
GIS
A Computing Perspective

Third Edition

Edited by Matt Duckham, Qian (Chayn) Sun and
Michael F. Worboys

First published 1995

ISBN: 978-1-4665-8719-9 (hbk)
ISBN: 978-1-032-53973-7 (pbk)
ISBN: 978-0-429-16809-3 (ebk)

Chapter 9

Artificial Intelligence and GIS

(CC BY-NC-ND 4.0)

DOI: 10.1201/9780429168093-9

The funder for this chapter is Matt Duckham

9Artificial
Intelligence
and GIS

Sections

9.1 Ontology engineering

9.2 Qualitative spatial
reasoning

9.3 Machine learning and
spatial analysis

9.4 Deep learning

Artificial intelligence (AI) encompasses a wide range of different algorithms and

techniques commonly used in GIS for creating new knowledge from spatial data.

More specifically, through this chapter you will discover how to:

• interpret, use, and design machine-readable ontologies to help increase the

interoperability of spatial information;

• represent qualitative spatial relationships, such as left and right, cardinal

directions, and region relations, within automated reasoning systems;

• apply the basicmachine learning techniques that underpin many common

spatial analyses; and

• understand the principles and limitations of advanced machine learning

techniques, such as artificial neural networks and deep learning.

Artificial intelligence has been a central to the development of GIS
since the earliest days of GIS research.1 In a nutshell, artificial intelli-

1 In 1987, the second ever issue
of the International Journal of
Geographical Information Science
(IJGIS), the flagship journal
for GIS research, contained a
research paper on a knowledge-
based GIS called “KBGIS-II”
with a facility to apply logical
rules to spatial data, and even
to learn new rules from data
automatically (Smith, Peuquet,
Menon, & Agarwal, 1987).

gence (AI) concerns the design and development of machines imbued with

artificial intelligence

behaviors and abilities that might otherwise be regarded as requiring human
intelligence (see Box 9.1 on the following page).

While the breadth and diversity of AI techniques today is vast, it is pos-
sible to identify two major threads that run throughout the history of AI:
knowledge representation and reasoning and machine learning. Knowledge rep-
resentation and reasoning (KR2) is concerned with using automated logical

KR2

reasoning together with symbolic representations of knowledge to solve AI
problems. In contrast, machine learning (ML) is concerned with automated

machine learning

learning from data.
In this chapter, we begin by introducing the most successful and widely

used KR2 technique today: ontology engineering (Section 9.1). Whereas the
emphasis in ontology engineering is more strongly on the representation of
knowledge than reasoning about that knowledge, the emphasis is reversed
in qualitative spatial reasoning (Section 9.2). Turning to ML in the second
half of this chapter, Section 9.3 shows how many of the most familiar and
frequently used spatial analysis tools and techniques are in fact founded on
machine learning. Finally, Section 9.4 introduces one of the most important
machine learning techniques in the recent decade: artificial neural networks
and deep learning.

This chapter has been made available under a CC-BY-NC-ND license.

350 GIS: A Computing Perspective

Box 9.1: The Turing test

The definition of AI as, effectively, a machine that can

imitate human intelligent behavior is tied most closely

to the work of British mathematician and computer sci-

entist Alan Turing. In a landmark 1950 paper, Turing ar-

gued that a machine could be called “intelligent” if a hu-

man interrogator could not reliably distinguish the ma-

chine from a human interlocutor (Turing, 1950). Turing’s

thought experiment—which Turing called “the imitation

game,” also the title of the 2014 film about Turing’s life

and work—is commonly known in computer science as

the Turing test. Turing made many other enduring con-

tributions to the emerging fields of computing and AI,

including an abstract mathematical description of com-

puting machines and the types of problems that can be

solved by computers, called a Turing machine. Sadly, Alan

Turing died at age 41, just two years after he was con-

victed for “gross indecency”—a euphemism for homosex-

uality, then a crime in the United Kingdom—and forced to

undergo a year of invasive hormone injections resulting

in impotence and physical changes to his body. In 2009,

the British government officially apologized for Turing’s

treatment, acknowledging at the same time the appalling

treatment of innumerable gay men in Britain during the

era.

9.1 Ontology engineering

The idea of ontology as the philosophical study and classification of what
things exist was already encountered in Chapter 4 in the context of how we
model geographical spaces. This section introduces the related idea of an
ontology, which can be defined as an explicit, unambiguous, and machine-ontology

readable specification of the meaningful and relevant entities and relation-
ships in an application.2 The activity of designing and using computerized2 The topics of conceptual data

modeling and entity-relationship
models (Section 2.2.2) have clear
commonalities with ontologies.

However, ontologies are focused
more generally on the stable

meanings of words used to refer
to things that exist in the world.

Conceptual data models, by
contrast, are slanted towards

describing the data related to an
application. Nevertheless, a good
conceptual data model may also
be the basis of a good ontology.

ontologies is termed ontology engineering.

ontology engineering

The core idea behind ontologies3 is that the meaning of words in natural

3 We consistently use the count
nouns—“an ontology” and

“ontologies”—to refer to the
“explicit specification of hu-
man concepts” sense of the

word. The abstract, uncount-
able mass noun—“ontology”—is
used to refer to the philosoph-
ical study sense of the word.

language is relatively stable, while the meaning of items in digital data struc-
tures and data models can be highly transient and changeable. An ontology
helps to make explicit the link between relatively stable human language
words and relatively volatile data item definitions. As we shall see, using on-
tologies can have significant impacts on making GIS and spatial data more
interoperable.

For example, Figure 9.1 depicts a simple and widely used ontology—or
“vocabulary”—for describing locations in terms of spherical coordinates
referenced to the WGS84 datum. A vocabulary is an informal term for a

vocabulary

simple ontology, although there is no strict definition of what counts as
“simple” in this context. We will use the term “vocabulary” in this chapter to
refer to minimalist ontologies such as depicted in Figure 9.1.

Just as object-oriented classes capture types or kinds of (object) instances,
so too do ontology classes. The vocabulary in Figure 9.1 has just two classes
defined: SpatialThing, which has objects with a spatial extent as its instances;
and Point which is a (subclass of) SpatialThing. Here the ontology engineering
terminology deviates slightly from object-oriented terminology defined in
Chapter 4. Classes in ontologies do not possess behaviors in the same way
as object-oriented classes. However, the “is a” subclass relationship is used
exactly as already encountered in the context of inheritance in OO models
(Section 4.1.2): a Point “is a” (i.e., specializes a) SpatialThing.

Artificial Intelligence and GIS 351

long

alt

lat

location

Subclass of
Point

Thing

SpatialThing

Figure 9.1: The Basic

Geo (WGS84 lat/long)

vocabulary

Classes may in turn possess properties in a similar sense to edge properties
in the property graph model and akin to attribute (type) in ER modeling
in Chapter 2. In an ontology, a property has the structure of a function in
set-based representations (see Section 3.2.3). As for functions, ontology prop-
erties have a domain and a range.4 In the Basic Geo vocabulary in Figure 9.1, 4 Recall from Section 3.2.3: the

domain of a function is the set of
things the function maps from;
the range is the set of things the
function maps to.

the location property has any Thing as its domain (i.e., a location may poten-
tially be a property of anything in an ontology) and SpatialThing as its range.
In turn, each point (which is a SpatialThing) may have properties called lat, long,
and alt representing the point latitude, longitude, and altitude. These prop-
erties have Point as their range (i.e., only points can have coordinates) but,
interestingly, no defined range (empty dashed boxes in Figure 9.1).

The reason for leaving the range undefined is to allow different users of the
ontology to define for themselves the precise encoding and data type used for
latitude, longitude, and altitude data (including text strings, floating point
numbers, or double precision). Properties with no defined range in an ontol-
ogy are called annotation properties, in contrast to data properties (which have annotation properties

a data type such as integer or text string as their range) and object properties
(which have a class as their range, such as location in Figure 9.1).

Ontologies such as the Basic Geo vocabulary in Figure 9.1 can help in-
crease interoperability because they provide a more stable, linguistic basis for
describing the meanings behind spatial data. Whether I develop a relational
database scheme with attributes called “latitude” and “longitude”; a graph
database with nodes labeled “coordinate”; or object-oriented software that
defines a class of “SpatialPoint” objects, as long as I associate those system
entities with the appropriate classes or properties in the Basic Geo vocabulary
then everyone should be able to understand what my data means, and link
it into other spatial data sets in the right way. Happily, a suite of technolo-
gies has been developed to help make it easier to do exactly this—to make

352 GIS: A Computing Perspective

connections between data and the ontologies that describe stable, linguistic
meanings for that data.

9.1.1 Representing data using ontologies

The discussion above introduces some of the key entities in an ontology
including classes, subclasses, instances, and properties. In this section we
explore briefly how one can use an ontology to represent the meanings behind
data. The Semantic Web consists of a collection of technologies to link data toSemantic Web

rich, machine-readable ontologies representing the meaning of that data.
One of the most basic building blocks in the Semantic Web is URIs: uni-URI

form resource identifiers. A URI is a unique identifier for any digital resource.
Web URLs (uniform resource locators) are a familiar example of URIs used toURL

identify web pages. Indeed, most URIs today use the machinery of Web ad-
dresses to locate the resource. The URI of the SpatialThing class in Figure 9.1,
for example, is http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing.

The connections between resources in the Semantic Web are captured
using triples. Each triple can be thought of as an atomic fact of the form:triple

subject predicate object

For example, the fact that “The Eiffel Tower is located in Paris” can be rep-
resented as a triple: “Eiffel Tower” (subject, “Tour Eiffel” in French), “located
in” (predicate), “Paris” (object5). Facts can be combined together, linking in-

5 Note than the term “object”
is used here in the linguis-

tic sense of “the thing being
acted upon in a sentence,”

rather than the object-oriented
sense of “state + behavior.”

formation from diverse sources. For example, the triple below states a simple
fact (triple) from GeoNames6, an open source database containing myriad

6 http://geonames.org
facts about millions of toponyms (placenames) from around the world.

<https://sws.geonames.org/6254976/> # subject

<http://www.geonames.org/ontology#name> # predicate

”Tour Eiffel” . # object

The triple above is written in a language called Turtle. Simple triples in TurtleTurtle

use the “subject predicate object” format for facts followed by a terminating
full stop. Hence, the triple above asserts that the GeoNames instance 6254976

is named ”Tour Eiffel”.
Rather than rewrite subjects multiple times, Turtle allows multiple predi-

cates to be listed for the same subject by using a semicolon to separate predi-
cates. Thus, the listing below:

<https://sws.geonames.org/6254976/> # subject

<http://www.geonames.org/ontology#name> ”Tour Eiffel” ; # predicate object

<http://www.w3.org/2003/01/geo/wgs84_pos#lat> ”48.85832” ; # predicate object

<http://www.w3.org/2003/01/geo/wgs84_pos#long> ”2.29452” . # predicate object

asserts the fact that the Eiffel Tower (or more precisely GeoNames instance
6254976 with name “Tour Eiffel”) is located at latitude ”48.85832” and longitude
”2.29452”. Note that the Basic Geo (WGS84 lat/long) vocabulary (introduced

Artificial Intelligence and GIS 353

in Figure 9.1) is used to ensure that the semantics of the location coordinates
are clear.

Further, commas can be used to separate multiple objects for the same
predicate. For example, the fact that the Eiffel Tower has different official
names in English, German, and French can be asserted using the statement:

<https://sws.geonames.org/6254976/> # subject

<http://www.geonames.org/ontology#name> ”Tour Eiffel” ; # predicate object

<http://www.w3.org/2003/01/geo/wgs84_pos#lat> ”48.85832” ; # predicate object

<http://www.w3.org/2003/01/geo/wgs84_pos#long> ”2.29452” ; # predicate object

<http://www.geonames.org/ontology#officialName> # predicate

”Eiffel Tower”@en, ”Eiffelturm”@de, ”Tour Eiffel”@fr . # object object object

The Turtle listing in Figure 9.2 below shows 11 of more than 70 facts about
the Eiffel Tower in the GeoNames database. The listing contains additional
information about a location map and further semantic information about
the Eiffel Tower stored on the public data catalog DBpedia7. The first listed 7 DBpedia (https://www.dbpedia.

org/) is a Semantic Web database
of information from Wikipedia,
the crowdsourced encyclopedia.

predicate (simply a) is shorthand for asserting the type of the subject. In this
case, the GeoNames instance 6254976 is an instance of type Feature. To shorten
the Turtle listings still further, the first three lines of the listing in Figure 9.2
define three prefixes (including gn for the GeoNames ontology and geo for the
Basic Geo ontology).

@prefix gn: <http://www.geonames.org/ontology#> . # GeoNames prefix

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> . # WGS84 Basic Geo prefix

@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> . # RDFS prefix

<https://sws.geonames.org/6254976/>

a <http://www.geonames.org/ontology#Feature> ;

gn:name ”Tour Eiffel” ;

gn:officialName ”Eiffel Tower”@en, ”Eiffelturm”@de, ”Tour Eiffel”@fr ;

gn:countryCode ”FR” ;

geo:lat ”48.85832” ;

geo:long ”2.29452” ;

gn:locationMap <https://www.geonames.org/6254976/tour−eiffel.html> ;

rdfs:seeAlso <https://dbpedia.org/resource/Eiffel_Tower> .

Figure 9.2: Representation

of the Eiffel Tower on

GeoNames in Turtle

Eagle-eyed readers may notice that the Turtle in listing Figure 9.2 includes
a new third prefix: rdfs. RDFS is a standard ontology engineering vocabulary
called “RDF schema,” itself based on RDF: the “resource description frame- RDF

work.” RDF describes the fundamental data model for triples that underpins
the Semantic Web. Indeed, the language Turtle is also based on RDF (Turtle
stands for “terse RDF triple language”). Figure 9.3 encodes exactly the same
information about the Eiffel Tower as the listing in Figure 9.2 but using RD-
F/XML format. The RDF/XML format is not as human-readable as Turtle,
but it is often used in the Semantic Web because XML is a general purpose
document format understood by many different computer applications.

354 GIS: A Computing Perspective

Figure 9.3: RDF/XML

representation of the

Eiffel Tower on Geo-

Names, identical in con-

tent to the Turtle repre-

sentation in Figure 9.2

<rdf:RDF xmlns:gn=”http://www.geonames.org/ontology#” # GeoNames prefix

xmlns:geo=”http://www.w3.org/2003/01/geo/wgs84_pos#” # WGS84 prefix

xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#” # RDF prefix

xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”> # RDFS prefix

<rdf:Description rdf:about=”https://sws.geonames.org/6254976/”>

<rdf:type rdf:resource=”http://www.geonames.org/ontology#Feature”/>

<gn:name>Tour Eiffel</gn:name>

<gn:officialName xml:lang=”en”>Eiffel Tower</gn:officialName>

<gn:officialName xml:lang=”de”>Eiffelturm</gn:officialName>

<gn:officialName xml:lang=”fr”>Tour Eiffel</gn:officialName>

<gn:countryCode>FR</gn:countryCode>

<geo:lat>48.85832</geo:lat>

<geo:long>2.29452</geo:long>

<gn:locationMap

rdf:resource=”https://www.geonames.org/6254976/tour−eiffel.html”/>

<rdfs:seeAlso rdf:resource=”https://dbpedia.org/resource/Eiffel_Tower”/>

</rdf:Description>

</rdf:RDF>

The Semantic Web is designed to be agnostic to specific encodings, so
several such different languages are commonly used in connection with on-
tologies. Ultimately, however, all are founded on subject-predicate-object
triples, and so they can be represented using graphs, often termed knowledge
graphs, such as that pictured in Figure 9.4.knowledge graph

9.1.2 Querying ontologies

Section 2.4 introduced the graph database and explored in more detail the
property graph model. Although property graph databases can also be used
to store RDF data, the addition of node and edge properties in the property
graph model is not required for storing triples. Instead, RDF data in the
Semantic Web is usually stored in the second major class of graph database:
the triple store. A triple store is a database specifically designed to store andtriple store

retrieve only RDF subject-predicate-object triples.
As we saw in Section 2.4, there is currently no single standard for querying

property graph databases, with languages such as Cypher among the leading
influences on an emerging future standard. Happily, though, triple stores do
enjoy a standard query language: SPARQL.8 SPARQL shares many superficialSPARQL

8 SPARQL is an acronym for
“SPARQL protocol and RDF

query language”—confusingly,
“SPARQL” is an abbreviated
word in its own acronym.

similarities with the standard relational database query language SQL. How-
ever, in detail SPARQL is more akin to other graph query languages such as
Cypher, as might be expected.

