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Quantum field theory, our description of the fundamental forces in
nature, was originally formulated in continuous space–time, where it
leads to embarrassing infinities which have to be eliminated by a process
called renormalization. A simple but rigorous formulation can be ob-
tained by replacing continuous space–time by a discrete set of points on a
lattice. This clarifies the essentials of quantum fields using concepts such
as universality of critical phenomena and the renormalization group.

This book provides a clear and pedagogical introduction to quantum
fields on a lattice. The path integral on the lattice is explained in concrete
examples using weak- and strong-coupling expansions. Fundamental
concepts, such as ‘triviality’ of Higgs fields and confinement of quarks
and gluons into hadrons, are described and illustrated with the results of
numerical simulations. The book also provides an introduction to chiral
symmetry and chiral gauge theory. Based on the lecture notes of a course
given by the author, this book contains many explanatory examples and
exercises, and is suitable as a textbook for advanced undergraduate and
graduate courses.
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Preface

She [field theory] is not a robust mate ready to
pitch in and lend a helping hand. She is a haunting
mistress, refined, and much too beautiful for hard
work. She is at her best in formal dress, and thus
displayed in this book, where rigor will be found to
be absolutely absent. Bryce S. DeWitt

Since the above characterization appeared [1] in 1965 we have witnessed
great progress in quantum field theory, our description of fundamental
particles and their interactions. This book displays her in informal dress,
robust and ready to give results, rigorous, while at a pedestrian mathe-
matical level. By approximating space–time by a collection of points on
a lattice we get a number of benefits:

• it serves as a precise but simple definition of quantum fields, which
has its own beauty;

• it brings to the fore and clarifies essential aspects such as renormal-
ization, scaling, universality, and the role of topology;

• it makes a fruitful connection to statistical physics;
• it allows numerical simulations on a computer, giving truly non-

perturbative results as well as new physical intuition into the behavior
of the system.

This book is based on notes of a lecture course given to advanced
undergraduate students during the period 1984–1995. An effort was
made to accomodate those without prior knowledge of field theory. In the
present version, examples from numerical simulations have been replaced

xi



xii Preface

by more recent results, and a few sections (8.3–8.6) on lattice aspects of
chiral symmetry have been added. The latter notoriously complicated
topic was not dealt with in the lectures, but for this book it seemed
appropriate to give an introduction.

An overview of the research area in this book is given by the pro-
ceedings of the yearly symposia ‘Lattice XX’, which contain excellent
reviews in which the authors tried hard to make the material accessible.
These meetings tend to be dominated by QCD, which is understandable,
as many of the physical applications are in the sphere of the strong
interactions, but a lot of exciting developments usually take place ‘on the
fringe’, in the parallel sessions. In fact, Lattice XX may be considered as
the arena for non-perturbative field theory. The appropriate papers can
be retrieved from the e-print archive http://arXiv.org/ and its mirrors,
or the SPIRES website http://www.slac.stanford.edu/spires/hep/

I would like to thank my students, who stumbled over my mistakes, for
their perseverance and enthusiasm, and my colleagues for collaborations
and for sharing their insight into this ever-surprising research field.

Amsterdam, November 2001

http://arXiv.org/
http://www.slac.stansford.edu/spires/hep/
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Introduction

We introduce here quarks and gluons. The analogy with electrodynamics
at short distances disappears at larger distances with the emergence
of the string tension, the force that confines the quarks and gluons
permanently into bound states called hadrons.

Subsequently we introduce the simplest relativistic field theory, the
classical scalar field.

1.1 QED, QCD, and confinement

Quantum electrodynamics (QED) is the quantum theory of photons
(γ) and charged particles such as electrons (e±), muons (µ±), protons
(p), pions (π±), etc. Typical phenomena that can be described by
perturbation theory are Compton scattering (γ + e− → γ + e−), and
pair annihilation/production such as e+ + e− → µ+ + µ−. Examples of
non-perturbative phenomena are the formation of atoms and molecules.
The expansion parameter of perturbation theory is the fine-structure
constant1 α = e2/4π.

Quantum chromodynamics (QCD) is the quantum theory of quarks
(q) and gluons (g). The quarks u, d, c, s, t and b (‘up’, ‘down’, ‘charm’,
‘strange’, ‘top’ and ‘bottom’) are analogous to the charged leptons νe, e,
νµ, µ, ντ , and τ . In addition to electric charge they also carry ‘color
charges’, which are the sources of the gluon fields. The gluons are
analogous to photons, except that they are self-interacting because they
also carry color charges. The strength of these interactions is measured
by αs = g2/4π (alpha strong), with g analogous to the electromagnetic
charge e. The ‘atoms’ of QCD are qq̄ (q̄ denotes the antiparticle of q)

1



2 Introduction

Fig. 1.1. Intuitive representation of chromoelectric field lines between a static
quark–antiquark source pair in QCD: (a) Coulomb-like at short distances;
(b) string-like at large distances, at which the energy content per unit length
becomes constant.

bound states called mesons† (π, K, η, η′, ρ, K∗, ω, φ, . . . ) and 3q bound
states called baryons (the nucleon N , and furthermore Σ, Λ, Ξ, ∆, Σ∗,
Λ∗, . . .). The mesons are bosons and the baryons are fermions. There
may be also multi-quark states analogous to molecules. Furthermore,
there are expected to be glueballs consisting mainly of gluons. These
bound states are called ‘hadrons’ and their properties as determined by
experiment are recorded in the tables of the Particle Data Group [2].

The way that the gluons interact among themselves has dramatic
effects. At distances of the order of the hadron size, the interactions are
strong and αs effectively becomes arbitrarily large as the distance scale
increases. Because of the increasing potential energy between quarks at
large distances, it is not possible to have single quarks in the theory:
they are permanently confined in bound states.

For a precise characterization of confinement one considers the theory
with gluons only (no dynamical quarks) in which static external sources
are inserted with quark quantum numbers, a distance r apart. The
energy of this configuration is the quark–antiquark potential V (r). In
QCD confinement is realized such that V (r) increases linearly with r as
r →∞,

V (r) ≈ σr, r →∞. (1.1)

The coefficient σ is called the string tension, because there are effective
string models for V (r). Such models are very useful for grasping some
of the physics involved (figure 1.1).

Because of confinement, quarks and gluons cannot exist as free parti-

† The quark content of these particles is given in table 7.1 in section 7.5.
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Fig. 1.2. Shape of the static qq̄ potential and the force F = ∂V/∂r.

cles. No such free particles have been found. However, scattering exper-
iments at high momentum transfers (corresponding to short distances)
have led to the conclusion that there are quarks and gluons inside the
hadrons. The effective interaction strength αs is small at short distances.
Because of this, perturbation theory is applicable at short distances or
large momentum transfers. This can also be seen from the force derived
from the qq̄ potential, F = ∂V/∂r. See figure 1.2. Writing conventionally

F (r) =
4
3
αs(r)
r2

, (1.2)

we know that αs → 0 very slowly as the distance decreases,

αs(r) ≈
4π

11 ln(1/Λ2r2)
. (1.3)

This is called asymptotic freedom. The parameter Λ has the dimension
of a mass and may be taken to set the dimension scale in quark-less
‘QCD’. For the glueball mass m or string tension σ we can then write

m = CmΛ,
√
σ = CσΛ. (1.4)

Constants like Cm and Cσ, which relate short-distance to long-distance
properties, are non-perturbative quantities. They are pure numbers
whose computation is a challenge to be met by the theory developed
in the following chapters.

The value of the string tension σ is known to be approximately
(400 MeV)2. This information comes from a remarkable property of the
hadronic mass spectrum, the fact that, for the leading spin states, the
spin J is approximately linear in the squared mass m2,

J = α0 + α′m2. (1.5)

See figure 1.3. Such approximately straight ‘Regge trajectories’ can be
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Fig. 1.3. Plot of spin J versus m2 (GeV2) for ρ- and π-like particles. The dots
give the positions of particles, the straight lines are fits to the data, labeled
by their particles with lowest spin. The line labeled ‘pot’ is L versus H2 for
the solution (1.10), for clarity shifted upward by two units, for mq = mρ/2,
σ = 1/8α′

ρ.

understood from the following simple effective Hamiltonian for binding
of a qq̄ pair,

H = 2
√
m2

q + p2 + σr. (1.6)

Here mq is the mass of the constituent quarks, taken to be equal for
simplicity, p = |p| is the relative momentum, r = |r| is the relative
separation, and the spin of the quarks is ignored. The potential is taken
to be purely linear, because we are interested in the large-mass bound
states with large relative angular momentum L, for which one expects
that only the long-distance part of V (r) is important.

For such states with large quantum number L the classical approx-
imation should be reasonable. Hence, consider the classical Hamilton
equations,

drk
dt

=
∂H

∂pk
,

dpk
dt

= −∂H

∂rk
. (1.7)

and the following Ansatz for a circular solution:

r1 = a cos(ωt), r2 = a sin(ωt), r3 = 0,

p1 = −b sin(ωt), p2 = b cos(ωt), p3 = 0. (1.8)
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Substituting (1.8) into (1.7) we get relations among ω, a, and b, and
expressions for p and r, which can be written in the form

p = b = σω−1, r = a = 2s−1σ−1p, s ≡
√

1 +m2
q/p

2, (1.9)

such that L and H can be written as

L = rp = 2s−1σ−1p2, H = 2(s+ s−1)p. (1.10)

For p2 
 m2
q, s ≈ 1, L ∝ p2 and H ∝ p. Then L ∝ H2 and, because

H = m is the mass (rest energy) of the bound state, we see that

α′ ≡
[
LH−2]

p/mq→∞ = (8σ)−1. (1.11)

It turns out that L is approximately linear in H2 even for quite small
p2, such that L < 1, as shown in figure 1.3. Of course, the classical
approximation is suspect for L not much larger than unity, but the same
phenomenon appears to take place quantum mechanically in nature,
where the lower spin states are also near the straight line fitting the
higher spin states.2

With α′ = 1/8σ, the experimental value α′ ≈ 0.90 GeV−2 gives
√
σ ≈

370 MeV. The effective string model (see e.g. [3] section 10.5) leads
approximately to the same answer: α′ = 1/2πσ, giving

√
σ ≈ 420 MeV.

The string model is perhaps closer to reality if most of the bound-state
energy is in the string-like chromoelectric field, but it should be kept in
mind that both the string model and the effective Hamiltonian give only
an approximate representation of QCD.

1.2 Scalar field

We start our exploration of field theory with the scalar field. Scalar
fields ϕ(x) (x = (x, t), t ≡ x0) are used to describe spinless particles.
Particles appearing elementary on one distance scale may turn out to be
be composite bound states on a smaller distance scale. For example,
protons, pions, etc. appear elementary on the scale of centimeters,
but composed of quarks and gluons on much shorter distance scales.
Similarly, fields may also be elementary or composite. For example, for
the description of pions we may use elementary scalar fields ϕ(x), or
composite scalar fields of the schematic form ψ̄(x)γ5ψ(x), where ψ(x)
and ψ̄(x) are quark fields and γ5 is a Dirac matrix. Such composite fields
can still be approximately represented by elementary ϕ(x), which are
then called effective fields. This is useful for the description of effective
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interactions, which are the result of more fundamental interactions on a
shorter distance scale.

A basic tool in the description is the action S =
∫
dtL, with L the

Lagrangian. For a nonrelativistic particle described by coordinates qk,
k = 1, 2, 3, the Lagrangian has the form kinetic energy minus potential
energy, L = q̇kq̇k/2m − V (q).† For the anharmonic oscillator in three
dimensions the potential has the form V (q) = ω2q2/2 + λ(q2)2/4, q2 ≡
qkqk. In field theory a simple example is the action for the ϕ4 theory,

S =
∫
M

d4xL(x), d4x = dx0 dx1 dx2 dx3, (1.12)

L(x) = 1
2∂tϕ(x)∂tϕ(x)− 1

2∇ϕ(x) ·∇ϕ(x)− 1
2µ

2ϕ(x)2− 1
4λϕ(x)4, (1.13)

Here M is a domain in space–time, ϕ(x) is a scalar field, L(x) is the
action density or Lagrange function, and λ and µ2 are constants (λ is
dimensionless and µ2 has dimension (mass)2 = (length)−2). Note that
the index x is a continuous analog of the discrete index k: ϕ(x, t) ↔ qk(t).

Requiring the action to be stationary under variations δϕ(x) of ϕ(x),
such that δϕ(x) = 0 for x on the boundary of M , leads to the equation
of motion:

δS =
∫

d4x
[
−∂2t ϕ(x) +∇2ϕ(x)− µ2ϕ(x)− λϕ(x)3

]
δϕ(x)

= 0 ⇒ (∂2t −∇2 + µ2)ϕ+ λϕ3 = 0. (1.14)

In the first step we made a partial integration. In classical field theory the
equations of motion are very important (e.g. Maxwell theory). In quan-
tum field theory their importance depends very much on the problem
and method of solution. The action itself comes more to the foreground,
especially in the path-integral description of quantum theory.

Various states of the system can be characterized by the energy H =∫
d3xH. The energy density has the form kinetic energy plus potential

energy, and is given by

H = 1
2 ϕ̇

2 + 1
2 (∇ϕ)2 + U, (1.15)

U = 1
2µ

2ϕ2 + 1
4λϕ

4. (1.16)

The field configuration with lowest energy is called the ground state. It
has ϕ̇ = ∇ϕ = 0 and minimal U . We shall assume λ > 0, such that H is

† Unless indicated otherwise, summation over repeated indices is implied, q̇k q̇k ≡∑
k q̇k q̇k.
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Fig. 1.4. The energy density for constant fields for µ2 < 0.

bounded from below for all ϕ. From a graph of U(ϕ) (figure 1.4) we see
that the cases µ2 > 0 and µ2 < 0 are qualitatively different:

µ2 > 0: ϕg = 0, Ug = 0;

µ2 < 0: ϕg = ±v, v2 = −µ
2

λ
, Ug = −1

4
µ2

λ
. (1.17)

So the case µ2 < 0 leads to a doubly degenerate ground state. In this case
the symmetry of S or H under ϕ(x) → −ϕ(x) is broken, because a non-
zero ϕg is not invariant, and one speaks of spontaneous (or dynamical)
symmetry-breaking.

Small disturbances away from the ground state propagate and dis-
perse in space and time in a characteristic way, which can be found
by linearizing the equation of motion (1.14) around ϕ = ϕg. Writing
ϕ = ϕg + ϕ′ and neglecting O(ϕ′2) gives

(∂2t −∇2 +m2)ϕ′ = 0, (1.18)

m2 = U ′′(ϕg) =
{
µ2, µ2 > 0;
µ2 + 3λv2 = −2µ2, µ2 < 0.

(1.19)

Wavepacket solutions of (1.18) propagate with a group velocity v =
∂ω/∂k, where k is the average wave vector and ω =

√
m2 + k2. In

the quantum theory these wavepackets are interpreted as particles with
energy–momentum (ω,k) and mass m. The particles can scatter with an
interaction strength characterized by the coupling constant λ. For λ = 0
there is no scattering and the field is called ‘free’.



2

Path-integral and lattice regularization

In this chapter we introduce the path-integral method for quantum
theory, make it precise with the lattice regularization and use it to
quantize the scalar field. For a continuum treatment of path integrals in
quantum field theory, see for example [8].

2.1 Path integral in quantum mechanics

To see how the path integral works, consider first a simple system with
one degree of freedom described by the Lagrange function L = L(q, q̇),
or the corresponding Hamilton function H = H(p, q),

L = 1
2mq̇2 − V (q), H =

p2

2m
+ V (q), (2.1)

where p and q are related by p = ∂L/∂q̇ = mq̇. In the quantum theory p

and q become operators p̂ and q̂ with [q̂, p̂] = i� (we indicate operators
in Hilbert space by a caret ·̂). The evolution in time is described by the
operator

Û(t1, t2) = exp[−iĤ(t1 − t2)/�], (2.2)

with Ĥ the Hamilton operator, Ĥ = H(p̂, q̂). Instead of working with
q-numbers (operators) p̂ and q̂ we can also work with time dependent
c-numbers (commuting numbers) q(t), in the path-integral formalism.
(Later we shall use anti-commuting numbers to incorporate Fermi–Dirac
statistics.) In the coordinate basis |q〉 characterized by

q̂|q〉 = q|q〉, (2.3)

〈q′|q〉 = δ(q′ − q),
∫

dq |q〉〈q| = 1, (2.4)

8
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Fig. 2.1. Illustration of two functions q(t) contributing to the path integral.

we can represent the matrix element of Û(t1, t2) by a path integral

〈q1|Û(t1, t2)|q2〉 =
∫

Dq exp[iS(q)/�]. (2.5)

Here S is the action functional of the system,

S(q) =
∫ t1

t2

dtL(q(t), q̇(t)), (2.6)

and
∫
Dq symbolizes an integration over all functions q(t) such that

q(t1) = q1, q(t2) = q2, (2.7)

as illustrated in figure 2.1. The path integral is a summation over
all ‘paths’ (‘trajectories’, ‘histories’) q(t) with given end points. The
classical path, which satisfies the equation of motion δS(q) = 0, or

∂L

∂q
− ∂

∂t

∂L

∂q̇
= 0, (2.8)

is only one out of infinitely many possible paths. Each path has a ‘weight’
exp(iS/�). If � is relatively small such that the phase exp(iS/�) varies
rapidly over the paths, then a stationary-phase approximation will be
good, in which the classical path and its small neighborhood give the
dominant contributions. The other extreme is when the variation of S/�
is of order one. In the following we shall use again units in which � = 1.

A formal definition of
∫
Dq is given by∫
Dq =

∏
t2<t<t1

∫
dq(t), (2.9)
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i.e. for every t ∈ (t2, t1) we integrate over the domain of q, e.g. −∞ <

q <∞. The definition is formal because the continuous product
∏

t still
has to be defined. We shall give such a definition with the help of a
discretization procedure.

2.2 Regularization by discretization

To define the path integral properly we discretize time in small units a,
writing t = na, q(t) = qn, with n integer. For a smooth function q(t) the
time derivative q̇(t) can be approximated by q̇(t) = (qn+1 − qn)/a, such
that the discretized Lagrange function may be written as†

L(t) =
m

2a2
(qn+1 − qn)2 − 1

2
V (qn+1)−

1
2
V (qn), (2.10)

where we have divided the potential term equally between qn and qn+1.
We define a discretized evolution operator T̂ by its matrix elements as
follows:

〈q1|T̂ |q2〉 = c exp
{
ia

[
m

2a2
(q1 − q2)2 −

1
2
V (q1)−

1
2
V (q2)

]}
, (2.11)

where c is a constant to be specified below. Note that the exponent is
similar to the Lagrange function. The operator T̂ is called the transfer
operator, its matrix elements the transfer matrix. In terms of the transfer
matrix we now give a precise definition of the discretized path integral:

〈q′|Û(t′, t′′)|q′′〉 =
∫

dq1 · · · dqN−1〈q′|T̂ |qN−1〉

× 〈qN−1|T̂ |qN−2〉 · · · 〈q1|T̂ |q′′〉

= c

∫ (∏
c dq
)

exp
[
im

2a
(q′ − qN−1)2

− ia

2
V (q′)− iaV (qN−1) +

im

2a
(qN−1 − qN−2)2

− iaV (qN−2) + · · ·+ im

2a
(q1 − q′′)2 − ia

2
V (q′′)

]

≡
∫

Dq eiS . (2.12)

Here the discretized action is defined by

S = a
N−1∑
n=0

L(na), (2.13)

† For notational simplicity we shall denote the discretized forms of L, S, . . ., by the
same symbols as their continuum counterparts.
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where qN ≡ q′ and q0 ≡ q′′. In the limit N →∞ this becomes equal to
the continuum action, when we substitute smooth functions q(t). Since
the qn are integrated over on every ‘time slice’ n, such smoothness is not
typically present in the integrand of the path integral (typical paths qn
will look like having a very discontinuous derivative) and a continuum
limit at this stage is formal.

It will now be shown that, with a suitable choice of the constant c,
the transfer operator can be written in the form

T̂ = e−iaV (q̂)/2 e−iap̂2/2m e−iaV (q̂)/2. (2.14)

Taking matrix elements between 〈q1| and |q2〉 we see that this formula
is correct if

〈q1|e−iap̂2/2m|q2〉 = ceim(q1−q2)
2/2a. (2.15)

Inserting eigenstates |p〉 of the momentum operator p̂ using

〈q|p〉 = eipq,

∫
dp

2π
|p〉〈p| = 1, (2.16)

we find that (2.15) is true provided that we choose

c =
√

m

2πia
=
√

m

2πa
e−iπ/4. (2.17)

The transfer operator T̂ is the product of three unitary operators, so
we may write

T̂ = e−iaĤ . (2.18)

This equation defines a Hermitian Hamiltonian operator Ĥ modulo
2π/a. For matrix elements between eigenstates with energy E � 2π/a
the expansion

T̂ = 1− iaĤ +O(a2) (2.19)

leads to the identification

Ĥ =
p̂2

2m
+ V (q̂) +O(a2), (2.20)

in which we recognize the usual Hamilton operator. It should be kept
in mind though that, as an operator equation, the expansion (2.19)
is formal: because p̂2 is an unbounded operator there may be matrix
elements for which the expansion does not converge.
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2.3 Analytic continuation to imaginary time

It is very useful in practice to make an analytic continuation to imaginary
time according to the substitution t → −it. This can be justified if the
potential V (q) is bounded from below, as is the case, for example, for
the anharmonic oscillator

V (q) = 1
2mω2q2 + 1

4λq
4. (2.21)

Consider the discretized path integral (2.12). The integration over the
variables qn continues to converge if we rotate a in the complex plane
according to

a = |a|e−iϕ, ϕ: 0→ π

2
. (2.22)

The reason is that, for all ϕ ∈ (0, π/2], the real part of the exponent in
(2.12) is negative:

i

|a|e−iϕ
=

1
|a| (− sinϕ+ i cosϕ), −i|a|e−iϕ = |a|(− sinϕ− i cosϕ).

(2.23)
The result of this analytic continuation in a is that the discretized path
integral takes the form

〈q′|Û�(t′, t′′)|q′′〉 = |c|
∫ (∏

n

|c|dqn

)
eS� ,

S� = −|a|
N−1∑
n=0

[
m

2|a|2 (qn+1 − qn)2 +
1
2
V (qn+1) +

1
2
V (qn)

]
. (2.24)

Here the subscript � denotes the imaginary-time versions of U and S.
The integrand in the imaginary-time path integral is real and bounded

from above. This makes numerical calculations and theoretical analysis
very much easier. Furthermore, in the generalization to field theory there
is a direct connection to statistical physics, which has led to many fruitful
developments. For most purposes the imaginary-time formulation is
sufficient to extract the relevant physical information such as the energy
spectrum of a theory. If necessary, one may analytically continue back to
real time, by implementing the inverse of the rotation (2.22). (This can
be done only in analytic calculations, since statistical errors in e.g. Monte
Carlo computations have the tendency to blow up upon continuation.)
In the following the subscript � will be dropped and we will redefine
|a| → a, with a positive.
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After transformation to imaginary time the transfer operator takes
the Hermitian form

T̂ = e−aV (q̂)/2 e−ap̂2/2m e−aV (q̂)/2. (2.25)

This is a positive operator, i.e. all its expectation values and hence all
its eigenvalues are positive. We may therefore redefine the Hamiltonian
operator Ĥ according to

T̂ = e−aĤ . (2.26)

A natural object in the imaginary-time formalism is the partition
function

Z = Tr e−Ĥ(t+−t−) =
∫

dq 〈q|e−Ĥ(t+−t−)|q〉 = Tr T̂N , (2.27)

where we think of t+ (t−) as the largest (smallest) time under consid-
eration, with t+ − t− = Na. From quantum statistical mechanics we
recognize that Z is the canonical partition function corresponding to
the temperature

T = (t+ − t−)−1 (2.28)

in units such that Boltzmann’s constant kB = 1. The path-integral
representation of Z is obtained by setting in (2.24) qN = q0 ≡ q

(q′ = q′′ ≡ q) and integrating over q:

Z =
∫
pbc

Dq eS . (2.29)

Here ‘pbc’ indicates the fact that the integration is now over all dis-
cretized functions q(t), t− < t < t+, with ‘periodic boundary conditions’
q(t+) = q(t−).

2.4 Spectrum of the transfer operator

Creation and annihilation operators are familiar from the theory of the
harmonic oscillator. Here we shall use them to derive the eigenvalue
spectrum of the transfer operator of the harmonic oscillator, for which

V (q) = 1
2mω2q2. (2.30)

For simplicity we shall use units in which a = 1 and m = 1, which may
be obtained by transforming to variables q′ = q/a, p′ = ap, m′ = am,
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and ω′ = aω, then to q′′ = q′
√
m′ and p′′ = p′/

√
m′, such that (omitting

the primes) [p̂, q̂] = −i and

T̂ = e−ω2q̂2/4e−p̂2/2e−ω2q̂2/4. (2.31)

Using the representation q̂ → q, p̂ → −i ∂/∂q or vice-versa one obtains
the relation

T̂

(
p̂

q̂

)
= M

(
p̂

q̂

)
T̂ , (2.32)

where the matrix M is given by

M =
(

1 + 1
2ω

2 i

−i(2 + 1
2ω

2) 12ω
2 1 + 1

2ω
2

)
. (2.33)

We want to find linear combinations κq̂ + λp̂ such that

T̂ (κq̂ + λp̂) = µ(κq̂ + λp̂)T̂ , (2.34)

from which it follows that (κ, λ) have to form an eigenvector of MT (the
transpose of M) with eigenvalue µ. The eigenvalues µ± of M can be
expressed as

µ± = e±ω̃, cosh ω̃ = 1 + 1
2ω

2, (2.35)

and the linear combinations sought are given by

â = ν[sinh(ω̃q̂) + ip̂],

â† = ν[sinh(ω̃q̂)− ip̂], (2.36)

where ν is a normalization constant. The â and â† are the annihilation
and creation operators for the discretized harmonic oscillator. They
satisfy the usual commutation relations

[â, â†] = 1, [â, â] = [â†, â†] = 0, (2.37)

provided that

ν =
1√

2 sinh ω̃
, (2.38)

and furthermore

T̂ â = eω̃ âT̂ , T̂ â† = e−ω̃ â†T̂ . (2.39)
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The ground state |0〉 with the highest eigenvalue of T̂ satisfies â|0〉 = 0,
from which one finds (using for example the coordinate representation)

〈q|0〉 = e−
1
2 sinh ω̃ q2

,

T̂ |0〉 = e−E0 |0〉,
E0 = 1

2 ω̃. (2.40)

The ground-state energy is E0 = 1
2 ω̃ and using (2.39) one finds that the

excitation energies occur in units of ω̃, for example

T̂ â†|0〉 = e−ω̃ â†T̂ |0〉 = e−(3/2) ω̃â†|0〉. (2.41)

Hence, the energy spectrum is given by

En =
(
n+ 1

2

)
ω̃, (2.42)

which looks familiar, except that ω̃ �= ω.
We now can take the continuum limit a→ 0 in the physical quantities

En. Recalling that ω is really aω, and similarly for ω̃, we see by expanding
(2.35) in powers of a, i.e. cosh(aω̃) = 1 + a2ω̃2/2 + a4ω̃4/24 + · · · =
1 + a2ω2/2, that

ω̃ = ω +O(a2). (2.43)

Note that the corrections are O(a2), which is much better than O(a) as
might be expected naively. This is the reason for the symmetric division
of the potential in (2.11).

2.5 Latticization of the scalar field

We now transcribe these ideas to field theory, taking the scalar field as
the first example. The dynamical variables generalize as

q(t) → ϕ(x, t) (2.44)

(i.e. there is a q for every x). The coordinate representation is formally
characterized by

ϕ̂(x)|ϕ〉 = ϕ(x)|ϕ〉, (2.45)

|ϕ〉 =
∏
x

|ϕx〉, (2.46)

〈ϕ′|ϕ〉 =
∏
x

δ(ϕ′(x)− ϕ(x)), (2.47)

∏
x

∫ ∞

−∞
dϕ(x) |ϕ〉〈ϕ| = 1. (2.48)
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The evolution operator is given by

〈ϕ1|Û(t1, t2)|ϕ2〉 =
∫

DϕeS(ϕ), (2.49)

where the integral is over all functions ϕ(x, t) with ϕ(x, t1,2) = ϕ1,2(x).
The theory is specified furthermore by the choice of action S. For the
standard ϕ4 model

S(ϕ) = −
∫ t1

t2

dx4

∫
d3x

[
1
2
∂µϕ(x)∂µϕ(x) +

µ2

2
ϕ2(x) +

λ

4
ϕ4(x)

]
,

(2.50)
where x = (x, x4) and x4 = t. Note that in the imaginary-time formalism
the symmetry between space and time is manifest, since the metric
tensor is simply equal to the Kronecker δµν . Consequently, we shall not
distinguish between upper and lower indices µ, ν, . . .. One often speaks of
the Euclidean formalism, since the space–time symmetries of the theory
consist of Euclidean rotations, reflections and translations.

The partition function is given by

Z =
∫

DϕeS(ϕ), (2.51)

where the integral is over all functions periodic in the time direction,
ϕ(x, t+ β) = ϕ(x, t), with β = T−1 the inverse temperature.

The path integral Z will be given a precise definition with the lattice
regularization, by a straightforward generalization of the example of
quantum mechanics with one degree of freedom. Let xµ be restricted
to a four-dimensional hypercubic lattice,

xµ = mµa, mµ = 0, 1, . . ., N − 1, (2.52)

where a is the lattice distance. The size of the hypercubic box is L = Na

and its space–time volume is L4. The notation

∑
x

≡ a4
N−1∑
m1=0

· · ·
N−1∑
m4=0

≡ a4
∑
m

(2.53)

will be used in this book. For smooth functions f(x) we have in the
continuum limit∑

x

f(x) →
∫ L

0

d4x f(x), N →∞, a = L/N → 0, L fixed. (2.54)

We have put x = 0 at the edge of the box. If we want it in the middle
of the box we can choose mµ = −N/2+1,−N/2+2, . . ., N/2. Below we
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shall choose such a labeling for Fourier modes and we shall assume N

to be even in the following.
The scalar field on the lattice is assigned to the sites x, we write ϕx.

The part of the action without derivatives is transcribed to the lattice
as
∑

x(µ
2ϕ2x/2 + λϕ4x/4).

Derivatives can be replaced by differences. We shall use the notation

∂µϕx =
1
a
(ϕx+aµ̂ − ϕx), (2.55)

∂′
µϕx =

1
a
(ϕx − ϕx−aµ̂), (2.56)

where µ̂ is a unit vector in the µ direction. For smooth functions f(x),

∂µf(x), ∂′
µf(x) → ∂

∂xµ
f(x), a→ 0. (2.57)

It is convenient to use periodic boundary conditions (such that the lattice
has no boundary), which are specified by

ϕx+Naµ̂ = ϕx, (2.58)

and, for example,

∂4ϕx,(N−1)a =
1
a
(ϕx,0 − ϕx,(N−1)a). (2.59)

With periodic boundary conditions the derivative operators ∂µ and ∂′
µ

are related by ‘partial summation’ (the analog of partial integration)∑
x

ϕ1x ∂µϕ2x = −
∑
x

∂′
µϕ1x ϕ2x. (2.60)

In matrix notation,

∂µϕx = (∂µ)xy ϕy, (2.61)

∂′
µ is minus the transpose of ∂µ, ∂′

µ = −∂Tµ :

(∂µ)xy =
1
a
(δx+aµ̂,y − δx,y), (2.62)

(∂′
µ)xy =

1
a
(δx,y − δx−aµ̂,y) = −(∂µ)yx = −(∂Tµ )xy. (2.63)

After these preliminaries, the path integral will now be defined by

Z =
∫

DϕeS(ϕ), (2.64)∫
Dϕ =

∏
x

(
c

∫ ∞

−∞

)
dϕx,

∏
x

≡
∏
m

, (2.65)
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S(ϕ) = −
∑
x

(
1
2
∂µϕx∂µϕx +

µ2

2
ϕ2x +

λ

4
ϕ4x

)
, (2.66)

c = a/
√

2π. (2.67)

Note that cϕ is dimensionless. The dimension of ϕ follows from the
requirement that the action S is dimensionless. In d space–time dimen-
sions,

[ϕ] = a−(d−2)/2, c = a(d−2)/2. (2.68)

The factor 1/
√

2π is an inessential convention, chosen such that there
is no additional factor in the expression for the transfer operator (2.74)
below, which would lead to an additional constant in the Hamiltonian
(2.80).

The lattice action was chosen such that for smooth functions f(x),
S(f) → Scont(f) in the classical continuum limit a → 0. However, it is
useful to keep in mind that typical field configurations ϕx contributing to
the path integral are not smooth at all on the lattice scale. The previous
sentence is meant in the following sense. The factor Z−1 expS(ϕ) can be
interpreted as a normalized probability distribution for an ensemble of
field configurations ϕx. Drawing a typical field configuration ϕ from
this ensemble, e.g. one generated by a computer with some Monte
Carlo algorithm, one finds that it varies rather wildly from site to site
on the lattice. This has the consequence that different discretizations
(e.g. different discrete differentiation schemes) may lead to different
answers for certain properties, although this should not be the case for
physically observable properties. The discussion of continuum behavior
in the quantum theory is a delicate matter, which involves concepts like
renormalization, scaling and universality.

2.6 Transfer operator for the scalar field

The derivation of the transfer operator for the scalar field on the lattice
follows the steps made earlier in the example with one degree of freedom.
For later use we generalize to different lattice spacings for time and space,
at and a, respectively. We use the notation x4 = t = nat, ϕx = ϕn,x,
with n = 0, 1, . . ., N−1 and ϕN,x = ϕ0,x. Then the action can be written
as

S(ϕ) = −at
∑
n

∑
x

1
2a2t

(ϕn+1,x − ϕn,x)2 − at
∑
n

V (ϕn), (2.69)
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V (ϕn) =
∑
x


1

2

3∑
j=1

∂jϕn,x∂jϕn,x +
µ2

2
ϕ2n,x +

λ

4
ϕ4n,x


. (2.70)

The transfer operator T̂ is defined by its matrix elements

〈ϕn+1|T̂ |ϕn〉 = cN
3
exp

[
−at

∑
x

1
2a2t

(ϕn+1,x − ϕn,x)2
]

× exp
[
−at

1
2
(V (ϕn+1) + V (ϕn))

]
, (2.71)

such that

Z =

(∏
x

∫
dϕx

)
〈ϕN |T̂ |ϕN−1〉 · · · 〈ϕ1|T̂ |ϕ0〉 (2.72)

= Tr T̂N . (2.73)

The transfer operator T̂ can be written in the form

T̂ = exp
[
−at

1
2
V (ϕ̂)

]
exp

[
−at

1
2

∑
x

π̂2x

]
exp
[
−at

1
2
V (ϕ̂)

]
, (2.74)

where π̂x is the canonical conjugate operator of ϕ̂x, with the property

[ϕ̂x, π̂y] = ia−3δx,y. (2.75)

To check (2.74) we take matrix elements between |ϕn〉 and 〈ϕn+1| and
compare with (2.71). Using

e−at
1
2V (ϕ̂)|ϕn〉 = e−at

1
2V (ϕn)|ϕn〉, (2.76)

we see that (2.74) is correct provided that

〈ϕn+1|e−at
1
2

∑
x π̂2

x |ϕn〉 = cN
3
exp

[
−at

∑
x

(ϕn+1,x − ϕn,x)2 /2a2t

]
.

(2.77)
This relation is just a product over x of relations of the one-degree-of-
freedom type

〈q1|e−p̂2/2ξ|q2〉 =

√
ξ

2π
e−ξ(q1−q2)

2/2, (2.78)

with the identification, for given x, q = aϕ, p̂ = a2π̂ → −i ∂/∂q, and
|ϕ〉 =

√
a|q〉 (such that 〈ϕ′|ϕ〉 = a〈q′|q〉 = aδ(q′ − q) = δ(ϕ′ − ϕ)). It

follows that

c = a

√
ξ

2π
, ξ =

a

at
. (2.79)
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Fig. 2.2. Shortest wave length of a lattice field.

Making the formal continuous-time limit by letting at → 0 and ex-
panding T̂ = 1−atĤ+ · · ·, we find a conventional-looking Hamiltonian1

on a spatial lattice,

Ĥ =
∑
x

(
1
2 π̂

2
x + 1

2∂jϕ̂x∂jϕ̂x + 1
2µ

2ϕ̂2x + 1
4λϕ̂

4
x

)
+O(a2). (2.80)

2.7 Fourier transformation on the lattice

We record now some frequently used formulas involving the Fourier
transform. The usual plane waves in a finite volume with periodic
boundary conditions are given by

eipx, pµ = nµ
2π
L
, (2.81)

where the nµ are integers. We want to use these functions for (Fourier)
transformations of variables. On the lattice the xµ are restricted to xµ =
mµa, mµ = 0, . . ., N − 1, L = Na. There should not be more pµ than
xµ; we take

nµ = −N/2 + 1,−N/2 + 2, . . ., N/2. (2.82)

Indeed, the shortest wave length and largest wave vector are given by
(cf. figure 2.2)

λmin = 2a, pmax =
π

a
=

N

2
2π
L
. (2.83)
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Apart from these intuitive arguments, the reason for (2.82) is the fact
that (in d dimensions, mn = mµnµ)

Umn ≡ N−d/2ei2πmn/N ≡ N−d/2
(
eipx
)
mn

(2.84)

is a unitary matrix,

UmnU
∗
mn′ = δn,n′ . (2.85)

We check this for the one-dimensional case, d = 1:

UmnU
∗
mn′ =

1
N

N−1∑
m=0

rm =
1
N

1− rN

1− r
= δ̄n,n′ , (2.86)

r ≡ ei2π(n−n′)/N , (2.87)

where

δ̄n,n′ ≡ 0, n �= n′ mod N (2.88)

= 1, n = n′ mod N. (2.89)

We shall use this result in the form∑
x

e−i(p−p′)x = δ̄p,p′ ≡
∏
µ

(
N |aµ|δ̄mµ,m′

µ

)
, (2.90)

∑
p

eip(x−x′) = δ̄x,x′ ≡
∏
µ

(
|aµ|−1δ̄nµ,n′

µ

)
, (2.91)

∑
x

≡
∏
µ


|aµ|∑

mµ


, (2.92)

∑
p

≡
∏
µ


 1
N |aµ|

∑
nµ


, (2.93)

where |aµ| is the lattice spacing in the µ direction (unless stated other-
wise, |aµ| = a). With this notation we can write the Fourier transfor-
mation of variables (‘from position space to momentum space’) and its
inverse as

ϕ̃p =
∑
x

e−ipxϕx, (2.94)

ϕx =
∑
p

eipxϕ̃p. (2.95)
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For smooth functions f(p) we have, in the infinite-volume limit L =
Na→∞,

∑
p

f(p) =
(∆p)4

(2π)4
∑
n

f

(
2πn
Na

)
(2.96)

→
∫ π/a

−π/a

d4p

(2π)4
f(p), N →∞, a fixed, (2.97)

where ∆p = 2π/Na.

2.8 Free scalar field

For λ = 0 we get the free scalar field action. For this case the path
integral can be done easily. Assuming µ2 ≡ m2 > 0, we write

S = −
∑
x

(
1
2∂µϕx∂µϕx + 1

2m
2ϕ2x
)

(2.98)

= 1
2

∑
xy

Sxy ϕxϕy, (2.99)

where

Sxy = −
∑
z

[∑
µ

(δ̄z+aµ̂,x − δ̄z,x)(δ̄z+aµ̂,y − δ̄z,y) +m2δ̄z,xδ̄z,y

]
.

(2.100)
It is useful to introduce an external source Jx, which can be chosen as
we wish. The partition function with an external source is defined as

Z(J) =
∫

Dϕ exp

(
S +

∑
x

Jxϕx

)
. (2.101)

The transformation of variables

ϕx → ϕx +
∑
y

GxyJy, (2.102)

with Gxy minus the inverse of Sxy,

SxyGyz = −δ̄x,z, (2.103)

brings Z(J) into the form

Z(J) = Z(0) exp
(
1
2GxyJxJy

)
. (2.104)
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The integral Z(0) is just a multiple Gaussian integral,

Z(0) =
∫

Dϕ exp
(
− 1
2G

−1
xy ϕxϕy

)
=

1√
detG−1 = exp

(
1
2 ln detG

)
. (2.105)

There is finite-temperature physics that can be extracted from the
partition function Z(0), but here we shall not pay attention to it.

The propagator G can be easily found in ‘momentum space’. First we
determine the Fourier transform of Sxy, using lattice units a = 1,

Sp,−q ≡
∑
xy

e−ipx+iqySxy (2.106)

= −
∑
z

[∑
µ

(e−ipµ̂ − 1)(eiqµ̂ − 1) +m2

]
e−ipz+iqz

= Sp δ̄p,q, (2.107)

−Sp = m2 +
∑
µ

(2− 2 cos pµ) (2.108)

= m2 +
∑
µ

4 sin2
(pµ

2

)
. (2.109)

Since Sp,−q is diagonal in momentum space, its inverse is given by

Gp,−q = Gp δ̄p,q, Gp =
1

m2 +
∑

µ(2− 2 cos pµ)
. (2.110)

From this we can restore the lattice distance by using dimensional
analysis: p→ ap, m→ am and Gp → a2G(p). This gives

G(p) =
1

m2 + a−2
∑

µ(2− 2 cos apµ)
, (2.111)

and in the continuum limit a→ 0,

G(p) =
1

m2 + p2 +O(a2)
, (2.112)

which is the usual covariant expression for the scalar field propagator.
It is instructive to check that the corrections to the continuum form are
already quite small for apµ < 1

2 .
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From the form (2.104) we calculate the correlation function of the free
theory,

〈ϕx〉 =
[
∂ lnZ
∂Jx

]
J=0

= 0, (2.113)

〈ϕxϕy〉 =
[
∂ lnZ
∂Jx ∂Jy

]
J=0

= Gxy. (2.114)

Hence, the propagator G is the correlation function of the system (cf.
problem (v)).

We now calculate the time dependence of Gxy, assuming that the
temporal extent of the lattice is infinite (zero temperature),

G(x− y) ≡ Gxy =
∫ π

−π

dp4
2π

∑
p

eip(x−y)G(p), (2.115)

G(x, t) =
∑
p

eipx

∫ π

−π

dp4
2π

eip4t

2b− 2 cos p4
, (2.116)

b = 1 +
1
2


m2 +

3∑
j=1

4 sin2
pj
2


, (2.117)

where we reverted to lattice units. The integral over p4 can be done by
contour integration. We shall take t > 0. Note that, in lattice units, t is
an integer and b > 1. With z = exp(ip4) we have

I ≡
∫ π

−π

dp4
2π

eip4t

2b− 2 cos p4
(2.118)

= −
∫

dz

2πi
zt

z2 − 2bz + 1
, (2.119)

where the integration is counter clockwise over the contour |z| = 1, see
figure 2.3. The denominator has a pole at z = z− within the unit circle,

z2 − 2bz + 1 = (z − z+)(z − z−),

z± = b±
√
b2 − 1, z+z− = 1, z+ > 1, z− < 1,

z− = e−ω, coshω = b, ω = ln
(
b+
√
b2 − 1

)
. (2.120)

The residue at z = z− gives

I =
e−ωt

2 sinhω
, (2.121)
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Fig. 2.3. Integration contour in the complex z = eip4 plane. The crosses
indicate the positions of the poles at z = z±.

and it follows that (ω depends on p)

G(x, t) =
∑
p

eipx−ωt

2 sinhω
. (2.122)

Notice that the pole z = z− corresponds to a pole in the variable p4 at
p4 = iω.

In the continuum limit (m → am, pj → apj , ω → aω, a → 0) we get
the familiar Lorentz covariant expression,

ω →
√
m2 + p2. (2.123)

The form (2.122) is a sum of exponentials exp(−ωt). For large t the
exponential with the smallest ω, ω = m, dominates,

G ∝ e−mt, t→∞, (2.124)

and we see that the correlation length of the system is 1/m.

2.9 Particle interpretation

The free scalar field is just a collection of harmonic oscillators, which
are coupled by the gradient term ∂jϕ∂jϕ in the action or Hamiltonian
(2.80). We can diagonalize the transfer operator explicitly by taking
similar steps to those for the harmonic oscillator. One then finds (cf.
problem (iii)) creation and annihilation operators â†p and âp, which are
indexed by the Fourier label p. The ground state |0〉 has the property
âp|0〉 = 0 with energy E0 =

∑
p ωp/2. The elementary excitations |p〉 =
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â†p|0〉 are interpreted as particles with momentum p and energy ωp. This
interpretation is guided by the fact that these states are eigenstates of
the translation operators in space and time, namely, exp(Ĥt) (eigenvalue
exp[(ωp + E0)t]), and the spatial translation operator Ûx (eigenvalue
exp(−ipx), see problem (vii) for its definition).

In the continuum limit we recover the relativistic energy–momentum
relation ω(p) =

√
m2 + p2. The mass (rest energy) of the particles is ev-

idently m. They have spin zero because they correspond to a scalar field
under rotations (there are no further quantum numbers to characterize
their state). They are bosons because the (basis) states are symmetric in
interchange of labels: |p1p2〉 ≡ â†p1

â†p2
||0〉 = â†p2

â†p1
||0〉 = |p2p1〉. The

ground state is usually called ‘the vacuum’.
For interacting fields the above creation and annihilation operators no

longer commute with the Hamiltonian – they are said to create ‘bare’
particles. The ‘dressed’ particle states are the eigenstates of the Hamil-
tonian, but only the single-particle states have the simple free energy–
momentum relation ω(p) =

√
m2 + p2. Multi-particle states have in

general interaction energy, unless the particles (i.e. their wavepackets)
are far apart.

Using the spectral representation (cf. problem (viii))

〈ϕxϕy〉 − 〈ϕ〉2=
∑

p,γ 	=0
|〈0|ϕ̂0|p, γ〉|2 exp[−ωp,γ |x4 − y4|+ ip(x− y)],

ωp,γ = Ep,γ − E0, (2.125)

the particle properties can still be deduced from the correlation func-
tions, e.g. by studying their behavior at large time differences, for which
the states with lowest excitation energies (i.e. the particles) ωp dominate.
Alternatively, one can diagonalize the transfer operator by variational
methods.

These methods are very general and also apply to confining theories
such as QCD. The quantum numbers of the particles excited by the fields
out of the vacuum match those of the fields chosen in the correlation
functions.

2.10 Back to real time

In (2.22) we analytically continued the lattice distance in the time
direction at to imaginary values. If we want to go back to real time
we have to keep track of at. For instance, the action (2.70) may be
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rewritten in lattice units as

S = −ξ
∑
x

1
2∂4ϕx∂4ϕx

− 1
ξ

∑
x

[
1
2
∂jϕx∂jϕx +

m2

2
ϕ2x +

λ

4
ϕ4
]
, ξ =

a

at
, (2.126)

which leads to the correlation function in momentum space

Gp =
ξ

m2 +
∑

j(2− 2 cos pj) + ξ2(2− 2 cos p4)
. (2.127)

We have to realize that the symbol at in the Euclidean notation was
really |at| (cf. below (2.24)) and that |at| = iat = i|at| exp(−iϕ), ϕ =
π/2, according to (2.22). Hence, restoring the ϕ dependence of ξ means

ξ → |ξ|(−ieiϕ). (2.128)

Rotating back to real time, we keep ϕ infinitesimally positive in order
to avoid singularities in Gp, ϕ: π/2 → ε, ε > 0 infinitesimal. This gives

G→ −i|ξ|
m2 +

∑
j(2− 2 cos pj)− |ξ|2(2− 2 cos p4)− iε

, (2.129)

where we freely rescaled the infinitesimal ε by positive values,
[−i exp(iε)]2 = (−i+ ε)2 = −1− iε; (2− 2 cos p4) is also positive.

In the continuum limit m → am, pj → apj , p4 → |ξ|−1ap4, Gp →
a−2ξG(p), a→ 0 we obtain the Feynman propagator

G(p) → −i
m2 + p2 − p24 − iε

≡ −iGM(p). (2.130)

In continuum language the rotation to imaginary time is usually called
a Wick rotation:

x0 → −ix4, p0 → −ip4, p0 → ip4, (2.131)

where −i is meant to represent the rotation exp(−iϕ), ϕ: 0 → π/2 in
the complex plane. For instance, one continues the Minkowski space
propagator to the Euclidean-space correlation function

GM(x) =
∫

dp0 d
3p

(2π)4
eipx

m2 + p2 − p20 − iε
(2.132)

→ i

∫
dp4 d

3p

(2π)4
eipx

m2 + p2 + p24
(2.133)

= iG(x), (2.134)
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without encountering the singularities at p0 = ±
√
m2 + p2 ∓ iε. Notice

that exp(ipx) is invariant under the rotation:
∑3

µ=0 pµx
µ →

∑4
µ=1 pµxµ.

In (2.130) the timelike momentum is still denoted by p4 instead of p0,
because the pµ (and xµ) in lattice units are just dummy indices denoting
lattice points. The actual values of G in the scaling region |x| 
 a are
the same as in the continuum.

2.11 Problems

We use lattice units a = 1 unless indicated otherwise.

(i) Restoration of rotation invariance
Consider the free scalar field propagator in two dimensions

Gxy =
∫

d2p

(2π)2
eip(x−y)

m2 + 4− 2 cos p1 − 2 cos p2
. (2.135)

Let x − y → ∞ along a lattice direction, or along the diagonal:
x − y = nt, t → ∞, n = (1, 0) or n = (1, 1)/

√
2. The correlation

length ξ(n) in direction n is identified by G ∝ exp(−t/ξ(n)). Use
the saddle-point technique to show that, along a lattice direction,

ξ−1 = ω, coshω = 1 +m2/2, (2.136)

whereas along the diagonal

ξ′−1 =
√

2ω′, coshω′ = 1 +m2/4. (2.137)

Discuss the cases m � 1 and m 
 1. In particular show that in
the first case

ξ′/ξ = 1−m2/48 +O(m4). (2.138)

In non-lattice units m → am, and we see restoration of rotation
invariance, ξ′/ξ → 1 as a→ 0. Corrections are of order a2m2.

(ii) Real form of the Fourier transform
Consider for simplicity one spatial dimension. Since ϕx is real,
ϕ̃∗
p = ϕ̃−p. Let ϕ̃p = ϕ̃

′
p + iϕ̃

′′
p . The real and imaginary parts ϕ̃

′
p

and ϕ̃
′′
p satisfy ϕ̃

′
p = ϕ̃

′
−p and ϕ̃

′′
p = −ϕ̃′′

−p. The ϕ̃
′
p, p ≥ 0, and

ϕ̃
′′
−p, p < 0, may be considered independent variables equivalent

to ϕx. Expressing ϕx in these variables gives the real form of the
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Fourier transform, and the matrix O given by

Omn =
1√
N
, n = 0,

=

√
2
N

cos
(

2πmn

N

)
, n = 1, . . .,

N

2
− 1,

=
1√
N
, n =

N

2
,

= −
√

2
N

sin
(

2πmn

N

)
, n = −N

2
+ 1, . . .,−1,

(2.139)

where m = 0, . . ., N − 1, is orthogonal: OOT = 11.
Similar considerations apply to canonical conjugate πx and π̃p.

Verify that the operators ˆ̃ϕp and ˆ̃πp satisfy the commutation
relations

[ˆ̃ϕp, ˆ̃π
†
q] = iδ̄p,q, [ˆ̃ϕp, ˆ̃πq] = 0, [ˆ̃ϕ

†
p, ˆ̃π

†
q] = 0, [ˆ̃ϕ

†
p, ˆ̃πq] = iδ̄p,q,

(2.140)
in addition to [ˆ̃ϕp, ˆ̃ϕq] = [ˆ̃ϕp, ˆ̃ϕ

†
q] = [ˆ̃πp, ˆ̃πq] = [ˆ̃πp, ˆ̃π

†
q] = 0.

(iii) Creation and annihilation operators
For a free scalar field show that

T̂ = e−
∑

p m2
p| ˆ̃ϕp|2/4 e−

∑
p |ˆ̃πp|2/2 e−

∑
p m2

p| ˆ̃ϕp|2/4,

m2
p = m2 + 2(1− cos p), (2.141)

where | ˆ̃ϕp|2 = ˆ̃ϕ
†
p
ˆ̃ϕp, etc. Hence, the transfer operator has the

form T̂ =
∏

p T̂p.
Obtain the commutation relations of the creation (â†p) and

annihilation (âp) operators defined by

âp =

√
1

2 sinhωp
[sinh(ωp) ˆ̃ϕp + iˆ̃π

†
p]. (2.142)

Using the results derived for the harmonic oscillator, show that
the energy spectrum is given by

E = L
∑
p

(
Np + 1

2

)
ωp, coshωp = 1 + 1

2m
2
p. (2.143)

where Np is the occupation number of the mode p (recall that in
our notation L

∑
p =

∑
n, p = 2πn/L).
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Verify that

ϕ̂x =
∑
p

√
1

2 sinhωp

(
eipxâp + e−ipxâ†p

)
. (2.144)

(iv) Ground-state wave functional
For the free scalar field, write down the wave function for the
ground state in the coordinate representation, Ψ0(ϕ) = 〈ϕ|0〉.

(v) Correlation functions
We define expectation values

〈ϕx1 · · ·ϕxn
〉 =

1
Z(J)

∫
DϕeS(ϕ)+Jxϕx ϕx1 · · ·ϕxn

, (2.145)

and correlation functions (connected expectation values)

Gx1···xn = 〈ϕx1 · · ·ϕxn〉conn =
∂

∂Jx1

· · · ∂

∂Jx1

lnZ(J). (2.146)

Verify that

Gx = 〈ϕx〉, (2.147)

Gx1x2 = 〈ϕx1ϕx2〉 − 〈ϕx1〉〈ϕx2〉. (2.148)

Give similar expressions for the three- and four-point functions
Gx1x2x3 and Gx1x2x3x4 . Note that 〈ϕx〉 may be non-zero in cases
of spontaneous symmetry breaking even when Jx = 0.

(vi) Ground-state expectation values of Heisenberg operators
On an L3 × β space–time lattice, verify that

〈ϕxϕy〉 =
Tr e−(β−x4+y4)Ĥ ϕ̂x e

−(x4−y4)Ĥ ϕ̂y

Tr e−βĤ
, (2.149)

where x4 > y4 and J = 0.
Let |n〉 be a complete set of energy eigenstates of the Hamilto-

nian,

Ĥ|n〉 = En|n〉. (2.150)

The ground state |0〉 has lowest energy, E0. Show that for β →∞
(zero temperature)

〈ϕxϕy〉 = 〈0|T ϕ̂xϕ̂y|0〉, (2.151)

where T is the time ordering ‘operator’ and ϕ̂x is the Heisenberg
operator

ϕ̂x,x4 = ex4Ĥ ϕ̂x,0e
−x4Ĥ . (2.152)
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(vii) Translation operator
The translation operator Ûx may be defined by

Ûx|ϕy〉 = |ϕx−y〉, (2.153)

with |ϕy〉 the factor in the tensor product |ϕ〉 =
∏

y |ϕy〉. This
operator has the properties

Û†
x ϕ̂yÛx = ϕ̂x−y, (2.154)

Û†
x π̂yÛx = π̂x−y, (2.155)

such that the expectation value of e.g. ϕ̂x in an actively translated
state |ψ′〉 ≡ Ûz|ψ〉 behaves in a way to be expected intuitively:
〈ψ′|ϕ̂x|ψ′〉 = 〈ψ|ϕ̂x−z|ψ〉.

Verify that for periodic boundary conditions the Hamiltonian
is translation invariant,

Û†
xĤÛx = Ĥ. (2.156)

(viii) Spectral representation
Let |p, γ〉 be simultaneous eigenvectors of Ĥ and Ûx (γ is some

label needed to specify the state in addition to p),

Ĥ|p, γ〉 = Ep,γ |p, γ〉, Ûx|p, γ〉 = e−ipx|p, γ〉 (2.157)

Derive the spectral representation for zero temperature:

〈ϕxϕy〉 − 〈ϕ〉2 =
∑

p,γ 	=0
|〈0|ϕ̂0|p, γ〉|2

× exp[−ωp,γ |x4 − y4|+ ip(x− y)],
ωp,γ = Ep,γ − E0, (2.158)

where γ �= 0 indicates that the ground state is not included.
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O(n) models

In this chapter we study scalar field models with O(n) symmetry de-
scribed by the Euclidean action

S = −
∫

d4x
[
1
2∂µϕ

α∂µϕ
α + 1

2µ
2ϕαϕα + 1

4λ(ϕαϕα)2
]
, (3.1)

where ϕα(x) = α = 0, . . ., n − 1 is an n-vector in ‘internal space’. The
action is invariant under O(n), the group of orthogonal transformations
in n dimensions. For n = 4 this action describes the scalar Higgs sector of
the Standard Model. It can also be used as an effective low-energy action
for pions. Since the models are relatively simple they serve as a good
arena for illustrating scaling and universality, concepts of fundamental
importance in quantum field theory.

It turns out that scalar field models (in four dimensions) become
‘trivial’ in the sense that the interactions disappear very slowly when
the lattice distance is taken to zero. The interpretation and implication
of this interesting phenomenon will be also be discussed.

3.1 Goldstone bosons

We have seen in section 1.2 that the one-component classical scalar field
(i.e. n = 1) can be in two different phases, depending on the sign of
µ2, namely a ‘broken phase’ in which the ground-state value ϕg �= 0,
and a ‘symmetric phase’ in which ϕg = 0. For n > 1 there are also two
phases and we shall see that in the case of continuous internal symmetry
the consequence of spontaneous symmetry breaking is the appearance
of massless particles, called Goldstone bosons.†

† Actually, this is true in space–time dimensions ≥ 3. In one and two space–
time dimensions spontaneous breaking of a continuous symmetry is not possible
(Merwin–Wagner theorem, Coleman’s theorem).

