T and that the charged
plasma components must be strongly coupled. While these lattice results clearly
disfavor a quasiparticle description of the QGP, they are also qualitatively different
from the results obtained for the same correlator via gauge/gravity duality calcu-
lations in strongly coupled N = 4 SYM, since some wide structure does remains
at low frequency. Whether this structure is a hint of the presence of some broad
excitations in the plasma or whether it is due to the many differences between
QCD and N = 4 is hard to gauge without further studies. In either case, the failure
of the quasiparticle picture makes it very important to have new techniques at our
disposal that allow us to study strongly coupled plasmas with no quasiparticles,
seeking generic consequences of the absence of quasiparticles for physical observ-
ables. Gauge/gravity duality is an excellent tool for these purposes, as we have
already seen in Sections 6.1 and 6.2 and as we will further see in the remaining
chapters of this book. Indeed, as we use gauge/gravity duality to calculate more,
and more different, physical observables we will discover that the calculations done
in the dual gravitational description begin to yield a new form of physical intuition,
phrased in the dual language rather than in the gauge theory language, in addition
to yielding reliable results.
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Figure 6.2 Spectral function of the electromagnetic current–current correlator in
QCD at T = 1.45 Tc extracted from the lattice computation in Ref. [323]. The
black band reflects the uncertainty in the spectral function due to the numerical
error of the lattice results within a fixed parametrization of the spectral function.
This spread does not include the effect of different parametrizations, which lead to
further systematic uncertainties (see Ref. [323] for details). The spectral function
for noninteracting quark–gluon plasma is also shown for comparison. This free
gas spectral function is given by the blue curve for ω > 0 and also includes a
delta function at ω = 0 that is not shown. This δ-function reflects the presence of
noninteracting quasiparticles (particles, in fact) in the free gas, as discussed in the
context of the stress–energy correlator after Eq. (6.74).

6.4 Quasinormal modes and plasma relaxation

As we have argued in Section 6.3.2, there are no colored quasiparticles in strongly
coupled N = 4 SYM. These correlators nevertheless possess an interesting
analytic structure. Inspection of Eq. (6.81) reveals that this particular retarded
correlator can have poles whenever the boundary value field φ0(w, q, u → 0)
vanishes. This observation is not restricted to the particular stress tensor chan-
nel described by Eq. (6.81). It is true for the retarded correlator of any operator
in the gauge theory since, as explained in Section 5.3, the general expression for
the retarded Green’s function Eq. (5.64) is inversely proportional to the amplitude
of the non-normalizable mode, A(k), of the field dual to the particular operator of
interest. Since, as outlined in Section 5.3, the retarded correlator is obtained from
solutions to the classical equations of motion in the gravity theory with infalling
boundary conditions at the horizon, this field theory correlator has poles for those
values of w and q for which a normalizable and infalling solution can be found.
For the particular case of the scalar mode described in Section 6.3.2, this amounts
to finding solutions to Eq. (6.80) that satisfy the boundary conditions
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φ(w, q, u → 0) = 0 , (6.83)

φ(w, q, u → 1) = (1 − u)−iw/2 , (6.84)

where the second equation corresponds to the infalling boundary condition (5.61).
A solution to the above boundary value problem cannot be found for arbitrary

values of w and q. Nevertheless, since the problem of finding these solutions is
formally identical to that of finding the energy levels of a hamiltonian in quan-
tum mechanics, it is easy to see that for a fixed value of q there will be a discrete
and generally infinite set of values wn(q) for which these solutions exist. How-
ever, differently from the quantum mechanical problem, the absorptive boundary
condition (6.84) forces these wn(q) values to be complex with a negative imaginary
part. For this reason, this discrete set of solutions are called quasinormal modes,
and the complex function wn(q) can be thought of as the dispersion relation of
the corresponding mode. Thus, at strong coupling the retarded two point functions
are analytic in the upper half frequency-plane, as expected from general consider-
ations, but with a discrete set of poles in the lower half plane, which correspond to
the quasinormal modes.

In general, there are no closed form expressions for the quasinormal mode spec-
trum of a given operator and the frequencies wn(q) must be found numerically. For
the field φ, the first few quasinormal modes are plotted in the top panel of Fig. 6.3
at fixed q = 1 [555]. These complex frequencies have imaginary parts which are
as large as their real parts. Thus, the poles of the associated stress tensor correlator
do not describe quasiparticles. Furthermore, since the widths of these modes are
of order T or larger, the lifetimes of the associated excitations are of order 1/T or
shorter.

Although the low momentum modes described by these quasinormal modes all
have short lifetimes, we shall see in Section 8.6 that in some channels the imaginary
parts of their complex frequencies are proportional to (πT )4/3q−1/3 and so vanish
in the limit in which q → ∞ and w/q → 1 [349]. In this regime, they describe
short wavelength collective modes moving at close to the speed of light. Following
Ref. [295], we shall use this feature to construct a model of a jet moving through
the strongly coupled plasma in Section 8.6.

The interpretation of these quasinormal mode excitations on the gravity side
is straightforward. Since the field φ describes a particular set of metric fluctu-
ations (6.79), these modes describe the relaxation of small perturbations of the
thermal black hole, which lead to disturbances of the black hole metric. Simi-
larly, since these modes correspond to the poles of the retarded Green’s function,
they describe the relaxation of the strongly coupled plasma as it responds to exter-
nal disturbances. At sufficiently long times, this relaxation process is dominated
by the lowest mode, since it possesses the smallest imaginary part and, thus, the
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Figure 6.3 Location of the quasinormal mode poles in the complex w plane at
fixed q = 1 for the scalar (top panel) and sound (bottom panel) components of
the stress tensor. Figures taken from Ref. [555].

longest lifetime. For this particular channel, the imaginary part of the latter mode is
always of order T and all excitations relax within a time 1/T , which is the generic
strong coupling prediction for all plasma excitations which do not involve con-
served currents. (The component of the stress tensor associated with φ decouples
from the conservation equation.)

In contrast to the typical correlators that describe the response of the plasma
(or thermal black hole) to generic disturbances, such as those described above,
the relaxation of disturbances in the conserved currents must be described in the
long time and long distance limit by hydrodynamics, as we have described in Sec-
tion 2.2. Thus, the structure of the retarded correlator for the associated operator



6.4 Quasinormal modes and plasma relaxation 193

must reflect the general expectations from hydrodynamics in the q → 0, w → 0
limit. Since in this limit the retarded correlators for these currents are Green’s func-
tions of the conservation equations, they must have a pole solely determined by
hydrodynamics. Thus, the low momentum and frequency limit of the quasinormal
mode spectrum of the gravitational field dual to these operators must reflect the
hydrodynamic behavior. In the bottom panel of Fig. 6.3 we show the quasinormal
spectrum for the stress tensor component associated with sound waves, which will
be defined precisely in Section 8.3. All but the lowest one of the quasinormal modes
in this channel are similar to the quasinormal modes in the left panel, with real and
imaginary parts of comparable magnitude. We shall refer to all modes such as these
as non-hydrodynamic quasinormal modes. The lowest mode in the bottom panel of
Fig. 6.3 is clearly distinct from the others as it has a much smaller imaginary part.
Furthermore, the frequency of this mode w0(q) → 0 as q → 0. In contrast, all
the higher non-hydrodynamic modes have w 
= 0 at q = 0. This means that the
lowest mode controls the dynamics of the system at late times and long distances.
Furthermore, in this limit the dispersion relation of w0(q) can be found analytically
and is given by [555, 107]

w0 = ± 1√
3
q − iq2

3
+ O

(
q3
)
, (6.85)

which coincides with the sound dispersion relation (6.41) with c2
s = 1/3, η/s =

1/4π and ζ = 0, consistent with our previous derivation of the shear viscosity
to entropy ratio in Section 6.2. This analysis can be used to determine additional
transport coefficients, as has been done in the case of the nonconformal model
described in Section 6.2.3 [600]. As we will elaborate further in the next chapter,
in a context in which an initially far-from-equilibrium state evolves in time and
comes at late time to be described hydrodynamically, the dynamics of the lowest
quasinormal mode controls the late time hydrodynamic behavior of the fluid while
all the other non-hydrodynamic quasinormal modes describe the relaxation of the
initially far-from-equilibrium state.
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From hydrodynamics to far-from-equilibrium dynamics

In Chapter 6 we have described ways in which holographic calculations have
yielded insight into various properties of strongly coupled plasma that is at rest
and in thermal equilibrium or, in our discussion of transport properties, infinitesi-
mally close to being at rest and in thermal equilibrium. In this chapter, we release
these restrictions. By the end of the chapter, we will be analyzing violent dynamical
processes that are initially very far from thermal equilibrium and that may provide
a caricature of the dynamics in the earliest moments of a heavy ion collision, or at
least what that dynamics would be if the physics then was already strongly coupled.
Before the development of gauge/gravity duality, there were no reliable quantum
field theoretical calculations valid in far-from-equilibrium, highly time-dependent,
strongly coupled matter. We shall build up the holographic tools that can now pro-
vide such calculations in stages over the course of the chapter. In doing so we shall
make the connections to heavy ion physics manifest throughout, but it is impor-
tant to realize that these tools are of considerable value in any other quantum field
theoretical context in which the physics is strongly coupled and the questions of
interest include far-from-equilibrium dynamics and thermalization.

We begin by letting the strongly coupled plasma move. In Sections 7.1 and 7.2
we show how to construct the gravitational description of solutions to the hydro-
dynamic equations for strongly coupled plasma in motion. That is, we continue
to assume local thermal equilibrium, but we let the plasma move and flow. Upon
making the standard assumptions that in a conventional description lead to hydro-
dynamics, namely upon assuming that the length scales that describe gradients of
the flow velocity are long compared to all microscopic length scales that describe
the plasma itself, we show that the flowing plasma has an equivalent gravitational
description as a black brane whose metric, including its horizon, is undulating.
This correspondence between hydrodynamic flow and the gravitational dynamics
of an undulating metric, which we make explicit in Section 7.2, is basic to the rel-
evance of holography to heavy ion collisions. In a heavy ion collision, the strongly

194



From hydrodynamics to far-from-equilibrium dynamics 195

coupled plasma that is produced explodes outwards and is never at rest. However,
as we have seen in Section 2.2, for much of the time that it is in existence the way
that it expands and flows is well described by the laws of hydrodynamics.

In Section 7.2, we use the correspondence between hydrodynamics and gravity
to recast the holographic determination of the constitutive relations that describe
the strongly coupled plasma itself. The explicit examples that we focus on include
its equation of state and the relation between its shear viscosity and its entropy
density, both of which we have already calculated in Chapter 6. As we saw in
that chapter, the results obtained from these holographic calculations resonate
in many ways with what we are learning from lattice QCD calculations and
from comparisons of hydrodynamic calculations to data from heavy ion collision
experiments.

In Section 7.3, we further relax our assumptions and begin our discussion of the
dynamics of strongly coupled matter that is far from equilibrium, and in particular
the processes by which such matter equilibrates. Because QCD is asymptotically
free, it is unlikely that the matter in the far-from-equilibrium conditions that char-
acterize the very earliest moments of a sufficiently high energy heavy ion collision
is itself strongly coupled. This means that, to the degree that realizable heavy ion
collisions approach this high energy regime, we should not expect holographic
calculations to provide as good models of, or as reliable insights into, the pre-
equilibrium dynamics in heavy ion collisions as is possible for the hydrodynamics
of the expanding strongly coupled plasma that emerges a little later or for the
probes of this plasma that we shall discuss in Chapter 8. However, before the
development of holographic approaches far-from-equilibrium dynamics in strongly
coupled many-body systems was famously difficult to understand by any means.
This makes the holographic analyses that we shall present beginning in Section 7.3
of considerable interest from a perspective that goes well beyond heavy ion colli-
sion physics. In the context of heavy ion collisions, understanding how the matter
produced at early times, whatever its nature, isotropizes, how its motion comes to
be governed by the laws of hydrodynamics, and how it reaches local thermal equi-
librium have long been seen as central puzzles. If we can find quantities that seem
to robustly characterize the equilibration of strongly coupled plasma starting from a
large variety of widely varying initial conditions, perhaps we can gain insights into
these questions even if holographic calculations are not able to capture the details
of the initial conditions specific to heavy ion collisions. By the end of this Chapter
we shall see that the equilibration timescale itself may be just such a quantity.

In Section 7.4 we describe how to prepare a far-from-equilibrium initial state
whose subsequent evolution we wish to follow. In Sections 7.5 and 7.6 we present
a complete analysis of the equilibration of a particularly simple class of far-from-
equilibrium initial states, namely states which are initially spatially homogeneous.
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For example, perhaps the equation of state is initially very far from that in ther-
mal equilibrium. And, perhaps the matter is initially far from isotropic, with the
pressures acting in different directions far from equal. In all these cases, the final
state after enough time passes is strongly coupled plasma, at rest, in thermal equi-
librium. In Section 7.7 we generalize our analysis to circumstances in which the
final state is strongly coupled plasma in local thermal equilibrium that continues to
flow, in a boost invariant expansion. Finally, in Section 7.8 we describe the holo-
graphic analysis of the collision of two sheets of energy density, infinite in their
transverse extent, finite in thickness along the “beam direction”, slamming into
each other at the speed of light. The final state in this case is strongly coupled
plasma that continues to expand, hydrodynamically, but without boost invariance.
This calculation represents the best holographic caricature to date of the collision
of two large, highly Lorentz-contracted, nuclei.

7.1 Hydrodynamics and gauge/gravity duality

At distance and time scales much larger than the inverse temperature and any other
microscopic dynamical distance and time scales, a quantum many-body system in
local thermal equilibrium should be described by hydrodynamics. In the context of
gauge/gravity duality, we thus expect hydrodynamics to emerge from the gravity
description at large distance and time scales. More specifically, any solution to the
equations of hydrodynamics that describes some flowing strongly coupled plasma
in the boundary theory should have a corresponding bulk gravity solution. In Sec-
tion 5.2.1 we discovered that in the boundary theory a fluid that is at rest and in
thermal equilibrium with temperature T is described in the bulk gravity theory by
a black brane solution whose Hawking temperature is the same T . Now, a typi-
cal hydrodynamic flow can be thought of as long-wavelength “ripples” on top of
an equilibrium state. Accordingly, the corresponding dual gravity solution can be
heuristically visualized as long-wavelength “ripples” on top of a static black brane.

The holographic correspondence between hydrodynamics and gravity was pio-
neered in a series of works by Policastro, Son and Starinets who were the first to
work out the bulk gravity solutions for various hydrodynamic phenomena includ-
ing the diffusion of momentum and the propagation and attenuation of sound
waves [692, 691, 554, 748, 749]. In this section we describe bulk gravity solutions
dual to boundary hydrodynamic flows which eventually approach thermal equi-
librium. We shall follow the approach of Ref. [155]. (See also Refs. [705, 473].)
Later in the chapter we shall consider more general situations, including both boost
invariant hydrodynamic flows in which the fluid is in local thermal equilibrium but
never becomes static and far-from-equilibrium dynamics. To keep our presentation
manageable in scope, we shall consider only fluids that are conformal and that are
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neutral with respect to all conserved charges. It is typically relatively straightfor-
ward to extend the construction that we discuss here to more general situations. We
will briefly comment on these generalizations, many of which are of considerable
current interest, at the end of Section 7.2.

We reviewed the formulation of hydrodynamics in Section 2.2.3. To set the
stage, let us first establish notation and highlight some of the salient aspects of
the standard formulation. In many applications (as in Section 2.2.3) it is helpful
to use curvilinear coordinates to describe the hydrodynamic flow even when the
boundary theory is flat or to consider boundary theories with curved geometry, as
in some examples in subsequent sections. However, in this introductory presenta-
tion in which our goal is to illustrate general ideas in a simple context we shall
consider only a flat boundary described with Cartesian coordinates. The general-
ization to curvilinear coordinates or a curved boundary can be made by replacing
∂μ by the covariant derivative throughout. For a neutral fluid, the equations for
hydrodynamics are simply the conservation of the stress tensor:

∂μT μν = 0 , (7.1)

where T μν denotes the expectation value of the quantum stress tensor operator. T μν

is in turn expressed via constitutive relations in terms of a derivative expansion of
four hydrodynamic fields which we will choose to be the temperature T (x) in the
local fluid rest frame and the local fluid four-velocity uμ(x), normalized according
to uμuμ = −1. Up to first order in derivatives, T μν can be written as

T μν = ε(T ) uμuν + P(T )�μν − η(T ) σμν − ζ(T ) ∂λu
λ�μν + · · · , (7.2)

where

�μν ≡ ημν+uμuν and σμν ≡
(
�μ

α�ν
β − 1

3
�μν�

αβ

)
(∂αuβ+∂βuα) . (7.3)

The indices are raised and lowered using the Minkowski metric ημν . The coeffi-
cients ε(T ), P(T ), η(T ), and ζ(T ) are the energy density, pressure, shear and bulk
viscosities respectively. It is possible to continue the derivative expansion (7.2) to
any desired order by enumerating all possible terms allowed by symmetries and
the local second law of thermodynamics. For example, the expansion of T μν up to
second order in derivatives was given earlier in Eq. (2.24).

The question we would like to answer is how to derive (7.1) and (7.2) from the
bulk gravity theory. In particular, we should be able to use the dual gravitational
description to obtain precise expressions for ε, P , η, ζ and the coefficients of all
higher order terms (such as those in (2.24)) that specify the hydrodynamics in the
corresponding boundary theory. To achieve this goal, we need to find the most
general solution to the bulk Einstein equations which describes the moving fluid
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in local thermal equilibrium in the boundary theory and then obtain the bound-
ary stress tensor corresponding to such a solution. We shall first explain how the
conservation of the stress tensor (7.1) arises from the Einstein equations. Then,
in Section 7.2, we describe a systematic procedure for deriving the constitutive
relations (7.2) from solutions of Einstein equations and we provide an explicit
calculation of the relations that are needed up to first order.

7.1.1 Conservation of the stress tensor and the Einstein equations

We now show that the conservation of stress tensor (7.1) can be obtained from
a subset of the Einstein equations in an asymptotically AdS5 spacetime. The full
Einstein equations are given by

EM N ≡ RM N − 1

2
gM NR + � gM N = 0, where � ≡ − 6

R2
(7.4)

and R is the curvature of the asymptotic AdS5. We follow the index convention
of previous chapters with x M = (z, xμ), where z is the radial direction and xμ =
(t, �x) are the spacetime directions along the boundary. We will be mainly interested
in the evolution of the bulk metric along the radial direction. For this purpose, it is
convenient to visualize the bulk spacetime as foliated by constant-z hypersurfaces
!z , which are spanned by the boundary coordinates xμ, and treat the z-direction
as a Euclidean “time”. We can then apply well-developed techniques for analyzing
the time evolution of Einstein equations to the radial evolution that is of interest in
the present context.

The Einstein equations can be separated into three groups depending on whether
EM N has zero, one or two indices along boundary directions:

Hz ≡ EzMnM = 0, (7.5)

Hμ ≡ EμMnM = 0, (7.6)

Eμν = 0, (7.7)

where nM is the unit vector normal to !z . Equations (7.7) contain second deriva-
tives in z and are often called dynamical equations, while (7.5) and (7.6) contain
only first derivatives in z and are often called the Hamiltonian constraint and the
momentum constraint, respectively. A discussion of the implications of these con-
straint equations for the Ward identities of the boundary theory can be found in
Refs. [664, 665]. Via the Bianchi identity, the structure of the Einstein equations
is such that if the constraint equations (7.5) and (7.6) are satisfied on a single z-
slice, the dynamical equations (7.7) will ensure that they are satisfied everywhere.
Thus we need only impose (7.5) and (7.6) at a single value of z, for example at the
boundary z = 0.
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For a metric which does not have cross terms between z and xμ,

ds2 = gzzdz2 + gμνdxμdxν , (7.8)

Eqs. (7.5) and (7.6) reduce simply to Ezz = 0 and Eμz = 0. For more general
metrics that include cross terms,

ds2 = gzzdz2 + 2gzμdxμdz + gμνdxμdxν , (7.9)

the unit normal nM no longer lies along the z-direction. Equations (7.5) and (7.6)
are then the appropriate constraint equations. In (7.9), gμν is the induced metric for
!z and we denote its inverse by gμν .

It is standard textbook result (see e.g. Ref. [793]) that the momentum con-
straint (7.6) can be written explicitly as

Hμ = Dμ (Kμν − gμνK ) = 0, (7.10)

where Kμν is the extrinsic curvature for a constant-z hypersurface !z , K ≡ gμνKμν

is its trace, and Dμ is the intrinsic covariant derivative on !z associated with gμν .
Now, according to the standard AdS dictionary, the boundary stress tensor can be
obtained from the bulk metric via [111]

T μν = lim
z→0

1

8πG5

R6

z6

(
Kμν − gμνK − 3

R
gμν

)
, (7.11)

with G5 the five-dimensional Newton constant and R the AdS radius. We reviewed
the derivation of (7.11) in Section 5.3.2, where it was Eq. (5.51). We have denoted
〈T μν〉 by just T μν on the left-hand side of (7.11) as is standard in the hydrodynamic
literature. At the boundary z = 0, gμν is proportional to the boundary Minkowski
metric ημν and Dμ becomes the ordinary derivative ∂μ. From (7.11) we therefore
conclude that when the constraint (7.10) is imposed at the boundary it implies that

∂μT μν = 0 . (7.12)

This then establishes that the constraint equations (7.6) correspond precisely to the
conservation of the stress tensor in the boundary theory.

A similar analysis of the Hamiltonian constraint (7.5) at the boundary (slightly
more involved than the analysis above because the Hamiltonian constraint is
quadratic in the extrinsic curvature) shows that it implies that the boundary stress
tensor is traceless [664, 665],

T μ
μ = 0 , (7.13)

expressing the fact that the boundary theory is conformal.
Equations (7.11)–(7.13) are valid for the case of pure gravity in AdS5 with a

flat boundary metric ημν . If the boundary metric is not flat then the expression in
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parentheses in (7.11) contains an additional term −RGμν/2, with Gμν the Einstein
tensor of the boundary metric. Since this term is divergence free with respect to
the covariant derivative defined by the boundary metric, Eq. (7.12) then still holds
with the replacement of ∂μ by the covariant derivative. Finally, the right-hand side
of (7.13) is replaced by [450]

A = R3

8πG5

(
1

8
RμνR

μν − 1

24
R2

)
, (7.14)

where Rμν and R are the Ricci tensor and the Ricci scalar of the boundary metric,
respectively. This modification expresses the fact that the boundary theory may
possess a conformal anomaly when placed in a curved manifold.

7.2 Constitutive relations from gravity

Having identified how Eqs. (7.6), a subset of the Einstein equations governing the
gravitational physics in the bulk, imply the conservation of the stress tensor (7.1)
in the boundary theory, in this section we outline a systematic procedure for deriv-
ing the constitutive relations (7.2) from gravity to all orders. This is achieved by
finding the gravitational realization of any solution to the hydrodynamic equations
order by order in a derivative expansion, and in particular by making the heuristic
picture that boundary hydrodynamic flows correspond to “ripples” on a static black
brane explicit. So, the procedure boils down to developing an iterative procedure
with which to find a general solution of the bulk Einstein equations which describes
the flowing boundary fluid in local thermal equilibrium.

Our starting point is the black brane metric discussed in Section 5.2.1 which we
copy here for convenience:

ds2 = R2

z2

(
− f dt2 + d �x2 + dz2

f

)
, with f (z) ≡ 1 − (πT z)4 . (7.15)

This metric has an event horizon at

z = 1

πT
(7.16)

and describes a system in thermal equilibrium with temperature T . Instead of using
the coordinate t which becomes singular at the horizon where f = 0, it is more
convenient for our purposes to use the so-called Eddington–Finkelstein coordinate
v defined by

dv = dt − dz

f
, v = t −

∫ z

0

dz′

f (z′)
. (7.17)
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When written in terms of v, the metric (7.15) becomes

ds2 = R2

z2

(−2dvdz − f dv2 + d �x2
)
, (7.18)

from which we can see that lines of constant v and �x are light-like. The coordinate
v has the nice feature that it reduces to t at the boundary z = 0, but remains
non-singular at the horizon as can be seen from (7.18) and as is further illustrated in
the Penrose diagram of Fig. 7.1. As will become clear later, the use of a coordinate
like this that is regular at the horizon helps significantly in simplifying the analysis.
Henceforth, we will denote xμ ≡ (v, �x).

The metric (7.18) (or (7.15)) describes a system at rest. The metric correspond-
ing to a system moving with a constant four-velocity uμ can be obtained by a
Lorentz boost in xμ, resulting in

ds2 = R2

z2

[
2uμdxμdz + (− f uμuν + �μν)dxμdxν

]
, (7.19)

where �μν is the projector introduced earlier in (7.3). Here and below, we will
always use uμ = ημνuμ and uμuμ = −1.

Now let us consider a system which is only in local thermal equilibrium,
described by slowly varying local temperature T (xμ) and flow velocity uμ(xν).
The corresponding bulk metric describing such a non-equilibrium state is in general
not known precisely. Nevertheless, the metric

ds2
0 = g(0)

M N dx Mdx N = R2

z2

[
2uμ(x

λ)dxμdz + h(0)
μν(x

λ, z)dxμdxν
]

(7.20)

with

h(0)
μν(x

λ, z) = − f (T (xλ)z)uμ(x
λ)uν(x

λ) + �μν(x
λ) , (7.21)

obtained by replacing the constant parameters uμ and T in (7.19) by T (xλ)

and uμ(xλ) should provide a reasonable approximation. Owing to the coordinate
dependence of those parameters, (7.20) no longer solves the Einstein equations.
But, as T (xλ) and uμ(xλ) become more and more slowly varying, it should pro-
vide a better and better approximation. In particular, since the failure of (7.20) to
solve the Einstein equations is solely due to gradients of T (xλ), uμ(xλ) along the
boundary space and time directions, as these quantities do not depend on z, one
expects to be able to correct the metric (7.20) order by order in an expansion in
the number of derivatives of of T (xλ) and uμ(xλ). That is, the full metric can be
written in an expansion of the form

g = g(0)(T (xμ), uμ(x
ν); z) + εg(1)(T (xμ), uμ(x

ν); z)

+ ε2g(2)(T (xμ), uμ(x
ν); z) + · · · , (7.22)
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Figure 7.1 Penrose diagram for the region outside the horizon of an AdS black
brane. The metric on a Penrose diagram is related to the actual spacetime metric
by an overall (spacetime-dependent) scale factor chosen such that the entire infi-
nite spacetime is transformed into a diagram of finite size. Since an overall scale
factor in a metric does not change the causal structure, the Penrose diagram can
be used to visualize the causal structure of the actual spacetime. In particular, in a
Penrose diagram, light travels along 45 degrees lines. (For textbook discussions of
Penrose diagrams for black hole spacetimes, see Refs. [619, 683], for example.)
In the figure, the vertical line on the right denotes the AdS boundary z = 0 with
time running in the vertical direction. The boundary spatial directions �x are sup-
pressed. (Each point in the diagram should be considered as an R

3.) The red lines
ending at the boundary points t = 0, t1, t2 are lines of constant t , the time coordi-
nate in the metric (7.15). The dashed blue lines originating at the same boundary
points are lines of constant v, the Eddington–Finkelstein coordinate of (7.18).
Along each such slice z increases from 0 at the boundary to the value (7.16) at the
horizon. Notice that all constant-t slices meet at the “bifurcating horizon” which
is the point where the past and future horizons meet. This is one way to see that
the t-coordinate becomes singular at the horizon. In contrast, constant v-slices
are infalling null geodesics from the boundary to the horizon. They provide a
one-to-one map from points on the boundary to points on the future horizon.

where the zeroth metric g(0) is given by (7.20) and g(n) are local functions of T ,
uμ and their derivatives along boundary directions, with n being the number of
boundary derivatives. Here, ε is a book-keeping device to keep track of the total
number of boundary derivatives and will be set to 1 at the end.

We will see below that the structure of the Einstein equations does admit a
derivative expansion (7.22) of the metric in terms of hydrodynamic fields T (xμ)
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and uμ(xν). With this expansion in hand, the boundary stress tensor obtained
from (7.22) via (7.11) will then yield the constitutive relations. Combined with the
result from Section 7.1 that the constraint equations (7.6) from among the Einstein
equations imply the conservation of the boundary stress tensor, we will then have
a full description of hydrodynamics on the boundary emerging from the Einstein
equations that describe gravity in the bulk.

It is worth pausing to stress the picture that is intrinsic to the way we have writ-
ten the metric in (7.20) and (7.21). The functions appearing in this metric that are
varying as a function of the boundary coordinates xλ are the standard variables of
hydrodynamics, the flow velocity uμ and the temperature T , which describe how
the boundary theory fluid is flowing. If the procedure we have outlined can be car-
ried out, it implies that the same information is encoded in the undulations of the
bulk spacetime. In particular, since the T in (7.21) is undulating, the location at
which the black brane apparent horizon sits is moving “up and down” in z as the
fluid moves. At places and times where the boundary theory fluid is compressed, T
increases, and the apparent horizon in the bulk moves to smaller values of z, closer
to the boundary. Where the boundary fluid expands, T decreases, and the horizon
moves to larger z father away from the boundary. So, there is a direct relation-
ship between the undulation of the horizon and the metric in the bulk gravitational
theory on the one hand and the motion of the hydrodynamic fluid on the other.

Recalling that the horizon area of a stationary black hole in the bulk space-
time corresponds to the entropy of the boundary system, once we discover that a
quintessential feature of the bulk metric dual to a hydrodynamic flow is that the
event horizon is undulating and evolving dynamically it is natural to propose that
the local area element on the horizon in this dynamical context corresponds to the
local entropy current of the hydrodynamic flow [154]. More explicitly, writing the
area form of a spatial section of the horizon1 as

A = 1

3!aμ1μ2μ3dxμ1dxμ2dxμ3, (7.23)

one can define the entropy current J S
μ as the dual of A divided by the familiar

4G5, i.e.

Jμ

S = 1

4G5

1

3!ε
μμ1μ2μ3aμ1μ2μ3 . (7.24)

In the static case, this current has a nonzero component only in the time direc-
tion and J 0

S reduces to the standard area formula for the black hole entropy, as in
Eq. (6.1). As a further consistency check, it is possible to show that even though
1 At any point on the horizon the horizon is spanned by three spatial directions and one null direction. We can

use the affine parameter along the family of null geodesics to define a foliation of the horizon. A spatial section
of the horizon is a slice of the horizon at constant affine parameter, spanned by three spatial directions. For
the case of a static AdS black brane, the spatial section of the horizon is spanned by the �x-directions.
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Jμ

S in (7.24) is defined in terms of quantities at the horizon, when it is interpreted
as a boundary theory current its divergence ∂μ Jμ

S is a Lorentz scalar [154], as it
should be. And, finally, one can show that the fact that the area of the horizon in
the bulk spacetime does not decrease corresponds to the fact that in the boundary
theory ∂μ Jμ

S is non-negative [154], as expected for the entropy current.
Before turning to the construction of (7.22) in detail in the next subsection, let

us mention here some of its key features. While for a bulk metric to yield (7.2)
via (7.11) it is only necessary that a derivative expansion (7.22) exists near the
boundary z ∼ 0, we will see using the Eddington–Finkelstein coordinate (7.17) that
such an expansion in fact exists for all z outside the event horizon (i.e. everywhere
along the dashed lines in Fig. 7.1). Furthermore, we shall see that the problem of
solving the Einstein equations for (7.22) in a derivative expansion factorizes into
two separate problems:

(1) Solving hydrodynamic equations for the hydrodynamic fields T (xλ) and
uμ(xλ) in a derivative expansion.

(2) Finding the radial evolution of the Einstein equations at a given boundary point
xμ. This is a one-dimensional problem that reduces to ordinary differential
equations with sources, and can easily be solved.

7.2.1 Constitutive relations from gravity: explicit construction

In this subsection, we describe in detail how to solve the Einstein equations order-
by-order in derivatives to obtain the derivative expansion (7.22). We will first
discuss some general aspects of the construction and then carry out the explicit
calculation up to first order.

General aspects

The Einstein equations are invariant under bulk diffeomorphisms. We can use such
a diffeomorphism to impose that the metric satisfies

gzz = 0, gzμ = R2

z2
uμ (7.25)

to all orders. In other words, we fix a gauge in which the full metric can be
written as

ds2 ≡ gM N dx Mdx N = R2

z2

[
2uμdxμdz + hμν(x

λ, z)dxμdxν
]

(7.26)

and the expansion (7.22) becomes an expansion for hμν which can be written

hμν = h(0)
μν(T (xλ), uμ(x

λ), z) + εh(1)
μν(T (xλ), uμ(x

λ), z)

+ ε2h(2)
μν(T (xλ), uμ(x

λ), z) + · · · , (7.27)
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with h(0) given by (7.21). Once we go beyond zeroth order, the heuristic picture
of a direct relationship between undulations of the bulk metric and the motion of
the boundary hydrodynamic fluid remains, but the specific relation between the
location of the horizon and the local T in the fluid can become more complicated.

Given that the constraint equations (7.6) in the bulk imply the conservation of the
boundary stress tensor, the boundary hydrodynamic equations must be a part of the
Einstein equations which we shall solve order by order in a derivative expansion.
We thus expect that the hydrodynamic fields entering (7.27) should also have a
derivative expansion

T (xμ) = T (0)(xμ)+ εT (1)(xμ)+ · · · , uμ(x
ν) = u(0)

μ (xν)+ εu(1)
μ (xν)+ · · · .

(7.28)

Our task is then to substitute (7.26)–(7.28) into the Einstein equations (7.5)–(7.7),
and solve the resulting equations at each order in ε,

H(n)
z = 0, n = 0, 1, · · · (7.29)

H(n)
μ = 0, n = 0, 1, · · · (7.30)

E (n)
μν = 0, n = 0, 1, · · · (7.31)

where H(n)
z is the coefficient of εn in the expansion of Hz and similarly for the

others. Note that, when obtaining (7.29)–(7.31), in order for ε to keep track of
the total number of boundary derivatives each boundary derivative in the Einstein
equations should give rise to a factor of ε, in addition to those in (7.27) and (7.28).
Thus for each term in the nth order equations (7.29)–(7.31), the sum of the number
of xμ-derivatives and all the upper indices in h(m), T (k), u(l)

μ should be exactly n.
As we will see below this power counting rule has important consequences.

By construction, the zeroth order equations, which do not contain any boundary
derivatives, are solved by the zeroth order metric g(0)(T (0), u(0)

μ ; z) given in (7.20)
since the black brane metric satisfies the Einstein equations with a constant
T and uμ.

At any order n ≥ 1, from the general structure of the perturbative expansion of
differential equations and using the power counting that we have defined we can
deduce the following regarding Eqs. (7.29)–(7.31).

(1) u(n)
μ and T (n) cannot appear in the nth order equations at all. (Because they

are already of order n, u(n)
μ and T (n) certainly cannot appear with any bound-

ary derivatives acting on them. Thus, if they appear they effectively behave as
constant shifts of T and uμ, which solve all the equations but are trivial.)

(2) The constraint equations (7.30), which are the nth order terms in the expansion
of (7.6), become precisely the hydrodynamic equations (7.12) at nth order, i.e.

∂μT μν

(n−1) = 0, n = 1, 2, · · · , (7.32)
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where T μν

(n−1) is the boundary stress tensor expanded to order n − 1 and is
obtained from g(n−1) via (7.11).

(3) Equations (7.29) and (7.31) can be used to solve for h(n). There are altogether
eleven equations to solve for the ten components of h(n)

μν . There is one redun-
dancy, as once the constraint equation (7.29) is imposed on a single constant-z
hypersurface, the other dynamical equations will ensure that it is satisfied
everywhere. The power counting rule implies that the differential equations
for h(n) with n ≥ 1 that are obtained from (7.29) and (7.31) must take the form

H
[
T (0), u(0)

μ

]
h(n)(z, xμ) = sn, n ≥ 1 (7.33)

where the differential operator H must have the following properties.
(a) It can not contain any boundary derivatives.
(b) It can depend on the zeroth order quantities T (0) and u(0)

μ only. Neither
boundary derivatives of T (0) or u(0)

μ nor higher order quantities like h(k),
T (k) or u(k)

μ with k ≥ 1 can appear. In other words, H evaluated at a
boundary point xμ only depends on the values of T (0) and u(0)

μ at that same
boundary point.

(c) It is independent of n.
(d) It is a linear differential operator in z with at most two derivatives.
The first three properties of H follow immediately from the power counting
rule, and can be described by saying that H is “ultra-local” along the boundary
directions. As a result, one can integrate (7.33) in z point-by-point in xμ. The
equations at different xμ’s do not interfere with one another. The last prop-
erty (d) follows from the fact that the Einstein equations are second order
differential equations.

(4) The sn on the right-hand side of (7.33) are source terms (i.e. terms with no z
derivatives) which “measure” the failure of the metric g to satisfy the Einstein
equations at each order due to the dependence of its parameters on location
in the boundary spacetime. The sn are local functions of h(n), T (k) and u(k)

μ

for k < n and their derivatives (subject to the power counting rule), and must
contain at least one boundary derivative in each term.

Given that the differential operator H is ultra-local, meaning that it can be inte-
grated along the radial direction at any location in the boundary directions with
no dependence on any other locations, solving the full Einstein equations (7.29)–
(7.31) factorizes into two separate problems: solving the boundary hydrodynamic
equations (7.32) and solving the radial evolution equation (7.33). We can then
integrate the radial equation at a single boundary point, say xμ = 0, and easily gen-
eralize the results to all points. It is also convenient to work in the local rest frame,
meaning that in (7.26) we choose coordinates such that uμ(xλ = 0) = (1, 0, 0, 0).
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With the above general aspects of the derivative expansion in hand, we are now
ready to work out the solutions of the Einstein equations (7.29)–(7.31) explicitly
up to first order. We shall only push our explicit results to this order as doing so is
already enough to illustrate the general procedure and to obtain the explicit form
of H in (7.33), whose integration could then be carried out to higher order.

Explicit solutions up to first order

At first order n = 1, the constraint equations (7.30), following from the discussion
of (7.10)–(7.12), reduce to

∂μT μν

(0) = 0 . (7.34)

T μν

(0) is the zeroth order boundary stress tensor obtained via (7.11) from g(0), given
by (7.20). Not surprisingly, one finds a perfect fluid form (see Appendix D for a
derivation)

T μν

(0) = (
ε(T (0)) + P(T (0))

)
uμ

(0)u
ν
(0) + P(T (0))ημν (7.35)

with

ε(T ) = 3R3(πT )4

16πG5
, P(T ) = R3(πT )4

16πG5
. (7.36)

For N = 4 super-Yang–Mills theory, from (5.12) which we reproduce here for
convenience,

R3

8πG5
= N 2

c

4π2
, (7.37)

we then have

ε(T ) = 3N 2
c π

2T 4

8
, P(T ) = N 2

c π
2T 4

8
, (7.38)

which agree with the expressions that we found for the energy density and pressure
previously in Section 6.1. So, we have reproduced the equation of state relating ε

and P , which is the only constitutive relation that arises in the zeroth order stress
tensor, for the strongly coupled plasma of N = 4 SYM theory.

Equations (7.34) are simply the hydrodynamic equations for a perfect fluid. They
can be solved for T (0)(x) and u(0)

μ . Expanding around xμ = 0 in the local rest frame,
working to first order we find that ∂μu0 = 0 and that Eqs. (7.34) reduce to

1

3
∇ · u = −∂vT

T
, (7.39)

∂vui = −∂i T

T
, (7.40)
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where

∇ · u ≡
3∑

i=1

∂i ui . (7.41)

These results can also be obtained directly from (7.30). Recalling how T appears in
the bulk metric specified by (7.20) and (7.21), we see that Eq. (7.39) is an explicit
illustration (to first order in the derivative expansion) of the fact that as the bound-
ary theory fluid expands or compresses the apparent horizon in the bulk spacetime
moves to larger or smaller z.

So far, we have pursued the general algorithm that we have laid out previously
through step (2) above, i.e. through Eq. (7.32). We have obtained the spacetime-
varying quantities T and uμ that specify the fluid motion and the bulk metric to
zeroth order in the derivative expansion, and have obtained T μν to zeroth order and
hence the zeroth order constitutive relation (7.38), namely the equation of state. To
get the first order constitutive relations, we need T μν to first order, which means
that we need to obtain the h(1)

μν by completing steps (3) and (4) in the general algo-
rithm, which is to say solving (7.33). Once we have hμν to first order, we will have
gμν to first order and from (7.11) we can then obtain T μν to first order, and the first
order constitutive relations.

Following this algorithm, let us look at (7.29) and (7.31) with n = 1. At xμ = 0,
the various components of h(1) can be classified according to their transformation
properties under spatial SO(3) rotations in the local rest frame:

scalar : h(1)
vv , h(1) ≡ 1

3

3∑
i=1

h(1)
i i (7.42)

vector : h(1)
vi (7.43)

tensor : α
(1)
i j ≡ h(1)

i j − δi jh
(1) (7.44)

and the Einstein equations for the three different sectors decouple from one another.
The equations for these components are of the form (7.33) and are given at
xμ = 0 in the local rest frame by the explicit expressions below, with primes
below denoting z-derivatives.

(1) The scalar sector:

z4
(
z−4hvv

)′ − (2 + f )h′ = −2∇ · u, (7.45)

h′′ = 0. (7.46)

(2) The vector sector:

f

[
z3∂z(z

−3h′
vi ) + 3

z
∂vui

]
+ 4π4T 3z3 (∂i T + T ∂vui ) = 0. (7.47)
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(3) The tensor sector:

z3
(
z−3 f α′

i j

)′ = −3

z
σi j , (7.48)

where

σi j ≡ ∂i u j + ∂ j ui − 2

3
δi j∇ · u . (7.49)

For notational simplicity, in the equations above we have suppressed various super-
scripts. One should understand h as h(1) while T and ui should be understood as
T (0) and u(0)

i . Note that the left-hand sides of Eqs. (7.45)–(7.48) can be understood
as the explicit definitions of the operator H, that we introduced in general terms
in (7.33), acting on fields in the different sectors. Equations (7.45)–(7.48) are all
first order ordinary differential equations in z with sources. Therefore, they can all
be integrated easily. We require the solutions to be normalizable at the boundary
and regular at the black brane horizon (7.16) of the zeroth order solution where the
function f is zero and a potential singularity could arise. These conditions fix some
of the integration constants, but not all. We will set all other integration constants
to zero as they arise from solving the homogeneous parts of Eqs. (7.45)–(7.48) and
simply correspond to shifting the parameters of the zeroth order solutions.

With these considerations in mind, the scalar sector equations (7.45)–(7.46) then
have solutions given by

h = 0, hvv = 2∇ · u

3
z . (7.50)

The vector equation (7.47) has a singularity at the event horizon coming from the
factor f on its left-hand side. Note, however, that Eq. (7.47) can be further sim-
plified using the constraint equation (7.40). In particular, the potential troublesome
factor f cancels on both sides, yielding

z3
(
z−3h′

vi

)′ = −3

z
∂vui , (7.51)

which now has a regular solution

hvi = z∂vui . (7.52)

Turning now to Eq. (7.48) for the tensor sector equation, upon integrating it once
we get

z−3 f α′
i j = σi j

(
z−3 − (πT )3

)
, (7.53)

where we have chosen the integration constant to ensure that αi j is regular at the
horizon in the next integration, namely

αi j = F(z)σi j (7.54)
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with

F(z) =
∫ z

0
dz′ z′3

f

(
z′−3 − (πT )3

)
. (7.55)

As mentioned earlier in our general discussion, u(1) and T (1) do not appear and are
unconstrained at this order.

Collecting (7.50), (7.52) and (7.54), we find that the bulk metric specified as in
(7.26) and (7.27) receives a first order contribution given by

R2

z2
h(1)
μνdxμdxν = R2

z2

(
2

3
(∇ · u)zdv2 + 2z ∂vui dvdxi + F(z) σi j dxidx j

)
.

(7.56)
We have derived this expression in the fluid rest frame at xμ = 0. We can immedi-
ately generalize it to obtain the first order correction to the metric at a generic point
in spacetime where the fluid velocity four-vector is some generic uμ by making the
substitutions

ui → uμ, ∂v → uλ∂λ, ∂i → �μ
ν∂ν, dv → −uμdxμ, dxi → �μ

νdxν,

(7.57)
where �μν is the projector introduced in (7.3). Upon making these substitutions,
σi j becomes σμν defined in (7.3) and from (7.56) we find that the general expression
for the first order contribution to the bulk metric is given by

h(1)
μν = 2

3
z(∂λu

λ)uμuν − zuλ∂λ(uμuν) + F(z)σμν . (7.58)

With the metric for the bulk spacetime now determined up to first order in the
derivative expansion, we take this metric and use (7.11) to obtain the first order
contribution to the stress tensor, finding

T (1)
μν = − R3(πT )3

16πG5
σμν . (7.59)

(For details, see Appendix D.) Comparing (7.59) with (7.2), we finally conclude
that the shear and bulk viscosities of the strongly coupled plasma are given by

η = R3(πT )3

16πG5
= s

4π
and ζ = 0 , (7.60)

respectively, where s is the entropy density of the system. In this way we recover
the results for these transport coefficients that were derived via a different method
in Section 6.2.

Finally, with the first order correction to the metric h(1)
μν in hand we can evalu-

ate the entropy current (7.24) explicitly to first order in the derivative expansion,
obtaining [154]

Jμ

S = s uμ, (7.61)
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where s is the entropy density given by the area of the horizon in the zeroth order
black brane metric. Note that (7.61) is the standard zeroth order expression; the
explicit evaluation of (7.24) shows that there is no first order contribution. We can
then take the divergence of (7.61) and use the conservation equation (7.12) (which
relates terms that are first and second order in the derivative expansion since Tμν

contains zeroth and first order terms) to show that for a neutral conformal fluid, in
which the bulk viscosity vanishes,

∂μ Jμ

S = η

2T
σμνσ

μν . (7.62)

As expected at leading order, we see that the shear viscosity η controls the produc-
tion of entropy as such a fluid flows. In a fluid with conserved currents like those
we have discussed in Section 6.2.5, both Eqs. (7.61) and (7.62) contain additional
terms proportional to the conductivity or conductivities and, if any of the currents
are anomalous, further terms introduced by the anomalies [750].

7.2.2 Generalizations

The first order calculation above can be extended to higher orders. At n-th order,
one first solves the constraint equations (7.30), or equivalently the hydrody-
namic equations (7.32), and then solves the equations (7.33) for h(n)

μν which arise
from (7.29) and (7.31). Around a single point, (7.32) become algebraic equations
at each order. The integration of (7.33) is very similar to that at the first order
except that the sources are different. Thus these equations can be solved straight-
forwardly to all orders although the number of terms in sn and T μν

n−1 increase
quickly.

As discussed around Eq. (2.24), in a conformal theory five additional transport
parameters arise at second order in the derivative expansion. The values of these
quantities can be found by extending the derivative expansion of the Einstein equa-
tions to second order [155], as we have described. In our discussion of transport
coefficients in Section 6.2.4, we have already quoted the values of these five sec-
ond order parameters for the strongly coupled plasma of N = 4 SYM theory in
Eq. (6.45), where their physical implications were also discussed.

The iterative procedure outlined here can also be straightforwardly generalized
to other fluid systems, including charged fluids, fluids with spontaneous symme-
try breaking and Goldstone bosons, including superfluids, fluids driven by external
forces, and nonconformal fluids. We refer readers to Refs. [705, 473] for reviews
and a more extensive reference list. A particularly interesting result among these
generalizations is the modification of charged fluid hydrodynamics that is induced
by quantum anomalies [787, 789, 788, 791, 792, 341, 117, 750] that we have
discussed in Section 6.2.5.
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7.3 Introduction to far-from-equilibrium dynamics

We have seen in previous sections that the equilibrium and near-equilibrium
properties of strongly coupled plasma with a gravity dual are encoded in the
equilibrium and near-equilibrium properties of the dual black brane. In par-
ticular, we saw in Section 7.1 that the effective theory that governs long-
wavelength fluctuations around an equilibrium black brane is hydrodynamics
itself.

In this section we turn to the formation of strongly coupled plasma starting
from some initial far-from-equilibrium state in a theory that is strongly coupled
at all length scales. Without taking advantage of holography, there are no known
methods for doing reliable calculations of far-from-equilibrium strongly coupled
dynamics in quantum field theory. Within conventional quantum field theoretical
methods, the adjectives “strong coupling” on the one hand and “time-dependent” or
“far-from-equilibrium” on the other represent major outstanding challenges, sep-
arately and even more so in concert. When holography can be applied, the dual
gravitational description of the far-from-equilibrium strongly coupled dynamics
consists of the formation of a highly disturbed, far-from-equilibrium black hole
horizon, and its subsequent relaxation towards an equilibrium state. This is in gen-
eral not easy to analyze, but much progress has occurred in recent years. The
study of this type of dynamics on the gravity side requires solving Einstein’s
equations in the presence of strong time (and possibly space) dependence. This
can be done analytically for certain highly fine-tuned initial conditions [361, 350]
or if some approximations are made [495, 642, 493, 152, 110, 109], but gener-
ically it can only be done numerically [696, 477, 163, 476, 164, 478, 368, 807,
492, 370, 290, 291, 292, 448, 119, 14, 287, 286, 218]. Thus we will focus on
what studies using numerical relativity methods have taught us about black hole
formation in 4+1-dimensional spacetimes that are asymptotically AdS and, con-
sequently, what these studies have taught us about equilibration of hot strongly
coupled matter in non-Abelian gauge theories. Since an important goal is to learn
generic lessons that provide insight into dynamics during the initial stages of
a heavy ion collision, we will concentrate on studies in which the gauge the-
ory lives on Minkowski space, as opposed to, for example, a three-dimensional
sphere.

As we discussed at the beginning of this chapter, because QCD is asymptoti-
cally free the dominant dynamics at the earliest moments of a sufficiently energetic
heavy ion collision is expected to be weakly coupled, with the relevant (weak) cou-
pling being αQCD evaluated at the (short) distance scale corresponding to the mean
spacing between gluons in the transverse plane at the moment when the two highly
Lorentz-contracted nuclei collide. As we have seen in Section 2.2, though, after
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a time that is of order or perhaps even less than 1 fm we find that the collision
has produced a strongly coupled nearly perfect liquid. A complete account of the
dynamics that starts with a far-from-equilibrium weakly coupled state and results
in a strongly coupled hydrodynamic liquid must involve both weakly and strongly
coupled dynamics. One motivation for the investigations in this chapter, where
we will watch the formation of a strongly coupled hydrodynamic liquid start-
ing from a wide variety of far-from-equilibrium states that are themselves also
strongly coupled, is the hope that by understanding far-from-equilibrium dynamics
and equilibration in both the strong and weak coupling limits we can bracket the
real world physics. We shall see that the equilibration timescale itself is an exam-
ple of a quantity where these investigations have indeed yielded insights along
these lines.

At present it is too ambitious to envision literally simulating the gravity dual of
a full collision that starts with widely separated nuclei heading towards each other
in 3 + 1-dimensional Minkowski space, since the weakly coupled aspects of the
nuclear physics present great challenges on the gravity side. Simulating the ultra-
relativistic collision of two Lorentz-contracted spheres of strongly coupled matter
is certainly conceivable, however. In Section 7.8 we will study a toy model of such
a collision in N = 4 super-Yang–Mills in an approximation in which the “nuclei”
are taken to be infinitely big and have been replaced by sheets of energy density
with a finite thickness in the “beam” direction that are translation-invariant in the
transverse directions. Before we get to this model, however, we will introduce the
construction of far-from-equilibrium states in general terms in Section 7.4 and will
then study several somewhat less physical but simpler systems. In Sections 7.5
and 7.6 we shall treat the formation of static strongly coupled plasma from initial
conditions that are homogeneous but strongly anisotropic, and in Section 7.7 we
shall consider the formation of an expanding, boost-invariant, volume of strongly
coupled plasma. Not only will these prior studies lay the ground work that will
allow us to understand Section 7.8, but they will also teach us interesting lessons
in their own right about the far-from-equilibrium dynamics of strongly coupled
matter and its equilibration. Because these settings are simpler, also, it has been
possible in these contexts to investigate a wide variety of initial conditions which
makes it possible to get a sense of what features of the non-equilibrium dynamics
are generic.

Useful references where holographic calculations of far-from-equilibrium
dynamics are reviewed from viewpoints complementary to those adopted here
include Refs. [143, 472, 494, 738].

Finally, a comment on notation. Throughout the rest of this chapter we will set
the AdS radius R to unity.
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Figure 7.2 Penrose diagram of the spacetime outside the horizon of: (a) vacuum
AdS; (b) the spacetime created when a source at the boundary of AdS is turned
on; (c) the spacetime associated with the evolution of an initial state specified on
an initial-time hypersurface in the bulk spacetime. Figure taken from Ref. [447].

7.4 Constructing far-from-equilibrium states

In order to study the far-from-equilibrium dynamics of plasma formation we must
first prepare a far-from-equilibrium initial state whose subsequent evolution and
thermalization we will study. This can be done in (at least) two ways. The initial
state can be defined implicitly as the state that results from acting on the ground
state of the theory with an external source [290, 291], or it can be defined explicitly
by specifying initial conditions [292, 448, 446, 447].

In the first approach one turns on a time-dependent source in the boundary gauge
theory with compact support in time. Before the source is turned on the system is in
its ground state. The work done on the system by the external source takes it from
its ground state to an excited state. This excited state evolves in time and, after the
source is turned off, eventually relaxes to a thermal state, in equilibrium.

The description of this process on the gravity side is encoded in the Penrose
diagram depicted in Fig. 7.2b. The physics is easy to understand by recalling that,
through the gauge/string duality, a source in the gauge theory is identified with
the value at the boundary of AdS of an appropriate supergravity (or string) field.
Turning on the source at some time ti therefore changes the boundary condition for
this field in a time-dependent way. As a result, a wave of radiation is sent into the
bulk at t = ti . Since this cannot propagate faster than the speed of light, causality
implies that this process cannot affect the geometry below the 45◦ black dashed
line in Fig. 7.2b. The part of the geometry below this line is therefore dual to the
CFT ground state, namely it is a piece of anti-de Sitter space with no excitations in
it, to which we will simply refer as “vacuum AdS”. The work done by the source
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in the gauge theory translates into the energy carried into the bulk by the wave. If
the injected energy is such that it results in a finite energy density (which means
that the total injected energy is infinite), then we expect the formation of a pla-
nar, regular, future horizon which at late times will be in equilibrium with some
Hawking temperature T > 0. This is easy to understand on the gauge theory side,
since we expect that an interacting system with finite energy density will eventually
reach thermal equilibrium. On the gravity side this corresponds to the formation of
a horizon with a nonzero Hawking temperature.

The region of interest is that labeled “Dynamics”, above the black dashed line in
Fig. 7.2b. As is clear from the causal structure of the Penrose diagram, the metric
and the other supergravity fields in this region are completely determined by the
fact that the spacetime is vacuum AdS below the dashed line, together with the
knowledge of the sources at the boundary of AdS for t ≥ ti . In other words,
the problem of determining the supergravity fields in the region of interest is well
posed. Once this problem is solved, which typically must be done numerically,
the entire evolution of the bulk gravitational state and therefore of the boundary
gauge theory state is known, and any observable can be computed. For example,
the time-dependent expectation values of operators can be read off from the form
of the corresponding dual fields near the AdS boundary at a given time. In subse-
quent sections we will illustrate this procedure by computing the expectation value
of the stress tensor.

The second, explicit, approach to preparing a far-from-equilibrium initial
state [292, 447] is illustrated by the Penrose diagram in Fig. 7.2c. In this case the
initial state is specified explicitly on the gravity side in terms of the metric and other
supergravity fields on some initial-time slice, depicted as a 45◦ thick red line in the
figure. The only restriction on these fields is that they must satisfy the constraints
associated with Einstein’s equations, as well as appropriate boundary conditions
near the AdS boundary. Once these initial values are specified along the thick line,
the problem of their future time evolution is again well posed, as illustrated by the
causal structure of the diagram. The initial-time slice shown in Fig. 7.2c is null, but
one can equally well choose a spacelike hypersurface, as in Refs. [448, 446]. In all
these explicit approaches, the region below the initial-time slice is not of interest;
only the future evolution of the system is. Moreover, no external sources are turned
on, which immediately defines the boundary conditions near the AdS boundary
mentioned above. One simply specifies an initial state, which generically will be
far from equilibrium, lets it go, and watches it evolve towards an equilibrium state.

The two approaches described above are related. For example, once the source
has been turned off in Fig. 7.2b and the evolution has been determined, one could
read off the values of the supergravity fields at an appropriate initial-time slice
such as that shown as a dotted red line in the figure. Obviously these values satisfy
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the supergravity constraints and evolve to the future in the absence of boundary
sources. Therefore any combination of sources à la Fig. 7.2b defines an initial
state à la Fig. 7.2c. Presumably the converse is also true, namely any admissible
initial state in Fig. 7.2c can also be obtained by turning on and off an appropriate
combination of sources. However, these sources may be highly non-local. For this
reason it is useful to explore both approaches rather than restricting attention to
either one of them.

7.5 Isotropization of homogeneous plasma

We will now illustrate the general discussion of the previous section with the
simplest possible case: the evolution of a homogeneous, but initially far-from-
equilibrium, CFT state towards an equilibrium plasma state. The homogeneity
assumption means that we work at strictly zero spatial momentum in Fourier space.
Since by definition hydrodynamic modes have dispersion relations ω(�q) such that
ω → 0 as q → 0, this implies that no hydrodynamic modes will get excited. To
further simplify the physics, we will restrict ourselves to studying pure gravity in
AdS5, which is a consistent truncation of type IIB supergravity on AdS5 × S5. On
the CFT side this simplification amounts to focusing on a sector of the dynamics
in which the stress tensor is the only operator that acquires a nonzero expecta-
tion value. All other operators have vanishing one-point functions in this sector.
Higher order correlation functions may be non-trivial and they could be computed
in principle, but we will focus on the one-point function of the stress tensor.

In order to “create” a far-from-equilibrium state, the authors of Ref. [290] turn
on a time-dependent, anisotropic source for the stress tensor of the boundary gauge
theory, following the general strategy that we have illustrated in Fig. 7.2b. In other
words, they turn on a non-normalizable mode of the bulk metric such that the metric
of the gauge theory takes the form

ds2 = −dt2 + eB0(t) dx2
T + e−2B0(t) dx2

L , (7.63)

where xT = {x1, x2} are referred to as the transverse directions and xL is referred
to as the longitudinal direction. There is rotational symmetry only within the trans-
verse plane. The function B0(t) describes a time-dependent shear in the gauge
theory metric and can be chosen at will. Ref. [290] chooses

B0(t) = 1

2
c

[
1 − tanh

(
t

�

)]
, (7.64)

where c is a nonzero constant and � is the characteristic time scale of the source.
At asymptotic early and late times, t → ∓∞, B0 becomes constant and has no
physical effect, since it can be simply absorbed in the metric (7.63) by a rescaling
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of the x-coordinates. Over a period of time of order �, however, B0 induces a
time-dependent rescaling of the transverse coordinates with respect to the longi-
tudinal one. This way of creating a far-from-equilibrium state can be thought of
as analogous to placing the gauge theory in a “cosmological” background or sub-
jecting it to a strong gravitational wave, for a finite period of time ∼ �. Once
the background metric becomes flat again, one is left with the gauge theory in
Minkowski space in a highly excited state which then relaxes to equilibrium in
the absence of external forces. As we will see, the excited state produced in this
way possesses an anisotropic stress tensor with different transverse and longitu-
dinal pressures, PT 
= PL . The process we are interested in is the evolution of
these pressures towards a common value at asymptotically late times, namely the
isotropization of the plasma once the source has been turned off.