Echoing SQL, SPARQL queries are constructed around SELECT ... WHERE

statements. Unlike SQL queries, the SELECT clause is followed by one or more
variables that will appear in the query results. The WHERE clause then lists
patterns to match against the stored graph, much as is found in other graph

Artificial Intelligence and GIS 355

rdf:type

https://sws.geonames.org/6254976/

gn:Feature

Tour Eiffel

Eiffel Tower
Language: en

Eiffelturm
Language: de

Tour Eiffel
Language: fr

FR

48.85832

2.29452

https://www.geonames.org/6254976/tour-eiffel.html

https://dbpedia.org/resource/Eiffel_Tower

rdfs:seeAlso

gn:locationMap

geo:long

geo:lat

gn:countryCode

gn:officialName

gn:name

gn:officialName

gn:officialName

Figure 9.4: The knowledge

graph representation of

the Eiffel Tower triple data

encoded in Turtle and RDF

in Figures 9.2 and 9.3

query languages such as Cypher. For example, the SPARQL query in Fig-
ure 9.5 retrieves the latitude and longitude of the Eiffel Tower from the graph
represented in Figure 9.4 and encoded in Turtle and RDF/XML in Figures 9.2
and 9.3, respectively.

In the query in Figure 9.5, following the definition of the gn and geo pre-
fixes, the SELECT clause specifies two variables whose values will appear in
the query output: ?latitude and ?longitude. Variables in SPARQL must always
be denoted using the leading ? symbol. In the WHERE clause, three matches
are defined. First, the query searches for matches with some variable ?x with
gn:name as ”Eiffel Tower”. The terminating full stop indicates the end of a triple
pattern, similarly to the Turtle encoding. Next, two further query matches
look for the same subject ?x, but storing the object linked by predicate geo:lat

in the variable ?latitude and the object linked by predicate geo:long in the vari-
able ?longitude. The final output of the SPARQL query in Figure 9.5 is given in
Table 9.1.

?latitude ?longitude

”48.85832” ”2.29452”
Table 9.1: Output of

SPARQL query in Fig-

ure 9.5

356 GIS: A Computing Perspective

Figure 9.5: SPARQL

query to retrieve the

latitude and longitude

of the Eiffel Tower

PREFIX gn: <http://www.geonames.org/ontology#> # GeoNames prefix

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> # WGS84 Basic Geo prefix

SELECT ?latitude ?longitude WHERE {

?x gn:name ”Tour Eiffel” . # GeoNames instance named ”Tour Eiffel”

?x geo:lat ?latitude . # Retrieve latitude

?x geo:long ?longitude . # Retrieve longitude

}

With the breadth and depth of the Semantic Web growing daily, SPARQL
brings the power to query vast networks of spatial knowledge. For example,
using the ontology to bridge directly from the GeoNames database to DBpe-
dia, Figure 9.6 gives a SPARQL query to search for other buildings in Paris
and sort them by completion date (listed in Table 9.2).

Figure 9.6: SPARQL query

to retrieve GeoNames

buildings in Paris by con-

struction date (see Ta-

ble 9.2 on the next page)

PREFIX gn: <http://www.geonames.org/ontology#> # GeoNames prefix

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> # WGS84 Basic Geo prefix

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> # RDF prefix

PREFIX dbp: <http://dbpedia.org/property/> # DBpedia property prefix

PREFIX dbo: <http://dbpedia.org/ontology/> # DBpedia ontology prefix

PREFIX dbr: <http://dbpedia.org/resource/> # DBpedia resource prefix

SELECT DISTINCT ?name ?completed ?latitude ?longitude WHERE {

?x gn:name ?name . # Retrieve GeoNames name

?x geo:lat ?latitude . # Retrieve WGS84 latitude

?x geo:long ?longitude . # Retrieve WGS84 longitude

?x dbo:location dbr:Paris . # Retrieve location in Paris

?x rdf:type dbo:Building . # Retrieve instances of Buildings

?x dbp:completionDate ?completed # Retrieve completion dates of Buildings

}

ORDER BY DESC(?completed) # In order of completion date, most recent first

Note, however, that the SPARQL query Figure 9.6 does not perform a
spatial operation when satisfying the search criterion “in Paris.” Instead, the
query uses the fact that the DBpedia database includes a predicate dbo:location

and the object dbr:Paris. Just like our basic SQL queries, SPARQL does not
include spatial operators, although attempts have been made to extend
SPARQL with such spatial operations (see Box 9.2 on the facing page).

9.1.3 Reasoning with ontologies

To this point, our discussion of ontologies has only addressed the representa-
tion of human knowledge, with subject-predicate-object triples as the founda-
tion of that representation. An essential ingredient in any KR2 AI system is
the ability also to reason with these representations.

Artificial Intelligence and GIS 357

Box 9.2: GeoSPARQL

GeoSPARQL is an emerging standard for represent-

ing geospatial data on the Semantic Web as well as an

extension to SPARQL to enable spatial queries to be

constructed. The representation of geospatial data in

GeoSPARQL is based on the simple feature model al-

ready introduced in Section 4.1.3 and summarized in Fig-

ure 4.14. The spatial operations available in GeoSPARQL

queries include basic spatial filters such as: within-

distance queries for retrieving objects within a certain

distance of a point; spatial point and range queries; and

querying topological relations based on an extension to

the 4-intersection model (4IM) already discussed in Chap-

ter 3. The leading triple store databases also offer basic

spatial indexes, such as geohashing introduced in Box 6.3

on page 238. However, today’s spatial query capabilities

for the Semantic Web are overall relatively basic.

?name ?completed ?latitude ?longitude

Tour Eiffel 1889 48.85832 2.29452

Bastille Opera 1990 48.85272 2.36999

Hyatt Regency Paris Etoile 1974 48.88070 2.2845

Tour Montparnasse 1973 48.84193 2.32207

Centre Georges Pompidou 1971 48.86060 2.35237

Hôtel de Ville de Paris 1892 48.85644 2.35244

Arc de Triomphe du Carrousel 1808 48.86173 2.33291

Panthéon 1790 48.84624 2.34613

Élysée Palace 1722 48.87060 2.31709

Palais du Luxembourg 1645 48.84844 2.33726

Hôtel de Ville de Paris 1357 48.85644 2.35244

...

Table 9.2: Output of

SPARQL query in Fig-

ure 9.6 on the facing

page

In fact, behind the scenes reasoning was woven in to the Semantic Web
technologies we have already encountered. The SPARQL query in Fig-
ure 9.5 can satisfy its query simply by retrieving the required stored data
from GeoNames, such as that listed in Figure 9.2 and Figure 9.3. The query
in Figure 9.6, however, went much further linking seamlessly to a completely
different data source, DBpedia. How did it do that?

The answer lies in the DBpedia knowledge graph. The worldwide network
of structured, open access, Semantic Web data (including databases such as
DBpedia and GeoNames) is termed linked open data (LOD). DBpedia contains linked open data

over 3 billion such facts, with almost 400 facts about the Eiffel Tower alone,
including in particular the (Turtle) fact:

@prefix owl: <http://www.w3.org/2002/07/owl#> # OWL prefix

@prefix dbr: <http://dbpedia.org/resource/> # DBpedia resource prefix

dbr:Eiffel_Tower owl:sameAs <https://sws.geonames.org/6254976/>

OWL (Web ontology language) is an extension of RDF that additionally OWL

enables the description of logical relationships and constraints between
concepts as triples. In the listing above, the OWL predicate own:sameAs asserts
that the DBpedia Eiffel Tower instance dbr:Eiffel_Tower is one and the same as
the GeoNames Tour Eiffel instance <https://sws.geonames.org/6254976/>. This
simple but critical connection enables a SPARQL query engine to begin to
draw inferences that bridge across and span the breadth of knowledge graphs.

358 GIS: A Computing Perspective

To understand better how we reason with ontologies, and indeed across a
swathe of KR2 systems, we need first to delve into a little classical logic and
deduction.

Logic and deduction An important logical distinction is made between syntax
and semantics. Consider the sentence, “The Eiffel Tower is in Paris.” A syntacticsyntax

analysis would focus on the terms of the sentence: the sentence contains two
proper nouns (starting with uppercase letters), a verb, and a spatial preposi-
tion. The semantics, or meaning, of the sentence can only be determined bysemantics

its context. If “Eiffel Tower” is the name of the iconic French landmark, and
“Paris” refers to France’s capital city, then the sentence has a clear meaning
and is in fact true. However, if “Paris” refers to the small town of just over
1000 inhabitants in Monroe County, Missouri in the US, again the semantics
are clear although this time the sentence is false. In this denotational view ofdenotational semantics

semantics, the meaning of a term is determined by reference to the domain
entity or relationship it denotes. The meaning and possibly the truth value of
a complex proposition are determined by the meaning and structuring of its
terms.

Consider the three sentences:

The Eiffel Tower is a building in Paris.

All buildings in Paris are French.

The Eiffel Tower is French.

The proposition “The Eiffel Tower is French” below the line (the conclusion)conclusion

follows from the sentences above the line (the premises) by deduction. We canpremise

note that the process is quite general, and independent of the meanings of the
individual terms. The general form of the deduction above is:

𝑥 is a 𝑦.
All 𝑦s are 𝑧s.
𝑥 is a 𝑧.

This particular deduction is an example of a classical syllogism, whosesyllogism

principles were codified by Aristotle in around 350 BC. The deduction is
said to be valid in the sense that it preserves truth: if the premises of a validdeductive validity

deduction are true, then the conclusion is also expected to be true. Note
that not all forms of reasoning are deductively valid, however (see Box 9.3 on
page 361).

In general our logical premises may be constructed from at least five
different building blocks:

Constants which denote specific individuals, such as “Paris” or “France”;
Variables which stand as placeholders for individuals, such as 𝑥, 𝑦, and 𝑧;
Connectives such as ¬ (not), ∧ (and), ∨ (or), ⟹ (implies), and ⟺

(equivalence, if and only if);
Quantifiers namely ∀ (“for all ...”) and ∃ (“there exists ...”); and

Artificial Intelligence and GIS 359

Predicates such as “Building(𝑥)” (𝑥 is a building) or “In(𝑦,𝑧)” (𝑦 is located in
𝑧), which describe the properties of, or relationships between entities (as
already encountered in the context of triples).

Together these building blocks can be combined into sentences as the sentence

basis of first order predicate logic. We can see them in action in our deductive first order predicate logic

inference rewritten formally as:

Building(Eiffel Tower) ∧ In(Eiffel Tower, Paris)

∀𝑥 Building (𝑥) ∧ In (𝑥, Paris) ⟹ French (𝑥)
French (Eiffel Tower)

The collection of RDF triples that populate our knowledge graphs consti-
tute a knowledge base of simple logical sentences. Using OWL, that knowl- knowledge base

edge base can be augmented with richer logical rules, such as the OWL
owl:sameAs predicate discussed above. Other OWL and RDF predicates, such
as owl:disjointWith, owl:ReflexiveProperty, and rdfs:subClassOf likewise lead directly
to additional logical sentences in the knowledge base. Deductive reasoning
can then be used to derive answers to questions that are not explicitly stored
in our knowledge base. Deduction is a purely syntactic process and is there-
fore amenable to computing and automated reasoning. In fact, automated
deductive reasoning capability is integrated into most SPARQL query en-
gines. As a result, reasoning about queries usually happens “on the fly,” as a
query is executed.

For example, the following query asks the knowledge base “Is the Eiffel
Tower a person?” In SPARQL, ASK queries are similar to SELECT queries, but
only return “true” or “false” answers.

PREFIX gn: <http://www.geonames.org/ontology#> # GeoNames prefix

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> # RDF prefix

PREFIX dbo: <http://dbpedia.org/ontology/> # DBpedia ontology prefix

ASK {?x gn:name ”Tour Eiffel”; # Retrieve the GeoNames ”Tour Eiffel” instance

rdf:type dbo:Person . # Is ”Tour Eiffel” a dbo:Person?

}

The query above evaluates to “false,” even though this information is
nowhere explicitly stored in our knowledge base. Instead, the query follows a
chain of deductive reasoning to arrive at the answer, intuitively as follows:

GeoNames instance 6254976 is named Tour Eiffel

<https://sws.geonames.org/6254976/> gn:name ”Tour Eiffel”

DBpedia Eiffel Tower is the same instance as GeoNames 6254976

dbr:Eiffel_Tower owl:sameAs <https://sws.geonames.org/6254976/>

DBpedia Eiffel Tower is also an instance of the class of buildings

dbr:Eiffel_Tower rdf:type dbo:Building

Buildings are a subclass of architectural structures

360 GIS: A Computing Perspective

dbo:Building rdfs:subClassOf dbo:ArchitecturalStructure

Architectural structures are never people

dbo:ArchitecturalStructure owl:disjointWith dbo:Person

In contrast, if we ask SPARQL the question, “Is the architect of the Eiffel
Tower a person?” then we can deduce the affirmative with the query below:

PREFIX gn: <http://www.geonames.org/ontology#> # GeoNames prefix

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> # RDF prefix

PREFIX dbo: <http://dbpedia.org/ontology/> # DBpedia ontology prefix

ASK {?x gn:name ”Tour Eiffel” ; # Retrieve the GeoNames ”Tour Eiffel” instance

dbo:architect ?y . # Retrieve the ”Tour Eiffel” architect

?y rdf:type dbo:Person . # Is the ”Tour Eiffel” architect a dbo:Person?

}

The mechanics of how a SPARQL reasoning engine is able to perform
this “on-the-fly” reasoning—required to satisfy queries like those above—is
beyond the scope of this book. One may imagine, though, that the number
of possible deductions from even a modest set of premises may be very large.
The ability to automatically reason with the billions of facts in LOD (linked
open data) today represents a major achievement in AI, and indeed in human
history. However, first-order logic is sufficiently expressive as to make it
provably impossible to define a general automated procedure to answer all
questions we might conceivably ask of our first order predicate knowledge
base.9 SPARQL reasoning engines deal with this issue by restricting the scope9 Indeed, Alan Turing’s work,

also discussed in Box 9.1 on
page 350, has played an im-
portant role in proving this

limitation and more generally
in understanding the limits of
automated logical reasoning.

of automated logical reasoning to carefully constructed “fragments” of first
order predicate logic that can be efficiently answered by machines. Thus, it is
always possible to construct queries about our knowledge bases that cannot
be answered. However, in practice today’s Semantic Web technology can be
very effective in reasoning about LOD.

9.1.4 Principles of ontology engineering

Before moving on to explore more logical reasoning with spatial data, we
dwell briefly on the question of what makes a good ontology, and how to
design one. There are many situations where it is useful to be able to develop
an ontology for a specific domain. The Semantic Web is a vast and rapidly
expanding knowledge base. In many cases, adding new facts to this global
knowledge base is as simple as describing your data using the terms and
concepts already defined in existing ontologies. However, in other cases, the
required terms and concepts may not yet exist and may necessitate new terms
and concepts to be defined.

In general we can identify at least five desirable properties of “good” on-
tologies:

Artificial Intelligence and GIS 361

Box 9.3: Induction and abduction

We have seen the deductive reasoning process “pre-

serves truth” and is said to be (deductively) valid as a con-

sequence. Deductive validity is the main reason why de-

duction is so important and underpins most automated

reasoning today. However, there are two other forms of

inference that are not guaranteed to preserve truth but

are nevertheless important in automated and in partic-

ular human reasoning. Induction is the reasoning pro-

cess of inferring general rules from evidence. Suppose

we have as before the premise that “The Eiffel Tower is

a building in Paris” and now add as a premise that “The

Eiffel Tower is French.” An example of induction would

be to use those premises as evidence to support the in-

ference that “All buildings in Paris are French.” Of course,

more evidence beyond a single building—perhaps adding

the Arc de Triomphe and the Pompidou Center—may in

turn give us more confidence that our inductive infer-

ence is correct. However, in most cases no matter how

much evidence we add, we can never be certain that the

induced conclusion is valid. There is always the possibility

that a counterexample lurks just around the corner (such

as the American Embassy in Paris, which like most em-

bassies has extraterritorial status and consequently is not

French). Abduction is the process of selecting the most

likely explanation from the available premises. For exam-

ple, if we know that “The Eiffel Tower is French” and “All

buildings in Paris are French” we might adduce that “The

Eiffel Tower is a building in Paris.” Once again, such infer-

ence does not preserve truth—consider, for example, the

same abductive reasoning using the premises “Marie An-

toinette is French” and “All buildings in Paris are French”.

