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4.1 BACKGROUND AND CONCEPT OF DIGITAL TWIN

The Fourth Industrial Revolution, which is also termed Industry 4.0, has arrived in full
swing, and it has been influencing and driving all industries, including the high-tech
manufacturing industry. It is well known that cyber-physical integration is incumbent
for establishing a reliable and highly efficient smart manufacturing (SM) system in
Industry 4.0 (Tao et al., 2019). This integration can be achieved by effectively im-
plementing digital twin technology and services (Qi et al., 2018). Digital twin is driving
SM after its rapid growth through the evolutional development of new products, ser-
vices, and technologies, which include smart sensors, artificial intelligence (AI),
internet of things (IoT), big data, cloud computing, augmented reality/virtual reality
(AR/VR) devices (Židek et al., 2020), modeling and simulation (Shao et al., 2019).

There have been different versions of definitions of digital twin by different
individuals and organizations/companies based on the application method in which
they utilized digital twins. However, it is also likely to cause misunderstanding due
to the several definitions flowing around each technology. A few examples of
famous companies’ definition of the digital twin is shown in Table 4.1. “A digital
twin is a virtual representation of an object or system that spans its lifecycle, is
updated from real-time data, and uses simulation, machine learning, and reasoning
to help decision making” [IBM]. It can also be defined as a synchronized instance of
a digital model or template representing an entity throughout its lifecycle and is
sufficient to meet the requirements of a particular use case that the digital twin is
meant to address. According to FANUC, the largest maker of industrial robots, “A
digital twin is the concept of creating a digital replica of the physical machines,
production processes or shop floor layouts in order to generate a number of com-
petitive advantages.” Moreover, “a digital twin is an integrated multiphysics,
multiscale, probabilistic simulation of an as-built vehicle or system that uses the
best available physical models, sensor updates, fleet history, etc., to mirror the life
of its corresponding flying twin” (Shafto et al., 2010).
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The digital twin can predict virtually everything that will happen in the physical
world, thus providing valuable insights for future forecasting and development.
This also allows testing and a better understanding of the product in the early stage,
thus minimizing downtime and reducing cost. Digital twin technology is the future
of designing and manufacturing a product, process, or service.

The digital twin is being used in the development of robots (Girletti et al., 2020)
and autonomous vehicles and their sensor suites to enable testing in traffic and
environment simulations. The digital twin implementation has a huge part to play in
the testing, development, and validation of autonomous vehicles. The digital twin is
also helping the healthcare industry through data by analyzing different circum-
stances of individual patients for their performance and by comparing them to the
population and finding patterns to see trends. The digital twin also helps regulate
and monitor the energy generation and capacity, especially wind turbines that can
utilize the digital twin to integrate energy data and analyze energy growth avenues.

Supercomputing is the driving force of discovery in every field, from scientific to
industrial, allowing researchers to understand the behavior of the smallest particles
and visit the furthest expanses of the universe to unlock the meaning of life with
digital twins; it is giving industries superpowers to time travel, letting them explore
an infinite number of futures and decipher the past through different lenses. With
million-X higher performance powered by accelerated computing, data center
scalability, and AI, supercomputing will unlock new opportunities for us all.

This chapter also reviews the recent development of digital twin technologies in
SM with special emphasis on smart product design, smart biomanufacturing, and
IoT for SM from the perspective of Industry 4.0. This research work is expected to

TABLE 4.1
The Definition of Digital Twin According to Seven Different Companies

Company Definition

IBM “A Digital twin is a virtual representation of an object or system that spans its
lifecycle, is updated from real-time data, and uses simulation, machine learning,
and reasoning to help decision making.”

Siemens “Based on the consistent data model across all aspects of the product life cycle,
some of the actual operations are accurately and veritably simulated.”

General Electric “Through the virtual models of devices and products, the actual complexities of
physical entities are simulated, and insights are projected into applications.”

NASA “The application of interdisciplinary modeling and simulation across the product
lifecycle.”

ANSYS “Combined outstanding simulation capabilities with powerful data analysis
capabilities, it is to help enterprises gain strategic insights.”

PTC “PLM process is extended into the next design cycle to create a closed-loop
product design process and help achieve predictive maintenance of the product.”