32
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Fig. 3.1. Shape of U for n = 2 for µ2 < 0.

The potential

U = 1
2µ

2ϕ2 + 1
4λ(ϕ2)2 (3.2)

has a ‘wine-bottle-bottom’ shape, also called ‘Mexican-hat’ shape, if
µ2 < 0 (figure 3.1). It is clear that for µ2 > 0 the ground state is unique
(ϕg = 0) but that for µ2 < 0 it is infinitely degenerate. The equation
∂U/∂ϕk = 0 for the minima, (µ2 + λϕ2)ϕα = 0, has the solution

ϕα
g = vδα,0, v2 = −µ2/λ (µ2 < 0), (3.3)

or any O(n) rotation of this vector. To force the system into a definite
ground state we add a symmetry-breaking term to the action (the same
could be done in the one-component ϕ4 model),

∆S =
∫

dx εϕ0(x), ε > 0. (3.4)

The constant ε has the dimension of (mass)3. The equation for the
stationary points now reads

(µ2 + λϕ2)ϕα = εδα0. (3.5)

With the symmetry breaking (3.4) the ground state has ϕα
g pointing in

the α = 0 direction,

ϕα
g = vδα0, (µ2 + λv2)v = ε. (3.6)

Consider now small fluctuations about ϕg. The equations of motion
(field equations) read

(−∂2 + µ2 + λϕ2)ϕα = εδα0, ∂2 ≡ ∇2 − ∂2t . (3.7)
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Linearizing around ϕ = ϕg, writing

ϕ0 = v + σ, ϕk = πk, k = 1, . . ., n− 1, (3.8)

we find

(−∂2 +m2
σ)σ = 0, (−∂2 +m2

π)πk = 0, (3.9)

with

m2
σ = µ2 + 3λv2 = 2λv2 + ε/v, (3.10)

m2
π = µ2 + λv2 = ε/v. (3.11)

For µ2 > 0, v = 0 and m2
σ = m2

π = µ2, whereas for µ2 < 0, v > 0 and
the σ particle is heavier than the π particles. For ε → 0 the π particles
become massless,

m2
π ≈ ε/v0 → 0, v0 = v|ε=0. (3.12)

The simple effective O(n) model reproduces the important features
of Goldstone’s theorem: spontaneous symmetry breaking of a contin-
uous symmetry leads to massless particles, the Goldstone bosons. For
small explicit symmetry breaking the Goldstone bosons get a squared
mass proportional to the strength of the breaking. The massless modes
correspond to oscillations along the vacuum valley of the ‘Mexican hat’.

As mentioned earlier, the O(4) model is a reasonable model for the
effective low-energy interactions of pions amongst themselves. The par-
ticles π± and π0 are described by the fields πk(x). The σ field (after
which the model is named the σ model) corresponds to the very broad σ

resonance around 900 MeV. The model loses its validity at such energies,
for example the ρ mesons with mass 770 MeV are completely neglected.

3.2 O(n) models as spin models

We continue in the quantum theory. The lattice regularized action will
be taken as

S = −
∑
x

[
1
2∂µϕ

α
x∂µϕ

α
x + 1

2m
2
0ϕ

α
xϕ

α
x + 1

4λ0(ϕ
α
xϕ

α
x)2
]
. (3.13)

We have changed the notation for the parameters: µ2 → m2
0, λ → λ0.

The subscript 0 indicates that these are ‘bare’ or ‘unrenormalized’ pa-
rameters that differ from the physical ‘dressed’ or ‘renormalized’ values
which are measured in experiments.
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We shall mostly use lattice units, a = 1. Using ∂µϕ
α
x = ϕα

x+µ̂ − ϕα
x ,

the action can be rewritten in the form

S =
∑
xµ

ϕα
xϕ

α
x+µ̂ −

∑
x

[
1
2 (2d+m2

0)ϕ
2 + 1

4λ0(ϕ
2)2
]
, (3.14)

where d is the number of space–time dimensions. Another standard
choice of parameters is obtained by writing

ϕα =
√

2κφα, m2
0 =

1− 2λ
κ

− 2d, λ0 =
λ

κ2
, (3.15)

which brings S into the form

S = 2κ
∑
xµ

φαxφ
α
x+µ̂ −

∑
x

[
φαxφ

α
x + λ(φαxφ

α
x − 1)2

]
. (3.16)

The partition function is given by

Z =

(∏
xα

∫ ∞

−∞
dφαx

)
expS ≡

∫
Dµ(φ) exp

(
2κ
∑
xµ

φxφx+µ̂

)
, (3.17)

where we have introduced an integration measure Dµ(φ), which is the
product of probability measures dµ(φ) for a single site,

Dµ(φ) =
∏
x

dµ(φx), dµ(φ) = dnφ exp[−φ2 − λ(φ2 − 1)2 ]. (3.18)

Note that λ has to be positive in order that the integrations
∫
dµ(φ)

make sense.
The second form in (3.17) shows Z as the partition function of a

generalized Ising model, a typical model studied in statistical physics.
For λ→∞ the distribution dµ(φ) peaks at φ2 = 1,∫

dµ(φ) f(φ)∫
dµ(φ)

→
∫
dΩn f(φ)∫
dΩn

, (3.19)

where
∫
dΩn is the integral over the unit sphere Sn in n dimensions. In

particular, for n = 1,∫
dµ(φ) f(φ)∫
dµ(φ)

→ 1
2
[f(1) + f(−1)]. (3.20)

Hence, for n = 1 and λ → ∞ we get precisely the Ising model in d

dimensions. For n = 3, d = 3 the model is called the Heisenberg model
for a ferromagnet. The O(n) models on the lattice are therefore also
called (generalized) spin models.
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3.3 Phase diagram and critical line

The spin model aspect makes it plausible that the models can be in a
broken (ferromagnetic) or in a symmetric (paramagnetic) phase, such
that in the thermodynamic limit and for zero temperature

〈φαx〉 ≡ vα �= 0, κ > κc(λ), (3.21)

= 0, κ < κc(λ). (3.22)

Here κc(λ) is the boundary line between the two phases in the λ–κ plane.
We can give a mean-field estimate of κc as follows. Consider a site x.

The probability for φαx is proportional to dµ(φx) exp[ 2κφαx
∑

µ(φαx+µ̂ +
φαx−µ̂) ]. Assume that we may approximate φα at the 2d neighbors of x
by their average value,

∑
µ(φαx+µ̂ + φαx−µ̂) → 2dvα. Then the average

value of φαx can be written as

〈φαx〉 =
∫
dµ(φ)φα exp(4κdφβvβ)∫
dµ(φ) exp(4κdφβvβ)

. (3.23)

By consistency we should have 〈φαx〉 = vα, or

vα =
1

z(J)
∂

∂Jα
z(J)|J=4κdv, (3.24)

z(J) =
∫

dµ(φ) exp(Jαφα). (3.25)

The integral z(J) can be calculated analytically in various limits, nu-
merically otherwise. The basics are already illustrated by the Ising case
n = 1, λ = ∞,

z(J) = z(0) cosh(J), (3.26)

v = tanh(4κdv), n = 1, λ = ∞. (3.27)

The equation for v can be analyzed graphically, see figure 3.2. As κ↘ κc,
evidently v → 0. Then we can expand

v = tanh(4κdv) = 4κdv − 1
3 (4κdv)

3 + · · ·, (3.28)

κc =
1
4d
, (3.29)

v2 ∝ (κ− κc), κ↘ κc. (3.30)

Analysis for arbitrary n and λ leads to similar conclusions,

z(J) = z(0)〈1 + φαJα + 1
2φ

αφβJαJβ + · · ·〉1 (3.31)

= z(0)
[
1 +

1
2
〈φ2〉1
n

JαJα + · · ·
]
, (3.32)
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Fig. 3.2. Mean-field equation u/4dκ = tanhu, u = 4dκv, for n = 1, λ = ∞.

Fig. 3.3. Critical lines in the λ–κ plane and the m2
0–λ0 plane (qualitative).

where we used the notation

〈F 〉1 =
∫
dµ(φ)F (φ)∫

dµ(φ)
, (3.33)

and

〈φαφβ〉1 = δαβ
〈φ2〉1
n

, (3.34)

for the one-site averages. So we find

κc(λ) =
n

4d〈φ2〉1
=

n

4d
, λ = ∞, (3.35)

=
1
2d
, λ = 0. (3.36)

The behavior v2 ∝ (κ − κc) is typical for a second-order phase
transition in the mean-field approximation. The line κ = κc(λ) is a
critical line in parameter space where a second-order phase transition
takes place. Note that in general m2

0 is negative at the phase boundary
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(cf. (3.15) and figure 3.3). The critical exponent β in

v ∝ (κ− κc)β (3.37)

differs in general from the mean-field value β = 1
2 . This is the subject of

the theory of critical phenomena, and indeed, that theory is crucial for
quantum fields. In four dimensions, however, it turns out that there are
only small corrections to mean-field behavior.

We have restricted ourselves here to the region κ > 0. For κ < 0
the story more or less repeats itself, we then get an antiferromag-
netic phase for κ < −κc(λ). The region with negative κ can be
mapped onto the region of positive κ by the transformation φαx →
(−1)x1+x2+···+xdφαx .

It is important that the phase transition is of second order rather than,
for example, of first order. In a second-order transition the correlation
length diverges as a critical point is approached. The correlation length ξ

can then be interpreted as the physical length scale and, when physical
quantities are expressed in terms of ξ, the details on the scale of the
lattice distance become irrelevant. The correlation length is defined in
terms of the long-distance behavior of the correlation function,

Gαβ
xy ≡ 〈φαxφβy 〉 − 〈φαx〉〈φβy 〉 (3.38)

∝ |x− y|2−d−ηe−|x−y|/ξ, |x− y| → ∞. (3.39)

Here ξ may in principle depend on the direction we take |x−y| to infinity,
but the point is that it becomes independent of that direction (a lattice
detail) as ξ →∞. In the symmetric phase ξ is independent of α and β.
The exponent η is another critical exponent.

The correlation length is the inverse mass gap, the Compton wave
length of the lightest particle, in lattice units,

ξ = 1/am. (3.40)

This can be understood from the spectral representation

Gαβ
xy =

∑
p,γ 	=0

〈0|φα0 |pγ〉〈pγ|φ
β
0 |0〉eip(x−y)−ωpγ |x4−y4|, (3.41)

where |0〉 is the ground state (vacuum), |pγ〉 are states with total
momentum p, distinguished by other quantum numbers γ, and ωpγ =
Ep,γ − E0 is the difference in energy from the ground state. This
representation is obtained by writing the path integral in terms of the
transfer operator and its eigenstates in the limit of zero temperature,
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using translation invariance (cf. problem (viii) in chapter 2). Expres-
sion (3.41) is a sum of exponentials exp(−ωt), t = |x4 − y4|. For
large t the exponential with smallest ω dominates, G ∝ exp(−ωmint),
hence ξ = 1/ωmin, with ωmin = m the minimum energy or mass
gap.

In the broken phase we expect Goldstone bosons (section 3.1). If these
are made sufficiently heavy by adding an explicit symmetry-breaking
term

∑
x εϕ

n
x to the action (cf. equation (3.11)), we can expect two

mass gaps: mσ for the components of Gαβ parallel to vα and mπ for the
components perpendicular to vα. When the explicit symmetry breaking
is diminished, 2mπ becomes less than mσ and the σ particle becomes
unstable, σ → 2π. Then the large-distance behavior for the σ correlation
function is controlled by 2mπ rather than by the mass mσ of the unstable
particle. Since mπ is expected to be zero in absence of explicit symmetry
breaking, the transverse correlation length will be infinite in this case
(for infinite volume).

The region near the phase boundary line where ξ 
 1 is called the
scaling region. In this region, at large distances |x − y|, the correlation
function Gxy is expected to become a universal scaling function (inde-
pendent of lattice details, with 1/m as the only relevant length scale
rather than a).

3.4 Weak-coupling expansion

Expansion of the path-integral expectation value

〈F (ϕ)〉 =
1
Z

∫
DϕeS(ϕ)F (ϕ), (3.42)

S(ϕ) = −
∑
x

[
1
2
∂µϕ

α∂µϕ
α +

1
2
m2
0ϕ

2 +
1
4
λ0(ϕ2)2

]
, (3.43)

in powers of λ0 leads to Feynman diagrams in terms of the free propaga-
tor and vertex functions. For simplicity we shall deal with the symmetric
phase, which starts out with m2

0 > 0 in the weak-coupling expansion.
The free propagator is given by

0Gαβ
xy = δαβ

∑
p

eip(x−y) 1
m2
0 +
∑

µ(2− 2 cos pµ)
, (3.44)
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Fig. 3.4. Diagrams for 0G, 0Γ(2) and 0Γ(n). Notice the convention of attaching
a small circle at the end of external lines that represent propagators; without
this ◦ the external line does not represent a propagator.

which is minus the inverse of the free second-order vertex function
δαβSxy (recall (2.99) and (2.108)), which we shall denote here by 0Γ(2).
In momentum space

0Γαβ(p) = −δαβ

[
m2
0 +
∑
µ

(2− 2 cos pµ)

]
. (3.45)

The bare (i.e. lowest-order) vertex functions 0Γ(n) are defined by the
expansion of the action S around the classical minimum ϕα

x = vα,

S(ϕ) =
∑
n

1
n!

0Γx1···xn
α1···αn

(ϕα1
x1
− vα1) · · · (ϕαn

xn
− vαn). (3.46)

Since they correspond to a translationally invariant theory, their Fourier
transform contains a δ̄ function expressing momentum conservation
modulo 2π (cf. (2.90)),

∑
x1···xn

e−ip1x1···−ipnxn 0Γx1···xn
α1···αn

= 0Γα1···αn
(p1 · · · pn) δ̄p1+···+pn,0. (3.47)

In the symmetric phase (vα = 0) there is only one interaction vertex
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function, the four-point function

0Γwxyz
αβγδ = −2λ0(δαβδγδ + δαγδβδ + δαδδβγ)δwxδwyδwz,

0Γα1···αn
(p1 · · · pn) = −2λ0 sαβγδ, (3.48)

sαβγδ ≡ δαβδγδ + δαγδβδ + δαδδβγ . (3.49)

The free propagators and vertex functions are illustrated in figure 3.4.
It can be shown that disconnected subdiagrams without external

lines (‘vacuum bubbles’) cancel out between the numerator and the
denominator in the above expectation values. The expectation values
can be rewritten in terms of vertex functions, which are simpler to study
because they have fewer diagrams in a given order in λ0. The two- and
four-point functions can be expressed as

〈ϕα1
x1
ϕα2
x2
〉 = Gα1α2

x1x2
≡ G12, (3.50)

〈ϕα1
x1
ϕα2
x2
ϕα3
x3
ϕα4
x4
〉 = G12G34 +G13G24 +G14G23 +G1234, (3.51)

and the vertex functions Γ(2) and Γ(4) can be identified by writing

G12 = −Γ−1
12 , (3.52)

G1234 = G11′G22′G33′G44′Γ1′2′3′4′ , (3.53)

where as usual repeated indices are summed. Notice that Γ123 is zero in
the symmetric phase.

To one-loop order Γ12 and Γ1234 are given by the connected diagrams
in figure 3.5,

Γ12 = 0Γ12 + 1
2
0Γ1234 0G34, (3.54)

Γ1234 = 0Γ1234 + 1
2
0Γ1256 0G55′ 0G66′ 0Γ5′6′34

+ two permutations. (3.55)

In momentum space, we have conservation of momentum modulo 2π at
each vertex. This may be replaced by ordinary momentum conservation
because all functions in momentum space have period 2π anyway. We
find for the two-point vertex function

Γα1α2(p) = −(m2
0 + p̂2)δα1α2

+
1
2
(−2λ0)sα1α2α3α4 δα3α4

∑
l

1

m2
0 + l̂2

(3.56)

≡ −δα1α2 [m
2
0 + p̂2 + λ0(n+ 2)I(m0) ], (3.57)
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Fig. 3.5. Diagrams for Γ12 and Γ1234 to one-loop order.

and for the four-point vertex function

Γα1α2α3α4(p1p2p3p4) = −2λ0sα1α2α3α4

+
1
2
(2λ0)2sα1α2α5α6sα3α4α5α6

∑
l

1

m2
0 + l̂2

× 1
m2
0 + 2

∑
µ(1− cos(l + p1 + p2)µ)

+ two permutations (3.58)

≡ −2λ0sα1α2α3α4 + 2λ20tα1α2α3α4J(m0, p1 + p2)

+ two permutations.

Here

l̂2 = 2
∑
µ

(1− cos lµ), (3.59)

and similarly for p̂2, and (using the condensed notation δ12 = δα1α2 etc.)

s1234 = δ12δ34 + δ13δ24 + δ14δ23, (3.60)

t1234 = s1256s3456 = δ12δ34(n+ 4) + 2δ13δ24 + 2δ14δ23. (3.61)
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Fig. 3.6. Momentum flow.

The functions I and J are given by

I(m0) =
∫ π

−π

d4l

(2π)4
1

m2
0 + l̂2

, (3.62)

J(m0, p) =
∫ π

−π

d4l

(2π)4
1

{m2
0 + l̂2}{m2

0 + 2
∑

µ(1− cos(l + p)µ)}
.

We assumed an infinite lattice,
∑

l →
∫
d4l/(2π)4. The momentum flow

in the second term in (3.58) is illustrated in figure 3.6
We are interested in the scaling forms of I and J . Let us therefore

restore the lattice distance a. The functions I and J have dimensions a−2

and a0, respectively. We are interested in a−2I(am0) and J(am0, ap), for
a → 0. This suggests expanding in powers of a and keeping only terms
nonvanishing as a → 0. For I we need terms of order a0 and a2, for
J only terms of order a0. Consider first I. A straightforward expansion
1/(a2m2

0 + l̂2) =
∑

n(−a2m2
0)

n/(l̂2)n+1 leads to divergences in the loop
integrals at the origin l = 0. There are various ways to deal with this
situation. Here we shall give just one. Intuitively we know that the region
near the origin in momentum space corresponds to continuum physics.
Let us split the integration region into a ball round the origin with radius
δ and the rest, with a � δ. The radius δ is sent to zero, such that, for
the integrand in the region |l| < δ, we may use the continuum form l2

for l̂2. Then

I = I|l|<δ + I|l|>δ, (3.63)

I|l|<δ(am0) =
∫
|l|<δ

d4l

(2π)4
1

a2m2
0 + l2

=
2π2

(2π)4

∫ δ

0

l3 dl
1

a2m2
0 + l2
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=
1

16π2

[
δ2 − a2m2

0 ln
(
a2m2

0 + δ2

a2m2
0

)]

=
1

16π2
[−a2m2

0 ln δ2 + a2m2
0 ln(a2m2

0)] +O(a4, δ2).

(3.64)

With symbols like O(a2) we shall mean terms proportional to a2 or
a2 ln a2. Note that expressing also l in physical units, l → al, would
bring a−2I|l|<δ into continuum form with a spherical cutoff δ/a. The
integral I|l|>δ can be expanded in a2 without encountering ln(a2m2

0)
terms,

I|l|>δ(am0) = I|l|>δ(0) + I ′|l|>δ(0)a2m2
0 +O(a4)

= I(0) + I ′|l|>δ(0)a2m2
0 +O(a4, δ2). (3.65)

where I ′ ≡ ∂I/∂(a2m2
0). Instead, we encounter ln δ2 terms in I ′|l|>δ(0).

However, these cancel out against the ln δ2 term in (3.64) because the
complete integral is independent of δ. So we get

I(am0) = C0 − C2a
2m2

0 +
1

16π2
a2m2

0 ln(a2m2
0), (3.66)

C0 = I(0) = 0.154933 . . . (3.67)

C2 = lim
δ→0

[∫ π

−π,|l|>δ

d4l

(2π)4
1

(l̂2)2
+

1
16π2

ln δ2
]

(3.68)

= 0.0303457. . .. (3.69)

The function J can be evaluated in similar fashion. We need
J(am0, ap) for a → 0. For a = 0 the integral for J is logarithmically
divergent at the origin. To deal with this we use the same procedure,

J = J|l|<δ + J|l|>δ, (3.70)

J|l|<δ =
∫
|l|<δ

d4l

(2π)4
1

[a2m2
0 + l2][a2m2

0 + (l + ap)2]
, (3.71)

J|l|>δ =
∫ −π

π,|l|>δ

d4l

(2π)4
1

(l̂2)2
+O(a2) (3.72)

(J|l|>δ can be expanded in powers of a, the term linear in a vanishes).
With the help of the identity

1
[a2m2

0 + l2][a2m2
0 + (l + ap)2]

=
∫ 1

0

dx
1

{x[a2m2
0 + l2] + (1− x)[a2m2

0 + (l + ap)2]}2 (3.73)
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and the transformation of variable l′ = l + (1 − x)ap we get for the
inner-region integral

J|l|<δ =
∫ 1

0

dx

∫
D

d4l′

(2π)4
1

[a2m2
0 + l′2 + x(1− x)a2p2]2

. (3.74)

Here the domain of integration D is obtained from the ball with radius δ
by shifting it over (1−x)ap. Replacing D by the original ball with radius
δ leads to an error of order a, which may be neglected. (The difference
between the two integration regions has a volume O(apδ3), the integrand
is O(δ−4).) Then

J|l|<δ =
∫ 1

0

dx
2π2

(2π)4

∫ δ

0

l3 dl
1

[a2m2
0 + l2 + x(1− x)a2p2]2

=
1

16π2

∫ 1

0

dx

[
ln(a2∆ + δ2)− ln(a2∆)− δ2

a2∆ + δ2

]

=
1

16π2

[
ln δ2 −

∫ 1

0

dx ln(a2∆)− 1
]

+O(a2), (3.75)

∆ ≡ m2 + x(1− x)p2. (3.76)

Combining the term ln δ2/16π2 with J|l|>δ as in (3.68) we get

J(am0, ap) = − 1
16π2

∫ 1

0

dx ln[ a2(m2
0+x(1−x)p2)]+C2−

1
16π2

+O(a2).

(3.77)
(We expect errors O(a2), i.e. not O(a): a will appear together with the
external momentum as apµ or as a2m2

0, and there will not be odd powers
of pµ because of cubic symmetry, including reflections.)

Summarizing, we have obtained the following continuum forms for the
vertex functions (in physical units):

Γαβ(p) = −δαβ
{
m2
0 + p2 + λ0(n+ 2)

[
C0
a2
− C2m

2
0

+
1

16π2
m2
0 ln(a2m2

0)
]}

, (3.78)

Γα1α2α3α4(p1p2p3p4) = −2λ0sα1α2α3α4

+ 2λ20tα1α2α3α4

{
C2 −

1
16π2

− 1
16π2

×
∫ 1

0

dx ln[a2(m2
0 + x(1− x)(p1 + p2)2)]

}
+ two permutations, (3.79)
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We see that Γ(2) and Γ(4) are, respectively, quadratically and logarith-
mically divergent as a→ 0.

3.5 Renormalization

Perturbative renormalization theory tells us that, when we rescale the
correlation functions G(n) by a suitable factor Z−n/2 and express them in
terms of a suitable renormalized mass parameter mR and renormalized
coupling constant λR, the result is finite as a → 0. The renormalized
G
(n)
R = Z−n/2G(n) are the correlation functions of renormalized fields

ϕR = Z−1/2ϕ. From (3.53) we see that the renormalized vertex functions
are then given by

ΓR(n) = Zn/2Γ(n). (3.80)

The wave function renormalization constant Z and the renormalized
mass parameter mR may be defined by the first two terms of the
expansion

Γαβ(p) = −Z−1(m2
R + p2 +O(p4))δαβ . (3.81)

Since the one-loop diagram for Γ(2) is momentum independent, the order
λ contribution to Z vanishes in the O(n) model,

Z = 1 +O(λ2). (3.82)

For mR we find from (3.78)

m2
R = m2

0 + λ0(n+ 2)
[
C0a

−2 − C2m
2
0 +

1
16π2

m2
0 ln(a2m2

0)
]
. (3.83)

A renormalized coupling constant λR may be defined in terms of Γ(4) at
zero momentum, by writing

ΓRα1α2α3α4
(0, 0, 0, 0) = −2λR sα1α2α3α4 . (3.84)

From the result (3.79) for the four-point function, using (3.82) and

t1234 + t1324 + t1423 = (n+ 8)s1234, (3.85)

we find

λR = λ0 + λ20
n+ 8
16π2

[ln(a2m2
0) + c], (3.86)

c = − 16π2

n+ 8

(
C2 −

1
16π2

)
. (3.87)
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To express the correlation functions in terms of mR and λR we consider
λR as an expansion parameter and invert (3.83), (3.86),

m2
0 = m2

R − λR(n+ 2)
[
C0a

−2 − C2m
2
R +

1
16π2

m2
R ln(a2m2

R)
]

+O(λ2R), (3.88)

λ0 = λR − λ2R
n+ 8
16π2

[ln(a2m2
R) + c] +O(λ3R). (3.89)

Inserting these relations into (3.78), (3.79) gives the renormalized vertex
functions

ΓRαβ(p) = −δαβ(m2
R + p2) +O(λ2R), (3.90)

ΓRα1α2α3α4
(p1p2p3p4) = −2λRsα1α2α3α4 − 2λ2Rtα1α2α3α4

× 1
16π2

∫ 1

0

dx ln
(
m2
R + x(1− x)(p1 + p2)2

m2
R

)
+ two permutations +O(λ3R), (3.91)

which are indeed independent of the lattice spacing a. Notice that the
constants C0, C1 and C2 are absent: all reference to the lattice has
disappeared from the renormalized vertex functions.

To this order the mass m of the particles is equal to mR. The mass m
is given by the value of −p2 where Γ(2) is zero and G(2) has a pole. In
higher orders the mass m will be different from the renormalized mass
parameter mR: m = mR(1 +O(λ2R)).

The O(n) tensor structure in (3.84) is the general form of Γ(4) at
a symmetry point where (p1 + p2)2 = (p1 + p3)2 = (p1 + p4)2 ≡ µ2.
We can therefore also define a ‘running renormalized coupling’ λ̄(µ) at
momentum scale µ by

ΓRα1α2α3α4
(p1p2p3p4) = −2λ̄(µ)sα1α2α3α4 , symmetry pointµ, (3.92)

which gives

λ̄(µ) = λ0 + λ20
n+ 8
16π2

{∫ 1

0

dx ln[a2m2
0 + x(1− x)a2µ2] + c

}
. (3.93)

Expressing the running coupling in terms of λR and mR leads to

λ̄(µ) = λR + λ2R
n+ 8
16π2

∫ 1

0

dx ln[1 + x(1− x)µ2/m2
R] +O(λ3R)

= λR, µ = 0, (3.94)

≈ λR + λ2R
n+ 8
16π2

[ln(µ2/m2
R)− 2], µ2 
 m2

R. (3.95)
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The running coupling indicates the strength of the interactions at
momentum scale µ. Expressing the vertex function (3.91) in terms of
this running coupling shows that, at large momenta, terms of the type
λ2R ln[(p1 + p2)2/m2

R] are replaced by λ̄2(µ) ln[(p1 + p2)2/µ2]. So, on
choosing µ2 equal to values of (pi + pj)2 that typically occur in a given
situation, the logarithms are generically not large and the strength of
the four-point vertex on this momentum scale is expressed by λ̄(µ).

3.6 Renormalization-group beta functions

The renormalized quantities do not depend explicitly on the lattice
distance, all dependence on a is absorbed by the relations between m0,
λ0 and mR, λR. Thus it seems that we can take the continuum limit
a→ 0 in the renormalized quantities. Changing a while keeping mR and
λR fixed implies that m0 and λ0 must be chosen to depend on a, as given
by (3.88) and (3.89). We see that a2m2

0 decreases and becomes negative
as a decreases, even in the symmetric phase. This we found earlier in the
mean-field approximation. However, the bare λ0 increases as a decreases
and beyond a certain value we can no longer trust perturbation theory
in λ0. Neither can we trust (3.89) if a becomes too small, since then the
coefficient of λ2R blows up.

Let us look at the problem in another way. Consider what happens
to λR as we approach the phase boundary at fixed λ0. In (3.86) we may
replace to this order m0 by mR,

λR = λ0 + λ20
n+ 8
16π2

[ln(a2m2
R) + c] +O(λ30). (3.96)

We see that λR decreases as a decreases, but when the logarithm becomes
too large the perturbative relation breaks down. We can extract more
information by differentiating with respect to a and writing the result
in terms of λR,

βR(λR) =
[
a
∂λR
∂a

]
λ0

=
[
amR

∂λR
∂amR

]
λ0

= β1λ
2
0 +O(λ30) (3.97)

= β1λ
2
R + β2λ

3
R + · · ·, (3.98)

β1 =
n+ 8
8π2

. (3.99)

The function βR(λR) is one of the renormalization-group functions
introduced by Callan and by Symanzik. For a clear derivation of the
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Callan–Symanzik equations in our context see [20]. They are dimen-
sionless functions which may be expressed in terms of renormalized
vertex functions and are given by renormalized perturbation theory as
a series

∑
k βkλ

k
R. This means that the higher-order terms of the form

λk0 [ln(amR)]l can be rearranged in terms of powers of λR with coefficients
that do not depend any more on ln(amR). This is the justification for
rewriting (3.97) in terms of λR.

Integration of ∂λR/∂t = −β1λ2R gives

λR =
λ1

1 + λ1β1t
, t ≡ −[ln(amR) + c/2], (3.100)

where λ1 is an integration constant, λ1 = λ0 +O(λ20). As a→ 0, t→∞
and we see that λR approaches zero. The approximation of using only
the lowest-order approximation to the beta function is therefore self-
consistent.

Let us try the beta-function trick on λ0 to see whether we can
determine how it depends on a if we keep λR fixed. From (3.89) we
find [

a
∂λ0
∂a

]
λR

≡ −β0(λ0) = −β1λ20 + · · · . (3.101)

Note the change of sign compared with (3.98). Integrating this equation
gives

λ0 =
λ2

1− λ2β1t
, (3.102)

where λ2 = λR + O(λ2R). We see that λ0 blows up at the ‘Landau pole’
t = 1/λ2β1, but, of course, before reaching this value the first-order
approximation to β0(λ0) breaks down.

Consider next the beta function β̄(λ̄) for the running coupling λ̄(µ)
on momentum scale µ. From (3.95) we see that, for large µ
 mR,[
µ
∂λ̄(µ)
∂µ

]
λR,mR

≡ β̄(λ̄) = β1λ̄
2 + · · ·, µ
 mR, (3.103)

again with the same universal coefficient for the first-order term in its
expansion. The solution is similar to that for λ0,

λ̄ =
λ3

1− λ3β1 ln(µ/mR)
. (3.104)

The effective coupling λ̄ increases with momentum scale µ. To see if it
can become arbitrarily large we need to go beyond the weak-coupling
expansion.
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Fig. 3.7. Two possible shapes of β0(λ0). The arrows denote the flow of λ0 for
increasing t = − ln(amR) + constant.

We end this section by speculating about different shapes of the beta
function β0 for the bare coupling constant. Two typical possibilities are
shown in figure 3.7. In case (a) there is a fixed point λ∗ that attracts
the flow of λ0 for increasing ‘time’ t. Near λ∗ we can linearize

∂λ0
∂t

= −A(λ0 − λ∗), (3.105)

λ0 − λ∗ = C exp(−At), t→∞, (3.106)

where C is an integration constant. The large-t behavior can be rewritten
in the form

ξ =
1

amR
∝ (λ∗ − λ0)−ν , ν = 1/A, (3.107)

which shows that the critical exponent ν is determined by the slope of
the beta function at the fixed point. Since t can go to infinity without a
problem, a continuum limit a→ 0 is possible for case (a).

In case (b) the beta function does not have a zero, apart from the
origin λ0 = 0. Supposing a behavior

∂λ0
∂t

= Aλα0 , λ0 →∞, α > 0, A > 0, (3.108)

leads to the asymptotic solution

λ
−(α−1)
0 = −A(α− 1)(t− t1), (3.109)

where we assumed α > 1. In this case λ0 becomes infinite in a finite
‘time’ t = t1. Since λ0 = ∞ is the largest value λ0 can take, t cannot go
beyond t1, a cannot go to zero and a continuum limit is not possible.
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A similar discussion can be given for the running coupling λ̄. Cases
(a) and (b) also illustrate possible behaviors of the running coupling for
large momentum scales µ. In case (a) the running coupling approaches
λ∗ as µ → ∞, whereas in case (b) λ̄ goes to infinity on some large but
finite momentum scale µ1.

A fixed point like λ∗ is called ultraviolet stable as it attracts the
running coupling when µ → ∞, while the fixed point at the origin is
called infrared stable as it attracts the running coupling for µ→ 0. Case
(a) is like the situation in three Euclidean dimensions (with a reflection
about the horizontal axis), whereas we shall see in the following that in
four dimensions the situation is like case (b).

The main conclusion in this section is that λR → 0 as we approach
the phase boundary at fixed sufficiently small λ0. To see whether we can
avoid a noninteracting theory in the continuum limit, we need to be able
to investigate large λ0. This can be done with the hopping expansion
and with numerical simulations.

3.7 Hopping expansion

Consider the partition function in the form

Z =
∫

Dµ(φ)
∏
xµ

exp(2κφαxφ
α
x+µ̂), (3.110)

where Dµ(φ) =
∏

x dµ(φx) is the product of one-site measures defined in
(3.18). Expansion in κ (hopping expansion) leads to products of one-site
integrals of the form

∫
Dµ(φ) ≡ Z0 =

(∫
dµ(φ)

)# sites
, (3.111)∫

Dµ(φ)φαxφ
β
y = δxyZ0〈φαφβ〉1, (3.112)∫

Dµ(φ)φαxφ
β
yφ

γ
z = 0, (3.113)∫

Dµ(φ)φαxφ
β
xφ

γ
xφ

δ
x = Z0〈φαφβφγφδ〉1, (3.114)

etc., where # sites is the total number of lattice sites. Odd powers of φ
vanish in the one-site average

〈F 〉1 =
∫

dµ(φ)F (φ)
/∫

dµ(φ). (3.115)
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Fig. 3.8. Diagrams in the expansion of exp(2κ
∑

xµ φα
xφ

α
x+µ̂).

Fig. 3.9. The diagrams of figure 3.8 after integration over φ. The fat dot
denotes the four-point vertex γ4.

Before integration over φ, each term in the expansion can be represented
by a dimer diagram ‘on the lattice’, as illustrated in figure 3.8. The dots
indicate the fields φ. The integration over φ leads to diagrams as shown
in figure 3.9.

The one-site integrals can be treated as a mini field theory, with
propagators gαβ and vertex functions γα1···α4 , γα1···α6 , . . .. For instance,
γαβγδ can be defined by

〈φαφβ〉1 = gαβ , (3.116)

〈φαφβφγφδ〉1 = gαβgγδ + gαγgβδ + gαδgβγ + gαβγδ, (3.117)

gαβγδ = gαα
′
gββ

′
gγγ

′
gδδ

′
γα′β′γ′δ′ , (3.118)

analogously to (3.53). By O(n) symmetry we have

gαβ = δαβ g, g =
〈φ2〉1
n

, (3.119)

gαβγδ = sαβδγ
〈(φ2)2〉1
n2 + 2n

, (3.120)

γαβγδ = sαβδγ γ4, γ4 =
n3

n+ 2
〈(φ2)2〉1
〈φ2〉41

− n2

〈φ2〉21
, (3.121)

where sαβδγ = δαβδγδ + · · · has been defined in (3.49). For small λ,
γ4 ∝ λ, whereas for λ→∞, γ4 → −2n4/(n+ 2).

As usual, one expects that disconnected diagrams cancel out in ex-
pressions for the vertex functions, and that the two-point function,
Gαβ

xy = 〈φαxφβy 〉, can be expressed as a sum of connected diagrams. It
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Fig. 3.10. Random-walk contribution to the propagator.

is instructive to make an approximation for the two-point function in
which the vertex functions γ(4), γ(6), . . ., are neglected at first. This
leads to the random-walk approximation

Gαβ
xy = δαβ

∞∑
L=0

(2κ)LgL+1(HL)xy + ‘interactions’, (3.122)

illustrated in figure 3.10. Here ‘interactions’ denote the neglected con-
tributions proportional to γ(4), γ(6), . . ., and we introduced the hopping
matrix

Huv =
∑
µ

(δu+µ̂−v,0 + δv+µ̂−u,0). (3.123)

Applying this matrix e.g. to the vector δv,x gives a non-zero answer only
for u’s that are nearest neighbors of x, i.e. all sites that can be reached
from x in ‘one step’. Applying H once more corresponds to making one
more step in all possible directions, etc. In this way a random walk
is built up by successive application of H. Each link in the expansion
contributes a factor 2κ, and each site a factor g. In momentum space we
get

Gαβ
xy = δαβ

∫ π

−π

d4p

(2π)4
eip(x−y)g

∑
L

(2κg)LH(p)L (3.124)

= δαβ

∫ π

−π

d4p

(2π)4
eip(x−y) g

1− 2κgH(p)
, (3.125)

where

H(p) =
∑
x

e−ipxHx,0 =
∑
µ

2 cos pµ. (3.126)

In the random-walk approximation the two-point correlation function
has the free-field form. For small momenta we identify the mass param-
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Fig. 3.11. Four random walks correlated by the one site γ4.

eter mR and the wavefunction-renormalization constant Zφ,

Gαβ(p) = δαβ
Zφ

m2
R + p2 +O(p4)

, (3.127)

Zφ = (2κ)−1, m2
R = (2gκ)−1 − 2d. (3.128)

This Zφ corresponds to Zϕ = 1 (cf. (3.15)). When mR → 0 we enter
the scaling region. In the random-walk approximation this occurs at
κ = κc = 1/4gd, which is the mean-field value (3.36). This is not so
surprising as the mean-field approximation is good for d → ∞, when
also the random-walk approximation is expected to be good, because
the chance of self-intersections in the walk, where γ(4), γ(6), . . . come
into play, goes to zero. Notice that κc is also the radius of convergence
of the expansion (3.124).

Within the random-walk approximation we have the estimate for the
renormalized coupling (cf. (3.80)) as illustrated in figure 3.11,

−2λR = Z2γ4 =
γ4
4κ2c

, (3.129)

λR → λ0, λ→ 0, (3.130)

→
(

2d
n

)2
n2

n+ 2
=

32
3
, λ→∞, d = 4, n = 4. (3.131)

This indicates already that λR is not infinite at λ = ∞.
The partition function and expectation values can be expressed as a

systematic expansion in κ. This is called the hopping expansion because
the random-walk picture suggests propagation of particles by ‘hopping’
from one site to the next. By the analogy of κ with the inverse tempera-
ture in the Ising model, the expansion is known in statistical physics as
the high-temperature expansion, or, with increasing sophistication, the
linked-cluster expansion. Using computers to help with the algebra, the
expansion can be carried out to high orders (see e.g. [22] and references
therein).
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A good property of the hopping expansion is that it has a non-zero
radius of convergence, for any fixed λ ∈ (0,∞). This is in contrast to
the weak-coupling expansion, which is an asymptotic expansion (as is
typical for saddle-point expansions) with zero radius of convergence (see
for example [13]). An expansion f(x) =

∑∞
k=0 fkx

k is called asymptotic
if ∣∣∣∣∣f(x)−

N∑
k=0

fkx
k

∣∣∣∣∣ = O(xN+1). (3.132)

For fixed finite N the sum gives an accurate approximation to f(x), for
sufficiently small x. The expansion need not converge as N → ∞ and
for a given x there is an optimum N beyond which the approximation
becomes worse.

3.8 Lüscher–Weisz solution

Using the hopping expansion in combination with the Callan–Symanzik
renormalization-group equations, Lüscher and Weisz showed how the
O(n) models in four dimensions can be solved to a good approximation
[20, 21, 22, 23]. The coefficients of the hopping series were calculated
to 14th order and the Callan–Symanzik beta functions were used to
three-loop order. The cases n = 1 [20, 21] and n = 4 [23] were worked
out in detail. The interested reader is urged to study these lucid papers
which contain a lot of information on field theory. We shall review the
highlights for the O(4) model.

The critical κc(λ) is estimated from the radius of convergence of the
hopping expansion to be monotonically increasing from κc = 1

8 at λ = 0
to κc = 0.304 11(6) at λ =∞. An important aspect of the results is the
carefully estimated errors in various quantities. For simplicity, we shall
not quote the errors anymore in the following. Along the line κ = 0.98κc
in the κ–λ plane the hopping expansion still converges well, with the
mass parameter mR decreasing from 0.40 to 0.28 and the renormalized
coupling λR increasing from 0 to 3.2 as λ increases from 0 to ∞. At a
slightly smaller κ < κc such that mR = 0.5, λR = 4.3 for λ =∞.

Remarkably, λR = 3.2 may be considered as relatively weak coupling.
Let us rewrite the beta function

mR
∂λR
∂mR

= βR(λR) = β1λ
2
R + β2λ

3
R + · · ·, (3.133)
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in terms of a natural variable λ̃ ≡ β1λR,

mR
∂λ̃

∂mR
= λ̃2 +

β2
β21

λ̃3 + · · · . (3.134)

The results

β1 =
n+ 8
8π2

, β2 = −9n+ 42
(8π2)2

, (3.135)

give β2/β
2
1 ≈ −0.54. Then λR = 3.2 means λ̃ ≈ 0.41 and the two-loop

term in (3.134) is only about 20% of the one-loop term. This indicates
that renormalized perturbation theory may be applicable for these cou-
plings. The next (three-loop) term in the series is again positive and
Lüscher and Weisz reason that the true beta function in this coupling
region may be between the two- and three-loop values.

A basic assumption made in order to proceed is that renormalized
perturbation theory is valid for sufficiently small λR, even if the bare λ
is infinite. This may seem daring if one thinks of deriving renormalized
perturbation theory from the bare weak-coupling expansion. However,
it appears natural from the point of view of Wilson’s renormalization
theory in terms of an effective action with an effective cutoff, or from the
point of view of effective actions, or Schwinger’s Source Theory, which
uses unitarity to obtain higher-order approximations in an expansion in
a physical coupling parameter (e.g. λR).

Using the beta function calculated in renormalized perturbation the-
ory, Lüscher and Weisz integrate the Callan–Symanzik equations toward
the critical point mR = 0. (The variable κ is traded for mR.) As we
have seen in (3.100) this leads to the conclusion that the renormalized
coupling vanishes at the phase boundary, which is thus established even
for bare coupling λ =∞ (!).

The integration is done numerically, using (3.133). Sufficiently deep
in the scaling region we may integrate by expansion,

∂λR
∂ lnmR

= βR(λR), (3.136)

lnmR =
∫ λR dx

βR(x)
, (3.137)

=
∫ λR

dx

[
1

β1x2
− β2
β21x

+O(1)
]
, (3.138)

= − 1
β1λR

− β2
β21

ln(β1λR) + lnC1 +O(λR). (3.139)
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Here C1 is an integration constant, which becomes dependent on the
bare λ once the solution is matched to the hopping expansion. (Part
of the integration constant is written as −(β2/β21) lnβ1.) Notice that
knowledge of β2 is needed in order to be able to define C1(λ) as λR → 0.
Eq. (3.139) can also be written as

mR = C1(β1λR)−β2/β
2
1e−1/β1λR [1 +O(λR)], (3.140)

which shows that mR depends non-analytically on λR for λR → 0.
Lüscher and Weisz show that similarly

Z = C2[1 +O(λR)], (3.141)

κc − κ = C3m
2
R(λR)δ1/β1 [1 +O(λR)], (3.142)

where δ1 is a Callan–Symanzik coefficient similar to the β’s.
From these equations follow the scalings laws, τ = 1− κ/κc → 0:

mR → C4τ
1/2| ln τ |δ1/2β1 , (3.143)

λR →
2
β1
| ln τ |−1, (3.144)

Z → C2. (3.145)

We recognize that the behavior (3.144) follows from (3.100). Note that
(3.143) shows that the correlation-length critical exponent ν has almost
the mean-field value ν = 1

2 : it is modified only by a power of ln τ .
In the scaling limit all information about the renormalized coupling

coming from the hopping expansion is contained in C1(λ), which in-
creases monotonically with decreasing λ. For small bare coupling C1
can be calculated with the weak-coupling expansion. In fact, inserting
the expansion (3.86) for λR into (3.140) and expanding in λ0 leads
to

lnC1(λ) =
1

β1λ0
+

β2
β21

ln(β1λ0)−
c

2
+O(λ0). (3.146)

For infinite bare coupling Lüscher and Weisz find C1(∞) = exp(1.5). The
fact that C1(λ) decreases as λ increases corresponds to the intuition that
for given mR, the renormalized coupling increases with λ. Conversely,
for given λR, the smallest lattice spacing (smallest mR) is obtained with
the largest λ, i.e. λ = ∞.

The hopping expansion holds in the region of the phase diagram
connected to the line κ = 0, i.e. the symmetric phase. Lüscher and
Weisz extended these results into the physically relevant broken phase,
where relations similar to (3.140)–(3.145) were obtained with coefficients
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C ′ (the Callan–Symanzik coefficients are the same in both phases). They
considered the critical theory at κ = κc and used perturbation theory
in κ − κc, or equivalently m2

R, to connect the symmetric and broken
phases. This is done again using renormalized perturbation theory with
the results

C ′
1(λ) = 1.435C1(λ), C ′

2,3(λ) = C2,3(λ). (3.147)

Another definition was chosen for the renormalized coupling in the
broken phase, which is very convenient:

λR =
m2
R

2v2R
, vR ≡ Z−1/2

π v = Z−1/2
π 〈φ〉, (3.148)

where Zπ is the wave-function renormalization constant of the Goldstone
bosons. This choice is identical in form to the classical relation between
the coupling, mass and vacuum expectation value (cf. (3.10)). The
renormalized coupling in the broken phase cannot be defined at zero
momentum, as in the symmetric phase, because the massless Goldstone
bosons would lead to infrared divergences (in absence of explicit symme-
try breaking). Using Zπ in the definition of vR allows the identification
of vR with the pion decay constant fπ in the application of the O(4)
model to low-energy pion physics, or with the electroweak scale of 246
GeV in the application to the Standard Model.

The renormalization-group equations were numerically integrated
again in the broken phase, this time for increasing mR, until the renor-
malized λR became too large and the perturbative beta function could
no longer be trusted. We mention here the result λR < 3.5 for mR < 0.5,
at λ = ∞. Hence, also in the broken phase the renormalized coupling is
relatively small even at the edge of the scaling region, taken somewhat
arbitrarily to be at mR = 0.5, and the renormalized coupling goes to
zero in the continuum limit mR → 0.

Figure 3.12 shows lines of constant renormalized coupling with varying
κ/κc for the case n = 1 [21]. For a given λR we can go deeper into the
scaling region, i.e. approach the critical line κ/κc = 1 by increasing
the bare coupling λ. This behavior was also found in the weak-coupling
expansion, but the results there became invalid as λ grew too big. Here
we see that the behavior continues for large λ and that the line λ =
∞ is reached before reaching the critical line. The critical line can be
approached arbitrarily closely only for arbitrarily small renormalized
coupling. It follows that the beta function of the model has to correspond
to case (b) in figure 3.7.
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Fig. 3.12. Lines of constant renormalized coupling for the case n = 1 deter-
mined by Lüscher and Weisz. The lines are labeled by the value of gR ≡ 6λR.
The bare coupling λ increases from 0 to ∞ as the LW parameter λ̄ goes from
0 to 1. From [21].

For the O(4) model, the figure corresponding to 3.12 is similar, except
that the values of λR at a given amR are smaller [23]. The first beta-
function coefficient increases with n, so one expects the renormalization
effects to be larger than for n = 1.

Let us recall here another well-known criterion for a coupling being
small or large: the unitarity bound. This is the value of the renormalized
coupling at which the lowest-order approximation to the elastic scatter-
ing amplitude T becomes larger than a bound deduced from the unitarity
of the scattering matrix S. In a partial wave state of definite angular
momentum (e.g. the s-wave) the scattering matrix is finite dimensional,
its eigenvalues are phase factors S = exp(i2δ), with δ the standard
phase shifts. Since the lowest-order (Born) approximation is real and
T = (S − 1)/i = 2 exp(iδ) sin δ has a real part ∈ (−1, 1), one requires
the Born approximation for |T | to be smaller than 1. This gives an
upper bound on λR: the unitarity bound. The maximum values of the
renormalized coupling at mR = 0.5 turn out to be smaller than the
unitarity bound (in the broken phase the maximum λR is only about
two thirds of this bound).

Summarizing, the results show that the O(n) models (in particular
the cases n = 1 and 4) in four dimensions are ‘trivial’: the renormalized
coupling vanishes in the continuum limit. Since we want of course an
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interacting model we cannot take the lattice distance to zero. The model
is to be interpreted as an effective model that is valid at momenta much
smaller than the cutoff π (π/a in physical units). For not too large
renormalized coupling the cutoff can be huge and lattice artifacts very
small. At the scale of the cutoff the model loses its validity, and in
realistic applications new physical input is needed. Where this happens
depends on the circumstances. The relevance of these results for the
Standard Model will be discussed later.

3.9 Numerical simulation

With numerical simulations we get non-perturbative results albeit on
finite lattices. Simulations provide furthermore a valuable kind of insight
into the properties of the systems, which is complementary to expansions
in some parameter.

The lattice is usually taken of the form N3×Nt, with N = 4, 6, 8, . . .,
and Nt of the same order. For simplicity we shall assume that Nt = N in
the following. For the O(4) model sizes 104–164 are already very useful.
Expectation values

〈O〉 =
1
Z

∫
Dφ exp[S(φ)]O(φ) (3.149)

are evaluated by producing a set of field configurations {φαx}j , j =
1, . . .,K, which is distributed according to the weight factor expS(φ),
giving the approximate result

〈O〉 ≈ O ≡ 1
K

K∑
j=1

O(φj), (3.150)

with a statistical error ∝ 1/
√
K. The ensemble is generated with a

stochastic process, e.g. using a Metropolis or a Langevin algorithm. We
shall give only a brief description of the Monte Carlo methods and the
analysis of the results. Monte Carlo methods are described in more detail
in [4, 6, 10].

For example, a Langevin simulation produces a sequence φαx,n, n =
1, 2, . . ., by the rule

φαx,n+1 = φαx,n + δ
∂S(φn)
∂φαx,n

+
√

2δ ηαx,n, (3.151)
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where ηαx,n are Gaussian pseudo-random numbers with unit variance and
zero mean,

〈ηαx,n〉 = 0, 〈ηαx,nηα
′

x′,n′〉 = δαα′δxx′δnn′ , (3.152)

and δ is a step size related to the Langevin time t by t = δn. It can
be shown that as t → ∞, the φ’s become distributed according to the
desired expS(φ), up to terms of order δ (cf. problem (viii)). Using a
small δ such as 0.01, the system reaches equilibrium after some time, in
units related to the mass gap of the model, and configurations φj may
be recorded every ∆t = 1, say. The finite δ produces a systematic error,
which can be reduced by taking δ sufficiently small, or by using several
δ’s and extrapolating to δ = 0. The configurations j and j+1 are usually
correlated, such that the true statistical error is larger than the naive
standard deviation √√√√ 1

K

K∑
j=1

(
O(φj)−O

)2
(3.153)

but there are methods to take care of this.
The Metropolis algorithm is often preferred over the Langevin one,

since it does not suffer from systematic step-size errors ∝ δ and it is
often more efficient. Research into efficient algorithms is fascinating and
requires good insight into the nature of the system under investigation.
New algorithms are being reported every year in the ‘Lattice proceed-
ings’.

Since the lattices are finite, we have to take into account systematic
errors due to scaling (O(a)) violations and finite-size (L) effects (L =
Na). It is important to determine these systematic errors and check that
they accord with theoretical scaling and finite-size formulas. We can then
attempt to extrapolate to infinite volume and zero lattice spacing.

Typical observables O for the O(n) models are the average ‘magnetiza-
tion’ φ̄α =

∑
x φ

α
x/N

4, the average ‘energy’ −S/N4, which reduces to the
average ‘link’

∑
xµ φ

α
xφ

α
x+µ̂/4N

4 in the limit λ → ∞, and products like
φαxφ

β
y giving correlation functions upon averaging. The free energy F =

− lnZ itself cannot be obtained directly by Monte Carlo methods, but
may be reconstructed, e.g. by integrating ∂F/∂κ = −2〈

∑
xµ φ

α
xφ

α
x+µ̂〉.

The correlation function Gαβ
xy = 〈φαxφβy 〉 − 〈φαx〉〈φβy 〉 is used to de-

termine the masses of particles. With periodic boundary conditions it
depends only on the difference x − y. For example, in the symmetric
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phase the spectral representation can be written as∑
x

e−ipxGαα
x,t;0,0 =

∑
γ

|〈0|φα|p, γ〉|2
[
e−ωp,γt + e−ωp,γ(Nt−t)

]
, (3.154)

where finite-temperature (finite Nt) corrections of the form ∝
〈p′γ′|φαx |pγ〉 have been neglected. Choosing zero momentum p, one may
fit the propagator data for large t and Nt − t to

R cosh
[
m

(
t− Nt

2

)]
, R = |〈0|φα|0α〉|2 exp

(
−mNt

2

)
, (3.155)

where m = ωmin is the mass of the particle with the quantum numbers of
φα. It is assumed that the contributions of the next energy levels ω′ with
the same quantum numbers (such as three particle intermediate states),
which have relative size exp[−(ω′−m)t], can be neglected for sufficiently
large times. Alternatively, one can try to determine the renormalized
mass and wave-function renormalization constant in momentum space
from eq. (3.81), but this does not give the particle mass directly. Only
when the particle is weakly coupled is mR ≈ m. The higher-order
correlation functions (such as the four-point functions) require in general
much better statistics than do the propagators.

For illustration we show first some early results in the symmetric
phase. Figure 3.13 shows the particle mass and the renormalized coupling
gR = 6λR as functions of the spatial sizeN in a simulation at infinite bare
coupling [24]. We see that the interactions cause the finite-volume mass
to increase over the infinite-volume value (the linear extent in physical
units, Lm, changes by roughly a factor of two). The results for the
coupling constant roughly agree within the errors with those obtained
by Lüscher and Weisz using the hopping expansion. Figure 3.14 shows
a result [25] for the dressed propagator (correlation function) analyzed
in momentum space. The fact that the propagator resembles so closely
a free propagator, apart from renormalization, is an indication that the
effective interactions are not very strong, despite the large bare coupling.

The broken phase is physically more interesting. Although there is
rigorously no phase transition in a finite volume, the difference between
the symmetric- and broken-phase regions in parameter space is clear
in the simulations. The phase boundary is somewhat smeared out by
finite-volume effects. In the broken phase of the O(n) model for n > 1,
there is a preferred direction, along 〈φα〉 = vα �= 0, and one con-
siders the longitudinal and transverse modes Gσ = v−2vαvβGαβ and
Gπ = (δαβ − v−2vαvβ)Gαβ/(n− 1). The latter correspond to the Gold-
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Fig. 3.13. Finite-size dependence of m and gR = 6λR in a simulation in the
symmetric phase (L = N , λ = ∞). The full circles correspond to a finite-size
dependence expected from renormalized perturbation theory. From [24].

stone bosons. The σ particle can decay into the π particles, which leads
to complications in the analysis of the numerical data. The Goldstone
bosons lead to strong finite-size effects. Finite-size effects depend on the
range of the interactions, the correlation length, which is infinite for the
Goldstone bosons. However, the finite size also gives a non-zero mass
to the Goldstone bosons. These effects have to be taken into account in
the analysis of the simulation results. The theoretical analysis is based
on effective actions, using ‘chiral perturbation theory’ or ‘renormalized
perturbation theory’.

Consider the magnetization observable φ̄α =
∑

x φ
α
x/N

4. An im-
pression of its typical distribution is illustrated in figure 3.15. The
difference between the symmetric and broken phase is clear, yet the
figure suggests correctly that the angular average leads to 〈φ̄α〉 = 0 also
in the broken-phase region. In a finite volume there is no spontaneous
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Fig. 3.14. Dressed propagator in momentum space plotted as a function of∑
µ 4 sin2(pµ/2), at m2

0 = −24.6, λ0 = 100. From [25].

Fig. 3.15. Qualitative illustration of the probability distribution of φ̄α at finite
volume for n = 2 in the symmetric phase (left) and the broken phase (right).

symmetry breaking. To formulate a precise definition of vα, we introduce
an explicit symmetry-breaking term into the action, which ‘pulls’ the
spins along a direction, say 0,

∆S = ε
∑
x

φ0x, (3.156)
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and define

vα = lim
ε→0

lim
L→∞

〈φαx〉, (3.157)

where the order of the limits is crucial. To understand this somewhat
better, one introduces the constrained effective potential VL(φ̄), which is
obtained by integrating over all field configurations with the constraint
φ̄α =

∑
x φ

α
x/L

4,

exp(−L4VL(φ̄)) =
∫

Dφ exp[S(φ)] δ

(
φ̄α −

∑
x

φαx/L
4

)
, (3.158)

such that

Z =
∫

dnφ̄ exp
[
−L4VL(φ̄)

]
, (3.159)

and

〈φ̄α〉 =

∫
dnφ̄ exp

[
−L4VL(φ̄)

]
φ̄α∫

dnφ̄ exp
[
−L4VL(φ̄)

] . (3.160)

The fact that the effective potential comes with a factor L4 is easily
understood from the lowest-order approximation in λ → 0, which is
obtained by simply inserting the constant φ̄α for φαx in the classical
action,

S(φ̄) = −L4VL(φ̄) = −N4[(1− 8κ)φ̄2 + λ(φ̄2 − 1)2 − εφ̄0], (3.161)

where we used the form (3.16) of the action in lattice units. In this
classical approximation the constraint effective potential is independent
of L. The exact constraint effective potential is only weakly dependent
on L, for sufficiently large L, and as L increases the integrals in (3.160)
are accurately given by the saddle-point approximation, i.e. by the sum
over the minima of VL(φ̄). In absence of the ε term there is a continuum
of saddle points and 〈φ̄α〉 = 0 even in the broken phase. A unique saddle
point is obtained, however, for non-zero ε. If we let ε go to zero after the
infinite-volume limit, 〈φ̄α〉 remains non-zero. For more information on
the constraint effective potential, see e.g. [26].

