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1. Introduction  
The literature on the determinants of Covid-19 contagion is evidently rather recent and does 

not always draw generally accepted conclusions in identifying the factors that may explain the 
differences between territorial areas in the severity of Covid-19 impact (Moosa and Khatatbeh, 
2021). The rate of contagion is a phenomenon that depends on many and varied factors that are 
not easy to interpret and must be analysed considering their spatial component (Cutrini and 
Salvati, 2021). 

To this end, convergence models were used, in which the initial level and growth of observed 
infections in a certain province were related to the level of infections and the relative growth rate 
of all other provinces. This model was implemented for all three waves that occurred in Italy from 
March 2020 to February 2021. The proposed convergence model was constructed by also 
including environmental (Azuma et al, 2020; Copat et al, 2020) and demographic (Goumenou et 
al, 2020) factors as controlling elements of a conditional β-convergence (Truglia, 2021). 

In the literature, spatial regression models have been widely used in many epidemiological 
studies (Guo, G. et al., 2020; Liu, X. et al., 2020; Zhao, et al., 2020). To date, however, only a few 
studies are available that have investigated the close association between sociodemographic and 
environmental determinants and the spatial convergence of Covid-19 infection incidence. 
Therefore, this study aims to address the mentioned research gap.  

This work further contributes to the study and understanding of the impact of demographic 
and environmental parameters on the spread of Covid-19 cases by adopting a spatial regression 
approach. 

The work is divided into four sections. The first describes the construction of the panel of data 
used and their recoding into indicators and indices. The second part circumscribes the spatial 
approach in the implementation of the conditional β-convergence model to investigate any 
convergence processes observed in the transmission of contagion between the spatial areal units 
under study. The third part presents the results obtained. Finally, the fourth part proposes a 
discussion of the findings and introduces some final considerations and possible implications for 
future studies.  

2. Data 

In the following analysis, a balanced panel of data referring to the 107 Italian provinces was 
used. The data on contagion were retrieved and processed from the Civil Protection repository in 
the 'data-provinces' section. From these, for each of the 107 Italian provinces, the contagion rates 
for the three waves and their respective durations and distances (in days) were calculated. The 
spatial context data were collected from the ISTAT data warehouse and the ISPRA environmental 
data yearbook.  

As for the infection rate, this was measured as the simple ratio of the total number of 
registered cases of Covid-19 infection at period t - where t represents the first (I), second (II) and 
third wave (III) respectively - to a standard reference population of 100,000 individuals. 

The other indices relating to contagion (duration and distance), calculated for each province, 
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do not require statistical formalisation, and represent, the first, the number of days elapsed 
between the beginning of one wave and its end, and the second, the number of days between the 
end of one wave and the beginning of the next. On the other hand, the indices that are assigned the 
role of explanatory variables and that will be the controlling factors for the convergence of 
infection are: 

 
- The old-age index (old_index): defined as the simple ratio of the population aged 65 and over 

to the total population. 
- The average temperature (temp_av): defined as the average annual temperature (expressed in 

C°). 
- The density: defined as the simple ratio between the total population and the land area 

(expressed in number of inhabitants per square kilometre). 
- Pollution (pollution_av): defined as the total daily average observed values of particulate 

matter pm10 and pm2.5 and nitrogen dioxide (NO2), expressed in µg/m3.  
 
As these control variables have different units of measurement, they are standardised for use 

in the convergence model. 

3. Method 

There are various procedures for analysing territorial convergence. In the present study, the 
most well-known convergence concepts were used to which reference is made in the bibliography 
(Barro e Sala-I-Martin, 1992; Mankiw, 1992; Arbia, 2005), including β-convergence.  In short, in 
the literature, this approach originates directly from the neoclassical theory of economic growth 
theorised by Solow-Swan (Solow et Swan, 1956). This type of convergence describes an 
economic environment in which a poorer country develops faster than a richer country, in terms 
of per capita income level. Unlike formal models that require a measure of physical and/or human 
capital, greater freedom is granted by informal models that are not required to be traceable to the 
variables brought into play by growth accounting (Alexiadis, 2010). The conditional β-
convergence model can therefore be rewritten as follows (equation 1): 

 
ln(Yi,t/Yi,0) = βo + β1ln(Yi,0) + Ɣ Zi + εi (1) 

 
Where, 
i, and t denote respectively, the spatial unit and the time reference in which the     
observation Y is measured 
β0 is the intercept 
Z is the matrix of the n control variables that are assumed to influence the growth rate 
εi is the error term at zero mean and variance σ2 
ln(Yi,t/Yi,0) is the natural logarithm of the growth rate 
ln(Yi,0) is the natural logarithm of the initial level 