FANUC “A digital twin is the concept of creating a digital replica of the physical
machines, production processes or shop floor layouts in order to generate a
number of competitive advantages.”
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provide an effective guideline and broader view to the manufacturers and industry
players of the key applications of the digital twin in SM. Successful stories of the
world’s reputed companies for utilization of digital twin for SM have been added to
motivate individuals and companies who are planning to adopt digital twin tech-
nology for implementation.

4.2 DIGITAL TWIN-DRIVEN SMART PRODUCT DESIGN

The innovations being done in almost every technology depends heavily on digital
twins, which delivers virtual representation of real-world products, systems, and urban
infrastructures. For example, the product design of an electric motor can benefit from
its digital twin, which can unveil its physical form, and also analyze its mechanical
(rotation of the shaft, thermal conductivity) as well as electrical functions (current,
voltage, sensors data). The digital twin greatly influences development, production,
and operation by evolving through data flow, feedback via user experience, and
incoming new data. A product’s behavior can be simulated and analyzed well before
its physical replica has been manufactured during product development. Three-
dimensional printing for product design also relies almost entirely on digital twins. In a
recent study performed by Siemens for the mixing of gases in micro-mixers, insights
from the simulation of form and flow behavior were combined with generative al-
gorithms. This helped Siemens to develop a unique micro-channel shape and con-
figuration, which increased the mixing efficiency significantly. Digital twins can even
help to simulate entire factories, including individual machines and their processes. As
an example, let’s consider the case of milling robots which experience large forces
during the milling operation, leading to inaccurate movements. This problem can be
solved by estimating these forces that push the robot away and compensating them in
real time, keeping the robot in its path. With regards to operations, sudden disruptions
caused due to sensor data of any real point in real-time can be compared to the sim-
ulation of that point and reliably predict the point parallel to operations using a digital
twin. Digital twin opens new ways for development, production, and operations.

4.2.1 CASE STUDY: SIEMENS

In the current car manufacturing industries, the development of cars is mostly done
in a virtual environment. Siemens NX CAD is being used for successful product
designing of vehicles. Automotive designers make their first model with clay to
start with the design process, which is then converted into actual products through
NX by automotive engineers. The digital twin of the car is created in the digital
Enterprise solution portfolio. This enables the optimization of the product design
before it’s finally built.

Similarly, with the growth of the electric vehicle and energy storage industry, the
demand for lithium-ion batteries is still proliferating, so battery manufacturers are
focusing on optimizing and improving their processes to maintain the continuity of
business in the market. Siemens provides proven automation and digitization
solutions across multiple industries to help grow and sustain these businesses.
Siemens digital twin technology facilitates manufacturing from automation and
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drives technology to production planning and design software; Siemens can help to
optimize every step of the battery manufacturing operation.

By establishing more flexible, transparent, and efficient processes in all areas of
the cell, module, and pack production, one can ensure continued success in battery
production and accelerate time to market, as shown in Figure 4.1.

4.2.1.1 Digital Twin in the Battery Industry
Siemens is the best partner to support industry-specific solutions for companies along
the entire value chain, providing digital enterprise solutions optimized for battery
manufacturing workflows using digital twins as described in its industry-specific
solutions on (https://www.industry.siemens.co.kr/product/list.php?code=9&cat_flag=I).

Digital twins show an optimal virtual model of a product or production plant,
intuitively show development throughout the entire lifecycle, and easily show
operators to predict behavior, optimize performance, and gain insights from pre-
vious design and production experiences.

Siemens’s comprehensive digital twin concept consists of three components, as
shown in Figure 4.2: a digital twin of products, a digital twin of production, and a
digital twin of performance of products/production. Siemens is the only company
that can make an offer from a holistic point of view, as it provides sufficient
industry-specific expertise and optimized tools.