The causal structure of the diagram in Fig. 7.2b suggests that it will prove
convenient to write the bulk metric in the Eddington–Finkelstein (EF) coordinates
that we introduced in (7.17) and (7.18). In the present context, the bulk metric takes
the form

ds2 = 2dvdr − A dv2 + !2
(
e−2Bdx2

L + eBdx2
T

)
(7.65)

in EF coordinates, with A, B and ! in general being functions of r and v that
must be chosen such that Einstein’s equations are satisfied. The coordinate v is
the EF time in the bulk. As we have seen, it coincides with the gauge theory time
at the boundary, which lies at r = ∞. Curves of constant v are infalling null
geodesics from the boundary, for which r is an affine parameter. Outgoing null
geodesics obey

dr

dv
= A

2
. (7.66)

In these coordinates the equilibrium black brane solution is given by

A = r2 f (r) , f (r) =
(

1 − r4
0

r4

)
, ! = r , B = 0 . (7.67)

This can be seen by setting

v = t − g(r) , g′(r) = − 1

A(r)
, (7.68)

which brings the metric (7.67) to the form

ds2 = r2
(− f (r)dt2 + dx2

L + dx2
T

) + dr2

r2 f (r)
, (7.69)

which is familiar from (7.18), in which z = R2/r .
The formulation of general relativity in which a spacetime is constructed by

means of a foliation by null hypersurfaces is called “the characteristic formulation”.
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The utility of this formulation lies in the fact that Einstein’s equations are integrated
in from the boundary along infalling null radial geodesics. Therefore, any numeri-
cal error made at the boundary, where Einstein’s equations are singular because of
the diverging conformal factor in the metric (7.69), instantaneously falls to finite r
away from the singular point in Einstein’s equations. While this tames the singular
point in Einstein’s equations at r = ∞, it does not completely ameliorate it. One
must still solve Einstein’s equations very well near the boundary. Two success-
ful approaches thus far are (i) to solve Einstein’s equations semi-analytically for r
greater than some UV cut-off rmax and match the semi-analytic solution onto the
numerical solution at r = rmax, as in e.g. Ref. [290], or (ii) to discretize Einstein’s
equations using pseudospectral methods, as in e.g. Refs. [292, 447]. In the latter
approach one can directly impose boundary conditions at r = ∞, as the exponen-
tial convergence of pseudospectral methods outpaces the power-law singularities
in Einstein’s equations.

In the coordinates (7.65) Einstein’s equations take the nested form

0 = ! (!̇)′ + 2!′ !̇ − 2!2 , (7.70)

0 = ! (Ḃ)′ + 3
2

(
!′ Ḃ + B ′ !̇

)
, (7.71)

0 = A′′ + 3B ′ Ḃ − 12!′ !̇/!2 + 4 , (7.72)

0 = !̈ + 1
2

(
Ḃ2 ! − A′ !̇

)
, (7.73)

0 = !′′ + 1
2 B ′2 ! , (7.74)

where h′ ≡ ∂r h and ḣ ≡ ∂vh + 1
2 A ∂r h are derivatives along ingoing and outgo-

ing null geodesics, respectively. Equations (7.70)–(7.72) are dynamical equations,
whereas Eqs. (7.73) and (7.74) are constraints. Equation (7.74) is a constraint in
the familiar sense of general relativity: if it holds on a given constant-time slice
then it holds at any other time by virtue of the dynamical equations. This equa-
tion therefore will constrain the possible states that we are allowed to specify on
the initial-time slice in Fig. 7.2c. Equation (7.73) is a constraint in a perhaps less
familiar but analogous sense: if it satisfied on a given constant-r slice then it is sat-
isfied everywhere by virtue of the dynamical equations. In our case we will impose
this constraint on the r = ∞ slice by imposing the boundary conditions

A(r, v) � r2 + · · · , (7.75)

!(r, v) � r + · · · , (7.76)

B(r, v) � B0(v) + · · · , (7.77)

where the dots stand for subleading terms in the large-r expansion. Substituting
these expressions in the bulk metric (7.65) and dividing by the conformal factor r2,
as usual, we see that we indeed reproduce the boundary metric (7.63).
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t

Figure 7.3 Energy density, longitudinal pressure and transverse pressure, all
divided by N 2

c /2π2 and all in units of 1/�4, as a function of boundary time for
c = 2. Recall that � is the characteristic timescale of the source (7.64). Figure
taken from Ref. [290].

The problem now reduces to integrating Eqs. (7.70)–(7.72) numerically. Once
a solution is found, the boundary stress tensor can then be read off from the nor-
malizable mode of the metric near the AdS boundary. Details on the numerical
integration can be found in the original references and we will not dwell into them
here. Instead, we will concentrate on describing the physical results.

The combination of homogeneity in three spatial dimensions and rotational
invariance in the two-dimensional transverse plane implies that the stress tensor
can be written as

〈T μ
ν 〉 = N 2

c

2π2
diag

[
E(t), PL(t), PT (t), PT (t)

]
. (7.78)

(Throughout the remainder of this chapter we will use E and P for energy densities
and pressures rescaled by a factor of N 2

c /2π2. We denote the longitudinal and
transverse pressure by PL and PT ; it is also common to refer to them as P‖ and
P⊥.) Figure 7.3 shows a plot of the energy density and transverse and longitudinal
pressures produced by the changing boundary geometry (7.63), with the parameter
c in (7.64) chosen as c = 2. The energy density and pressures all begin at zero in
the distant past when the system is in its vacuum state, and at late times approach
thermal equilibrium values given by

T μ
ν = π2

8
N 2

c T 4 diag(3, 1, 1, 1), (7.79)

where T is the final equilibrium temperature. Non-monotonic behavior is seen
when the boundary geometry changes most rapidly around time zero.

Figure 7.4 displays a congruence of outgoing radial null geodesics, again for
c = 2. The surface shading shows A/r2. In the SYM vacuum (i.e., at early times)
this quantity equals 1, while at late times
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Figure 7.4 The congruence of outgoing radial null geodesics. The boundary is
at 1/r = 0, at the top of the figure. The surface shading displays A/r2. The
excised region is beyond the apparent horizon, which is shown by the dashed
green line. The geodesic shown as a heavier black line is the event horizon; it sep-
arates geodesics which escape to the boundary from those which cannot escape.
Figure taken from Ref. [290].

A

r2
= 1 −

(r0

r

)4
. (7.80)

In the SYM vacuum, outgoing geodesics are given by

1

r
+ v

2
= const. , (7.81)

and appear as straight lines in the early part of Fig. 7.4. In the vicinity of
t = 0, when the boundary geometry is changing rapidly and producing infalling
gravitational radiation, the geodesic congruence changes dramatically from the
zero-temperature form to a finite-temperature form. As is evident from the figure,
at late times some outgoing geodesics do escape to the boundary, while others fall
into the bulk and never escape. Separating the “escaping” and “plunging” geodesics
is one geodesic that does neither – this geodesic, shown as the black line in Fig. 7.4,
defines the true event horizon of the geometry.

Excised from the plot is a region of the geometry behind the apparent horizon,
which is shown by the dashed line. This excision is necessary since somewhere
inside the apparent horizon there must be a singularity, and if the region of the
spacetime near the singularity were included in the calculation the numerics would
break down. This excision can have no consequences for physics outside the event
horizon, including in particular for the near-boundary behavior of the metric that
determines the boundary theory stress tensor. From the boundary point of view, it
would be safe to excise the entire region of the spacetime that lies inside the event
horizon. The event horizon is the null hypersurface of spacetime that separates
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Figure 7.5 We plot the area of the apparent horizon and the event horizon as a
function of boundary time, again for c = 2. Nearly all the growth of the apparent
horizon area occurs in the interval −2 < t < 0, during which the boundary
geometry is changing rapidly. In contrast, the area of the event horizon grows
in the distant past long before the boundary geometry is significantly perturbed,
reflecting the global nature of event horizons discussed in the text. Figure taken
from Ref. [290].

those points in the spacetime that are causally connected with the boundary from
those that are not. As such, the event horizon is a global, non-local, concept whose
determination requires knowledge of the entire history of the spacetime. In this
sense it is teleological in nature. One extreme manifestation of this in the case of
interest here is that the event horizon of Fig. 7.4 extends to the infinite past beyond
the time at which the boundary theory was first perturbed, as shown more clearly
in Fig. 7.5. Because the location of the event horizon can only be determined after
the entire calculation has been completed, it is not possible to excise the entire
region of spacetime inside the event horizon as the calculation is being done. In
contrast, if an apparent horizon (defined below) can be found its location can be
determined at any time and it is always inside the event horizon. So, excising a
region of spacetime inside the apparent horizon that includes the singularity is
guaranteed to be safe, and this is what has been done in Fig. 7.4.

The event horizon is coordinate independent but is defined only globally. In
contrast, the apparent horizon is a local but coordinate dependent concept. Tech-
nically it is defined as the outer-most marginally trapped surface. The reader
can consult Refs. [436, 793, 83, 172] for a general technical discussion, and
Refs. [173, 174, 175] for a discussion in the context of the fluid/gravity corre-
spondence. Here we will only give a heuristic explanation. Consider a spacelike
slice in a given spacetime, and a closed surface within this slice. For example,
in Minkowski spacetime one may consider a constant-t three-dimensional slice,
and a two-sphere within it. Now imagine constructing two new surfaces by fol-
lowing light rays shot both inwards and outwards from each point on the original
surface. In the presence of weak or no gravity, e.g. in the case of a two-sphere
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Table 7.1 Final equilibrium temperature T and isotropization
time tiso (in units of 1/T or �), for various values of c. The
isotropization time tiso is the time after which the pressures
deviate from their equilibrium values by less than 10%. Table
taken from Ref. [290].

|c| 1 1.5 2 2.5 3 3.5 4

T � 0.23 0.31 0.41 0.52 0.65 0.79 0.94
tiso T 0.67 0.68 0.71 0.92 1.2 1.5 1.8
tiso/� 3.0 2.2 1.7 1.8 1.8 1.9 1.9

in a Minkowski spacetime, the area of the surface increases along the outgoing
light rays and it decreases along the ingoing ones. In contrast, if the spacetime
curvature is sufficiently strong then the area may decrease along both sets of rays.
In this case the surface is called a “trapped surface”. A “marginally trapped sur-
face” corresponds to the limiting case in which the area remains constant along the
outgoing direction. The apparent horizon is a local concept, but it is not coordinate
independent because it depends on a choice of a specific spacelike hypersurface.
The importance of the apparent horizon lies in the fact that, under certain condi-
tions, it can be shown that it must always lie inside an event horizon, as is the case
in Fig. 7.4. This means that one can safely excise all the region (or part of it, as in
Fig. 7.4) inside the apparent horizon, since this will be causally disconnected from
the region outside the event horizon, and in particular from the boundary.

It is worth pointing out that in a fully dynamical, far-from-equilibrium, setting
neither the area density of the event horizon nor the area density of the apparent
horizon correspond to an entropy density of the far-from-equilibrium matter in the
boundary quantum field theory. The acausal nature of the event horizon illustrated
in Figs. 7.4 and 7.5 makes it clear that its area cannot be proportional to an entropy
density since if it were there would be entropy present in the quantum field theory
vacuum long before the process that excites it begins. The coordinate dependence
of the apparent horizon makes it clear that its area also cannot correspond to any
physical observable in the boundary theory. None of this should come as a surprise,
because in the quantum field theory there is in fact no notion of entropy density
that is well defined far from equilibrium. The standard thermodynamic relations
that determine the entropy density from the energy density and the pressure, which
are well defined, are (approximately) valid only in (near) equilibrium.

Table 7.1 shows, for various values of c, the final equilibrium temperature T and
a measure of the isotropization time tiso. (These quantities only depend on |c|, not
on the sign of c.) Let us define tiso as the earliest time after which the transverse
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and longitudinal pressures are always both equal to their final values to within 10%.
When |c| � 2, we find that tiso ≈ 2�, while for |c| � 2, tiso ≈ 0.7/T . So, tiso is
always comparable to either 2� or 0.7/T , whichever is larger. (When |c| ∼ 2, the
two quantities 2� and 0.7/T are comparable in magnitude.)

The results in Table 7.1 can be understood qualitatively with intuitive arguments.
If � � 1/T , the external source pumps energy into the system only during a very
brief time that, in the � → 0 limit, cannot control tiso. In this regime, both tiso
and the final equilbrium temperature must be determined only by (the appropriate
power of) the energy density that is pumped into the system, which is controlled
by |c|. So, on dimensional grounds, tiso must be proportional to 1/T . From a grav-
itational perspective, as we shall discuss further in the next section the relaxation
is controlled by the lowest quasinormal mode, whose damping rate is proportional
to 1/T . In the opposite regime, where � � 1/T , even though the total amount
of energy density that is pumped into the system is large (because this regime is
achieved when |c| is large) the energy is pumped in slowly and the system can
respond adiabatically to the deformation in the geometry. In this regime, the stress
tensor of the boundary fluid is never far from that of an equilibrium fluid, albeit
one whose temperature is changing with time. Once the source turns off, which
happens after a time of order �, the fluid is already close to its final equilibrium
state. Perhaps it takes a time of order 1/T to get there, but that time is much shorter
than �. So, tiso is proportional to �. From a gravitational perspective, this adiabatic
behavior arises because as we have discussed in Section 6.4 the relaxation times of
non-hydrodynamic quasinormal modes are proportional to the inverse of the one-
fourth power of the local energy density and hence vanish when |c| → ∞. These
qualitative considerations provide a complete understanding of the physics behind
the result of the full calculation, namely that tiso goes from ∼ 0.7/T to ∼ 2� as a
function of increasing |c|, but of course they do not give us the factors of 0.7 or 2.

Although the setting we have analyzed here is quite far from that in a heavy ion
collision, it is interesting to note that tiso ≈ 0.7/T corresponds to a time ∼ 0.3 fm/c
when T = 500 MeV. This is about a factor of two faster than the upper bounds
on the thermalization times inferred from hydrodynamic modeling of RHIC col-
lisions [543, 441]. Reference [735] provides a recent example of such modeling
that indicates that if the equilibration time in a RHIC collision were as short as 0.4
fm, the equilibration temperature would be just above 500 MeV. We shall return
to such comparisons later, after we have seen holographic calculations of the equi-
libration process starting from many more, different, far-from-equilibrium initial
states. Drawing conclusions from the results in this section alone would be hard to
justify, but these results do already hint that equilibration times in heavy ion colli-
sions may be longer than they would be if the physics were strongly coupled from
start to finish.
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Figure 7.6 Close-limit approximation for the collision of two black holes.

7.6 Isotropization of homogeneous plasma, simplified

In the previous section, we studied the isotropization of homogeneous plasma by
solving the non-linear Einstein’s equations in the presence of an external force, as
depicted in Fig. 7.2b. The purpose of this section, in which we follow Ref. [447]
closely, is two-fold. First, to perform a similar analysis in the absence of external
forces, as depicted in Fig. 7.2c. Second, to show that the problem can be dramati-
cally simplified by linearizing Einstein’s equations. This simplification will allow
us to analyze many possible initially far-from-equilibrium states.

Inspiration for this simplification comes from the so-called “close-limit approx-
imation” [697] in the context of black hole mergers in four-dimensional general
relativity in asymptotically flat spacetime – see Fig. 7.6 (left). If the impact param-
eter is small enough, then a single common horizon forms around the two incident
black holes when they are close enough. At much later times the system will settle
down to a single black hole in equilibrium. The close-limit approximation is the
statement that the evolution of the initial horizon, from the moment it forms until
the system settles down to its final state, is described well by Einstein’s equations
linearized around the final equilibrium black hole – see Fig. 7.6 (center). This is
quite surprising because a priori one might have expected that the initial common
horizon could not in general be viewed as a small perturbation of the horizon of
the final equilibrium black hole. Yet, the close-limit approximation predicts with
good accuracy, in particular, the form of the gravitational radiation emitted to infin-
ity in the merger and ring-down phases of the collision [57], depicted in Fig. 7.6
(right). The direct analogue of this radiation in our case will be the holographic
stress tensor determined from the metric near the boundary of AdS.

We will study the isotropization of a large number of anisotropic initial states
in the absence of external sources. Each state will be specified on the gravity side
by an entire function on the initial-time slice shown in Fig. 7.2c, and hence it
will be characterized by an arbitrary number of scales. Conservation of the stress
tensor for homogeneous plasma in the absence of external sources implies that the
energy density E (but not the entropy density) must be constant in time. Since in
a homogeneous situation an equilibrium state is completely characterized by its
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energy density, this means that the final state is known without solving for the
dynamical evolution. On the CFT side, it is the homogeneous, isotropic plasma
with an energy density E equal to the initial energy density, with a pressure given
by E/3 and with a temperature proportional to E1/4. On the gravity side it is a
static, isotropic black brane with the same temperature. This a priori knowledge of
the final state makes the linear approximation particularly simple: we will linearize
Einstein’s equations around the static black brane (7.67) and use them to evolve
each initial state. As expected on general grounds, the dynamical evolution shows
that an event horizon (but not necessarily an apparent horizon) is already present
on the initial-time slice for each of the states we consider. By comparing the full
numerical evolution on the gravity side with its linear approximation, we will see
that the latter predicts the time evolution of the CFT stress tensor with surprising
accuracy (see [119] for related observations), in analogy with the prediction of the
gravitational radiation at infinity by the close-limit approximation. As in that case,
we emphasize that the applicability of the linear approximation is not guaranteed
a priori, since in general our initial states will not be near-equilibrium states.

Let us now be more precise about the specification of the initial states. In the
absence of sources the asymptotic form of the metric functions takes the form2

A = r2 + a4

r2
− 2b4(v)

2

7r6
+ · · · , (7.82)

B = b4(v)

r4
+ b′

4(v)

r5
+ · · · , (7.83)

! = r − b4(v)
2

7r7
+ · · · . (7.84)

As usual, the normalizable modes a4 and b4(v) are not determined by the boundary
conditions but must be read off from a full bulk solution that is regular in the
interior. These modes are dual to the expectation value of the stress tensor (7.78).
In the absence of external sources, the energy density is constant and conservation
and tracelessness of the stress tensor imply that the two pressures in (7.78) may be
written as

PL(t) = 1

3
E − 2

3
�P(t) , (7.85)

PT (t) = 1

3
E + 1

3
�P(t) , (7.86)

in terms of E and a single function �P ≡ PT − PL that measures the degree of
anisotropy. For the specific case of strongly coupled SU (Nc) N = 4 super-Yang–
Mills theory at large Nc, this relation is
2 The case with sources is discussed in Ref. [290].
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E = −3a4

4
, �P(t) = 3b4(t) . (7.87)

Note that, although E is constant in time, a physical temperature can only be
assigned to the system once (near) equilibrium is reached, in which case E =
3π4T 4/4.

As we mentioned above, Eq. (7.74) is a constraint on the possible initial states
because it relates two of the metric functions on the initial-time slice. We choose
B as the independent variable because it is directly related to the CFT anisotropy
through Eq. (7.87). Thus each initial state is specified by a constant a4 and a func-
tion of the radial coordinate B(v = 0, r). Note that for positive ! the constraint
(7.74) implies !′′ ≤ 0, which in combination with the asymptotic behavior ! � r
means that ! will vanish at some r ≥ 0 on the initial-time slice. Generically this
corresponds to a curvature singularity. However, for all the initial states which the
numerical code of Ref. [447] was able to evolve in a stable manner, the region
where ! = 0 is hidden behind an event horizon and hence it has no effect on the
physics.

Upon considering small fluctuations around the equilibrium black brane solution
(7.67), one finds that A and ! are unmodified at linear order whereas the B fluctu-
ation obeys Eq. (7.71) with ! and A as in (7.67). Thus, in order to determine the
evolution of the boundary stress tensor in the linear approximation we only need to
solve a linear equation for B. At this order the position and the area of the horizon
are unmodified. The leading correction to these quantities is obtained by solving
the respective linear equations for A and ! with a source that is quadratic in the
leading solution for B.

The authors of Ref. [447] considered around 1000 initial states, for all of which
the numerical code converged nicely. Most of these states were generated by taking
the ratio of two tenth-degree polynomials in r with randomly generated coefficients
and subtracting from them the appropriate powers of r to ensure the correct near-
boundary asymptotics. A few other states were constructed “by hand” to ensure
qualitative differences between them by requiring that the initial B be localized
at different positions along the radial direction, that it be quickly oscillating, etc.
For some profiles, an apparent horizon was present on the initial-time slice. For
others, it was not. In order to evaluate the accuracy of the linearized analysis, the
authors of Ref. [447] first determined the time evolution of each state by solving
the full, nonlinear, Einstein’s equations. They then solved the linear equation for
B, again for each of the ∼ 1000 initial states. In each case, the pressure anisotropy
was read off by extracting b4(t) from the near-boundary behavior (7.82). The upper
panel of Fig. 7.7 shows the result obtained by solving the full Einstein’s equations
for a representative initial state. The lower panel in Fig. 7.7 shows the difference
between the full solution and the result obtained via the linear approximation for
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Figure 7.7 Upper panel: solution B(v, z) (with z ≡ 1/r ) obtained from the full
Einstein’s equations. The intersection of the surface with the v = 0 plane is the
initial profile B(v = 0, z) = 4

5 (z/zh)
4 sin(8z/zh), and is shown there as a thick

red curve. The intersection of the surface with the z = 0 plane corresponds to
�P(t)/E as obtained from the full Einstein’s equations, and is shown as a thick
blue curve. The thin purple curve on the same plane shows the value of �P(t)/E
as obtained from the linear approximation. Lower panel: difference between the
full solution and the linear approximation. As evidenced by the thick and thin
curves at z = 0 in the upper panel, this difference is small, so the scale on the
vertical axis has been stretched in order to make it visible. Figure taken from
Ref. [447].

this state. The ratio in the overall scales of the vertical axes in the plots, 2/10, gives
a rough estimate of the accuracy of the linear approximation, namely 20%, which is
remarkable given that the evolution is definitely far-from-equilibrium. This feature
is illustrated by the thick blue curve at z = 0 in the upper panel of Fig. 7.7, which
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Figure 7.8 Time evolution of the areas of the event (top curve) and apparent (red
curve) horizons for the initial state of Fig. 7.7. The dot at the origin signifies that
there is no apparent horizon for this state at the initial time. From that time until
the start of the lower curve there is no apparent horizon within the range of the
radial coordinate covered by our grid, but there could be one at a deeper position.
Figure taken from Ref. [447].

shows that the pressure anisotropy is almost an order of magnitude larger than the
energy density at some points during the evolution.

As in the previous section, it is interesting to examine the time evolution of the
area densities of the event and apparent horizons, since these coincide with the
entropy density once the system has reached equilibrium. Figure 7.8 shows that
both of these quantities are larger at the end of the evolution than at the beginning,
suggesting that entropy is indeed generated during the out-of-equilibrium evolution
of the system in the absence of sources that we are describing in this section.

As in the previous section, we define the isotropization time tiso as the time
beyond which �P(t)/E ≤ 0.1. Figure 7.9 is a histogram that summarizes
the isotropization times of the 1000 initial states. One of the horizontal axes
shows the isotropization times obtained from the full evolution, T tiso, measured
in units of the final temperature. The other horizontal axis shows the relative error
in the determination of this quantity that is made by using the linear approximation,
namely the difference between tiso as determined by the full Einstein’s equations
and by the linear approximation. The height of each bar indicates the number of
states in each bin. We see that isotropization times are typically tiso � 1/T , with T
the final temperature, although they can of course be shorter for some initial states
that happen to start closer to equilibrium. A large majority of the isotropization
times found in this study lie in the range (0.6 − 1)/T , indicating that the result
tiso ∼ 0.7/T that we found in Section 7.5 by analyzing how the system isotropizes
in response to a single family of sources is representative.

Figure 7.9 also shows that the linear approximation works with an accuracy
of 20% or better for most states. Inspection “by hand” of the cases where our
criterion suggests that the approximation is working less well indicates that in fact
it works remarkably well even for these initial states. This is illustrated in Fig. 7.10
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Figure 7.9 Results for the isotropization times obtained from the full evolution
of 1000 initial states, and for the differences between the full and the linearized
evolution (normalized by the full isotropization time). The height of each bar
indicates the number of states in each bin. Figure taken from Ref. [447].

which shows the time evolution of the pressure anisotropy for a state in the bin
marked with an arrow in the histogram of Fig. 7.9, where the linear approxima-
tion seems to be making a relatively large (around 65%) error in the final tiso. We
see that the linear approximation (thin curve) follows the exact evolution (thick
curve) very closely indeed on the scale of the initial anisotropy. However, the fact
that our isotropization criterion makes no reference to this scale means that a late-
time deviation that is tiny (∼ 1/30) on this scale translates into an error that our
isotropization criterion counts as large. One could develop an improved criterion,
but Fig. 7.9 already makes the points we need to make.

The fact that the linear approximation works fairly well for such a large number
of far-from-equilibrium states is surprising. Of course, it is well known that small
perturbations around equilibrated plasma can be described in linear-response the-
ory. Equivalently, small perturbations around the dual horizon can be described by
linearizing Einstein’s equations around the equilibrium black hole solution. This
means that, for a homogeneous but anisotropic perturbation, one may expect the
linear approximation to be applicable whenever �P/E � 1. What is remarkable
is that, in a strongly coupled CFT with a gravity dual, the linear approximation
actually works fairly accurately for perturbations that are far larger, even with �P
an order of magnitude larger than E .

We have focused on predicting the expectation value of the holographic stress
tensor. Since this is read off from the normalizable mode of the metric near the
boundary, it is the direct analog of the wave-form computed in the close-limit



230 From hydrodynamics to far-from-equilibrium dynamics

1.0
ΔP/ε

ΔP/ε

0.5

0.2 0.4 0.6 0.8 1.0
T t

0.2

5

10

15

20

25

30

0.4 0.6 0.8 1.0
T t

–0.5

–1.0

Figure 7.10 Time evolution of the pressure anisotropy for a state in the bin
marked with an arrow in the histogram of Fig. 7.9. The lower plot zooms in around
the isotropization time. The thick blue curve corresponds to the exact evolution.
The thin red curve corresponds to linear approximation. The horizontal green lines
lie at �P(t)/E = ±0.1. Figure courtesy of the authors of Ref. [449].

approximation in calculations of black hole mergers in asymptotically flat space-
time, as in Fig. 7.6. Note, though, that our results indicate that the linear
approximation in AdS works not only asymptotically but also deep within the bulk,
as illustrated by Fig. 7.7.

As we have seen in Section 6.4, in Fourier space one may distinguish between
hydrodynamic quasinormal modes with dispersion relations ω(q) such that ω→ 0
as q → 0, and nonhydrodynamic quasinormal modes (QNMs), for which ω(0) 
= 0.
If a perturbation is anisotropic but homogeneous then the relaxation back to
equilibrium involves exclusively the non-hydrodynamic QNMs. In this sense the
dynamics that we have studied in this section can be thought of as the far-from-
equilibrium dynamics of the non-hydrodynamic QNMs. If the perturbation is small
then these modes evolve towards equilibrium linearly, independently of each other
and on a time scale set by the imaginary parts of their frequencies. One could
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imagine extending the description to not-so-small perturbations by including non-
linearities in the form of interactions between the QNMs, but naively one would
expect this effective description to break down for order-one anisotropies. Instead,
the results of this section imply that, for homogeneous, strongly coupled plasma
with a gravity dual, the isotropization process is still reasonably well described
by nonhydrodynamic QNMs that evolve approximately linearly and independently
of each other, even in the presence of large anisotropies (see Ref. [119] for related
observations). This can be verified explicitly by expanding and evolving B in terms
of a sufficient number of QNMs. Figure 7.11 shows a comparison for several initial
states between the time evolution of the stress tensor as determined by the full non-
linear evolution (thick blue curves), by the full linear evolution (dotted red curves)
and by the linear evolution truncated to a few QNMs (thin purple curves). For each
plot, we have indicated the factor by which the area density of the event horizon
increases throughout the evolution. The fact that in some cases this factor can be as
large as Afin/Aini ∼ 25 is another indication that we are considering initial states
that are far from equilibrium.

The fact that the evolution is well described by QNMs means that, just as in the
near-equilibrium case, the relaxation towards equilibrium is characterized by a few
non-hydrodynamic quasinormal frequencies. In particular, a naive (under)estimate
of the isotropization time can be obtained from the imaginary part of the lowest
non-hydrodynamic quasinormal frequency, as in the top panel of Fig. 6.3 in Sec-
tion 6.4, and is given by Imω0 � −8.5T . Since our initial states typically have
anisotropies of the order of 1 � (�P/E)ini � 20, requiring(

�P
E

)
ini

exp
(
Imω0 tiso

)
� 0.1 (7.88)

gives 0.27 � T tiso � 0.62. The reason why this may be an underestimate is that the
degree of anisotropy carried by each individual QNM can be much larger, typically
as large as �P/E ∼ 500, with the total anisotropy being much smaller due to can-
cellations among different modes. Assuming (�P/E)ini � 500 one gets T tiso ∼ 1.

Intuitively (and very crudely) the applicability of the linear approximation seems
to be related to the fact that any nonlinearities generated by the Einstein equations
are quickly absorbed by the horizon. This suggests that the linear approximation
may be applicable to more general situations than the very simple one considered
here, in particular to situations in which the final state is not known a priori and/or
in which hydrodynamic modes become excited. The same intuition also suggests
that the linear approximation should not be applicable to the description of strong
gravitational dynamics in the absence of horizons. In particular, it is not expected
to describe the formation of a horizon. Yet, as we have seen, it can be very use-
ful indeed in describing its subsequent evolution. From a practical viewpoint this
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Figure 7.11 Time evolution of the pressure anisotropy for several initial states as
determined by the full nonlinear evolution (thick blue curves), by the full linear
evolution (dotted red curves) and by the linear evolution truncated to a few QNMs
(thin purple curves). The latter two are so similar that in all the panels they appear
on top of each other, differing by less than the width of the dotted curves. For each
plot we have indicated the factor by which the area density of the event horizon
increases throughout the evolution. Figure courtesy of the authors of Ref. [449].

is because of the technical simplification at the level of solving Einstein’s equa-
tions. However, the real power of this approximation lies on a more conceptual
level, since it implies that the superposition principle applies. In our case, for
example, this means that the evolution of an initial profile that takes the form
B(r) = ∑

n Bn(r) is given by the sum of the evolutions of each of the Bn(r).
We close this section with a comment on the accuracy of the linear approxima-

tion. If one is interested in doing precision physics in a specific CFT with a known
gravity dual, then 20% accuracy may not be good enough. However, if the goal
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is to learn robust lessons that might be extrapolated to the far-from-equilibrium
dynamics of real world QGP produced in heavy ion collisions, then this accuracy
is quite likely sufficient. The more important question is how to apply it in a setting
in which two zero-temperature objects collide and plasma results, meaning that on
the gravity side a horizon forms during the far-from-equilibrium evolution. Even if
the linear approximation can only be applied starting after the horizon has formed,
because of the insights that it yields and because the simplification that it brings
makes it feasible to analyze and compare very many “initial” states with horizons
it is a very important tool in our toolbox.

7.7 Hydrodynamization of boost-invariant plasma

The homogeneity assumed in previous sections provides a dramatic simplification
of Einstein’s equations in AdS5, since it reduces the generic problem of a 4 + 1-
dimensional evolution to one in 1+1 dimensions because the problem in the bound-
ary theory is 0+1-dimensional. The principal drawback of this assumption is that it
freezes the hydrodynamic modes, since at q = 0 (i.e. in homogeneous plasma) they
must have ω = 0. In any more generic setting, it is the hydrodynamic modes with
small but nonzero q and ω that would actually dominate the late-time dynamics.

The first step in relaxing the assumption of homogeneity is to allow the dynamics
of the fluid to depend on one spatial coordinate – that we shall call the longi-
tudinal direction – while maintaining translation invariance in the other two –
transverse – coordinates. Generically, this makes the hydrodynamic problem in
the boundary theory 1 + 1-dimensional and so makes the gravitational calculation
in AdS5 2 + 1 dimensional. We shall describe such a calculation in Section 7.8.
In this section we shall make the further simplifying assumption that the longi-
tudinal expansion is boost invariant, a simplification that has been used in many
hydrodynamic analyses since it was introduced by Bjorken more than 30 years
ago [165]. This has the great technical advantage of keeping the boundary theory
problem effectively 0+1-dimensional, and therefore keeping the dual gravitational
problem that must be solved in AdS5 1 + 1-dimensional, while nevertheless intro-
ducing hydrodynamic expansion. This is the simplest possible way of unfreezing
the hydrodynamic modes, permitting the study of their far-from-equilibrium evolu-
tion and equilibration. In this set-up we will be able to see the transition between an
early, far-from-equilibrium, phase of the dynamics when the boost invariant expan-
sion does not satisfy hydrodynamic equations of motion and a late phase when
the expansion becomes a conventional Bjorken flow solution of hydrodynamics.
In other words, we will see the fluid “hydrodynamize” as it expands. The gravity
solution that describes boost-invariant hydrodynamic expansion can be understood
analytically [495, 642, 493, 445, 530], so we will begin our presentation with this
late-time dynamics.
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7.7.1 Boost-invariant hydrodynamics

In order to describe boost-invariant dynamics, it is convenient to introduce proper
time τ and spacetime rapidity y coordinates through

t = τ cosh y , xL = τ sinh y. (7.89)

In these coordinates the Minkowski metric takes the form

ds2 = −dτ 2 + τ 2dy2 + dx2
T (7.90)

and boost transformations act as a shift of y, so boost invariance is simply the
statement that physical quantities are independent of y. Since we will retain homo-
geneity in the transverse plane, physical observables will only depend on τ . This
dependence leads to nonzero gradients with respect to the Cartesian coordinate xL

and therefore to hydrodynamic behavior.
Before we begin the calculation, it is important to provide some context for

the assumption of boost invariance in heavy ion collisions. If the hydrodynamic
expansion of the fluid produced in a heavy ion collision were independent of
the spacetime rapidity y, then after this fluid hadronizes the distribution of the
momenta of the final state hadrons would be independent of the momentum space
rapidity 1

2 ln((E + pL)/(E − pL)), introduced in Section 2.1 and also convention-
ally denoted by y. This can be argued for on symmetry grounds, and therefore
arises in any standard algorithm for relating the stress tensor of the hydrodynamic
fluid to the momenta of final state particles, the simplest of which can be found in
Ref. [299]. Of course, no finite energy collision can yield a flat rapidity distribution
extending from y = −∞ to y = +∞, but if the stress tensor of the hydrodynamic
fluid is independent of the spacetime y over some wide but finite range of y then
the distribution of final state hadrons in momentum-space y will feature a broad flat
plateau. As we mentioned in Section 2.1, however, we now know from data that
in heavy ion collisions at RHIC the charged particle rapidity distribution d Nch/dy
does not have this shape: it looks roughly Gaussian [762], meaning that if there is
a plateau around y ∼ 0 it is relatively narrow.

Because the data require it, nowadays the state of the art hydrodynamic cal-
culations that seek to describe the matter produced in heavy ion collisions as in
Section 2.2 describe droplets that expand with non-trivial dependence on all spatial
coordinates. Because these 3 + 1-dimensional relativistic viscous hydrodynam-
ics calculations are challenging, though, many authors begin by assuming boost
invariant longitudinal expansion and focusing on the hydrodynamic expansion in
the transverse directions. And, as we shall see below, if the initial conditions for
hydrodynamics are boost invariant then the hydrodynamic evolution remains boost
invariant, regardless of how the fluid flows in the transverse dimensions. We shall
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initially simplify even further, assuming translation invariance in the transverse
plane. We do so just for the purpose of making our calculations tractable and in
fact, as we shall see in Section 7.7.5, the first calculations in which the fluid is
allowed to move in the transverse plane are now being done.

Early motivations for assuming boost-invariant hydrodynamics, going back to
Ref. [165], were based upon a simplified picture of the dynamics of nucleus–
nucleus collisions in the limit of infinite collision energy. In this limit, in the
center-of-mass frame the incident nuclei are pancakes with zero thickness colliding
at the speed of light. After the collision, the fragments of the nuclei themselves are
assumed to stay arbitrarily close to the lightcones, at arbitrarily large positive and
negative y, while the future lightcone at finite y is seen as containing particles that
had been newly created in the collision. And, inspired by early data, it was assumed
that particle creation would be boost invariant in the high collision energy limit.

A large body of more recent data indicates that the dynamical assumptions we
have just described are not valid: d Nch/dy does not feature a broad flat plateau and
although the fragments of the incident nuclei, which can for example be tracked
by the net proton density as in Fig. 2.6b, do end up on average at higher |y| in
higher energy collisions, they are present also at y ∼ 0. These data have motivated
the investigation of other simplifying assumptions for the longitudinal dynamics
(going back to Landau’s assumption [565] that the incident nuclei initially stop at
y = 0, which is in many ways the antithesis of boost invariance, and including
assumptions that span the space from Landau to Bjorken [157]). For our purposes,
though, what we need is a simplifying assumption within which we can study how
matter that is initially far-from-equilibrium hydrodynamizes as it expands, and the
best choice for this specific purpose is the assumption of boost invariance.

Using the coordinates (7.90), it is straightforward to derive the equations of
motion for boost invariant hydrodynamics in any conformal plasma. Assuming for
simplicity y → −y symmetry, the stress tensor has only three nonzero components
Tττ , Tyy and Tx2x2 = Tx3x3 ≡ Txx . Since we are dealing with a conformal gauge
theory, Tμν is traceless:

− Tττ + 1

τ 2
Tyy + 2Txx = 0 . (7.91)

Energy–momentum conservation ∇μT μν = 0 gives a second relation among the
components:

τ
d

dτ
Tττ + Tττ + 1

τ 2
Tyy = 0 . (7.92)

Using the relations (7.91) and (7.92), all components of the energy momentum
tensor can be expressed in terms of the time-dependent energy density E(τ ):
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Tττ ≡ E , Tyy = −τ 3E ′ − τ 2E , Txx = E + 1

2
τE ′ , (7.93)

where E ′ ≡ dE/dτ and where we have now scaled a factor of N 2
c /(2π

2) out of all
components of the stress tensor so that E here is defined as in (7.78). Note that all
these conditions are purely kinematical in nature. The dynamics of the theory will
choose a specific E(τ ).

At sufficiently late times we expect (and shall confirm below) that, owing to
the continued expansion of the fluid, spatial gradients will decrease in magnitude,
making all viscous effects less and less important. We therefore expect the dynam-
ics to approach that of a perfect, inviscid, fluid. In particular, it should become
locally isotropic in the local rest frame. In terms of the pressures this means that
PL = T y

y = PT = T x
x . Using (7.93), this translates into the differential equation

− τE ′ − E = E + 1

2
τE ′ (7.94)

for the energy density. This equation has the simple and well-known “Bjorken
solution” E ∝ τ−4/3 [165] where, for later convenience, we shall write the
proportionality constant as

E = E0
�4

(�τ)4/3
, (7.95)

where E0 is defined by the relationship between the energy density of the conformal
plasma in local thermal equilibrium and its temperature, E = E0T 4, meaning that
E0 = 3π4/4 in strongly coupled N = 4 SYM theory. (Recall from (7.78) that
the energy density is given by the scaled energy density E multiplied by a factor
of N 2

c /(2π
2).) We have introduced the integration constant �, with dimensions

of energy, that specifies a particular solution. We shall further interpret � below.
Substituting into the expressions for the pressures we see that this leads to the
conformal equation of state E = 3P . Since E = E0T 4, the temperature decreases
at late times when the expansion is described by ideal hydrodynamics according to

T = �

(�τ)1/3
. (7.96)

We now see that we have defined � such that when τ = 1/� the temperature is
given by �. Equivalently, T = 1/τ at the time when τ = 1/�. The boost invariant
hydrodynamic expansion of a perfect liquid is thus fully specified by the value of
�, with solutions with larger � being those in which T (τ )τ reaches 1 at earlier τ .
Finally, the entropy density scales as

s ∼ T 3 ∼ �3

�τ
. (7.97)
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Since the volume element of the metric (7.90) grows as τ , it follows that the total
entropy remains constant, as expected for a fluid with zero viscosity.

Recall that the full solution to the equations describing boost-invariant expan-
sion starting from any arbitrary boost-invariant initial state is expected to behave
as an ideal fluid, as above, as τ → ∞, since at asymptotically late times gradient
corrections should become negligible and the system should approach local equi-
librium. At late but finite times, however, viscous effects produce corrections to
the leading behavior (7.95). In this way the hydrodynamic expansion becomes a
late-time expansion in powers of τ−2/3. This power can be understood from the
fact that the hydrodynamic expansion is controlled by the product T −1∇, with
T ∼ τ−1/3 and the size of gradient corrections being ∇ ∼ 1/τ . For example,
including the first and second order hydrodynamic corrections the stress-energy
tensor that describes the boost-invariant hydrodynamic expansion of a conformal
fluid takes the form [107, 291]

E = E0�
4

(�τ)4/3

[
1 − 2η0

(�τ)2/3
+ C

(�τ)4/3
+ · · ·

]
,

PT = E0�
4

3(�τ)4/3

[
1 − C

(�τ)4/3
+ · · ·

]
,

PL = E0�
4

3(�τ)4/3

[
1 − 6η0

(�τ)2/3
+ 5C

(�τ)4/3
+ · · ·

]
. (7.98)

The constant η0 is related to the shear viscosity of the plasma through η = η0E0T 3.
The constant C is related to second order hydrodynamic relaxation times. In the
plasma of strongly coupled N = 4 SYM theory [107, 530],

η0 = 1

3π
, C = 1 + 2 ln 2

18π2
. (7.99)

We see from (7.98) that, as expected, at later and later times the gradient terms
through which the effects of viscosity and higher order corrections to ideal
hydrodynamics enter become less and less important.

If the expansion (7.98) were extended to include terms that are higher and higher
order in τ−2/3, more and more coefficients that characterize the static plasma (like
η0 and C in (7.98)) would appear but the solution itself would still be specified just
by the single parameter �. The late-time hydrodynamic behavior of a boost invari-
ant expansion starting from any arbitrary boost invariant initial condition must be
of the form (7.98) for some value of �. This means that (7.98) is a scaling solution,
in the sense that for any value of � there are many different far-from-equilibrium
initial conditions that will evolve into the same form (7.98) at late time. As the
fluid expands, it loses the memory of the details of its initial conditions. And, if all
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one knows is the late-time expansion (7.98) it is impossible to run the clock back-
wards and reproduce the initial conditions from which the late-time state (7.98) was
obtained. In all these ways, the hydrodynamization of an expanding boost invariant
fluid is analogous to the equilibration that we described in Sections 7.5 and 7.6.

7.7.2 Late-time gravity solution

In this section, we follow Ref. [495]. These authors addressed the question of
whether the ideal-fluid behavior that is expected at late times on general grounds
arises dynamically from Einstein’s equations. For this purpose they considered the
most general 4 + 1-dimensional bulk metric allowed by the symmetries of the
problem:

ds2 = 1

z2

[
− ea(τ,z)dτ 2 + τ 2eb(τ,z)dy2 + ec(τ,z)dx2

⊥
]

+ dz2

z2
, (7.100)

where we are now using the radial coordinate z for which the boundary lies at
z = 0. They began their analysis by allowing for a general form of the energy
density E ∼ 1/τα, although α is constrained to lie in the range 0 < α < 4 just by
the requirement that the energy density be non-negative in any frame. The question
they posed was for what values of α a regular solution of the form (7.100) exists. In
principle, Einstein’s equations for this ansatz yield a system of coupled, nonlinear
partial differential equations in two variables, which in general is intractable ana-
lytically. The insight of Ref. [495] was the realization that at late times the solution
can be written in terms of a single scaling variable z/τα/4. This reduces Einstein’s
equations to ordinary differential equations for which an analytic solution valid at
asymptotically late times can be found. This solution exists for any α in the range
above, but the solution is free of naked curvature singularities only for α = 4/3.
For this particular value of α the solution takes the form

ds2 = 1

z2

[
−
(

1 − z4

z4
0

)2 (
1 + z4

z4
0

)−1

dτ 2 +
(

1 + z4

z4
0

)
(τ 2dy2 + dx2

⊥)

]
+ dz2

z2
,

(7.101)
with z0 ∼ τ 1/3. This metric is boost invariant and it possesses a receding horizon3

at z = z0, suggesting that it describes boost-invariant, cooling plasma with tem-
perature T ∼ 1/z0 ∼ 1/τ 1/3, as in (7.96). Similarly, the total entropy, which
is proportional to the total horizon area, scales as s ∼ τ/z3

0 ∼ const., again
in agreement with ideal-fluid hydrodynamics. We therefore conclude that Ein-
stein’s equations, together with the physical requirement of regularity of the gravity
solution, reproduce the late-time ideal-fluid dynamics expected on general grounds.
3 Note that at the asymptotically late times at which the solution (7.101) is valid the event and the apparent

horizons are expected to coincide.
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The leading correction to the metric (7.101) has been computed [642], and the
first correction to the energy density agrees with that in (7.98). Furthermore, the
corrected metric is regular at and outside the horizon if and only if the viscosity
coefficient η0 in (7.98) is given by (7.99) [493], which is to say if and only if η/s =
1/(4π) as in static plasma [690]. By computing the second order correction, the
authors of Ref. [444] then determined a coefficient of second order hydrodynamics,
the relaxation time. Further examination of this correction indicated the existence
of a subleading logarithmic divergence that could not be cancelled regardless of the
choice of transport coefficients [135], but this apparent singularity turned out to be
simply an artifact of the coordinates chosen to write the metric (7.101), which are
problematic for the discussion of regularity issues at the horizon [154, 153] (see
Section 7.2, in particular Fig. 7.1). In Refs. [445, 530, 531] the gravity solution
was constructed in the Eddington–Finkelstein coordinates, and it was found that in
these coordinates the geometry is indeed regular.

In summary, not only do the Einstein equations in a dynamical setting predict
the correct late-time behavior as a function of proper time, but they also predict
the correct transport coefficients at any order. Note that no information about the
initial conditions of the plasma is necessary to derive these late-time features. The
reason is that this information is dissipated along the flow, so the behavior at late
times is universal. All the information about the initial conditions is encoded in
the single dimensionful constant �. This loss of memory of details about the ini-
tial conditions is behind the existence of a scaling solution at late times. At early
times the dynamics is strongly dependent on the initial conditions and no universal
solution exists [151]. In order to connect the early-time dynamics and the late-time
behavior, a solution valid at all times is needed. This can be constructed by solving
Einstein’s equations numerically, as we now describe.

7.7.3 Full gravity solution

In this section we follow Ref. [291] closely. The strategy is the same as in Sec-
tion 7.5, namely to create a far-from-equilibrium state by acting on the CFT
vacuum with an external source during a finite period of time. In the present case
we are interested in replacing homogeneity along the longitudinal direction by
boost invariance, so the boundary metric (7.63) gets replaced by

ds2 = −dτ 2 + eγ (τ) dx2
T + τ 2 e−2γ (τ) dy2 . (7.102)

The function γ (τ) characterizes a time-dependent shear in the boundary metric
which serves to excite the CFT from its vacuum to some far-from-equilibrium state.
The authors of Ref. [291] choose
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Figure 7.12 A spacetime diagram depicting several stages of the evolution of the
field theory state in response to the changing spatial geometry. Figure taken from
Ref. [291].
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, (7.103)

where " is the unit-step function. Inclusion of the [1− (τ−τ0)
2/�2]6 factor makes

the first few derivatives of γ (τ) better behaved as τ−τ0 → ±�. The function γ (τ)

has compact support and is infinitely differentiable; γ (τ) and all its derivatives
vanish at and outside the endpoints of the interval (τi , τ f ), with τi ≡ τ0 − � and
τ f ≡ τ0 + �. We choose τ0 ≡ 5

4� so the geometry is flat at τ = 0. Choosing
τ0 ≥ � is convenient for numerics as our coordinate system becomes singular on
the τ = 0 lightcone. The particular choice τ0 = 5

4� is made so that the numerical
results (which begin at τ = 0) contain a small interval of unmodified geometry
before the deformation turns on. We choose to measure all dimensionful quantities
in units where � = 1, so τi = 1/4 and τ f = 9/4.

Figure 7.12 shows a spacetime diagram depicting several stages in the evo-
lution of the SYM state schematically. Hyperbolae inside the forward lightcone
are constant-τ surfaces. Prior to τ = τi , the system is in the ground state. The
region of spacetime where the geometry is deformed from flat space by the exter-
nal source specified by (7.103) is shown as the red region labeled I in Fig. 7.12.
At coordinate time t = τi the geometry of spacetime begins to deform in the
vicinity of xL = 0. As time progresses, the deformation splits into two local-
ized regions centered about xL ∼ ±t , which subsequently separate and move in
the ±xL directions at speeds asymptotically approaching the speed of light. After
the “pulse” of spacetime deformation passes, the system will be left at τ = τ f

in an excited, anisotropic, non-equilibrium state. That is, the deformation in the
geometry will have done work on the field theory state. As the excited far-from-
equilibrium state then evolves in time it is boost invariant but not hydrodynamic.
This region is shown as the yellow region labeled II in Fig. 7.12. It is in this region
that we can study the relaxation of a far-from-equilibrium non-equilibrium state.
After some later proper time τhydro, the system will have relaxed to a point where a
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hydrodynamic description of the continuing evolution is accurate. This final hydro-
dynamic regime, in green and labeled III in Fig. 7.12, is the regime whose dynamics
is described by (7.98). As the late-time hydrodynamic solution to boost invariant
flow is known analytically, we choose to define τhydro as the time after which the
stress tensor coincides with the hydrodynamic approximation to better than 10%.

Our task, then, is to find τhydro and, in particular, to see how it correlates with
quantities such as the energy density, from which an effective temperature can be
defined through

E(τ ) = E0 T 4(τ ) , (7.104)

where the purely numerical factor is E0 = 3π4/4 in N = 4 SYM theory after the
rescaling (7.78). If the system is far from equilibrium there is no sense in which a
temperature can be defined and the quantity T (τ ) should simply be thought of as an
alternative measure of the energy density. At late times, though, T (τ ) approaches
the local temperature in the hydrodynamic regime. We denote the effective temper-
ature at time τhydro by Thydro ≡ T (τhydro). As explained at the end of Section 7.5,
in the c → ∞ limit the energy pumped into the system by the source (here, the
source (7.103)) is large and so is Thydro, meaning that 1/Thydro � τ f . In this regime,
we expect that τhydro − τ f � τ f . And, we expect the evolution throughout region
II of Fig. 7.12 to be adiabatic in the sense that the non-hydrodynamic degrees of
freedom remain close to equilibrium and the description of the dynamics is close
to hydrodynamic (with a changing energy density) at all times. In particular, a
hydrodynamic description without driving terms will be accurate the moment the
geometry stops changing. Hence, in this regime one learns little about the dynamics
associated with the relaxation of non-hydrodynamic modes.

More interesting is the case where the effective temperature at τhydro satisfies
1/Thydro � τ f . This is the regime we will study. In this regime, the system can be
significantly out of equilibrium after the source turns off at τ f and the boundary
geometry becomes flat. We will see that when this is the case the entire process of
hydrodynamization occurs over a time which is less than or comparable to 1/Thydro.

Given the symmetries of the physical situation that we wish to study we can
write the metric on the gravity side in the form

ds2 = 2dr dv − A dv2 + !2
[
eBdx2

T + e−2Bdy2
]
, (7.105)

where A, B, and ! are all functions of r and Eddington–Finkelstein time v only.
Note that we are back to using the radial coordinate r , with the boundary at r → ∞.
In these coordinates, this metric is analogous to (7.65), except that the EF time v at
the boundary coincides in this case with the proper time τ of Eq. (7.102). Similarly,
our task is to solve Einstein’s equations (7.74) but with the boundary conditions
(7.77) replaced by
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Figure 7.13 The congruence of outgoing radial null geodesics. The surface shad-
ing displays A/r2. Before time vi = 1/4, this quantity equals one. The excised
region lies inside the apparent horizon, which is shown by the dashed purple line.
The event horizon is shown as a solid blue curve which separates geodesics which
escape to the boundary from those which cannot escape. At late times v � 1.5
the event horizon coincides with the apparent horizon, and both slowly fall deeper
into the bulk. This is the gravity dual of the hydrodynamic expansion of a boost
invariant fluid at late times. Figure taken from Ref. [291].

A(r, v) � r2 + · · · , (7.106)

!(r, v) � r v1/3 + · · · , (7.107)

B(r, v) � γ (v) − 2

3
log v + · · · , (7.108)

where the dots stand for subleading terms in the large-r expansion. Technical
details can be found in Ref. [291]. Here we will just describe the results.

On the gravity side, the results that we now describe are qualitatively the same
for any c. Figure 7.13 shows a congruence of outgoing radial null geodesics for
c = 1. The geodesics are obtained by integrating

dr

dv
= 1

2
A(r, v) . (7.109)

The shaded surface in the plot displays the value of A/r2. Excised from the plot is
a region of the geometry behind the apparent horizon, whose location is shown by
the dotted line.
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At times v < vi = 1/4, the boundary geometry is static and A/r2 = 1. The
outgoing geodesic congruence at early times therefore satisfies

v + 2

r
= const. , (7.110)

and hence appears as parallel straight lines on the left side of Fig. 7.13. These
are just radial geodesics in AdS5, which is the geometry dual to the initial zero-
temperature ground state. After time vi the boundary geometry starts to change,
A/r2 deviates from unity, and the congruence departs from the zero-temperature
form (7.110).

As is evident from Fig. 7.13, and just as we saw in Fig. 7.4 for the case of equili-
bration without expansion, at late times some geodesics escape up to the boundary
and some plunge deep into the bulk. Separating escaping from plunging geodesics
is precisely one geodesic that does neither. This geodesic, shown as the thick solid
curve in the figure, defines the location of a null surface inside which all events are
causally disconnected from observers on the boundary. This surface is the event
horizon of the geometry.

After the time v f = 9/4, the boundary geometry becomes flat and unchanging,
no additional gravitational radiation is produced, and the bulk geometry approaches
a slowly evolving form. The rapid relaxation of high frequency modes can clearly
be seen in the behavior of A/r2 shown in Fig. 7.13 – all of the high frequency struc-
ture in the plot appears only during the time interval where the boundary geometry
is changing and creating gravitational radiation. Physically, the rapid relaxation of
high frequency modes occurs because the horizon acts as an absorber of gravita-
tional radiation and low frequency modes simply take more time to fall into the
horizon than high frequency modes. Therefore, as time progresses the geometry
relaxes onto a smooth universal form whose temporal variations become slower
and slower as v → ∞.

As we saw in the previous section, one can systematically construct a boost-
invariant late-time solution to Einstein’s equations. At leading order the solution
takes the form (7.101) and is characterized by a receding horizon with approximate
position 1/r0 = z0 ∼ v1/3. As time progresses, the horizon slowly falls deeper into
the bulk, and the temperature of the black hole decreases as v−1/3. The falling of the
horizon into the bulk, as an inverse power of v, is clearly visible in the calculation
presented in Fig. 7.13.

We now turn to a discussion of the results for boundary field theory observ-
ables. Figure 7.14 shows plots of the energy density and transverse and longitudinal
pressures sourced by the changing boundary geometry (7.102) with c = ±1
between τi = 1/4 and τ f = 9/4 and evolving subsequently. These quantities
begin at zero before time τi , when the system is in the vacuum state, and deviate
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Figure 7.14 Energy density, longitudinal pressure and transverse pressure, all
divided by N 2

c /2π2 and all in units of 1/�4 , as functions of time for c = −1
(left) and c = +1 (right), where c and � were defined in (7.103). The energy
density and pressures start off at zero before time τi = 1/4, when the system is
in the vacuum state. During the interval of time τ ∈ (τi , τ f ) = (1/4, 9/4), the
boundary geometry is changing and doing work on the field theory state. After
time τ f , the deformation in the geometry turns off, the field theory state evolves,
and subsequently relaxes onto a hydrodynamic description. The smooth tails at
late times in both plots occur during the hydrodynamic regime. At late times,
from top to bottom, the three curves (in both plots) correspond to the energy den-
sity E , transverse pressure P⊥, and longitudinal pressure PL. Figure taken from
Ref. [291].

from zero once the boundary geometry starts to vary. During the interval of time
where the boundary geometry is changing, the energy density generally grows and
the pressures oscillate rapidly: work is being done by the source on the field theory
state. After time τ f , the boundary geometry becomes flat and no longer does any
work on the system. As time progresses, non-hydrodynamic degrees of freedom
relax and at late times the evolution of the system is governed by hydrodynamics.
The late time hydrodynamic behavior manifests itself as the smooth tails appearing
at late times in Fig. 7.14.

The two sets of plots in Fig. 7.14, contrasting c = +1 and c = −1, are qual-
itatively similar, with the main difference being the phase of the oscillations in
the pressures. For example, for c = −1 the transverse pressure is negative at τ f

whereas for c = +1 the transverse pressure is positive and larger than the lon-
gitudinal pressure, which is nearly zero at τ f . Furthermore, from the figure one
sees that, for either sign of c, the transverse pressure approaches the longitudinal
pressure from above, in agreement with the hydrodynamic prediction (7.98).

To facilitate a quantitative comparison between the numerical results for the
stress tensor and the late-time hydrodynamic expansions, Fig. 7.15 shows the
energy density and pressures for c = 1/4, 1 and 3/2, with the correspond-
ing hydrodynamic forms (7.98) plotted on top of the numerical data. The single
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Figure 7.15 Energy density, longitudinal pressure and transverse pressure, all
divided by N 2

c /2π2 and all in units of 1/�4, as functions of time for c = 1/4,
c = 1 and c = 3/2. From top to bottom, the continuous curves are the energy
density, the transverse pressure, and the longitudinal pressure. The dashed curves
in each plot show the second order viscous hydrodynamic approximation (7.98)
to the different stress tensor components. Figure taken from Ref. [291].

parameter � that specifies the hydrodynamic solution is obtained by fitting to the
late time results. The plots start at time τ = τ f . In all three plots, one clearly
sees the stress-energy components approach their hydrodynamic approximations.
Moreover, in all plots one sees a substantial anisotropy even at the late times where
a hydrodynamic treatment is applicable. From (7.98) we see that this means that
the effect of viscosity is very evident in these results. On the time scales depicted
in Fig. 7.15, the boost invariant hydrodynamic expansion is described by viscous
hydrodynamics, not by ideal hydrodynamics.

Looking at the right-hand panel of Fig. 7.15, we see that for c = 3/2 the energy
density and both pressures are already quite close to their hydrodynamic values
at τ = τ f . Indeed, in this panel the time τhydro after which the full results are
within 10% of their hydrodynamic values is 2.3 [291], meaning that τhydro − τ f =
0.05. The system is almost hydrodynamic at τ f and hydrodynamizes very soon
thereafter. This reflects the fact that, as we have discussed, when |c| is large the
energy density, and the effective temperature T (τ ) defined from it, are pumped up
high enough that during the time between τi and τ f when the system is being driven
its nonhydrodynamic modes evolve almost adiabatically and so are hardly excited.
Hence the system is already almost hydrodynamic when the source turns off.