 
The β1 coefficient, if statistically significant and of negative sign, indicates the existence of the 

β-convergence hypothesis. 
The β-convergence model thus captures whether territorial gaps, in relation to a specific 

aspect, increase or decrease over a certain time span (in our study the beginning and end of the 
three successive waves). This research adopts a method that differs from the conventional 
convergence strategy by instead focusing on the spatial convergence aspect. In fact, an interesting 
issue to consider in the territorial convergence analysis is the recognised need to introduce 
elements that consider functional relationships between provinces. For these reasons, it is 
therefore appropriate to make use of specific procedures capable of considering the structure of 
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connections between the units of analysis (Guliyev, 2020). Translated into other terms, the β-
convergence model can be transformed in such a way that it considers the spatial proximity of the 
N observations by means of a proximity matrix W consisting of elements wij that take on value 1 
or 0, respectively in the case that units i and j are contiguous or non-contiguous. 

The spatial methods that can be constructed from this common basis are many and varied 
depending on the spatial effects to be investigated. Below we propose the conditional β-
convergence model (in matrix form) in the case of spatial autoregressive lag of the dependent 
variable (SAR) (equation 2). 

 
                                y = ρWy + βX + Ɣ ZZ  + εε (2) 

 
Where, 
y is the matrix containing the natural logarithm of the growth rate at time t and province i 
X is the matrix containing the natural logarithm of the initial level 
Z is the matrix of the n control variables that are assumed to influence the growth rate 
ρ (Rho) denotes the spatial autoregressive coefficient 
W represents the contiguity matrix of the provinces 
β and Ɣ are the coefficients to be estimated 
ε is the error term with zero mean and variance σ2. 

 
It was decided to use a W contiguity matrix of the queen contiguity type. In this typology, 

provinces that share at least one side or vertex are considered contiguous (LeSage, 1998). 

4. Results 

Table 1 show the results obtained through the estimation of the spatial autoregressive SAR 
model implemented for the conditional β-convergence model.  

 
Table 1. Results conditional β-convergence (SAR): (a) first wave; (b) second wave; (c) third wave 
  Estimate Std. Error z value Pr (>|z|) 
(a) Β0 -3.747 0.414 -9.048 < 2.2e-16 *** 

β1 -0.489 0.042 -11.429 < 2.2e-16 *** 
old_index -0.013 0.047 -0.282 0.777 
temp_av 0.027 0.047 0.585 0.558 
density 0.126 0.049 2.550 0.010 * 
pollution_av 0.212 0.057 3.692 2.22e-04 *** 
gg_I 0.011 0.004 2.347 0.018 * 

(b) Β0 -0.327 0.062 -5.217 1.811e-07***  
β1 -0.109 0.010 -10.545 < 2.2e-16 *** 
old_index -0.021 0.010 -2.093 0.036 * 
temp_av 0.002 0.010 0.252 0.800 
density 0.041 0.011 3.713 2e-04 *** 
pollution_av 0.021 0.013 1.649 0.099 . 
gg_II 0.001 0.000 4.253 2.1e-05 *** 

(c) Β0 -0.581 0.092 -6.307 2.841e-10 *** 
β1 -0.093 0.022 -4.077 4.562e-05 *** 
old_index -0.016 0.016 -0.998 0.318 
temp_av 0.029 0.017 1.745 0.080 . 
density 0.002 0.019 0.150 0.880 
pollution_av 0.043 0.020 2.158 0.030 * 
gg_III 0.003 0.000 4.288 1.8e-05 *** 

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 < '.' < 0.1 < '' < 1 
Source: author's elaboration of collected data 
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The regression results show that the coefficient of the initial level of the infection rate β1 is 

less than 0 and significant for all three waves analysed in this study. This implies the existence of 
the convergence hypothesis (Baumol, 1986).  

Since the spatial regression parameters, unlike with the OLS method, were estimated using the 
maximum likelihood (ML) method, this does not allow the R2 index to be used to assess the 
goodness of fit of the model. In this case, therefore, the goodness of fit of the model is assessed by 
comparing the AIC statistics (Akaike, 1974) calculated for the OLS and SAR models (Table 2). 