4.2.1.2 Real-World Battery Performance Improvement Through
Virtualization

A product’s digital twin integrates all technology domain information into one data
model. This allows simulation, testing, and battery performance optimization within
the virtual environment to identify and correct possible problems or defects before

+ –

Flexible produc!on for new
formats and technologies

Growing Demand for Quality
Improvements –Need to

Reduce Ba"ery Costs

Reduc!on of !me for new
plant and line expansion

Reduc!on of raw materials and
energy-op!mized produc!on

Development of stable and
reusable mass produc!on

Ba"ery Recycling –
Building a Pla#orm to
Increase Sustainability

FIGURE 4.1 Battery production process (adapted from Siemens Korea Digital Industries
(siemens.com Global website)).
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actual battery mass production. These continuous data can be used as basic data in
other fields of work, such as preliminary research, design, and instrumentation.

4.2.1.3 Optimization of the Entire Plant
As battery products are virtually designed and tested before production, production
lines can also be planned, simulated, and optimized in a virtual environment with a
digital twin implementation.

4.2.1.4 Data-Driven Optimization of Production and Product Performance
Currently, batteries and production processes generate vast amounts of data for
product versatility and efficiency. Digital twins allow for continuous improvement
by embracing and analyzing this production data in a virtual environment which
gives enough data to make decisions in the real world.

In the battery production environment, these strengths enable operators to
improve their products and create new business opportunities through accurate
analysis of production data. Siemens’ software cover the entire production process,
from graphical modeling to virtual commissioning and line monitoring. Siemens
utilized the digital twin to develop a world record-setting of an electric aircraft
motor that not only weighs 50 kilograms but is also five times more powerful than
comparable electric motors.

4.3 DIGITAL TWIN FOR SMART BIOMANUFACTURING

Due to the ineffective methods being adopted, developing a drug may cost a billion
dollars and an average of ten years. Cell cultures in Petri dishes do not resemble
organs or human diseases, and animal experiments are often unsuitable because an-
imals are not human beings. Therefore, drug development is costly and takes
much time. That is also true for toxicity tests for cosmetics, chemicals, and food
products. Organ-on-a-chip (OOAC) technology has recently been introduced into the
healthcare and personalized medicine industry to revolutionize biopharma research,
development, and manufacturing (Van Den Berg et al., 2019). OOAC technology has

FIGURE 4.2 Components of Siemens’ Digital twin concept (adapted from Siemens Korea
Digital Industries (siemens.com Global website)).
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the potential to use artificial intelligence and machine learning to reduce drug dis-
covery times and costs and the potential to replace animal testing (Li et al., 2022) by
incorporating bioreactors, and tissue culture (Tay et al., 2016) technologies. OOAC is
a physical model of an organ or organs replicated on a device called a “chip.” The chip
involves growing tiny versions of organs from living cells in cavities and channels. In
these devices, we can make three-dimensional cell cultures of human cells in an
environment that closely mimics what is actually present in the human body. The
living cells are provided nutrients and oxygen via cellular media and extracellular
matrix circulated through microchannels. The whole system is known as the
Microphysiological system (Wang et al., 2018; Ahadian et al., 2018; Wang et al.,
2016; Skardal et al., 2016; Zhang et al., 2017), which consists of the OOAC device,
pumping system (Chen et al., 2019; Yang et al., 2019; Li et al., 2019; Lohasz et al.,
2019; Edington et al., 2018; Satoh et al., 2018), tubing, nutrients’ reservoirs, oxygen
cylinder, sensors, and process monitoring equipment (Zhang et al., 2018). Some re-
searchers have tried to integrate multiple OOAC devices to form a micro-
multiphysiological system termed as body-on-a-Chip (Sung et al., 2013) that repli-
cates the dynamics of the whole-body response. Medicine/drugs can be tested on
individual OOAC devices to understand the response of medicine to the cells, and the
same phenomenon can be translated to have a closer look at the whole body’s
response to the introduction of a particular medicine. Through this technology, drug
testing is being done for the most common diseases, i.e., diabetes, kidney (Pietilä
et al., 2014; Jang et al., 2013), lung (Huh et al., 2012; Geraili et al., 2018; Baker et al.,
2011; Huh et al., 2013), liver (Gröger et al., 2018; Lee et al., 2018), and cardiovas-
cular (Ahn et al., 2018; Parker et al., 2019) diseases. Digital twins are digital replicas
of an object, process (Silfvergren et al., 2021), or system (Sundqvist et al., 2022) – and
in this case: a human patient. In the future, a digital copy of every human body – a
digital twin – may be used to help humans live healthy life. To achieve this goal,
behavioral scientists, psychologists, doctors, and software developers, are working
together to develop mathematical models (Herrgårdh et al., 2021a, 2021b, Herrgårdh
et al., 2022) as tools for better health (Sundqvist 2022). In recent studies, various
biosensors have been implemented in the OOAC systems for online monitoring of
vital parameters like pH (Mousavi et al., 2016), oxygen (Brennan et al., 2014), CO2,
Virtual reality (VR) (TEER) (Maoz et al., 2017; van der Helm et al., 2019), and
various other biomarkers. A recent research work demonstrates the use of albumin
immunosensors to monitor the microphysiological system of liver-on-a-chip (Asif
et al., 2021), as shown in Figure 4.3. In another work, real-time monitoring of liver
fibrosis was done in a microphysiological system via embedded sensors (Farooqi
et al., 2021). The actual image of the liver fibrosis-on-chip and the components
associated with it have been shown in Figure 4.4. The same group developed a mi-
crofluidic chip platform enclosure with a microfluidic chip connected to a micropump
for media circulation and to an optical pH sensor for pH measurements (Ali et al.,
2020). A portable fluorescence microscope is also installed right above the micro-
fluidic organ chip for real-time visual monitoring. Other components include bubble
remover, heater, fan, and control stages, as shown in Figure 4.5.

