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Preface

In today’s digital world, no stone is left unturned. Even companies with traditional 
businesses around physical products and equipment are now at the forefront of the 
digital revolution. Product companies, OEMs, manufacturers, and equipment opera-
tors are continuously digitalizing to make their businesses more customer centric, 
automate repetitive tasks, and even create new digital businesses.

Smart connected products are the next step in the evolution of physical products, 
enabling new digital features and services. Smart connected solutions help equip-
ment operators to continuously improve Overall Equipment Effectiveness (OEE).

Data, Artificial Intelligence (AI), and software are the key enablers. The Internet 
of Things (IoT) is providing the connectivity between physical products and equip-
ment with the cloud. AI in combination with IoT-generated data creates new insights 
and predictions. It is even enabling autonomous vehicles, products, and equipment. 
This is a huge step forward from the basic IoT applications of the past.

AIoT – the Artificial Intelligence of Things – is the next paradigm shift. AIoT 
provides the foundation for smart connected product and solutions. By combining 
AI and IoT, AIoT has the potential to profoundly change the way in which we will 
do business in the future.

However, in order to get there, it is vital to ensure that the many delicate little 
seedlings and pilot projects that we are seeing across the industry are transformed 
into real businesses and solutions at scale – either generating additional revenue, or 
saving time and money. This will require us to rethink how we are approaching the 
technical innovation potential of AI and IoT.  We will only be able to realize its 
potential to the full extent if we ensure a strong focus on customer centricity, go-to- 
market, monetization, and commercialization.

Taking customer centricity as an example, AI-enabled add-on features can sig-
nificantly improve the experience of customers who were previously focused purely 
on physical product performance. AIoT truly has the potential to lift the perfor-
mance of entire product categories to new levels – both from a UX as well as a 
quality perspective. The combination of digital and physical will enable us to con-
stantly learn and simulate how products are performing in the field and how custom-
ers are using them. This in turn enables us to continuously improve the solution 
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offering – and with it the customer experience. From smart traffic control systems 
and autonomous driving over drone-based building inspections to ever smarter 
kitchen appliances, we are already seeing how AIoT is changing the world of physi-
cal products. The same applies to the perspective of equipment operators, e.g., man-
ufacturers, rail companies, or energy grid operators, who utilize this new paradigm 
to constantly optimize their OEE (overall equipment effectiveness).

However, for every real AIoT success, there are many stories of companies that 
run only prototypes and pilots, but never truly see this scaling to a level where it has 
real business impact. Creating a sustainable and scalable business enabled by AIoT 
is not easy. It takes a good combination of business acumen and technical execution 
capabilities to succeed. Having a strong focus on customer benefits is vital for suc-
cess. Do not start an AIoT project without clear customer benefit definition which 
addresses a relevant customer or user pain point. Early in the project focus on com-
mercialization models as well as the go-to-market model.

Digital-enabled business models for physical products require new approaches 
for sales and marketing. For a startup, this might sound natural, but for an incum-
bent, it requires a thorough analysis of the existing sales processes and available 
skills in the sales team. Getting the product–market fit right and crossing the chasm 
from early adopters to a broader customer base requires a flexible business strategy 
and the ability to combine digital and physical capabilities. This is not an easy 
task – neither for a digital start-up nor a manufacturing incumbent – because you 
often need the culture and capabilities of both types of organizations.

This is where the AIoT User Group and the Digital Playbook come in. Bosch has 
helped to initiate the User Group to bring together good practices from players in 
different domains and industries. Today, the Digital Playbook provides a 360-degree 
perspective on smart, connected products and solutions:

• How are AI and IoT enabling new business models?
• What are the specific business opportunities for OEMs vs. equipment operators?
• How can these new business models scale up to a level where they become 

relevant?
• How can matching commercialization and go-to-market strategies be found?
• How can co-creation, sourcing, and legal aspects be managed?
• How to set up a delivery organization that combines data-centric, AI-centric, and 

software-centric teams
• How can agility, security, functional safety, and robustness be ensured in an inte-

grated DevOps cycle?

The Digital Playbook addresses managers with a digital transformation agenda, 
product managers, project managers, and solutions architects. It provides teams 
with a set of good practices, a common understanding, and a common language, to 
help with the successful application of AIoT and the creation of scalable businesses. 
A large number of real-world examples and detailed case studies help to ensure a 
high level of relevance and pragmatism – and make it tangible.

Preface
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The Digital Playbook would not have been possible without the AIoT User 
Group and the many experts involved. It is my pleasure to work with such experi-
enced experts in the AIoT User Group’s editorial board, which was initiated by my 
esteemed predecessor Michael Bolle  – thank you. Special thanks to Dirk Slama 
(Bosch and Ferdinand-Steinbeis-Institute), who, as editor-in-chief, is responsible 
for making The Digital Playbook a reality. Many thanks also to the other editors of 
the print edition: Sebastian Thrun (Udacity), Ulrich Homann (Microsoft), and 
Heiner Lasi (Ferdinand-Steinbeis-Institute). We also thank the other members of the 
AIoT editorial board: Prith Banerjee (ANSYS), Jan Bosch (Chalmers University), 
Ken Forster (Momenta Partners), Dominic Kurtaz (Dassault Systemes), Zara Riahi 
(Contilio), and Nil Willetts (TM Forum). Finally, my sincere thanks to all the other 
domain and technology experts who are listed in the AIoT Expert Network. The 
Digital Playbook would not have been possible without your contributions  – 
thank you!

Chief Digital Officer, Robert Bosch GmbH  Tanja Rückert
Stuttgart, Germany  
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Digital Playbook and the AIoT User Group

In January 2020, a handful of senior IT experts and enthusiasts from different com-
panies met at the Bosch Connectory in Stuttgart to exchange their experiences and 
views on AI and IoT.  AI was at the peak of a new hype, fueled by Alpha Go, 
advancements in autonomous driving, and, not to forget, Cambridge Analytica. The 
general feeling was that – with the exception of autonomous driving – AI had not 
truly arrived in the world of IoT. Every IoT article or presentation in the last 10 years 
mentioned predictive maintenance, but in reality, many IoT applications were still 
much more basic. How could AI be better utilized in the world of physical products, 
manufacturing, and equipment operations? The workshop was organized as an open 
exchange, with a mixture of presentations and group discussions. After three days, 
there was so much excitement about the topic and the way collaboration in the 
group worked that it was decided to make this a regular thing. The result was the 
formation of the AIoT User Group, a loosely coupled, nonprofit network of AI and 
IoT practitioners, who work together to exchange experiences and best practices on 
the application of AI in the IoT. Throughout 2021, local chapters were set up in 
Singapore (special thanks to CK and Thomas!), Shanghai (Nǐ hǎo, Gene, and 
Cherry!), and Chicago (hi Fermin and Hans!).

Over time, it became clear that it would make sense to document the collected 
wisdom in a good practice framework: this is how The Digital Playbook started. In 
fact, it first started as the AIoT Playbook, with a more technical focus. Over time, 
the business strategy and execution perspectives were added. The result is now a 
holistic digital playbook, including the technical AIoT Framework.

Content creation for The Digital Playbook and AIoT Framework is driven by 
experts in different domains (see the AIoT Expert Network). The AIoT Editorial 
Board provides strategic guidance and management support. The basic working 
modes are so-called Unplugged Sessions, where the real work on the playbook is 
happening. All the material is developed as open source content (using CC BY 4.0) 
and is also used as a foundation for different AIoT-related training courses.

https://aiotplaybook.org/index.php?title=Expert_Network
https://aiotplaybook.org/index.php?title=Editorial_Board
https://aiotplaybook.org/index.php?title=Editorial_Board
https://aiotplaybook.org/index.php?title=AIoT_Unplugged
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 How to Get Involved

If you are interested in joining the AIoT User Group, good starting points are the 
website aiot.rocks, as well as the AIoT User Group on LinkedIn. The main site for 
The Digital Playbook is simply aiotplaybook.org.

Activities of the AIoT User Group involve:

• Unplugged Sessions: These hands-on sessions bring together participants to 
work on different topics related to AIoT. The results are consolidated and eventu-
ally captured in The Digital Playbook.

• Training: Participants of the AIoT User Group are organizing AIoT trainings in 
different regions, utilizing the content from The Digital Playbook.

• AIoT Lab: The AIoT Lab is a virtual lab with an increasingly global footprint. 
Here, experts and practitioners work together to find practical solutions to differ-
ent AIoT-related problems.

 Vision

Fig. 1 AIoT Vision

Digital Playbook and the AIoT User Group

http://aiot.rocks
https://www.linkedin.com/company/70929377
http://aiotplaybook.org/
https://aiotplaybook.org/index.php?title=AIoT_Unplugged
https://aiotplaybook.org/index.php?title=AIoT_Training
https://aiotplaybook.org/index.php?title=AIoT_Lab


xi

The AIoT User Group has worked on developing a common vision for digital busi-
ness with smart connected products and solutions, enabled by AIoT (Fig. 1). What 
does this vision look like? Heiko Löffler and David Monzel are senior consultants 
at mm1 consulting and frequent contributors to The Digital Playbook. Their expla-
nation is as follows:

AIoT combines AI and connectivity for physical products. These can be new product cate-
gories (smart, connected products - short SPCs), or retrofit solutions for existing assets and 
equipment in the field. The general idea is summarized in the figure below: physical prod-
ucts (e.g., a forklift) are end points with physical components and on-board computing 
(combining hardware, software and AI). The physical component has a unique identifier 
and continuously captures status and process-critical data, as well as data about its environ-
ment. These data are both processed on the device (e.g., via AI) and transmitted to the 
cloud/backend via IoT connectivity. The product is integrated with business processes (e.g., 
warehousing), and solves specific customer problems (e.g., optimizing warehousing tasks). 
The product is exchanging data in a closed loop with a backend (e.g., cloud or on-premises 
systems). In the cloud, the data are processed to create a Digital Twin of the physical com-
ponent. This is then continuously analyzed by AI to derive and communicate measures or 
predictions for both the individual physical components and the entire fleet of products. 
Furthermore, both the physical and cloud components are integrated with the customer 
environment to ensure customer-centric value delivery. SCPs become part of the customer’s 
physical and business processes: they sense and interact with their physical environment 
and are connected to the customer’s IT infrastructure (e.g., ERP systems). Finally, the prod-
uct provides its manufacturer with information about the performance of the product in the 
field, and how customers are using the product. In all of this, AI can enable new functional-
ity either onboard the product or in the backend. IoT provides the required connectivity 
between the product and the backend. Digital Twins are a digital representation of the real, 
physical product — providing abstraction, standardization and a rich, semantic view of the 
AIoT data. AI can be used to help create Digital Twins, or to build applications that utilize 
them. Of course, this is a big vision, which will not become a reality for each product cat-
egory overnight. However, it shows the potential of AIoT.  Additionally, not all projects 
might look at such a high level of productization and deep integration — AIoT can also 
support more basic retrofit approaches (referred to as solutions throughout the playbook).

Digital Playbook and the AIoT User Group
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About This Book

If you are reading The Digital Playbook online or as a PDF, you might sometimes 
find that not everything is perfect, like in a fully edited book. The reason is that the 
playbook is constantly evolving, so the decision was made to use a Wiki as the foun-
dation for the playbook. The other book formats are derived as snapshots from the 
wiki, and the conversion is sometimes not perfect. Additionally, some content might 
sometimes still not be quite ready. This was a tradeoff between having the perfect 
book versus the timely delivery of an open, digital content collection that can evolve 
over time. Since the book formats are published in the open access format, this 
should hopefully also be acceptable to all readers of the offline versions.

To ensure that you will get the most out of The Digital Playbook, we will provide 
a short overview of the structure of the book, describe its key plays, and provide 
recommendations on how to best read it.

 Structure of the Digital Playbook

How can smart, connected products and solutions be enabled with AIoT? The 
Digital Playbook addresses this on two levels (Fig. 2). First, AIoT 101 provides an 
overview of the relevant core concepts and technologies, including AI, data, digital 
twins, IoT, and hardware. This helps create a common understanding and common 
language within a team. Second, The Digital Playbook provides a rich set of good 
practices and templates to help master business strategy, business execution, and 
technical execution for AIoT-enabled products and solutions. These three areas 
need to be closely aligned, which is also supported by the playbook.

Heiko Löffler and David Monzel from mm1 have the following take on this:

In the development and operation of AIoT-enabled systems, many new issues have to be 
considered, especially for traditional product companies. As a result, new competencies and 
skills must be acquired, which represents a central challenge. The Digital Playbook gives 
companies a clear overview of the topics that need to be added to the physical product 
component to identify individual competence gaps. Underlying these, there are then a 



xiv

Fig. 2 Why a Digital Playbook?

 number of challenges that companies must address to ensure successful implementation. 
Examples include adapting the business model, building scalable hardware, software and 
AI architecture, and transforming sales. The Digital Playbook specifically addresses these 
challenge areas and serves as a comprehensive framework for the realization of smart con-
nected products and solutions.

 Key Plays of the Digital Playbook

The Digital Playbook aims to support a holistic and realistic approach for creating 
and operating AIoT-enabled products and solutions, including:

• AIoT 101: Provides common language and understanding of key concepts, 
including AI, IoT, digital twin, and data.

• Business Strategy: What is a suitable strategy for AIoT-enabled products and 
services, addressing the market perspective as well as key internal aspects such 
as innovation management and target organization?

• Business Execution: From design to procurement and operations – how can an 
AIoT initiative be executed on the business side?

• Technical Execution  – AIoT Framework: From agile to architecture and 
DevOps – how can an AIoT initiative be executed on the technology side?

Figure 3 provides an overview of all the key plays of The Digital Playbook. It is in 
essence the visual Table of Contents of the playbook. The only sections not shown 
here are the AIoT case studies, which can be found in the final part of The Digital 
Playbook.

About This Book

https://aiotplaybook.org/index.php?title=AIoT_Framework
https://aiotplaybook.org/index.php?title=Business_Strategy
https://aiotplaybook.org/index.php?title=Business_Execution
https://aiotplaybook.org/index.php?title=AIoT_Execution_and_Delivery
https://aiotplaybook.org/index.php?title=Case_Study_Overview


xv

Fig. 3 Overview of The Digital Playbook

 How to Read This Book

To successfully manage a digital transformation initiative utilizing AIoT, it is impor-
tant for many stakeholders, such as project managers, product managers and solu-
tions architects, to have a high-level, 360-degree understanding of what is happening 
in their project or product organization so that they can manage all dependencies 
and provide a matching structure. The Digital Playbook aims to provide a compre-
hensive, 360-degree overview for exactly this purpose. However, this sometimes 
means that there is too much content. The playbook is kept as visual as possible, 
which should enable the reader to browse through the entire playbook by focusing 
on the diagrams, maybe reading the detailed descriptions only where more details 
are needed. It can be a good idea to start with a lightweight skimming of the entire 
structure from A to Z, before then taking more time for the details.

If you are already familiar with the basic concepts of AI, IoT, digital twin, and so 
on, we recommend still browsing through the 101 chapters: everything is kept very 
visual, and the different images help make some of the basic assumptions we are 
making transparent. Also, this section helps with creating a common language.

The business execution and technology execution parts are both kept on a level 
where they hopefully make sense to both business/domain-focused experts and 
technology experts. Having a general understanding of both sides seems important 
for all the aforementioned stakeholders, to ensure that the key perspectives can be 
closely aligned and that a general understanding of the problems of the other 
side exists.

For example, in one of the previous AIoT trainings, one of the more technical 
students asked why he should bother learning about the challenges of sourcing and 
procurement. It is very easy: first of all, the sourcing team will need input and guid-
ance from the technology experts. Otherwise, the technical team will not obtain the 
tools and resources it needs. Many projects that neglected those aspects failed due 
to sourcing-related issues. Conversely, more business-oriented people should also at 
least skim the technology execution side of the playbook to understand how their 
counterparts on the technology side are working and what kinds of problems they 
are facing. The Digital Playbook aims to create a level of abstraction that supports 
this, without becoming too generic.

Enjoy your read, and let us know what you think!

About This Book
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The Digital Playbook uses AIoT synonymous with Smart Connected Products and 
Solutions. Consequently, Part I of the Digital Playbook starts with a discussion of 
the what, why, how and who of the AIoT. Based on this, we provide an introduction 
to the core technical topics that are enabling the AIoT. This is structured as a series 
of “101” chapters, including Artificial Intelligence 101, Data 101, Digital Twin 101, 
Internet of Things 101, and Hardware 101.

Part I
Introduction
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Chapter 1
AIoT 101: What, Why, How, Who

Dirk Slama

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

AIoT combines two of the most important technology paradigms of the 2020s: 
Artificial Intelligence (AI) and the Internet of Things (IoT). To best understand 
AIoT from all relevant perspectives, we will start by looking at the why, what, who 
and how perspectives, inspired by the work of Simon Sinek [1] as well as the St. 
Gallen IoT Lab [2] (Fig. 1.1):

• Why: Better understanding and articulating the purpose and AIoT-enabled busi-
ness outcomes

• What: What can be achieved with AIoT in terms of smart, connected products 
and solutions

• Who: Roles and responsibilities in the context of an AIoT initiative

Fig. 1.1 The Why, What, How, and Who of AIoT

© The Author(s) 2023
D. Slama et al. (eds.), The Digital Playbook, 
https://doi.org/10.1007/978-3-030-88221-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88221-1_1&domain=pdf
mailto:dirk.slama@bosch.com
https://doi.org/10.1007/978-3-030-88221-1_1
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• How: Project blueprint for AIoT execution and delivery

While Simon Sinek suggests to Start with Why, we will first look at the what to 
provide some context, before discussing why you should consider it.

1.1  What: Smart, Connected Products and Solutions with AIoT

The smartness of an AIoT-enabled product or solution is usually related to either an 
individual physical product/asset (“product/asset intelligence”) or to a group/fleet of 
assets (“swarm intelligence”). Technically, asset intelligence is enabled via edge 
computing, while swarm intelligence is enabled via cloud computing. Asset intelli-
gence applies AI-algorithms to data that are locally captured and processed (via 
sensors), while swarm intelligence applies AI-algorithms to data that are captured 
from multiple assets via IoT technologies in the cloud.

For AIoT systems with a high level of complexity, it can make sense to apply 
Digital Twin concepts to create a digital representation of the physical entities. The 
Digital Twin concept can help manage complexity and establish a semantic layer on 
top of the more technical layers (Fig. 1.2).

Fig. 1.2 AIoT intro
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AI (or Machine Learning, one of the most important subsets of AI) makes use of 
different types of methods. The three main methods include supervised, unsuper-
vised and reinforcement learning. They are explained in the AIoT 101. Varied, 
highly specialized AI/ML methods support a wide range of use cases. AIoT focus 
ones those use cases that are most relevant when dealing with physical products or 
assets. To mention just one example from the figure shown here, supervised learning 
can be used for image classification, which plays an important role in optical inspec-
tion in manufacturing. While the adoption of AI and ML has already become main-
stream in some areas like social media or smartphones, for many AIoT use cases 
this is still not the case. There is a famous quote from James Bell at Dow Jones, 
which says that “Machine Learning is done in Python, AI in PowerPoint.”. The goal 
of the Digital Playbook is to explore and enable use cases that make use of real AI 
in the context of the IoT, mainly utilizing supervised, unsupervised and reinforce-
ment learning (Fig. 1.3).
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Fig. 1.3 AIoT use case patterns

An important differentiation that we are making in the Digital Playbook is 
between smart connected products and smart connected solutions. Smart, connected 
products are often very highly standardized, feature-rich and well rounded. Smart, 
connected solutions on the other hand are often more custom, ad hoc solutions. 
They are often designed to solve a specific problem, e.g., for a particular production 
site, a particular energy grid, etc. Obviously, this is not a black and white differen-
tiation. There are also often cases that are a bit of both product and solution.

1 AIoT 101: What, Why, How, Who
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As will be discussed in more detail later, smart connected products are manufac-
tured and sold by a Digital OEM, while smart connected solutions are usually 
acquired and operated by a Digital Equipment Operator. Platforms can also play an 
important role, even if the platform operator is neither manufacturing nor operating 
physical assets himself (Fig. 1.4).

1.2  Why: Purpose and AIoT-Enabled Business Outcomes

While AI and IoT are exciting technical enablers, anybody embarking on the AIoT 
journey should always start by looking at the why: What is the purpose? And what 
are the expected business outcomes?

From a strategic (and emotional) point of view, the purpose of the AIoT initia-
tive should be clearly articulated: What is the belief? The mission? Why is this 
truly done?

For business sponsors, the expected business outcomes must also be clearly 
defined. As discussed in the what section, most AIoT initiatives focus on either 
products or solutions. Depending on the nature of your initiative, the KPIs will dif-
fer: AIoT-enabled products tend to focus more on the customer acceptance and rev-
enue side, while AIoT-enabled solutions tend to focus more on efficiency and 
optimization (Fig. 1.5).

Fig. 1.4 What: product vs. solution
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Fig. 1.5 Why: product vs solution

Fig. 1.6 How: product vs. solution

1.3  How: Getting Things (and AI) Done

Smart connected products and solutions usually make use of AI and IoT in different 
ways. This must be taken into consideration when looking at the how. Smart prod-
ucts often rely on AI that was specifically developed for them using a Data Science 
approach. The goal is often to create new intellectual property that helps differenti-
ate the product. For solutions, this often looks different: here the goal is to minimize 
development costs, e.g., by reusing existing AI algorithms and models. From the 
IoT point of view, products and solutions also differ: products usually have built-in 
connectivity capabilities (line fit), while solutions usually have this capability retro-
fitted. This is especially important for operators looking at heterogeneous fleets of 
assets or equipment (Fig. 1.6).

1 AIoT 101: What, Why, How, Who
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It is important to understand which capabilities are required for implementing 
AIoT. The AI side usually requires Data Science and AI Engineering capabilities, as 
well as AI/ML Ops capabilities (required for managing the AI/ML development 
process).

The IoT side usually requires generic cloud and edge development capabili-
ties, as well as DevOps supporting both cloud and edge (which usually means 
support for OTA, or Over-the-Air-Updates of software deployed to assets in 
the field).

The third key element is the physical product or asset. For the Digital OEM, it 
will be vital to manage the combination of physical and digital features and their 
individual life cycles. For the physical product, this will also need to include manu-
facturing, as well as field support services (Fig. 1.7).

1.4  Who: AIoT Roles and Responsibilities

The Who perspective must address the roles and responsibilities required for suc-
cessfully delivering your AIoT initiative. These will partially be different for prod-
uct- vs. solution-centric initiatives, as we will discuss later. It is important to have a 
holistic view on stakeholder management, including internal and external stake-
holders (Fig. 1.8).

Fig. 1.7 AIoT overview
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Fig. 1.8 AIoT - Who?

