
GIS
A Computing Perspective

Third Edition

Edited by Matt Duckham, Qian (Chayn) Sun and
Michael F. Worboys

First published 1995

ISBN: 978-1-4665-8719-9 (hbk)
ISBN: 978-1-032-53973-7 (pbk)
ISBN: 978-0-429-16809-3 (ebk)

Chapter 2

Fundamental Database Concepts

(CC BY-NC-ND 4.0)

DOI: 10.1201/9780429168093-2

The funder for this chapter is Matt Duckham

2Fundamental
Database
Concepts

Sections

2.1 Introduction to databases

2.2 Database design

2.3 Relational databases

2.4 Graph databases

This chapter is all about databases, their structure and operations, and the

role they play in a GIS. An understanding of databases is fundamental to an

understanding of GIS, and indeed of many other types of information systems.

Progressing through this chapter, you will learn to:

• discuss the key features of databases and the rationale for using them;

• contrast the characteristics and limitations of the relational databasemodel

and the graph databasemodel, the two most important database paradigms;

• develop a database design using entity-relationship modeling and the

standard diagrammatic language UML;

• build simple queries to a relational or graph database using a standard

language, such as SQL or Cypher.

Databases are the foundation of GIS. A knowledge of the fundamen-
tal principles of databases is indispensable for understanding GIS

technology. Most GIS are built upon general-purpose relational databases;
certainly all GIS will connect with such systems in a distributed environment.
This chapter introduces the reader to the main principles of databases. The
general database approach is introduced in Section 2.1, with the principles of
database development introduced in Section 2.2. The most common database
model is the relational model, described in detail in Section 2.3. However, the
graph database model is a markedly different approach to databases with
growing significance for GIS, explored in Section 2.4.

2.1 Introduction to databases

From their earliest days, computers have always been used to convert one data
set into another, accomplishing large and complex transformation processes
that would be tedious for humans to complete manually. For example, we
may wish to predict average annual traffic flows using a computer model
of transportation. The input to this system might include data about city
populations and about the road network. The transformation is encoded by
the transport model, implemented in the computer as software. The output
is the traffic flow prediction data, detailing expected flows on each road

This chapter has been made available under a CC-BY-NC-ND license.

38 GIS: A Computing Perspective

over time. This approach of treating the computer as a “giant calculator” is
illustrated in Figure 2.1.

Figure 2.1: The “com-

puter as a giant cal-

culator” paradigm

process

input output

Thinking of the computer as a giant calculator has several disadvantages,
which are discussed in more detail below. In short, such an approach tends to
lead to significant duplication of data and even of transformation processes.
The alternative offered by the database approach is shown in Figure 2.2.
In this case, the computer acts as a useful repository of data, allowing the
deposit, storage, and retrieval of data. Data in the store can be accessed,
modified, and analyzed in a standard way, ensuring that these and other basic
functions are never duplicated.

Figure 2.2: The “com-

puter as data repos-

itory” paradigm

data store

deposit retrieve

STORE

The remainder of this section delves into more detail on the database
approach. A summary of the key features of the database approach can be
found in Box 2.1 on the next page.

2.1.1 The database approach

The “computer as giant calculator” and “computer as data repository” are
extreme positions. Most applications require a balance of calculation (pro-
cessing) and a repository of data upon which the processes are to act. We
illustrate this balance with a fictitious example.

“Nutty Nuggets” is a dinner kit company, established in 2018, delivering
tasty vegetarian slow-food meal kits to customers to cook at home. Starting
from just a handful of local customers, the business grew quickly by word-of-
mouth. To help cope with their growing order book, the two owner-managers
decided to apply their computer skills to help keep on top of business.

Fundamental Database Concepts 39

Box 2.1: Databases in a nutshell

In order to act effectively as a data store, a computer sys-

tem must have the confidence of its users. A database

must be dependable and continue to operate correctly

even in the case of unexpected events, such as power

or hardware failure (reliability). As far as possible, data

in the database should be correct and consistent (in-

tegrity). A database must be able to prevent data being

used in unauthorized ways (security), but it must offer

sufficient flexibility to give different classes of users dif-

ferent types of access to the store (user views). Ideally,

the database interface should be easy to use for casual

or first-time users as well as offer more powerful func-

tions for regular users (user interface). Most users will not

be concerned with how the database works and should

not be exposed to low-level database mechanisms (data

independence). Users should be able to find out what is

in the database (self-describing). Many users may wish

to use the store, perhaps at the same time or accessing

the same data (concurrency). Databases should be able

communicate with each other in order to access remote

data (distributed database). Finally, a database should be

able to retrieve data rapidly (performance). All these func-

tions are managed by a dedicated software application

(database management system).

They started by populating a spreadsheet with details of their orders, in-
cluding customer addresses, contact details, the meal type, and meal size in
terms of how many people the meal kit should feed. Programs were then writ-
ten to print out delivery schedules for each day, as well as meal kit contents
sheets, helping to streamline the process of making up orders in the kitchen.
Figure 2.3 shows on the left the order file being accessed by the two programs.
On the right, Figure 2.3 shows the main constituents of order data. The order
file is stored on a computer and accessed when required by the programs.

Print
kit

contents
Customer
address

Customer
name

Meal kit
size

Meal kit
type

Order

1407 Graymalkin Lane

Lorna Dane

1

Regular

Print
delivery
schedule

Order
file

Figure 2.3: Nutty Nuggets

stage one: Orders system

Time passed, the order system was successful, and the owners gained
the confidence to extend the system to help with the growing issue of stock
management. A stock extension was set up, consisting of a stock spreadsheet,
and a program to print a daily stock report, highlighting low stock, shown
in Figure 2.4. With stock and order details now together in one system, it
became natural to link them. A program was written to use the data about
customer orders to assist with restocking the kitchen. This program helped
reduce costs and waste by helping ensure only enough perishable stock was
kept to satisfy upcoming orders, shown at the bottom of Figure 2.4.

The system continued to grow, with new spreadsheets for supplier and
customer details added. However, as the system became enlarged, some
problems began to emerge, including:

Loss of integrity The system led to problems maintaining the structure and
currency of the data. For example, when a staff member entered a new

40 GIS: A Computing Perspective

Figure 2.4: Nutty Nuggets

stage two: Orders, stock,

and restocking system

Restocking
estimates

Stock
file

Print
delivery
schedule

Print
kit

contents

Order
file

Print
stock
report

customer’s address in the wrong format, the programs that accessed the
data produced garbled output or crashed. Worse still, when one of the
owners made a copy of the stock file to work on, the two versions rapidly
became out of sync, requiring many hours’ work later in the week to merge
them back into a single authoritative version.

Loss of independence The programs encoded the relationships between the data
items in the files. If the relationships changed, then the programs too had
to be changed. This close linkage between program and data was becoming
complex and costly to maintain, leading to errors. For example, when the
option to pause orders was added to the order spreadsheet (popular with
customers going on vacation, for example), the restocking program was
not updated to incorporate the data associated with this new feature. As
a result, some expensive perishable ingredients were ordered in error and
went to waste.

Loss of security An unscrupulous kitchen staffmember working with the stock
file also made a secret copy of the orders file, accessing customer names
and personal details as the basis for an email scam.

The database philosophy is an attempt to solve these and other problems
that occur in a traditional file processing system. Figure 2.5 shows a reorga-
nization of the system, so that all data files are isolated from the rest of the
system and accessible to the processes only through a controlled channel. The
idea is to place as much of the structure of the information into the database
as possible. For example, if there is a relationship between orders and the
stock required by those orders, then this relationship should be stored with
the data. Databases are self-describing, in the sense that they encode both dataself-describing

and the structure of that data. The means of expressing the structure and
relationships in the data is provided by the data model.

The data model also allows the designer to enter into the database any
properties of the data that are expected always to be true, called integrity con-
straints. Integrity constraints are an aid to maintaining correctness of the dataintegrity constraint

in the database, because they only allow modifications to the database that
conform to these constraints. An example of an integrity constraint might be

Fundamental Database Concepts 41

that the stored meal kit type comes from the list of available options, such as
“Regular,” “Lo carb,” or “No gluten.”

Restocking
estimates

Stock
file

Print
delivery
schedule

Print
kit

contents

Order
file

Print
stock
report

Customers
file

Update
order ...

Figure 2.5: Nutty Nuggets

stage three: Database

approach

The data is collected in one logical, centralized location. A database is
created and maintained using a general-purpose piece of software called a
database management system (DBMS, see Box 2.2 on the following page). The DBMS

DBMS manages the database by insulating the data from uncontrolled access.
A DBMS allows the definition of the data model, supports the manipulation
of the data, and provides controlled two-way access channels between the
exterior and the database. Not all users have the same requirements of the
database: each user group may require a particular window onto the data.
This is the concept of a view. Views provide users with their own customizable user view

data model, which is a subset of the entire data model, and the authorization
to access the sectors of the database that fall within their domain.

A database also enables a designer to define the structure of the data in
the database, providing levels of authorization that permit different groups
of users secure access to data. Different users may access the database at the
same time, termed concurrency. A DBMS also allows users to access the data concurrency

in the database without precise knowledge of implementation details, termed
data independence. data independence

A database can now be more precisely defined as a unified computer-
based collection of data, shared by authorized users, with the capability for
controlled definition, access, retrieval, manipulation, and presentation of
data. Examples of common types of database application include:

Home/office database Home/office database systems are often relatively small
and inexpensive, and they may not require concurrent multiuser access.
An example is the Nutty Nuggets system.

Enterprise database Enterprise databases are widely used to manage the infor-
mation of businesses, including financial and personnel data. Enterprise
databases must be secure and reliable, run on many platforms, offer high
performance, and allow concurrent access by different groups of users. An
example might be the database used by a university to manage both staff
and student information.

42 GIS: A Computing Perspective

Box 2.2: Elements of a database management system

There are many different components in a DBMS that

must work together to answer a query, such as a query

to retrieve the address of a customer from the Nutty

Nuggets database. The query, communicated to the

DBMS using a database query language, must first be

parsed and analyzed by the query compiler. Along the

way, the compiler may call the query optimizer to opti-

mize the code, so that performance on the retrieval is

as good as possible. The authorization controller will also

ensure the user has the correct privileges to access the

requested data. Auxiliary units may be needed to han-

dle constraint enforcement, transaction management,

and concurrency control. The stored data manager then

controls access to physical data storage devices, as well

as back-up and recovery in the case of system failure.

Throughout the process, stored data must be mapped to

the high-level objects referred to in the query using the

metadata catalog, also termed the data dictionary, which

stores the information about the structure of the stored

data and the data model.

Document store Document stores, also called document-oriented databases,
enable storage and retrieval of a wide range of documents, such as web
pages, catalogs, and social media and user-generated content. Document
stores are highly flexible in the structure of stored data, and so they need
specialized query capabilities to efficiently retrieve and query unstructured
document contents.

Image database Image and multimedia databases allow the storage and re-
trieval of a wide range of media data types, such as images, audio, and
video. Image and multimedia databases must offer specialized search
functions, such as searching for (visually) similar images or for particular
information that might appear part-way through a video.

Geodatabase Geodatabases store a combination of spatial and non-spatial
data and require complex data structures and analyses. They are discussed
throughout this book.

2.1.2 Transaction management

Databases exist to support their users. A transaction is the most basic unit oftransaction

interaction between a user and a database. Transactions primarily involve one
or more of the following operations:

• creation of data in the database,
• retrieval of data from the database,
• update of data in the database, or
• deletion of data from the database.