Looking at the left-hand panel of Fig. 7.15, with c = 1/4, we see that at the
time τ = τ f the transverse and longitudinal pressures are almost equal and
opposite in magnitude meaning that at this time the system is very far from hydro-
dynamic. The curves show the system hydrodynamizing, and it turns out that
τhydro − τ f = 0.85 [291]. In the units of the figure, the effective temperature at the
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time τhydro is given by Thydro = 0.27 [291], and τhydro − τ f = 0.24/Thydro. We see
that when measured in units of 1/Thydro the time that it takes the system to hydro-
dynamize after the source is turned off is still very short, even though at time τ f the
system is manifestly far from hydrodynamic. It would be premature based upon this
single example to conclude that τhydroThydro, with τhydro the hydrodynamization time
for a system whose final state is a boost invariant expanding plasma, is shorter than
the τiso T that we found in our analysis in Section 7.6 of the equilibration (i.e. in that
case isotropization) of a system whose final state is a static plasma with tempera-
ture T . It is true that in Section 7.6 we found τiso T = (0.6 − 1) and here we have
found (τhydro − τ f )Thydro = 0.24. But, first of all, it is not clear whether in making
this comparison we should or should not “count” some or all of the time between
τi and τ f when the boost invariant system is being driven. After all, the system
is presumably already hydrodynamizing while it is being driven. And, second, we
see from Fig. 7.15 that in a system with an expanding final state isotropization
happens long after hydrodynamization: if we were to define a τiso from the differ-
ence between the longitudinal and transverse pressures in this section as we did
in Section 7.6 it would be significantly greater than τhydro. In the present context,
however, and in fact in heavy ion collisions, it is the hydrodynamization time τhydro

that is of interest.
We can also use the results that we have presented here to investigate whether

hydrodynamic behavior sets in when higher order terms in the hydrodynamic
expansion (7.98) become comparable to lower order terms or, instead, sets in at
a time determined by when it is that non-hydrodynamic quasinormal modes have
damped away leaving the longer-lived hydrodynamic modes dominant. In the three
panels of Fig. 7.15, from left to right, hydrodynamization occurs when �τhydro is
given by 0.89, 1.9 and 2.6 [291], meaning that in all three panels �τhydro � 1.
Examining the size of the coefficients in the series (7.98) shows that the second-
order (�τ)−4/3 terms are quite small compared to the leading (�τ)−2/3 viscous
terms when �τ � 1; they only become comparable when �τ � 0.05. In other
words, in the period 0.05 � �τ � 1 higher order terms in the hydrodynamic
expansion (7.98) are small and yet hydrodynamics is still not yet applicable. This
indicates that the physics which determines the onset of hydrodynamic behavior is
not associated with higher order terms in the hydrodynamic expansion becoming
comparable to lower order terms. Rather, it must be the case that the expansion
hydrodynamizes at τ ∼ τhydro because it is at that time that the non-hydrodynamic
modes that are not described at all by (7.98) and that damp away exponentially
in time are becoming insignificant relative to the slowly relaxing hydrodynamic
modes. If |c| is not large, when τ < τhydro the nonhydrodynamic modes dominate
and the expansion is far from equilibrium. We can draw two (related) conclusions
from this. First, if all we know is the late-time gradient expansion (7.98), asking
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before what time this expansion breaks down is not an accurate way of identifying
the hydrodynamization time and the domain of validity of hydrodynamics. A sim-
ilar conclusion was also reached in Ref. [48] by analyzing small perturbations on
top of infinite static plasma. Second, even if we know many terms in the late-time
gradient expansion (7.98), knowing only this it is impossible to run the equations
of hydrodynamics backwards in time and reconstruct the far-from-equilibrium
initial conditions. This follows from the fact that many very different far-from-
equilibrium initial states can end up at late times in a boost-invariant hydrodynamic
expansion (7.98) with the same �. This loss of memory of the initial conditions is
characteristic of any equilibration process, and the hydrodynamization of a plasma
that in boost-invariant expansion is no exception.

It is also interesting to notice that in all three panels of Fig. 7.15 at the time
of hydrodynamization the fluid is markedly anisotropic, which means that in the
hydrodynamic expansion (7.98) the first derivative terms are not much smaller than
the zeroth derivative terms. The most extreme example is PL in the left-hand panel
of Fig. 7.15, where the first derivative term in (7.98) is almost 70% as large as the
zeroth order term at t = thydro. And yet, as we have described above, in all cases
the second order terms are very small at the time of hydrodynamization. What this
suggests is that although ideal, zeroth order, hydrodynamics of course becomes
valid at asymptotically late times, at the times shown in Fig. 7.15 it does rather
badly because it includes no dissipation and at these times dissipation is impor-
tant. However, once the lowest order term that includes dissipation (i.e. the first
order terms in the derivative expansion (7.98)) are included, the important physics
that was missed at zeroth order is incorporated. With no further qualitatively new
physics being missed, the second order terms are small. So, what we learn is that
at the time of hydrodynamization the hydrodynamics is dissipative hydrodynam-
ics, with first order terms behaving like additional leading terms since they are the
leading dissipative terms.

The results illustrated in Fig. 7.15 clearly show the system hydrodynamizing
before it isotropizes. Isotropization, like hydrodynamization, happens continuously
with strict isotropy only being achieved in the infinite time limit. So, to make a
quantitative comparison between τhydro and an isotropization time τiso we need to
introduce a criterion for isotropization, just as we did for hydrodynamization. If we
define τiso as the proper time when (PT −PL)/PT = 0.1, meaning that in the local
fluid rest frame the pressure in the fluid is within 10% of being isotropic, we see
from (7.98) that τiso = 15.6/� (τiso = 16.1/�) for an expanding boost invariant
hydrodynamic flow if we work to second (first) order in gradients. And, if we use
(7.96) as an operational definition of a temperature T (τ ) then τisoT (τiso) = 6.2
(τisoT (τiso) = 6.4). We saw above that in all three cases illustrated in Fig. 7.15 the
hydrodynamization time τhydro is substantially less than this τiso meaning that, as
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anticipated in Section 2.2, the strongly coupled plasma hydrodynamizes at a time
when it is still significantly anisotropic. It then expands and cools according to the
laws of viscous, i.e. dissipative, hydrodynamics with entropy being produced until
τ ∼ τiso. After τ ∼ τiso, the boost-invariant expansion continues but the fluid is now
close to isotropic meaning that gradient terms are unimportant and the expansion
is well described by ideal, inviscid, hydrodynamics with no further production of
entropy.4 We shall see via many examples throughout the remainder of this chapter
that this ordering of events, hydrodynamization before isotropization, is generic
when an expanding strongly coupled plasma forms, whether boost invariant or
not, starting from varied far-from-equilibrium initial states. Although we know of
no proof that hydrodynamization always happens first at strong coupling, we also
know of no counterexamples.

Although hydrodynamization before isotropization should always have been
seen as a logical possibility, in fact before the holographic calculations for strongly
coupled fluids that we are describing in this chapter were done this possibility was
not much considered. The expectation, based partly upon weak coupling intuition
and partly upon not anticipating that first order terms in the derivative expansion of
hydrodynamics could be significant at a time when second and higher order terms
have already become insignificant, was that hydrodynamization would occur after
the τiso defined above from (7.98). If this were the case, at the time of hydro-
dynamization the fluid would already be close to isotropic and the subsequent
hydrodynamic expansion would be close to ideal with almost no entropy produc-
tion. In such a setting, it was shown in Ref. [79] that isotropization could in fact
occur before hydrodynamization. In this case, isotropization cannot be described
hydrodynamically and τiso cannot be obtained from (7.98). It was even shown that
in the epoch between early isotropization and later hydrodynamization the expan-
sion of the weakly coupled matter can be described with equations that take the
same form as the equations of hydrodynamics [79] albeit with constitutive rela-
tions, including in particular the equation of state, that can differ from those of
hydrodynamics. This is possible because the processes that change the constitu-
tive relations back to the equilibrium ones take a time that is much longer than
τiso; in the perturbative analysis of Ref. [79], these two different time scales are
controlled by different powers of the small coupling constant. We now understand,
therefore, that all these considerations are relevant only if the plasma that forms is
weakly (possibly very weakly) coupled at the time that it hydrodynamizes. We have
learned from holographic calculations, like those illustrated in Fig. 7.15 and like

4 No further production of entropy unless or until there is some large increase in the viscosity of the fluid as it
cools, as can happen after a phase transition. For example, attempts to describe the late-time hadron gas phase
of QCD via hydrodynamics require viscosities that increase rapidly with decreasing temperature [695, 274,
275, 316]. However, with the methods of this chapter, and indeed of this book, we are not seeking to gain
insights into the physics of heavy ion collisions at late times, during or after the transition to hadronic matter.
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those described throughout the rest of this chapter, that when a strongly coupled
plasma is formed it hydrodynamizes first, then expands anisotropically and hydro-
dynamically, and only later isotropizes – with the isotropization and the associated
cessation of entropy production being described well by hydrodynamics.

It is important to note that if τhydro < τiso then in the analysis of flow observables
in heavy ion collisions that we described in Section 2.2 the important time scale is
τhydro. Following the conventions of the literature about flow in heavy ion collisions,
in that section we referred to an “equilibration time”. What is meant by this phrase,
in that context, is the time scale after which the expanding fluid can be described by
the equations of viscous hydrodynamics, which is to say τhydro. So, the conclusion
from that section that is of interest to us in this chapter should be phrased as saying
that the agreement between the data on single particle spectra and azimuthally
anisotropic flow in heavy ion collisions and hydrodynamic calculations implies
that τhydro ≤ (0.6–1) fm.

7.7.4 An all-order criterion for boost invariant hydrodynamization

In the previous subsection we introduced a deformation of the four-dimensional
boundary theory metric in order to pump energy and momentum into the vacuum
at early times and in this way create a boost-invariant far-from-equilibrium state.
As in Fig. 7.2b, and as in the analysis of a nonexpanding plasma in Section 7.5, we
had a source acting in the boundary for some duration in time. This made the iden-
tification of the hydrodynamization time a little ambiguous, since presumably the
system was already beginning to hydrodynamize while the source was still acting.
We now want to analyze the boost invariant expansion of an initial state created
as in Fig. 7.2c, as we did for a nonexpanding plasma in Section 7.6. This has
been accomplished by the authors of Refs. [448, 446], who found a way to impose
boost-invariant, far-from-equilibrium, initial conditions in the bulk at τ = 0. This
removes the ambiguity of the previous subsection, although from the perspective
of heavy ion physics it is also unrealistic: heavy ion collisions cannot be boost
invariant at τ = 0 since the colliding nuclei have a nonzero Lorentz-contracted
thickness. The authors of Refs. [448, 446] developed a new numerical framework
for solving the numerical relativity problem that, in the bulk, describes boost-
invariant expansion in the boundary theory. We shall not describe their formalism
but, very loosely speaking, it is a boost-invariant generalization of the formalism of
Appendix D. They were then able to analyze the evolution and hydrodynamization
of the expanding plasma resulting from a wide range of initial conditions at τ = 0.
These correspond, in their set-up, to specifying a single metric coefficient function
(the “initial profile”) for the initial geometry on the hypersurface τ = 0. We shall
describe the results they obtain for 29 different initial profiles below.
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Before we present results, we shall derive an all-order criterion for the validity
of boost-invariant hydrodynamics, i.e. for the determination of the hydrodynamiza-
tion time τhydro, introduced in Refs. [448, 446]. Doing so requires recasting the
equations of boost-invariant hydrodynamics in terms of the effective temperature
T (τ ) that we introduced in (7.104). Recall that T (τ ) is simply an alternative mea-
sure of the energy density if the system is far from equilibrium. All-order viscous
hydrodynamics, namely the extension of (7.98) to arbitrarily high order, amounts to
presenting the stress tensor as a series of terms expressed in terms of flow velocities
uμ and their derivatives with coefficients being proportional to appropriate powers
of T , the proportionality constants being the transport coefficients. Hydrodynamic
equations are just the conservation equations ∇μT μν = 0, which are then by con-
struction first order differential equations for T . In the case of a conformal fluid, in
boost invariant expansion, in the hydrodynamic regime the effective temperature
must take the form

T = � f (�τ) (7.111)

for some function f . This can be seen by taking the fourth root of the first equation
in (7.98), and relies upon the fact that if the fluid is conformal there can be no
dimensionful parameters present other than �. The only information about the
initial conditions that the fluid “remembers” after it hydrodynamizes is contained
in the constant �. Multiplying (7.111) by τ and inverting we arrive at

� = h(τT )

τ
, (7.112)

where h is the function defined such that h[x f (x)] = x . Differentiating (7.112),
we obtain

τ
d

dτ
τT = Fhydro(τT ) , (7.113)

where Fhydro(x) ≡ h(x)/h′(x). We conclude that in a conformal plasma in boost-
invariant expansion, the hydrodynamic equation for the scale invariant quantity

w ≡ τT (τ ) (7.114)

takes on the simple form
τ

w

d

dτ
w = Fhydro(w)

w
, (7.115)

where Fhydro(w) is completely determined in terms of the transport coefficients
of the theory [448, 446], much in the spirit of [586]. Intuitively, the reason that
(7.115) does not hold outside the hydrodynamic regime is that before the system
hydrodynamizes it has not yet lost memory of the initial conditions, and so the
evolution depends on the physical scales that characterize those initial conditions.
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For the plasma of strongly coupled N = 4 SYM theory, Fhydro(w) is known
explicitly up to terms corresponding to third order hydrodynamics [173]:

Fhydro(w)

w
= 2

3
+ 1

9πw
+ 1 − log 2

27π2w2
+ 15 − 2π2 − 45 log 2 + 24 log2 2

972π3w3
+ · · · .
(7.116)

The advantage of the result (7.115) over, for example, a seemingly simpler
expression like (7.111) lies in the fact that, if the boost-invariant expansion of the
fluid is governed entirely by hydrodynamics, including dissipative terms up to any
high order or even resummed, then, on a plot of τ

w
d
dτ w as a function of w, trajec-

tories for all initial conditions must lie on a single curve given by Fhydro(w)/w.
If, on the other hand, genuine non-equilibrium processes intervene, i.e. if non-
hydrodynamic modes have been excited, then we should observe a wide range of
curves which all merge for sufficiently large w, after the system hydrodynamizes.
Thus Eq. (7.115) can be used to test whether the stress tensor is of hydrodynamic
form even without knowing the specific form of Fhydro(w). Thus, it provides an all-
order criterion for the hydrodynamization of a conformal plasma in boost invariant
expansion.

In the top panel of Fig. 7.16 we plot τ
w

d
dτ w as a function of w for trajec-

tories corresponding to 29 different initial states. It is clear from the plot that
non-hydrodynamic modes are very important in the initial stage of plasma evo-
lution. Yet, for all the sets of initial data, the curves merge into a single curve
characteristic of hydrodynamics for w > 0.7. When plotted on this scale, hydro-
dynamization appears to be occurring even earlier but the vertical scale in the top
panel has been extended in order to show all the very far-from-equilibrium dynam-
ics at early times. In the bottom panel of Fig. 7.16 we show a plot of the evolution
of the pressure anisotropy for a single initial state. Using (7.93) and (7.115),

1 − 3PL

E = 12
F(w)

w
− 8 , (7.117)

so the quantity plotted in the lower panel of Fig. 7.16 is almost the same as that plot-
ted in the upper panel, except now with a vertical scale chosen such that the details
of the approach to hydrodynamization are visible. We compare the result to the
corresponding curves for first, second and third order hydrodynamics. We observe,
on the one hand, excellent agreement with hydrodynamics for w > 0.63 and, on
the other hand, a quite sizable pressure anisotropy after hydrodynamization, as in
the previous subsection, meaning that the anisotropic fluid is described well by vis-
cous hydrodynamics. We can also see that, again as we discussed in the previous
subsection, the hydrodynamic expansion itself is well under control at the hydrody-
namization time. Non-hydrodynamic modes are important before w = 0.63, which
cannot be inferred if all we know is the late time hydrodynamic behavior.
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Figure 7.16 Top: plot of τ
w

d
dτ w versus w for 29 initial profiles. Bottom: the solid

curve shows 1 − 3PL/E = 2(PT −PL)/E , a measure of the pressure anisotropy,
for a selected profile. The three dotted curves (top, middle and bottom) represent
first, second and third order hydrodynamic fits. Figure taken from Ref. [448].

For all 29 initial conditions analyzed in Refs. [448, 446], hydrodynamization
occurs at the latest by w ≡ τT (τ ) = 0.7. In the example that we analyzed
in the previous subsection, when we pumped energy into the system over some
period of time ending at τ f , hydrodynamization occurred at τhydro with (τhydro −
τ f )T (τhydro) = 0.24. Our estimate here that when the system is initialized far from
equilibrium at τ = 0 it hydrodynamizes by a time τhydro with τhydroT (τhydro) = 0.7,
or perhaps somewhat smaller, confirms our speculation that in the analysis of the
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previous section the hydrodynamization process has already begun before τ f . It is
also interesting to notice how similar the criterion τhydroT (τhydro) = 0.7 is to the
results we obtained in Section 7.6 for the thermalization times of 1000 different
initial states that result in a static plasma with final temperature T . The analy-
ses of the equilibration of a homogeneous plasma in Sections 7.5 and 7.6 and the
hydrodynamization of an expanding boost invariant plasma in this section all point
toward the same conclusion: when strongly coupled plasma is formed by starting
with some far-from-equilibrium state and letting it equilibrate or hydrodynamize,
the time that this process takes is of order, or maybe even slightly less than, the
inverse of the temperature at which the process concludes.

7.7.5 Boost-invariant hydrodynamization with radial flow

Throughout this chapter, we have assumed homogeneity in the transverse plane.
It is of obvious interest to lift this restriction, since colliding ions are finite in
transverse extent and result in a distribution of energy density that varies nontriv-
ially in the transverse plane. The first step away from homogeneity is to assume
only rotational symmetry in the transverse plane, meaning that initially (and dur-
ing the subsequent expansion) the energy density profile is independent of the
azimuthal angle. Quite recently, analytic solutions to the equations of viscous
boost invariant hydrodynamics with this geometry have been found for the first
time by Gubser [397]. Even more recently, the hydrodynamization of initially
far-from-equilibrium states with this geometry which subsequently expand both
longitudinally (in a boost-invariant fashion) and radially in the transverse plane
has been analyzed for the first time by van der Schee [783]. The assumption of
boost invariance in the longitudinal direction together with rotational symmetry
in the transverse plane makes the gravitational problem 2 + 1-dimensional, and
it can be solved using pseudo-spectral methods [783]. The author of Ref. [783]
analyzes the boost invariant expansion of what is initially a “blob” of energy
about 14 fm in diameter in the transverse plane. He chooses initial conditions in
which the longitudinal pressure vanishes and the transverse pressure is half the
energy density. He watches these initial conditions evolve and hydrodynamize.
The result of the calculation is that hydrodynamization occurs at a τhydro at which
τhydroT (τhydro) ≈ 0.8–0.9, quite comparable to the hydrodynamization times found
above for boost invariant expansion with no transverse dynamics. With the choice
of initial transverse pressure profile in Ref. [783], gradients in the transverse
pressure are such that by the time of hydrodynamization the fluid is expand-
ing in the radial direction in the transverse plane with a velocity that reaches
about 0.1c near the edge of the blob, where the gradient in the pressure profile
is highest.
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7.8 Colliding sheets of energy

In the previous section we studied the hydrodynamization of expanding plasma
under the strong assumption of boost invariance. In this section we will relax this
condition and we will study the dynamics of a collision of two sheets of energy,
finite in thickness but infinite in transverse extent, in N = 4 SYM theory. Perhaps
this can be viewed as an instructive caricature of the collision of two large, highly
Lorentz-contracted, nuclei. Introducing nontrivial dynamics in the transverse plane
would yield an even better caricature with which to study the hydrodynamization
of strongly coupled plasma as in a heavy ion collision. We saw in Section 7.7.5 that
the first steps in this direction are just now being taken, albeit in a boost invariant
setting. As we show in this section, the assumption of boost invariance can also be
dispensed with.

Multiple authors have discussed collisions of infinitely extended planar shock
waves in SYM, which in the dual description becomes a problem of colliding
gravitational shock waves in asymptotically AdS spacetime. Existing work has
examined qualitative properties and trapped surfaces [390, 405, 35, 36, 546, 547,
411, 580, 533], possible early-time behavior [549, 390, 151, 773], and expected
late time asymptotics [495, 496]. As no analytic solution is known for this grav-
itational problem, solving the gravitational initial-value problem numerically is
the only way to obtain quantitative results which properly connect early- and
late-time behavior. This was done in Ref. [292], whose results we shall describe
here. Although much of the earlier work concerned singular shocks with vanishing
thickness, in Ref. [292] Chesler and Yaffe were able to analyze the collision and
subsequent evolution and hydrodynamization of planar sheets whose energy den-
sity is everywhere finite, with a Gaussian profile in the “beam” direction, incident
at the speed of light.

Diffeomorphism invariance plus translation invariance in two spatial directions
allows one to write the bulk metric in the form

ds2 = 2dv dr − A dv2 + !2
(
eBdx2

⊥ + e−2Bdz2
) + 2Fdv dz , (7.118)

where A, B, !, and F are all functions of the bulk radial coordinate r , of the time v,
and of the longitudinal coordinate z along which the waves will collide. As usual,
we use generalized infalling Eddington–Finkelstein (EF) coordinates, and the EF
time v coincides with the Minkowski time at the boundary, which lies at r → ∞.
Note that the crossed dvdz term in the metric is necessary to describe the expected
energy flux

S ≡ 2π2

N 2
c

T tz (7.119)

in the z direction.
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We want our initial gravitational data to be dual to two well-separated sheets
of energy in the gauge theory, with finite thickness and energy density, moving
towards each other at the speed of light. For a single sheet moving in the ∓z
direction, one possible choice on the gravity side is a planar shock of the form [495]

ds2 = r2
(−dx+dx− + dx2

⊥
) + 1

r2

[
dr2 + h(x±) dx2

±
]
, (7.120)

with x± ≡ t ± z, and h an arbitrary function – see e.g. Refs. [150, 91] for detailed
discussions of these type of solutions. Note that the time t in this form of the metric
is not an EF time but rather the analog of the time t shown in Fig. 7.1. The function
h is chosen to be a Gaussian with width w and amplitude μ3:

h(x±) ≡ μ3 (2πw2)−1/2 e− 1
2 x2±/w2

. (7.121)

Note that the term h(x±) dx2±/r2 in the metric has precisely the correct fall-off to
correspond to a vacuum expectation value of the T++ component of the boundary
stress tensor, i.e. 〈T++〉 ∝ h(x±), as corresponds to an excitation that propagates
at the speed of light. The energy density per unit area of the shock is μ3(N 2

c /2π2).
If the shock profile h has compact support, then a superposition of right- and
left-moving shocks solves Einstein’s equations at early times when the incoming
shocks have disjoint support. Although this is not exactly true for our Gaussian
profiles, the residual error in Einstein’s equations is negligible when the separa-
tion of the incoming shocks is more than a few times the shock width. Following
Ref. [292], we choose a width w = 0.75/μ and an initial separation of the shocks
�z = 6.2/μ. We evolve the system for a total time �t = 9.1/μ.

Because of its light-like nature, all the curvature invariants of the metric (7.120)
are finite. Nevertheless, as pointed out in [91], this metric possesses a naked cur-
vature singularity, since tidal forces diverge in the region h(x±) 
= 0, r → 0 [682].
Recall that r → 0 can be reached in finite affine parameter along future-directed
causal curves, in particular along geodesics, and that when h = 0 it corresponds to
the horizon of AdS. Presumably this singularity is related to the observation [292]
that, when expressed in terms of EF coordinates, the functions A and F in the
metric (7.118) seem to grow without bound as r → 0. Following Ref. [292], we
regulate this problem by adding to the metric (7.120) an additional piece represent-
ing a static, infinite thermal bath within which the shocks propagate. On the gravity
side this corresponds to a static, infinite horizon at a small value of r that cloaks
the singularity present for r → 0. The bath acts as a regulator in the sense that its
energy density is smaller by a factor of 50 than the peak energy in the shocks. This
large separation implies that the effect of the bath on the propagation of the shocks
is small and also implies that the temperature of the plasma at the time of hydrody-
namization is much larger than the regulator temperature. However, the presence
of the singularity means that the regulator cannot be strictly removed.
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Figure 7.17 Energy density E/μ4 as a function of the boundary time t and
longitudinal coordinate z. Figure taken from Ref. [292].

With the solution (7.120) plus the regulator in hand, the remaining tasks are (i)
to transform these initial data to the EF coordinates of the ansatz (7.118), which
is done numerically, (ii) to evolve Einstein’s equations with these initial data, and
(iii) to read off the boundary stress tensor from the near-boundary fall-off of the
resulting metric. Figure 7.17 shows the energy density E as a function of time
and longitudinal position obtained from this calculation. On the left, one sees two
incoming shocks propagating toward each other at the speed of light. After the col-
lision, centered on t = 0, energy is deposited throughout the region between the
two receding energy density maxima. As the dynamics of the collision is strongly
coupled, the energy density after the collision does not at all resemble two out-
going sheets of energy that have passed through each other. For example, after
the collision in Fig. 7.17 the two receding maxima are moving outwards at less
than the speed of light. To elaborate on this point, Fig. 7.18 shows a contour
plot of the energy flux S for positive t and z. The dashed curve shows the loca-
tion of the maximum of the energy flux. The inverse slope of this curve, equal to
the speed with which the receding maxima in the energy density are moving, is
v = 0.86 at late times. This is the most dramatic manifestation of the fact that
the dynamics is not boost invariant. The solid line shows the point beyond which
S/μ4 < 10−4, and has slope 1. Evidently, the leading disturbance from the col-
lision moves outwards at the speed of light, but the maxima in E and S move
significantly slower. The collision has substantially slowed down the sheets of
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Figure 7.18 Energy flux S/μ4 as a function of the boundary time t and
longitudinal coordinate z. Figure taken from Ref. [292].

energy and, furthermore, it has resulted in the deposition of energy density between
the receding sheets, in the vicinity of z = 0. This energy density, seen expand-
ing and cooling in Fig. 7.17, is the plasma whose hydrodynamization we wish to
quantify.

In Fig. 7.19 we plot the transverse and longitudinal pressures at z = 0 as a
function of time. At z = 0, the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far from equilibrium. At t =
−0.23/μ, where PL has its maximum, PL is roughly 5 times larger than PT . At
late times, the pressures asymptotically approach each other.

We expect that at sufficiently late times the evolution of T μν will be described
by hydrodynamics. To test the validly of hydrodynamics, in Fig. 7.19 we also plot
(as dashed lines) the pressures Phydro

T and Phydro
L predicted from the energy density

by the first order viscous hydrodynamic constitutive relations [107]. At z = 0 the
hydrodynamic constitutive relations hold within 15% at time thydro = 2.4/μ, with
improving accuracy thereafter.

At z = 0, where the flux S = 0, the constitutive relations imply that the dif-
ference between Phydro

T and Phydro
L is purely due to viscous effects. Figure 7.19

shows that there is a large difference between PT and PL when hydrodynamics
first becomes applicable, implying that viscous effects are substantial. As in all
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Figure 7.19 Longitudinal (continuous green curve) and transverse pressure (con-
tinuous blue curve) in units of μ4 as a function of time t , at z = 0. Also shown
for comparison (dashed black curves) are the pressures predicted by the viscous
hydrodynamic constitutive relations. Figure taken from Ref. [292].

the boost-invariant examples that we analyzed earlier, hydrodynamization of the
strongly coupled fluid produced by the collision between the sheets of energy
illustrated in Fig. 7.17 occurs before isotropization. Hydrodynamization is fol-
lowed by an epoch of anisotropic hydrodynamic expansion during which entropy
is produced. Only later, at an isotropization time that comes well after the times
visible in Figs. 7.17 and 7.19, the pressures in the fluid become locally isotropic,
entropy production ceases, and the subsequent expansion is described by ideal
hydrodynamics.

At z = 0, when t = thydro = 2.4/μ the effective temperature, defined from the
energy density according to (7.104) is T = 0.27μ, meaning that thydroT (thydro) =
0.65. We see that the hydrodynamization time for the plasma produced in the col-
lisions of this section is quite comparable to the estimates that we obtained in the
context of boost-invariant expansion in Section 7.7.

As we conclude this chapter, we see a common conclusion emerging from a
wide variety of calculations. We saw in Sections 7.5 and 7.6 that the thermalization
of a static strongly coupled plasma with equilibrium temperature T takes a time
in the range (0.6–1)/T , for a wide variety of far-from-equilibrium initial condi-
tions. We then saw in Section 7.7 that when a strongly coupled plasma forms in
a boost-invariant expansion, it hydrodynamizes in a time τhydro � 0.7/T (τhydro),
again for a wide variety of far-from-equilibrium initial states. Here, T (τhydro) is
the effective temperature of the plasma, defined from the fourth root of its energy
density, at the time that it hydrodynamizes. Finally, in this section where we have
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dispensed with boost invariance, at least in the one instance of colliding sheets of
energy density that we have analyzed we find thydroT (thydro) = 0.65. The conclu-
sion that the hydrodynamization of strongly coupled plasma takes a time satisfying
thydroT (thydro) = 0.6–1 seems robust indeed.

As we have discussed in Section 2.2, the comparison of data on identified par-
ticle spectra and elliptic flow in heavy ion collisions at RHIC to hydrodynamic
calculations indicates that the quark–gluon plasma produced in RHIC collisions
hydrodynamizes before a time of order 0.6–1 fm/c [443, 543]. Before the inves-
tigations described in this chapter, this was always seen as rapid thermalization
since analyses of thermalization that are based upon weakly coupled physics point
to significantly longer thermalization times. How does our strong coupling con-
clusion compare? In doing hydrodynamic calculations to compare with data from
heavy ion collisions, it has become conventional to initialize the hydrodynamic cal-
culation τ = 0.6 fm after the collision. For example, in Ref. [734] we find recent
viscous hydrodynamic calculations that fit RHIC data well if the temperature at the
middle of the fireball is initially T (0.6 fm) = 347–379 MeV, with the variation
coming from uncertainty in the shape of the energy density profile at that time. We
see that τ = 0.6 fm after a RHIC collision, τT (τ ) ∼ 1.1–1.2. Although we do
not have full-fledged hydrodynamic calculations that start this early to call upon,
we see that τT (τ ) = 0.65 corresponds to a τ that is somewhere around 0.3 fm.
In heavy ion collisions at the LHC, T (0.6 fm) = 444–485 MeV [734], meaning
that τT (τ ) = 0.65 corresponds to a τ that is somewhere around 0.2 fm. Follow-
ing the discussion with which we began this chapter, it would be inappropriate to
take these as estimates for the hydrodynamization times of heavy ion collisions
per se. We expect that at the very beginning of a heavy ion collision, the dominant
physics is not yet strongly coupled. The impact of these strong coupling estimates
is that they teach us that the more than ten-year-old result that the matter produced
in RHIC collisions takes at most 0.6–1 fm to hydrodynamize should no longer be
seen as “rapid thermalization”, since this time scale is comfortably longer than
what we now know we should expect if the physics of heavy ion collisions were
strongly coupled from the start.

We close by noting that there are two other ways to connect the results from the
calculation of colliding sheets in this section to heavy ion collisions. The authors of
Ref. [292] noted that if we equate the energy per unit transverse area of the sheets
with the mean energy per unit transverse area of the Lorentz-contracted nuclei inci-
dent at RHIC, this sets the scale for μ without appealing to the hydrodynamization
temperature in the final state. This estimate yields μ ∼ 2.3 GeV, which would then
mean that thydro = 2.4/μ corresponds to thydro ∼ 0.2 fm. The reason that this yields
a larger value of μ than the one that we obtained implicitly above when we used
the hydrodynamization temperature is that, in the collision of the two sheets of
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strongly coupled matter, the energy density near z ∼ 0 in the final state is greater
than in a collision between heavy ions with the same energy per unit transverse
area. The other option is to use the width of the sheets to set the scale. In the col-
lision that we have described, w = 0.75/μ meaning that thydro = 2.4/μ = 3.2w.
It is a little hard to compare the Gaussian profiles of the colliding sheets of energy
with the profiles of Lorentz-contracted nuclei in a quantitative way, but this sug-
gests thydro ∼ 0.3 fm, consistent with what we obtained via the hydrodynamization
temperature above. Based on experience in simpler contexts earlier in this chap-
ter, we expect that the hydrodynamization time is controlled by the inverse of the
hydrodynamization temperature when that time scale is much longer than w, and
by w when that is the longer time scale. For the specific value of wμ that we have
used, the two estimates are comparable. It would be interesting to investigate the
collisions of sheets of energy density with Gaussian profiles having varying values
of wμ, and then with profiles having other shapes. And, it will be interesting to
investigate colliding disks with a non-trivial profile in the transverse plane as, we
have seen in Section 7.7.5, is already now possible in a boost-invariant setting.
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Probing strongly coupled plasma

As discussed in Sections 2.3 and 2.4, two of the most informative probes of strongly
coupled plasma that are available in heavy ion collisions are the rare highly ener-
getic partons and quarkonium mesons produced in these collisions. In this chapter
and in Chapter 9, we review results obtained by employing the AdS/CFT corre-
spondence that are shedding light on these classes of phenomena. In Sections 8.1
and 8.2, we describe how a test quark of mass M moving through the strongly
coupled N = 4 SYM plasma loses energy and picks up transverse momentum.
In Section 8.3 we consider how the strongly coupled plasma responds to the hard
parton plowing through it; that is, we describe the excitations of the medium which
result. In Section 8.4, we discuss calculations of the stopping distance of a light
quark moving through the strongly coupled plasma. Throughout Sections 8.1, 8.2,
8.3 and 8.4 we assume that all aspects of the phenomena associated with an ener-
getic parton moving through the plasma are strongly coupled. In Section 8.5, we
present an alternative approach in which we assume that QCD is weakly coupled
at the energy and momentum scales that characterize gluons radiated from the
energetic parton, while the medium through which the energetic parton and the
radiated gluons propagate is strongly coupled. In this case, one uses the AdS/CFT
correspondence only in the calculation of those properties of the strongly coupled
plasma that arise in the calculation of radiative parton energy loss and transverse
momentum broadening. In Section 8.6, we describe a calculation of synchrotron
radiation in strongly coupled N = 4 SYM theory that allows the construction of a
narrowly collimated beam of gluons (and adjoint scalars) which we can then watch
as it is quenched by the strongly coupled plasma. This opens a new path toward
analyzing jet quenching.

In Section 8.7, we review those insights into the physics of quarkonium mesons
in heavy ion collisions that have been obtained via AdS/CFT calculations of
the temperature-dependent screening of the potential between a heavy quark
and antiquark. To go farther, we need to introduce a holographic description of
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quarkonium-like mesons themselves. In Chapter 9, we first present this construc-
tion and then describe the insights that it has yielded. In addition to shedding
light upon the physics of quarkonia in hot matter that we have introduced in Sec-
tion 2.4, as we describe in Section 9.6.2 these calculations have also resulted
in the discovery of a new process by which a hard parton propagating through
a strongly coupled plasma can lose energy: Cherenkov radiation of quarkonium
mesons.

8.1 Parton energy loss via a drag on heavy quarks

When a heavy quark moves through the strongly coupled plasma of a conformal
theory, it feels a drag force and consequently loses energy [452, 394]. We shall
review the original calculation of this drag force in N = 4 SYM theory [452, 394];
it has subsequently been done in many other gauge theories with dual gravitational
descriptions [453, 224, 225, 610, 645, 772, 395, 418, 468, 144, 161]. In calcula-
tions of the drag on heavy quarks, one determines the energy per unit time needed
to maintain the forced motion of the quark in the plasma. In these calculations one
regards the quark as an external source moving at fixed velocity, v, and one per-
forms thermal averages over the medium. This picture can be justified if the mass
of the quark is assumed to be much larger than the typical momentum scale of the
medium (temperature), and if the motion of the quark is studied in a time window
that is large compared with the relaxation scale of the medium but short compared
to the time it takes the quark to change its trajectory. In this limit the heavy quark
is described by a Wilson line along the worldline of the quark.

The dual description of the Wilson line is given by a classical string hanging
down from the quark on the boundary of AdS. Since we are considering a single
quark, the other end of the string hangs down into the bulk of the AdS space. We
consider the stationary situation, in which the quark has been moving at a fixed
velocity for a long time, meaning that the shape of the string trailing down and
behind it is no longer changing with time. For concreteness, we will assume that
the quark moves in the x1 direction, and we choose to parametrize the string world
sheet by τ = t and σ = z. By symmetry, we can set two of the perpendicular coor-
dinates, x2 and x3 to a constant. The problem of finding the string profile reduces,
then, to finding a function

x1(τ, σ ) , (8.1)

that fulfills the string equations of motion. The string solution must also satisfy the
boundary condition

x1(t, z → 0) = vt . (8.2)
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Since we are interested in the stationary situation, the string solution takes the form

x1(t, z) = vt + ζ(z) , (8.3)

with ζ(z → 0) = 0. We work in an N = 4 plasma, whose dual gravitational
description is the AdS black hole with the metric Gμν given in (5.34). The induced
metric on the string worldsheet gαβ = Gμν∂αxμ∂βxν is then given by

ds2
ws = R2

z2

(
− (

f (z) − v2
)

dτ 2 +
(

1

f (z)
+ ζ ′2(z)

)
dσ 2

+v ζ ′(z)v (dτdσ + dσdτ)

)
, (8.4)

where, as before, f (z) = 1 − z4/z4
0 and ζ ′(z) denotes differentiation with respect

to z.
The Nambu–Goto action for this string reads

S = − R2

2πα′T
∫

dz

z2

√
f (z) − v2 + f (z)2ζ ′2(z)

f (z)
= T

∫
dzL , (8.5)

with T the total time traveled by the quark. Extremizing this action yields the
equations of motion that must be satisfied by ζ(z). The action (8.5) has a constant
of motion given by the canonical momentum

�1
z = ∂L

∂x ′
1

= − R2

2πα′
1

z2

f (z)3/2ζ ′(z)√
f (z) − v2 + f (z)2ζ ′2(z)

, (8.6)

which coincides with the longitudinal momentum flux in the z direction. In terms
of �1

z , the equation of motion for ζ obtained from (8.5) takes the form

ζ ′2(z) =
(

2πα′

R2
�1

z

)2 z4

f (z)2

f (z) − v2

f (z) − (
2πα′
R2 �1

z

)2
z4

. (8.7)

The value of �1
z can be fixed by inspection of this equation, as follows: both the

numerator and the denominator of (8.7) are positive at the boundary z = 0 and
negative at the horizon z = z0; since ζ ′(z) is real, both the numerator and the
denominator must change sign at the same z; this is only the case if

�1
z = ± R2

2πα′z2
0

γ v , (8.8)

with γ = 1/
√

1 − v2 the Lorentz γ factor. Thus, stationary solutions can only
be found for these values of the momentum flux. (Or, for �1

z = 0, for which
ξ =constant. This solution has real action only for v = 0.)
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vv

Figure 8.1 String solutions of Eq. (8.8). The physical (unphysical) solution in
which momentum flows into (out of) the horizon and the string trails behind
(curves ahead) of the quark at the boundary is plotted in the left (right) panel.
Figure from Ref. [452].

The two solutions (8.8) correspond to different choices of boundary conditions
at the horizon. Following Refs. [452, 394], we choose the solution for which
the momentum flux along the string world sheet flows from the boundary into the
horizon, corresponding to the physical case in which the energy provided by the
external agent that is pulling the quark through the plasma at constant speed is
dissipated into the medium. This solution to (8.7) is given by

ζ(z) = −v z0

2

(
arctanh

(
z

z0

)
− arctan

(
z

z0

))
. (8.9)

As illustrated in Fig. 8.1, this solution describes a string that trails behind the
moving quark as it hangs down from it into the bulk spacetime.

The momentum flux flowing down from the boundary, along the string world
sheet (8.9), and towards the horizon determines the amount of momentum lost
by the quark in its propagation through the plasma. In terms of the field theory
variables,

dp

dt
= −�1

z = −πT 2
√
λ

2
γ v . (8.10)

Note, however, that in the stationary situation we have described, there is by con-
struction no change in the actual momentum of the quark at the boundary; instead,
in order to keep the quark moving with constant speed v against the force (8.10)
there must be some external agent pushing the quark through the strongly coupled
plasma. This force can be viewed as due to a constant electric field acting on the
string endpoint, with the magnitude of the field given by

E = πT 2
√
λ

2
γ v . (8.11)

The physical set-up described by the string (8.9) is thus that of forced motion of the
quark through the plasma at constant speed in the presence of a constant electric
field. The external force on the quark balances the backward drag force (8.10) on
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the quark exerted by the medium through which it is moving. To make it explicit
that the medium exerts a drag force, we can rewrite (8.10) as

dp

dt
= −ηD p , (8.12)

with p = Mγ v the relativistic expression of the momentum of the quark and M
the mass of the heavy particle. The drag coefficient is then

ηD = π
√
λT 2

2M
. (8.13)

For test quarks with M → ∞, as in the derivation above, this result is valid for
motion with arbitrarily relativistic speeds v. It is remarkable that the energy loss
of a heavy quark moving through the quark–gluon plasma with constant speed is
described so simply, as due to a drag force. In contrast, in either a weakly coupled
plasma [628] or a strongly coupled plasma that is not conformal [585], dp/dt is
not proportional to p even at low velocities.

We shall see in Section 8.2 that a heavy quark moving through the strongly
coupled plasma of N = 4 SYM theory experiences transverse and longitudinal
momentum broadening, in addition to losing energy via the drag that we have ana-
lyzed above. We shall review the implications of the understanding of how the
presence of the strongly coupled plasma affects the motion of heavy quarks for
heavy ion collision phenomenology at the end of Section 8.2.

8.1.1 Regime of validity of the drag calculation

In the derivation of the drag force above, we considered a test quark with M → ∞.
The result is, however, valid for quarks with finite mass M , as long as M is not too
small. As we now show, the criterion that must be satisfied by M depends on the
velocity of the quark v. The closer v is to 1, the larger M must be in order for
the energy loss of the quark to be correctly described via the drag force calculated
above. In deriving the regime of validity of the drag calculation, we shall assume
for simplicity that we are interested in large enough γ = 1/

√
1 − v2 that the M

above which the calculation is valid satisfies M � √
λT . We will understand the

need for this condition in Chapter 9.
The introduction of quarks with finite mass M in the fundamental representation

of the gauge group corresponds in the dual gravitational description to the intro-
duction of D7-branes [513], as we have reviewed in Section 5.5 and as we will
further pursue in Chapter 9. The D7-brane extends from the boundary at z = 0
down to some zq , related to the mass of the quarks it describes by
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M =
√
λ

2π zq
, (8.14)

a result that we shall explain in Section 9.1. The physical reason that the calculation
of the drag force breaks down if M is too small or v is too large is that if the
electric field E required to keep the quark moving at constant speed v gets too
large, one gets copious production of pairs of quarks and antiquarks with mass
M , and the picture of dragging a single heavy quark through the medium breaks
down completely [253]. The parametric dependence of the critical field Ec at which
pair production becomes copious can be estimated by inspection of how the Dirac–
Born–Infeld action for the D7-brane depends on E , namely

SDBI ∼
√

1 −
(

2πα′

R2
E z2

q

)2

. (8.15)

The critical maximum field strength that the D7-brane can support is the Ec at
which this action vanishes. This yields a criterion for the validity of the drag
calculation, namely that E must be less than of order

Ec = 2πM2

√
λ

. (8.16)

This maximum value of the electric field implies a maximum value of γ up to
which the drag calculation can be applied for quarks with some finite mass M .
From Eq. (8.11) and Eq. (8.16), this criterion is

γ v <

(
2M√
λT

)2

. (8.17)

We shall assume that M � √
λT , meaning that in (8.17) we can take γ v � γ . And,

the estimate is only parametric, so the factor of two is not to be taken seriously.
Thus, the result to take away is that the drag calculation is valid as long as

γ �
(

M√
λT

)2

. (8.18)

The argument in terms of pair production for the limit (8.18) on the quark veloc-
ity gives a nice physical understanding for its origin, but this limit arises in a
variety of other ways. For example, at (8.18) the velocity of the quark v becomes
equal to the local speed of light in the bulk at z = zq , where the trailing string
joins onto the quark on the D7-brane. For example, at (8.18) the screening length
Ls (described below in Section 8.7) at which the potential between a quark and
antiquark is screened becomes as short as the Compton wavelength of a quark
of mass M , meaning that the calculation of Section 8.7 is also valid only in the
regime (8.18) [584].
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Yet further understanding of the meaning of the limit (8.18) can be gained by
asking the question of what happens if the electric field is turned off, and the quark
moving with speed v begins to decelerate due to the drag force on it. We would
like to be able, at least initially, to calculate the energy loss of this now decelerating
quark by assuming that this energy loss is due to the drag force, which from (8.10)
means

d E

dt

∣∣∣∣
drag

= −π

2

√
λT 2γ v2 = −π

2

√
λT 2 pv

M
. (8.19)

However, once the quark is decelerating it is natural to expect that, due to its decel-
eration, it radiates and loses energy via this radiation also. The energy lost by a
quark in strongly coupled N = 4 SYM theory moving in vacuum along a trajec-
tory with arbitrary acceleration has been calculated by Mikhailov [618].1 For the
case of a linear trajectory with deceleration a, his result takes the form

d E

dt

∣∣∣∣
vacuum radiation

= −
√
λ

2π
a2γ 6 = −

√
λ

2π

1

M2

(
dp

dt

)2

. (8.20)

At least initially, dp/dt will be that due to the drag force, namely (8.10). We now
see that the condition that d E/dt due to the vacuum radiation (8.20) caused by the
drag-induced deceleration (8.10) be less than d E/dt due to the drag itself (8.19)
simplifies considerably and becomes

γ <

(
2M√
λT

)2

, (8.21)

the same criterion that we have seen before. This gives further physical intuition
into the criterion for the validity of the drag calculation and at the same time
demonstrates that this calculation cannot be used in the regime in which energy
loss due to deceleration-induced radiation becomes dominant.

Motivated by the above considerations, the authors of Ref. [346] considered the
(academic) case of a test quark moving in a circle of radius L with constant angular
frequency ω. They showed that in this circumstance, d E/dt is given by (8.19), as if
due to drag with no radiation, as long as ω2 � (πT )2γ 3, with γ the Lorentz factor
for velocity v = Lω. But, for ω2 � (πT )2γ 3, the energy loss of the quark moving
in a circle through the plasma is precisely what it would be in vacuum according
to Mikhailov’s result, which becomes

d E

dt

∣∣∣∣
vacuum radiation

=
√
λ

2π
v2ω2γ 4 =

√
λ

2π
a2γ 4 (8.22)

1 Mikhailov’s general result for an accelerating quark in N = 4 SYM theory at T = 0 is equivalent to Liénard’s
classical result for electromagnetic radiation from an accelerating charge upon replacing the QED coupling
constant 2e2/3 by

√
λ/(2π). Finite mass corrections to Mikhailov’s result have been explored in Ref. [280].
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for circular motion. Note that the radiative energy loss (8.22) is greater than that
due to drag, (8.19), for

ω2 � (πT )2γ 3 , (8.23)

so the result of the calculation is that energy loss is dominated by that due to
acceleration-induced radiation or that due to drag wherever each is larger. (Where
they are comparable in magnitude, the actual energy loss is somewhat less than
their sum [346].) This calculation shows that the calculational method that yields
the result that a quark moving in a straight line with constant speed v in the regime
(8.21) loses energy via drag can yield other results in other circumstances (see
[280, 283, 282] for further examples). In the case of circular motion, the crite-
rion for the validity of the calculational method is again (8.21), but there is a wide
range of parameters for which this criterion and (8.23) are both satisfied [346]. This
means that, for a quark in circular motion, the calculation is reliable in a regime
where energy loss is as if due to radiation in vacuum. As we shall see in Section 8.6,
this opens the possibility to using this calculation as a device with which to make
a beam of strongly coupled gluons and adjoint scalars, whose quenching in the
strongly coupled plasma can then be analyzed.

8.2 Momentum broadening of a heavy quark

In the same regime in which a heavy quark moving through the strongly coupled
plasma of N = 4 SYM theory loses energy via drag, as described in Sec-
tion 8.1, it is also possible to use gauge/gravity duality to calculate the transverse
(and, in fact, longitudinal) momentum broadening induced by motion through the
plasma [252, 396, 253, 254]. We shall review these calculations in this section.
They have been further analyzed [328, 311, 378], and extended to study the effects
of nonconformality [585, 675, 419] and acceleration [808, 227].

For non-relativistic heavy quarks, the result (8.12) is not surprising. The dynam-
ics of this particle is that of Brownian motion which can be described by the
effective equation of motion

dp

dt
= −ηD p + ξ(t) , (8.24)

where ξ(t) is a random force that encodes the interaction of the medium with the
heavy probe and that causes the momentum broadening that we describe in this
section. For heavy quarks, we have seen in (8.13) that ηD is suppressed by mass.
This reflects the obvious fact that the larger the mass of the quark the harder it
is to change the momentum of the particle. Thus, for a heavy quark the typical
time for such a change, 1/ηD, is long compared to any microscopic time scale of
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the medium τmed. This fact allows us to characterize the force distribution by the
two-point correlators

〈
ξT (t)ξT (t

′)
〉 = κT δ(t − t ′) ,〈

ξL(t)ξL(t
′)
〉 = κLδ(t − t ′) , (8.25)

where the subscripts L and T refer to the forces longitudinal and transverse to the
direction of the particle’s motion. Here, we are also assuming an isotropic plasma
which leads to 〈ξL(t)〉 = 〈ξT (t)〉 = 0. In general, the force correlator would have
a nontrivial dependence on the time difference (different from δ(t − t ′)). How-
ever, since the dynamics of the heavy quark happens on time scales that are much
larger than τmed, we can approximate all medium correlations as happening instan-
taneously. It is then easy to see that the coefficient κT (κL) corresponds to the mean
squared transverse (longitudinal) momentum transferred to the heavy quark per
unit time. For example, the transverse momentum broadening is given by

〈
p2

⊥
〉 = 2

∫
dtdt ′ 〈ξT (t)T ξT (t

′)
〉 = 2κTT , (8.26)

where T is the total time duration (which should be smaller than 1/ηD) and where
the 2 is the number of transverse dimensions. It is clear from the correlator that κT

is a property of the medium, independent of any details of the heavy quark probe.
Our goal in this section is to calculate κT and κL . We shall do so first at low velocity,
and then throughout the velocity regime in which the calculation of the drag force
is valid.

Before we begin, we must show that in the limit we are considering the noise
distribution is well characterized by its second moment. Odd number correlators
vanish because of symmetry, so the first higher moment to consider is the fourth
moment of the distribution of the transverse momentum picked up by the heavy
quark moving through the plasma

〈
p4

⊥
〉 = ∫

dt1dt2dt3dt4 〈ξT (t1)ξT (t2)ξT (t3)ξT (t4)〉 . (8.27)

The four-point correlator may be decomposed as

〈ξT (t1)ξT (t2)ξT (t3)ξT (t4)〉 = 〈ξT (t1)ξT (t2)ξT (t3)ξT (t4)〉c (8.28)

+〈ξT (t1)ξT (t2)〉 〈ξT (t3)ξT (t4)〉
+ 〈ξT (t1)ξT (t3)〉 〈ξT (t2)ξT (t4)〉
+ 〈ξT (t1)ξT (t4)〉 〈ξT (t2)ξT (t3)〉 ,

(8.29)
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which is the definition of the connected correlator. Owing to time translational
invariance, the connected correlator is a function

〈ξT (t1)ξT (t2)ξT (t3)ξT (t4)〉c = f (t4 − t1, t3 − t1, t2 − t1) . (8.30)

As before, the correlator has a characteristic scale of the order of the medium scale.
As a consequence, since the expectation value due to the connected part has only
one free integral, we find

〈
p4

⊥
〉 = (

3 (2κT )
2 + O(

τmed

T )
)
T 2 , (8.31)

where the dominant term comes from the disconnected parts in Eq. (8.28). Since
we are interested in times parametrically long compared to τmed, we can neglect the
connected part of the correlator.

8.2.1 κT and κL in the p → 0 limit

The dynamical equations (8.24) together with (8.25) constitute the Langevin
description of heavy quarks in a medium. In the p → 0 limit, there is no distinction
between transverse and longitudinal, meaning that both the fluctuations in (8.25)
must be described by the same correlator with κL = κT ≡ κ . The Langevin equa-
tions (8.24) and (8.25) describe the time evolution of the probability distribution
for the momentum of an ensemble of heavy quarks in a medium. A standard anal-
ysis shows that, independent of the initial probability distribution, after sufficient
time any solution to the Langevin equation yields the probability distribution

P(p, t → ∞) =
(

1

π

ηD

κ

)3/2

exp
{
−p2 ηD

κ

}
, (8.32)

which coincides with the equilibrium (i.e. Boltzmann) momentum distribution for
the heavy quark provided that

ηD = κ

2MT
. (8.33)

This expression is known as the Einstein relation. Thus, the Langevin dynam-
ics of non-relativistic heavy quarks is completely determined by the momentum
broadening κ , and the heavy quarks equilibrate at asymptotic times.

The Einstein relation (8.33) together with the computation of ηD in (8.13) for
strongly coupled N = 4 SYM theory allow us to infer the value of κ for this
strongly coupled conformal plasma, namely

κ = π
√
λT 3 . (8.34)
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The dynamical equation (8.12) that we used in the previous section does not include
the noise term simply because in that section we were describing the change in the
mean heavy quark momentum only.

8.2.2 Direct calculation of the noise term

We would like to have a direct computation of the noise term in the description of a
heavy quark in a strongly coupled gauge theory plasma. There are two motivations
for this: (1) to explicitly check that the Einstein relation (8.33) is fulfilled and (2)
to compute the momentum broadening for moving heavy quarks, which are not in
equilibrium with the plasma and to which the Einstein relation therefore does not
apply. This computation is somewhat technical; the reader interested only in the
results for κT and κL for a moving heavy quark may skip to Section 8.2.3.

We need to express the momentum broadening in terms which are easily com-
puted within the gauge/gravity correspondence. To do so, we prepare a state of
the quark at an initial time t0 which is moving at given velocity v in the plasma.
In quantum mechanics, the state is characterized by a density matrix, which is a
certain distribution of pure states

ρ(t0) =
∑

n

w(n) |n〉 〈n| , (8.35)

where the sum is performed over a complete set of states and the weight w(n) is the
ensemble. For a thermal distribution, the states are eigenstates of the Hamiltonian
and w(n) = exp{−En/T }.

In the problem we are interested in, the density matrix includes not only the
quark degrees of freedom but also the gauge degrees of freedom. However, we start
our discussion using a one-particle system. In this case, the distribution function of
the particle is defined from the density matrix as

f̂ (x, x ′; t0) =
∑

n

w(n) 〈x | n〉 〈n| x ′〉 , (8.36)

where, as usual, 〈x | n〉 is the wave function of the particle in the state |n〉. It is
also common to call f (x, x ′) the density matrix. It is conventional to introduce the
mean and relative coordinates and express the density matrix as

f (X, r; t0) = f̂
(

X + r

2
, X − r

2
; t0

)
, (8.37)

where X = (x + x ′)/2 and r = x − x ′. It is then easy to see that the mean position
and mean momentum of the single particle with a given density matrix are given by
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〈x〉 = tr {ρ(t0) x} =
∫

dxx f̂ (x, x; t0) =
∫

d X X f (X, 0; t0) ,

〈p〉 = tr {ρ(t0) p} =
∫

dx
−i

2
(∂x − ∂x ′) f̂ (x, x ′; t0)

∣∣∣
x ′=x

= −i
∫

d X∂r f (X, r; t0)|r=0 , (8.38)

meaning that r is the conjugate variable to the momentum and the mean squared
momentum of the distribution is〈

p2
〉 = −

∫
d X∂2

r f (X, r; t0)|r=0 , (8.39)

the result from this analysis of the one-particle system that we shall need below.
Returning now to the problem of interest to us, we must consider an ensemble

containing the heavy quark and also the gauge field degrees of freedom. Since
we assume the mass of the quark to be much larger than the temperature, we can
describe the pure states of the system as∣∣A′〉 = Q†

a(x) |A〉 , (8.40)

where |A〉 is a state of the gauge fields only, |A′〉 denotes a state of the heavy quark
plus the gauge fields, and Q†

a(x) is the creation operator (in the Schrödinger pic-
ture) of a heavy quark with color a at position x . Corrections to this expression are
(exponentially) suppressed by T/M . The Heisenberg representation of the operator
Q(x) satisfies the equation of motion

(iu · D − M) Q = 0 , (8.41)

where u is the four-velocity of the quark and D is the covariant derivative with
respect to the gauge fields of the medium. This equation realizes the physi-
cal intuition that the heavy quark trajectory is not modified by the interaction
with the medium, which leads only to a modification of the quark’s phase. (The
expression (8.41) can also be derived from the Dirac equation by performing a
Foldy–Wouthuysen transformation, which in the heavy quark rest frame is given
by Q = exp{γ · D/2M}ψ , where γ = 1/

√
1 − v2.)

The full density matrix of the system, ρ, describes an ensemble of all the degrees
of freedom of the system. Since we are only interested in the effects of the medium
on the momentum of the heavy quark probe, we can define a one-body den-
sity matrix from the full density matrix by integrating over the gauge degrees of
freedom

f (X, r; t0) =
〈
Q†

a

(
X − r

2
;
)

Uab Qb

(
X + r

2

)〉
= Tr

[
ρ Q†

a

(
X − r

2

)
Uab Qb

(
X + r

2

)]
, (8.42)
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where the trace is taken over a complete set of states

∑
A,a

∫
dx Q†

a(x) |A〉 〈A| Qa(x) . (8.43)

Note that the inclusion of the operators in the trace in (8.42) plays the same role as
the projectors |x〉 in (8.36). The gauge link Uab in (8.42) joins the points X + r/2
and X − r/2 to ensure gauge invariance. In the long time limit, the precise path is
not important, and we will assume that Uab is a straight link. To simplify our pre-
sentation, we shall explicitly treat only transverse momentum broadening, which
means taking the separation r to be in a direction perpendicular to the direction of
motion of the heavy quark, r = |r⊥|.