Fig. 1.9 Who: roles and responsibilities

External stakeholders can include investors, users of the product of TDB: solu-
tion, partner, and suppliers. In a larger organization, internal stakeholders will 
include business sponsors, senior management, compliance and auditing, legal and 
tax, global procurement, central IT security, central IT operations, HR, marketing, 
communication, and sales. Finally, one should not forget about the stakeholders 
within its own organization, including developers, technology experts, AI experts, 
and potentially HW/manufacturing (in the case of the Digital OEM).

As indicated in Fig. 1.9, the Digital Playbook primarily addresses middle man-
agement, including product/solution managers, project/program managers, devel-
opment/engineering managers, product/solution architects, security/safety 
managers, and procurement managers. Ideally, the Playbook should enable these 
key people to create a common vision and language that enables them to integrate 
all the other stakeholders.

1 AIoT 101: What, Why, How, Who
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Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.
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included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
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Chapter 2
Artificial Intelligence 101

Dirk Slama

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

This chapter provides an Artificial Intelligence 101, including a basic overview, a 
summary of Supervised, Unsupervised and Reinforcement Learning, as well as 
Deep Learning and Artificial Neural Networks (Fig. 2.1).

2.1  Introduction

Artificial Intelligence (AI) is not a new concept. Over the last couple of decades, it 
has experienced several hype cycles, which alternated with phases of disillusion-
ment and funding cuts (“AI winter”). The massive investments into AI by today’s 

© The Author(s) 2023
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Fig. 2.1 AI 101
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hyperscalers and other companies have significantly fueled the progress made with 
AI, with many practical applications now being deployed.

A highly visible break-through event was the development of AlphaGo (devel-
oped by DeepMind Technologies, which was later acquired by Google), which in 
2015 became the first computer Go program to beat a human professional Go player 
without handicap on a full-sized 19 × 19 Go board. Until then, Go was thought of 
as being “too deep” for a computer to master on the professional level. AlphaGo 
uses a combination of machine learning and tree search techniques.

Many modern AI methods are based on advanced statistical methods. However, 
finding a commonly accepted definition of AI is not easy. A quip in Tesler's Theorem 
says “AI is whatever hasn’t been done yet”. As computers are becoming increas-
ingly capable, tasks previously considered to require intelligence are later often 
removed from the definition of AI. The traditional problems of AI research include 
reasoning, knowledge representation, planning, learning, natural language process-
ing, perception, and the ability to move and manipulate objects [3].

Most likely the currently most relevant AI method is Machine Learning (ML). 
ML refers to a set of algorithms that improve automatically through experience and 
by the use of data [4]. Within ML, an important category is Deep Learning (DL), 
which utilizes so called multi-layered neural networks. Deep Learning includes 
Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs), 
amongst others. See below for an example of a CNN.

The three most common ML methods include Supervised, Unsupervised and 
Reinforcement Learning. The Supervised Learning method relies on manually 
labeled sample data, which are used to train a model so that it can then be applied to 
similar, but new and unlabeled data. The unsupervised method attempts to automati-
cally detect structures and patterns in data. With reinforcement learning, a trial and 
error approach is combined with rewards or penalties. Each method is discussed in 
more detail in the following sections. Some of the key concepts common to these 
ML methods are summarized in the table following (Fig. 2.2).

Fig. 2.2 Key AI terms and definitions
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2.2  Supervised Learning

The first AI/ML method we want to look at is Supervised Learning. Supervised 
Learning requires a data set with some observations (e.g., images) and the labels of 
the observations (e.g., classes of objects on these images, such as “traffic light”, 
“pedestrian”, “speed limit”, etc.) (Fig. 2.3).

The models are trained on these labeled data sets, and can then be applied to 
previously unknown observations. The supervised learning algorithm produces an 
inference function to make predictions about new, unseen observations that are pro-
vided as input. The model can be improved further by comparing its actual output 
with the intended output: so-called “backward propagation” of errors.

The two main types of supervised models are regression and classification:

• Classification: The output variable is a category, e.g., “stop sign”, “traffic 
light”, etc.

• Regression: The output variable is a real continuous value, e.g., electricity 
demand prediction

Some widely used examples of supervised machine learning algorithms are:

• Linear regression, mainly used for regression problems
• Random forest, mainly used for classification and regression problems
• Support vector machines, mainly used for classification problems

Fig. 2.3 Supervised learning

2 Artificial Intelligence 101
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2.3  Unsupervised Learning

The next ML method is Unsupervised Learning, which is a type of algorithm that 
learns patterns from unlabeled data. The main goal is to uncover previously unknown 
patterns in data. Unsupervised Machine Learning is used when one has no data on 
desired outcomes (Fig. 2.4).

Typical applications of Unsupervised Machine learning include the following:

• Clustering: automatically split the data set into groups according to similarity 
(not always easy)

• Anomaly detection: used to automatically discover unusual data points in a data 
set, e.g., to identify a problem with a physical asset or equipment.

• Association mining: used to identify sets of items that frequently occur together 
in a data set, e.g., “people who buy X also tend to buy Y”

• Latent variable models: commonly used for data preprocessing, e.g., reducing 
the number of features in a data set (dimensionality reduction)

2.4  Reinforcement Learning

The third common ML method is Reinforcement Learning (RL). In RL, a so-called 
Agent learns to achieve its goals in an uncertain, potentially complex environment. 
This can be, for example, a game-like situation, where the agent is deployed into a 
simulation where it receives rewards or penalties for the actions it performs. The 
goal of the agent is to maximize the total reward (Fig. 2.5).

Fig. 2.4 Unsupervised learning

D. Slama
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Fig. 2.5 Reinforcement learning

One main challenge in Reinforcement Learning is to create a suitable simulation 
environment. For example, the RL environment for training autonomous driving 
algorithms must realistically simulate situations such as braking and collisions. The 
benefit is that it is usually much cheaper to train the model in a simulated environ-
ment, rather than risking damage to real physical objects by using immature mod-
els. The challenge is then to transfer the model out of the training environment and 
into the real world.

2.5  Deep Learning and Artificial Neural Networks

A specialized area within Machine Learning are so-called Artificial Neutral 
Networks or ANNs (often simply called Neural Networks). ANNs are vaguely 
inspired by the neural networks that constitute biological brains. An ANN is repre-
sented by a collection of connected nodes called neurons. The connections are 
referred to as edges. Each edge can transmit signals to other neurons (similar to the 
synapses in the human brain). The receiving neuron processes the incoming signal, 
and then signals other neurons that are connected to it. Signals are numbers, which 
are computed by statistical functions.

The relationship between neurons and edges is usually weighted, increasing or 
decreasing the strength of the signals. The weights can be adjusted as learning pro-
ceeds. Usually, neurons are aggregated into layers, where different layers perform 
different transformations on their input signals. Signals travel through these layers, 
potentially multiple times. The adjective “deep” in Deep Learning is referring to the 
use of multiple layers in these networks.

A popular implementation of ANNs are Convolutional Neural Networks (CNNs), 
which are often used for processing visual and other two-dimensional data. Another 
example is Generative Adversarial Networks, where multiple networks compete 
with each other (e.g., in games) (Fig. 2.6).

2 Artificial Intelligence 101
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Fig. 2.6 Example: convolutional neural network

The example shows a CNN and its multiple layers. It is used to classify areas of 
an input image into different categories such as “traffic light” or “stop sign”. There 
are four main operations in this CNN:

• Convolution: Extract features from the input image, preserving the spatial rela-
tionship between pixels by using small squares of input data. Convolution is a 
linear operation: it performs elementwise matrix multiplication and addition.

• Non Linearity: ReLU (Rectified Linear Unit) is an operation applied after the 
convolution operations. ReLU introduces non-linearity in the CNN, which is 
important because most real-world data are non-linear.

• Spatial Pooling/down-sampling: This step reduces the dimensionality of each 
feature map, while retaining the most important information.

• Classification (Fully Connected Layer): The outputs from the first three layers 
are high-level features of the input image. The Fully Connected Layer uses these 
features to classify the input image into various classes based on the training 
dataset.

A more detailed explanation of a similar example is provided by Ujjwal Karn on 
KDNuggets.

2.6  Summary: AI & Data Analytics

The field of data analytics has evolved over the past decades, and is much broader 
than just AI and data science - so it is important to understand where AI/ML is fit-
ting in. From the point of view of most AIoT use cases, there are four main types of 
analytics: descriptive, diagnostic, predictive and prescriptive analytics. Descriptive 
analytics is the most basic one, using mostly visual analytics to address the question 
“What happened?”. Diagnostic analytics utilizes data mining techniques to answer 
the question “Why did it happen?”, providing some king of root cause analysis. 
Data mining is the starting point of data science, with its own specific methods, 
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processes, platforms and algorithms. AI - predominantly ML - often addresses the 
questions “What is likely to happen?” and “What to do about it?”. Predictive ana-
lytics provides forecasts and predictions. Prescriptive analytics can be utilized, for 
example, to obtain detailed recommendations as work instructions, or even to enable 
closed-loop automation (Fig. 2.7).

Fig. 2.7 Analytics

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
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Chapter 3
Data 101

Dirk Slama

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

Data are the foundation for almost all digital business models. AIoT adds sensor- 
generated data to the picture. However, in its rawest form, data are usually not 
usable. Developers, data engineers, analytics experts, and data scientists are work-
ing on creating information from data by linking relevant data elements and giving 
them meaning. By adding context, knowledge is created [5]. In the case of AIoT, 
knowledge is the foundation of actionable intelligence (Fig. 3.1).

Data are a complex topic with many facets. Data 101 looks at it through different 
perspectives, including the enterprise perspective, the Data Management, Data 
Engineering, Data Science, and Domain Knowledge perspectives, and finally the 
AIoT perspective. Later, the AIoT Data Strategy section will provide an overview of 
how to implement this in the context of an AIoT initiative.

© The Author(s) 2023
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3.1  Enterprise Data

Traditionally, enterprise data are divided into three main categories: master data, 
transactional data, and analytics data. Master data are data related to business enti-
ties such as customers, products, and financial structures (e.g., cost centers). Master 
Data Management (MDM) aims to provide a holistic view of all the master data in 
an enterprise, addressing redundancies and inconsistencies. Transactional data is 
data related to business events, e.g., the sale of a product or the payment of an 
invoice. Analytics data are related to business performance, e.g., sales performance 
of different products in different regions.

From the product perspective, PLM (Product Lifecycle Management) data play 
an important role. This includes traditionally designed data (including construction 
models, maintenance instructions, etc.), as well as the generic Engineering Bill of 
Material (EBOM), and for each product instance a Manufacturing Bill of 
Material (MBOM).

With AIoT, additional data categories usually play an important role, representing 
data captured from the assets in the field: asset condition data, asset usage data, asset 
performance data, and data related to asset maintenance and repair. Assets in this 
context can be physical products, appliances or equipment. The data can come from 
interfacing with existing control systems or from additional sensors. AIoT must ensure 
that these raw data are eventually converted into actionable intelligence (Fig. 3.2).

3.2  Data Management

Because of the need to efficiently manage large amounts of data, many different 
databases and other data management systems have been developed. They differ in 
many ways, including scalability, performance, reliability, and ability to manage 
data consistency.

Fig. 3.2 Data - Enterprise Perspective

D. Slama



21

For decades, relational database management systems (RDBMS) were the de 
facto standard. RDBMS manage data in tabular form, i.e., as a collection of tables 
with each table consisting of a set of rows and columns. They provide many tools 
and APIs (application programming interfaces) to query, read, create and manipu-
late data. Most RDBMS support so-called ACID transactions. ACID relates to 
Atomicity, Consistency, Isolation, and Durability. ACID transactions guarantee the 
validity of data even in the case of fatal errors, e.g., an error during a transfer of 
funds from one account to another. Most RDBMS support the Structure Query 
Language (SQL) for queries and updates.

With the emergence of so-called NoSQL databases in the 2010s, the quasi- 
monopoly of the RDBMS/SQL paradigm ended. While RDBMS are still dominant 
for transactional data, many projects are now relying on alternative or at least addi-
tional databases and data management systems for specific purposes. Examples of 
NoSQL databases include column databases, key-value databases, graph databases, 
and document databases.

Column (or wide-column) databases group and store data in columns instead of 
rows. Since they have neither predefined keys nor column names, they are very flex-
ible and allow for storing large amounts of data within a single column. This allows 
them to scale easily, even across multiple servers. Document-oriented databases 
store data in documents, which can also be interlinked. They are very flexible 
because there is no dedicated schema required for the different documents. Also, 
they make development very efficient since modern programming languages such 
as JavaScript provide native support for document formats such as JSON.  Key- 
value databases are very simple but also very scalable. They have a dictionary data 
structure for storing objects with a unique key. Objects are retrieved only via key 
lookup. Finally, graph databases store complex graphs of objects, supporting very 
efficient graph operations. They are most suitable for use cases where many graph 
operations are required, e.g., in a social network (Fig. 3.3).

Fig. 3.3 Data - DBMS Perspective
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3.3  Analytics Platforms

In addition to the operational systems utilizing the different types of data manage-
ment systems, analytics was always an important use case. In the 1990s, Data 
Warehousing systems emerged. They aggregated data from different operational 
and external systems, and ingested the data via a so-called “Extract/Transform/
Load” process. The results were data marts, which were optimized for efficient data 
analytics, using specialized BI (Business Intelligence) and reporting tools. Most 
Data Warehousing platforms were very much focused on the relational data model.

In the 2010s, Data Lakes emerged. The basic idea was to aggregate all relevant 
data in one place, including structured (usually relational), non-structured and semi- 
structured data. Data lakes can be accessed using a number of different tools, includ-
ing ML/Data Science tools, as well as more traditional BI/reporting tools.

Data lakes were usually designed for batch processing. Many IoT use cases 
require near real-time processing of streaming and time series data. A number of 
specialized tools and stream data management platforms have emerged to sup-
port this.

From an AIoT point of view, the goal is to eventually merge big data/batch pro-
cessing with real-time streaming analytics into a single platform to reduce over-
heads and minimize redundancies (Fig. 3.4).

3.4  Data Engineering

Data are the key ingredient for AI. AI expert Andrew Ng has gone as far as launch-
ing a campaign to shift the focus of AI practitioners from focusing on ML model 
development to the quality of the data they use to train the models. In his presenta-
tions, he defines the split of work between data-related activities and actual ML 

Fig. 3.4 Data Analytics Architecture Evolution
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model development as 80:20 - this means that 80% of the time and resources are 
spent on data sourcing and preparation. Building a data pipeline based on a robust 
and scalable set of data processing tools and platforms is key for success (Fig. 3.5).

3.4.1  Data Pipeline

From an AIoT point of view, data will play a central role in making products and 
services ‘smart’. In the early stages of the AIoT initiative, the data domain needs to 
be analysed (see Data Domain Model) to understand the big picture of which data 
are required/available, and where it resides from a physical/organizational point of 
view. Depending on the specifics, some aspects of the data domain should also be 
modeled in more detail to ensure a common understanding. A high-level data archi-
tecture should govern how data are collected, stored, integrated, and used. For all 
data, it must be understood how it can be accessed and secured. A data-centric inte-
gration architecture will complete the big picture.

The general setup of the data management for an AIoT initiative will probably 
differentiate between online and offline use of data. Online relates to data that come 
from live systems or assets in the field; sometimes also a dedicated test lab. Offline 
is data (usually data sets) made available to the data engineers and data scientists to 
create the ML models.

Online work with data will have to follow the usual enterprise rules of data man-
agement, including dealing with data storage at scale, data compaction, data retire-
ment, and so on.

The offline work with data (from an ML perspective) usually follows a number 
of different steps, including data ingestion, data exploration and data preparation. 
Parallel to all of this, data cataloging, data versioning and lineage, and meta-data 
management will have to be done.

Data ingestion means the collection of the required data from different sources, 
including batch data import and data stream ingestion. Typically, this can already 
include some basic filtering and cleansing. Finally, for data set generation, the data 
need to be routed to the appropriate data stores.

Fig. 3.5 Data vs Model Development
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The ingested data then must be explored. Initial data exploration will focus on 
the quality of the data and measurements. Data quality can be assessed in several 
different ways, including frequency counts, descriptive statistics (mean, standard 
deviation, median), normality (skewness, kurtosis, frequency histograms), etc. 
Exploratory data analysis helps understand the main characteristics of the data, 
often using statistical graphics and other data visualization methods.

Based on the findings of the data exploration, the data need to be prepared for 
further analysis and processing. Data preparation includes data fusion, data clean-
ing, data augmentation, and finally the creation of the required data sets. Important 
data cleaning and preparation techniques include basic cleaning (“color” vs. 
“colour”), entity resolution (determining whether multiple records are referencing 
the same real-world entity), de-duplication (eliminating redundancies) and imputa-
tion. In statistics, imputation describes the process of replacing missing data with 
substituted values. This is important, because missing data can introduce a substan-
tial amount of bias, make the handling and analysis of the data more arduous, and 
create reductions in efficiency.

One big caveat regarding data preparation: if the data sets used for AI model 
training are too much different from the production data against which the models 
are used later on (inference), there is a danger that the models will not properly 
work in production. This is why in Fig.  3.6, automated data preparation occurs 
online before data extraction for data set creation.

3.4.2  Edge Vs. Cloud

In AIoT, a major concern from the data engineering perspective is the distribution of 
the data flow and data processing logic between edge and cloud. Sensor-based sys-
tems that attempt to apply a cloud-only intelligence strategy need to send all data 
from all sensors to the cloud for processing and analytics. The advantage of this 

Fig. 3.6 Data - AIoT Perspective
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approach is that no data are lost, and the analytics algorithm can be applied to a full 
set of data. However, the disadvantages are potentially quite severe: massive con-
sumption of bandwidth, storage capacities and power consumption, as well as high 
latency (with respect to reacting to the analytics results).

This is why most AIoT designs combine edge intelligence with cloud intelli-
gence. On the edge, the sensor data are pre-processed and filtered. This can result in 
triggers and alerts, e.g., if thresholds are exceeded or critical patterns in the data 
stream are detected. Local decisions can be made, allowing us to react in near-real 
time, which is important in critical situations, or where UX is key. Based on the 
learnings from the edge intelligence, the edge nodes can make selected data avail-
able to the cloud. This can include semantically rich events (e.g., an interpretation 
of the sensor data), as well as selected rich sample data for further processing in the 
cloud. In the cloud, more advanced analysis (e.g., predictive or prescriptive) can be 
applied, taking additional context data into consideration.

The benefits are clear: significant reduction in bandwidth, storage capacities and 
power consumption, plus faster response times. The intelligent edge cloud contin-
uum takes traditional signal chains to a higher level. However, the basic analog 
signal chain circuit design philosophy should still be taken into consideration. In 
addition, the combination of cloud/edge and distributed system engineering exper-
tise with a deep domain and application expertise must be ensured for success 
(Fig. 3.7).

In Fig. 3.8, an intelligent sensor node is monitoring machine vibration. A thresh-
old has been defined. If this threshold is exceeded, a trigger event will notify the 
backend, including sample data, to provide more insights into the current situation. 
This data will allow to analyze the status quo. An important question is: will this be 
sufficient for root cause analysis? Most likely, the system will also have to store 
vibration data for a given period of time so that in the event of a threshold breach, 
some data preceding the event can be provided as well, enabling root cause analysis.

Fig. 3.7 Edge Intelligence
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Fig. 3.8 Threshold event and sample data

Fig. 3.9 The Big Loop

3.4.3  The Big Loop

For some AIoT systems, it can be quite challenging to capture data representing all possi-
ble situations that need to be addressed by the system. This is especially true if the system 
must deal with very complex and frequently changing environments, and aims to have a 
high level of accuracy or automation. This is true, for example, for automated driving.

In order to deal with the many different and potentially difficult situations such a 
system has to handle some companies are implementing what is sometimes called 
“the big loop”: a loop which can constantly capture new, relevant scenarios that the 
system is not yet able to handle, feed these new scenarios into the machine learning 
algorithms for retraining, and update the assets in the field with the new models.
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Figure 3.9 describes how this can be done for automated driving: the system 
has an Automated Driving Mode, which receives input from different sensors, 
e.g., cameras, radar, lidar and microphones. This input is processed via sensor 
data fusion and eventually fed to the AI, which uses the data to plan the vehicle’s 
trajectory. Based on the calculated trajectory, the actuators of the vehicle are 
instructed, e.g., steering, accelerating and braking. So far so good. In addition, the 
system has a so-called Shadow Mode. This Shadow Mode is doing pretty much 
the same calculations as the Automated Driving Mode, except that it does not 
actually control the vehicle. However, the Shadow Mode is smart in that it recog-
nizes situations that can either not be handled by the AI or where the result is 
deemed to be suboptimal; for example, another vehicle is detected too late, lead-
ing to a sharp braking process. In this case, the Shadow Mode can capture the 
related data as a scenario, which it then feeds back to the training system in the 
cloud. The cloud collects new scenarios representing new, relevant traffic situa-
tions and uses these scenario data to retrain the AI. The retrained models can then 
be sent back to the vehicles in the field. Initially, these new models can also be run 
in the Shadow Mode to understand how they are performing in the field without 
actually having a potentially negative impact on actual drivers since the Shadow 
Mode does not interfere with the actual driving process. However, the Shadow 
Mode can provide valuable feedback about the new model instance and can help 
validate their effectiveness. Once this has been assured, the models can be acti-
vated and used in the real Automated Driving Mode.

Since such an approach with potentially millions of vehicles in the field can 
help deal with massive amounts of sensor data and make these data manage-
able by filtering out only the relevant scenarios, it is also referred to as 
Big Loop.

3.5  Data Science

Data scientists need clean data to build and train predictive models. Of course, ML 
data can take many different forms, including text (e.g., for auto-correction), audio 
(e.g., for natural language processing), images (e.g., for optical inspection), video 
(e.g., for security surveillance), time series data (e.g., electricity metering), event 
series data (e.g., machine events) and even spatiotemporal data (describing a phe-
nomenon in a particular location and period of time, e.g., for traffic predictions). 
Many ML use cases require that the raw data be labeled. Labels can provide addi-
tional context information for the ML algorithm, e.g., labeling of images (image 
classification).

The following provides a discussion of AIoT data categories, followed by details 
on how to derive data sets and label the training data.
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3.5.1  Understanding AIoT Data Categories and Matching 
AI Methods

Understanding the basic AIoT Data Categories and their matching AI Methods is 
key to AIoT project success. The Digital Playbook defines five main categories, 
including snapshot data (e.g., from cameras), event series data (e.g., events from 
industrial assets), basic time series data (e.g., from a single sensor with one dimen-
sion), panel data (time series with multiple dimensions from different basic sen-
sors), and complex panel data (time series with multiple dimensions from different, 
high-resolution sensors) (Fig. 3.10).