Data stored in such a way that it continues to exist beyond the session in
which it was created—even after the DBMS and the physical storage media
have been shut down—is said to be persistent. As we encountered in Chapter 1,persistence

data that is not persistent and that is only temporarily stored during active
computing processes or sessions is termed volatile. Together, the four basic
operations (creation, retrieval, update, and deletion) on persistent, stored
data above are referred to as CRUD.CRUD

Fundamental Database Concepts 43

A key issue that must be addressed by database transaction management
is support for concurrency. Concurrent access to persistent data confronts
us with this problem: if the same data item is involved in more than one
concurrent transaction, the result may be a loss of database integrity.

𝑇1 𝑇2 𝐵 𝑋 𝑌
−$70

𝑋 ← 𝐵 −$70 −$70
𝑋 ← 𝑋 + $70 −$70 $0

𝑌 ← 𝐵 −$70 $0 −$70
𝑌 ← 𝑌 − $40 −$70 $0 −$110

𝐵 ← 𝑋 $0 $0 −$110
𝐵 ← 𝑌 −$110 −$110

Table 2.1: Lost update for

non-atomic interleaved

transactions, 𝑇1 and 𝑇2,
with variables 𝑋 and 𝑌
and bank balance 𝐵

Imagine a Nutty Nuggets customer already owes $70 on their account.
Now suppose that, by chance, two transactions are in progress together. In
transaction 𝑇1, the customer is paying their outstanding bill with $70 credit.
Concurrently, a finance staff member is debiting a new invoice for $40 to
the same account in transaction 𝑇2. Table 2.1 shows a particular sequence
of the constituent operations of each transaction, termed interleaving. Inter- interleaving

leaving can improve database performance, because shorter operations may
be executed while more lengthy operations are still in progress. However,
interleaving must be controlled carefully to avoid potential problems.

For example, transaction 𝑇1 begins by reading the customer’s balance 𝐵
from the database into a volatile program variable 𝑋 . Crediting the cus-
tomer’s payment of $70 then modifies 𝑋 to $0. Before the update operation
can conclude by writing this volatile data to persistent storage, however, con-
current transaction 𝑇2 begins. Transaction 𝑇2 likewise starts by reading the
same customer’s balance from the database, into volatile program variable 𝑌 .
Transaction 𝑇2 then debits the new invoice from that balance, modifying 𝑌 to
−$110. 𝑇1 then completes its update by writing to the database the new bal-
ance of 𝑋 = $0. When subsequently 𝑇2 completes its update to the database,
writing its new balance of 𝑌 = −$110, it is as if transaction 𝑇1 never occurred.
This is a problem known as lost update. lost update

To prevent lost updates and other problems that can occur with con-
current transactions, any DBMS must be able to guarantee four “ACID” ACID

properties:

Atomicity Atomicity dictates that constituent operations of a transaction
must either all have their effect on the database or else make no change
to the database. For example, in a transaction to transfer credit from one
customer’s account to another, debiting the first and crediting the second
account, atomicity requires that either both or neither operations are
completed, but never one without the other.

Consistency Consistency ensures that all transactions may only result in valid
database states compliant with all the database constraints. For example,

44 GIS: A Computing Perspective

in a database where the customer balance is constrained to be a number,
any transaction that attempts to update a customer’s balance to a non-
numerical value, such as “sixty dollars” or “overdrawn” should fail to be
executed.

Isolation Isolation requires that concurrent transactions must leave the
database in the same state as if the transactions were executed sequentially.
For example, the lost update problem above is an example of a failure in
isolation, where transactions 𝑇1 and 𝑇2 executed in sequence would result
in a different outcome to the interleaved transaction in Table 2.1.

Durability Durability necessitates that transaction outcomes are persistent,
even in the case of a serious system failure or power outage. One of the
common protocols used by databases to support durability is discussed in
more detail in Box 2.3 on the next page.

Databases are the engines of today’s data-driven applications, including
GIS and the WWW. Databases provide reliable, high-performance CRUD
operations for authorized access to secure data, all underpinned by ACID
guarantees for concurrent transactions. Most importantly, databases give
users and developers confidence that data in the database will support trans-
parent and standardized access methods to stored data, independent of the
specific details of any data structures. The DBMS is the software component
that is responsible for delivering these essential functions and features of any
database.

2.2 Database design

A DBMS is a general-purpose information system that must be customized
to meet the requirements of particular applications. In order to do this, we
need to develop a precise idea of the way that information will be structured
in the database, and the way data items will relate to one another. Here, we
are not so much concerned with the actual data in the database, as with the
kinds of data that we expect. For example, in a mapping application, we are
not so much concerned with individual data items, “Addis Ababa,” “Ethiopia,”
“Mount Entoto,” as with data types, city, country, and mountain. We abstract
from information system content to information structure.

As a result, this section focuses primarily on system analysis and design
stages of the system development process introduced in Section 1.3.1. During
these stages, the main task for the database analyst is the construction of the
conceptual computational model for the database, termed a conceptual data
model. A database designer will then tailor the conceptual data model to the
particular kind of DBMS on which the system will be implemented, called
a logical data model. We will come back to the database design when we look
in more detail at the different DBMS models and structures we may need, in
Sections 2.3 and 2.4.

Fundamental Database Concepts 45

Box 2.3: Two-phase commit (2PC) protocols

Durability and atomicity require DBMS have robust mech-

anism to deal with system failures. One of the most im-

portant ways that systems such as DBMS achieve durabil-

ity and atomicity is the two-phase commit (2PC) protocol.

The essence of 2PC is that each subsystem involved in a

transaction must coordinate first in the request to make

a change before actually completing any change. The 2PC

begins with a transaction manager or coordinator mak-

ing a request for a change to each subsystem responsi-

ble for any resources involved in that change. The subsys-

tems then complete the transaction up to, but not includ-

ing, finally committing that transaction. During the re-

quest phase, each subsystem also writes a persistent log

of its own operations to aid in the recovery from any fail-

ure. Subsystems then respond directly to the transaction

manager to indicate assent to the request, so complet-

ing the request phase of 2PC. If the transaction manager

receives affirmative responses from all the requested

resources, then a second round of messages from the

transaction manager directs each subsystem to complete

the pending transaction, and commit the change. How-

ever, if any subsystems did not respond correctly or in

time to the request phase, the transaction manager can

instead send a rollback or abort message, instructing sub-

systems to recover the state of the database immediately

prior to the transaction from their persistent logs. As a re-

sult, only if all components are successful in making the

update will the transaction be finally committed. A failure

with any constituent operation or subsystem means that

the transaction will not be committed and the database

will roll back to its last valid state.

2.2.1 Conceptual data modeling

A conceptual data model is a model of the proposed database system that is in- conceptual data model

dependent of any implementation details. A conceptual data model must ex-
press the structure of the information in the system: that is, the types of data
and their interrelationships. The correctness (integrity) of the information
in a system is often a critical factor in its success. Correctness is maintained
as much as possible by the specification of integrity constraints that impose
conditions on the static and dynamic structures of the system. A data model
should allow the specification of a range of integrity constraints.

A good conceptual data model can act as an efficient means of commu-
nication between the analyst, designer, and potential users. This will aid the
design and implementation of the system. Further, when the system is even-
tually implemented, the conceptual data model provides a basic reference
for users who need to understand the structure of the data in the system (see
Figure 2.6).

In summary, effective conceptual data models:

1. provide a framework that allows the expression of the structure of the
system in a way that is clear and easy to communicate to non-specialists;

2. contain sufficient modeling constructs so that the complexity of the sys-
tem may be captured as completely as possible; and

3. have the capability for translation into implementation-dependent models
(i.e., logical and physical models), so that the system may be designed and
built.

46 GIS: A Computing Perspective

Figure 2.6: The concep-

tual data model as me-

diator between users,

designers, and machines Conceptual
data model

Users Designers

Machines

2.2.2 Entity-relationship models

Imagine that we are responsible for designing the Nutty Nuggets database
introduced above. This hypothetical system should contain data on customers
(e.g., names, contact details), orders (e.g., meal types and sizes), delivery
addresses (e.g., street addresses, zip codes); and meal kit contents (e.g., in-
gredients and contents). How would we make a start? Well, we have already
started in that we have elicited some requirements of the system and ex-
pressed these requirements in the form of collections of entities and their
relevant properties. This is the simple and powerful idea behind one of the
most compelling and widely used approaches to forming a conceptual data
model of an information system: the entity-relationship model (E-R model).E-R model

An entity type is an abstraction that represents a collection of similarentity type

objects, about which the system is going to contain information. In our
example, some of the entity types might be customer, order, and address.
We make a distinction between the type of an entity and an occurrence or
instance of an entity type. For example, we have entity type address andentity instance

occurrences such as ‘1407 Graymalkin Lane’ and ‘1128 Mission Street’ or entity
type customer and occurrences such as ‘Lorna Dane’ or ‘Roberto Da Costa’. By
convention for conceptual modeling, types are rendered in bold, and instance
values in single quotes.

For conciseness, we will start to use the term “entity” to refer to both “en-
tity types” and “entity instances” as we move through the text as long as the
meaning is clear from the context. For example, the caption in Figure 2.8
reads “Two entities ...” rather than “Two entity types ...”. However, it is essen-
tial always to be precise in our own minds about this fundamental difference
between a type and an instance, between categories and individuals.

Another aspect where precision is essential is in distinguishing between
the entity instance itself and the identifiers of that instance. When we write
about the customer Lorna Dane, the value ‘Lorna Dane’ is not the customer

Fundamental Database Concepts 47

herself, of course, but a data item that serves to identify that customer. The
data item ‘Lorna Dane’ is associated with a particular occurrence of the en-
tity (type) customer as its name. Thus, entity types have properties, called
attribute types that serve to describe them. For example, entity type customer attribute type

has attribute types title, given name, family name, and telephone contact
number. A particular occurrence of customer would have associated with it
occurrences of these attributes, such as the value ‘+1-610-555-0195’ assigned to
the attribute (type) contact number.

The attachment of attribute types to an entity type may be represented
diagrammatically as an entity-relationship diagram (E-R diagram). As shown E-R diagram

in Figure 2.7, entity and attribute types are shown in rectangular segmented
boxes; entity types are labeled in the colored box header; attribute types
are listed in the section below the header. The E-R diagrammatic notation
presented here is common but not standard; there are many variations in
use. However, this notation is based on UML (unified modeling language), a
standard diagrammatic language widely used for describing many different
aspects of information systems.

customer

contact number

given name

family name

title

Figure 2.7: An entity type

and its attribute types

An important characteristic of an entity is that any occurrence of it should
be capable of unique identification. The means of unique identification is
through the value of a subset of its attribute types. The name of a person, for
example, is frequently insufficient to identify that person uniquely. Similarly,
while there is only one place with the address ‘1128 Mission Street’ (in South
Pasadena, California), places with the address ‘11 Mission Street’ appear in
California, New York, South Carolina, and Connecticut in the US, for ex-
ample, as well as in other countries around the world. An attribute type or
combination of attribute types that serves to identify an entity type uniquely
is termed an identifier. By definition, an entity type must have at least one identifier

identifier. The attributes comprising the chosen identifier are often under-
lined. In our example, attribute type contact number is assumed to be an
identifier of customer (under the assumption that no two customers share
the same telephone number).