However, inductive and abductive reasoning are used to

great effect almost continuously by humans. So advanc-

ing the ability of computers to achieve similar feats is one

of the long-term goals of AI.

Congruity The most important principle for any ontology is to reuse existing
vocabularies and concepts: good ontologies aid in linking data together by
building upon established terms, definitions, and concepts.

Modularity Complementing congruity and reuse, good ontologies are modular
in the sense that they describe carefully scoped and bounded domains
in a way that is accessible and understandable by others, not only by the
individuals or expert communities who developed them.

Consistency Good ontologies are consistent, avoiding circularity in defini-
tion and internal contradictions, and helping users to classify instances
unambiguously.

Clarity Ontologies should avoid basic errors in definition, such as failing to
distinguish between entities versus their identifiers (cf. Section 2.2.2);
objects in the world versus the digital artifacts that refer to them; and
things in the world versus our knowledge of those things.

Openness Ontology engineering is fundamentally about describing the se-
mantics of data in a way that promotes reasoning about linked data.
Hence, making this data openly available is fundamental to the vision of
linked open data (LOD) and the Semantic Web.

These principles can help designers in deciding between different options
when constructing ontologies and LOD. Figure 9.7 contains a simple example
of using linked data to represent a famous meeting in history between nursing
pioneers and polymaths Mary Seacole and Florence Nightingale. These con-
temporaries, whose lives chart many interesting parallels as well as divergent
experiences, are known to have met only once, briefly in Üsküdar in Turkey
during the Crimea War on 8 March 1855. In constructing an ontology of the
meeting, the most important step is to reuse established ontologies. The sim-

362 GIS: A Computing Perspective

ple event model10 (SEM, prefix sem) is a leading ontology for describing the10 http://semanticweb.
cs.vu.nl/2009/11/sem/ general structure and vocabulary of events (Hage & Ceolin, 2013). Ontologies

such as SEM that are designed to be used across many different domains are
called upper level ontologies. The SEM is built around four key classes: Place,upper level ontology

Time, Actor that describe the where, what, and who of an Event. The knowl-
edge graph in Figure 9.7 contains a new class, Meeting, as a subclass of Event
(a meeting “is an” event). As in previous examples, the knowledge graph also
links to the GeoNames (prefix gn) and Basic Geo (prefix geo) ontologies to
describe the meeting location (SEM Place), Üsküdar, and DBpedia (prefix dbr)
to identify the historic figures: Mary Seacole and Florence Nightingale.

sem:hasPlace

sem:Time sem:Actorsem:Eventsem:Place

dbr:Florence_Nightingale

Meeting

dbr:Mary_Seacole

https://sws.geonames.org/738329

gn:Feature

sem:hasTime

sem:hasActor

subclass of

gn:name

Üsküdar

geo:lat

41.02274

geo:long

29.01366

rdf:type rdf:type

8 Mar 1855

rdf:type

rdf:type

rdf:type

rdf:type

sem:hasPlace

sem:hasTime

sem:hasActor

sem:hasActor

owl:sameAs

owl:sameAs

owl:sameAs

Figure 9.7: A knowledge

graph representation

of the meeting between

Mary Seacole and Flo-

rence Nightingale on

8 March 1855 at Üskü-

dar (Scutari) in Turkey

When building ontologies for specific domains, such as historic meetings,
it is generally advised to follow a structured process, such as below, after (Noy
& McGuinness, 2001):

1. Reuse: Every ontology engineering project should begin by identifying the
existing upper-level and domain ontologies relevant to the domain.

2. Enumerate: Next, enumerate the terms relevant to the domain, taking
special care to be consistent in usage, for example, alert to synonyms and
homonyms.

Artificial Intelligence and GIS 363

3. Structure: In step three, structure the terms into a hierarchy, taking care to
ensure each instance of a subclass 𝐴 “is an” instance of superclass 𝐵.

4. Relate: With the structure taking shape, define the properties of each class
and the relationships to literals and other classes.

5. Iterate: Ontology engineering is an iterative process of revision and re-
finement, which benefits from a diverse team of developers that includes
subject matter experts, ontology engineers, and generalists.

The textbook by Kendall & McGuinness (2019) is highly recommended to
those readers interested to delve deeper than would be possible in this book’s
whistle-stop tour of ontology engineering.

9.2 Qualitative spatial reasoning

A distinction is often made in reasoning between quantitative and qualitative
approaches. An approach is generally referred to as quantitative if it is based quantitative

on analysis of numerical (interval or ratio) data. By contrast, an approach
is usually referred to as qualitative if it is based on analysis of classifications qualitative

and ordering (nominal and ordinal data). Hence, qualitative reasoning is
concerned with the discrete, imprecise, and non-numerical properties of
space and time.

There are in general three main reasons to be interested in qualitative
representation and reasoning with spatial and temporal data:

1. Qualitative properties are simple, usually involving small, discrete repre-
sentations that are inherently tolerant to imprecise human knowledge.
For example, navigating instructions are much more understandable us-
ing “left” or “right” directions rather than precise bearings or angles (e.g.,
276∘).

2. Qualitative properties supervene on quantitative properties, in the sense supervenience

that qualities can always be derived from quantities. For example, a bear-
ing of 071∘ can be represented qualitatively as “East” or to the “right.”

3. The boundaries between qualities usually correspond to salient discontinu-
ities for humans. For example, “left” and “right” are intrinsically connected
with our embodied physical experience of the world.

Qualitative spatiotemporal reasoning (QSR) is an area of study within qualitative spatial reasoning

KR2 that has developed, over the past 40 years or more, a variety of logical
systems for representing and reasoning about qualitative spatial and temporal
objects and relations.

9.2.1 Point algebra

The point algebra of Vilain & Kautz (1986) is certainly the simplest and ar- point algebra

guably the most elegant of all QSR logics. The point algebra describes three
qualitative relations between two points in time (Figure 9.8). We write

364 GIS: A Computing Perspective

before(𝐴, 𝐵) if 𝐴 comes before 𝐵 in time; after(𝐴, 𝐵) if 𝐴 comes after 𝐵; and
same(𝐴, 𝐵) if 𝐴 and 𝐵 are the same point in time. In common with most qual-
itative representations, the different relations are chosen so as to be jointly
exhaustive pairwise disjoint (JEPD): one and only one of these relations willjointly exhaustive

pairwise disjoint necessarily hold between any two points in time.

A
B

A
B

A
B

before(A,B) same(A,B) after(A,B)

Figure 9.8: The three rela-

tions in the point algebra

of Vilain & Kautz (1986)

As we will by now be expecting in KR2, representation is only half the
story. The aim of the representation is to enable logical reasoning over qual-
itative relations. In the point algebra, we may immediately notice that for
any three time points 𝐴, 𝐵, and 𝐶 if after(𝐴, 𝐵) and after(𝐵, 𝐶) then we can
deduce that after(𝐴, 𝐶). We might also notice some other inferences, such as if
after(𝐴, 𝐵) then before(𝐵, 𝐴). Unfortunately, not all combinations of relations
help drive inference. In particular, after(𝐴, 𝐵) and before(𝐵, 𝐶) then any of
after(𝐴, 𝐶), before(𝐴, 𝐶), or same(𝐴, 𝐶) are possible.

We can capture all such logical inferences in a single table, shown in Ta-
ble 9.3. For example, if before(𝐴, 𝐵) (first row of data in the table) then we
can deduce the converse, that after(𝐵, 𝐴) from the entry in row 1 column 5 inconverse

Table 9.3. If additionally we know that before(𝐵, 𝐶), then we can infer that
before(𝐴, 𝐶) from row 1 column 2. In general, for three objects 𝑋 , 𝑌 , and 𝑍,
the inference 𝑅(𝑋, 𝑌) ∧ 𝑃(𝑌, 𝑍) ⟹ 𝑄(𝑋, 𝑍) is called the composition ofcomposition

relations 𝑅, 𝑃, and 𝑄.

Composition before after same Converse

before before before, after, same before after
after before, after, same after after before
same before after same same

Table 9.3: Compo-

sition and converse

for the point algebra

From these foundations, it is possible to construct and reason about more
complex configurations of points. For example, Figure 9.9 shows a network of
point algebra relations between five points, 𝐴 ... 𝐸. Based on the supplied rela-
tions in Figure 9.9 (solid arrows) it is possible to deduce the other, unknown
relations between points, including:

• after(𝐵, 𝐴), the converse of the supplied before(𝐴, 𝐵);
• before(𝐴, 𝐸), the composition of before(𝐴, 𝐵) and before(𝐵, 𝐸); and
• after(𝐷, 𝐴), the composition of after(𝐷, 𝐶) and inferred converses after(𝐶, 𝐵)
and after(𝐵, 𝐴).

Some relations though may still be undetermined, such as the relation be-
tween 𝐸 and 𝐶 in Figure 9.9, which may be any of before, after, or same.

The network of qualitative relations for a specific configuration of objects
is called the constraint network. The task of automatically reasoning with suchconstraint network

Artificial Intelligence and GIS 365

A

B

before

E D

C

before

after

after

before
after

before
after

before, after,
same

Figure 9.9: Partial con-

straint network for a point

algebra configuration

qualitative relations can be reduced to the question of whether a set of given
relations (constraints) is consistent with one another, termed the constraint
satisfaction problem (CSP), and is computable in 𝑂(𝑛3) time complexity for the constraint satisfaction

problempoint algebra.

9.2.2 Interval algebras

A natural step following the point algebra is to consider the relations between
time intervals, rather than points. Allen’s interval algebra (1983, 1984) defines interval algebra

13 JEPD relations between two time intervals (Figure 9.10).

A
Bbefore(A,B) after(B,A)

A
Bprecedes(A,B) succeeds(B,A)

A
Binitiates(A,B) terminates(B,A)

A
Bbeginswith(A,B) begunby(B,A)

A
Bendedby(A,B) endswith(B,A)

A
Bcontains(A,B) during(B,A)

A
Bequals(A,B) equals(B,A)

Figure 9.10: The 13 re-

lations in the interval

algebra of Allen (1983)

Although Allen’s interval algebra defines many more relations than the
point algebra, reasoning through constraint networks using composition
and converse can proceed in much the same way as for the point algebra.

366 GIS: A Computing Perspective

Figure 9.11 illustrates an example configuration with its associated constraint
network. Note that the relationship between 𝐵 and 𝐷 is under-determined:
it must be one of before(𝐷, 𝐵), precedes(𝐷, 𝐵), or initiates(𝐷, 𝐵), but it is not
possible to say which given the available information.

Figure 9.11: Constraint

network for an in-

terval configuration

A
B
C
D

A B
before

D C
after

begunby succeeds
after

before,
precedes,
initiates

The interval algebra can also be applied directly in two dimensions to
give a set of JEPD region relations between two axis-parallel rectangles.
The result, called the rectangle algebra, defines 13 × 13 = 169 relations asrectangle algebra

combined pairs of interval algebra relations. For example, the configuration
in Figure 9.12 may be described as initiates−contains(𝐴, 𝐵) (or conversely
terminates−during(𝐵, 𝐴)).

Figure 9.12: Example con-

figuration of two regions

in the rectangle algebra A

B

Intuitively, such reasoning proceeds as for the point algebra, above. How-
ever, in fact the constraint satisfaction problem is not tractable for the full
interval and rectangle algebras (nor indeed for the other full qualitative spa-

Artificial Intelligence and GIS 367

tiotemporal logics below). A mathematical solution to this problem is to
identify restricted subsets of relation sets that lead to logics that are again
tractable. However, each qualitative spatiotemporal logic demands its own
unique subsets, and the process of identification can present significant chal-
lenges to mathematicians. In practice, reasoning with the full logics usually
proceeds by computing a “local” constraint satisfaction for all possible sets
of three objects instead of seeking the “global” CSP solution. This heuristic
approach, termed path consistency, is tractable and can be computed in 𝑂(𝑛3) path consistency

time. Unfortunately, the heuristic is not guaranteed to be correct in all cases.

9.2.3 Region connection calculus

Perhaps the most famous of all qualitative spatial logics is RCC, the region
connection calculus. In the context of RCC, the word “region” may be thought region connection calculus

to include any definition of a spatial region, including both continuous areas
and discretized representations, such as a polygon or set of pixels in a raster.11 11 In fact, regions in RCC can have

much wider, and possibly non-
spatial interpretations, including
categories in conceptual spaces
(Gärdenfors & Rott, 1995).

RCC is founded on Clarke’s calculus of individuals which begins with a

Clarke’s calculus of individu-

als

binary connection relation between regions. We write 𝐶(𝑋, 𝑌) as shorthand
for “region 𝑋 is connected to region 𝑌 .” The connection relation is reflexive
and symmetric, satisfying the following axioms:

1. For each region 𝑋 , 𝐶(𝑋, 𝑋)
2. For each pair of regions 𝑋 ,𝑌 , if 𝐶(𝑋, 𝑌) then 𝐶(𝑌, 𝑋)

The surprising part of Clarke’s calculus is the next step. It turns out that
many of the set-oriented and topological relations between spatial objects we
encountered in Chapter 3 may be derived using only the minimal machinery
above. Table 9.4 shows the construction of various RCC region relations
based solely on the connection relation. The final column also highlights the
correspondence to the eight 4-intersection model (4IM) relations already
summarized in Table 3.3.

The eight RCC relations with corresponding 4IM relations (𝐷𝐶, 𝐸𝑄, 𝑃𝑂,
𝐸𝐶, 𝑇𝑃𝑃, 𝑇𝑃𝑃𝑖, 𝑁𝑇𝑇𝑃, 𝑁𝑇𝑇𝑃𝑖) form a JEPD set of relations, called RCC-
8. Interestingly, there is another JEPD subset of five RCC relations, called
RCC-5: 𝐸𝑄, 𝑃𝑂, 𝑃𝑃, 𝑃𝑃𝑖, and 𝐷𝑅. Both RCC-8 and RCC-5 are widely used in
spatial reasoning. The RCC-5 relations provide less fine-grained distinctions
at the region boundaries (𝐷𝑅 encompasses both 𝐷𝐶 and 𝐸𝐶; 𝑃𝑃 encompasses
𝑇𝑃𝑃 and 𝑁𝑇𝑇𝑃; 𝑃𝑃𝑖 encompasses 𝑇𝑃𝑃𝑖 and 𝑁𝑇𝑇𝑃𝑖).

Reasoning in RCC is based on composition and converse, shown in
Table 9.5, exactly as for all the spatial logics we encounter. Hence, from
𝑃𝑃𝑖(𝑋, 𝑌) and 𝑃𝑂(𝑌, 𝑍) we can deduce either 𝑃𝑂(𝑋, 𝑍) or 𝑃𝑃𝑖(𝑋, 𝑍) holds, for
example. Neither RCC-5 nor RCC-8 are tractable in general, and so the path
consistency heuristic applied to the constraint network is commonly used in
practice.