Fig. 3.10 AIoT Data Categories

Figure 3.9 maps some common AI methods to these different AIoT data types, 
including AF - Autocorrelation Functions, AR – Autoregressive Model, ARIMA – 
ARMA without stationary condition, ARMA  – Mixed Autoregressive Mixed 
Autoregressive –Moving Average Models, BDM  - Basic Deterministic Models, 
CNN  – Convolutional Neural Network, FFNN  – Feedforward Neural Network, 
GRU – Gated recurrent unit, HMM – Hidden Markov Models, LSTM – Long short-
term memory, MA  – Moving Average, OLS  – Ordinary Least Squares, RNN  – 
Recurrent Neural Network, SVM – Support Vector Machine.

3.5.2  Data Sets

In ML projects, we need data sets to train and test the model. A data set is a collec-
tion of data, e.g., a set of files or a specific table in a database. For the latter, the rows 
in the table correspond to members of the data set, while every column of the table 
represents a particular variable.
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The data set is usually split into training (approx. 60%), validation (approx. 
20%), and test data sets (approx. 20%). Validation sets are used to select and tune 
the final ML model by estimating the skill of the tuned model for comparison with 
other models. Finally, the training data set is used to train a model. The test data set 
is used to evaluate how well the model was trained (Fig. 3.11).

In the article "From model- centric to data- centric" [6], Fabiana Clemente pro-
vides the following guiding questions regarding data preparation:

• Is the data complete?
• Is the data relevant for the use case?
• If labels are available, are they consistent?
• Is the presence of bias impacting the performance?
• Do I have enough data?

In order to succeed in the adoption of a data-centric approach to ML, focusing on 
these questions will be key.

3.5.3  Data Labeling

Data labeling is required for supervised learning. It usually means that human data 
labelers manually review training data sets, tagging relevant data with specific 
labels. For example, this can mean manually reviewing pictures and tagging objects 
in them, such as cars, people, and traffic signs. A data labeling platform can help to 
support and streamline the process.

Fig. 3.11 Data - ML Perspective

3 Data 101

https://towardsdatascience.com/how-to-build-a-data-set-for-your-machine-learning-project-5b3b871881ac
https://towardsdatascience.com/from-model-centric-to-data-centric-4beb8ef50475


30

Is data labeling the job of a data scientist? Most likely, not directly. However, the 
data scientist has to be involved to ensure that the process is set up properly, includ-
ing the relevant QA processes to avoid bad label data quality or labeled data with a 
strong bias. Depending on the task at hand, data labeling can be done in-house, 
outhouse, or by crowdsourcing. This will heavily depend on the data volumes as 
well as the required skill set. For example, correct labeling of data related to medical 
diagnostics, building inspection or manufacturing product quality will require input 
from highly skilled experts (Fig. 3.12).

Take, for example, building inspection using data generated from drone-based building 
scans. This is actually described in detail in the TÜV SÜD building façade inspection case 
study. Indicators detected in such an application can vary widely, depending on the many 
different materials and components used for building façades. Large building inspection 
companies such as TÜV SÜD have many experts for the different combinations of materi-
als and failure categories. Building up a training data set with labeled data for automati-
cally detecting all possible defects requires considerable resources. Such projects typically 
implement a hybrid solution that combines AI-based automation where there are sufficient 
training data and manual labeling where there is not. The system will first attempt to auto-
matically detect defects, allowing false positives and minimizing false negatives. The data 
is then submitted for manual verification. Depending on the expert’s opinion the result is 
accepted or replaced with manual input. The results of this process are then used to further 
enhance the training dataset and create the problem report for the customer. This example 
shows a type of labeling process that will require close collaboration between data engi-
neers, data scientists and domain experts.

3.6  Domain Knowledge

One of the biggest challenges in many AI/ML projects is access to the required 
domain knowledge. Domain knowledge is usually a combination of general busi-
ness acumen, industry vertical knowledge, and an understanding of the data lineage. 
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Fig. 3.12 Data Labeling Example

D. Slama

https://aiotplaybook.org/index.php?title=Drone-based_Building_Facade_Inspection
https://aiotplaybook.org/index.php?title=Drone-based_Building_Facade_Inspection


31

Domain knowledge is essential for creating the right hypotheses that data science 
can then either prove or disprove. It is also important for interpreting the results of 
the analyses and modeling work.

One of the most challenging parts of machine learning is feature engineering. 
Understanding domain-specific variables and how they relate to particular outcomes 
is key for this. Without a certain level of domain knowledge, it will be difficult to 
direct the data exploration and support the feature engineering process. Even after 
the features are generated, it is important to understand the relationships between 
different variables to effectively perform plausibility checks. Being able to look at 
the outcome of a model to determine if the result makes sense will be difficult with-
out domain knowledge, which will make quality assurance very difficult.

There have been many discussions about how much domain knowledge the data 
scientist itself needs, and how much can come from domain experts in the field. The 
general consensus seems to be that a certain amount of domain knowledge by the data 
scientist is required and that a team effort where generalist data scientists work together 
with experienced domain experts usually also works well. This will also heavily depend 
on the industry. An internet start-up that is all about “clicks” and related concepts will 
make it easy for data scientists to build domain knowledge. In other industries, such as 
finance, healthcare or manufacturing, this can be more difficult.

The case study AIoT in High- Volume Manufacturing Network describes how an 
organization is set up which always aims to team up data science experts with 
domain experts in factories (referred to as “tandem teams”). Another trend here is 
“Citizen Data Science”, which aims to make it easy to use data science tools avail-
able directly to domain experts.

In many projects, close alignment between the data science experts and the 
domain experts is also a prerequisite for trust in the project outcomes. Given that it 
is often difficult in data science to make the results “explainable”, this level of 
trust is key.

3.7  Chicken Vs. Egg

Finally, a key question for AIoT initiatives is: what comes first, the data or the use 
case? In theory, any kind of data can be acquired via additional sensors to best sup-
port a given use case. In practice, the ability to add more sensors or other data 
sources is limited due to cost and other considerations. Usually, only greenfield, 
short tail AIoT initiatives will have the luxury of defining which data to use specifi-
cally for their use case. Most long tail AIoT initiatives will have to implement use 
cases based on already existing data.

For example, the building inspection use case from earlier is a potential short tail 
opportunity, which will allow the system designers to specify exactly which sensors 
to deploy on the drone used for the building scans, derived from the use cases which 
need to be supported. This type of luxury will not be available in many long tail use 
cases, e.g., in manufacturing optimization as outlined in AIoT and high volume 
manufacturing case study (Fig. 3.13).
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Fig. 3.13 Data - ML Long Tail
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Chapter 4
Digital Twin 101

Dirk Slama

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

Digital Twins are a digital representation of real-world physical entities. They help 
manage complexity and establish a semantic layer on top of the more technical lay-
ers. This in turn can make it easier to realize business goals and implement AI/ML 
solutions using machine data. This chapter provides an overview, some concrete 
examples, as well as a discussion in which situations the Digital Twin approach 
should be considered for an AIoT initiative (Fig. 4.1).

Fig. 4.1 Digital Twin 101
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4.1  Introduction

There are multiple “flavors” of digital twins. The Platform Industrie 4.0 places the 
Asset Administration Shell at the core of its Digital Twin strategy [7]. Many PLM 
companies include the 3D CAD data as a part of the Digital Twin. Some advanced 
definitions of Digital Twin also include physics simulation. The Digital Twin 
Consortium defines the digital twin as follows: “A digital twin is a virtual represen-
tation of real-world entities and processes, synchronized at a specified frequency 
and fidelity. Digital twin systems transform business by accelerating holistic under-
standing, optimal decision-making, and effective action. Digital twins use real-time 
and historical data to represent the past and present and simulate predicted futures. 
Digital twins are motivated by outcomes, tailored to use cases, powered by integra-
tion, built on data, guided by domain knowledge, and implemented in IT/OT sys-
tems” [8].

The Digital Playbook builds on the definition from the Digital Twin 
Consortium. A key benefit of the Digital Twin concept is to manage complexity 
via abstraction. Especially for complex, heterogeneous portfolios of physical 
assets, the Digital Twin concept can help to better manage complexity by pro-
viding a layer of abstraction, e.g. through well-defined Digital Twin interfaces 
and relationships between different Digital Twin instances. Both the I4.0 
AdminShell as well as the Digital Twins Definition Language (DTDL) [9] are 
providing support in this area.

Depending on the approach chosen, Digital Twin interface definitions often 
extend the concept of well-established component API models by adding Digital 
Twin specific concepts such as telemetry events and commands. Relationships 
between Digital Twin instances can differ. A particularly important one is the aggre-
gation relationship, because this will often be the foundation of managing more 
complex networks of heterogeneous assets.

The goal of many Digital Twin projects is to create semantic models that allow 
us to better understand the meaning of information. Ontologies are a concept where 
reusable, industry-specific libraries of Digital Twin models are created and 
exchanged to support this (Fig. 4.2).
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Fig. 4.2 Digital Twin – overview

4.2  Example

A good example of a Digital Twin is a system that makes route recommendations to 
drivers of electric vehicles, including stop points at available charging stations. For 
these recommendations, the system will need a representation of the vehicle itself 
(including charging status), as well as the charging stations along the chosen route. 
If this information is logically aggregated as a Digital Twin, the AI in the backend 
can then use this DT to perform the route calculation, without having to worry about 
technical integration with the vehicle and the charging stations in the field.

Similarly, the feature responsible for reserving a charging station after a stop has 
been selected can benefit if the charging station is made available in the form of a 
Digital Twin, allowing us to make the reservation without having to deal with the 
underlying complexity of the remote interaction.

The Digital Twin in this case provides a higher level of abstraction than would be 
made available, for example, via a basic API architecture. This is especially true if 
the Digital Twin is taking care of data synchronization issues (Fig. 4.3).
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Fig. 4.4 Digital Twin and AIoT

Fig. 4.3 Digital Twin example

4.3  Digital Twin and AIoT

In an AIoT initiative, the Digital Twin concept can play an important role in provid-
ing a semantic abstraction layer. The IoT plays the role of providing connectivity 
services. AI, on the other hand, can play two roles:

• Reconstruction: AI can be an important tool for the reconstruction process; the 
process of creating (or “reconstructing”) the virtual representation based on the 
raw data from the sensors.

• Application: Once the Digital Twin is reconstructed, another AI algorithm can be 
applied to the semantically rich representation of the Digital Twin in order to 
support the business goals (Fig. 4.4)
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4.3.1  Example 1: Electric Vehicle

The first example to demonstrate this concept is building on the EV scenario from 
earlier on. In addition, the DT concept is now also applied to the Highly Automated 
Driving Function of the vehicle, which includes short term trajectory and long-term 
path planning.

For short-term planning, a digital twin of the vehicle surroundings is created 
(here, the AI supports the reconstruction of the DT). Next, AI uses the semantically 
rich interfaces of the digital twin of the vehicle surroundings to perform short-term 
trajectory planning. This AI will also take the long-term path into consideration, 
e.g., to determine which way to take on each crossing (Fig. 4.5).

4.3.2  Example 2: Particle Collider

The second example is a particle collider, such as the Large Hadron Collider at 
CERN. The particle collider uses a 3D grid of ruggedized radioactivity sensors in a 
cavern of the collider to capture radioactivity after the collision. These data are fed 
into a very complex tier of compute nodes, which are applying advanced analytics 
concepts to create a digital reconstruction of the particle collision. This Digital Twin 
is then the foundation of the analysis of the physical phenomena that could be 
observed (Fig. 4.6).

Fig. 4.5 Digital Twin and AIoT – example
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Fig. 4.6 AIoT & Digital Twin: particle collider example

Fig. 4.7 Digital Twin: soccer example

4.4  DT Resolution and Update Frequency

As mentioned earlier, key questions that must be answered by the solution architect 
concern the DT resolution and update frequency.

A good example here is a DT for a soccer game. Depending on the role of the 
different stakeholders, they would have different requirements regarding resolution 
and update frequency. For example, a betting office might only need the final score 
of the game. The referee (well, plus everybody else playing or watching) needs 
more detailed information about whether the ball has actually crossed the line of the 
goal, in case of a shot on the goal. The audience usually wants an even higher “reso-
lution” for the Internet live feed, including all significant events (goals, fouls, etc.). 
The team coach might require a detailed heat map of the position of each player 
during every minute of the game. Finally, the team physician wants additional infor-
mation about the biorhythm of each player during the entire game (Fig. 4.7).
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Mark Haberland is the CEO of Clariba. The company is offering custom 
tracking and analytics solutions for soccer teams. He shares the following 
insights with us: Football clubs around the world are striving to achieve a com-
petitive advantage and increase performance using the immense data available 
from the use of digital technology in every aspect of the sport. Continued inno-
vation in the application of sensors, smart video analytics with edge computing, 
drones, and even robotics, streaming data via mesh WIFI networks and 5G con-
nectivity is providing incredible new capabilities and opportunities for real-
time insights. Harnessing this ever- increasing amount of data will allow 
forward-looking clubs to experiment and to innovate and develop new algo-
rithms to achieve the insights needed to increase player and team performance 
to win on the pitch. Investing in new technologies, building in-house capabilities 
and co-innovating with partners such as universities and specialized companies 
savvy in AIoT will be a differentiating factor for football organisations that 
want to lead the way (Fig. 4.8).

Fig. 4.8 Football dashboard example
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So there are a number of key questions here: How high should the resolution of 
the DT be? And how can a combination of sensors and reconstruction algorithms 
deliver at this resolution?

For individual goal recognition, a dedicated sensor could be embedded in the 
ball, with a counterpart in the goal posts. This would require a modification of the 
ball and the goal posts but would allow for very straightforward reconstruction, e.g., 
via a simple rule.

Things become more complicated for the reconstruction process if a video 
camera is used instead. Here, AI/ML could be utilized, e.g., for goal 
recognition.

For the biorhythm, chances are that a specialized type of sensor will be somehow 
attached to the player’s body, e.g., in his shorts or t-shirt. For the reconstruction 
process, advanced analytics will probably be required (Fig. 4.9).

Fig. 4.9 Digital Twin: soccer example (details)

4.5  Advanced Digital Twins: Physics Simulation 
and Virtual Sensors

To wrap up the introduction of Digital Twins, we will now examine advanced Digital 
Twins using physics simulation and virtual sensors. A real-world case study is pro-
vided, which is summarized in the figure following. Two experts have been inter-
viewed for this: Dr. Przemyslaw Gromala (Team leader of Modelling and Simulation 
at Bosch Engineering Battery Management Systems and New Products) and Dr. Prith 
Banerjee (Chief Technology Officer of ANSYS, a provider of multi- physics engineer-
ing simulation software for product design, testing and operation) (Fig. 4.10).
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Fig. 4.10 Physics simulation and virtual sensors

Dirk Slama: Prith, can you share your definition of Digital Twin with us?
Prith Banerjee: We are looking at Digital Twins during the design, manufacturing 

and operations phase. Let’s take a car motor as an example. You start by creating 
a CAD model during the design phase. Using the ANSYS products, you can then 
also create a physics simulation model, which helps you get insights into the 
future performance of the motor. Then, after the motor has been manufactured, 
you are entering the operations phase. During operations, sensors are used on 
the asset to measure key operational indicators, e.g., vibration and temperature 
of the motor. You can then calibrate the as-designed value of the asset to match 
the as-manufactured and as-operated values. In some cases, you might not be 
able to put real sensors in all the places where you need them, either because it 
is too costly, or technically not feasible. In this case, you can derive a virtual 
sensor from the physics simulation model. Combining real sensors with virtual 
sensors can get you a Digital Twin which represents the real world with a very 
high level of accuracy.

Dirk: Thanks. Przemyslaw, you are working on applying these concepts to high 
power inverters for electric vehicles. Can you start by explaining what a high- 
power inverter is, and what use cases you are seeing for advanced Digital Twins?

Przemyslaw Gromala: An inverter for electric vehicles is a power electronics system 
that converts the direct current from the HV-battery into the (3 Phase) alternat-
ing current controlling the motor. This of course is a very important component 
of any EV or hybrid vehicle. One of the major challenges that we are facing right 
now is that these power modules are completely new devices in automotive elec-
tronics, which are combinations of relatively new materials, e.g., epoxy-based 
molding compounds in combination with silicon carbide technologies, as well as 
new interconnection technologies based on silver sintering. Of course, we need 
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to understand the complete interactions in a much better way. This is where 
advanced Digital Twins based on numerical simulations come in hand.

Dirk: What kind of sensors are you using to build the Digital Twin of the power 
inverter?

Przemyslaw: There are two categories of sensors. The first category includes real 
sensors, e.g., temperature sensors, vibration or motion sensors. The second cat-
egory is virtual sensors, which allow us to measure or calculate different stress 
and strain states in the locations when real sensors cannot be applied.

Dirk: Prith, I understand this concept of virtual sensors is also something that 
ANSYS is very much focusing on. Can you tell us a little bit about where this fits 
in, in terms of the development phases?

Prith: At ANSYS we do detailed physics simulation. The different sensor categories 
that Przemyslaw is talking about are going back to fundamental physics, which 
we are simulating with numerical methods, such as the Finite Elements Analysis 
(FEA). FEA is a widely used method for numerically solving differential equa-
tions arising in engineering and mathematical modeling. If you are putting dif-
ferent sensors to a physical asset, you get many data, e.g., measuring vibration 
or pressure. The problem is that there are locations inside the physical asset 
where you cannot place a physical sensor. Take our example, the inverter. If you 
would put sensors to all the places where you want them, it would become techni-
cally impossible and prohibitive from a cost perspective. Therefore, in places 
where we cannot afford to place a real sensor for technical or cost reasons, we 
can logically assign a virtual sensor. In addition, this is where simulation comes 
in. We model the actual physics of the system using Finite Element Analysis to 
predict how a product reacts to real-world forces, vibration, heat, fluid flow, and 
other physical effects. The physics-based simulation of virtual sensors allows 
interpolation and extrapolation of the different values. In our example of a power 
inverter, we will put physical sensors where we can actually put the sensor. And 
then we will add the virtual sensors and we will essentially say, “Hey, if I were 
to have a sensor here, this is what the sensor would have produced.” Now, this 
virtual sensor needs to do the simulation based on some boundary conditions. So 
what we do is we look at the actual operating data. We look at the current and 
voltage of the inverter, the actual temperature, and the actual vibration of the car. 
We will take all those sorts of inputs as boundary conditions for our simulation.

Now, the next question is how detailed does the simulation have to be? If we would 
take a full 3D model as the foundation of the physics-based Digital Twins, this 
could be too much detail to master with realistic effort. This is why we are apply-
ing what is called Reduced Order Modeling (ROM). ROM is a very efficient 
method for reducing the computational complexity of mathematical models in 
numerical simulations. We can use ROM to design the virtual sensors, and to 
derive the values we will get from them in different situations. Finally, in the 
production system, we combine the outputs of the real sensors with the outputs 
from the virtual sensors by applying Machine Learning algorithms. And this is 
what gives us a highly accurate Digital Twin using real and virtual sensors 
together.

Dirk: Przemyslaw, how are you applying all this to your power inverter?
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Przemyslaw: What is crucial here are the nonlinear simulations, especially the 
mechanical simulations. This is because the material behaves very differently, 
e.g., depending on the temperature and time. For the power inverter, we cannot 
apply physical sensors at all the places where we would like to have them. This 
is where the combination of nonlinear simulations, virtual sensors, and machine 
learning is giving us a real edge. This is the foundation for new applications such 
as the estimation of the state of health of the devices, including prognostics and 
health management for power electronics. Once we have this established, we can 
then even think about predictive maintenance for electronics systems.

Prith: Let me add to this. The typical way that people build Digital Twins is by 
attaching some sort of sensors to an asset, collect a lot of data, and then build an 
AI model based on that data. What we have found is that the accuracy of the 
purely ML-based analytics of a Digital Twin is approximately 80%. If you are 
doing a physics-based simulation of the Digital Twin, you can increase the accu-
racy to approximately 90%. Now, by combining the ML-based analytics with the 
physics-based approach into a hybrid Digital Twin  – as Przemyslaw has 
described it in the work we are doing today with Bosch  – you can actually 
increase the accuracy to up to 99%. This means that if you replace an asset 
worth a hundred thousand dollars based on a prediction that is only 80% accu-
rate, this means you are likely to lose $20,000 on average. And that is a big 
 business cost. If you can reduce that cost, that error to 1%, essentially this waste 
of $20,000 becomes reduced to only $1000. That is the business value that we are 
producing with hybrid Digital Twins leveraging AI and physics-based simulation.

Dirk: The Digital Twin really supports the entire product life-cycle?
Przemyslaw: Yes, this is important. Digital Twins start with the design of our power 

devices. Then we track what happens during production. Finally, we start with 
the reliability assessment of our devices in the field until the component actually 
goes out of the field. And this is the moment when the Digital Twin will reach its 
end of use. In addition, that means Digital Twin for me, it is right from the begin-
ning of the design process until the end of life of the device.

Dirk: During operations, where does the Digital Twin actually reside in your 
architecture?

Przemyslaw: That is a very important point. Especially for applications where the 
Digital Twin is applied to assets in the field, it is important to have them run on- 
board the asset, e.g., the car. This means that we are not relying on very large 
clusters for Digital Twin processing but can use the microprocessor or microcon-
troller that is running in the car. By implementing the Digital Twins in the car, we 
do not have to transfer all the data to remote cloud services.

Prith: When you build a very high-fidelity version of a Digital Twin, this would usu-
ally require a high-performance compute node, e.g., in the cloud. However, what 
we do is to build a simplified model and then export it. And it is this simplified 
twin that runs in a run time using docker containers on the edge with a very small 
memory footprint, as Przemyslaw said. Running it on the edge makes it possible 
for the twins to operate at the frequency of the real assets.

Dirk: Prith, in which industries do you see this being applied, predominantly?
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Prith: We are currently focused on three broad use cases. One use case we just talked 
about is for electric vehicles. Another very big use case is for industrial flow net-
works in oil and gas, where we create a Digital Twin of an oil and gas network with 
lots of valves and compressors, etc. Another area is manufacturing, e.g., for large 
injection molding systems and other types of equipment in a factory. So there are 
lots and lots of applications of Digital Twins across different verticals.

Dirk: Thank you!
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This chapter provides an Internet of Things 101, including a brief overview, a dis-
cussion of IoT Sensors and Actuators, IoT Architecture, IoT Protocol Layers, and 
IoT Connectivity (Fig. 5.1).

Fig. 5.1 IoT 101
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5.1  Introduction

The Internet of Things (IoT) describes the concept of connecting physical objects 
(a.k.a. the “Things”), which are embedded with sensors and actuators over the 
Internet. This connection can either be direct between physical objects or between 
physical objects and a back-end data center (cloud or on-premises). Surprisingly, 
this connectivity will often make use of Internet protocols (IP, UDP, etc.) but use 
protected enterprise networks instead of the open Internet. The IoT has emerged as 
a concept following earlier approaches such as M2M (Machine-to-Machine com-
munication) and Telematics, usually adding a richer set of digital services. Industrial 
Internet of Things (IIoT) refers to industrial IoT applications. Edge computing is 
quickly emerging as field-based computing capacity closer to the physical objects 
and as a counterpart to centralized cloud computing. The boundaries between Edge 
computing, IoT, and embedded computing can sometimes be blurry. The term IoT 
Edge Node is usually used to refer to compute nodes that are embedded with physi-
cal objects in the field. Other types of edge equipment can be independent of physi-
cal assets, e.g., local data centers.