Using digital twins technology, the OOAC manufacturing industry can save a lot
of time and resources by making digital twins of individual organs and
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FIGURE 4.3 (a) Schematic of microphysiological system of liver-on-a-chip with albumin
immunosensor; (b) actual image of the microphysiological system (adapted from Asif
et al., 2021).

FIGURE 4.4 (a) The liver fibrosis-on-chip schematic; (b) The actual image of the liver
fibrosis-on-chip device and associated components (adapted from Farooqi et al., 2021).
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multi-organ platforms. Microfluidic simulations of the tubing, pumps, reservoirs, and
cavities can help in the SM of the physical structure of the OOAC platform. Cell
growth-rate simulations, as well as soft sensors for monitoring vital parameters, can
help in the SM of the sensors and cell-culture layers within the channels and cavities.

Biomicrofluidic researchers at the Delft University of Technology have proposed
a flow control microfluidic device for next-generation OOAC experiments, as shown
in Figure 4.6 (Özkayar et al., 2022). This configuration is suitable for kidney-on-a-chip

FIGURE 4.5 Actual platform image of the experimental setup for the online monitoring of
ROS in breast cancer cell line MCF-7 (adapted from Ali et al., 2020).

FIGURE 4.6 A microfluidic platform architecture of push-pull mechanism designed for
double channel and double chamber OOAC device (adapted from Özkayar et al., 2022).
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and uses a modular configuration of a push-pull mechanism. In addition, the flow of
fluids from different reservoirs is controlled by the microfluidic multiplexer added
to the second channel. Two layers of fluidic and electronics are connected to the
microfluidic components via interconnections. The OOAC hub window is used for
inverse and upright microscopy. The desired configurations can be achieved when
needed by permitting the exchange of fluidic components in the top layer (out of
plane).

4.4 DIGITAL TWINS AND THE INTERNET OF THINGS FOR SM

Digital twin for IoT is the way of virtually representing the elements and the
dynamics of IoT operation and its working throughout its lifecycle. The ways in
which the design, build, and operations of an IoT device are constructed are heavily
influenced by the digital twin. In the design phase, different aspects of engineering
work together synergistically to collaborate into a single facility of operational-
oriented design. Particularly, the physical components, along with the physical bill
of materials (BOM), collaborate with the virtual components such as software,
sensors, chips, etc. This collaboration brings out the highest quality product by
virtue of the digital twin. In the build phase, the digital twin helps in better un-
derstanding the influence of the product’s tolerances on the devices that make the
product. Moreover, its also about the improvement of the manufacturing process
through the correction of tolerances and outcomes that are desired in the product.