At a later time t , after the heavy quark has propagated through the plasma for a
time t − t0, the one-body density matrix has evolved from (8.42) to

f (X, r⊥; t) = Tr
[
ρ ei H(t−t0)Q†

a

(
X − r⊥

2

)
e−i H(t−t0)

ei H(t−t0)Uab e−i H(t−t0)

ei H(t−t0)Qb

(
X + r⊥

2

)
e−i H(t−t0)

]
, (8.44)

where we have introduced evolution operators to express the result in the Heisen-
berg picture. We then introduce a complete set of states, obtaining

f (X, r⊥; t) =
∫

dx1dx2

∑
A1,A2,A3,A4

ρa1a2[x1, x2; A1, A2]

〈A2| Qa2(x2)Q
†
a

(
X − r⊥

2
; t
)

|A3〉
〈A3|Uab(t) |A4〉
〈A4| Qb

(
X + r⊥

2
; t
)

Q†
a1
(x1) |A1〉 , (8.45)

where we have defined

ρa1a2[x1, x2; A1, A2] ≡ 〈A1| Qa1 (x1) ρ Q†
a2
(x2) |A2〉 . (8.46)

The expression (8.45) can be expressed as a path integral. Note that the expres-
sion in the second line of (8.45) is an anti-time-ordered correlator; thus, its path
integral representation involves a time reversal of the usual path integral. Instead
of introducing two separate path integrals corresponding to the second and fourth
lines of (8.45), we introduce the time contour shown in Fig. 8.2 and use this con-
tour to define a single path integral. In this contour the −iε shift is inherited from
the standard iε prescription in field theory. The fields A1 and A2 are the values at
the endpoints of the contour. The one-body density matrix then reads
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X = (t − iε, x0 + v Δt − ivε)Xf = (t0 − iε, x0 − ivε)   

X0 = (t0, x0) X = (t,x0 + v Δt)

t′c

tc

Figure 8.2 Time contour C in the complex time plane for the path integral (8.47).
Here, �t ≡ t − t0 and the iε prescription in time is translated to the longitudinal
coordinate x since the quark trajectory is x = vt . The two-point functions com-
puted from the partition function (8.47) are evaluated at two arbitrary points tC
and t ′C on the contour. Figure from Ref. [253].

f (X, r⊥; t) =
∑
A1,A2

∫
dx1dx2

∫
[DA] DQ DQ†ei

∫
C d4x{LY M+Q†(iu·D−M)Q}

ρa1a2[x1, x2; A1, A2]Uab(t)

Qa2 (x2, t0 − iε) Q†
a

(
X − r⊥

2
, t − iε

)
Qb

(
X + r⊥

2
, t
)

Q†
a1
(x1, t0) . (8.47)

By generalizing the static heavy quark computations in Ref. [611] to nonzero
velocity, standard techniques for fermionic path integrals can be used to do the
path integrals over the heavy quark fields in (8.47). To do so, we must compute
the Green’s function of the quark fields for a fixed configuration of gauge fields,
namely

iG(2, 1) = 〈
TC Qa2 (x2, t2C) Q†

a1
(x1, t1C)

〉
, (8.48)

where tC is the time along the contour and TC denotes the contour ordered product.
Since the quark Lagrangian has only one dynamical spacetime variable, the Green’s
function satisfies

(iu · D − M) iG(2, 1) = iδ3(x2 − x1)δC(t2C − t1C) , (8.49)

which has the solution

iG(2, 1) = e+i Mu·(X2−X1)

∫
C

dtC
γ

θ(tC − t1C) δ
4
C(X2 − X X1

(tC))

×
[

P exp

(
−i

∫ tC

t1C

dt ′
C

γ
uμAμ(X X1

(t ′
C))

)]
a2a1

, (8.50)

where Xμ
X1
(tC) = Xμ

1 + uμ(tC − t1C)/γ is the heavy quark worldline that passes
through X1. Carrying out this integration over the quark field and working to
leading order in T/M (which means neglecting the fermionic determinant) yields

f (X, r⊥; t) =
〈
tr
[
ρ
[
X + r⊥

2
, X − r⊥

2
; A1, A2

]
WC

[r⊥
2
,−r⊥

2

]]〉
A
, (8.51)
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(t0,x⊥ + r⊥/2, x0) (t,x⊥ + r⊥/2, x0 + vΔt)

(t,x⊥ − r⊥/2, x0 + vΔt − ivε)(t0 − iε,x⊥ − r⊥/2, x0 − ivε)

ρ°

Figure 8.3 Graphical representation of Eq. (8.51). The Wilson line indicated by
the black line is denoted WC[r⊥/2,−r⊥/2]. This Wilson line is traced with the
initial density matrix, ρo

a1a2
. The horizontal axis is along the time direction and

the vertical axis is along one of the transverse coordinates, x⊥. �t ≡ t −t0. Figure
from Ref. [253].

where the subscript A indicates averaging with respect to the gauge fields, and
where the Wilson line WC

[
r⊥/2,−r⊥/2

]
is defined in Fig. 8.3. We have used the

fact that the Green’s function of Eq. (8.41) is the (contour ordered) Wilson line.
Next, we perform a Taylor expansion of the time-evolved density matrix (8.51)

about r⊥ = 0, obtaining

f (X, r⊥; t) = f (X, 0; t) +
r2
⊥
2

〈
tr

[
∂2

∂r2
⊥
ρ
[
X + r⊥

2
, X − r⊥

2
; A1, A2

]
WC [0]

]〉
A

+
r2
⊥
2
κT�t 〈tr [ρ [X, X; A1, A2] WC [0]]〉A + O(r4

⊥) . (8.52)

The second term in this expression involves only derivatives of the initial density
matrix; thus, as in (8.39) it is the mean transverse momentum squared of the initial
distribution (which may be supposed to be small). In the last term, which scales
with the elapsed time �t , we have defined

κT�t = 1

4

1

〈trρWC[0]〉A

∫
C

dtCdt ′
C

〈
tr ρ[X, X; A1, A2] δ2WC[δy]

δy(tC) δy(t ′
C)

〉
A

, (8.53)

where tC denotes time along the contour depicted in Fig. 8.2, and κT�t is the
mean transverse momentum squared picked up by the heavy quark during the time
�t . We have expressed the transverse derivatives of the Wilson line as functional
derivatives with respect to the path of the Wilson line. The path δy denotes a small
transverse fluctuation δy(t) away from the path X1 = vt .

The contour δy may be split into two pieces, δy1 and δy2, which run along
the time-ordered and anti-time-ordered part of the path. Thus, the fluctuation
calculation defines four correlation functions



276 Probing strongly coupled plasma

iG11(t, t ′) = 1

〈trρoWC[0, 0]〉A

〈
tr ρo δ2WC[δy1, 0]

δy1(t) δy1(t ′)

〉
A

, (8.54)

iG22(t, t ′) = 1

〈trρoWC[0, 0]〉A

〈
tr ρo δ2WC[0, δy2]

δy1(t) δy2(t ′)

〉
A

, (8.55)

iG12(t, t ′) = 1

〈trρoWC[0, 0]〉A

〈
tr ρo δ2WC[δy1, δy2]

δy1(t) δy2(t ′)

〉
A

, (8.56)

iG21(t, t ′) = 1

〈trρoWC[0, 0]〉A

〈
tr ρo δ2WC[δy2, δy2]

δy1(t ′) δy2(t)

〉
A

. (8.57)

Note that the first two correlators correspond to time-ordered and anti-time-ordered
correlators, while the last two are unordered. We can then divide the integration
over tC and tC ′ in (8.53) into four parts corresponding to the cases where each of tC
and tC ′ is on the upper or lower half of the contour in Fig. 8.2. In the large �t limit
we can then use time translational invariance to cast (8.53) as

κT = lim
ω→0

1

4

∫
dte+iωt [iG11(t, 0) + iG22(t, 0) + iG12(t, 0) + iG21(t, 0)] .

(8.58)
This admittedly rather formal expression for κT is as far as we can go in general.
In Section 8.2.3 we evaluate κT (and κL ) in the strongly coupled plasma of N = 4
SYM theory.

Although our purpose in deriving the expression (8.58) is to use it to analyze
the case v 
= 0, it can be further simplified in the case that v = 0. On the time
scales under consideration, the static quark is in equilibrium with the plasma, and
the Kubo–Martin–Schwinger relation which takes the form

i [G11(ω) + G22(ω) + G12(ω) + G21(ω)] = −4 coth
( ω

2T

)
ImG R(ω) (8.59)

once ε has been allowed to vanish applies [571]. Here, G R is the retarded correlator.
Thus, we find

κT (v = 0) = lim
ω→0

(
−2T

ω

)
Im G R(ω) . (8.60)

If v 
= 0, however, we must evaluate the four correlators in the expression (8.58).

8.2.3 κT and κL for a moving heavy quark

We see from the expression (8.53) that the transverse momentum broadening coef-
ficient κT is extracted by analyzing small fluctuations in the path of the Wilson line
depicted in Fig. 8.3. In the strongly coupled plasma of N = 4 SYM theory, we
can use gauge/gravity duality to evaluate κT starting from (8.53). In the dual grav-
itational description, the small fluctuations in the path of the Wilson line amount
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to perturbing the location on the boundary at which the classical string (whose
unperturbed shape is given by (8.9)) terminates according to

(x1(t, z), 0, 0) → (x1(t, z), y(t, z), 0) . (8.61)

The perturbations of the Wilson line at the boundary yield fluctuations on the string
world sheet dragging behind the quark. Because we wish to calculate κT , in (8.61)
we have only introduced perturbations transverse to the direction of motion of the
quark. We shall quote the result for κL at the end; calculating it requires extending
(8.61) to include perturbations to the function x1(t, z).

In order to analyze fluctuations of the string worldsheet, we begin by casting the
metric induced on the string worldsheet in the absence of any perturbations

ds2
ws = R2

z2

(
− (

f (z) − v2
)

dτ 2 + f̂ (z)

f 2(z)
dσ 2 − v2 z2/z2

0

f (z)
(dτdσ + dσdτ)

)
(8.62)

in a simpler form. In (8.62), we have defined f̂ (z) ≡ 1 − z4/(z4
0γ

2). The induced
metric (8.62) is diagonalized by the change of worldsheet coordinates

t̂ = t√
γ

+ z0

2
√
γ

(
arctan

(
z

z0

)
− arctanh

(
z

z0

)

−√
γ arctan

(√
γ z

z0

)
+ √

γ arctanh

(√
γ z

z0

))
,

ẑ = √
γ z , (8.63)

in terms of which the induced metric takes the simple form

ds2
ws = R2

ẑ2

(
− f (ẑ)dt̂2 + 1

f (ẑ)
dẑ2

)
. (8.64)

Note that this has the same form as the induced metric for the worldsheet hang-
ing below a motionless quark, upon making the replacement (t̂, ẑ) → (t, z). In
particular, the metric (8.64) has a horizon at ẑ = z0, which means that the met-
ric describing the worldsheet of the string trailing behind the moving quark has a
worldsheet horizon at z = zws ≡ z0/

√
γ . For v → 0, the location of the worldsheet

horizon drops down toward the spacetime horizon at z = z0. But, for v → 1, the
worldsheet horizon moves closer and closer to the boundary at z = 0, i.e. towards
the ultraviolet. As at any horizon, the singularity at z = zws (i.e. at ẑ = z0) in (8.64)
is just a coordinate singularity. In the present case, this is manifest since (8.64)
was obtained from (8.62) which is regular at z = zws by a coordinate transforma-
tion (8.63). Nevertheless, the worldsheet horizon has clear physical significance: at
z = zws the local speed of light at this depth in the bulk matches the speed v with
which the quark at the boundary is moving. Furthermore, and of direct relevance
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to us here, because of the worldsheet horizon at z = zws fluctuations of the string
worldsheet at z > zws, below – to the infrared of – the worldsheet horizon, are
causally disconnected from fluctuations at z < zws above the worldsheet horizon
and in particular are causally disconnected from the boundary at z = 0.

The remarkable consequence of the picture that emerges from the above analysis
of the unperturbed string worldsheet trailing behind the quark at the boundary mov-
ing with speed v is that the momentum fluctuations of this quark can be thought
of as due to the Hawking radiation on the string worldsheet, originating from the
worldsheet horizon at z = zws [396, 253]. It is as if the force fluctuations that the
quark in the boundary gauge theory feels are due to the fluctuations of the string
worldsheet to which it is attached, with these fluctuations arising due to the Hawk-
ing radiation originating from the worldsheet horizon. It will therefore prove useful
to calculate the Hawking temperature of the worldsheet horizon, which we denote
Tws. As detailed in Appendix B this can be done in the standard fashion, upon using
a further coordinate transformation to write the metric (8.64) in the vicinity of the
worldsheet horizon in the form ds2

ws = −b2ρ2dt̂2+dρ2 for some constant b, where
the worldsheet horizon is at ρ = 0. Then, it is a standard argument that in order to
avoid having a conical singularity at ρ = 0 in the Euclidean version of this metric,
namely ds2

ws = b2ρ2d θ̂2 + dρ2, bθ̂ must be periodic with period 2π . The period-
icity of the variable θ̂ , namely 2π/b, is 1/T . Since at the boundary, where z = 0,
Eq. (8.63) becomes t̂ = t/

√
γ , this argument yields

Tws = T√
γ

, (8.65)

a result that we shall use below.
We have gained significant physical intuition by analyzing the unperturbed string

world sheet, but in order to obtain a quantitative result for κT we must introduce the
transverse fluctuations y(t, z) defined in (8.61) explicitly. We write the Nambu–
Goto action for the string worldsheet with y(t, z) 
= 0, and expand it to second
order in y, obtaining the zeroth order action (8.5) plus a second order contribution

S(2)
T [y] = γ R2

2πα′

∫
dt̂d ẑ

ẑ2

1

2

(
ẏ2

f (ẑ)
− f (ẑ)y′2

)
, (8.66)

where ˙ and ′ represent differentiation with respect to t̂ and ẑ respectively. This
action is conveniently expressed as

S(2)
T [y] = − γ R2

2πα′

∫
dt̂d ẑ

ẑ2

1

2

√−hhab∂a y∂b y, (8.67)

with hab the induced metric on the unperturbed worldsheet that we have analyzed
above. The existence of the worldsheet horizon means that we are only interested
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in solutions to the equations of motion for the transverse fluctuations y obtained
from (8.67) that satisfy infalling boundary conditions at the worldsheet horizon.
This constraint in turn implies a relation among the correlators analogous to those
in (8.58) that describe the transverse fluctuations of the worldsheet, and in fact the
relation turns out to be analogous to the Kubo–Martin–Schwinger relation (8.59)
among the gauge theory correlators [253]. Consequently, for a quark moving with
velocity v the transverse momentum broadening coefficient κT (v) is given by the
same expression (8.60) that is valid at v = 0 with T replaced by the worldsheet
temperature Tws of (8.65) [396, 253]. That is,

κT (v) = lim
ω→0

(
− 2 Tws

ω
ImĜ R(ω)

)
, (8.68)

where Ĝ R denotes the retarded correlator at the worldsheet horizon. The fact that
in the strongly coupled theory there is a KMS-like relation at v 
= 0 after all is a
non-trivial consequence of the development of the worldsheet horizon.

The computation of the retarded correlator follows the general procedure of
Ref. [747] described in Section 5.3. Since the action (8.66) is a function of t̂ which
is given by t/

√
γ at the boundary, the retarded correlator is a function of ω̂ = √

γω

(with ω the frequency of oscillations at the boundary). To avoid this complication,
and in particular in order to be able to apply the general results for Im G R that we
derived in Section 6.2, it is convenient to define

t̃ = √
γ t̂ , (8.69)

so that t̃ = t at the boundary. We now wish to apply the general expressions (A.10),
(6.17) and (6.18). In order to do so, we identify the world sheet metric hab and the
field y in the action (8.67) with the metric gM N and the field φ in the action (6.16),
meaning that in our problem the function q in (6.16) takes the specific form

1

q(z)
= γ R2

2πα′
1

ẑ2
=

√
λ

2π z2
. (8.70)

Furthermore, for the two-dimensional worldsheet metric we have −h = ht̃ t̃ hzz ,
meaning that from the general result (6.25) we find

− lim
ω→0

Im Ĝ R(ω)

ω
= 1

q(zws)
= γ

√
λ

2π
(πT )2 , (8.71)

and thus

κT = √
λγπT 3 , (8.72)

which is our final result for the transverse momentum broadening coefficient.
The analysis of longitudinal fluctuations and the extraction of κL proceed analo-

gously to the analysis we have just presented, except that in (8.61) we introduce a
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perturbation to the function x1 instead of a transverse perturbation y. At quadratic
order, there is no coupling between the transverse and longitudinal perturbations.
Remarkably, the action for longitudinal fluctuations of the string is the same as that
for transverse fluctuations, Eq. (8.66) up to a constant:

S(2)
L [x] = γ 2S(2)

T [x] , (8.73)

with γ the Lorentz factor. Following the analogous derivation through, we con-
clude that

κL = γ 2κT = γ 5/2
√
λπT 3 . (8.74)

This result shows that κL depends very strongly on the velocity of the heavy quark.
Indeed, κL grows faster with increasing velocity than the energy squared of the
heavy quark, γ 2M2. Thus, the longitudinal momentum acquired by a quark mov-
ing through a region of strongly coupled N = 4 SYM plasma of finite extent does
not become a negligible fraction of the energy of the quark in the high energy limit.
This is very different from the behavior of a quark moving through a weakly cou-
pled QCD plasma, in which the longitudinal momentum transferred to the quark
can be neglected in the high energy limit. However, we should keep in mind that,
due to the bound (8.18), for a given value of the mass M and the coupling

√
λ the

calculation of κL (and of κT ) is only valid for finite energy quarks, with γ limited
by (8.18).

The fact that κL grows faster with γ than γ 2M2 would seem to indicate that
once the heavy quark has traveled through the medium for a distance L so long
that κL L > γ 2M2, meaning

LπT >

(
M

T

)2 1√
γ λ

, (8.75)

the calculation in this section must break down since the fluctuations in the longi-
tudinal momentum of the quark have become greater than the momentum itself. In
fact, this criterion never comes into play because the calculation always “breaks
down”, in a trivial sense, earlier. The heavy quark feels a drag force given by
(8.12), meaning that after it has traveled a distance L = 1/ηD, its momentum
has been degraded by a factor of order 1. This means that calculating the longitu-
dinal fluctuations as if the γ of the quark is constant, and comparing κL L to the
initial momentum of the quark, only makes sense for L < 1/ηD, which according
to (8.13) means that L must satisfy

LπT <
2M

T

1√
λ
. (8.76)

We have already seen that the entire calculation is valid only as long as the criterion
(8.18) is satisfied, which is to say (M/T ) >

√
γ λ. This means that at the L at
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which the criterion (8.76) ends the calculation, κL L is smaller than γ 2M2 by at
least a factor of order

√
λ, and the regime (8.75) is never reached.

We see from the expressions (8.72) and (8.74) for κT and κL derived by explicit
analysis of the fluctuations that in the v → 0 limit we have κT = κL = κ with
κ given by (8.34), as we obtained previously from the drag coefficient ηD via the
use of the Einstein relation (8.33). This is an example of the fluctuation–dissipation
theorem.

In the gauge theory, momentum broadening is due to the fluctuating force exerted
on the heavy quark by the fluctuating plasma through which it is moving. In the
dual gravitational description, the quark at the boundary feels a fluctuating force
due to the fluctuations of the world sheet that describes the profile of the string to
which the quark is attached. These fluctuations have their origin in the Hawking
radiation of fluctuations of the string worldsheet originating from the worldsheet
horizon. The explicit computation of this worldsheet Hawking radiation for a quark
at rest was performed in Refs. [311, 751], and these results nicely reproduce those
we have obtained within the Langevin formalism. This computation was extended
to quarks moving at nonzero velocity in Refs. [378, 254].

8.2.4 Heavy quarks in hot QCD and in heavy ion collisions

So far, we have discussed a general framework for calculating the transverse and
longitudinal momentum broadening κT and κL that enter the Langevin equations
(8.24) and (8.25) for non-relativistic heavy quarks. We have then given explicit
results for strongly coupled N = 4 SYM theory. We now discuss how these results
relate to, and help us to understand, what we know about hot QCD and about the
phenomenology of heavy ion collisions. We consider the case in which the relative
velocity of the heavy quark and the hot fluid is small, meaning that κT = κL ≡ κ . In
this regime, the heavy quark is carried along by the moving fluid, diffusing within
it with a diffusion constant that is given by

D = 2T 2

κ
, (8.77)

meaning that the result (8.34) translates into the statement that a heavy quark in the
strongly coupled N = 4 SYM theory plasma obeys a Langevin equation with

D = DSYM ≡ 4√
λ

1

2πT
≈ 1.1

2πT

√
1

αSYMNc
. (8.78)

The diffusion constant D parametrizes how strongly the heavy quark couples to
the medium. At weak coupling, smaller D corresponds to stronger coupling and
shorter mean free path. However, D is well defined even if it is so small that it
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does not even make sense to define a mean free path for the heavy quark, as is the
case in the plasma of strongly coupled N = 4 SYM theory in which D is given
by (8.78) with λ large. Recall that in this case we have calculated κ , and hence
D, in the earlier parts of this section without ever defining the notion of a mean
free path.

In a QCD plasma that is hot enough that it is sufficiently weakly coupled that
lowest order perturbation theory can be used as a guide, we also have reliable
information about the diffusion constant. In this regime, D is large and the diffusing
heavy quark has a long mean free path. Leading order perturbative calculations
for a weakly coupled QCD plasma [628] can be summarized by an approximate
expression

Dweakly coupled QCD ≈ 14

2πT

(
0.33

αs

)2

, (8.79)

in which we have neglected an additional logarithmic dependence on αs . How-
ever, the perturbative expansion converges quite poorly meaning that this result
only becomes quantitatively reliable at values of αs that are much smaller than
0.33 [237, 238]. Nevertheless, we note that if we simply compare (8.78) and (8.79)
with Nc = 3 and αSYM = αs = 0.33 (or 0.5) the diffusion constant in a strongly
coupled N = 4 SYM plasma is smaller than that in a weakly coupled QCD plasma
by a factor of about 12 (or 7). It is reasonable to guess that the diffusion constant
for a heavy quark in the strongly coupled QCD plasma produced in heavy ion col-
lisions lies between these two estimates. Indeed, early estimates of nonperturbative
contributions to D in the strongly coupled QCD plasma suggested that at a tem-
perature T = 200 MeV it should have a D that is smaller than the weakly coupled
result by a factor of three or four [784]. Before we turn to a discussion of what can
be inferred from experiments to date, we shall discuss in turn two possible paths
toward improved theoretical predictions. Neither (8.78) nor (8.79) can be applied
quantitatively to the strongly coupled plasma produced in heavy ion collisions even
though each is reliable in a certain domain – in one case in the strongly coupled
plasma of a non-Abelian gauge theory that is not QCD and in the other case in the
weakly coupled QCD plasma at temperatures that are orders of magnitude higher
than those accessed in experiment.

We first ask whether it is possible to sharpen inferences concerning the value of
D in the strongly coupled plasma of QCD that can be drawn from the result (8.78).
Can we do better than just comparing N = 4 SYM theory and QCD at αSYM = αs?
We need to ask how D would change if we could deform N = 4 SYM theory so
as to turn it into QCD. This is not a question to which the answer is known, but
we can make several observations. First, in a large class of conformal theories, at
a given value of T , Nc and λ both the drag coefficient ηD and κ (and therefore
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1/D) scale with the square root of the entropy density [584]. (The argument is the
same as that for the jet quenching parameter q̂, and we shall describe it briefly in
Section 8.5.) The number of degrees of freedom in QCD is smaller than that in
N = 4 SYM theory by a factor of 47.5/120 for Nc = 3, suggesting that κ and ηD

should be smaller in QCD by a factor of
√

47.5/120 = 0.63, making D larger by
a factor of

√
120/47.5 = 1.59. Note that ηD and 1/D scale in the same way even

though they are proportional to T 2 and T respectively, meaning that scaling these
quantities between two theories with different numbers of degrees of freedom is
not equivalent to scaling the temperature. Second, N = 4 SYM theory is of course
conformal, while QCD is not. Analysis of one toy model in which nonconformal-
ity can be introduced by hand suggests that turning on nonconformality to a degree
suggested by lattice calculations of QCD thermodynamics reduces D somewhat,
by a few tens of percent or perhaps at most by a factor of two [585]. Turning on
nonconformality in N = 2∗ theory also reduces D [468]. In a different model,
however, reducing the number of degrees of freedom as in QCD and simultane-
ously turning on nonconformality (again to a degree benchmarked against lattice
calculations of (ε − 3P)/T 4) increases D by a factor of two to five [419]. We
conclude that, at present, D in a strongly coupled QCD plasma cannot be inferred
reliably from these arguments, with the reduction in degrees of freedom increasing
D relative to (8.78) while the nonconformality may push in the opposite direction
or may increase D further. We can summarize the current uncertainty by estimat-
ing that D in the strongly coupled plasma of QCD is larger than that in (8.78) by a
factor that lies between one and five.

The other possible route to improved theoretical predictions of D in the strongly
coupled plasma of QCD is lattice quantum field theory. This route is not straight-
forward since diffusion is a real time process meaning that D cannot be written
directly in terms of derivatives of the thermodynamic partition function. As we
have already seen in our discussion of the lattice determination of spectral functions
via the maximum entropy method in Chapter 3, constraining real time correlators
using lattice calculations done at finitely many points in imaginary time necessar-
ily involves making additional assumptions. In the particular case of the diffusion
constant D, however, it is possible to make progress [240]. In the large quark mass
limit, heavy quark effective theory can be used to relate D to a certain Euclidean
correlation function involving color–electric fields that can be related by analytic
continuation to the random force two-point correlators 〈ξ(t) ξ(t ′)〉 = κδ(t − t ′)
appearing in (8.25). Furthermore, unlike in the case of the transport quantities that
we have discussed in Section 6.3, in this case there is no transport peak in the
relevant spectral function. Quite unlike the case illustrated in Fig. 6.1, here the rel-
evant spectral function is featureless at small frequency at weak coupling [240].
This indicates that at least in principle it should be possible to constrain D reliably
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from Euclidean lattice calculations. A first, exploratory, study based on this method
is underway [357], to date only in the SU (3) gluon plasma (QCD without quarks)
and to date with the continuum limit and the infinite volume limit not yet taken.
Although exploratory, these calculations are already unambiguous in showing that
DQCD is significantly smaller than Dweakly coupled QCD in (8.79), as can be antici-
pated from the general consideration that smaller D corresponds to smaller mean
free paths. The calculations suggest that [357]

Dlattice QCD ∼ 3 − 5

2πT
, (8.80)

for QCD without quarks in a temperature range between 1.5Tc and 3Tc, and taking
into account only statistical uncertainties. The systematic uncertainties in this esti-
mate remain to be quantified. It is nevertheless intriguing to see the estimate (8.80)
obtained from pioneering lattice calculations landing in the same range as the esti-
mate we came to in the previous paragraph by considering the (also pioneering)
attempts to investigate how the estimate (8.78) for D would change if we could
deform N = 4 SYM theory so as to turn it into QCD.

In heavy ion collisions, information about the motion of heavy quarks in the
plasma is experimentally accessible via measurements of the semi-leptonic or
hadronic decay products of heavy-flavored hadrons. In general, two classes of
observables can be expected to provide experimental constraints on the Langevin
dynamics of heavy quarks. First, heavy quarks lose energy by drag, as discussed
in Section 8.1. Therefore, the characterization of heavy quark energy loss via
the nuclear modification factor of the observed decay products of heavy-flavored
hadrons can constrain the drag coefficient ηD and, via (8.33) and (8.77) in the case
where the heavy quark velocity is not large, the diffusion coefficient D. Second,
if D is small enough that on the time scales available in a heavy ion collision the
motion of the heavy quarks is diffusive (i.e. if the heavy quark mean free path is not
so long that the heavy quarks scatter only a few times) then by the time the plasma
hadronizes the heavy quarks will have been picked up (or slowed down) and car-
ried along by the collective flow of the strongly coupled liquid in which they find
themselves. That is, if D is small enough the heavy quarks diffusing in the mov-
ing fluid will end up with the same mean velocity as the fluid itself. This results
in a non-vanishing elliptic flow v2 for heavy quarks with transverse momenta of
order their mass or smaller. While there are parton energy loss processes that do
not involve Langevin dynamics (see for instance the radiative parton energy loss
discussed in Section 2.3), the observation of sizable elliptic flow in the decay prod-
ucts of heavy-flavored hadrons [18] provides strong support for the picture that
the dynamics of non-relativistic heavy quarks produced in heavy ion collisions is
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described by a Langevin equation with a small enough D that the diffusing heavy
quarks end up being carried along by the moving fluid.

The qualitative considerations above indicate that measurements of RAA and
v2 for the decay products of heavy-flavored hadrons can be used to constrain the
heavy quark diffusion constant D. Many authors are developing models based upon
Langevin dynamics to describe the motion of heavy quarks within the hot expand-
ing fluid produced in heavy ion collisions [628, 785, 464, 784, 32, 138, 410, 706,
656, 658, 41]. Many of these analyses include comparisons to data on isolated elec-
trons, which are most probably produced in the decays of mesons containing either
c or b quarks but with which there is no way to separate these two contributions.
The more refined measurements needed to separately identify the decay products
of hadrons containing c and b quarks are the object of intense experimental effort
at the time of writing. There are also significant theoretical uncertainties related to
determining the range of validity of a Langevin analysis. For example, to focus on
heavy quarks whose relative velocity through the hot strongly coupled fluid was
sufficiently small one seeks to study the decay products of heavy-flavored hadrons
at sufficiently small transverse momentum, but a quantitative criterion for what
“sufficiently small” means is missing. Without discussing these model-dependent
uncertainties in more detail, we emphasize here that data from heavy ion colli-
sions show two robust qualitative features: the observed elliptic flow of the decay
products of heavy-flavored hadrons and the heavy quark energy loss measured via
the nuclear modification factor of the same decay products are comparable to the
elliptic flow and nuclear modification factor of light-flavored hadrons. Both these
classes of observations provide strong qualitative support to a picture in which
heavy quarks lose energy efficiently and end up following the flow field of the
strongly coupled plasma. This explains why even given all the uncertainties that
make a quantitative determination difficult at present, the comparisons between
models of Langevin dynamics and heavy ion collision data all typically favor small
values of the diffusion constant D. For example, two studies that compare Langevin
dynamics to RHIC data yield [32]

DQGP@RHIC ≈ 2 − 6

2πT
(8.81)

and [784]

DQGP@RHIC ≈ 3 − 5

2πT
. (8.82)

These phenomenologically determined values of the diffusion constant are remark-
ably similar to the estimate that the diffusion constant in the quark–gluon plasma of
QCD is one to five times greater than the result obtained in (8.78) for the plasma of
strongly coupled N = 4 SYM theory and to the estimate (8.80) obtained in lattice
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calculations. So, although there is plenty of room for improvement on all fronts, at
present this story hangs together rather well indeed.

8.3 Disturbance of the plasma induced by an energetic heavy quark

In Sections 8.1 and 8.2 we have analyzed the effects of the strongly coupled plasma
of N = 4 SYM theory on an energetic heavy quark moving through it, focusing on
how the heavy quark loses energy in Section 8.1 and on the momentum broadening
that it experiences in Section 8.2. In this section, we turn the tables and analyze the
effects of the energetic heavy quark on the medium through which it is propagat-
ing [713, 763, 245, 719, 727, 708, 244, 246, 709, 363, 811, 399, 810, 288, 403, 408,
400, 289, 655, 652, 401, 648, 657, 649, 423, 147, 148, 650, 410, 651, 149]. From
the point of view of QCD calculations and heavy ion collision phenomenology,
the problem of understanding the response of the medium to an energetic probe
is quite complicated. An energetic particle passing through the medium can excite
the medium on many different wavelengths. Furthermore, even if the medium had
thermalized prior to its interaction with the probe, the disturbance caused by the
probe must drive the medium out of equilibrium, at least close to the probe. And,
non-equilibrium processes are difficult to treat, especially at strong coupling.

Furthermore, in general the formulation of how an energetic heavy quark
interacts with the medium requires detailed information about the microscropic
dynamics that couples the hard probe and the medium, meaning that in almost
all analyses quantum field theory and hydrodynamics must be supplemented by
model-dependent assumptions. There is but one known example where a field
theoretically consistent formulation of heavy quark energy loss in a strongly cou-
pled plasma determines fully and without additional model-dependence how this
hard probe excites the medium. This is the holographic formulation of heavy
quark energy loss via drag that we have discussed in detail in Section 8.1.
That the gauge/gravity correspondence provides such a unique arena for study-
ing plasma excitations induced by hard probes justifies the detailed discussion of
these excitations that we shall present in this section.

At various points in the following, we shall compare plasma disturbances cal-
culated via gauge/gravity duality to hydrodynamic excitations. The latter can be
formulated in a simple model in which the energetic heavy quark is modeled as
a simple line source in the hydrodynamic equations of motion for the fluid. The
model-dependence of this fluid dynamic picture of probe–medium interactions
resides in the details of the source term entering the hydrodynamic equations and,
of course, in the assumption that the hard probe excites only hydrodynamic per-
turbations. There are, however, several reasons for starting our discussion with
this simple model in Section 8.3.1. First, historically, the analysis of jet–medium
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interactions started with the discussion of such hydrodynamical models. Moreover,
as we have seen throughout this book, the strongly coupled N = 4 SYM plasma
is an almost perfect fluid. This makes it natural to discuss within a hydrodynamic
picture the perturbations induced by heavy quarks in the strongly coupled N = 4
SYM plasma. In particular, as we shall see in the following, a hydrodynamic model
of jet–medium interactions provides a simple setting in which to disentangle dif-
ferent classes of hydrodynamic perturbations in the fluid. For a hard probe that
propagates along a straight-line trajectory with a velocity v larger than the sound
velocity in the plasma, one expects the excitation of two kinds of hydrodynamic
perturbations. First, there should be sound waves that form a Mach cone, namely a
sound front moving away from the trajectory of the energetic particle at the Mach
angle

cos"M = cs

v
. (8.83)

In addition, however, it is reasonable to expect that even a pointlike source in the
hydrodynamic equations should perturb the fluid through which the heavy quark
has moved, stirring it up and/or setting it into motion following behind the quark
that disturbed it. Certainly a macroscopic object moving through a fluid leaves a
wake behind, and to some degree so too should a pointlike heavy quark. As we
shall discuss, both a Mach cone and a wake can be accommodated in the hydro-
dynamical modeling of jet–medium interactions, but hydrodynamic considerations
alone do not determine their relative importance. And, their relative importance
will prove important in assessing the possibility that heavy quark energy loss in
heavy ion collisions may result in observable Mach-cone-like patterns in the final
state hadrons. We shall see that both a Mach cone and a wake are found in the holo-
graphic computation of the response of the N = 4 SYM plasma to a heavy quark
probe that we present in Section 8.3.2, and in this context their relative importance
is fully determined. Keeping this destination in mind, the detailed discussion in
Section 8.3.1 of the hydrodynamic framework within which these phenomena in
fluid physics can be pictured easily will be very useful.

8.3.1 Hydrodynamic preliminaries

It is natural to attempt to describe the disturbance of the medium using hydro-
dynamics, with the energetic particle treated as a source for the hydrodynamic
equations. This approach is based on two assumptions. First, one must assume that
the medium itself can be described hydrodynamically. Second, one has to assume
that the non-equilibrium disturbance in the vicinity of the energetic particle relaxes
to some locally equilibrated (but still excited) state after the energetic particle has
passed on a timescale that is short compared to the lifetime of the hydrodynamic
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medium itself. The first assumption is clearly supported by data from heavy ion
collisions at RHIC and the LHC, as discussed in Section 2.2. The second assump-
tion is stronger, and less well justified. Even though, as we saw in Section 2.2, there
is evidence from the data that in heavy ion collisions a hydrodynamic medium in
local thermal equilibrium forms rapidly, after only a short initial thermalization
time, it is not clear a priori that the relaxation time for the disturbance caused by
an energetic quark plowing through this medium is comparably short, particularly
since the density of the medium drops with time. Finally, even if a hydrodynamic
approach to the dynamics of these disturbances is valid, the details of the functional
form of this hydrodynamic source are unknown, since the relaxation process is not
under theoretical control.

Keeping the above difficulties in mind, it is still possible to use the symmetries
of the problem and some physical considerations to make some progress toward
understanding the source for the hydrodynamic equations corresponding to the
disturbance caused by an energetic quark. If the propagating parton is sufficiently
energetic, we may assume that it moves at a fixed velocity; this ansatz forces the
source to be a function of x − vt , with the parton moving in the x-direction. We
may also assume that the source has cylindrical symmetry around the parton direc-
tion. We may also constrain the source by the amount of energy and momentum
that is fed into the plasma, which for the case of the plasma of strongly coupled
N = 4 SYM theory we calculated in Section 8.1. In an infinite medium, at late
enough times, all the energy lost by the probe must thermalize and be incorporated
into heating and/or hydrodynamic motion. (This may not be a good approxima-
tion for a very energetic parton propagating through weakly coupled plasma of
finite extent since, as we have discussed in Section 2.3, in this setting the parton
loses energy by the radiation of gluons whose energy and momentum are large
relative to the temperature of the medium, which may escape from the medium
without being thermalized.) Although the caveats above caution against attempt-
ing to draw quantitative conclusions without further physical inputs, the success of
the hydrodynamical description of the medium itself support the conclusion that
there must be some hydrodynamic response to the passage of the energetic particle
through it.

From the point of view of hydrodynamics, the disturbance of the medium
induced by the passage of an energetic probe must be described by adding some
source to the conservation equation:

∂μT μν(x) = J ν(x) . (8.84)

As we have stressed above, we do not know the functional form of the source,
since it not only involves the way in which energy is lost by the energetic par-
ticle but also how this energy is thermalized and how it is incorporated into the
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medium. The source will in general depend not only on the position of the quark
but also on its velocity. In this subsection, we will use general considerations valid
in any hydrodynamic medium to constrain the functional form of the source. From
Eq. (8.84) it is clear that the amount of energy–momentum deposited in the plasma
is given by.

d Pν

dt
=

∫
d3x J ν(x) . (8.85)

We note as an aside that if the source moves supersonically, one component of its
energy loss is due to the emission of sound waves. This is conventionally known as
sonic drag, and is a part of the energy loss computed in Section 8.1.

We now attempt to characterize the hydrodynamic modes that can be excited in
the plasma due to the deposition of the energy (8.85). We will assume, for simplic-
ity, that the perturbation on the background plasma is small. We will also assume
than the background plasma is static. The modification of the stress tensor

δT μν ≡ T μν − T μν

background (8.86)

satisfies a linear equation.
Since in the hydrodynamic limit the stress tensor is characterized by the local

energy density, ε, and the three components of the fluid spatial velocity, ui , there
are only four independent fields, which can be chosen to be

E ≡ δT 00 and Si ≡ δT 0i . (8.87)

Using the hydrodynamic form of the stress tensor, (2.13), all other stress tensor
components can be expressed as a function of these variables. Since we have
assumed that these perturbations are small, all the stress tensor components can
be expanded to first order in the four independent fields (8.87).

In Fourier space, keeping the shear viscosity correction, the linearized form of
Eqs. (8.84) for the mode with a wave vector q that has the magnitude q ≡ |q| take
the form

∂tE + iqSL = J 0 ,

∂t SL + ic2
s qE + 4

3

η

ε0 + p0
q2SL = JL ,

∂tST + η

ε0 + p0
q2ST = JT , (8.88)

where S = SLq/q + ST , J = JLq/q + JT , L and T refer to longitudinal and trans-
verse relative to the hydrodynamical wave-vector q and ε0, p0, cs = √

dp/dε and
η are the energy density, pressure, speed of sound and shear viscosity of the unper-
turbed background plasma. We observe that the longitudinal and transverse modes
are independent. This decomposition is possible since the homogeneous equations
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have a SO(2) symmetry corresponding to rotation around the wave-vector q. The
spin zero (longitudinal) and spin one (transverse) modes correspond to the sound
and diffusion mode respectively. (The spin two mode is a subleading perturbation
in the gradient expansion, since its leading contribution is proportional to veloc-
ity gradients.) After combining the first two equations of Eqs. (8.88) and doing a
Fourier transformation, we find(

ω2 − c2
s q2 + i

4

3

η

ε0 + p0
q2ω

)
SL = i c2

s q J 0 + iωJL ,(
iω − η

ε0 + p0
q2

)
ST = −JT . (8.89)

The sound mode (SL) satisfies a wave equation and propagates with the speed of
sound while the diffusion mode (ST ), which does not propagate, describes the dif-
fusion of transverse momentum as opposed to wave propagation. We also note
that only the sound mode results in fluctuations of the energy density, while the
diffusion mode involves only momentum densities (the Si of Eq. (8.87)). In the
linear approximation that we are using, the excitation of the diffusion mode pro-
duces fluid motion but does not affect the energy density. This result can be further
illustrated by expressing the energy fluctuations in terms of the velocity fields

δT 00 = δε + 1

2
(ε + P) (δv)2 + · · · . (8.90)

The second term in this expression corresponds to the kinetic energy contribution
of the fluid motion which takes a non-relativistic form due to the small perturbation
approximation. This expression is quadratic in the velocity fluctuation, and thus is
not described in the linearized approximation. The sound mode corresponds to both
compression/rarefaction of the fluid and motion of the fluid; sound waves result in
fluctuations of the energy density as a consequence of the associated compression
and rarefaction. But, the diffusion mode corresponds to fluid motion only and, to
this order, does not affect the energy density.

Solving the linearized hydrodynamic equations (8.88) yields hydrodynamic
fields given by

E(t, x) =
∫

dω

2π

d3q

(2π)3

iq JL + iωJ 0 − �sq2 J 0

ω2 − c2
s q2 + i�sq2ω

e−iωt+iq·x, (8.91)

SL(t, x) =
∫

dω

2π

d3q

(2π)3

q
q

c2
s iq J 0 + iωJL

ω2 − c2
s q2 + i�sq2ω

e−iωt+iq·x, (8.92)

ST (t, x) =
∫

dω

2π

d3q

(2π)3

−JT

iω − Dq2
e−iωt+iq·x, (8.93)
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where the sound attenuation length and the diffusion constant are

�s ≡ 4

3

η

ε0 + p0
, (8.94)

D ≡ η

ε0 + p0
. (8.95)

We note in passing that the integral of the longitudinal momentum density over all
space vanishes.

The hydrodynamic solutions (8.91), (8.92) and (8.93) are only of formal value
without any information about the source. And, as we have stressed above, a lot of
nonlinear, non-equilibrium physics goes into determining the source as a function
of the coordinates. Still, we can make some further progress. If we assume that the
energetic quark moves at a constant velocity v for a long time (as would be the case
if the quark is either ultra-relativistic or very heavy) then we expect

Jμ(ω, k) = 2πδ(ω − v · q)Jμ
v (q) , (8.96)

where the factor δ(ω − v · q) comes from Fourier transforming δ(x − vt). We
also note that far away from the source, and at sufficiently small q that we can
neglect any energy scales characteristic of the medium and any internal structure
of the particle moving through the medium, the only possible vectors from which
to construct the source are v and q. In this regime, we may decompose the source as

J 0
v (q) = e0(q),

Jv(q) = v g0(q) + q g1(q) . (8.97)

Then, inspection of the solutions (8.91), (8.92) and (8.93) together with the obser-
vation that a particle moving with a velocity close to the speed of light loses similar
amounts of energy and momentum, shows that, at least for an ultra-relativistic
probe, non-vanishing values of e0(q) must be linked to non-vanishing values of
g0(q). We call this case Scenario 1. However, if the interaction of the probe with
the plasma is such that both g0 and e0 are zero (or parametrically small compared
to g1), from Eqs. (8.85) and (8.97) and since q g1(q) is a total derivative, one may
mistakenly conclude that the energetic probe has created a disturbance carrying
zero energy and momentum. In this scenario, which we shall call Scenario 2, the
energy and momentum loss are actually quadratic in the fluctuations. These two
scenarios lead to disturbances with different characteristics. In Scenario 2, only the
sound mode is excited while in Scenario 1, both the sound and diffusion mode are
excited. The correct answer for a given energetic probe may lie in between these
two extreme cases.

The phenomenological implications of this analysis depend critically on the
degree to which the diffusion mode is excited. This mode leads to an excess of
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momentum density along the direction of the source which does not propagate out
of the region of deposition, but only diffuses away. Therefore, the diffusion mode
excited by an energetic quark moving through the plasma corresponds to a wake
of moving fluid, trailing behind the quark and moving in the same direction as the
quark. In a heavy ion collision, therefore, the diffusion wake excited by the away-
side energetic quark will become hadrons at �φ ∼ π , whereas the Mach cone will
become a cone of hadrons with moment at some angle away from �φ = π . If most
of the energy dumped into the medium goes into the diffusion wake, even if a Mach
cone were produced it would be overwhelmed in the final state, and invisible in the
data. Only in the case in which the diffusion mode is absent (or sufficiently small)
is the formation of a Mach cone potentially visible as a non-trivial correlation in
the data, i.e. in the momenta of the hadrons in the final state.

8.3.2 AdS computation

In Section 8.1 we have computed the amount of energy lost by a heavy quark as it
plows through the strongly coupled N = 4 SYM theory plasma. Here, we com-
pute the fate of this energy. Remarkably, every one of the difficulties associated
with answering this question in QCD or attempting to do so in a hydrodynamic cal-
culation without microscopic inputs can be addressed for the case of an energetic
heavy quark propagating through the strongly coupled plasma of N = 4 SYM the-
ory. As in Sections 8.1 and 8.2, we shall assume that the relevant physics is strongly
coupled at all length scales, treating the problem entirely within strongly coupled
N = 4 SYM theory. In this calculation, the AdS/CFT correspondence is used to
determine the stress tensor of the medium, excited by the passing energetic quark,
at all length scales. This dynamical computation will allow us to quantify to what
extent hydrodynamics can be used to describe the response of the strongly coupled
plasma of this theory to the disturbance produced by the energetic quark, as well as
to study the relaxation of the initially far-from-equilibrium disturbance. This cal-
culation applies to quarks with mass M whose velocity respects the bound (8.18).
We note here that the calculation whose results we shall describe in Section 8.6
of the waves of energy produced in the strongly coupled plasma of N = 4 SYM
theory by the motion of a quark through it along a circular trajectory is done using
similar techniques to those that we shall present in full here, here in the simpler
setting of a quark moving through the plasma along a straight line.

In order to address the fate of the energy lost by a heavy quark plowing through
the strongly coupled plasma of N = 4 SYM theory, we must determine the stress
tensor of the gauge theory fluid at the boundary that corresponds to the string
(8.9) trailing behind the quark in the bulk. In the dual gravitational theory, this
string modifies the metric of the (4+1)-dimensional geometry. That is, it produces
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gravitational waves. The stress energy tensor of the gauge theory plasma at the
boundary is determined by the asymptotic behavior of the bulk metric perturbations
as they approach the boundary [363, 288, 289, 403].

The modifications of the 4 + 1-dimensional metric due to the presence of the
trailing string are obtained by solving the Einstein equations

Rμν − 1

2
Gμν(R − 2�) = κ2

5 tμν , (8.98)

where κ2
5 = 4π2 R3/N 2

c and � = −6/R2 with R the AdS radius and where tμν is
the five-dimensional string stress tensor, which can be computed from the Nambu–
Goto action:

tμν = − 1

2πα′

∫
dτdσ

√−h√−G
hab∂a Xμ(τ, σ )∂b X ν(τ, σ )δ(5) (x − X (τ, σ )) ,

(8.99)
where hab is the induced metric on the string and X (τ, σ ) is the string profile. For
the case of a trailing string (8.9), the stress tensor is given by

t00 = s( f + v2z4/z4
0) ,

t0i = −svi ,

t0z = −sv2z2/z2
0 f ,

tzz = s( f − v2)/ f 2 ,

ti j = sviv j ,

ti z = svi z
2/z2

0 f , (8.100)

where

s = zγ
√
λ

2πR3
δ3 (x − vt − ζ(z)) , (8.101)

with ζ(z) the string profile (8.9). After solving the Einstein equations (8.98) with
the string stress tensor (8.100), the expectation value of the boundary stress tensor
is then obtained by following the prescription (5.48), namely by performing func-
tional derivatives of the Einstein–Hilbert action evaluated on the classical solution
with respect to the boundary metric.

We need to analyze the small fluctuations on top of the background AdS black
hole metric. Denoting these fluctuations by hμν and the background metric by gμν ,
the left-hand side of the Einstein equations (8.98) are given to leading order in
hμν by

− D2hμν + 2Dσ D(μhν)σ − DμDνh + 8

R2
hμν

+
(

D2h − Dσ Dδhσδ − 4

R2
h

)
gμν = 0 , (8.102)
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with Dμ the covariant derivative with respect to the full metric, namely gμν + hμν .
This equation has a gauge symmetry

hμν → hμν + Dμξν + Dνξμ , (8.103)

inherited from reparameterization invariance, that, together with five constraints
from the linearized Einstein equations (8.102), reduces the number of degrees of
freedom from fifteen to five. It is therefore convenient to introduce gauge invariant
combinations which describe the independent degrees of freedom. These can be
found after Fourier transforming the (3 + 1)-dimensional coordinates. The gauge
invariants can be classified by how they transform under SO(2) rotations around the
wave-vector q. Upon introducing Hμν = z2hμν/R2, one possible choice of gauge
invariants is given by [288, 289]

Z(0) = q2 H00 + 2ωq H0q + ω2 Hqq + 1

2

[
(2 − f )q2 − ω2

]
H,

Z(1)α = (
H ′

0α − iωHα5
)
,

Z(2)αβ =
(

Hαβ − 1

2
Hδαβ

)
, (8.104)

where q ≡ |q|, q̂ ≡ q/q, H0q ≡ H0i q̂ i , Hqq ≡ Hi j q̂i q̂ j , α and β (which are each
either 1 or 2) are space coordinates transverse to q̂, ′ means ∂z , and H ≡ Hαα. When
written in terms of these gauge invariants, the Einstein equations (8.102) become
three independent equations for Z(0), Z(1)α and Z(2)αβ , which correspond to the spin
zero, one and two fluctuations of the stress tensor. We focus on the spin zero and
spin one fluctuations, since these are the relevant modes in the hydrodynamic limit.
Their equations of motion are given by

Z ′′
(1)α + z f

′ − 3 f

z f
Z ′
(1)α + 3 f 2 − z(zq2 + 3 f

′
) f + z2ω2

z2 f 2
Z(1)α = S(1)α (8.105)

and

Z ′′
(0) + 1

u

[
1 + u f

′

f
+ 24(q2 f − ω2)

q2(u f ′ − 6 f ) + 6ω2

]
Z ′
(0)

+ 1

f

[
−q2 + ω2

f
− 32q2z6/z8

0

q2(u f ′ − 6 f ) + 6ω2

]
Z(0) = S(0) , (8.106)

where the sources are combinations of the string stress tensor and its derivatives.
Choosing one of the transverse directions (which we shall denote by α = 1) to lie
in the (v,q) plane, the source for the trailing string is given explicitly by
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S(1)1 = 2κ2
5γ

√
λ

R3

vq⊥
q f

δ(ω − v · q)e−iq·ζ ,

S(1)2 = 0 , (8.107)

S(0) = κ2
5γ

√
λ

3R3

q2(v2 + 2) − 3ω2

q2

z
[
q4z8 + 48iq2z2

0z5 − 9(q2 − ω2)2z8
0

]
f ( f q2 + 2q2 − 3ω2)z8

0

×δ(ω − vq)e−iq·ζ , (8.108)

where q⊥ is the magnitude of the component of q perpendicular to v. The boundary
action can be expressed in terms of the gauge invariants Z(1)α and Z(0) plus cer-
tain counterterms (terms evaluated at the boundary). This procedure, which can be
found in Ref. [289], is somewhat cumbersome but straightforward, and we shall not
repeat it here. Once this is achieved, the stress tensor components can be obtained
from the classical solution to (8.105)–(8.106), following the prescription (5.48).

To find the classical solution to (8.105)–(8.106) we must specify boundary con-
ditions. Since the quark propagates in flat space, the metric fluctuations must vanish
at the boundary. Also, since we are interested in the response of the medium, the
solution must satisfy retarded boundary condition, meaning that at the horizon it
must be composed only of infalling modes. Thus, we may construct the Green’s
function

Gs(z, z′) = 1

Ws(z′)
(
θ(z′ − z)gn

s (z)g
i
s(z

′) + θ(z − z′)gi
s(z)g

n
s (z

′)
)
, (8.109)

where the subscript s which can be 0 or 1 denotes the spin component and gn
s and

gi
s denote the normalizable and infalling solutions to the homogeneous equations

obtained by setting the left-hand side of (8.105) equal to zero. Ws is the Wronskian
of the two homogeneous solutions. The full solution to (8.105) may be then written
as

Zs(z) =
∫ zh

0
dz′Gs(z, z′)Ss(z

′). (8.110)

Close to the boundary, these solutions behave as

Z(0) = z3 Z [3]
(0) + z4 Z [4]

(0) + · · ·
�Z(1) = z2 �Z [2]

(1) + z3 �Z [3]
(1) + · · · . (8.111)

The components Z [3]
(0) and Z [2]

(1) can be computed analytically and are temperature
independent. They yield a divergent contribution to the boundary stress tensor.
However, this contribution is analytic in q and, thus, has δ-function support at
the position of the heavy quark. This divergent contribution is the contribution
of the heavy quark mass to the boundary theory stress tensor. The response of
the boundary theory gauge fields to the disturbance induced by the passing ener-
getic quark is encoded in the components Z [4]

(0) and Z [3]
(1), which must be computed
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numerically. After expressing the boundary actions in terms of gauge invariants,
the nondivergent spin zero and one components of the boundary stress tensor are
given by

T0 = 4q2

3κ2
5 (q

2 − ω2)2
Z [4]
(0) + D + ε0 , (8.112)

�T1 = − L3

2κ5

�Z [3]
(1), (8.113)

where T0 = T 00 and �T1 = T 0a ε̂a , with ε̂a the spatial unit vectors orthogonal to the
spatial momentum q, and where the counterterm D is a complicated function of ω
and q that depends on the quark velocity and the plasma temperature and that is
given in Ref. [289].

Results from Ref. [289] on the numerical computation of the disturbance in the
gauge theory plasma created by a supersonic quark moving with speed v = 0.75
are shown in Fig. 8.4. The top panel shows the energy density of the disturbance
and clearly demonstrates that a Mach cone has been excited by the supersonic
quark. The front is moving outwards at the Mach angle "M , where cos"M =
cs/v = 4/(3

√
3). Recall from our general discussion above that fluid motion is

invisible in the energy density, to the linear order at which we are working; the
energy density is nonzero wherever the fluid is compressed. Thus, the Mach cone
is made up of sound modes, as expected. In the bottom panel of Fig. 8.4, we see the
density of fluid momentum induced by the supersonic quark. This figure reveals
the presence of a sizable wake of moving fluid behind the quark, a wake that is
invisible in the energy density and is therefore made up of moving fluid without
any associated compression, meaning that it is made up of diffusion modes. We
conclude that the supersonic quark passing through the strongly coupled plasma
excites both the sound mode and the diffusion mode, meaning that the interaction of
the quark with the plasma is as in what we called Scenario 1 above. Quantitatively,
it turns out that the momentum carried by the sound waves is greater than that
carried by the diffusion wake, but only by a factor of 1 + v2 [408].

Since hydrodynamics describes the long-wavelength limit of the stress tensor
excitation, it is reasonable to find a Mach cone at long distances. And, since
the gravitational equations whose solution we have described are linear, the long
distance behavior of the gauge theory fluid must be described by linearized hydro-
dynamics. It is easy to justify the linearization from the point of view of the field
theory: the background plasma has an energy density that is proportional to N 2

c

while that of the perturbation is proportional to the number of flavors, which is
just N f = 1 in the present case since we are considering only one quark. The
strong coupling computation leads to a perturbation of magnitude N f

√
λ. Thus,
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Figure 8.4 Energy density (top) and momentum flux (bottom) induced by the pas-
sage of a supersonic heavy quark moving through the strongly coupled N = 4
SYM theory plasma in the x‖ direction with speed v = 0.75. (�ε(x) is the differ-
ence between ε(x) and the equilibrium energy density; since S = 0 in equilibrium,
�S(x) is simply S(x).) The flow lines on the surface are flow lines of �S(x).
These disturbances are small compared to the background energy density and
pressure of the plasma (both of which are ∝ N 2

c ). The perturbation is small and
it is well described by linearized hydrodynamics everywhere except within a dis-
tance R ≈ 1.6/T from the quark. Since the perturbation is small, the kinetic
energy contribution of the diffusion mode to the energy density is suppressed
by N 2

c and, thus, it does not contribute in the upper panel. Figure taken from
Ref. [298].
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the energy density of the fluctuations are suppressed by
√
λ/N 2

c with respect to
that of the background plasma, justifying the linearized treatment. Remarkably, it
turns out that disturbances like those in Fig. 8.4 are well described by hydrody-
namics everywhere except within ≈ 1.6/T of the position of the quark [289].
So, the calculation that we have reviewed in this Section is important for two
reasons. First, it demonstrates that a pointlike probe passing through the strongly
coupled plasma does indeed excite hydrodynamic modes. And, second, it demon-
strates that in the strongly coupled plasma, the resulting disturbance relaxes to
a hydrodynamic excitation in local thermal equilibrium surprisingly close to the
probe.

The observation that point particles moving through the strongly coupled fluid
excite sound waves, which are collective excitations, is at odds with intuition
based upon the interaction of, say, electrons with water. In this example, most of
the energy lost by the electron is transferred to photons and not to the medium.
These photons, in turn, have long mean free paths and dissipate their energy far
away from the electron (or escape the medium entirely). Thus, the effective size
of the region where energy is dissipated is very large, given by the photon mean
free path. Hydrodynamics will only describe the physics on longer length scales
than this. The reason that no Mach cone is formed is that the length scale over
which the energy is deposited is long compared to the length scale over which
the electron slows and stops. The situation is similar in weakly coupled gauge
theory plasmas; even though the gauge modes in these theories do interact, they
still have long mean free paths proportional to 1/g4. In sharp contrast, in the
strongly coupled plasma of N = 4 SYM theory there are no long-lived quasi-
particle excitations (let alone photons) that could transport the energy deposited
by the pointlike particle over long distances. Instead, all the energy lost by the
pointlike probe is dumped into collective hydrodynamic modes over a charac-
teristic length scale ∼ 1/T , which is the only length scale in this conformal
plasma.

8.3.3 Implications for heavy ion collisions

The calculation that we have reviewed in this section suggests that a high energy
quark plowing through the strongly coupled plasma produced in heavy ion col-
lisions at RHIC should excite a Mach cone. As we argued just above, this
phenomenon is not expected in a weakly coupled plasma. The Mach cone should
have consequences that are observable in the soft particles on the away-side of
a high energy trigger hadron. However, for a hydrodynamic solution like that in
Fig. 8.4, it turns out that the diffusion wake contains enough momentum flux along
the direction of the energetic particle to “fill in” the center of the Mach cone,
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meaning that the Mach cone is not sufficiently prominent as to result in peaks
in the particle distribution at �φ = π ± "M [245, 657]. As we discussed above,
the observed peaks at �φ = π ± φv receive a significant contribution from the
event-by-event v3 due to event-by-event fluctuations that introduce “triangularity”.
Detecting evidence for Mach cones in heavy ion collisions will require careful sub-
traction of these effects from the data or the design of new observables based upon
multi-particle correlations, as well as careful theoretical analysis of the effects of
the rapid expansion of the fluid produced in heavy ion collisions on the putative
Mach cones.

8.3.4 Disturbance excited by a moving quarkonium meson

Strong coupling calculations like that of the disturbance excited by an energetic
quark moving through the plasma of N = 4 SYM theory can help guide the con-
struction of more phenomenological models of the coupling of energetic particles
to hydrodynamic modes. To further that end, we close with an example which
shows that not all probes behave in the same way.

As we shall describe in Section 8.7, a simple way of modeling a “quarkonium”
meson made from a heavy quark and antiquark embedded in the strongly cou-
pled plasma of N = 4 SYM theory is to consider a string with both ends at the
boundary – the ends representing the quark and antiquark. We shall see in Sec-
tion 8.7 that even when this string is moving through the plasma, it hangs straight
downward into the AdS black hole metric, rather than trailing behind as happens
for the string hanging downward from a single moving quark. The fact that the
“U” of string hangs straight down and does not trail behind the moving quark and
antiquark implies that the heavy quarkonium meson moving through the strongly
coupled plasma does not lose any energy, at least at leading order. The energy loss
of such a meson has been computed and is in fact nonzero but is suppressed by
1/N 2

c [334].
Despite the fact that the leading order quarkonium energy loss vanishes, the

leading order disturbance of the fluid through which the meson is moving does
not vanish [407]. Instead, the meson excites a Mach cone with no diffusion wake,
providing an example of what we called Scenario 2 at the end of Section 8.3.1. It is
as though the moving meson “dresses itself” with a Mach cone, and then the meson
and its Mach cone propagate through the fluid without dissipation, to leading order.
To illustrate this point, the metric fluctuation and consequent boundary stress tensor
induced by a semiclassical string with both ends on the boundary moving with a
velocity v has been calculated [407]. For a string with the two endpoints aligned
along the direction of motion and separated by a distance l the long distance part
(low momentum) part of the associated stress tensor is given by
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δT 00 = �

q2 − 3 (q · v)2

(−q2
(
1 + 2v2σ

) − 3v2 (q · v)2 (1 − 2σ)
)
, (8.114)

δT 0i = �
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)
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(
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) viv j

v2
,

where σ = σ(l, T ) is a dimensionless function of the length of the meson and the
temperature and the prefactor takes the form

� = √
λ

F(lT )

l
, (8.117)

with F a dimensional function.
The expression (8.114) clearly shows that all the spin zero, one and two com-

ponents of the stress tensor are excited. The spin zero components are multiplied
by the sound propagator, signaling the emission of sound waves. (Note that in the
low-q limit the width of the sound pole vanishes.) The spin one component cor-
responds to the terms proportional to the velocity of the particle vi . These terms
are analytic in q; in particular it seems that there is no pole contribution from the
diffusive mode. More careful analysis shows that the diffusive mode decays faster
than that excited by a quark probe.