This technique of introducing explicit symmetry breaking is used in
simulations [27] as shown in figure 3.16. A simpler estimate of the
infinite-volume value v of the magnetization is obtained with the ‘ro-
tation method’, in which the magnetization of each individual configu-
ration is rotated to a standard direction before averaging. The resulting
〈|φ̄|〉 can be fitted to a form v + constant×N−2.
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Fig. 3.16. Plots of 〈φ̄4〉 as a function of j = ε in the O(4) model for various
lattice sizes. The data are fitted to the theoretical behavior (curves) and
extrapolated to infinite-volume and ε = 0, giving the full circle in the upper
left-hand corner. From [27].

Fig. 3.17. Results on mσ/F = mσ/vR as a function of the correlation length
1/mσ, for the ‘standard (usual) action’ (lower data) and a ‘Symanzik-improved
action’ (upper data). The crosses are results of Lüscher and Weisz obtained
with the hopping expansion. The bare coupling λ = ∞. The curves are
interpolations based on renormalized perturbation theory. From [28].
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As a last example we show in figure 3.17 results on the renormalized
coupling

√
2λR = mR/vR [28]. Data are shown for the action considered

here (the ‘standard action’) and for a ‘Symanzik-improved action’. We
see that the data for the standard action agree with the results obtained
with the hopping expansion in the previous section, within errors. The
Symanzik-improved action has next-to-nearest-neighbor couplings such
that the O(a2) errors are eliminated in the classical continuum limit.
It is not clear a priori that this leads to better scaling in the quantum
theory, because the scalar field configurations that contribute to the path
integral are not smooth on the lattice scale, but it is interesting that the
different regularization leads to somewhat larger renormalized couplings
for a given correlation length.

In conclusion, the numerical simulations have led to accurate results
which fully support the theoretical understanding that the O(n) models
are ‘trivial’.

3.10 Real-space renormalization group and universality

One of the cornerstones of quantum field theory is universality: the
physical properties emerging in the scaling region are to a large extent
independent of the details of formulating the theory on the scale of the
cutoff. The physics of the O(n) models is expected to be independent
of the lattice shape, the addition of next-nearest-neighbor couplings,
next-next-nearest-neighbor couplings, . . ., or higher-order terms (φ2)k,
k = 3, 4, . . . (of course, in its Ising limit or non-linear sigma limit where
φ2 = 1 such higher-order terms no longer play a role). More precisely, the
physical outcome of the models falls into universality classes, depending
on the symmetries of the system and the dimensionality of space–time.
Our understanding of universality comes from the renormalization group
à la Wilson [29, 30] (‘block spinning’, see e.g. [11]), and from the weak-
coupling expansion. We shall sketch the ideas using the one-component
scalar field as an example, starting with the block spinning approach
used in the theory of critical phenomena.

In the real-space renormalization-group method one imagines inte-
grating out the degrees of freedom with wave lengths of order of the
lattice distance and expressing the result in terms of an effective action
for the remaining variables. On iterating this procedure one obtains the
effective action describing the theory at physical (
 a) distance scales.
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Let φ̄x̄ be the average of φx over a region of linear size s around x̄,

φ̄x̄ =
∑
x

Bx̄,xφx. (3.162)

The averaging function B(x̄, x) is concentrated near sites x̄ on a coarser
lattice that are a distance s apart in units of the original lattice. We could
simply take values x̄µ = 2xµ with Bx,x̄ = z

∑
µ δx̄±µ̂,x (‘blocking’), or a

smoother Gaussian average B = z
∑

x exp(−(x− x̄)2/2s), with suitable
normalization factors z. The effective action S̄ is defined by

eS̄(φ̄) =
∫

DφeS(φ)
∏
x̄

δ

(
φ̄x̄ −

∑
x

Bx̄,xφx

)
, (3.163)

and it satisfies ∫
Dφ̄ eS̄(φ̄) =

∫
DφeS(φ). (3.164)

After a few iterations the effective action has many types of terms, so
one is led to consider general actions of the form

S(φ) =
∑
α

KαOα(φ). (3.165)

Here Oα denotes terms of the schematic form (∂µφ∂µφ)k, (φ2)k, . . . (k =
1, 2, . . .). The new effective action can then again be written in the form

S̄(φ̄) =
∑
α

K̄αOα(φ̄). (3.166)

The scale factor z in the definition of the averaging function B is chosen
such that the coefficient of ∂µφ̄∂µφ̄ is equal to 1

2 , in lattice units of
the coarse x̄ lattice, in order that the new coefficients K̄α do not run
away after many iterations. Because of the locality of the averaging
function one expects the action S̄ to be local too, i.e. the range of the
couplings in S̄ is effectively finite, and one expects the dependence of
the coefficients K̄α on Kα to be analytic. One iteration thus constitutes
a renormalization-group transformation

K̄α = Tα(K). (3.167)

We can still calculate correlation functions and quantities of physical
interest with the new fields φ̄. For these the highest-momentum contribu-
tions are suppressed by the averaging, as can be seen by expressing them
in terms of the original fields φ, but contributions from physical momenta
which are low compared to the cutoff are unaffected. In particular the
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correlation length in units of the original lattice distance is unchanged.
However, in units of the x̄ lattice distance the correlation length is
smaller by a factor 1/s. Each iteration the correlation length is shortened
by a factor 1/s and when it is of order one we imagine stopping the
iterations. We can then still extract the physics on the momentum scales
of order of the mass scale. If we want to discuss scales ten times higher,
we can stop iterating when the correlation length is still of order ten.

In the infinite dimensional space of coupling constants Kα there is a
hypersurface where the correlation length is infinite, the critical surface.
We want to start our iterations very close to the critical surface because
we want a large correlation length on the original lattice, which means
that we are able to do many iterations before the correlation length is
of order unity. If there is a fixed point K∗,

Tα(K∗) = K∗
α, (3.168)

then we can perform many iterations near such a point without changing
the Kα very much. At such a fixed point the correlation length does not
change, so it is either zero or infinite. We are of course particularly
interested in fixed points in the critical surface. Linearizing about such
a critical fixed point (on the critical surface),

K̄α −K∗
α = Mαβ(Kβ −K∗

β), Mαβ =[∂Tα/∂Kβ ]K=K∗ , (3.169)

it follows that the eigenvalues λi of Mαβ determine the attractive (λi <
1) or repulsive (λi > 1) directions of the ‘flow’. These directions are given
by the corresponding eigenvectors eαi , which determine the combinations
eαi Oα.

One expects only a few repulsive eigenvalues, called ‘relevant’, while
most of them are attractive and called ‘irrelevant’. Eigenvalues λi = 1
are called marginal. Further away from the fixed point the attractive and
repulsive directions will smoothly deform into attractive and repulsive
curves. The marginal directions will also turn into either attractive or
repulsive curves.

Let us start the iteration somewhere on the critical surface. Then
the flow stays on the surface. Suppose that the flow on the surface is
attracted to a critical fixed point K∗. Next let us start very close to
the critical surface. Then the flow will at first still be attracted to K∗,
but, since with each iteration the correlation length decreases by a factor
1/s, the flow moves away from the critical surface and eventually turns
away from the fixed point. Hence the critical fixed point has at least one
relevant direction away from the critical surface.
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Suppose there is only one such relevant direction (and its opposite
on the other side of the critical surface). Then, after many iterations
the flow just follows the flow-line through this relevant direction. The
physics is then completely determined by the flow-line through the
relevant direction: the physical trajectory (also called the renormalized
trajectory). To the relevant direction there corresponds the only free
parameter we end up with: the ratio cutoff/mass, Λ/m (where Λ = π/a).
This ratio is determined by the initial distance to the critical surface,
or equivalently, by the number of iterations and the final distance to
the critical surface where we stop the iterations. However, the mass just
sets the dimensional scale of the theory and there is no physical free
parameter at all under these circumstances. All the physical properties
(e.g. the renormalized vertex functions and the renormalized coupling
λR) are fixed by the properties of the physical trajectory. On the other
hand, each additional relevant direction offers the possibility of an
additional free physical parameter, which may be tuned by choosing
appropriate initial conditions.

Many years of investigation have led to the picture that there is only
one type of critical fixed point in the O(n) symmetric models, which
has only one relevant direction corresponding to the mass as described
above, and one marginal but attractive direction corresponding to the
renormalized coupling. This means that eventually the renormalized
coupling will vanish after an infinite number of iterations (triviality).
This is the reason that the fixed point is called ‘Gaussian’, for the
corresponding effective action is quadratic. However, because the renor-
malized coupling is marginal and therefore changes very slowly near the
critical point, it can still be substantially different from zero even after
very many iterations (very large Λ/m ratios). With a given number of
iterations we can imagine maximizing the renormalized coupling over
all possible initial actions parameterized by Kα, giving an upper bound
on the renormalized coupling. Within its upper bound the renormalized
coupling is then still a free parameter in the models. The situation is
illustrated in figure 3.18.

For the massless theory the correlation length is infinite, so we start
on the critical surface. The flow is attracted to K∗, which determines
the physics outcome. The marginally attractive direction corresponds in
the massless case to the running renormalized coupling λ̄(µ) at some
physical momentum scale µ. Each iteration the maximum momentum
scale is lowered by a factor 1/s and, after many iterations, the ratio
(maximum momentum scale)/cutoff is very small. We stop the iteration
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Fig. 3.18. Renormalization group-flow in φ4 theory. The line C represents the
‘canonical surface’ of actions of the standard form S = 2κ

∑
xµ φxφx+µ̂ −∑

x[φ2
x + λ(φ2

x − 1)2]. The line P represents the physical trajectory. Direction
1 is an irrelevant direction, direction 2 represents the marginal direction
corresponding to the renormalized coupling. Shown are two flows starting from
a point in C, one near the critical surface and on this surface.

when the maximum momentum scale is of order µ. For a given number
of iterations the running coupling can still vary within its upper bound.
As the number of iterations goes to infinity, µ has to go to zero and
λ̄(µ) → 0 because the flow along the marginal direction is attracted
to zero coupling. So the massless theory can be defined by taking the
number of iterations (∝ Λ/µ) large but finite, and λ̄(µ) → 0 as µ→ 0.

The critical fixed points of the real-space renormalization-group trans-
formation give a very attractive explanation of universality.

3.11 Universality at weak coupling

To formulate a general action at weak coupling we start with the form
(3.16) and first make a scale transformation φ = φ′/

√
λ, which brings

the action into the form

S(φ′) =
1
λ

∑
x

[
2κ
∑
µ

φ′
xφ

′
x+µ̂ − φ

′2
x − (φ

′2
x − 1)2

]
. (3.170)

We see that λ appears as a natural expansion parameter for a saddle-
point expansion, while the other coefficients in the action are of order
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one in lattice units. A natural generalization is given by

S(φ′) =
1
λ

∑
x

[
2κ
∑
µ

φ′
xφ

′
x+µ̂ + κ′

∑
µ<ν

φ′
xφ

′
x+µ̂+ν̂ (3.171)

+ κ′′
∑
µ

φ′
xφ

′
x+2µ̂ + κ

′′′∑
µ

φ
′2
x φ

′2
x+µ̂ + · · · −

∞∑
k=1

v2kφ
′2k
x

]
,

which still has the symmetry φ→ −φ. The coefficients in this expression
are supposed to be of order 1.

The parameter λ enters in the same place as Planck’s constant � when
we introduced the path-integral quantization method, before we set it
equal to 1. It can be shown that the expansion in powers of � corresponds
to an expansion in the number of loops in Feynman diagrams. For this
reason the weak-coupling expansion is called the semiclassical expansion.

For convenience in the following we shall use the original continuum-
motivated parameterization (3.13) with the field ϕ = φ/

√
2κ and rewrite

(3.171) in the form

S = − 1
λ0

∑
x

[
1
2
∂µϕ

′
x∂µϕ

′
x + z∂µϕ

′2
x ∂µϕ

′2
x + · · ·+

∑
k

u2k ϕ
′2k
x

]

= −
∑
x

[
1
2
∂µϕx∂µϕx + λ0z∂µϕ

2
x∂µϕ

2
x + · · ·+

∑
k

λk−10 u2kϕ
2k
x

]
,

(3.172)

where ϕ′ =
√
λ0ϕ. Here again the coefficients z, . . ., and u2k are supposed

to be dimensionless numbers of order unity, with the exception of u2
which becomes m2

0c = O(λ0) at the phase boundary (this is special to
the continuum parameterization). It is instructive to rewrite the generic
action (3.172) in physical units,

S = −
∑
x

(
1
2
∂µϕx∂µϕx + a2λ0z∂µϕ

2
x∂µϕ

2
x + · · ·

+
∑
k

a2k−4λk−10 u2kϕ
2k
x

)
, (3.173)

where now ∂µϕx = (ϕx+aµ − ϕx)/a and
∑

x contains a factor a4. The
higher-dimensional operators are accompanied by powers of the lattice
distance a such that the action is dimensionless.

In the classical continuum limit a → 0 we end up with just the ϕ4

theory, with u2 chosen such that m2 = 2u2a−2 remains finite. In other
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Fig. 3.19. Contribution of the bare six-point vertex to Γ(4).

words, the bare two- and four-point vertex functions take their usual
continuum limits and the higher-order bare vertex functions vanish. In
non-trivial orders of the semiclassical expansion, the powers of a in the
bare vertex functions can be compensated by the divergences in the loop
diagrams. For example, consider the effect of the term −

∑
x λ

2
0u6a

2ϕ6x
on the four-point vertex at one-loop order as given by the diagram in
figure 3.19. The bare vertex function in momentum space is −6!λ20u6a

2

and the contribution to Γ(4) is given by

− 1
26!λ20u6a

2

∫ π/a

−π/a

d4l

(2π)4
1

m2
0 + a−2

∑
µ(2− 2 cos alµ)

= −1
26!λ20u6C0,

(3.174)
in the limit a→ 0 (the constant C0 was defined in (3.67)).

By looking at more examples one may convince oneself that the higher-
order bare vertex functions just lead to new expressions for the vertex
functions in terms of the coefficients in the action, which have, however,
the same momentum dependence as before. All lattice artifacts end up
in constants like C0, and in the relation between λR and m2

R to λ0 and
m2
0, such that the renormalized vertex functions, once expressed in terms

of the renormalized coupling λR and renormalized mass parameter mR,
are universal, order by order in perturbation theory.

There is one aspect worth mentioning: the effect of the lattice symme-
tries. Consider the two-point vertex function in one-loop order, which has
the form Γ(2)(p) = a−2f(ap, am0) on dimensional grounds. For a → 0
this takes the form a−2(τa2m2

0 + τµνa
2pµpν) + logarithms. We have

seen in section 3.4 how the logarithms emerge from the integration over
the loop variable near the origin in momentum space where the lattice
expressions take their classical continuum form: the terms containing
logarithms are covariant under continuous rotations. What about the
polynomial τµνpµpν? Its coefficient τµν depends on lattice details, the
loop integrations over the cosines near the edge of the Brillouin zone
in momentum space. Here the lattice symmetries come to help. The
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polynomial has to be invariant under the cubic rotations

R(ρσ): xρ → xσ, xσ → −xρ, xµ	=ρ,σ → xµ (3.175)

and axis reversals

I(ρ): xρ → −xρ, xµ	=ρ → xµ. (3.176)

There is only one such polynomial: p2 = p21 + · · · + p24. So the lat-
tice symmetries and dimensional effects are important in order to get
covariant renormalized vertex functions. Dimensional analysis showed
that the above polynomial is at most of second order and even in
pµ → −pµ because of axis-reversal symmetry. Note that there is more
than one fourth-order polynomial τκλµνpκpλpµpν that is invariant under
the lattice symmetries. Such polynomials go together with dimensional
couplings, such as cutoff effects ∝ a2. The polynomials are called contact
terms, because they correspond in position space to Dirac delta functions
and derivatives thereof.

If we destroy the space–time symmetry of the lattice, e.g. by having
different couplings in the space and time directions, then we may have
to tune the couplings in the action to regain covariance in the scaling
region.

3.12 Triviality and the Standard Model

Arguments that scalar field models are trivial in the sense that they be-
come non-interacting when the regularization is removed were first given
by Wilson, using his formulation of the renormalization group [29, 30].
The arguments imply that triviality should hold within a universality
class of bare actions, e.g. next-to-nearest-neighbor couplings, . . .. In the
previous sections we reviewed some calculations and numerical simula-
tions leading to accurate determination of the renormalized coupling in
the O(4) model in the broken phase. The O(4) model may be identified
with the scalar Higgs sector of the Standard Model, and we shall now
review the implications and applications of triviality.

First we review how the O(4) model is embedded in the Standard
Model. The action for the Higgs field is given by

SH = −
∫

d4x [(Dµϕ)†Dµϕ+m2
0ϕ

†ϕ+ λ0(ϕ†ϕ)2], (3.177)

Dµϕ =
(
∂µ − ig1

1
2
Bµ − ig2W

k
µ

τk
2

)
ϕ, (3.178)
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where τk are the Pauli matrices, ϕ = (ϕu, ϕd)T is the complex Higgs
doublet and Bµ, and W k

µ are the U(1)×SU(2) electroweak gauge fields.
Setting the gauge couplings to zero, the action becomes equivalent to
the O(4) model,

S|g=0 = −
∫

d4x [∂µϕ†∂µϕ+m2
0ϕ

†ϕ+ λ0(ϕ†ϕ)2] (3.179)

= −
∫

d4x

[
1
2
∂µϕ

α∂µϕ
α +

m2
0

2
ϕαϕα +

λ0
4

(ϕαϕα)2
]
,

ϕu =
1√
2
(ϕ2 + iϕ1), ϕd =

1√
2
(ϕ0 − iϕ3). (3.180)

The Higgs field enters also in Yukawa couplings with the fermions. In
terms of a matrix field φ defined by

φ ≡
√

2
(

ϕ∗
d ϕu

−ϕ∗
u ϕd

)
, (3.181)

= ϕ0 + iϕkτk = ρV, V ∈ SU(2), ρ > 0, (3.182)

the Yukawa couplings to the quarks can be expressed as

SY = −
∫

d4x ψ̄cg(PRφyg + ygPLφ
†)ψcg. (3.183)

Here PL,R = (1∓ γ5)/2 are the projectors on the left- and right-handed
fermion fields and the summation is over the QCD colors c and gener-
ations g. The Yukawa couplings y are diagonal in SU(2) doublet space,
y = yu(1+τ3)/2+yd(1−τ3)/2. The Yukawa couplings to the leptons are
similar (in the massless neutrino limit the right-handed neutrino fields
decouple).

If we insert the vacuum expectation value of the scalar field

ϕ =
1√
2

(
0
v

)
, (3.184)

φ = v11, (3.185)

in the action, we find the masses of the vector bosons W and Z and
the photon A, from the terms quadratic in the gauge fields, and the
masses of the fermions from the Yukawa couplings. Choosing renormal-
ization conditions such that the ‘tree-graph’ relations remain valid after
renormalization, we have

m2
W = 1

4g
2
2R v

2
R, m2

Z = 1
4 (g

2
1R + g22R) v2R, mA = 0, (3.186)

mf = yRf vR, m2
H = 2λR v2R, (3.187)
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where f denotes the fermion. From experiment we know

vR = 246 GeV, g1R = 0.34, g2R = 0.64. (3.188)

The electroweak gauge couplings are effectively quite small (recall the
typical factors of g2/π2 that occur in perturbative expansions). The
Yukawa couplings are generally much smaller, as follows from (3.187)
and the fact that the fermion masses are generally small (< 5 GeV)
on the electroweak scale. Even the much heavier top quark, which has
a mass of about 175 GeV has a Yukawa coupling yt ≈ 0.71, which is
not very large either. The (running) QCD gauge coupling of the strong
interactions is also relatively small on the electroweak scale of 100 GeV:
g3R ≈ 1.2.

To discuss the implications of triviality of the O(4) model, let us
assume for the moment that all the gauge and Yukawa couplings can
be treated as perturbations on scales vR or higher. Furthermore, assume
that the Higgs mass is non-zero (we shall comment on these assump-
tions below). It then follows from the triviality of the O(4) model that
the Standard Model itself must be ‘trivial’. Because a non-zero Higgs
mass implies λR �= 0, the triviality leads to the conclusion that the
regularization cannot be removed completely. Consequently the model
must lose its validity on the regularization scale. New physical input is
required on this momentum or equivalent distance scale.

It would obviously be very interesting if we could predict at which scale
new physics has to come into play. To some extent this can be done as
follows. If the Higgs mass is not too large such that λR = m2

H/2vR is in
the perturbative domain, we can use eq. (3.140) to calculate the cutoff
Λ = π/a in the lattice regularization,

Λ = mHC(β1λR)β2/β
2
1 exp(1/β1λR)[1 +O(λR)], (3.189)

where C = π/C ′
1(λ0). The constant C1 is minimal, hence Λ maximal,

for infinite bare coupling λ0. We shall assume this in the following, with
C ′
1(∞) = 6.4 (the value obtained by Lüscher and Weisz). As an example,

mH = 100 GeV gives λR = 0.083 and Λ = 7×1036 GeV. This value for Λ
is far beyond the Planck mass O(1019) GeV for which gravity cannot be
neglected. Certainly new physics comes into play at the Planck scale, so
effectively the regulator scale for mH = 100 GeV may be considered to
be irrelevantly high. On the other hand, when mH increases, Λ decreases.
When λR becomes too large eq. (3.189) can no longer be trusted, but
we still have non-perturbative results for λR and the corresponding
Λ/mH anyhow. For example, for mH = 615 GeV (mH/vR = 2.5) figure
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3.17 shows that 1/amH ≈ 3; hence Λ ≈ 3πmH = 5800 GeV, for
the standard action. For the Symanzik-improved action this would be
Λ ≈ 8300 GeV.

So we can compute a cutoff scale Λ from knowledge of the Higgs
mass, but this Λ is clearly regularization dependent (the dependence
of C in (3.189) on λ0 also indicates a regularization dependence, cf. c
in eq. (3.146)). For values of mH deep in the scaling regime Λ is very
sensitive to changes in mH, but at the edge of the scaling region, e.g. for
Λ/mH ≈ 6, this dependence is greatly reduced.

This supports the idea of establishing an upper bound on the Higgs
mass: given a criterion for allowed scaling violations, there is an upper
bound on mH [31]. For example, requiring Λ/mH > 2π (amH < 1

2 ), we
get an upper bound on mH from results like figure 3.17. This should
then be maximized over all possible regularizations. Figure 3.17 shows
that the standard and Symanzik-improved actions give the bounds
mH/vR � 2.7 and 3, respectively. A way to search through regularization
space systematically has been advocated especially by Neuberger [32]. To
order 1/Λ2 all possible regularizations (including ones formulated in the
continuum) can be represented by a three-parameter action on the F4
lattice, which has more rotational symmetry than does the hypercubic
lattice. It is believed that the results of this program will not lead to
drastic changes in the above result mH/vR � 3.

The Pauli–Villars regularization in the continuum appears to give
much larger Λ’s than the lattice [33]. The problem with relating various
regularization schemes lies in the fact that it is not immediately clear
what the physical implications of a requirement like Λ/mH > 2π are. One
may correlate Λ to regularization artifacts (mimicking ‘new physics’) in
physical quantities, such as the scattering amplitude for the Goldstone
bosons. Requiring, in a given regularization, that such an amplitude
differs by less than 5%, say, from the value obtained in renormalized
perturbation theory, would determine Λ and the corresponding upper
bound on mH in that regularization. The significance of such criteria is
unclear, however.

At this point it is useful to recall one example in which nature (QCD)
introduces ‘new physics’. The O(4) model may also be interpreted as
giving an effective description of the three pions, which are Goldstone
bosons with masses around 140 MeV due to explicit symmetry break-
ing. The expectation value vR is equal to the pion decay constant,
vR = fπ = 93 MeV. The analog of the Higgs particle is the very
broad σ resonance around 900 MeV. The low-energy pion physics is
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approximately described by the O(4) model. However, since mσ/vR ≈ 10
is far above the upper bounds found above, the cutoff needed in this
application of the O(4) model is very low, probably even below mσ, and
the model is not expected to describe physics at the σ scale. Indeed,
there is ‘new physics’ in the form of the well-known ρ resonance with a
mass of 770 MeV and width of about 150 MeV.

Let us now discuss the assumptions of neglecting the effect of the gauge
and Yukawa couplings. The gauge couplings g2,3 are asymptotically free
and their effective size is even smaller on the scale of the cutoff. So it
seems reasonable that their inclusion will not cause large deviations from
the above results. The U(1) coupling g1 is not asymptotically free and
its effective strength grows with the momentum scale. However, its size
on the Planck scale is still small. If we accept not putting the cutoff
beyond the Planck scale anyway, then also the gauge coupling g1 may
be expected to have little influence. The same can be said about the
Yukawa couplings, which are also not asymptotically free (possibly with
the exception of the top-quark coupling).

These expectations have been studied in some detail. An important
result based on O(4) Ward identities is that relations like m2

W = g22v
2
R/4

are still valid to first order in g22 on treating the Higgs self-coupling
non-perturbatively [31, 34]. This may be seen as justifying a definition
of the gR such that (3.186) is exact.

Of course, it is desirable to verify the above expectations non-pertur-
batively. A lattice formulation of the Standard Model is difficult because
of problems with fermions on a lattice (cf. section 8.4). However, lattice
formulations of gauge-Higgs systems and to a certain extent Yukawa
models are possible and have been much studied over the years. The
lattice formulation of gauge-Higgs systems has interesting aspects having
to do with the gauge-invariant formulation of the Higgs phenomenon,
presentation and discussion of which here would lead too far [35].

It turns out that the Yukawa couplings are also ‘trivial’ and that the
maximum renormalized coupling is also relatively weak, see for example
[36]. Numerical simulations have set upper bounds on the masses of
possible hitherto undiscovered generations of heavy fermions (including
heavy neutrinos), as well as the influence of such generations on the
Higgs-mass bound.

Finally, the assumption made above, namely that mH �= 0, is justified
by theoretical arguments for a lower bound on mH, which are based
on the effect that the fermions and gauge bosons induce on the Higgs
self-couplings (for reviews, see [37, 38]).
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3.13 Problems

(i) Six-point vertex
Determine the Feynman diagrams for the six-point vertex func-
tion in the ϕ4 theory in the one-loop approximation. For one
of these diagrams, write down the corresponding mathematical
expression in lattice units (a = 1) and in physical units (a �= 1).
Show that it converges in the limit a→ 0, to the expression one
would write down directly in the continuum.

(ii) Renormalized coupling for mass zero
In the massless O(n) model λR is ill defined. In this case λ̄(µ) is
still a good renormalized coupling. Give the renormalized four-
point vertex function ΓRα1···α4

(p1 · · · p4) in terms of λ̄(µ).
(iii) Critical κ and m0 at weak coupling

What are the critical values of the bare mass m2
0c (in lattice units)

and the hopping parameter κc to first order in λ0 in the weak-
coupling expansion?

(iv) Minimal subtraction
To obtain renormalized vertex functions in the weak-coupling ex-
pansion, wavefunction, mass, and coupling-constant renormaliza-
tions are needed. Here we concentrate on the latter. We substitute
the bare λ0 for a series in terms of a renormalized λ (not to be
confused with the λ in the lattice parameterization (3.15)),

λ0 = λZλ(λ, ln aµ),

Zλ(λ, ln aµ) = 1 +
∞∑
n=1

n∑
k=0

Znkλ
n(ln aµ)k

=
∞∑
k=0

Zk(λ)(ln aµ)k. (3.190)

Terms vanishing as a → 0 have been neglected, order by order
in perturbation theory. From the point of view of obtaining finite
renormalized vertex functions we can be quite liberal and allow
any choice of the coefficients Znk leading to a series in λ for
physical quantities for which the a dependence cancels out.

The renormalized λ depends on a physical scale µ but not on
a, it is a ‘running coupling’, whereas λ0 is supposed to depend on
a but not on µ. Introducing a reference mass µ1, we write

λ0(t) = λ(s)Zλ(λ(s), s− t), t = − ln(aµ1), s = ln(µ/µ1).
(3.191)
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From 0 = dλ0/ds we find(
∂

∂s
+ β

∂

∂λ

)
λZλ(λ, s− t) = 0, (3.192)

where

β =
∂λ

∂s
. (3.193)

Using the above expansion for Zλ in terms of powers (ln aµ)k =
(t− s)k, show that

(k + 1)Zk(λ) + β
∂

∂λ
(λZk(λ)) = 0, k = 0, 1, 2, . . ., (3.194)

and hence that the β function is given by

β(λ) = − Z1(λ)
∂(λZ0(λ))/∂λ

. (3.195)

In a minimal subtraction scheme one does not ‘subtract’ more
than is necessary to cancel out the ln(aµ)’s, and one chooses
Z0(λ) ≡ 1. Notice that there is a whole class of minimal subtrac-
tion schemes: we may replace ln(aµ) by ln(aµ) + c, with c some
numerical constant, since such a c is equivalent to a redefinition
of µ. It follows that the beta function in a minimal subtraction
scheme can be read off from the coefficients of the terms involving
only a single power of ln aµ:

β(λ) = −Z1(λ). (3.196)

Show that in minimal subtraction the beta function β0(λ0) for
λ0 is identical to β(λ0).

Assuming that the beta function is given, solve eq. (3.192) with
the boundary condition Zλ(λ, 0) = Z0(λ) = 1.

(v) Mass for small κ
The hopping result (3.128) shows that the mass parameter mR

is infinite for κ = 0. For small κ we see from (3.122) that
Gxy ∝ (2gκ)Lxy = exp(−mxy|x − y|), where Lxy is the mini-
mal number of steps between x and y. We can identify a mass
mxy = − ln(2gκ) (Lxy/|x−y|). For small κ, compare mxy for x, y
along a lattice direction and along a lattice diagonal with the
results of problem (i) in chapter 2. Compare also with equations
(2.117), (2.120) and (2.122), for the case that x and y are along
a timelike direction in the lattice.
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(vi) An example of a divergent expansion
Instructive examples of convergent and divergent expansions, in
κ and λ, are given by

z(κ, λ) =
∫ ∞

−∞
dφ exp(−κφ2 − λφ4) (3.197)

=
λ−1/4

2

∞∑
k=0

Γ(k/2 + 1/4)
k!

(−κλ−1/2)k (3.198)

= κ−1/2
∞∑
k=0

Γ(2k + 1/2)
k!

(−λκ−2)k. (3.199)

Verify.
(vii) A dimension-six four-point vertex

Show that the dimension-six term −
∑

x a
2λ0z∂µϕ

2
x∂µϕ

2
x in the

general action (3.173) corresponds to the vertex function
0Γ(p1 · · · p4) = −8a2λ0z(−i)2K∗

µ(p1 + p2)K∗
µ(p3 + p4)

+ two permutations, (3.200)

Kµ(p) =
1
ia

(eiapµ − 1). (3.201)

In the classical continuum limit this vertex vanishes but in
one-loop order it contributes to the two-point function Γ(p) (cf.
figure 3.5). Show that this contribution is given by

+4λ0z
[
2a−2 + p2

(
C0 − 1

8

)
+O(a2)

]
, (3.202)

where C0 is given in (3.67) and we used (2π)−4
∫ π
−π

d4l l̂2µ/l̂
2 = 1

4 ,
independent of µ = 1, . . ., 4.

(viii) Langevin equation and Fokker–Planck Hamiltonian
Consider a probability distribution P (φ) for the field φx. One
Langevin time step changes φ into φ′ according to

φ′
x = φx +

√
2δ ηx + δ

∂S(φ)
∂φx

. (3.203)

This corresponds to P (φ) → P ′(φ). The new P ′(φ) may be
determined as follows. Let O(φ) be an arbitrary observable, with
average value

∫
DφP (φ)O(φ). After a Langevin time step the

new average value is
∫
DφP (φ)〈O(φ′(φ))〉η, where 〈· · ·〉η denotes

the average over the Gaussian random numbers ηx. By definition
this new average value is equal to

∫
DφP ′(φ)O(φ), i.e.∫

DφP ′(φ)O(φ) =
∫

DφP (φ)〈O(φ′(φ))〉η. (3.204)
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By expansion in
√
δ, show that

〈O(φ′)〉η = O(φ) + δ
∑
x

[
∂O(φ)
∂φx

∂S(φ)
∂φx

+
∂2O(φ)
∂φx ∂φx

]
+O(δ2),

(3.205)
and consequently that

P ′ − P

δ
=
∑
x

∂

∂φx

[
∂

∂φx
− ∂S

∂φx

]
P (3.206)

≡ −HFP P. (3.207)

The partial differential operator in φ-space, HFP, is called the
Fokker–Planck Hamiltonian. Using

∂

∂φx
eS/2 = eS/2

(
∂

∂φx
+

1
2
∂S

∂φx

)
, (3.208)

show that P̃ defined by P = eS/2P̃ satisfies

P̃ ′ − P̃

δ
= −H̃P̃ +O(δ), (3.209)

H̃ =
∑
x

(
− ∂

∂φx
− 1

2
∂S

∂φx

)(
∂

∂φx
− 1

2
∂S

∂φx

)
.

Show that H̃ is a Hermitian positive semidefinite operator, which
has one eigenvalue equal to zero with eigenvector exp(S/2). Give
arguments showing that, as δ → 0 and the number n of iterations
goes to infinity, with t = nδ → ∞, P will tend to the desired
distribution expS.
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Gauge field on the lattice

Gauge invariance is formulated in position space (as opposed to momen-
tum space), which makes the lattice very well suited as a regulator for
gauge theories. In this chapter we shall first review the classical QED and
QCD actions, then put these theories on the lattice and define gauge-
invariant path integrals. Subsequently a natural quantum-mechanical
Hilbert-space interpretation will be given. Gauge-invariant couplings to
external sources will be shown to correspond to Wilson loops.

4.1 QED action

The QED action for electrons is given by

S =
∫

dx L(x), (4.1)

L(x) = − 1
4Fµν(x)Fµν(x)− ψ̄(x)γµ[∂µ + ieAµ(x)]ψ(x)−mψ̄(x)ψ(x),

(4.2)
where ψ is the electron field, Aµ the photon field and

Fµν(x) = ∂µAν(x)− ∂νAµ(x) (4.3)

is the electromagnetic field-strength tensor. The γµ are Dirac matrices
(cf. appendix D) acting on the ψ’s, e is the elementary charge (e > 0)
and m is the electron mass. It can be useful to absorb the coupling
constant e in the vector potential:

Aµ →
1
e
Aµ. (4.4)

83
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Then L takes the form

L = − 1
4e2

FµνF
µν − ψ̄γµ(∂µ − iqAµ)ψ −mψ̄ψ, (4.5)

q = −1, for the electron, (4.6)

in which the function of e as a coupling constant (characterizing the
strength of the interaction) is separated from the charge q, which char-
acterizes the behavior under gauge transformations.

The action is invariant under gauge transformations,

ψ′(x) = eiω(x)qψ(x), ψ̄′(x) = e−iω(x)qψ̄(x), (4.7)

A′
µ(x) = Aµ(x) + ∂µω(x), (4.8)

S(ψ̄, ψ,A) = S(ψ̄′, ψ′, A′), (4.9)

where ω(x) is real. The phase factors

Ω(x) = eiω(x) (4.10)

form a group, for each x: the gauge group U(1). We may rewrite (4.7)
and (4.8) entirely in terms of Ω(x),

ψ′(x) = Ω(x)qψ(x), ψ̄′(x) = ψ̄(x)Ω∗(x)q, (4.11)

A′
µ(x) = Aµ(x) + iΩ(x)∂µΩ∗(x). (4.12)

The covariant derivative

Dµ ≡ ∂µ − iAµq (4.13)

has the property that Dµψ(x) transforms just like ψ(x) under gauge
transformations:

D′
µψ

′(x) ≡ [∂µ − iqA′
µ(x)]ψ′(x) = Ω(x)qDµψ(x), (4.14)

such that ψ̄γµDµψ = ψ̄′γµD′
µψ

′.
Above we have interpreted the gauge transformations as belonging to

the group U(1). We may also interpret (4.10) as a unitary representation
of the group (under addition) of real numbers, R:

ω(x) → eiω(x)q, ω(x) ∈ R. (4.15)
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Another unitary representation of R could be

ω → eiωT (4.16)

where T is a real number. For the group U(1), however, the mapping

Ω = eiω → D(Ω) = eiωT (4.17)

is a representation only if T is an integer. If T is not an integer, D(Ω) =
ΩT is not single valued as a function of Ω. Even if we restrict e.g. ω ∈
[−π, π] to make Ω → eiωT unique, the product rule would be violated
for some Ω’s. (For example, for T = 1

2 , Ω1Ω2 = Ω3 with ω1,2 = 0.9π,
ω3 = 1.8π− 2π = −0.2π would result in eiω1T eiω2T = ei0.9π �= eiω3T =
e−i0.1π.)

If the gauge group were necessarily U(1), charge would have to be
quantized. Suppose there are fields ψr transforming with the represen-
tations T = qr = integer:

ψ′
r(x) = Dr(x)ψr(x), Dr(x) = Ω(x)qr . (4.18)

Then we have to use a corresponding covariant derivative Dr
µ,

Dr
µ = ∂µ − iqrAµ(x), (4.19)

such that the action density

L = − 1
4e2

FµνF
µν −

∑
r

ψ̄rγ
µDr

µψr −
∑
r

mrψ̄rψr (4.20)

is U(1)-gauge invariant. It follows that the charges eqr are a multiple
of the fundamental unit e, which is called charge quantization. If the
gauge group were R, there would be no need for charge quantization. In
Grand Unified Theories the gauge group of electromagnetism is a U(1)
group which is embedded as a subgroup in the Grand Unified gauge
group. This could provide the explanation for the quantization of charge
observed in nature.

4.2 QCD action

The QCD action has the form

S = −
∫

d4x

(
1

4g2
Gk

µνG
kµν + ψ̄γµDµψ + ψ̄mψ

)
. (4.21)
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The gauge group is SU(3), the group of unitary 3 × 3 matrices with
determinant equal to 1. An element of SU(3) can be written as

Ω = exp(iωktk), (4.22)

where the tk, k = 1, . . ., 8, are a complete set of Hermitian traceless 3 ×
3 matrices. Then Ω−1 = Ω† and

Tr tk = 0 ⇒ det Ω = exp(Tr ln Ω) = 1. (4.23)

The tk are the generators of the group in the defining representation.
A standard choice for these matrices is patterned after the SU(2) spin
matrices 1

2σk in terms of the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (4.24)

namely,

tk = 1
2λk, (4.25)

with

λk =


σk 0

0
0 0 0


, k = 1, 2, 3, λ8 =

1√
3


 1 0 0

0 1 0
0 0 −2


,

λ4 =


 0 0 1

0 0 0
1 0 0


, λ5 =


 0 0 −i

0 0 0
i 0 0


,

λ6 =


 0 0 0

0 0 1
0 1 0


, λ7 =


 0 0 0

0 0 −i
0 i 0


. (4.26)

These λ’s are the well-known Gell-Mann matrices. They have the prop-
erties

Tr (tktl) = 1
2δkl, (4.27)

[tk, tl] = ifklmtm, (4.28)

where the fklm are the real structure constants of SU(3), totally anti-
symmetric in k, l and m (cf. appendix A.1).
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The quark fields ψ and ψ̄ are in the defining representation of SU(3).
They carry three discrete indices,

ψαaf :
α = 1, . . ., 4, Dirac index;
a = 1, 2, 3 (or red, white, blue), color index;
f = 1, . . ., nf (or u, d, s, c, b, t), flavor index.

(4.29)

The gauge transformations and the covariant derivative Dµ act on a, the
Dirac gamma matrices act on α and the diagonal mass matrix m acts
on f ,

m = diag(mu,md,ms, . . .). (4.30)

We shall now explain the covariant derivative Dµ and the gauge-field
term GµνGµν . It is instructive to assume for the moment that the ψ

fields transform under some arbitrary unitary irreducible representation
of the color group SU(3), not necessarily the defining representation.
For notational convenience we shall still denote the matrices by Ω; they
can be written as

Ω = eiωkTk , (4.31)

with Tk the generators in the chosen representation, which satisfy

[Tk, Tl] = ifklmTm, (4.32)

Tr (TkTl) = ρ δkl. (4.33)

For the defining representation ρ = 1
2 , for the adjoint representation

ρ = 3 (an expression for ρ is given in (A.47) in appendix A.2).
We assume that Dµ has a form similar to (4.13). However, here it is

a matrix,

Dµab = δab∂µ − iGµ(x)ab, or Dµ = ∂µ − iGµ. (4.34)

The matrix gauge field Gµ(x) should transform such that, under the
gauge transformation

ψ′(x) = Ω(x)ψ(x), ψ̄′(x) = ψ̄(x)Ω†(x), (4.35)

Dµψ transforms just like ψ,

D′
µψ

′(x) = Ω(x)Dµψ(x) = Ω(x)Dµ

[
Ω†(x)ψ′(x)

]
. (4.36)

Treating ∂µ as an operator gives the requirement

D′
µ = ΩDµΩ†, (4.37)
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or more explicitly

∂µ − iG′
µ = Ω(∂µ − iGµ)Ω†

= Ω∂µΩ† + ∂µ − iΩGµΩ†. (4.38)

It follows that Gµ has to transform as

G′
µ = ΩGµΩ† + iΩ∂µΩ†. (4.39)

Note that this reduces to (4.12) for an Abelian group.
What is the general form of Gµ(x)? How to parameterize this matrix

field? Suppose Gµ = 0. Then G′
µ = iΩ∂µΩ†, so the parameterization

of Gµ must at least incorporate the general form of iΩ∂µΩ†. We shall
now show that the latter can be written as a linear superposition of the
generators Tm. We write

iΩ∂µΩ† = iΩ
∂

∂ωk
Ω†∂µωk = Sk∂µω

k, (4.40)

where

Sk(ω) = iΩ(ω)
∂

∂ωk
Ω†(ω). (4.41)

Let ω + ε be a small deviation of ω and consider

Ω(ω)Ω†(ω + ε) = Ω(ω)
[
Ω†(ω) + εk

∂

∂ωk
Ω†(ω) +O(ε2)

]
= 1− iεkSk(ω) +O(ε2). (4.42)

The left-hand side of this equation is only a small deviation of the unit
matrix, so it is possible to write it as 1 − iϕm(ω, ε)Tm, where ϕm is of
order ε, so ϕm(ω, ε) = Skm(ω)εk. Hence, Sk(ω) can be written as

Sk(ω) = Skm(ω)Tm. (4.43)

It will be shown in appendix A.2 (eq. (A.43)) that the coefficients Skm(ω)
are independent of the representation chosen for Ω. It follows from (4.41)
and (4.43) that the Ansatz

Gµ(x) = Gm
µ (x)Tm (4.44)

incorporates the general form of iΩ∂µΩ†. Furthermore, since the gener-
ators Tm transform under the adjoint representation of the group (cf.
appendix A.2)

ΩTmΩ† = R−1
mnTn, (4.45)
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the form (4.44) is preserved under the gauge transformation (4.39):

ΩGm
µ TmΩ† + iΩ∂µΩ† =

(
Gm

µ R
−1
mn + Skn∂µω

k
)
Tn,

G
′n
µ = RnmG

m
µ + Skn∂µω

k, (4.46)

where we used R−1 = RT. The Rnm, Snm and ωk are real, so we may
take (4.44) as the parameterization of Gµ(x) with real fields Gm

µ (x).
Note that the transformation law for Gm

µ (x) depends only on the group
(its adjoint representation), not on the particular representation chosen
for Ω.

The gauge-field Gµ transforms inhomogeneously under the gauge
group. The field tensor Gµν is constructed out of Gµ such that it
transforms homogeneously,

G′
µν = ΩGµνΩ†. (4.47)

Analogously to the electrodynamic case (4.3), Gµν can be written as

Gµν = DµGν −DνGν = ∂µGν − ∂νGµ − i[Gµ, Gν ]. (4.48)

Using operator notation, this can also be written as

Gµν = [Dµ, Dν ]. (4.49)

Indeed, using (4.37) we have

[D′
µ, D

′
ν ] = D′

µD
′
ν − (µ↔ ν) = ΩDµDνΩ† − (µ↔ ν) = Ω[Dµ, Dν ]Ω†,

(4.50)
which verifies the transformation rule (4.47). The matrix field Gµν(x)
can be written in terms of Gm

µ (x), using (4.44) and (4.32):

Gµν = Gk
µνTk, (4.51)

Gk
µν = ∂µG

k
ν − ∂νG

k
µ + fkmnG

m
µ G

n
ν . (4.52)

According to (4.45) and (4.47), Gk
µν transforms in the adjoint represen-

tation of the group. The combination

Gk
µνG

kµν =
1
ρ

Tr (GµνG
µν) (4.53)

is gauge invariant (ρ has been defined in (4.33)). Notice that the right-
hand side does not depend on the representation chosen for Ω.

The action (4.21) can now be written in more detail,

S = −
∫

d4x

[
1

4g2
Gk

µνG
kµν + ψ̄γµ

(
∂µ − iTmG

m
µ

)
ψ + ψ̄mψ

]
. (4.54)
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Since Gk
µνG

kµν contains terms of higher order than quadratic in Gm
µ ,

the non-Abelian gauge field is self-coupled. The coupling to the ψ field
is completely determined by the generators Tm, i.e. by the representation
Ω under which the ψ’s transform. For the quark fields, Ω is the defining
representation Tm → tm.

4.3 Lattice gauge field

We shall mimic the steps leading to the QCD action (4.54) with lattice
derivatives,1 except for choosing to work in Euclidean space–time. The
QCD action has a straightforward generalization to SU(n) gauge groups
with n �= 3. We shall assume the gauge group G = U(1) or SU(n). The
case of the non-compact group G = R will be discussed later.

Let the fermion field ψx be associated with the sites xµ = mµa of the
lattice, analogously to the scalar field. Under local gauge transformations
it transforms as

ψ′
x = Ωxψx, (4.55)

where as before Ωx is an irreducible representation of the gauge group
G. Since the lattice derivative

∂µψx = (ψx+aµ̂ − ψx)/a (4.56)

contains ψ both at x and at x+ aµ̂, we try a covariant derivative of the
form

Dµψx =
1
a
(ψx+aµ̂ − ψx)− i(C̃µxψx + Cµxψx+aµ̂). (4.57)

Here Cµx and C̃µx are supposed to compensate for the lack of gauge
covariance of the lattice derivative, analogously to the matrix gauge
potential Gµ(x). The covariant derivative has to satisfy

D′
µψ

′
x = ΩxDµψx, (4.58)

or

1
a
(ψ′

x+aµ̂ − ψ′
x)− i(C̃

′
µxψ

′
x + C

′
µxψx+aµ̂)

= Ωx

[
1
a
(ψx+aµ̂ − ψx)− i(C̃µxψx + Cµxψx+aµ̂)

]
(4.59)

= Ωx

[
1
a
(Ω†

x+aµ̂ψ
′
x+aµ̂ − Ω†

xψ
′
x0− i(C̃µxΩ†

xψ
′
x + CµxΩ

†
x+aµ̂ψ

′
x+aµ̂)

]
.
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Comparing coefficients of ψ′
x and ψ′

x+aµ̂ gives

C̃
′
µx = ΩxC̃µxΩ†

x, (4.60)

C
′
µx = ΩxCµxΩ

†
x+aµ̂ +

i

a
(ΩxΩ

†
x+aµ̂ − 1) (4.61)

= ΩxCµxΩ
†
x+aµ̂ + Ωxi∂µΩ†

x. (4.62)

It is consistent to set

C̃µx ≡ 0. (4.63)

For Cµx we then find the transformation rule (4.62), which resembles the
transformation behavior of the continuum gauge potentials quite closely.
By analogy with the continuum theory we try for the field strength the
form

Cµνx = DµCνx −DνCµx

=
1
a
(Cν,x+aµ̂ − Cνx)− iCµxCν,x+aµ̂ − (µ↔ ν). (4.64)

We find that Cµνx indeed transforms homogeneously,

C ′
µνx = ΩxCµνxΩ

†
x+aµ̂+aν̂ , (4.65)

and consequently Tr (CµνxC
†
µνx) is gauge invariant ((4.62) implies that

Cµνx cannot be Hermitian in general).
The question is now that of how to parameterize the matrix Cµx in a

way consistent with the transformation rule (4.62). This can be answered
by looking at the case Cµx = 0, as in the continuum in the previous
section. Then

C ′
µx = Ωxi∂µΩ†

x =
i

a
(ΩxΩ

†
x+aµ̂ − 1), (4.66)

which suggests that we write

Cµx =
i

a
(Uµx − 1), (4.67)

where Uµx is a unitary matrix of the same form as Ωx, i.e. it is a
group element in the same representation of the gauge group G. This
parameterization of Cµx is indeed consistent with the transformation
rule (4.62), since it gives

U ′
µx = ΩxUµxΩ

†
x+aµ̂. (4.68)

To connect with the gauge potentials Gk
µ(x) in the continuum we write

Uµx = e−iaGµx , Gµx = Gk
µxTk, (4.69)



92 Gauge field on the lattice

and identify

Gk
µx = Gk

µ(x). (4.70)

More precisely, let Gk
µ(x) be smooth gauge potentials in the continuum

which we evaluate at the lattice points xµ = mµa. Then aGµ(x) → 0 as
a→ 0, and by construction

Cµx → Gµ(x), Cµνx → Gµν(x), (4.71)

where Gµν(x) is the continuum form (4.48).
A possible lattice-regulated gauge-theory action is now given by

S = −
∑
x

[
1
2
(ψ̄xγµDµψx − ψ̄xγµD

†
µxψx) + ψ̄xmψx

+
1

4ρg2
Tr (CµνxC

†
µνx)

]
, (4.72)

with ρ the representation-dependent constant defined in (4.33). Evi-
dently, upon inserting ψx = ψ(x), ψ̄x = ψ̄(x) and Gk

xµ = Gk
µ(x) with

smooth functions ψ(x), ψ̄(x) and Gk
µ(x), this action reduces to the

continuum form (4.54) in the limit a → 0. The action (4.72) is not yet
satisfactory in its fermion part: it describes too many fermions in the
scaling region – this is the notorious phenomenon of ‘fermion doubling’.
We shall come back to this in a later chapter.

The transformation property (4.68) can be written in a more sugges-
tive form by using the notation

Ux,x+aµ̂ ≡ Uµx, Ux+aµ̂,x ≡ U†
µx, (4.73)

because then

U ′
x,y = ΩxUx,yΩ†

y, y = x+ aµ̂. (4.74)

This notation suggests that it is natural to think of Ux,x+aµ̂ as belonging
to the link (x, x+aµ̂) of the lattice, rather than having four U1x, . . ., U4x
belonging to the site x, as illustrated in figure 4.1.

In fact, there is a better way of associating Ux,y with the continuum
gauge field Gµ(x): by identifying Ux,y with the parallel transporter from
y to x along the link (x, y). The parallel transporter U(Cxy) along a
path Cxy from y to x is defined by the path-ordered product (in the
continuum)

U(Cxy) = P exp

[
−i
∫
Cxy

dzµGµ(z)

]
, (4.75)
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Fig. 4.1. Illustration of Uµx and U†
µx.

where P denotes the path ordering. The path-ordered product can
be defined by dividing the path into N segments (zn, zn + dzn), n =
0, . . ., N − 1, and taking the ordered product,

U(Cxy) = lim
N→∞

exp

[
−i
∫ x

zN−1

dzµGµ(z)

]
· · · exp

[
−i
∫ zn+1

zn

dzµGµ(z)
]

· · · exp
[
−i
∫ z1

y

dzµGµ(z)
]

= lim
N→∞

[1− i dz0µGµ(z0)] · · ·[1− i dzN−1µGµ(zN−1)]. (4.76)

Under a gauge transformation G′
µ(z) = Ω(z)Gµ(z)Ω†(z)+Ω(z)i∂µΩ†(z)

we have

1− i dznµG
′
µ(zn) = Ω(zn)[Ω†(zn)− i dznµGµ(zn)Ω†(zn)

+ dznµ ∂µΩ†(zn)] (4.77)

= Ω(zn)[1− i dznµGµ(zn)]Ω†(zn+1) +O(dz2),

such that all the Ω’s cancel out in U(Cxy) except at the end points,

U ′(Cxy) = Ω(x)U(Cxy)Ω†(y). (4.78)

Hence, U(Cxy) parallel transports vectors under the gauge group at y
to vectors at x along the path Cxy. It is known that this way of associ-
ating Ux,y with the continuum gauge field via U(Cxy) leads to smaller
discretization errors in the action than does use of (4.69) and (4.70). For
our lattice theory, however, the basic variables are the Ux,x+aµ̂ ≡ Uµx,
one for each link (x, x+ aµ̂).

Expressing everything in terms of Ux,x+aµ̂ simplifies things and makes
the transformation properties more transparent:

Dµψx =
1
a
(Ux,x+aµ̂ψx+aµ̂ − ψx), (4.79)

Cµνx =
i

a2
(Ux,x+aµ̂Ux+aµ̂,x+aµ̂+aν̂ − Ux,x+aν̂Ux+aν̂,x+aµ̂+aν̂),
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Fig. 4.2. Illustration of the terms in the action TrUµνx (a), ψ̄xUµxψx+aµ̂ (b)
and ψ̄x+aµ̂U

†
µxψx (c).

Tr (CµνxC
†
µνx) =

1
a4

Tr (2− Uµνx − U†
µνx),

Uµνx = U†
νµx = Ux,x+aµ̂Ux+aµ̂,x+aµ̂+aν̂Ux+aµ̂+aν̂,x+aν̂Ux+aν̂,x.

We see in (4.79) how the covariant derivative involves parallel transport.
The action can be written as

S = −
∑
xµν

1
2g2ρa4

Tr (1− Uµνx)

−
∑
xµ

1
2a

(ψ̄xγµUµxψx+aµ̂ − ψ̄x+aµ̂γµU
†
µxψx), (4.80)

which is illustrated in figure 4.2. The arrows representing Uµx and
U†
µx are chosen such that they flow from ψ to ψ̄, which conforms to

a convention for the Feynman rules in the weak-coupling expansion.
We continue with the theory without fermions. The elementary square

of a hypercubic lattice is called a plaquette. It may be denoted by p

(p = (x, µ, ν;µ < ν) and the product of the U ’s around p is denoted by
Up. The gauge-field part of the action can then be written as

S(U) =
1
g2ρ

∑
p

ReTrUp + constant, (4.81)

in lattice units (a = 1). This action depends on the representation of the
gauge group chosen for the U ’s, which in our derivation was dictated by
the representation carried by ψ and ψ̄. This is in contrast to the classical
action which is independent of the group representation, as we saw in
the previous section (below (4.46)).

To make the representation dependence explicit, we will from now
on assume U to be in the defining representation of the gauge group.
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Supposing that (4.81) refers to representation Dr(U), we replace ρ→ ρr
and TrUp → χr(Up), with χr the character (trace) in the representation
r. A more general lattice action may involve a sum over representations
r,

S(U) =
∑
p

∑
r

βr
Reχr(Up)
χr(1)

, (4.82)

χr(U) ≡ Tr [Dr(U)], (4.83)

which reduces to the classical gauge-field action in the classical contin-
uum limit, with

1
g2

=
∑
r

βrρr
dr

, dr = χr(1), (4.84)

where dr is the dimension of representation r. For example, in an action
containing both the fundamental irrep f and the adjoint irrep a of the
gauge group SU(n), we have df = n, ρf = 1/2, ρa = n, da = n2 − 1 (cf.
appendices A.1 and A.2), and

1/g2 = βf/2n+ βan/(n2 − 1). (4.85)

The simplest lattice formulation of QCD has a plaquette action with only
the fundamental representation. It is usually called the Wilson action
[39].

4.4 Gauge-invariant lattice path integral

We continue with a pure gauge theory (i.e. containing only gauge fields).
The dynamical variables Uµx are in the fundamental representation of
the gauge group G and the system is described by the gauge-invariant
action S(U). If the gauge group is compact we can define a lattice path
integral by

Z =
∫

DU exp[S(U)], DU =
∏
xµ

dUµx. (4.86)

Here dU for a given link is a volume element in group space. For a
compact group the total volume of group space is finite and therefore Z
is well defined for a finite lattice. We want Z to be gauge invariant, so
we want the integration measure DU to satisfy

DU = DUΩ, UΩ
µx = ΩxUµxΩ

†
x+aµ̂. (4.87)
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On a given link with link variable U , gauge transformations U ′ = Ω1UΩ†
2

are combinations of left and right translations in group space:

U ′ = ΩU, left, (4.88)

U ′ = UΩ, right. (4.89)

A measure that is invariant under such translations in group space is
well known: the Hurewicz or Haar measure. It can be written in a form
familiar from general relativity,

dU = ν
√

det g
∏
k

dαk, (4.90)

where the αk are coordinates on group space, U = U(α), and gkl is a
metric on this space, of the form

gkl =
1
ρ

Tr
(
∂U

∂αk

∂U†

∂αl

)
, ρ =

1
2
. (4.91)

The normalization constant ν will be chosen such that∫
dU = 1. (4.92)

The metric (4.91) is covariant under coordinate transformations αk =
fk(α′),

gkl = gmn
∂α′m

∂αk

∂α′n

∂αl
. (4.93)

The Jacobian factors of coordinate transformations cancel out in (4.90),
such that dU ′ = dU . Since left and right translations are special cases
of coordinate transformations, e.g. U = Ω†U ′ corresponds to U(α) =
Ω†U(α′), the measure is again invariant, dU ′ = dU , or

d(ΩU) = d(UΩ) = dU. (4.94)

The above may be illustrated by the exponential parameterization.
For the one-dimensional group U(1) we have

U = exp(iα), gkl = 1,
∫

dU =
∫ π

−π

dα

2π
= 1. (4.95)

For the (n2 − 1)-dimensional group SU(n) we have

U = exp(iαktk), gkl = SkmSlm, (4.96)

where we used (4.41), (4.43) and ∂U†/∂αk = −U† ∂U/∂αk U†, which
follows from differentiating UU† = 1. An explicit form for Skm is given
in (A.43) in appendix A.2.
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This completes the definition of the partition function Z. We shall
introduce gauge-invariant observables later. One such object we know
already: the plaquette field TrUµνx, or more simply TrUp. It is a
composite field in QCD, which will later be seen to describe ‘bound
states of glue’ – glueballs. Expectation values are defined as usual, for
example

〈TrUp TrUp′〉 = Z−1
∫

DU exp[S(U)] TrUp TrUp′ . (4.97)

We stress at this point that gauge fixing (which is familiar in the formal
continuum approach) is not necessary with the non-perturbative lattice
regulator, for a compact gauge group. The need for gauge fixing shows
up again when we attempt to make a weak-coupling expansion.