5.2  IoT Architecture

An IoT architecture must support the creation of a bridge between physical assets in 
the field and a cloud or on-premises backend. This first challenge is the integration 
of the actual physical asset (or product, appliance, equipment, etc.). This can usu-
ally be done either as part of a line-fit process during manufacturing or as a retrofit 
process (especially for legacy assets). Asset integration addresses issues such as 
power supply, ruggedization, antenna positioning, etc.

On – or close to – the asset, the IoT architecture usually positions an edge layer. 
The first elements here are sensors or actuators (some might argue that this is part 
of the asset, not part of the edge, which can also be a valid design). In addition, we 
often find edge applications (e.g., preprocessing of sensor data) and edge AI/Asset 
Intelligence (e.g., sensor data fusion and autonomous control). Modern edge plat-
forms provide a runtime for local compute resources, as well as a gateway function-
ality for remote communication.

In the backend, AIoT backend applications and backend AI/swarm intelligence 
operate on the data received from assets in the field. This is often supported by IoT/
IIoT-specific middleware, provided as Platform-as-a-Service (PaaS). Normal Cloud- 
PaaS services as well as Infrastructure-as-a-Service (IaaS) are required as the foundation.

Not to be underestimated is the need to integrate with existing Enterprise 
Applications: most IoT projects also have an EAI element (Enterprise Application 
Integration) (Fig. 5.2).
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Fig. 5.2 IoT architecture

Fig. 5.3 IoT sensors and actuators

5.3  IoT Sensors and Actuators

Most IoT systems benefit from the use of sensors and actuators to acquire data from 
the field and control the behavior of assets in the field. Typical sensor categories 
include image and video, acoustics and noise, temperature, moisture, light, presence 
and proximity, motion, gyroscope (rotation and velocity), water level, and chemi-
cals. Typical actuators include motors (servo, stepper, DC), linear actuators, relays 
(electric switches), and solenoids (electromagnets) (Fig. 5.3).

5.4  IoT Protocol Layers

Connectivity between the IoT edge nodes and the backend requires different protocol 
layers. Similar to the postal services with letters and parcels, these protocol layers are 
responsible for packaging, addressing and routing data in various forms. At the top 
layers, application-specific protocols are responsible for supporting information 
exchange at the business level. Lower-level transport protocol layers are responsible 
for the transfer of anonymous data packages (business-level data are often split into 
smaller packages for transportation purposes, and then reassembled on the receiver 
side). The most well-known protocol is TCP/IP, which is the standard protocol on the 
Internet. IoT communication networks must establish a physical data link between the 
different nodes involved. This happens using a variety of standardized and proprietary 
protocols, especially for wireless communication (Fig. 5.4).
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Fig. 5.4 IoT protocol layers

Fig. 5.5 AIoT network architecture

5.5  IoT Connectivity

Especially for mobile physical assets, it is important to find suitable connectivity 
solutions. These solutions usually differ greatly by a number of factors, including 
cost, regional availability and range, bandwidth and latency, energy efficiency.

Different services, including cellular, short-range and long-range services are 
available and can also be combined. A typical pattern is to use a short-range proto-
col to connect mobile edge nodes with a central (mobile or stationary) gateway, 
which then establishes wide-area connectivity (Fig. 5.5).
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5.6  Over-the-Air Updates

Another key capability of modern IoT systems is to perform updates Over-the-Air 
(OTA). OTA allows us to update Software (SOTA) or Firmware (FOTA) on a remote 
asset, e.g., via WLAN or mobile networks. OTA update mechanisms are now a com-
mon feature for almost all smartphones, tablets, and similar devices. In automotive 
systems, some early adopters, such as Tesla, have been pioneering OTA. Currently, 
most other OEMs have started to adopt OTA updates as well.

OTA Updates are a key capability of any AIoT product since they allow software 
deployed on the asset to evolve over time, gradually rolling out new functionality. If 
combined with an app store, OTA updates allow tapping into a rich developer com-
munity, which can add new functionalities and apps in many creative ways that 
sometimes have not been foreseen by the asset manufacturer and platform operator.

Figure 5.6 shows a typical OTA architecture for AIoT products. It all starts with 
the authoring (1) of new versions of software or firmware. This process can include 
deliveries from suppliers and sub-suppliers, which need to be integrated, tested and 
bundled. Next, the distribution component (2) is responsible for making the updates 
available in different regions, and coordinating the update campaigns. Finally, on- 
asset deployment (3) is responsible for ensuring that the update is reaching its target.

Because OTA is becoming such an important feature of IoT and AIoT systems, a 
number of standards are emerging in this space. ISO 24089 aims to provide a stan-
dard architecture for OTA updates for road vehicles. The OMA DM protocol pro-
vides an integrated and extensible framework for OTA management. A number of 
existing standards specifically describe how to implement delta updates for firm-
ware, thus dramatically reducing the amount of data to be transferred to each device 
individually.

Fig. 5.6 OTA updates – overview
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5.6.1  Distribution

The distribution component of an OTA platform is typically responsible for package 
preparation and campaign management, as well as tracking and reporting. Campaign 
management can rely on complex rules to control updates to large amounts of 
devices or assets. For example, rules can help ensure that assets such as road vehi-
cles are not updated in critical situations (e.g., prevent updates while driving, or 
require the asset to not be in a remote area in case of update problems) (Fig. 5.7).

The typical components of the distribution tier include:

• Repository for firmware/software packages and planning data
• Asset inventory and update tracking/reporting
• Certificate & Signature Management

5.6.2  Deployment

Most OTA platforms include a dedicated update agent, which receives software/
firmware updates from the remote distribution tier in the backend. Key functional-
ity of the update agent typically include Download Management, Security 
Management (including management and validation of security certificates and 
signatures), and distribution of the incoming updates to the target compute nodes 
(Fig. 5.8).

Fig. 5.7 OTA updates – distribution
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Fig. 5.8 OTA updates – deployment

The local distribution from the update agent to the final target system can occur 
via a number of different local bus systems, including CAN, LIN, MOST, FlexRay, 
Ethernet, etc.

The actual target compute node can be a lower-level controller, e.g., an embed-
ded system such as an Engine Control Unit (ECU) or a Transmission Control Unit 
(TCU) in automotive or any other kind of embedded microcontroller (MCU) or 
microprocessor (MPU). Alternatively, it can be a high-end edge computer with its 
own local storage, full operating systems, etc. For lower-level controllers, FOTA 
(firmware-over-the-air) manages the process of updating the combined embedded 
OS and embedded applications as a single image (or applying a delta-update strat-
egy to minimize bandwidth), while for higher-level edge computers, SOTA 
(software- over-the-air) supports more targeted updates of individual applications.

5.7  AIoT AppStores

A particularly interesting application of OTA are AppStores. Pioneered by Apple 
and Google in the smartphone space, they have proven to offer tremendous value 
not only in terms of easy-to-use application management, but also with regards to 
opening up the smartphone platform for external development partners. AppStores 
for smartphones have unlocked the huge creative potential of millions of developers 
who are now developing apps for these AppStores, sharing revenues with platform 
operators.

It seems logical to apply the same principle to other areas, be it AppStores for 
smart kitchen appliances or electric vehicles. However, there are also some limiting 
factors. First, with complex and safety-critical systems such as vehicles or heavy 
equipment, being able to protect them from abuse by potentially malicious external 
applications is key, and this is not an easy feat. Second, these products usually have 
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a significantly lower number of instances in the field than the smartphone compa-
nies. If we are looking at automotive specifically, there is a very high level of frag-
mentation because almost every vehicle platform is different. This fragmentation 
means that developers would have an even smaller installed base and high integra-
tion costs, making it harder to innovate and create profits.

Achim Nonnenmacher, expert for Software-defined Vehicle at Bosch knows: In 
order to significantly accelerate innovation cycles in vehicles from “many years” 
today to “days or weeks” in the future, vehicle manufacturers and tier 1s need to 
collaborate on open, non-differentiating software and APIs. This collaboration will 
help reduce fragmentation, will lower the very high integration effort we see today, 
and free software engineers to work on differentiating and innovative new features 
without fearing lock-ins.

The following is looking at two examples. First, an OEM with closed AppStore 
for his own vehicle apps. Second, an OEM with an open AppStore for partner vehi-
cle apps.

5.7.1  Example 1: OEM with Closed AppStore

A first step toward an AppStore for vehicles and other physical assets is to only 
allow apps that are developed directly by the OEM and tier 1 suppliers. Here, we 
have to differentiate between pure in-car apps (e.g., a new mood control for interior 
lighting) vs. composite apps with external components, e.g., a smartphone 
integration.

In the example shown below, a car manufacturer provides a composite app, com-
bining his own AppStore with the smartphone AppStores of Apple, Google, and the 
like. This type of composite app architecture is required, especially for cases where 
the app will run partly on the smartphone, partly on the car, and partly in the cloud 
backend of the OEM.

For example, a user might download a new car app in the smartphone app store. 
The first time this app is contacting the cloud backend of the OEM, it will determine 
that a new app component must be installed on the customer’s car as well. This 
could be done automatically and in the background so that the customer is not aware 
that they are actually dealing with two AppStores.

Once both apps are installed (the one on the smartphone, and the one on the car), 
the user can then use the apps as one seamlessly integrated app. For example, this 
could be a new app similar to the Dog Mode app recently introduced by Tesla, 
which allows a user to control certain features for a dog in the car via his smart-
phone, e.g., controlling windows and cooling remotely.

This is an interesting scenario for a number of reasons. First, OEMs typically 
tend to prefer solutions which do not rely on smartphones, since this means losing 
control over the user. This is why platforms such as Android Automotive are becom-
ing popular, supporting native apps in the car and integrating only with the car’s 
head unit, and not the smartphone. However, by focusing only on on-car apps, the 
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OEM loses the opportunity for a new customer experience, e.g., by enabling the 
customer to remotely interact with the car and the dog in it while shopping.

Second, control over the apps in the car app store is critical — from a business — 
but also from a security perspective. In this scenario, the assumption is that apps in 
the vehicle app store can only be provided by the OEM or tier 1s. This means that 
the requirements for the tightness of the sandbox running the applications are not as 
high, since the OEM has full control over the QA (Quality Assurance) cycle of the 
app (Fig. 5.9).

5.7.2  Example 2: OEM with Open AppStore

In this second example, the OEM is actually opening up the car AppStore for exter-
nal development partners. Let us say the relatively unknown start-up ACME 
AppDeveloper wants to develop an advanced Dog Mode app, which is utilizing the 
in-vehicle camera and advanced AI to monitor the dog in the car. Depending on the 
learning of the AI about the mood and behavior of the dog, different actions can be 
taken, e.g., modifying the window position, changing the ambient environment in 
the car, or notifying the owner. Since the OEM does not have an active development 
partnership with ACME AppDeveloper and similar developers, he has to ensure the 
following:

• Provide a protected sandbox into which partner applications can be deployed

 – The OEM has to ensure that apps in the sandbox only interact with the car 
environment via a well-defined set of APIs.

Remote
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Distribute OEM app
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Runtime: Communication between app components

OTA: Flow of app components (distribution/installation)

Fig. 5.9 OEM with closed AppStore for vehicle apps
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 – Establish a corresponding safety system that ensures that the car is always in 
a safe state.

• Provide development partners with APIs for sensors such as the in-vehicle cam-
era, as well as selected actuators such as car window control or car ambi-
ent control

• Provide OTA-based deployment capabilities for partner apps
• Ensure that development partners can not only deploy specific software but also 

AI-enabled components

In this scenario, this has been ensured. Therefore, the ACME AppDeveloper can 
register his app with the OEM, which in turn will ensure that it is made available to 
car owners. Once installed, the new app will not communicate with the OEM cloud 
backend but rather with the ACME cloud backend, which might also use swarm 
intelligence to further enhance the advanced Dog Mode app (Fig. 5.10).

5.8  Expert Opinion: Nik Willetts, President & CEO 
of TM Forum

In the following interview with Nik Willetts, President & CEO of TM Forum, dif-
ferent aspects of IoT connectivity and related topics are addressed from the perspec-
tive of the telecommunications industry.

Dirk: Nick, thanks for joining us. Tell us a little bit more about TM Forum. What are 
you doing? Where are your members, and why is it relevant for AIoT?

Nik: Thanks, Dirk. TM Forum is a global consortium of over 800 companies all 
around the world, largely in the telecoms industry. And that includes the world’s 
leading service providers, software vendors, hyperscalers, system integrators, 
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Fig. 5.10 OEM with open AppStore for partner vehicle apps
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consultants, and start-up companies. Our purpose is to drive the industry for-
ward through collaboration. Right now, we’re focused on transforming the 
industry’s software and operating models to help deliver the agility, time to mar-
ket and customer experience to unlock growth, at the right cost point. The telcos 
need to survive in a hypercompetitive market and they foresee huge growth 
opportunities emerging over the next decade.
We have been at the forefront for over 30 years of different waves of industry 
transformation. The current wave is the most fundamental yet, because for con-
nectivity service providers to thrive in the decade ahead they need to digitally 
transform their business model, operating model and technology stacks. Through 
our innovation programs, such as our Catalyst projects, we have been exploring 
the applications of the IoT and combining that with new forms of connectivity. 
Most recently, we’ve focused on the application of IoT in combination with AI, 
edge computation and 5G connectivity in those contexts as well.
So why do we have an interest in AIoT? We believe the next wave of this digital 
revolution depends on a combination of technologies: elastic connectivity, edge 
computing, AI, and IoT. This perfect storm of technologies can unleash the true 
potential of Industry 4.0 and underpin the next wave of digital revolution for 
society. We know that Machine Learning and Artificial Intelligence will become 
ubiquitous across those technologies down to the device level. These technolo-
gies are going to come from an ecosystem of partners, with expectations over 
ease of integration, interoperability, and support for new levels of flexibility, agil-
ity and new business models. We see that as TM Forum’s core competency, in 
driving collaboration, developing standards, and ensuring that the telecom 
industry shows up with the right solutions and products, and we want to contrib-
ute to making the AIoT vision a reality.

Dirk: The IoT part in this is not new to telcos. We had M2M, we had telematics, we 
had IoT, and now we have AIoT. So in the bigger scheme of things, how impor-
tant is this to the telcos compared to normal communication and the telephone 
networks, and what are the key market trends?

Nik: You’re right that mobile technology has been an important element in the first 
generation of IoT for some time. Today the global market for IoT connectivity is 
worth approximately $8 billion – not significant when you consider that the ser-
vices market for telecoms is about $1.6 trillion. However, we see growth both in 
connectivity revenues for IoT – somewhere between 5% and 7% per annum, and 
expect the pandemic to accelerate that growth as enterprises bring forward their 
digital transformation plans.
I think it is fair to say that the telecom industry has been, at best, a distant part-
ner so far on the IoT journey. We only see a handful of telecom providers with 
significant IoT divisions, and the immaturity of devices and connectivity tech-
nologies have held back deployments. We see significant opportunities for col-
laboration, between device manufacturers, connectivity providers and end-users. 
For telecoms providers, the 5G enterprise market is worth at least $700 billion 
in additional revenue, and much of that will come from use cases which leverage 
Ml/AI and IoT. It is now critical for connectivity providers to recognize and work 
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much more closely with end customers, OEMs and software companies. It is not 
just a case of providing standalone connectivity anymore – we need an ecosys-
tem of technologies to unlock this value.

Dirk: If I put myself in the shoes of an OEM building new, smart, connected prod-
ucts, what can I expect from a telco in terms of support for my AIoT deployment, 
and what do I have to look out for?

Nik: With 5G, many leading telco companies are already experimenting with cus-
tomers. We see pilot projects that span every industry, from fish farming in the 
Nordics through to health care in the UK. Almost every sizable telecom operator 
now has deployments and real-world proof of concept projects underway, look-
ing at what’s needed from their capabilities and technologies. TM Forum is 
involved in many of those, including an ongoing project in the manufacturing 
sector deploying our IoT toolkit and common data model to help manage the 
friction between Telco, IoT, Cloud and vertical applications. Through these 
pilots, we see several challenges to navigate.
The first challenge is what we call Connectivity-as-a-Service — recognizing that 
for more sophisticated uses of IoT and more advanced devices, you have different 
connectivity needs at different times and in different locations, and will need to 
adjust to the available connectivity technologies in that location e.g., 4G, 5G or 
WiFi. New IoT devices also need to be managed and updated with new software 
over the air. Those updates, as we already see increasingly more software on 
cars, have greater bandwidth requirements for short periods of time, along with 
special requirements over security, latency and privacy. Connectivity has to be 
flexible and autonomous to support the needs of the IoT device and the required 
experience.
The second challenge concerns the combination of connectivity with edge com-
puting in regard to rapid AI decision-making. We see AIoT solutions as utilising 
a combination of intelligence on the device, nearby (at the edge), and centrally 
in the cloud. Addressing this with a secure, low-latency solution will be key.
The final piece, which we also see as an opportunity, is that security needs and 
risks are growing. As a regulated industry with substantial cybersecurity experi-
ence and control of local networks, telecom operators can provide unique secu-
rity capabilities, particularly where the processing and use of data can be 
controlled within a telecom provider’s network environment, such as through to 
an edge computing solution.
Beyond these services, it is also important to note what telcos can offer AIoT use 
cases. As a global subscription service industry, experience and capabilities 
such as billing right down to micro-transactions, localization, local market 
knowledge and skilled workforces, and handling of regulations in local markets 
are all potentially valuable capabilities. It is important to remember that telcos 
have global-scale experience delivering complex services and as we have seen in 
the last 18  months, they are exceptionally resilient to even exceptional levels 
of demand.
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Dirk: You once said that we need interoperable, autonomous, and open digital eco-
systems. So what will need to happen in the telecoms industry to actually 
achieve this?

Nik: We believe that a new level of complexity is now coming into play as we com-
bine and leverage new technologies for more sophisticated and critical use 
cases. The first and perhaps the easiest path to manage this is what we call 
closed ecosystems. That is where you have a dominant player doing a lot of the 
complexity and handling a lot of the integration. We have seen that in our con-
sumer businesses through the evolution of devices from companies such as Apple, 
for example, which bring you into a comfortable ecosystem, but ultimately with 
significant lock-ins as a consumer.
Lock-in does not work when we get to the complexities of industrial applications 
based on IoT  – indeed it can directly block innovation, prohibiting you from 
embracing newer technologies, experimenting with others, and raising concerns 
of customers being held to ransom or, as we have seen in the telecoms industry, 
being impacted overnight by costly geopolitical decisions.
So we fundamentally believe that the healthy, sustainable path when it comes to 
the next generation of industrial applications, is to build open ecosystems. But 
that comes with its own set of challenges compared to closed ecosystems. 
Integration, interoperability and transparency are some of the most significant 
barriers, and to address those barriers we need open standards. If you don’t 
have the right standards, if you don’t have a common language, definitions, met-
rics, data models APIs and so on, building open solutions becomes very difficult. 
That is why our members are creating Open Digital Architecture to help provide 
the foundation for open, interoperable and autonomous ecosystems.
So interoperability is key. Fortunately, that is much, much easier today than ever 
before. Thanks to advances in software engineering, and the recognition across 
industries of the importance of collaboration and standards, it’s becoming prac-
tical to deliver the level of interoperability and resilience required for open eco-
systems to thrive.
All of this becomes even more important when we think about the use of AI across 
those ecosystems. There’s the initial integration of AI across a complex ecosys-
tem of technologies. Then there’s the complexity and cost of operating those 
technologies. And that’s where AI really has a role to play again, not just at the 
device level or at a single technology level but actually across devices and tech-
nologies to ensure that the right outcome is achieved for the customer. To do that, 
we need to design standards today that are ready for AI use cases of tomorrow. 
That will only be possible if all embrace collaboration to deliver the required 
standards faster than ever.
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AIoT hardware includes all the physical components required to build an AIoT 
product or retrofit solution. For the retrofit solution, this will usually include sen-
sors, as well as edge and cloud (or on-premises) compute resources. Most retrofit 
solutions will not include actuators. Products, on the other hand, must not only 
provide IT-related hardware plus sensors, actuators and AI compute resources but 
also all the mechanical components for the product, as well as the product chassis, 
body and housing. Finally, both AIoT products and solutions will usually require 
specialized IT hardware for AI inferencing and AI training. The concepts developed 
for Cyber Physical Systems (CPS) will also be of relevance here. The following will 
look at both the AIoT product and retrofit solution perspective before discussing 
details of the hardware requirements and options for edge/cloud/AI (Fig. 6.1).

Fig. 6.1 AIoT framework
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6.1  Smart, Connected Products

The hardware for a smart, connected product must include all required physical 
product components. This means that it will include not only the edge/cloud/AI 
perspective but also the physical product engineering perspective. This will include 
mechatronics, a discipline combining mechanical systems, electric and electronic 
systems, control systems and computers.

In the example shown here, all hardware aspects for a vacuum robot are depicted. 
This includes edge IT components such as the on-board computer (including spe-
cialized edge AI accelerators), connectivity modules, HMI (Human-Machine 
Interaction), antennas, sensors and actuators such as the motors, plus the battery and 
battery charger. In addition, it also includes the chassis and body of the vacuum 
robot, plus the packaging.

The cloud or on-premises backend will include standard backend compute 
resources, plus specialized compute resources for AI model training. These can be, 
for example, GPUs (Graphics Processing Unit used for AI), TPUs (Tensor Processing 
Unit), or other AI accelerators.

Setting up the supply chain for such a wide breadth of different IT and other 
hardware components can be quite challenging. This will be discussed in more 
detail in the sourcing section (Fig. 6.2).

6.2  Smart, Connected (Retrofit) Solutions

For smart, connected retrofit solutions, the required hardware typically includes 
sensors, edge compute nodes, and backend compute resources (cloud or on- 
premises). The example shown here is the hardware provided for a predictive main-
tenance solution for hydraulics components. This complete case study from Bosch 
Rexroth is included in Part IV.
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Fig. 6.2 Hardware for smart, connected product
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The hydraulic components include electric and hydraulic motors, tanks, filters, 
cooling units, valves, and so on. Customers use these components for many different 
applications, e.g., in manufacturing, process industries, or mining. The hardware com-
ponents for the retrofit solution include different sensor packs, each specialized for a 
particular hydraulic component. For example, the sensor package for a hydraulic 
pump includes sensors to measure pressure and leakage, while the sensor packs for a 
hydraulic cylinder include sensors for chamber pressure and oil temperature. Since 
this is a retrofit solution that is sold to many different customers, it is important that 
each sensor pack has custom connectors that make it easy to attach sensor packs and 
their different sensors to the corresponding hydraulic component in the field.