The magnitude of the disturbance in the strongly coupled plasma that is excited
by a passing quarkonium meson is no smaller than that excited by a passing quark.
However, the total integral of the energy and momentum deposited is zero, as can
be seen by multiplying the momentum densities by ω = v · q and taking the limit
q → 0. This is consistent with the fact that, to the order at which this calculation
has been done, the meson does not lose any energy. This is an interesting example
since it indicates that the loss of energy and the excitation of hydrodynamic modes
are distinct phenomena, controlled by different physics. This example also illus-
trates the value of computations done at strong coupling in opening one’s eyes to
new possibilities: without these calculations it would have been very hard to guess
or justify that such a separation in magnitude between the strength of the hydrody-
namic fields excited by a probe and the energy lost by that probe could be possible.
It would be interesting to analyze the soft particles in heavy ion collisions in which
a high transverse momentum quarkonium meson is detected, to see whether there is
any hint of a Mach cone around the meson – in this case without the complication
of soft particles from a diffusion wake filling in the cone.
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8.4 Stopping light quarks

As we have discussed extensively in Section 2.3, the dominant energy loss process
for a parton moving through the QCD plasma with energy E in the limit in which
E → ∞ is gluon radiation, and in this limit much (but not all; see Section 8.5) of
the calculation can be done at weak coupling. However, since it is not clear at which
energy the E → ∞ approximation becomes reliable, it is also worth analyzing
the entire problem of parton energy loss and jet quenching at strong coupling to
the degree that is possible. For the case of a heavy quark propagating through the
strongly coupled plasma of N = 4 SYM theory, this approach has been pursued
extensively, yielding the many results that we have reviewed in the previous three
sections. Less work has been done on the energy loss of an energetic light quark
or gluon in the N = 4 SYM plasma, in particular since they do not fragment into
anything like a QCD jet. This was illustrated by Hofman and Maldacena [457], who
considered the following thought experiment. Suppose you did electron–positron
scattering in a world in which the electron and positron coupled to N = 4 SYM
theory through a virtual photon, just as in the real world they couple to QCD. What
would happen in high energy scattering? Would there be any “jetty” events? They
showed that the answer is no. Instead, the final state produced by a virtual photon
in the conformal N = 4 SYM theory is a spherically symmetric outflow of energy.
Similar conclusions were also reached in Refs. [433, 293]. The bottom line is that
there are no jets in strongly coupled N = 4 SYM theory, which would seem to
rule out using this theory to study how jets are modified by propagating through
the strongly coupled plasma of this theory. Many authors have nevertheless used
the strongly coupled plasma of N = 4 SYM theory to gain relevant insights, for
example by studying the energy loss and momentum diffusion of a heavy quark
plowing through the plasma as we have described in Sections 8.1 and 8.2, as well
as the wake it produces, described in Section 8.3. In the present section, we ask
how a light quark or gluon loses energy in the N = 4 SYM plasma in the hope
that, even if this is not a good model for jets and their quenching in QCD, some
qualitative strong coupling benchmarks against which to compare experimental
results may be obtained. This program has been pursued in Refs. [406, 293, 294,
73, 74]. Furthermore, we shall demonstrate in Section 8.6 that even though there
are no jets in strongly coupled N = 4 SYM theory it is still possible to construct
a collimated beam of radiation in this theory and watch how it is quenched by the
plasma.

As we have seen in Section 5.5, and as we will describe extensively in Chap-
ter 9, dynamical quarks can be introduced into N = 4 SYM theory by introducing
a D7-brane that fills the 3 + 1 Minkowski dimensions and fills the fifth dimension
from the boundary at z = 0 down to z = zq . The mass of the (heavy) quarks
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that this procedure introduces in the gauge theory is
√
λ/(2π zq). Light quarks are

obtained by taking zq → ∞, meaning that the D7-brane fills all of the z dimen-
sion. At T 
= 0, what matters is that the D7-brane fills the z dimension all the
way down to, and below, the horizon. While this construction introduces light fun-
damental degrees of freedom into the theory, it does not alter the fact that there
are no true jets. This is the principal origin of the difficulty in using gauge/string
duality to study light quark energy loss: depending on which aspects of real jets
in QCD we wish to mimic, we can make different choices in the way we set-up a
dual gravitational calculation, choices that correspond on the gauge theory side to
different ways of preparing an energetic initial state. This range of possible choices
necessarily introduces ambiguity in the analysis since there can be no single gravi-
tational calculation that encompasses all the relevant aspects of jet physics in QCD.
Nevertheless, there exist common features across all these choices that allow us to
draw some conclusions about the dynamics of energetic light quarks and gluons
moving through strongly coupled plasma.

8.4.1 Back-to-back jets as the endpoints of a string

We begin by focusing on the fact that a light quark jet is initiated by a single
energetic quark, which suggests that a natural approach is to model a light quark-
antiquark pair moving away from each other back-to-back with some initial high
energy (as would become a back-to-back pair of jets in QCD) by the endpoints
of a string located at some depth z in the bulk that are moving apart from each
other in, say, the x-direction [293, 294]. The quark and antiquark must be within
the D7-brane, but since this D7-brane fills all of z there is nothing stopping them
from falling to larger z as they fly apart from each other, and ultimately there is
nothing stopping them from falling into the horizon. It should be evident from this
description that there is an arbitrariness to the initial condition: at what z should
the quark and antiquark be located initially? What should the string profile be
initially? What should the initial profile of the velocity of the string be? These
choices correspond in the gauge theory to choices about the initial quantum state
of the quark–antiquark pair and the gauge fields surrounding them. And, there is
no known way to choose these initial conditions so as to obtain a QCD-like jet so
the choices made end up being arbitrary. (The analogous set up for a back-to-back
pair of high energy gluons [406] involves a doubled loop of string, rather than an
open string with a quark and antiquark at its ends.)

Ambiguities about the initial conditions notwithstanding, several robust qualita-
tive insights have been obtained from these calculations. First, the quark and the
antiquark always fall into the horizon after traveling some finite distance xstopping.
The string between them falls into the horizon also. An example is shown in
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Figure 8.5 A quark–antiquark pair moving away from each other fall into the
horizon after a finite stopping distance. The figure shows the quark–antiquark
pair (green and orange dots) and the string that connects them (in blue) at four
times, starting at an early time when they are close together and the string is near
the boundary and ending just before they have traveled their stopping distance and
they and the string have reached the horizon. See text for further details. Figure
taken from Ref. [294].

Fig. 8.5. In the gauge theory, xstopping corresponds to the stopping distance for
the initially energetic quark, namely the distance that it takes this quark to slow
down, thermalize, and equilibrate with the bulk plasma – the gauge theory analog
of falling into the horizon. This is qualitatively reminiscent of the experimental
finding that there are circumstances in which an energetic parton that would have
become a jet in vacuum is instead quenched by the plasma to such a degree that it
becomes many soft particles with a close-to-thermal momentum distribution.

Second, although xstopping does depend on details of the initial conditions, the
dominant dependence is that it scales like E1/3, where E is the initial energy of
the quark [406, 294]. More precisely, upon analyzing varied initial conditions the
maximum possible stopping distance is given by [294]

xstopping = C

T

(
E

T
√
λ

)1/3

, (8.118)

with C ≈ 0.5. If there is a regime of E and T in which it is reasonable to treat
the entire problem of jet quenching at strong coupling, and if in this regime the
droplet of plasma produced in a heavy ion collision is large enough and lives
long enough that it can stop and thermalize an initial parton with energy E that
would in vacuum have become a jet, then the scaling (8.118) has interesting qual-
itative consequences. For example, if this scaling applies to collisions with two
different collision energies

√
s1 and

√
s2, yielding plasmas that form at different

temperatures T1 and T2, then jets in these two experiments whose energies sat-
isfy E1/E2 ∼ (T1/T2)

4 should have similar observed phenomenology. Turning
this speculation into semi-quantitative expectations for experimental observables
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requires careful study of jet stopping in a realistic model of the dynamics in
space and time of the expanding droplet of plasma produced in a heavy ion
collision.

Third, a light quark with initial energy E that loses this energy over a distance
xstopping loses most of its energy near the end of its trajectory, where it thermal-
izes (falls into the horizon) [294]. This pattern of energy loss is reminiscent of
the “Bragg peak” that characterizes the energy loss of a fast charged particle in
ordinary matter, where the energy loss has a pronounced peak near the stopping
point. It is quite different from the behavior of a heavy quark in strongly coupled
plasma which, as we saw in Section 8.1, loses energy at a rate proportional to its
momentum, making it reasonable to expect that a heavy quark that slows from a
high velocity to a stop loses more energy earlier in its trajectory than later.

8.4.2 A colorless jet sourced by a virtual photon

Although the approach in the previous section is intuitive, it suffers from the inher-
ent ambiguity in defining the initial conditions for the string that joins the quark
and antiquark. This arbitrariness originates from the fact that the precise form of the
gauge theory source dual to a given initial string configuration selected in the grav-
ity theory is not known. One is specifying initial conditions clearly and explicitly
in the gravity theory without knowing in precise terms what those initial conditions
correspond to in the gauge theory. There is, however, a complementary approach
to the physics of energetic light quarks moving through strongly coupled plasma
where one focuses initially on formulating a gauge theory problem which, in QCD,
would lead to the formation of energetic jets and then studies the dual description
of the set-up one has formulated. An interesting example of this approach is the
study of the response of the strongly coupled plasma to an external gauge field
wave-packet characterized by a very large time-like four-momentum (energy E
and three-momentum |�k| comparable and both much greater than virtuality q) and
a small packet width, L [73, 74]. This is the analog of analyzing the decay of an
energetic virtual photon or an electroweak boson. In QCD this excitation decays
into a quark–antiquark pair and, since E � q by construction, the quark and anti-
quark are extremely boosted and are therefore almost collinear with each other,
forming a single jet. Note that this jet is different from those of interest in heavy
ion collisions (or for that matter in elementary particle collisions) since it carries no
net color charge. In this way (and perhaps in others) it is not analogous to a QCD
jet initiated by a single quark or a gluon. Nevertheless, this construction provides a
well-defined way to generate energetic light quarks moving through the plasma in
QCD. In the strongly coupled theory, this external source creates a localized exci-
tation of strongly interacting fields which propagate through the strongly coupled
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plasma with a large initial boost. We will refer to this excitation loosely as a jet.
The advantage of this procedure is that once the gauge theory source has been spec-
ified, which is equivalent to specifying the process of creating the jet, there are no
remaining ambiguities and one can then analyze the dual problem on the gravita-
tional side. In Section 8.6 we shall describe an (apparently) quite different way of
creating a localized high energy excitation of strongly interacting fields which can
also be analyzed via gauge/string duality.

It is natural to ask why we do not consider instead an external gauge theory
wave-packet with E ∼ q � |k|, as in QCD this would produce a back-to-back
quark–antiquark pair and hence a back-to-back pair of jets. Would making this
choice result in a pair of jets that were each more similar to the jets in QCD than the
single jet above? Or, at the least, more similar to the back-to-back jets described by
the quark–antiquark pair connected by a string in Section 8.4.1? The problem with
this line of thought is that in strongly coupled N = 4 SYM theory a source like
this produces a spherically symmetric outward flow of energy, rather than a back-
to-back pair of jets [457]. The single “jet” that we shall analyze can be obtained by
giving this spherically symmetric flow of energy such a large boost that it becomes
a tightly focused flow of energy with E ∼ |k| � q. So, although it sounds artificial
from a QCD perspective to consider a color-singlet jet made by boosting a quark–
antiquark pair to the point that they are almost collinear, this construction has the
virtue that it yields a jet-like object in both QCD and N = 4 SYM theory.

The simplest way to add the external gauge field wave-packet is to modify the
Lagrangian for the strongly coupled gauge theory by adding an external U (1)
gauge field source:

LQFT → LQFT + jμAμ

cl , (8.119)

with jμ the U (1) current in the strongly coupled gauge theory and Aμ

cl a classical
external field characterized by a narrow envelop function �(x) of typical size L .
The external gauge field can be parametrized as

Aμ

cl = εμNA
[
eikμxμ + h. c.

]
�(x), (8.120)

with kμ a four momentum with large energy k0 = E and three-momentum |k| ≈ E
and a small virtuality k2 = −q2, with q2 � E2. NA is a normalization factor that
can be arbitrarily small and εμ is a given polarization vector. This parametrization
is chosen to make apparent the large momentum component in the field, k. From
the Fourier analysis of this expression it is clear that all Fourier modes will have
a typical large momentum kμ plus a small momentum of order 1/L introduced by
the spacetime dependence of the envelop function � which, in general, has compo-
nents in all four space-time directions. However, we will see later that the aspects
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of the Fourier transform of the function � that are most relevant for our discus-
sion are its distribution in energy and in the component of momentum along the
k-direction. Since we want � to contribute only momenta that are small compared
to the typical momentum k, we must require E � 1/L .

The presence of this source generates a non-vanishing expectation value for the
U (1) current jμ(x) in the plasma, which characterizes the jet. At early times after
the disappearance of the external field, the current is localized on the same length
scale as the external source was and is propagating with the characteristic momen-
tum kμ. At later times, its interaction with the plasma leads to the attenuation of
the current components and its eventual thermalization. As in the previous analysis
of a quark–antiquark pair connected by a string, a stopping distance can be defined
as the attenuation distance of the expectation value of the current in the presence
of the external source

〈 jμ(t, x)〉Acl
(8.121)

which, for sufficiently small external sources, can be expressed in terms of three-
point correlators in the gauge theory.

As explained in Section 5.1.4, in the gravitational theory the dual of the gauge
theory current is a U (1) gauge field living in the D7-brane, with a boundary value
given precisely by the external source Eq. (8.120). We now see the advantage of
this construction: as soon as we have specified the problem precisely on the gauge
theory side, its specification on the gravitational side of the duality is immediately
in hand.

For the purpose of this discussion, we can also restrict our attention to excita-
tions confined to five out of the eight dimensions of the D7-brane. The computation
of the time evolution of the expectation value of the current demands the determi-
nation of three-point functions on the gravity side, as in the gauge theory. This
makes the calculation rather demanding and we shall not reproduce it here. We
refer the interested reader to Ref. [73], where the calculation is performed in detail.
Although at a technical level the calculation is involved, its main features can be
understood entirely in terms of simple physical considerations, as we now describe.

The dynamics of the expectation value of the current in the boundary gauge
theory, which is what we are after in order to determine the stopping distance for
the pulse of energy density propagating through the plasma that is produced by
the source we have described, is governed in its dual description by the behav-
ior of excitations in the gravity theory that, at least close to the boundary, have
very short wavelengths. This makes it possible to analyze the propagation of these
excitations via a geometric optics approximation, as in electromagnetism, which
reduces the gravitational problem of interest to the determination of the trajectories
of massless particles in the gravitational background. (We shall discuss the range
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of applicability of this geometric optics approach momentarily.) These trajectories
are given by null geodesics in the AdS5 black hole metric, the same trajectories as
those followed by the end points of the strings in Section 8.4.1, which are char-
acterized by a four-vector that is constant along the trajectory. This four-vector
can be interpreted as the initial momentum that the excitation (we shall call it a
“particle”) in the gravitational background has when it is close to the boundary; in
the gauge theory, it coincides with the hard momentum of the gauge field sourced
by the external current. Because the infalling particle follows a null geodesic, its
position is given by

xμ(z) =
∫ z

zq

dz′√gzz
gμνkν(−kαkβgαβ

)1/2 , (8.122)

where gM N is the metric (5.34) for the AdS Schwarzschild blackhole, the Greek
indices denote the gauge theory directions and where zq is the initial position of
the particle, which we shall relate to the virtuality q of the gauge field it describes
in the boundary theory. As in the case of the string endpoints in Section 8.4.1,
the gravitational pull of the black branes makes the particle fall into the horizon,
which corresponds to the thermalization of the jet. From the expression (8.122) the
stopping distance can be estimated by finding the distance travelled by the particle
along the gauge theory direction from its production point near the boundary until
it falls into the horizon. Choosing the direction of motion of the particle as the
x-direction, we find from (8.122) that

xstopping =
∫ z0

zq

dz
1√

z4

z4
0
+ q2

|k|2
, (8.123)

where z0 = 1
πT is the position of the horizon, as in Eq. (5.36). The expression

(8.123) is not yet the result that we are after, because the excitation of the gauge
theory sourced by (8.120) is described initially by a wave-packet with some spread
in virtuality q whereas what we have described so far is the dual description of an
excitation with a single value of q. We shall address this momentarily, but must
first understand the implications of (8.123).

The integral (8.123) is dominated by values of z ∼ z∗ with the characteristic
value z∗ given by

z∗ ≡ z0 q1/2/ |k|1/2 . (8.124)

This is the scale at which the trajectory of the dual particle, which at early times
moves almost parallel to the brane, with its downward velocity in the z-direction
much smaller than its velocity in the x-direction, starts to bend significantly, pick-
ing up a significant velocity downward toward the horizon. Recall that we are
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analyzing the response to a source with q � |k|, meaning that z∗ � z0. The lower
limit of the integration, zq , must be chosen to correspond to the smallest value of
z for which the particle approximation to the wave-packet (i.e. the gravitational
analog of the geometric optics approximation) is valid. An explicit analysis [433]
which we will not reproduce here shows, perhaps not surprisingly, that zq ∼ 1/q.
So, the larger the virtuality of the wave is, the closer the initial position of the dual
particle is to the boundary. We certainly need q � T , to ensure that zq � z0. In
fact, we shall see that we need q to satisfy the stronger condition q � T 2/3|k|1/3,
which ensures that zq � z∗. So, as long as |k| is very much larger than T , we can
proceed with our analysis upon assuming that

T � T 2/3|k|1/3 � q � |k|, meaning that z0 � z∗ � zq . (8.125)

Since zq is the smallest of these scales, in our initial analysis of (8.123) we can
set zq = 0. Upon so doing, we can immediately check that if we integrate (8.123)
from z = 0 to z = z∗ we find that as the particle falls from its starting point to zq it
travels a distance in the x-direction that is proportional to z2

0/z∗. This tells us that
as we make q smaller and smaller, while still keeping it within the range (8.125),
although z∗ moves closer and closer to the boundary (see (8.124)) the distance in
x that the particle travels before it reaches z = z∗ and its trajectory starts to bend
significantly downward toward the horizon gets longer and longer. We can think of
this delay as reflecting the fact that at smaller and smaller q the initial velocity of
the particle in the x-direction is closer and closer to the speed of light, making it
harder and harder for the gravitational field of the black hole to turn its trajectory
downward.

We now turn our attention to the upper limit of the integral (8.123). As long as
|k| � q, meaning that the virtuality of the jet is much smaller than its energy, the
integral is dominated by the region z ∼ z∗ � z0 and is insensitive to the behavior
of the integrand in the region z ∼ z0 near the horizon, which allows us to take the
upper limit of the integrand to infinity. So, upon assuming that (8.125) is satisfied
with zq , z∗ and z0 being well-separated scales, we can safely replace the lower and
upper limits of the integral by zero and infinity, do the integral, and find

xstopping = �
[
1/4

]2

4π3/2

(
E2

q2

)1/4
1

T
, (8.126)

where we have used |k| ≈ E . This is the stopping distance of a jet (a jet in the sense
of this section) with a particular energy E and virtuality q. The virtuality can be
thought of as one of the parameters related to how the jet of energy E is prepared
and we see that, as in the description of Section 8.4.1 in which we modeled the jet
as a falling string, the stopping distance depends on how the jet is prepared. We
should not be concerned about the apparent contradiction between the result here
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that the stopping length of a jet with fixed virtuality is proportional to E1/2 and the
result from Section 8.4.1. What was calculated in Section 8.4.1 was the maximal
stopping distance among all possible jets with some energy E . We will evaluate
this with more care below, but it is already possible to see how the correct scaling
(8.118) will emerge. Clearly, from (8.126) and from our earlier discussion of how
reducing q means that the particle can fly farther before gravity manages to bend
it downward into the horizon, the maximal stopping distance will be found for the
smallest allowed values of q. From (8.125), we see that the smallest allowed values
of q are those for which zq ∼ z∗ and q ∼ E1/3T 2/3. Substituting this into (8.126),
we find

xmaximum stopping ∼ E1/3T −4/3, (8.127)

which is in agreement with the result (8.118) obtained via the analysis of falling
strings up to a factor of

√
λ. We will discuss this factor only after we first rederive

(8.127) in a more careful way.
In our analysis so far we have neglected the fact that the jet-like object that we

wish to study has a wave-packet profile parameterized by (8.120). The character-
istic size of the envelop function � in the parameterization (8.120) introduces an
uncertainty in the momentum of the wave of order 1/L , since the field (8.120) can
be understood as an ensemble of excitations with momenta k̃ distributed around k
with spread 1/L:

k̃ = k +
(
O
(

1

L

)
,O

(
1

L

)
,O

(
1

L

)
,O

(
1

L

))
. (8.128)

These soft components change the virtuality of the different modes, meaning that
the wave-packet is a superposition of modes with different virtuality as well as
different energy. The largest change in the virtuality is due to the soft components
along the direction of k, which yield a typical contribution to the virtuality

q2
L ∼ E/L . (8.129)

The contribution to the virtuality from the fluctuations perpendicular to k is sup-
pressed in comparison and can be neglected. Thus, even if the virtuality −k2 = q2

is small, the production of jets described via the wave-packet (8.120) results in a
jet made from modes whose typical virtuality is qL as in (8.129) meaning that the
stopping distance of a typical mode in the jet is given by

T xtypical stopping ∼ (E L)1/4

T
. (8.130)

Since most of the modes have a virtuality of order qL , the most part of most
wave-packets will be attenuated as they travel this typical stopping distance. Nev-
ertheless, by virtue of Eq. (8.126), those components of the wave packet with
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q2 < q2
L will have a longer propagation length, and it is those components that

we must analyze in order to obtain the maximal stopping distance.
We have already seen from the result (8.126) that for a given jet energy the

longest stopping distances are achieved for the smallest virtualities q2. However,
Eq. (8.126) is not valid for arbitrarily small values of q2 since in this limit the
geometric optics approximation used to derive the stopping distance (8.126) fails.
As in any other context in which a geometric optics approximation is used, its
validity requires that the wavelength of the particle in question does not change
significantly over a distance given by that wavelength itself. The wavelength of the
particle is determined by the particle momentum in the z-direction, which can be
obtained from the null geodesic equation, qM gM N qN = 0, and is

qz(z) = E

f (z)

√
z4/z4

0 + z∗4/z4
0 , (8.131)

with f (z) = 1 − z4/z4
0 as in (4.33). The wavelength of the particle is then

λ = √
gzz/qz . In the region z ∼ z∗ that dominates the calculation of the stopping

distance, the derivative of λ with respect to the proper length in the z direction,
 = ∫ √

gzzdz, must be small. This yields the condition 1/
√

gzz∂zλ � 1. This
condition is satisfied, and the result (8.126) is valid, only if(

π4T 4E2
)1/3 � q2 . (8.132)

Together with the condition that q2 � E2, required directly from the setup of the
calculation, we find that we have now reproduced the range (8.125) within which
q must lie. Using (8.132) in (8.126), we reproduce the maximal stopping distance
(8.127), which can be phrased as the inequality

T xstopping � (E/T )1/3 . (8.133)

For values of q2 smaller than the lower limit of the range (8.132), the geometric
optic calculation stops being valid. Nevertheless, the explicit calculation in terms of
three-point functions can be applied to any q2 and shows that for those small values
of q2 the gauge field excitations are absorbed very quickly by the black hole, as can
be inferred from the fact that in this circumstance zq > z∗. So, analysis of this case
does not change the conclusion (8.133). We see that the present analysis yields the
same E1/3 dependence of the maximal stopping distance that was also obtained in
Section (8.4.1) via a completely different calculation in which a back-to-back pair
of jets was modeled by a string. However, the two results nevertheless do differ
parametrically since the stopping distance (8.118) is suppressed relative to (8.133)
by a scaling of the energy E by a factor of

√
λ. Both calculations find the same

stopping distance, but they do so for objects whose energy differs by this factor.
At a qualitative level, this factor can be understood as arising from the fact that
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the string in Section 8.4.1 describes a hard parton dressed with a cloud (of fields;
of softer partons) whose energy is thus greater than that of the object we have
analyzed here, it turns out by a factor of

√
λ. Loosely speaking, one can think of

(8.133) as the stopping distance for an object that is initially a single hard parton
with energy E whereas (8.118) is the stopping distance for an object with energy
E that is dressed from the beginning.

The parametric difference between the results (8.118) and (8.133) from these
two different calculations of the maximal stopping distance are yet further evi-
dence that in this strongly coupled theory the behavior of “jets” depends on the
details of how these excitations are prepared. In fact, we could repeat the analysis
that in this section we applied to the energetic excitations sourced by an external
gauge field for the disturbances sourced by the insertion of other operators with
varying scaling dimension �. In QCD, operators with large � will involve many
quark fields, meaning that using them as sources would correspond to injecting
multiple partons into the strongly coupled plasma. If done at large enough energy,
we would always get a collimated beam resembling a jet. (In Section 8.6 we shall
describe a completely different way of creating a collimated beam of many glu-
ons.) In the strongly coupled theory, the treatment of the excitations sourced by
operators with dimension � would be completely analogous to the calculation of
those sourced by the gauge field that we have described except that the mass of
the falling particle obtained in the geometric optics approximation would be larger,
as it would depend on � as in Eq. (5.24). The maximum stopping distance would
therefore scale as [74]

T xstopping �
(

ET

�

)1/3

, (8.134)

which means that the excitations sourced by higher dimensional operators are
easier to stop.

The analysis that leads to Eq. (8.134) was performed only for local operators
with � parametrically of order one and thus is not applicable to the excitations
described by a falling string discussed in Section 8.4.1. Nevertheless, it is tempting
to note that for very massive fields the scaling dimension of the dual operator is
roughly the mass, as in Eq. (5.24), and to note furthermore that the strings con-
sidered in the stopping distance calculations of Section 8.4.1 have a mass of order
M ∼ √

λ/zc, with zc the initial position of the endpoint of the falling string. This
suggests that the falling strings of Section 8.4.1 can, loosely, be thought of in the
language of this section as the insertion of excitations sourced by an operator with
a scaling dimension � ∼ √

λ. The result (8.134) would then have the same para-
metric dependence as the result (8.118) for the falling strings. Or, as we phrased it
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loosely above, the result (8.118) for a falling string with energy E can be under-
stood as the stopping distance for a dressed object with energy E containing many
partons within it.

We caution, however, that attempting to explain a distinction between results that
differ only by a factor of

√
λ is perilous, since this distinction will almost certainly

disappear in QCD itself. At high energies in QCD we expect the relevant coupling
to become small and the difference between the “jets” created as in Section 8.4.1
and in the present section (8.4.2) should disappear. It is therefore not obvious which
of the two calculations describes “jets” that are better caricatures of the jets in
QCD. This observation is yet one more way to see the difficulties of interpreting the
various holographic calculations of the quenching of “jets” made of energetic light
particles, which is to say the difficulties of using calculations done in a strongly
coupled theory that has no real jets to gain qualitative insights into jet quenching
in QCD. That said, the result that the maximal stopping distance is proportional to
E1/3 arises in both calculations, and we shall see it arise in a completely different
third calculation in Section 8.6, making this result seem rather robust.

In summary, the two different approaches to energetic light particles that we
have described have some common features but also some important differences,
differences which ultimately arise from the fact that jets in the QCD sense do
not exist in strongly coupled theories. Nevertheless, the calculations provide many
insights into the physics of energetic light particles propagating through strongly
coupled plasma. It will be very interesting to see how these insights fare when com-
pared with results on jet quenching in heavy ion collisions at RHIC and the LHC,
and in particular to comparisons between how jets of different energies survive
propagation through different lengths of plasma with varying temperatures.

8.5 Calculating the jet quenching parameter

As we have described in Section 2.3, when a parton with large transverse momen-
tum is produced in a hard scattering that occurs within a heavy ion collision,
the presence of the medium in which the energetic parton finds itself has two
significant effects: it causes the parton to lose energy and it changes the direc-
tion of the parton’s momentum. The latter effect is referred to as “transverse
momentum broadening”. In the high parton energy limit, as established first in
Refs. [421, 98, 817], the parton loses energy dominantly by inelastic processes that
are the QCD analogue of bremsstrahlung: the parton radiates gluons as it interacts
with the medium. It is crucial to the calculation of this radiative energy loss pro-
cess that the incident hard parton, the outgoing parton, and the radiated gluons are
all continually being jostled by the medium in which they find themselves: they
are all subject to transverse momentum broadening. The transverse momentum
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broadening of a hard parton is described by P(k⊥), defined as the probability that
after propagating through the medium for a distance L the hard parton has acquired
transverse momentum k⊥. For later convenience, we shall choose to normalize
P(k⊥) as follows: ∫

d2k⊥
(2π)2

P(k⊥) = 1 . (8.135)

From the probability density P(k⊥), it is straightforward to obtain the mean trans-
verse momentum picked up by the hard parton per unit distance travelled (or,
equivalently in the high parton energy limit, per unit time):

q̂ ≡ 〈k2
⊥〉
L

= 1

L

∫
d2k⊥
(2π)2

k2
⊥ P(k⊥) . (8.136)

P(k⊥), and consequently q̂, can be evaluated for a hard quark or a hard gluon. In
the calculation of radiative parton energy loss [98, 817, 797, 420, 414, 795, 76]
that we have reviewed in Section 2.3 and that is also reviewed in Refs. [101, 551,
422, 490, 251, 13, 799, 591], q̂ for the radiated gluon plays a central role, and this
quantity is referred to as the “jet quenching parameter”. Consequently, q̂ should
be thought of as a (or even the) property of the strongly coupled medium that is
“measured” (perhaps constrained is a better phrase) by radiative parton energy loss
and hence jet quenching. But, it is important to note that q̂ is defined via transverse
momentum broadening only. Radiation and energy loss do not arise in its definition,
although they are central to its importance.

The BDMPS calculation of parton energy loss in QCD involves a number of
scales which must be well separated in order for this calculation to be relevant.
The radiated gluons have energy up to ωc ∼ q̂ L2 and transverse momenta of order√

q̂ L . Both these scales must be much less than E and much greater than T . And,
αS evaluated at both these scales must be small enough that physics at these scales
is weakly coupled, even if physics at scales of order T is strongly coupled. In
heavy ion collisions at RHIC, with the highest energy partons having E only of
order many tens of GeV, this separation of scales can be questioned. In heavy ion
collisions at the LHC it is possible to study the interaction of partons with energies
of order a few hundred GeV, which should improve the reliability of the calcula-
tions reviewed in this section. In this section, we shall review the calculation of
q̂ – the property of the plasma that describes transverse momentum broadening
directly and, in the high parton energy limit in which the relevant scales are well
separated, controls the transverse momentum and the energy of the gluon radiation
that dominates parton energy loss.

It has been shown via several different calculations done via conventional field
theoretical methods [251, 576, 317] that the probability for a hard parton in the
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representation R of SU (N ) to obtain transverse momentum k⊥ after it travels a
distance L through a medium is given by the two-dimensional Fourier transform in
x⊥ of the expectation value (8.138) of two light-like Wilson lines separated in the
transverse plane by the vector x⊥,

P(k⊥) =
∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) (8.137)

with

WR(x⊥) = 1

d (R)

〈
Tr

[
W †

R[0, x⊥] WR[0, 0]
]〉

, (8.138)

where

WR
[
x+, x⊥

] ≡ P

{
exp

[
ig

∫ L−

0
dx− A+

R(x+, x−, x⊥)

]}
(8.139)

is the representation-R Wilson line along the lightcone, L− = √
2L is the distance

along the lightcone corresponding to traveling a distance L through the medium,
and where d (R) is the dimension of the representation R. Note that the require-
ment (8.135) that the probability distribution P(k⊥) be normalized is equivalent to
the requirement that WR(0) = 1. The result (8.137) is similar to (8.51) although
the physical context in which it arises is different as is the path followed by the
Wilson line. One of the derivations [251] of (8.137) is analogous to the derivation
of (8.51) that we reviewed in Section 8.2. Another derivation [317] proceeds via
the use of the optical theorem to relate P(k⊥) to an appropriate forward scattering
matrix element that can then be calculated explicitly via formulating the calculation
of transverse momentum broadening in the language of Soft Collinear Effective
Theory [124, 125, 123, 127, 126]. This derivation in particular makes it clear that
(8.137) is valid whether the plasma through which the energetic quark is propa-
gating, i.e. the plasma which is causing the transverse momentum broadening, is
weakly coupled or strongly coupled.

It is important to notice that the expectation value of the trace of the product of
two light-like Wilson lines that arises in P(k⊥) and hence in q̂, namely WR(x⊥) of
(8.138), has a different operator ordering from that in a standard Wilson loop. Upon
expanding the exponential, each of the A+ that arise can be written as the product
of an operator and a group matrix: A+ = (A+)ata . It is clear (for example, either by
analogy with our discussion around (8.45) in the analysis of momentum broadening
of heavy quarks or from the explicit derivation in Ref. [317]) that in WR(x⊥) both
the operators and the group matrices are path ordered. In contrast, in a conventional
Wilson loop the group matrices are path ordered but the operators are time ordered.
Because the operators in (8.138) are path ordered, the expectation value in (8.138)
should be described by using the Schwinger–Keldysh contour in Fig. 8.6 with one
of the light-like Wilson lines on the Im t = 0 segment of the contour and the other
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ti

ti − iε tf − iε

tf

ti − iβ

Figure 8.6 The Schwinger–Keldysh contour that must be used in the evaluation
of WR(x⊥). It is similar to that in Fig. 8.2. Figure from Ref. [317].

light-like Wilson line on the Im t = −iε segment of the contour. The infinitesimal
displacement of one Wilson line with respect to the other in Fig. 8.6 ensures that
the operators from the two lines are ordered such that all operators from one line
come before any operators from the other. In contrast, the loop C for a standard
Wilson loop operator lies entirely at Im t = 0, and the operators for a standard
Wilson loop are time ordered.

The transverse momentum broadening of a hard parton with energy E is due
to repeated interactions with gluons from the medium which, if the medium is
in equilibrium at temperature T , carry transverse momenta of order T and light-
cone momenta of order T 2/E [480, 317]. The relation (8.137) between P(k⊥)
(and hence q̂) and the expectation value W of (8.138) is valid as long as E � q̂ L2

(which is to say E must be much greater than the characteristic energy of the radi-
ated gluons) even if αS(T ) is in no way small, i.e. it is valid in the large-E limit even
if the hard parton is interacting with a strongly coupled plasma and even if the soft
interactions that generate transverse momentum broadening are not suppressed by
any weak coupling either [317]. However, in this circumstance even though (8.137)
is valid it was not particularly useful until recently because there is no known con-
ventional field theoretical evaluation of W for a strongly coupled plasma. (Since
lattice quantum field theory is formulated in Euclidean space, it is not well-suited
for the evaluation of the expectation value of light-like Wilson lines.) In this sec-
tion we review the evaluation of W , and hence q̂, in the strongly coupled plasma
of N = 4 SYM theory with gauge group SU (Nc) in the large N and strong cou-
pling limit using its gravitational dual, namely the AdS Schwarzschild black hole
at nonzero temperature [582, 208, 225, 579, 87, 66, 645, 584, 418, 468, 317]. The
calculation is not simply an application of results reviewed in Section 5.4 both
because the operators are path ordered and because the Wilson lines are light-like.

We begin by sketching how the standard AdS/CFT procedure for computing a
Wilson loop in the fundamental representation in the large-Nc and strong coupling
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limit, reviewed in Section 5.4, applies to a light-like Wilson loop with standard
operator ordering [582, 584], and then below describe how the calculation (but not
the result) changes when the operator ordering is as in (8.138). Consider a Wilson
loop operator W (C) specified by a closed loop C in the (3 + 1)-dimensional field
theory, and thus on the boundary of the (4 + 1)-dimensional AdS space. 〈W (C)〉
is then given by the exponential of the classical action of an extremized string
worldsheet ! in AdS which ends on C. The contour C lives within the (3 + 1)-
dimensional Minkowski space boundary, but the string worldsheet ! attached to it
hangs “down” into the bulk of the curved five-dimensional AdS5 spacetime. More
explicitly, consider two long parallel light-like Wilson lines separated by a dis-
tance x⊥ in a transverse direction.2 (The string world sheet hanging down into the
bulk from these two Wilson lines can be visualized as in Fig. 8.8 below if one
keeps everything in that figure at Im t = 0, i.e. if one ignores the issue of operator
ordering.) Upon parameterizing the two-dimensional worldsheet by the coordinates
σα = (τ, σ ), the location of the string worldsheet in the five-dimensional spacetime
with coordinates xμ is

xμ = xμ(τ, σ ) (8.140)

and the Nambu–Goto action for the string worldsheet is given by

S = − 1

2πα′

∫
dσdτ

√−detgαβ . (8.141)

Here,

gαβ = Gμν∂αxμ∂βxν (8.142)

is the induced metric on the worldsheet and Gμν is the metric of the (4 +
1)-dimensional AdS5 spacetime. Denoting by S(C) the classical action which
extremizes the Nambu–Goto action (8.141) for the string worldsheet with the
boundary condition that it ends on the curve C, the expectation value of the Wilson
loop operator is then given by

〈W (C)〉 = exp [i {S(C) − S0}] , (8.143)

where the subtraction S0 is the action of two disjoint strings hanging straight down
from the two Wilson lines. In order to obtain the thermal expectation value at
nonzero temperature, one takes the metric Gμν in (8.142) to be that of an AdS
Schwarzschild black hole (5.33) with a horizon at r = r0 and Hawking tempera-
ture T = r0/(πR2). The AdS curvature radius R and the string tension 1/(2πα′)
are related to the ’t Hooft coupling in the Yang–Mills theory λ ≡ g2Nc by√
λ = R2/α′.

2 Note that for a light-like contour C, the Wilson line (5.68) of N = 4 SYM theory reduces to the familiar
(8.139).
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We shall assume that the length of the two light-like lines L− = √
2L is much

greater than their transverse separation x⊥, which can be justified after the fact by
using the result for W(x⊥) to show that the x⊥-integral in (8.137) is dominated

by values of x⊥ that satisfy x⊥ � 1/
√

q̂ L ∼ 1/
√√

λLT 3. As long as we are
interested in L � 1/T , then x⊥ � 1/(Tλ1/4) � 1/T � L . With L− � x⊥,
we can ignore the ends of the light-like Wilson lines and assume that the shape of
the surface ! is translationally invariant along the light-like direction. The action
(8.141) now takes the form

S = i

√
2r2

0

√
λL−

2πR4

∫ x⊥/2

0
dσ

√
1 + r ′2 R4

r4 − r4
0

, (8.144)

where the shape of the worldsheet ! is described by the function r(σ ) that satisfies
r(± x⊥

2 ) = ∞, which preserves the symmetry r(σ ) = r(−σ), and where r ′ = ∂σr .
The equation of motion for r(σ ) is then

r ′2 = γ 2

R4

(
r4 − r4

0

)
(8.145)

with γ an integration constant. Eq. (8.145) has two solutions. One has γ = 0 and
hence r ′ = 0, meaning that r(σ ) = ∞ for all σ : the surface ! stays at infinity.
Generalizations of this solution have also been studied [62, 63]. We shall see below
that such solutions are not relevant. The other solution has γ > 0. It “descends”
from r(± x⊥

2 ) = ∞ and has a turning point where r ′ = 0 which, by symmetry, must
occur at σ = 0. From (8.145), the turning point must occur at the horizon r = r0.
Integrating (8.145) gives the condition that specifies the value of γ :

x⊥
2

= R2

γ

∫ ∞

r0

dr√
r4 − r4

0

= aR2

γ r0
, (8.146)

where we have defined

a ≡ √
π�(

5

4
)/�(

3

4
) ≈ 1.311 . (8.147)

Putting all the pieces together, we find [582, 584]

S = ia
√
λT L−
√

2

√
1 + π2T 2x2

⊥
4a2

. (8.148)

We see that S is imaginary, because when the contour C at the boundary is light-
like the surface ! hanging down from it is space-like. It is worth noting that S had
to turn out to be imaginary, in order for 〈W 〉 in (8.143) to be real and the transverse
momentum broadening P(k⊥) to be real, as it must be since it is a probability
distribution. The surface ! that we have used in this calculation descends from
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infinity, skims the horizon, and returns to infinity. Note that the surface descends
all the way to the horizon regardless of how small x⊥ is. This is reasonable on
physical grounds, as we expect P(k⊥) to depend on the physics of the thermal
medium [582, 584]. We shall see below that it is also required on mathematical
grounds: when we complete the calculation by taking into account the nonstandard
operator ordering in (8.137), we shall see that only a worldsheet that touches the
horizon is relevant [317].

We now consider the computation of (8.138), with its nonstandard operator
ordering corresponding to putting one of the two light-like Wilson lines on the
Im t = 0 contour in Fig. 8.6 and the other on the Im t = −iε contour. The
procedure we shall describe is a specific example of the more general discus-
sion of Lorentzian AdS/CFT given in Refs. [743, 744, 786, 120]. In order to
compute (8.138) we first need to construct the bulk geometry corresponding to
the Im t = −iε segment of the Schwinger–Keldysh contour in Fig. 8.6. For this
purpose it is natural to consider the black hole geometry with complex time. In
Fig. 8.7, we show two slices of this complexified geometry. The left plot is the
Penrose diagram for the fully extended black hole spacetime with quadrant I and
III corresponding to the slice Im t = 0 and Im t = −β

2 respectively, while the
right plot is for the Euclidean black hole geometry, i.e. corresponding to the slice
Re t = 0. Note that because the black hole has a nonzero temperature, the imag-
inary part of t is periodic with the period given by the inverse temperature β. In
the left plot the imaginary time direction can be considered as a circular direction
coming out of the paper at quadrant I, going a half circle to reach quadrant III and
then going into the paper for a half circle to end back at I. In the right plot the real
time direction can be visualized as the direction perpendicular to the paper.

The first segment of the Schwinger–Keldysh contour in Fig. 8.6, with Im t = 0,
lies at the boundary (r = ∞) of quadrant I in Fig. 8.7, where it is shown as a green
dot. The second segment of the Schwinger–Keldysh contour, with Im t = −iε, is
shown as a red dot at the r = ∞ boundary of a copy of I that in the left plot of
Fig. 8.7 lies infinitesimally outside the paper and in the right plot of Fig. 8.7 lies at
an infinitesimally different angle. We shall denote this copy of I by I′. The geometry
and metric in I′ are identical to those of I. Note that I′ and I are joined together at
the horizon r = r0, namely at the origin in the right plot of Fig. 8.7. Now, the
thermal expectation value (8.138) can be computed by putting the two parallel
light-like Wilson lines at the boundaries of I and I′, and finding the extremized
string world sheet which ends on both of them. Note that since I and I′ meet only
at the horizon, the only way for there to be a non-trivial (i.e. connected) string
worldsheet whose boundary is the two Wilson lines in (8.138) is for such a string
worldsheet (shown as the red and green lines in Fig. 8.7) to touch the horizon.
Happily, this is precisely the feature of the string worldsheet found in the explicit
calculation that we reviewed above. So, we can use that string worldsheet in the
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Figure 8.7 Penrose diagrams for Lorentzian (Im t = 0 or −β/2; left panel) and
Euclidean (Re t = 0; right panel) sections of an AdS black hole. (Penrose dia-
grams were introduced in Fig. 7.1; a textbook presentation of Penrose diagrams
for black hole spacetimes can be found, for example, in Refs. [619, 683].) In
the left panel, the black hole horizon is represented by the diagonal lines; the
Euclidean section in the right panel touches the horizon only at the point at the
origin. The region of the black hole spacetime inside the horizon, which ends at
the singularity indicated by wavy lines, is only visible in the left panel. The sec-
tions depicted in the left and right panels should be imagined glued together along
the horizontal lines across their midpoints, where Re t = 0 and the two sections
intersect. The Euclidean section, now depicted in the right panel, would then be
sticking out of and into the page from the Re t = 0 line of the Lorentzian section
in the left panel. In the right panel, the two light-like Wilson lines are points at
r = ∞, indicated by the red and green dots. These dots are the boundaries of
a string worldsheet that extends inward to r = r0, which is at the origin of the
Euclidean section of the black hole. In the left panel, the string worldsheet and its
endpoints at r = ∞ are shown at Re t = 0; as Re t runs from −∞ to ∞, the string
worldsheet sweeps out the whole of quadrant I. Figure redrawn after Ref. [317].

present analysis, with the only difference being that half the string worldsheet now
lies on I and half on I′, as illustrated in Fig. 8.8.3

We conclude that the result for the expectation value (8.138), with its nonstan-
dard path ordering of operators, is identical to that obtained in Refs. [582, 584]
for a light-like Wilson loop with standard time ordering of operators [317]. That

3 The calculation of q̂ in N = 4 SYM theory via (8.138) nicely resolves a subtlety. As we saw above, in
addition to the extremized string configuration which touches the horizon, the string action also has another
trivial solution which lies solely at the boundary, at r = ∞. Based on the connection between position
in the r dimension in the gravitational theory and energy scale in the quantum field theory, the authors of
Ref. [582, 584] argued that physical considerations (namely the fact that q̂ should reflect thermal physics
at energy scales of order T ) require selecting the extremized string configuration that touches the horizon.
Although this physical argument remains valid, we now see that it is not necessary. In (8.138), the two Wilson
lines are at the boundaries of I and I ′, with different values of Im t . That means that there are no string
worldsheets that connect the two Wilson lines without touching the horizon. So, once we have understood
how the nonstandard operator ordering in (8.138) modifies the boundary conditions for the string worldsheet,
we see that the trivial worldsheet of Refs. [582, 584] and all of its generalizations in Refs. [62, 63] do not
satisfy the correct boundary conditions. The non-trivial worldsheet illustrated in Fig. 8.8, which is sensitive to
thermal physics [582, 584, 585], is the only extremized worldsheet bounded by the two light-like Wilson lines
in (8.138) [317].
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(r = r0)

Figure 8.8 String configuration for the thermal expectation value of (8.138).
The red and green dots at t = 0 and t = −iε are the red and green dots in
Fig. 8.7; the red and green string world sheet “hanging” from them is shown in
Fig. 8.7 as the red and green lines. Figure from Ref. [317].

is, in strongly coupled N = 4 SYM theory W(x⊥) in the adjoint representation is
given by

WA(x⊥) = exp

⎡
⎣−√

2a
√
λ L−T

⎛
⎝
√

1 + π2T 2x2
⊥

4a2
− 1

⎞
⎠
⎤
⎦ . (8.149)

We have quoted the result for WA(x⊥), which is given by W2
F (x⊥) in the large-Nc

limit, because that is what arises in the analysis of jet quenching, see Section 2.3.2.
(Radiative parton energy loss depends on the medium through the transverse
momentum broadening of the radiated gluons, which are of course in the adjoint
representation.) The x⊥-independent term in the exponent in (8.149), namely “the
−1”, is the finite subtraction of S0, which was identified in Ref. [582] as the action
of two disjoint strings hanging straight down from the two Wilson lines to the hori-
zon of the AdS black hole. Our calculation serves as a check of the value of S0,
since only with the correct S0 do we obtain WA(0) = 1 and a correctly normalized
probability distribution P(k⊥). Note that our field theory set-up requires L−T � 1,
and our supergravity calculation requires λ � 1, meaning that our result (8.149) is
valid only for √

λ L−T � 1. (8.150)
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In this regime, (8.149) is very small unless πx⊥T/(2a) is small. This means that
when we take the Fourier transform of (8.149) to obtain the probability distribution
P(k⊥), in the regime (8.150) where the calculation is valid the Fourier transform
is dominated by small values of x⊥, for which

WA(x⊥) � exp

[
− π2

4
√

2a

√
λL−T 3x2

⊥

]
, (8.151)

and we therefore obtain

P(k⊥) = 4
√

2a

π
√
λT 3L− exp

[
−

√
2ak2

⊥
π2

√
λT 3L−

]
. (8.152)

Thus, the probability distribution P(k⊥) is a Gaussian with a width, by virtue of
(8.150), that is much larger than T and the jet quenching parameter (8.136) can
easily be evaluated, yielding [582]

q̂ = π3/2�( 3
4)

�( 5
4)

√
λT 3 . (8.153)

The probability distribution (8.152) has a simple physical interpretation: the prob-
ability that the quark has gained transverse momentum k⊥ is given by diffusion in
transverse momentum space with a diffusion constant given by q̂ L . This is indeed
consistent with the physical expectation that transverse momentum broadening in
a strongly coupled plasma is due to the accumulated effect of many soft kicks
(by gluons) from the medium: the quark performs Brownian motion in momen-
tum space even though in coordinate space it remains on a light-like trajectory.
It is interesting that the result can be interpreted in this way even though, as we
have seen in Section 6.3, the strongly coupled plasma of N = 4 SYM theory con-
tains no quasiparticles off which the hard quark could scatter. The presence of such
quasiparticles at short length scales would give the probability distribution P(k⊥)
a power-law tail at large k⊥; the plasma of N = 4 SYM theory is a strongly cou-
pled liquid at all length scales, making (8.152) Gaussian even at large k⊥ [318].
Although there are no pointlike scattering centers present, the hard quark is never-
theless kicked softly many times by the strongly coupled liquid through which it
propagates.

If we attempt to plug RHIC-motivated numbers into the result (8.153), taking
T = 300 MeV, Nc = 3, αSYM = 1

2 and therefore λ = 6π yields q̂ = 4.5 GeV2/fm,
which turns out to be in the same ballpark as the values of q̂ inferred from RHIC
data on the suppression of high momentum partons in heavy ion collisions [582,
584].4 To see this, we can write the result (8.153) as

4 Data from the LHC exhibit somewhat stronger quenching that corresponds to a larger value of q̂. This is
consistent with the expectation that the plasma produced at the LHC should have a higher initial temperature.
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q̂ � 57

√
αSYM

Nc

3
T 3 , (8.154)

which can be compared to the result given in Eqs. (2.43) and (2.44) that was
extracted via comparison to RHIC data in Ref. [68]. To make the comparison,
we need to relate the QCD energy density ε appearing in (2.43) to T . Lattice cal-
culations of QCD thermodynamics indicate ε ∼ (9 − 11) T 4 in the temperature
regime that is relevant at RHIC [179]. This then means that if in (8.154) we take
αSYM within the range αSYM = 0.66+.34

−.25, the result (8.154) for the strongly coupled
N = 4 SYM plasma is consistent with the result (2.44) obtained via comparing
QCD jet quenching calculations to RHIC data.

We have described the N = 4 SYM calculation, but the jet quenching parameter
can be calculated in any conformal theory with a gravity dual [584]. In a large
class of such theories in which the spacetime for the gravity dual is AdS5× M5 for
some internal manifold M5 other than the five-sphere S5 which gives N = 4 SYM
theory [584],

q̂CFT

q̂N=4
=

√
sCFT

sN=4
, (8.155)

with s the entropy density. This result makes a central qualitative lesson from
(8.153) clear: in a strongly coupled plasma, the jet quenching parameter is not
proportional to the entropy density or to some number density of distinct scatter-
ers. This qualitative lesson is more robust than any attempt to make a quantitative
comparison to QCD. But, we note that if QCD were conformal, (8.155) would
suggest

q̂QCD

q̂N=4
≈ 0.63 . (8.156)

And, analysis of how q̂ changes in a particular toy model in which nonconfor-
mality can be introduced by hand then suggests that introducing the degree of
nonconformality seen in QCD thermodynamics may increase q̂ by a few tens of
percent [585]; q̂ also increases with increasing nonconformality in strongly cou-
pled N = 2∗ gauge theory [418, 468]. Putting together these observations that
suggest that neither the nonconformality of QCD nor the fact that it has fewer
degrees of freedom than N = 4 SYM theory modify q̂ dramatically together with
the fact that they seem to push q̂ in opposite directions, perhaps it is not surprising
that the q̂ for the strongly coupled plasma of N = 4 SYM theory is in the same
ballpark as that extracted by comparison with RHIC data.

8.6 Quenching a beam of strongly coupled gluons

In Section 8.5 we have analyzed jet quenching via the strategy of working as far
as possible within weakly coupled QCD and only using a holographic calculation
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within N = 4 SYM theory for one small part of the story, namely the calcula-
tion of the jet quenching parameter q̂ through which the physics of the strongly
coupled medium enters the calculation. This approach has been justified in the
high jet energy limit, where the dominant energy loss process for an energetic par-
ton plowing through quark–gluon plasma with temperature T is medium-induced
gluon bremsstrahlung [421, 98, 817], radiating gluons with energy ω and momen-
tum transverse to the jet direction k⊥ that satisfy E � ω � k⊥ � πT [98, 817,
797, 414, 420]. This set of approximations, i.e. the assumption that all these scales
are well separated, is the basis of the approach in Section 8.5, and indeed of all ana-
lytic perturbative calculations of radiative energy loss to date. The (perhaps naive)
expectation based upon these considerations is that at least some of the energy
lost by the high energy parton should emerge as relatively hard particles (since
ω �� πT ) near the jet direction (since ω � k⊥), resulting in a jet whose angular
distribution has been broadened and whose fragmentation function has been soft-
ened. Stimulated by the data from the LHC, several groups have developed more
sophisticated implementations of these considerations, formulating an essentially
perturbative approach to jet quenching that compares well with the jet quenching
measurements published to date for jets with sufficiently high transverse momen-
tum [257, 699, 815, 820, 243, 698, 247, 816, 69, 613, 139, 258, 140, 612, 71, 819].
One still expects that any such perturbative approach must have limitations, even
for the hardest processes accessible in heavy ion collisions, since it is based upon
the premise that the QCD coupling evaluated at the scale k⊥ (which, recall, is
�� E but � πT ) is weak even if the physics at scales ∼ πT is strongly coupled.
This makes it important to analyze models of jet quenching in strongly coupled
plasmas in contexts where reliable analyses are possible. Even if such analyses
yield only qualitative insight, they can be useful as benchmarks and as guides to
how to think about the physics. By pursuing such approaches and the perturba-
tive approach, we expect to bracket the experimentally accessible regime and to
gain insight into the extent to which the strongly coupled physics that governs the
medium itself is also relevant for hard processes.

With these motivations in mind, in this section we return to assuming that the
physics at all relevant scales is strongly coupled, as in Section 8.4. We saw in that
section that there is no way to analyze how an actual jet is modified by the strongly
coupled plasma of N = 4 SYM theory, relative to how it would have developed in
the vacuum of that theory, because hard scattering in strongly coupled N = 4 SYM
theory does not produce jets. The results described in Section 8.4, although sensi-
tive to details of the initial conditions, addressed the question of how single partons
are stopped and thermalized in the plasma and in particular how far they can travel
before they are stopped. However, a reasonable framework for understanding the
quenching of jets cannot be based solely on discussing single partons that lose
energy in the medium and then are either stopped in the medium or emerge in
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isolation and fragment into ordinary-looking jets. The problem with this picture is
that what would emerge is a nearly on-shell quark, which would then not fragment
into a jet in the usual way. A phenomenologically more meaningful picture is that
of a hard parent parton that fragments rapidly into a protojet (a perturbative process
that we do not expect to describe by strong coupling methods) with this protojet
then propagating through the strongly coupled plasma, interacting strongly with it,
and losing energy.

If we are to gain insight into jets in heavy ion collisions from a strongly coupled
perspective, it would be useful to have a thought experiment in which we could
construct a closely collimated beam of partons that is either propagating through
the vacuum or through the strongly coupled plasma. In this section, we shall start
by describing a thought experiment [85, 295] by which such a beam of gluons is
produced with an angular distribution and a distribution of momenta that is well
understood in vacuum. We shall then watch what happens as this beam of gluons
shines through the strongly coupled plasma at nonzero temperature and gets rapidly
attenuated – with no apparent broadening of its angular distribution or softening of
the momenta of the gluons that it is made of – while the lost energy appears as
soft collective excitations, sound waves that subsequently dissipate. From a purely
theoretical perspective it is instructive to have a thought experiment in which we
can see an excitation that is moving at the speed of light and that is made of quanta
with momenta � πT that couple to, and lose energy to, the soft hydrodynamic
modes of the strongly coupled plasma. From this perspective, the thought exper-
iment in this section serves as a worked example fitting within the more general
discussion of equilibration processes found in Chapter 7. We shall close this sec-
tion with a phenomenological perspective, however, by noting the ways in which
the results of the thought experiment bear qualitative resemblance to results from
real experiments on jets in heavy ion collisions.

8.6.1 A beam of strongly coupled synchrotron radiation in vacuum

The trick by which a beam of gluons can be produced in N = 4 SYM theory is
to consider a test quark undergoing circular motion with radius R0 and velocity v

(and hence angular velocity � ≡ v/R0) in the vacuum of this theory [85, 471].
At both weak coupling (where the calculation is done conventionally) and strong
coupling (where the calculation is done via gauge/gravity duality) the radiation that
results is remarkably similar to the synchrotron radiation of classical electrodynam-
ics, produced by an electron in circular motion [85]. In particular, as the limit of
ultra-relativistic motion is taken (γ → ∞ where γ ≡ 1/

√
1 − v2) the lighthouse-

like beam of radiation becomes more and more tightly collimated in angle (it
is focused in a cone of angular extent ∼ 1/γ ) and is composed of gluons and
scalars with shorter and shorter wavelengths (the pulse of gluons in the beam has a
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AdS5 radial
direction

Boundary stress

Figure 8.9 Cartoon from Ref. [85] of the gravitational description of synchrotron
radiation at strong coupling: the quark rotating at the boundary trails a rotat-
ing string behind it which hangs down into the bulk AdS5 space. This string
acts as a source of gravitational waves in the bulk, and this gravitational radia-
tion induces a stress tensor on the four-dimensional boundary. By computing the
bulk-to-boundary propagator one obtains the boundary theory stress tensor that
describes the radiated energy. The entire calculation can be done analytically [85].

width ∼ R0/γ
3 in the radial direction in which it is moving). The emitted radiation

was found to propagate outward at the speed of light forever without broadening
either in angle or in pulse width, just as in classical electrodynamics [85, 434,
471, 435, 284, 104, 285]. At weak coupling, the slight differences in the angular
distribution of the power radiated to infinity relative to that in classical electrody-
namics can be attributed to the fact that scalars are radiated as well as gluons [85].
And, at strong coupling the angular distribution is identical to that at weak cou-
pling [85, 435, 104]. The way the calculation is done at strong coupling is sketched
in Fig. 8.9. The logic of the calculation is as we described in Section 8.3, and so
we shall not present it in detail. It turns out, however, that in vacuum the shape of
the rotating string in the bulk and the corresponding form of the energy density of
the outward-propagating radiation on the boundary can both be determined analyt-
ically [85]. This beam is not literally a jet, since it is not produced far off shell. But,
we know from Hofman and Maldacena that a far off shell “photon” does not result
in jets in this theory. And, this beam of non-Abelian radiation yields a different
cartoon of a jet than those we have described in Section 8.4 and, as we shall see,
allows us to answer questions about its propagation through the medium that have
not yet been posed in the formalism of Section 8.4.

Although it has recently been explained from the gravitational point of view in
beautifully geometric terms [470], from the point of view of the non-Abelian gauge
theory it is surprising that the angular distribution of the radiation at strong cou-
pling seen in Fig. 8.10 is so similar (see Ref. [85] for quantitative comparisons) to
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Figure 8.10 Cutaway plots of r2E/P for a test quark in circular motion with v =
1/2 and v = 3/4. Here, E is the energy density and P is the total power radiated
per unit time. We see a spiral of radiation, propagating radially outwards at the
speed of light, without any spreading. The spiral is localized about θ = π/2 with
a characteristic width δθ ∝ 1/γ . The radial thickness of the spiral is proportional
to 1/γ 3. Figure taken from Ref. [85].

that at weak coupling, where what is radiated is a mixture of colored – and therefore
interacting – gluons and scalars. The fact that, even when the coupling is arbitrarily
strong, as the pulses of radiation propagate outwards they do not spread at all and
never isotropize indicates that intuition based upon parton branching [433] (namely
that the non-Abelian character of the radiation should result in energy flowing
from short to long wavelengths as the pulses propagate outwards and should yield
isotropization at large distances) is invalid in this context.5

8.6.2 Shining a gluon beam through strongly coupled plasma

For our purposes, the result that the “beam” of radiated gluons (and scalars) pro-
duced by a quark in circular motion propagates outward with a fixed angular width
that we can select by picking γ is fortuitous. It means that this roundabout method

5 Reference [434] shows that isotropization via some analog of parton branching is also not the correct picture
for the radiation studied in Ref. [457] by Hofman and Maldacena: this radiation also propagates outward as
a pulse without any spreading, but this pulse is spherically symmetric at all radii. So, in the case studied by
Hofman and Maldacena there is no process of isotropization because the radiation is isotropic at all times while
in the case illustrated in Fig. 8.10 there is no isotropization because the radiation never becomes isotropic.
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yields a state that looks something like a jet. It is not a jet in that it is not produced
via the fragmentation of an initially far offshell parton. But, it is a collimated
beam of gluons of known, and controllable, angular width. For this reason, results
obtained in the formal setting of a test quark moving in a circle open the way to
new means of modeling jet quenching in heavy ion collisions [295]. We shall see
that when this beam of gluons shines through the strongly coupled plasma it is
attenuated over a length scale that can be understood analytically and we shall see
that as the beam is attenuated it does not broaden in angle or redden in wavelength.