Lastly, the actual operation of the product is facilitated by the digital twin.
During the product’s life cycle, the products are significantly influenced by their
environmental changes, and they go through various physical and virtual changes
over time, so the digital twins need to adjust to those changes with the products as
they age. This feedback through the digital twin helps facilitate operations. It also
helps to improve the design and manufacturing through the lessons that are learned
and the recalibration that takes place along the way.

4.4.1 CASE STUDY: COVESTRO

As project manager of Covestro’s digital ChemLab, Lennart oversees supporting
R&D labs with digital methods and new technologies. He aims to boost R&D
innovative potential by allowing researchers to collect more results and insights
more quickly from fewer experiments. Ultimately this approach is expected to
shorten product development timelines.

To make a significant impact, Lennart knew that he had to focus on reducing
the time researchers spend on data collection while simultaneously increasing
data quality at the point of experimentation. He decided to leverage recent adv-
ances in speech recognition technologies to enable hands-free documentation at
the bench.

LabTwin (https://www.labtwin.com/) offers the opportunity to tackle several
challenges with a single digital solution. By providing hands-free documentation to
lab workers, LabTwin enabled both an increase in the quantity of data recorded
without slowing down experiments and a decrease in the risk of contamination by
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avoiding the need to go back and forth between lab benches and offices. By offering
researchers a method of contemporaneous data capture and data access, LabTwin
could also reduce the number of manual data entry errors and prevent data loss, thus
improving data quality. Finally, as the collected data is automatically digitized,
scientists no longer need to retype their notes at the end of each experiment, saving
significant time and ensuring original data records are truly contemporaneous.

As a first step, Covestro decided to roll out LabTwin for two very different use
cases leveraging the various capabilities of the digital lab assistant. The first use case
was to guide the preparation of polymer mixtures with the IoT integration. The second
use case was to support documentation of time-sensitive foaming processes with
hands-free data capture.

4.4.1.1 Use Case 1: Polymer Formulation
Scientists prepare the polymer foam mixture by following a recipe that lists the
different components to be weighed and mixed.

4.4.1.1.1 Challenges
Data Quality and Integrity: A tolerance margin allows the actual reagent weight to
differ from the recipe weight. These variations need to be recorded as they can
significantly impact the result.

4.4.1.1.2 Contamination Risk
Using printed protocols for polymer recipes or going back and forth to the office from
the lab to access data is a potential risk of contamination with hazardous chemicals.

4.4.1.1.3 LabTwin Solution
As a digital lab assistant, LabTwin can verbally guide Covestro scientists through
formulation steps and streamline their documentation by harnessing IoT integration.
Captured data is automatically structured and enriched with metadata, increasing
data quality and integrity. In addition, Covestro scientists leverage this human-
machine interaction to maintain the recipe ratio with integrated recalculations,
saving time and reducing potential waste of components. Enabling digital data
access and capture can strongly reduce the need for paper in the lab, and at the end
of the day, data can be exported or systematically uploaded to the data repository,
cutting down extra data processing. The workflow of Covestro’s digitalization with
LabTwin for polymer formulation is shown in Figure 4.7.

4.4.1.2 Use Case 2: Foam Characterization
Once the polymer reagents are mixed, the foam starts forming. Scientists must
capture the different stages of foam formation, as this information will be used for
product development. Researchers must also record observations and measurements
from various characterization tests.

4.4.1.2.1 Challenges
Data Quality and Integrity: The foaming process is very fast; therefore, scientists
must handle the experiment while mentally storing timings and observations,
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which would be written down later. Such multitasking increases the risk of errors
and data loss.

4.4.1.2.2 Double Documentation
Scientists record their observations and measurements on paper at the point of
experimentation and then type the data into computers after the experiment.

4.4.1.2.3 LabTwin Solution
With hands-free documentation, Covestro scientists can keep their eyes on the
foaming process while voicing their observations, which LabTwin automatically
digitizes and tags with timestamps. Researchers can easily augment the digital data
with pictures.

Using LabTwin to support documentation of foaming workflow can significantly
improve data quality and integrity. Covestro scientists capture more parameters with
this feature, reduce the need to use paper in the lab, and will significantly decrease
time wasted on retyping data. The workflow of how Covestro streamlines foaming
documentation with LabTwin is shown in Figure 4.8.