368 GIS: A Computing Perspective

rowcolorLightestPrimaryRelation Definition Description 4IM relation

𝐷𝐶(𝑋, 𝑌) ¬𝐶(𝑋, 𝑌) 𝑋 and 𝑌 are disconnected 𝑋 disjoint 𝑌
𝑃(𝑋, 𝑌) ∀𝑍.𝐶(𝑍, 𝑋) ⟹ 𝐶(𝑍, 𝑌) 𝑋 is a part of 𝑌
𝑂(𝑋, 𝑌) ∃𝑍.𝑃(𝑍, 𝑋) ∧ 𝑃(𝑍, 𝑌) 𝑋 overlaps 𝑌
𝐸𝑄(𝑋, 𝑌) 𝑃(𝑋, 𝑌) ∧ 𝑃(𝑌, 𝑋) 𝑋 equals 𝑌 𝑋 equals 𝑌
𝑃𝑂(𝑋, 𝑌) 𝑂(𝑋, 𝑌) ∧ ¬𝑃(𝑋, 𝑌) ∧ ¬𝑃(𝑌, 𝑋) 𝑋 partially overlaps 𝑌 𝑋 overlaps 𝑌
𝑃𝑃(𝑋, 𝑌) 𝑃(𝑋, 𝑌) ∧ ¬𝑃(𝑌, 𝑋) 𝑋 is a proper part of 𝑌
𝑃𝑃𝑖(𝑋, 𝑌) 𝑃𝑃(𝑌, 𝑋) 𝑌 is a proper part of 𝑋
𝐷𝑅(𝑋, 𝑌) ¬𝑂(𝑋, 𝑌) 𝑋 is discrete from 𝑌
𝐸𝐶(𝑋, 𝑌) 𝐶(𝑋, 𝑌) ∧ ¬𝑂(𝑋, 𝑌) 𝑋 is externally connected

to 𝑌
𝑋 touches 𝑌

𝑇𝑃𝑃(𝑋, 𝑌) 𝑃𝑃(𝑋, 𝑌) ∧ ∃𝑍.𝐸𝐶(𝑍, 𝑋) ∧ 𝐸𝐶(𝑍, 𝑌) 𝑋 is a tangential proper

part of 𝑌
𝑋 covers 𝑌

𝑇𝑃𝑃𝑖(𝑋, 𝑌) 𝑇𝑃𝑃(𝑌, 𝑋) 𝑌 is a tangential proper

part of 𝑋
𝑋 covered by 𝑌

𝑁𝑇𝑃𝑃(𝑋, 𝑌) 𝑃𝑃(𝑋, 𝑌) ∧ ¬∃𝑍.𝐸𝐶(𝑍, 𝑋) ∧ 𝐸𝐶(𝑍, 𝑌) 𝑋 is a non-tangential

proper part of 𝑌
𝑋 inside 𝑌

𝑁𝑇𝑃𝑃𝑖(𝑋, 𝑌) 𝑁𝑇𝑃𝑃(𝑌, 𝑋) 𝑌 is a non-tangential

proper part of 𝑋
𝑋 contains 𝑌

Table 9.4: Defining region

relations in RCC based on

the connection relation
9.2.4 Further qualitative spatiotemporal reasoning

The approach to qualitative spatiotemporal reasoning described above—the
definition of a qualitative representation combined with composition and
converse operations for reasoning—has led to the development of a rich vari-
ety of qualitative spatial and spatiotemporal logics. For example, Figure 9.13
shows three related sets of JEPD qualitative relations for describing cardi-
nal directions. Figure 9.13a is the projection-based cardinal direction calculuscardinal direction calculus

(CDC) for reasoning about cardinal directions between points. The represen-
tation partitions the plane into four semi-open regions (𝑁𝐸, 𝑁𝑊 , 𝑆𝐸, 𝑆𝑊)
semi-bounded by four halflines (𝑁, 𝑆, 𝐸,𝑊), and centered on the reference
point as the origin. Thus, in Figure 9.13a 𝐸(𝐵, 𝐴) (𝐵 is east of 𝐴) and 𝑁𝑊(𝐶,𝐴)
(𝐶 is northwest of 𝐴).

Composition 𝐸𝑄 𝐷𝑅 𝑃𝑂 𝑃𝑃 𝑃𝑃𝑖 Converse

𝐸𝑄 𝐸𝑄 𝐷𝑅 𝑃𝑂 𝑃𝑃 𝑃𝑃𝑖 𝐸𝑄
𝐷𝑅 𝐷𝑅 𝐸𝑄, 𝐷𝑅, 𝑃𝑂,

𝑃𝑃, 𝑃𝑃𝑖
𝐷𝑅, 𝑃𝑂, 𝑃𝑃 𝐷𝑅, 𝑃𝑂, 𝑃𝑃 𝐷𝑅 𝐷𝑅

𝑃𝑂 𝑃𝑂 𝐷𝑅, 𝑃𝑂, 𝑃𝑃𝑖 𝐸𝑄, 𝐷𝑅, 𝑃𝑂,
𝑃𝑃, 𝑃𝑃𝑖

𝑃𝑂, 𝑃𝑃 𝐷𝑅, 𝑃𝑂, 𝑃𝑃𝑖 𝑃𝑂

𝑃𝑃 𝑃𝑃 𝐷𝑅 𝐷𝑅, 𝑃𝑂, 𝑃𝑃 𝑃𝑃 𝐸𝑄, 𝐷𝑅, 𝑃𝑂,
𝑃𝑃, 𝑃𝑃𝑖

𝑃𝑃𝑖

𝑃𝑃𝑖 𝑃𝑃𝑖 𝐷𝑅, 𝑃𝑂, 𝑃𝑃𝑖 𝑃𝑂, 𝑃𝑃𝑖 𝐸𝑄, 𝐷𝑅, 𝑃𝑂,
𝑃𝑃, 𝑃𝑃𝑖

𝑃𝑃𝑖 𝑃𝑃

Table 9.5: Composition

and converse for RCC-5 Table 9.6 gives the complete table of composition and converse operations
for the 9 projection-based CDC relations (eight directions plus the identity
relation 𝑂). Hence, one can reason from Figure 9.13a and Table 9.6 that, for

Artificial Intelligence and GIS 369

A
B

C

N

S

NW NE

SW SE

W E
A

B

C

N

S

NW NE

SW SE

W E

A B

C

N

S

NW NE

SW SE

W E

a. Projection-based CDC b. Cone-shaped CDC c. CDC for regions

Figure 9.13: Three dif-

ferent qualitative rep-

resentations of cardinal

directions, after Goyal

& Egenhofer (2001) and

Frank (1992)

example, 𝑁𝑊(𝐶, 𝐵) since 𝑁𝑊(𝐶,𝐴) (given),𝑊(𝐴, 𝐵) (converse of supplied
𝐸(𝐵, 𝐴), row 3 of Table 9.6) and applying the relevant composition rule (𝑁𝑊
composed with𝑊 , row 8 column 7 of Table 9.6).

Figure 9.13b summarizes an alternative cone-shaped CDC representation
which partitions the plane into 8 semi-open cone-shaped regions. A different
composition table from Table 9.6 is of course required to reason with the
cone-shaped CDC representation.12 Figure 9.13c includes a third version of

12 A useful self-test exercise
is to attempt to complete the
composition table for the cone-
based CDC yourself, as it raises
some additional challenges.

the CDC designed for reasoning about extended spatial regions. The rep-
resentation uses four axis-parallel lines to partition the space based on the
minimum and maximum 𝑥 any 𝑦 coordinates of the reference object. Because
located objects may span multiple sectors (such as region 𝐵 in Figure 9.13c
which occupies both the 𝑁𝐸 and 𝐸 rectangular areas relative to 𝐴) a more
complex set of 218 direction relations must be defined that list which of the 9
rectangular regions for a reference object a related object occupies.

Cardinal directions are defined based on an external frame of reference,
independent of any intrinsic orientation of the objects themselves. Such
extrinsic reference systems are referred to as allocentric. Figure 9.14 illustrates allocentric

three egocentric qualitative direction representations that rely on the intrinsic egocentric

direction of the reference object.

𝑁 𝑁𝐸 𝐸 𝑆𝐸 𝑆 𝑆𝑊 𝑊 𝑁𝑊 𝑂 Converse

𝑁 𝑁 𝑁𝐸 𝑁𝐸 ℰ 𝒰 𝒲 𝑁𝑊 𝑁𝑊 𝑁 𝑆
𝑁𝐸 𝑁𝐸 𝑁𝐸 𝑁𝐸 ℰ ℰ 𝒰 𝒩 𝒩 𝑁𝐸 𝑆𝑊
𝐸 𝑁𝐸 𝑁𝐸 𝐸 𝑆𝐸 𝑆𝐸 𝒮 𝒰 𝒩 𝐸 𝑊
𝑆𝐸 ℰ ℰ 𝑆𝐸 𝑆𝐸 𝑆𝐸 𝒮 𝒮 𝒰 𝑆𝐸 𝑁𝑊
𝑆 𝒰 ℰ 𝑆𝐸 𝑆𝐸 𝑆 𝑆𝑊 𝑆𝑊 𝒲 𝑆 𝑁

𝑆𝑊 𝒲 𝒰 𝒮 𝒮 𝑆𝑊 𝑆𝑊 𝑆𝑊 𝒲 𝑆𝑊 𝑁𝐸
𝑊 𝑁𝑊 𝒩 𝒰 𝒮 𝑆𝑊 𝑆𝑊 𝑊 𝑁𝑊 𝑊 𝐸

𝑁𝑊 𝑁𝑊 𝒩 𝒩 𝒰 𝒲 𝒲 𝑁𝑊 𝑁𝑊 𝑁𝑊 𝑆𝐸
𝑂 𝑁 𝑁𝐸 𝐸 𝑆𝐸 𝑆 𝑆𝑊 𝑊 𝑁𝑊 𝑂 𝑂

Note: 𝒩 = 𝑁𝐸,𝑁,𝑁𝑊 ; ℰ = 𝑁𝐸, 𝐸, 𝑆𝐸; 𝒮 = 𝑆𝐸, 𝑆, 𝑆𝑊 ;𝒲 = 𝑆𝑊,𝑊,𝑁𝑊 ;
𝒰 = 𝑁,𝑁𝐸, 𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊,𝑊,𝑁𝑊,𝑂

Table 9.6: Composition

and converse for the

projection-based cardinal

direction calculus (CDC) in

Figure 9.13a

370 GIS: A Computing Perspective

• The dipole relation algebra considers the direction relations between pairsdipole relation algebra

of directed line segments, called dipoles (Schlieder, 1995). The relation
between a pair of dipoles 𝐴 and 𝐵 is determined by whether 𝐵 begins and
ends to the left or right of 𝐴, and whether 𝐴 begins or ends to the left
or right of 𝐵. For example, with reference to Figure 9.14a, the relative
direction of 𝐵 from 𝐴 can be described as 𝑟𝑙𝑟𝑟(𝐴, 𝐵) (𝐵 begins to the right
and ends to left of dipole 𝐴, and 𝐴 begins and ends to the right of dipole
𝐵). The symbols 𝑠 and 𝑒 for “start” and “end” complete the possible relation
options. For example, relative direction of 𝐴 from 𝐶 Figure 9.14a can be
described as 𝑒𝑟𝑟𝑠(𝐶, 𝐴) (𝐴 begins at the end of 𝐶 and ends to right of 𝐶,
and 𝐶 begins to the right of 𝐴 and ends at the start of 𝐴).

• Figure 9.14b shows the single-cross calculus of Freksa (1992b). The single-
cross calculus involves a ternary (three-place) relation, rather than the bi-
nary (two-place) qualitative relations we have so far encountered. The cal-
culus models the qualitative direction of a point (𝐶 or 𝐷 in Figure 9.14b)
relative to an observer (at point 𝐴 in Figure 9.14b) facing some landmark
(at point 𝐵 in Figure 9.14b). For example, the two relations described by
Figure 9.14b are 𝑟𝑏(𝐴, 𝐵, 𝐶) (standing at 𝐴, 𝐶 is to the right of and beyond
𝐵) and 𝑙𝑓(𝐴, 𝐵, 𝐷) (standing at 𝐴, 𝐷 is to the left and forward of 𝐵).

• Figure 9.14c shows the double-cross calculus of Freksa (1992b). The
double-cross calculus further refines the single-cross calculus by enabling
points that are forward of 𝐵 but in front of 𝐴 to be distinguished from
points that are forward of 𝐵 but behind 𝐴.

Figure 9.14: Three dif-

ferent egocentric di-

rection relations, after

Freksa (1992b), Zimmer-

mann & Freksa (1996),

and Wolter & Lee (2010)

A

B
C

A

B

C

D

A

B

C

D

a. Dipole relation algebra b. Single-cross calculus c. Double-cross calculus

As before, reasoning using the dipole, single-cross, and double-cross repre-
sentations is based on the definition of composition and converse operations.
Indeed, there are many more logics for qualitative spatiotemporal reasoning,
including reasoning about movement with the qualitative trajectory calculus,qualitative trajectory calculus

QTC, of Van de Weghe, Cohn, Tré, & De Maeyer (2006).

9.2.5 Conceptual neighborhoods

One final aspect of qualitative spatiotemporal reasoning is worth dwelling on
briefly, before we leave KR2 for machine learning: conceptual neighborhoods.conceptual neighborhood

Pairs of relations in a qualitative spatial logic can be distinguished based
on whether or not it is possible for an instance of one relation to transition
“smoothly” into another. For example, a point moving continuously on the

Artificial Intelligence and GIS 371

plane at a distance from the origin can transition directly from cardinal
direction relation 𝑁 to 𝑁𝐸, but not directly from 𝑁 to 𝐸 (without first passing
through relation 𝑁𝐸 or the origin 𝑂, see Figure 9.13). Similarly, two regions
may smoothly transition from RCC-8 𝑁𝑇𝑃𝑃 to 𝑇𝑃𝑃, but not from 𝑁𝑇𝑇𝑃 to
𝑁𝑇𝑇𝑃𝑖 or 𝑃𝑂 without first passing through some other relations.

DC
EC

EQ

PO

TPPi

TPP

NTPPi

NTPPB

A

Figure 9.15: A conceptual

neighborhood for the

RCC-8

The idea of such conceptual neighborhoods was first described by Freksa
(1992a): two relations are conceptual neighbors if they can be directly trans-
formed into one another by continuously deforming them. Conceptual neigh-
borhood graphs, such as that for RCC-8 in Figure 9.15, serve two important
functions. First, they move qualitative spatial calculi towards describing
change. Second, they provide further cognitive structure to underpin qualita-
tive spatiotemporal logics, offering greater ability to capture human expecta-
tions about how similar certain spatial situations are.

Together, ontology engineering and qualitative spatial reasoning were
selected as the two most important areas of KR2 for GIS. However, it is
important to be aware that there are many other KR2 topics and techniques
with historical (such as expert systems) or contemporary relevance to GIS (in
particular, probabilistic reasoning techniques beyond the scope of this text,
such as Bayesian networks, Markov logic networks, and causal reasoning), as well
as closely allied topics such as agent-based modeling (see Box 9.4 on the next
page). However, here we leave KR2 to embark upon an exploration of the
other major branch of AI: machine learning.

9.3 Machine learning and spatial analysis

The previous sections show how KR2 uses logical reasoning and symbolic
representations of data to mimic human problem-solving and decision-

372 GIS: A Computing Perspective

Box 9.4: Agent-based models

Although not usually included in discussions of AI, agent-

based models and agent-based modeling (ABM) have

much in common with the more formal and logical tech-

niques of KR2. Agent-based models comprise three key

elements. First, agents in an ABM are autonomous units

or elements within a computer simulation. Agents in the

simulation usually mirror (i.e., model) autonomous units

or elements in the real world, such as vehicles, people,

animals, trees, or wireless sensor motes. Second, agents

in an ABM are placed into an environment, which simi-

larly typically mirrors a real-world environment, such as

a city or a region of land. Third, an ABM models the in-

teractions that arise between agents and between agents

and the environment. The ultimate objective of any ABM

is a better understanding of interactions in the real-

world through simulation. In particular, ABMs are used

to model complex systems with emergent behaviors that

go beyond our ability to understand using more analyt-

ical and numerical techniques. The emergent behavior

of ant colonies is a classic example of a complex system

that has been studied using ABMs. Understanding the

emergent properties of ant colony behavior based on in-

dividual ant behavior—seeking food, returning it to the

nest, and communicating and coordinating with other

ants in the colony to achieve this—is extremely difficult

to approach using purely analytical tools, such as math-

ematical equations. Instead, an ABM simulation of ants

(i.e., agents), their environment, and the different ways

they can interact with other ants (e.g., communicate) and

their environment (e.g., move, leave pheromone trails)

has provided significant insights into how relatively sim-

ple rules followed by individual ants can give rise to the

awe-inspiring complexity of ant colony behavior (Wilen-

sky & Rand, 2015). One of the most popular approaches

to developing ABMs is the belief-desire-intention (BDI)

approach to agent programming. Using BDI, each agent

is equipped with beliefs about their environment, other

agents, and the agent itself; goals the agent wishes to

achieve, termed desires; and plans of actions that the

agents can select from to achieve their goals, termed in-

tentions. There are clear analogies between the knowl-

edge represented by an agent’s beliefs and the “reason-

ing” with desires intentions and intentions of agents in

the simulation, and the more formal structures of KR2.