So far, the model comprises a number of independent entity types, each
with an associated set of attribute types, one or more of which serve to iden-
tify uniquely each occurrence of the type. The real power in this model comes
with the next stage, which provides a means of describing connections be-
tween entity types. A question that we might want to ask of our finished
system is, “Which customers placed which orders?” This question can only be

48 GIS: A Computing Perspective

answered by forming a link between customers and their orders. This con-
nection is called a relationship. A relationship type connects one or more entityrelationship

relationship type types. A relationship occurrence is a particular instance of a relationship type.
relationship occurrence Thus, the incidence of the customer ‘Lorna Dane’ with the order number ‘058’

is an occurrence of the relationship placed. The relationship placed between
entities customer and order may be captured in an E-R diagram, as shown in
Figure 2.8. Relationships are shown with a labeled line connecting the two
entities.

Figure 2.8: Two en-

tities and a many-

to-one relationship

order

order no

meal

size

customer

contact number

given name

family name

title

placed
1

0..*

Relationships may have their own attributes, which are independent of
any of the attributes of the participant entities. In the above example, the
relationship placed might have the attribute date, which gives the date on
which the customer placed that order.

Relationship types are subdivided into many-to-one, many-to-many, and
one-to-one relationships. The relationship placed is an example of a many-
to-one relationship, because each customer may place several (potentiallymany-to-one

zero, one, or many) orders, but each order must be placed by exactly one
customer. This constraint on the relationship is shown diagrammatically by
the 0..* and 1 on each side of the relationship. Thus, E-R diagrams allow the
modeler to express cardinality conditions upon entity occurrences enteringcardinality conditions

into relationships. Cardinality conditions are a type of integrity constraint
where the number of entities participating from each side of the relationship
is restricted in some way.

Take a moment to note in particular how the location of each label in
Figure 2.8 reflects the direction of the relationship. A customer can place
zero or more orders so the “0..*” label appears on the right-hand side of the
relationship, closest to the order entity type (i.e., reading the diagram as: cus-
tomer placed 0..* order). An order must be placed by exactly one customer,
so the “1” label appears on the left-hand side of the relationship, closest to the
customer entity type (i.e., read: order placed by 1 customer). If these symbols
were reversed, the diagram would have a very different interpretation (i.e., a
rather strange business in which a single order might involve any number of
customers, even none at all; but each customer would be required to place one
and only one order).

Not all relationships are many-to-one. For example, consider the relation-
ship contained between types order and stock shown as an E-R diagram in
Figure 2.9 (top). Each stock item may appear in many different orders, and
an order will naturally contain many different stock items (i.e., ingredients).

Fundamental Database Concepts 49

Such a relationship is called a many-to-many relationship. These cardinality many-to-many

conditions are again shown diagrammatically by the 0..* and 1..* on each side
of the relationship. Note that these conditions also implicitly specify whether
participation in the relationship is optional (i.e., 0..*, each ingredient may ap-
pear one, many or no orders currently in the system) or mandatory (i.e., 1..*
each order may have many different ingredients but must have at least one).

The third and final relationship category is exemplified by the relationship
issued between staff member and staff card. In this relationship, each staff
member must have been issued a staff card, and each staff card is issued to
that specific staff member. This is a one-to-one relationship. The form of the one-to-one

corresponding E-R diagram is shown in Figure 2.8. The positioning of the two
1s indicates the nature of the relationship.

stock

ingredient name

quantity

units

order

order no

meal

size

contained
0..*

1..*

staff card

card no

photo

staff member

staff id

family name

given name

issued
1

 1

Figure 2.9: Many-to-many

(top) and one-to-one

(bottom) relationships

All the relationships given as examples so far have been binary, in that
they have connected together precisely two entity types. A relationship that
connects three entity types is called a ternary relationship. For example, ternary relationship

Figure 2.10 shows a ternary shipped relationship, between the order that
was delivered, the address it was delivered to, and the staff member who
delivered it. Cardinality and participation conditions can apply as with the
binary case, but with extra complexity. In the Nutty Nuggets example, we
might assume: each order must be shipped to one address by one delivery staff
member; but each staff member can deliver zero or many orders to multiple
different addresses; and each address might receive zero, one, or many orders,
in the latter case possibly delivered by different staff.

2.2.3 Example E-R model

The E-R model can now be applied to the example of the Nutty Nuggets
customer database. Imagine you are an owner-manager at the analysis stage
of system development. There is a need to hold information about customers
and orders, stock and addresses. Choosing entities and attributes for such a
model is a matter of judgment, often with more than one acceptable solution.
Sometimes it is difficult to decide whether to characterize something as an
attribute or an entity. In the modeling of the Nutty Nuggets database, there

50 GIS: A Computing Perspective

Figure 2.10: A ternary

relationship, with cardi-

nality conditions omitted

address

street address

zip code

city

state

order

order no

meal

size

shipped

staff member

staff id

family name

given name

are several such choices. For example, should we make the city in which an
address is located an entity or attribute? Some guidelines include:

• If the data type is relatively independent and identifiable, with its own at-
tributes, then it is probably an entity; if it is just a property of something,
then it is an attribute.

• If the data type enters into relationships with other entities (apart from
being a property of something), then it is probably an entity.

In our system, the city is just a name and just one line of the address, so
we choose to make it an attribute of address. If city had possessed its own
attributes, such as population, then we would probably have made it an entity
and constructed a relationship between entities city and address. Initial
investigation reveals that the following entity types and their attributes are
needed:

• order (order no, meal, size)
• customer (given name, family name, contact number)
• address (street address, zip code, city, state)
• stock (ingredient name, quantity, units)

Most of the attribute type names are self-explanatory, except that attribute
types meal and size of entity type order capture the specific meal scheme
ordered from the delivery menu (e.g., regular, low calorie, low carbohydrate,
vegan) and the number of people the meal kit needs to feed (individual, cou-
ple, small or large family). The attributes quantity and units of stock denote
the amount of that ingredient in stock (e.g., 10kg, 6l, or 250g). We have men-
tioned above that contact number is taken to be the identifier of the entity
customer. By adopting this identifier, you will not be able to take business
from customers who don’t have a phone or who share their phone with other
customers. Identifiers for the other entities require further analysis. For the
purposes of this system, you decide that stock can be identified by its ingre-
dient name; that each address can be uniquely identified by a combination of
the street address (e.g., ‘1407 Graymalkin Lane’) and zip code (e.g., ‘10573’);
and that each order will require a unique identifier to be created for it, order
no.

Fundamental Database Concepts 51

As we have already discussed, the entities customer and order are con-
nected by the many-to-one placed relationship, with each customer optionally
placing orders, but each order requiring (i.e., mandatory participation) ex-
actly one customer to have placed that order (Figure 2.8). Similarly, each
order is required to have at least one but possibly more ingredients from
stock; while stock may optionally be included in zero, one, or many different
orders (Figure 2.9). You decide to keep the shipped relationship to a simple
binary relationship between an order and an address, rather than addition-
ally capturing the delivery staff in a ternary relationship (cf. Figure 2.10).
Each order is required to have exactly one delivery address. Each address in
the database, however, may have zero, one, or many orders that need to be
shipped there.

1

0..*

order

order no

meal

size

customer

contact number

given name

family name

title

1

0..*

stock

ingredient name

quantity

units

0..*

1..*

address

street address

zip code

city

state

1

0,1

shipped

placed

contained

resides

Figure 2.11: E-R diagram

for the Nutty Nuggets

customer orders database

Finally, you add a new one-to-one resides relationship to capture the
home address of each customer. Each customer must nominate a single home
address (mandatory participation); and if an address is a home address, you
decide that there can be only one nominated customer at that address (i.e.,
optional participation). All this information can be modeled and represented
by the E-R diagram shown in Figure 2.11.

Although originally developed in the 1970s, the E-R model remains an
important and widely used modeling tool for database design. Measured
against the three criteria of a modeling approach given at the beginning
of Section 2.2.1, it scores highly. First, the method is based upon the intu-
itive notions of entity, attribute, and relationship, so it is easily grasped by
non-specialists. E-R modeling therefore provides an excellent means of com-
munication between systems analysts and users during the specification of the
system. On the third criterion, we shall see later in the chapter how readily
a conceptual data model summarized in our E-R diagram may be translated
into a practical database implementation.

It is the second criterion, regarding the existence of sufficiently power-
ful modeling constructs, where the shortcomings of the basic E-R model

52 GIS: A Computing Perspective

are sometimes said to lie. This is particularly the case when the application
domain to be modeled does not fit into the standard pattern and requires
complex data types and relationships. Since it is precisely such systems that
are the concern of this book, we will encounter later on more sophisticated
modeling approaches that set out to remedy this deficiency. The price to be
paid for any increase in modeling power that such extensions can provide
is the slight loss of the natural feel and simple diagrams that the basic E-R
model possesses.

2.3 Relational databases

The most widely used model for the overall structure of a database system
is the relational model. The most important alternative model is the graph
database model, covered in more detail in Section 2.4. The object-oriented
model is less widely used in databases, but it involves some important con-
cepts with direct relevance to modeling in GIS, returned to in Section 4.1.2.
The focus of this section, however, is the relational model, introduced in a
classic 1970 paper by Ted Codd.

2.3.1 The relational model

In the Nutty Nuggets example, we have seen that a database holds not only
primary data about entities and their attributes, but also connections be-
tween entities as relationships. These connections are at the heart of the
relational model. No single piece of data provides information on its own: it
is the relationships between data items that provide much of the context for
the data.

The structure of a relational database is very simple: this is what makes it
so powerful. A relational database is a collection of tabular relations, often just
called tables. It is unfortunate that the terms “relationship” (connection be-
tween entities in an E-R model) and “relation” (table in a relational database)
are so similar. As we shall see, the concepts behind them are closely related,
but it is still important not to confuse them.

Table 2.2 shows part of a relation called CUSTOMER (from the NUGGETS

database given in full in Appendix A) containing data about some customers,
their title, given and family names, and their contact phone number. A rela-
tion has associated with it a set of attributes: in Table 2.2 the attribute namesattribute

are TITLE, GNAME, FNAME, and TEL, labeling the columns of CUSTOMER. The data
in a relation is structured as a set of rows. A row, or tuple, consists of a list oftuple

values, one for each attribute. Each cell contains a single attribute occurrence,
or value. The tuples of the relation are not assumed to have any particular
order.

We make a distinction between relation scheme, which does not include
the data but gives the structure of the relation, and relation, which includes
the data. Data items in a relation are taken from domains (akin to data types

Fundamental Database Concepts 53

TITLE GNAME FNAME TEL

Mr Roberto Da Costa 213-555-0506

Ms Lorna Dane 610-555-0195

Dr Jane Foster 939-555-0177

Mr Bobby Drake 757-555-0112

Mx Loki Laufeyson 785-555-0189

Ms Joanna Cargill 202-555-0125

...

Table 2.2: Part of the

relation CUSTOMER

in programming). Each attribute of the relation scheme is associated with a
particular domain. In basic database systems, the possible domains are often
quite limited, comprising character strings, integers, floats, dates, etc. In our
example, the attribute TEL might be associated with character strings of length
12. We may now give some definitions.

• A relation scheme is a set of attribute names and a mapping from each relation scheme

attribute name to a domain.
• A relation is a finite set of tuples associated with a relation scheme in a relation

relational database such that:

– each tuple is a labeled list containing as many data items as there are
attribute names in the relation scheme; and

– each data item is drawn from the domain with which its attribute type
is associated.