4.4.2 CASE STUDY: DIGITAL TWIN SOLUTION IN MACHINING OPERATION BY

FANUC

FANUC, a world leader in robotics and automation solutions, has developed
technology for implementing digital twin technology in machining operations. This

FIGURE 4.7 Covestro aims to increase R&D data quantity and quality, reduce paper as
well as gain time using LabTwin’s solution.
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has been achieved using the newly released FANUC software, SURFACE ESTI-
MATION, on Victor Taichung’s 5-axis machining center Vcenter-AX630. The
objective of the application was to foresee the actual cutting texture on part surface
by digital twin. The operation was affected by several factors such as (a) the
mismatch between the tool paths generated by CAM and the actual cutting path; (b)
unsatisfactory parameter settings of CNC control; (c) inefficient servo system
response; and (d) thermal displacement, to name a few. The new software from
FANUC has features to improve the shortcomings of the existing system. The
software includes the machine servo parameters into the system to match the actual
cutting operation. This gives the user the option to run the program on the real part
only if the simulated result is satisfactory.

4.5 APPLICATION FRAMEWORK FOR PRODUCT/PROCESS DESIGN
USING DIGITAL TWINS

4.5.1 FUTURE TRENDS

The digital twin market was valued at USD 10.27 billion in 2021, and it is expected
to reach a value of USD 61.45 billion by 2027, registering a CAGR of 34.48% over
the forecast period, 2022–2027. The increase in adoption of 3D printing, sensors,
and AI in the SM industries, i.e., product designing, healthcare, IoT, etc., is going to
cause an increase in demand for digital twins technology and services. It is expected
that simulation technologies for digital twins in smart manufacturing could grow at
a rate of 7.1% to USD 2.6 billion by 2030 (Global Digital Twin Market, By Type,
By Technology, By Application, By End User, By Region, Competition, Forecast &
Opportunities, 2017–2027F).

Prepare material and 
components

Prepare polymer and 
reagent mixtures

Discard and restart or 
manual recalcula!ons

Pass on the two mixtures 
with corresponding recipe

Scale up prepara!on with 
recalculated values

If weigh-in over 
devia!on 
threshold

FIGURE 4.8 How Covestro digitalizes its polymer formulation workflow with LabTwin.
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4.5.2 APPLICATION FRAMEWORK

If one has the capability to utilize digital twin technology, it certainly has enormous
benefits for the manufacturer because it can provide value in multiple dimensions. It
can improve the safety of operations because the digital twin manufacturer can first
simulate a lot of scenarios, even before putting the physical product in, to make sure
that the product actually works as it is designed. Even after the product is being
used, the physical product is being manufactured and delivered to the customer, and
they can constantly get real-time information, and a lot of times, can predict the
process on certain days. Any deviation in the product performance can be predicted,
and an early warning system can be developed, which can reduce uncertainty and
help improve safety.

Considering the field of study, i.e., digital twin in SM in full development, more
research studies are required to contribute. To have a broader view of the digital
twin in SM, researchers and industrialists from different countries should discuss
collaborations on international forums. One such event was organized by the
University of Applied Sciences and Arts of Switzerland, i.e., CMS 2022 55th CIRP
International Conference on Manufacturing Systems.

In smart biomanufacturing, Multi OOACs will be developed through digital twins,
which relate to channels through which fluids can be pumped, and therefore medicines
can be tested. Initially, only vital organ chips will be developed for the lung, liver,
kidney, and heart. However, in the future, it will be possible to make these chips for all
kinds of organs of the human body. This will be an important development in smart
biomanufacturing because this standardized and modular approach is ideal for work-
flows in the pharmaceutical, food, and cosmetics industries. It requires a dedicated
and collaborative team consisting of technical people all the way up to biomedical
researchers. There is also a great need for the support of industrial partners, from
makers to applicators. The digital twin-enabled smart manufacturing of multi-OOAC
will lead to better, cheaper, and more effective drug development, and this also applies

FIGURE 4.9 Overview of the application framework for Digital Twin for Smart Manufacturing.
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to toxicity testing in the cosmetics and food industries. It is also expected to boost the
world economy and open up a new market in OOAC. The overall application frame-
work for digital twins in smart manufacturing is given in Figure 4.9.
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