ABMs are widely used in GI science to help researchers

understand many and diverse complex geographical sys-

tems (Crooks, Malleson, Manley, & Heppenstall, 2021;

Heppenstall, Crooks, See, & Batty, 2012) as well as for un-

derstanding emergent computational system behavior,

such as in geosensor networks (Duckham, 2013).

making capabilities. Machine learning (ML) applies statistical models to big
data sets in order to recognize patterns in data and derive rules that describe
data. Machine learning involves learning directly from data, without first
imbuing the machine with explicit knowledge about the problem domain, in
contrast to KR2.

Recent years have seen a huge growth in the combination of machine
learning with GIS (in particular, a growth in applications of deep learning dis-
cussed further in Section 9.4). One reason for this growth in machine learning
is the growth in the variety and volume of spatial data. Many ML techniques
are “data hungry,” in the sense that the more data that is available to the ma-data hungry

chine to learn from, the better (in principle) the performance of that learning
process. More spatial data means more opportunities for machines to learn
from that data.

Another reason for the growth in machine learning with GIS is the in-
creasing availability and decreasing cost of high performance computing
platforms, such as scalable cloud computing. Many ML techniques require
significant computing resources to train and apply to data. As a result, the
ability to access clusters of computers beyond those directly available on
your desktop or in your office has transformed the range of ML techniques
available to the broad spectrum of GIS professionals.

Artificial Intelligence and GIS 373

Advances in the field of machine learning itself have, of course, also con-
tributed to this rapid growth in recent years. However, the central principles
and techniques of machine learning have been well established for many years.
In fact, it may be a surprise to learn that many basic spatial analyses found in
every GIS are themselves examples of machine learning. Hence, many of the
principles and techniques behind machine learning may already be familiar
to you if you have already encountered some spatial analyses. Of course, the
special nature of spatial data means that care needs to be taken when apply-
ing machine learning to spatial data. An understanding of the underlying
principles of machine learning helps us to construct robust workflows and
meaningful outputs when learning from spatial data.

This section unpacks the link between machine learning and traditional
spatial analysis, touching on a range of fundamental spatial analysis and
machine learning algorithms for spatial data. Along the way, we will revisit
and consolidate some of the fundamental spatial concepts already introduced
in previous chapters.

9.3.1 Machine learning tasks

Machine learning aims to equip computers to do something akin to a skill
that comes naturally to humans: learning from experience. Specifically, a
machine “learns” by identifying patterns in data. When the machine finds a
pattern, it updates its model of the solution to reflect this new “experience.”
In this way, ML techniques aim to adaptively improve their performance as
the number of samples available to learn from increases. At some point, when
the machine has found enough patterns, it has built a model that is ready to
be applied to new data it has not previously seen and to make predictions
about that data.

The wide range of problems that machine learning can help solve can be
categorized into three main tasks:

• Clustering is the task of learning “natural” groupings from within data clustering

called clusters, such that the similarity of data items within each cluster is cluster

greater than the similarity of items between clusters.

• Classification is the task of learning to predict qualitative class labels that classification

can be associated with input data.

• Regression is the task of learning to predict quantitative values associated regression

with input data.

Figure 9.16 summarizes the three techniques graphically, illustrating exam-
ple inputs and outputs to typical algorithms. Clustering identifies groups of
similar items within undifferentiated input data. Classification and regression
both construct generalized models from the input data that enable either
the qualitative category (classification) or quantitative value (regression) of
previously unseen data to be predicted.

374 GIS: A Computing Perspective

Input Algorithm Output

Cl
us
te
ri
ng

Cl
as
si
fic
at
io
n

Re
gr
es
si
on

Figure 9.16: Three types

of machine learning prob-

lems: clustering, regres-

sion, and classification

9.3.2 Machine learning workflows

As we shall see, there are many different machine learning techniques that
each mimic human problem-solving abilities across one or more of the prob-
lem areas introduced above. Irrespective of the specific ML technique, we can
summarize the machine learning workflow into four basic steps, shown in
Figure 9.17.

Step 1: Preparation Data is the key to machine learning. However, raw data
alone often needs processing, restructuring, and cleaning—the process ofdata cleaning

detecting and fixing or removing incorrect, duplicate, or incomplete records
from a data set—before it is ready to serve as input to an ML algorithm.
This first preparatory step of transforming the source data into a clean and
compatible format and structure is termed data wrangling in Figure 9.17.data wrangling

The preparation step also involves selecting the right ML technique or
algorithm for solving the required problem. The latter parts of this section
provide a tour of several of the most common ML techniques, starting simple
and becoming increasingly complex. However, it is worth emphasizing that a
more complex technique does not necessarily make a better technique. Rather,
the challenge is to understand the strengths and limitations of the different
choices, and how appropriate each ML technique is for use with different
types of data and in solving different problems.

Artificial Intelligence and GIS 375

Data
wrangling

2. Training 4. Output1. Preparation

Choose
algorithm

Train
model

Tune

3. Evaluation

Classification

Clustering
Validate Test

Regression

Figure 9.17: The machine

learning workflow
Step 2: Training Step 2 in our workflow is at the core of machine learning:
training. Irrespective of which ML technique is chosen, training involves training

conditioning an ML model to the data provided. Different ML techniques vary
widely in how they approach this task. Two major classes of ML technique are
often distinguished when discussing training: supervised and unsupervised
learning.

Some ML techniques begin with a set of labeled data items with which to
train the ML model. This training data set provides the machine with examples training data set

of the “right answer” used as the target for the training process. Traditionally,
training data sets often needed to be manually labeled by a human operator.
As a result, ML techniques that require a labeled data set for training are still
termed supervised learning. Today, many data sets already include labels that supervised learning

can be used for training. Land cover data sets, for example, include land cover
class labels that are often used in spatial applications of supervised machine
learning.

In contrast, other ML techniques are conditioned directly on data without
the need for any labels, termed unsupervised learning. However, even if human unsupervised learning

involvement was required at some point to generate the labels needed for
supervised learning, in practice human operator intervention is relatively
rarely required either for supervised or unsupervised learning techniques.
Requiring no labels, unsupervised learning can be applied to a wider range of
different data sets than supervised learning. However, without labels guiding
the learning process, it is also more challenging to ensure accurate results and
achieve meaningful outputs using unsupervised learning.

Step 3: Evaluation Whether supervised or unsupervised learning, step 3
evaluates how well the training process has performed. Evaluation can be
separated into two components: validation and testing. Validation occurs
while the model is being trained and is necessary in order to ensure that
the learning process is correctly attuned to the specific characteristics of
the input data and the problem being addressed. Validation is sometimes

376 GIS: A Computing Perspective

run on a reserved portion of the data—typically between 10–20% of the
complete data set—called the validation data set. In other cases, validationvalidation data set

simply involves checking output diagnostic parameters that accompany the
training output, and provide a guide to the quality of the training.

As a result of validation, some changes to the ML settings may be indi-
cated to ensure the training process is performing as accurately as possible.
Any top-level settings used to control the training process—such as the num-
ber of iterations used in training process or the target number of learned
clusters or categories—are termed hyperparameters. In contrast, the internalhyperparameters

parameters of the ML model adapted by the training itself to ensure a good fit
to the input data—such as model coefficients or weights—are referred to sim-
ply as model parameters. The process of adjusting hyperparameters in responsemodel parameters

to validation is termed tuning.tuning

Finally, testing occurs after the model has been built. Testing is used to
check that the final output has captured something generalizable about the
data, and it is not simply biased towards the specific idiosyncrasies of the
input data set. Testing usually aims to compare the output with some external
“ground truth” data to evaluate how well the trained model has learned about
the salient characteristics of the input data. In most cases, testing is run
on another reserved portion of the data, typically 10–30% of the complete
data set, called the test data set. In order to be able to rely on the results oftest data set

testing, it is essential that the test data set is kept completely separate and
independent from the training data set (and from the validation data set too,
if used).

Step 4: Output A successful machine learning workflow will construct a
trained and evaluated model that represents a solution to one of the three
general problem types already enumerated: clustering, classification, and
regression. In connection with clustering problems, the primary output of
the machine learning workflow is the identified clusters, learned from the
input data by the tuned ML model. ML techniques for solving classification
problems, on the other hand, output not a data set, but the learned model
itself. Assuming careful validation and testing, this output model can then
be applied to the problem of classifying related data not previously seen by
the model. In general, all machine learning techniques generate one of these
two types of output: either a data set that encapsulates the solution to the
problem, or a trained model that can subsequently be applied to related data
to generate a solution automatically.

9.3.3 Evaluation and overfitting

The evaluation step of the machine learning workflow is critical to ensure
that machine learning outputs are accurate and meaningful. Machines do not
possess the commonsense of humans when they learn. Evaluation provides the
safeguards to ensure the machine is not simply learning nonsense, and identi-
fying patterns where none exist. Without careful evaluation, the machine can

Artificial Intelligence and GIS 377

learn patterns from noise, inaccuracies, or randomness in data, where in truth
no meaningful patterns exist.

Validation metrics provide an indication of the internal quality of the
learned model, in terms of the fit between the input and the output. Test
metrics provide an indication of the generalizability of the model, in terms
of the fit between the output and a reserved test data set. However, similar
measures are often used for evaluation, whether validation or testing. Statis-
tical measures of spread such as standard deviation, mean square error (MSE),
and 𝑅2 help to evaluate the quality of learning with quantitative data, such as
regression and some types of clustering.

When evaluating learning with qualitative output, such as some other
types of clustering and classification, commonly used metrics are based on
errors of commission (items placed in a class 𝑋 that should not have been) and errors of commission

errors of omission (items not placed in a class 𝑋 that should have been). errors of omission

Crosstabulating all of these errors by class results in a confusion matrix, confusion matrix

such as that shown in Table 9.7. In Table 9.7, the confusion matrix shows
that 44 red dots were correctly classified, with 3 errors of omission (red dots
classified as blue) and 5 errors of commission (blue dots classified as red) in
the classification example in Figure 9.16. With just two classes, all the red
errors of commission are also blue errors of omission (and mutatis mutandis,
all red errors of omission are blue errors of commission). More complex error
interrelationships arise with more than two classes.

red blue total

red 44 3 47

blue 5 35 38

total 49 40 87

Table 9.7: Example confu-

sion matrix for the classifi-

cation in Figure 9.16

Overall classification accuracy is often captured as the number of correct
classifications as a proportion of the total number of classified data items.
For instance, taking Figure 9.16 and Table 9.7, the classification accuracy is
(44 + 35)/87 = 90.8%. For individual categories, three further metrics are
widely used:

• True positive rate (TPR), also called sensitivity or recall, measures of the true positive rate

data correctly classified as a proportion of all the data classified. For
example, the TPR for red in Table 9.7 is 44/47 = 93.6%.

• Positive predictive value (PPV), confusingly also called precision, is a positive predictive value

measure of the data correctly classified as a proportion of the data that
should have been so classified. For example, the PPV for red in Table 9.7 is
44/49 = 89.8%.

• The F1 score is a mean of TPR and PPV, calculated as 2 ∗ TPR∗PPV
TPR+PPV

. For F1 score

example, the F1 score for red in Table 9.7 is 2 ∗ 0.936∗0.898
0.936+0.898

= 91.7%.

TPR and PPV are always reported together because they complement
each other. For example, a model that classifies everything as red will always

378 GIS: A Computing Perspective

achieve a PPV of 100% (since everything that should be classified as red will
assuredly be classified as red) but a low TPR (since many things that should
not be classified as red assuredly will be). Conversely, a model that classifies
almost everything as blue with result in a low PPV but a high TPR. The F1
score provides a convenient summary of the combination.

The term overfitting is used to describe the common error in machine learn-overfitting

ing where the model corresponds too closely to the input data set, at the
expense of learning something generalizable about the data. Overfitting oc-
curs when the model learns about inconsequential noise in the data set, rather
than about consequential patterns. Validation and testing at the foundations
of detecting overfitting: a model with high validation metrics but low testing
metrics is the hallmark of an overfitted ML model.

9.3.4 Clustering algorithms

One of the most frequently used clustering algorithms is 𝑘-means clustering,𝑘-means clustering

which partitions an input data set into a specified number of 𝑘 clusters. The
clusters are constructed such that the arithmetic mean (centroid) of each
cluster is closer to every input data point in the cluster than to any data point
in another cluster.

The 𝑘-means clustering Algorithm 9.1 begins by randomly selecting a set
of 𝑘 “cluster head” points from within the domain of the input point set 𝑃.
Algorithm 9.1, line 1, uses the MBB (minimum bounding box) to constrain the
set of initial cluster heads. The algorithm then computes the subset of points
nearest to each cluster head, termed the assignment or allocation step (Algo-
rithm 9.1, line 3). The set of 𝑘 subsets of points (blocks) forms a partition of 𝑃.
Next, the algorithm calculates the arithmetic mean (centroid) of each block,
termed the update step (Algorithm 9.1, line 4). The alternating assignment and
update steps iterate until the blocks stabilize to the optimal solution, found
when the cluster heads no longer move after each iteration.

Algorithm 9.1: Computing the 𝑘-means of an input point set 𝑃
Input Set of points 𝑃, desired number of clusters 𝑘
1: randomly select 𝑘 points 𝑐1, ..., 𝑐𝑘 (cluster heads) such that 𝑐𝑖 ∈ MBB(𝑃)
2: repeat

3: partition 𝑃 into 𝑘 blocks, where block 𝑖 contains all points nearest to 𝑐𝑖
4: recompute cluster heads 𝑐1, ..., 𝑐𝑘 as the centroid of points in block 𝑖
5: until cluster heads 𝑐1, ..., 𝑐𝑘 are optimal (i.e., no longer change)

Output Blocks 𝑃1, ...𝑃𝑘 that partition 𝑃

Figure 9.18 summarizes the algorithm diagrammatically for an input data
set of 37 points and a cluster number 𝑘 = 3 (Figure 9.18a). Three randomly
chosen cluster heads are introduced in the assignment step (Figure 9.18b). The
update step (Figure 9.18c) then updates cluster heads as the centroid of the
identified clusters. Once the cluster heads reach their optimal location, the
clusters themselves will stabilize (Figure 9.18d), and further iterations will
not result in any further movement of cluster heads. Algorithm 9.1 is known

Artificial Intelligence and GIS 379

as naïve 𝑘-means clustering because it is intractable even for 2D sets of input
points. Happily, there are many more efficient heuristics used in practice to
solve 𝑘-means.

a. Input data points b. Assignment step

c. Update step d. Output clusters

Figure 9.18: Four stages

of the naïve 𝑘-means

clustering algorithm, in

Algorithm 9.1. Cluster

heads are indicated with

square points.

The 𝑘-means clustering algorithm “learns” the optimal location clusters
that minimize within-cluster and maximize between-cluster distances. Tun-
ing the algorithm usually involves tweaking the number of clusters 𝑘, in
response to diagnostic parameters such as the statistical spread of points
around cluster heads. For example, plotting the sum of squared distances be-
tween points and their cluster heads against different 𝑘 can help identify the
smallest 𝑘 that captures most of the variation in point locations (termed the
elbow method of validation). Testing can be performed on a reserved, randomly elbow method

selected subset of the data, with the output clusters compared in terms of
their closeness, giving some indication of the level upon which the identified
clusters are dependent on the specific input data points.