• A database scheme is a set of relation schemes, and a relational database is a database scheme

relational databaseset of relations.
• The database software that manages a relational database model is termed
a relational database management system (RDBMS). RDBMS

Relations have the following properties:

• The ordering of tuples in the relation is not significant.
• Tuples in a relation are all distinct from one another.
• Columns are ordered so that data items correspond to the attribute in the
relation scheme with which they are labeled.

Most relational systems also require that the data items are themselves
atomic; i.e., they cannot be decomposed as lists of further data items. Thus a
single cell cannot contain a set, list, or array. Such a relation, which contains
only atomic attributes, is said to be in first normal form (1NF). In the example 1NF

of the CUSTOMER relation, 1NF means that customers are not allowed to
have multiple phone numbers or alternative names. The degree of the table relation degree

is the number of its columns. The cardinality of the table is the number of its cardinality

tuples. As tuples come, go, and are modified, the relation will change, but the
relation scheme is relatively stable. The relation scheme is usually declared
when the database is set up and then left unchanged through the lifetime
of the system, although there are operations that will allow the addition,
subtraction, and modification of attributes.

54 GIS: A Computing Perspective

The theory of a relational database so far described has concerned the
structuring of the data into relations. The other aspects of the relational
model are the operations that may be performed on the relations (database
manipulation) and the integrity constraints that the relations must satisfy.
The manipulative aspects will be considered next, after we have described our
working example.

2.3.2 Relational database design

We saw in Section 2.2 how E-R modeling can help in building a conceptual
model of a database. An important criterion for the choice of E-R modeling
as our conceptual modeling tool was its ability to translate from an E-R
model into a practical database implementation. This section shows how an
E-R model can aid in relational database design, and it considers some of the
principles upon which a good design is based.

Database design, in the case of a relational database, concerns the con-
struction of a relational database scheme. The central question is, “What
characterizes a good set of relations for the target application?” Two advanta-
geous features are:

• lack of redundant data in relations (redundant data wastes space in theredundancy

database and causes integrity problems); and
• fast access to data from relations.

These two features essentially trade off space (and integrity) against time.
As we shall see later in this chapter, one of the most expensive of relational
database operations involves combining information from multiple different
relations, termed relational join. Fewer joins mean faster data access, whichrelational join

in turn implies fewer relations. Consequently, it is not usually efficient to
have many small relations that will need to be joined in order to respond to
common queries. On the other hand, while using fewer relations leads to
fewer joins, it leads to other problems, shown by the following example from
the NUGGETS database.

Suppose that we decide to have all the information about all the customers
and their orders in a single relation in the database. The relation scheme
could look something like:

CUSTOMER_ORDERS (TITLE, GNAME, FNAME, TEL, ORDER_NO, MEAL, SIZE)

This relation scheme of large degree might appear suitable if there were
likely to be many retrievals requiring customer and order details together.
The problem is that this scheme can result in redundant duplication of data,
where a customer makes multiple orders. Table 2.3 shows an example of the
problem. The relation includes redundant data. Each new order duplicates
all of the customer data, including name and contact phone number. Such
redundancy not only wastes space, but can also cause integrity problems (for
example, if Lorna Dane’s phone number changes, but only one of the three
cells in the table in which it appears is updated).

Fundamental Database Concepts 55

TITLE GNAME FNAME TEL ORDER_NO MEAL SIZE

Mr Roberto Da Costa 213-555-0506 M315-22-06 Lo carb 4

Ms Lorna Dane 610-555-0195 M066-22-06 Regular 2

Ms Lorna Dane 610-555-0195 M066-22-07 Regular 1

Mr Roberto Da Costa 213-555-0506 M315-22-07 Lo carb 4

Dr Jane Blake 939-555-0177 M113-22-09 Vegan 1

Ms Lorna Dane 610-555-0195 M066-22-08 Regular 2

...

Table 2.3: Some rows

and columns of the

CUSTOMER_ORDER relation

The specific problems in the CUSTOMER_ORDERS relation above can be
solved by splitting the scheme so that the customer data is held in one rela-
tion, and the order data is held in another. A first pass at this relation scheme
is below:

CUSTOMER (TITLE, GNAME, FNAME, TEL)

ORDERS (ORDER_NO, MEAL, SIZE)

However, in designing this relation scheme we have lost the connection
between the two tables, captured by the placed relation in our E-R model
in Figure 2.11. Recovering this relationship requires that we first clarify the
identifiers for each relation. In relational databases, a candidate key is an candidate key

attribute or minimal set of attributes that will serve to uniquely identify each
tuple of the relation. There may be several such candidate keys for a relation.
The identifier in an E-R model will usually be a potential candidate key. One
candidate key is chosen as the primary key. primary key

Following the E-R model in Figure 2.11, we can use TEL and ORDER_NO

attributes as primary keys of the CUSTOMER and ORDERS relations, respectively.
Armed with our primary keys, we could choose to add a new relation to
our relation scheme called PLACED containing just two attributes TEL and
ORDER_NO. This relation would then store the data about the relationship
between customers and their orders. However, it is instead simpler to add the
customer primary key TEL to the ORDERS relation. This construction is called
posting the foreign key. In technical language, we have posted the identifier posting the foreign key

of CUSTOMER as a foreign key into ORDERS. Note that the converse—posting
ORDER_NO as a foreign key to the CUSTOMER relation—will not work, as it will
lead to the same duplication as in Table 2.3.

Posting a foreign key, rather than adding another relation, is usually an
option if the relationship between entities is many-to-one. The resulting
relation scheme is shown below. Just as identifiers for each entity type are
underlined in our E-R model in Figure 2.11, so there is a convention that the
set of attributes constituting the primary key of the relation is underlined in a
relation scheme.

CUSTOMER (TITLE, GNAME, FNAME, TEL)

ORDERS (ORDER NO, CUS_TEL, MEAL, SIZE)

56 GIS: A Computing Perspective

The relations with the tuples from Table 2.3 appropriately distributed are
shown in Table 2.2 above (CUSTOMER relation) and Table 2.4 below (ORDERS).
There is now no redundant repetition of data.

Table 2.4: The ORDERS

relation, together with

the CUSTOMER relation

in Table 2.2, captur-

ing all the information

in CUSTOMER_ORDER

relation Table 2.3

without redundancy

ORDER NO CUS_TEL MEAL SIZE

M315-22-06 213-555-0506 Lo carb 4

M066-22-06 610-555-0195 Regular 2

M066-22-07 610-555-0195 Regular 1

M315-22-07 213-555-0506 Lo carb 4

M113-22-09 939-555-0177 Vegan 1

M066-22-08 610-555-0195 Regular 2

...

Apart from avoiding redundant duplication of information, decomposi-
tion of relation schemes has the advantage that smaller relations are concep-
tually more manageable and allow separate components of information to be
stored in separate relations. Of course, relations cannot be split arbitrarily.
Relations form connections between data in the database and inappropriate
decomposition can destroy these connections. One important guideline for
appropriate decomposition has already been introduced in Section 2.3.1, with
relations in 1NF having atomic attributes. In fact, there exists a hierarchy of
normal forms for relational databases; higher normal forms require higher
levels of decomposition of the constituent database relations (see Box 2.4 on
page 58). The process of appropriately decomposing relations into normal
form is termed normalization. Normal forms are useful guidelines for databasenormalization

design. However, in any logical data model, the level of normal form (i.e.,
degree of relation decomposition) must be balanced against the decrease in
performance resulting from the need to reconstruct relationships by join
operations.

In this way, an E-R model may be transformed into a set of relation
schemes. As a first pass, the general principle is that to begin:

• each entity in the E-R model maps to a relation in the relation scheme;
• each attribute in the E-R model maps to an attribute in the corresponding
relation;

• each identifier maps to a primary key;
• each relationship maps to a relation combining the identifiers/primary
keys of the two entities/relations it connects.

In some cases it is also necessary to modify this first pass in order to main-
tain the information structure, while balancing the redundancy that accom-
panies too few relations and the inefficiency that arises from too many. The
discussion above of the relations CUSTOMER and ORDERS provides one exam-
ple of modifications needed to strike that balance. Posting the foreign key
from CUSTOMER to ORDERS ensures the database scheme avoids the redundancy
inherent in a single relation, Table 2.3, without the need for a third PLACED

relation.

Fundamental Database Concepts 57

The database scheme below gives the final relational database scheme for
our NUGGETS database.

CUSTOMER (TEL, HID, TITLE, GNAME, FNAME)
ORDERS (ORDER NO, CUS_TEL, AID, MEAL, SIZE)
STOCK (INGREDIENT, QUANT, UNITS)
CONTENT (OID, SID, WEIGHTG)
ADDRESS (ADDRESS ID, STREET_AD, ZIP, CITY, STATE)

With reference again to Figure 2.11, the following summarizes the deci-
sions made in arriving at this database scheme:

• The CUSTOMER relation required the further addition of the foreign key HID

as an attribute to identify the home address of each customer, necessitated
by the resides relation.

• The ORDERS relation likewise includes the foreign key AID to capture the
shipping address of each order (relation shipped).

• The STOCK relation with its attributes is mapped directly from the stock
entity.

• The CONTENT relation captures the data associated with the contained
relationship. Posting the foreign key (from ORDERS to STOCK or vice versa)
is not an option for this many-to-many relationship without resulting in
the kinds of redundancy already seen in Table 2.3. Hence, the primary key
of the CONTENT relation becomes the combination of the foreign keys of
ORDERS and STOCK: OID and SID, respectively. A primary key that is made up
of two or more foreign keys is called a compound key. compound key

• It was further decided that it would be useful to know the quantity of each
ingredient in the order (and not simply in the stockroom, already stored
in the STOCK relation). Although this feature was not captured in the
design of the E-R model in Figure 2.11, it is not unusual to need to tweak
and refine designs during the implementation process. Consequently the
weight in grams of each ingredient in each order is captured through the
attribute WEIGHTG.

Finally, the ADDRESS relation has acquired a new primary key ADDRESS ID.
An alternative candidate key is suggested by the identifiers of the address
entity in Figure 2.11: the combination of attributes STREET_AD and ZIP. A
candidate key that is made up of two or more attributes is called a composite
key. (A compound key, above, is therefore a special case of a composite key.) composite key

Three reasons led to this decision. First, posting a composite foreign key
from ADDRESS to CUSTOMER and ORDERS is possible, but it is arguably less
clear for database users than posting a singleton foreign key. Second, the
STREET_AD attribute is expected to be a relatively long text string in many cases
(e.g., ‘1407 Graymalkin Lane’). Using such attributes as keys, and especially
foreign keys, increases the chances of errors, for example, where a mistype
in one table breaks the connection between the tuples. Hence, creating a
new, simplified address code in ADDRESS ID as the primary key in ADDRESS was

58 GIS: A Computing Perspective

Box 2.4: Second normal form (2NF)

As introduced above, normalization is the process of de-

composing relations so that they conform to certain stan-

dard principles used to reduce redundancy and increase

integrity of stored data, called normal forms. As we have

seen, first normal form (1NF) requires all relations in a re-

lational database to have atomic attributes. Each higher

normal form builds on the lower normal form, such that

the first condition of second normal form (2NF) is that a

relation is in 1NF. 2NF further requires that all non-key

attributes are “fully functionally dependent” on the pri-

mary key alone. “Full functional dependency” means

that an attribute is dependent on the whole primary key,

and not on a subset of that key. For example, the orig-

inal ADDRESS table with the relation scheme ADDRESS

(STREET AD, ZIP, CITY, STATE) is arguably not in 2NF. A vi-

olation of 2NF arises if the CITY or STATE attributes are

functionally dependent on the ZIP attribute (i.e., if I know

the zip code, then I can deduce the city or state). ZIP is

only a part of the primary key for ADDRESS, so in that

case CITY and STATE are not fully functionally dependent

on the primary key, only part of the primary key, and so

the relation is not in 2NF. Regaining 2NF would require

that the relation be split into two, with each part of the

compound key becoming the primary key of a new, de-

composed relation. So why “arguably”? While this partial

dependency holds in most cases, some US zip codes do

straddle multiple cities and even states (such as 42223

that covers addresses on both sides of the border be-

tween Kentucky and Tennessee). Consequently, it could

be argued that in order to allow for this eventuality, the

relation is in 2NF.

considered to be worth the small additional redundancy it entailed (and see
also the inset on second normal form, Box 2.4).