The first step in the analysis of how the collimated beam of gluons is quenched
by the strongly coupled plasma is to determine the shape of the spiraling string
(see the cartoon in Fig. 8.9) in the case where the bulk metric is the AdS-black
hole (AdS-BH) metric that describes the plasma, rather than the AdS metric that
describes only the vacuum [346, 295]. The rotating string in the AdS-BH geometry,
spiraling “downward” from the quark in circular motion at the AdS-BH boundary
toward its horizon, spiraling around and around infinitely many times just above
the horizon, perturbs the AdS-BH geometry via Einstein’s equations. The second
step in the analysis is to solve Einstein’s equations, linearized in the perturbation,
and use the perturbations of the bulk metric at the boundary to determine the energy
density in the boundary N = 4 SYM plasma, including the beam of gluons that
this spiraling string describes. This calculation was performed in Ref. [295] and
although it introduces new technical elements its logic is the same as that in the
simpler calculation that we have reviewed in Section 8.3, and we shall therefore not
describe the calculation here. Below we shall describe the results, as well as ana-
lytic arguments that explain all their qualitative features, but first we must establish
some further notation and expectations.

To discuss the rate at which a quark undergoing circular motion through the
plasma of strongly coupled N = 4 SYM theory loses energy, it is useful to
distinguish two regimes [346], depending on whether

# ≡ �2γ 3

(πT 2)
(8.157)

is � 1 or � 1. For # � 1, the energy loss rate is given by the generalized Larmor
formula

d E

dt

∣∣∣∣
rad

=
√
λ

2π
aμaμ, (8.158)

where aμ is the quark’s proper acceleration. As we mentioned in Section 8.1, it
was shown many years ago by Mikhailov that the energy loss rate of a quark in
circular motion in the vacuum of strongly coupled N = 4 SYM theory is given
by (8.158) [618] and so in the strongly coupled plasma at T 
= 0, in the # � 1
regime we expect to see the radiation of beam of synchrotron-like radiation as in
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vacuum [85], and the subsequent attenuation of this beam. When # � 1, on the
other hand, acceleration becomes unimportant and the energy loss rate is that due
to the drag force exerted by the strongly coupled hydrodynamic fluid on a quark
moving in a straight line with velocity v [346], namely [394, 452]

d E

dt

∣∣∣∣
drag

=
√
λ

2π
(πT )2 v2γ . (8.159)

Notice that the parameter # which governs which expression for the energy loss
rate is valid is simply the ratio of the rates appearing in Eqs. (8.158) and (8.159). In
this respect it is as if both hydrodynamic drag and Larmor radiation are in play with
the larger of the two effects dominating the energy loss, but this simplified picture
is not quantitatively correct because where # ∼ 1 the energy loss rate is less than
the sum of Eqs. (8.158) and (8.159) [346]. Although our principal interest is in
the # > 1 regime, where we can study the quenching of a beam of synchrotron
gluons, it is also instructive to look at # < 1 and # ∼ 1 as in these regimes the
hydrodynamic response of the plasma – i.e. the production of sound waves – is
more readily apparent.

Unlike in vacuum, in the plasma at nonzero temperature the energy disturbance
created by the rotating quark can excite two qualitatively distinct modes in the
energy density; a sound mode which at long wavelengths travels at speed cs =
1/

√
3, and a light-like mode which propagates at the speed of light. The relative

amplitude of each mode depends on the trajectory of the quark: when # < 1 the
dominant modes that are excited are sound waves; when # > 1 the dominant
modes that are excited propagate at the speed of light. Interestingly, in the # ∼ 1
regime as the pulse of radiation moving at the speed of light is attenuated in energy,
it sheds a sound wave [295].

Figure 8.11 shows three different plots of r2�E/P for quarks in circular motion
with each of three different velocities: v = 0.15, v = 0.3 and v = 0.5. Here, �E
is the total energy density minus that of the undisturbed plasma and P ≡ d E/dt
is the energy lost by the circulating quark (and hence dumped into the plasma) per
unit time. In all plots, the quark’s trajectory lies in the equatorial plane θ = π/2,
the quark is rotating counter-clockwise. And, in all plots the temperature of the
plasma is given by πT = 0.15/R0 and the units are chosen such that the radius
of the quark’s trajectory is R0 = 1. This means that # defined in (8.157) is given
by 1.0, 4.6 and 17.1 in the left, middle and right columns respectively. At the time
shown, the quark is located at x = R0, y = 0 and the quark is rotating counter-
clockwise in the plane z = 0. The three plots in the top row are cutaway plots with
the cutaways coinciding with the planes z = 0, φ = 0 and φ = 7π/5. The three
plots in the middle row show the energy density on the plane z = 0 and the bottom
three plots give the energy density at z = 0, φ = π/2, namely a slice through the
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Figure 8.11 Plots from Ref. [295] illustrating the energy density of strongly cou-
pled N = 4 SYM plasma in which a test quark is rotating on a circle with radius
R0 with angular velocity � = v/R0 for v = 0.15 (left column), v = 0.3 (middle
column) and v = 0.5 (right column). Top: cutaway plots of r2�E/P where P is
the power radiated by the quark. Middle: plots of r2�E/P on the equatorial plane
θ = π/2 (i.e. z = 0). Bottom: solid blue curves are plots of r2�E/P at θ = π/2
and φ = π/2. The dashed red curves in the bottom plots show r2E/P for the
strongly coupled synchrotron radiation emitted by a quark in circular motion in
vacuum [85], pulses of radiation that propagate outward to r → ∞ at the speed
of light without spreading.

middle row plot along one radial line. For reference, the dashed red curves in these
bottom plots show r2E for the strongly coupled synchrotron radiation that a quark
moving along the same circular trajectory would emit in vacuum [85]. In each of
the bottom plots, we use the same P to normalize the dashed red curve as for the
solid blue curve. All nine panels in Fig. 8.11 show the energy density at one instant
of time, but the time-dependence is easily restored by replacing the azimuthal angle
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φ by φ − �t , where � = v/R0 is the angular velocity. As a function of increas-
ing time, the entire patterns in the upper and middle rows rotate with angular
velocity �, as the spirals of radiation move outwards. As a function of increasing
time, the patterns in the lower rows move outwards, repeating themselves after a
time 2π/�.

As is evident from Fig. 8.11, as the quark accelerates along its circular trajectory,
energy is radiated outwards in a spiral pattern which is attenuated as the radiation
propagates outwards through the plasma to increasing r . However, the qualitative
features of the spiral patterns differ greatly at the three different quark velocities
shown. For v = 0.15, the spiral arms are very broad in r , as broad as their sep-
aration, and the spiral pattern propagates outwards at the speed of sound, while
being attenuated with increasing r . Second order hydrodynamics for a confor-
mal fluid with a gravity dual like N = 4 SYM theory predicts a sound velocity
1/

√
3 + 0.116 q2/(πT )2 + · · · [107] for sound waves with wave-vector q. The

sound waves in the left column of Fig. 8.11 do not actually have only a single wave-
vector but, roughly, they have q ∼ 1.3πT and are moving outward with a velocity
∼ 0.74, quite close to the O(q2) prediction for the sound velocity. The dashed red
curve in the lower-left panel shows the energy density of the synchrotron radiation
that this quark would have emitted if it were in vacuum, and we see that there is
no sign of this in the results. So, at this v, corresponding to # = 1.0, the rotating
quark is emitting sound waves.

The results in the right column of Fig. 8.11, for v = 0.5, are strikingly different.
The spiral arms are very narrow in r , much narrower than their separation, and they
propagate outwards at the speed of light, as can be seen immediately in the bottom-
right panel by comparing the results of the calculation, the solid blue curve, to the
energy density of the synchrotron radiation that this quark would have emitted if
it were in vacuum, shown by the dashed red curve. We see that at this v, corre-
sponding to # = 17.1, the rotating quark is emitting strongly coupled synchrotron
radiation, as in vacuum [85], and we see that the radiation is being attenuated as it
propagates outward in r , through the strongly coupled plasma. Remarkably, even as
the outgoing pulses of energy are very significantly attenuated by the medium we
see no sign of their broadening in either the θ or the φ or the r directions. Looking
at the vertical sections in the upper-right panel, we see that if anything the spread
of the beam of radiation in θ is becoming less as it propagates and gets attenuated.
This conclusion is further strengthened by careful comparison of the upper-right
panel of Fig. 8.11 to the analogous results for a quark in circular motion in vac-
uum [295]. It is certainly clear that the presence of the medium does not result in
the spreading of energy away from the center of the beam at the equator out toward
large polar angles. Just the opposite, in fact: at large polar angles the beam gets
attenuated more rapidly than near θ = π/2. Broadening in either the φ or the r
directions would be manifest as widening of the pulses in the bottom-right panel,
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and this is also certainly not seen. In fact, extending the plot in the bottom-right
panel out to larger r , for several more turns of the spiral, shows continued rapid
attenuation with no visible broadening [295].

We turn our attention now to the center column of Fig. 8.11. Here, with a rota-
tion velocity of v = 0.3 corresponding to # = 4.6, we clearly see both synchrotron
radiation and sound waves. The synchrotron radiation is most easily identified with
reference to the results for a quark with this rotation velocity in vacuum, shown in
the dashed red curve in the bottom-center panel. In our results with T 
= 0, we see
the emission of a pulse of synchrotron radiation whose amplitude is very rapidly
attenuated, much more rapidly than in the right column. In part guided by our
inspection of the results at large # in the right column, we see that as the pulse of
synchrotron radiation is attenuated, it too does not broaden. What we see here that
is not so easily seen in the right column is that as the pulse of synchrotron radiation
is attenuated it “sheds” a sound wave, leaving behind it a broad wave, reminiscent
of the sound waves in the left column. Behind each pulse of synchrotron radiation
we see the “compression half” of a sound wave, and behind that a deeper rarefac-
tion, and then the next pulse of synchrotron radiation arrives. Once seen in the
middle column, this phenomenon can perhaps also be discerned to a much lesser
degree in the right column, with each pulse of synchrotron radiation trailed first
by a region of slight compression and then by a region of some rarefaction. It is
not really clear in the right column whether these can be called sound waves, both
because of their smaller amplitude and because the next pulse of synchrotron radi-
ation overwhelms them sooner than in the middle column. In the middle column,
though, the interpretation is clear: the beam of synchrotron gluons is exciting sound
waves in the plasma.

The results of Ref. [295], for example those in Fig. 8.11, demonstrate that at
small # the rotating quark emits only sound waves while at large # it emits
strongly coupled synchrotron radiation as in vacuum, with that beam of gluons
subsequently being quenched by the plasma. The calculation has also been done
at v = 0.65 [295], corresponding to # = 42.8. In this case, the beam of gluons
travels out to larger r as it is attenuated. Even so, as the beam is being almost com-
pletely attenuated by the plasma it continues to propagate at the speed of light and
it does not broaden.

There are several (related) obstacles to obtaining definitive answers to the ques-
tion of where the energy that is initially in the gluon beam goes as the gluon beam
gets attenuated [295]. The first we have discussed above: we cannot watch the
plasma behind one of the pulses of radiation very long before the next pulse comes
along and obliterates whatever the previous pulse has left behind. A further obsta-
cle arises because the analysis concerns a scenario in which the quark has been
moving in a circle for an infinitely long time meaning that a steady-state in which
the energy density at any position is a periodic function of time has been achieved.
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We see in Fig. 8.11 that the energy density in the beam falls off faster than 1/r2

at large r . So, the natural expectation is that the beam heats the plasma up in the
range of r over which it gets attenuated – perhaps it first makes sound waves, but
ultimately these too will damp, leaving just a heated region of plasma. This expec-
tation cannot be correct in a steady-state calculation, since a continual heating up
of some region of space blatantly contradicts the steady-state assumption. So, what
actually happens to the energy in this calculation? At sufficiently large r the energy
density �E is zero. This means that at sufficiently large r , there is an outward flux
of energy whose magnitude, averaged over angles, is P/(4πr2) with P the energy
lost by the rotating quark per unit time. This energy flux corresponds to a collective
outward flow of the plasma with a velocity, averaged over angles, given by [295]

vplasma = P

4πr2(E + p)
= π

2N 2
c

P

(πT )2

1

(r πT )2
, (8.160)

where we have used the fact that the sum of the energy density and pressure of the
plasma in equilibrium is E + p = π2N 2

c T 4/2. We see that in the large-Nc limit,
the velocity vplasma is infinitesimal. So, in the steady-state calculation whose results
we have presented, the energy from the gluon beam ultimately finds its way into an
infinite wavelength mode with infinitesimal amplitude [295]. A mode like this can
be thought of as a sound wave with infinite wavelength and infinitesimal amplitude
(i.e. infinitesimal longitudinal velocity). In a sense, this energy flux corresponding
to an infinitesimal-velocity outward flow of the plasma is the closest that a steady-
state calculation can come to describing the heating up of a region of the plasma.

8.6.3 Qualitative features, analytically

Much can be understood about the qualitative features of the results illustrated
in Fig. 8.11 by studying the quasinormal modes of the AdS-BH spacetime that
provide the dual gravitational description of the physics and that we introduced
in Section 6.4. In the dual gravitational picture, the moving string excites a full
spectrum of gravitational quasinormal modes, which propagate outwards and even-
tually get absorbed by the black hole. The propagation and absorption of these
quasinormal modes manifests itself on the boundary as the propagation and atten-
uation of the spirals of energy density shown in Fig. 8.11. The dispersion relations
ω(q) of the lowest quasinormal mode were obtained in Ref. [295] using methods
developed previously [555].

Figure 8.12 shows the dispersion relation for the lowest quasinormal mode (i.e.
the one with the smallest imaginary part). As we saw in Section 6.4, for q � πT
this dispersion relation has the asymptotic form expected for the hydrodynamics of
any conformal fluid [107]
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Figure 8.12 A plot of the real and imaginary parts of the dispersion relation of the
lowest quasinormal mode taken from Ref. [295]. We plot Reω/q and Imω/(πT )
since these ratios are both of order 1. For q � πT the dispersion relation is that
of sound waves whose dispersion relation is given up to order q3 by Eq. (8.161),
plotted as dashed lines in the figure. For q � πT the dispersion relation is that of
waves which propagate at the speed of light. The large-q asymptotic expression
(8.163) that we have obtained by fitting the results in this figure is plotted as the
dotted lines.

ωs(q) = csq − i�q2 + �

cs

(
c2

s τ� − �

2

)
q3 + O(q4) , (8.161)

where in N = 4 SYM theory, with its classical gravity dual, all the constants are
known analytically: the low-q speed of sound is cs = 1/

√
3, the sound attenuation

constant � is given by πT � = 1/6, and the relaxation time τ� is given by πT τ� =
(2 − log 2)/2. These modes represent propagating sound waves which attenuate
over a time scale

tdamping
s ∼ 1

�q2
. (8.162)

The dispersion relation (8.161) is plotted as the red and black dashed curves in
Fig. 8.12; it describes the full dispersion relation very well for q � 2πT . This
supports the observation that the waves in the left column of Fig. 8.11 are sound
waves. Since these waves are not monochromatic (and since in the dual gravita-
tional description they are not described solely by the lowest quasinormal mode)
they cannot be compared quantitatively to (8.161), but their velocity is as (8.161)
predicts for q ∼ 1.2πT , which is comparable to the q ∼ 1.3πT obtained from
their peak-to-peak wavelength. Using q ∼ 1.2πT in (8.162) predicts a sound
attenuation timescale (�t)sound ∼ 4.5/(πT ) ∼ 30 R0, which is comparable to but
a little shorter than the exponential decay time for the amplitude of the waves in
the left column of Fig. 8.11, which is closer to 40 R0. So, the low-q regime of
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the dispersion relation in Fig. 8.12 that describes sound waves does a reasonable
job of capturing the qualitative features of the waves seen in the left column of
Fig. 8.11.

The dispersion relations of the higher quasinormal modes (those with more neg-
ative imaginary parts) can also be determined [295]. At q � πT they approach
the asymptotic form ω = (ã − i b̃)πT where ã and b̃ are mode-dependent O(1)
constants, with values that are larger and larger for higher and higher modes.
(For the lowest quasinormal mode, ã = b̃ = 0.) At low q, disturbances of the
plasma described by higher quasinormal modes attenuate on a time scale of order
1/(b̃ πT ) that is much shorter than that for the sound waves described by the lowest
quasinormal mode, namely (8.162).

Let us turn now to q � πT . As we noted in Section 6.4, in this regime the
dispersion relation for the lowest quasinormal mode takes the asymptotic form

ωrad = q + πT (a − ib)

(
πT

q

)1/3

+ · · · , (8.163)

as argued for on general grounds in Ref. [349], with a ≈ 0.58 and b ≈ 1.022 [295].
At q � πT the dispersion relations of all quasinormal modes approach the asymp-
totic form (8.163), with a and b mode-dependent O(1) constants, again with values
that are larger and larger for higher and higher modes. Therefore, generically the
high q modes propagate at close to the speed of light and attenuate over a time
scale

tdamping
rad ∼ 1

πT b

( q

πT

)1/3
, (8.164)

where we shall use the value b ≈ 1.022 from the lowest quasinormal mode in
making estimates, keeping in mind that if the contribution of higher quasinormal
modes were important this would increase the effective b somewhat. The fact that
the pulses of energy in Fig. 8.11 are far from being monochromatic waves intro-
duces a larger uncertainty than does not knowing how much the higher quasinormal
modes contribute.

We have plotted the large-q asymptotic expression (8.163) for the dispersion
relation for the lowest quasinormal mode as the dotted red and black curves in
Fig. 8.12, and we see that it describes the full result very well for q � 20πT ,
and has the right shape at a qualitative level down to about q ∼ 5πT . This is
consistent with our observation that the narrow pulses of synchrotron radiation in
the middle column, where the pulses have a full width at half maximum (FWHM)
∼ 2.5 R0 corresponding very roughly to q ∼ 6πT , and the right column, where the
pulses have a FWHM ∼ R0 corresponding very roughly to q ∼ 15πT , propagate
outwards at the speed of light. Converting the widths of these pulses into esti-
mates of q is very rough because the pulses are neither sinusoidal nor Gaussian.
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If we nevertheless try substituting q ∼ 15πT into (8.164) we find that it pre-
dicts tdamping

rad ∼ 16 R0, which is roughly half the exponential decay time for the
amplitude of the waves in the lower-right panel of Fig. 8.11. Again, quantitative
comparison is not possible, but inferences drawn from the large-q dispersion rela-
tion for the lowest quasinormal mode (8.163) is at least in the right ballpark. The
qualitative prediction from (8.164) is that narrower pulses, with higher q, can pen-
etrate farther into the strongly coupled plasma, and this is also apparent in the
numerical results.

It is interesting to note that the distance scale (8.164) over which the beam of
gluons is quenched has the same parametric dependence as the maximal stopping
distance (8.133) or (8.134). Both the present calculation and that in Section 8.4.2
describe the propagation of an energetic excitation injected into the plasma, but
the means by which this injection is accomplished are completely different. It is
therefore a pleasing sign of the robustness of the result that the same parametric
dependence of the stopping distance is obtained.

The quasinormal mode analysis also has interesting qualitative implications
for understanding the formation of quark–gluon plasma via the thermalization
of some initially far-from-equilibrium state, as discussed in Chapter 7. If short
wavelength excitations present in the initial conditions or created during the
far-from-equilibrium evolution are sufficiently long lived, they can spend much
of their lifetime propagating through nearly-equilibrated quark–gluon plasma,
where their evolution can be understood via the quasinormal mode dispersion
relations. Equation (8.164) indicates that the maximum thermalization time for
modes of momentum q � πT is ∼ q1/3(πT )−4/3. This means that short wave-
length modes thermalize more slowly than modes with momenta of order πT ,
a conclusion that has also been reached via a rather different analysis of the
away-from-equilibrium correlation functions that govern Hawking radiation in a
time-dependent spacetime [286].

We can also use the quasinormal mode dispersion relation to understand why the
pulses do not broaden significantly in the radial direction as they propagate. The
increase in the width of a pulse as it propagates for a time t is ∼ t �q d2ω/dq2,
where �q is the width of the pulse in q-space. Taking �q ∼ q and using the
large-q dispersion relation (8.163), we find that after the radiation damping time
given by (8.164) the pulse should have broadened by ∼ 4a/(9bq). If the pulse had a
Gaussian profile, this would correspond to broadening by about 10% of the original
FWHM of the pulse. So, the quasinormal mode dispersion relation predicts that by
the time the pulses have been significantly attenuated, they should have broadened
by an amount that is parametrically of order their initial width, but smaller by a
significant numerical factor. It is therefore not surprising that we see no significant
broadening in Fig. 8.11.
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Having understood many of the most interesting features of Fig. 8.11 qualita-
tively, and even semi-quantitatively, by analyzing the quasinormal mode dispersion
relations gives us confidence that no new qualitative phenomena emerge for nar-
rower pulses (higher q; e.g. from a rotating quark with larger γ ), since it is clear
that the results at v = 0.5 and v = 0.65 are already exploring the high-q regime of
the dispersion relation in Fig. 8.12, where the asymptotic expression (8.163) is a
good guide. It is also important to stress that the quasinormal mode frequencies are
determined entirely by the AdS-BH metric, meaning that they reflect properties of
the strongly coupled plasma itself and have nothing to do with the details of how
the beam of gluons shining through it was made by the rotating quark. Given that
we have been able to use the quasinormal mode dispersion relations so successfully
to understand the propagation, the rate of attenuation and the lack of broadening of
a beam of gluons, we are confident that these phenomena are independent of how
the beam of gluons is created.

Now that we understand the steady-state results in terms of quasinormal modes,
we can use the fact that the phenomena we have found are independent of how the
beam of gluons is created to answer the following question: suppose that we could
engineer a single pulse of strongly coupled synchrotron radiation; what would hap-
pen to this pulse as it propagates through the strongly coupled plasma? The dual
gravitational description of this radiation would be governed by the same quasinor-
mal modes we have analyzed, just sourced by a different string worldsheet. As long
as we look only at distances greater than of order 1/(πT ) away from the source,
the disturbance of the plasma must be described by a pulse of short wavelength
radiation with the dispersion relation (8.163) that moves at the speed of light, that
does not broaden, and that is attenuated on timescales (8.164) as well as long wave-
length sound waves with the dispersion relation (8.161) that propagate outward at
the speed of sound and that are attenuated on timescales (8.162). Since these sound
waves move more slowly, the pulse of radiation leaves them behind – shedding
them as we see in the middle column of Fig. 8.11. (The same would happen for
shorter wavelength pulses as in the right column of the figure, but in such cases in
our steady-state calculation the next pulse of synchrotron radiation arrives before
we can see the sound waves being left behind. As we described in Section 8.6.2,
it is difficult to use a steady-state calculation to draw conclusions about what the
pulse of radiation leaves behind.) In the case of a single, isolated, short wavelength
pulse, the short wavelength pulse itself will get far ahead of the sound waves it has
left behind as it is attenuated only on the long time-scale (8.164). By the time the
short wavelength pulse has damped away, the sound waves that it shed will be far
behind and according to (8.162) all but those with the very smallest q will have
dissipated away as heat. Only hydrodynamic modes with very small q (i.e. heat
accompanied by almost no fluid motion) will remain. (These are represented in the
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steady-state calculation by the outward-going energy flux with infinite wavelength
and infinitesimal amplitude that we found at the end of Section 8.6.2.) We now
see that the distinction between the middle and right columns of Fig. 8.11 is that
in the former case the pulse of radiation is never well separated from the sound
waves that it leaves behind, because the radiation does not have a large enough q
for its damping time scale (8.164) to be very much longer than 1/(πT ). So, by the
time the radiation has been damped the sound waves are not far behind it and have
themselves not yet thermalized.

8.6.4 From quenching a beam of strongly coupled gluons to jet quenching

There are many qualitative similarities between the quenching of the beam of
strongly coupled synchrotron radiation in the strongly coupled N = 4 SYM
plasma that we have described in this section and jet quenching in heavy ion
collisions, which we introduced in Section 2.3.

The highest energy jets that have been studied to date in heavy ion collisions at
the LHC [2, 264, 266, 273, 268, 3] lose significant energy but emerge as jets that
(within current experimental resolution) have not been deflected in angle [273] and
whose moderate and high momentum fragments are distributed in angle and in
momentum quite similarly to what is seen in ordinary jets in vacuum. The energy
lost from the jets does not stay in or near the jet cone, and does not emerge in the
form of moderate or high momentum fragments. Instead, the lost energy becomes
an excess of soft particles (momenta � 1 GeV [264]) at large angles (> 45◦ [264])
relative to the jet direction.

At a qualitative level, the behavior of the beam of gluons that we have described
in this section is similar. As it propagates through the strongly coupled plasma,
losing significant energy, the beam of gluons moving at the speed of light does
not spread in angle or get deflected in its direction. And, even as it is significantly
attenuated, it does not spread in the direction along which it propagates which
means that the way in which momentum is shared among the gluons in the beam
is not much changed. The beam is quenched completely after traveling a distance
proportional to q1/3/(πT )4/3, where q is the typical wave vector of the gluons in
the beam. Finally, the lost energy ends up in soft, collective modes of the plasma
that initially take the form of sound waves following behind the beam and that
subsequently thermalize, heating the plasma.

As we saw in Section 8.6.3, the fact that we can describe all these phenomena
in terms of quasinormal modes, independently of the details of how these quasi-
normal modes are excited, indicates that they will characterize the quenching of
any excitation that is initially made of the high momentum modes which propagate
through the strongly coupled plasma at the speed of light. To the degree that it has
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been possible to investigate them to date, these qualitative features are also seen in
the quenching of the energetic heavy (and light) quarks introduced into the strongly
coupled plasma in Sections 8.1, 8.2 and 8.3 (and Section 8.4).

If in a heavy ion collision a jet loses energy by heating the plasma the lost energy
would be manifest as an excess of soft particles moving in all directions. If the lost
energy is in the form of sound waves following the jet, that would correspond to
an excess of soft particles near the jet direction that may be more easily visible in
the case of jets with lower energies or jets that did not travel far through the plasma
(meaning that the sound waves they shed did not have time to thermalize) or both.
There are preliminary indications of such jet broadening in the analysis of lower
energy (20–40 GeV) jets produced in heavy ion collisions at both RHIC [660, 230,
21] and the LHC [629, 389], but at the time of writing the interpretation of these
data is not yet settled.

Comparisons along these lines will never be more than qualitative, since the
beam of strongly coupled radiation whose propagation through strongly coupled
plasma we have described in this section is not a jet. However, the multiple qualita-
tive resonances between jet quenching in heavy ion collisions and the quenching of
a beam of strongly coupled radiation suggest that some of the phenomena observed
in jet quenching are intrinsically strongly coupled. At the same time, the very fact
that the hard fragments of the highest energy jets seen in heavy ion collisions do
look so similar to those of jets produced in vacuum suggests that at least some
of the phenomena observed in jet quenching must be described by perturbative
QCD. One of the goals of research at the current frontier is to find the best ways to
describe the whole story.

8.7 Velocity scaling of the screening length and quarkonium suppression

We saw in Section 2.4 that, because they are smaller than typical hadrons in QCD,
heavy quarkonium mesons survive as bound states even at temperatures above
the crossover from a hadron gas to quark–gluon plasma. However, if the tem-
perature of the quark–gluon plasma is high enough, they eventually dissociate.
An important physical mechanism underlying the dissociation is the weakening
attraction between the heavy quark and antiquark in the bound state because the
force between their color charges is screened by the medium. The dissociation
of charmonium and bottomonium bound states has been proposed as a signal
for the formation of a hot and deconfined quark-gluon plasma in heavy ion col-
lisions [609], and as a means of gauging the temperatures reached during the
collisions.

In the limit of large quark mass, the interaction between the quark and the anti-
quark in a bound state in the thermal medium can be extracted from the thermal
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expectation value of the Wilson loop operator 〈W F(Cstatic)〉, with Cstatic a rectangu-
lar loop with a short side of length L in a spatial direction (say x1) and a long side
of length T along the time direction. This expectation value takes the form

〈W F(Cstatic)〉 = exp [−i T E(L)] , (8.165)

where E(L) is the (renormalized) free energy of the quark–antiquark pair with the
self-energy of each quark subtracted. E(L) defines an effective potential between
the quark–antiquark pair. The screening of the force between color charges due to
the presence of the medium manifests itself in the flattening of E(L) for L greater
than some characteristic length scale Ls called the screening length. In QCD, the
flattening of the potential occurs smoothly, as seen in the lattice calculations illus-
trated in Fig. 3.5 in Section 3.3, and one must make an operational definition of
Ls . For example, in the parametrization of (2.45), Ls can be set equal to 1/μ. Ls

decreases with increasing temperature and can be used to estimate the scale of the
dissociation temperature Tdiss as

Ls(Tdiss) ∼ d , (8.166)

where d is the size of a particular mesonic bound state at zero temperature. The idea
here is that once the temperature of the quark–gluon plasma is high enough that the
potential between a quark and an antiquark separated by a distance corresponding
to the size of a particular meson has been fully screened, that meson can no longer
exist as a bound state in the plasma. This means that larger quarkonium states
dissociate at lower temperatures, and means that the ground-state bottomonium
meson survives to the highest temperatures of all. As we discussed at length in
Section 2.4, there are many important confounding effects that must be taken into
account in order to realize the goal of using data on charmonium and bottomonium
production in heavy ion collisions to provide evidence for this sequential pattern of
quarkonium dissociation as a function of increasing temperature. In this Section,
we shall focus only on one of these physical effects, one on which calculations
done via gauge/gravity duality have shed some light [674, 583, 281, 226, 61, 88,
362, 772, 279, 584, 89, 608, 646, 90, 336, 84, 585, 636, 347].

In heavy ion collisions, quarkonium mesons are produced moving with some
velocity �v with respect to the medium. It is thus important to understand the effects
of nonzero quarkonium velocity on the screening length and consequent dissoci-
ation of bound states. To describe the interaction between a quark–antiquark pair
that is moving relative to the medium, it is convenient to boost into a frame in
which the quark–antiquark pair is at rest, but feels a hot wind of QGP blowing
past it. The effective quark potential can again be extracted from (8.165) evalu-
ated in the boosted frame with T now interpreted as the proper time of the dipole.
While much progress has been made in using lattice QCD calculations to extract
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the effective potential between a quark–antiquark pair at rest in the QGP, there are
significant difficulties in using Euclidean lattice techniques to address the (dynami-
cal as opposed to thermodynamic) problem of a quark–antiquark pair in a hot wind.
In the strongly coupled plasma of N = 4 SYM theory with large-Nc, however, the
calculation can be done using gauge/gravity duality [583, 584, 281], and requires
only a modest extension of the standard methods reviewed in Section 5.4. Here, we
sketch the derivation from Ref. [584].

We start with a rectangular Wilson loop whose short transverse space-like side

σ = x1 ∈ [− L

2
,

L

2
] (8.167)

defines the separation L between the quark–antiquark pair and whose long time-
like sides extend along the x3 = v t direction, describing a pair moving with speed
v in the x3 direction. In this frame, the plasma is at rest and the spacetime metric in
the gravitational description is the familiar AdS black hole (5.33). We then apply
a Lorentz boost that rotates this Wilson loop into the rest frame (t ′, x ′

3) of the
quark–antiquark pair:

dt = dt ′ cosh η − dx ′
3 sinh η , (8.168)

dx3 = −dt ′ sinh η + dx ′
3 cosh η , (8.169)

where the rapidity η is given by tanh η = v, meaning that cosh η = γ . After the
AdS black hole metric has been transformed according to this boost, it describes
the moving hot wind of plasma felt by the quark–antiquark pair in its rest frame.

In order to extract E(L) it suffices to work in the limit in which the time-like
extent of the Wilson loop T is much greater than its transverse extent L , meaning
that the corresponding string worldsheet “suspended” from this Wilson loop and
“hanging down” into the bulk is invariant under translations along the long direc-
tion of the Wilson loop. Parametrizing the two-dimensional worldsheet with the
coordinates σ and τ = t , the dependence on τ is then trivial. The task is reduced to
calculating the curve r(σ ) along which the worldsheet descends into the bulk from
positions on the boundary brane which we take to be located at r = r0�, with � a
dimensionless UV cut-off that we shall take to infinity at the end of the calculation.
That is, the boundary conditions on r(σ ) are

r

(
± L

2

)
= r0� . (8.170)

It is then helpful to introduce dimensionless variables

r = r0y, σ̃ = σ
r0

R2
, l = Lr0

R2
= πLT, (8.171)



8.7 Velocity scaling of the screening length and quarkonium suppression 341

where T = r0
πR2 is the temperature. Upon dropping the tilde, one is then seeking

to determine the shape y(σ ) of the string worldsheet satisfying the boundary con-
ditions y

(± l
2

) = �. From the boosted AdS black hole metric, one finds that the
Nambu–Goto action, which must be extremized, takes the form

S(C) = −√
λ T T

∫ l/2

0
dσ L , (8.172)

with a Lagrangian that reads (y′ = ∂σ y)

L =
√(

y4 − cosh2 η
) (

1 + y′2

y4 − 1

)
. (8.173)

We must now determine y(σ ) by extremizing (8.173). This can be thought of as a
classical mechanics problem, with σ the analog of time. Since L does not depend
on σ explicitly, the corresponding Hamiltonian

H ≡ L − y′ ∂L
∂y′ = y4 − cosh2 η

L = q (8.174)

is a constant of the motion, which we denote by q. In the calculation we are pre-
senting in this section, we take � → ∞ at fixed, finite, rapidity η. In this limit,
the string worldsheet in the bulk is time-like, and E(L) turns out to be real. (The
string worldsheet bounded by the rectangular Wilson loop that we are considering
becomes space-like if

√
cosh η > �. In order to recover the light-like Wilson loop

used in the calculation of the jet quenching parameter in Section 8.5, one must first
take η → ∞ and only then take � → ∞.)

It follows from the Hamiltonian (8.174) that solutions y(σ ) with � >
√

cosh η

satisfy the equation of motion

y′ = 1

q

√
(y4 − 1)(y4 − y4

c ) (8.175)

with

y4
c ≡ cosh2 η + q2. (8.176)

Note that y4
c > cosh2 η ≥ 1. The extremal string worldsheet begins at σ = − /2

where y = �, and “descends” in y until it reaches a turning point, namely the
largest value of y at which y′ = 0. It then “ascends” from the turning point to its
endpoint at σ = + /2 where y = �. By symmetry, the turning point must occur
at σ = 0. We see from (8.175) that in this case, the turning point occurs at y = yc

meaning that the extremal surface stretches between yc and �. The integration

constant q can then be determined from the equation l
2 = ∫ l

2
0 dσ which, upon

using (8.175), becomes
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l = 2q
∫ �

yc

dy
1√

(y4 − y4
c )(y

4 − 1)
. (8.177)

The action for the extremal surface can be found by substituting (8.175) into
(8.172) and (8.173), yielding

S(l) = −√
λT T

∫ �

yc

dy
y4 − cosh2 η√

(y4 − 1)(y4 − y4
c )

. (8.178)

Equation (8.178) contains not only the potential between the quark–antiquark
pair but also the static mass of the quark and antiquark considered separately in
the moving medium. (Recall that we have boosted to the rest frame of the quark
and antiquark, meaning that the quark–gluon plasma is moving.) Since we are only
interested in the quark–antiquark potential, we need to subtract the action S0 of two
independent quarks from (8.178) in order to obtain the quark–antiquark potential
in the dipole rest frame:

E(L)T = −S(l) + S0 . (8.179)

The string configuration corresponding to a single quark at rest in a moving N = 4
SYM plasma was obtained in Refs. [452, 394], as we have described in Section 8.1.
From this configuration one finds that

S0 = −√
λ T T

∫ �

1
dy . (8.180)

To extract the quark–antiquark potential, we use (8.177) to solve for q in terms of
l and then plug the corresponding q(l) into (8.178) and (8.179) to obtain E(L).
Note that (8.177) is manifestly finite as � → ∞ and the limit can be taken
directly. (8.178) and (8.180) are divergent separately when taking � → ∞, but
the difference (8.179) is finite.

We now describe general features of (8.177) and (8.179). Denoting the right-
hand side of (8.177) (with � = ∞) as function l(q), one finds that for a given η,
l(q) has a maximum lmax(η) and Eq. (8.177) has no solution when l > lmax(η).
Thus for l > lmax, the only string worldsheet configuration is two disjoint strings
and from (8.179), E(L) = 0, i.e. the quark and antiquark are completely screened
to the order of the approximation we are considering. We can define the screening
length as

Ls ≡ lmax(η)

πT
. (8.181)

At η = 0, i.e. the dipole at rest with the medium, one finds that

Ls(0) ≈ 0.87

πT
≈ 0.28

T
. (8.182)
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Figure 8.13 The screening length lmax times its leading large-η dependence√
cosh(η). The two curves are for a dipole oriented perpendicular to the wind

(θ = π/2) and parallel to the wind (θ = 0), respectively. Figure adapted from
Ref. [584].

Similar criteria are used in the definition of screening length in QCD [522],
although in QCD there is no sharply defined length scale at which screening sets
in. Lattice calculations of the static potential between a heavy quark and antiquark
in QCD indicate a screening length Ls ∼ 0.5/T in hot QCD with two flavors of
light quarks [506] and Ls ∼ 0.7/T in hot QCD with no dynamical quarks [504].
The fact that there is a sharply defined Ls is an artifact of the limit in which we are
working, in which E(L) = 0 for L > Ls .6

The screening length Ls(η) can be obtained numerically, as illustrated in
Fig. 8.13. One sees that the screening length decreases with increasing velocity
to a good approximation according to the scaling [674, 583, 281]

Ls(v) � Ls(0)

cosh1/2 η
= Ls(0)√

γ
, (8.183)

with γ = 1/
√

1 − v2. We have only discussed the case in which the direction of
the hot wind is perpendicular to the dipole (θ = π/2; the red curve in Fig. 8.13),
but this discussion can be generalized to arbitrary angles θ . One finds [584] that
6 We are considering the contribution to E(L) that is proportional to

√
λ. For l � lmax, the leading contribution

to E(L) is proportional to λ0 and is determined by the exchange of the lightest supergravity mode between
the two disjoint strings [108].
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the dependences of Ls and E(L) on the angle between the dipole and the wind is
very weak. For example, the black curve in Fig. 8.13 gives the η dependence of
the screening length when the wind direction is parallel to the dipole. We see the
difference from the perpendicular case is only about 12%.

The velocity dependence (8.183) suggests that Ls should be thought of as, to a
good approximation, proportional to (energy density)−1/4, since the energy density
increases like γ 2 as the wind velocity is boosted. The velocity scaling of Ls has
proved robust in the sense that it applies in various strongly coupled plasmas other
than N = 4 SYM [88, 226, 646, 585] and in the sense that it applies to baryons
made of heavy quarks also [84].

If the velocity scaling of Ls (8.183) holds for QCD, it will have qualitative
consequences for quarkonium suppression in heavy ion collisions [583, 584].
From (8.166), the dissociation temperature Tdiss(v), defined as the temperature
above which J/ψ or ϒ mesons with a given velocity do not exist, should scale
with velocity as

Tdiss(v) ∼ Tdiss(v = 0)(1 − v2)1/4 , (8.184)

since Tdiss(v) should be the temperature at which the screening length Ls(v) is
comparable to the size of the meson bound state. The scaling (8.184) indicates
that slower mesons can exist up to higher temperatures than faster ones. As illus-
trated schematically in Fig. 8.14, this scaling indicates that J/ψ suppression (and
ϒ suppression) may increase markedly for J/ψs (ϒs) with transverse momentum
pT above some threshold, on the assumption that the temperature in the plasma
does not reach the dissociation temperature of J/ψ (ϒ) mesons at zero veloc-
ity [521, 728]. The threshold pT above which the production of quarkonium falls
off due to their motion through the quark–gluon plasma depends sensitively on the
difference between Tdiss(v = 0) and the temperature reached in the collision [413].
Modeling this effect requires embedding results for quarkonium production in hard
scatterings in nuclear collisions into a hydrodynamic code that describes the motion
of the quark–gluon fluid produced in the collision, in order to evaluate the velocity
of the hot wind felt by each putative quarkonium meson. Such an analysis indi-
cates that once pT is above the threshold at which Tdiss(v) has dropped below
the temperature reached in the collision, the decline in the J/ψ survival prob-
ability is significant, by more than a factor of four (two) in central (peripheral)
collisions [412, 413]. We should caution that, as we discussed in Section 2.4, in
modelling quarkonium production and suppression versus pT in heavy ion colli-
sions, various other effects like secondary production or formation of J/ψ mesons
outside the hot medium at high pT [519] remain to be quantified. The quantitative
importance of these and other effects may vary significantly, depending on details
of their model implementation. In contrast, Eq. (8.184) was obtained directly from



8.7 Velocity scaling of the screening length and quarkonium suppression 345

3.5

3

2.5

2

T
di

ss
 (

p T
) 

/ T
c

1.5

1

0.5

0
0 5 10

pT in GeV

15 20

4

Figure 8.14 A 1/
√
γ -velocity scaling of the screening length in QCD would

imply a J/ψ dissociation temperature Tdiss(pT ) that decreases significantly with
pT , while that for the heavier ϒ is affected less at a given pT . The curves are
schematic, in that we have arbitrarily taken Tdiss(0) for the J/ψ to be 2.1 Tc and
we have increased Tdiss(0) for the ϒ over that for the J/ψ by a factor corre-
sponding to its smaller size in vacuum. At a qualitative level, we expect to see
fewer J/ψ (ϒ) mesons at pT s above that at which their dissociation temperature
is comparable to the temperatures reached in heavy ion collisions at RHIC (at the
LHC). Figure taken from Ref. [583].

a field-theoretical calculation and its implementation will not introduce additional
model-dependent uncertainties.

The analysis of this section is built upon the calculation of the potential between
a test quark and antiquark in the strongly coupled plasma of N = 4 SYM theory,
a theory which in and of itself has no mesons. Gaining insight into the physics
of quarkonium mesons from calculations of the screening of the static quark–
antiquark potential has a long history in QCD, as we have seen in Section 3.3.
But, we have also seen in that section that these approaches are gradually being
superseded as lattice QCD calculations of quarkonium spectral functions them-
selves are becoming available. In the present context also, we would like to move
beyond drawing inferences about mesons from analyses of the potential E(L) and
the screening length Ls to analyses of mesons themselves. This is the subject of
Chapter 9, in which we shall carefully describe how once we have added heavy
quarks to N = 4 SYM by adding a D7-brane in the gravity dual [513], as in Sec-
tion 5.5, the fluctuations of the D7-brane then describe the quarkonium mesons
of this theory. We shall review the construction first in vacuum and then in the
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presence of the strongly coupled plasma at nonzero temperature. We shall find
that the results of this section prove robust, in that the velocity scaling (8.184) has
also been obtained [336] by direct analysis of the dispersion relations of mesons
in the plasma [608, 336]. These mesons have a limiting velocity that is less than
the speed of light and that decreases with increasing temperature [608], and whose
temperature dependence is equivalent to (8.184) up to few percent corrections that
have been computed [336] and that we shall show. This is a key part of the story,
with the velocity-dependent dissociation temperature of this section becoming
a temperature dependent limiting velocity for explicitly constructed quarkonium
mesons in Chapter 9. However, this cannot be the whole story since the dispersion
relations seem to allow for mesons with arbitrarily large momentum even though
they limit their velocity. The final piece of the story is described in Section 9.4.2,
where we review the calculation of the leading contribution to the widths of these
mesons [347], which was neglected in the earlier calculations of their dispersion
relations. Above some momentum, the width grows rapidly, increasing like p2

⊥.
And, the momentum above which this rapid growth of the meson width sets in is
just the momentum at which the meson velocity first approaches its limiting value.
The physical picture that emerges is that at the momentum at which the mesons
reach a velocity such that the hot wind they are feeling has a temperature suffi-
cient to dissociate them, according to the analysis of this section built upon the
calculation of Ls , their widths in fact grow rapidly [347].
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Quarkonium mesons in strongly coupled plasma

As discussed in Section 2.4, heavy quarks and quarkonium mesons, with masses
such that M/T � 1, constitute valuable probes of the QGP. Since dynamical
questions about these probes are very hard to answer from first principles, here we
will study analogous questions in the strongly coupled N = 4 SYM plasma. In this
case the gauge/string duality provides the tool that makes a theoretical treatment
possible. Although for concreteness we will focus on the N = 4 plasma, many
of the results that we will obtain are rather universal in the sense that, at least
qualitatively, they hold for any strongly coupled gauge theory with a string dual.
Such results may give us insights relevant for the QCD quark–gluon plasma at
temperatures at which it is reasonably strongly coupled.

The QGP only exists at temperatures T > Tc, so in QCD the condition M/T � 1
can only be realized by taking M to be large. In contrast, N = 4 SYM is a con-
formal theory with no confining phase, so all temperatures are equivalent. In the
presence of an additional scale, namely the quark or the meson mass, the physics
only depends on the ratio M/T . This means that in the N = 4 theory the condition
M/T � 1 can be realized by fixing T and sending M to infinity, or by fixing M
and sending T → 0; both limits are completely equivalent. In particular, the lead-
ing order approximation to the heavy quark or quarkonium meson physics, in an
expansion in T/M , may be obtained by setting T = 0. For this reason, this is the
limit that we will study first.

We will follow the nomenclature common in the QCD literature and refer to
mesons made of two heavy quarks as “quarkonium mesons” or “quarkonia”, as
opposed to using the term “heavy mesons”, which commonly encompasses mesons
made of one heavy and one light quark.

9.1 Adding quarks to N = 4 SYM

In Section 5.5 we saw that N f flavors of fundamental matter can be added to
N = 4 SYM by introducing N f D7-brane probes into the geometry sourced by

347
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the D3-branes, as indicated by the array (5.98), which we reproduce here (with the
time direction included) for convenience:

D3: 0 1 2 3 _ _ _ _ _ _
D7: 0 1 2 3 4 5 6 7 _ _ .

(9.1)

Before we proceed, let us clarify an important point. N = 4 SYM is a con-
formal theory, i.e. its β-function vanishes exactly. Adding matter to it, even if the
matter is massless, makes the quantum mechanical β-function positive, at least
perturbatively. This means that the theory develops a Landau pole in the UV and
is therefore not well defined at arbitrarily high energy scales.1 However, since
the β-function (for the ’t Hooft coupling λ) is proportional to N f /Nc, the Lan-
dau pole occurs at a scale of order eNc/N f . This is exponentially large in the limit
of interest here, N f /Nc � 1, and in fact the Landau pole disappears altogether
in the strict probe limit N f /Nc → 0. On the string side, the potential pathol-
ogy associated with a Landau pole manifests itself in the fact that a completely
smooth solution that incorporates the backreaction of the D7-branes may not exist
[28, 383, 223, 535, 136, 320]. In any case, the possible existence of a Landau pole
at high energies will not be of concern for the applications reviewed here. In the
gauge theory, it will not prevent us from extracting interesting infrared physics, just
as the existence of a Landau pole in QED does not prevent one from calculating the
conductivity of an electromagnetic plasma. In the string description, we will not go
beyond the probe approximation, so the backreaction of the D7-branes will not be
an issue.2 And finally, we note that we will work with the D3/D7 model because
of its simplicity. We could work with a more sophisticated model with better UV
properties, but this would make the calculations more involved while leaving the
physics we are interested in essentially unchanged.

As illustrated in Fig. 9.1, the D3-branes and the D7-branes can be separated a
distance L in the 89-directions. This distance times the string tension, Eq. (4.11),
is the minimum energy of a string stretching between the D3-branes and the D7-
branes. Since the quarks arise as the lightest modes of these 3–7 strings, this energy
is precisely the bare quark mass:

Mq = L

2πα′ . (9.2)

An important remark here is the fact that the branes in Fig. 9.1 are implicitly
assumed to be embedded in flat spacetime. In Section 5.5 this was referred to as the
“first” or “open string” description of the D3/D7 system, which is reliable in the
regime gs Nc � 1, in which the backreaction of the D3-branes on spacetime can be

1 Nonperturbatively, the possibility that a strongly coupled fixed point exists must be ruled out before reaching
this conclusion. See [320] for an argument in this direction based on supersymmetry.

2 For a review of ‘unquenched’ models, i.e. those in which the flavor backreaction is included, see [659].
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Figure 9.1 D3/D7 system at weak coupling, with a string (red) stretching between
the D3-branes and D7-branes.

ignored. One of our main tasks in the following Sections will be to understand how
this picture is modified in the opposite regime, gs Nc � 1, when the D3-branes
are replaced by their backreaction on spacetime. In this regime the shape of the
D7-branes may or may not be modified, but Eq. (9.2) will remain true provided the
appropriate definition of L , to be given below, is used.

Although N = 4 SYM is a conformal theory, the addition of quarks with
a nonzero mass introduces a scale and gives rise to a rich spectrum of quark–
antiquark bound states, i.e. mesons. In the following section we will study the
meson spectrum in this theory at zero temperature in the regime of strong ‘t Hooft
coupling, gs Nc � 1. On the gauge theory side this is inaccessible to conventional
methods such as perturbation theory, but on the string side a classical description
in terms of D7-brane probes in a weakly curved AdS5 × S5 applies. Our first task is
thus to understand in more detail the way in which the D7-branes are embedded in
this geometry. Since this is crucial for subsequent sections, we will in fact provide
a fair amount of detail here.

9.2 Zero temperature

9.2.1 D7-brane embeddings

We begin by recalling that the coordinates in the AdS5 × S5 metric (5.1), (5.2)
can be understood as follows. The four directions t, xi correspond to the 0123-
directions in (9.1). The 456789-directions in the space transverse to the D3-branes
give rise to the radial coordinate r in AdS5, defined through



350 Quarkonium mesons in strongly coupled plasma

r2 = x2
4 + · · · + x2

9 , (9.3)

as well as five angles that parametrize the S5. We emphasize that, once the grav-
itational effect of the D3-branes is taken into account, the six-dimensional space
transverse to the D3-branes is not flat, so the x4, . . . , x9 coordinates are not Carte-
sian coordinates. However, they are still useful to label the different directions in
this space.

The D7-branes share the 0123-directions with the D3-branes, so from now on
we will mainly focus on the remaining directions. In the six-dimensional space
transverse to the D3-branes, the D7-branes span only a four-dimensional subspace
parametrized by x4, . . . , x7. Since the D7-branes preserve the SO(4) rotational
symmetry in this space, it is convenient to introduce a radial coordinate u such that

u2 = x2
4 + · · · + x2

7 , (9.4)

as well as three spherical coordinates, denoted collectively by �3, that parametrize
an S3. Similarly, it is useful to introduce a radial coordinate U in the 89-plane
through

U = x2
8 + x2

9 , (9.5)

as well as a polar angle α. In terms of these coordinates one has

dx2
4 + · · · + dx2

9 = du2 + u2d�2
3 + dU 2 + U 2dα2 . (9.6)

Obviously, the overall radial coordinate r satisfies r2 = u2 + U 2.
Since the D7-branes only span the 4567-directions, they only wrap an S3 inside

the S5. The D7-brane worldvolume may thus be parametrized by the coordinates
{t, xi , u, �3}. In order to specify the D7-branes’ embedding one must then spec-
ify the remaining spacetime coordinates, U and α, as functions of, in principle,
all the worldvolume coordinates. However, translational symmetry in the {t, xi }-
directions and rotational symmetry in the {�3}-directions allow U and α to depend
only on u.

In order to understand this dependence, consider first the case in which the
spacetime curvature generated by the D3-branes is ignored. In this case, the D7-
branes lie at a constant position in the 89-plane, see Fig. 9.2. In other words, their
embedding is given by α(u) = α0 and U (u) = L , where α0 and L are constants.
The first equation can be understood as saying that, because of the U (1) rotational
symmetry in the 89-plane, the D7-branes can sit at any constant angular position;
choosing α0 then breaks the symmetry. Since this U (1) symmetry is respected by
the D3-branes’ backreaction (i.e. since the AdS5 × S5 metric is U (1)-invariant),
it is easy to guess (correctly) that α(u) = α0 is still a solution of the D7-branes’
equation of motion in the presence of the D3-branes’ backreaction.
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Figure 9.2 Coordinates in the six-dimensional space transverse to the D3-branes.
Each axis actually represents two directions, i.e. a plane (or, equivalently, the
radial direction in that plane). The asymptotic distance L = U (u = ∞) is pro-
portional to the quark mass, Eq. (9.2). We emphasize that the directions parallel
to the D3-branes (the gauge theory directions t, xi ) are suppressed in this picture,
and they should not be confused with the D7 directions shown in the figure, which
lie entirely in the space transverse to the D3-branes.

The second equation, U (u) = L , says that the D7-branes lie at a constant dis-
tance from the D3-branes. In the absence of the D3-branes’ backreaction this is
easily understood: there is no force on the D7-branes and therefore they span a
perfect 4-plane. In the presence of backreaction, one should generically expect
that the spacetime curvature deforms the D7-branes as in Fig. 9.3, bending them
towards the D3-branes at the origin. The reason that this does not happen for the
D3/D7 system at zero temperature is that the underlying supersymmetry of the
system guarantees an exact cancelation of forces on the D7-branes. In fact, it is
easy to verify directly that U (u) = L is still an exact solution of the D7-branes’
equations of motion in the presence of the D3-branes’ backreaction. The constant
L then determines the quark mass through Eq. (9.2). We will see below that the
introduction of nonzero temperature breaks supersymmetry completely, and that
consequently U (u) becomes a non-constant function that one must solve for, and
that this function contains information about the ground state of the theory in the
presence of quarks. For example, its asymptotic behavior encodes the value of the
bare quark mass Mq and the quark condensate 〈ψ̄ψ〉, whereas its value at u = 0
is related to the quark thermal mass Mth. Since in this section we work at T = 0,
any nonzero quark mass corresponds to Mq/T → ∞. In this sense one must think
of the quarks in question as the analog of heavy quarks in QCD, and of the quark
condensate as the analog of 〈c̄c〉 or 〈b̄b〉. However, when we consider a nonzero
temperature in subsequent Sections, whether the holographic quarks described by
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Figure 9.3 Possible bending of the D7-branes at nonzero temperature. The
asymptotic distance L ≡ U (∞) is proportional to the bare quark mass Mq,
whereas the minimum distance U (0) is related (albeit in a way more complicated
than simple proportionality) to the quark thermal mass.

the D7-branes are the analogs of heavy or light quarks in QCD will depend on how
their mass (or, more precisely, the mass of the corresponding mesons) compares to
the temperature.

We have concluded that, at zero temperature, the D7-branes lie at U = L and are
parametrized by {t, xi , u, �3}. In terms of these coordinates, the metric induced on
the D7-branes by the metric (5.1)–(5.2) for the AdS5 × S5 spacetime takes the form

ds2 = u2 + L2

R2

(−dt2 + dx2
i

) + R2

u2 + L2
du2 + R2u2

u2 + L2
d�2

3 . (9.7)

We see that if L = 0 then this metric is exactly that of AdS5 × S3. The AdS5 factor
suggests that the dual gauge theory should still be conformally invariant. This is
indeed the case in the limit under consideration: If L = 0 the quarks are mass-
less and the theory is classically conformal, and in the probe limit N f /Nc → 0
the quantum mechanical β-function, which is proportional to N f /Nc, vanishes.
If L 
= 0 then the metric above becomes AdS5 × S3 only asymptotically, i.e. for
u � L , reflecting the fact that in the gauge theory conformal invariance is explic-
itly broken by the quark mass Mq ∝ L , but is restored asymptotically at energies
E � Mq. We also note that, if L 
= 0, then the radius of the three-sphere is not
constant, as displayed in Fig. 9.4; in particular, it shrinks to zero at u = 0 (corre-
sponding to r = L), at which point the D7-branes “terminate” from the viewpoint
of the projection on AdS5 [513]. In other words, if L 
= 0 then the D7-branes fill
the AdS5 factor of the metric only down to a minimum value of the radial direction
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Figure 9.4 D7-branes’ embedding in AdS5 × S5. At nonzero temperature this
picture is slightly modified. First, a horizon appears at r = r0 > 0, and second,
the D7-branes terminate at r = U (0) < L . This “termination point” corresponds
to the tip of the branes in Fig. 9.3.

proportional to the quark mass. As we anticipated above, at nonzero temperature
one must distinguish between the bare and the thermal quark masses, related to
U (∞) and U (0) respectively. In this case the position in AdS at which the D7-
branes terminate is r = U (0) < L , and therefore they fill the AdS space down to
a radial position related to the thermal mass. Note also that at finite temperature a
horizon is present at r = r0 > 0.

9.2.2 Meson spectrum

We are now ready to compute the spectrum of low spin mesons in the D3/D7 sys-
tem following Ref. [559]. The spectrum for more general Dp/Dq systems was
computed in [60, 637, 704]. Recall that mesons are described by open strings
attached to the D7-branes. In particular, spin zero and spin one mesons correspond
to the scalar and vector fields on the D7-branes. Large spin mesons can be described
as long, semi-classical strings [559, 561, 666, 673, 301, 674, 116, 159, 668, 44],
but we will not review them here.

For simplicity, we will focus on scalar mesons. Following Section 5.1.5, we
know that in order to determine the spectrum of scalar mesons, we need to deter-
mine the spectrum of normalizable modes of small fluctuations of the scalar fields
on the D7-branes. At this point we restrict ourselves to a single D7-brane, i.e. we
set N f = 1, in which case the dynamics is described by the DBI action (4.18). At
leading order in the large-Nc expansion, the spectrum for N f > 1 consists of N 2

f

identical copies of the single-flavor spectrum [560].
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We use the coordinates in Eq. (9.7) as worldvolume coordinates for the D7-
brane, which we collectively denote by σμ. The physical scalar fields on the D7-
brane are then x8(σμ), x9(σμ). By a rotation in the 89-plane we can assume that,
in the absence of fluctuations, the D7-brane lies at x8 = 0, x9 = L . Then the
fluctuations can be parametrized as

x8 = 0 + ϕ(σμ) , x9 = L + ϕ̃(σμ) , (9.8)

with ϕ and ϕ̃ the scalar fluctuations around the fiducial embedding. In order
to determine the normalisable modes, it suffices to work to quadratic order in
ϕ, ϕ̃. Substituting (9.8) in the DBI action (4.18) and expanding in ϕ, ϕ̃ leads to
a quadratic Lagrangian whose corresponding equation of motion is

R4

(u2 + L2)2
�ϕ + 1

u3
∂u(u

3∂uϕ) + 1

u2
∇2ϕ = 0 , (9.9)

where � is the four-dimensional d’Alembertian associated with the Cartesian coor-
dinates t, xi , and ∇2 is the Laplacian on the three-sphere. The equation for ϕ̃ takes
exactly the same form. Modes that transform non-trivially under rotations on the
sphere correspond to mesons that carry nonzero R-charge. Since QCD does not
possess an R-symmetry, we will restrict ourselves to R-neutral mesons, meaning
that we will assume that ϕ does not depend on the coordinates of the sphere. We
can use separation of variables to write these modes as

ϕ = φ(u)eiq·x , (9.10)

where x = (t, xi ). Each of these modes then corresponds to a physical meson
state in the gauge theory with a well defined four-dimensional mass given by its
eigenvalue under �, that is, M2 = −q2. For each of these modes, Eq. (9.9) results
in an equation for φ(u) that, after introducing dimensionless variables through

ū = u

L
, M̄2 = −k2 R4

L2
, (9.11)

becomes

∂2
ūφ + 3

ū
∂ūφ + M̄2

(1 + ū2)2
φ = 0 . (9.12)

This equation can be solved in terms of hypergeometric functions. The details can
be found in Ref. [559], but we will not give them here because most of the relevant
physics can be extracted as follows.