4.5 Compact and non-compact Abelian gauge theory

Let us write the formulas obtained so far more explicitly for U(1):

Uµx = exp(−iaAµx), (4.98)

Uµνx = exp[−ia(Aµx +Aνx+aµ̂ −Aµx+aν̂ −Aνx)] (4.99)

= exp(−ia2Fµνx), (4.100)

Fµνx = ∂µAνx − ∂νAµx, (4.101)

S = − 1
4g2a4

∑
xµν

[2− 2 cos(a2Fµνx)], (4.102)

∫
DU =

∏
xµ

∫ π

−π

d(aAµx)
2π

. (4.103)

Gauge transformations Ω = exp(iωx) are linear for the gauge potentials,

U ′
µx = ΩxUµxΩ

†
x+aµ̂, (4.104)

aA′
µx = aAµx + ωx+aµ̂ − ωx, mod(2π), (4.105)

except for the mod(2π).
We used the fundamental representation in S. The more general form

(4.82) is a sum over irreps r = integer, with Dr(U) = exp(−iraA) =
χr(U), dr = 1, and ρr = r2, which takes the form of a Fourier series:

S =
1

2a4
∑
xµν

∑
r

βr cos(ra2Fµνx) + constant, (4.106)

1
g2

=
∞∑

r=−∞
βrr

2. (4.107)
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We could for example choose the βr such that

S = − 1
4g2
∑
xµν

[
F 2
µνx mod(2π/a2)

]
. (4.108)

The above is called the compact U(1) gauge theory. It is clear that
there is also a non-compact version of the Abelian gauge theory, with
gauge transformations ωx ∈ R acting on Aµx as in (4.105), but without
the mod(2π), aA′

µx = aAµx + ωx+aµ̂ − ωx, with Fµνx as in (4.101), and
the simple action

S(A) = − 1
4g2
∑
xµν

F 2
µνx. (4.109)

In this case the gauge-invariant measure is given by

∫
DA =

∏
xµ

∫ ∞

−∞
d(aAµx). (4.110)

However, the path integral

Z =
∫

DA exp[S(A)] (4.111)

is ill defined because it is divergent. The reason is that
∫
DA con-

tains also an integration over all gauge transformations, which are
unrestrained by the gauge-invariant weight expS(A). As a consequence
Z is proportional to the volume of the gauge group

∫
DΩ. For the

non-compact group G = R this is
∏

x

∫∞
−∞ dωx, which is infinite. On the

other hand, this divergence formally cancels out in expectation values of
gauge-invariant observables and e.g. Monte Carlo computations based
on (4.111) still make sense.

To define (4.111) for the non-compact formulation, gauge fixing is
needed. A suitable partition function is now given by

Z =
∫

DA exp

[
S(A)− 1

2g2ξ

∑
xµ

(∂′
µAµx)2

]
, (4.112)

where ∂′
µ = −∂†

µ is the backward derivative, ∂′
µAµx = (Aµx−Aµx−aµ̂)/a.

See problem 5(i) for more details.
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4.6 Hilbert space and transfer operator

We shall show here that the path integral

Z =
∫ (∏

xµ

dUµx

)
eS(U) (4.113)

can be expressed as the trace of a positive Hermitian transfer operator
T̂ in Hilbert space,

Z = Tr T̂N , (4.114)

where N is the number of time slices, thus providing the quantum-
mechanical interpretation.

This Hilbert space is set up in the coordinate representation. The
coordinates are Umx, m = 1, 2, 3, corresponding to the spatial link
variables. A state |ψ〉 has a wavefunction ψ(U) = 〈U |ψ〉 depending on
the Umx. The basis states |U〉 are eigenstates of operators (Ûmx)ab, where
a and b denote the matrix elements (a, b = 1, . . ., n for SU(n)):

(Ûmx)ab|U〉 = (Umx)ab|U〉. (4.115)

In a parameterization U = U(α) with real parameters αk one may
think of the usual coordinate representation for Hermitian operators α̂k:
α̂k|α〉 = αk|α〉, Ûab = U(α̂)ab, and |U〉 ≡ |α〉. The Hermitian conjugate
matrix U† corresponds to the operator Û†

ba = U∗
ba(α̂). We continue with

the notation |U〉 for the basis states. The basis is orthonormal and
complete

〈U ′|U〉 =
∏
x,m

δ(U ′
mx, Umx), (4.116)

1 =
∫ (∏

x,m

dUmx

)
|U〉〈U |, (4.117)

such that

〈ψ1|ψ2〉 =
∫ (∏

x,m

dUmx

)
ψ∗
1(U)ψ2(U). (4.118)

The delta function δ(U ′, U) corresponds to the measure dU such that∫
dU δ(U,U ′) = 1, which can of course be made explicit in a parameter-

ization U(α).
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After this specification of Hilbert space the trace in Z = Tr T̂N can
be written more explicitly as

Tr T̂N =
N−1∏
n=0

[∫ (∏
x,m

dUmxn

)
〈Un+1|T̂ |Un〉

]
, (4.119)

where n indicates the U variables in time slice n. Notice that the timelike
link variables U4xn are not indicated explicitly in (4.119); these are
hidden in T̂ .

We now have to work the path integral (4.113) into the form (4.119).
It is useful for later to allow for different lattice spacings in time and
space, at and a. Using a notation in which the xµ are in lattice units
(i.e. x and x4 = n become integers), but keeping the a’s, the pure-
gauge part of the action (4.80),

∑
xµν TrUµνx/2g2ρa4, takes the form

a3at
∑

x,n[
∑

j 2 Re TrU4jxn/g2a2t +
∑

i<j 2 Re TrUijxn/g
2a2] (ρ = 1/2

in the fundamental representation), or

S =
2
g2

(
a

at

∑
pt

Re TrUpt
+
at
a

∑
ps

Re TrUps

)
, (4.120)

where ps and pt are spacelike and timelike plaquettes, Ups = Uijxn,
Upt

= U4jxn. All the lattice-distance dependence is in the ratio at/a.
This dependence is really a coupling-constant dependence, one coupling
g2a/at for the timelike plaquettes and another g2at/a for the spacelike
plaquettes. Inspection of (4.113) with action (4.120) shows that T̂ can
be identified in the form

T̂ = e−
1
2atŴ T̂ ′

K e−
1
2atŴ , (4.121)

Ŵ =
−2
g2a

∑
ps

ReTr Ûps
, (4.122)

with the operator T̂ ′
K given by the matrix elements

〈U ′|T̂ ′
K |U〉 =

∏
x,m

∫
dU4x exp

[
2a
g2at

ReTr (UmxU4x+m̂U
′†
mxU

†
4x)
]
.

(4.123)
The way the U4x enter in (4.123) can be viewed as a gauge transforma-
tion on Umx,

UΩ
mx = ΩxUmxΩ†

x+m̂, (4.124)

with Ωx = U†
4x. Equivalently we can view this as a gauge transforma-

tion on U ′
mx. There is an integral over all such gauge transformations.
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We can write this in operator notation as follows. Define the gauge-
transformation operator D̂(Ω) by

D̂(Ω)|U〉 = |UΩ†〉. (4.125)

Then

〈U |D̂(Ω)|ψ〉 = 〈UΩ|ψ〉 = ψ(UΩ). (4.126)

This operator is a unitary representation of the gauge group of time-
independent gauge transformations in Hilbert space. Define furthermore
P̂0 by

P̂0 =
∫ (∏

x

dΩx

)
D̂(Ω). (4.127)

It follows that T̂ ′
K can be written as

T̂ ′
K = T̂K P̂0 = P̂0T̂K , (4.128)

with T̂K given by

〈U ′|T̂K |U〉 =
∏
x,m

exp
[

2a
g2at

Re Tr (UmxU
′†
mx)
]
. (4.129)

The operator P̂0 is the projector onto the gauge-invariant subspace of
Hilbert space. This follows from the fact that D̂(Ω) is a representation
of the gauge group,

D̂(Ω1)D̂(Ω) = D̂(Ω1Ω), (4.130)

D̂(Ω1)P̂0 =
∫ (∏

x

dΩx

)
D̂(Ω1Ω) =

∫ (∏
x

d(Ω1xΩx)

)
D̂(Ω1Ω)

= P̂0 (4.131)

= P̂0D̂(Ω1), (4.132)

P̂ 2
0 = P̂0. (4.133)

We used the invariance of the integration measure in group space and
the normalization

∫
dΩx = 1. It follows that a state |ψ〉 of the form

|ψ〉 = P̂0|φ〉 is gauge invariant, D̂(Ω)|ψ〉 = |ψ〉. It also follows easily by
taking matrix elements that P̂0 commutes with Ŵ .

We shall show in the next section that T̂K is a positive operator. It
can therefore be written in the from

T̂K = e−atK̂ , (4.134)
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with K̂ a Hermitian operator.
Summarizing, the path integral leads naturally to a quantum-mech-

anical Hilbert space and a transfer operator

T̂ = P̂0 e
− 1
2atŴ e−atK̂ e−

1
2atŴ = e−

1
2atŴ e−atK̂ e−

1
2atŴ P̂0 , (4.135)

which is positive and defines therefore a Hermitian Hamiltonian Ĥ,

T̂ = P̂0 e
−atĤ = e−atĤ P̂0. (4.136)

We recognize a kinetic part (K̂) and potential part (Ŵ ), analogously to
the example of the scalar field. The form (4.129) for the matrix elements
of T̂K shows a plaquette in the temporal gauge U4x = 1. The path integral
has automatically provided the supplementary condition that has to be
imposed in this ‘gauge’: physical states must be gauge invariant (i.e.
invariant under time-independent gauge transformations),

|phys〉 = P̂0|phys〉, D̂(Ω)|phys〉 = |phys〉. (4.137)

In the continuum this corresponds to the ‘Gauss law’ condition (cf.
appendix B).

4.7 The kinetic-energy operator

As we can see from its definition (4.129), the kinetic-energy transfer op-
erator T̂K is a product of uncoupled link operators. So let us concentrate
on a single link (x,x+m̂) and simple states |ψ〉 for which ψ(U) depends
only on Umx. To simplify the notation we write U = Umx. Then the
single-link kinetic transfer operator is given by

〈U ′|T̂K1|U〉 = exp
[
κReTr (UU ′†)

]
, (4.138)

κ =
2a
g2at

, (4.139)

where the subscript 1 reminds us of the fact that we are dealing with a
single link.

Realizing that ReTr (UU ′†) may be taken as the distance between
the points U and U ′ in group space, we note that (4.138) is analogous
to the expression (2.15) in quantum mechanics, which also involved a
translation in the coordinates. So we may expect to gain understanding
here too by introducing translation operators. Left and right translations
L̂(V ) and R̂(V ) can be defined by

L̂(V )|U〉 = |V †U〉, (4.140)

R̂(V )|U〉 = |UV 〉. (4.141)
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By comparing matrix elements we see that T̂K1 can be written as

T̂K1 =
∫

dV exp[κRe TrV ] L̂(V ), (4.142)

=
∫

dV exp[κRe TrV ] R̂(V ). (4.143)

The eigenstates of the translation operators can be found among the
eigenstates of the Laplacian on group space, as summarized in appendix
A.3 (eq. (A.76)). The eigenfunctions are the finite-dimensional unitary
irreducible representations (irreps) Dr

mn(U) of the group,

U → Dr
mn(U) = 〈U |rmn〉. (4.144)

Here r labels the irreps and m and n label the matrix elements. These
unitary matrices form a complete orthogonal set of basis functions,∫

dU Dr′
m′n′(U)∗Dr

mn(U) = δr′rδm′mδn′n
1
dr
, (4.145)∑

rmn

drD
r
mn(U)Dr

mn(U ′)∗ = δ(U,U ′), (4.146)

where dr is the dimension of the representation (Dr(U) is a dr × dr
matrix). A function ψ(U) can be expanded as

ψ(U) = 〈U |ψ〉 =
∑
rmn

ψrmndrD
r
mn(U), (4.147)

with the inversion

ψrmn = 〈rmn|ψ〉 =
∫

dU Dr
mn(U)∗ψ(U). (4.148)

The action of T̂K1 on |ψ〉 now follows from

〈U |T̂K1|ψ〉 =
∫

dV exp(κRe TrV ) 〈U |L̂(V )|ψ〉 (4.149)

=
∑
rmn

ψrmndr

∫
dV exp(κRe TrV ) Dr(V U)mn.

Using the group-representation property Dr(V U) = Dr(V )Dr(U), the
integral in the above expression, i.e. the complex conjugate of

crmn ≡
∫

dV Dr
mn(V )∗ exp(κRe TrV ), (4.150)

is the coefficient for the expansion of the exponential in irreps,

exp(κReTrV ) =
∑
rmn

drcrmnD
r
mn(V ), (4.151)
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as follows from the orthogonality of the irreps. A change of variables
V → V † in (4.150) shows that crmn = c∗rnm. Making a transformation
of variables V → WVW †, with arbitrary group element W , gives the
relation

crmn = Dr
mm′(W )crm′n′Dr

n′n(W †). (4.152)

Using Schur’s lemma it follows that crmn can be written in the form

crmn = cr δmn, (4.153)

with real cr. Returning to (4.149) we get

〈U |T̂K1|ψ〉 =
∑
rmn

ψrmndrcr D
r(U)mn. (4.154)

Every irrep r is just multiplied by the number cr. The irrep states |rmn〉
are eigenstates of T̂K1 with eigenvalue cr,

T̂K1|rmn〉 = cr |rmn〉. (4.155)

The relation (4.153) holds generally for expansion coefficients of func-
tions on the group which are invariant under V → WVW †, i.e. class
functions. These have a character expansion,

exp(κReTrV ) =
∑
r

drcrχr(V ), (4.156)

with

χr(V ) = TrDr(V ) = Dr
mm(V ) (4.157)

the character in the representation r. The characters are orthonormal,∫
dV χr(V )∗χs(V ) = δrs, (4.158)

as follows from (4.145). Writing

drcr =
∫

dV exp
[κ
2
χf (V ) +

κ

2
χf (V )∗

]
χr(V )∗, (4.159)

where f is the fundamental (defining) representation, we can show that
the cr are positive. Expansion of the right-hand side of (4.159) in powers
of κ leads to

cr =
∞∑
n=0

(κ/2)n

n!

n∑
k=0

n!
k!(n− k)!

∫
dV χf (V )∗kχf (V )n−kχr(V )∗.

(4.160)
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Reducing the tensor product representation Dr1 · · ·Drk to irreducible
components, we see that∫

dV χr1(V ) · · ·χrk
(V ) = n(r1, . . ., rk) (4.161)

is the number of times the singlet irrep occurs. Since κ is positive the cr
are positive.

It follows that the eigenvalues of T̂K1 are positive, i.e. T̂K1 is a positive
operator. The full kinetic transfer operator T̂K , being the product of
single-link operators T̂K1, is also positive.

4.8 Hamiltonian for continuous time

In the Hamiltonian approach to lattice gauge-theory time is kept contin-
uous while space is replaced by a lattice. Taking the formal limit at → 0
we get the appropriate Hamiltonian from

T̂ = P̂0 exp
[
−atĤ +O(a2t )

]
. (4.162)

Some work is required for T̂K as at → 0 since it depends explicitly on
a/at through κ = 2a/g2at. Consider again the form (4.142) for one link,

T̂K1 =
∫

dV exp[κRe TrV ] L̂(V ). (4.163)

Since κ→∞ as at → 0 we can evaluate this expression with the saddle-
point method. The highest saddle point is at V = 1. It is convenient to
use the exponential parameterization,

V = exp(iαktk), (4.164)

Re TrV = df − 1
4α

kαk +O(α4), (4.165)

dV =
∏
k

dαk [1 +O(α2)], (4.166)

L̂(V ) = 1 + iαkX̂k(L)− 1
2α

kαlX̂k(L)X̂l(L) +O(α3), (4.167)

where we have written the left translator L̂ in terms of its generators
X̂k(L) (cf. appendix A.3). Gaussian integration over αk gives

T̂K1 = constant×
(

1− 1
κ
X̂2 + · · ·

)
, (4.168)

X̂2 = X̂k(L)X̂k(L) = X̂k(R)X̂k(R), (4.169)

constant =
∫ ∏

k

dαk exp[κ(df − α2/4)]. (4.170)
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Here the constant could have been avoided by changing the measure in
the path integral by an overall constant.

The Hamiltonian can be written as

Ĥ = K̂ + Ŵ (4.171)

=
1
a

[
g2

2

∑
ls

X̂2
ls +

2
g2

∑
ps

Re Tr (1− Ûps
)

]
+ constant,

where the ls denote the spatial links and ps the spatial plaquettes. In
the coordinate representation Û → U and X̂2 becomes the covariant
Laplacian on group space. The above Hamiltonian is known as the
Kogut–Susskind Hamiltonian [40].

It is good to keep in mind that, with continuous time and a lattice in
space, the symmetry between time and space is broken. It is necessary
to renormalize the velocity of light, which amounts to introducing dif-
ferent couplings g2K and g2W for the kinetic and potential terms in the
Hamiltonian (4.171).

The formal continuum limit a → 0, Uµx = exp(−iaGµx) → 1 −
iaGµ(x)+· · · leads to the formal continuum Hamiltonian in the temporal
gauge:

H =
∫

d3x

(
g2

2
Πp
kΠ

p
k +

1
4g2

Gp
lmG

p
lm

)
=
∫

d3x

(
1
2
E2 +

1
2
B2

)
,

(4.172)

where

Πp
k = −i δ

δGp
k

, p = 1, . . ., n2 − 1, k = 1, 2, 3, (4.173)

Gp
lm = ∂lG

p
m − ∂mG

p
l + fpqrG

q
lG

r
m, (4.174)

and the conventional ‘electric’ and ‘magnetic’ fields are given by

Ep
k = −gΠp

k, Bp
k =

1
g
εklmG

p
lm. (4.175)

In the continuum the canonical quantization in the temporal gauge is
often lacking in text books, because it is less suited for weak-coupling
perturbation theory. A brief exposition is given in appendix B.
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4.9 Wilson loop and Polyakov line

In the classical Maxwell theory an external current Jµ enters in the
weight factor in the real-time path integral as

eiS → eiS+i
∫
d4x JµAµ . (4.176)

For a line current along a path zµ(τ),

Jµ(x) =
∫

dτ
dzµ(τ)
dτ

δ4(x− z(τ)), (4.177)

the phase exp(i
∫
JµAµ) takes the form

exp
[
i

∫
dzµAµ(z)

]
, (4.178)

where the integral is along the path specified by z(τ). The current is
‘conserved’ (i.e. ∂µJµ = 0) for a closed path or a never-ending path. In
classical electrodynamics one thinks of zµ(τ) as the trajectory of a point
charge. Then dzµ/dτ is timelike. For a positive static point charge at
the origin the phase is

exp
[
i

∫
dz0A0(0, z0)

]
. (4.179)

We may however choose the external current as we like and use also
spacelike dz/dτ . For a line current running along the coordinate 3-axis
the phase is

exp
[
i

∫
dz3A3(0, 0, z3, 0)

]
. (4.180)

The Euclidean form is obtained from the Minkowski form by the
substitution J0 = −iJ4, dz0 = −i dz4, A0 = iA4. The phase remains
a phase,

exp

[
i

∫ 4∑
µ=1

dzµAµ(z)

]
. (4.181)

The source affects the places where the time components enter in the
action and we have to take a second look at the derivation of the transfer
operator. Consider therefore first in the compact U(1) theory the path
integral

Z(J) =
∫

DU exp

[
S(U) +

∑
xµ

JµxAµx

]
, (4.182)
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Fig. 4.3. A contour C specifying a line current or Wilson loop.

S(U) =
1

4g2
∑
xµν

Uµνx, (4.183)

Uµx = exp(−iAµx), (4.184)

Uµνx = exp[i(Aµx+ν̂ −Aµx −Aνx+µ̂ +Aνx)]. (4.185)

We have written the source term in conventional Euclidean form as a
real-looking addition to S(U), but the current Jµ is purely imaginary.
For a line current of unit strength over a closed contour C as illustrated
in figure 4.3 we have

Jµx = −i for links (x, x+ µ̂) ∈ C

= +i for links (x+ µ̂, x) ∈ C

= 0 otherwise. (4.186)

This current is ‘conserved’,

∂′
µJµx =

∑
µ

(Jµx − Jµx−µ̂) = 0, (4.187)

and the integrand of the path integral is gauge invariant. The phase
factor associated with the current can be written in another way,

exp

(∑
xµ

JµxAµx

)
=
∏
l∈C

Ul ≡ U(C), (4.188)

where l denotes a directed link, Ul = Uµx for l = (x, x + µ̂). Such a
product U(C) of U ’s around a loop C is called a Wilson loop [39]. It is
gauge invariant. The simplest Wilson loop is the plaquette Uµνx.

The Wilson-loop form of the interaction with an external line source
generalizes easily to non-Abelian gauge theories. For a source in irrep r

we have

TrDr(U(C)) = χr(U(C)), (4.189)

with Dr(U(C)) the ordered product of the link matrices Dr(Ul) along
the loop C. Denoting the links l by the pair of neighbors (x, y), we have
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for example in the fundamental representation

U(C) = Tr (Ux1x2Ux2x3 · · ·Uxnx1). (4.190)

The gauge invariance is obvious: the gauge transformations cancel out
pairwise in the product along the closed loop.

Consider now the derivation of the transfer operator. For the parts
of C where it runs in spacelike directions it represents an operator in
Hilbert space through Ul → Ûl as before. What about the timelike links?
Suppose that between two time slices there are only two such links, say
the links (y, y + 4̂) and (z + 4̂, z). Then, for these time slices, (4.123) is
modified to

〈U ′|T̂ ′
K |U〉 =

∏
x,m

∫
dU4x exp[· · ·]Dr

mn(U4y)Dr
pq(U

†
4z), (4.191)

where exp[· · ·] is the same as in (4.123) and the indices m,n, p, q hook
up to the other Dr’s of the Wilson loop. We see that the operator P̂0
defined in (4.127) is replaced by

P̂0 →
∫ ∏

x

dVx D̂(V )Dr
mn(Vy)Dr

pq(V
†
z ), (4.192)

where we used the notation Ω†
x = Vx = U4x, dΩ = dV . The gauge-

transformation operator D̂(V ) is the product of operators D̂(Vx) at sites
x. With the notation

P̂ rx
mn =

∫
dVxD

r
mn(Vx)D̂(Vx), (4.193)

the right-hand side of (4.192) can be written as

P̂ ′
0 P̂

ry
mn P̂

r̄z
pq , (4.194)

with

P̂ ′
0 =

∏
x	=y,z

P̂ 0x (4.195)

the projector onto the gauge-invariant subspace except at y and z.
The irrep r̄ is the Hermitian conjugate of the irrep r. The operator
P̂ rx
mn projects onto the subspace transforming at x in the irrep r in the

following way. Let |skl〉 be an irrep state for some link (u,v),

〈U |skl〉 = Ds
kl(U), U = Uu,v; (4.196)
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Fig. 4.4. A rectangular timelike Wilson loop.

then, for x = u,∑
n

〈U |P̂ ru
mn|snl〉 =

∫
dV Dr

mn(V )Ds
nl(V U) = δrs̄D

s
ml(U),

∑
n

P̂ s̄u
mn|snl〉 = |sml〉; (4.197)

similarly, for x = v,∑
m

〈U |P̂ rv
mn|skm〉 =

∫
dV Dr

mn(V )Ds
km(UV †) = δrsD

s
kn(U),

∑
m

P̂ sv
mn|skm〉 = |skn〉. (4.198)

The P̂ r are Hermitian projectors in the following sense:

(P̂ rx
mn)† = P̂ rx

nm, (4.199)∑
n

P̂ rx
mnP̂

rx
nq = P̂ rx

mq. (4.200)

Consider next a Wilson loop of the form shown in figure 4.4. In
the U(1) case this corresponds to two charges that are static at times
between t1 and t2, a charge +1 at z and a charge −1 at y:

J4(x, x4) = −i[δx,y − δx,z], t1 < x4 < t2. (4.201)

In the SU(n) case the interpretation is evidently that we have a source in
irrep r̄ at y and a source in irrep r at z. If r is the defining representation
of the gauge group SU(3) we say that we have a static quark at z and
an antiquark at y. The path-integral average of this Wilson loop

W (C) =
1
Z

∫
DU exp[S(U)]χr(U(C)), (4.202)
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Z =
∫

DU exp[S(U)] = Tr T̂N , (4.203)

can be expressed as

W (C) =
1
Z

Tr
[
T̂N−tDr

kl(Û
†) (T̂ ′)t P̂ r̄z

lmDr
mn(Û) P̂ ry

nk

]
. (4.204)

Here C is the rectangular loop shown in figure 4.4, t = t2 − t1, Û is the
operator corresponding to the product of U ’s at time t1 and similarly
for Û† at t2, and T̂ ′ is the transfer operator with P̂ ′

0 (cf. (4.195)). In
the zero-temperature limit N → ∞, the trace in (4.204) is replaced
by the expectation value in the ground state |0〉, T̂ |0〉 = exp(−E0) |0〉.
Inserting intermediate states |n〉, which are eigenstates of T̂ ′ P̂ r̄z

lm P̂ ry
nk

with eigenvalues exp(−E′
n), gives the representation

W (C) =
∑
n

Rn e
−(E′

n−E0)t, N = ∞, (4.205)

where Rn and E′
n depend on y and z. For large times t the lowest energy

level E′
0 will dominate. This is the energy of the ground state |0′ rmn〉

in that sector of Hilbert space which corresponds to the static sources
at y and z. By definition, the difference E′

0 − E0 is the potential V :

W (C) t→∞→ R0 e
−V t, V = V r(y, z), R0 = R0(y, z), (4.206)

R0 =
∑
mn

〈0|Dr
mn(Û†)|0′ rmn〉〈0′ rmn|Dr

mn(Û)|0〉.

Hence, we have found a formula for the static potential (e.g. for a quark–
antiquark pair) in terms of the expectation value of a Wilson loop.

Another interesting quantity is the Polyakov line [41], which is a string
of U ’s closed by periodic boundary conditions in the Euclidean time
direction. (In case of closure by periodic boundary conditions in the
spatial direction, this is often called a Wilson line.) For example, the
situation illustrated in figure 4.5 corresponds to a single static quark, a
source which is always switched on. The expectation value W (L) of the
Polyakov line operator at x, e.g. in the defining representation

TrU(L) = Tr (U4x,0U4x,1 · · ·U4x,N−1), (4.207)

can be written as

W (L) = 〈TrU(L)〉 =
1
Z

Tr

[
(T̂ ′)N

∑
m

P̂ rx
mm

]
. (4.208)
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Fig. 4.5. A Polyakov line.

It is the free energy of a static quark at inverse temperature N . For
temperature going to zero it behaves as

W (L) ∝ e−εN , N →∞, (4.209)

with ε the self-energy of a static quark.

4.10 Problems

(i) The case SU(2)
(a) Work out the metric gkl = 2 Tr [(∂U/∂αk) (∂U†/∂αl)] using
the exponential parameterization U = exp(iαkτk/2).
(b) Determine the normalization constant ν in
dU = ν

√
det g dα1 dα2 dα3 such that

∫
dU = 1.

(c) Find the characters χj(U) = TrDj(U) as a function of αk

(j = 1
2 , 1,

3
2 , . . .).

(d) Check the orthogonality relation
∫
dU χj(U)χ∗

j′(U) = δjj′ .

(e) Verify for a one-link state that 1〈U |X̂k(L)|ψ〉1 = Xk(L)ψ1(U).
(f) Verify that X2(L) = X2(R).

(ii) Two-dimensional SU(n) gauge-field theory
Consider two-dimensional SU(n) gauge theory with action

S =
∑
p

L(Up), (4.210)

L(U) =
1
g2

∑
r

κr Reχr(U), (4.211)

∑
r

κrρr = 1, (4.212)

and periodic boundary conditions in space. In ordinary units g has
the dimension of mass (in two dimensions), such that in lattice
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units g → 0 in the continuum limit. The transfer operator is given
by

T̂ = T̂K P̂0, T̂K =
∏
l

T̂Kl, (4.213)

where l, l = 0, . . ., N − 1 labels the spatial links (x, x + 1),
x = 0, . . ., N − 1. Since there is only one space direction, the link
variables in the spatial direction may be denoted by Ux. Consider
the wavefunction

ψ{r,m,n}(U) =
∏
x

Drx
mxnx

(Ux), (4.214)

which is just a product of irreps rx at each x.
(a) Show that

P0ψ{r,m,n}(U) ≡ 〈U |P̂0|ψ〉 (4.215)

= d−N
r0 Tr [Dr0(U0)Dr1(U1) · · ·DrN−1(UN−1)]

×δr0r1 · · · δrN−1r0 δn0m1δn1m2 · · · δnN−1m0 .

Hence, the gauge-invariant component is non-zero only if all irreps
are equal, say r, and it is a Wilson line in the spatial direction.
(b) Show that the energy spectrum of the system is given by

Er = −N
[
ln a0 + ln

(
〈χr〉1
dr

)]
, (4.216)

where

〈χr〉1 =
∫
dU eL(U)χr(U)∫

dU eL(U)
. (4.217)

(c) Show for g → 0, using a saddle-point expansion about U = 1,
that

〈χr〉1
dr

→ 1− 1
2C

r
2g

2 +O(g4), (4.218)

where Cr
2 is the value of the quadratic Casimir operator in the

representation r. This result holds independently of the detailed
choice of κr’s, as long as they satisfy the constraint (4.212),
(d) Restoring the lattice spacing a, L = Na, deduce from the
result above that, in the continuum limit, the energy spectrum
takes the universal form

Er − E0 = 1
2g

2Cr
2L. (4.219)
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(iii) Glueball masses and string tension
Simple glueball operators may be defined in terms of the plaquette
field TrUp, where p = (x,m, n) denotes a spacelike plaquette.
When this operator acts on the ground state (vacuum state)
it creates a state with the quantum numbers of the plaque-
tte. Similarly, a string state may be created by the operator
Ux,y =

∏
l∈C Ul, where the links l belong to an open contour from

x to y. The string state defined this way is not gauge invariant at
x and y; it has to be interpreted as a state with external sources
at these points.

Using the transfer-operator formalism, derive to leading order
a strong-coupling formula for the glueball mass corresponding to
the plaquette, and for the string mass corresponding to Ux,y.
Use lattice units a = at = 1. Note that the potential-energy
factors exp(−atŴ/2) in the transfer operator may be neglected
to leading order in 1/g2.



5

U(1) and SU(n) gauge theory

In this chapter we make a first exploration of U(1) and SU(n) ‘pure
gauge theories’ (i.e. without electrons or quarks etc.), the static potential
and the glueball masses.

5.1 Potential at weak coupling

According to (4.206) the static potential V (r) in a gauge theory is given
by the formula

V (r) = − lim
t→∞

1
t

lnW (r, t), (5.1)

where W (r, t) is a rectangular r × t Wilson loop in a lattice of infinite
extent in the time direction (figure 5.1). We shall first evaluate this
formula for free gauge fields and then give the results of the first non-
trivial order in the weak-coupling expansion. This will illustrate that
(5.1) indeed gives the familiar Coulomb potential plus corrections.

Fig. 5.1. A rectangular Wilson loop for the evaluation of the potential.

115
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First we consider the compact U(1) gauge theory (4.182), in which the
external source Jµ(x) specified in (4.186) serves to introduce the Wilson
loop. In this case (5.1) can be rewritten as

V (r) = − lim
t→∞

1
t

ln
[
Z(J)
Z(0)

]
. (5.2)

The weak-coupling expansion can be obtained by substituting Uµ(x) =
exp[−igaAµ(x)] into the action,

S = −
∑
xµν

(
1
4
[Fµνx]2 −

1
48
g2a2[Fµνx]4 + · · ·

)
, (5.3)

Fµνx = ∂µAνx − ∂νAµx, (5.4)

and expanding the path integral in the gauge coupling g. The first term
in (5.3) is the usual free Maxwell action (non-compact U(1) theory). The
other terms are interaction terms special to the compact U(1) theory.

As usual, gauge fixing is necessary in the weak-coupling expansion.
This can be done on the lattice in the same way as in the continuum
formulation. We shall not go into details here (cf. problem (i)), and just
state that the free part of S (the part quadratic in Aµ) leads in the
Feynman gauge to the propagator

Dµν(p) = δµν
a2∑

µ(2− 2 cos apµ)
,

= δµν
1
p2
, ap→ 0. (5.5)

This is similar to the boson propagator (2.111). In position space

Dµν(x− y) ≡ Dµν
xy = δµν

∫ π/a

−π/a

d4p

(2π)4
eip(x−y) a2∑

µ(2− 2 cos apµ)

→ δµν
1

4π2(x− y)2
, (x− y)2/a2 →∞. (5.6)

The large-x behavior of Dµν(x) corresponds to the small-p behavior of
Dµν(p). This can be shown with the help of the saddle-point method for
evaluating the large-x behavior.

To leading order in g2, Z(J) is given by

Z(J) = e
1
2 g

2∑
xy Jµ(x)Dµν(x−y)Jν(y)Z(0), (5.7)

and

V (r) = −1
t

1
2
g2
∑
xy

Jµ(x)Dµν(x− y)Jν(y), t→∞. (5.8)
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Fig. 5.2. Diagram illustrating 1
2
g2∑ J D J .

Fig. 5.3. Typical contributing diagrams.

This expression leads to the diagram in figure 5.2. With the currents J
flowing according to figure 5.1, the following types of contributions can
be distinguished (figure 5.3). Diagram (d) is a self-energy contribution,

1
2
g2
∑
(d)

J D J =
1
2
g2(i)2

t/2∑
x4,y4=−t/2

D44(0, x4 − y4), (5.9)

where the times t1 and t2 in figure 5.1 have been taken as ±t/2. We
may first sum over y4. For t→∞ this summation converges at large y4
and becomes independent of x4. The summation over y4 sets p4 in the
Fourier representation for D to zero (cf. (2.90)),

1
2
g2
∑
(d)

J D J ∼ −1
2
g2t

∞∑
y4=−∞

D44(0, x4 − y4)

= −1
2
g2t

∫ π/a

−π/a

d4p

(2π)4
eip4(x4−y4)

a2∑
µ(2− 2 cos apµ)

= −1
2
g2t

∫ π/a

−π/a

d3p

(2π)3
a2∑3

j=1(2− 2 cos apj)

= −1
2
g2tv(0), (5.10)
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Fig. 5.4. Vertices in the compact U(1) theory.

where

v(x) =
∫ π/a

−π/a

d3p

(2π)3
eipx a2∑3

j=1(2− 2 cos apj)
(5.11)

is the lattice-regularized Coulomb potential. Its numerical value at the
origin is given by

av(0) = 0.253 · · · . (5.12)

The contribution of type (e) is given by

1
2
g2
∑
(e)

J D J ∼ 1
2
g2i(−i)

∫ t/2

−t/2

dx4 dy4
1

4π2[(x4 − y4)2 + r2]
, (5.13)

where we assumed r/a
 1 such that the asymptotic form (5.6) is valid
and the summations over x4 and y4 may be replaced by integrations.
Proceeding as for diagram (d) we get

1
2
g2
∑
(e)

J D J ∼ 1
2
g2t

∫ ∞

−∞
dy4

1
4π2[(x4 − y4)2 + r2]

=
1
2
g2t

1
4πr

. (5.14)

From these example calculations it is clear that the diagrams of types
(a), (b) and (c) do not grow linearly with t. Remembering that there are
two contributions of types (d) and (e) (related by interchanging x and
y) we find for the potential to order g2

V (x) = g2[v(0)− v(x)], (5.15)

as expected.
Let us now briefly consider higher-order corrections in the compact

U(1) theory. The series (5.3) for S leads to interaction vertices of the
type shown in figure 5.4, which are proportional to (ag)n−2. Their effect
vanishes in the continuum limit, unless the powers of a are compensated
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Fig. 5.5. A self-energy diagram in the compact U(1) theory.

by powers of a−1 coming from divergent loop diagrams. An example
of this is the self-energy diagram figure 5.5, which leads to a ‘vacuum-
polarization tensor’ (cf. problem (ii))

Πµν(p) = − 1
4g

2(δµνp2 − pµpν) +O(a2), (5.16)

and a modified propagator

D′−1
µν = p2δµν +O(a2) + Πµν(p), (5.17)

D′
µν(p) = Z(g2)δµν

1
p2

+ terms ∝ pµpν , (5.18)

Z(g2) = [1− 1
4g

2 +O(g4)]−1. (5.19)

The terms ∝ pµpν do not contribute to the Wilson loop because of gauge
invariance, as expressed by ‘current conservation’ ∂′

µJµx = 0. Further
analysis leads to the conclusion that there are no other effects of the
self-interaction in the weak-coupling-expansion continuum limit. Note
that Z(g2) is finite, i.e. it does not diverge as a→ 0.

We conclude that in the compact U(1) theory the potential is given
by

V (r) = −g2Z(g2)
1

4πr
+ constant +O(a2),→∞, (5.20)

which is just a Coulomb potential. To make contact with the free
Maxwell theory we identify the fine-structure constant α,

α =
e2

4π
=

g2Z(g2)
4π

. (5.21)

The compact U(1) theory is equivalent to the free Maxwell field at weak
coupling.
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Fig. 5.6. Gluon self-energy contribution to the Wilson loop.

We now turn to the SU(n) gauge theory. A calculation to order
g4 gives in this case the result for the magnitude of the force, F (r),
neglecting O(a2):

F (r) =
∂V (r)
∂r

=
1

4πr2
C2

{
g2 +

11n
48π2

g4
[
ln
(
r2

a2

)
+ c

]
+O(g6)

}
.

(5.22)
Here C2 is the value of the quadratic Casimir operator in the representa-
tion of the Wilson loop and c is a numerical constant which depends on
lattice details. Some aspects of the calculation are described in [43]. The
logarithm in (5.22) comes from the Feynman gauge self-energy contri-
bution shown in figure 5.6, which is not present in the U(1) theory. The
formula (5.22) exhibits the typical divergencies occuring in perturbation
theory. It diverges logarithmically as a → 0. This problem is resolved
by expressing physically measurable quantities in terms of each other.
Here we shall choose an intuitive definition of a renormalized coupling
constant gR at some reference length scale d, by writing

F (d) =
C2g

2
R

4πd2
. (5.23)

This gR is defined independently of perturbation theory. Its expansion
in g2 follows from (5.22),

g2R = g2 +
11n
48π2

[
ln
(
d2

a2

)
+ c

]
g4 + · · ·, (5.24)

which may be inverted,

g2 = g2R −
11n
48π2

[
ln
(
d2

a2

)
+ c

]
g4R + · · · . (5.25)

The original parameter g in the action has to depend on a if we want to
get a gR independent of a. This dependence is here known incompletely:
we cannot take the limit a→ 0 in (5.25) because then the coefficient of
g4R blows up (and similarly for the higher-order coefficients). The limit
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a → 0 will be discussed in the following sections. Insertion into (5.22)
leads to the form

F (r) =
1

4πr2
C2

[
g2R +

11n
48π2

g4R ln
(
r2

d2

)
+O(g6R)

]
, (5.26)

from which all dependence on a has disappeared to this order in gR. The
renormalizability of QCD implies that all divergences can be removed in
this way to all orders in perturbation theory.

5.2 Asymptotic freedom

The perturbative form (5.26) is useless for r → 0 or r →∞, since then
the logarithm blows up. It is useful only for r of order d, the distance
scale used in the definition of the renormalized coupling constant gR. So
let us take d = r from now on. Then gR = gR(r). We can extract
more information from the weak-coupling expansion by considering
renormalization-group beta functions, defined by

βR(gR) = −r ∂

∂r
gR, (5.27)

β(g) = −a ∂

∂a
g. (5.28)

It is assumed here that gR can be considered to depend only on r and
not on a – its dependence on a is compensated by the dependence on a

of g. Then the r- and a-dependence on the right-hand side of (5.27) and
(5.28) can be converted into a gR- and g-dependence, respectively, using
(5.25) and (5.24), giving

βR(gR) = − 11n
48π2

g3R + · · ·, (5.29)

β(g) = − 11n
48π2

g3 + · · · . (5.30)

Actually the first two terms in the expansions

β(g) = −β1g3 − β2g
5 − β2g

7 − · · ·, (5.31)

βR(gR) = −βR1g3R − βR2g
5
R − βR3g

7
R − · · · (5.32)

of the two beta functions are equal. The argument for this is as follows.
Let

gR = F (t, g), (5.33)

t = ln
(
r2

a2

)
, g = g(a), gR = gR(r), (5.34)
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Make a scale transformation a → λa, r → λr, which does not affect
t, and differentiate with respect to λ, setting λ = 1 afterwards. Then
∂/∂λ = a ∂/∂a = r ∂/∂r, and

−βR(gR) =
∂gR
∂λ

=
∂F

∂g

(
∂g

∂λ

)
= −∂F

∂g
β(g). (5.35)

Inserting the expansions for β(g) and

gR = g + F1(t)g3 + F2(t)g5 + · · ·, (5.36)

g = gR − F1(t)g3R + · · ·, (5.37)

gives

−βR(gR) = [1 + 3F1g2 +O(g4)][β1g3 + β2g
5 +O(g7)]

= [1 + 3F1g2R +O(g4R)][β1g3R − 3β1F1g5R + β2g
5
R +O(g7R)]

= β1g
3
R + β2g

5
R +O(g7R). (5.38)

Any coupling constant related to g by a series of the type (5.36) has the
same beta function, so we may take the coefficient β2 from calculations
in the continuum using dimensional regularization,†

β2 =
102
121

β21 , β1 =
11n
48π2

. (5.39)

The remarkable fact in these formulas is that the beta functions are
negative in a neighborhood of the origin, implying that the couplings
become smaller as the length scale decreases. This property is called
asymptotic freedom. As we shall see, it implies that g → 0 in the
continuum limit. We come back to this in a later section. It suggests
furthermore that perturbation theory in the renormalized coupling gR
becomes reliable at short distances, provided that a ‘running gR’ can be
used at the appropriate length or momentum scale. In the case of the
potential V (r) there is only one relevant length scale, r, and we can use
the r-dependence of gR(r) to our advantage, as will now be shown.

The precise dependence of gR(r) for small r follows by integrating the
differential equation (5.27),

∂gR
∂ ln r

= −βR(gR),

− ln r =
∫ gR dx

βR(x)

† Other authors write β0,1 for our β1,2.
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=
∫ gR

dx

[
−1
β1x3

+
β2
β21x

+O(x)
]

=
1

2β1g2R
+

β2
β21

ln gR + constant +O(g2R). (5.40)

The integration constant can be partially combined with ln r to form a
dimensionless quantity ln(rΛV) in a way that has become standard:

− ln(r2Λ2V) =
1

β1g2R
+

β2
β21

ln(β1g2R) +O(g2R). (5.41)

Note the ‘lnβ1 convention’. Note also that ΛV can be defined precisely
only if the β2 term is taken into account – the O(g2R) term no longer
involves a constant term. This formula can be inverted so as to give gR
as a function of r,

β1g
2
R =

1
s
− β2
β21

1
s2

ln s+O(s−3 ln s), (5.42)

s = − ln(r2Λ2V). (5.43)

Inserting this into the force formula (5.23) for d = r gives

F (r) =
C2

4πr2
β−1
1

s+ (β2/β21)s−1 ln s+O(s−2 ln s)
. (5.44)

So the short-distance behavior of the potential can be reliably com-
puted (‘renormalization-group improved’) in QCD by means of the weak-
coupling expansion. However, this expansion tells us nothing about the
long-distance behavior, because gR(r) increases as r increases, making
the first few terms of the weak-coupling expansion irrelevant in this
regime.

A second important implication of asymptotic freedom is the appli-
cation of the renormalization-group equation to the bare coupling g.
Integration of (5.28) leads to the analog of (5.41) for the bare coupling,

− ln(a2Λ2L) =
1

β1g2
+

β2
β21

ln(β1g2) +O(g2), (5.45)

where we introduced the ‘lattice lambda scale’ ΛL. The analog of (5.42),

β1g
2 ≈ 1/| ln(a2Λ2L)|, (5.46)

shows that the bare coupling vanishes in the continuum limit a→ 0. This
means that the critical point of the theory (the one that is physically
relevant, in case there is more than one) is known: it is g = 0.
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The inverse of (5.45) can be written as

Λ2L =
1
a2

(β1g2)−β2/β
2
1e−1/β1g

2
[1 +O(g2)]. (5.47)

This equation is sometimes accompanied by the phrase ‘dimensional
transmutation’: the pure gauge theory has no dimensional parameters
(such as mass terms) in its classical action and we may think of trans-
forming the bare coupling g into the dimensional lambda scale via the
arbitrary regularization scale 1/a. As we shall see later, all physical
quantities with a dimension are proportional to the appropriate power
of ΛL (as in (1.4)).

The ΛV and ΛL are examples of the QCD lambda scales which set the
physical scale of the theory. They are all proportional and their ratios
can be calculated in one-loop perturbation theory. Let us see how this is
done for the ratio ΛV/ΛL. The one-loop relation (5.25) can be rewritten
as

1
β1g2

=
1

β1g2R
+
[
ln
(
d2

a2

)
+ c

]
+O(g2R). (5.48)

Inserting this relation into (5.47) and letting a and d go to zero with
d/a fixed, such that g and gR go to zero, gives

Λ2L =
e−c

d2
(β1g2R)−β2/β

2
1e−1/β1g

2
R [1 +O(g2R)] (5.49)

= Λ2V e
−c. (5.50)

Hence the ratio is determined by the constant c, which depends on the
details of the regularization.

A comparison of lambda scales on the lattice and in the continuum
was done some time ago [45, 46, 47]. The relation with the popular
MS-bar scheme (modified minimal subtraction scheme) in dimensional
renormalization is

ΛMS
ΛL

= exp[(1/16n− 0.0849780n)/β1] (5.51)

= 19.82, SU(2) (5.52)

= 28.81, SU(3). (5.53)
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A calculation [48] of the constant c in the MS-bar scheme then gave the
relation to the potential scheme ΛV, (γ = 0.57 · · · is Eulers’s constant)

ΛV
ΛL

= exp[γ − 1− (1/16n− 0.095884n)/β1] (5.54)

= 20.78, for SU(2) (5.55)

= 30.19 for SU(3). (5.56)

5.3 Strong-coupling expansion

The strong-coupling expansion is an expansion in powers of 1/g2. It has
the advantage over the weak-coupling expansion that it has a non-zero
radius of convergence. A lot of effort has been put into using it as a
method of computation, similarly to the high-temperature or hopping
expansion for scalar field theories, see e.g. [6, 44]. One has to be able to
match on to coupling values where the theory exhibits continuum be-
havior. This turns out to be difficult for gauge theories. However, a very
important aspect of the strong-coupling expansion is that it gives insight
into the qualitative behavior of the theory, such as confinement and the
particle spectrum. There are sophisticated methods for organizing the
strong-coupling expansion, but here we give only a minimal outline of
the basic ideas.

We start again with the compact U(1) theory. Let p be the plaquette
(x, µ, ν), µ < ν. We write the compact U(1) action in the form

S =
∑
p

L(Up) + constant, (5.57)

L(Up) =
1

2g2
(Up + U∗

p ), (5.58)

Up = Uµν(x) = Uνµ(x)∗. (5.59)

In the path integral we expand expS in powers of 1/g2. First consider

exp
[

1
2g2

(Up + U∗
p )
]

=
∞∑

m,n=0

1
m!n!

(
1

2g2

)m+n

Um
p U∗n

p . (5.60)
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Since U∗
p = U−1

p we put m = n + k and sum over n and k, k =
0,±1,±2, . . ., which gives

∞∑
n=0

(
1
n!

)2( 1
2g2

)2n
+ (Up + U−1

p )
∞∑
n=0

1
(n+ 1)!n!

(
1

2g2

)2n+1

+ · · ·+ (Uk
p + U−k

p )
∞∑
n=0

1
(n+ k)!n!

(
1

2g2

)2n+k

+ · · · . (5.61)

Recognizing the modified Bessel function Ik,

Ik(x) = I−k(x) =
∞∑
n=0

1
(n+ k)!n!

(x
2

)2n+k

, (5.62)

we find

eL(Up) =
∞∑

k=−∞
Ik

(
1
g2

)
Uk
p . (5.63)

This is actually an expansion of expL(Up) in irreducible representations
of the group U(1), labeled by the integer k. It is useful to extract an
overall factor,

eL(Up) = f
∑
k

akU
k
p , (5.64)

ak(1/g2) =
Ik(1/g2)
I0(1/g2)

, (5.65)

f(1/g2) = I0(1/g2). (5.66)

The coefficients ak are of order (1/g2)k.
Consider now the expansion of the partition function Z =

∫
DU expS.

Using (5.57) and (5.64) we get a sum of products of Uk
p ’s,

Z =
∫

DU
∑

(coefficient)
∏

Uk
p . (5.67)

Each Uk
p is a product Uk

1U
k
2U

−k
3 U−k

4 of the four link variables U1, . . ., U4
of the plaquette p, raised to the power k. A given link variable belongs
to 2d plaquettes (in d dimensions). For each link there is an integration∫
dU over the group manifold, which for the group U(1) is simply given

by ∫
dU Ur =

∫ 2π

0

dθ

2π
eirθ = δr,0, (5.68)
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Fig. 5.7. Simple diagrams contributing to the partition function. The hatched
area in (b) belongs to the closed surface. Diagram (c) is disconnected.

Fig. 5.8. Conservation of flux in three dimensions: k + l + m = 0.

where r is an integer. Hence the group integration projects out the trivial
(r = 0) representation. Now r is the sum of the k’s belonging to the
plaquettes impinging on the link under consideration. It follows that,
after integration, the non-vanishing terms in (5.67) can be represented by
diagrams consisting of plaquettes forming closed surfaces, as in figure 5.7.
We can interpret this as follows. Each plaquette carries an amount of
electric or magnetic flux (depending on its being timelike or spacelike;
recall that it corresponds to a miniature line current), labeled by k.
The integration over the link variables enforces conservation of flux, as
illustrated in figure 5.8. If the surface is not closed, then

∫
dUr = 0 along

each link of its boundary.
Diagram (a) in figure 5.7 represents the leading contribution to Z,

Z = fV d(d−1)/2


1 +

1
3!
V d(d− 1)(d− 2)

∑
k 	=0

(ak)6 + · · ·


, (5.69)

where V is the number of lattice sites, V d(d − 1)/2 is the number of
plaquettes, V d(d − 1)(d − 2)/3! is the number of ways the cube can be
embedded in the d-dimensional hypercubic lattice (d ≥ 3) and 6 is the
number of faces of the cube.
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The expansion can be arranged as an expansion for lnZ containing
only connected diagrams, called polymers.

For a general gauge theory the derivation of the strong-coupling
expansion is similar. One writes

L(Up) =
β

χf(1)
Reχf(Up), (5.70)

where χf(Up) is the character of Up in the fundamental representation.
Recall (we encountered this before in section 4.7) that these characters
are orthonormal, ∫

dU χr(U)χs(U)∗ = δrs, (5.71)

and complete for class functions F (U) (which satisfy F (U) =
F (V UV −1)). Next expL is written as a character expansion,

eL(Up) = f + f
∑
r 	=0

drarχr(Up), (5.72)

where r = 0 denotes the trivial representation Up → 1 and dr = χr(1)
is the dimension of the representation r. The expansion coefficients are
given by

f =
∫

dU eL(U), (5.73)

drar =
∫
dU eL(U)χ∗

r∫
dUeL(U)

. (5.74)

For the group U(1), r = 0,±1,±2, . . ., β = 1/g2, χr(U) = exp(irθ)
and we recover (5.65) from the integral representation of the Bessel
functions

Ir(x) =
1
π

∫ π

0

dθ cos(kθ) ex cos θ. (5.75)

For the group SU(n), χf(1) = n and

β = 2n/g2. (5.76)

The leading β-dependence of af(β) is easily found,

f(β) =
∫

dU e(β/2n)(χf+χ∗
f )

= 1 +O(β2), (5.77)

naf(β) = f(β)−1
∫

dU e(β/2n)(χf+χ∗
f )χ∗

f
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Fig. 5.9. A small Wilson loop with compensating plaquettes.

=
β

2n
+O(β2), n > 2 (5.78)

=
β

n
+O(β2), n = 2. (5.79)

For SU(2) the characters are real. In terms of g2,

af =
1
g2

+ · · ·, n = 2, (5.80)

=
1
ng2

+ · · ·, n = 3, 4, . . .. (5.81)

Up to group-theoretical complications (which can be formidable) the
strong-coupling expansion for general gauge groups follows that of the
U(1) case. The graphs are the same, but the coefficients differ.

5.4 Potential at strong coupling

We now turn to the expectation value of the rectangular Wilson loop
〈U(C)〉, from which the potential can be calculated. The links on the
curve C contain explicit factors of U that have to be compensated by
plaquettes from the expansion of expS, otherwise the integration over U
gives zero. Figure 5.9 shows a simple example. The contribution of this
diagram is (the Wilson loop is taken in the fundamental representation
of U(1))

[a1(1/g2)]4, (5.82)

which is the leading contribution for this curve C. Recall that a1 is given
by

a1(1/g2) =
I1(1/g2)
I0(1/g2)

=
1

2g2
− 1

2

(
1

2g2

)3
+ · · · . (5.83)

In higher orders disconnected diagrams appear. It can be shown,
however, that disconnected diagrams may be discarded: they cancel out
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Fig. 5.10. Leading diagrams for a large Wilson loop.

between the numerator and denominator of 〈U(C)〉. The expansion can
be rewritten as a sum of connected diagrams. Figure 5.10 illustrates the
leading terms for a large Wilson loop,

W (r, t) = aA1 + 2(d− 2)AaA+41 + · · ·, (5.84)

where A is the area of the loop, in lattice units A = rt. Boundary correc-
tions are also in the · · ·. The higher orders correspond to ‘decorations’
of the minimal surface.

The potential V (r) follows now from (5.1) and A = rt,

V (r) =
1
t

lnW (r, t)

= −[ln a1 + 2(d− 2)a41 + · · ·] r. (5.85)

For r → ∞, A → ∞ and the boundary corrections become negligible.
Hence, the potential is linearly confining at large distances,

V (r) ≈ σr, r →∞, (5.86)

σ = − ln a1 − 2(d− 2)a41 + · · · . (5.87)

At strong coupling the compact U(1) theory is confining.
For other gauge theories the calculation of the leading contribution to

a Wilson loop in the fundamental representation goes similarly. A useful
formula here is∫

dU χr(UV )χs(W †U†) =
δrs
dr

χr(VW †), (5.88)

which follows from∫
dU Dr

mn(U)Dr′
m′n′(U)∗ = δrr′δmm′δnn′

1
dr
, (5.89)

seen earlier in (4.145). The use of this formula is illustrated in figure 5.11.
Successive integration in the simple Wilson-loop example in figure 5.9 is
illustrated in figure 5.12. Each arrow in figure 5.12 denotes the result of
‘integrating out a link’. The equality signs symbolize UU† = 1. Note
that the factors dr in (5.88) cancel out with those in (5.72). Hence
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Fig. 5.11. Integration of a link variable.

Fig. 5.12. Integrating the leading contribution to a 2 × 2 Wilson loop.

the numerical value of the diagram is drar(β)4, for a Wilson loop in
representation r.

Another way to see this is as follows: in figure 5.9 there are nl = 12
links, np = 4 plaquettes and ns = 9 sites. Integrating over each link
gives a factor d−nl

r by (5.89) and contracting the Kronecker deltas at
each site gives a factor dns

r . Each plaquette has a factor dnp
r by (5.72).

For a simple surface without handles, the Euler number is

−nl + ns + np = 1

⇒ leading contribution = (dr)−nl+ns [drar(β)]np = drar(β)np . (5.90)

For a Wilson loop in the fundamental representation of the SU(n)
theory the first few terms in the expansion for the string tension

σ = − ln af(β)− 2(d− 2)af(β)4 + · · · . (5.91)

are similar to the U(1) result (5.87). In higher orders the ar(β) corre-
sponding to other irreps enter. The final result may then be re-expressed
by expansion in powers of 1/ng2.
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Fig. 5.13. Flux lines for sources in the fundamental (a) and the adjoint (b)
representation.

5.5 Confinement versus screening

In the previous section we saw that the U(1) and SU(n) potentials are
confining in the strong-coupling region. From the derivation we can see
that this is true for external charges (Wilson loops) in the fundamental
representation of any compact gauge group. However, external charges in
the adjoint representation of SU(n) are not confined. This is because the
charges in the adjoint representation can be screened by the gauge field.
A adjoint source is like a quark–antiquark pair, as illustrated intuitively
in figure 5.13. We now show how this happens at strong coupling.