The full NUGGETS relational database can be found in Appendix A.

2.3.3 Operations on relations

A relation is nothing more than a structured table of data items. Each column
of a relation is named by an attribute, and it has all its data items taken from
the same domain. The basic operations supported by a relational database
are therefore simple. There are five fundamental relational operators: union,relational operator

difference, product, project, and restrict.
The first three of these are traditional set-based operators, introduced

in the next chapter. The project and restrict operators are described below.
Three further relational operators intersection, divide, and join, termed derived
relational operators, can be expressed using different combinations of the
fundamental five operators.1 Of these, intersection is another set-based

1 Can you deduce how to de-
fine the three derived rela-
tional operators in terms of
the five fundamental opera-

tors? Which two fundamental
operators when combined can
result in the join operator, de-
scribed below, for example?

operator introduced in the next chapter, join is described below, and divide
is a less commonly used operator not discussed further here. The structure
of these operations and the way that they can be combined is called relational
algebra.

relational algebra
The relational model is closed with respect to all the above relational op-

erations, because they each take one or more relations as input and return a
relation as a result. The set operations union, intersection, product, and dif-
ference work on the relations as sets of tuples. Thus, if we have two relations,
one holding all Californian and one all Texan addresses, then their union will
hold the addresses in both states and their intersection will be empty. For all
the set operations except product, the relations must be compatible, in that
they must have the same attributes; otherwise, the new relation will not be
well formed.

Fundamental Database Concepts 59

Project operator The project operation is unary, applying to a single relation. project operator

It returns a new relation that has a subset of attributes of the original. The
relation is then modified so that any duplicate tuples formed are coalesced.
The project operator 𝜋 has the following syntax:

𝜋<attribute list>(relation)

For example, 𝜋CITY,STATE(ADDRESS) returns the relation shown in Table 2.5a,
and 𝜋STATE(ADDRESS) returns the relation shown in Table 2.5b. Note that in
the second case the four identical tuples containing the value “NY” have been
coalesced into a single tuple.

(a)

CITY STATE

New York NY

North Salem NY

Philadelphia PA

Washington DC

Fort Washington NY

Broxton OK

Brooklyn NY

San Francisco CA

(b)

STATE

NY

PA

DC

OK

CA

(c)

ORDER_ID CUS_TEL AID MEAL SIZE

M113-22-09 939-555-0177 74012-RA01 Vegan 1

M315-22-06 213-555-0506 94110-MS01 Lo carb 4

M315-22-07 213-555-0506 94110-MS01 Lo carb 4

(d)

ORDER_ID

M113-22-09

M315-22-06

M315-22-07

Table 2.5: Results of

relational projections and

restrictions

Restrict operator The restrict operation is also unary. The restrict operator restrict operator

works on the tuples of the table rather than the columns, and it returns a new
relation that has a subset of tuples of the original. A condition specifies those
tuples required. The restrict operator is often referred to as the select operator,
and consequently it is denoted with the Greek symbol 𝜎 (sigma). The syntax
used here is:

𝜎<condition>(relation)

For example, the list of meal orders other than ‘Regular’ can be retrieved
from the database using the expression 𝜎NOT(MEAL=’Regular’)(ORDERS). This will
return the relation shown in Table 2.5c. Operations can be combined, for
example:

𝜋ORDER_ID(𝜎NOT(MEAL=’Regular’)(ORDERS))

returns the order numbers of non-‘Regular’ meal orders, as shown in Table
2.5d.

60 GIS: A Computing Perspective

Join operator With the join operation, the relational database begins to merit
the term “relational.” Join is a binary operator that takes two relations asjoin operator

input and returns a single relation. The join operation allows connections
to be made between relations. There are several different kinds of relational
join but we describe only the natural join of two relations, defined as thenatural join

relation formed from all combinations of their tuples that agree on a specified
common attribute or attributes. The join operator ⋈ has the following syntax:

⋈attribute1= attribute2(relation1, relation2)

to indicate that relation1 and relation2 are joined on attribute combinations
attribute1 of relation1 and attribute2 of relation2. For example, to relate details
of orders to the customers who placed each order on which they are showing,
relations CUSTOMER and ORDERS are joined on the film title attribute in each
relation. The expression is:

⋈TEL=CUS_TEL(CUSTOMER,ORDERS)

The resulting relation shown in Table 2.6 combines tuples of CUSTOMER

with tuples of ORDERS, provided that the tuples have the same customer phone
number. Notice that the join has not repeated the duplicate attribute.

TEL GNAME FNAME HID TITLE ORDER_ID AID MEAL SIZE

213-555-0506 Roberto Da Costa 94110-MS01 Mr M315-22-06 94110-MS01 Lo carb 4

213-555-0506 Roberto Da Costa 94110-MS01 Mr M315-22-07 94110-MS01 Lo carb 4

610-555-0195 Lorna Dane 10560-GL01 Ms M066-22-06 19104-CS01 Regular 2

610-555-0195 Lorna Dane 10560-GL01 Ms M066-22-07 19104-CS01 Regular 1

610-555-0195 Lorna Dane 10560-GL01 Ms M066-22-08 19104-CS01 Regular 2

939-555-0177 Jane Foster 74012-RA01 Dr M113-22-09 74012-RA01 Vegan 1

Table 2.6: Result

of relational join If we only require the customer contact numbers, given names, and or-
der numbers of non-‘Regular’ meal orders, we may again restrict and project
the relation in Table 2.6 to only those desired attributes and rows. The com-
bined relational algebra statement is below, with the resulting table shown in
Table 2.7:

𝜋TEL,ORDER_ID,GNAME(𝜎NOT(MEAL=’Regular’)(⋈TEL=CUS_TEL(CUSTOMER,ORDERS)))

Table 2.7: Result of com-

bined relational join, re-

striction, and projection

TEL GNAME ORDER_ID

213-555-0506 Roberto M315-22-06

213-555-0506 Roberto M315-22-07

939-555-0177 Jane M113-22-09

The last example may be used to demonstrate an important property of
relation operations: the order in which operations are performed will affect
performance. The join operation is the most time-consuming of all relational
operations, because it needs to compare every tuple of one relation with

Fundamental Database Concepts 61

every tuple of another. To extract data for Table 2.7 we performed operations
join, project, and restrict. In fact, it would have been more efficient to have
first done a restrict operation on the ORDERS table, then joined the resulting
smaller table to CUSTOMERS, and then projected. The result would be the same,
but the retrieval would perform better, because the join involves smaller
tables.

In general, reordering the elements of a relational algebra expression may
not lead to an equivalent expression. For example, the relational algebra
expression 𝜋ORDER_ID(𝜎NOT(MEAL=’Regular’)(ORDERS)) given above is not equivalent
to 𝜎NOT(MEAL=’Regular’)(𝜋ORDER_ID(ORDERS)), because MEAL is not a valid attribute
of the relation 𝜋ORDER_ID(ORDERS). The topic of query optimization is a critical query optimization

study for high-performance databases, concerned with processing queries
as efficiently as possible. An important component of query optimization
involves performing transformations (such as reordering) upon queries, to
produce equivalent queries that can be processed more efficiently.

2.3.4 Structured query language

The structured query language (SQL) provides users of relational databases SQL

with the facility to define the database scheme (data definition), and then
insert, modify, and retrieve data from the database (data manipulation). The
language may either be used on its own, as a means of direct interaction with
the database, or embedded in a general-purpose programming language. The
aim of this section is to provide an introduction to SQL, highlighting its close
relationship with the relational algebra, without making any attempt to be a
complete SQL reference.

Data definition using SQL The data definition language (DDL) component of data definition language

SQL allows the creation, alteration, and deletion of relation schemes. Nor-
mally, a relation scheme is altered only rarely once the database is operational.
A relation scheme provides a set of attributes, each with an associated data
domain. SQL allows the definition of a domain by means of the expression
below (square brackets indicate an optional part of the expression).

CREATE DOMAIN name datatype

[DEFAULT definition]

[CHECK constraint]

The user specifies the name of the domain and associates that name with
a predefined data type, such as a character string (VARCHAR), or an integer,
float, date, time. The DEFAULT definition allows the user to specify a default
value for a tuple; a common default value is NULL. The domain CHECK defines
integrity constraints by restricting the domain to a set of specified values. An
example of the definition of a domain for the attribute MEAL is as follows:

CREATE DOMAIN MEALTYPE VARCHAR(10)

CHECK (VALUE IN (’Regular’, ’Vegan’, ’Lo carb’, ’Lo fat’, ’No gluten’));

62 GIS: A Computing Perspective

Box 2.5: SQL and CRUD

SELECT statements covered in the main text are at the

heart of SQL, and they provide access to the relational

database retrieval operations. In addition, basic data cre-

ation, update, and deletion operations (found in CRUD)

are provided by INSERT, UPDATE, and DELETE state-

ments. For example:

INSERT INTO STOCK VALUES (’Flour’, 37, ’kg’);

will record a new entry in the STOCK table. In addition,

the SELECT INTO statement makes a new table that is a

copy of part or all of an existing table, such as:

SELECT * INTO STOCKBACKUP FROM STOCK;

The INSERT INTO can similarly copy data across from

one table into another, suitably structured existing table.

UPDATE and DELETE statements have a WHERE clause to

specify which records to alter. For example:

DELETE FROM STOCK WHERE INGREDIENT=’Oil’;

deletes the oil from the STOCK table, and:

UPDATE STOCK SET QUANT=8 WHERE INGREDIENT=’Corn’;

updates the stored corn stock quantity.

A relation scheme is created as a set of attributes, each associated with a
domain, with additional properties relating to keys and integrity constraints.
For example, the relation scheme ORDERS can be created by the command:

CREATE TABLE ORDERS

ORDER_NO CHAR(10),

CUS_TEL CHAR(12),

AID CHAR(10),

MEAL MEALTYPE,

SIZE INT(1),

PRIMARY KEY (ORDER_NO),

FOREIGN KEY (CUS_TEL) REFERENCES CUSTOMER(TEL),

FOREIGN KEY (AID) REFERENCES ADDRESS(ADDRESS_ID),

CHECK (SIZE < 7 AND SIZE > 0);

This statement begins by naming the relation scheme (called a table in
SQL) as ORDERS. The attributes are then defined by giving their name and
associated domain. It is optionally possible to identify to the database any
keys, including the foreign keys posted from CUSTOMER and ADDRESS. Doing so
enables the database to maintain referential integrity, for example, ensuring
that if an address is deleted (or updated) from the ADDRESS relation, then any
reference to it is also deleted (or updated) in ORDERS. Finally, one further
integrity check is added to limit the meal size of an order to between 1 and 6
people, inclusive. Any attempt to insert a row with an order for 8 people, say,
will be disallowed.