As might be expected, the results of 𝑘-means clustering are strongly depen-
dent on the required number of clusters, 𝑘. A further weakness of 𝑘-means
clustering is a sensitivity to outliers, which will always be allocated to a clus-
ter and so tend to “drag” cluster heads away from a “natural” centroid. Many
other clustering algorithms have been proposed that seek to identify clusters
with different characteristics. One of the clustering algorithms most fre-
quently used with spatial data is DBSCAN (density-based spatial clustering of DBSCAN

applications with noise). DBSCAN identifies groups of more densely packed
points, and it is able to exclude outlier points that do not fit well in any clus-
ter (Figure 9.19). In addition to the set of input points, DBSCAN requires
two input parameters: a minimum number of points in any cluster (to ex-

380 GIS: A Computing Perspective

clude very small clusters of, say, 2 or 3 points), and a neighborhood size 𝜖 that
controls the maximum threshold distance from a point to some (at least one)
other point in the same cluster.

A simplified version of DBSCAN is shown in Algorithm 9.2. A first in-
complete cluster is initialized with a single, randomly chosen seed point
(Algorithm 9.2, lines 2–3). DBSCAN then finds the yet-unvisited neighbors
within distance 𝜖 of any points in the incomplete cluster (lines 5 and 15–17).
Identified neighbors are added to the cluster (line 12), as well as being re-
moved from the set of unvisited nodes (line 13). The cluster is complete when
no further neighbors of nodes in the cluster can be found (line 6). Clusters
bigger than the minimum cluster size 𝑚 are stored in the result set before
iterating; clusters smaller than 𝑚 are discarded as outliers (lines 7–8). Finally,
the algorithm randomly selects another unvisited point to seed a new cluster
(lines 9–10) iterating until all nodes have been visited (line 14).

Algorithm 9.2: DBSCAN algorithm

Input input nodes 𝑉 , minimum cluster size𝑚, neighborhood distance 𝜖
1: set unvisited points 𝑈 ← 𝑉
2: randomly select points 𝑛 in 𝑈
3: update 𝑈 ← 𝑈 − {𝑛} and set new cluster 𝑁 = {𝑛}
4: repeat

5: 𝑀 ←GetNeighbors(𝑈 ,𝑁,𝜖)
6: if 𝑀 = ∅ then

7: if |𝑁| ≥ 𝑚 then

8: store copy of 𝑁 in result set 𝑅
9: randomly select point 𝑛 in 𝑈
10: update 𝑈 ← 𝑈 − {𝑛} and set new cluster 𝑁 = {𝑛}
11: else

12: update 𝑁 ← 𝑁 ∪ 𝑅
13: update 𝑈 ← 𝑈 − 𝑅
14: until |𝑈| > 0
15: function GetNeighbors(𝑈 , 𝑁, 𝜖)
16: return {𝑢 ∈ 𝑈|∃𝑛 ∈ 𝑁.𝛿(𝑢, 𝑛) ≤ 𝜖}
17: end function

Output Result set of clusters 𝑅

9.3.5 Classification algorithms

Decision tree learning is a foundational ML technique for classification. Despite
being a machine learning technique, decision tree learning has much in com-
mon with the knowledge representation approaches to AI encountered earlier
in this chapter. Decision tree learning involves the construction of a decision treedecision tree learning

that models the key decisions behind the classification process. A decision
tree is a directed acyclic graph (see Section 2.4.1) where:

• each non-leaf node in the decision tree represents a logical test that can be
performed on the data;

Artificial Intelligence and GIS 381

neighborhood size

a. Input data points b. DBSCAN clusters and outliers

Figure 9.19: DBSCAN

clustering on a set of input

points with minimum

number of points equal to

3 and neighborhood size

indicated

• a directed edge represents one potential outcome of the test indicated by
the source node of that edge; and

• each leaf node represents an outcome of the classification process.

For example, Figure 9.20 shows a decision tree related to the thermal com-
fort of walking tours in a city. In recent years, thermal comfort has become
an important issue in urban planning and design, as more walkable cities
with greater thermal comfort help promote healthy active lifestyles and lower
reliance on car use. The decision tree in Figure 9.20 indicates, for instance,
when the weather is cool, then thermal comfort is assured. However, on a hot
day, even a shady route cannot provide thermal comfort on a long walk.

Temp

LengthComfort=Yes Shady

mild hotcool

HumidityComfort=Yes

longshort

Length Comfort=No

yes no

Comfort=Yes Comfort=No

short long

ShadyComfort=No

normalhigh

Comfort=No Comfort=Yes

yesno

Figure 9.20: A decision

tree for thermal comfort

in city walking tours

Although the decision tree is a symbolic representation of knowledge that
sits comfortably in the KR2 branch of AI, decision trees can be learned from
data. Table 9.8 provides the data that was used to automatically construct the
decision tree in Figure 9.20. Each record in Table 9.8 provides information

382 GIS: A Computing Perspective

about the thermal comfort of individual instances of different walks under
different weather conditions.

Table 9.8: Example

data about thermal

comfort of walking

tours through a city

Temp Humidity Shady Length Comfort

Cool Normal Yes Long Yes

Mild Normal Yes Short Yes

Cool Normal No Long Yes

Mild High No Long No

Mild High Yes Long No

Hot High Yes Short Yes

Mild Normal Yes Long Yes

Hot High Yes Long No

Mild High No Short Yes

Mild Normal No Long No

Cool Normal Yes Short Yes

Hot High No Short No

Mild Normal No Short Yes

The decision tree learning algorithm used to create the decision tree in Fig-
ure 9.20 from the data in Table 9.8 is among the most famous of all machine
learning algorithms, called ID3 and developed by Quinlan (1986). The ID3ID3

algorithm listed in Algorithm 9.3 takes as input a table of data (such as that in
Table 9.8) and a target attribute, which indicates the classification outcomes
(in this case the Comfort attribute). Algorithm 9.3 initializes by creating a new,
empty root node (line 1) before calling the recursive BuildSubtree function
to build the subtree underneath that root. The BuildSubtree function first
checks if the table contains multiple values for the target attribute (line 4). If
the table contains only a single target attribute value, then the algorithm has
identified decision tree leaf node that classifies with that value. If instead the
table contains multiple target attribute values, then the algorithm needs some
way of selecting the best attribute in the table to use next to classify the data.
The ingenious and elegant answer to this problem is at the heart of the ID3
algorithm and uses the important concept of information entropy.

It is not difficult to appreciate that data and information are distinct
concepts (refer to Section 1.3.2). The string 01101101 contains 8 bits (binary
digits) of data, but no information unless we have some means of interpreting
it. A red light at a railroad crossing can convey a lot of information to a
motorist with only a small amount of data (assuming that the light is either
on or off, then only a single bit of data). Data is easy to measure: it may be
measured in bits and bytes. A more difficult question is, “How do we measure
information?” Indeed, “What is information?”

One way to describe information is as a signal communicated on a channel
from a transmitter to a receiver. This simple model, termed Shannon-Weaver
information theory, can help in constructing a metric for the quantity of
information communicated, not just the quantity of data. Information entropy,information entropy

also called Shannon entropy, is a measure of the quantity of information in a
signal in terms of its capacity to “surprise” the recipient. “Surprise” in this

Artificial Intelligence and GIS 383

context is used to mean the smallness of the chance that a particular signal
will be received. The smaller the chance, the greater the surprise, and the
higher the information is valued.

For example, in Maine in the winter, there is almost always snow on the
ground. A weather forecast of winter snow in Maine, therefore, is not un-
expected and so does not contain much information. However, the same
forecast of winter snow in Melbourne would be unusual, to say the least, and
therefore might be said to contain much more information (and see Box 9.5
on the following page).

Algorithm 9.3: ID3 decision tree learning algorithm

Input table tab, target attribute tar

1: create empty root node 𝑛
2: BuildSubtree(tab, tar, 𝑛)
3: function BuildSubtree(table tab, target tar, node 𝑛)
4: if only one row in: SELECT DISTINCT tar FROM tab then

5: set 𝑛 as: leaf node with value from SELECT DISTINCT tar FROM tab

6: else

7: find attribute att in table tab with the largest information gain for tar

8: set 𝑛 as: non-leaf node with decision attribute att

9: set lst as: the list of all attributes in table tab excluding tar

10: for all attribute values val in: SELECT DISTINCT att FROM tab do

11: set sub as: SELECT lst FROM tab WHERE att=val

12: set 𝑛′ as: a new empty child node

13: create new edge from 𝑛 to 𝑛′ labeled with decision att=val

14: BuildSubtree(sub, tar, 𝑛′)
15: end function

Output Decision tree with root node 𝑛

Calculating information entropy, then, involves calculating how surprising
a particular signal is expected to be, to a receiver. For some variable 𝑋 with
values {𝑥1, ..., 𝑥𝑖} the information entropy 𝐻(𝑋) is calculated in Equation 9.1 as
follows:

𝐻(𝑋) = −∑𝑥∈𝑋 𝑝(𝑥) log2 𝑝(𝑥) (9.1)

In Equation 9.1, 𝑝(𝑥) is the probability of 𝑥, interpreted in ID3 as the
proportion of all records in the table with attribute value 𝑥. For example, in
Table 9.8 the attribute Comfort (8 Yes values, 5 No values, 13 records in total)
has information entropy 8/13 log2(8/13) + 5/13 log2(5/13) = 0.946. Deciding
which attribute is most useful to use as a decision node in the decision tree
can then be reformulated as the question of which attribute is associated with
the largest information gain (i.e., the greatest reduction in surprisal value). Us- information gain

ing information entropy, information gain 𝐼𝐺(𝑋, 𝑎) associated with attribute
𝑎 and variable 𝑋 is calculated in Equation 9.2 as follows:

𝐼𝐺(𝑋, 𝑎) = 𝐻(𝑋) −∑𝑇∈𝜏 𝑝(𝑇)𝐻(𝑇) (9.2)

where 𝜏 is interpreted as the set of tables resulting from a split using attribute
𝑎 and 𝑝(𝑇) the number of records in table 𝑇 ∈ 𝜏 as a proportion of those in 𝑋 .

384 GIS: A Computing Perspective

Box 9.5: Information quantity and value

The Shannon-Weaver concepts of transmitters and re-

ceivers of signals via channels are of course metaphors.

The image of information leaving the source, being trans-

mitted through a medium (channel) to a receiver, perhaps

also being the subject of degradation through noise, is

compelling. In fact, it is so compelling that sometimes it is

easy to forget that it is only an image, and an image with

limitations. In particular, in Shannon and Weaver’s elab-

oration of the metaphor, “value” becomes synonymous

with “quantity” of information, which is measured by in-

formation entropy. However, it is easy to find intuitive ex-

amples where value is not measured this way. Suppose

a burglar has determined by observation that almost ev-

ery night the owners of a house forget to set their house

alarm system and only remember on those rare occa-

sions when they take their dog for a walk. On the night

planned for the burglary, the lack of a dog being walked

provides unsurprising but highly valuable information to

the burglar. Context is the key here, and an understand-

ing of context needs to contribute to any metric of infor-

mation value. A stronger position would be that context

is a necessary facilitator of information flow, and without

context there is no flow (see Sperber & Wilson, 1995).

For example, the information gained by selecting attribute Temp is:

(813 log2
8
13 +

5
13 log2

5
13)−

(313(
3
3 log2

3
3 +

0
3 log2

0
3)+

7
13(

3
7 log2

3
7 +

4
7 log2

4
7)+

3
13(

1
3 log2

1
3 +

2
3 log2

2
3)) = 0.204

By contrast, none of the other attributes in Table 9.8 exhibit such high
information gains (the information gain for Humidity is 0.046, Shady is 0.076,
Length is 0.115). Algorithm 9.3 uses such calculations of information gain (line
7) as the basis for selecting the attribute to use in each decision node (lines 8–
9). Then, by splitting the table into smaller tables using the selected attribute
(Algorithm 9.3, line 10–11) the algorithm continues building the decision tree
recursively with a new decision edge and child node (lines 12–14).

Decision trees, such as that in Figure 9.20, are powerful and intuitive
ML classification tools. However, decision trees also tend to suffer from
overfitting, especially if grown to their fullest extent, necessary to classify
every data item from the input data. To address this limitation, a random forestrandom forest

is a collection of decision trees grown from randomized samples of the input
data, illustrated in Figure 9.21. Each sample typically uses about two-thirds of
input data. However, samples are often “topped up” to be the same size as the
input data set with randomly sampled duplicate entries, a sampling process
called bootstrapping. Validation of each tree can use the data omitted from itsbootstrap sampling

generating sample, termed out-of-bag estimation (OOB).out-of-bag estimation

A random forest may take many hundred such random samples in order to
grow hundreds of trees. After training this way, classification of unseen data
can proceed using majority voting from across all the trees in the forest. Each
new record encountered is classified by all the trees in parallel, with the class
most frequently represented across the forest being assigned to the output.

Artificial Intelligence and GIS 385

Temp Humidity Shady Length Comfort

Cool Normal Yes Long Yes

Mild Normal Yes Short Yes

Cool Normal No Long Yes

Mild High No Long No

Mild High Yes Long No

Hot High Yes Short Yes

Mild Normal Yes Long Yes

Hot High Yes Long No

Mild High No Short Yes

Mild Normal No Long No

Cool Normal Yes Short Yes

Hot High No Short No

Mild Normal No Short Yes

Temp

LengthComfort=Yes

mild hotcool

Comfort=Yes

longshort

Comfort=No

Shady

Comfort=No Comfort=Yes

yesno

Temp Humidity Shady Length Comfort

Cool Normal No Long Yes

Mild High No Long No

Mild Normal Yes Long Yes

Hot High Yes Long No

Mild High No Short Yes

Mild Normal No Long No

Cool Normal Yes Short Yes

Hot High No Short No

Mild Normal No Short Yes

Temp

LengthComfort=Yes

mild hotcool

Comfort=No

Comfort=Yes Comfort=No

Shady

Comfort=Yes

yesno

longshort

Temp Humidity Shady Length Comfort

Cool Normal Yes Long Yes

Mild Normal Yes Short Yes

Cool Normal No Long Yes

Mild High No Long No

Hot High Yes Short Yes

Mild Normal Yes Long Yes

Mild Normal No Long No

Hot High No Short No

Mild Normal No Short Yes

Temp Humidity Shady Length Comfort

Cool Normal No Long Yes

Mild High No Long No

Mild High Yes Long No

Hot High Yes Short Yes

Mild Normal Yes Long Yes

Hot High Yes Long No

Mild Normal No Long No

Cool Normal Yes Short Yes

Hot High No Short No

Temp

Comfort=Yes Shady

mild hotcool

Humidity

Length Comfort=No

yes no

Comfort=Yes Comfort=No

short long

ShadyComfort=No

normalhigh

Comfort=NoComfort=Yes

noyes

...

...

Majority voting

Input
data

Randomized
samples

Ensemble
of trees

Figure 9.21: Random for-

est ensemble of decision

trees without bootstrap-

ping

The approach of learning multiple models from data and then recombining
the set of model outputs into a final output is a common technique in ma-
chine learning, termed ensemble learning. In general, ensemble learning tends ensemble learning

to increase overall stability and accuracy of learning outputs. Accordingly,
random forests are an example of an ensemble learning technique, with the
particular objective of reducing the tendency to overfitting common in single
decision trees.

Decision tree learning can also be adapted to handle continuous-valued
data, by classifying quantities using data classification techniques such as
quantiles, equal intervals, and mean-standard deviation encountered in the
previous chapter. Moving beyond classifying quantitative data to true predic-
tions with continuous values, however, requires regression algorithms.

386 GIS: A Computing Perspective

9.3.6 Regression algorithms

Regression aims to fit a model to quantitative data, such that the model can
subsequently be used to predict values that are not part of the input train-
ing data set. One of the most important techniques for spatial regression is
Kriging, named after mining engineer and statistician Danie Krige.13 At theKriging

13 Both the name “Krige”
and the technique “Krig-
ing” are pronounced in
English with a hard “g.”

root of Kriging is a construction called the semivariogram. The semivariogram

semivariogram

provides a model of the spatial autocorrelation (degree of spatial interdepen-
dence) in a data set (Section 4.2.1). The semivariogram captures the degree to
which “near things are more related” (Tobler’s first law), and it uses that as its
basis for regression.