Other hardware components provided include an edge data acquisition unit 
(DAQ), as well as an IoT gateway to enable connectivity to the backend. Backend 
hardware is not shown in this example, but will obviously also be required.

This is an example of a very mature solution that is designed to serve multiple 
customers in different markets. This is why the different hardware components are 
highly standardized. AIoT solutions that are not replicated as often might have a 
lower level of maturity and a more ad-hoc hardware architecture (Fig. 6.3).

6.3  Edge Node Platforms

Edge nodes are playing an important role for AIoT. They cover all compute resources 
required outside the cloud or central data centers. This is a highly heterogeneous 
space with a wide breadth of solutions, from tiny embedded systems to nearly full- 
scale edge data centers.

Fig. 6.3 Hardware for smart, connected solution (retrofit)

6 Hardware 101
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Edge computing is rooted in the embedded systems space. Embedded systems 
are programmable, small-scale compute nodes that combine hardware and software. 
Embedded systems are usually designed for specific functions within a larger system.

Today, typical edge node platforms include embedded microcontrollers (MCUs), 
embedded microprocessors (MPUs), Single Board Computers and even full-scale 
PCs. While the boundaries are blurry, an MCU is usually a single-chip computer, 
while an MPU has surrounding chips (memory, interfaces, I/O). MCUs are very 
low-level, while MPUs run some kind of specialized operating system. Other differ-
ences include costs and energy consumption (Fig. 6.4).

Some other key technologies often found in the context of edge node platforms 
include the following:

• Module (or Computer-on-Module, CoM): a specific function (e.g., a communi-
cation module), which can be integrated with a base board via standardized 
hardware interfaces. Provides high level of flexibility and reuse on the hard-
ware level.

• SoC (System-on-a-Chip): combines multiple modules into a single, tightly inte-
grated chip. Used especially for highly standardized, mass-produced systems, 
such as smartphones and tablets. For example, a smartphone SoC may contain a 
CPU, GPU, display, camera, USB, GSM modem, and GPS on a single chip

• ASIC (Application Specific Integrated Circuit): a chip that is custom designed 
for a specific purpose, e.g., running a mature and hardened algorithm. Provides 
high performance and low cost if mass-produced but requires a high level of 
maturity because no changes after production are possible.

Fig. 6.4 Edge node platforms
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• FPGA (Field Programmable Gate Arrays): chips that are programmed using 
highly efficient but also very low-level, configurable logic blocks. Application 
logic can be updated after manufacturing.

6.4  Sensor Edge Nodes

Sensor edge nodes are edge nodes that are specifically designed to process sensor 
data. Most basic sensors actually provide an analog signal. These analog signals are 
continuous in time, thus consuming a very high bandwidth. They are usually sinu-
soidal in shape (i.e., they look like a sinus curve). To be able to process and filter 
these signals, they need to be converted to a digital format. This helps reduce band-
width, and makes the signals processable with digital technologies. Usually a 
Digital-to-Analog Converter (DAC) is used to connect an analog device to a digital 
one. However, before this happens the analog signals are often preprocessed, e.g., 
using amplification to reduce noise and get a more meaningful signal.

The digitalization of the signal is often done using Discrete Fourier transform 
(DFT). DFT computation techniques for fast analog/digital signal conversion are 
known as Fast Fourier Transform (FFT). Based on linear matrix operations, FFTs 
are supported, for example, by most FPGA platforms.

After conversion to a digital format, the digital signal can now be processed 
using either traditional algorithms or AI/ML. A discussion on the benefit of edge- 
based preprocessing of sensor data is provided in the Data 101 section.

Finally, most sensor edge nodes provide some form of data transmission capabil-
ity to ensure that after preprocessing and filtering the data can be sent to a central 
backend via an IoT/edge gateway (Fig. 6.5).

Fig. 6.5 Edge sensor nodes
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6.5  AI Edge Nodes

With edge AI becoming increasingly popular, a plethora of specialized edge AI 
accelerators are emerging. However, with embedded ML frameworks such as 
TinyML, it is currently possible to execute some basic ML algorithms on very basic 
hardware. Low-cost IP Cores such as a Cortex-M0 in combination with TinyML can 
already be used for basic event classification and anomaly detection. Standard 
MCUs (e.g., an Arduino Nano) can be used to run ML algorithms at the edge for 
voice recognition and audio classification. Higher-end MCUs even allow for tasks 
like ML-based image classification. Moving up to full Single Board Computers 
(SBC) as edge nodes, voice processing and object detection are possible (object 
detection combines image classification and object localization, drawing bounding 
boxes around objects and then assigns labels to the individual objects on the image). 
Finally, SBCs in combination with AI accelerators enable video data analytics (e.g., 
by analyzing each frame and then drawing a conclusion for the entire video). This 
is a fast moving space, with many development activities, constantly driving hard-
ware prices down and ML capabilities up (Fig. 6.6).

6.6  Putting It All Together

Finally, if we are putting all of this together, the following picture is emerging: AI 
accelerators in the cloud are used for training ever more sophisticated ML models. 
An important class of AI accelerators are GPUs. Originally used as Graphics 
Processing Units, GPUs are specialized for the manipulation of images. Since the 
mathematical basis of neural networks and image manipulation are quite similar 
(parallel processing of matrices), GPUs are now also often used as AI accelerators. 
FPGAs are also sometimes considered as AI accelerators since they allow 

Fig. 6.6 AI edge nodes
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processing very close to the hardware, but still in a way that allows updates after 
manufacturing. Finally, proprietary solutions are being built, such as TPUs from 
Google or Tesla’s custom AI chip.

Once the model is trained, it can be deployed on the edge nodes via OTA (Over- -
the- Air- Updates). On the edge node, the model is used on an appropriate hardware 
platform to perform inference on the inbound sensor data. The loop is ideally closed 
by providing model monitoring data back to the cloud, in order to constantly 
improve the model performance (Fig. 6.7).

Fig. 6.7 Putting it all together
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Part II
Business Strategy

Fig. 1 Business Strategy

Every business strategy must answer the question of how a company should com-
pete in the business areas it has selected, e.g., by applying a cost strategy, a differ-
entiated product or service strategy, or a niche strategy. In the context of AIoT, the 
business area usually involves physical assets, products, equipment, or appliances. 
This means that the role of the company will typically be either that of an OEM or 
an equipment operator, or a combination of the two ('hybrid'). AIoT as a new para-
digm will enable both types of companies to create new, digital-enhanced products, 
solutions, or services. The OEM will become a Digital OEM; the equipment opera-
tor will become a Digital Equipment Operator. For Digital OEMs, the AIoT-enabled 
digital transformation is often about fundamental changes to the business model. 
Digital Equipment Operators usually focus more on the digitalization of the opera-
tions model. For both, key questions include how to manage innovation and how to 
define a suitable target organization. Finally, platform-based business strategies 
have proven to be extremely powerful. Platforms can utilize AIoT to connect to 
physical products and assets in the field and create a value-added offering. The fol-
lowing expert opinion will shed more light on the AIoT strategy perspective.
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Dirk: Laurenz Kirchner from mm1 consulting. Thanks for joining us. My first 
question, what is strategy and AIoT to you from the products and services perspec-
tive. Do we actually need a business strategy or a dedicated digital strategy?

Laurenz: I think both! Or let us say: In this decade — in the 2020s – business 
strategy cannot exist separated from a digital strategy. When we talk specifically 
about an AIoT strategy, I believe it is absolutely necessary for any company that 
either manufactures stuff or operates many assets. These companies will only sur-
vive if they transform into organisations that are able to manage connectivity, data 
and digital services across the stack.

Dirk: Okay. So, how do you manage the required innovation at this level?
Laurenz: You need to sync your transformation activity on three levels, or three 

‘plays’ as we have shown in the Digital Playbook. I believe you always need to start 
from a business strategy play, rather than from a technical perspective. So put the 
business perspective first: what are the priorities for my AIoT transformation? Do I 
focus on smart products or on automating asset operations? Which critical business 
capabilities will benefit most from AIoT-based decision-making, etc.? Second, you 
need to look at the execution play. What are the new roles, tools, responsibilities I 
need to put in place, such as a data governance organisation? How are ‘classical’ 
corporate functions — such as sales, operations, legal, and so on — affected and 
what is their contribution? How do business models, revenue structures and so on 
change? The third AIoT transformation play is the technology execution level. It is 
here that you need to think through architectural questions, make or buy decisions, 
define the right development approach such as for example the agile V-model.

Dirk: So, is this more about mastering technology and innovation potentials from 
technology? Or is this more about business model innovation?

Laurenz: Definitely both! Or rather: The business innovation side interacting 
with the technology side in a dialectic way. Think ‘yin and yang’! A typical situation 
that we see in client organisations is a lot of push on the technology execution from 
IT, and this push doesn't really get anchored into the business perspective. Think of 
a typical use case such as metering: clearly you have to find the right wireless con-
nectivity technology to connect a power meter in the basement of a concrete build-
ing. But you also have to think through what is the digital service I want to offer? 
What is the offering structure? For which part of my service delivery do I actually 
get revenue? So these things have to work together and you cannot do the one with-
out the other.

Dirk: So what about the organizational side? How do I get my organization to 
support this? What's the target organization? How do I get there?

Laurenz: We tend to recommend following a top-down and bottom-up approach. 
For top-down, you need to enable top management to understand and define the 
possibilities and the overall objectives that the organization has to pursue, and this 
takes a lot of education and evangelization at the top level. There's a lot of stuff 
where executives do not know what they don't know yet.

Dirk: Good thing we are writing a Digital Playbook...
Laurenz: Exactly. At the same time, you need to define real world showcases and 

real world use cases; this is the bottom up approach. So you need to find a team — a 

Business Strategy
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team of convicts, a team of evangelists — in your organization that are willing to 
work a little bit, bend the rules and work across functions to make something hap-
pen. This can be pure showcase in the beginning, but later on, we recommend truly 
defining the real business critical use cases to make things happen. This is typically 
the easiest way you can make an organization follow along and pursue the AIoT 
transformation.

Dirk: Last question, do you see different strategies? Depending on whether 
you're looking at this from the OEM or product perspective versus the operator 
perspective?

Laurenz: These are definitely different perspectives. What are the challenges of 
this transformation for a classical OEM? For example, for a maker of power tools, 
forklifts, or even a maker of cars? Although I do not say the ultimate goal for every 
one of those organizations is an Equipment as a Service model, the big challenge is 
still: how do my revenue streams change over time? When I'm used to selling a 
thousand heavy machinery pieces per year and I know that maybe in ten years I will 
be selling tens of thousands of microservice digits a week, how do I adapt to this 
new business model? So this is a typical question for a digital OEM. For a digital 
equipment operator (let us say a railway operator) clearly the questions are much 
more: how does this affect my cost base? How will I deliver a certain service or 
manage my assets in the future? How can I build in things such as connectivity costs 
and data center costs in the future? How do I arrange for those changes in my own 
cost base? So very different approaches are needed.

Dirk: Thank you.

Business Strategy
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The Digital OEM combines physical product design, engineering and manufactur-
ing with Software-as-a-Service in order to provide smart, connected products. 
Artificial Intelligence (AI) and the Internet of Things (IoT) are the two key enablers. 
This chapter will introduce the concept of the Digital OEM in detail, following 
again the why, what, how structure from the introduction (Fig. 7.1).

Fig. 7.1 Digital OEM
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7.1  WHY

The motivation for adopting a digital OEM business model can vary widely. Many 
incumbent OEMs are seeking ways to build upon their existing business. New mar-
ket entrants are looking at disruptive new business models enabled by the combina-
tion of physical products with AIoT.

While AI and IoT are exciting technical enablers, anybody embarking on the 
AIoT journey should always start by looking at the “why”: Why do this? What is the 
purpose? And what are the expected business outcomes? From a strategic (and emo-
tional) point of view, the purpose of the AIoT initiative should be clearly articulated: 
What is the belief? The mission? Why is this truly done?

7.1.1  Digital OEMs: Business Models

At the core of the business model of the Digital OEM is the physical asset or prod-
uct. An interesting question is which new opportunities arise through the combina-
tion of physical products with digital solutions. Examples include:

• Data-driven business, e.g., building on user-generated data or asset/product 
performance- related data. Examples include usage-based car insurance (UBI), 
data-driven aftermarket services, or drone- based building facade inspection.

• Digital add-on services, e.g., an optional autopilot service for an electric vehicle, 
or cooking recipe add-ons for a smart kitchen appliance

• Asset-as-a-Service, e.g., car-seat-heating-as-a-service, or the famous "power- by- 
the- hour" for Rolls-Royce aircraft engines

• Smart Maintenance, including predictive, preventive and prescriptive mainte-
nance, enabled by deep analytics of asset/machine data via AIoT

Fig. 7.2 WHY: digital OEM business models
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Figure 7.2 shows key elements of two worlds:

• The OEM (Original Equipment Manufacturer) is an organization that makes 
devices from component parts bought from other organizations. This can be a car 
maker, a manufacturer of household appliances, or a manufacturer of manufac-
turing equipment, such as robots or laser cutting tools.

• The suppliers of the OEM are usually referred to as “tier 1”, “tier 2”, etc., depend-
ing on their position in the supply chain

• On the other side, we have the digital ecosystems. Today, large hyperscalers are 
dominating cloud-based infrastructure (Infrastructure-as-a-Service, or IaaS) and 
platforms (Platform-as-a-Service). IaaS includes storage, networking, and vir-
tual compute resources. PaaS includes Internet-based tools and middleware for 
building applications

• Software-as-a-Service (or SaaS) are applications delivered over the internet.
• The digital OEM will combine physical product development with Software-as- 

a-Service to deliver smart, connected products

7.1.2  Incumbent OEMs: Business Improvements

Especially for incumbent OEMs, the idea of improving existing business by adding 
digitally enabled solutions is attractive. Generating ARR (Annual Recurring 
Revenue) via digital services is very interesting, since ARR is seen as a more stable 
and predictable revenue stream. However, the opportunity to improve existing busi-
ness – and especially EBIT – with digital solutions as a short-term measure should 
not be underestimated, since unproven, new business models can have inherent risks 
and realization of new, ARR-like revenues might take longer than hoped for 
(Fig. 7.3).

Fig. 7.3 Business outcomes
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7.2  WHAT

What can be done with AIoT from the perspective of the digital OEM? Usually, the 
answer is building smart, connected products. These combine physical products 
with smartness enabled by AI and connectivity enabled by the IoT. To build smart, 
connected products, the digital OEM needs to combine product engineering and 
manufacturing capabilities with edge and cloud software development capabilities 
(Fig. 7.4).

7.2.1  Smart, Connected Products: Enabled by AIoT

Smart, connected products usually combine edge and cloud computing capa-
bilities: Edge computing is anything that happens on (or near) the asset/prod-
uct in the field. Edge computing capabilities are usually dedicated to a single 
asset/product or sometimes a specific cluster of assets/products operating in 
close proximity. Cloud computing in an AIoT scenario, on the other hand, can 
enable insights or functionality that relates to an entire fleet (or “swarm”) of 
assets/products. Consequently, in AIoT, we also differentiate between two 
types of intelligence: asset/product intelligence vs. swarm intelligence 
(Fig. 7.5).

Fig. 7.4 WHAT: digital OEM and smart, connected products
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Fig. 7.5 Smart, connected products

Fig. 7.6 Example: robot vacuum cleaner

7.2.2  Example: Robot Vacuum Cleaner

A good example of a smart, connected product is a robot vacuum cleaner. These 
products use AI to identify room layouts and obstacles and to compute efficient 
routes and methods. For example, the robot can decide to make a detour vs. switch-
ing into the built-in “climb over obstacle” mode. Another example is the automatic 
activation of a “carpet boost” mode. IoT connectivity to the cloud enables integra-
tion with user interface technology such as smart mobile devices or smart home 
appliances for voice control (“clean under the dining room table”) (Fig. 7.6).

7 Digital OEM
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The vacuum robot example will be examined in great detail in the product design 
section.

7.2.3  Example: Kitchen Appliance

Another good example for smart, connected products is a smart kitchen appliance. 
Here, the intelligence could start with data gathered from users of kitchen appli-
ances in combination with user-generated ratings. These data could be combined to 
make targeted recommendations (created via AI), e.g., for cooking recipes. A more 
advanced version of the smart kitchen appliance could also use AI on the product, 
e.g., for better device control and maintenance (Fig. 7.7).

7.2.4  Example: Automatic Wiper Control

In this example, AI utilizes images from the autopilot camera to determine the local 
weather situation. This is then used to automatically convert the wiper speed to the 
intensity of rain or snow. This is how Tesla is doing it, and it is an area that is also 
starting to receive the attention of the research community.

What is interesting about this example is that some Tesla customers initially 
complained that this was not as accurate as other systems using rain sensors. Over 
time, Tesla was using their Over- the- Air Update (OTA) capabilities to enhance this 
function, using continuous model improvements and retraining (Fig. 7.8).

Fig. 7.7 Example: kitchen appliance
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Fig. 7.8 Example: windshield wiper control

Fig. 7.9 Example: physical product improvements

7.2.5  Example: Physical Product Design Improvements

Another interesting use of AIoT is for the advanced analytics of product perfor-
mance, based on data from assets in the field. For example, the team developing the 
electric motor for the wiper blades from the previous example could use this 
approach to better understand how their product performs in the field, e.g., at 150 
kph on a highway under heavy rain. This information can then be used to improve 
the next generation of the motor. In this case, it might sometimes not be clear 
whether we are talking about advanced analytic or real AI (e.g., using ML), but it is 
still an important use case (Fig. 7.9).

7 Digital OEM
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7.2.6  Example: Smart Tightening Tool

Another example is the smart tightening tool (e.g., the Bosch Rexroth Nexo cordless 
Wi- Fi nutrunner). This is a type of tool used by industrial customers, e.g., for ensur-
ing the quality of safety relevant joints.

On the tightening tool, AI/ML can be used to control the proper execution of 
tightening programs (controlling torque and angle for specific combinations of 
materials). In the cloud, data from fleets of tightening tools can be analyzed to help 
automatically detect tightening anomalies, classify these anomalies, and make rec-
ommendations for handling these anomalies (Fig. 7.10).

7.3  WHY Revisited

Let us revisit the “WHY” perspective with what we have learned thus far about 
AIoT and the different use cases implemented by Digital OEMs.

7.3.1  Aligning the Product Lifecycle 
with the Customer Journey

A key feature of AIoT is that it helps align the product lifecycle and the customer 
journey. In the past, most OEMs lost contact with their products once they left the 
factory. Although many OEMs try to stay in touch with their customers and support 

Fig. 7.10 Example: smart, connected tightening tool
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them in the aftermarket, in most cases, the customer relationship was based on ser-
vice contracts but not a digital relationship. This is of course changing with AIoT, 
which enables a much higher level of customer intimacy because OEMs can now 
learn how their products are used in the field and how they are performing. The data 
obtained and analyzed from the products in the field via AIoT can be augmented 
with other data, e.g., customer feedback from the Internet.

AIoT also gives the OEM the opportunity to react to what he is learning about his 
products in the field, by constantly updating existing digital features or even creat-
ing new ones, deployed via Over- the- Air Updates (OTA). Naturally, OTA in an 
AIoT setting will have to support updates of both software and AI models (Fig. 7.11).

This topic was recently discussed by Uli Homann of Microsoft at the BCW.on 
session with Microsoft CEO Satya Nadella and Bosch CEO Volkmar Denner.

Uli Homann, Corporate Vice President, Microsoft: The digital feedback loop is 
essential for successful product development, and OEMs and manufacturers are 
now also starting to embrace it. For example, we are seeing an increasing number 
of connected vehicles on the street, which are bringing data into a centralized cloud 
environment. The cloud is then able to reason over that data and deduce informa-
tion. Tesla is one of the very famous users of this digital feedback loop already, 
where they actually use two components. One is the car itself, where it brings infor-
mation back based upon telemetry, instrumentation, and so forth. So how hard were 
the brakes being used, if the autopilot is going around the corner? How tight was 
the corner taken? And then human feedback. Elon is very, very active on Twitter, 
sometimes very positive, sometimes, to distraction. However, he’s very, very active 
for a very good reason: because he’s looking for feedback. One very famous case 
was people complaining that the Model 3 was taking corners too hard, from their 
perspective. And so he took the feedback, they compared it with the feedback from 
the car, and then they made adjustments to the auto drive. And that is truly what we 

Fig. 7.11 WHY revisited: product LCM and customer journey
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call the digital feedback loop. Because on the one side, you have instrumentation 
from the car, but you have other channels as well that you bring together and that 
allow you to start to really think about the lifecycle of the customer journey, the 
customer buying the car, finding the right car, servicing the car and those kinds of 
things, and bringing all that data, all of this awareness back into the engineering 
cycle from design to manufacturing, to the sales and after sales, after market oppor-
tunities, etc. Bringing this together in an intelligent way based upon data, utilizing 
AIoT, is truly the key piece here. The last dimension of making this happen are open 
platforms, both from an approach to software development as an open ecosystem, 
with open tools and a lot of open source in the cloud, and also open standards com-
ing together not only in the cloud but also extending this reach into the car. The 
resulting programming model has platform capabilities underneath that are derived 
from the Cloud, and optimized for the car. Making this happen consistently will not 
only allow us to enable AIoT in the cloud but also bringing cloud into the car or into 
the manufacturing capability. I think the digital feedback loop, the platform tooling 
and then bringing it into a consistent end-to-end perspective truly will help ensure 
that we can get digital services at your fingertips. Again, Microsoft is part of an 
open ecosystem here. We are working together with Bosch and other players to 
actively bring this to bear, to real life so that we can truly drive this vision forward.

7.3.2  Benefits

The benefits of this approach are manifold, including shorter time-to-market, 
improved differentiation, improved sales (including recurring revenues), improved 
customer experience, and consequently improved customer loyalty (Fig. 7.12).

Fig. 7.12 WHY: benefits
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7.4  HOW

Now let us take a closer look at how the Digital OEM must go about implementing 
this with AIoT. This will include a discussion of key design decisions, technical 
constraints, and considerations for execution and delivery.

7.4.1  Key Design Decisions

From the product manager’s perspective, a key question in the future will be – for 
each feature – whether this feature should be implemented in hardware, software, or 
AI/data, or combinations thereof. Implementing a feature in hardware (including 
HMI, processing, etc.) will have an impact on usability (for example, sometimes it 
will still be preferable to activate a feature via a physical control) but also on engi-
neering and design complexity. Implementing the same feature completely in soft-
ware (e.g., as a feature activated via a smart app) can often mean a lower cost of 
delivery (no manufacturing/supply costs beyond the initial development) and also 
means that the feature can be updated via OTA in the future. Finally, if the feature 
can be implemented virtually, then the next big question is whether it should be 
implemented as a set of hard-coded rules (software development) or as a data- 
centric AI function that uses inference to make a decision based on its training.