Let U denote the fundamental representation (as before) and R the
adjoint representation. The latter can be constructed from U and U†,

Rkl = 2 Tr (U†tkUtl), (5.92)

where the tk are the generators in the fundamental representation. Since
R is an irrep, ∫

dU Rkl(U) = 0. (5.93)

To compensate the R’s on the links of the adjoint Wilson loop

TrR(C) = Tr
∏
l∈C

Rl (5.94)

by the plaquettes from the expansion of expS, we may draw a Wilson
surface and find in the same way as in the previous section the seemingly
leading contribution

daaa(β)A, da = n2 − 1, (5.95)

with A the minimal surface spanned by C. However, there is a more
economical possibility for large A, illustrated in figure 5.14. The tube
of plaquettes is able to screen the adjoint loop. To evaluate this con-
tribution we unfold the tube as in figure 5.15. The links in the interior
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Fig. 5.14. Diagram contributing to a Wilson loop in the adjoint representation;
(b) is a close up of a piece of the circumference in (a). The wavy line indicates
the adjoint representation.

Fig. 5.15. Unfolding the tube of plaquettes. The horizontal and vertical bound-
aries are to be identified.

Fig. 5.16. Integrating out the interior.

can be integrated out as in figure 5.12, as illustrated in figure 5.16.
The first step gives a factor dfaf(β)Np with Np the number of plaquettes
(df = n). The second step gives an additional factor 1/df . There remains
the integration over the links of the Wilson loop, which leads to integrals
of the type (for n ≥ 3) (cf. (A.93) in appendix A.4)∫

dU Ua
b U

q†
p Rkl =

1
da

2(tk)ap(tl)
q
b , n > 2, (5.96)

as illustrated in figure 5.17. So we get a trace of the form

2d−1a (tk)ap (tl)
q
b 2d−1a (tl)bq (tm)rc · · · (tk)pa = 1, (5.97)

since 2 Tr (tktk) = n2 − 1 = da. This leads to a factor

af(β)4P , (5.98)

where P is the perimeter of the (large) adjoint loop in lattice units:
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Fig. 5.17. Link variables on the adjoint loop.

P = 2(r + t), and the factor 4 in the exponent reflects the fact that
there are four plaquettes per unit length.

The leading contributions of the perimeter and area type in the SU(n)
theory are given by

Wa(r, t) ∼ (n2 − 1)(aa)rt + · · ·+ 2(d− 1)(d− 2)(af)8(r+t) + · · ·, (5.99)

which by (5.1) leads to a potential

V (r) = σeff r, r ≤ V (∞)
σeff

= V (∞), r ≥ V (∞)
σeff

, (5.100)

with

σeff = − ln aa + · · ·, (5.101)

V (∞) = −8 ln af + · · ·, (5.102)

af = (ng2)−1 + · · ·,

aa =
n2

n2 − 1
(ng2)−2 + · · · . (5.103)

(This behavior of aa follows easily from (5.74) and (5.96).)
At large distances the potential approaches a constant. The sharp

crossover from linear to constant behavior (at r ≈ 4) is an artifact of
our simplistic strong-coupling calculation. Still, the calculation suggests
that there is an intermediate region where the potential is approximately
linear with some effective string tension σeff , although strictly speaking
the string tension, defined by σ = V (r)/r, r →∞, vanishes for adjoint
sources.

To decide whether static charges in an irreducible representation r can
be screened by the gauge field, we consider the generalization of (5.96),

I =
∫

dU Ds
mn(U)Ds

m′n′(U)∗Dr
kl(U), (5.104)
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where s denotes the irreps of the two screening plaquettes. If the integral
I is zero, the source cannot be screened, and vice-versa. Let Zk denote
an element of the center of SU(n), i.e. Zk ∈ SU(n) commutes with all
group elements and it is represented in the fundamental representation
as a multiple of the identity matrix,

(Zk)ab = eik2π/n δab , k = 0, 1, . . ., n− 1. (5.105)

Irreps r can be constructed from a tensor product U ⊗U · · ·U ⊗U† · · ·⊗
U†, say p times U and q times U†, so r can be assigned an integer
ν(r) = p− q mod n, from the way it transforms under U → Z1U :

Dr
kl(Z1U) → eiν(r)2π/nDr

kl(U). (5.106)

The integer ν(r) is called the n-ality of the representation (triality for
n = 3). Making the change of variables U → Z1U in (5.104) gives

I = eiν(r)2π/n I, (5.107)

and we conclude that I = 0 if the n-ality ν(r) �= 0. Sources with non-zero
n-ality are confined; sources with zero n-ality are not confined. In QCD,
static quarks have non-zero triality and are confined.

5.6 Glueballs

The particles of the pure gauge theory are called glueballs. They may
be interpreted as bound states of gluons. Gluons appear as a sort of
photons in the weak-coupling expansion and, because of asymptotic
freedom, they manifest themselves as effective particle-like excitations
at high energies. However, gluons do not exist as free particles because
of confinement, as we shall see.

Masses of particles can be calculated from the long-distance behavior
of suitable fields. These are gauge-invariant fields constructed out of the
link variables Uµx, such as Wilson loops, with the quantum numbers of
the particles being studied. The transfer-matrix formalism shows that
an arbitrary state can be created out of the vacuum by application of
a suitable combination of spacelike Wilson loops. The simplest of these
is the plaquette field TrUmnx, m,n = 1, 2, 3. The plaquette–plaquette
expectation value (4.97) can be calculated easily at strong coupling. The
relevant diagrams consist of tubes of plaquettes, as in figure 5.18. Since
there are four plaquettes per unit of time, the glueball mass is given
by m = −4 ln af(β) + · · ·. The higher-order corrections correspond to
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Fig. 5.18. The leading strong-coupling diagram for the plaquette–plaquette
correlator. Time runs horizontally.

diagrams decorating the basic tube of figure 5.18, which will also cause
the tube to perform random walks.

The plaquette can be decomposed into operators with definite quan-
tum numbers under the symmetry group of the lattice, and such oper-
ators can in turn be embedded into representations of the continuum
rotation group of spin zero, one and two. To be more precise, the
quantum numbers JPC (J = spin, P = parity, C = charge-conjugation
parity) excited by the plaquette are 0++, 1+− and 2++, which may
be called scalar (S), axial vector (A) and tensor (T ). The description
of glueballs with other quantum numbers requires more complicated
Wilson loops. The terms in the strong-coupling series

mj = −4 lnu+
∑
k

mk
j u

k, j = S,A, T, u ≡ af(β), (5.108)

have been calculated to order u8 for gauge groups SU(2) and SU(3)
[91, 92]. See [10] for details.

Since the strong-coupling diagrams are independent of the (compact)
gauge group (but their numerical values are not), also the U(1) and e.g.
Z(n) gauge theories† have a particle content at strong coupling similar
to that of glueballs.

5.7 Coulomb phase, confinement phase

We have seen that all gauge theories with a compact gauge group such as
U(1), SU(n) and Z(n) have the property of confinement at strong cou-
pling, and the emerging particles are ‘glueballs’. On the other hand, we
have also given arguments, for U(1) and SU(n), that the weak-coupling
expansion on the lattice gives the usual universal results for renormalized
quantities found with perturbation theory in the continuum.

In particular the compact U(1) theory at weak coupling is not con-
fining and it contains no glueballs but simply the photons of the free

† Z(n) is the discrete group consisting of the center elements (5.105) of SU(n).
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Fig. 5.19. Phase diagram of the compact U(1) gauge theory (a) and the SU(n)
gauge theory, n = 2, 3 (b).

Maxwell theory. The physics of the compact U(1) theory is clearly
different in the weak- and strong-coupling regions. This can be un-
derstood from the fact that there is a phase transition as a function
of the bare coupling constant (figure 5.19). One speaks of a Coulomb
phase at weak coupling and a confining phase at strong coupling. In
the Coulomb phase the static potential has the standard Coulomb form
V = −g2R/4πr+constant, whereas in the confinement phase the potential
is linearly confining at large distances, V ≈ σr. There is a phase
transition at a critical coupling βc ≡ 1/g2c ≈ 1.01, at which the string
tension σ(β) vanishes; see for example [95].

The Wilson loop serves as an order field in pure gauge theories.
Consider a rectangular r× t Wilson loop C, with perimeter P = 2(r+ t)
and area A = rt. When the loop size is scaled up to infinity, the dominant
behavior is a decay according to a perimeter law or an area law:

W (C) ∼ e−εP , Coulomb phase, (5.109)

W (C) ∼ e−σA, confinement phase. (5.110)

Here ε may be interpreted as the self-energy of a particle tracing out
the path C in (Euclidean) space–time, and σ is the string tension
experienced by a particle.

There is no phase transition in the SU(2) and SU(3) models with
the standard plaquette action in the fundamental representation in the
whole region 0 < β <∞ (β = 2n/g2). This conclusion is based primarily
on numerical evidence (see e.g. the collection of articles in [5]) and it
is also supported by analytic mean-field calculations (see e.g. [6] for a
review). The absence of a phase transition, combined with confinement
at strong coupling, may be interpreted as evidence for confinement also
in the weak-coupling region.
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Fig. 5.20. Qualitative phase diagram of mixed-action SU(n) gauge theory for
n = 2, 3.

It should be kept in mind that the phase structure of a theory is not
universal and depends on the action chosen. Only the scaling region near
a critical point is supposed to have universal properties. For example,
in SU(n) gauge theory with an action consisting of a term in the
fundamental representation and a term in the adjoint representation,

S =
∑
p

[βfd−1f Re TrUp + βad
−1
a Re TrDa(Up)], (5.111)

the phase diagram in the βf–βa coupling plane looks schematically like
figure 5.20. This figure shows two connected phase regions; the one
relevant for QCD is the region connected to the weak-coupling region
βf/2n + βan/(n2 − 1) = 1/g2 → ∞ (recall (4.85)). For n > 3 the phase
boundary going downward in the south-east direction crosses the βf axis.
This implies that, for n > 3, the model with only the standard plaquette
action in the fundamental representation shows a phase transition. It
is, however, not a deconfining transition because we can go around it
continuously through negative values of the adjoint coupling βa.

The phase structure of lattice gauge theories is rich subject and for
more information we refer the reader to [5] and [6], and [10].

5.8 Mechanisms of confinement

As we have seen in section 5.1, the calculation of the static potential
from a Wilson loop to lowest order of perturbation in g2 gives a Coulomb
potential. In the compact U(1) theory, higher orders did not change this
result qualitatively, whereas in SU(n) gauge theory, there are logarith-
mic corrections, that can be interpreted in terms of asymptotic freedom.
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However, there is no sign of confinement in weak-coupling perturbation
theory. This can be understood from the fact that we expect the string
tension to depend on the bare coupling g2 as

√
σ = CσΛL = Cσ

1
a

(β1g2)−β2/2β
2
1e−1/β1g

2
[1 +O(g2)], (5.112)

which has no weak-coupling expansion (all derivatives ∂/∂g2 vanish at
g = 0). The physical region is at weak coupling, where the lattice spacing
is small, so how can we understand confinement in this region?

Non-perturbative field configurations have long been suspected to
do the job. Such configurations are fundamentally different from mere
fluctuations on a zero or pure-gauge background. We mention here in
particular magnetic-monopole configurations envisioned by Nambu [49],
’t Hooft [50], and Polyakov [41], and Z(n) vortex configurations put
forward by ’t Hooft [51] and Mack [52].

It can be shown that the confinement of the compact U(1) theory
is due to the fact that it is really a theory of photons interacting with
magnetic monopoles (see e.g. the first reference in [53] for a review).
These monopoles condense in the confinement phase in which the model
behaves like a dual superconductor. In a standard type-II superconduc-
tor, electrically charged Cooper pairs are condensed in the ground state,
which phenomenon causes magnetic-field lines to be concentrated into
line-like structures, called Abrikosov flux tubes. Magnetic monopoles,
if they were to exist, would be confined in such a superconductor,
because the energy in the magnetic flux tube between a monopole and an
antimonopole would increase linearly with the distance between them.

In a dual superconductor electric and magnetic properties are inter-
changed. The compact U(1) model is a dual superconductor in the
strong-coupling phase, in which the magnetically charged monopoles
condense and the electric-field lines are concentrated in tubes, such that
the energy between a pair of positively and negatively charged particles
increases linearly with distance. In this way the model is an illustration
of the dual-superconductor hypothesis as the explanation of confinement
in QCD.

At weak coupling the monopoles decouple in the compact U(1) model,
because they are point particles that acquire a Coulomb self-mass of
order of the inverse lattice spacing a−1. However, in SU(2) gauge theory,
according to [53], there are ‘fat’ monopoles that have physical sizes and
masses, and do not decouple at weak bare gauge coupling g2. They
remain condensed as g2 → 0 and continue to produce a non-zero string
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tension for all values of g2. A similar mechanism is supposed to take
place in SU(n) gauge theory for n > 2.

The mechanism for confinement in SU(n) gauge theory proposed by
Mack is condensation of fat Z(n) vortices. The latter cause an area-type
decay of large Wilson loops in much the same way as in the Z(n) gauge
theory at strong coupling.

There seems to be more than one explanation of confinement, depend-
ing on the gauge one chooses to work in. This may seem disturbing,
but, e.g. also in scattering processes, different reference frames (such
as ‘center of mass’ or ‘laboratory’) lead to different physical pictures.
Numerical simulations offer a great help in studying these fundamental
questions. Lattice XX reviews are in [54], see also [55, 56, 57, 58, 59].

5.9 Scaling and asymptotic scaling, numerical results

We say that relations between physical quantities scale if they become
independent of the correlation length ξ as it increases toward infinity.
In practice this means once ξ is sufficiently large. In pure SU(n) gauge
theory the correlation length is given by the mass in lattice units of the
lightest glueball, ξ = 1/am. For instance, glueball-mass ratios mi/mj

are said to scale when they become approximately independent of ξ.
Typically one expects corrections of order a2,

mi/mj = rij + r′ija
2m2 +O(a4). (5.113)

For the usual plaquette action am is only a function of the bare gauge
coupling g2. We can write m = CmΛL, with ΛL the lambda scale
introduced in (5.45) and Cm a numerical constant characterizing the
glueball. The correlation length is then related to the gauge coupling by

ξ−2m = a2m2 = C2
m a2Λ2L = C2

m (β1g2)−β2/β
2
1e−1/β1g

2
[1 +O(g2)],

(5.114)
for sufficiently small g2. Neglecting the O(g2), this behavior as a function
of g2 is called asymptotic scaling.

It turns out that asymptotic scaling is a much stronger property than
scaling, in the sense that scaling may set in when the correlation length
is only a few lattice spacings, whereas asymptotic scaling is not very
well satisfied yet. In the usual range of couplings, which are of order
β = 2n/g2 = 6 for SU(3) gauge theory with the plaquette action in the
fundamental representation, once β ≥ 5.7 or so, the correlation length
appears to be sufficiently large and the O(a4) corrections small enough
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for scaling corrections to be under control. However, asymptotic scaling
does not hold very well yet in this region. Apparently the O(g2) correc-
tions in (5.114) cannot be neglected. This has led to a search for ‘better’
expansion parameters, i.e. ‘improved’ definitions of a bare coupling that
may give better convergence, see e.g. [60]. Note that exp(−1/β1g2) is a
rapidly varying function of g2 because β1 = 11n/48π2 ≈ 0.070 (n = 3)
is so small. Typically ∆β ≈ 0.48 corresponds to a reduction of a2 by a
factor of four near β = 6.

The potential V (r) is a good quantity to test for scaling because it is
relatively easy to compute and there are many values V (r). As a measure
of the correlation length we may take

ξσ(β) = 1/a
√
σ, (5.115)

where a2σ is the string tension in lattice units, which goes to zero as β
approaches infinity. Assuming

√
σ = 400 MeV, for example (cf. section

1.1), the value of a
√
σ give us the lattice distance a in units (MeV)−1.

This can be used to express the potential in physical units as follows.
The potential in lattice units can be written as

aV = v
( r
a
, β
)
, (5.116)

where v is a function of the dimensionless variables r/a and β. Recall that
V contains the unphysical self-energy of the sources, which is distance
independent. Expressing the potential in physical units, as set by the
string tension, gives

V√
σ

= ξσ(β) v
(
r
√
σ

ξσ(β)
, β

)
≡ Ṽ (r

√
σ, β) + v0(β). (5.117)

These relations ‘scale’ when Ṽ becomes independent of β. Here v0(β)
is the self-energy, which can be fixed by a suitable choice of the zero
point of energy, e.g. Ṽ (1) = 0. In practice, after computing σ from the
long-distance behavior V ≈ σr + constant +O(r−1), the data points at
various β ≥ 6 can be made to form a single scaling curve by plotting
V/
√
σ versus r

√
σ with a suitable vertical shift corresponding to v0(β).

However, the accuracy of such scaling tests is limited by the fact that
σ is an asymptotic quantity defined in terms of the behavior of the po-
tential at infinity. This problem may be circumvented by concentrating
on the force F = ∂V/∂r, in terms of which we can define a reference
distance r0 by

r20F (r0) = 1.65. (5.118)
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Fig. 5.21. Scaling of the SU(3) force and the continuum limit at x = r/r0 =
0.4, 0.5, and 0.9 (left), and x = r/rc = 0.5, 0.6, and 1.5 (right) from top to
bottom. The stronger/weaker dependence on a corresponds to r1 defined in
(5.119)/(5.120). From [62].

The choice 1.65 turns out to give r0 ≈ 1/
√
σ, which is in the

intermediate-distance regime within which the potential and force can
be computed accurately [61]. The force may be computed as

F (r1) = [V (r + a)− V (r)]/a, r1 = r − a/2, (5.119)

and scaling tests can then be performed as above with
√
σ → 1/r0. There

is another choice for r1 that gives an improved definition of the force,
leading to much smaller scaling violations in the small- and intermediate-
distance region [61], namely

(4πr1)−2 = [v(r1, 0, 0)− v(r1 − a, 0, 0)]/a, (5.120)

where v(x, y, z) is the lattice Coulomb potential (5.11). The scaling test
for the force avoids ambiguities from the Coulomb self-energy in the
potential. Writing r = xr0, or r = xrc, where rc is defined as in (5.118)
with 1.65 → 0.65, a scaling analysis is carried out in [62] in the form
r20F (xr0) = f0(x) + f ′

0(a/r0)
2 + O(a4), or with r0 → rc, as shown in

figure 5.21. The values of (a/r0,c)2 correspond to β in the interval [5.7,
6.92].
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Fig. 5.22. The running coupling αqq̄(µ) = g2
R(µ)/4π, µ = 1/r plotted versus

r/r0 and compared with the dependence on r as predicted by the weak-
coupling expansion for the renormalization-group beta function (the curves
labeled RGE; dotted lines correspond to 1 σ uncertainties of ΛMS(r0). From
[64].

In the small-distance regime the running of the coupling (5.23), i.e.
g2R(µ) = 4πr2F (r)/C2, µ = 1/r, can be compared with the prediction of
the perturbative beta function, which is known to three-loop order. One
could use the perturbative expansion (5.41) in which ΛV, or equivalently
ΛMS, appears as an integration constant. This scale in units of r0,
i.e. r0ΛMS, has been determined independently in an elaborate non-
perturbative renormalization-group computation [63]. Instead of using
the perturbative expansion it is more accurate to integrate the two-
or three-loop renormalization-group equation numerically. The result
is shown in figure 5.22, where we see that perturbation theory works
surprisingly well, when it is implemented in this way, up to quite large
α’s. In physical units r0 ≈ 1/

√
σ ≈ 0.5 fm.

Note that knowledge of a non-perturbative Λ scale allows the predic-
tion of αs. Such a program has been pursued in full QCD in various ways
[66] and the resulting αs agrees well with the experimentally measured
values, see also the review in [2].
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Fig. 5.23. The potential from two values of β. The curve labeled ‘Cornell’ is
a fit of the form − 4

3
α/r + constant + σr with constant α. From [65].

An overview of numerically computed potential is given in figure 5.23.
Glueball masses have by now also been computed with good accuracy

in the SU(n) models, using variational methods for determining the
eigenvalues of the transfer matrix. It is particularly interesting to do
this for varying n, since the theory simplifies in the large-n limit in the
sense that only planar diagrams contribute [67]. The same is true in
the strong-coupling expansion [68]. Figure 5.24 shows recent results for
various n. We see that ratios with

√
σ do indeed behave smoothly as a

function of 1/n2 all the way down to n = 2.
Last, but not least, analytic computations in finite volume are theo-

retically very interesting and a comparison with numerical data is very
rewarding. For a review, see [18].

5.10 Problems

(i) Gauge fixing and the weak-coupling expansion
Consider a partition function for a U(1) or SU(n) lattice gauge-
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Fig. 5.24. Ratios of glueball masses with
√
σ, extrapolated to a → 0 and

infinite volume, as a function of 1/n2, for n = 2, 3, 4, 5. From [69].

field theory with gauge-invariant action S(U),

Z =
∫

DU exp[S(U)]. (5.121)

The action may be the standard plaquette action

S(U) = − 1
2ρg2

∑
xµν

Tr (1− Uµνx), (5.122)

it may also contain the effect of dynamical fermions in the form
ln detA(U), with A the ‘fermion matrix’, cf. section 7.1. Let O(U)
be a gauge-invariant observable, O(U) = O(UΩ),

UΩ
µx = ΩxUµxΩ

†
x+µ̂, (5.123)

and

〈O〉 =
∫
DU exp[S(U)]O(U)

Z
. (5.124)

be the average of O.
We want to evaluate the path integrals in the weak-coupling

expansion and expect to have to use gauge fixing, as in the
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continuum. We can try to restrict the implicit integration over
all gauge transformations in 〈O〉, loosely called gauge fixing, by
adding an action Sgf(U) to S(U) that is not invariant under gauge
transformations. For example,

Sgf(U) = −1
ξ

∑
x

1
2g2ρ

Tr (∂′
µ ImUµx)2, ImU ≡ U − U†

2i
,

(5.125)
with ∂′

µ = −∂†
µ the backward derivative, ∂′

µfx = fx − fx+µ̂. Let
∆(U) be defined by

∆(U)−1 =
∫

DΩ exp[Sgf(UΩ)], (5.126)

where
∫
DΩ is the integration over all gauge transformations. It

is assumed that ∆(U)−1 �= 0.
(a) Show that the Faddeev–Popov measure factor ∆(U) is gauge
invariant.

We insert 1 = ∆(U)
∫
DΩ exp[Sgf(UΩ)] into the integrands in

the above path-integral expression for 〈O〉 and make a transfor-
mation of variables U → UΩ†

. Using the gauge invariance of S(U),
O(U), and ∆(U) we get

〈O〉 =
∫
DΩ
∫
DU ∆(U) exp[S(U) + Sgf(U)]O(U)∫

DΩ
∫
DU ∆(U) exp[S(U) + Sgf(U)]

=
∫
DU ∆(U) exp[S(U) + Sgf(U)]O(U)∫

DU ∆(U) exp[S(U) + Sgf(U)]
. (5.127)

In the weak-coupling expansion we expand about the saddle
points with maximum action. We assume this maximum to be
given by Uµx = 1. There will in general be more maxima. For
example, without dynamical fermions, Uµx = U (i.e. independent
of x and µ) and Uµx = Zµ, with Zµ an element of the center
of the gauge group, give the same value of the plaquette action
as does Uµx = 1. Intuitively we expect constant modes to be
important for finite-size effects, but not important in the limit
that the space–time volume goes to infinity. Restricting ourselves
here to the latter case, we shall not integrate over constant modes
and expand about Uµx = 1, writing

Uµx = exp(−igAk
µ xtk). (5.128)

The evaluation of the integral (5.126) defining ∆(U) is also
done perturbatively. Because of the factor 1/g2 in the gauge-fixing



5.10 Problems 147

action, we only need to know ∆(U) for small ∂′
µ Im TrUµx. The

integral (5.126) has a saddle point at Ωx = 1, but there are in
general many more saddle points Ωx, called Gribov copies, with
Sgf(UΩ) = Sgf(U). The study of Gribov copies is complicated.
One can give arguments that the correct weak-coupling expansion
is obtained by restriction to the standard choice Ωx = 1, and this
is what we shall do in the following. This means that, for the
perturbative evaluation of ∆(U), we can write

Ωx = exp(igωk
xtk) (5.129)

and expand in gωx. In perturbation theory we may just as well
simplify the gauge-fixing action and use

Sgf = − 1
2ξ2
∑
x

∂′
µA

k
µx∂

′
νA

k
νx. (5.130)

(In the neighborhood of the identity, Ak
µx and ωk

x are well defined
in terms of Uµx and Ωx.)

We extend the initially compact integration region over Ak
µx

and ωk
x to the entire real line (−∞,∞). The error made in doing

so is expected to be of order exp(−constant/g2), and therefore
negligible compared with powers of g, as g → 0. A typical example
is given by∫ π

−π

dx e−x2/g2
=
∫ ∞

−∞
dx e−x2/g2

+O(e−π2/g2
). (5.131)

(b) For a U(1) gauge theory show that (5.130) leads to a Faddeev–
Popov factor that is independent of U ,

∆(U) = constant× det(�), �xy = ∂′
µ∂µδ̄xy, (5.132)

with the constant independent of Aµ.
(ii) Weak-coupling expansion in compact QED

We consider first the bosonic theory given by the action

S(U) = − 1
2g2
∑
xµν

(1− Uµνx) (5.133)

and use (5.130) for gauge fixing. The bare vertex functions −V
are given by

SA + Sgf = −
∑
n

1
n!

∑
x1···xn

V x1···xn
µ1···µn

Aµ1x1 · · ·Aµnxn . (5.134)
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(a) Show that, in momentum space, for even n ≥ 2 (by convention
the momentum-conserving periodic delta function is omitted in
the definition of the Fourier transform of V x1···xn

µ1···µn
),

Vµ1···µn(k1 · · · kn) = − 1
2 (g

2)n/2−1
∑
αβ

Tαβ
µ1

(k1) · · ·Tαβ
µn

(kn)

− δn,2
1
ξ
Kµ1(k1)Kµ2(k2), (5.135)

where

Kµ(k) =
1
i
(eikµ − 1), K∗

µ(k) = −Kµ(−k), (5.136)

Tαβ
µ (k) = K∗

α(k)δβµ −K∗
β(k)δαµ. (5.137)

(b) Show that the photon propagator Dµν(k) is given by

Dµν(k) =
(
δµν −

Kµ(k)K∗
ν (k)

|K(k)|2

)
1

|K(k)|2 + ξ
Kµ(k)K∗

ν (k)
|K(k)|4 .

(5.138)
The Feynman gauge corresponds to ξ = 1.
(c) Derive (5.19), for arbitrary ξ.
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Fermions on the lattice

In this chapter we introduce the path integral for Fermi fields. We
shall discuss the species-doubling phenomenon – the fact that a naively
discretized Dirac fermion field leads to more particle excitations than
expected and desired, two remedies for this, which go under the names
‘Wilson fermions’ and ‘staggered fermions’, the interpretation of the path
integral in Hilbert space, and the construction of the transfer operator.
Integration over ‘anticommuting numbers’, the ‘Grassmann variables’
and the relation with creation and annihilation operators in fermionic
Hilbert space is reviewed in appendix C.

6.1 Naive discretization of the Dirac action

In continuous Minkowski space–time the action for a free fermion field
can be written as (see appendix D for an introduction)

S = −
∫

d4x
[
1
2 (ψ̄(x)γµ∂µψ(x)− ∂µψ̄(x)γµψ(x)) +mψ̄(x)ψ(x)

]
, (6.1)

or, exhibiting the Dirac indices α, β, . . . (but suppressing the label x for
brevity),

S = −
∫

d4x
[
(γµ)αβ 12 (ψ̄α∂µψβ − ∂µψ̄αψβ) +mψ̄αψα

]
. (6.2)

The ψ and ψ̄ are anticommuting objects, so-called Grassmann variables,
e.g. ψα(x)ψ̄β(y) = −ψ̄β(y)ψα(x). The integrand in (6.1) is Hermitian,
treating ψ and ψ+,

ψ+ = ψ̄β, β = iγ0, (6.3)

as Hermitian conjugates, e.g. (ψα(x)ψ+β (y))† = ψ+β (y)ψα(x). Note, how-
ever, that ψ and ψ+ are independent ‘variables’ (which is why we use
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the superscript + instead of †). The Dirac matrices have the following
properties:

γ0 = −γ0, γ0 = −γ†0, γ20 = −1, (6.4)

γk = γk = γ†k, γ2k = 1, k = 1, 2, 3. (6.5)

implying that β = β† and β2 = 1.† Replacing the derivative operators
by discrete differences,

∂µψ(x) → 1
aµ

[ψ(x+ aµµ̂)− ψ(x) ], (6.6)

we obtain from (6.1) a lattice version

S = −
∑
x,µ

1
2aµ

[ψ̄(x)γµψ(x+aµµ̂)−ψ̄(x+aµµ̂)γµψ(x)]−m
∑
x

ψ̄(x)ψ(x).

(6.7)
Recall that aµ is the lattice spacing in the µ direction. We shall occa-
sionally only need the spacing in the time direction, a0, to be different
from the spatial lattice spacing ak = a, k = 1, 2, 3.

The path integral for free fermions with anticommuting external
sources η and η̄ is now tentatively defined by

Z(η, η̄) =
∫

Dψ̄Dψ ei[S+
∑

x(η̄ψ+ψ̄η)], (6.8)

where

Dψ̄Dψ =
∏
x,α

dψ̄xα dψxα =
∏
xα

dψ+xα dψxα. (6.9)

We assumed the action to be rewritten in terms of dimensionless ψx and
ψ̄x,

ψx = a3/2ψ(x), ψ̄x = a3/2ψ̄(x), (6.10)

and similarly the symbols dψ+xα and dψxα are dimensionless. The last
equality in (6.9) follows from the rule d(Tψ) = (detT )−1 dψ (cf. ap-
pendix C) and detβ = 1. The ψxα and ψ+xα are independent generators
of a Grassmann algebra. We recall also the definition of fermionic inte-
gration (cf. appendix C),∫

db = 0,
∫

db b = 1, (6.11)

where b is any of the ψxα or ψ+xα. Before making the transition to
imaginary time we need to make the dependence on a0 explicit. So let nµ

† We usually write just 1 for the unit matrix 11.
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be the integers specifying the lattice site x, x0 = n0at, x = na, and let
ψn ≡ ψx and ψ̄n ≡ ψ̄x. Recalling that

∑
x = a0a

3
∑

n in our notational
convention, the lattice action reads more explicitly

S = −
∑
n

[
1
2
(ψ̄nγ

0ψn+0̂ − ψ̄n+0̂γ
0ψn)

+
3∑

k=1

a0
2a

(ψ̄nγ
kψn+k̂ − ψ̄n+k̂γ

kψn) + (a0m)ψ̄nψn

]
. (6.12)

Furthermore ∑
x

(η̄ψ + ψ̄η) ≡ a0
a

∑
n

(η̄αnψαn + ψ̄αnηαn), (6.13)

with dimensionless ηαn and η̄αn.
It follows from the rules of fermionic integration that the path integral

for a finite space–time volume is a polynomial in a0m and a0/a. Hence,
an analytic continuation to ‘imaginary time’ poses no problem:

a0 = |a0| exp(−iϕ), ϕ: 0→ π/2, a0 → −ia4, (6.14)

with a4 = |a0|. This transforms the path integral into its Euclidean
version (iS → S�, dropping the �),

Z =
∫

Dψ̄Dψ eS+
∑

n(η̄ψ+ψ̄η), (6.15)

S = −
∑
n

[∑
µ

a4
2aµ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) + a4mψ̄nψn

]
,

where µ now runs from 1 to 4 (with n4 ≡ n0, 4̂ ≡ 0̂), and

γ4 = iγ0 = β. (6.16)

6.2 Species doubling

It turns out that the model described by the action in (6.15) yields
24 = 16 Dirac particles (fermions with two charge and two spin states)
instead of one. This is the species-doubling phenomenon. We shall infer
it in this section from inspection of the fermion propagator and the
excitation energy spectrum.

Using a matrix notation, writing

Z(η, η̄) =
∫

Dψ̄Dψ e−ψ̄Aψ+η̄ψ+ψ̄η, (6.17)
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where (in lattice units, a = a4 = 1)

Axy =
∑
zµ

γµ
1
2
(δ̄x,z δ̄y,z+µ̂ − δ̄x,z+µ̂δ̄y,z) +m

∑
z

δ̄x,z δ̄y,z, (6.18)

the path integral is easily integrated (appendix C) to give

Z(η, η̄) = detAeη̄A
−1η. (6.19)

Here A−1
xy ≡ Sxy is the fermion propagator. It can be evaluated in

momentum space, assuming infinite space–time,

A(k,−l) =
∑
xy

e−ikx+ilyAxy = S(k)−1δ̄(k − l), (6.20)

S(k)−1 =
∑
µ

iγµ sin kµ +m, (6.21)

S(k) =
m− iγµsµ
m2 + s2

, sµ = sin kµ. (6.22)

Reverting to non-lattice units the propagator becomes

S(k) =
m− i

∑
µ γµ sin(akµ)/a

m2 +
∑

µ sin2(akµ)/a2
, (6.23)

for which the limit a→ 0 gives the continuum result

S(k) =
m− iγk

m2 + k2
+O(a2). (6.24)

The propagator has a pole at k4 = iω = i
√
k2 +m2 corresponding to

a Dirac particle. The pole is near the zeros of the sine functions at
the origin akµ = 0. However, there are 15 more regions in the four
dimensional torus −π < akµ ≤ π where the sine functions vanish, 16 in
total:

S(k) =
m− iγ

(A)
µ pµ

m2 + p2
+O(a), k = kA + p (6.25)

where the kA is one of the 16 four-vectors

kA =
πA
a
, mod 2π (6.26)

with

π0 = (0, 0, 0, 0), π1234 = (π, π, π, π),

π1 = (π, 0, 0, 0), π2 = (0, π, 0, 0), . . ., π4 = (0, 0, 0, π),

π12 = (π, π, 0, 0), . . ., π34 = (0, 0, π, π),

π123 = (π, π, π, 0), . . ., π234 = (0, π, π, π), (6.27)
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and

γ(A)µ = γµ cosπAµ = ±γµ. (6.28)

Since the γAµ differ only by a sign from the original γµ, they are equivalent
to these by a unitary transformation. This transformation is easy to
build up out of products of γργ5, where γ5 = iγ0γ1γ2γ3 = −γ1γ2γ3γ4
is the Hermitian and unitary matrix which anticommutes with the γµ:
γµγ5 = −γ5γµ. So let

{SA} = {11, Sρ, SρSσ, SρSσSτ , S1S2S3S4}, Sρ = iγργ5, (6.29)

where ρ �= σ �= τ �= ρ and A↔ πA ↔ SA, e.g. π23 ↔ S23 = S2S3. Then

γ(A)µ = S†
AγµSA, (6.30)

and we have

S(kA + p) = S†
A

m− iγµpµ
m2 + p2

SA +O(a2). (6.31)

The transformations SA are useful for the detailed interpretation of the
zeros of the sine functions near kA �= 0 in terms of genuine particles [70].
Here we shall support the interpretation of the 15 additional particles
– the species doublers – by deriving the spectrum of excitation energies
above the energy of the ground state.

The excitation-energy spectrum is conveniently obtained from the
time dependence of the propagator, analogously to the boson case:

S(x, t) =
∫ π

−π

d3k

(2π)3
eikx

∫ π

−π

dk4
2π

eik4t
m− iγs− iγ4 sin k4
m2 + s2 + sin2 k4

, (6.32)

where we reverted to lattice units and used the notation sµ = sin kµ.
The k4 integral can be performed by changing variables to

z = eik4 , (6.33)

in terms of which s24 = 1− (z2 + z−2 + 2)/4, and

S(x, t) = −4
∫

d3k

(2π)3
eikx

∫
dz

2πi
zt

z(m− iγs)− γ4(z2 − 1)/2
z4 − 2fz2 + 1

,

f = 1 + 2(m2 + s2). (6.34)

The integral over z is over the unit circle in the complex plane, as shown
in figure 6.1. The denominator of the integrand has four zeros, at ±z+
and ±z−, where z± are given by

(z±)2 = f ±
√
f2 − 1, z± = e±ω, (6.35)

cosh(2ω) = f, sinhω =
√
m2 + s2. (6.36)
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Fig. 6.1. Contour integration in the complex-z plane.

For t > 0 (t = integer) the two poles at z = ±z− contribute, giving

S(x, t) =
∫

d3k

(2π)3
eikx−ωt

sinh(2ω)
(m− iγs+ γ4 sinhω)

+ (−1)t
∫

d3k

(2π)3
eikx−ωt

sinh(2ω)
(m− iγs− γ4 sinhω). (6.37)

Before interpreting this result we want to summarize it in terms of the
variable k4, for later use. In terms of k4 the zeros of the denominator
m2 + s2 + sin4 k4 at z = z± are at k4 = ∓iω, and for z = −z± at
k4 = ∓iω + π (mod 2π). The k4 = −iω, −iω + π poles are relevant for
t < 0. The residues of the other poles are given by

eik4t (m− iγs− iγ4s4)

= e−ωt (m− iγs+ γ4 sinhω), k4 = iω,

= (−1)te−ωt (m− iγs− γ4 sinhω), k4 = iω + π,

= eωt (m− iγs− γ4 sinhω), k4 = −iω,
= (−1)teωt (m− iγs+ γ4 sinhω), k4 = −iω + π. (6.38)

We see that we cannot blindly perform the inverse Wick rotation on the
lattice k4 → ik0 and look for particle poles at k0 = ±ω. We have to
let k4 → ik0 + ϕ, ϕ ∈ [0, 2π): then k0 = ±ω corresponds to e∓ωt eiϕt,
t
>
< 0. In this case we have have poles at ϕ = 0 and ϕ = π. Recall that

the Bose-field denominator m2 + 2
∑

µ(1− cos kµ) gives only a pole for
ϕ = 0.
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Fig. 6.2. Excitation-energy spectra for bosons (upper curve) and fermions
(lower curve) on the lattice, in lattice units (m = 0.2).

We now interpret the result (6.37). From the time dependence of the
propagator we identify the energy spectrum ω(k). Since there are two
poles contributing for t > 0, there must be two fermion particles for every
k. One of them (the pole at z = z−) has the usual e−ωt factor. The other
(at −z−) has in addition the rapidly oscillating factor (−1)t. Apparently,
to obtain smooth behavior at large times (in lattice units) we have to
take two lattice units as our basic time step. This is in accordance with
the transfer operator interpretation of the path integral, in which in
general two adjacent time slices are identified with the fermion Hilbert
space [78, 79, 89], in which two independent operator Dirac fields ψ̂1,2
act, corresponding to the two particle poles. An exception is Wilson’s
fermion method [86, 87], which has no fermion doubling (for r = 1, see
below).

So there is a doubling of fermion species due to the discretization of
time. There is a further proliferation of particles due to the discretization
of space. In figure 6.2 we compare the boson and fermion excitation-
energy spectra

coshω = 1 + 1
2


m2 + 2

3∑
j=1

(1− cos kj)


, boson; (6.39)

sinhω =

√√√√m2 +
3∑

j=1

sin2 kj , fermion. (6.40)
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We define a particle state to correspond to a local minimum of the energy
surface ω(k). The minima are at k = kA, kA = 0, π1, π2, π3, π12, π23,
π31, π123, with rest energy given by ωA ≡ ω(kA), sinhωA = m. For
m→ 0 (in lattice units) the spectrum is relativistic near k = kA,

ω →
√
m2 + p2, m→ 0, p = k− kA → 0, (6.41)

and p can be interpreted as the momentum of the particle. From the
time and space ‘doubling’ we count 24 = 16 particles. Note that the
wave vector k is just a label to identify the states and that the physical
momentum interpretation has to be supplied separately.

One may wish to ignore the kA �= 0 particles. However, in an inter-
acting theory this is not possible, because kµ is conserved only modulo
2π. For example, two kA = 0 particles may collide and produce two
kA = π1 = (π, 0, 0, 0) particles: p1 + p2 = p3 + π1 + p4 + π1 = p3 + p4
(mod 2π).

The phenomena related to fermions on a lattice touch on deep issues
involving anomalies and topology. This is a vast and technically difficult
subject and we shall give only a brief review in sections 8.4 and 8.6. In a
first exploration we shall describe two important methods used for ame-
liorating the effects of species doubling in QCD-like theories: Wilson’s
method [71] and the method of Kogut–Susskind [72, 40] (in the Hamil-
tonian formulation). The latter is also known as the staggered-fermion
method, in its generalization to Euclidean space–time (see for example
[79, 74, 80]). For the hypercubic lattice the staggered-fermion method
is equivalent to the ‘geometrical’ or Dirac–Kähler fermion method of
Becher and Joos [81], provided that an appropriate choice is made of
the couplings to the gauge fields.

We shall first describe Wilson’s method and then briefly introduce the
staggered-fermion method.

6.3 Wilson’s fermion method

Wilson’s method can be viewed as adding a momentum-dependent ‘mass
term’ to the fermion action, which raises the masses of the unwanted
doublers to values of the order of the cutoff, thereby decoupling them
from continuum physics. For free fermions we replace the mass term in
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the action as follows,

m
∑
x

ψ̄xψx → m
∑
x

ψ̄xψx +
ar

2

∑
xµ

∂µψ̄x∂µψx (6.42)

= m
∑
x

ψ̄xψx +
ar

2

∑
xµ

1
a2

(ψ̄x+aµ̂ − ψ̄x)(ψx+aµ̂ − ψx)

=
(
m+

4r
a

)∑
x

ψ̄xψx −
r

2a

∑
xµ

(ψ̄x+aµ̂ψx + ψ̄xψx+aµ̂).

The has the effect of replacing the mass m in the inverse propagator in
momentum space by

m+ r
∑
µ

(1− cos kµ) ≡M(k), (6.43)

in lattice units. The propagator is then given by

S(k) =
M(k)− iγµ sin kµ
M2(k) +

∑
µ sin2 kµ

. (6.44)

For k = kA + p and small p in lattice units this takes the form

S(p) =
mA − iγ

(A)
µ pµ

m2
A + p2

, (6.45)

mA = m+ 2nAr, nA = 0, 1, . . ., 4, (6.46)

where nA is the number of π’s in kA.
Hence, the mass parameters of the doubler (nA > 0) fermions are of

order one in lattice units as long as r �= 0. These mass parameters mA

may be identified with the fermion masses if they are small in lattice
units, i.e. for small m and r. For general r and momenta p the fermion
energies differ from

√
m2

A + p2 and it is interesting to see what they
actually are. We therefore look for the poles of the propagator as a
function of k4 and identify the energy ω from k4 = iω or k4 = iω + π,
as explained below (6.37). For simplicity we shall use the notation

sµ = sin kµ, cµ = cos kµ, s2 = sµsµ. (6.47)

Separating the k4 dependence, the denominator of the propagator can
be written as

M2 + s2 = 1 + s2 + Σ2 − 2rΣc4 − (1− r2)c24, (6.48)

Σ = m+ r + r
3∑

j=1

(1− cj), (6.49)
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which denominator vanishes for

coshω± =

√
Σ2 + (1− r2)(1 + s2)± rΣ

1− r2
. (6.50)

Here the plus sign corresponds to k4 = iω + π and the minus sign to
k4 = iω. The rest energies of the particles at k = kA follow from s = 0
and

Σ = m+ r + 2nr, n = 0, 1, 2, 3 for kA = 0, πj , πjk, π123. (6.51)

For m = 0 the particles have rest energy ωn given by

coshω±
n =

√
r2(1 + 2n)2 + 1− r2 ± r2(1 + 2n)

1− r2
. (6.52)

Hence, only the wanted (n = 0, − sign) fermion has rest energy zero
and the doubler fermions have rest energies of order 1 in lattice units
(energies of order of the cutoff). For r → 1 the rest energies of the
time-doublers (for which the + sign applies) become infinite, ω+ →∞.
The non-time-doubler rest energies become ω−

n = ln(1 + 2n) at r =
1. Actually, as r increases from 0 to 1 the doublers disappear before
reaching r = 1 in the sense that the local minima of the energy surface
at kA �= 0 disappear.

Wilson’s choice is r = 1. It can be seen directly from (6.48) that in
this case there is no species doubling because the inverse propagator is
linear in cos k4. Re-installing the lattice spacing a, the particle energy
can be found to contain errors of order a, to be compared with O(a2)
for naive/staggered fermions or bosons,

ω = ω−
0 =

√
m2 + p2 +O(a). (6.53)

The special significance of r = 1 can be seen in another way from the
complete action, which has the form

S =
∑
xµ

(
ψ̄x

r − γµ
2

ψx+µ̂ + ψ̄x+µ̂
r + γµ

2
ψx

)
−M

∑
x

ψ̄xψx,

M = m+ 4r. (6.54)

The combinations

P±
µ =

r ± γµ
2

, (6.55)

become orthogonal projectors for r = 1,

(P±
µ )2 = P±

µ , P+
µ P

−
µ = 0, P+

µ + P−
µ = 1. (6.56)
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Replacing derivatives by covariant derivatives we obtain the expression
for the fermion action coupled to a lattice gauge field Uµx,

SF =
∑
xµ

(ψ̄xP
−
µ Uµxψx+µ̂ + ψ̄x+µ̂P

+
µ U

†
µxψx)−

∑
x

ψ̄xMψx, (6.57)

or, temporarily reintroducing the lattice spacing a,

SF = −
∑
x

[
1
2
(ψ̄γµDµψ −Dµψ̄γµψ) + ψ̄mψ + a

r

2
Dµψ̄Dµψ

]
, (6.58)

where Dµψ̄(x) = [ψ̄(x + µ̂a)U †
µx − ψ̄(x)]/a, etc., we rearranged the

summation over x, and m = M − 4r/a is sometimes called the bare
fermion mass.

In the QCD case M is a diagonal matrix in flavor space and r is usually
chosen flavor-independent, mostly r = 1. A parameterization introduced
by Wilson follows from rescaling ψ → M−1/2ψ, ψ̄ → ψ̄M−1/2. For one
flavor this gives the form

S = −
∑
x

ψ̄xψx + κ
∑
xµ

[ψ̄x(r − γµ)Uµxψx+µ̂ + ψ̄x+µ̂(r + γµ)U†
µxψx],

(6.59)
where

κ =
1

2M
, (6.60)

is Wilson’s hopping parameter (it is flavor dependent). This κ is anal-
ogous to the hopping parameter in the scalar field models. We may
interpret −

∑
x ψ̄xψx as belonging to the integration measure in the path

integral.
For free fermions the continuum limit means m → 0 in lattice units,

which implies a critical value for the hopping parameter

κ→ κc = 1/8r, M →Mc = 4r. (6.61)

At this critical value there is somehow a cancellation of the ψ̄ψ-like
terms, such that the fermions acquire zero mass. With the gauge field
present the effective strength of the hopping term is reduced by the
‘fluctuating’ unitary Uµx. We then expect Mc < 4 and κc > 1/8r, for
given gauge coupling g. However, in the QCD case we know already that
g itself should go to zero in the continuum limit, because of asymptotic
freedom, implying Uµx → 1 in a suitable gauge and (6.61) should still be
valid (κc is of course gauge independent). However, at gauge coupling
of order one we can be deep in the scaling region of QCD and we may
expect an effective κc substantially larger than 1/8r. Since there are no
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free quarks in QCD we cannot define κc as the value at which the quark
mass vanishes. We shall see later that it may be defined as the value at
which the pion mass vanishes.

6.4 Staggered fermions

Starting with the naive fermion action we make the unitary transforma-
tion of variables (in lattice units)

ψx = γx χx, ψ̄x = χ̄x (γx)†, (6.62)

γx ≡ (γ1)x1 (γ2)x2 (γ3)x3 (γ4)x4 . (6.63)

Because [
(γx)†γµγx+µ̂

]
αβ

=
[
γxγµ(γx+µ̂)†

]
αβ

= ηµx δαβ , (6.64)

where

η1 x = 1, η2 x = (−1)x1 , η3 x = (−1)x1+x2 , η4 x = (−1)x1+x2+x3 ,

(6.65)
this transformation has the effect of removing the gamma matrices from
the naive fermion action, which acquires the form

S = −
4∑

α=1

[∑
xµ

ηµx
1
2
(χ̄α

xχ
α
x+µ̂ − χ̄α

x+µ̂χ
α
x) +m

∑
x

χ̄α
xχ

α
x

]
. (6.66)

In this representation the Dirac spinor labels α on χ̄ and χ are like
internal symmetry labels and the action is just a sum of four identical
terms, one for each value of the Dirac index. Hence, one of these should
suffice in describing fermion particles. It can indeed be shown that taking
χ and χ̄ as one-component fields leads to 16/4 = 4 Dirac particles in
the continuum limit. In QCD all these fermions are interpreted as quark
flavors. Inserting the ‘parallel transporters’ Uµx then leads to a gauge-
invariant staggered-fermion action

SF = −
∑
xµ

ηµx
1
2
[
χ̄ax(Uµx)abχbx+µ̂ − χ̄ax+µ(U†

µx)abχbx

]
−
∑
x

mχ̄axχax,

(6.67)
where we have made all indices on χ and χ̄ explicit (a and b are color
indices) – there are e.g. no spin or flavor indices for χ and χ̄. Analysis in
weak-coupling perturbation theory leads to the conclusion that this ac-
tion describes QCD with four mass-degenerate flavors in the continuum
limit [73, 74] (the mass degeneracy of the quarks can be lifted by adding
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other terms to the action). The action has an interesting symmetry
group [76], which is important for the construction of composite fields
with the quantum numbers of hadrons [75, 77]. In the scaling region
this symmetry group enlarges to the group in the continuum (including
‘anomalies’).

A further reduction by a factor of two is possible by assigning χ̄x only
to the even sites and χx only to the odd sites [78, 79, 80]. Even and odd
sites are defined by εx = 1 and − 1, respectively, with

εx = (−1)x1+x2+x3+x4 . (6.68)

In this formulation we may as well omit the bar on χ̄x since no confusion
between even and odd sites is possible. Then a minimal action with only
one Grassmann variable per site is given by

S = −
∑
xµ

ηµx
1
2χxχx+µ̂, (6.69)

in case of zero fermion mass. This method leads essentially to four
Majorana fermions, which are equivalent to two Dirac fermions or eight
Weyl fermions. Non-zero mass requires one-link or multilink couplings,
since χ2x = 0.

Staggered fermions are technically rather specialized and we shall not
emphasize them in this book. For an application of the method (6.69)
to numerical simulations of the Higgs–Yukawa sector of the Standard
Model see [36].

6.5 Transfer operator for Wilson fermions

It will now be shown that the fermion partition function with Wilson
fermions can for r = 1 be written in the form

Z = Tr T̂N , (6.70)

where T̂ is a positive transfer operator in Hilbert space and N is the
number of time slices. A transfer operator was first given by Wilson [86]
and a study of its properties was presented in [87]. The construction
below is slightly different. (A general construction for r �= 1 is sketched
in [89], which is easily adapted to naive or staggered fermions. See
also [79, 88, 90] and references therein.) To identify T̂ we first assume
that the gauge field is external and and write Tr T̂N in the Grassmann
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representation,

Tr T̂N =
∫

da+1 da1 · · · da+N daN e−a+
NaN T (a+N , aN−1) e−a+

N−1aN−1

× T (a+N−1, aN−2) · · ·T (a+k+1, ak) e
−a+

k ak T (a+k , ak−1) · · ·

× e−a+
2 a2 T (a+2 , a1) e

−a+
1 a1 T (a+1 ,−aN ). (6.71)

The minus sign in the last factor corresponds to the same sign in (C.68)
in appendix C. It implies that there are antiperiodic boundary conditions
in the path integral, i.e. there is a change of sign in the couplings in the
action between time slices 0 and N − 1. The expression above is to be
compared with

ZF =
∫

Dψ̄Dψ expSF, (6.72)

where SF is the fermion part of the action. We have seen in the pure-
gauge case that the integration over the timelike links U4x leads to the
projector on the gauge-invariant subspace of Hilbert space, together with
a transfer operator in the temporal ‘gauge’ U4x = 1. We therefore set
U4x = 1 and write the fermion action in the form (using lattice units,
t ≡ x4 and x are integers)

SF =
∑
t

(
−ψ+t

1− β

2
ψt+1 + ψ+t+1

1 + β

2
ψt

)

−
∑
t

ψ+t βAtψt − ε
∑
t

ψ+t Dtψt. (6.73)

Here a matrix notation is used with

Axy,t = Mδx,y − ε

3∑
j=1

1
2
(Uxy,t δx+ĵ,y + x↔ y), (6.74)

Dxy,t =
3∑

j=1

αj
1
2i

(Uxy,t δx+ĵ,y − x↔ y), (6.75)

and αj = iγ4γj and β = γ4 are Dirac’s matrices, and furthermore

ε = a4/a. (6.76)

We recognize the projectors

P± ≡ P±
4 = (1± β)/2 (6.77)

for Wilson parameter r = 1. They reduce the number of ψ+t±1ψt couplings
by a factor of two compared with the naive fermion action.
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Fig. 6.3. The association of time slices with Hilbert space for Wilson fermions
(r = 1).

The association of time slices t with Hilbert-space slices k is as follows
(for each x, T denotes transposition):

P+ψt = (a+k P
+)T, ψ+t P

− = a+k P
−, (6.78)

P−ψt+1 = P−ak, ψ+t+1P
+ = (P+ak)T, (6.79)

At = Ak, Dt = Dk (6.80)

as illustrated in figure 6.3. With this notation the action can be written
as

SF = −
∑
k

a+k ak +
∑
k

a+k Akak−1

− ε
∑
k

(ak−1P+DkP
−ak−1 + a+k P

−DkP
+a+k ). (6.81)

Here we have used βD = −Dβ, such that

D = (P+ + P−)D(P+ + P−) = P+DP− + P−DP+, (6.82)

and abused the notation by leaving out the transposition symbol T.
Comparison with Tr T̂N in the form (6.71) gives the (Grassmannian)
transfer-matrix elements

TF(a+k , ak−1) = exp(−εa+k P−DkP
+a+k ) exp(a+k Akak−1)

× exp(−εak−1P+DkP
−ak−1). (6.83)

Using the rules listed above (C.68) in appendix C this translates into
operator form as

T̂F = e−εâ†P−DP+â†
eâ

† ln(A)â e−εâP+DP−â. (6.84)

Here D and A depend in general on the gauge-field configuration in a
time slice.

Consider now first the case of free fermions, Uxy = 1. Then T̂ is
clearly a positive operator provided that A is positive, i.e. a Hermitian
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matrix with only positive eigenvalues. In momentum space we get the
eigenvalues

A(p) = M − ε

3∑
j=1

cos pj , (6.85)

which shows that A > 0 for

M > 3ε. (6.86)

With dynamical gauge fields we have to take into account in (6.84) the
transfer operator for the gauge field T̂U . The complete transfer operator
can be taken as

T̂ = T̂
1/2
F T̂U T̂

1/2
F P̂0, (6.87)

T̂F = e−εâ†P−D̂P+â†
eâ

† ln Â â e−εâP+D̂P−â (6.88)

where we have also put in the projector P0 on the gauge-invariant
subspace. Since A has lowest eigenvalues when the link variables are
unity, the condition (6.86) remains sufficient in general for positivity of
T̂F.

We can now use (6.80) in reverse and define operator fields ψ̂ and ψ̂†,
for each spatial site x, by

P+ψ̂ = (â†P+)T, ψ̂†P− = â†P−, (6.89)

P−ψ̂ = P−â, ψ̂† = (P+â)T. (6.90)

In terms of these fields the fermion transfer operator takes the explicitly
charge-conserving form

T̂F = e−εψ̂†P−D̂P+ψ̂ e−ψ̂†β ln Â ψ̂ eTrP
+ ln Â e−εψ̂†P+DP−ψ̂. (6.91)

Notice the Dirac-sea factor exp(TrP+ lnA).
The continuous time limit T̂ = 1− εĤ +O(ε2) can be taken if we let

M depend on ε→ 0 according to

M = 1 + εM3, (6.92)

such that A takes the form

A(U) = 1 + εM3(U) (6.93)

M3 = M3 −
3∑

j=1

1
2 (Ux,y δx+ĵ,y + x↔ y), (6.94)
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and we get the fermion Hamiltonian

ĤF = ψ̂†[M3(Û)β +D(Û)]ψ̂. (6.95)

This may be called a Wilson–Dirac Hamiltonian on a spatial lattice.
In summary, we conclude that the Euclidean-lattice formulation of

QCD using Wilson’s fermion method has a good Hilbert-space interpre-
tation, with a positive transfer operator.

6.6 Problems

The following exercises serve to clarify the continuum limit in QED
and the phenomenon of species doubling by calculation of the photon
self-energy at one loop in the weak-coupling expansion.

(i) Vertex functions
Consider the naive fermion action in QED

SF = −
∑
xµ

1
2 (ψ̄xγµe

−igAµxψx+µ̂ − ψ̄x+µ̂γµe
igAµxψx). (6.96)

The bare fermion–photon vertex functions are the derivatives of
the action with respect to the fields. Taking out a minus sign and
the momentum-conserving delta functions, let the vertex function
Vµ1···µn(p, q; k1 · · · kn) be defined by

SF = −
∑

uvx1···xn

1
n!

ψ̄uVµ1···µn
(u, v;x1 · · ·xn)ψvAµ1x1 · · ·Aµnxn

,

(6.97)∑
uvx1···xn

e−ipu+iqv−ik1x1···−iknxn Vµ1···µn(u, v;x1 · · ·xn)

= Vµ1···µn
(p, q; k1 · · · kn) δ̄(p− q + k1 + · · · kn).