Figure 9.22a summarizes the key features of the semivariogram as follows:

• On the 𝑥-axis, the semivariogram measures the distance between pairs of
points in spatial data, termed lag.lag

• On the 𝑦-axis, the semivariogram measures the average of variation be-
tween points at that corresponding lag. Variation is measured as semi-
variance: half the average squared difference between pairs of points at asemivariance

specified lag.
• The intercept of the curve with the 𝑦-axis is termed the nugget, and itnugget

represents the variability between points at zero lag. The curve will not
usually intercept the origin. The non-zero nugget is interpreted as the level
of error in measurements, or of variation below the smallest measurement
granularity.

• Semivariance is expected to increase with increasing lag (because near
things are more related), but only up to a certain level, termed the sill.sill

• The lag beyond which semivariance no longer appreciably increases is
called the range. The range is the limit of autocorrelation, beyond whichsemivariogram range

distance all point pairs are equally uncorrelated.

Se
m

iv
ar

ia
nc

e

Lag
Range

Sill

Nugget

Se
m

iv
ar

ia
nc

e

Lag
a. Semivariogram features b. Training with data

Figure 9.22: The semivari-

ogram, the basis of Kriging Fitting (i.e., training) a semivariogram to a data set 𝑁 of points involves
first computing the semivariance between the sets of points at different lag

Artificial Intelligence and GIS 387

distances. For a set of pairs of points 𝑁(ℎ) at approximate lag distance ℎ (i.e.,
within some small tolerance), the semivariance 𝛾 is computed as:

𝛾(ℎ) = 1
2𝑁(ℎ) ∑

(𝑖,𝑗)∈𝑁(ℎ)
(𝑍(𝑝𝑖) − 𝑍(𝑝𝑗))

2

where 𝑍(𝑝𝑥) is the observed value at point 𝑝𝑥. Figure 9.22b plots the semivari-
ance of a set of points against lag (circular data points) with the curve (dashed
line) fitted to the data using regression. Often the curve may be fitted to av-
eraged values (square data points in Figure 9.22b) for clarity. There are many
different types of curve that may be fitted to the data, from simple linear
relationships to sophisticated Gaussian models and sigmoid functions. One
of the most commonly used models is a modified quadratic, called a spherical
model (as used in Figure 9.22b). The objective in all cases is to achieve the best
fit between model and data. However, the choice of curve type typically has a
significant impact on the training results.

The output of this training process is a model of the autocorrelation in the
data, based on the structure of the semivariogram. Specifically, the predicted
value ̂𝑍 at some new location 𝑝0 is estimated as the sum of known values at
all the other input data points, weighted by inverse distance and according to
the semivariogram (i.e., so nearby data points have a much stronger influence
than more distal data points). This estimate is captured by the equation:

̂𝑍(𝑝0) =
|𝑁|
∑
𝑘=1

𝜆𝑘𝑍(𝑝𝑘)

where 𝜆𝑘 is the set of weights derived from the semivariogram based on the
distance of each input data point 𝑝𝑘 from 𝑝0. The model can be evaluated in
the usual way, for example, by reserving a test data set unused in the training
and computing the MSE or 𝑅2 deviations between test data and predictions.

Empirical Bayesian Kriging The approach described above is the most basic
form of Kriging, called simple Kriging. An important limitation of simple
Kriging is that it assumes statistical stationarity: that the statistical properties statistical stationarity

of the training data are constant across the study area. In contrast, we know
to expect spatial data to exhibit nonstationarity—where variability itself varies
spatially and there exists no such thing as an “average location” (see Box 1.7 on
page 34).

Several more sophisticated extensions of simple Kriging have been devel-
oped to provide more sophisticated predictions that relax the strict require-
ment for stationarity, such as ordinary Kriging. One of the most widely used
such extensions is called empirical Bayesian Kriging (EBK). EBK generates not empirical Bayesian Kriging

one semivariogram, but many semivariograms from overlapping, randomly
selected subsets of input data.

Thus, training generates a spectrum of semivariograms, each one an esti-
mate of the “true” semivariogram. The spectrum of semivariograms forms an
ensemble that can be recombined into a single output model. As before, the

388 GIS: A Computing Perspective

ensemble approach tends to provide more reliable predictions for each new
location. Figure 9.23 shows the results of EBK regression analysis of point-
based observations of temperature across the state of Oregon, US.

Figure 9.23: Empirical

Bayesian Kriging of tem-

perature points across

the state of Oregon, US

Mean August
Temp oC

Like all Kriging, EBK accommodates autocorrelation in spatial data. The
temperature surface output by EBK in Figure 9.23 captures the spatially
autocorrelated continuous variation in temperature points.14 However,14 The input points and the out-

put surface have been classified
in Figure 9.23 for cartographic

clarity, but the underlying input
and output data is continuous.

unlike simple Kriging, EBK also allows for moderate levels of nonstationarity,
because the estimate of the value at a location can be based on recombining a
subset of the spectrum of semivariograms from nearby locations. Hence, the
level of autocorrelation used to generate the surface in Figure 9.23 from the
input temperature points may vary somewhat across the area.

Geographic weighted regression One further, important regression technique
capable of accommodating both autocorrelation and nonstationarity is called
geographically weighted regression (GWR). Whereas Kriging trains a model togeographically

weighted regression estimate a variable at unknown locations, GWR trains a model to estimate the
spatially varying and unknown relationship between different variables.

GWR is a spatial extension of multiple linear regression, where training
data is used to construct the relationship between a dependent variable and
one or more independent variables. Predicting a dependent variable 𝑦 based
on 𝑝 independent variables 𝑥1...𝑥𝑝 with multiple linear regression has the
general form:

𝑦 = 𝛽0 +
𝑝
∑
𝑘=1

𝛽𝑘𝑥𝑘 + 𝜖

where 𝜖 is an error term and 𝛽𝑘 are the parameters of the regression that need
to be estimated. GWR additionally accounts for local, spatial variations in
the relationship between variables, using the form:

Artificial Intelligence and GIS 389

𝑦(𝑢) = 𝛽0(𝑢) +
𝑝
∑
𝑘=1

𝛽𝑘(𝑢)𝑥𝑘 + 𝜖

where 𝛽(𝑢) indicates the estimated parameter at a location 𝑢.
Multiple linear regression estimates a single, global relationship between

the dependent variable and each independent variable based on the entire
training data set. By contrast, GWR estimates the local relationship between
dependent and independent variables for each location in the training data
set. Figure 9.24 shows an example of the output of a GWR model for a regres-
sion on the Oregon temperature data already encountered in Figure 9.23. It
is expected that temperature is not only autocorrelated but correlated with
other environmental variables, such as elevation. Further, the degree to which
temperature is correlated with elevation is expected to vary spatially, with
some locations exhibiting stronger correlation than others. The GWR output
in Figure 9.24 shows the spatially varying strength of this relationship. Higher
coefficients (stronger relationships) are found at higher elevations; lower co-
efficients tend to cluster nearer to the coast, where proximity to the sea tends
to dominate local weather conditions rather than elevation.

e ee ee ee ee ee ee e

-0.0008
-0.0014 -0.0008
-0.0018 -0.0014
-0.0022 -0.0018
-0.0025 -0.0022
-0.0029 -0.0025

90 km

Figure 9.24: Output coef-

ficient for geographically

weighted regression

of mean August tem-

perature (dependent

variable) against elevation

(independent variable,

lighter green indicates

higher elevation) across

the state of Oregon, US

(cf. Figure 9.23)

The extent to which the prediction at a location is influenced by other
nearby spatial locations is controlled by the kernel bandwidth or simply kernel bandwidth

bandwidth. Larger bandwidths take into account more observations in the
prediction, in the extreme approaching the global linear regression results.
Smaller bandwidths are more strongly influenced by nearby locations, in the
extreme tending towards extreme overfitting. The predictions at a particu-
lar bandwidth are usually calculated using a distance decay function, such
as a Gaussian or bisquare distribution. In that way, closer locations within
the bandwidth influence the estimate for a location more than more distal
locations within the bandwidth.

390 GIS: A Computing Perspective

Bandwidths themselves can be expressed in (Euclidean) distance, termed
a fixed kernel, or in terms of the number of neighbors, termed an adaptive
kernel (since in this case the distance used will adapt to the density of input
data points). Figure 9.25 shows an example of an adaptive bisquare kernel
containing 19 points at two locations 𝑎 and 𝑏. Figure 9.24 was constructed
using an adaptive bandwidth of 30 neighbors, for example.

Figure 9.25: Bisquare

adaptive kernel contain-

ing 19 neighbors at esti-

mated locations 𝑎 and 𝑏

a b

The first step of any GWR modeling, then, is to select an appropriate
bandwidth. Bandwidth may be estimated by an experienced human analyst or
an optimized bandwidth can be computed. The most common optimization
procedure is cross-validation, where the chosen bandwidth minimizes the sum
of the square differences between the estimated and known dependent vari-
able. More formally, the selected bandwidth ℎ minimizes CV—the difference
between observed dependent variable at each location 𝑦𝑖 and that estimated
from the neighbors within distance ℎ, excluding the observation 𝑦𝑖 itself,
denoted 𝑦≠𝑖(ℎ):

CV =
𝑛
∑
𝑖−1

(𝑦𝑖 − ̂𝑦≠𝑖(ℎ))
2

The 𝑅2 value is commonly used for evaluating the quality of a spatial
regression such as GWR. The overall 𝑅2 for the regression in Figure 9.24 is
0.74—moderately high, but perhaps might be improved using an optimized
bandwidth procedure. In addition, Figure 9.26 shows the spatial variation
in 𝑅2 values output by the geographically weighted regression in Figure 9.24.
Figure 9.24 highlights the spatially varying quality of the regression, of lowest
quality in the southern central region, but performing well in other areas,
especially the northwest of the state.

It lies beyond the scope of this book to attempt a more complete treat-
ment of spatial analysis. The leading textbook specifically on this fascinating

Artificial Intelligence and GIS 391

GWR R-squareGWR R-squareGWR R-squareGWR R-squareGWR R-squareGWR R-squareGWR R-square

90 km

Figure 9.26: Output 𝑅2 for
geographically weighted

regression of mean

August temperature (de-

pendent variable) against

elevation (independent

variable, lighter green

indicates higher elevation)

across the state of Ore-

gon, US (cf. Figure 9.24)

topic is O’Sullivan & Unwin (2010). Other GIS textbooks, such as Burrough
et al. (2015) and Longley et al. (2015), devote significant portions of the con-
tents to the topic. A great number of other, application-oriented texts adopt
a discipline-specific view, such as spatial analysis for social scientists (e.g., Rey
& Franklin, 2022), or a technology specific perspective, such as spatial analysis
with R (e.g., Comber & Brunsdon, 2020). The central message of our treat-
ment of this topic, however, is that the most venerable and celebrated spatial
analysis techniques are also machine learning techniques. Learning patterns
from data is at the root of spatial analysis too.

9.4 Deep learning

The previous section provides an introduction to the huge variety of machine
learning techniques that exist today, by focusing on that subset of clustering,
regression, and classification techniques most frequently used with spatial
data. There is one further family of machine learning techniques, however,
that has had arguably more impact on GIS than any other: deep learning.

9.4.1 Artificial neural networks

Deep learning is founded on artificial neural networks. An artificial neural
network (ANN), or simply a neural network, is a machine learning classifica- neural network

tion or regression algorithm and is commonly represented using a weighted,
directed graph. The simplest possible ANN has multiple input nodes con-
nected to a single output node by weighted directed edges as in Figure 9.27.
The output node computes the weighted sum of inputs, and it then applies an
activation function to determine what output is generated. A simple activation activation function

392 GIS: A Computing Perspective

function is to apply a threshold, such that a 1 is output if the weighted sum
plus some bias 𝑏 is above the threshold, −1 otherwise.

Figure 9.27: A single-

layer feed-forward

ANN or perceptron

input layer output layer

p2

...

pn

p1 w1

w2

wi

wn

outputΣ a

binput 1

...

input 2

input n

The structure of the ANN in Figure 9.27 has just one layer of activating
(output) nodes. The structure also only ever feeds data forward from inputs
towards outputs, known as a feed-forward network. Accordingly, this struc-feed-forward network

ture is known as a single-layer feed-forward neural network, or more simply as
a perceptron. The terms “perceptron” and “neural network” were coined toperceptron

highlight the biological inspiration of animal neurons and brains behind these
computational structures.

Despite their simplicity, even perceptrons alone can provide basic machine
learning classification capabilities. Consider the classification problem in
Figure 9.28a, where a training data set of points in Euclidean space has been
classified into two categories shown in red (corresponding to −1) or blue
(corresponding to 1) based on an implicit linear boundary between them.

Figure 9.28: Simple

classification using a

trained perceptron

0
0 50

50

(25.6, 19.2)

p1

input layer output layer

p2

-60

20
class

Σ a

1000

x

y

a. Classified points b. Classifying perceptron

The perceptron in Figure 9.28b has two inputs, corresponding to the 𝑥
and 𝑦 coordinates of input points. The activation function, 𝑎 ∶ ℝ → {−1, 1},
combines the weighted sum with the bias as follows:

𝑎(𝑣) ↦ {
−1 if 𝑣 + 𝑏 > 0
1 otherwise

For example, applying the weights 𝑤1 = −60 and 𝑤2 = 20 and a threshold
of 𝑏 = 1000, the perceptron in Figure 9.28b can correctly classify all the points

Artificial Intelligence and GIS 393

in Figure 9.28a. A new point (shown in gray) with coordinate (25.6, 19.2) is
classified by the perceptron as 𝑎(−1152) = 1 (i.e., classified as blue since
−60 ∗ 25.6 + 20 ∗ 19.2 + 1000 ≤ 0).

Implicitly, the perceptron is performing binary classification based on
the dashed line indicated in Figure 9.28a. Training such a perceptron is ef-
fectively a matter of using the training data to learn the weights and bias
needed to correctly classify the data. There are many sophisticated strategies
used to train neural networks efficiently. However, a simple training strat-
egy that illustrates the key features of neural network training is shown in
Algorithm 9.4.

Algorithm 9.4: Simple perceptron training

Input 𝑛 perceptron weights 𝑤1, ..., 𝑤𝑛, activation threshold 𝑏, training data table
𝑇 with 𝑛 + 1 attributes (𝑛 features, 1 classification)

1: initialize weights 𝑤1, ..., 𝑤𝑛 ← 0.0
2: initialize activation threshold 𝑏 ← 0.0
3: repeat

4: randomly select and remove one row ⟨𝑝1, ..., 𝑝𝑛, 𝑜⟩ ∈ 𝑇
5: compute weighted sum 𝑣 ← ∑𝑛

𝑖=1 𝑤𝑖 .𝑝𝑖

6: classify output as 𝑜′ ← {
1 if 𝑣 ≤ 𝑏
−1 otherwise

7: if 𝑜′ ≠ 𝑜 then
8: update all weights 𝑤𝑖 ← 𝑤𝑖 + 𝑜′.𝑝𝑖
9: update threshold 𝑏 ← 𝑏 − 𝑜′.𝑣
10: until all rows in 𝑇 have been visited

Output Trained weights 𝑤1, ..., 𝑤𝑛 and threshold 𝑏

The simple training strategy in Algorithm 9.4 begins by initializing the
weights and bias with arbitrary values (lines 1–2). Next, we iterate through
the training data set, selecting and removing data items to process in ran-
dom order (lines 3–4). The selected training data item is classified using the
(initially arbitrary) weighted sum and output in lines 5–6. If the computed
classification 𝑜′ does not match the training data ground truth classification
𝑜 each weight 𝑤𝑖 is updated to 𝑤𝑖 + 𝑜′.𝑝𝑖 (line 8) and the bias 𝑏 is updated to
𝑏 − 𝑜′.𝑣 (line 9). Otherwise, the weights and bias are left unchanged.

Table 9.9 steps through the first 13 iterations of Algorithm 9.4 using the
training data set and untrained perceptron from Figure 9.28. The example
rapidly converges on the approximate weights and threshold close to those
used above (𝑤1 = −58.2, 𝑤2 = 20.3, 𝑏 = 926.1).