The decision to use AI, Software, or Hardware for a specific feature will have 
two main implications: first, the quality of the User Experience (UX), and second, 
the required technology pipeline to deliver the feature (Fig. 7.13).

Fig. 7.13 HOW: key design decisions
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7.4.2  Considerations for Execution and Delivery

For the digital OEM, execution and delivery will require a holistic view, including 
business model, leadership & organization, sourcing and co-creation, User 
Experience (UX) and Human/Machine Interfaces (HMI), data strategy, AIoT archi-
tecture, DevOps, Digital Trust and Security, Quality Management, Compliance and 
Legal, Productization and Sales; and how AIoT will impact them.

What is usually less relevant for the Digital OEM are aspects such as retrofit 
(assuming the approach here will be a line-fit approach), site preparation and roll-
out. These are all important aspects for the Digital Equipment Operations, which 
will be discussed next (Fig. 7.14).

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
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The Digital Equipment Operator utilizes AIoT to optimize how they operate physi-
cal assets or equipment. Goals often include asset performance optimization and 
process improvements. Examples of Digital Equipment Operators include manufac-
turers, electricity grid operators, railroad operators, and mining companies. This 
chapter introduces the concept of the The Digital Equipment Operator in detail, 
again following the why, what, how structure from the Introduction (Fig. 8.1).

Fig. 8.1 Digital equipment operator
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8.1  WHY

The motivation to become a Digital Equipment Operator can be manifold. A good 
starting point is to look at OEE (Overall Equipment Effectiveness), or whatever the 
equivalent in the specific industry. OEE measures the performance of an asset com-
pared to its full potential. OEE quantifies the utilization of manufacturing resources 
(including physical assets, time, and materials) and provides an indication of any 
gaps between actual and ideal performance. OEE is often calculated based on the 
following three metrics:

• Availability, e.g., asset up-time
• Performance, e.g., system speed
• Quality, e.g., levels of defects

Depending on the industry and asset category, the detailed calculation of OEE might 
be different. In manufacturing, it will often include planned vs. actual production 
hours, machine speed, and scrap rates. Each industry has its own, specific ways of 
looking at availability, performance rate, and quality rate. For a rail operator, a key 
performance rate indicator will be passenger miles; for a wind turbine operator, it 
will be kWh generated; for a mining operator, it will be tonnes of produced ore 
(Fig. 8.2).

8.2  WHAT

AIoT can support the Digital Equipment Operator in many ways. Smart, connected 
solutions can help improve OEE through better visibility, advanced analytics, and 
forecasting. Asset Performance Management (APM) aims at taking a holistic view 

Fig. 8.2 Why
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of asset performance, utilizing data, and insights generated via AIoT. Availability 
can be improved with AIoT-based predictive, preventive, and prescriptive mainte-
nance. The performance rate can be improved with AIoT-generated insights for pro-
cess optimization. Quality management can be supported by AIoT-enabled quality 
control mechanisms, e.g., optical inspection. Advanced analytics and AI can also 
help improve the quality rate (Fig. 8.3).

8.2.1  Example: Escalator Operator (Railway Company)

The first example we want to look at is a railway company that is operating escala-
tors at its train stations. For a large railway company, this can mean a fleet of thou-
sands of escalators in a wide geographic range. Most likely, the escalator fleet will 
be highly heterogeneous, including products from many different vendors. Reducing 
downtimes will be important for customer satisfaction. In addition, obtaining 
improved insights into the escalators’ operational health status can also help reduce 
operations and maintenance costs.

For the rail company, escalator monitoring has to work for the entire fleet and must 
provide seamless integration with the facility management operations system. Getting 
all of the different suppliers on board to agree on a common solution will be impossible. 
The logical consequence is to design a solution that can be applied to existing escalators 
in a retrofit approach, potentially even without support from the escalator vendor/OEM.

A good technical solution in this case is to utilize AI-based sound pattern analy-
sis: sound sensors attached to the escalator provide data which can be analyzed 
either using an on-site edge node, or centralized in the cloud. AI-based sound 

Fig. 8.3 What
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pattern analysis provides insights into the current state and can even predict the 
future state of escalator performance.

Once a problem is identified or forecasted, the train station operations personnel 
or the facility management organization is provided with this information and can 
take appropriate action (Fig. 8.4).

8.2.2  Example: School Bus Fleet Operator

Another good example of a Digital Equipment Operator is a school bus fleet 
operator, utilizing AIoT to provide a platform that offers shuttle services for 
schools. Instead of using a fixed bus network and fixed bus schedule, the service 
utilizes AIoT to offer a much more on-demand service to students. Instead of 
using fixed bus stops, virtual bus stops are introduced that can change during the 
day, depending on demand. Students can use a smartphone app to request a ride 
to and from the school. Shuttle buses are equipped with an on-board unit to 
provide bus tracking and AI-based in-vehicle monitoring. The platform in the 
backend utilizes AI to optimize the pick-up order and routing of the shuttle 
buses (Fig. 8.5).

Fig. 8.4 Example: escalator operator (railway company)
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Fig. 8.5 Example: school bus fleet operator

Fig. 8.6 UX for school bus shuttle

This example will be discussed in more detail in the Sourcing Chapter. The fig-
ure following shows an example of how the routes for multiple vehicles can be 
optimized to support multiple stops on a dynamic route (Fig. 8.6).

8 Digital Equipment Operator
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8.2.3  Example: Aircraft Fleet Operations Planning Using 
a Flight Path Optimizer

Modern airlines were amongst the first to become Digital Equipment Operators, 
first utilizing telematics, M2M and now IoT in combination with advanced analytics 
and today’s AI. Managing a large fleet of aircraft is a challenging task. One critical 
process in this context is flight path planning. The flight path describes the way from 
one airport to another, including detailed instructions for take-off and landing, as 
well as the way between the two airports. From the airline’s point of view, the two 
most important aspects are safety and fuel costs. The latter requires inputs such as 
weather conditions, overflight fees, fuel costs at the origin and destination, as well 
as aircraft performance data. Based on this information, the flight path optimizer 
can calculate the optimal route (Fig. 8.7).

Fig. 8.7 Example: airplane fleet operations planning using flight path optimizer

8.3  HOW

There is no one-size-fits-all answer to becoming a Digital Equipment Operator. This 
section looks at a generic Solution Lifecycle, as well as considerations for execution 
and delivery (analogous to the previous section).
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8.3.1  Solution Lifecycle

For some Digital Equipment Operators, there will be a central AIoT solution that is 
at the core of their fleet operations. The airline’s fleet planning system might be such 
a core application. However, very often, Digital Equipment Operators will find that 
the solutions they require are on the long tail of the AIoT chart (see discussion on 
the long tail in AIoT 101). This means that they are looking at building multiple, 
specialized solutions, that need to be constantly enhanced and adapted. This can be 
supported by a measure/analyze/act approach. The AIoT in High- Volume 
Manufacturing Network case study provides a good example for this approach 
(Fig. 8.8).

Fig. 8.8 How

8.3.2  Considerations for Execution and Delivery

For the Digital Equipment Operator, execution and delivery will require a different 
perspective than for the Digital OEM. While any investment will have to be justified 
by a matching business case, the overall business models tend to be much more 
straightforward. Similarly, leadership and organization are important but probably 
not as challenging. Other aspects, such as sourcing, UX, DevOps, compliance and 
legality, and productization, will be less important compared to the Digital 
OEM. Data strategy, on the other hand, will be key, especially if a multitude of 
potentially heterogeneous data sources — sensors and enterprise systems — will 
have to be integrated. Finally, the Digital Equipment Operator will have to focus on 
fitting the new AIoT solutions into existing business processes. And in order to get 
there, asset retrofit, site preparation, and rollout management will be key prerequi-
sites (Fig. 8.9).
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From Airbnb to Amazon and Uber, digital platforms have disrupted many indus-
tries, including travel, retail, music and others. From an AIoT point of view, we are 
interested in digital platforms that connect to physical assets and products. An AIoT 
platform operator does not necessarily have to manufacture or operate the physical 
assets. This is why platforms are covered independently of the Digital OEM and 
Digital Equipment Operator roles introduced earlier, even though the approaches 
can of course also be combined. This chapter provides an overview of the different 
concepts and looks again at the why, what, and how of platforms (Fig. 9.1).

Fig. 9.1 AIoT-enabled platforms
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9.1  WHY

Successful digital platform businesses create network effects that scale globally, 
creating huge revenues and profits without having to invest in a physical infrastruc-
ture. Since digital platforms rely on an ecosystem of external producers and con-
sumers, the only limit to scale is the size and value of the ecosystem. Uber relies on 
independent drivers, as well as people in need of rides. Airbnb does not own hotels 
or apartments, but has grown a multibillion business as a neutral broker, taking a cut 
off every transaction. Generally, it seems that there are two distinct motives for 
becoming involved in a digital platform business:

• Winner takes all: Many platform businesses are fairly dominant in their own 
domain, making them either extremely profitable or an extremely interesting 
growth investment

• Underdogs team up: Often, companies that cannot achieve a dominant position 
in a platform market on their own seek to align themselves with other players to 
try to catch up to the leader

Many industrial players have been trying to imitate the success of B2C platforms in 
the last couple of years, motivated by the scale these B2C businesses have achieved. 
However, it seems that a key reason for success of the B2C platforms was a combi-
nation of simplicity and focus. Many B2B platform scenarios suffer from the fact 
that industrial solutions often tend to be much more complex, and require a broader 
approach. For example, creating a platform that brokers holiday apartments cannot 
be compared to a platform that brokers automotive sensor data. The latter has to deal 
with more complex stakeholders, as well as a much higher diversity of data sources 
(there can be dozens of different sensors on a car, and they will differ from model to 
model). Since many AIoT use cases are of an industrial nature, there also seems to 
be an opportunity here to address this.

9.2  WHAT

The basic concept of a multi-sided business platform has been well described by 
G. Parker et al. in Platform Revolution: How Networked Markets Are Transforming 
the Economy [10]. The platform provides the infrastructure (e.g., an appstore) and 
brings together producers and consumers. The producers are creating the platform 
content (e.g., apps in the appstore), while the consumers are buying or using it (e.g., 
by downloading apps to their smartphones).

Three paradigm shifts are described as key for moving toward a platform busi-
ness model. First, the move from resource control to resource orchestration. 
Traditional companies have tangible assets on their own balance sheets, e.g., real 
estate, factories or mines. Platform businesses are based on a less tangible asset, the 
ecosystem of providers and consumers. The value of Airbnb is the large community 
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of holiday home owners and seekers. Second, from internal optimization to external 
interaction. Again, traditional companies are focusing on internal activities to cre-
ate and sell products or services. Platform businesses focus on value creation by 
building external ecosystems. Third, “from a focus on customer value to a focus on 
ecosystem value”. Traditional companies focus on the lifetime value of their custom-
ers. Platform companies focus on creating network effects between their customers.

AIoT-enabled platforms include physical products or assets as a key part of the 
ecosystem that creates the platform network effect. For example, this can mean that 
physical products provide data, which is then consumed by platform customers - 
either human users, or other physical products. The IoT enables connectivity, either 
in a producer or a consumer role or both. AI can support the producer in creating a 
meaningful offering. Equally, it can support the consumer in making use of the 
platform, e.g., by processing data from a platform in a customer-specific way. 
Alternatively, AI can be applied by the platform operator to create swarm intelli-
gence that benefits from multiple data producers.

9.3  HOW

The authors of the platform revolution provide three recommendations for building 
a platform: magnetism (producers and consumers must attract each other), user- 
generated content, and implicit creation of value by the platform owner. Applying 
this to an AIoT-enabled platform, this means:

• Magnetism: The AIoT-enabled platform must find a match between consumers 
and providers that creates this magnetism. This will heavily depend on the type 
of physical assets or products involved, and the supported use case.

• User-generated content: For example, sensor data from assets in the field
• Implicit creation of value: For example, a swarm intelligence that combines the 

data from multiple sensors, e.g., to create a real-time map or road conditions

Since this is difficult to generalize without being too generic, let us take a look at a 
concrete example in the following.

9.4  Example: Parking Spot Detection (Multi-Sided 
Business Platform)

This is an example of a multi-sided business platform enabled by AIoT: cars 
equipped with ultrasound sensors can detect available parking spots as they are 
passing by them. These data are collected in a centralized platform and monetized, 
e.g., via a find-a-free-parking-spot app. Multiple OEMs might provide parking data 
to the platform operator, which integrates, consolidates and markets the data 
(Fig. 9.2).
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Fig. 9.2 Example: parking spot detection (multi-sided business platform)

9.5  Challenges

As mentioned earlier, building successful platform business models in industrial 
environments - or environments involving highly complex products such as cars - is 
not easy. Often, this is because in these environments we are facing a mixture of 
technical complexity, stakeholder complexity, and legacy (physical assets, products 
and equipment in the field are often suffering particularly badly from high levels of 
heterogeneity, because of their often long lifetimes).

A number of data marketplaces have emerged in the last couple of years that 
focus on bringing together OEMs and after-market customers, e.g., in automotive. 
The challenge here is manifold. First, OEMs do not always have an interest in mak-
ing their data available, not even for payment. Second, the question is how to inte-
grate - through basic APIs accessible over the internet, or through custom hardware 
deployed on the vehicles (which allows better integration, but increases costs). 
There are also some startups that are providing completely generic marketplaces for 
sensor data. The problem here is that they are often too generic, making it difficult 
for users to truly find a relevant offering (missing “magnetism”).

Another potentially interesting area for AIoT-enabled platforms is industrial 
AppStores, or AppStores for complex consumer products such as cars or kitchen 
equipment. The example from before would not be possible without such an 
AppStore. However, there are at least two challenges here. First, the number of 
relevant consumers of the apps is most likely much smaller than in a smartphone 
AppStore, thus making it more difficult to build profitable apps. Second, the OEM 
would have to provide the app developer access to APIs, to get access to sensors 
such as the ultrasound sensors in the previous example. While many smartphone 
vendors are making increasingly more sensor APIs available to app developers, this 
might still take a while in industries such as automotive, simply because any 
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security problems with the OEM’s app sandboxes could have potentially cata-
strophic consequences. An interesting step along this journey could be app stores 
which are only accessible to trusted partners, as we have described in the co- creation 
section.

Therefore, while AIoT-enabled platform businesses are certainly not straightfor-
ward, it will be interesting to observe how the industry will approach this, and who 
will be the first players to succeed in their areas. It seems fair to say that smartphone 
app store players have already shown how to do this (using their own form of AIoT), 
and others will eventually follow in their domains.
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Hybrid models that combine aspects of the Digital OEM and the Digital Equipment 
Operator are more often the norm than the exception. Nevertheless, differentiating 
between these two roles can be very helpful for understanding many of the differ-
ent concepts associated with them. This chapter looks at hybrid models in more 
detail, following again the why, what, how structure from the Introduction 
(Fig. 10.1).

Fig. 10.1 Hybrid models
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10.1  WHY

In many cases, companies will seek to create an integrated business model that 
combines the OEM and operator roles. For example, an electric vehicle manufac-
turer might also choose to own and operate its own network of fast charging stations 
(such as Tesla with its network of supercharger stations). In this case, combined 
KPIs are likely to include revenue and usability.

Alternatively, the OEM may choose an Asset-as-a-Service business model, 
which also means that it will play a hybrid role. In this case, the hybrid model will 
be based on a combination of typical OEM and operator KPIs, e.g., including both 
revenue and OEE.

Another example of a hybrid model is the Productized Retrofit Solution, 
e.g., a productized predictive maintenance solution. Here, the KPIs will com-
bine revenue with costs for customer-specific modifications to the solution 
(Fig. 10.2).

10.2  WHAT

The definition of What exactly constitutes a hybrid model will heavily depend 
on the specifics of the product or solution. The table following compares the 
typical aspects of the Digital OEM and the Digital Equipment Operator, 
including aspects such as typical customers, offering, positioning of the assets 
on the balance sheet, typical KPIs, level of standardization, etc. A hybrid 
model might differ in any of these dimensions, or provide a combination 
thereof (Fig. 10.3).

Fig. 10.2 Why
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Fig. 10.3 Comparison

Fig. 10.4 Example: predictive maintenance

10.2.1  Example: Predictive-Maintenance-as-a-Service

A good example of a hybrid model is the Predictive-maintenance-as-a-Service solu-
tion described in detail in the case study from Bosch Rexroth. One product category 
offered by the company are hydraulic components, including hydraulic motors, 
pumps, tanks and filters. These hydraulic components are used in many different 
applications, including manufacturing, mining and off-road vehicles. In order to 
offer customers of these hydraulics products an improved maintenance solution, 
Predictive-maintenance-as-a-Service for hydraulic components was developed. The 
main issue here is that it turned out that the algorithms for detecting anomalies 
related to the hydraulic components differ from application to application. To 
address this, Rexroth had to establish a setup that allowed them to standardize the 
offering as far as possible, and provide customer-specific customizations as effi-
ciently as possible. This is a good example of a productized retrofit solution as per 
the table preceding (Fig. 10.4).
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10.2.2  Example: Drone-based Building Facade Inspection

Another good example of a hybrid model is the Drone-based Building Facade 
Inspection developed by TUEV SÜD. Again, this is described in more detail in the 
case study. This solution utilizes drones equipped with cameras, thermal scanners, 
and LIDAR (laser scanners) to create a detailed scan of the facades of buildings. On 
the drone, AI is used for flight path control, collision avoidance, and position calcu-
lation. In the TÜV Cloud, AI is used to detect anomalies such as concrete cracks, 
concrete spalling, corrosion, etc. The customer gets a detailed report about any 
potential problems with the facade that need to be addressed as part of the building 
maintenance process. In this case, TÜV SÜD is both the OEM and operator of the 
solution (Fig. 10.5).

10.3  HOW

Again, there is no common blueprint for implementing hybrid AIoT business mod-
els. However, it is clear that a hybrid model must somehow combine the key pro-
cesses of the Digital OEM with those of the Digital Equipment Operator, as indicated 
by the figure following. As we noticed, for example, in the Drone-based building 
inspection case study, TUEV SUED is both manufacturing and operating the solu-
tion. This will be true for many hybrid models (Fig. 10.6).

Fig. 10.5 Example: drone-based building façade inspection
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Fig. 10.6 Hybrid models: HOW
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Chapter 11
Scalability

Dirk Slama

The ultimate goal of the business strategy is to ensure that the business can be scaled 
up to the level that matches the business objectives. This is usually a step-by-step 
process, involving exploration, acquiring early adopters, and then continuously 
growing the business. Which of the methods that have worked for successfully scal-
ing purely digital businesses can be adopted by AIoT-enabled businesses? What are 
the pitfalls of scaling up a digital/physical business? (Fig. 11.1).

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

Fig. 11.1 Scalability

© The Author(s) 2023
D. Slama et al. (eds.), The Digital Playbook, 
https://doi.org/10.1007/978-3-030-88221-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88221-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-88221-1_11
mailto:dirk.slama@bosch.com


104

11.1  Understand Strategy Requirements

The first important step is to understand the key elements required for the commer-
cialization and scalability strategy. These elements will be different for the Digital 
OEM vs the Digital Equipment Operator, as will be discussed in the following.

11.1.1  Digital OEM: Strategy for Smart, Connected Products

In order to successfully commercialize smart, connected products at scale, the 
Digital OEM will need to address three strategic elements: product strategy, go-to- 
market strategy, and revenue generation strategy. Product strategy ensures that the 
product has an excellent fit with the market needs. The go-to-market strategy ensures 
that those customers who are most likely to benefit are identified and persuaded. 
The Revenue Generation Strategy ensures that money is coming in.

More specifically, the Product Strategy has to ensure the product/market fit, 
define the product launch strategy, and ensure continuous product improvements – 
especially utilizing the digital side of the digital/physical, AIoT-enabled product.

The Go-to-Market Strategy includes the marketing strategy, awareness and loy-
alty programs, lead generation, and retention management.

The Revenue Generation Strategy includes the monetization strategy (e.g., start-
ing with a freemium model for digital services, which is then converted to premium 
subscriptions), sales resource and effectiveness management (will existing sales-
people focused on physical product sales be able to cope with digital subscription 
sales?), and finally sales processes and tools (Fig. 11.2).

Fig. 11.2 Commercialization and scalability strategy for smart, connected products
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11.1.2  Digital Equipment Operator: Strategy for Smart, 
Connected Solutions

The Digital Equipment Operator will often focus on creating smart, connected solu-
tions to optimize internal processes. Consequently, commercialization is not so 
much of relevance here. Instead, continuous optimization is key – usually related to 
the different elements of OEE (overall equipment effectiveness): availability, per-
formance rate, and quality rate. Consequently, the key elements of the best matching 
strategy include Solution Strategy, Rollout Strategy, and OEE Optimization Strategy.

The Solution Strategy includes a strategy to match the solution to internal 
demand, a solution launch strategy, and a strategy to continuously improve the solu-
tion itself.

The Rollout Strategy usually includes a strategy for site preparation, a retrofit 
program (how to retrofit 2000 escalators at 200 train stations?), and an internal 
awareness and adoption program (how to convince the internal stakeholders to actu-
ally use the solution) (Fig. 11.3).

11.2  Clearly Define Your Focus Areas

The first step toward ensuring scalability of an AIoT-enabled product business or 
internal optimization effort is to clearly define the focus areas: is this about optimizing 
core business processes by integrating them with intelligence from assets in the field? 
If so, which ones: marketing, sales, operations, manufacturing? Is the focus on 

Fig. 11.3 Commercialization and scalability strategy for smart, connected solutions
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revenue and profitability, or on OEE (Overall Equipment Effectiveness)? Is this about 
new or improved user experience, e.g., by adding a digital experience to a previously 
purely physical product? Or is this about disrupting channels, e.g., by opening up a 
new channel that could even be competitive with one of the existing channels. Or is it 
even about creating a completely new business, e.g., by creating a new digital/physical 
product category? Understanding and clearly articulating the focus area should be the 
first step of every AIoT-enabled digital transformation effort (Fig. 11.4).

11.3  Take a Holistic View of Product, Marketing 
and Commercialization

Especially for Digital OEMs, it is important to establish a holistic strategy that 
includes product, marketing and commercialization. The product and its market will 
usually go through exploration, growth, and maturity phases. These need to be sup-
ported by marketing and commercialization.

During the exploration phase, marketing will need to support market need assess-
ment and market validation. During the growth phase, awareness and visibility, as 
well as lead generation, needs to be supported. Finally, when moving to the maturity 
phase, support for customer loyalty and retention will become more important.

From the point of view of the commercialization strategy, in the exploration 
phase the analysis of economic feasibility plays a key role, including the analysis of 
realistic pricing models. Also, the development of a strategic business plan is key. 
During the growth phase, lead conversion is important. Many digital companies are 
using freemium models to foster initial growth. For Digital OEMs, it will usually be 
important to ensure initial revenue generation, e.g., for the physical parts of the 
offering that cannot be subsidized. Finally, when reaching maturity, converting free-
mium subscribers to a premium subscription will be key. Up- and cross-selling can 
generate additional revenues (Fig. 11.5).