Data manipulation using SQL Having defined the relation schemes, the next
step is to insert data into the relations. These SQL commands are quite
straightforward, allowing insertion of single or multiple tuples, update of
tuples in tables, and deletion of tuples (see Box 2.5). Data retrieval forms
the most complex aspect of SQL: a large book could be written on this topic
alone. Our treatment is highly selective, giving the reader a feel for SQL in
this respect. The general form of the retrieval command is:

SELECT item−list

FROM reference−list

Fundamental Database Concepts 63

[WHERE condition]

[GROUP BY attribute−list]

[HAVING condition]

A simple example of data retrieval, already considered in the relational
algebra section, is to find the order number of all orders for meals other than
‘Regular’. The corresponding SQL expression is:

SELECT ORDER_NO

FROM ORDERS

WHERE NOT(MEAL=’Regular’);

The SELECT clause serves to project (how confusing!) on the required
ORDER_NO attribute. The FROM clause tells us from which table the data is
coming, in this case ORDERS. The WHERE clause provides the restrict condition.

Relational joins are effected by allowing more than one relation (or even
the same relation called twice with different names) in the FROM clause. For
example, to find details of orders and where they are shipping to, we could
give the following SQL command:

SELECT ORDER_NO, MEAL, SIZE, STREET_AD, ZIP, CITY, STATE

FROM ORDERS, ADDRESS

WHERE ORDERS.AID = ADDRESS.ADDRESS_ID;

In this case, the WHERE clause provides the join condition by specifying that
tuples from the two tables are to be combined only when the values of the
attributes AID in ORDERS (indicated by ORDERS.AID) and ADDRESS_ID in ADDRESS

(ADDRESS.ADDRESS_ID) are equal. A more complex case, using all the clauses of
the SELECT expression, is the following expression, which retrieves the total
weight of ingredients in all orders with more than three items.

SELECT ORDER_NO, SUM(WEIGHTG)/1000 AS ’TOTAL (kg)’

FROM ORDERS, CONTENT

WHERE ORDERS.ORDER_NO = CONTENT.OID

GROUP BY ORDER_NO

HAVING COUNT(*) > 3;

With the exception of the term SUM(WEIGHTG)/1000 AS ’TOTAL (kg)’, the first
three lines of code act to retrieve the orders and associated ingredients, using
the join of ORDERS and CONTENT. The GROUP BY clause serves to logically con-
struct a table where the tuples are in groups, one for each order. The HAVING

clause comes into play to operate as a filter condition on the groups in the
grouped relation. It selects only groups that have a tuple count of at least
three. This intermediate table (Table 2.8) is not a legal first normal form re-
lation because values in most cells are not atomic (i.e., there are mini-tables
within most cells). But we are concerned with the total weight for each order
and will eventually project out unused attributes.

64 GIS: A Computing Perspective

ORDER_ID CUS_TEL AID MEAL SIZE SID WEIGHTG

610-555-0195 19104-CS01 Regular 2 Chickpeas 400

610-555-0195 19104-CS01 Regular 2 Chili 10

610-555-0195 19104-CS01 Regular 2 Rice 400
M066-22-06

610-555-0195 19104-CS01 Regular 2 Tomato 400

610-555-0195 19104-CS01 Regular 2 Carrot 300

610-555-0195 19104-CS01 Regular 2 Corn 200

610-555-0195 19104-CS01 Regular 2 Potato 300
M066-22-08

610-555-0195 19104-CS01 Regular 2 Vegetable stock 500

939-555-0177 74012-RA01 Vegan 1 Chickpea 400

939-555-0177 74012-RA01 Vegan 1 Garlic 20

939-555-0177 74012-RA01 Vegan 1 Lemon 200
M113-22-09

939-555-0177 74012-RA01 Vegan 1 Mushroom 600

213-555-0506 94110-MS01 Lo carb 4 Chickpea 800

213-555-0506 94110-MS01 Lo carb 4 Chili 20

213-555-0506 94110-MS01 Lo carb 4 Corn 600
M315-22-06

213-555-0506 94110-MS01 Lo carb 4 Tomato 600

Table 2.8: Evaluation

of an SQL query to the

NUGGETS database:

intermediate stage
The final stage of the retrieval, after projecting out the unwanted at-

tributes, is shown in Table 2.9. The weights in the WEIGHTG column in Ta-
ble 2.8 are aggregated by summation. SUM and COUNT are built-in SQL func-
tions, along with a range of other aggregation functions including AVG, MAX,
and MIN. Failing to specify any aggregate function for any attributes in the fi-
nal projection (except the already grouped-by ORDER_ID) will result in an SQL
error. In constructing the final result, dividing the SUM(WEIGHTG) attribute by
1000 in the projection converts the attribute values from grams to kilograms.
The SQL AS keyword renames the column in the final output to make it more
easily understandable.

Table 2.9: Evaluation of an

SQL query to the NUGGETS

database: final result

ORDER_ID TOTAL (kg)

M066-22-06 1.210

M066-22-08 1.300

M113-22-09 1.220

M315-22-06 2.020

There is much more to SQL than could be covered in a text such as this,
but a wealth of books and online resources are available to assist the in-
terested reader in learning SQL. In addition to giving a flavor of the main
capabilities of language, the brief introduction to SQL provided here is also
designed to highlight the close relationship between the SELECT statement
at the heart of SQL and the relational algebra operations that underpin it.
Other database query languages, such as queries to the graph database model,
cannot boast such rigorous formal foundations, as we shall discover in the
following section.

Fundamental Database Concepts 65

2.4 Graph databases

The second main model of the overall structure of a database is the graph
model. Where the relational model is founded on the table as its fundamental
data structure, the graph model uses abstract graphs. Abstract graphs—referred
to simply as “graphs” where there is no possibility of confusion—offer much
greater flexibility in how data is structured than the more rigid tables we have
seen in a relational databases. This additional flexibility comes at the cost of
additional technical challenges in querying stored data efficiently. As a result,
although graph DBMS have existed since the 1960s, it is only since around the
mid-2000s that scalable graph DBMS have become widely available.

2.4.1 Abstract graphs

A graph is a highly abstracted model of connectivity between elements. graph

Graphs are important models underpinning many spatial concepts, not only
graph databases. So in this section we will take the time to introduce abstract
graphs systematically.

A graph is made up of a set of distinct nodes together with a set of edges node

edgethat connect pairs of nodes. It is usual to summarize a graph by means of a
diagram. The graph in Figure 2.12 consists of the five nodes 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒
and five edges. A node is said to be adjacent to another node if both nodes are adjacency

connected by an edge. In Figure 2.12, nodes 𝑎 and 𝑏 are adjacent, but nodes 𝑎
and 𝑐 are not. An edge is said to join or to be incident on the nodes it connects. incident

Likewise, a node is said to be incident with an edge that connects to it.

a

b

e

d

c

Figure 2.12: A connected,

undirected graph with

order 5

The order of a graph is the number of nodes it contains. The degree of order

degreea node is the number of edges with which it is incident. For example, the
degree of nodes 𝑏 and 𝑐 in Figure 2.12 is three; the degree of node 𝑑 is two;
and the degree of nodes 𝑎 and 𝑒 is one. A path through a graph is a sequence path

of nodes in the graph where each consecutive pair of nodes is adjacent, i.e.,
connected by an edge in the graph. Examples of paths between nodes 𝑎 and
𝑒 in Figure 2.12 are 𝑎𝑏𝑐𝑒, 𝑎𝑏𝑑𝑐𝑒. In contrast, the sequence 𝑎𝑐𝑒 is not a path in
the graph because nodes 𝑎 and 𝑐 are not connected by an edge. A connected
graph is one such that there exists a path between any two of its nodes. The connected graph

66 GIS: A Computing Perspective

graph in Figure 2.12 is connected.
A path from a node to itself traversing at least one edge is called a cycle.cycle

There are two cycles in Figure 2.12: 𝑏𝑐𝑑𝑏 (or equivalently 𝑐𝑑𝑏𝑐 or 𝑑𝑏𝑐𝑑) and
𝑏𝑑𝑐𝑏 (or 𝑐𝑏𝑑𝑐 or 𝑑𝑐𝑏𝑑). A graph that has no cycles is called an acyclic graph.acyclic graph

Two graphs may show exactly the same connectivity relationships. Such
graphs are said to be isomorphic. Thus, graphs Figure 2.12 and Figure 2.13 are
isomorphic, since both have precisely the same nodes and edges. In this case,
we have made the case clearer by labeling the nodes to show the isomorphism.

Figure 2.13: A graph

isomorphic to

that in Figure 2.12

a b

e

d

c

The abstract graphs above are undirected, meaning that the direction of theundirected graph

edges is not significant. Thus, an undirected edge from 𝑎 to 𝑏, written {𝑎, 𝑏},
is the same as that from 𝑏 to 𝑎 (i.e., {𝑎, 𝑏} is equivalent to {𝑏, 𝑎}). A directed
graph or digraph is a graph in which each edge is assigned a direction. Thusdirected graph

in a directed graph an edge from 𝑎 to 𝑏, written 𝑎𝑏, is distinct from an edge
from 𝑏 to 𝑎, written 𝑏𝑎. In diagrams, directed edges are usually indicated by
arrowed lines.

Figure 2.14 shows a directed graph of order 5. Because the direction of
edges is significant, edge 𝑏𝑎 is an edge of the graph in Figure 2.14, but 𝑎𝑏 is
not. Hence, in Figure 2.14 node 𝑏 is adjacent to node 𝑎, but 𝑎 is not adjacent
to 𝑏 (since there exists no directed edge from 𝑎 to 𝑏). The asymmetry intro-
duced by directed graphs means we have to refine our undirected definition
of connected graphs above. A directed graph that satisfies the definition
of a connected graph above—that there exists a path between every pair of
nodes—is termed strongly connected. The graph in Figure 2.14 is not stronglystrongly connected

connected. Replacing all the directed edges with undirected edges, as in Fig-
ure 2.12, does lead to a connected graph though. As a result, the graph in
Figure 2.14 is said to be weakly connected. Closely related, a directed graphweakly connected

where there exists a path either from 𝑥 to 𝑦 or from 𝑦 to 𝑥 for any pair of
nodes 𝑥 and 𝑦 is termed semiconnected.semiconnected

The graph in Figure 2.14 is both weakly connected and semiconnected.
Indeed, every semiconnected graph is also weakly connected; not every weakly
connected graph is semiconnected, however.2

2 Can you construct your own
example of a weakly con-

nected, but not semiconnected
graph? Hint: it is possible to
achieve this by reversing the
direction of just one of the di-
rected edges in Figure 2.14.

Four further types of graph are especially useful in representing data:

• A labeled graph is a graph in which each edge and/or node is assignedlabeled graph

Fundamental Database Concepts 67

a

b

e

d

c

Figure 2.14: A directed,

semiconnected graph of

order 5, not isomorphic to

that in Figure 2.12

a label (maybe a number or string). Labels are usually indicated on a
diagram near to the corresponding edges or nodes.