9.4.2 Multilayer perceptron networks

The perceptron discussed above illustrates several features common to all
ANNs, such as the graph-based structure, the classification itself using
weighted sums, and the learning of weights and biases from training data.
However, as might be expected, such simple ANNs have significant limita-
tions. In particular, perceptrons are only able to learn a certain specific type

394 GIS: A Computing Perspective

Table 9.9: Example

training of perceptron

in Figure 9.28b using

data in Figure 9.28a

and Algorithm 9.4

𝑥 𝑦 𝑜 class 𝑤1 𝑤2 𝑏 𝑣 𝑜′ predicted

13.1 26.4 -1 red 0.0 0.0 0.0 0.0 1 blue

19.1 48.3 -1 red 13.1 26.4 0.0 1525.3 -1 red

19.3 3.0 1 blue 13.1 26.4 0.0 332.0 -1 blue

39.0 13.3 1 blue -6.2 23.4 332.0 69.4 -1 red

47.3 24.6 1 blue -45.2 10.1 401.5 -1889.5 1 blue

15.4 6.5 1 blue -45.2 10.1 401.5 -630.4 1 blue

31.1 17.4 1 blue -45.2 10.1 401.5 -1230.0 1 blue

2.8 38.5 -1 red -45.2 10.1 401.5 262.3 -1 red

31.3 46.8 -1 red -45.2 10.1 401.5 -942.1 1 blue

44.3 36.6 1 blue -13.9 56.9 -540.6 1466.8 -1 red

43.1 32.3 1 blue -58.2 20.3 926.1 -1852.7 1 blue

23.3 38.0 -1 red -58.2 20.3 926.1 -584.7 -1 red

3.4 22.7 -1 red -58.2 20.3 926.1 263.0 -1 red

...

of classification (i.e., those where classification can be achieved with a sin-
gle straight line or hyperplane, termed linearly separable) and are not able to
classify reliably in the presence of noisy data.

More sophisticated ANNs, however, can overcome these limitations, and
indeed provide the basis of “universal” classifiers, able to approximate any
continuous function. There are four main features that more sophisticated
ANNs add to the perceptrons already encountered.

First, many perceptrons can be connected together into a single, combined
neural network with multiple layers, termed a multilayer perceptron networkmultilayer per-

ceptron network (MLP). Figure 9.29 shows an MLP with three activating layers. In between
the (inactive) input layer and the output layer, two “hidden” layers providehidden layer

many more connections leading to many more possible paths between input
and output. Hidden layers stage the processing of input data, with succes-
sive layers usually having fewer nodes—termed the width of the layer—than
its predecessor. The proliferation of paths made possible by the multilayer
structure enables much more sophisticated classifications to be learned than
achievable with a single perceptron.

Figure 9.29: A three-

layer perceptron net-

work (weights omitted)

output layer

Σ a

b3

input layer

p2

...

pn

p1

hidden layers

Σ a

Σ a

Σ a

Σ a

Σ a

Σ a

Σ a

b2b1

Second, MLPs can employ more sophisticated activation functions than
the simple step function encountered in the previous section. Figure 9.30
shows the two most common activation functions used in preference to the

Artificial Intelligence and GIS 395

simple step function. The sigmoid function in Figure 9.30b is effectively a sigmoid function

continuous differentiable analog of the step function. Returning a continuous
value in the range [0.0, 1.0], rather than binary values such as {0.0, 1.0}, ensures
small changes to weight and bias parameters do not lead to sudden dramatic
changes in outputs, as can happen with binary step functions. The rectified
linear unit function (ReLU) function in Figure 9.30c is also continuous, but rectified linear unit function

not differentiable. Both sigmoid and ReLU functions are nonlinear, enabling
the neural network to approximate nonlinear classifications. Being piecewise
linear, however, the ReLU activation function can be computationally more
efficient in practice.

0 5 10-5-10

0.5

1.0

0.0
0 5 10-5-10

0.5

1.0

0.0
0 5 10-5-10

0.5

1.0

0.0

a. step function b. sigmoid function c. ReLU function

Figure 9.30: Three com-

mon activation functions

Third, the added hidden layers in MLPs demand more sophisticated mech-
anisms for updating weight and bias parameters during training. In a single-
layer perceptron, all classification errors can be attributed to the parameters
associated with the output layer. In MLPs, updates to parameters across the
hidden layers are required in proportion to the contributions of hidden nodes
to output errors. A process known as back-propagation is used to achieve this back-propagation

and effect parameter updates in the hidden layers too during training.
Fourth, the neural networks we have encountered thus far are feed-forward

and fully connected, with every node in a layer with forward connections to
every node in the next layer. As we shall see in the next section, these features
too are extended by true deep learning techniques.

9.4.3 Deep learning models

We have seen above that the number of nodes in a layer provides a measure
of the width of a neural network. The depth of an ANN is defined by the
number of layers in a feed-forward network, and more generally by the length
of the path from input to output in neural networks where feedback loops
are possible. Deep learning is particularly concerned with the construction,
training, and use of deep neural networks. While there is no universally agreed
upon definition of what counts as “deep,” generally deep learning is taken to deep learning

mean any ANN with paths of three or more activating nodes from input to
output. Hence, at a minimum a feed-forward MLP with two hidden layers
would count as deep learning.

396 GIS: A Computing Perspective

Convolutional neural networks Perhaps the most important family of deep
neural network structures for spatial data is the convolutional neural networkconvolutional neural network

(CNN), particularly used with image-based and raster spatial data. Large
images may contain millions of pixels, which would translate into billions of
weights in a fully connected MLP. Even a small 8 channel, 1024 pixel square
satellite image would require more than 8 million weights (8 × 1024 × 1024 =
8,366,608) for each node in an MLP.

Such wide, fully connected MLPs are not computationally efficient. More
importantly, nor are they statistically efficient because we expect that most
of the meaningful weights will relate nearby pixels, due to autocorrelation.
CNNs achieve increase both computational and statistical efficiency by
effectively restricting the connections between neural network nodes to those
representing nearby localities. To achieve this, two new types of layers are
introduced by CNNs:

1. a convolutional layer which combines values from pixels within a specifiedconvolutional layer

neighborhood using an image processing kernel; andkernel

2. a pooling layer which combines values from nearby pixels using maximum,pooling layer

minimum, median, or other aggregate function of all the pixel values
within a specified neighborhood.

Figure 9.31 illustrates the operations embedded into the structure of these
two types of layers. Starting with a simple 8 × 8 pixel image on the left of
Figure 9.31, and placing the 3 × 3 kernel over each pixel in turn, a new 6
× 6 image is computed as the pixel-wise weighted sum of kernel and pixel
values.15 In Figure 9.31, the kernel configuration shown is known as a high-pass15 For example, placing the ker-

nel in the top left of the input
image in Figure 9.31, the top left
pixel of the convolutional layer is
computed as: 4 × 4 + 4 × −1 +
4×−1+3×−1+3×−1 = −2.

filter and is tuned to detect edges in the image. Other kernel configurations
will tend to highlight other features, allowing each convolutional layer to be
tuned to activate in response to certain types of image features.

Figure 9.31: CNNs: convo-

lution of an image using

a 3 × 3 high-pass filter

with stride 1 followed by

max pooling using a 2
× 2 mask with stride 2

0

4

3

-1

0

-1 4

-1

0 -1 0

4

44

44

3

3

3

3

3 3

3 3

3 3

3 3

3

3

3 3

3 3 3 3

3 3 3

3

2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

22

2

2 2

2 2

2 3

2 2

2 2

2

3

3

3

3

2

-2

2

2

2

2

1

1

00

00

000

0

00

00

00

0

0

-1

-1

-1

-1

0

-2

-2

-2 -2

-2

-2

-2

0

2

2

22 1

00

00

Input image

Convolutional layer

Pooling layer

11

11

High-pass
filter kernel

Mask

Stride=1

Stride=2

The progress of the kernel across the image is controlled by a model pa-
rameter, termed stride. A stride of 1 means the kernel is applied to everystride

Artificial Intelligence and GIS 397

available pixel; a stride of 2 applies the kernel to available pixels in every
other row and column; a stride of 3, available pixels in every third column
and row, and so on.

Similar to convolution, pooling is also based on aggregation of neighboring
pixels. Pooling applies an aggregation operation—such as maximum, mini-
mum, or modal pixel value—to the set of all pixels in a neighborhood, called
a mask. In Figure 9.31, the result of themax pooling operation using a 2 × 2 mask

mask with stride 2 is shown in the final pooling layer. Pooling assists in sum-
marizing and downsampling an image, reducing the size of subsequent layers
and thus the number of parameters to train.

Figure 9.32 summarizes a generalized CNN architecture. The input image
is used to construct a set of convolutional layers (just three in Figure 9.32),
each derived using different kernels. Pooling layers downsample into a set of
smaller layers. Most CNNs apply a series of convolution and pooling layer
pairs, not shown in Figure 9.32. The final pooling layers are then recombined
by feeding into one or more fully connected hidden layers and ultimately
the output layer, as we have seen already used with MLPs. Training a CNN
begins in the usual way with back-propagation through the hidden layers.
Pooling has no trainable parameters, and so no learning takes place with
pooling layers. Importantly, back-propagation through convolutional layers
updates the kernel weights rather than individual ANN edge weights, which
dramatically reduces the number of parameters to learn, when compared with
a fully connected MLP for example.

output
layer

Σ a

fully connected
hidden layers

Σ a

Σ a

Σ a

Σ a

Σ a

Σ a

Σ a

input
image

convolutional
layers

pooling
layers

further
convolution
and pooling

layers

...

Figure 9.32: Summary

architecture of a CNN,

with three (3 × 3) con-

volutional filters, 2 × 2

pooling filters, and two

fully connected hidden

layers

Graph neural networks CNNs operate on the implicit neighborhood structure
of raster images. The kernels and masks that underpin the convolutional and
pooling layers in CNNs are the mechanism by which that neighborhood is en-
coded within a CNN. Graph neural networks (GNNs) generalize the concept of
the CNN to the arbitrary neighborhood structures found in abstract graphs.
Rather than use pixel neighborhoods, GNNs are structured around learning
with encoded graph neighborhood structures. graph neural network

Graphs are fundamental to GIS, as we have seen in Chapter 2, Chapter 3,
and indeed in this chapter too (in connection with knowledge graphs, Sec-

398 GIS: A Computing Perspective

tion 9.1). New applications of GNNs are emerging every day, and we do not
delve further into this fast-moving area. Nevertheless, it is possible to identify
three broad types of tasks tackled using GNNs:

• node-level tasks, such as node classification and clustering;
• edge-level tasks, such as edge classification and link prediction; and
• graph-level tasks, such as graph classification and graph matching.

Recurrent neural networks Recurrent neural networks are our final stop on
this tour of deep learning. Unlike feed-forward networks, a recurrent neural
network (RNN) contains feedback loops, where node outputs may connectrecurrent neural network

back into the current or previous layers as well as forward towards the output
(see Figure 9.33). Looped connections equip the neural network with an
analog of working memory, where previously processed training data may
influence subsequent training steps. As a result, RNNs are especially well
adapted for learning from data where the sequence or timing of data items is
significant.

Figure 9.33: RNN: recur-

rent neural networks

allow loops, where

feed-forward and feed-

back links between

nodes are permitted

output layer

Σ a

input layer

p2

...

pn

p1

hidden layer

Σ a
m

Σ a
m

Σ a
m

In practice, to enable recurrence, nodes accepting feedback connections
are equipped with a memory to store the node state from one iteration to
the next. The capacity to store node state between iterations is indicated
with an 𝑚 in the nodes with feedback links in Figure 9.33. As for CNNs and
GNNs, the back-propagation algorithm has to be modified to accommodate
successive parameter updates, termed back-propagation through time (BPTT). Inback-propagation

through time short, BPTT effectively “unrolls” the RNN into a sequence of MLPs (as shown
in Figure 9.34), back-propagating parameter updates through the chain,
before rolling back up the RNN ready for the next iteration.

Deep learning has become fertile ground for research and development of
new models and techniques, of which GNNs and RNNs are just two exam-
ples. Other examples include GANs—generative adversarial networks—whichgenerative ad-

versarial network pit two neural networks one against the other. The two networks compete
against each other in training: one (the generator) learns to generate new data
with the same statistical properties as the training data; the second (the dis-
criminator) learns to spot the differences between real and generated data
sets. Further innovations and new applications are to be expected in the com-
ing decade, especially as bigger and bigger data sets containing billions of

Artificial Intelligence and GIS 399

Σ a
p2

...

pn

p1 Σ a
m

Σ a
m

Σ a
m

p2

...

pn

p1 Σ a
m

Σ a
p2

...

pn

p1 Σ a
m

Σ a
m

Σ a
m

p2

...

pn

p1 Σ a
m

Σ a
p2

...

pn

p1 Σ a
m

Σ a
m

Σ a
m

t1

t2

t3

Figure 9.34: Back-

propagation in RNNs

can be achieved by un-

rolling the network into a

chain of MLPs

items, such as the data sets used to train neural networks for natural language
processing (NLP) like GPT (Brown et al., 2020), become more and more
common.16

16 ChatGPT—released after this
sentence was written, but before
this book was published—serves
to underline the rapid pace of
innovation in deep learning. The
remarkable ability of ChatGPT to
generate seemingly intelligent
text guarantees that its release
in late 2022 will forever remain
a milestone in the history of
machine learning. Trained
on vast corpora of human
written text and tasked with
prediction (regression) of word
frequencies, ChatGPT and
similar tools are, nevertheless,
statistical models constructed
using deep learning techniques
fundamentally no different to
those explored in Section 9.4.
The ability of such statistical
models of word frequencies
to mimic human writing led
renowned AI researcher Emily
Bender and coauthors to coin
the term “stochastic parrots”
(Bender, Gebru, McMillan-Major,
& Shmitchell, 2021).

Reflections

As we have seen, AI is not only about machine learning; and neither is ma-
chine learning—nor AI more broadly—a new frontier for GIS. This chapter
unpicks the deep and longstanding connection between AI and GIS. The
strong link between machine learning and spatial analysis, highlighted in Sec-
tion 9.3, is especially significant. In addition to the spatial analysis textbooks
already cited (including Burrough et al., 2015; O’Sullivan & Unwin, 2010),
Li et al. (2016), Li (2020), and Li & Arundel (2022) offer accessible, recent
introductions and summaries of the variety of spatial analysis techniques in
the context of AI and big data. The synergies between GIS and AI, and the
unique problems and opportunities thrown up by their combination, have led
to its emergence as a distinct area of inquiry, sometimes called GeoAI (Mao,

GeoAI

Hu, Kar, Gao, & McKenzie, 2017).
Undoubtedly, recent years have seen unprecedented growth in the develop-

ment and practical application of deep learning in particular. These advances
are enabling similarly rapid advances in applications to GIS. CNNs (convo-
lutional neural networks), for example, already have well-established spatial
applications to feature extraction from satellite imagery (e.g., Romero, Gatta,
& Camps-Valls, 2016). Such applications are helping to automate spatial anal-
yses that previously required many months of manual labor (for example, to

400 GIS: A Computing Perspective

automatically segment street view panoramas into landscape types—sky, trees,
buildings, roads, grass pixels, Figure 9.35). Further spatial application areas
of deep learning—such as urban analytics (see Li, Zhao, & Zhong, 2022) and
“GeoQA” (geographic question-answering systems, e.g., Mai, Janowicz, Zhu,
Cai, & Lao, 2021)—are likewise certain to continue to expand.

Figure 9.35: Deep learning

to segment street panora-

mas into landscape types,

after Sun et al. (2021)

Nevertheless, the inherent structure and rich semantics of spatial and
temporal information also demands abstract and symbolic representations
and reasoning, such as ontologies and linked open data (Mai, Janowicz, Yan,
& Scheider, 2019). While the ML and KR2 branches of AI adopt markedly
different approaches to intelligence, both are well suited to GIS applications.
Indeed, combinations of ML and KR2 are possible and offer the potential to
capitalize on the advantages of both (e.g., Du, Wang, Ye, Sinton, & Kemp,
2022; Duckham et al., 2022; Li, Ouyang, & Zhang, 2022). However, as we
witness wider use of powerful GeoAI techniques in society, the challenges
are not only technical, they are ethical. The next chapter tackles head-on not
simply questions of what we can we do with GeoAI, addressed in this chapter,
but also questions of what should we do.