 
Table 2. Goodness of fit conditional β-convergence (SAR): (a) first wave; (b) second wave; (c) third 
wave 
  Estimate p-value 
(a) Rho (ρ) 0.412 - 
 LR test value 27.52 (1,555e-07) 
 Wald statistic 35.288 2.843e-09 
 AIC 149.06 (OLS: 174.58) - 
 LM test for residual autocorrelation 0.019 0.888 
(b) Rho (ρ) 0.291 - 
 LR test value 12.436 0.0004 
 Wald statistic 13.497 0.0002 
 AIC -180.52 (OLS: -

170.09) - 

 LM test for residual autocorrelation 1.101 0.294 
(c) Rho (ρ) 0.263 - 
 LR test value 5.254 0.021 
 Wald statistic 6.042 0.014 
 AIC -72.22 (OLS: -

68.973) - 

 LM test for residual autocorrelation 0.272 0.601 
Source: author's elaboration of collected data 
 

The AIC calculated for SAR is always lower than the same measured for OLS. The Rho (ρ) is 
statistically significant as is its relationship to the dependent variable (Wald test). Therefore, the 
spatial model best fits the data and most accurately interprets the observed convergence process. 

5. Discussion 

The results obtained are robust and consistent with the established body of literature in 
previous medical studies suggesting that poor air quality creates chronic exposure to respiratory 
disease. On the other hand, population density, the old-age index and average temperature were 
not always found to be conditional elements of the observed convergence processes, varying in 
significance depending on the wave taken as the period of observation, and thus partly confirming 
what emerged from the reference literature. As far as the spatial delays are concerned, the 
spillover effects recorded by the parameter ρ (Rho) for all three waves are significant and are 
respectively equal to 0.41 for the first wave, 0.29 for the second, and 0.26 for the third. According 
to these results, therefore, it is possible to state that increases and decreases in the average growth 
rate in the i-th province can also be attributed to changes in growth levels in its neighbouring 
provinces. According to the estimated SAR model, spillover effects calculated for population 
density (0.12) and pollution (0.21) for the first wave are also significant. It would thus appear that 
provinces with a high population density over the available surface area and above-average 
presence of substantial air pollutants are directly responsible for the growth of contagions in 
neighbouring areas. Density retains its spatial influence even during the second wave by 
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significantly reducing its magnitude (0.04). Pollution (0.02) becomes slightly significant (p-value 
just under 10%) and decreases its influence in exerting an effect on the growth of contagions in 
neighbouring provinces. During the second wave there emerges a restraining effect due to the old 
index (old_index = -0.02) according to which in provinces in which there is a high presence of 
individuals aged 65 years or over, relative to the resident population, there is a negative 
relationship with the growth rate of contagions in the contiguous provinces. Finally, as regards the 
third wave, a weak (p-value of just under 10%) positive spatial relationship emerges between the 
observed temperature (0.02) and the level of contagions in the neighbouring areas. Confirmed, on 
the other hand, is the significance of pollution (0.04) in producing an increase in contagions in 
provinces sharing a border with a province characterised by high levels of this variable. Finally, 
all three waves share the significance of the observed durations, respectively 0.01 the first, 0.001 
the second and 0.003 the third wave, showing, however, a weak spatial influence on the average 
rate of contagion growth. 

Although consistent with the initially hypothesised framework, however, the results 
obtained have several limitations and implications for future research. Firstly, some critical 
elements should be noted in the nature of the dependent variable used. These reflections arise 
from the fact that it is not possible to know the true population that has been exposed to the 
virus. A further investigation could examine the actual number of people tested. These data 
are currently not available at the provincial level, and those at the regional level suffer from 
multiple counting due to repeated testing of positive cases. Secondly, there are some 
provinces that have reallocated some positive cases to other provinces due to health facility 
capacity or registration errors. To address these concerns, the paper proposes an analysis on 
aggregated wave-level data, but possible biases may still exist. Future studies could 
implement estimation control procedures, potentially including some dummy variables and 
retesting the model. A further possible source of bias may be introduced by potential outliers. 
Results could potentially be driven by a few provinces showing several new cases that are 
exceptionally far from the average. In addition to all this, it must be remembered that the 
Covid-19 testing policy in Italy, especially at the beginning of the pandemic, was different 
over time and in the various provinces. Initially, the tests were performed on suspected 
patients who presented themselves in hospital and/or on persons who had been in contact with 
positive cases, later only patients with severe symptoms were tested, and finally the tests were 
also performed on suspects without severe symptoms. Finally, it should be added that the 
statistical significance of conditional factors does not necessarily imply causality in the 
recorded convergence process and based on the characteristics of the data, there is no 
possibility of testing causality by means of a suitable counterfactual trend (in fact, it is 
impossible to construct a suitably randomised control group for a phenomenon that is already 
occurring at the time of the evaluation). 
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