• A weighted graph is a labeled graph in which each label is a (usually non- weighted graph

negative) number, or weight. Weighted graphs are of particular impor-
tance in GIS, as we shall see in the next chapter.

• A multigraph is a graph that supports multiple distinct edges between a multigraph

pair of nodes, whereas ordinarily there can be at most one edge between
any pair or nodes.

• A hypergraph is a graph where a single edge may connect more than two hypergraph

nodes, whereas ordinarily an edge connects exactly two nodes. Hyper-
graphs are mentioned here purely for completeness, but are not encoun-
tered again in this book.

We will return to the topic of graphs in more detail in later chapters, as
they are also important tools for representing spatial networks and spatial
relationships. For example, one can imagine the usefulness of a graph in
modeling the road network in a city center. In that case, edges can represent
roads, with nodes representing road intersections. A directed graph could be
used to additionally capture information about one-way streets. A labeled
graph can be useful for storing road names, road lengths, or travel times.

However, for now we have enough knowledge of abstract graphs to intro-
duce graph databases.

2.4.2 The graph database model

The most common graph databases are founded on three basic structures:

• Nodes are used to represent entities in a domain. Nodes are approximately
equivalent to a record or a tuple in a relational database.

• Edges are used to represent relationships between entities. Edges are
central to the difference between graph and relational databases. The
relational model contains no comparable structure.

• Properties are data associated with nodes or edges. Properties are akin to graph property

attribute values in relational databases.

The most common graph databases structure their data as a directed,
labeled multigraph of nodes, edges, and associated properties, known as the

68 GIS: A Computing Perspective

property graph model. Another closely related graph database model whichproperty graph model

adopts a slightly different structure is called the triple store. Triple stores are
particularly important in the context of linked open data and the Semantic
Web, which we return to later in this book in Chapter 9.

The property graph model is an incredibly flexible way to structure and
store an enormous range of different data. Indeed, this description of the
property graph model may sound already familiar to you: the simpler E-R
diagrams encountered earlier in this chapter can themselves be thought of as
property graphs.3

3 Indeed, edges in a graph
database are often also called
relationships, just like the cor-
responding structure in the

E-R model. However, to avoid
confusion with E-R model “re-

lationships” (not to mention re-
lational database “relations”!),

we will continue to use the
term edge in this book, high-
lighting the underlying con-
nection to abstract graphs.

Figure 2.15 shows the Nutty Nuggets customer data within a graph
database, displaying the same data encountered earlier in Table 2.2. Each
tuple in the relational database table corresponds to a node in the graph
database. Each data item in the relational database table can be found as a
property of the corresponding node.

Figure 2.15: A view of

the Nutty Nuggets graph

database showing the cus-

tomer data from Table 2.2

Cargill

Da Costa

Dane

Drake

Laufeyson

Foster

CUSTOMER
TEL: '202-555-0125'
GNAME: 'Joanna'
FNAME: 'Cargill'
TITLE: 'Ms'

CUSTOMER
TEL: '213-555-0506'
GNAME: 'Roberto'
FNAME: 'Da Costa'
TITLE: 'Mr'

CUSTOMER
TEL: '610-555-0195'
GNAME: 'Lorna'
FNAME: 'Dane'
TITLE: 'Ms'

CUSTOMER
TEL: '757-555-0112'
GNAME: 'Bobby'
FNAME: 'Drake'
TITLE: 'Mr'

CUSTOMER
TEL: '939-555-0177'
GNAME: 'Jane'
FNAME: 'Foster'
TITLE: 'Dr'

CUSTOMER
TEL: '785-555-0189'
GNAME: 'Loki'
FNAME: 'Laufeyson'
TITLE: 'Mx'

The graph in Figure 2.15 contains only nodes and properties, no edges.
Adding in more data from the database into the view, we can see our first
edges in Figure 2.16. As highlighted above, the relational model has no direct
correspondent to edges; edges are a distinguishing feature of graph databases.
However, an important consequence of this difference is that the Nutty
Nuggets graph database needs no foreign keys. The customers in Figure 2.16
need no HID property, unlike the CUSTOMER relation scheme developed in
Section 2.3.2. Instead, a RESIDES edge connects each customer with a home
address. Additionally that edge is directed, indicating that it is the customer
that resides at the address, not the address that resides in the customer. This
support for relationship directionality is absent from the relational data
model.

Fundamental Database Concepts 69

CUSTOMER
TEL: '202-555-0125'
GNAME: 'Joanna'
FNAME: 'Cargill'
TITLE: 'Ms'

CUSTOMER
TEL: '610-555-0195'
GNAME: 'Lorna'
FNAME: 'Dane'
TITLE: 'Ms'

CUSTOMER
TEL: '757-555-0112'
GNAME: 'Bobby'
FNAME: 'Drake'
TITLE: 'Mr'

CUSTOMER
TEL: '939-555-0177'
GNAME: 'Jane'
FNAME: 'Foster'
TITLE: 'Dr'

CUSTOMER
TEL: '785-555-0189'
GNAME: 'Loki'
FNAME: 'Laufeyson'
TITLE: 'Mx'

RESIDES

RESIDES

RESIDES

RESIDES

RESIDES

Cargill

20002

Dane

10560

Drake

11050

Laufeyson

10012

Foster

74012

ADDRESS
ADDRESS_ID: '10560-GL01'
STREET_AD: '1407 Graymalkin Lane'
ZIP: '10560'
CITY: 'North Salem'
STATE: 'NY''

ADDRESS
ADDRESS_ID: '11050-PA01'
STREET_AD: '98 Pleasant Avenue'
ZIP: '11050'
CITY: 'Fort Washington'
STATE: 'NY'

ADDRESS
ADDRESS_ID: '20002-VRD2'
STREET_AD: '3501 Valley Road Drive'
ZIP: '20002'
CITY: 'Washington'
STATE: 'DC'

CUSTOMER
TEL: '213-555-0506'
GNAME: 'Roberto'
FNAME: 'Da Costa'
TITLE: 'Mr'

RESIDES

Da Costa

94110

ADDRESS
ADDRESS_ID: '94110-MS01'
STREET_AD: '1128 Mission St'
ZIP: '94110'
CITY: 'San Francisco'
STATE: 'CA'

ADDRESS
ADDRESS_ID: '74012-RA01'
STREET_AD: '554 Railroad Avenue'
ZIP: '74012'
CITY: 'Broxton'
STATE: 'OK'

ADDRESS
ADDRESS_ID: '10012-BS01'
STREET_AD: '177a Bleecker St'
ZIP: '10012'
CITY: 'New York'
STATE: 'NY'

11232

ADDRESS
ADDRESS_ID: '11232-4201'
STREET_AD: '738 42nd Street'
ZIP: '11232'
CITY: 'Brooklyn'
STATE: 'NY'

19104

ADDRESS
ADDRESS_ID: '19104-CS01'
STREET_AD: '85 Chestnut Street'
ZIP: '19104'
CITY: 'Philadelphia'
STATE: 'PA'

Figure 2.16: A view of

the Nutty Nuggets graph

database showing both

the customer and ad-

dress data

The resulting graph database view in Figure 2.16 also contains two isolated
address nodes with no incident edges. These nodes relate to delivery addresses
in the database that are not customer home addresses.

2.4.3 Graph database design

The process of database design begins in exactly the same way for a graph
database as we have already seen for a relational database. Indeed, here we see
emphasized again the most important property of any conceptual data mod-
eling: it must be independent of any specific implementation. Hence, the E-R
conceptual model developed in Section 2.2.1 and summarized in Figure 2.11
concerns the entities and relationships of interest in our application, but it is
agnostic on the structure of the data itself.

Consequently, we have already completed the first and most important
step in designing our graph database: designing the E-R model in Sec-
tion 2.2.1. The next step is to again translate that model into a database
scheme, but this time a graph database rather than relational database
scheme. This step highlights an appealing feature of graph databases that
has contributed greatly to their popularity. Whereas relational database
design is a careful and methodical process with important implications for
subsequent database performance, graph database design typically involves

70 GIS: A Computing Perspective

little more than identifying what will be represented as a node, as an edge,
and as a property.

Some natural mappings immediately suggest themselves as a first pass,
namely:

• each entity in the E-R model maps to a set of nodes in the graph database;
• each attribute in the E-R model maps a property found on each corre-
sponding node;

• each relationship maps to a set of edges connecting corresponding nodes.

Unlike a relational database, a graph database does not usually require
primary keys to be identified from the conceptual model. Most graph DBMS
will instead automatically assign a unique system identifier to every node and
edge, but they may also allow an identifying attribute from the data to be
used in place of the system identifier. Without primary keys, a graph database
also needs no foreign keys, as we have seen. Instead, we must be careful to
capture explicitly any relationships in the E-R model as edges connecting
pairs of nodes.

CONT 300g

CO
NT 350g

CONT 150g

CONT 800g

CONT 400g

C
O

N
T 400g

CONT 20g

CONT 10g

CONT 600g

CONT 200g

CONT 30g

CONT 20g

CONT 20g

CONT 200g

CONT 900g

CONT 600g

CO
NT 400g

CO
NT 300g

CONT 400g

CO
NT

 6
00

g

CO
NT 400g

C
O

N
T 500g

M066-2…

Carrot

M315-2…

CheeseM066-2…

M315-2…

Chickpe…

M113-22…

M066-2…

Chili

Corn

Garlic

Lemon

Mushro…

Potato

Rice

Tomato

Vegetable

Figure 2.17: A view of

the Nutty Nuggets graph

database showing the

WEIGHTG property of the

CONT edge connecting

STOCK and ORDERS nodes,

node properties omitted

In a graph database, edges can have properties just as nodes can. These
properties can be used to capture directly any attributes of relationships in
the E-R model. For example, the view of the Nutty Nuggets graph database
in Figure 2.17 shows the edges that capture the contained relationship from
our E-R model in Figure 2.6. Where our relational database scheme required
a CONTENT relation with a WEIGHTG attribute, as well foreign keys posted
from STOCK and ORDERS, the relationship is captured in the graph database in
Figure 2.17 by the CONT edges labeled with their WEIGHTG property.

The remarkable flexibility of the graph database model does come with
some drawbacks, particularly for those database designers used to working
within the structures provided the relational database model. At its most

Fundamental Database Concepts 71

flexible, the graph database places no constraints upon the structure of each
node and edge. There is no explicit requirement for any two nodes to share
any particular properties in common, unlike that requirement enforced on
tuples by the tabular structure of relations. The database developer is free to
add a HAIR_COLOR: GREEN property only to the Lorna Dane customer node in
Figure 2.15 or a CANS: 2 property only to the edge from order node ‘M315-22-

06’ to stock node ‘Chickpeas’ Figure 2.17 without reference to the E-R model.
Such ad hoc changes are not possible in the relational model, requiring first an
update to the relation scheme and second the inclusion of corresponding hair
color or cans data to other tuples in the relation (even if only NULL values).

Indeed, the different “types” of nodes in Figures 2.15–2.17, also shown in
the complete database view in Figure 2.18, are colored for the purposes of
graphical clarity only. The basic property graph model makes no such dis-
tinctions between different node or edge types. An extension to the property
graph model, called the labeled property graph model, does however require labeled property graph

nodes and edges to be grouped into labeled “types,” but it still makes no re-
strictions on whether two nodes with the same label share any properties in
common. The ability to have at least the minimal structure provided by node
and edge labels is still practically useful. Accordingly, many graph DBMS
today do adopt the labeled property graph model.