(6.98)

Show that (p− q + k1 + · · · kn = 0)

Vµ1···µn
(p, q; k1 · · · kn) =

∑
µ

γµ
1
2 [(−ig)

neiqµ − (ig)ne−ipµ ]

× δµµ1 · · · δµµn , (6.99)

as illustrated in figure 6.4. The fermion propagator is given by

S(p)−1 = V (p, p), S(p) =
m− iγµ sin pµ
m2 + sin2 p

. (6.100)
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Fig. 6.4. Fermion vertex function −Vµ1···µn(p, q; k1, . . ., kn).

(ii) Ward–Takahashi identities
The gauge invariance of SF implies certain properties of the
vertex functions, called Ward–Takahashi identities. Consider a
small gauge transformation ψ′

x = (1 + iωx + O(ω2))ψx, ψ̄′
x =

(1−iωx+O(ω2))ψ̄x, A′
µx = Aµx+(1/g)∂µωx (recall the definition

of the forward and backward lattice derivatives, ∂µωx = ωx+µ̂−ωx

and ∂′
µωx = ωx − ωx−µ̂). Collect the linear terms in ωx in the

invariance relation 0 = SF(ψ′, ψ̄′, A′) − SF(ψ, ψ̄, A) and derive
the Ward identities

0 =
1
g
i∂′

µVνµ1···µn(u, v;x, x1, . . ., xn)

+ δuxVµ1···µn(u, v;x1, . . ., xn)

− δvxVµ1···µn
(u, v;x1, . . ., xn), (6.101)

and the momentum-space version

0 =
1
g
K∗

µ(k)Vµµ1···µn(p, q; k, k1, . . ., kn)

+ Vµ1···µn(p+ k, q; k1, . . ., kn)

− Vµ1···µn
(p, q − k; k1, . . ., kn), (6.102)

where Kµ(k) = (eikµ − 1)/i. In particular, for n = 0 and 1,

K∗
µ(k)Vµ(p, q; k) = S(p)−1 − S(q)−1, (6.103)

K∗
µ(k)Vµν(p, q; k, l) = Vµ(p, p+ l; l)− Vν(q − l, q; l)

(p− q + k = 0, p− q + k + l = 0).

(iii) Photon self-energy
We study the ‘vacuum-polarization’ diagrams in figure 6.5, which
describe the photon self-energy vertex function Π = Π(a) + Π(b)
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Fig. 6.5. Vacuum-polarization diagrams for −Πµν(p).

given by

Π(a)
µν (p) = −g2

∫ π

−π

d4l

(2π)4
Tr [Vµν(l,−l, p,−p)S(l)], (6.104)

Π(b)
µν (p) = g2

∫ π

−π

d4l

(2π)4
Tr [Vµ(l, l + p)S(l + p)Vν(l + p, l)S(l)].

Use the identities (6.103) to show that the sum Πµν = Π(a)
µν +

Π(b)
µν satisfies the Ward identity

K∗
µ(p)Πµν(p) = 0. (6.105)

(Note that the loop integrals in the lattice regularization are
invariant under translation of the integration variable.)

(iv) Continuum region and lattice-artifact region
The calculation of the continuum limit of Πµν(p) can be done in
the same way as for the scalar field in section 3.4 We split the
integration region into a ball of radius δ around the origin l = 0
and the rest, where δ is so small that we may use the continuum
form of the propagators and vertex functions.

Going over to physical units, p → ap, m → am, Π → Πa−2,
show that in the scaling region limit a → 0, δ → 0, am/δ → 0,
ap/δ → 0 the contribution of this ball can be written as

− g2

2π2
(δµνp2 − pµpν)

∫ 1

0

dxx(1− x) ln[a2(m2 + x(1− x)p2)]

(6.106)
up to a second-degree polynomial in p.

Verify that the 15 fermion doublers in similar balls around
non-zero l = πA give identical contributions, up to possible
arbitrariness in the polynomials.

The region outside the 16 balls can contribute only a second-
degree polynomial Tµν(p) in a−1, m and p in the continuum
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limit, because possible infrared divergences cannot develop in the
outside regions.

Note that Π(a)
µν contributes only to the polynomial part of Πµν

in the continuum limit (it is just a constant ∝ δµν). The reason
is that there is no logarithmic contribution from the balls around
l = πA because the vertex function Vµν vanishes in the classical
continuum limit.

(v) Lattice symmetries
The polynomial has to comply with the symmetries of the model,
in particular cubic rotations R(ρσ) in a plane (ρ, σ),

(R(ρσ)p)µ ≡ R(ρσ)
µν pν ,

(R(ρσ)p)ρ = pσ, (R(ρσ)p)σ = −pρ,
(R(ρσ)p)µ = pµ, µ �= {ρ, σ} (6.107)

and inversions I(ρ),

(I(ρ)p)ρ = −pρ, (I(ρ)p)µ = pµ, µ �= ρ. (6.108)

The polynomial Tµν(p) has to be a tensor under these transfor-
mations,

Tµν(R(ρσ)p) = R
(ρσ)
µµ′ R

(ρσ)
νν′ Tµ′ν′(p), (6.109)

Tµν(I(ρ)p) = I
(ρ)
µµ′I

(ρ)
νν′Tµ′ν′(p). (6.110)

Show using the lattice symmetries that the form of the polynomial
is limited to

c1a
−2δµν + c2m

2 + c3p
2
µδµν + c4pµpν + c5p

2δµν . (6.111)

(In the third term there is of course no summation over µ.)
(vi) Constraints from the Ward identity

Use the continuum limit of the Ward identity (6.105) to show
finally that Πµν(p) has the continuum covariant form,

Πµν(p) = −16
g2

2π2
(δµνp2 − pµpν)

×
∫ 1

0

dxx(1− x) ln[a2(m2 + x(1− x)p2)]

+ c(p2δµν − pµpν). (6.112)

Note that the coefficient c1 of the quadratic divergence is zero.
This can of course also be verified by an explicit calculation, e.g.
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for p = 0. In non-Abelian gauge theory such quadratic diver-
gences are also absent, provided that the contribution from the
integration (Haar) measure in the path integral is not forgotten.
Note also that the coefficient c3, of the term that is lattice covari-
ant but not covariant under continuous rotations, is zero. Such
cancellations will not happens in models in which vector fields
are not gauge fields (no Ward identities). Then counterterms are
needed in order to ensure covariance.

The numerical constant c can be obtained by a further careful
analysis and numerical integration. It determines e.g. the ratio
of lambda scales ΛMS/ΛL in the theory with (naive) dynamical
fermions. On dividing by a factor of four we get the analogous
result for four-flavor staggered fermions described by the U(1)
version of the action (6.67).
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Low-mass hadrons in QCD

In this chapter we address the calculation of the properties of hadrons
composed of the light quarks u, d and s.

7.1 Integrating over the fermion fields

The partition function for a fermion gauge theory

Z =
∫

DU Dψ̄Dψ exp(SU + SF) (7.1)

can be expressed in an alternative form involving only the gauge fields
by first integrating out the fermion fields. We shall use Wilson fermions
as an example. We can write SF in matrix notation,

SF = −
∑
xµ

1
2
(ψ̄xγµUµxψx+µ̂ − ψ̄x+µ̂γµU

†
µxψx)

−
∑
x

ψ̄xMψx +
∑
xµ

r

2
(ψ̄xUµxψx+µ̂ + ψ̄x+µ̂U

†
µxψx) (7.2)

≡ −ψ̄Aψ, (7.3)

A = D/+M −W. (7.4)

The matrix A = A(U) is called the fermion matrix. Its inverse is the
fermion propagator S(U) in a given gauge-field configuration,

Sxy(U) ≡ A−1
xy (U) =

[
1

M −W (U) +D/(U)

]
xy

. (7.5)

Since ψ and ψ̄ occur only bilinearly in the action, we can perform
the integration over these variables and evaluate fermion correlation

170
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functions explicitly:

Z =
∫

DU det[A(U)] exp(SU)

〈ψxψ̄y〉 = Z−1
∫

DU det[A(U)] eSU Sxy(U)

≡ 〈Sxy〉U ,
〈ψuψ̄vψxψ̄y〉 = 〈SuvSxy − SuySxv〉U ,

〈ψuψvψwψ̄xψ̄yψ̄z〉 = 〈SuxSvySwz + 5 permutations〉U , (7.6)

etc. For clarity we indicated only the space–time indices x, . . . and
suppressed the color, Dirac, and flavor indices a, α, and f of the fermion
fields ψaαf

x .

7.2 Hopping expansion for the fermion propagator

For Wilson fermions an expansion in the hopping parameter κ = 1/2M
has given useful results. Here we describe it for the propagator, for which
it gives an intuitive representation in terms of a summation over random
paths. We have seen this earlier for the scalar field in section 3.7. Let us
define the hopping matrix H by

Hxaα,ybβ =
∑
µ

[(P−
µ )αβ (Uxy)ab δx+µ̂,y + (P+

µ )αβ (Uyx)ab δy+µ̂,x], (7.7)

in terms of which

Axaαf,ybβg = Mf δfg [1− 2κfHxaα,ybβ ]. (7.8)

For a given flavor we have

Sxy = M−1
(

1
1− 2κH

)
xy

= M−1
∞∑

L=0

(2κ)L (HL)xy, (7.9)

where we suppressed again the non-space–time indices. The successive
terms in this series can be represented as a sum over paths of length L,
as illustrated in figure 7.1. The diagrams for L + 1 are obtained from
those for L by application of H (by attaching the L = 1 diagrams). To
each path C there corresponds a color factor Uxy(C) and a spin factor

Γ(C) =
∏
l∈C

Pl, (7.10)

Pl = P−
µ , l = (x, x+ µ̂) (7.11)

= P+
µ , l = (x+ µ̂, x). (7.12)
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Fig. 7.1. Illustration of the terms in the hopping expansion of the propagator.

Note that, for r = 1, there are no paths with back-tracking because then
P+
µ P

−
µ = P−

µ P+
µ = 0.

For free fermions we can perform the summation in momentum space,

(HL)xy =
∑
p

eip(x−y)H(p)L, (7.13)

H(p)δ̄pq =
∑
xy

e−ipx+iqy Hxy, (7.14)

H(p) =
∑
µ

(eipµ P−
µ + e−ipµ P+

µ )

=
∑
µ

(r cos pµ − iγµ sin pµ), (7.15)

S(p) =
1

M −
∑

µ(r cos pµ − iγµ sin pµ)
. (7.16)

So the summation over random paths with the particular weight factor
(7.10) leads to the free Wilson fermion propagator. The maximum eigen-
value of H(p) is 4r at p = 0, which means that the radius of convergence
of the hopping expansion for free fermions is given by |κ| < 1/8r.
For fixed κ and complex p the expansion diverges at the position of
the particle pole in the propagator. In the interacting case the unitary
Uµx tend to reduce the maximum eigenvalue of H and the convergence
radius is generically larger than 1/8r, depending on the configuration
of U ’s.
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The hopping expansion for the propagator leads to an expansion of
the fermion determinant in terms of closed paths,

detA→ det(1− 2κH) = exp[Tr ln(1− 2κH)]

= exp

[
−
∑
L

(2κ)L

L
TrHL

]
. (7.17)

With each closed path C there is associated a Wilson loop TrU(C) and
a spin loop Tr Γ(C).

7.3 Meson and baryon propagators

The expressions (7.6) are well defined without gauge fixing. Since∫
DU contains an implicit integration over all gauge transformations,

it projects on the gauge-invariant content of the integrand. Under a
gauge transformation

UΩ
µx = ΩxUµxΩ

†
x+µ̂, (7.18)

A(UΩ)xy = ΩxA(U)xyΩ†
y, (7.19)

A−1(UΩ)xy = ΩxA
−1(U)xyΩ†

y, (7.20)

or

S(UΩ)xy = ΩxS(U)xyΩ†
y. (7.21)

Since
∫
dΩx Ωx = 0, the gauge-invariant content of Ωx is zero and it

follows that the expectation value of the gauge-field-dependent fermion
propagator is zero, unless x = y,

〈Sxaαf,ybβg〉U ∝ δxy δab δfg. (7.22)

The fermions cannot propagate ‘on their own’ without gauge fixing. Of
course, this does not mean that fermion propagation is a non-gauge-
invariant phenomenon and it is also not an expression of confinement.
It forces us to consider carefully what the gauge-invariant description of
propagation means.

A simple gauge-invariant correlation function is of the type
〈ψ̄xψxψ̄yψy〉. In QCD we call these mesonic, since ψ̄γψ combinations
carry mesonic quantum numbers. More explicitly, we can define gauge-



174 Low-mass hadrons in QCD

invariant meson and baryon fields

Mαf
xβg = δba ψ

aαf
x ψ̄xbβg, (7.23)

Bα1f1α2f2α3f3
x = εa1a2a3ψ

a1α1f1
x ψa2α2f2

x ψa3α3f3
x , (7.24)

B̄xα1f1α2f2α3f3 = εa1a2a3 ψ̄xa1α1f1 ψ̄xa2α2f2 ψ̄xa3α3f3 . (7.25)

The gauge invariance of the meson fields is obvious. For the baryon fields
the effect of a gauge transformation is given by (suppressing non-color
indices)

εabcψ
aψbψc → εabc Ωa

a′Ωb
b′Ω

c
c′ ψ

a′
ψb′ψc′

= (det Ω) εa′b′c′ ψ
a′
ψb′ψc′ , (7.26)

and invariance follows from det Ω = 1.
By taking special linear combinations, we can construct from M, B,

and B̄ fields with the required quantum numbers. For example, for π+

(which has spin zero) we can use the scalar field combination

d̄xiγ5ux, d̄xiγµγ5ux, (7.27)

where we made flavor explicit according to

uaαx = ψaαu
x , daαx = ψaαd

x , (7.28)

etc. For the ρ+ particle (which has spin one) we can use the vector and
tensor fields (both containing spin 1)

d̄xiγµux, d̄xi[γµ, γν ]ux. (7.29)

An example for the proton (spin 1
2 ) is given by

εabc (C†γ5)βγ uaαx (ubβx dcγx − dbβx ucγx ), (7.30)

and for the ∆++ (spin 3
2 ),

εabc (C†γµ)βγ uaαx ubβx ucγx . (7.31)

Here C is the charge-conjugation matrix; ψ̄(c) = −(C†ψ)T is the charge
conjugate of ψ̄ (cf. (D.27) in appendix D). For example, for the ∆++

the last two u fields combine to give a vector (containing spin 1) of
the form ψ̄(c)γµψ, which, together with the first u field, contains spin
3
2 . More examples are in [10]; [82] gives group-theoretical details of the
spin–flavor content of the baryon fields.



7.3 Meson and baryon propagators 175

Fig. 7.2. Meson (a) and (b), and baryon (c) propagators.

Putting these hadron fields in the form (A = {aαf})

Mx(Φ) = ΦA
BMB

xA, (7.32)

Bx(Φ) = Φ̄ABC BABC
x , (7.33)

B̄x(Φ) = B̄xABC ΦABC , (7.34)

where Φ specifies the spin–flavor structure, we can write gauge-invariant
meson correlation functions as

〈Mx(Φ)Mx′(Φ′)〉 = −〈Tr (ΦSxx′Φ′Sx′x〉U ) + 〈Tr (ΦSxx) Tr (Φ′Sx′x′)〉U ,
(7.35)

and the baryon correlation function

〈Bx(Φ)B̄x′(Φ′)〉 = Φ̄ABC〈SA
A′xx′SB

B′xx′SC
C′xx′〉UΦ′A′B′C′

, (7.36)

as illustrated in figure 7.2. The contribution (b) to the meson correlation
function is non-zero only for flavor-neutral fields, i.e. fields of the form
f̄γf , f = u, d, c, s, t, b.

These composite field correlation functions describe bound states,
the mesons and baryons; for this reason we also call them meson and
baryon propagators. Consider first the meson propagator in figure 7.2(a).
It is a sum over Wilson loops going through x and x′. This follows
from the hopping expansion of the quark propagator which expresses
Sxx′ as a sum over random paths C weighted by the Wilson line
Uxx′(C) and the spinor factor associated with the path. We can now
intuitively understand the implication of confinement as expressed by
the area law for Wilson loops. The exponential fall-off in the area law
greatly suppresses the contribution of widely separated paths of the two
propagators in figure 7.2(a). Contributions in which the two paths stay
together dominate and, when they are together, they make a random
walk, which implies the formation of a bound state. A similar story can
be told for the baryon propagator in figure 7.2(c); the combined random
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Fig. 7.3. Diagrams for flavor-neutral mesons with sea-quark loops and gluon
lines also indicated.

Fig. 7.4. Meson-loop corrections to the baryon propagator. The closeness of
lines is to suggest binding by ‘glue’.

walk of the three-quark propagators leads to a pole in momentum space
corresponding to a bound baryon state.

So far we have concentrated on the fermion lines related to the hadron
fields (the ‘valence-quark’ lines) and ignored the effect of the fermion
determinant. Its hopping expansion leads to a sum of closed fermion lines
called ‘sea-quark’ loops or ‘vacuum loops’, and we have to imagine such
sea-quark loops everywhere in figure 7.2. This is particularly relevant
for the case of flavor-neutral mesons for which diagram (b) contributes.
Figure 7.3 shows diagrams (a) and (b) as the first two terms in an infinite
series with the sea-quark loops included one by one. As a reminder of the
presence of ‘glue’ implied by the average 〈· · ·〉U we have also shown some
gluon lines in this figure. Figure 7.4 illustrates a meson-loop contribution
to a baryon propagator: (a) uses a sea-quark loop but not (b), which is
already included in diagram (c) of figure 7.2.

We were led by confinement to the intuitive picture of random walks
for the composite hadron propagators. In a theory without confinement,
such as QED, there is no area law and there will be relatively large con-
tributions in the fermion–antifermion correlation function also for widely
separated fermion paths. These will correspond to fermions propagating
almost freely at large distances from each other. Of course, they will feel
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Fig. 7.5. Hopping matrix for the mesons and baryons at strong coupling.

the long range electromagnetic interactions, which may but need not
lead to bound states. This is the gauge-invariant description of fermion
propagation in QED.

7.4 Hadron masses at strong coupling

At bare gauge coupling g = ∞ the string tension diverges and there
are only contributions to the Wilson paths with zero area. Neglecting
vacuum fermion loops, it is an interesting approximation to take into
account only simultaneous quark–antiquark hopping for mesons and
three-quark hopping for baryons, as illustrated in figure 7.5. The inverse
propagators can be written down explicitly and solved for the position
of the pole in p4 = im at p = 0, which determines the mass of the bound
state, m. We can even derive effective actions describing the coupling
constants [83, 84, 85, 109, 82] in terms of the meson and baryon fields
(7.23)–(7.25). For example, the meson effective action has the form

Seff = nc
∑
x

Tr

[
− lnMx +MMx −

∑
µ

MxP
−
µ Mx+µ̂P

+
µ +O(M4)

]
.

(7.37)
where nc is the number of colors and now M is an effective field. For
r = 1 it turns out that the low-lying states are the pions, rho mesons,
nucleons, and deltas (mπ ≈ 140, mρ ≈ 770, mN ≈ 940 and m∆ ≈ 1232
MeV). In the flavor-degenerate case Mu = Md = M the masses are given
by

coshmπ = 1 +
(M2 − 4)(M2 − 1)

2M2 − 3
, (7.38)

coshmρ = 1 +
(M2 − 3)(M2 − 2)

2M2 − 3
, (7.39)
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expm∆ =
(M3 − 3/2)(M3 − 1/2)

M3 − 5/4
, (7.40)

expmN =
M3(M3 − 2)
M3 − 5/4

. (7.41)

On decreasing M from infinity toward zero or equivalently increasing
the hopping parameter κ from zero upward we see that the pion mass
vanishes at M = Mc = 2, whereas the other masses stay non-zero. At
strong coupling the critical hopping parameter is κc = 1/2Mc = 1

4 . For
weak coupling one can calculate Mc(g) = 4 + O(g2), and κc as defined
by the vanishing of mπ will decrease toward 1

8 as g2 → 0.
Although we know that the scaling region of QCD is at weak cou-

pling, it is still interesting to compare these strong-coupling results with
experiment. For small M −Mc,

m2
π = 4.8mq, mq ≡M −Mc, (7.42)

mρ = 0.894 + 1.97mq. (7.43)

We can choose M such that mπ/mρ takes the experimental value 140
MeV/770 MeV, which gives mq = 0.0055. This may be compared with
mρ = 0.894 at M = Mc. Introducing the lattice distance, amρ = 0.994,
means that the lattice cutoff is 1/a = 770/0.894 = 860 MeV and the
quark mass mq = 0.0055/a = 4.7 MeV, which is remarkably close to the
up–down quark mass found in numerical simulations (mud ≈ 4.5 MeV
(quenched), see section 7.5). Mass ratios not involving the pion can be
approximated by taking M = Mc. Then we have the strong-coupling
predictions

mN

mρ
= 1.7 (1.21),

m∆

mN
= 1.01 (1.31), M = Mc, (7.44)

where the experimental values are given in parentheses. For M →∞ the
baryon/meson mass ratio would be 3

2 . The results are not improved much
by including O(1/g2) corrections, which are already hard to calculate
[82]. The idea of using the strong-coupling expansion as a method for
calculating the properties of hadrons has failed up to now because of its
great complexity.

Other quantities such as the decay constants fπ and fρ, the π–π
scattering amplitudes, and the splitting m′2

η − (m2
η + m2

π0)/2 in the
neutral pseudoscalar meson sector, which is related to the notorious U(1)
problem, have also been calculated at strong coupling. Quantitatively
these predictions are wrong of course, but they present an interesting
caricature of hadron physics.
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Table 7.1. Low-mass hadrons: the baryon octet (N , Σ, Λ, Ξ), the
baryon decuplet (∆, Σ∗, Ξ∗, Ω) and the mesons

State Spin Mass (MeV) Valence-quark content

N 1/2 940 uud, udd
Σ 1/2 1193 uus, (ud + du)s, dds
Λ 1/2 1116 (ud− du)s
Ξ 1/2 1315 uss, dss

∆ 3/2 1232 uuu, uud, udd, ddd
Σ∗ 3/2 1384 uus, uds, dds
Ξ∗ 3/2 1532 uss, dss
Ω 3/2 1673 sss

π 0 135 ud̄, dū
K 0 498 us̄, ds̄, sū, sd̄

ρ 1 768 ud̄, dū
K∗ 1 896 us̄, ds̄, sū, sd̄

π0 0 135 uū− dū (& ss̄)
η 0 547 uū + dū− 2ss̄
η′ 0 958 uū + dū + ss̄

ρ0 1 768 uū− dū (& ss̄)
ω 1 783 uū + dd̄ (& ss̄)
φ 1 1019 ss̄ (& uū & dd̄)

7.5 Numerical results

In table 7.1 the low-mass hadrons found experimentally are listed, with
their valence-quark contents indicated. The electric charge of a state
is just the sum of the charges of the quarks, which is +2

3 for u, − 1
3

for d and s, and the opposite for the antiquarks indicated by a ‘bar’.
The flavor-neutral mesons (π0, . . ., φ) have mixed quark content, ap-
proximately as indicated (with small ‘contaminations’ in parentheses).
The decuplet baryons are symmetric in their flavor content, whereas
the octet has mixed symmetry. The neutral octet members Σ and
Λ differ in the symmetry properties of their u, d flavor content. The
primary aim of the numerical simulations is to recover this spectrum of
hadron masses with essentially only three parameters: the Λ scale which
corresponds to the gauge coupling and which sets the overall mass scale,
the non-strange-quark mass in the approximation mu = md and the
strange-quark mass ms.
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In numerical simulations the fermion determinant detA poses the
greatest problem. The quenched approximation consists of the replace-
ment detA → 1, while taking its effect on the effective gauge coupling
into account by a change in the bare coupling. This means that only
the valence-quark propagators are taken into account and the sea-quark
loops are neglected. For this reason the approximation is also called the
valence approximation.

The reliability of this approximation (which destroys the Hilbert-space
interpretation of the fermion path integral) is hard to establish a priori.
It helps to consider the generalization of the SU(3) gauge group to
SU(nc), with nc → ∞ [67]. Then the contribution of each sea-quark
loop to a mesonic correlation function is down by a factor 1/nc. For
mesons the large-nc limit corresponds to the quenched approximation.
Baryons, however, have nc valence quarks and the baryon mass becomes
proportional to nc as nc → ∞ [96]. Yet, as we have seen in section 5.6
for the glueballs, ordering various non-baryonic quantities according to
powers of 1/nc is quite illuminating even for values of nc as low as 2
and 3.

Simulations with dynamical fermions (‘unquenched’) are very time
consuming and for illustration we shall now describe the results of a
computation with only two dynamical fermion species [97]. An improved
action is used, for which larger lattice spacings can be used without
discretization errors blowing up. The dynamical fermions are assumed
to be the lightest sea quarks, u and d, and their masses are taken to be
equal. This is not the actual situation, md is roughly twice mu, both
being of the order of 5 MeV.† However, the hadron masses are generally
much larger and, neglecting such small O(5 MeV) effects, one may as well
take m(u)

sea = m
(d)
sea = msea (recall that m ≡ M −Mc). The pseudoscalar

mesons require special attention in this respect, as will be discussed
in the next chapter, but even these depend primarily on the average
quark mass (mu + md)/2. The other sea quarks in the simulation have
effectively infinite mass. The masses in the valence-quark propagators
can still be chosen at will; they do not have to be equal to the masses of
the sea quarks, so we have m(ud)

val , and m
(s)
val as valence mass parameters

for the hadrons composed of u, d and s. Such computations in which
the sea-quark masses differ from the valence-quark masses are called
‘partially quenched’.

In the simulations one first produces gauge-field configurations and

† This is the reason, for example, why the neutron is 1.3 MeV heavier than the
proton, despite the Coulomb self-energy of the proton.
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Fig. 7.6. m2
PS as a function of 1/κval for β = 2.1 and four values of κsea. From

[97].

then computes the average of the hadron-field correlators built from
valence-quark propagators. Only valence diagrams of the type (a) in
figure 7.2 are computed in this numerical study, since quark propagators
corresponding to type (b) are much harder to evaluate. This means an
approximation for the masses of mesons with quark–antiquarks of the
same flavor (those below the second double line in table 7.1), which
makes sense only if one sets mu = md (this follows from the discussion to
be given in section 8.2). Diagrams of type (b) cause mixing of the flavor
content of the mesons, which is expected to affect the vector mesons less
than it does the pseudoscalars. For the η′ mass diagrams of type (b) are
essential.

Each choice of sea-quark mass implies a separate costly generation
of gauge-field configurations, whereas the computation of valence-quark
propagators is less expensive, so typically one has many more valence-
quark masses than sea-quark masses available for analysis. However, by
fitting suitable functions of all the masses involved, it is possible to ob-
tain the desired mass combinations by interpolation and extrapolation.
The latter is needed because the simulations need more time as the
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Fig. 7.7. mV versus m2
PS for β = 1.8. From [97].

sea-quark masses are reduced and their small physical values cannot be
simulated yet. So this introduces some uncertainty.

It turns out that the dependence of the squared pseudoscalar masses
on the quark masses is almost linear, which can be understood as the
result of chiral-symmetry breaking (see chapter 8), and the data can be
fitted well by a quadratic polynomial in the quark masses. This is done
in [97] as follows. For mesons composed of valence quarks 1 and 2 the
average valence-quark mass is given by

mval = 1
2

(
m
(1)
val +m

(2)
val

)
, m = M −Mc =

1
2κ
− 1

2κc
, (7.45)

where κ is Wilson’s hopping parameter (r = 1). In terms of these the
pseudoscalar masses are parameterized as

m2
PS

(
κsea;κ

(1)
val, κ

(2)
val

)
= bsmsea + bvmval + csm

2
sea + cvm

2
val

+ csvmseamval + cvvm
(1)
valm

(2)
val. (7.46)

In figure 7.6 results for the squared pseudoscalar masses are shown as
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Fig. 7.8. Baryon decuplet masses versus m2
PS for β = 1.8. From [97].

a function of the average valence-quark mass, for one of the four values
{1.8, 1.95, 2.1, 2.2} of the gauge coupling β used in the simulation.
Results at the other β values look similar except for a change of vertical
scale (the mass in lattice units being smaller at larger β). The labels
‘SS’, ‘SV’ and ‘VV’ mean the following.

VV: m(1)
val = m

(2)
val = mval;

SV: m(2)
val = msea; then m

(1)
val can be written as m(1)

val = 2mval −msea;

SS: m(1)
val = m

(2)
val = msea.

The lines VV and SV almost coincide and they are almost parallel for
different κsea, so the line SS crosses all the others.

Note that Mc = 1/2κc is also a free parameter in the fitting formula
(7.46). If we read the right-hand side of (7.46) as a function of the
inverse κ’s, changing κc merely shifts all curves in figure 7.6 horizontally;
1/κc is then the value at which m2

PS(κcrit;κcrit, κcrit) = 0. Knowing the
parameters bs, . . ., csv and κc from the fit determines m2

PS for every
combination of the κ’s and quark masses.

A similar procedure could be followed for the other hadron masses.
Alternatively one can plot them as a function of m2

PS, the procedure
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followed in [97]. The vector meson masses can be fitted to a quadratic
polynomial in m2

PS,

mV

(
κsea;κ

(1)
val, κ

(2)
val

)
= AV +BV

s µsea +BV
v µval

+ CV
s µ

2
sea + CV

v µ
2
val + CV

svµseaµval, (7.47)

with

µi = m2
PS

(
κsea;κ

(i)
val, κ

(i)
val

)
, µval = 1

2 (µ1 + µ2), (7.48)

µsea = m2
PS (κsea;κsea, κsea) (7.49)

(the data show no need for a term CV
vvµ1µ2). A corresponding plot is

shown in figure 7.7. Note the shift in vertical scale relative to figure 7.6.
Next the baryon masses are analyzed. The simplest are the decuplet

states which are symmetric in the flavor indices. Writing µval = (µ1+µ2+
µ3)/3, the decuplet masses can be fitted by a formula similar to (7.47),
see figure 7.8. The octet baryons have a more complicated quark-mass
dependence because they have a mixed flavor symmetry; we shall not go
into details here (see [97]), but the corresponding figures look roughly
similar to figure 7.8.

The gross features of the mass spectrum are that, for the pseu-
doscalars, the squared mass is approximately linear in the quark masses
(and vanishing at mval = msea = 0), whereas for the other hadrons the
mass itself is approximately linear.

Having obtained the coefficients from the fits, the physical value of
the sea-quark mass can be determined for each β. Ideally this could be
done by fixing the computed pion–nucleon mass ratio at the physical
value, but in this case there are good reasons to believe that the nucleon
mass suffers from finite-volume effects (based on experience in previous
computations). A good alternative is to use the pion–rho mass ratio.
Setting µval = µsea = m2

π in (7.47) the equation

mπ

AV + (BV
s +BV

v )m2
π + (CV

s + CV
v + CV

sv)m4
π

=
[
mπ

mρ

]
phys

= 0.176

(7.50)
can be solved for mπ.

Using mρ = 768 MeV, one can then introduce the lattice spacing a by
putting amρ = denominator in (7.50), and find the value of 1/a in MeV
units at each β. Knowing the physical values of mud and the value of
1/a, the masses of the nucleon and delta can be evaluated from the fits
and expressed in MeV units. Linear extrapolation to zero lattice spacing
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Fig. 7.9. Meson masses as a function of lattice spacing. The linear fit to a = 0
uses only the data at the three largest lattice spacings. Experimental values
are indicated with diamonds. From [97].

(cf. figures 7.10 and 7.11) gives the results mN = 1034(36) MeV and
m∆ = 1392(58) MeV. These ‘predictions’ are to be compared with the
experimental values of 940 and 1232 MeV (recall that in this simulation
the physical volume is assumed to be somewhat small for these baryons).

Next the mass of the strange quark can be determined by fitting the
kaon–rho mass ratio to the experimental value, m2

PS(κud;κud, κs)/m
2
ρ =

m2
K/m

2
ρ = (498/768)2 (note that mK is of the type SV). The masses of

other hadrons containing strange valence quarks are then ‘predictions’.
Alternatively, the φ–ρ mass ratio was used in [97], the φ being of type
VV, mV(κud;κs, κs)/mρ = 1019/768. The two ways of determining the
valence mass of the strange quark are denoted by ‘K input’ and ‘φ
input’. Figure 7.9 shows such a ‘prediction’ for mesons as a function of
the lattice spacing together with the continuum extrapolation. Examples
for the baryon masses are shown in figures 7.10 and 7.11. The improved
action allows rather large lattice spacings to be used. It can be seen that
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Fig. 7.10. Baryon decuplet masses as functions of a. From [97].

the a-dependence is consistent with ‘linear’, for the three larger lattice
spacings, despite the fact that the baryon masses in lattice units are
above 1 for the largest lattice spacing (cf. figure 7.8), which reduces by
a factor of about two for the smallest lattice spacing.

The meson masses in the continuum limit are close to experiment
at the level of 1%. The masses of baryons with three or two strange
valence quarks are also close to experiment, but the discrepancy increases
with only one or zero strange valence quarks. This is interpreted as
finite-size effects being smaller for the hadrons involving the heavier
strange valence quark (the lattice size in physical units is about 2.5 fm).

It is also of considerable phenomenological interest to determine the
quark masses in physical units. In QCD the renormalized mass parame-
ters are ‘running’ with the renormalization scale, similarly to the gauge
coupling. An analysis of the quark masses in this simulation leads to the
result mMS

ud ≈ 3.4 MeV and mMS
s ≈ 90 MeV, at the scale 2 GeV.
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Fig. 7.11. Baryon octet masses as functions of a. From [97].

Comparing with the results of simulations in the quenched approxi-
mation, [97] finds that the inclusion of dynamical u and d quarks has
improved agreement with experiment. Figure 7.12 shows a comparison;
Nf = 2 indicates the simulation discussed above while ‘Nf = 0 Improved’
denotes a quenched simulation using the same gauge-field action; ‘Nf = 0
Standard’ shows the results of an earlier simulation [98] using the
standard Wilson action. It is surprising how good the quenched approx-
imation actually is for the hadron spectrum. The effect of dynamical
fermions on various physical quantities is not easily established, see e.g.
[99]. One may expect that results will further improve with simulations
including also a dynamical strange quark, as well as including larger
volumes.
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Fig. 7.12. A comparison with the quenched approximation. From [97].

7.6 The parameters of QCD

The parameters in the Wilson action (r = 1) are g2 and mf = Mf −
Mc, the critical value Mc = 1/2κc being determined completely by the
gauge coupling. We have seen in the previous sections how these may
be determined by the hadron spectrum. In particular, g2 determines the
overall scale, say the proton mass mp at mu = md = ms = 0, while
the quark masses determine the ratios m2

PS/m
2
p. Roughly speaking, mp,

mπ+ , mK+ , and m0
K are the free parameters of three-flavor QCD.

The renormalized masses and coupling depend in general on the
renormalization scheme. In a mass-independent scheme such as minimal
subtraction (cf. problem (iii) for a perturbative lattice definition), we
get renormalized running coupling and masses at momentum scale µ,
ḡ(µ) and m̄f (µ). They satisfy the renormalization-group equations

µ
dḡ

dµ
= β(ḡ), µ

dm̄f

dµ
= γ(ḡ) m̄, (7.51)
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with†

β(ḡ) = −β1ḡ3 − β2ḡ
5 − · · ·, (7.52)

γ(ḡ) = −γ1ḡ2 − γ2ḡ
4 − · · · . (7.53)

Here β1, β2 and γ1 are universal and given by

β1 =
1

16π2

(
11
3
nc −

2
3
nf

)
, (7.54)

β2 =
1

(16π)2

[
34
3
n2c −

10
3
ncnf −

(n2c − 1)nf
nc

]
, (7.55)

γ1 =
1

16π2
3(n2c − 1)

nc
, (7.56)

where nc is the number of colors and nf the number of dynamical flavors.
We have already seen in section 5.2 how an overall scale Λ may be

defined in terms of the gauge coupling,

Λ = µ(β1ḡ2)−β2/2β
2
1e−1/2β1ḡ

2

× exp
{
−
∫ ḡ

0

dg

[
1

β(g)
+

1
β1g3

− β2
β21g

]}
. (7.57)

This scale is renormalization-group invariant, i.e. dΛ(µ, ḡ(µ))/d lnµ = 0.
Similarly one defines renormalization-group-invariant quark masses

mrgi
f = m̄f (µ)(2β1ḡ2)−γ1/2β1

× exp
{
−
∫ ḡ

0

dg

[
γ(g)
β(g)

− γ1
β1g

]}
, (7.58)

which satisfy dmrgi
f (µ, ḡ(µ))/d lnµ = 0. As we have seen in section 5.2,

the scale Λ depends on the renormalization scheme; however, using
similar arguments it follows that the mrgi

f are scheme-independent. In
[63] special techniques are used to compute the renormalization-group
functions β(g) and γ(g) non-perturbatively.

Asymptotic freedom (β1 > 0) is guaranteed for nf < 11nc/2, or
nf ≤ 16 for QCD. We also see from the µ-independence of m̄rgi

f that
the running mass m̄f (µ) goes to zero ∝ (ḡ2)γ1/2β1 as µ → ∞. The
same is true for the bare quark mass mf as the lattice spacing a → 0
(in minimal subtraction the bare parameters run in the same way the
renormalized ones, cf. problem (iv)).

† The subscript k of βk and γk indicates that the coefficient corresponds to diagrams
with k loops. Another notation, often used, is βk → βk−1, γk → γk−1, and [63]
βk → bk−1, k = 1, 2, . . ., γ(ḡ)→ τ(ḡ) = −d0ḡ2 − d1ḡ4 − · · ·.
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7.7 Computing the gauge coupling from the masses

At long distances the non-perturbative methods of lattice gauge theory
allow us to compute the properties of hadrons. At short distances
we know that weak-coupling perturbation theory works well. Many
physical properties have been successfully related with the methods
of perturbative QCD. The essential parameter in these calculations is
the renormalized coupling constant gR. A useful characterization of the
coupling strength is the value of the running coupling gMS(µ) in the
MS scheme, which is customarily taken at the scale set by the mass of
the Z-boson, µ = mZ , or rather the value of the ‘strong fine-structure
constant’ αs(mZ) = g2

MS
(mZ)/4π. It is not a free parameter; its value

can be predicted just like other physical quantities such as mass ratios.
Let us see in more detail how this can be done.

Suppose that we compute the static quark–antiquark potential V at
short distances. From the force

F (r) =
∂V

∂r
= C2

g2V(1/r)
4πr2

, (7.59)

we know g2V(1/r) at some distance r/a in lattice units, for some bare g
and quark-mass parameters aM , chosen such that mπ/mp, mK/mp, . . .
have the experimental values to reasonable accuracy. From the value of
the proton mass in lattice units, amp, we then also know the distance
r in units of mp, rmp. Provided that rmp is small enough, we can then
use the perturbative renormalization group

µdgV
dµ

= β(gV), β(gV) = −β1g3V − β2g
5
V + · · ·, µ = 1/r, (7.60)

to relate the computed g2V(1/r) to g2V at higher µ. At sufficiently large
µ we can use the perturbative connection between g2V and g2

MS
parame-

terized by the ratio of the scales ΛMS/ΛV.
This program is difficult to implement because the lattices for sim-

ulations with dynamical fermions in spectrum computations tend to
be small. Other renormalized coupling constants have been proposed
in place of gV, which are useful for numerical computations, e.g. the
‘Schrödinger functional method’ [94].

7.8 Problems

(i) Effective action
The exponent in (7.17) can be interpreted as an effective action



7.8 Problems 191

for the gauge field. Calculate the contribution of the smallest
closed loop (around a plaquette). Show that it corresponds to an
decrease (i.e. increase of the effective β = 6/g2) of the effective
gauge coupling.

(ii) Three flavors
Devise a method for analyzing numerical hadron-mass data with
dynamical up, down and strange quarks, with mu = md �= ms.

(iii) Minimal subtraction revisited
In the following g0 and m0 denote the bare gauge coupling and
quark masses, and g and m the renormalized ones (we suppress
the flavor label f). For Wilson fermions m0 ≡ M − Mc(g0, r).
For staggered fermions we may think of m0 simply being the
parameter appearing in the action (see [73] for more details).
The critical mass Mc is linearly divergent and the bare m0 has
to absorb the remaining logarithmic divergences as the lattice
spacing a → 0. The coupling g0 is logarithmically divergent. We
shall now follow similar steps to those in problem 3(iv) for the
QCD case.

Both g0 and m0 are multiplicatively renormalized,

g0 = gZg(g, ln aµ), (7.61)

m0 = mZm(g, ln aµ), (7.62)

Zg(g, ln aµ) = 1 +
∞∑
n=1

n∑
k=0

Zg
nkg

2n(ln aµ)k

=
∞∑
k=0

Zg
k(g)(ln aµ)k, (7.63)

and similarly for Zm,

Zm(g, ln aµ) =
∞∑
k=0

Zm
k (g)(ln aµ)k. (7.64)

Terms vanishing as a→ 0 have been neglected, order by order in
perturbation theory. In principle we can allow any choice of the
coefficients Zg,m

nk which lead to a series in g2 for the renormalized
vertex functions in which the dependence on a cancels out. In
minimal subtraction one chooses

Zg
0 (g) ≡ 1, Zm

0 (g) ≡ 1. (7.65)

The renormalized g and m depend on the physical scale µ but
not on a whereas g0 and m0 are supposed to depend on a but not
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on µ. Then

0 =
[
µ

∂

∂µ
+ β(g)

∂

∂g

]
gZg(g, ln aµ), (7.66)

0 =
[
µ

∂

∂µ
+ β(g)

∂

∂g
+ γ(g)

]
Zm(g, ln aµ), (7.67)

where

β(g) = µ
dg

dµ
, γ(g) =

µ

m

dm

dµ
. (7.68)

By going through similar arguments to those in problem 3(iv),
show that in minimal subtraction

β(g) = −Zg
1 (g), γ(g) = −Zm

1 (g). (7.69)

Verify that, in minimal subtraction, the renormalization-group
functions for the bare parameters are identical to those for the
rernormalized ones, β0(g0) = β(g0) and γ0(g0) = γ(g0). Verify
the RG-independence of Λ and mrgi in (7.57) and (7.58).
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Chiral symmetry

In this chapter we pay attention to a very important aspect of QCD and
the Standard Model: chiral symmetry. It is a symmetry that is natural
in the continuum but it poses special problems for regularizations,
including the lattice. We review first some aspects of chiral symmetry in
QCD, then discuss chiral aspects of QCD on a lattice, and finally give a
brief introduction to chiral gauge theories, of which the Standard Model
is an example.

8.1 Chiral symmetry and effective action in QCD

Consider the mass terms in the QCD action,

Smass = −
∫

d4x ψ̄mψ, (8.1)

where m = diag (mu,md,ms, · · ·) is the diagonal matrix of mass param-
eters. We know that the first three quarks u, d and s have relatively
small masses compared with a typical hadronic scale such as the Regge
slope (α′)−1/2 ≈ 1100 MeV or the string tension

√
σ ≈ 400 MeV. (Recall

that mud = 4.4 MeV and ms ≈ 90 MeV in section 7.5.) Suppose we set
the first nf quark-mass parameters to zero. In that case the QCD action
has U(nf) × U(nf) symmetry, loosely called chiral symmetry, in which
the left- and right-handed components of the Dirac field are subjected
to independent flavor transformations VL,R ∈ U(nf),

ψ → V ψ, V = VLPL + VRPR,

ψ̄ → ψ̄V̄ , V̄ = V †
LPR + V †

RPL = βV †β,

PL = 1
2 (1− γ5), PR = 1

2 (1 + γ5). (8.2)

193
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Here VL,R act only on the first nf flavor indices of the quark field. The
matrix γ5 ≡ iγ0γ1γ2γ3 = −γ1γ2γ3γ4 has the properties γ†5 = γ5, γ25 = 1
and it anticommutes with the γµ, i.e. γ5γµ = −γµγ5. The PL,R are
orthogonal projectors, P 2

L = PL, P 2
R = PR, PLPR = 0, PL + PR =

1. Because of these properties the derivative terms in the action are
invariant,

ψ̄γµDµψ → ψ̄V̄ γµV Dµψ = ψ̄γµ(V †
LVL+V †

RVR)Dµψ = ψ̄γµDµψ. (8.3)

The mass terms transform as

ψ̄mψ → ψV̄ mV ψ = ψ̄(V †
RmVLPL + V †

LmVRPR)ψ, (8.4)

so they break the symmetry. A flavor-symmetric mass term has m ∝ 11.
Such a mass term is invariant under flavor transformations, for which
VL = VR. However, it is not invariant under transformations with VL �=
VR. A special case of these are chiral transformations in the narrow
sense,1 for which VL = V †

R. For m = 0 in the nf ×nf subspace the action
is invariant under chiral U(nf)× U(nf) transformations.

In the quantum theory the U(nf) × U(nf) symmetry is reduced to
SU(nf) × SU(nf) × U(1) by so-called anomalies (this will be reviewed
in section 8.4). Here U(1) is the group of ordinary (Abelian) phase
transformations ψ → eiω ψ, ψ̄ → e−iω ψ̄. Furthermore, the dynamics
is such that the SU(nf)× SU(nf) symmetry is spontaneously broken.

An informative way to exhibit the physics of this situation is by using
an effective action. We have met already in chapter 3 the O(4) model for
pions (which can be extended to include nucleons, cf. problem (i)). This
illustrates the case nf = 2 (the group SO(4) is equivalent to SU(2) ×
SU(2)/Z2, cf. (D.19) in appendix D). One introduces effective fields φ
which transform in the same way as the quark bilinear scalar fields ψ̄gψf

and pseudoscalar fields ψ̄giγ5ψf , f, g = 1, . . ., nf . We start with

Φfg ≡ ψ̄gPLψf , (8.5)

which transforms as

Φfg → (VL)ff ′(V †
R)g′g Φf ′g′ , (8.6)

or, in matrix notation,

Φ → VLΦV †
R. (8.7)

The other possibility leads to Φ†:

ψ̄gPRψf = (ψ+f PR βψg)∗ = (ψ̄fPLψg)∗ = (Φgf )∗ (8.8)

≡ (Φ†)fg. (8.9)
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Under parity Φ and Φ† are interchanged,

Φ(x0,x) P→ Φ†(x0,−x). (8.10)

Ignoring the symmetry breaking due to anomalies, the effective action
for the effective field φ↔ Φ has the same chiral transformation proper-
ties as the QCD action. We shall first examine the form of this effective
action and derive some consequences, and later take into account that
anomalies reduce the U(nf)×U(nf) symmetry to SU(nf)×SU(nf)×U(1).

For m = 0 we want an invariant action. The combination Tr[(φφ†)k]
is invariant under (8.7). An invariant action is given by

S = −
∫

d4xTr(F2∂µφ†F1∂µφ+G), (8.11)

where F1,2 and G have the forms

F1 =
∑
k

f1k(φφ†)k, F2 =
∑
k

f2k(φ†φ)k, (8.12)

G =
∑
k

gk(φφ†)k. (8.13)

Reality of the action requires the coefficients f1k, f2k and gk to be real.
Invariance under parity requires

f1k = f2k. (8.14)

The action might also contain terms of the type

Tr[(φφ†)k] Tr[(φφ†)l]. (8.15)

At this point we assume such terms to be absent and come back to them
later.

There may also be higher derivative terms. Their systematic inclusion
is part of chiral perturbation theory, see e.g. [19]. For slowly varying fields,
which is all we need for describing physics on the low-energy–momentum
scale, we may assume such higher derivative terms to be negligible.

The classical ground state will be characterized by ∂µφ = 0 and
correspond to a minimum of TrG. Let λ1, . . ., λnf be the eigenvalues of
the Hermitian matrix φφ†. Then

TrG =
∑
k

gk(λk1 + · · ·+ λknf
). (8.16)

A stationary point of TrG has to satisfy

0 =
∂

∂λj
TrG =

∑
k

gkkλ
k−1
j , (8.17)
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which is the same equation for each j. Hence, the solution is

λ1 = · · · = λnf ≡ λ, φφ† = λ11. (8.18)

Since φφ† ≥ 0 (i.e. all eigenvalues are ≥ 0), λ ≥ 0.
We shall now assume that λ �= 0 at the minimum of TrG. The

symmetry is then spontaneously broken, because a non-zero φ in the
ground state is not invariant under U(nf)×U(nf) transformations. It is
helpful to use a generalized polar decomposition for φ,

φ = HU, H = H†, U† = U−1. (8.19)

The H and U can be found as follows: H can be calculated from H =
±
√
φφ† and then U = H−1φ. In the ground state H = ±

√
λ11. The

degeneracy of the ground state is described by U , which is an element
of U(nf). It transforms as U → VLUV

†
R. Without loss of generality we

may assume that U = 11 and H = −
√
λ11 (the minus sign becomes

natural on taking into account the explicit symmetry breaking due to
the quark masses). This exhibits clearly the residual degeneracy of the
ground state: it is invariant under the diagonal U(n) subgroup, for which
VL = VR. The pattern of spontaneous symmetry breaking is

U(nf)× U(nf) → U(nf). (8.20)

The variables of U (e.g. using the exponential parameterization) are
analogous to angular variables for the O(n)-vector field ϕα in the O(n)
model. We expect these to correspond to Nambu–Goldstone bosons.

Let us linearize the effective action about the ground state, writing
H = −v + h, U = exp(iα),

φ = (−v + h)
(
1 + iα− 1

2α
2 + · · ·

)
, v =

√
λ > 0 (8.21)

(from now on we no longer distinguish between 1 and 11). We keep only
terms up to second order in h and α. Since ∂µφ is of first order, we may
replace φ by v in F1,2 in (8.12),

F1 = F2 ≡ F, for φ = −v, (8.22)

and obtain

S = −
∫

d4xTr (F 2v2 ∂µα∂
µα+ F 2∂µh∂

µh+ r h2) + · · · . (8.23)
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The · · · also include the ground-state value of S. The coefficient r follows
from

TrG =
∑
k

gkv
2k Tr [(−1 + h/v)2k] (8.24)

=
∑
k

gkv
2k[nf + k(2k − 1)v−2 Trh2 + · · ·], (8.25)

where the term linear in h vanishes because TrG is stationary at h = 0.
Since we expand around a minimum of TrG, the coefficient

r =
∑
k

gkk(2k − 1)v2k−2 (8.26)

is positive. The form (8.23) shows that the α fields have zero mass
parameter – they correspond to n2f Nambu–Goldstone bosons. The h

fields have a mass given by

m2
h = r/F 2. (8.27)

At this point we shall make the useful approximation of ‘freezing’
the ‘radial’ degrees of freedom H to their ground-state value H = −v,
or h = 0. This approximation is justified when mh is sufficiently large
compared with the momenta of interest (cf. problem (i) for numbers)
and it simplifies the derivations to follow. Thus we get

φ(x) = −v U(x), (8.28)

S = −
∫

d4x
f2

4
Tr (∂µU†∂µU), f2 = 4F 2v2, (8.29)

where we omitted a constant term.
We now comment on the terms of the form (8.15). When these are

included the uniqueness of the form (8.18) is no longer compelling and
other solutions with λj �= λk are also possible. This depends on the de-
tails of the action. However, arguments based on the large-nc behavior of
the generalization of QCD to an SU(nc) gauge theory suggest that terms
of the form (8.15) are subdominant [100]. The ground-state solution of
the complete effective action including terms of the form (8.15) is still
expected to have the symmetric form (8.18), and the symmetry-breaking
pattern is still expected to be U(nf)× U(nf) → U(nf).
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The quark-mass terms in the QCD action explicitly break chiral
symmetry. They have the form of an external source coupled to quark
bilinears,

Smass = −
∫

d4x ψ̄m(PL + PR)ψ (8.30)

=
∫

d4xTr (J†Φ + Φ†J), J = −m. (8.31)

Hence, we can absorb the quark-mass terms in the coupling to such
an external source. The total effective action including this source has
the form lnZ(J) = S(φ) +

∫
d4xTr (J†φ + φ†J), where φ is again the

effective field. Setting J = −m thus leads to an addition ∆S in the
effective action

∆S = −
∫

d4xTr [m(φ+ φ†)]. (8.32)

Expanding† φ = −vU = −v exp(iα) to second order in α gives

∆S = −
∫

d4x vTr (mα2) + · · · = −
∫

d4x v
∑
fg

mf αfg αgf + · · · .

(8.33)
Since U is unitary, αgf = α∗

fg. Taking αfg with f ≤ g as independent
variables leads to

∆S = −
∫

d4x v


∑
f<g

(mf +mg)αfg α
∗
fg +

∑
f

mf α
2
ff + · · ·


. (8.34)

Similarly, expanding the gradient term (8.29) gives

S = −
∫

d4x
f2

4


2
∑
f<g

∂µα
∗
fg ∂

µαfg +
∑
f

∂µαff ∂
µαff + · · ·


.
(8.35)

As expected from the O(4) model, ∆S gives a mass to the Goldstone
bosons, which for small m is linear in m,

m2
fg = B(mf +mg), B = 2v/f2. (8.36)

In the next section we shall confront these mass relations with experi-
ment.

By coupling the effective action to the electroweak gauge fields it
can be shown that the constant f determines the leptonic decays

† We neglect here the effect of the quark masses on the ground-state value of φ.
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of the pseudoscalar mesons. It is known as the pion decay constant,
f = fπ ≈ 93 MeV. This constant also determines the size of the s-wave
pi–pi scattering lengths in good agreement with experiment.

To end this section we note a relation between the pion decay con-
stant f , the unrenormalized chiral condensate 〈ψ̄ψ〉 =

∑
f 〈ψ̄fψf 〉 =

2
∑

f 〈φff 〉 = −2nfv, and the wave-function renormalization constant Z
of the pseudoscalar fields Pfg ≡ i(φ† − φ)fg ↔ ψ̄giγ5ψf . The constant
Z can be read off from S = −

∫
d4xZ−1∑

f<g ∂µP
∗
fg∂

µPfg + · · ·, using
U = −φ/v and (8.29) and (8.35): Z−1 = f2/8v2. Hence, f is given by
the renormalized chiral condensate 〈ψ̄ψ〉/

√
Z,

f =
2
√

2v√
Z

=
−
√

2〈ψ̄ψ〉
nf
√
Z

. (8.37)

8.2 Pseudoscalar masses and the U(1) problem

The candidate Nambu–Goldstone (NG) bosons and their masses are

π±: m2
π+ = m2

ud = 0.0195 GeV2

K±: m2
K+ = m2

us = 0.244 GeV2

K0, K̄0: m2
K0 = m2

ds = 0.248 GeV2

π0: m2
π0 = 0.0182 GeV2

η: m2
η = 0.301 GeV2

η′: m2
η′ = 0.917 GeV2 (8.38)

For the unequal-flavor particles (f �= g) we have indicated the quark
labels. For the neutral π0, η and η′ the quark assignment turns out to
be less straightforward.

Consider two light flavors, nf = 2. The mass formula (8.36) with
f = u, d and g = u, d predicts four NG bosons in this case. The obvious
candidates are π±, π0 and η, with

m2
π+ = m2

ud = B(mu +md). (8.39)

According to (8.36), the other eigenstates are ūu and d̄d. If we try to
assign π0 ↔ ūu, η ↔ d̄d, the relation

m2
ud = 1

2 (m
2
uu +m2

dd) (8.40)

cannot be fulfilled at all. If we assume that mu ≈ md and π0 is an equal
mixture of ūu and d̄d to get m2

π0 ≈ m2
π+ , the orthogonal combination of
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ūu and d̄d should have approximately the same mass as π0: the η does
not fit in.

Consider next three light flavors, n = 3. The mass formulas now
predict nine NG bosons. We find

mu +md

mu +ms
=

m2
π+

m2
K+

≡ R1,
mu +ms

md +ms
=

m2
K+

m2
K0

≡ R2, (8.41)

and from this

ms

mu
=

R2(R1 − 1)
1−R2 −R1R2

= 31,
ms

md
=

R2
1−R2 +mu/ms

= 20. (8.42)

Hence mu :md :ms ≈ 1 : 1.5 : 30. The effective action furthermore pre-
dicts particles with masses

m2
uu =

2mu

mu +md
m2

π+ = 0.0155 GeV2, (8.43)

m2
dd =

2md

mu +md
m2

π+ = 0.0235 GeV2, (8.44)

m2
ss =

2ms

mu +ms
m2

K+ = 0.473 GeV2. (8.45)

The candidates π0, η and η′ do not fit into the n = 3 formulas either.
The effective action obtained so far must be wrong.

This is an aspect of the notorious U(1) problem. The problem is
the chiral U(1) invariance contained in U(nf) × U(nf). These are the
transformations of the type VL = V †

R = exp(iω) 11, or more generally,
transformations VL = V †

R with detVL �= 1. We know that this invariance
of the classical QCD action is broken in the quantum theory by ‘anoma-
lies’: QCD has only approximate SU(nf) × SU(nf) chiral symmetry,
plus the flavor U(1) symmetry VL = VR = exp(iω) 11 corresponding to
quark-number conservation.