Equation (9.12) is a second order, ordinary differential equation with two inde-
pendent solutions. The combination we seek must satisfy two conditions: It must
be normalizable as ū → ∞, and it must be regular as ū → 0. For arbitrary values
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of M̄ , both conditions cannot be simultaneously satisfied. In other words, the val-
ues of M̄ for which physically acceptable solutions exist are quantised. Since Eq.
(9.12) contains no dimensionful parameters, the values of M̄ must be pure num-
bers. These can be explicitly determined from the solutions of (9.12) and they take
the form [559]

M̄2 = 4(n + 1)(n + 2) , n = 0, 1, 2, . . .. (9.13)

Using this, and M2 = −q2 = M̄2L2/R4, we derive the result that the
four-dimensional mass spectrum of scalar mesons is

M(n) = 2L

R2

√
(n + 1)(n + 2) = 4πMq√

λ

√
(n + 1)(n + 2) , (9.14)

where in the last equality we have used the expressions R2/α′ = √
λ and (9.2)

to write R and L in terms of gauge theory parameters. We thus conclude that the
spectrum consists of a discrete set of mesons with a mass gap given by the mass of
the lightest meson:3

Mmes = 4π
√

2
Mq√
λ
. (9.15)

Since this result is valid at large ‘t Hooft coupling, λ � 1, the mass of these
mesons is much smaller than the mass of two constituent quarks. In other words,
the mesons in this theory are very deeply bound. In fact, the binding energy

EB ≡ 2Mq − Mmes � 2Mq ∼ √
λMmes (9.16)

is so large that it almost cancels the rest energy of the quarks. This is clear from the
gravity picture of “meson formation” (see Fig. 9.5), in which two strings of oppo-
site orientation stretching from the D7-brane to r = 0 (the quark–antiquark pair)
join together to form an open string with both ends on the D7-brane (the meson).
This resulting string is much shorter than the initial ones, and hence corresponds
to a configuration with much lower energy. This feature is an important difference
with quarkonium mesons in QCD, such as charmonium or bottomonium, which
are not deeply bound. Although this certainly means that caution must be exer-
cised when trying to compare the physics of quarkonium mesons in holographic
theories with the physics of quarkonium mesons in QCD, the success or failure
of these comparisons cannot be assessed at this point. We will discuss this assess-
ment in detail below, once we have learned more about the physics of holographic
mesons. Suffice it to say here that some of this physics, such as the temperature or
the velocity dependence of certain meson properties, turns out to be quite general

3 In order to compare this and subsequent formulas with Ref. [559] and others, note that our definition (4.17) of
g2 differs from the definition in some of those references by a factor of 2, for example g2[here] = 2g2[559].
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T = L

r = ∞

r = 0

D7-branes

Figure 9.5 String description of a quark, an antiquark and a meson. The string
that describes the meson can be much shorter than those describing the quark and
the antiquark.

and may yield insights into some of the challenges related to understanding the
physics of quarkonia within the QCD quark–gluon plasma.

We close this section with a consistency check. The behavior of the fluctuation
modes at infinity is related to the high energy properties of the theory. At high
energy, we can ignore the effect of the mass of the quarks and the theory becomes
conformal. The u → ∞ behavior is then related to the UV operator of the lowest
conformal dimension, �, that has the same quantum numbers as the meson [392,
803]. Analysis of this behavior for the solutions of Eqs. (9.9) and (9.12) shows that
� = 3 [559], as expected for a quark-bilinear operator.

9.3 Nonzero temperature

9.3.1 D7-brane embeddings

We now turn to the case of nonzero temperature, T 
= 0. This means that we must
study the physics of a D7-brane in the black brane metric (cf. Eq. (5.33))

ds2 = r2

R2

(− f dt2 + dx2
1 + dx2

2 + dx2
3

) + R2

r2 f
dr2 + R2d�2

5 , (9.17)

where

f (r) = 1 − r4
0

r4
, r0 = πR2T . (9.18)

The study we must perform is conceptually analogous to that of the past few
sections, but the equations are more involved and most of them must be solved
numerically. These technical details are not very illuminating, and for this reason
we will not dwell into them. Instead, we will focus on describing in detail the main
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conceptual points and results, as well as the physics behind them, which in fact can
be understood in very simple and intuitive terms.

As mentioned above, at T 
= 0 all supersymmetry is broken. We therefore expect
that the D7-branes will be deformed by the non-trivial geometry. In particular, the
introduction of nonzero temperature corresponds, in the string description, to the
introduction of a black brane in the background. Intuitively, we expect that the extra
gravitational attraction will bend the D7-branes towards the black hole. This simple
conclusion, which was anticipated in previous sections, has far-reaching conse-
quences. At a qualitative level, most of the holographic physics of mesons in a
strongly coupled plasma follows from this conclusion. An example of the D7-
branes’ embedding for a small value of T/Mq is depicted in two slightly different
ways in Fig. 9.6.

The qualitative physics of the D3/D7 system as a function of the dimensionless
ratio T/Mq is now easy to guess, and is captured by Fig. 9.7. At zero temperature
the horizon has zero size and the D7-branes span an exact hyperplane. At nonzero
but sufficiently small T/Mq, the gravitational attraction from the black hole pulls
the branes down but the branes’ tension can still compensate for this. The embed-
ding of the branes is thus deformed, but the branes remain entirely outside the
horizon. Since in this case the induced metric on the D7-branes has no horizon, we
will call this type of configuration a “Minkowski embedding”. In contrast, above
a critical temperature Tdiss,4 the gravitational force overcomes the tension of the
branes and these are pulled into the horzion. In this case the induced metric on
the branes possesses an event horizon, inherited from that of the spacetime metric.
For this reason we will refer to such configurations as “black hole embeddings”.
Between these two types of embeddings there exists a so-called critical embedding
in which the branes just “touch the horizon at a point”. The existence of such an
interpolating solution might lead one to suspect that the phase transition between
Minkowski and black hole embeddings is continuous, i.e. of second or higher order.
However, as we will see in the next section, thermodynamic considerations reveal
that a first order phase transition occurs between a Minkowski and a black hole
embedding. In other words, the critical embedding is skipped over by the phase
transition, and near-critical embeddings turn out to be metastable or unstable.

As illustrated by the figures above, the fact that the branes bend towards the
horizon implies that the asymptotic distance between the two differs from their
minimal distance. As we will see in Section 9.3.2, the asymptotic distance is pro-
portional to the microscopic or “bare” quark mass, since it is determined by the
non-normalizable mode of the field that describes the branes’ bending. In contrast,
the minimal distance between the branes and the horizon includes thermal (and

4 The reason for the subscript will become clear shortly.
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Figure 9.6 D7-branes’ embedding for small T/Mq. The branes bend towards the
horizon, shown in dark grey. The radius of the horizon is proportional to its Hawk-
ing temperature, which is identified with the gauge theory temperature T – see
Eq. (9.18). The asymptotic position of the D7-branes is proportional to the bare
quark mass, Mq. The minimum distance between the branes and the horizon is
related to the thermal quark mass, because this is the minimum length of a string
(shown as a red wiggly line) stretching between the branes and the horizon. The
top figure shows the two relevant radial directions in the space transverse to the
D3-branes, U and u (introduced in Eqs. (9.4) and (9.5)), together with the gauge
theory directions xi (time is suppressed). The horizon has topology R

3 × S5,
where the first factor corresponds to the gauge-theory directions. This “cylinder-
like” topology is manifest in the top figure. Instead, in the bottom figure the gauge
theory directions are suppressed and the S3 wrapped by the D7-branes in the space
transverse to the D3-branes is shown, as in Figs. 9.2 and 9.3. In this figure only
the S5 factor of the horizon is shown. Figure adapted from Ref. [256].

quantum) effects, and for this reason we will refer to the mass of a string stretching
between the bottom of the branes and the horizon (shown as a wiggly red curve in
the figures) as the “thermal” quark mass. Note that this vanishes in the black hole
phase.

Although we will come back to this important point below, we wish to emphasize
right from the start that the phase transition under discussion is not a confinement–
deconfinement phase transition, since the presence of a black hole implies that both
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Minkowski embedding Critical embedding Black hole embedding

Figure 9.7 Various D7-brane configurations in a black D3-brane background
with increasing temperature from left to right. At low temperatures, the probe
branes close off smoothly above the horizon. At high temperatures, the branes
fall through the event horizon. In between, a critical solution exists in which
the branes just “touch” the horizon at a point. The critical configuration is never
realized: a first order phase transition occurs from a Minkowski to a black hole
embedding (or vice versa) before the critical solution is reached. Figure adapted
from Ref. [256].

phases are deconfined. Instead, we will see that the branes’ phase transition corre-
sponds to the dissociation of heavy quarkonium mesons. In order to illustrate the
difference most clearly, consider first a holographic model of a confining theory, as
described in Section 5.2.2; below we will come back to the case of N = 4 SYM.
For all such confining models, the difference between the deconfinement and the
dissociation phase transitions is illustrated in Fig. 9.8. Below Tc, the theory is in
a confining phase and therefore no black hole is present. At some Tc, a decon-
finement transition takes place, which in the string description corresponds to the
appearance of a black hole whose size is proportional to Tc. If the quark mass is
sufficiently large compared to Tc then the branes remain outside the horizon (top
part of the figure); otherwise they fall through the horizon (bottom part of the fig-
ure). The first case corresponds to heavy quarkonium mesons that remain bound in
the deconfined phase, and that eventually dissociate at some higher Tdiss > Tc. The
second case describes light mesons that dissociate as soon as the deconfinement
transition takes place.

Figure 9.8 also applies to N = 4 SYM theory with Tc = 0 in the sense
that, although the vacuum of the theory is not confining, there is no black hole
at T = 0. Note also that mesons only exist provided Mq > 0, since other-
wise the theory is conformal and there is no particle spectrum. This means that
in N = 4 SYM theory any meson is a heavy quarkonium meson that remains
bound for some range of temperatures above Tc = 0, as described by the top part
of Fig. 9.8. In the case Mq = 0 we cannot properly speak of mesons, but we see
that the situation is still described by the bottom part of the figure in the sense
that in this case the branes fall through the horizon as soon as T is raised above
Tc = 0.
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Tc

Tc = Tdiss

Tdiss

T

Mq

Mq

Figure 9.8 Top: sufficiently heavy quarkonium mesons remain bound in the
deconfined phase (above Tc) and dissociate at Tdiss > Tc. Bottom: in contrast,
light mesons dissociate as soon as the deconfinement phase transition at T = Tc
takes place. This picture also applies to N = 4 SYM theory with Tc = 0, as
described in the main text. In N = 4 SYM theory, the top (bottom) panel applies
when Mq > 0 (Mq = 0).

The universal character of the meson dissociation transition was emphasized in
Refs. [605, 608], which we will follow in our presentation. Specific examples were
originally seen in [92, 560, 534], and aspects of these transitions in the D3/D7
system were studied independently in [37, 38, 351, 514]. Similar holographic tran-
sitions appeared in a slightly different framework in [30, 669, 367, 58]. The D3/D7
system at nonzero temperature has been studied upon including the backreaction
of the D7-branes in Ref. [161].

9.3.2 Thermodynamics of D7-branes

In this section we shall show that the phase transition between Minkowski and
black hole embeddings is a discontinuous, first order phase transition. The reader
willing to accept this without proof can safely skip to Section 9.3.3. Since we are
working in the canonical ensemble (i.e. at fixed temperature) we must compute
the free energy density of the system per unit gauge theory three-volume, F , and
determine the configuration that minimizes it. In the gauge theory we know that
this takes the form
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F = FN=4 + Fflavor , (9.19)

where the first term is the O(N 2
c ) free energy of the N = 4 SYM theory in the

absence of quarks, and the second term is the O(Nc N f ) contribution due to the
presence of quarks in the fundamental representation. Since the SYM theory with-
out quarks is conformal, dimensional analysis completely fixes the first factor to be
of the form FN=4 = C(λ)T 4, where C is a possibly coupling-dependent coefficient
of order N 2

c . In contrast, in the presence of quarks of mass Mq there is a dimen-
sionless ratio T/Mq on which the flavor contribution can depend non-trivially. Our
purpose is to determine this contribution to leading order in the large-Nc, strong
coupling limit.

Our tool is of course the dual description of the N = 4 SYM theory with flavor
as a system of N f D7-brane probes in the gravitational background of Nc black
D3-branes. As usual in finite-temperature physics, the free energy of the system
may be computed through the identification

βF = SE , (9.20)

where β = 1/T and SE is the Euclidean action of the system. In our case this takes
the form

SE = Ssugra + SD7 . (9.21)

The first term is the contribution from the black hole gravitational background
sourced by the D3-branes, and is computed by evaluating the Euclideanized super-
gravity action on this background. The second term is the contribution from the
D7-branes, and is computed by evaluating the Euclidean version of the DBI action
(4.18) on a particular D7-brane configuration. The decomposition (9.21) is the dual
version of that in (9.19). The supergravity action scales as 1/g2

s ∼ N 2
c , and thus

yields the free energy of the N = 4 SYM theory in the absence of quarks, i.e. we
identify

Ssugra = βFN=4 . (9.22)

Similarly, the D7-brane action scales as N f /gs ∼ Nc N f , and represents the flavor
contribution to the free energy:

SD7 = βFD7 = βFflavor . (9.23)

We therefore conclude that we must first find the solutions of the equations of
motion of the D7-branes for any given values of T and Mq, then evaluate their
Euclidean actions, and finally use the identification above to compare their free
energies and determine the thermodynamically preferred configuration.

As explained above, in our case solving the D7-brane equations of motion just
means finding the function U (u), which is determined by the condition that the
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D7-brane action be extremized. This leads to an ordinary, second order, nonlinear
differential equation for U (u). Its precise form can be found in e.g. Ref. [608], but
is not very illuminating. However, it is easy to see that it implies the asymptotic,
large-u behavior

U (u) = m r0√
2

+ c r3
0

2
√

2 u2
+ · · · , (9.24)

where m and c are constants. The factors of r0 have been introduced to make these
constants dimensionless, whereas the numerical factors have been chosen to facili-
tate comparison with the literature. As usual (and, in particular, as in Section 5.1.5),
the leading and subleading terms correspond to the non-normalizable and to the
normalizable modes, respectively. Their coefficients are therefore proportional to
the source and the expectation values of the corresponding dual operator in the
gauge theory. In this case, the position of the brane U (u) is dual to the quark mass
operator Om ∼ ψ̄ψ , so m and c are proportional to the quark mass and the quark
condensate, respectively. The precise form of Om can be found in Ref. [539], where
it is shown that the exact relation between m, c and Mq, 〈Om〉 is

Mq = r0m

23/2π 2
s

= 1

2
√

2

√
λ T m , (9.25)

〈Om〉 = −23/2π3 2
s N f TD7r

3
0 c = − 1

8
√

2

√
λ N f Nc T 3 c . (9.26)

In particular, we recover the fact that the asymptotic value

L = lim
u→∞ U (u) = mr0√

2
(9.27)

is related to the quark mass through Eq. (9.2), as anticipated in previous sections.
It is interesting to note that the dimensionless mass m is given by the simple ratio

m = M̄

T
, (9.28)

where

M̄ = 2
√

2Mq√
λ

= Mmes

2π
(9.29)

is (up to a constant) precisely the meson gap at zero temperature, given in
Eq. (9.15). As mentioned in Section 9.2.1, and as we will elaborate upon in Sec-
tion 9.4.3, Om must be thought of as the analogue of a heavy or light quark bilinear
operator in QCD depending on whether the ratio Mmes/T ∼ m is large or small,
respectively.

The constants m and c can be understood as the two integration constants that
completely determine a solution of the second order differential equation obeyed
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Figure 9.9 Quark condensate c versus T/M̄ = 1/m. The blue dashed (red contin-
uous) curves correspond to the Minkowski (black hole) embeddings. The dotted
vertical line indicates the precise temperature of the phase transition. The point
where the two branches meet corresponds to the critical embedding. Figures taken
from Refs. [605, 608].

by U (u). Mathematically, these two constants are independent, but the physical
requirement that the solution be regular in the interior relates them to one another.
The equation for U (u) can be solved numerically (see, e.g. Ref. [608]), and the
resulting possible values of c for each value of m are plotted in Fig. 9.9. We see
from the “large scale” plot above that c is a single-valued function of m for most
values of the latter. However, the zoom-in plot below shows that, in a small region
around 1/m = T/M̄ � 0.766, three values of c are possible for a given value of m;
a pictorial representation of a situation of this type is shown in Fig. 9.10. This multi-
valuedness is related to the existence of the phase transition which, as we will see,
proceeds between points A and B through a discontinuous jump in the quark con-
densate and other physical quantities. The point in Fig. 9.9 where the Minkowski
and the black hole branches meet corresponds to the critical embedding.
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u

U

Figure 9.10 Some representative D7-brane embeddings from the region in which
c is multi-valued. The three profiles correspond to the same value of m but dif-
fer in their value of c. Two of them, represented by blue, dashed curves, are of
Minkowski type. The third one, represented by a red, continuous curve, is a black
hole embedding.

Having determined the regular D7-brane configurations, one must now com-
pute their free energies and compare them in order to determine which one is
preferred in the multivalued region. The result is shown in Fig. 9.11(top), where
the normalization constant is given by [605, 608]

N = 2π2N f TD7r4
0

4T
= λN f Nc

64
T 3 . (9.30)

The plot on the right shows the classic “swallow tail” form, typically associated
with a first order phase transition. As anticipated, Minkowski embeddings have the
lowest free energy for temperatures T < Tdiss, whereas the free energy is mini-
mized by black hole embeddings for T > Tdiss, with Tdiss � 0.77M̄ (i.e. m � 1.3).
At T = Tdiss the Minkowski and the black hole branches meet and the thermody-
namically preferred embedding changes from one type to the other. The first order
nature of the phase transition follows from the fact that several physical quantities
jump discontinuously across the transition. An example is provided by the quark
condensate which, as illustrated in Fig. 9.9, makes a finite jump between the points
labelled A and B. Similar discontinuities also appear in other physical quantities,
like the entropy and energy density. These are easily obtained from the free energy
through the usual thermodynamic relations

S = −∂F

∂T
, E = F + T S , (9.31)

and the results are shown in Fig. 9.11. From the plots of the energy density one can
immediately read off the qualitative behavior of the specific heat cV = ∂E/∂T .
In particular, note that this slope must become negative as the curves approach the
critical solution, indicating that the corresponding embeddings are thermodynam-
ically unstable. Examining the fluctuation spectrum of the branes, we will show
that a corresponding dynamical instability, manifested by a meson state becoming
tachyonic, is present exactly for the same embeddings for which cV < 0. One may
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Figure 9.11 Free energy, entropy and energy densities for a D7-brane in a black
D3-brane background; note that N ∝ T 3. The blue dashed (red continuous)
curves correspond to the Minkowski (black hole) embeddings. The dotted ver-
tical line indicates the precise temperature of the phase transition. Figures taken
from Refs. [605, 608].

have thought that the phases near the critical point were metastable and thus acces-
sible by “super-cooling” the system, but instead it turns out that over much of the
relevant regime such phases are unstable.

We see from (9.30) that N ∼ λNc N f T 3, which means that the leading contri-
bution of the D7-branes to all the various thermodynamic quantities will be order
λNc N f , in comparison to N 2

c for the usual bulk gravitational contributions. The
Nc N f dependence, anticipated below Eq. (9.19), follows from large-Nc counting.
In contrast, as noted in Refs. [605, 607], the factor of λ represents a strong coupling
enhancement over the contribution of a simple free-field estimate for the Nc N f

fundamental degrees of freedom. From the viewpoint of the string description,
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this enhancement is easy to understand by reexamining the relative normalization
of the two terms in Eq. (9.21) more carefully than we did above. Ignoring only
order-one, purely numerical factors, the supergravity action scales as 1/G, with
G ∼ g2

s  
8
s the ten-dimensional Newton’s constant, whereas the D7-brane action

scales as N f TD7 ∼ N f /gs 
8
s . The ratio between the two normalizations is therefore

GN f TD7 ∼ gs N f ∼ g2N f ∼ λN f

Nc
. (9.32)

Thus the flavor contribution is suppressed with respect to the leading O(N 2
c ) con-

tribution by λN f /Nc, i.e. it is of order λNc N f . We will come back to this point in
the next section.

As the calculations above were all performed in the limit Nc, λ → ∞ (with N f

fixed), it is natural to ask how the detailed results depend on this approximation.
Since the phase transition is first order, we expect that its qualitative features will
remain unchanged within a finite radius of the 1/Nc, 1/λ expansions. Of course,
finite-Nc and finite-λ corrections may eventually modify the behavior described
above. For example, at large but finite Nc the black hole will emit Hawking radia-
tion and each bit of the probe branes will experience a thermal bath at a temperature
determined by the local acceleration. Similarly, finite ’t Hooft coupling corrections,
which correspond to higher derivative corrections both to the supergravity action
and the D-brane action, will become important if the spacetime or the brane curva-
tures become large. It is certainly clear that both types of corrections will become
more and more important as the lower part of a Minkowski brane approaches
the horizon, since as this happens the local temperature and the branes (intrin-
sic) curvature at their tip increase. However, at the phase transition the minimum
separation between the branes and the horizon is not parametrically small, and
therefore the corrections above can be made arbitrarily small by taking Nc and λ

sufficiently large but still finite. This confirms our expectation on general grounds
that the qualitative aspects of the phase transition should be robust within a finite
radius around the 1/Nc = 0, 1/λ = 0 point. Of course, these considerations do not
tell us whether the dissociation transition is first order or a crossover at Nc = 3.

9.3.3 Quarkonium thermodynamics

We have seen above that, in a large class of strongly coupled gauge theories with
fundamental matter, this matter undergoes a first order phase transition described
on the gravity side by a change in the geometry of the probe D-branes. In this
section we will elaborate on thermodynamical aspects of this transition from the
gauge theory viewpoint. Once we have learned more about the dynamics of holo-
graphic mesons in subsequent sections, in Section 9.4.3 we will return to the gauge
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theory viewpoint and discuss possible implications for the dynamics of quarkonium
mesons in the QCD plasma.

The temperature scale at which the phase transition takes place is set by the
meson gap at zero temperature, Tdiss ∼ Mmes. As well as giving the mass gap in
the meson spectrum, 1/Mmes is roughly the characteristic size of these bound states
[460, 637]. The gluons and other adjoint fields are already in a deconfined phase at
Tdiss, so this new transition is not a confinement/deconfinement transition. Rather,
the most striking feature of the new phase transition is the change in the meson
spectrum, and so we refer to it as a “dissociation” or “melting” transition.

In the low temperature phase, below the transition, stable mesons exist and their
spectrum is discrete and gapped. This follows from the same general principles as
in the zero-temperature case. The meson spectrum corresponds to the spectrum of
normalizable fluctuations of the D7-branes around their fiducial embedding. For
Minkowski embeddings the branes close off smoothly outside the black hole hori-
zon and the admissible modes must also satisfy a regularity condition at the tip of
the branes. On general grounds, we expect that the regular solution at the tip of the
branes evolves precisely into the normalizable solution at the boundary only for a
certain set of discrete values of the meson mass. We will study the meson spectrum
in detail in Section 9.4.1, and in Section 9.4.2 we will see that mesons acquire finite
decay widths at finite Nc or finite coupling. Since the phase under consideration is
not a confining phase, we can also introduce deconfined quarks into the system,
represented by fundamental strings stretching between the D7-branes and the hori-
zon. At a figurative level, in this phase we might describe quarks in the adjoint
plasma as a “suspension”. That is, when quarks are added to this phase, they retain
their individual identities. More technically, we may just say that quarks are well
defined quasiparticles in the Minkowski phase.

In the high temperature phase, at T > Tdiss, no stable mesons exist. Instead,
as we will discuss in more detail in Section 9.5, the excitations of the fundamen-
tal fields in this phase are characterised by a discrete spectrum of quasinormal
modes on the black hole embeddings [469, 638]. The spectral function of some
two-point meson correlators in the holographic theory, of which we will see an
example in Section 9.5.2, still exhibits some broad peaks in a regime just above
Tdiss, which suggests that a few broad bound states persist just above the dissoci-
ation phase transition [638, 604]. This is analogous to the lattice approach, where
similar spectral functions are examined to verify the presence or absence of bound
states. Hence, identifying Tdiss with the dissociation temperature should be seen as
a (small) underestimate of the temperature at which mesons completely cease to
exist. An appropriate figurative characterization of the quarks in this high temper-
ature phase would be as a “solution”. If one attempts to inject a localized quark
charge into the system, it quickly falls through the horizon, i.e. it spreads out
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across the entire plasma and its presence is reduced to diffuse disturbances of the
supergravity and worldvolume fields, which are soon damped out [469, 638]. Tech-
nically speaking, we may just state that quarks are not well-defined quasiparticles
in the black hole phase.

The physics above is potentially interesting in connection with QCD since, as
we reviewed in Sections 2.4 and 3.3, evidence from several sources indicates that
heavy quarkonium mesons remain bound in a range of temperatures above Tc.
We will analyze this connection in more detail in Section 9.4.3, once we have
learned more about the properties of holographic mesons in subsequent sections.
Here we would just like to point out one simple physical parallel. The question of
quarkonium bound states surviving in the quark–gluon plasma was first addressed
by comparing the size of the bound states to the screening length in the plasma
[609]. In the D3/D7 system, the size of the mesons can be inferred, for exam-
ple, from the structure functions, and the relevant length scale that emerges is
dmes ∼ √

λ/Mq [460]. This can also be heuristically motivated as follows. As
discussed in Section 5.4 (see Eq. (5.86)) at zero temperature the potential between
a quark–antiquark pair separated by a distance  is given by

V ∼ −
√
λ

 
. (9.33)

We can then estimate the size dmes of a meson by requiring EB ∼ |V (dmes)|, where
EB is the binding energy (9.16).5 This gives

dmes ∼
√
λ

EB
∼

√
λ

Mq
∼ 1

Mmes
∼ R2

L
. (9.34)

The last equality follows from Eq. (9.14) and is consistent with expectations based
on the UV/IR correspondence [637], since on the gravity side mesons are excita-
tions near r = L . Just for comparison, we remind the reader that the weak coupling
formula for the size of quarkonium is dweak ∼ 1/(g2Mq).

One intuitive way to understand why a meson has a very large size compared
to its inverse binding energy or to the inverse quark mass is that, owing to strong
coupling effects, the quarks themselves have an effective size of order dmes. The
effective size of a quark is defined as the largest of the following two scales: (i)
its Compton wavelength, or (ii) the distance between a quark–antiquark pair at
which their potential energy is large enough to pair-produce additional quarks
and antiquarks. In a weakly coupled theory (i) is larger, whereas in a strongly
coupled theory (ii) is larger. From Eq. (9.33) we see that this criterion gives an
effective quark size of order

√
λ/Mq instead of 1/Mq. This heuristic estimate is

5 Equation (9.16) was derived at zero temperature, but as we will see in Section 9.4.1 it is also parametrically
correct at nonzero temperature.
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supported by an explicit calculation of the size of the gluon cloud that dresses a
quark [465]. These authors computed the expectation value 〈TrF2(x)〉 sourced by
a quark of mass Mq and found that the characteristic size of the region in which
this expectation value is nonzero is precisely

√
λ/Mq.

As reviewed in Section 5.4.2, holographic studies of Wilson lines at nonzero
temperature [712, 190] reveal that the relevant screening length of the SYM plasma
is of order Ls ∼ 1/T – see Eq. (8.182). The argument that the mesons should
dissociate when the screening length is shorter than the size of these bound states
then yields Tdiss ∼ Mq/

√
λ ∼ Mmes, in agreement with the results of the detailed

calculations explained in previous sections. We thus see that the same physical
reasoning which, as we saw in Sections 2.4 and 3.3, has been used in QCD to
estimate the dissociation temperature of, e.g., the J/ψ meson can also be used to
understand the dissociation of mesons in the N = 4 SYM theory. This may still
seem counterintuitive in view of the fact that the binding energy of these mesons is
much larger that Tdiss. In other words, one might have expected that the temperature
required to break apart a meson would be of the order of the binding energy, EB ∼
Mq, instead of being parametrically smaller,

Tdiss ∼ Mmes ∼ EB/
√
λ . (9.35)

However, this intuition relies on the expectation that the result of dissociating a
meson is a quark–antiquark pair of mass 2Mq. The gravity description makes it
clear that this is not the case at strong coupling, since above Tdiss the branes fall
through the horizon. Heuristically, one may say that this means that the “con-
stituent” or “thermal” mass of the quarks becomes effectively zero. However, a
more precise statement is simply that in the black hole phase quark-like quasipar-
ticles simply do not exist, and therefore for the purpose of the present discussion it
becomes meaningless to attribute a mass to them.

One point worth emphasizing is that there are two distinct processes that are
occurring at T ∼ Mmes. If we consider, for example, the entropy density in
Fig. 9.11, we see that the phase transition occurs in the midst of a crossover sig-
naled by a rise in S/T 3. We may write the contribution of the fundamental matter
to the entropy density as

Sflavor = 1

8
λ N f Nc T 3 H(x) , (9.36)

where x = λT 2/Mq and H(x) is the function shown in the plot of the free energy
density in the top panels of Fig. 9.11. H rises from 0 at x = 0 to 2 as x → ∞,
but the most dramatic part of this rise occurs in the vicinity of x = 1. Hence
it seems that new degrees of freedom, i.e. the fundamental quarks, are becoming
“thermally activated” at T ∼ Mmes. We note that the phase transition produces
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a discontinuous jump in which H only increases by about 0.07, i.e. the jump at
the phase transition only accounts for about 3.5% of the total entropy increase.
Thus the phase transition seems to play a small role in this crossover and produces
relatively small changes in the thermal properties of the fundamental matter, such
as the energy and entropy densities.

As Mmes sets the scale of the mass gap in the meson spectrum, it is tempting
to associate the crossover above with the thermal excitation of mesonic degrees of
freedom. However, the pre-factor λ N f Nc in (9.36) indicates that this reasoning
is incorrect: if mesons provided the relevant degrees of freedom, we should have
Sflavor ∝ N 2

f . Such a contribution can be obtained either by a one-loop calcula-
tion of the fluctuation determinant around the classical D7-brane configuration, or
by taking into consideration the D7-branes’ backreaction to second order in the
N f /Nc expansion as in [278, 382, 339, 161]. One can make an analogy here with
the entropy of a confining theory (cf. Section 5.2.2). In the low temperature, con-
fining phase the absence of a black hole horizon implies that the classical-gravity
saddle point yields zero entropy, which means that the entropy is zero at order N 2

c .
One must look at the fluctuation determinant to see the entropy contributed by the
supergravity modes, i.e. by the gauge singlet glueballs, which is of order N 0

c .
We thus see that the factor of N f Nc in Sflavor is naturally interpreted as counting

the number of degrees of freedom associated with deconfined quarks, with the
factor of λ demonstrating that the contribution of the quarks is enhanced at strong
coupling. A complementary interpretation of (9.36) comes from reorganizing the
pre-factor as

λ N f Nc = (g2N f ) N 2
c . (9.37)

The latter expression suggests that the result corresponds to the first order cor-
rection of the adjoint entropy due to quark loops. As explained at the end of
Section 5.5.1, we are working in a “not quite” quenched approximation, in that
contributions of the D7-branes represent the leading order contribution in an expan-
sion in N f /Nc, and so quark loops are suppressed but not completely. In view of
the discussion below Eq. (9.32), it is clear that the expansion for the classical gra-
vitational backreaction of the D7-branes is controlled by λN f /Nc = g2N f . Hence
this expansion corresponds to precisely the expansion in quark loops on the gauge
theory side.

We conclude that the strongly coupled theory brings together these two oth-
erwise distinct processes. That is, because the N = 4 SYM theory is strongly
coupled at all energy scales, the dissociation of the quarkonium bound states and
the thermal activation of the quarks happen at essentially the same temperature.
Note that this implies that the phase transition should not be thought of as exclu-
sively associated with a discontinuous change in the properties of mesons – despite
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λ

Figure 9.12 A qualitative representation of the simplest possibility interpolating
between the weak and the strong coupling regimes in N = 4 SYM theory. The
solid and the dotted black curves correspond to T = Tdiss. At strong coupling
this corresponds to a first order phase transition (solid black curve), whereas at
weak coupling it corresponds to a crossover (dotted black curve). The solid and
the dashed red curves correspond to T = Tactivate. At strong coupling this takes
place immediately after the phase transition, whereas at weak coupling it is widely
separated from Tdiss.

the fact that this is the aspect that is more commonly emphasized. The phase
transition is also associated with a discontinuous change in the properties of
quarks since, as explained above, these exist as well-defined quasiparticles in
the Minkowski phase but not in the black hole phase. In fact, as the discussion
around Eq. (9.37) makes clear, in the O(N f Nc) - approximation considered here
the observed discontinuous jump in the thermodynamic functions comes entirely
from the discontinuous change in the properties of quarks. In this approximation,
the discontinuous jump in the thermodynamic functions associated with the dis-
continuous change in the properties of mesons simply cannot be detected, since it
is of order N 2

f and its determination would require a one-loop calculation. Fortu-
nately, however, the change in the mesons’ properties can be inferred, e.g. from the
comparison of their spectra above and below Tdiss.

It is instructive to contrast this behavior with that which is expected to occur at
weak coupling. In this regime, one expects that the dissociation of the quarkonium
mesons may well be just a crossover rather than a (first order) transition. More-
over, since the weakly bound mesons are much larger than 1/Mmes ∼ 1/(2Mq),
their dissociation transition will occur at a Tdiss that is much lower than Mq. On
the other hand, the quarks would not be thermally activated until the temperature
Tactivate ∼ Mq, above which the number densities of unbound quarks and antiquarks
are no longer Boltzmann-suppressed. Presumably, the thermal activation would
again correspond to a crossover rather than a phase transition. The key point is that
these two temperatures are widely separated at weak coupling. Figure 9.12 is an
“artistic” representation of the simplest behavior that would interpolate between
strong and weak coupling. One might expect that the dissociation point and the
thermal activation are very close for λ � 1. The line of first order phase transitions
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must end somewhere and so one might expect that it terminates at a critical point
around λ ∼ 1. Below this point, both processes would only represent crossovers
and their respective temperatures would diverge from one another, approaching the
weak coupling behavior described above.

We close with a comment about a possible comparison to QCD. Although it
would be interesting to look for signs of a crossover or a phase transition associated
with quarkonium dissociation, for example in lattice QCD, the above discussion
makes it clear that much caution must be exercised in trying to compare with the
holographic results described here. The differences can be traced back to the fact
that, unlike the holographic theory considered here, QCD is not strongly coupled
at the scale set by the mass of the heavy quark or of the corresponding heavy
quarkonium meson. For this reason, in QCD the binding energy of a quarkonium
meson is EB � Mmes � 2Mq and, since one expects that Tdiss ∼ EB , this
implies that at the dissociation temperature the quarkonium contribution to (say)
the total entropy density would be Boltzmann suppressed, i.e. it would be of order
Sflavor ∼ N 2

f exp(−Mmes/Tdiss) � 1. In contrast, in the holographic set-up there
is no exponential suppression because Tdiss ∼ Mmes. Note also that the quarko-
nium contribution should scale as N 2

f , and therefore the exponential suppression is
a further suppression on top of the already small one-loop contribution discussed
in the paragraph above Eq. (9.37). That is, there are two sources of suppression
relative to the leading O(N f Nc) - contribution in the holographic theory. Although
N f /Nc is not small in QCD, the Boltzmann suppression is substantial and will
likely make the thermodynamic effects of any quarkonium dissociation transition
quite a challenge to identify.

9.4 Quarkonium mesons in motion and in decay

In previous sections, we examined the thermodynamics of the phase transition
between Minkowski and black hole embeddings, and we argued that from the
gauge theory viewpoint it corresponds to a meson-dissociation transition. In par-
ticular, we argued that quarkonium bound states exist on Minkowski embeddings,
i.e. at T < Tdiss, that they are absolutely stable in the large-Nc, strong coupling
limit, and that their spectrum is discrete and gapped. We will begin Section 9.4.1
by studying this spectrum quantitatively, which will allow us to understand how
the meson spectrum is modified with respect to that at zero temperature, described
in Section 9.2.2. The spectrum on black hole embeddings will be considered in
Section 9.5.

After describing the spectrum of quarkonium mesons at rest, we will determine
their dispersion relations. This will allow us to study mesons in motion with respect
to the plasma and, in particular, to determine how the dissociation temperature
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depends on the meson velocity. As discussed in Section 2.4, one of the hallmarks
of a quark–gluon plasma is the screening of colored objects. Heavy quarkonia
provide an important probe of this effect since the existence (or absence) of quark–
antiquark bound states and their properties are sensitive to the screening properties
of the medium in which they are embedded. In Section 8.7 we studied this issue
via computing the potential between an external quark–antiquark pair, at rest in
the plasma or moving through it with velocity v. In particular, we found that the
dissociation temperature scales with v as

Tdiss(v) � Tdiss(v = 0)(1 − v2)1/4 , (9.38)

which could have important implications for the phenomenon of quarkonium sup-
pression in heavy ion collisions. By studying dynamical mesons in a thermal
medium, we will be able to reexamine this issue in a more “realistic” context.

We will show in Section 9.4.2 that both finite-Nc and finite-coupling corrections
generate nonzero meson decay widths, as one would expect in a thermal medium.
We shall find that the dependence of the widths on the meson momentum yields
further understanding of how (9.38) arises.

We will close in Section 9.4.3 with a discussion of the potential connections
between the properties of quarkonium mesons in motion in a holographic plasma
and those of quarkonium mesons in motion in the QCD plasma.

9.4.1 Spectrum and dispersion relations

In order to determine the meson spectrum on Minkowski embeddings, we proceed
as in Section 9.2.2. For simplicity we will focus on fluctuations of the position of
the branes U (u) with no angular momentum on the S3, i.e. we write

δU = U(u) e−iωt eiq·x . (9.39)

The main difference between this equation and its zero-temperature counterpart
(9.10) is that in the latter case Lorentz invariance implies the usual relation
ω2 − q2 = M2 between the energy ω, the spatial three-momentum q, and the mass
M of the meson. At nonzero temperature, boost invariance is broken because the
plasma defines a preferred frame in which it is at rest and the mesons develop
a non-trivial dispersion relation ω(q). In the string description this is determined
by requiring normalizability and regularity of U(u): For each value of q, these two
requirements are mutually compatible only for a discrete set of values ωn(q), where
different values of n label different excitation levels of the meson. We define the
“rest mass” of a meson as its energy ω(0) at vanishing three-momentum, q = 0, in
the rest frame of the plasma.
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Figure 9.13 Meson mass spectrum M2 = ω2|q=0 versus T in units of M̄ for
Minkowski embeddings in the D3/D7 system. Continuous curves correspond to
radially excited mesons with radial quantum number n = 0, 1, 2 from bottom to
top, respectively. Dashed lines correspond to mesons with angular momentum on
the S3. The dashed vertical line indicates the temperature of the phase transition.
Note that modes become tachyonic slightly beyond this temperature. Figure taken
from Ref. [608].

Figure 9.13 shows the rest mass of the mesons as a function of temperature and
quark mass. Note that in the zero-temperature limit, the spectrum coincides with
the zero-temperature spectrum (9.14). In particular, the lightest meson has a mass
squared matching Eq. (9.29): M2

mes = 4π2M̄2 � 39.5 M̄2.
The meson masses decrease as the temperature increases. Heuristically, this can

be understood in geometrical terms from Fig. 9.6, which shows that the thermal
quark mass Mth decreases as the temperature increases and the tip of the D7-
branes gets closer to the black hole horizon. The thermal shift in the meson masses
becomes more significant at the phase transition, and slightly beyond this point
some modes actually become tachyonic. This happens precisely in the same region
in which Minkowski embeddings become thermodynamically unstable because
cV < 0. In other words, Minkowski embeddings develop thermodynamic and
dynamic instabilities at exactly the same T/M̄ , just beyond that at which the first
order dissociation transition occurs.

We now turn to quarkonium mesons moving through the plasma, that is to modes
with q 
= 0. The dispersion relation for scalar mesons was first computed in
Ref. [608] and then revisited in Ref. [336]. The dispersion relation for (transverse)
vector mesons appeared in Ref. [255]. An exhaustive discussion of the dispersion
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Figure 9.14 Left: dispersion relation for the transverse (black, continuous curve)
and longitudinal (red, dashed curve) n = 0 modes of a heavy vector meson with
vlim = 0.35 in the N = 4 SYM plasma. The dual D7-brane has m = 1.3,
corresponding to a temperature just below Tdiss. Right: analogous curves for a
scalar (black, continuous curve) and pseudoscalar (red, dashed curve) meson. In
both plots the blue, continuous straight lines correspond to ω = vq for some
v such that vlim < v ≤ 1. The black, dotted, vertical lines mark the crossing
points between the meson dispersion relations and the blue lines. Figure taken
from Ref. [256].

relations for all these cases can be found in Ref. [256]. The result for the lowest-
lying (n = 0) vector, scalar and pseudoscalar quarkonia is shown in Fig. 9.14.
Figure 9.15 shows the group velocity vg = dω/dq for the n = 0 scalar mesons at
three different temperatures.

An important feature of these plots is their behavior at large momentum. In this
regime we find that ω grows linearly with q. Naively, one might expect that the
constant of proportionality should be one. However, one finds instead that

ω = vlim q , (9.40)

where vlim < 1 and where vlim depends on m = M̄/T but at a given temperature is
the same for all quarkonium modes. In the particular case of m = 1.3, illustrated
in Fig. 9.14, one has vlim � 0.35. In other words, there is a subluminal limiting
velocity for quarkonium mesons moving through the plasma. And, as illustrated in
Fig. 9.15, one finds that the limiting velocity decreases with increasing tempera-
ture. Figure 9.15 also illustrates another generic feature of the dispersion relations,
namely that the maximal group velocity is attained at some qm < ∞ and as q is
increased further the group velocity approaches vlim from above. Since vg at qm

is not much greater than vlim, we will not always distinguish between these two
velocities. We will come back to the physical interpretation of qm at the end of this
section.

The existence of a subluminal limiting velocity, which was discovered in [608]
and subsequently elaborated upon in [336], is easily understood from the perspec-
tive of the dual gravity description [608, 336]. Recall that mesonic states have wave



376 Quarkonium mesons in strongly coupled plasma

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

q/Tdiss

v g

Figure 9.15 Group velocities vg for n = 0 scalar meson modes with T/Tdiss ≈
0.65, 0.92 and 1 from top to bottom. We see that the group velocities approach
a limiting value vlim at large q with vlim < 1 and with vlim decreasing with
increasing temperature. (vlim would approach zero if we included the unstable
Minkowski embeddings with T > Tdiss.) The group velocity approaches its large-
q value vlim from above, i.e. vg reaches a maximum before settling into the
limiting velocity vlim. The maximum exists also for the top curve even though
it is less clearly visible. We will refer to the momentum at which vg reaches
the maximum as qm . Clearly qm decreases with temperature. Figure taken from
Ref. [336].

functions supported on the D7-branes. Since highly energetic mesons are strongly
attracted by the gravitational pull of the black hole, their wave function is very
concentrated at the bottom of the branes (see Fig. 9.6). Consequently, their veloc-
ity is limited by the local speed of light at that point. As seen by an observer at the
boundary, this limiting velocity is

vlim = √−gtt/gxx

∣∣∣
tip

, (9.41)

where g is the induced metric on the D7-branes. Because of the black hole redshift,
vlim is lower than the speed of light at infinity (i.e. at the boundary), which is nor-
malized to unity. Note that, as the temperature increases, the bottom of the brane
gets closer to the horizon and the redshift becomes larger, thus further reducing
vlim; this explains the temperature dependence in Fig. 9.15. In the gauge the-
ory, the above translates into the statement that vlim is lower than the speed of
light in the vacuum. The reason for this interpretation is that the absence of a
medium in the gauge theory corresponds to the absence of a black hole on the
gravity side, in which case vlim = 1 everywhere. Eq. (9.41) yields vlim � 0.35 at
m = 1.3, in agreement with the numerical results displayed in Fig. 9.14.

It is also instructive to plot vlim as a function of T/Tdiss, as done in Fig. 9.16.
Although this curve was derived as a limiting meson velocity at a given tempera-
ture, it can also be read (by asking where it cuts horizontal lines rather than vertical
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Figure 9.16 Top panel: the solid blue curve is the limiting velocity vlim as a func-
tion of T/Tdiss, where Tdiss is the temperature of the dissociation transition at
zero velocity. The dissociation transition occurs at the dot, where vlim = 0.27.
The dashed black curve is the approximation obtained by setting f (v) = 1 in
Eq. (9.42). Bottom panel: f (v), the ratio of the solid and dashed curves in the left
panel at a given v. We see that f (v) is within a few percent of 1 at all velocities.
Figure taken from Ref. [336].

ones) as giving Tdiss(v), the temperature below which mesons with a given velocity
v are found and above which no mesons with that velocity exist. In order to com-
pare this result for Tdiss at all velocities to (9.38), one can parametrize the curve in
Fig. 9.16 as

Tdiss(v) = f (v)(1 − v2)1/4 Tdiss(0) . (9.42)

In the upper panel of Fig. 9.16, the dashed line is obtained by setting f (v) = 1,
which is of course just (9.38). In the lower panel, f (v) is shown to be close to 1 for
all velocities, varying between 1.021 at its maximum and 0.924 at v = 1. Recall
that the scaling (9.38) was first obtained via the analysis of the potential between
a moving test quark and antiquark, as described in Section 8.7. The weakness of
the dependence of f (v) on v is a measure of the robustness with which that sim-
ple scaling describes the velocity dependence of the dissociation temperature for
quarkonium mesons in a fully dynamical calculation. In other words, to a good
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approximation vlim(T ) can be determined by setting v = vlim on the right-hand
side of (9.38), yielding

vlim(T ) �
√

1 −
(

T

Tdiss(v = 0)

)4

. (9.43)

Thus we reach a rather satisfactory picture that the subluminal limiting veloc-
ity (9.40) is in fact a manifestation in the physics of dynamical mesons of the
velocity-enhanced screening of Section 8.7. However, in the case of the low-spin
mesons whose dynamics we are considering in this section, there is an important
addition to our earlier picture. Although the quarkonium mesons have a limit-
ing velocity, they can nevertheless manage to remain bound at arbitrarily large
momenta thanks to their modified dispersion relations. The latter allow the group
velocity to remain less than vlim, and consequently Tdiss(v) as given in (9.38) to
remain higher than T , all the way out to arbitrarily large momenta. In other words,
there exist meson bound states of arbitrarily large spatial momentum, but no mat-
ter how large the momentum the group velocity never exceeds vlim. In this sense,
low-spin mesons realize the first of two simple possibilities by which mesons may
avoid exceeding vlim. A second possibility, more closely related to the analysis
of Section 8.7, is that meson states with momentum larger than a certain value
simply cease to exist. This possibility is realized in the case of high-spin mesons.
Provided J � 1, these mesons can be reliably described as long, semi-classical
strings whose ends are attached to the bottom of the D7-branes. The fact that the
endpoints do not fall on top of one another is of course due to the fact that they are
rotating around one another in such a way that the total angular momentum of the
string is J . These type of mesons were first studied [559] at zero temperature, and
subsequently considered at nonzero temperature in Ref. [674]. These authors also
studied the possibility that, at the same time that the endpoints of the string rotate
around one another in a given plane, they also move with a certain velocity in the
direction orthogonal to that plane. The result of the analysis was that, for a fixed
spin J , string solutions exist only up to a maximum velocity vlim < 1.

As we saw in Fig. 9.15, the group velocity of quarkonium mesons reaches a
maximum at some value of the momentum q = qm before approaching the limiting
value vlim. There is a simple intuitive explanation for the location of qm : it can
be checked numerically that qm is always close to the “limiting momentum” qlim

that would follow from (9.38) if one assumes the standard dispersion relation for
the meson. Thus, qm can be thought of as a characteristic momentum scale where
the velocity-enhanced screening effect starts to be important. For the curves in
Fig. 9.15, to the left of the maximum one finds approximately standard dispersion
relations with a thermally corrected meson mass. To the right of the maximum,
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the dispersion relations approach the limiting behavior (9.40), with vg approaching
vlim, as a consequence of the enhanced screening.

9.4.2 Decay widths

We saw above that at T < Tdiss (Minkowski embeddings) there is a discrete and
gapped spectrum of absolutely stable quarkonium mesons, i.e. the mesons have
zero width. The reason is that in this phase the D-branes do not touch the black
hole horizon. Since the mesons’ wave functions are supported on the branes, this
means that the mesons cannot fall into the black hole. In the gauge theory this
translates into the statement that the mesons cannot disappear into the plasma,
which implies that the meson widths are strictly zero in the limit Nc, λ → ∞. This
conclusion only depends on the topology of the Minkowski embedding. In partic-
ular, it applies even when higher order perturbative corrections in α′ are included,
which implies that the widths of mesons should remain zero to all orders in the
perturbative 1/

√
λ expansion. In contrast, in the black hole phase the D-branes fall

into the black hole and a meson has a nonzero probability of disappearing through
the horizon, that is, into the plasma. As a consequence, we expect the mesons to
develop thermal widths in the black hole phase, even in the limit Nc, λ → ∞.
In fact, as we will see in Section 9.5, the widths are generically comparable to
the energies of the mesons, and hence the mesons can no longer be interpreted as
quasiparticles.

We thus encounter a somewhat unusual situation: the quarkonium mesons are
absolutely stable for T < Tdiss, but completely disappear for T > Tdiss. The former
is counterintuitive because, on general grounds, we expect that any bound states
should always have a nonzero width when immersed in a medium with T > 0.
In the case of these mesons, we expect that they can decay and acquire a width
through the following channels:

(1) decay to gauge singlets such as glueballs, lighter mesons, etc;
(2) break up by high energy gluons (right-hand diagram in Fig. 9.17);
(3) break up by thermal medium quarks (left-hand diagram in Fig. 9.17).

Process (1) is suppressed by 1/N 2
c (glueballs) or 1/Nc (mesons), while (2) and (3)

are unsuppressed in the large-Nc limit. Since (1) is also present in the vacuum, we
will focus on (2) and (3), which are medium effects. They are shown schematically
in Fig. 9.17.

The width due to (2) is proportional to a Boltzmann factor e−βEB for creat-
ing a gluon that is energetic enough to break up the bound state, while that due
to (3) is proportional to a Boltzmann factor e−βMth for creating a thermal quark,
where Mth is the thermal mass of the quark – see Fig. 9.6. Given Eq. (9.35) and
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q

q

q

q̄

Figure 9.17 Sketches taken from Ref. [347] showing the relevant thermal pro-
cesses contributing to the meson width. q (q̄) denotes a quark (antiquark). The
left-hand diagram corresponds to the breakup of a meson by a quark from the ther-
mal medium, while the right-hand diagram corresponds to break up of a meson
by an energetic gluon. For large λ the first process is dominant, coming from the
single instanton sector.

the fact that in the Minkowski phase T < Tdiss, both Boltzmann factors are sup-
pressed by e−√

λ ∼ e−R2/α′
, so we recover the result that these mesons are stable

in the infinite-λ limit. In particular, there is no width at any perturbative order in
the 1/

√
λ expansion, consistent with the conclusion from the string theory side.

Furthermore, since the binding energy is EB ≈ 2Mth, in the regime where λ is
large (but not infinite), the width from process (3) will dominate over that from
process (2).

We now describe the result from the string theory calculation of the meson
widths in Ref. [347]. As discussed above, the width is nonperturbative in 1/

√
λ ∼

α′/R2, and thus should correspond to some instanton effect on the string world-
sheet. The basic idea is very simple: even though in a Minkowski embedding the
brane is separated from the black hole horizon and classically a meson living on the
brane cannot fall into the black hole, quantum mechanically (from the viewpoint of
the string worldsheet) it has a nonzero probability of tunneling into the black hole
and the meson therefore develops a width. At leading order, the instanton describ-
ing this tunneling process is given by a (Euclidean) string worldsheet stretching
between the tip of the D7-brane to the black hole horizon (see Fig. 9.6) and wind-
ing around the Euclidean time direction. Heuristically, such a worldsheet creates
a small tunnel between the brane and the black hole through which mesons can
fall into the black hole. The instanton action is βMth, as can be read off immedi-
ately from the geometric picture just described, and its exponential gives rise to the
Boltzmann factor expected from process (3). From the gauge theory perspective,
such an instanton can be interpreted as creating a thermal quark from the medium,
and a meson can disappear into the medium via interaction with it as shown in the
left diagram of Fig. 9.17.

The explicit expression for the meson width due to such instantons is some-
what complicated, so we refer the reader to the original literature [347]. Although
the width appears to be highly model dependent and is exponentially small in
the regime of a large but finite λ under consideration, remarkably its momentum
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Figure 9.18 The behavior of the width as a function of q for T/Tdiss =
0.99, 0.71, 0.3, 0.13 from left to right. The solid black curves are the full results
(9.44); the red dashed curves are the analytic results (9.45) for large momenta.
Figure taken from Ref. [347].

dependence has some universal features at large momentum [347]. Specifically,
one finds that

�(q)

�(0)
= |ψ(tip; �q)|2

|ψ(tip; �q = 0)|2 , (9.44)

where �(q) denotes the width of a meson with spatial momentum q and ψ(tip; q)
its wave function evaluated at the tip of the D7-branes (i.e. where it is closest to
the black hole). This result is intuitively obvious because a meson tunnels into
the black hole from the tip of the branes. In particular, as discussed in detail in
Ref. [336], at large momentum q the wave function becomes localized around the
tip of the brane and can be approximated by that of a spherical harmonic oscillator
with a potential proportional to q2z2, where z is the proper distance from the tip
of the branes.6 It then immediately follows that for large q the width (9.44) scales
as q2. Furthermore for temperatures T � Mmes and q � M3

mes/T 2, one finds the
closed form expression

�n(q)

�n(0)
≈ 2(4π)4

(n + 2)(n + 3/2)

T 4q2

M6
mes

, (9.45)

where n labels different mesonic excitations (see (9.13)).
It is also instructive to plot the full q-dependence of (9.44) obtained numeri-

cally, as done in Figure 9.18 for n = 0 mesons at various temperatures. Figure 9.18
has the interesting feature that the width is roughly constant for small q, but turns

6 Note that there are four transverse directions along the D7-brane as we move away from the tip (not including
the other (3 + 1) dimensions parallel to the boundary). Thus this is a four-dimensional harmonic oscillator.
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up quadratically around q/Mmes ≈ 0.52(Tdiss/T )2. This is roughly the momen-
tum qm ∼ qlim at which the group velocity of a meson achieves its maximum in
Fig. 9.15 which, as discussed in Section 9.4.1, can be considered as the characteris-
tic momentum scale where velocity-enhanced screening becomes significant. This
dramatic increase of meson widths beyond qm can also be understood intuitively:
when velocity-enhanced screening becomes significant, interaction between the
quark and antiquark in a meson becomes further weakened, which makes it easier
for a thermal medium quark or gluon to break it apart.

We now briefly comment on the gravity description of process (2) mentioned
earlier, i.e. the right-hand diagram in Fig. 9.17. For such a process to happen the
gluon should have an energy above the binding energy of the meson. The density
of such gluons is thus suppressed by e−2βMth and should be described by an instan-
ton and anti-instanton. We expect that contributions from such processes are also
controlled by the the value of the meson wave function at the tip of the branes, and
thus likely have similar growth with momentum.

Finally, we note that, as T increases, Mth decreases and thus the meson width
increases quickly with temperature, but remains exponentially suppressed until
Tdiss is reached, after which we are in the black hole phase. As will be discussed in
Section 9.5, in this phase quarkonium quasiparticles no longer exist.

9.4.3 Connection with the quark–gluon plasma

Let us now recapitulate the main qualitative features regarding heavy quarkonium
mesons in a strongly coupled plasma.

(1) They survive deconfinement.
(2) Their dispersion relations have a subluminal limiting velocity at large momen-

tum. The limiting velocity decreases with increasing temperature and as a
result the motion of a meson with large momentum dramatically slows down
near Tdiss.

(3) At large momenta, meson widths increase dramatically with momentum.
(4) The limiting velocity is reached and the increase in widths applies when

q � qlim, where qlim is the “limiting” momentum following from (9.38) if
one assumes the standard dispersion relation.

Properties (1)–(3) are universal in the sense that they apply to the deconfined
phase of any gauge theory with a string dual in the large-Nc, strong-coupling limit.
The reason for this is that they are simple consequences of general geometric fea-
tures following from two universal aspects of the gauge/string duality: (i) the fact
that the deconfined phase of the gauge theory is described on the gravity side by a
black hole geometry [804], and (ii) the fact that a finite number N f of quark flavors



9.4 Quarkonium mesons in motion and in decay 383

is described by N f D-brane probes [517, 513]. Property (4) was established by
explicit numerical calculations in specific models. However, given that qlim can be
motivated in a model-independent way from (9.38), it is likely to also be universal
even though this was not manifest in our discussion above.

We have seen that properties (2) and (3) can be considered direct conse-
quences of velocity-enhanced screening, which as discussed in Section 8.7 can
have important implications for quarkonium suppression in heavy ion collisions.

It is interesting that properties (1) and to some degree (2) can be independently
motivated in QCD whether or not a string dual of QCD exists. The original argu-
ment [609] for (1) is simply that the heavier the quarkonium meson, the smaller its
size. And, it is reasonable to expect a meson to remain bound until the screening
length in the plasma becomes comparable to the meson size, and for sufficiently
heavy quarkonia this happens at Tdiss > Tc. As we have discussed in Sections 2.4
and 3.3, this conclusion is supported by calculations of both the static quark–
antiquark potential and of Minkowski space spectral functions in lattice-regularized
QCD. The ballpark estimate for the dissociation temperature of heavy mesons sug-
gested by the above studies roughly agrees with that from the D3/D7 system. For
example, for the J/ψ meson the former estimate is Tc � Tdiss � 2Tc. Allowing for
a certain range in the precise value of 150 MeV � Tc � 190 MeV, this translates
into 300 MeV � Tdiss � 380 MeV. In the D3/D7 model, we see from Fig. 9.11
that meson states melt at Tdiss � 0.766M̄ . The scale M̄ is related to the mass Mmes

of the lightest meson in the theory at zero temperature through Eq. (9.29). There-
fore we have Tdiss(Mmes) � 0.122Mmes. For the J/ψ , taking Mmes � 3 GeV gives
Tdiss(J/ψ) � 366 MeV. Although it is gratifying that this comparison leads to
qualitative agreement, it must be taken with some caution because meson bound
states in the D3/D7 system are deeply bound, i.e. Mmes � 2Mq, whereas the bind-
ing energy of charmonium states in QCD is a small fraction of the charm mass,
i.e. Mcc̄ � 2Mc. An additional difference comes from the fact that in QCD the
dissociation of charmonium states is expected to happen sequentially, with excited
states (that are larger) dissociating first, whereas in the D3/D7 system all meson
states are comparable in size and dissociate at the same temperature. Presumably,
in the D3/D7 system this is an artifact of the large-Nc, strong coupling approxima-
tion under consideration, and thus corrections away from this limit should make
holographic mesons dissociate sequentially too.