Fig. 11.4 Clearly define focus areas
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Fig. 11.5 Holistic product, marketing and commercialization strategy

11.4  Ensure Product/Market Fit (or Solution/Internal 
Demand Fit)

A key prerequisite for successfully establishing a scalable high-tech business is to 
constantly focus on product/market fit. This means that the product – including the 
user experience (UX), the feature set and the value proposition – must meet the 
undeserved needs of the target customers. Since the target customers are likely to 
also change over time, the organization must be able to react to the changing needs.

So who are the target customers? Digital OEMs operating in a B2C market will 
usually address needs such as convenience and offering cool, new features. For 
those in B2B markets, customers are more likely looking for efficiency improve-
ments and cost reductions. The Digital Equipment Operator, on the other hand, will 
focus on operations effectiveness (OEE).

And what about the underserved needs? In terms of the target customers, the 
Digital OEM will usually address either a B2C or a B2B market, while the solutions 
for the Digital Equipment Operator will more often address the internal business 
units responsible for the physical assets.

How can this be met with a matching offering? The value proposition is defined 
by key capabilities. In “How Smart, Connected Products Are Transforming 
Competition” [11], Michael Porter and Jim Heppelmann describe four key capabili-
ties of smart, connected products: monitoring, control, optimization, and autonomy. 
In the context of our discussion, the new products and services provided by the 
Digital OEM will probably most benefit from control and autonomy, while the 
Digital Equipment Operator will utilize the monitoring and optimization capabili-
ties for his solution.
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The feature set for the smart, connected product will include both physical and 
digital features, the latter enabled by IoT connectivity, software and AI. The Digital 
Equipment Operator, on the other hand, will usually not be able to change the fea-
tures of the existing physical assets, so the focus here is on digital features.

From a UX point of view, we will again have to differentiate between the product 
and solution perspective – smart, connected products will utilize the full breath of 
UX-related technologies  – including web technologies and mobile devices, but 
potentially also HMI embedded on the physical product. For smart, connected solu-
tions developed with a focus on improving the operations of existing assets, the 
focus will often be more on utilizing basic web technologies for intranet-type appli-
cations. UX plays a role here as well but will often not be as important compared to 
the product side. Take, for example, the escalator monitoring example from earlier. 
If the railway company is only making this available to a small set of technical 
operators, a simple UX will be sufficient. This would obviously be different for any 
operations support apps that are made available to a wider internal audience, such 
as train conductors. In this case an investment in a better UX (e.g., using a smart-
phone app) will be justified (Fig. 11.6).

11.5  Ensure Efficient Exploration

Ensuring efficient exploration of new, AIoT-enabled opportunities is key for initiat-
ing scalable businesses. This is usually less of a problem for startups but something 
that larger companies and incumbents can struggle with.

Fig. 11.6 AIoT product/solution – market fit
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The first challenge is the selection of suitable use cases. These should on clearly 
identified application areas and customer benefits. Properly evaluating the use cases 
with respect to their potential to scale is important as well.

The next point is “freedom to experiment”: Especially in the early phases of 
exploration and technical feasibility assessment, the team should not be slowed 
down by corporate rules, standards and other dependencies. Instead, the focus 
should be on value creation and validation.

Infrastructure is important. Reuse of corporate infrastructure can make sense, 
e.g., in areas such as user management, billing, invoicing, and technical AIoT infra-
structure. However, the exploration team should not be forced by corporate man-
dates to play guinea pigs for new, immature infrastructure.

Cost are essential as well. One should not apply typical enterprise cost structures 
during the early exploration phase. However, the team must prepare early for the 
target cost model further downstream.

Finally, “enterprisification” plays an important role, especially in larger organi-
zations. At some point in time, the team will have to adapt to corporate governance 
rules, standardization, and integration into the enterprise application landscape with 
all its governance mechanisms. The point for full integration must be chosen care-
fully. Doing it too early can potentially kill the endeavor simply by adding too much 
overhead to a yet unproven and probably unprofitable early-stage idea. Doing it too 
late can also prove to be difficult because certain standards and compliance levels 
are necessary even before onboarding the first customers at scale. However, the 
enforcement of corporate rules can be a real distraction from business goals. 
Consequently, this should be treated like a consolidation project (Fig. 11.7).

Fig. 11.7 Efficient AIoT exploration
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11.6  Understand How Best to Cross the AIoT Chasm

The business book classic “Crossing the Chasm” by Geoffrey Moore [12] 
describes the challenges of marketing high-tech products, especially focusing on 
the chasm between the early adopters of a product and the mainstream early 
majority. This concept is especially important from the point of view of the 
Digital OEM.

Throughout the life cycle of the product, he will face a number of different 
challenges, some of which will be very specific to AIoT. For example, in the 
early stage when addressing innovators, a challenge is to actually create a small 
series of physical products that appeal to innovators in combination with digital 
features. Especially if AI is heavily used, this can be challenging in the early 
phase of the product life- cycle because in this phase, few reference data will be 
available for training the AI models. For asset intelligence enabled by AI, this 
will probably mean that simulation and other techniques will have to be applied. 
For any swarm intelligence required by the product, this will be even more chal-
lenging because the “swarm” of products in the field actually creating data will 
be relatively small.

When moving on to the next phase, serving the early adopters, an AIoT-
enabled product will have to make difficult decisions about the MVP or base-
line of the physical side of the product because this will be very difficult to 
change after the Start of Production. Another key point will be a strong UX to 
appeal to early adopters: something that start-ups tend to be better up than 
incumbents.

Finally, when crossing the chasm to the early majority and realizing signifi-
cant growth, it will be vital to establish cost-efficient, high-quality product 
manufacturing. Scaling the physical side of the product at this point will most 
likely be more challenging than scaling the digital side of it. In addition, this 
market will not be a pull-market, so it will require excellence in sales and 
marketing.

Finally, manufacturing-centric companies often struggle with the fact that the 
product will have to be continuously improved to stay attractive to the users. This 
means not only the software side of things but also the continuous retraining of the 
AI models used (Fig. 11.8).
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Fig. 11.8 Crossing the AIoT chasm

Gabriel Wetzel, CEO of Robert Bosch Smart Home: “A key challenge are the 
often very high expectations, which don’t anticipate the ‘trough of disillusionment’ 
which you usually have to cross before you will see new business at scale. You have 
to make sure to get through this, and not lose management support on the way.”

11.7  Understand Implications of AIoT Short Tail vs. 
Long Tail

A good way of looking at the scalability of the opportunities presented by AIoT is 
by categorizing them in the short tail vs. the long tail of AIoT: the AIoT short tail 
includes a relatively small number of opportunities with a high impact and thus high 
potential for scaling them. This usually means a high level of productization and a 
strong Go-to-Market focus, which requires a Digital OEM organization. The AIoT 
long tail, on the other hand, represents a large number of opportunities where each 
individual opportunity is relatively small. However, together these long tailed 
opportunities also represent a very significant business opportunity, provided an 
organization is able to harvest these smaller opportunities in an efficient way. This 
usually requires a “harvesting” type of organization (for internal opportunities) or a 
platform approach, as described earlier.

A good example for an organization that is focusing on harvesting a large num-
ber of small opportunities presented by AIoT is described in the “AIoT in 
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High- Volume Manufacturing Network” case study in Part IV of the Digital 
Playbook. This case study describes how Bosch Chassis Control Systems have built 
up a platform and global AIoT Center of Excellence to work closely with a global 
network of over 20 high-volume factories. This group is managing a portfolio of 
AIoT- enabled production optimization projects in different areas, but usually with a 
strong focus on OEE improvements for the factories. This is a great example of a 
“harvesting” type of organization that is required to realize the opportunities pre-
sented by the AIoT long tail in such an environment. Executing this at scale for over 
30 factories requires a careful balancing between a centralized expert team and 
working with experts in the field who understand the individual opportunities.

When looking at scalability, it is important to understand which end – the short 
tail or the long tail – of AIoT one is working on and what type of organization is 
required to be successful here (Fig. 11.9).

Gabriel Wetzel, CEO of Robert Bosch Smart Home: “The short-tail opportuni-
ties will often be addressed by other market players as well. This means that invest-
ment size and time-to-market are absolutely critical. The long tail requires many 
custom solutions. You should not underestimate the required resources, the domain- 
specific skills and the market access. Not all of these can be easily scaled-up. Of 
course this can be addressed by a top-in-class partner management: but don’t for-
get to budget for it!”

Fig. 11.9 The long tail of AIoT

D. Slama

https://aiotplaybook.org/index.php?title=AIoT_in_High-Volume_Manufacturing_Network


113

11.8  Ensure Organizational Scalability

Ensuring organizational scalability is another key success factor for smart, con-
nected products. How can an organization successfully grow and evolve alongside 
the product as it matures from idea to large-scale business? DevOps mandates that 
an IT organization combine development and operations from the beginning, iterat-
ing together continuously through the build and improvement cycles. However, in 
an organization that must combine IT development and operations capabilities with 
physical product engineering and manufacturing capabilities, this will not be as 
straightforward.

Dattatri Salagame is the CEO of Bosch Engineering and Business Solutions. In 
the following, he will discuss the issues related to scaling up and evolving an orga-
nization for smart, connected products.

Dirk Slama: What is your take on the organization we need to build and sell smart, 
connected products?

Dattatri Salagame: Since AIoT is a relatively new space, organizations are finding their 
feet to unlock potential at scale. A typical AIoT product would need multiple players 
to come together conceive, develop and launch a connected product. As data twins 
are the backbone of the connected products, the diversity and complexity of the tech-
nology stack demands players with deep tech domain, cloud platforms, and connec-
tivity to come together to orchestrate the end product or service. Most AIoT projects 
go through different product phases without transition awareness of shifting to differ-
ent phases in terms of Product Lifecycle Management (PLM) shift and capability 
needs. A connected product engineering organization needs to evolve with the prod-
uct. This transition has to be managed while the business owner is able to do their 
experimentation, validation in the market for scalability.

Dirk: What are the required organizational capabilities during these differ-
ent phases?

Dattatri: In the beginning you need a gang of hackers who can quickly hack a solu-
tion in a high-fidelity experimentation mode. I call them a gang of hackers 
because in the MVP (Minimal Viable Product) stage, you hack the solution, you 
are not really worried about the reliability of the product. You are worried about 
the feasibility of the product. Once you have confirmed the feasibility and you 
have received positive customer feedback, you need to transition into a lot more 
rigorous, disciplined product engineering process. Multidisciplinary product 
engineering has become a key competency. You will require competencies encom-
passing mechanical, electrical, and electronics engineering, power manage-
ment, communication, coupled with data science, AI and security. It is very 
important that there are team members who understand data and mathematical 
modeling of the data to mimic the physics and chemistry of the product, to create 
AI models and to be able to mature the product in layers.

The product matures in layers, which is important. The electronics layer, the com-
munication layer, the network service provider, then the data, then the AI and 
then the reliability. So these layers mature at a different velocity, at different 
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points of time, so you need a team which is a lot more multi-disciplined and 
engineering rigor in this phase. Finally, when we release the product, and we 
have crossed the initial validation of the scale, then you need an organization to 
support the product introduction. This is a game of having a good ecosystem to 
be able to manage the scale and to provide high-speed DevOps as the backbone 
of digital services. Therefore, you need these three flavors of the team during the 
course of the project:

• The Minimum Viable Concept/Product (MVC/MVP) – feasibility validation
• New Product Engineering (NPE) – Reliability validation
• New Product Introduction (NPI) – Scale and ecosystem

Dirk: Any recommendation on how to organize this?
Dattatri: Everybody is talking about digital transformation, and this is it: we need to 

transform existing, traditional, heavy engineering and manufacturing- oriented 
organizations, so that they play together with the more agile AI and software orga-
nizations to support smart, connected products. It is important to be transition 
aware through the phases of the product life cycle in terms of PLM and capability 
shifts. Our experience has been to adopt a multi-speed model to  navigate through 
these phases, with clear “Transition Awareness” to operate in right gears. To man-
age capability shifts, one needs to operate in a multi-threaded model covering 
classic product engineering to technology (AIoT) fusion. Otherwise, there is a risk 
falling through between the transitions, which we call the “valleys of death”. If you 
look at connected products, seven or eight out of ten products don’t actually pass 
in flying colors. Therefore, organizational agility and the ability to transform the 
organization along the way is an important part of the ability to “cross the chasm”, 
as you have introduced it earlier (Fig. 11.10).

Fig. 11.10 AIoT organizational evolution
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11.9  Deal with Repeatability, Capacity and Marginal Costs

Digital businesses are seen as potentially highly scalable because their digital offer-
ings are highly standardized and easily repeatable at very low extra cost. Physical 
products, on the other hand, can be much harder to scale, because scale effects in 
manufacturing often only apply when talking about extremely high production 
numbers. Even in this case, the marginal costs will not be reduced to a level as we 
are seeing this in the case of digital businesses.

For the Digital OEM, this means that their focus usually needs to be on creating 
highly standardized physical products, because any increase in variants and added 
complexity can potentially have a negative impact on scalability. Ideally, differen-
tiation through product variations should be mainly focused on the software/AI 
side. An interesting example in this context is the Seat Heating-on-demand case, 
which is introduced in the product operations section: instead of having cars manu-
factured with individual seat heating configurations, all cars come with the same 
physical equipment and the configuration is done later on-demand by the customer. 
Of course this type of business case requires careful calculation of the marginal 
production costs vs. the downstream revenue opportunities over the life-cycle of 
the car.

For the Digital Equipment Operator, the topic of repeatability and capacity is 
also important. This links closely back to the long-tail discussion from earlier on: if 
the benefits of the individual AIoT-enabled solutions are only relatively small in 
comparison, then ensuring repeatability on some level is key. In the “Predictive 
maintenance for hydraulic systems” case study, Bosch Rexroth used AIoT to enable 
predictive maintenance for hydraulic components. However, since each customer 
installation uses the hydraulics components in a different way, AI algorithms have 
to be adapted individually for the customer. Bosch Rexroth has established a service 
offering that maximizes repeatability by standardizing the sensor packs and estab-
lishing a standardized process for the customization of AI for individual customers. 
In this way, the predictive maintenance service offering is competitive, despite its 
positioning on the AIoT long tail.
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Part III
Business Execution

Fig. 1 Business Execution

The Business Execution part of the Digital Playbook provides guidance on how to 
actually implement the AIoT-enabled business strategy. In the following, C K 
Vishwakarma (CEO of AllThingsConnected & co-lead of the AIoT User Group in 
Singapore) shares some of his thoughts on this.

Dirk: The AIoT transformation program. Is that for real or is it a synonym for a 
generic digital transformation program?

C K Vishwakarma: It is indeed real because if we tried to understand slightly 
more specific, that is the definition of AIoT itself. As we know, AIoT is the combina-
tion of AI and IoT. This means that AIoT is applied to certain very specific use cases, 
related to physical assets or products. Digital transformation is very broad, and 
within your digital transformation initiative (which may have hundreds of such ini-
tiatives), we can identify those with a direct relationship to physical assets and 
products. Those I would say will be driven by the AIoT initiative. So the organiza-
tion have to think of the bigger objectives, and then there are complex objectives 
within which will be categorized as AIoT in my view.

DS: What are the first steps for setting up an AIoT transformation program?
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CK: When we are initiating the AIoT program, we need to think about what the 
business objective is, what are required process transformations or operational 
challenges, etc. It is not just because everybody else is doing it, so we should do it 
as well. The first step is obviously, what are the main points? What are the chal-
lenges that you are trying to address? What are the use cases in those initiatives? 
Then we will look at what kind of technology you need to put in place and finally, 
how to build a team together and implement the use cases. Understand what is in 
there for us as an organization, because the way we look at the way we design, 
manufacture, assemble, distribute, and operate products and services are going to 
change. So where are the opportunities specifically, what process gap problems do 
we have, and how can we convert that into opportunities. And then we can look into 
evaluating the right technology within the whole AIoT spectrum. Finally, how do we 
implement the required AIoT products and solutions, with an in-house team or with 
a development partners?

DS: That is a good point. In AIoT, nobody can do it alone. What's your take on 
co-creation versus sourcing?

CK: Yes, absolutely. Nobody can do it alone because if you just look at not just 
the business challenge of it, but also the technical challenges, AIoT requires many 
technologies to come together. I have not come across any one technology company 
who can claim that it can address the entire technical stack at the same time. It does 
not make sense for the solution seeker to do everything alone. It usually takes too 
long, and you risk losing the opportunities. So co-creation part is critical in AIoT 
initiatives. The challenge that most organization faces is who they should partner 
with. Partner evaluation and selection becomes critical. Where should you partner, 
and what are the selection criteria? It is important not to look well beyond the initial 
proof-of-concepts and pilots. While it important to show value creation very early, 
most AIoT initiatives are also very long-term oriented. Therefore, identifying the 
right areas for partnering and co-creation is important. And of course partnering vs 
buying. So we are going from make-vs-buy to make-vs-buy-vs-partner.

Dirk: Thank you, CK!

Business Execution
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Chapter 12
Business Model Design
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The development and validation of a (more or less) detailed business model is usu-
ally the first step in the journey towards developing a new smart, connected product 
or solution. The business model will usually play a central role in product develop-
ment, while in solution development, it will be most likely more basic. This chapter 
looks at tools and best practices for developing AIoT-specific business models, with 
a focus on the product perspective (Fig. 12.1).

Fig. 12.1 BMI
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12.1  AIoT-Enabled Business Models

For a product or service-oriented organization, the business model usually describes 
how the organization creates, delivers, and captures value [13]. For example, the St. 
Gallen Business Model Navigator [14] defines four dimensions for a business model 
(“What, how, who and value”): What do you offer to the customer? How is the value 
proposition created? Who is your target customer (segment)? How is revenue 
created?

For a more operations-oriented organization looking to introduce AIoT-enabled 
solutions, the business model will often be developed around the OEE formula 
introduced in the discussion about the Digital Equipment Operator: How will the 
investment in a new, AIoT-enabled solution benefit asset availability, performance 
rate or quality rate. The focus here will usually be more on the business case (ROI, 
OEE), and less on the other aspects of the business model such as value proposition 
and target customers.

When developing a more holistic business model that combines physical prod-
ucts with digital services, a key question is where to start. Many OEMs and manu-
facturers have been starting by looking at their existing portfolios of physical 
products and then trying to extend them with connectivity-based features, adding 
intelligence in a second step. If the target business model supported by these new, 
digital features is not clear, this can be problematic: Are the new features only seen 
as additional differentiators of the original product, or are they new sources of rev-
enue? Not understanding this from the beginning can be very risky, leading to disap-
pointing results. On the other hand, looking at business models only from the purely 
strategic perspective without taking existing products, capabilities, market access 
and brand reputation into consideration can also be difficult. So the truth probably 
lies somewhere in the middle.

Christian Renz, Global Head of IoT and Digitalization at Bosch, has made the 
following experience in this area: Successful manufacturers of physical products 
typically have a great understanding of their products’ domain: They understand 
usage of their product, value creation processes they are part of, the competitive 
landscape, purchasing behavior and so on. However, they view their domain through 
the lens of their products, which means they tend to not perceive value creation that 
their products are not part of. To successfully incubate new AIoT business models, 
product manufacturers need to build up competencies in service incubation and 
design. Coming from a hypothesis of value created for customers, dedicated teams 
quickly iterate through a series of “minimum viable products”, proving or disprov-
ing the value hypothesis. These cycles are much faster than typical product engi-
neering cycles. The initial value hypothesis should be purely derived top down from 
concrete customer pain points in the domain, rather than bottom up from augment-
ing physical products with connectivity, allowing even for the freedom to come up 
with business models that could potentially disrupt existing business (Fig. 12.2).
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Fig. 12.2 AIoT-business model development – considerations

What is important to understand is that business models usually evolve over 
time. In the agile and lean world, the assumption is that business model innovation 
is an iterative process. Many Internet-based business models are constantly re- 
evaluating and adapting their business models, utilizing the flexibility of the cloud 
and DevOps to do so. However, for business models based on physical assets, this 
is typically not as easy: Design and manufacturing of physical assets has much 
longer lead times. Once the assets are manufactured, sold and deployed in the 
field, any alteration of their physical configuration becomes very difficult if not 
impossible. Smart, connected products provide an opportunity to address this 
issue, at least to a certain extent, for example through dynamic configuration of 
digital features or, in some cases, even the enabling of physical features on 
demand. The following will discuss typical business model patterns enabled by AI 
and IoT in more detail.

12.1.1  AI Business Model Patterns

The area of business model patterns based on AI in the context of the IoT is not (yet) 
widely researched. Figure 12.3 describes the most common patterns from the AIoT 
perspective.
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Fig. 12.3 AI business models patterns

Fig. 12.4 IoT business model patterns

12.1.2  IoT Business Model Patterns

The area of business model patterns for the Internet of Things is well researched and 
documented. For example, the St. Gallen Business Model Navigator [14] defines a 
number of patterns summarized in Fig. 12.4. These patterns are generally based on 
the assumption that they combine physical assets with digital services.
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A great example of a ‘Digital Add-on’ is BMW’s announcement to make seat 
heating available on demand. Two factors make this interesting:

• Physically producing many different, custom configured variants of a car could 
be nearly as expensive as producing a single, mass-manufactured variant

• Being able to upsell this feature to customers especially in winter could signifi-
cantly increase the total number of seat heating options sold in total

12.2  Ignite AIoT Business Model Templates

The following introduces a set of templates for AIoT business models. As far as 
possible, these templates reuse existing, well-established business model templates, 
adding AI and IoT perspectives to them. These templates should be seen as guid-
ance and can be adapted in a flexible way to best fit the needs of your individual 
AIoT business model (Fig. 12.5).

12.2.1  The Smart Kitchen Example

The following discussion will be based on the smart kitchen example, which is 
shown in Fig. 12.6. The complete Smart Kitchen Business Model has been docu-
mented in Miro. It can be accessed HERE, in case you can’t read some of the details 
in the following diagrams.

Fig. 12.5 Ignite AIoT business model templates
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Fig. 12.7 AIoT business model canvas

Fig. 12.6 Example: smart kitchen

12.2.2  AIoT Business Model Canvas

The business model canvas is probably one of the most established tools in the busi-
ness model community. There are a plethora of variations, with Osterwalder repre-
senting the classic and the Lean Canvas the one probably most established in the 
agile development community. The basic idea of the business canvas is that – instead 
of writing a detailed and lengthy business plan – the key information typically found 
here is summarized in a canvas on a single page. Sometimes, the canvas also serves 
as the executive summary.