The resolution of the U(1) problem through ‘anomalies’ turned out to
be a difficult but very interesting task. Here we shall simply add terms to
the action that break the chiral U(1) symmetry and see what this implies
for the mass formulas. We need to introduce terms of the type detU ,
which is invariant under SU(nf)×SU(nf) but not under U(nf)×U(nf):

detU → det(VLUV
†
R) = det(U) det(VLV

†
R) = detU, (8.46)

for VL,R ∈ SU(n). A term like

∆′S =
∫

d4x c (detU + detU†) (8.47)
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would do, but considerations of the large-nc behavior of ‘nc-color QCD’
suggest using instead the form

∆′S =
∫

d4x c (Tr lnU − Tr lnU†)2. (8.48)

In fact, c ∝ 1/nc. (Both choices for ∆′S lead to the same form of the
mass matrix for the neutral pseudoscalar mesons to be derived below.)
Writing U = exp(iα) gives

∆′S = −
∫

dx 4c


∑

f

αff



2

. (8.49)

Hence, the masses of αfg, f < g, are unaffected, but the αff modes are
now coupled by a mass matrix of the form

m2
ff,gg = 2Bmfδfg + λ, λ = 16c/f2, (8.50)

or

m2 = 2B


mu 0 0

0 md 0
0 0 ms


+ λ


 1 1 1

1 1 1
1 1 1


. (8.51)

We shall treat the quark-mass term as a perturbation to the λ term. For
mf = 0 we have the eigenvectors and eigenvalues

φ0 =
1√
3
(1, 1, 1), m2 = 3λ, (8.52)

φ3 =
1√
2
(1,−1, 0), m2 = 0, (8.53)

φ8 =
1√
6
(1, 1,−2), m2 = 0. (8.54)

Using mu,d,s as a perturbation (in the way familiar from quantum
mechanics) leads to the following mass formulas:

m2
η′ = 3λ+B( 23mu + 2

3md + 2
3ms), (8.55)

m2
π0 = B(mu +md), (8.56)

m2
η = B( 13mu + 1

3md + 4
3ms), (8.57)

which hold for the mass ratios (8.42) up to tiny corrections. The eigen-
vectors are also interesting, but here we merely mention that π0 and η

are mainly φ3 and φ8, whereas the η′ is predominantly φ0. From (8.55)
we can determine the chiral U(1) breaking strength λ,

3λ = m2
η′ − 1

2 (m
2
π0 +m2

η) = 3(0.252) GeV2. (8.58)
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The mass terms in the effective action depend on four parameters,
Bmu, Bmd, Bms and λ. Hence we have two predictions for the five
pseudoscalar masses:

m2
π0 = m2

π+ , (8.59)

m2
η = 1

6 (m
2
uu +m2

dd) + 2
3m

2
ss = 0.322 GeV2, (8.60)

which agree reasonably well with experiment. It should be kept in
mind that electromagnetic corrections, which affect in particular the
electrically charged particles, are neglected.

In the early days the near equality of mπ0 and mπ+ was interpreted
as an aspect of approximate flavor symmetry, mu ≈ md. Now we
know that md is substantially larger than mu and that the approxi-
mate flavor symmetry is due to approximate chiral symmetry, mu,d �√
σ, the spontaneous-symmetry-breaking pattern U(nf) × U(nf) →

U(nf)flavor, and the flavor-singlet character of the chiral-anomaly term
∆′S.

8.3 Chiral anomalies

The Noether argument tells us that to each continuous symmetry of the
action corresponds a ‘conserved current’ jµ, ∂µjµ = 0, and a conserved
‘charge’ Q =

∫
d3x j0(x), ∂0Q = 0. This is true in the classical theory but

not necessarily in the quantum theory, which needs more specification
than merely giving the action, such as the precise definition of the path
integral. In case the quantum analog of jµ is not conserved, one speaks
of an anomaly A ≡ ∂µj

µ. In four space–time dimensions A is typically
∝ εκλµν Tr (GκλGµν), where Gµν is a gauge-field tensor. Relations like
∂µj

µ = A can be found in perturbation theory by studying correlation
functions of jµ and A with other fields.

Chiral anomalies correspond to diagrams of the type shown in figure
8.1, and related diagrams, in which one vertex corresponds to a (polar)
vector current, ψ̄iγµψ, or an axial vector current, ψ̄iγµγ5ψ, and the
other two vertices to gauge fields. There must be an odd number of γ5’s
in the trace over the Dirac indices (Tr (γ5γκγλγµγν) = 4iεκλµν), hence
the name ‘chiral anomalies’. These γ5 may come from the gauge-field
vertices or from the current.

In QCD there is no γ5 associated with the gauge-field vertices and only
axial vector currents can have an anomaly. In the Euclidean formulation
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Fig. 8.1. Triangle diagram in which chiral anomalies show up.

their divergence reads†

∂µ(ψ̄f iγµγ5ψg) = (mf +mg)ψ̄f iγ5ψg + δfg 2iq, (8.61)

q =
g2

32π2
εκλµν Tr (GκλGµν). (8.62)

For zero quark masses the right-hand side of (8.61) is the anomaly. The
vector currents have no such anomaly. Their divergence reads

∂µ(ψ̄f iγµψg) = i(mf −mg)ψ̄fψg, (8.63)

which is zero in the symmetry limit mf = mg, hence also in the chiral
limit mf = mg = 0. The right-hand sides of the divergence equations
(8.61) and (8.63) are zero for the currents corresponding to SU(nf) ×
SU(nf) symmetry, obtained by contraction of ψ̄f iγ

µPL,Rψg with the
n2f −1 flavor SU(nf) generators (λk)fg/2, Trλk = 0. Hence, the anomaly
in (8.61) breaks only chiral U(1) invariance corresponding to λ0 ∝ 11 with
∂µ
∑

f ψ̄f iγµγ5ψf = 2nf iq.
The quantity q is called the topological charge density. Continuum

gauge fields on topologically non-trivial manifolds (such as the torus T 4

which corresponds to periodic boundary conditions) fall into so-called
Chern classes characterized by an integer, the Pontryagin index or

† The gauge fields are normalized here according to S = − ∫ d4x Gk
µνGk

µν/4 + · · ·
with Gk

µν = ∂µGk
ν − ∂νGk

µ + gfklmGl
µGm

ν .
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topological charge Qtop:

Qtop =
∫

d4x q(x). (8.64)

An important example of configurations with topological charge is given
by superpositions of (anti)instantons. The latter are solutions of the Eu-
clidean field equations (hence they are saddle points in the path integral)
with localized action density, non-perturbative action S = 8π2/g2 and
topological charge ±1. In this context we mention also the Atiyah–Singer
index theorem:

Qtop = n+ − n−, (8.65)

where n± are the numbers of zero modes (eigenvectors with zero eigen-
value) of the Dirac operator γµDµ with chirality γ5 = ±1 (cf. problem
(iii)).

The significance of all this for our pseudoscalar particle mass spectrum
is that the phenomenologically required chiral U(1) breaking is present
indeed in quantum chromodynamics, provided that gauge-field configu-
rations with topological charge density give sufficiently important con-
tributions to the path integral. The analysis of this is complicated [101]
but fortunately there is a simple approximate formula which expresses
the effect of the chiral anomaly on the neutral pseudoscalar masses, the
Witten–Veneziano formula [102, 103]:

λ ≈ 1
2f2π

χtop, no quarks. (8.66)

Here λ is the U(1)-breaking mass term introduced in (8.50) and χtop is
the topological susceptibility,

χtop =
∫

d4x 〈q(x)q(0)〉. (8.67)

Note that in (8.66) χtop is to be computed in the pure gauge theory with-
out quarks, although it can of course also be evaluated in the full theory
with dynamical fermions. From (8.58) we have χtop ≈ (180 MeV)4.

8.4 Chiral symmetry and the lattice

With Wilson’s fermion method chiral symmetry is explicitly broken by
two large mass terms ∝ M and r/a in the action. With staggered
fermions there are not even any flavor indices to act on with chiral
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transformations (cf. (6.67)). So we have a problem translating the con-
tinuum lore in the previous section to the lattice using these fermion
formulations. As will be mentioned at the end of this section, this
problem can be avoided or at least ameliorated with formulations of
the ‘Ginsparg–Wilson variety’, but an introduction in terms of Wilson
fermions is instructive and this will be the focus of our immediate
attention.

Let us first derive the Noether currents of chiral symmetry. Consider
the fermion part of the action,

SF =
∑
xµf

1
2

[
ψ̄fx(r − γµ)Uµxψfx+µ̂ + ψ̄fx+µ̂(r + γµ)U†

µxψfx

]
−
∑
xf

Mf ψ̄fxψfx, (8.68)

where we have explicitly indicated the flavor index f in addition to x.
We make a variation of ψ and ψ̄ that looks like a chiral transformation,

ψ′
fx = Vfgx ψgx, ψ̄′

fx = ψ̄gx V̄gxf , (8.69)

in which V has been generalized to depend on the space–time point x:

Vfgx = δfg + iωLfgxPL + iωRfgxPR +O(ω2) (8.70)

≡ δfg + iωVfgx + iωAfgxγ5 + · · ·, (8.71)

V̄fgx = δfg − iωVfgx + iωAfgxγ5 + · · ·, (8.72)

where ωfg = ω∗
gf for L, R, V and A. The variation of the action can be

written for infinitesimal ω’s as

δSF = SF(ψ′, ψ̄′)− SF(ψ, ψ̄)

= −
∑
x

[
V µ
fgx∂µω

V
fgx +Aµ

fgx∂µω
A
fgx

+DV
fgxω

V
fgx +DA

fgxω
A
fgx +O(ω2)

]
(8.73)

=
∑
x

[
(∂′

µV
µ
fgx −DV

fgx)ω
V
fgx + (∂′

µA
µ
fgx −DA

fgx)ω
A
fgx

]
.

(8.74)

We recall that ∂µ and ∂′
µ denote the forward and backward lattice

derivatives, ∂µωx = ωx+µ̂ − ωx and ∂′
µωx = ωx − ωx−µ̂. In (8.73), the

terms without derivatives of ω are due to symmetry breaking, while the
terms containing ∂µω are a consequence of the fact that ω depends on x

– they serve to identify the vector (V µ) and axial-vector (Aµ) currents.
The classical Noether argument can be given as follows: if ψ and ψ̄
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satisfy the equations of motion, the action is stationary, δSF = 0, and
consequently

∂′
µV

µ
fg = DV

fg, ∂′
µA

µ
fg = DA

fg. (8.75)

Explicitly we have

V µ
fgx =

1
2
[
ψ̄fxi(γµ − r)Uµxψgx+µ̂ + ψ̄fx+µ̂i(γµ + r)U†

µxψgx

]
, (8.76)

Aµ
fgx =

1
2
[
ψ̄fxiγµγ5Uµxψgx+µ̂ + ψ̄fx+µ̂iγµγ5U

†
µxψgx

]
, (8.77)

DV
fgx = i(Mf −Mg)ψ̄fxψgx, (8.78)

DA
fgx = (Mf +Mg)ψ̄fxiγ5ψgx

− r

2

∑
µ

[
ψ̄fxiγ5(Uµxψgx+µ̂ + U†

µx−µ̂ψgx−µ̂)

+ (ψ̄fx+µ̂U
†
µx + ψ̄fx−µ̂Uµx−µ̂)iγ5ψgx

]
. (8.79)

We see that, in the flavor-symmetry limit Mf = Mg = M , the vector-
current divergence DV = 0. For the axial-vector divergence the story is
more subtle: we can set all mass parameters Mf and r to zero, in which
case DA = 0, but then we get back the species doublers, which is not
Wilson’s method. To get chiral symmetry without fermion doubling, we
have to take the continuum limit. In the classical continuum limit we
expect DA

fg to be proportional to the quark masses because then the
mass terms in the action reduce to

∫
d4x ψ̄mψ, by construction (recall

(6.58)):2

DA
fg(x) = (mf +mg)ψ̄f (x)iγ5ψg(x) +O(a). (8.80)

Hence, the classical DA vanishes in the chiral limit, which is ‘Noether’s
theorem’ for Wilson fermions.

In the quantum theory the fields become operators. Their correlation
functions can be obtained with the path integral. Consider the expec-
tation value of an arbitrary set of fields φ1 · · ·φn ≡ F , composed of the
fermion fields and/or gauge fields,

〈F 〉 =
1
Z

∫
Dψ̄DψDU eS F, Z =

∫
Dψ̄DψDU eS , (8.81)
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and let us make the transformation of variables (8.69). A transformation
of variables cannot change the integrals, so Z ′ = Z and 〈F 〉′ = 〈F 〉.
However, by following how the path-integral measure and the integrant
transform we can derive useful relations, called Ward–Takahashi identi-
ties. The path-integral measure is invariant,

Dψ̄′Dψ′ ≡
∏
xaαf

dψ̄′
xaαf dψ

′
xaαf =

∏
xaαf

dψ̄xaαf dψxaαf (detVx det V̄x)−1

= Dψ̄Dψ, (8.82)

because detV det V̄ = det(V V̄ ) = det(VLV
†
RPL+VRV

†
LPR) = det(VLV

†
R)

× det(VRV
†
L ) = det(VLV

†
RVRV

†
L ) = det 11 = 1. On the other hand, the

change in the action is given in (8.74) and the fields in F may also
change, F ′ = F +

∑
fgx ω

A
fgx∂F/∂

A
fgx + · · · + A → V . So we get the

identity, e.g. for a chiral transformation,

0 =
∂

∂ωAfgx
〈F 〉′ =

∂

∂ωAfgx

(
1
Z ′

∫
Dψ̄′Dψ′DU eS

′
F ′
)

=
1
Z

∫
Dψ̄DψDU

∂

∂ωAfgx

(
eS

′
F ′
)

=

〈
∂S

∂ωAfgx
F +

∂F

∂ωAfgx

〉

=

〈
(∂′

µA
µ
fgx −DA

fgx)F +
∂F

∂ωAfgx

〉
. (8.83)

The content of such relations may be studied in perturbation theory. To
one-loop order this can be done in the way seen in section 3.4 and the
problems in section 6.6. A crucial example is the case F = GκxGλy, for
which ∂F/∂ωAfg = 0 since F consists only of gluon fields, which leads to
triangle-diagram contributions of the type shown in figure 8.1. A calcu-
lation [70] shows that, for this case, DA

fg → (mf +mg)ψ̄f iγ5ψg + δfg 2iq
in the continuum limit. The topological-charge-density contribution is
due to the Wilson mass term and the coefficient of q is formally ∝ r,
but actually independent of r, provided that it is non-zero.

Another example is F = ψfxψ̄gy, which leads to the conclusion that,
for this case, DA

fg → (mf+mg)κPψ̄f iγ5ψg−(κA−1)∂µA
µ
fg, where κP and

κA are finite renormalization constants of order g2 (cf. [70, 109, 104]).
The topological charge density does not contribute here in this order
because it is already of order g2.

At one-loop order we get the same contributions as those found in
continuum perturbation theory because the bare vertex functions reduce
to the continuum ones (in the balls around the origin of the loop-
momentum integration) in the classical continuum limit. There are also
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differing contributions, which are, however, only contact terms.† These
translate into the finite renormalization constants κ.‡ The anomaly is a
singlet under flavor transformations (i.e. ∝ δfg) because the r-mass term
is a flavor singlet. Note that, by a global finite chiral transformation, we
could transform rδfg → r(V̄ V )fg, implying that Mc ∝ V̄ V . However,
this is merely a change of reference frame and the physics cannot depend
on it. The quark masses have to be identified as the mismatch between
M and Mc.

The above examples show the phenomenon of operator mixing: opera-
tors (fields) with the same quantum numbers tend to go over into linear
combinations of each other in the continuum limit (the scaling region).
Such mixing is restricted by the symmetries of the model and there
is more mixing on the lattice than there is in the continuum because
there is less symmetry on the lattice. The κ’s above are due to the
chiral-symmetry breaking of the Wilson mass term at non-zero lattice
spacing. On general grounds of scaling and universality one assumes
these results to be qualitatively valid also non-perturbatively. One in-
troduces renormalized field combinations that are finite as a → 0 that
satisfy some standard normalization conditions. Before writing these
down, let us introduce a lattice field that reduces to the topological
charge density q in the classical continuum limit. There are many of
course, as usual, e.g. the one introduced in [105],

qx = − 1
32π2


∑
κλµν

εκλµνTr (UκλxUµνx)



symmetrized

, (8.84)

where the symmetrization is such that qx transform as a scalar under
lattice rotations. Denoting the renormalized fields by a ‘bar’, they can
be written as [104]

Āµ
fg = κAA

µ
fg + δfg(ZA − 1)κA

1
2nf

∑
f

∂′
µA

µ
ff , (8.85)

D̄A
fg = DA

fg + (κA − 1)∂′
µA

µ
fg

+ δfg(ZA − 1)κA
1

2nf

∑
f

∂′
µA

µ
ff , (8.86)

† Recall that contact corresponds in momentum space to polynomials in the mo-
menta, of degree less than or equal to the mass dimension of the vertex function
under consideration.

‡ In the literature these κ’s are often denoted by Z, which notation we have reserved
for renormalizations diverging when a → 0.
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∂′
µĀ

µ
fg = D̄A

fg, (8.87)

q̄ = κqq − i(ZA − 1)κA
1

2nf

∑
f

∂′
µA

µ
ff , (8.88)

where ZA is a diverging renormalization constant of order g4. The
operator subtractions ∝ (ZA − 1) are suggested by analysis at two-loop
order in the continuum [106]. In the quenched approximation ZA = 1.
In the scaling region

D̄A
fg = (mf +mg)κPψ̄f iγ5ψg + δfg 2iq̄ +O(a), (8.89)

with mf = Mf − Mc. Similar analysis of Ward–Takahashi identities
shows that the vector currents V µ

fg need no finite renormalization, V̄ µ
fg =

V µ
fg, κV = 1. The reason is that they are conserved if mf = mg even for

a �= 0.
The implications of the lattice Ward–Takahashi identities can of

course be studied also non-perturbatively. As a first step one can use only
external gauge fields with F = 1 and test the index theorem (8.65), using
topologically non-trivial gauge fields transcribed from the continuum to
the lattice [107, 108]. Adding dynamical gauge fields, we can then also
use the Ward–Takahashi identities to determine the renormalization con-
stants κ in the quenched approximation [104, 70, 109]. The computation
of the topological susceptibility turns out to be complicated by the fact
that 〈q̄xq̄y〉 has divergent contact terms that severely influence the value
of
∑

x〈q̄xq̄0〉. One can try to subtract this contribution,

χtop =
1
V

∑
xy

〈q̄xq̄y〉U − contact contribution (8.90)

(assuming periodic boundary conditions, space–time volume V → ∞),
but it is hard to define it unambiguously [110]. In practice it appears
to work well [111]. By ‘cooling’ the gauge fields after they have been
generated by a Monte Carlo process this problem can be reduced further
(see e.g. [112] and also [108]).

A different approach to the topological susceptibility is to accept
that the configurations in the path integral are inherently not smooth
functions of space–time and to avoid defining a topological integer
from a collection of wildly fluctuating lattice variables. Instead, one
can return to the physical role played by χtop and derive the Witten–
Veneziano formula entirely within the lattice formulation. This can be
done by studying the pseudoscalar meson contribution in the 〈ĀµĀν〉
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Fig. 8.2. Correlation between ‘fermionic’ and ‘cooling’ topological charge as-
signments for 32 SU(3) gauge-field configurations at β = 6.0. From [117].

and 〈D̄AD̄A〉 correlators. The analysis is subtle [104] but results in the
simple formula

χtop =
κ2Pm

2
f

V
〈Tr [γ5Sff (U)] Tr [γ5Sff (U)]〉U . (8.91)

Here Sff (U) is the fermion propagator in the gauge field U and the
trace is over all non-flavor indices (x, a and α). The large-nc limit is
not taken in this derivation, only the quenched approximation. From
this, the formula in terms of q̄ can be understood from (8.87), (8.89),
and

∑
x ∂

′
µĀ

µ = 0 for periodic boundary conditions. A derivation for
staggered fermions can also be given [113]. The limit mf → 0 is needed
in order to avoid divergences (this limit must be carefully controlled by
taking mf at the lower end of a scaling window that extends to zero as
a→ 0).

In the two-dimensional U(1) model the properties of (8.91) have been
studied and compared with the index theorem as well as with definitions
of χtop in terms of the gauge field only [114, 115]. The staggered form
was explored in numerical SU(3) simulations [116, 117]. Figure 8.2 shows
that the individual topological charges obtained with this ‘fermionic
method’ are at β = 6/g2 = 6.0 already quite correlated to the charges
obtained with the cooling method. This is expected to improve at higher
β but at lower β the gauge fields are too ‘rough’ on the lattice scale for
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notions of topology to make sense (also, the staggered-fermion renor-
malization factor κP becomes uncannily very large [116]). The resulting
χtop ≈ (154±17 MeV)4 seems a bit low compared with the experimental
value following from the Witten–Veneziano formula (180 MeV)4, but
this may be due to the somewhat low value a−1 = 1900 MeV used for
conversion to physical units. Using a−1 = 2216 MeV inferred from the
values 1934 MeV (β = 5.9) and 2540 MeV (β = 6.1) recorded in [98]
would give χtop ≈ (180± 20 MeV)4.

By contracting the currents with the n2f −1 SU(nf) generators λkfg/2,
we can form the left- and right-handed currents jL,Rµk = (V̄ µ

fg ± Āµ
fg)

×(λk)fg/4. According to (8.78) and (8.89), these currents and the U(1)
vector current Vµ =

∑
f V

µ
ff are conserved in the limit mf → 0.

Further Ward–Takahashi identities can be derived to fix renormalization
constants and ensure that the currents satisfy ‘current algebra’ [118].
The corresponding charges would then satisfy the algebra of generators
of SU(nf) × SU(nf), were it not that the symmetry is supposed to be
broken spontaneously. It should also be possible to introduce the QCD
theta parameter (cf. problem (iv)).

From the chiral-symmetry point of view there are now much better
lattice fermion methods. Ginsparg and Wilson made a renormalization-
group ‘block-spin’ transformation for fermions from the continuum to the
lattice, paying special attention to chiral symmetry [124]. More recently
such transformations were studied in search of ‘perfect actions’ [125].
The continuum action is chirally symmetric for zero mass parameters
but this symmetry is hidden in the resulting lattice action, because the
blocking transformation to the lattice breaks chiral symmetry to avoid
fermion doubling. Writing the massless fermion action as SF = −ψ̄Dψ,
chiral symmetry in the continuum can be expressed as γ5D +Dγ5 = 0.
On the lattice there is a remnant of this: the blocked D satisfies the
Ginsparg–Wilson relation

γ5D +Dγ5 = aD 2Rγ5D, (8.92)

where we used matrix notation also for the space–time indices; R is
a matrix commuting with γ5 that enters in the renormalization-group
blocking transformation. It is local, which means that Rxy falls off
exponentially fast as |x − y| → ∞ (on the lattice scale, in physical
units it resembles a delta function). So Dxy practically anticommutes
with γ5 for physical separations, provided that it is itself local, as it
should be (this is a basic requirement for universality). Taking (8.92) as
a starting point, one can take Rxy = 1

2 δxy. Dirac matrices Dxy satisfying
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(8.92) are complicated, because for given x all y contribute, albeit with
exponentially falling magnitude as |x− y| increases. An explicit solution
[126], arrived at via the ‘overlap’ approach to chiral gauge theories (see
the next section), has the form

aD = 1−A(A†A)−1/2, A = 1− aDW, R = 1
2 , (8.93)

where DW is Wilson’s lattice Dirac operator with zero bare mass (r = 1,
M = 4/a). Adding mass terms the resulting lattice QCD action has very
nice properties with respect to broken chiral symmetry and topology,
which can be studied again by deriving Ward–Takahashi identities [130].

Moreover, the resulting action has (for m = 0) an exact chiral sym-
metry [131] under

δψ = iωγ5
(
1− 1

2aD
)
ψ, δψ̄ = iψ̄

(
1− 1

2aD
)
ω, (8.94)

with infinitesimal ωfg. (Note that such a finite chiral transformation is
non-local as it involves arbitrarily high powers of D.) The chiral anomaly
in this formulation comes from a non-invariance of the fermion measure
[131], similar to continuum derivations [132]. Domain-wall fermions [128,
129] are closely related. At the time of writing the research into these
directions is very active; for a review, see [135]. Applications to the
topological susceptibility can be found in [136, 137].

8.5 Spontaneous breaking of chiral symmetry

We now turn to the question of spontaneous chiral-symmetry breaking.
One would like to compute the expectation value of the order field
ψ̄fPLψg at vanishing quark masses and verify that SU(nf) × SU(nf)
symmetry is broken spontaneously to SU(nf). As for the O(n) model (cf.
(3.157)), this could be done by introducing explicit symmetry-breaking
quark masses and studying the infinite-volume limit.

However, with Wilson fermions we cannot simply use ψ̄fPLψg as
an order field because the cancellation of the chiral-symmetry break-
ing by the M and r terms is a subtle issue. Even for free fermions
〈ψ̄fPLψg〉 �= 0 at mf = Mf − 4r/a = 0: it diverges in the con-
tinuum limit (cf. problem (ii)). The chiral-symmetry breaking causes
ψ̄fPLψg to mix with the unit operator, with a coefficient c(g2,m) δfg =
[c0(g2)a−3 + c1(g2)ma−2 + c2(g2)m2a−1] δfg that diverges in the limit
a → 0 (for simplicity we assume here all quark masses to be equal).
The identification of c(g2,m), and a computation of the subtracted
expectation value 〈ψ̄fPLψg〉−c(g2,m)δfg in the limit of zero quark mass
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is a hazardous endeavor, because several powers of a−1 have to cancel
out, and, moreover, because the gauge coupling g2 also depends on a.

On the other hand, we have seen (section 7.5) that the relation
(8.36), i.e. m2

fg ≈ B(mf + mg), B = 2v/f2π , is borne out by the
numerical results when f �= g. So, using this relation, we could define
〈ψ̄ψ〉 by

∑
f 〈ψ̄fψf 〉 = −nfBf2π , with mu = md ≡ mud → 0, or

〈ψ̄uψu〉 = −f2πm2
π/2mud. Using renormalized quark masses instead of

the bare mud would give a renormalized B and a correspondingly renor-
malized 〈ψ̄fψf 〉. Note that mud〈ψ̄uψu〉 should be renormalization-group
invariant. Using e.g. mud = 3.4 MeV (the result of [97]), the value
of 〈ψ̄uψu〉 is about (290 MeV)3 in the MS-bar scheme on the scale
µ = 2 GeV.

We may appeal to continuity at any fixed gauge coupling 0 < g <∞
by sending the symmetry-breaking parameters M and r to zero and
studying spontaneous breaking of chiral symmetry there. Actually, at
r = M = 0 the staggered-fermion form (6.66) of the action is more
appropriate and it shows that the Dirac labels are to be interpreted as
flavor indices. At M = r = 0 the symmetry of the action enlarges to
U(4nf) × U(4nf). Combining the Dirac (α) and flavor (f) indices into
one label A = (α, f) the transformation is

χAx →
(
VLAB

1− εx
2

+ VRAB

1 + εx
2

)
χBx,

χ̄Ax → χ̄Bx

(
VR†
BA

1− εx
2

+ VL†BA

1 + εx
2

)
(8.95)

with εx = (−1)x1+···x4 . Moreover, in the scaling region at weak coupling
the staggered-fermion flavors also emerge, implying a further multipli-
cation of the number of flavors by four. With such a large number of
flavors (i.e. 16nf) and only three colors, asymptotic freedom is lost as
soon as nf > 1 (recall (7.54)) and we can expect continuity in M, r → 0
only if we consider a sufficiently large number of colors nc. Assuming
this to be the case, we can get analytic insight at strong coupling
[119, 120, 83, 84, 82, 121].

At strong gauge coupling and for a large number of colors the ex-
act continuous symmetry breaks spontaneously as U(4nf) × U(4nf) →
U(4nf), resulting in 16n2f NG bosons. The baryons acquire a mass
∝ nc from the spontaneous symmetry breaking. Suppose now nf = 3.
Turning on the symmetry-breaking parameters M and r, it is possible
to keep the pions, kaons and eta massless by choosing M = Mc(g, r)
and in the process all other NG bosons become massive. We need to
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keep M −Mc(g, r) infinitesimally positive to let the order field ψ̄fPLψg

acquire its expectation value in the direction −vδfg, with real positive
v. Otherwise we might induce complex v, which corresponds to non-zero
〈ψ̄f iγ5ψg〉 and spontaneous breaking of parity [119, 122]. The situa-
tion is similar in the model using continuous time (the Hamiltonian
method), in which the symmetry breaking at strong coupling is actually
U(4nf) → U(2nf)×U(2nf). At non-zero r the U(1) problem is also qual-
itatively resolved by giving the flavor-singlet boson a (small) non-zero
mass [119, 122, 123].

So in this way, connecting with M = r = 0, we can understand
spontaneous breaking of chiral symmetry in multicolor QCD with Wilson
fermions. However, it is conceptually simpler to study the corresponding
order field for staggered fermions.

The staggered-fermion action (6.67) has for m = 0 a chiral U(1)×U(1)
symmetry, which is (8.95) with phase factors VL,R (since there is no
spin–flavor index A to act on). The axial U(1) transformation contained
in this U(1) × U(1), i.e. VL = VR∗ = exp(iωA), is in the staggered-
fermion interpretation [74] a flavor-non-singlet transformation, of the
form exp(iωAξ5) with Tr ξ5 �= 0. In the scaling region, where the symme-
try enlarges to SU(4)×SU(4)×U(1)V, this ξ5 is a linear combination of
the generators of SU(4). So it is natural to study spontaneous breaking
of this U(1) remnant of SU(4) × SU(4) chiral symmetry. A suitable
order field for this symmetry is the coefficient of the quark mass m in
the action, i.e. χ̄xχx, which together with εxχ̄xχx forms a doublet under
the chiral U(1). In the scaling region χ̄xχx →

∑4
f=1 ψ̄f (x)ψf (x) and

εxχ̄xχx →
∑

fg ψ̄f (x)ξ5fgγ5ψg(x).
A definition of Σ ≡ −〈χ̄χ〉 in which the quark mass is introduced

as a symmetry breaker, which is to be taken to zero after taking the
infinite-volume limit, as in (3.157) for the O(n) model, is hard to
implement in practice. This can be circumvented by using a method
based on the eigenvalues of the Dirac operator, which we shall denote
by D(U), where U is a given gauge-field configuration. In the continuum
D is anti-Hermitian, D(U) = −D(U)†, and therefore its eigenvalues are
purely imaginary. On the lattice the staggered-fermion Dirac matrix

D(U)xa,yb =
∑
µ

ηµx[(Uxy)abδx+µ̂,y − (Uyx)abδy+µ̂,x] (8.96)

has the same property (unlike the Wilson–Dirac operator D(U) =
D/(U)+M−W (U) which is the sum of an anti-Hermitian and a Hermitian
matrix). Let ur denote the complete orthonormal set of eigenvectors with
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eigenvalues iλr,

Dur = iλr ur, u†rus = δrs,
∑
r

uru
†
r = 11. (8.97)

The matrix εxy = εxδxy anticommutes with D, Dε = −εD, so

D εur = −iλr εur, (8.98)

and for every eigenvalue λr there is also an eigenvalue −λr. The expec-
tation value of the order field at finite quark mass, Σ ≡ −〈χ̄xχx〉, can
be written as

Σ =
1
V

∑
x

〈χxχ̄x〉 =
1
V
〈Tr [(D +m)−1]〉U

=
1
V

〈∑
r

1
iλr +m

Tr (uru†r)

〉
U

=
1
V

〈∑
r

1
iλr +m

〉
U

=
1
V

〈∑
r

m

λ2r +m2

〉
U

. (8.99)

In terms of the spectral density ρ(λ),

ρ(λ) =
1

V ∆λ
〈n(λ+ ∆λ, λ)〉U , ∆λ→ 0, (8.100)

where n(λ + ∆λ, λ) =
∑

r θ((λ + ∆λ − λr)θ(λr − λ) is the number of
eigenvalues of D(U) in the interval (λ, λ + ∆λ), this can be written as
[138]

Σ = lim
m→0

lim
V→∞

∫
dλ ρ(λ)

m

λ2 +m2
(8.101)

= πρ(0). (8.102)

Here we used the identity limε→0 ε/(x2 + ε2) = πδ(x). Note that ρ(λ)
depends on the gauge coupling, the dynamical quark mass and the
volume V ; it furthermore satisfies ρ(λ) = ρ(−λ) because of (8.98).

The spectral density can be computed numerically by counting the
number of eigenvalues in small bins and figure 8.3 shows an example for
the gauge group SU(2) in the quenched approximation. The quantity
ρ(λ)/V in the plot is our density ρ(λ) in lattice units, i.e. a3ρ(λ). The
value ρ(0) may be determined by extrapolating λ→ 0, it is nearly equal
to the value in the first bin. The resulting a3Σ drops rapidly from the
value 0.1247(22) to 0.00863(48) as β is increased from 2.0 to 2.4 and the
lattice spacing decreases accordingly. Actually, the value β = 2.0 is near
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Fig. 8.3. The quenched spectral density in lattice units of the SU(2) staggered-
fermion matrix for two values of β = 4/g2 and lattice volumes V = L4. The
number of gauge-field configurations used is also indicated. From [142].

the edge of the scaling region on the strong-coupling side, while β = 2.4
is more properly in the scaling region3 (see e.g. figure 8 in [69]).

The volume dependence of Σ obtained this way is expected to be
small. This can be made more precise by using scaling arguments based
on a remarkable connection with random-matrix theory (for a review
see [140]). From (8.100) and (8.102) we see that, in the neighborhood
of the origin, ρ(λ) behaves like 1/[V Σ d(λ)], with d(λ) the average
distance between two eigenvalues. This observation leads one to define
the microscopic spectral density [141]

ρs(ζ) =
1
Σ
ρ

(
ζ

ΣV

)
, (8.103)

in which the region around the origin is blown up by the factor ΣV .
The function ρs(ζ) is predicted to be a universal function in random-
matrix theory depending only on the gauge group and the representation
carried by the fermions, provided that it is evaluated for gauge fields with
fixed topological charge Qtop = ν. For example for SU(nc > 2) and nf
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dynamical fermions it is given by

ρ(ν)s (ζ) =
ζ

2
[
Jnf+ν(ζ)2 − Jnf+ν−1(ζ)Jnf+ν+1(ζ)

]
, (8.104)

where J is the Bessel function. So, by fitting ρ(ν)(λ) according to (8.103)
and (8.104) with only one free parameter (Σ), one obtains the infinite-
volume value of Σ.

Zero modes corresponding to the index theorem should be ignored
here. This is not easy with staggered fermions as the would-be zero
modes fluctuate away from zero and can be identified only by the
expectation value of the ‘staggered γ5’ (cf. (8.134) and (8.135)) [107,
113, 114, 116].

The prediction (8.104) works well using staggered fermions and SU(2)
[142] or SU(3) [143] quenched (nf = 0) gauge-field configurations at
relatively strong gauge coupling and selecting4 ν = 0. The dependence on
the fermion representation and the pattern of chiral-symmetry breaking
is studied for various gauge groups in [144]. A (finite-temperature) study
with nf = 2 dynamical fermions is given in [145].

A recent study [146] using related finite-size techniques with Neu-
berger’s Dirac operator (8.93) in quenched SU(3) at β = 5.85 gave
the result a3Σ = 0.0032(4). A further non-perturbative computation
[147] of the appropriate multiplicative renormalization factor then allows
conversion value ΣMS(µ = 2 GeV) ≈ (270 MeV)3 in the MS-bar scheme.

8.6 Chiral gauge theory

In QED and QCD the representation of the gauge group carried by
all left- and right-handed fields is real up to equivalence. For example,
in QCD, let Ω be the fundamental representation of SU(3). The left-
handed fields are ψL = PLψ and (ψ̄RC)T = PL(ψ̄C)T, with C the charge-
conjugation matrix (cf. appendix D), while the right-handed fields are
ψR = PRψ and (ψ̄LC)T = PR(ψ̄C)T. The fields transform as

ψL → ΩψL, (ψ̄RC)T → Ω∗(ψ̄RC)T, left; (8.105)

ψR → ΩψR, (ψ̄LC)T → Ω∗(ψ̄LC)T, right. (8.106)

Taking ψL and ψ̄R in pairs, the representation of the gauge group has
the form of a direct sum Ω ⊕ Ω∗, which is real up to the equivalence
transformation Ω⊕ Ω∗ → Ω∗ ⊕ Ω.

The fundamental representation of U(1), a phase factor, is evidently
complex, but the fundamental representation of SU(2) is real up to
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equivalence: Ω∗ = exp(iωk
1
2σk)

∗ = σ2Ωσ2. It is not difficult to see, e.g.
by looking at the element exp(iω8 12λ8), that the fundamental represen-
tation of SU(3) is complex. The adjoint representation of SU(n) is real
for all n.
Chiral gauge theories are models in which the representation of the

gauge group is truly complex (no reality up to equivalence). The Stan-
dard Model, which has the gauge group U(1) × SU(2) × SU(3), is a
chiral gauge theory, as can be seen by looking at the U(1) charges of
the left- and right-handed fields. Since this model is able to describe
all known interactions up till now, it is evidently desirable to give it a
non-perturbative lattice formulation.† This turns out to be very difficult.

To get a glimpse of the problem, consider a U(1) model with contin-
uum action

SF = −
∫

d4x ψ̄Lγ
µ(∂µ − igqLAµ)ψL + L → R, (8.107)

assuming for the moment no further quantum numbers (no ‘flavors’).
The fields transform as

ψL → eiωqLψL, ψ̄R → e−iωqR ψ̄R, left; (8.108)

ψR → eiωqRψR, ψ̄L → e−iωqL ψ̄L, right, (8.109)

and we see, e.g. from the pair ψL and ψ̄R, that the model is chiral if the
charges qR and qL are not equal. Assuming this to be the case, it follows
that ψ̄ψ = ψ̄RψL + ψ̄LψR is not gauge invariant. Consequently there
can be no mass term for the fermions. We also cannot use PL + PR = 1
and eliminate γ5 from the action. So the gauge-field couples also to an
axial-vector current (there is a term ψ̄iγµγ5ψAµ in the action), instead of
only to vector currents as in QED and QCD. These features are generic
for chiral gauge theories: no mass terms and axial-vector currents that
are dynamical (rather than being just symmetry currents of global chiral
symmetry). With γ5 prominent in the vertex functions we may expect
chiral anomalies to play a role. This has been analyzed in perturbation
theory in the continuum, with the conclusion that the above model is
unsatisfactory because gauge invariance is spoilt by anomalies due to
contributions involving triangle diagrams (cf. figure 8.1). These problems
can be avoided by extending the model to contain more than one ‘flavor’,
with charges qLf and qRf , such that the anomalies cancel out between
the different flavors, which requires

∑
f (q3Lf − q3Rf ) = 0. The model

† We consider U(1)-neutral right-handed neutrino fields ψR (and ψ̄R) as part of the
Standard Model.
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and its representation of the gauge group are then called ‘anomaly-free’.
Such considerations played an important role in the construction of the
Standard Model. It was noticed that the anomalies in the lepton sector
could cancel out against those in the quark sector [148, 151]. This is how
the Standard Model is anomaly-free.

We continue with the choice of integer qL = q, qR = 0. With just one
flavor the continuum model is then anomalous. Let us see what happens
if we put the above model naively on the lattice.

A Euclidean naive lattice action is easy to write down:

SF = −
∑
xµ

1
2

[
ψ̄xγµ(UµxPL + PR)ψx+µ̂ − ψ̄x+µγµ(UµxPL + PR)ψx

]
,

(8.110)
with a path integral

Z =
∫

Dψ̄DψDU eS , (8.111)

in which S = SF + SU with SU the usual plaquette action. The lattice
action and measure are gauge invariant (for the fermion measure this
follows from (8.82) with VLx = exp(iωx), VRx = 1). In this model
the right-handed ψR and the left-handed (ψ̄RC)T are just free fields,
they are not coupled to the gauge fields. However, the species-doubling
phenomenon induces 16 fermion flavors in the scaling region. What are
the charges of these fermions?

To answer this question consider a fermion line in a diagram with a
gauge-field line attached to it. The corresponding mathematical expres-
sion is

· · ·S(p)Vµ(p, q; k)S(q)· · ·, (8.112)

where S(p) is the massless naive fermion propagator and Vµ(p, q; k) the
bare vertex function for the model (p = q+k). Such vertex functions have
been determined in problem (i) in section 6.6 for the case of QED, and
to get these for the present case we only have to make the substitution
gγµ → gγµPL in (6.99), giving

Vµ(p, q; k) = igγµPL
1
2

(
eiaqµ + eiapµ

)
. (8.113)

To interpret this expression in the scaling region for fermion species A
we use (6.26) and (6.31) and substitute p→ kA + p and q → kA + q into
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(8.112) (kA = πA/a),

· · ·S(kA + p)Vµ(kA + p, kA + q; k)S(kA + q) · · · (8.114)

= · · ·S†
A

[
−iγκpκ
p2

giγµ
1
2 (1− εAγ5)

−iγλqλ
q2

+O(a)
]
SA· · ·,

where we used (6.30) and (6.28) for the terms not involving γ5 and

εAγµγ5 = SAγµγ5S
†
A cos(πAµ). (8.115)

Using (6.29) we find εA = +1 for πA = π0, εA = −1 for πA = π1, . . .,
π4, εA = +1 for πA = π12, . . ., π34, εA = −1 for πA = π123, . . ., π234 and
εA = +1 for πA = π1234, such that∑

A

εA = 1− 4 + 6− 4 + 1 = 0. (8.116)

From (8.114) we conclude that in the scaling region we have eight contin-
uum fields with qcontL = 1 (εA = 1), and eight with qcontR = 1 (εA = −1),
in addition to the uncharged fields: the lattice has produced flavors (the
species doublers) such that the anomalies cancel out.5 However, since
all the qcontL and qcontR are equal, the model is not a chiral gauge theory!
It is just QED with eight equal-mass Dirac fermions (plus eight neutral
Dirac fermions).

A natural suggestion for a lattice formulation of the Standard Model is
to give the doubler fermions masses of order of the lattice cutoff through
Wilson-type Yukawa couplings with the Higgs field [119, 149, 150].
Because the Standard Model is anomaly-free the set of doublers in
such a formulation is anomaly-free too: the set of 15 doublers of some
fermion contributes to anomalies with the same strength as this fermion
(opposite in sign,

∑16
A=2 εA = −1). Insofar as anomalies are concerned

there is no objection to the decoupling of the doublers. Other objec-
tions [151, 152], namely that masses of the order of the cutoff might
not be possible because renormalized couplings cannot be arbitrarily
strong (triviality is expected to play a role here), do not apply if
new phases come into play. This is indeed the case. On turning on
the Wilson–Yukawa couplings one runs into a new phase, called the
paramagnetic strong-coupling (PMS) phase [153]. Unfortunately, in this
phase the doublers bind with the Higgs field to give right-handed fields
transforming in the same representation as the left-handed fields, or
vice-versa, and the result is a non-chiral (vector) gauge theory in the
scaling region [154, 155]. Other models [156] (see also [157]) which can
be put into this Wilson–Yukawa framework have been argued to fare
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the same fate [158]. Another approach is to keep the doublers as heavy
physical particles in mirror fermion models [159].

How to formulate a lattice chiral gauge model? This problem is diffi-
cult because of the peculiar symmetry breaking of chiral anomalies. We
want them to be there without interfering with gauge invariance. Nielson
and Ninomiya [160] formulated a no-go theorem that has to be overcome
first. They used a Hamiltonian description (continuous time and spatial
lattice), and, loosely speaking, the theorem states that, under cherished
conditions such as translation invariance, locality and Hermiticity, a
free-fermion lattice model with a U(1) invariance has always an equal
number of left- and right-handed fermions of a given U(1) charge. The
U(1) is supposed to be contained in the gauge group and the implication
is that the model can be extended only into an interacting gauge theory
that is ‘vector’ and not chiral. A simpler Euclidean formulation is given
in [161]. An extension to an effective action formulation is given in [129].

The Euclidean reasoning runs as follows. Suppose that we replace
sin kµ → Fµ(k) in the naive fermion propagator. This corresponds to
the translation-invariant action of the form (ignoring possible neutral
fields)

SF = −
∑
xyµ

ψ̄xγµPLF̃µ(x− y)ψy, iFµ(k) =
∑
x

exp(−ikx)F̃µ(x),

(8.117)
which has a U(1) invariance ψ → exp(iωq)ψ, ψ̄ → exp(−iωq) ψ̄.
Hermiticity is easy to state in the Hamiltonian formulation: Ĥ† = Ĥ.
In the Euclidean formulation we require the spatial part of the action
(µ = 1, 2, 3) to be Hermitian and extend this to µ = 4 by covariance.
Then Hermiticity means that Fµ(x)∗ = −Fµ(−x), so Fµ(k) is real.
Locality means that F̃µ(x) approaches zero sufficiently fast as |x| → ∞.
This implies that its Fourier transform is not singular and we shall
assume Fµ(k) to be smooth, i.e. it and all its derivatives are continuous.
If Fµ(k) has isolated zeros of first order then the model has a particle
interpretation. Near a zero at k = k̄,

Fµ(k) = Zµν(kν − k̄ν) +O((k − k̄)2), (8.118)

with coefficients Zµν forming a matrix Z with detZ �= 0. We write

Z = RP, (8.119)

with R an orthogonal matrix and P a symmetric positive matrix. The
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matrix R can be absorbed in a unitary transformation,

γµ(1− γ5)Rµν = Λ†γν(1− εγ5)Λ, ε = detR = ±1. (8.120)

For ε = 1, Λ is a rotation exp(12ϕµν [γµ, γν ]), for ε = −1, Λ is e.g. γ4 times
a rotation (cf. appendix D). So for k near k̄ the fermion propagator is
equivalent to the continuum expression

S(k) ≈ −iγµpµ
p2

1− εγ5
2

, pµ ≡ Pµν(k − k̄)ν , (8.121)

which corresponds to a left- (ε = +1) or right-handed (ε = −1) fermion
field.

Now comes input from topology: ε is the index of the vector field
Fµ(k) of its zero at k = k̄, i.e. the degree of the mapping Fµ/|F | =
Rµνpν/|p| onto S4. The Poincaré–Hopf theorem states that the global
sum of the indices equals the Euler characteristic χE of the manifold on
which the vector field is defined:

∑
ε = χE. In our case this manifold is

the momentum-space torus T 4, for which χE = 0. Hence, there must be
an even number of zeros and in the continuum limit we have an equal
number of left- and right-handed fermion fields with the same charge.
The naive U(1) model above is a typical illustration of the theorem.

To avoid these theorems we have to avoid some of their assumptions
(including hidden assumptions). Giving up translation invariance (e.g.
using a random lattice), Hermiticity (e.g. SF = −

∑
xµ ψ̄xγµ∂µψx, which

gives the complex Fµ(k) = (eikµ − 1)/i), or locality (e.g. the discon-
tinuous Fµ(k) = 2 sin(kµ/2) (mod 2π) has only a zero at the origin
but corresponds to Fµ(x) falling only like |x|−1) tends to lead to other
trouble (for a review, see [162]). The basic reason is that, with an exactly
gauge-invariant action and fermion measure, there can be no anomaly,
which means that it cancels out in one way or another, generically
without the desired particle interpretation.

One line of approach is to give up gauge invariance at finite lattice
spacing by working in a fixed gauge and adding counterterms such that
gauge invariance is restored in the continuum limit [163, 164]. How-
ever, non-perturbative gauge fixing has its own complications, not least
the existence of Gribov copies, i.e. configurations differing by a gauge
transformation satisfying the same gauge condition. A gauge-fixed U(1)
model appears to have passed basic tests [166]. For a review see [168].
One may try to keep the fermions in the continuum, or on a finer lattice
than the gauge-field lattice, and invoking restoration of gauge symmetry
by the mechanism of [167]. See [168] for a review. Gauge-symmetry
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restoration was also invoked in models gauging non-invariant models,
using Wilson fermions or gauging the staggered flavors [162, 169] but it
failed in its simplest realization [170]. Further information can be found
in the reviews presented at the Lattice meetings [171].

New developments that constitute a major advancement can be clas-
sified under the heading ‘overlap’ and ‘Ginsparg–Wilson’ fermions. The-
orems of the Nielson–Ninomiya type are avoided by having an infinite
number of fermion field components (‘overlap’), and changing the defi-
nition of γ5, such that it is as usual for ψ̄ but for ψ it involves replacing
γ5 by

γ̂5 = γ5(1− aD), (8.122)

where D is a Ginsparg–Wilson Dirac operator, together with an elabo-
rate definition of the fermion measure in the path integral (apparently
giving up Hermiticity on the lattice) [172]. The subject is beautiful
and erudite and the reader is best introduced by the reviews [173, 174]
(‘overlap’) and [175] (‘Ginsparg–Wilson’). One may feel uncomfortable,
though, about using formulations with an infinite number of field com-
ponents; it runs contrary to the basic idea of being able to approach
infinity from the finite.

8.7 Outlook

There is of course a lot more to lattice field theory than has been
presented here. An introduction to finite temperature can be found in
[9]. Simulation algorithms are introduced in [4, 10]; improved actions
and electroweak matrix elements are discussed in [14, 15]. See also
[16] for advanced material. For an introduction to simplicial gravity6

see [17]. Non-perturbative lattice formulations of quantum fields out of
equilibrium are still in their infancy.7 For the current status of all this,
see the proceedings of the ‘Lattice’ meetings.

8.8 Problems

(i) The pion–nucleon σ model
Consider an effective nucleon field N that is a doublet in terms
of Dirac proton (p) and neutron (n) fields

N(x) =
(
p(x)
n(x)

)
. (8.123)
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The effective action of the pion–nucleon sigma model is given by

Seff = −
∫

d4x [N̄γµ∂µN+GN̄(φPR+φ†PL)N ]+SO(4), (8.124)

where SO(4) is the scalar field action of the O(4) model (equations
(3.1) and (3.4)) and φ is a matrix field constructed out of the
scalar fields,

φ = ϕ011 + i

3∑
k=1

ϕkτk. (8.125)

The τk are the three Pauli matrices, which act on the p and n

components of N and G is the pion–nucleon coupling constant.
Show that the action is invariant under SU(2)× SU(2) trans-

formations

N → V N, N̄ → N̄ V̄ , φ→ VLφV
†
R, VL,R ∈ SU(2). (8.126)

Verify that the transformation on the matrix scalar field φ is
equivalent to an SO(4) rotation on the ϕα. Hint: check that φ†φ =
ϕ211, detφ = ϕ2; and hence that φ may be written as φ =

√
ϕ2 U ,

U ∈ SU(2).
This chiral invariance of the sigma-model action is a nice

expression of the symmetry properties of the underlying quark–
gluon theory. When the symmetry is spontaneously broken, such
that the ground-state value of the scalar field is φg = f11, f = ϕ0g,
the action acquires a mass term GfN̄N : the nucleon gets its mass
from spontaneous breaking of chiral symmetry, mN = Gf . This
relation is in fair agreement with experiment. On introducing
the weak interactions into the model one finds that f equals the
pion decay constant, f = fπ ≈ 93 MeV, while G ≈ 13 from
pion–nucleon-scattering experiments, so with mN = 940 MeV we
have to compare mN/f ≈ 10 with 13.

The field ϕ0 is often denoted by σ, and ϕk by πk, the sigma and
pion fields. The pions are stable within the strong interactions but
the σ is a very unstable particle with mass mσ in the range 600–
1200 MeV. Given mπ = 140 MeV and mσ = 900 MeV, determine
the other parameters in the action.

Reanalyze the model in ‘polar coordinates’ φ = ρU , U ∈ SU(2)
with ρ a single-component scalar field. Note that ρ plays the role
of the matrix field H introduced in (8.19). What is its mass?
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In sections 8.1 the effective field φ is a general complex 4 × 4
matrix, which has eight independent real parameters, whereas the
above φ has only the four real ϕα, which cannot incorporate chiral
U(1) transformations. Verify this, and work out a generalization
in which φ has the general form. (Include in the action terms that
break chiral U(1).)

(ii) Free fermion 〈ψ̄ψ〉
Consider free ‘naive’ fermions on the lattice (one flavor). Show
that

Σ ≡ −〈ψ̄ψ〉 = a−3
∫ π

−π

d4k

(2π)4
4am

a2m2 +
∑

µ sin2 kµ
, (8.127)

and that it has the expansion

Σ = c1ma−2 +m3[c3 ln(am) + c′3] + · · ·, (8.128)

where the · · · vanish as a→ 0. Hint: use (3.66).
Now consider free Wilson fermions. Show that for this case the

expansion takes the form

Σ = c0a
−3 + c1ma−2 + c2m

2a−1 +m3[c3 ln(am) + c′3] + · · ·,
(8.129)

where m = M − 4r/a. Find expressions for the coefficients ck.
(iii) Research project: the index theorem

Go through the following formal arguments.
In the continuum, let D = γµ[∂µ− iGµ(x)] be the Dirac opera-

tor in an external gauge field Gµ in a finite volume with periodic
(up to gauge transformations) boundary conditions. Consider the
divergence equation for the flavor-singlet axial current

∂µψ̄iγµγ5ψ = 2mψ̄iγ5ψ + 2iq, (8.130)

where we assumed that there is only one flavor. Taking the
fermionic average and integrating over (Euclidean) space–time
gives

0 = −2mTr [γ5(m+D)−1] + 2iν, (8.131)

where the trace is over space–time and Dirac indices and ν = Qtop

is the topological charge.
Verify that iD is a Hermitian operator, (iD)† = iD.
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Let fs be the eigenvectors of D with (purely imaginary) eigen-
values iλs,

Dfs = iλsfs, Dγ5fs = −iλsγ5fs, (8.132)

and assume the eigenvectors to be orthogonal and complete,

f†
s ft = δst,

∑
s

fsf
†
s = 1. (8.133)

Because fs and γ5fs correspond generically to different eigen-
values,

f†
sγ5fs = 0, λs �= 0. (8.134)

For λs = 0, [D, γ5]fs = 0, so in this subspace we can look for
simultaneous eigenvectors of D and γ5. The eigenvalues of γ5 are
±1,

γ5fs = ±fs, λs = 0. (8.135)

It follows that

ν = m
∑
s

Tr (γ5fsf†
s )

m+ iλs
=
∑

s, λs=0

f†
sγ5fs = n+ − n−, (8.136)

with n± the number of zero modes with chirality γ5 = ±1.
Periodicity modulo gauge transformations is needed in order to

allow non-zero topological charge. For the proper mathematical
setting in the continuum, see e.g. [12]. Lattice studies using
Wilson and staggered fermions are in [107, 108, 114, 115, 90],
while [135] gives an introduction to Ginsparg–Wilson fermions.
Choose one of these studies and reproduce (and possibly extend)
its results.

(iv) Research project: the theta parameter of QCD
Consider the QCD action with generalized mass term∫

d4x ψ̄′mψ′, m = mLPL +m†
LPR, (8.137)

in which mL is a fairly arbitrary complex matrix. Assume that it
can be transformed into a diagonal matrix by the transformation

V †
LmLVR = mdiag = diagonal with entries ≥ 0. (8.138)

Suppose this transformation is the result of a chiral transforma-
tion on the fermion fields (cf. (8.2)),

ψ′ = V ψ, ψ̄′ = ψ̄V̄ . (8.139)
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In continuum treatments the fermion measure is not invariant
under such a transformation, but is produces the chiral anomaly
in the form [132]

Dψ̄′Dψ′ = Dψ̄Dψ eiθ
∫
d4x q(x), θ = arg(detmL). (8.140)

So in terms of the un-primed fermion fields we have an addi-
tional term in the (Euclidean) action proportional to the topo-
logical charge,

S = −
∫

d4x

[
1

2g2
Tr (GµνGµν) + ψ̄γµDµψ + ψ̄mdiagψ − iθq

]
.

(8.141)
The original mass m may be the result of electroweak symmetry
breaking. Experiments constrain the value of θ, which violates
CP invariance, to be less than 10−9 in magnitude.

Our problem is to give a rigorous version of the above reasoning
using the lattice regularization. With Wilson’s fermion method
the following steps get us going.

Consider the fermion determinant exp[Tr ln(D/ − W + M)],
where M is arbitrary. In the scaling region M is close to the
critical value Mc; if not, then there is no continuum physics. So
assume that M = Mc + m, with Mc ∝ r11 and m arbitrary as in
the above continuum outline. With Wilson’s fermion method the
fermion measure is invariant under chiral transformations and the
anomaly comes from the non-invariant term ψ̄(W −Mc)ψ in the
action. So we have

Tr [ln(D/−W +Mc +m)] = Tr {ln[D/+ V̄ (Mc −W )V +mdiag]}.
(8.142)

To evaluate this consider a change δV of V . Then the above
expression changes by

Tr {[δV̄ (Mc −W )V + V̄ (Mc −W ) δV ]

×[D/+ V̄ (Mc −W )V +mdiag]−1}. (8.143)

Expanding this expression in terms of the gauge field leads to an
infinite number of diagrams with external gauge-field lines im-
pinging upon a closed fermion loop. The crucial point is now that
the factor Mc −W in the numerator above suppresses the region
of loop-momentum integration where mdiag has any influence.
For example in momentum space at lowest order, Mc − W →
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ra−1
∑

µ[1− cos(akµ)], and we therefore need a loop momentum
k of order a−1 
 mdiag to give a non-vanishing contribution.
See [70] for an explicit computation of the triangle-diagram-like
contributions. So we may as well set mdiag = 0 in (8.143). Then
(8.143) can be rewritten in the form

Tr [V̄ −1 δV̄ (Mc −W )(D/+Mc −W )−1

+ δV V −1(D/+Mc −W )−1(Mc −W )]

= Tr [(VL δV −1
L − VR δV −1

R ) γ5 (Mc −W )(D/+Mc −W )−1],

(8.144)

where we used the fact that D/, Mc and W are all flavor diagonal,
and the cyclic property of the trace. Denoting the trace over
space–time plus Dirac indices (excluding the flavor indices) by
Trst we have the result [70, 133, 134]

Trst [γ5 (Mc −W )(D/+Mc −W )−1] = Qtop, a→ 0. (8.145)

Note that this result is independent of the r parameter [70], as
long as it is non-zero. The coefficient of Qtop is given by

Trflavor (VL δV −1
L − VR δV −1

R )=δln[det(VRV −1
L )]= i δarg(detmL).