RESIDES

PLACED

PLACED

RE
SI

DE
S

PLACED
PLACED

PLACED

RESIDES

RESIDES

RESIDES

PLACED RE
SI

DE
S

C
O

N
T

40
0g

C
O

N
T 400g

CONT 10g

CONT 4
00

g

SHIPPED

CONT 400g
CONT 20

g

C
O

N
T

15
0g

SHIPPED

CONT 50
0g

CONT 300g

CO
NT 200g

CO
NT

 3
00

g

SHIPPED

CONT 600g

C
O

N
T 200g

CONT 20g

SHIPPED

C
O

N
T

60
0g

CO
NT

 60
0g

CONT 2
0g

SHIPPED

CONT 900g
CONT 30gCO

NT
 3

50
g

SHIPPED

74012

94110

Cargill
Da Costa

Dane

Drake

Laufeyson

Foster

M066-2…

M066-2…

M066-2…

M113-22…

M315-2…

M315-2…

Carrot

Cheese

Chickpe…

Chili

Corn

Garlic

Lemon

Mushro…

Oil

Onion

Potato

Rice

Tomato

Vegetable

10012

10560

11050

11232

19104

20002

Figure 2.18: A view of the

complete Nutty Nuggets

graph database, node

properties omitted

This extreme flexibility to not only add data but evolve structure has led
to graph databases sometimes being referred to as “NoSQL” databases. The NoSQL

72 GIS: A Computing Perspective

term is somewhat misleading, suggesting that graph databases do need query
languages or never accept SQL, neither of which is the case. Instead, a more
accurate encoding of the idea would be a “not only SQL.” As we shall see, a
number of different languages are used to query graph databases, sometimes
including extensions to SQL.

2.4.4 Graph query languages

Whereas Section 2.3.4 was entitled “Structured query language,” this corre-
sponding section for graph databases is intentionally titled “Graph query
languages.” Relational databases, founded on Codd’s relational algebra in-
troduced in Section 2.3.3, enjoy a standard query language, SQL, supported
universally with only minor syntactic variations across different relational
DBMS. Unfortunately, at the time of writing there exists no comparable
consensus on a standard query language for graph databases.

The establishment in 2019 of an ISO (International Standards Organiza-
tion) initiative to develop a standard GQL (Graph Query Language) makes it
more likely one may exist when you read this. From the graph query languages
available today4, Cypher (and its open-source sibling openCypher) is used4 Common graph database query

languages today include Cypher
and openCypher; GraphQL and

GSQL, two entirely different lan-
guages that should not be con-
fused with the proposed stan-

dard GQL; PGQL (property graph
query language); and SPARQL,

which is a de facto standard for
triple stores, the second major

class of graph database dis-
cussed further in later chapters.

here, as it is amongst the most popular languages today and certain to be a
major influence on any future standards.

Cypher is an SQL-like language for querying labeled property graph
databases. As a result, Cypher is built around nodes and edges and their as-
sociated properties and labels. As for SQL, the basic Cypher commands for
creating, deleting, and updating data in the graph database are quite straight-
forward and not covered further here. Unlike SQL, querying involves search-
ing for matching patterns rather than combinations of relational restrictions,
projections, and joins. For example:

MATCH (n:CUSTOMER) RETURN n

retrieves all nodes with the label (“type”) CUSTOMER (as shown in Figure 2.15),
whereas:

MATCH e=()−[r:RESIDES]−>() RETURN e

retrieves all edges with the label RESIDES together with their incident nodes
(as shown in Figure 2.16). Many Cypher queries are similarly constructed
and involve matching data in the database against various forms of the basic
(node)−[directed edge]−>(node) pattern.

While the two queries above reflect the underlying node and edge storage
structures in a graph database, it is often still convenient to organize query
results in the form of a table. For example, the query:

MATCH (c: CUSTOMER)−[p:PLACED]−>(o: ORDERS)

RETURN c.TEL, c.GNAME, c.FNAME, c.TITLE, o.ORDER_ID, o.MEAL, o.SIZE

Fundamental Database Concepts 73

will return the table of customer orders as per the relational join⋈TEL=CUS_TEL

(CUSTOMER,ORDERS) (already seen in Table 2.6) or equivalently from the SQL
join query:

SELECT * FROM CUSTOMER, ORDERS WHERE CUSTOMER.TEL = ORDERS.CUS_TEL

Note that the explicit link between customers and their orders, in the form
of an edge in the graph database, negates any need to specify the implicit
connection between the primary keys of the corresponding tables, found in
the relational database query.

The power and efficiency of graph pattern-matching starts to become most
evident when queries responses require searching for paths through the graph.
For example, the Cypher query:

MATCH (a)<−[:RESIDES]−(c)−[:PLACED]−>(o)−[:SHIPPED]−>(b)

WHERE b<>a RETURN DISTINCT c.GNAME, c.FNAME,

a.STREET_AD AS HOME, b.STREET_AD AS SHIP

identifies the customers who have a different home address to their shipping
address. The query searches for non-cyclic paths from address nodes, through
customers’ home addresses and orders, and finally back to shipping addresses,
using the pattern (a)<−[:RESIDES]−(c)−[:PLACED]−>(o)−[:SHIPPED]−>(b). The equiva-
lent SQL query, below, requires a more complex four-way join across three
tables to achieve the same result.

SELECT CUSTOMER.GNAME, CUSTOMER.HNAME,

HADDRESS.STREET_AD AS HOME, SADDRESS.STREET_AD AS SHIP

FROM ADDRESS AS HADDRESS, ADDRESS AS SADDRESS, CUSTOMERS, ORDERS

WHERE HADDRESS.ADDRESS_ID = CUSTOMERS.HID AND

CUSTOMER.TEL = ORDERS.CUS_TEL AND

ORDERS.ORDER_ID = SADDRESS.ADDRESS_ID AND

NOT(HADDRESS.ADDRESS_ID = SADDRESS.ADDRESS_ID)

Table 2.10 gives the final result for both Cypher and SQL versions of the
query.

GNAME FNAME HOME SHIP

Lorna Dane 1407 Graymalkin Lane 85 Chestnut Street
Table 2.10: Evaluation

of a graph-based path

matching query or four-

way relational joinCypher also needs no GROUP BY statement, simplifying many aggregate
queries. For example, the Cypher query below generates the total weight of
orders containing more than three items, equivalent to the SQL query used to
generate Table 2.9:

MATCH (o:ORDERS)−[c:CONTAINED]−>()

WITH o.ORDER_ID AS ORDN, COUNT(o.ORDER_ID) AS ORDC, SUM(c.WEIGHTG) AS WG

WHERE ORDC > 3

RETURN ORDN, ORDC, WG

74 GIS: A Computing Perspective

Cypher also requires no comparable data definition commands to SQL,
as there is no comparable need to define the schema structure in a graph
database. Hence, SQL commands such as CREATE TABLE have no analog within
Cypher. The one exception is that Cypher does allow the creation of integrity
constraints to mandate the existence or uniqueness of properties on nodes or
edges. For example, to require that the contact telephone number property is
not null for customer nodes, we can issue the Cypher query:

CREATE CONSTRAINT ON (c:CUSTOMER) ASSERT c.TEL IS NOT NULL

This balance between structure and flexibility is at the root of the prac-
tical implications of choosing a relational versus a graph database. Graph
databases are without question more flexible than relational databases, mak-
ing it easy to change or adapt stored data structures in response to evolving
needs. The rigid tabular structure of relational databases, however, provides
in-built constraints that can improve consistency, for example, between the
conceptual model and the implemented database.

2.4.5 Databases for spatial data handling

In an unmodified state, neither relational nor graph databases can claim to be
well suited to spatial data management. In both cases, there can be difficulties
when the technology is applied to spatial data. The main issues are:

Structure of spatial data Spatial data has a structure that does not naturally fit
with tabular structures. Vector areal data is typically structured as bound-
aries composed of sequences of line segments, each of which is a sequence
of points. Such sequences of arbitrary length violate first normal form. We
shall see that some spatial data, in particular data about networks, does
fit well with graph database structures. However, other spatial data—such
as vectors and rasters—does not fit neatly into a graph structure either.
So the need for special structures to store spatial data remains for graph
databases too.

Performance The structure of relational databases can ensure simple and
efficient queries about logically related data, in particular data contained
within a single table. However, as queries become more complex, requiring
joins across multiple tables, so the benefits of graph databases come to
the fore, both in terms of performance and ease of formulation of queries.
Reconstructing spatial objects and relationships is typically complex,
usually requiring joining multiple tables stored in a relational database,
with resulting performance overheads. Graph databases tend to be better
adapted for more complex queries, and so they might be expected to
be better suited to spatial queries. However, the underlying mismatch
between graphs and some spatial data structures means the relationship is
more complex than it might appear at first glance.

Fundamental Database Concepts 75

Indexes Indexing questions are the focus of Chapter 6. An index aims to
increase the speed of queries by storing some additional data in order
to aid access and retrieval. Both relational and graph databases need
specialized spatial indexes if they are to perform well with spatial data
structures. Happily, in many cases these index structures work well
for spatial data stored in both relational and graph databases, as we
shall see.

Reflections

Databases are a core technology for GIS; equally, databases are a core exper-
tise for geographic information scientists. A solid grounding in databases
often serves as a marker of advanced technical skills for geographic infor-
mation scientists in the GIS industry. For those wishing to deepen their
knowledge in databases, Elmasri & Navathe (2016) and Connolly & Begg
(2014) are two venerable and trusted database texts with recently updated
editions. Garcia-Molina, Ullman, & Widom (2013) is also recommended as a
shorter yet respected, authoritative text.

All three classic database texts are firmly founded in relational databases,
and less oriented towards graph databases specifically. In writing this third
edition, it has been exciting to reflect on how much graph databases (men-
tioned only in passing in the second edition) have changed the landscape
in databases and in GIS over recent years. Of the introductory database
texts with an explicit graph database focus, Sullivan (2015) is recommended.
Zhang, Song, & Liu (2014) and Baralis, Dalla Valle, Garza, Rossi, & Scullino
(2017) provide some brief comparisons of the technical aspects of relational
and NoSQL databases for spatial data, but no other introductory texts explic-
itly on the topic existed at the time of writing this book.

Practical mastery of databases, whether relational or graph, is best achieved
by mastering a database query language.5 Database query languages are 5 The website to accompany this

book contains downloadable
relational and graph versions
of the NUGGETS database in
Appendix A for readers who
would like to start learning to
query there.

among the most rewarding of computing languages to learn and use. There
is great satisfaction to be gained from finding compact and elegant expression
to capture a complex query using SQL, Cypher, or other graph database lan-
guages. While there are many excellent online resources for learning database
query languages, Date (2015) is highly recommended as a resource for truly
mastering SQL.

Finally, in introducing abstract graphs, set operations, and (relational) al-
gebra, this chapter has taken a first step into the topic of discrete mathematics—
an important topic in its own right that later chapters will build upon. As for
databases, a foundation in discrete mathematics can be rewarding intellectu-
ally and provide the foundations of a deeper understanding of the GIS, and
computing more generally. Lipschutz & Lipson (2021) and Epp (2018) are

76 GIS: A Computing Perspective

both excellent, accessible, and thorough introductions to the topic, replete
with practical questions and exercises to support the learner. A brief discrete
mathematics primer is also included in Appendix B of this book for those
who only need a refresher.