There is a simple (but incomplete) argument for property (2) that applies to QCD
just as well as to N = 4 SYM theory [583, 674, 281, 336]: a meson moving
through the plasma with velocity v experiences a higher energy density, boosted
by a factor of γ 2. Since energy density is proportional to T 4, this can be thought
of as if the meson sees an effective temperature that is boosted by a factor of

√
γ ,

meaning Teff(v) = (1 − v2)−1/4T . A velocity-dependent dissociation temperature



384 Quarkonium mesons in strongly coupled plasma

scaling like (9.38) follows immediately and from this a subluminal limiting veloc-
ity (9.43) can be inferred. Although this argument is seductive, it can be seen in
several ways that it is incomplete. For example, we would have reached a differ-
ent Teff(v) had we started by observing that the entropy density s is boosted by a
factor of γ and is proportional to T 3. And, furthermore, there really is no single
effective temperature seen by the moving quarkonium meson. The earliest analysis
of quarkonia moving through a weakly coupled QCD plasma with some veloc-
ity v showed that the meson sees a blue-shifted temperature in some directions
and a red-shifted temperature in others [296]. Although the simple argument does
not work by itself, it does mean that all we need from the calculations done via
gauge/string duality is the result that Tdiss(v) behaves as if it is controlled by the
boosted energy density – i.e. we need the full calculation only for the purpose of
justifying the use of the particular simple argument that works. This suggests that
property (2), and in particular the scaling in Eqs. (9.38) and (9.43), are general
enough that they may apply to the quark–gluon plasma of QCD whether or not it
has a gravity dual.

As explained towards the end of Section 9.4.1, there are at least two simple
ways in which a limiting velocity for quarkonia may be implemented. It may hap-
pen that meson states with momentum above a certain qlim simply do not exist,
in which case one expects that vlim = v(qlim). The second possibility is that
the dispersion relation of mesons may become dramatically modified beyond a
certain qlim in such a way that, although meson states of arbitrarily high momen-
tum exist, their group velocity never exceeds a certain vlim. It is remarkable that
both possibilities are realized in gauge theories with a string dual, the former by
high-spin mesons and the latter by low-spin mesons. However, note that even in
the case of low-spin mesons, qlim remains the important momentum scale beyond
which we expect more significant quarkonium suppression for two reasons. First,
meson widths increase significantly for q > qlim. Therefore, although it is an over-
statement to say that these mesons also cease to exist above qlim, their existence
becomes more and more transient at higher and higher q. Second, owing to the
modified dispersion relation mesons with q > qlim slow down and they spend
a longer time in the medium, giving the absorptive imaginary part more time to
cause dissociation. It will be very interesting to see whether future measurements
at RHIC or the LHC will show the suppression of J/ψ or ϒ production increas-
ing markedly above some threshold transverse momentum pT , as we described in
Section 8.7.

In practice, our ability to rigorously verify the properties (1)–(4) in QCD is lim-
ited due to the lack of tools that are well suited for this purpose. It is therefore
reassuring that they hold for all strongly coupled, large-Nc plasmas with a gravity
dual, for which the gravity description provides just such a tool.
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9.5 Black hole embeddings

We now consider the phase T > Tdiss, which is described by a D7-brane with
a black hole embedding. We will give a qualitative argument that in this regime
the system generically contains no quarkonium quasiparticles. We have empha-
sized the word “generically” because exceptions arise when certain large ratios of
physical scales are introduced “by hand”, as we will see later. We will illustrate
the absence of quasiparticles in detail by computing a spectral function of two
electromagnetic currents in the next section.

9.5.1 Absence of quasiparticles

In the gravity description of physics at T > Tdiss, the meson widths may be seen
by studying the quasinormal modes of the D7-brane, analogous to the quasinormal
modes of the AdS black brane that we introduced in Section 6.4. The quasinor-
mal modes of the D7-brane are also analogs of the fluctuations we studied in the
case of Minkowski embeddings in that a normalizable fall-off is imposed at the
boundary. However, the regularity condition at the tip of the branes is replaced
by the so-called infalling boundary condition at the horizon. Physically, this is the
requirement that energy can flow into the horizon but cannot come out of it (clas-
sically). Mathematically, it is easy to see that this boundary condition forces the
frequency of the mode to acquire a negative imaginary part, and thus corresponds
to a nonzero meson width. The meson in question may then be considered a quasi-
particle if and only if this width is much smaller than the real part of the frequency.
In the case at hand, the meson widths increase as the area of the induced horizon
on the branes increases, and go to zero only when the horizon shrinks to zero size.
This is of course to be expected, since it is the presence of the induced horizon that
causes the widths to be nonzero in the first place. We are thus led to the suggestion
that meson-like quasiparticles will be present in the black hole phase only when
the size of the induced horizon on the branes can be made parametrically small.
This expectation can be directly verified by explicit calculation of the quasinor-
mal modes on the branes [469, 345, 510, 509], and we will confirm it indirectly
below by examining the spectral function of two electromagnetic currents. For the
moment, let us just note that this condition is not met in the system under consid-
eration because, as soon as the phase transition at T = Tdiss takes place, the area
of the induced horizon on the brane is an order-one fraction of the area of the
background black hole. This can be easily seen from Fig. 9.11 by comparing the
entropy density (which is a measure of the horizon area) at the phase transition to
the entropy density at asymptotically high temperatures:

stransition

shigh T
≈ 0.3

2
≈ 15% . (9.46)
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This indicates that there is no parametric reason to expect quasiparticles with nar-
row widths above the transition. We shall confirm by explicit calculation in the next
section that there are no quasiparticle excitations in the black hole phase.

9.5.2 Meson spectrum from a spectral function

Here we will illustrate some of the general expectations discussed above by exam-
ining the in-medium spectral function of two electromagnetic currents in the black
hole phase. We choose this particular correlator because it is the analogue of the
correlator that we discussed in Section 3.3 and hence is related to thermal photon
production, which we will discuss in the next section. We will see that no narrow
peaks exist for stable black hole embeddings, indicating the absence of long-lived
quasiparticles. These peaks will appear, however, as we artificially push the system
into the unstable region close to the critical embedding (see Fig. 9.7), thus con-
firming our expectation that quasiparticles should appear as the area of the induced
horizon on the branes shrinks to zero size.

N = 4 SYM coupled to N f flavors of equal-mass quarks is an SU (Nc) gauge
theory with a global U (N f ) symmetry. In order to couple this theory to electro-
magnetism we should gauge a U (1)EM subgroup of U (N f ) by adding a dynamical
photon Aμ to the theory; for simplicity we will assume that all quarks have equal
electric charge, in which case U (1)EM is the diagonal subgroup of U (N f ). In
this extended theory we could then compute correlation functions of the con-
served current J EM

μ that couples to the U (1)EM gauge field. The string dual of
this SU (Nc) × U (1)EM gauge theory is unknown, so we cannot perform this cal-
culation holographically. However, as noted in [239], we can perform it to leading
order in the electromagnetic coupling constant e, because at this order correlation
functions of electromagnetic currents in the gauged and in the ungauged theories
are identical. This is very simple to understand diagramatically, as illustrated for
the two-point function in Fig. 9.19. In the ungauged theory only SU (Nc) fields
“run” in the loops, represented by the shaded blob. The gauged theory contains
additional diagrams in which the photon also runs in the loops, but these neces-
sarily involve more photon vertices and therefore contribute at higher orders in e.
Thus one can use the holographic description to compute the “SU (Nc) blob” and
obtain the result for the correlator to leading order in e.

Using this observation, the authors of Ref. [239] first did a holographic compu-
tation of the spectral density of two R-symmetry currents in N = 4 SYM theory, to
which finite-coupling corrections were computed in [428, 429]. The result for the
R-charge spectral density is identical, up to an overall constant, with the spectral
density of two electromagnetic currents in N = 4 SYM theory coupled to massless
quarks. This, and the extension to nonzero quark mass, were obtained in Ref. [604],
which we now follow.
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SU(Nc)
q q

Figure 9.19 Diagrams contributing to the two-point function of electromagnetic
currents. The external line corresponds to a photon of momentum q. As explained
in the text, to leading order in the electromagnetic coupling constant only SU (Nc)
fields “run” in the loops represented by the shaded blob. Figure taken from
Ref. [604].

The relevant spectral function is defined as

χμν(k) = 2 Im G R
μν(k) , (9.47)

where kμ = (ω, q) is the photon null momentum (i.e. ω2 = q2) and

G R
μν(k) = i

∫
dd+1x e−ikμxμ

"(t)〈[J EM
μ (x), J EM

ν (0)]〉 (9.48)

is the retarded correlator of two electromagnetic currents. The key point in this
calculation is to identify the field in the string description that is dual to the operator
of interest here, namely the conserved current J EM

μ . We know from the discussion
in Chapter 5 that conserved currents are dual to gauge fields on the string side.
Moreover, since J EM

μ is constructed out of fields in the fundamental representation,
we expect its dual field to live on the D7-branes. The natural (and correct) candidate
turns out to be the U (1) gauge field associated with the diagonal subgroup of the
U (N f ) gauge group living on the worldvolume of the N f D7-branes. Once this is
established, one must just follow the general prescription explained in Chapter 5.
The technical details of the calculation can be found in Ref. [604], so here we will
describe only the results and their interpretation. In addition, we will concentrate
on the trace of the spectral function, χμ

μ(k) ≡ ημνχμν(k), since this is the quantity
that determines the thermal photon production by the plasma (see next section).

The trace of the spectral function for stable black hole embeddings is shown in
Fig. 9.20 for several values of the quark mass m. Note that this is a function of
only one variable, since for an on-shell photon ω = q. The normalisation constant
that sets the scale on the vertical axis is ÑD7 = N f NcT 2/4. The N f Nc scaling of
the spectral function reflects the number of electrically charged degrees of freedom
in the plasma; in the case of two R-symmetry currents, N f Nc would be replaced
by N 2

c [239]. All curves decay as ω−1/3 for large frequencies. Note that χ ∼ ω

as ω → 0. This is consistent with the fact that the value at the origin of each of
the curves yields the electric conductivity of the plasma at the corresponding quark
mass, namely

σ = e2

4
lim
ω→0

1

ω
ημνχμν(ω = q) . (9.49)
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Figure 9.20 Trace of the spectral function as a function of the dimensionless
frequency ω̄ = ω/2πT for (from top to bottom on the left-hand side) m =
{0, 0.6, 0.85, 0.93, 1.15, 1.25, 1.32}. The last value corresponds to that at which
the phase transition from a black hole to a Minkowski embedding takes place.
Recall that ÑD7 = N f NcT 2/4. Figure taken from Ref. [604].

This formula is equivalent to the perhaps-more-familiar expression in terms of the
zero-frequency limit of the spectral function at vanishing spatial momentum (see
Appendix A):

σ = e2

6
lim
ω→0

1

ω
δi jχi j (ω, q = 0) = e2

6
lim
ω→0

1

ω
ημνχμν(ω, q = 0) , (9.50)

where in the last equality we used the fact that χ00(ω 
= 0, q = 0) = 0, as implied
by the Ward identity kμχμν(k) = 0. To see that the two expressions (9.49) and
(9.50) are equivalent, suppose that q points along the 1-direction. Then the Ward
identity, together with the symmetry of the spectral function under the exchange of
its spacetime indices, imply that ω2χ00 = q2χ11. For null momentum this yields
−χ00 + χ11 = 0, so we see that Eq. (9.49) reduces to

σ = e2

4
lim
ω→0

1

ω

[
χ22(ω = q) + χ33(ω = q)

]
. (9.51)

The diffusive nature of the hydrodynamic pole of the correlator implies that at low
frequency and momentum the spatial part of the spectral function behaves as

χi j (ω, q) ∼ ω3

ω2 + D2q4
, (9.52)

where D is the diffusion constant for electric charge. This means that we can
replace q = ω by q = 0 in Eq. (9.51), thus arriving at the expression (9.50).
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Figure 9.21 Trace of the spectral function as a function of the dimensionless
frequency ω̄ = ω/2πT for non-stable black hole embeddings. Curves with
higher, narrower peaks correspond to embeddings that are closer to the critical
embedding. Figure taken from Ref. [604].

Evaluating (9.50) in the case of massless fundamental matter yields the explicit
result [604]

σ = 1

4π
e2 Nc N f T (9.53)

that we quoted previously as (6.51). For the case of fundamental matter with mass,
the result (9.53) is multiplied by a decreasing function of m = M̄/T , defined
in (9.28), that becomes very small near the phase transition from a black hole
embedding to a Minkowski embedding [604].

For the purpose of our discussion, the most remarkable feature of the spectral
functions displayed in Fig. 9.20 is the absence of any kind of high, narrow peaks
that may be associated with a quasiparticle excitation in the plasma. This feature is
shared by thermal spectral functions of other operators on stable black hole embed-
dings. We thus confirm our expectation that no quasiparticles exist in this phase.
In order to make contact with the physics of the Minkowski phase, in which we do
expect the presence of quarkonium quasiparticles, the authors of Ref. [604] com-
puted the spectral function for black hole embeddings beyond the phase transition,
i.e. in the region below Tdiss in which these embeddings are metastable or unstable.
The results for the spectral function are shown in Fig. 9.21. The most important
feature of these plots is the appearance of well defined peaks in the spectral func-
tion, which become higher and narrower, seemingly approaching delta-functions,
as the embedding approaches the critical embedding (see Fig. 9.7). Thus the form
of the spectral function appears to approach the form we expect for Minkowski
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embeddings,7 namely an infinite sum of delta-functions supported at a discrete set
of energies ω2 = q2. (However, a precise map between the peaks in Fig. 9.21 and
the meson spectrum in a Minkowski embedding is not easy to establish [667].)
Each of these delta-functions is associated with a meson mode on the D7-branes
with null four-momentum. The fact that the momentum is null may seem surprising
in view of the fact that, as explained above, the meson spectrum in the Minkowski
phase possesses a mass gap, but in fact it follows from the dispersion relation for
these mesons displayed in Fig. 9.14. To see this, consider the dispersion relation
ω(q) for a given meson in the Minkowski phase. The fact that there is a mass
gap means that ω > 0 at q = 0. On the other hand, in the limit of infinite spa-
tial momentum, q → ∞, the dispersion relation takes the form ω � vlimq with
vlim < 1. Continuity then implies that there must exist a value of q such that
ω(q) = q. This is illustrated in Fig. 9.14 by the fact that the dispersion relations
intersect the blue lines. Since in the Minkowski phase the mesons are absolutely
stable in the large-Nc, strong coupling limit under consideration, we see that each
of them gives rise to a delta-function-like (i.e. zero-width) peak in the spectral
function of electromagnetic currents at null momentum. Below we will see some
potential implications of this result for heavy ion collisions.

9.6 Two universal predictions

We have just seen that the fact that heavy mesons remain bound in the plasma, and
the fact that their limiting velocity is subluminal, imply that the dispersion relation
of a heavy meson must cross the lightcone, defined by ω = q, at some energy
ω = ωpeak indicated by the vertical line in Fig. 9.14. In this section we will see that
this simple observation leads to two universal consequences. Implications for deep
inelastic scattering have been studied in [479] but will not be reviewed here.

9.6.1 A meson peak in the thermal photon spectrum

At the crossing point between the meson dispersion relation and the lightcone, the
meson four-momentum is null, that is ω2

meson = q2
meson. If the meson is flavorless

and has spin one, then at this point its quantum numbers are the same as those
of a photon. Such a meson can then decay into an on-shell photon, as depicted in
Fig. 9.22. Note that, in the vacuum, only the decay into a virtual photon would
be allowed by kinematics. In the medium, the decay can take place because of the
modified dispersion relation of the meson. Also, note that the decay will take place
unless the photon–meson coupling vanishes for some reason (e.g. a symmetry). No
such reason is known in QCD.
7 An analogous result was found in [638] for time-like momenta.
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meson γγ

Figure 9.22 In-medium vector meson–photon mixing. The imaginary part of
this diagram yields the meson decay width into photons. Figure adapted from
Ref. [602].

The decay process of Fig. 9.22 contributes a resonance peak, at a position ω =
ωpeak, to the in-medium spectral function of two electromagnetic currents (9.48)
evaluated at null-momentum ω = q. This in turn produces a peak in the spectrum
of thermal photons emitted by the plasma,

d Nγ

dω
∼ e−ω/T χμ

μ(ω, T ) . (9.54)

The width of this peak is the width of the meson in the plasma.
The analysis above applies to an infinitely extended plasma at constant temper-

ature. Assuming that these results can be extrapolated to QCD, a crucial question
is whether a peak in the photon spectrum could be observed in a heavy ion colli-
sion experiment. Natural heavy vector mesons to consider are the J/ψ and the ϒ ,
since these are expected to survive deconfinement. We wish to compare the num-
ber of photons coming from these mesons to the number of photons coming from
other sources. Accurately calculating the meson contribution would require a pre-
cise theoretical understanding of the dynamics of these mesons in the quark–gluon
plasma, which at present is not available. Our goal will therefore be to estimate the
order of magnitude of this effect with a simple recombination model. The details
can be found in Ref. [249], so here we will only describe the result for heavy ion
collisions at LHC energies.

The result is summarized in Fig. 9.23, which shows the thermal photon spectrum
coming from light quarks, the contribution from J/ψ mesons, and the sum of the
two, for a thermal charm mass Mcharm = 1.7 GeV and a J/ψ dissociation temper-
ature Tdiss = 1.25Tc. Although the value of Mcharm is relatively high, the values of
Mcharm and Tdiss are within the range commonly considered in the literature. For
the charm mass a typical range is 1.3 ≤ Mcharm ≤ 1.7 GeV because of a sub-
stantial thermal contribution – see, for example, Ref. [621] and references therein.
The value of Tdiss is far from settled, but a typical range is Tc ≤ Tdiss ≤ 2Tc

[504, 677, 506, 623, 620, 80, 308, 430, 521, 729, 82]. We have chosen these values
for illustrative purposes, since they lead to an order-one enhancement in the spec-
trum. We emphasize, however, that whether this photon excess manifests itself as
a peak, or only as an enhancement smoothly distributed over a broader range of
frequencies, depends sensitively on these and other parameters. Qualitatively, the
dependence on the main ones is as follows. Decreasing the quark mass decreases
the magnitude of the J/ψ contribution. Perhaps surprisingly, higher values of Tdiss
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Figure 9.23 Thermal photon spectrum for LHC energies, Tdiss = 1.25 Tc and
Mcharm = 1.7 GeV. The (arbitrary) normalization is the same for all curves. The
continuous, monotonically decreasing, blue curve is the background from light
quarks. The continuous red curve is the signal from J/ψ mesons. The dashed
black curve is the sum of the two. Figure taken from Ref. [249].

make the peak less sharp. The in-medium width of the J/ψ used in Fig. 9.23 was
100 MeV. Increasing this by a factor of two turns the peak into an enhancement.
Crucially, the J/ψ contribution depends quadratically on the cc̄ cross-section.
Since at RHIC energies this is believed to be ten times smaller than at LHC
energies, the enhancement discussed above is presumably unobservable at RHIC.

These considerations show that a precise determination of the enhancement is
not possible without a very detailed understanding of the in-medium dynamics of
the J/ψ . On the other hand, they also illustrate that there exist reasonable values
of the parameters for which this effect yields an order-one enhancement, or even
a peak, in the spectrum of thermal photons produced by the quark–gluon plasma.
This thermal excess is concentrated at photon energies roughly between 3 and 5
GeV. In this range the number of thermal photons in heavy ion collisions at the
LHC is expected to be comparable to or larger than that of photons produced in
initial partonic collisions that can be described using perturbative QCD [65]. Thus,
we expect the thermal excess above to be observable even in the presence of the
pQCD background.

The authors of Ref. [249] also examined the possibility of an analogous effect
associated with the ϒ meson, in which case ωpeak ∼ 10 GeV. At these energies
the number of thermal photons is very much smaller than that coming from initial
partonic collisions, so an observable effect is not expected.

9.6.2 A new mechanism of quark energy loss: Cherenkov emission of mesons

We now turn to another universal prediction that follows from the existence of a
subluminal limiting velocity for mesons in the plasma. Consider a highly energetic
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Figure 9.24 D-branes and open string in a black brane geometry. Figure taken
from Refs. [255, 256].

quark moving through the plasma. In order to model this we consider a string
whose endpoint moves with an arbitrary velocity v at an arbitrary radial position
rq – see Fig. 9.24. Roughly speaking, the interpretation of rq in the gauge theory is
that of the inverse size of the gluon cloud that dresses the quark. This can be seen,
for example, by holographically computing the profile of 〈TrF2(x)〉 around a static
quark source dual to a string whose endpoint sits at r = rq [465].

Two simple observations now lead to the effect that we are interested in. The
first one is that the string endpoint is charged under the scalar and vector fields
on the branes. In the gauge theory, this corresponds to an effective quark-meson
coupling (see Fig. 9.25) of order e ∼ 1/

√
Nc. Physically, this can be understood

very simply. The fields on the branes describe fluctuations around the equilibrium
configuration. The string endpoint pulls on the branes and therefore excites (i.e. it
is charged under) these fields. The branes’ tension is of order 1/gs ∼ Nc, where
gs is the string coupling constant, whereas the string tension is Nc-independent.
This means that the deformation of the branes caused by the string is of order
e2 ∼ 1/Nc. We thus conclude that the dynamics of the “branes + string endpoint”
system is (a generalization of) that of classical electrodynamics in a medium in the
presence of a fast-moving charge.

The second observation is that the velocity of the quark may exceed the limiting
velocity of the mesons, since the redshift at the position of the string endpoint is
smaller than that at the bottom of the branes. As in ordinary electrodynamics, if
this happens then the string endpoint loses energy by Cherenkov radiating into the
fields on the branes. In the gauge theory, this translates into the quark losing energy
by Cherenkov radiating scalar and vector quarkonium mesons. The rate of energy
loss is set by the square of the coupling, and is therefore of order 1/Nc.

The quantitative details of the energy lost to Cherenkov radiation of quarko-
nium mesons by a quark propagating through the N = 4 plasma can be found in
[256, 255], so here we will describe only the result. For simplicity, we will assume
that the quark moves with constant velocity along a straight line at a constant radial
position. In reality, rq and v will of course decrease with time because of the black
hole gravitational pull and the energy loss. However, we will concentrate on the
initial part of the trajectory (which is long provided the initial quark energy is
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Figure 9.25 Effective quark–meson coupling. Figure taken from Refs. [255, 256].

large), for which rq and v are approximately constant [294] – see Fig. 9.24. Finally,
for illustrative purposes we will focus on the energy radiated into the transverse
modes of vector mesons. The result is depicted in Fig. 9.26, and its main qualitative
features are as follows. (See Refs. [255, 256] for details.)

As expected, we see that the quark only radiates into meson modes with phase
velocity lower than v – those to the right of the dashed, vertical lines in Fig. 9.14.
For fixed rq , the energy loss increases monotonically with v up to the maximum
allowed value of v – the local speed of light at rq . As rq decreases, the character-
istic momentum qchar of the modes into which the energy is deposited increases.
These modes become increasingly peaked near the bottom of the branes, and the
energy loss diverges. However, this mathematical divergence is removed by physi-
cal effects we have not taken into account. For example, for sufficiently large q the
mesons’ wave functions become concentrated on a region whose size is of order
the string length, and hence stringy effects become important [336]. Also, as we
saw in Section 9.4.2, mesons acquire widths � ∝ q2 at large q [347] and can no
longer be treated as well defined quasiparticles. Finally, the approximation of a
constant-v, constant-rq trajectory ceases to be valid whenever the energy loss rate
becomes large.

The Cherenkov radiation of quarkonium mesons by quarks depends only on
the qualitative features of the dispersion relation of Fig. 9.14, which are univer-
sal for all gauge theory plasmas with a dual gravity description. Moreover, as
we explained in Section 9.4.3, it is conceivable that they may also hold for QCD
mesons such as the J/ψ or the ϒ whether or not a string dual of QCD exists. Here
we will examine some qualitative consequences of this assumption for heavy ion
collision experiments. Since the heavier the meson the more perturbative its prop-
erties become, we expect that our conclusions are more likely to be applicable to
the charmonium sector than to the bottomonium sector.

An interesting feature of energy loss by Cherenkov radiation of quarkonia is
that, unlike other energy loss mechanisms, it is largely independent of the details
of the quark excited state, such as the precise features of the gluon cloud around
the quark, etc. In the gravity description these details would be encoded in the
precise profile of the entire string, but the Cherenkov emission only depends on the
trajectory of the string endpoint. This leads to a dramatic simplification which, with
the further approximation of rectilinear uniform motion, reduces the parameters
controlling the energy loss to two simple ones: the string endpoint velocity v and
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Figure 9.26 Cherenkov energy loss into the transverse mode of vector quarko-
nium mesons. The continuous curves correspond to increasing values of rq from
left to right. The dotted curve is defined by the endpoints of the constant-rq curves.
Figure taken from Refs. [255, 256].

its radial position rq . In order to obtain a ballpark estimate of the magnitude of the
energy loss, we will assume that in a typical collision quarks are produced with
order-one values of rq (in units of R2T ). Under these circumstances the energy
loss is of order unity in units of (2πT )2/Nc, which for a temperature range of
T = 200–400 MeV and Nc = 3 leads to d E/dx ≈ 2–8 GeV/fm. This is is of the
same order of magnitude as other mechanisms of energy loss in the plasma; for
example, the BDMPS radiative energy loss d E/dx = αsCFq̂L/2 yields values of
d E/dx = 7–40 GeV/fm for q̂ = 1–5 GeV 2/fm, αs = 0.3 and L ≈ 6 fm. Since our
gravity calculation is strictly valid only in the infinite-quark-energy limit (because
of the linear trajectory approximation), we expect that our estimate is more likely
to be applicable to highly energetic quarks at the LHC than to those at RHIC.

Even if in the quark–gluon plasma the magnitude of Cherenkov energy loss turns
out to be subdominant with respect to other mechanisms, its velocity dependence
and its geometric features may still make it identifiable. Indeed, this mechanism
would only operate for quarks moving at velocities v > vlim, with vlim the limiting
velocity of the corresponding quarkonium meson in the plasma. The presence of
such a velocity threshold is the defining characteristic of Cherenkov energy loss.
The precise velocity at which the mechanism starts to operate may actually be
higher than vlim in some cases, since the additional requirement that the energy of
the quark be equal or larger than the in-medium mass of the quarkonium meson
must also be met.

As illustrated in Fig. 9.27, Cherenkov mesons would be radiated at a charac-
teristic angle cos θc = vlim/v with respect to the emitting quark, where v is the
velocity of the quark. Taking the gravity result as guidance, vlim could be as low as
vlim = 0.27 at the quarkonium dissociation temperature [608, 336], correspond-
ing to an angle as large as θc ≈ 1.30 rad. This would result in an excess of
heavy quarkonium associated with high energy quarks passing through the plasma.
Our estimate of the energy loss suggests that the number of emitted J/ψs, for
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Figure 9.27 The geometry of Cherenkov emission of heavy quarkonium mesons
from a highly energetic quark. Figure taken from Ref. [603].

example, could range from one to three per fm. This emission pattern is simi-
lar to the emission of sound waves by an energetic parton [245] that we have
described in Section 8.3, in that both effects lead to a non-trivial angular struc-
ture. One important difference, however, is that the radiated quarkonium mesons
would not thermalize and hence would not be part of a hydrodynamic shock wave.
The meson emission pattern could be reflected in azimuthal dihadron correlations
triggered by a high-pT hadron. Owing to surface bias, the energetic parton in the
triggered direction is hardly modified, while the one propagating in the opposite
direction moves through a significant amount of medium, emitting quarkonium
mesons. Thus, under the above assumptions, the dihadron distribution with an asso-
ciated J/ψ would have a ring-like structure peaked at an angle θ ≈ π − θc. Even
if this angular structure were to prove hard to discern, the simpler correlation that
in events with a high-pT hadron there are more J/ψ mesons than in typical events
may suffice as a distinctive signature, although further phenomenological modeling
is required to establish this.

A final observation is that Cherenkov energy loss also has a non-trivial temper-
ature dependence, since it requires that there are meson-like states in the plasma,
and therefore it does not take place at temperatures above the meson dissocia-
tion temperature. Similarly, it is reasonable to assume that it does not occur at
temperatures below Tc, since in this case we do not expect the meson dispersion
relations to become spacelike.8 Under these circumstances, the Cherenkov mecha-
nism is only effective over a limited range of temperatures Tc < T < Tdiss which,
if Tdiss � 1.2Tc as in Ref. [623], is a narrow interval.

As was pointed out in Ref. [577], a mechanism of energy loss which is confined
to a narrow range of temperatures in the vicinity of Tc concentrates the emis-
sion of energetic partons to a narrow layer within the collision geometry, and this
can have observable consequences. Azimuthally asymmetric particle production at
high pT , say ∼ 10 GeV, is parametrized by the same azimuthal Fourier coefficients

8 This assumption is certainly correct for plasmas with a gravity dual, since the corresponding geometry does
not include a black hole horizon if T < Tc .
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v2, v3, . . . that at lower pT are related to hydrodynamic flow. At high pT , though,
these asymmetries originate from jet quenching, and in particular from the fact that
in heavy ion collisions with nonzero impact parameter the mean distance through
which hard partons traveling in a particular direction relative to the reaction plane
must propagate through the medium produced in the collision depends on the angle
between the direction of propagation and the reaction plane. Hard partons travel-
ing perpendicular to the reaction plane will, on average, find themselves travelling
through the medium for a longer distance (and will therefore lose more energy)
than those produced traveling in the reaction plane direction. This effect results in
a nonzero v2 at high pT . The magnitude of the resulting v2 will have some sensi-
tivity to the temperature dependence of energy loss. Some authors [577, 356, 822]
have found that their models are better able to describe the data if the energy loss
occurs only in a narrow range of temperatures near Tc, although others have not
needed such a mechanism [499, 500, 145, 498, 626, 146]. Provided that the meson
dissociation temperature Tdiss is not much larger than Tc, the Cherenkov radiation
of quarkonium mesons is one such mechanism. The temperature dependence of
energy loss is an active area of current research. At the time of writing it remains
to be seen whether it favors the Cherenkov radiation of quarkonium mesons as
an important energy loss mechanism. It will also be very interesting to look for
correlations between J/ψ production and the production and quenching of jets,
correlations that go beyond those present in standard perturbative jet fragmenta-
tion. This is an investigation that will benefit greatly from the higher production
rates for both J/ψ mesons and jets anticipated at the LHC beginning circa 2015.
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Concluding remarks and outlook

Since the purpose of heavy ion collisions is to study the properties of Quan-
tum Chromodynamics at extreme temperature and energy density, any successful
phenomenology must ultimately be based on QCD. However, as discussed in Chap-
ter 2, heavy ion phenomenology requires strong coupling techniques not only for
bulk thermodynamic quantities like the QCD equation of state, but also for many
dynamical quantities at nonzero temperature, such as transport coefficients, relax-
ation times and quantities accessed by probes propagating through a plasma. By
now, lattice-regularized QCD calculations provide well controlled results for the
former, but progress on all the latter quantities is likely to be slow since one
needs to overcome both conceptual limitations and limitations in computing power.
Alternative strong coupling tools are therefore desirable. The gauge/string duality
provides one such tool for performing nonperturbative calculations for a wide class
of non-Abelian plasmas.

In this book we have mostly focused on results obtained within one particu-
lar example of a gauge/string duality, namely the case in which the gauge theory
is N = 4 SYM or a small deformation thereof. One reason for this is peda-
gogical: N = 4 SYM is arguably the simplest and best understood case of a
gauge/string duality. By now many examples are known of more sophisticated
string duals of non-supersymmetric, nonconformal QCD-like theories that exhibit
confinement, spontaneous chiral symmetry breaking, thermal phase transitions, etc.
However, many of these features become unimportant in the deconfined phase.
For this reason, for the purpose of studying the QCD quark–gluon plasma, the
restriction to N = 4 SYM not only yields a gain in simplicity, but also does not
imply a significant loss of generality, at least at the qualitative level. Moreover,
none of these “more realistic” theories can be considered in any sense a controled
approximation to QCD. Indeed, many differences remain including the presence
of adjoint fermions and scalar fields, the lack of asymptotic freedom, the large-Nc

approximation, etc. Some of these differences may be overcome if string theory in
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asymptotically AdS spacetimes becomes better understood. However, in the super-
gravity (plus classical strings and branes) limit currently accessible these caveats
remain important to bear in mind when comparing to QCD.

In this context, it is clearly questionable to assess the interplay between heavy
ion phenomenology and the gauge/string duality correspondence solely on the
basis of testing the numerical agreement between theory and experiment. Rather,
one should view this interplay in light of the standard scientific strategy that to gain
significant insight into problems that cannot be addressed within the current state of
the art, it is useful to find a closely related theory within which such problems can
be addressed with known technology and which encompasses the essential features
of interest. For many dynamical features of phenomenological interest in heavy ion
physics, controlled strong coupling calculations in QCD are indeed not in imme-
diate reach with the current state of the art. In contrast, within the gauge/string
correspondence, it has been possible to formulate and solve the same problems in
the strongly coupled plasmas of a large class of non-Abelian quantum field theo-
ries. Among these, strongly coupled N = 4 SYM theory at large-Nc turns out to
provide the simplest model for the strongly coupled plasma being produced and
probed in heavy ion collisions. Very often in the past, when theoretical physicists
have introduced some model for the purpose of capturing the essence of some phe-
nomenon or phenomena involving strongly coupled dynamics, the analysis of that
model has then required further uncontrolled approximations. (Examples abound:
Nambu–Jona-Lasinio models in which the QCD interaction is first replaced by a
four-fermi coupling but one then still has to make a mean-field approximation; lin-
ear sigma models, again followed by a mean-field approximation; bag models; . . .).
A great advantage of using a quantum field theory with a gravity dual as a model
is that once we have picked such a theory, the calculations needed to address the
problems of interest can be done rigorously at strong coupling, without requiring
any further compromise. In some cases, the mere formulation of the problem in
a way suitable for a gravitational dual calculation can lead to new results within
QCD [107, 564, 240]. In many others, as we have seen, the existence of these
solutions allows one to examine and understand the physics responsible for the
processes of interest. The most important output of a successful model is under-
standing. Controlled quantitative calculations come later. Understanding how the
dynamics works, what is important and what is extraneous, what the right picture
is that helps one to think about the physics in a way that is both insightful and
predictive, these must all come first.

At the least, the successes to date of the applications of gauge/string duality to
problems arising from heavy ion collisions indicate that it provides us with a suc-
cessful model, in the sense of the previous paragraph. However, there are many
indications that it provides more. In solving these problems, some regularities have
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emerged in the form of universal properties, by which we mean properties com-
mon to all strongly coupled theories with gravity duals in the large-Nc, strong
coupling limit. These include both quantitative observables, such as the ratio of
the thermodynamic potentials at strong and weak coupling (Section 6.1) and the
value η/s = 1/4π at strong coupling (Section 6.2), and qualitative features, such
as the observation that the maximal stopping distance of a jet-like excitation made
of energetic light quanta scales with its energy E like E1/3 (Sections 8.4 and 8.6)
or the familiar fact that heavy quarkonium mesons remain bound in the plasma
as well as the discovery that the dissociation temperature for quarkonium mesons
drops with increasing meson velocity v like (1 − v2)1/4 (Sections 8.7 and 9.4) and
that high-momentum dispersion relations become spacelike (Section 9.4). The dis-
covery of these generic properties is important in order to extract lessons for QCD.
Indeed, the fact that some properties are valid in a class of gauge theory plasmas
so broad as to include theories in different numbers of dimensions, with different
field content, with or without chemical potentials, with or without confinement and
chiral symmetry breaking, etc., leads one to suspect that such properties might be
universal across the plasmas in a class of theories that includes QCD – whether or
not a string dual of QCD itself exists. The domain of applicability of this putative
universality is at present unknown, both in the sense that we do not know to what
theories it may apply and in the sense that we cannot say a priori which observ-
ables and phenomena are universal and which others are theory-specific details.
One guess as to a possible characterization in theory space could be that these
universal features may be common across all gauge theory plasmas that have no
quasiparticle description (Section 6.3).

Even results obtained via the gauge/string duality that are not universal may
provide guidance for our understanding of QCD at nonzero temperature and for
heavy ion phenomenology. In many cases, these are strong coupling results that
differ parametrically from the corresponding weak coupling results and therefore
deliver valuable qualitative messages for the modeling of heavy ion collisions.
In particular, the small values of the ratio η/s, of the heavy quark diffusion
constant (Section 8.2), of the relaxation time τπ (Section 6.2) showed that such
small values can be realized in a gauge theory plasma. Similarly, the speed with
which a near-equilibrium plasma described by hydrodynamics can form from
far-from-equilibrium initial conditions (Chapter 7) teaches us that the hydrody-
namization times indicated in analyses of heavy ion collision data need not be
thought of as unexpectedly rapid. And, via seeing it happen in a large number of
examples in which we can use the dual gravitational description to watch hydrody-
namization happening, we have learned that strongly coupled plasma is typically
locally anisotropic when it hydrodynamizes, with isotropization happening only
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significantly later. Furthermore, the result for η/s in N = 4 theory, combined with
the results for the entropy density, pressure and energy density (Section 6.1) have
taught us that a theory can have almost identical thermodynamics at zero and infi-
nite coupling and yet have radically different hydrodynamics. The lesson that this
provides for QCD is that the thermodynamic observables, although they are avail-
able from lattice simulations, are not good indicators of whether the quark–gluon
plasma is weakly or strongly coupled, whereas the transport coefficients are.

Important lessons have also been extracted from the strong coupling calcula-
tions of the jet quenching parameter q̂ and the heavy quark drag coefficient ηD and
momentum broadening κ (Sections 8.1, 8.2 and 8.5). These showed not only that
these quantities can attain values significantly larger than indicated by perturbative
estimates but also that while in perturbation theory both q̂ and κ are proportional
to the entropy density, this is not the case at strong coupling, where both these
quantities and ηD scale with the square root of the number of degrees of freedom.
This result, which is valid for a large class of theories, corrected a naïve physical
expectation that was supported by perturbation theory.

The strong coupling calculation of the jet quenching parameter q̂ also serves as
an example of an approach (in this case to jet quenching) in which a part of the
story where the QCD physics is likely weakly coupled is treated with conventional
calculational methods and only that part of the story where the strongly coupled
physics of the quark-gluon plasma in QCD enters is treated via gauge/string duality.
It may well be worth developing approaches to other phenomena in heavy ion
collisions along these lines.

Perhaps most fundamentally, the availability of rigorous, reliable results for
any strongly coupled plasma (let alone for a large class of them) can alter the
very intuition we use to think about the dynamics of the quark–gluon plasma.
In perturbation theory, one thinks of the plasma as being made of quark and
gluon quasiparticles. However, gravity calculations of correlation functions valid at
strong coupling show no evidence of the existence of any quasiparticle excitations
composed from gluons and light quarks (Section 6.3). (Heavy, small, quarkonium
mesons do survive as quasiparticles up to some dissociation temperature (Sections
9.5.2 and 9.6).) The presence or absence of quasiparticles is a major qualitative
difference between the weak and strong coupling pictures of the plasma which is
largely independent of the caveats associated with the use of gauge/string duality
that we have described above. Indeed, the new way of thinking about strongly
coupled plasma that originated in a synthesis of insights from heavy on colli-
sion data, hydrodynamic calculations and analyses done via gauge/string duality
poses a central challenge that must be addressed if in future we are to claim a
deep understanding of quark-gluon plasma in QCD: how does a strongly coupled
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plasma with no quasiparticle description emerge (at length scales ∼ T ) from an
asymptotically free gauge theory that describes weakly coupled quarks and gluons
at length scales � T ?

Finally, two important roles played by the gauge/string duality are that of a test-
ing ground of existing ideas and models relevant for heavy ion collisions, and that
of a source of new ones in a regime in which guidance and inspiration from per-
turbation theory may be inapplicable or misleading. In its first role, the duality
provides a rigorous field-theoretical framework within which to verify our intuition
about the plasma. For example, explicit calculations gave support to previously
suggested ideas about the hydrodynamical response of the plasma to high energy
particles (Section 8.3) or the possibility that heavy quarkonium mesons survive
deconfinement (Section 9.3.1). In its second role, the duality has generated qual-
itatively new ideas which could not have been guessed from perturbation theory.
Examples of these are the non-trivial velocity dependence of screening lengths
(Section 8.7), the in-medium conversion of mesons into photons (Section 9.6), the
energy loss of heavy quarks via Cherenkov emission of mesons (Section 9.6.2),
and the appearance of a phase transition associated with the dissociation of heavy
quarkonium bound states (Section 9.3.2).

In summary, while it is true that caution and a critical mind must be exercised
when trying to extract lessons from any gauge/gravity calculation, paying particular
attention to its limitations and range of applicability, it is also undeniable that over
the past few years a broad suite of qualitatively novel insights relevant for heavy
ion phenomenology have emerged from detailed and quantitative calculations in
the gravity duals of non-Abelian field theories. As the phenomenology of heavy
ion collisions moves to new, more quantitative and more incisive, studies in the
RHIC program, and as it moves to novel challenges at the LHC, we have every
reason to expect that experimental information about additional properties of hot
QCD matter will come into theoretical focus. Understanding properties of the QCD
plasma, as well as its response to and its effects on probes, at strong coupling will
therefore remain key issues in future analyses. We expect that the gauge/string
correspondence will continue to play an important role in making progress on these
issues.



Appendix A

Green–Kubo formula for transport coefficients

Transport coefficients of a gauge theory plasma, such as the shear viscosity η, can
be extracted from correlation functions of the gauge theory via a relation known
as the Green–Kubo formula. Here, we derive this relation, used in both Chapters 3
and 6, for the case of the shear viscosity. Let us consider a system in equilibrium
and let us work in the fluid rest frame, meaning that uμ = (1, 0). Deviations from
equilibrium are studied by introducing a small external source of the type

S = S0 + 1

2

∫
d4x T μνhμν , (A.1)

where S0 (S) is the action of the theory in the absence (presence) of the perturba-
tion hμν . To leading order in the perturbation, the expectation value of the stress
tensor is

〈T μν(x)〉 = 〈T μν(x)〉0 − 1

2

∫
d4y Gμν,αβ

R (x − y)hαβ(y), (A.2)

where the subscript 0 indicates the unperturbed expectation value and the retarded
correlator is given by

iGμν,αβ

R (x − y) ≡ θ
(
x0 − y0

) 〈[
T μν(x), T αβ(y)

]〉
. (A.3)

To extract the shear viscosity, we concentrate on an external perturbation of the
form

hxy(t, z) . (A.4)

Upon Fourier transforming, this is equivalent to using rotational invariance to
choose the wave vector of the perturbation, k, along the ẑ direction. The off-
diagonal components of the stress tensor are then given by〈

T xy(ω, k)
〉 = −Gxy,xy

R (ω, k)hxy(ω, k) , (A.5)
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to linear order in the perturbation. In the long-wavelength limit, in which the typical
variation of the perturbed metric is large compared with any correlation length, we
obtain 〈

T xy
〉
(t, z) = −

∫
dω

2π
e−iωt Gxy,xy

R (ω, k = 0)hxy(ω, z) . (A.6)

This long-wavelength expression may be compared to the hydrodynamic approx-
imation by studying the reaction of the system to the source within the effective
theory. The source hμν can be interpreted as a modification on the metric,

gμν → gμν + hμν . (A.7)

To leading order in the perturbation, the shear tensor defined in Eq. (2.16) is
given by

σxy = 2�0
xy = ∂0hxy , (A.8)

where �μ
νρ are the Christoffel symbols. The hydrodynamic approximation is valid

in the long time limit, when all microscopic processes have relaxed. In this limit,
we can compare the linear response expression (A.5) to the expression obtained
upon making the hydrodynamic approximation, namely (2.14). We conclude that

η = − lim
ω→0

1

ω
lim
k→0

ImGxy,xy
R (ω,k) . (A.9)

This result is known as the Green–Kubo formula for the shear viscosity.
The above discussion for the stress tensor can also be generalized to other con-

served currents. In general, the low frequency limit of G R(ω, �k) for a conserved
current operator O defines a transport coefficient χ

χ = − lim
ω→0

lim
�k→0

1

ω
ImG R(ω,k) , (A.10)

where the retarded correlator is defined analogously to Eq. (A.3)

iG R(x − y) ≡ θ
(
x0 − y0

) 〈[
O(x), O(y)

]〉
. (A.11)



Appendix B

Hawking temperature of a general black brane metric

Here we calculate the Hawking temperature for a general class of black brane
metrics of the form

ds2 = g(r)
[

− f (r)dt2 + d �x2
]

+ 1

h(r)
dr2 , (B.1)

where we assume that f (r) and h(r) have a first order zero at the horizon r = r0,
whereas g(r) is non-vanishing there. We follow the standard method [376] and
demand that the Euclidean continuation of the metric (B.1),

ds2 = g(r)
[

f (r)dt2
E + d �x2

]
+ 1

h(r)
dr2 , (B.2)

obtained by the replacement t → −i tE, be regular at the horizon. Expanding
(B.2) near r = r0 one finds

ds2 ≈ ρ2dθ2 + dρ2 + g(r0) d �x2 , (B.3)

where we have introduced new variables ρ, θ defined as

ρ = 2

√
r − r0

h′(r0)
, θ = tE

2

√
g(r0) f ′(r0)h′(r0) . (B.4)

The first two terms in the metric (B.3) describe a plane in polar coordinates, so in
order to avoid a conical singularity at ρ = 0 we must require θ to have period 2π .
From (B.4) we then see that the period β = 1/T of the Euclidean time must be

β = 1

T
= 4π√

g(r0) f ′(r0)h′(r0)
. (B.5)
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Appendix C

Holographic renormalization, one-point functions,
and a two-point function

Here we will illustrate the general prescription of Section 5.3.1 for computing
Euclidean correlators. We will begin by giving a derivation of the general expres-
sion (5.47) for a one-point function to linear order in the external source, although
we note that Eq. (5.47) is in fact valid at the nonlinear level [538], as follows from
a generalization of the discussion that we shall present. Then, we will calculate
the two-point function of a scalar operator O(x) in N = 4 SYM at zero tem-
perature. In so doing we will provide a derivation of the more general expression
(5.55) for a two-point function and then evaluate it explicitly for this particular
case. Although our main interest is in four-dimensional boundary theories, for the
sake of generality we will present the formulas for a general dimension d.

Let � be the scalar field in AdS dual to O. The Euclidean two-point function
of O is then given by the right-hand side of Eq. (5.43) with n = 2. In order to
evaluate this, we first need to solve the classical equation of motion for � subject
to the boundary condition (5.29), and then evaluate the action on that solution.
Since in order to obtain the two-point function we only need to take two functional
derivatives of the action, it suffices to keep only the terms in the action that are
quadratic in �, ignoring all interaction terms. At this level, the action is given by
Eq. (5.20), except without the minus sign inside

√−g, as appropriate for Euclidean
signature:

S = −1

2

∫
dz dd x

√
g
[
gM N∂M�∂N� + m2�2

] + · · · . (C.1)

Note that we have adopted an overall sign convention for the Euclidean action
appropriate for (5.41). The metric is that of pure Euclidean AdS and takes the form

ds2 = R2

z2

(
dz2 + δμνdxμdxν

)
. (C.2)

We will work in momentum space along the boundary directions. The equation
of motion for �(z, k) then takes the form (5.22), which we reproduce here for
convenience:
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zd+1∂z
(
z1−d∂zφ

) − k2z2� − m2 R2� = 0 , (C.3)

with k2 = δμνkμkν as appropriate in Euclidean signature.
Integration by parts shows that, when evaluated on a solution �c, S reduces to

the boundary term

S[�c] = −1

2
lim
ε→0

∫
z=ε

ddk

(2π)d
�c(−k)�c(k) , (C.4)

where �c is the canonical momentum associated with the z-foliation,

� = −√−g gzz∂z�, (C.5)

evaluated at the solution �c. Since z = 0 is a regular singular point of Eq. (C.3), it
is possible to choose a basis for �1,2 given by

�1 → R
1−d

2 zd−�, �2 → R
1−d

2 z�, as z → 0 , (C.6)

with the corresponding canonical momenta �1,2(z, k) behaving as

�1 → − (d − �) R
d−1

2 z−�, �2 → −�R
d−1

2 z−(d−�), as z → 0 , (C.7)

where

� = d

2
+ ν, ν =

√
d2

4
+ m2 R2 . (C.8)

Note that in (C.6) and (C.7) we only indicated the leading terms in a power series
expansion in kz for each function. For example,

�1(z, k) = R
1−d

2 zd−�
(
1 + a2(kz)2 + a4(kz)4 + · · ·) (C.9)

for some constants a2,4. Because all the terms in Eq. (C.3) are analytic in k2, all the
expansions are also analytic in k2. This will be important in demonstrating that the
counterterm action that we shall introduce below is local.

Then �c and its canonical momentum can be expanded as

�c(z, k) = A(k)�1(z, k) + B(k)�2(z, k) ,

�c(z, k) = A(k)�1(z, k) + B(k)�2(z, k) , (C.10)

as in (5.23), and the classical on-shell action becomes

S[�c] = −1

2
lim
ε→0

∫
z=ε

ddk

(2π)d

[(A(−k)A(k)�1(−k)�1(k) + B(−k)B(k)�2(−k)�2(k)

+ A(−k)B(k)(�1(−k)�2(k) + �1(−k)�2(k))] . (C.11)

Note that because ν > 0, in the ε → 0 limit the first term on the right-hand
side of (C.11) contains divergences and thus S requires renormalization. These
divergences can be interpreted as dual to UV divergences of the boundary gauge
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theory. A local counterterm action Sct defined on the cut-off surface z = ε can be
introduced to cancel the divergences. From (C.11) we need to choose 1

Sct = 1

2

∫
z=ε

ddk

(2π)d

�1(−k)

�1(−k)
�(−k)�(k) . (C.12)

Below we will show that this is a local action for sources in the boundary theory.
The renormalized on-shell action is then given by

S(ren)[�c] ≡ S[�c] + Sct [�c] = 1

2

∫
ddk

(2π)d
2ν A(−k)B(k) , (C.13)

where we have dropped terms which vanish in the ε → 0 limit; the action is now
finite.

We now impose the (Euclidean momentum space version of the) boundary
condition (5.29) on �c. We can use (C.10) or (C.9) to write this boundary
condition as

�c(ε, k) → �1(ε, k)φ(k) as ε → 0 , (C.14)

which from equation (C.10) gives

A(k) = φ(k) + terms that vanish as ε → 0 . (C.15)

Note that the boundary condition as written in (C.14) contains a factor R
1−d

2 (com-
ing from the definition of �1 in (C.6)) that is not written in (5.29). This factor
ensures that φ(k) has the correct engineering dimension for a source coupled to an
operator of dimension �. Consequently, there are no R factors in equations below.

We also need to impose the condition that �c be regular everywhere in the inte-
rior. This extra condition then fixes the solution of (C.3) completely, which in turn
determines the ratio χ ≡ B/A in terms of which B = χφ. The renormalized action
can now be written as

S(ren)[�c] = 1

2

∫
ddk

(2π)d
2ν χφ(−k)φ(k) . (C.16)

It follows that the one-point function is given by

〈O(k)〉φ = δS(ren)[�c]
δφ(−k)

= 2νχφ(k) = 2νB(k) , (C.17)

which is the momentum space version of (5.47). The two-point function is then

GE(k) = 〈O(k)〉φ
φ(k)

= 2ν
B(k)

A(k)
, (C.18)

which is Eq. (5.55).

1 We assume that 2ν is not an integer. If 2ν were an integer, then extra logarithmic terms would arise. See the
discussion in Ref. [742].
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Let us now verify explicitly that (C.12) is a local action in terms of the boundary
source φ. Substituting (C.14) into (C.12) we find that

Sct = 1

2

∫
z=ε

ddk

(2π)d
�1(−k)�1(−k) φ(−k)φ(k)

= 1

2

∫
z=ε

ddk

(2π)d
εd−2� ((� − d) + · · ·) φ(−k)φ(k), (C.19)

where the · · · in the second line denotes terms of O(ε2) and higher. As we noted
below (C.9), all the k-dependence in �1 and �1 is analytic in k2, which implies
that all the k-dependence in the terms represented by · · · is also analytic in k2. So,
after doing the Fourier transform to coordinate space, (C.19) is a local action for
the boundary source φ.

Note that the entire discussion above only uses the form of Eq. (C.3) near z = 0
and thus applies to any geometry that is asymptotically AdS. In the case where the
boundary theory is N = 4 SYM theory at zero temperature, the bulk geometry is
pure AdS and we can evaluate (C.18) explicitly. We begin by noting that, for pure
AdS, Eq. (C.3) can in fact be solved exactly, with �1,2 given by

�1 = �(1 − ν)

(
k

2

)ν

R
1−d

2 z
d
2 I−ν(kz) , �2 = �(1 + ν)

(
k

2

)−ν

R
1−d

2 z
d
2 Iν(kz) ,

(C.20)
where I (x) is the modified Bessel function of the first kind. Requiring �c to be
regular at z → ∞ determines the solution up to an overall multiplicative constant:

�c ∝ z
d
2 Kν(kz) , (C.21)

where Kν(x) is the modified Bessel function of the second kind. From (C.10),
(C.20) and (C.21) we then find that

B

A
= �(−ν)

�(ν)

(
k

2

)2ν

(C.22)

and thus

GE(k) = 2ν
�(−ν)

�(ν)

(
k

2

)2ν

. (C.23)



Appendix D

Computation of the holographic stress tensor

In this appendix we give some details of the computation of the holographic stress
tensor for the fluid metric discussed in Section 7.2. The basic tool is the rela-
tion (5.51) between the boundary theory stress tensor and the curvature of the bulk
metric whose derivation we reviewed in Section 5.3.2, and which we repeat here
for convenience:

〈T μν〉 = lim
z→0

1

8πGN

Rd+2

zd+2

(
Kμν − gμνK − d − 1

R
gμν

)
, (D.1)

where gμν is the induced metric on a constant-z hypersurface !z . We will denote
its inverse by gμν . We shall henceforth denote 〈T μν〉 by just T μν as we have done
in Chapter 7 and as is standard in the hydrodynamic literature. In this appendix we
shall consider a bulk metric of the general form

ds2 = N 2dz2 + gμν(dxμ + Nμdz)(dxν + N νdxν) (D.2)

where N and Nμ are functions that specify the explicit form of the metric. The
extrinsic curvature of a hypersurface of constant z is given by

Kμν = 1

2N

(
∂zgμν − DμNν − Dν Nμ

)
(D.3)

where Nμ = gμν Nμ and Dμ is the covariant derivative associated with gμν .

D.1 Holographic stress tensor for the AdS black brane

Before considering the fluid metric of Section 7.2, let us first consider a simpler
example as a warmup. Consider a diagonal metric with Nμ = 0 and

gμν = R2

z2
hμν(x

μ, z), N 2 = R2

z2
n2 , (D.4)
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meaning that the metric is now specified by the functions hμν and n. For a metric
with this form,

Kμν = R

z

1

n

(
1

2
∂zhμν − 1

z
hμν

)
, K = z

R

1

n

(
1

2
hμν∂zhμν − d

z

)
(D.5)

and thus

Tμν = Rd−1

8πGN
lim
z→0

1

zd−1

1

n

(
1

2
∂zhμν − 1

2
hμνh

λρ∂zhλρ + d − 1

z
hμν(1 − n)

)
.

(D.6)
The AdS black brane metric dual to plasma at rest in thermal equilibrium with
temperature T is given by

ds2 = R2

z2

(
− f dt2 + 1

f
dz2 + d �x2

)
(D.7)

with f (z) = 1 − zd

zd
0

and where z0 is related to the temperature by T = d
4π z0

. This

metric is therefore an instance of the general form that we have introduced above,
with

n = 1√
f

= 1 + zd

2zd
0

+ · · · , hμν = ημν + zd

zd
0

δμ0δν0 . (D.8)

We thus find that

Tμν = Rd−1

8πGN

1

2zd
0

(
ημν + d δμ0δν0

) = Rd−1

16πGN

(
4πT

d

)d (
ημν + d δμ0δν0

)
,

(D.9)
which is indeed the stress tensor for the strongly coupled plasma at rest, in thermal
equilibrium, which we have derived for d = 4 in Eqs. (6.6) in Section 6.1. (Recall
from (5.12) that for d = 4 we have R3/GN = 2N 2

c /π .)

D.2 Computation of the holographic stress tensor for the fluid metric

We now compute the stress tensor corresponding to the metric (7.26) discussed
in Section 7.2.1 that describes the hydrodynamic fluid in motion. Henceforth, we
specialize to d = 4. When we write the metric (7.26), in terms of the standard
representation (D.2) we find

N 2 = R2

z2
n2, n2 ≡ −uμhμνuν, gμν = R2

z2
hμν, Nμ = R2

z2
uμ, Nμ = hμνuν,

(D.10)
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where hμν is the inverse of hμν . Recall that in our convention uμ = ημνuν . Note
that Dμ is also the covariant derivative associated with hμν . From (D.3) and (D.10),

Kμν = R

z
kμν, kμν = 1

2n

(
∂zhμν − 2

z
hμν + Dμuν + Dνuμ

)
. (D.11)

We then find that

Tμν = R3

8πG5
tμν, tμν = lim

z→0

z−3

n

(
1

2
∂zhμν + D(μuν) − Ahμν

)
, (D.12)

where

A = 1

2
hμν∂zhμν + Dμuμ + 3

z
(n − 1) . (D.13)

In the discussion of Section 7.2, we write hμν in a derivative expansion as

hμν = h(0)
μν + εh(1)

μν + ε2h(2)
μν + · · · (D.14)

with h(0)
μν and its inverse given by

h(0)
μν = − f uμuν + �μν, hμν

(0) = − f −1uμuν + �μν , (D.15)

and h(1)
μν given by the expression (7.58). The inverse hμν has the expansion

hμν = hμν

(0) − εhμν

(1) + · · · , (D.16)

where hμν

(1) is obtained from h(1)
μν by raising the indices using hμν

(0). We can then write
tμν in a derivative expansion as

tμν = t (0)μν + ε t (1)μν + · · · . (D.17)

Upon evaluating (D.12) up to zeroth order (i.e. no derivatives) we find

t (0)μν = lim
z→0

z−3

n(0)

(
1

2
∂zh

(0)
μν − A(0)h(0)

μν

)
, A(0) = 1

2
hμν

(0)∂zh
(0)
μν + 3

z
(n(0) − 1) .

(D.18)
Using (D.15), we have

n(0) = f − 1
2 , ∂zh

(0)
μν = −∂z f uμuν = 4(πT )4z3uμuν + O(z4), (D.19)

and from these expressions we obtain

A(0) = −1

2
(πT )4z3 + O(z4) (D.20)

which then yields

t (0)μν = 2(πT )4uμuν + (πT )4

2
ημν . (D.21)
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This is the zeroth order stress tensor describing a fluid in motion, which we stated
as Eqs. (7.35) and (7.36) in Section 7.2. For a fluid at rest this reproduces the stress
tensor (D.9).

Now let us consider the contributions to the stress tensor that are first order in
derivatives. In the iterative procedure described in Section 7.2, there are two types
of contributions to t (1)μν . One type comes from the expansion to higher order of
terms that are already present at zeroth order, i.e. terms that arise in t (0)μν (T, uμ)

if we take T = T (0) + εT (1) + · · · and uμ = u(0)
μ + εu(1)

μ + · · · and which can
therefore be absorbed into a redefinition of T and uμ. It is straightforward to derive
the contributions of this type, and as they do not affect the structure of tμν they
are not what is of interest to us here. The second type of contribution gives new
first derivative terms which are not present in t (0)μν . We will concentrate on these
contributions, which can be written as

t (1)μν = lim
z→0

z−3

n(0)

(
1

2
∂zh

(1)
μν + D(0)

(μ u(0)
ν) − A(0)h(1)

μν − A(1)h(0)
μν

)
− lim

z→0

n(1)

n(0)
t (0)μν , (D.22)

where

A(1) = 1

2
(hμν∂zhμν)(1) + D(0)

μ uμ

(0) + 3

z
n(1) . (D.23)

In these terms the differences between T, uμ and T (0), u(0)
μ can be neglected since

these differences only contribute at higher order. For notational simplicity below
we can drop all superscripts on these variables. After some algebra we then find that

t (1)μν = −(πT )3

2
σμν , (D.24)

where σμν was defined in (7.3), which yields the result (7.59).
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