(8.146)
So one concludes that, in the continuum limit,

exp{Tr [ln(D/+Mc −W +m)]}
= eiθQtop exp{Tr [ln(D/+Mc −W +mdiag)]}, (8.147)

θ = arg(detmL), (8.148)

which is equivalent to the continuum result.
By taking the continuum limit we have happily been able to

ignore finite renormalization factors κ (κ = 1 + O(g2) → 1, g2 is
the bare gauge coupling).

The problem with the above reasoning, taken from [149], is how
to improve it such that it applies in a practical scaling region with
g2 not much less than 1.



Appendix A

SU(n)

A.1 Fundamental representation of SU(n)

In the following appendices we record some properties of the representa-
tions of the group SU(n). First we review the construction of a complete
basis set of Hermitian traceless n × n matrices, similar to the n = 2, 3
examples. We shall denote these matrices by λk, k = 1, 2, . . ., n2 − 1.
The symmetric off-diagonal matrices have the form

(λk)ab = δamδan + δbmδan k ↔ {m,n} (A.1)

and the antisymmetric matrices are given by

(λk)ab = i(δamδan − δbmδan), (A.2)

where a, b,m, n = 1, 2, . . ., n, m > n. The non-zero elements of the
diagonal matrices may be taken as

(λk)aa =

√
2

m+m2
a = 1, . . .,m, (A.3)

= −m
√

2
m+m2

a = m+ 1, (A.4)

where m = 1, 2, . . ., n− 1. We add the multiple of the unit matrix

λ0 =

√
2
n

11, (A.5)

such that the k = 0, 1, . . ., n2 − 1 matrices form a complete set of n× n

matrices. They satisfy

λk = λ†
k, (A.6)

Tr (λkλl) = 2δkl, (A.7)

229



230 Appendix A. SU(n)

and either λk = λTk = λ∗
k or λk = −λTk = −λ∗

k. An arbitrary matrix X

can be written as a superposition of the λ’s,

X = Xkλk, (A.8)

Xk = 1
2 Tr (Xλk). (A.9)

For instance

λkλl = Λklmλm, (A.10)

Λklm = 1
2 Tr (λkλlλm). (A.11)

Let

Λklm = dklm + ifklm, (A.12)

where dklm and fklm are real. Then

dklm = 1
4 Tr (λkλlλm + λ∗

kλ
∗
l λ

∗
m) = 1

4 Tr (λkλlλm + λTk λ
T
l λ

T
m)

= 1
4 Tr (λkλlλm + λmλlλk) = 1

4 Tr (λkλlλm + λlλkλm)

= 1
4 Tr ({λk, λl}λm), (A.13)

and similarly,

ifklm = 1
4 Tr ([λk, λl]λm). (A.14)

These representations of the d’s and f ’s and the cyclic properties of the
trace imply that dklm is totally symmetric under interchange of any of its
labels. Likewise fklm is totally antisymmetric. Hence, (A.10) and (A.12)
imply

[λk, λl] = 2ifklmλm, (A.15)

{λk, λl} = 2dklmλm. (A.16)

We note in passing that

λ0λl =

√
2
n
λl → d0lm =

√
2
n
δlm, f0lm = 0. (A.17)

A standard choice for the generators tk of the group SU(n) in the
fundamental (defining) representation is given by

tk = 1
2 λk, k = 1, 2, . . ., n2 − 1. (A.18)

In the exponential parameterization an arbitrary group element can be
written as

U = exp(iαktk), (A.19)
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where the αk are n2 − 1 real parameters. From their occurence in the
commutation relations

[tk, tl] = ifklm tm, (A.20)

the fklm are called the structure constants of the group.
Next we calculate the value C2 of the quadratic Casimir operator

tktk in the defining representation. For this we need a useful formula
that follows from expanding the matrix X

(cd)
ab ≡ 2δadδbc in terms of

(λk)ab. According to (A.8) and (A.9) we have the expansion coefficients
X
(cd)
k = Tr (X(cd)λk)/2 = δadδbc(λk)ba = (λk)cd, hence,

(λk)ab(λk)cd = 2δadδbc, (A.21)

where the summation is over k = 0, 1, . . ., n2 − 1 on the left-hand side.
It follows that

(tk)ab(tk)cd =
1
4

(λk)ab(λk)cd −
1
4

(λ0)ab(λ0)cd

=
1
2
δadδbc −

1
2n

δabδcd (A.22)

(note that k = 0 is lacking for the tk). Contraction with δbc gives

(tktk)ad =
1
2

(
n− 1

n

)
δad ≡ C2 δad, (A.23)

or

Cfund
2 =

1
2

(
n− 1

n

)
. (A.24)

For n = 2, Cfund
2 = 3

4 which is just the usual value j(j+1) for the j = 1
2

representation of SU(2).

A.2 Adjoint representation of SU(n)

The adjoint (regular) representation R is the representation carried by
the generators,

U†tkU = Rkltl. U ∈ SU(n). (A.25)

Note that Tr (U†tkU) = Tr tk = 0, so that U†tkU can indeed be written
as a linear superposition of the tk. By eq. (A.9) we have the explicit
representation in terms of the group elements

Rkl = 2 Tr (U†tkUtl). (A.26)
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We shall now calculate R in terms of the parameters αk of the exponen-
tial parameterization of U . Let

U(y) = exp(iyαptp), Rkl(y) = 2 Tr (U†(y)tkU(y)tl). (A.27)

Then
∂

∂y
Rkl(y) = −iαp 2 Tr (U†(y)[tp, tk]U(y)tl)

= αpfpkn2 Tr (U†(y)tnU(y)tl)

= iαp(Fp)knRnl, (A.28)

where

(Fp)mn = −ifpmn. (A.29)

In matrix notation (A.28) reads

∂

∂y
R(y) = iαpFpR(y), (A.30)

which differential equation is solved by

R(y) = exp(iyαpFp), (A.31)

using the boundary condition R(0) = 1. Hence,

R = exp(iαpFp), (A.32)

and we see that the Fp are the generators in the adjoint representation.
By the antisymmetry of the structure constants we have

Fp = −F ∗
p = −FT

p , (A.33)

and it follows that the matrices R are real and orthogonal,

R = R∗, RT = R−1. (A.34)

Notice that the derivation of (A.28) uses only the commutation relations
of the generators, so that we have for an arbitrary representation D(U)

D(U)−1TkD(U) = RklTl, (A.35)

where the Tk are the generators in this representation D.
Next we calculate the value of the Casimir operator in the adjoint

representation, FpFp, using the results of the previous appendix:

(FpFp)km = ifkpliflpm

= 4 Tr (tktptl) iflpm = 8 Tr (tptltk) Tr ([tm, tl]tp)

= 8(tp)ab(tltk)ba [tm, tl]dc(tp)cd. (A.36)
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With (A.22) for (tp)ab(tp)cd, this gives

(FpFp)km = 4 Tr (tltk[tm, tl]), (A.37)

and using (A.22) again and tltl = [(n2 − 1)/2n]11 gives finally

FpFp = n11, Cadj
2 = n. (A.38)

The matrix Sk(α) introduced in (4.41) can be calculated as follows.
We write D(U(α)) = D(α) and consider (4.42),

M(y) = D(yα)D(yα + yε)−1 = 1− iεkSk(α) +O(ε2) (A.39)

= eiyα
kTk e−iy(αk+εk)Tk . (A.40)

Then

∂

∂y
M(y) = D(yα)[iαkTk − i(αk + εk)Tk]D(yα + yε)−1

= −iεkD(yα)TkD(yα)−1 +O(ε2)

= −iεkR−1
kl (yα)Tl +O(ε2). (A.41)

This differential equation can be integrated with the boundary condition
M(0) = 1, using R−1(yα) = exp(−iyα), α ≡ αpFp,

M(y) = 1− iεk
(

1− e−iyα

iα

)
kl

Tl +O(ε2). (A.42)

Setting y = 1 we find Sk(α) = Skl(α)Tl with

Skl(α) =
(

1− e−iα

iα

)
kl

, α = αpFp. (A.43)

We end this appendix with an expression for TrTkTl in an arbitrary
representation D. The matrix

Ikl = Tr (TkTl) (A.44)

is invariant under transformations in the adjoint representation,

Rkk′Rll′Ik′l′ = Tr (D−1TkDD−1TlD) = Ikl. (A.45)

By Schur’s lemma, Ikl must be a multiple of the identity matrix,

Ikl = ρ δkl. (A.46)

Putting k = l and summing over k gives the relation

(n2 − 1)ρ(D) = C2(D) dimension(D). (A.47)
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For the fundamental and adjoint representations we have

ρfund = 1
2 , (A.48)

ρadj = n. (A.49)

A.3 Left and right translations in SU(n)

Let Ω and U be elements of SU(n). We define left and right transfor-
mations by

U ′(L) = ΩU, U ′(R) = UΩ, (A.50)

respectively, which may be interpreted as translations in group space,
U → U ′. In a parameterization U = U(α), Ω = Ω(ϕ), this implies
transformations of the α’s,

α′k(L) = fk(α,ϕ, L), (A.51)

and similarly for R. We shall first concentrate on the L case. For Ω near
the identity we can write,

Ω = 1 + iϕmtm + · · ·, (A.52)

α′k(L) = αk + ϕmSk
m(α,L) + · · ·, (A.53)

Sk
m(α,L) =

∂

∂ϕm
fk(α,ϕ, L)|ϕ=0. (A.54)

The Sk
m(α,L) (which are analogous to the tetrad or ‘Vierbein’ in

General Relativity) can found in terms of the Skm(α) as follows,

U ′(L) = (1 + iϕmtm + · · ·)U, (A.55)

tmU = −i ∂

∂ϕm
U|ϕ=0 = −i ∂U

∂αk

∂αk

∂ϕm |ϕ=0

= −i ∂U
∂αk

Sk
m(α,L). (A.56)

Differentiating UU† = 1 gives

∂U

∂αk
= −U ∂U†

∂αk
U, (A.57)

and using this in (A.56) we get

tmU = iU
∂U†

∂αk
U Sk

m(α,L),= Sk(α,L)U Sk
m(α,L), (A.58)

where

Sk(α,L) ≡ iU
∂U†

∂αk
(A.59)
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is the Sk introduced earlier in (4.41). The factor U can be canceled out
from the above equation,

tm = Sk(α,L)Sk
m(α,L). (A.60)

We have already shown in (4.43) that Sk is a linear superposition of the
generators, Sk(α,L) = Skn(α,L)tn, so we get

tm = tnSkn(α,L)Sk
m(α,L) (A.61)

or

δmn = Skn(α,L)Sk
m(α,L). (A.62)

Thus Sk
m(α,L) is the inverse (in the sense of matrices) of Skm(α,L).

Introducing the differential operators

Xm(L) = Sk
m(α,L)

∂

i ∂αk
(A.63)

we can rewrite (A.56) in the form

Xm(L)U = tmU. (A.64)

It follows from this equation that the Xm(L) have the commutation
relations

[Xm(L), Xn(L)] = −ifmnpXp(L). (A.65)

These differential operators may be called the generators of left transla-
tions.

For the right translations we get in similar fashion

Utm = −i ∂U
∂αk

Sk
m(α,R) = USk(α,R)Sk

m(α,R), (A.66)

Sk(α,R) ≡ −iU† ∂U
∂αk

= U†Sk(α,L)U = Skn(α,L)U†tnU

= Skp(α,L)Rpntn, (A.67)

Sk(α,R) = Skn(α,R)tn, (A.68)

Skn(α,R) = Skp(α,L)Rpn, (A.69)

δmn = Skn(α,R)Sk
m(α,R), (A.70)

Xm(R) = Sk
m(α,R)

∂

i ∂αk
, (A.71)

Xm(R)U = Utm, (A.72)

[Xm(R), Xn(R)] = +ifmnpXp(R) (A.73)
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The left and right generators commute,

[Xm(L), Xn(R)] = 0, (A.74)

which follows directly from (A.64) and (A.72), and their quadratic
Casimir operators are equal,

X2(L) = Xm(L)Xm(L), X2(R) = Xm(R)Xm(R), (A.75)

X2(R)U = Utmtm = C2U = tmtmU = X2(L)U. (A.76)

The differential operator X2 = X2(L) = X2(R) is invariant under
coordinate transformations on group space and is also known as a
Laplace–Beltrami operator.

Finally, the metric introduced in (4.91) can be expressed in terms of
the analogs of the tetrads,

gkl(α) = Skp(α,L)Slp(α,L) = Skp(α,R)Slp(α,R), (A.77)

Skp(α,L) = gkl(α)Sl
p(α,L), Skp(α,R) = gkl(α)Sl

p(α,R). (A.78)

For a parameterization that is regular near U = 1 (such as exp(iαktk)),

U = 1 + iαktk +O(α2), (A.79)

it is straightforward to derive that

Sk
p(α,L) = δkp − 1

2 fkplα
l +O(α2), (A.80)

Sk
p(α,R) = δkp + 1

2 fkplα
l +O(α2), (A.81)

gkl(α) = δkl +O(α2). (A.82)

A.4 Tensor method for SU(n)

It is sometimes useful to view the matrices U representing the fundamen-
tal representation of SU(n) as tensors. Products of U ’s then transform as
tensor products and integrals over the group reduce to invariant tensors.
It will be useful to write the matrix elements with upper and lower
indices, Uab → Ua

b . We start with the simple integral∫
dU Ua

b U
†p
q = Iapbq . (A.83)

By making the transformation of variables U → V UW †, it follows that
the right-hand side above is an invariant tensor in the following sense:

Iapbq = V a
a′W

p
p′V

†q′
q W †b′

b Ia
′p′

b′q′ . (A.84)
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Here V and W are arbitrary elements of SU(n) and similarly for their
matrix elements in the fundamental representation and their complex
conjugates V † and W †. We are using a notation in which matrix indices
of U are taken from the set a, b, c, d, . . ., while those of U† are taken
from p, q, r, s, . . .. Upper indices in the first set transform with V , upper
indices in the second set transform with W ; lower indices in the first set
transform with W †, lower indices in the second set transform with V †,
as in

Ua
b → V a

a′W
†b′
b Ua′

b′ , U†p
q →W p

p′V
†q′
q U†p′

q′ . (A.85)

This notation suffices for not-too-complicated expressions.
Returning to the above group integral, there is only one such invariant

tensor: Iapbq = cδaq δ
p
b , which is a simple product of Kronecker deltas. The

constant c can be found by contracting the left- and right-hand sides
with δpb , with the result ∫

dU Ua
b U

†p
q =

1
n
δaq δ

p
b . (A.86)

Invariant tensors have to be linear combinations of products of Kro-
necker tensors and the Levi-Civita tensors

εa1···an = + 1, even permutation of 1, . . ., n

= − 1, odd permutation of 1, . . ., n, (A.87)

and similarly for εa1···an , etc. They are invariant because

V a1
a′
1
· · ·V a1

a′
1
εa

′
1···a′

n = detV εa1···an . (A.88)

These tensors appear in∫
dU Ua1

b1
· · ·Uan

bn
=

1
n!

εa1···anεb1···bn (A.89)

=
1
n!

∑
permπ

(−1)πδa1
bπ1
· · · δan

bπn
. (A.90)

The coefficient can be checked by contraction with εa1···an
.

In writing down possible invariant tensors for group integrals we have
to keep in mind that, according to (A.85), there can be only Kronecker
deltas with one upper and one lower index, and furthermore one index
should correspond to a U and the other index to a U†, i.e. they should
be of the type δap or δpa. It is now straightforward to derive identities for
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integrals of the next level of complication:∫
dU Ua

b U
c
dU

e
f = 0, n > 3, (A.91)∫

dU Ua
b U

c
dU

†p
q U†r

s =
1

n2 − 1
(
δaq δ

c
sδ

p
b δ

r
d + δas δ

c
qδ

r
bδ

p
d

)
− 1
n(n2 − 1)

(
δas δ

c
qδ

p
b δ

r
d + δaq δ

c
sδ

r
bδ

p
d

)
, n > 2.

(A.92)

Note the symmetry under (a, b) ↔ (c, d) and (p, q) ↔ (r, s) in (A.92).
The coefficients follow, e.g. by contraction with δpd . By contracting (A.92)
with the generators (tk)sc(tl)

d
r we get an identity needed in the main text:∫

dU Ua
b U

†p
q Rkl(U) =

2
n2 − 1

(tk)aq (tl)
p
b , n > 2. (A.93)

where Rkl(U) is the adjoint representation of U (cf. (A.26)).
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Quantization in the temporal gauge

Gauge-field quantization in the temporal gauge in the continuum is often
lacking in text books. Here follows a brief outline. Consider the action
of SU(n) gauge theory,

S = −
∫

d4x
1

4g2
Gp

µνG
µνp. (B.1)

The stationary action principle leads to the equations of motion

DµG
µνp = ∂µG

µνp + fpqrG
q
µG

µνr = 0. (B.2)

where Dµ is the covariant derivative in the adjoint representation. Note
that we are using a Minkowski-space metric with signature (−1, 1, 1, 1),
e.g. G0np = −G np

0 = −Gp
0n. The Lagrangian is given by

L(G, Ġ) =
∫

d3x

(
1

2g2
Gp
0nG

p
0n −

1
4g2

Gp
mnG

p
mn

)
, (B.3)

where

Gp
0n = Ġp

n − ∂nG
p
0 + fpqrG

q
0G

r
n, (B.4)

and the canonical momenta are given by

Πp
0 ≡

δL

δĠp
0

= 0, (B.5)

Πp
n ≡

δL

δĠp
n

=
1
g2
Gp
0n. (B.6)

The fact that L is independent of Ġp
0 and consequently the canonical

momentum of Gp
0 vanishes is incompatible with the presumed canonical

Poisson brackets (Gp
0,Π

q
0)

?= δpqδ(x − y), unless we eliminate Gp
0 as

239
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variable by a choice of gauge. This is the ‘temporal gauge’

Gp
0 = 0. (B.7)

The Hamiltonian in the temporal gauge is given by

H(G,Π) =
∫

d3xΠp
mĠ

p
m − L

=
∫

d3x

(
g2

2
Πp
mΠp

m +
1

4g2
Gp

mnG
p
mn

)
. (B.8)

However, one does not want to lose the time component (ν = 0) of the
equations of motion (B.2). In canonical variables this equation reads

T p ≡ ∂mΠp
m + fpqrG

q
mΠr

m = 0, (B.9)

and we see that it does not contain a time derivative. It is a constraint
equation for every space–time point. Imposing it at one time, the ques-
tion of whether it is compatible with Hamilton’s equations arises.

Let us address this question directly in the quantized case, assuming
the canonical commutation relations

[Ĝp
m(x), Π̂q

n(y)] = δpqδ(x− y), [Ĝp
m(x), Ĝq

n(y)] = 0 = [Π̂p
m(x), Π̂q

n(y)].
(B.10)

Now it is straightforward to check that the T̂ p defined in (B.9) generate
time-independent gauge transformations, e.g. Ω̂†Ĝp

mΩ̂ = infinitesimally
gauge-transformed Ĝp

m, where Ω̂ = 1+ i
∫
d3xωp(x)T̂ p(x)+O(ω2). The

Hamiltonian is gauge invariant,

[T̂ p, Ĥ] = 0, (B.11)

and the constraints are compatible with the Heisenberg equations of
motion. A formal Hilbert-space realization of the canonical commutation
relations (B.10) is given by the coordinate representation

〈G|Ĝp
m(x)|Ψ〉 = Gp

m(x)〈G|Ψ〉, (B.12)

〈G|Π̂p
m(x)|Ψ〉 =

δ

iδGp
m(x)

〈G|Ψ〉, (B.13)

with wave functionals Ψ(G) = 〈G|Ψ〉. Unlike quantization in other
gauges, there are no negative norm states here, but physical states have
to be gauge invariant,

T̂ p(x) |Ψ〉phys = 0. (B.14)
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Such states can be formally written as a superposition of Wilson loops
and this is useful for analytic calculations at strong coupling (on the
lattice, of course, to make it well defined), but not at weak coupling.

Finally, the analogy with QED may be stressed in the notation by
writing

Ep
k =

1
g
G0kp = −gΠp

m, Bp
k =

1
2g
εklmG

p
lm, (B.15)

in terms of which

H =
∫

d3x
(
1
2E

2 + 1
2B

2
)
. (B.16)

In case other fields are present, there are additional contributions to T p

that act as generators for these fields, e.g. for QCD, ρp = ψ+λpψ/2, and
(B.9) becomes the non-Abelian version of Gauss’s law:

DkE
p
k = gρp. (B.17)
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Fermionic coherent states

In this appendix we derive the field representation for fermion opera-
tors. In the Bose case the field representation was just the coordinate
representation which is also much used in quantum mechanics. For
Fermi operators the analog leads to the so-called Grassmann variables.
This means that the Fermi operator fields ψ̂(x) will be represented by
‘numbers’ ψ(x), which have to be anticommuting. As this might not be
so familiar, we shall first describe how this works.

Consider the quantum Fermi operators satisfying the commutation
relations

{âk, âl} = 0, {â†k, â
†
l } = 0, {âk, â†l } = δkl, (C.1)

where {A,B} = AB + BA. In the following we shall consider a finite
number n of such operators, k = 1, 2, . . ., n. (In the continuum limit of a
fermionic lattice field theory n→∞.) It is sometimes convenient to use
the 2n equivalent Hermitian operators

â1k = (âk + â†k)/
√

2, â2k = (âk − â†k)/i
√

2, (C.2)

with the commutation relations

{âpk, â
q
l } = δpqδkl, p, q = 1, 2. (C.3)

The non-Hermitian operators are used more often.
It is clarifying to look at a representation in Hilbert space. For n = 1

we have the ‘no-quantum state’ |0〉 which is by definition the eigenstate
of â with eigenvalue 0, â|0〉 = 0, and the one-quantum state |1〉 obtained
from |0〉 by the application of â†, |1〉 = â†|0〉. Further application of â†

on |0〉 gives zero, since (â†)2 = 0 because of (C.1) (note that |1〉 is the
‘no-quantum state’ for â†). So a pair of Fermi operators (â, â†) can be
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represented in a simple two-dimensional Hilbert space,

|0〉 →
(

0
1

)
, |1〉 →

(
1
0

)
, â→

(
0 0
1 0

)
, â† →

(
0 1
0 0

)
. (C.4)

For n > 1 we can take a tensor product of these representations. A basis
in Hilbert space is provided by

|k1 · · · kp〉 = â†k1
· · · â†kp

|0〉, p = 1, . . ., n , (C.5)

with the properties
n∑

p=0

1
p!

∑
k1···kp

|k1 · · · kp〉〈k1 · · · kp| = 1, (C.6)

〈k1 · · · kp|l1 · · · lq〉 = δpqδ
k1···kp

l1···lq , (C.7)

where

δ
k1···kp

l1···lq =
∑
permπ

(−1)πδk1
πl1
· · · δkp

πlp
. (C.8)

An arbitrary state |ψ〉 can be written as†

|ψ〉 = ψ(â†)|0〉, (C.9)

ψ(â†) =
n∑

p=0

1
p!
ψk1···kp

â†k1
· · · â†kp

, (C.10)

where ψk1···kp is totally antisymmetric in k1 · · · kp, and we sum over
repeated indices unless indicated otherwise. An arbitrary operator Â

can be written as

Â =
∑
pq

1
p!q!

Ak1···kp, l1···lq â
†
k1
· · · â†kp

âlq · · · âl1 , (C.11)

where all creation operators are ordered to the left of all annihilation
operators. This is called the normal ordered form of Â. A familiar
example is the number operator

N̂ = â†kâk, (C.12)

which has eigenvectors |k1 · · · kp〉 with eigenvalue p. Note that
Ak1···kp, l1···lq is in general not equal to 〈k1 · · · kp|Â|l1 · · · lq〉. Note also
that the coefficients Ak1···kp, l1···lq may themselves be elements of a

† Recall that repeated indices are summed, i.e. ψk1···kp â†
k1

· · · â†
kp

=∑n
k1=1 · · ·

∑n
kp=1 ψk1···kp â†

k1
· · · â†

kp
.
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Grassmann algebra, e.g. Â = c+k âk + â†kck, with anticommuting c and
c+.

Suppose now that there are eigenstates |a〉 of the âk with eigenvalue
ak. Then it follows that the ak have to be anticommuting:

akal = −alak. (C.13)

To see this, assume

âkal = εalâk, (C.14)

with ε some number �= 0. Then

âkâl|a〉 = âkal|a〉 = εalâk|a〉 = εalak|a〉
= −âlâk|a〉 = −εakal|a〉. (C.15)

Hence (C.13) has to hold. The ak cannot be ordinary numbers. Assuming
ak|a〉 = +|a〉ak leads to

âkal|a〉 = âk|a〉al = ak|a〉al = akal|a〉
= εalâk|a〉 = εalak|a〉, (C.16)

and it follows that

ε = −1. (C.17)

So the ‘numbers’ ak have to anticommute with the fermionic operators
as well.

We also introduce independent conjugate anticommuting a+k , assume
these to anticommute with the ak and the Fermi operators, and impose
the usual rules of Hermitian conjugation,

âk
†→ â†k, ak

†→ a+k , |a〉
†→ 〈a|, 〈a|â†k = 〈a|a+k , (C.18)

akal
†→ a+l a

+
k , {a

+
k , a

+
l } = 0. (C.19)

The anticommuting a+k are on the same footing as the ak.
The ak and a+k together with the unit element 1 generate a Grassmann

algebra. An arbitrary element f of this algebra has the form

f(a+, a) = f0,0 + fk,0a
+
k + f0,lal +

1
2!
fk1k2,0a

+
k1
a+k2

+ fk,la
+
k al + · · ·+ f1···n,1···na+1 · · · a+n an · · · a1,

(C.20)

where the f ’s are complex numbers.
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We have extended Hilbert space into a vector space over the elements
of a Grassmann algebra. The ak and a+k are called Grassmann variables
and f(a+, a) is called a function of the Grassmann variables. This
nomenclature could be somewhat misleading – the generators ak and a+k
are fixed objects and it is only the indices ‘k’ and ‘+’ that vary. However,
we will also be using other generators bk, b+k , ck, . . ., and so effectively
we draw elements from a Grassmann algebra with an infinite number of
generators. It is straightforward to construct a matrix representation of
these generators, but this does not seem to be useful because the rules
above are sufficient for our derivations.

We now express the |a〉 in terms of the basis vectors (C.5). The state
|a〉 is given by

|a〉 = e−akâ
†
k |0〉. (C.21)

Indeed, since (ak)2=0,

e−akâ
†
k =

∏
k

e−akâ
†
k =

∏
k

(1− akâ
†
k), (C.22)

and using âk(1 − akâ
†
k)|0〉 = akâkâ

†
k|0〉 = ak|0〉 (no summation over k)

gives

âk|a〉 =


∏
l 	=k

(1− alâ
†
l )


 âk(1− akâ

†
k)|0〉 =


∏
l 	=k

(1− alâ
†
l )


 ak|0〉

= ak|a〉. (C.23)

Note that ak commutes with pairs of fermion objects, e.g. [ak, alâ†m] = 0.
Two states |a〉 and |b〉 have the inner product

〈a|b〉 = 〈0|(1− â1a
+
1 ) · · · (1− âna

+
n )(1− bnâ

†
n) · · · (1− b1â

†
1)|0〉

=
∏
k

(1 + a+k bk)

= ea
+b, (C.24)

where

a+b ≡ a+k bk. (C.25)

We would like a completeness relation of the form

1̂ =
∫

da+ da
|a〉〈a|
〈a|a〉 . (C.26)
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For n = 1 this relation reads

1̂ = |0〉〈0|+ â†|0〉〈0|â

=
∫

da+ da (1− a+a)(1− aâ†)|0〉〈0|(1− âa+)

=
∫

da+ da [ (1− a+a)|0〉〈0| − aâ†|0〉〈0|

+ a+|0〉〈0|â+ aa+â†|0〉〈0|â ], (C.27)

which is satisfied if we define the Berezin ‘integral’:∫
da = 0,

∫
da+ = 0,

∫
da a = 1,

∫
da+ a+ = 1, (C.28)

where da and da+ are taken anticommuting. For general n we define

da = da1 · · · dan, da+ = da+n · · · da+1 , (C.29)

∫
dak = 0,

∫
dak ak = 1,

∫
da+k = 0,

∫
da+k a+k = 1 (C.30)

(no summation over k; anticommuting da’s and da+’s). The integral
sign symbolizes Grassmannian integration, which has some similarities
to ordinary integration (and differentiation, see (C.42)). Cumbersome
checking of minus signs can be avoided by combining every dak with
da+k into commuting pairs, as in the notation

da+ da ≡
n∏

k=1

da+k dak, (C.31)

which we shall use in the following. Similar pairing will be done repeat-
edly in the following.

We check the completeness relation (C.26) for general n by verifying
that it gives the right answer for an arbitrary inner product 〈ψ|φ〉.
Multiplying (C.9) by (C.26), we get

|ψ〉 =
∫

da+ da e−a+a ψ(a+)|a〉, (C.32)

ψ(a+) = 〈a|ψ〉 =
∑
p

1
p!
ψk1···kpa

+
k1
· · · a+kp

. (C.33)
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The inner product takes the form

〈ψ|φ〉 =
∫

da+ da e−a+a ψ(a+)†φ(a+)

=
∑
pq

1
p!q!

ψ∗
k1···kp

φl1···lq

×
∫

da+ da e−a+a akp
· · · ak1a

+
l1
· · · a+lq . (C.34)

By (C.28) the integral is non-zero only if p = q and (k1, . . ., kp) =
(l1, . . ., lp) up to a permutation,∫

da+ da e−a+aakp · · · ak1a
+
k1
· · · a+kp

=
∏

l 	=k1,···,kp

∫
da+l dal e

−a+
l al

×
∏

m=k1,···,kp

∫
da+m dam ama

+
m

= 1, (C.35)

and ∫
da+ da e−a+aakp

· · · al1a+k1
· · · a+lq = δpq δ

k1···kp

l1···lq . (C.36)

Hence, (C.34) gives

〈ψ|φ〉 =
∑
p

1
p!
ψ∗
k1···kp

φk1···kp , (C.37)

which is the right answer. Therefore (C.26) is correct for general n.
The connection between Grassmannian integration and differentiation

can be seen as follows. Left and right differentiation can be defined by
looking at terms linear in a translation over fermion bk,

f(a+ b) = f(a) + bkf
L
k (a) + 1

2bkblf
L
kl(a) + · · · (C.38)

= f(a) + fRk (a)bk + 1
2f

R
kl(a)bkbl + · · ·, (C.39)

which suggest

∂

∂ak
f(a) := fLk (a), (C.40)

f(a)

←
∂

∂ak
:= fRk (a) (C.41)
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(the extension to functions of both a and a+ is obvious). It follows that
‘integration’ is left differentiation:∫

dak f(a) =
∂

∂ak
f(a). (C.42)

We shall now derive some further important properties of Grassman-
nian integration. Let f(a+, a) be an arbitrary element of the Grassmann
algebra of the form by (C.20). Then∫

da+ da f(a+, a) = f1···n,1···n. (C.43)

It follows that the integration is translation invariant,∫
da+ da f(a+ + b+, a+ b) =

∫
da+ da f(a+, a). (C.44)

Furthermore, for an arbitrary matrix M ,∫
da+ da e−a+Ma =

∫
da+ da

(−1)n

n!
(a+Ma)n

=
∫

da+ da
1
n!
Mk1l1 · · ·Mknlnal1a

+
k1
· · · alna+kn

=
1
n!
Mk1l1 · · ·Mknlnδ

k1···kn

l1···ln . (C.45)

Using the identity

εk1···kn
εl1···ln = δk1···kn

l1···ln , (C.46)

where εk1···kn
is the n-dimensional ε tensor (with ε1···n = +1) we obtain

the formula ∫
da+ da e−a+Ma = detM, (C.47)

since

detM = M1l1 · · ·Mnlnεl1···ln . (C.48)

The more general formula∫
da+ da e−a+Ma+a+b+b+a = detM eb

+M−1b. (C.49)

follows from the translation invariance (C.44) by making the translation
a+ → a+ + b+M−1, a → a + M−1a. Note that (C.49) remains well
defined if detM → 0.
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We can interpret (C.44) as a translation invariance of the fermionic
‘measure’,

da+ = d(a+ + b+), da = d(a+ b). (C.50)

A linear multiplicative transformation of variables

ak → Tklal, a+k → a+l Slk, (C.51)

has the effect

d(a+S) = (detS)−1 da+, d(Ta) = (detT )−1 da, (C.52)

i.e. ∫
da+ da f(a+S, Ta) = det(ST )

∫
da+ da f(a+, a). (C.53)

This follows easily from (C.43) and (C.48). According to (C.52), the
fermionic measure transforms inversely to the bosonic measure dx:
d(Tx) = detT dx.

We note in passing the formula∫
da e−

1
2a

TMa = ±
√

detM, (C.54)

where T denotes transposition and M is an antisymmetric matrix (in
this case only the antisymmetric part of M contributes anyway). This
formula follows from (C.47), by making the transformation of variables(

ak
a+k

)
=

1√
2

(
1 −1
1 1

)(
bk
ck

)
, (C.55)

which leads to

detM = (−1)n/2
∫

db e−
1
2a

TMa

∫
dc e

1
2 b

TMb, (C.56)

where we assumed n to be even (otherwise detM = 0). As is obvious
from the left-hand side of (C.54), the square root of the determinant
of an antisymmetric matrix is multilinear in its matrix elements. It is
called a Pfaffian.

States |ψ〉 are represented by Grassmann wavefunctions ψ(a+) de-
pending only on the a+k (cf. (C.33)). The representatives of operators Â
depend in general also on the ak:

〈a|Â|a〉 =: A(a+, a). (C.57)
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In the normal ordered form (C.11), A(a+, a) is obtained from Â by
replacing everywhere the operators by their Grassmann representative,
keeping the same order, and multiplying by ea

+a:

A(a+, a) = ea
+a
∑
pq

1
p!q!

Ak1···kp, l1···lqa
+
k1
· · · a+kp

alq · · · al1 . (C.58)

(The ea
+a just comes from the normalization factor 〈a|a〉.)

It is now straightforward to derive the following rules:

Aψ(a+) := 〈a|Â|ψ〉

=
∫

db+ db e−b+bA(a+, b)ψ(b+), (C.59)

AB(a+, a) := 〈a|ÂB̂|a〉

=
∫

db+ db e−b+bA(a+, b)B(b+, a), (C.60)

Â = A(â†, â), B̂ = B(â†), Ĉ = C(â)

⇒ BAC(a+, a) = B(a+)A(a+, a)C(a). (C.61)

A useful identity is

Â = exp
[
â†kMklâl

]
⇒ A(a+, a) = exp

[
a+k (eM )klal

]
, (C.62)

This identity can be derived with well-known differentiation/integration
tricks. Let F (t) be given by

F (t) = 〈a|etâ†Mâ|a〉. (C.63)

To compute F (1) = A(a+, a) we differentiate with respect to t and
subsequently integrate, with the initial condition F (0) = exp(a+a).
Differentiation gives

F ′(t) = 〈a|â†Mâ etâ
†Mâ|a〉 = a+k Mkl〈a|âletâ

†Mâ|a〉. (C.64)

The âl needs to be pulled trough the exponential so that we can use
âl|0〉 = al|0〉. For this we use a similar differentiation trick:

Ĝl(t) ≡ e−tâ†Mââle
tâ†Mâ,

Ĝ′
l(t) = e−tâ†Mâ[âl, â†Mâ] etâ

†Mâ = MlmĜm(t), Ĝ(0) = âl,

Ĝl(t) = (etM )lmâm,

âle
tâ†Mâ = etâ

†Mâ(etM )lmâm. (C.65)

The differential equation for F (t) now reads

F ′(t) = a+k Mkl〈a|etâ
†Mâ|a〉(etM )lmam = (a+etMa)′ F (t), (C.66)
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with the solution

F (t) = exp(a+etMa), A(a+, a) = F (1) = exp(a+eMa). (C.67)

Next we derive an important formula for the trace of a fermionic
operator. It is usually sufficient to consider only even operators, i.e.
operators containing only terms with an even number of fermionic
operators or fermionic variables. Such Â and also their representative
A(a+, a) commute with arbitrary anticommuting numbers, for example
A(a+, b)ck = +ckA(a+, b). The formula reads

Tr Â =
∫

da+ da e−a+aA(a+,−a), (C.68)

for even Â. This trace formula can be derived as follows:

Tr Â =
n∑

p=0

1
p!

∑
k1···kp

〈k1 · · · kp|Â|k1 · · · kp〉

=
∫

(da+ da) (db+ db) e−a+a−b+b

∑
p

1
p!

∑
k1···kp

〈k1 · · · kp|a〉〈a|Â|b〉〈b|k1 · · · kp〉

=
∫

(da+ da) (db+ db) e−a+a−b+b
∑
p

1
p!
akp

· · · ak1A(a+, b)b+k1
· · · b+kp

=
∫

(da+ da) (db+ db) e−a+a−b+b
∑
p

1
p!
akp

· · · ak1b
+
k1
· · · b+kp

A(a+, b)

=
∫

(da+ da) (db+ db) e−a+a−b+b eakb
+
k A(a+, b)

= (−1)n
∫

(da+ db) ea
+bA(a+, b)

=
∫

(da+ db) e−a+bA(a+,−b), (C.69)

which is the desired result. We integrated over a and b+ using (da+ da)
×(db+ db) = (−1)n(da+ db) (db+ da) and (C.49). In the last line we made
the substitution b→ −b using (C.52).

We note furthermore that omitting the minus sign from A(a+,−a) in
(C.68) leads to ∫

da+ da e−a+aA(a+, a) = Tr(−1)N̂ Â, (C.70)
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where N̂ is the fermion-number operator (C.12). This formula can be
derived from the trace formula (C.68), the operator-product rule (C.60),
with B = exp(iπN̂), and the application

B̂ = eiπâ
†â → B(a+, a) = e−a+a (C.71)

of the rule (C.62).



Appendix D

Spinor fields

In this appendix we record the basics of spinor fields. We start with the
properties of Dirac matrices in Euclidean space–time. The four Dirac
matrices γµ, µ = 1, 2, 3, 4, are 4× 4 matrices with the properties

γµγν + γνγν = 2δµν11. (D.1)

So they anticommute: γµγν = −γνγµ, µ �= ν. They can be chosen
Hermitian and unitary, γ†µ = γµ = γ−1µ . The matrix

γ5 ≡ −γ1γ2γ3γ4 (D.2)

anticommutes with the γµ, γµγ5 = −γ5γµ, and it is also Hermitian
and unitary, γ5 = γ†5, γ

2
5 = 11. A realization can be given in terms

of tensor products of the 2 × 2 Pauli matrices σk, k = 1, 2, 3, and
σ0 ≡ 112×2: γk = −σ2 ⊗ σk, γ4 = σ1 ⊗ σ0, γ5 = σ3 ⊗ σ0. Usually
one does not need a realization as almost all relations follow from the
basic anticommutation relations (D.1). Other realizations are related by
unitary transformations, which preserve the Hermiticity and unitarity
of the Dirac matrices, but not the behavior under complex conjugation
or transposition. It can be shown that, in every such realization, there is
an antisymmetric unitary 4× 4 matrix C, called the charge-conjugation
matrix, which relates γµ to its transpose:

γTµ = −C†γµC, CT = −C, C†C = 11, (D.3)

⇒ γT5 = γ∗5 = C†γ5C. (D.4)

In the above realization a possible C is given by C = σ3 ⊗ σ2. The
matrices Γ = 11, γµ, (−i/2)[γµ, γν ], iγµγ5 and γ5 form a complete set of
16 independent Hermitian 4 × 4 matrices with the properties Γ2 = 11,
Tr Γ = 0 except for Γ = 11, Tr (ΓΓ′) = 0 for Γ �= Γ′. Useful relations are
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furthermore γ5γκ = εκλµνγλγµγν , with εκλµν the completely antisym-
metric Levi-Civita tensor, ε1234 = +1, the trace of an odd number of
γµ’s is zero, Tr (γ5γµγν) = 0, and

Tr (γµγν) = 4δµν , (D.5)

Tr (γκγλγµγν) = 4(δκλδµν − δκµδλν + δκνδλµ), (D.6)

Tr (γ5γκγλγµγν) = −4εκλµν . (D.7)

More trace relations are given in most textbooks on relativistic field
theory.

The Dirac matrices are used to describe covariance under (in our case)
Euclidean rotations, which are elements of the group SO(4). A rotation
in the µ–ν plane over a small angle ωµν can be written as

Rµν = δµν + ωµν +O(ω2), ωµν = −ωνµ (D.8)

= δµν + i12ωκλ(Mκλ)µν + · · ·, (D.9)

(Mκλ)µν = −i(δκµδλν − δκνδλµ). (D.10)

The antisymmetry of ωµν ensures that Rµν is orthogonal, RκµRλµ = δκλ,
with detR = 1. The Mκλ are the generators of SO(4) in the defining
representation. The structure constants Cρσ

κλµν defined by [Mκλ,Mµν ] =
Cρσ
κλµν Mρσ are easily worked out.
The 4 × 4 spinor representation of these rotations can be written in

terms of Dirac matrices as

Λ = ei
1
2ωµνΣµν = 11 + i12ωµνΣµν + · · ·, (D.11)

Σµν = −i14 [γµ, γν ], (D.12)

where the Σµν are the generators in the spinor representation. They
satisfy the same commutation relations as the Mµν , as follows from the
basic relations (D.1). The matrices Λ are unitary,

Λ† = Λ−1, Euclid. (D.13)

They form a unitary representation up to a sign, e.g. for a rotation over
an angle 2π in the 1–2 plane, ω12 = −ω21 = 2π, and in the realization of
the Dirac matrices introduced above, Λ = exp(14ωµνγµγν) = exp(iπσ0⊗
σ3) = −11.

The representation Λ is reducible, as follows from the fact that Λ
commutes with γ5, [Λ, γ5] = 0. Introducing the projectors PR,L onto the
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eigenspaces ±1 of γ5,

PR = 1
2 (11 + γ5), PL = 1

2 (11− γ5), P 2
L = PL, P 2

R = PR,

PLPR = 0, PL + PR = 11, (D.14)

we can decompose Λ into two components ΛL and ΛR as

Λ = ΛPL + ΛPR ≡ ΛL + ΛR. (D.15)

The ΛL and ΛR are inequivalent irreducible representations (up to a sign)
of SO(4). They are essentially two-dimensional, because the subspace of
γ5 = 1 or−1 is two-dimensional, but we shall keep them as 4×4 matrices.
The Λ’s are real up to equivalence,

Λ∗ = e
1
4ωµνγ

∗
µγ

∗
ν = e

1
4ωµνγ

T
µ γT

ν = C†e
1
4ωµνγµγνC

= C†ΛC, (D.16)

Λ∗
L,R = C†ΛL,R C. (D.17)

The γµ are vector matrices in the sense that

Λ† γµ Λ = Rµνγν . (D.18)

This follows from the basic anticommutation relations between the γ’s,
as can easily be checked for infinitesimal rotations. Products γµγν · · ·
transform as tensors. Because γµPR,L = PL,Rγµ, the projected relations
have the form Λ†

R γµ ΛL = RµνγνPL, and similarly for L ↔ R. It follows
that

Rµν = 1
2 Tr (Λ†

RγµΛLγν), (D.19)

which illustrates the relation

SO(4) + SU(2)× SU(2)/Z2 (D.20)

(interpreted as 2 × 2 matrices, ΛL,R are elements of SU(2), and Z2 =
{1,−1} compensates for ΛL,R and −ΛL,R giving the same R).

We can enlarge SO(4) to O(4) by adding reflections to the set of R’s,
which have determinant −1. An important one is parity P ≡ diag(−1,
−1,−1, 1). Its spinor representation can be taken as ΛP = γ4, which has
the expected effect on the γµ:

γ4 γµ γ4 = Pµν γν , (D.21)

and it has therefore also the required effect on the generators Σµν , such
that we have a representation of O(4). Because γ4PL,Rγ4 = PR,L we
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have γ4ΛL,Rγ4 = ΛR,L. So we need both irreps L and R in order to be
able to incorporate parity transformations.

Vector fields Vµ(x) transform under SO(4) rotations as

V ′
µ(x) = RµνVν(R−1x), (R−1x)µ = Rνµxν , (D.22)

which can be understood by drawing a vector field in two dimensions on
a sheet of paper and seeing how it changes under rotations. Spinor fields
ψ(x) transform according to

ψ′
α(x) = Λαβ ψβ(R−1x), (D.23)

where α and β are matrix indices (‘Dirac indices’). The fields can be
decomposed into irreducible components as

ψL(x) = PLψ(x), ψR(x) = PRψ(x). (D.24)

It is customary to introduce a separate notation ψ̄ for fields transforming
with the inverse Λ† as

ψ̄′(x) = ψ̄(R−1x) Λ† (D.25)

(so ψ is a column vector and ψ̄ a row vector in the matrix sense). Under
parity we have

ψ′(x) = γ4ψ(Px), ψ̄′(x) = ψ̄(Px)γ4. (D.26)

In general ψ and ψ̄ are independent fields, but with the help of the
charge-conjugation matrix C we can make a ψ̄-type object out of ψ and
vice-versa:

ψ̄(c) ≡ −(C†ψ)T = ψTC†, ψ̄(c)′(x) = ψ̄(c)(R−1x)Λ−1

ψ(c) ≡ (ψ̄C)T = −Cψ̄T, ψ(c)′(x) = Λψ(c)(R−1x). (D.27)

The fields ψ̄(c) and ψ(c) are called the charge conjugates of ψ and ψ̄,
respectively.

Note the standard notation for the projected ψ̄’s,

ψ̄L = ψ̄ PR, ψ̄R = ψ̄ PL. (D.28)

This looks unnatural here but it is natural in the operator formalism
where ˆ̄ψL,R ≡ ψ̂†

L,Rγ4 = ˆ̄ψPR,L. In the path-integral formalism (in real
as well as imaginary time) one introduces independent generators ψα(x)
and ψ+α (x) of a Grassmann algebra, which are related by Hermitian
conjugation, such that ψL,R = PL,R ψ implies ψ+L,R = ψ+ PL,R, and
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then ψ̄L,R ≡ ψ+L,R γ4 also gives (D.28). The fields ψ̄L,R transform in
representations equivalent to ΛR,L:

ψ̄L → ψ̄L Λ†
R ⇒ (ψ̄LC)T → ΛR (ψ̄LC)T, (D.29)

ψ̄R → ψ̄R Λ†
L ⇒ (ψ̄RC)T → ΛL (ψ̄RC)T, (D.30)

where we used (D.17) and for clarity used the arrow notation for trans-
formations, while suppressing the space–time index x.

An O(4) invariant action which contains all the types of fields intro-
duced so far with a minimum number (>0) of derivatives is given by

S = −
∫

d4x ψ̄(m+ γµ∂µ)ψ (D.31)

= −
∫

d4x
[
m(ψ̄LψR + ψ̄RψL) + ψ̄Lγµ∂µψL + ψ̄Rγµ∂µψR

]
.

Finally, we can get corresponding formulas for Minkowski space–time
by raising indices in contractions such that there is always a contraction
between an upper and a lower index, e.g. ωµνΣµν = ωµνΣµν (we do
not make a distinction between upper and lower indices in Euclidean
space–time), and substituting x4 = x4 → ix0 = −ix0, ω4k = ω4k →
iω0k = −iω0k. This implies that ∂4 → −i∂0, ∂0 = ∂/∂x0. It is then
also expedient to use γ0 = −γ0 = −iγ4. We have to be careful with
Hermiticity properties of Λ, because after the substitution it is no longer
unitary:

Λ−1 = βΛ†β, β ≡ iγ0, Minkowski. (D.32)

In Minkowski space–time µ = 0, 1, 2, 3 and indices are raised and lowered
with the metric tensor ηµν = ηµν = diag(−1, 1, 1, 1), e.g. ∂0 = −∂0,
∂k = ∂k = ∂/∂xk.



Notes

Chapter 1

1 To avoid cluttering of brackets, we use the notation e2/4π ≡ e2/(4π), etc.
Furthermore, units � = 1, c = 1 will be used. Then dimensions are like
[mass] = [energy] = [momentum] = [(length)−1] = [(time)−1], etc.

2 As a model for mesons we have to take the spins of the quarks into
account. In a first approximation we can imagine neglecting
spin-dependent forces. Then the maximum spin is J = L + S, with L the
orbital angular momentum and S = 0, 1 the total spin of the
quark–antiquark system. The π has the qq̄ spins antiparallel, S = 0, the ρ
has parallel qq̄ spins, S = 1. In a second approximation spin-dependent
forces have to be added, which split the π and ρ masses. In picking the
right particles out of the tables of the Particle Data Group [2], we have to
choose quantum numbers corresponding to the same S but changing L.
This means that the parity and charge-conjugation parity flip signs along
a Regge trajectory. The particles on the ρ trajectory in figure 1.3 are
ρ(769), a2(1320), ρ3(1690), and a4(2040), those on the π trajectory are
π(135), π(135), b1(1235), and π2(1670). The mass mq used in this model
is an effective (‘constituent’) quark mass, mu ≈ md ≈ mρ/2 = 385 MeV,
which is much larger than the mass parameters appearing in the
Lagrangian (the so-called ‘current masses’), which are only a few MeV. In
the last chapter we shall arrive at an understanding of this in terms of
chiral-symmetry breaking.

Chapter 2

1 The formal canonical quantization of the scalar field in the continuum is
done as follows. Given the Lagrangian of the system

L(ϕ, ϕ̇) =

∫
d3x 1

2
(ϕ̇)2 − V (ϕ), (N.1)

the canonical momentum follows from varying with respect to ϕ̇,

δϕ̇L =

∫
d3x ϕ̇ δϕ̇ ⇒ π ≡ δL

δϕ̇
= ϕ̇. (N.2)

258
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Solving for ϕ̇ in terms of π, the Hamiltonian is given by the Legendre
transformation

H(ϕ, π) =

∫
d3xπϕ̇− L(ϕ, ϕ̇) =

∫
d3x 1

2
π2 + V (ϕ). (N.3)

Defining the Poisson brackets as

(A,B) =

∫
d3x

δA

δϕ(x)

δB

δπ(x)
−A ↔ B, (N.4)

the canonical (equal time) Poisson brackets are given by

(ϕ(x), π(y)) = δ(x − y), (ϕ(x), ϕ(y)) = 0 = (π(x), π(y)). (N.5)

The Lagrange (stationary-action) equations of motion are then identical
to Hamilton’s equations

ϕ̇ = (ϕ,H), π̇ = (π,H). (N.6)

The canonically quantized theory is obtained by considering the
canonical variables as operators ϕ̂ and π̂ in Hilbert space satisfying the
canonical commutation relations obtained from the correspondence
principle Poisson bracket → commutator:

[ϕ̂(x), π̂(y)] = iδ(x − y), [ϕ̂(x), ϕ̂(y)] = 0 = [π̂(x), π̂(y)]. (N.7)

Observables such as the Hamiltonian become operators (after
symmetrizing products of ϕ̂ and π̂, if necessary). The quantum equations
of motion then follow from Heisenberg’s equations

∂0ϕ̂ = i[Ĥ, ϕ], ∂0π̂ = i[Ĥ, π̂]. (N.8)

These need not, but often do, coincide with the classical equations of
motion transcribed to ϕ̂ and π̂. From (N.7) one observes that the
quantum fields are ‘operator-valued distributions’, hence products like π̂2

occuring in the formal Hamiltonian are mathematically ill-defined.

Chapter 4

1 The derivation leading to (4.72) is how I found the lattice gauge-theory
formulation in 1972 (cf. [42]). I still find it instructive how a pedestrian
approach can be brought to a good ending.

Chapter 8

1 Only Abelian chiral transformations form a group: if V and W are two
chiral transformations, then U = VW = VLWLPL + V †

LW
†
LPR has

UL = VLWL 
= U†
R = WLVL, unless VL and WL commute.

2 This can be checked here by re-installing the lattice spacing, writing
Mf = mf + 4r/a, and ψfx = a3/2ψf (x), etc. with continuum fields ψ(x),
ψ̄(x) that are smooth on the lattice scale (the emerging overall factor a3

must be dropped to get the continuum currents and divergences). Using
for convenience the two-index notation for the lattice gauge field
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(Uµx = Ux,x+µ, U†
µx−µ̂ = Ux,x−µ), we may write

Ux,x±µ̂aψg(x± µ̂a) = ψg(x) ± aDµψg(x) + 1
2
a2D2

µψg(x) + · · ·, with
Dµψg(x) = [∂µ − igGµ(x)]ψg(x) the continuum covariant derivative, this
gives the expected result.

3 The way Σ is introduced here corresponds to four staggered flavors,
Σ =

∑4
f=1〈ψ̄fψf 〉. Using the SU(2) value a

√
σ = 0.2634(14) [69] and

√
σ

= 420 MeV, the ratio (0.00863/4)1/3/0.263 = 0.491 corresponds to 206
MeV or Σ = 4(206 MeV)3. This number appears somewhat small, but we
have to keep in mind that this is for SU(2), not SU(3), and it also has to
be multiplied by the appropriate renormalization factor.

4 For staggered fermions to be sensitive to topology, quenched SU(3) gauge
couplings need to be substantially smaller than the value β = 6/g2 = 5.1
used in [143, 144]. Vink [116, 117] found that values β � 6 were needed in
order to obtain reasonable correlations between the ‘fermionic topological
charge’ and the ‘cooling charge’ (cf. figure 8.2). Note that the change
β = 5.1 → 6 corresponds to a decrease in lattice spacing by a factor of
about four.

5 Ironically, when the mechanism of canceling the anomalies out between
different fermion species was proposed [148], I doubted that it was
necessary, and this was one of the reasons (apart from a non-perturbative
formulation of non-Abelian gauge theory) why I attempted to put the
electroweak model on the lattice. On calculating the one-loop gauge-field
self-energy and the triangle diagram, I ran into the species-doubling
phenomenon, without realizing that the lattice produced the very
cancellation mechanism I had wanted to avoid.

6 At the time of writing the direct Euclidean approach is considered
suspect and a Lorentzian formulation is being pursued [176]. For an
impression of what is involved in a non-perturbative computation of
gravitational binding energy, see [177].

7 The problem here is that, in order to deal with the oscillating phase
exp(iS) in the path integral, one has to make approximations right from
the beginning. To incorporate sphalerons, kinks, etc. one needs a lattice
formulation that allows arbitrarily inhomogeneous field configurations
[178, 179].
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[23] M. Lüscher and P. Weisz, Nucl. Phys. B318 (1989) 705; Phys. Lett.

B212 (1988) 472.
[24] C. Frick, K. Jansen, J. Jersák, I. Montvay, P. Seuferling and

G. Münster, Nucl. Phys. B331 (1990) 515.
[25] J. Kuti and Y. Shen, Phys. Rev. Lett. 60 (1988) 85.
[26] L. O’Raifeartaigh, A. Wipf and H. Yoneyama, Nucl. Phys. B271

(1986) 653.
[27] A. Hasenfratz, K. Jansen, J. Jersák, H.A. Kastrup, C.B. Lang,

H. Leutwyler and T. Neuhaus, Nucl. Phys. B356 (1991) 332.
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[63] S. Capitani, M. Lüscher, R. Sommer and H. Wittig, Nucl. Phys. B544

(1999) 669.
[64] S. Necco and R. Sommer, hep-lat/0109093.
[65] G. Bali, Phys. Rep. 343 (2001) 1.
[66] P. Weisz, Nucl. Phys. (Proc. Suppl.) 47 (1996) 71, hep-lat/9511017.
[67] G. ’t Hooft, Nucl. Phys. B72 (1974) 461.
[68] B. de Wit and G. ’t Hooft, Phys. Lett. B69 (1977) 61.
[69] B. Lucini and M. Teper, JHEP 0106 (2001) 050.
[70] L.H. Karsten and J. Smit, Nucl. Phys. B183 (1981) 103.
[71] K.G. Wilson, in New Phenomena in Subnuclear Physics, ed.

A. Zichichi, Plenum, New York 1977 (Erice 1975).
[72] L. Susskind, Phys. Rev. D16 (1977) 3031; Coarse grained quantum

chromodynamics, in Weak and Electromagnetic Interactions at High
Energies, North-Holland, Amsterdam 1977 (Les Houches 1976).

[73] M.F.L. Golterman and J. Smit, Phys. Lett. B140 (1984) 392.
[74] M.F.L. Golterman and J. Smit, Nucl. Phys. B245 (1984) 64.
[75] M.F.L. Golterman and J. Smit, Nucl. Phys. B255 (1985) 328.
[76] M.F.L. Golterman, Nucl. Phys. B273 (1986) 666.
[77] M.F.L. Golterman, Nucl. Phys. B278 (1986) 417.
[78] H.S. Sharatshandra, H.J. Thun and P. Weisz, Nucl. Phys. B192

(1981) 205.
[79] C. van den Doel and J. Smit, Nucl. Phys. B228 (1983) 122.
[80] J. Smit, Nucl. Phys. B (Proc. Suppl.) 29B,C (1992) 83.
[81] P. Becher and H. Joos, Z. Phys. C15 (1982) 343. M. Göckeler and
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action, 239
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physical, 70
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transfer operator, 10–11, 13, 18–20, 26,
29

transfer-matrix
elements, 163
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transformation of variables, 207
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propagators, 180–181

variational methods, 144
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wave-function renormalization constant,
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weak coupling, 71, 139
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potential, 115–121

Weyl fermions, 161
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parameters, 188

Wilson fermions, 149, 170–171, 212,
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free, 225
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propagator, 172
transfer operator, 161–165

Wilson line, see Polyakov line
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confinement phase, 137
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plaquette, 108
rectangular, 137
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Wilson’s hopping parameter, 159, 182
Wilson’s renormalization theory, 56
Wilson–Dirac Hamiltonian, 165
Wilson–Dirac operator, 214
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