The AIoT Framework proposes an AIoT business model canvas derived from 
Osterwalder, but adds another area to specifically highlight the impact of AIoT on 
other elements, including value proposition, customer relationships, channels, key 
resources, key activities, cost and revenue structure (Fig. 12.7).
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12.2.3  AIoT Solution Sketch

The first template is the so-called AIoT Solution Sketch. The idea is to provide a 
very simple canvas which helps visualize the key functional elements of your 
solution, mapped to either the field (including EDGE functionality) or the back-
end (e.g., in the cloud). This simple yet expressive format is especially useful for 
reviewing and discussing the intended functional scope with management stake-
holders (Fig. 12.8).

Fig. 12.8 AIoT solution sketch

12.2.4  AIoT Use Case Mapping

AIoT Use Case Mapping can be used to clarify how far one of the typical AIoT 
Use Cases can best be supported by utilizing AI and IoT together. An example 
is given here. In the example of the kitchen appliance, almost all generic AIoT 
use cases are relevant: AIoT will be used to improve the design of the kitchen 
appliance, data will be used for sales support, overall product performance 
improvements are in scope, as well as predictive maintenance. Finally, digital 
services such as recipe recommendations will play an important role 
(Fig. 12.9).
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Fig. 12.9 AI value proposition – smart kitchen example

12.2.5  AIoT Customer Journey Map

Customer (or User) Journey Maps are a common User Experience (UX) tool. There 
are many shapes, sizes, and formats available. The general idea of a journey map is 
to help understand and visualize the process that a person goes through to accom-
plish a specific goal.

The Digital Playbook proposes a format for a customer journey map that has the 
key user interactions with the asset at the top, e.g., asset purchasing, asset activation, 
asset usage and service incidents. Depending on the complexity, each of these steps 
could be detailed in a map on its own. Below this, the template provides space for 
the following:

• Touchpoints: What touchpoints is the customer actually using to interact with 
the solution or the asset?

• Doing: What is the customer actually doing?
• Thinking/Feeling: This covers the emotional side of the journey
• Opportunities: What opportunities from a business model point of view can be 

found here?
• Key AIoT Features: What features/capabilities from an AIoT point of view are 

utilized here?

Note that this template focuses more on the high-level journey, including business 
model aspects. A more detailed, UX-focused version of this is introduced later in 
Product/Solution Design (Fig. 12.10).
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Fig. 12.10 AIoT customer journey

12.2.6  Commercial Model

The commercial model has to address the question of how the product or solution is 
generating revenues at the end of the day. The model must bring together the offer-
ing and the target customer.

The offerings must be broken down as follows:

• Unique value proposition: potentially for different customer segments
• Sellable features: identify all elements of the offering that eventually generate 

revenue, e.g., upfront revenues for the physical asset, subscription revenues for 
digital premium services

• Pricing: all sellable features must be included in the pricing model

The target customer must be well understood, including:

• Industry/domain: this will look different for B2C vs B2B offerings but should be 
addressed, e.g., via a market segment analysis

• Profile: again, must be looked at individually, e.g. B2B buying-center vs 
B2C persons

• Buying process: how is the customer – as a private person or an enterprise – buy-
ing this? What formal conditions have to be met?

Finally, the question is how to get to the customer:

• Sales approach: traditional Solution Sales and Key Account Management, web- 
based sales, in-app sales, etc.

• Monetization: how to turn non-revenue-generating items into revenue, e.g., by 
getting customers to upgrade from digital fremium to premium services 
(Fig. 12.11)
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Fig. 12.11 Commercial model

12.2.7  KPIs

It is usually advisable to include a set of Key Performance Indicators (KPIs) in the 
Business Model. KPIs are measurable values used by organizations to keep track of 
and determine progress on specific business objectives. A good method for defining 
KPIs is the SMART method. SMART means that KPIs should be specific, measur-
able, attainable, relevant, and time-sensitive. Example KPIs for an AIoT product are 
described in more detail in the Product Design section.

KPIs are a good way of guiding the execution team and evaluating their progress 
against a previously defined set of goals in the business model. Closely related to 
this are Objectives and Key Results (OKRs). While KPIs are business metrics that 
reflect performance, OKR is a goal-setting method which can be used as a project 
steering mechanism. However, this would usually not be part of the business model.

KPIs for the kitchen appliance example could include:

• Number of kitchen appliances sold
• Average subscription revenue per customer
• Monthly recurring revenue
• Customer Lifetime Value
• Customer acquisition cost

These KPIs are assuming an established business. In the early phase of business 
model validation, different KPIs should be applied – for example, KPIs related to UX.
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12.2.8  AIoT Business Case

Another key element of the business model is the business case, including the finan-
cial perspective on costs and revenues, as well as strategic contributions.

Direct ROI
The direct ROI for an AIoT solution must typically take into consideration asset- 
related and service-related costs and revenues. On the cost side, the differentiation 
between capital expenditures and operational expenditures (including unit and oper-
ations costs). On the revenue side, the business case must differentiate between 
upfront revenues and recurring/subscription revenues. The Digital Playbook pro-
poses combining these perspectives in the template shown in Fig. 12.12.

Please note that business case development and ROI calculation usually also 
require some kind of quantitative planning, including projections for numbers of 
units sold, customer adoption of digital features, and so on. A detailed example is 
given in the Product Design section.

Strategic Contributions
In addition to the direct ROI of the investment, many AIoT solutions also provide 
strategic contributions to a higher-level business case. Take, for example, the eCall 
feature of a car. This potentially AIoT-enabled device in vehicles will automatically 
call a local emergency service in the event of a serious road accident. Airbag deploy-
ment and impact sensor information, as well as GPS coordinates, will be sent along 
as well. The question is as follows: Does this feature require a dedicated ROI calcu-
lation, or is this simply the fulfillment of a regulatory requirement? Since eCall is 
now a requirement in the EU, for example, it is unlikely that this can be sold as an 
add-on with extra revenue. So it must be seen as a strategic contribution to the car.

Fig. 12.12 AIoT business case
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12.2.9  AIoT Business Case Validation

Validating the AIoT Business Case in the early stages as much as possible will save 
you from costly surprises further down your AIoT journey. The business case vali-
dation should include both sides, costs and revenues.

Validating assumptions made about revenue in the business model is of course 
tricky. Usually, a good way forward is interviews with potential customers to vali-
date not only their willingness to purchase the intended products and services but 
also their price sensitivity.

Furthermore, one should also not underestimate the importance of validating the 
cost side of the business model. This is especially important for an AIoT-enabled 
business: While virtual, cloud-based business can scale very well on the cost side, 
with any business that is involving physical assets or products, this is different. 
Physical products will have to be manufactured, distributed and supported. A thor-
ough investigation of unit costs/marginal costs should be performed as early as pos-
sible, and ideally validated by obtaining price indications from potential suppliers 
as early as possible. The AIoT Sourcing BOM introduced in the section on Sourcing 
and Procurement can be a very helpful tool.

In addition to IoT-related costs (especially hardware and costs for telecommuni-
cation), AI-related costs should also not be underestimated. In particular, the data 
labeling can be a cost driver – do not forget that this will not only cause costs for the 
initial data labeling but most likely require continued labeling services throughout 
the entire product life cycle (Fig. 12.13).

In general, IT-centric business cases have a tendency to focus more on the initial 
costs, and not the Total Cost of Ownership (TCO). Over a five-year lifespan, initial 
development costs will most likely be only 20% of the TCO [15].

Fig. 12.13 AIoT cost estimation
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12.3  Proof of Concept

Most investors require some kind of proof along the way, which provides evidence for 
the feasibility of the investment proposal (this applies both to corporate investors and 
private equity investors). AIoT-based solutions are not different from that perspective. 
However, it can sometimes be much more difficult and expensive to run a Proof-of-
Concept (PoC) for an AIoT solution: Today it is usually very easy to create a lightweight 
and affordable PoC for a pure software project (e.g., using simulation or mock-ups). 
However, as soon as hardware development and/or asset customization is involved, this 
can become much harder, depending on the hardware and asset categories.

Consequently, the following should be clearly defined for any AIoT-related PoC:

• Duration & effort
• Scope
• Resources
• Success criteria

12.4  Investment Decision

In today’s agile and digital world, most investment decisions are staged, meaning 
that partial investment commitments are made based on the achievement of certain 
milestones. However, there is usually a point in time for any innovation project 
where it transitions from the exploratory phase toward the scaling phase with much 
higher budgets. Each organisation is typically follows its own, established invest-
ment criteria. For the project manager, it is often important to keep in mind that 
these criteria are usually a mixture of hard, ROI-based criteria, as well as the strate-
gic perspective. This is why the business model should address both perspectives, as 
stated above (Fig. 12.14).

Fig. 12.14 AIoT investment decision
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Chapter 13
Product/Solution Design

Dirk Slama

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

What is the next step after agreeing on the first iteration of the business model and 
securing funding for execution? With the traditional waterfall approach, the answer 
is relatively clear: documentation of requirements with a high level of detail and 
accuracy, serving as the stable foundation for planning, design and execution. 
However, in the software world, we have learned that getting stable, long-term 
requirements is often difficult. Consequently, traditional requirements management 
often has a bad name in the agile community. Instead, agile best practices focus on 
the backlog as the central means of managing requirements and work items. The 
goal is to capture the high-level, long-term vision on a more abstract level (e.g., via 
so-called epics and themes) and then provide a detailed and precise work definition 
only for the next upcoming sprint (via the sprint backlog – created for each sprint; 

Fig. 13.1 0.2-Design.png
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typical sprint duration is 3–4 weeks). In this way, the agile approach ensures that no 
waste is created by investing in detailed, long-term requirements that are likely to 
change over time anyway (Fig. 13.1).

Most AIoT projects or product developments will need to combine both perspec-
tives. For the standard software part – and probably also the AI part – agile planning 
will work well. For those parts involving hardware and telecommunications infra-
structure – as well as any part with complex dependencies – a more planning-centric 
approach will most likely be required. Enterprise sourcing processes will add their 
part to limit a purely agile approach.

Nevertheless, a good starting point will be the agile best practices in this area, 
which we will discuss first. Next, we will look at how to derive an AIoT system 
design from all of this. This will be completed by a discussion of the entire cycle 
from requirements and design to implementation and validation. Finally, we will 
discuss the dependencies between AIoT system design and co-creation/sourcing.

13.1  From Business Model to Implementation

The Digital Playbook proposes an approach that combines the business model 
design patterns outlined in Part III with Agile Story Maps, as well as an AIoT- 
specific approach for product/solution design. This is shown in fig. 13.2. The start-
ing point are the elements of the business model design, which can be adapted over 
time based on market feedback. The product/solution design provides a lightweight 
yet holistic view of the system design, from the business view down to the imple-
mentation view. Finally, the Agile Story Map provides the high-level breakdown of 
all work items. For each sprint, a dedicated sprint backlog is derived from the story 
map, containing the prioritized and agreed-upon work items for the upcoming sprint 
(Fig. 13.2).

Fig. 13.2 From business model to implementation
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13.2  The Agile Approach

The agile equivalent to requirements management is the backlog. The product back-
log is a list of all the work items required to build and improve the product. It repre-
sents the single source of work definitions accepted by the scrum teams. For each 
upcoming sprint and each sprint team, a sprint backlog is created, which defines the 
work to be done by the team in the next sprint. Product backlog items can have dif-
ferent granularities. Sprint backlog items must be implementable in a single sprint. 
Story maps often serve as the visualization of the product backlog, as will be 
described in the following.

13.2.1  Story Maps

Story maps are a useful tool to manage the high-level requirements and structure of 
a product. Depending on the school of thought, they are either described as a visu-
alization of a product backlog or as a customer journey-centric way of structuring 
the body of work on the highest level. Especially in the early stages of product 
creation, story mapping is used as a technique for product discovery, helping to 
outline the structure of a new product (or a complex, new feature for an existing 
product). To achieve a higher level of abstraction and orientation than a linear back-
log, story maps typically arrange lower-level features in higher-level, func-
tional groups.

Typical units of work in story maps include so-called themes, epics, features and 
user stories. The number of levels in the hierarchy of the body of work depends on 
the complexity of the product/solution. For the purpose of simplicity, the Digital 
Playbook focuses on epics, features and user stories:

• Epics are a high-level body of work, typically representing 2–6 months in dura-
tion. An epic can span multiple releases and more than one team. They are often 
aligned with senior management. Epics contain features.

• Features describe a specific functionality of the product. They are smaller than 
epics and typically contained within a specific release and assigned to a specific 
team (see ⇒  feature team). They are typically managed by product owners. 
Features contain user stories.

• User stories are the smallest definition of an increment, usually less than a week. 
They are bound to a specific sprint.

Depending on the layout used, the story map can imply a certain order at the top 
level, either in terms of the logical sequence in the customer journey or the order on 
which the elements are worked (Fig. 13.3).
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Fig. 13.3 Story map overview

Fig. 13.4 Story map details

13.2.2  Example: AIoT Story Map & User Stories

The example in Fig. 13.4 shows a more detailed structure of a story map. The 
top level contains epics. Returning to the smart kitchen appliance as an AIoT 
example from earlier, epics at this level could include “cooking”, “baking”, and 
“recipe recommendations”. On the level below, features are shown. A feature of 
the smart kitchen appliance could be a “predefined baking program”. Below 
this, user stories are shown. Use stories usually follow a specific pattern, as 
shown in the figure below (“As a...”). User stories should also include accep-
tance criteria. Depending on the layout of the story map chosen, use stories can 
also be grouped into releases.
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13.3  Non-Functional Requirements

Story maps, including epics, features and user stories often focus on the functional 
aspects of the system. In addition, most AIoT solutions or products will usually also 
have some nonfunctional requirements (NFRs). NFRs usually define attributes such 
as availability, performance, reliability, scalability, security, maintainability, and 
usability. For a distributed, AIoT-enabled system, NFRs might have to be broken 
down to specific areas, e.g., edge vs. cloud or specific functional areas. For example, 
an autonomous robot might have different NFRs for functional safety-relevant vs. 
non-relevant areas. This is important to keep costs and effort down to a realistic 
level, since functional safety development is usually much more expensive.

Finally, it should be noted that nonfunctional requirements for AI-enabled com-
ponents are often different than those of traditional, software-enabled components. 
NFRs for AI components can include, for example:

• Algorithm accuracy and reliability: comparing AI output to reality
• Algorithm performance: for both online and training
• Transparency: making results explainable
• Fairness: ensuring results are fair and non-biased
• Testability: ensuring that the AI can be properly tested
• Security and privacy: related both to input and output

13.4  AIoT System Design

Some agile software projects will mainly rely on story maps and user stories, with-
out an explicit system design. However, a more complex project may also require a 
certain amount of system design. Sometimes this is done in a “Sprint 0”, which 
then focuses on creating both the high-level story map as well as a corresponding 
system design.

Given the typical complexity of an AIoT initiative, a system design is required 
that helps align all stakeholders and subsystems. The Digital Playbook proposes a 
set of design viewpoints, which are introduced in the following.

13.4.1  AIoT Design Viewpoints

The Digital Playbook proposes four viewpoints to help create a consistent system 
design which covers all relevant aspects: business Viewpoint, UX Viewpoint, the 
Data/Functional Viewpoint, and Implementation Viewpoint. The initial Business 
Model will have a huge impact on the Business Viewpoint. The UX Viewpoint will 
be heavily influenced by the customer journey. Policies and regulations will have a 
huge impact on both the Data/Functional Viewpoint as well as the Implementation 
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Viewpoint. Again, technical constraints as well as skills and organization will heav-
ily influence the implementation viewpoint. Finally, AIoT and enabling technolo-
gies will have an impact on all viewpoints. For example, car sharing, as we know it 
today, would not be possible without smartphones to hail rides and interact with the 
system. As an enabling technology, they have both enabled new business models, 
created a new UX, heavily influenced the system functionality, and finally the 
implementation (Fig. 13.5).

13.4.2  AIoT Viewpoint Details

The Digital Playbook provides a set of templates for each of the four viewpoints. 
They are discussed in detail in the technology execution section on product/solution 
design. The Business Viewpoint starts with input from the Business Model, and then 
adds key KPIs, quantitative planning and a milestone-oriented timeline. The UX 
viewpoint is based on customer and/or site surveys and focuses on personas, Human/
Machine Interaction and mockups for key user interfaces. Of course, the Data/
Functional Viewpoint includes a high-level overview of the main data domains and 
the component and API landscape. If the project makes use of Digital Twins as an 
additional structural element, this is included here as well. Finally, the AI feature 
map helps ensure that AI is utilized to the fullest potential. The Implementation 
Viewpoint provides a high-level end-to-end architecture, an asset integration archi-
tecture, a hardware architecture, and software and AI architecture. Adjacent to all of 
this, the Product Viewpoint includes the Story Map, the mappings to feature teams, 
and the sprint backlogs.

It is important that the level of detail in the different viewpoints be kept on 
such a level where it is useful as a high-level documentation to enable 

Fig. 13.5 Product/solution design – overview
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cross-team alignment and efficient stakeholder communication, without drifting 
into the habits of waterfall-centric, RUP-like detail models. Detailed design 
models should only be created on-demand and where specifically needed. Again, 
this is also likely to differ for the software vs. hardware parts of the system 
(Fig. 13.6).

13.5  From Requirements and Design to Implementation 
and Validation

Business models, story maps and product/solution designs capture key require-
ments and high-level design decisions. The teams in the DevOps organization are 
responsible for the implementation, testing and continuous delivery of the product 
increments. However, in AIoT, we cannot always assume a fully agile approach due 
to the aforementioned constraints. This is why we introduce the Agile V-Model, 
which proposes to execute individual sprints as small V-Model iterations, which 
take the high-level design plus the current sprint backlog as input, and then perform 
a miniaturized V-Model iteration, including Verification and Validation at the end of 
the sprint against the initial requirements. Finally, customer and user feedback as 
well as product performance data need to be incorporated back into the require-
ments and design perspective. This way, continuous improvement can be ensured 
(Fig. 13.7).

Fig. 13.6 AIoT design viewpoints – overview
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Fig. 13.7 From design to implementation and validation

Fig. 13.8 Story map vs. sourcing perspective

13.6  Design vs. Co-creation & Sourcing

Finally, a key question that remains is who should actually do the requirements 
capturing and design work. This will heavily depend on the make/buy/co-creation 
strategy chosen. If the AIoT system is mainly developed in-house, both require-
ments and design will have to be created and maintained by the in-house team.

If the company decides to acquire significant parts of the system from outside 
suppliers or partners, high-level requirements/designs such as epics and feature 
definitions are likely to remain in-house. For the user stories, this could go either 
way, depending on the sourcing model chosen. Finally, in the case of a turnkey solu-
tion, one might even go to the extreme of only retaining the high-level requirements 
management in-house, and relying on external suppliers/partners for the rest.

Especially for AIoT systems with their more complex supply chains including 
hardware, software and AI, it is important to carefully balance this out (Fig. 13.8).
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AIoT-enabling a product or solution usually requires quite a number of different 
technical components, infrastructures and resources. Very few companies will be 
able to source all of this completely internally, so naturally sourcing plays an impor-
tant role in most AIoT initiatives. Furthermore, there is often an opportunity to 
partner with other companies, e.g., because of complementary market access, 
brands, or product components and capabilities. Going from traditional customer/
supplier relationships towards a partnership can have many benefits but obviously 
many risks as well. In many cases, one will see both in the context of an AIoT initia-
tive, e.g., traditional sourcing for commodity components and resources, and a more 
partner/co-creation oriented approach in other areas. This chapter will first look at 

Fig. 14.1 Co-creation
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co-creation in the context of AIoT before discussing the more traditional sourcing 
approach.

14.1  Co-Creation

Co-creation between different companies can be an attractive alternative to the more 
traditional buyer/supplier relationships. This chapter examines different co-creation 
models, specifically from an AIoT perspective, before bringing in expert opinions 
from different perspectives, including enterprise, start-ups and venture capital 
(Fig. 14.1).

14.1.1  Why AIoT & Co-Creation?

What are reasons for co-creation and partnering in an AIoT initiative? On the more 
strategic level, branding, access to an existing customer base, the exiting global 
footprint of a partner, access to physical assets or outlets (e.g. repair stations), or 
domain know-how and existing applications can be good reasons.

Since data are the foundation of any AI-based business model, this can play 
another key role. Often, data-related co-creation is about the federation of data from 
two domains, with the expectation that the sum here is larger than the parts. For 
example, co-creation partners can federate IoT-generated data from multiple 
machines in a manufacturing setting to support a more holistic OEE perspective for 
the end-customer.

The development of AI/ML algorithms can also be an interesting area for 
co- creation. Of course, this will often also be closely tied to the data side of 
things. For example, the massive costs of developing AI for autonomous driv-
ing make some OEMs consider a co-creation/strategic partnership approach in 
this area.

The need to combine different, highly specialized technologies in the context of 
AIoT can be another reason for co-creation and partnerships. This can be the com-
bination of different IT enabling technologies, or the combination of IT and OT 
technologies. Especially with IT/OT, it is often the case that the required expertise 
is not found in a single company.

Platforms are another interesting area for co-creation. Especially in the area of 
platforms that need to combine know-how from different industry domains, or pro-
vide some kind of data federation, this can make sense. Co-creation here is not 
limited to technical co-creation. For example, if partners decide to create a platform 
as a joint venture because they want to pool data, this can also be seen as a form of 
co-creation (Fig. 14.2).

D. Slama



145

Fig. 14.2 Why AIoT & co-creation?

14.1.2  AIoT Co-Creation Options

Because many people have a different understanding of what co-creation actually 
means, the following provides a short discussion of common patterns.

In some cases, companies that are actually in a traditional buyer/seller relation-
ship will extend this relationship, e.g., by creating a press release about a “strategic 
development partnership”. Or, they will apply value-based pricing, i.e., the seller is 
participating in the business success of the buyer. In the case of smaller suppliers, it 
is also common that the buyer insists on a source-code escrow to have access to the 
sources in a worst-case scenario or even insists on a stock right of first refusal. 
These are examples that we would NOT consider to be co-creation, because they are 
too close to a traditional sourcing relationship.

Co-creation can be more technical or more focused on joint Go-to-Market 
(GTM). Technical co-creation usually means that – at least – two companies are 
combining their Intellectual Property (IP) in order to create something new. For 
example, this could be a company with deep industrial domain know-how partner-
ing with another company that has deep AI experience. Another form of co-creation 
is focused more on combining two existing offerings into a new offering, but with-
out a deep technical integration. This could mean truly combining two existing 
offerings or actually selling one company’s offering via the channels of the other. Of 
course both approaches can be combined.

This does not have to be limited to 1:1 partnerships but can also lead to multi-
party ecosystems.

Platforms are another area for co-creation. A partner platform will allow partners 
in a closed ecosystem to work together. For example, a platform for an industrial 
robot could allow partners of the robot manufacturer to submit applications, which 
are then operated in a semi-sandboxed environment. Because all the partners are 
well known and trusted, this approach will be possible without a fully secure 
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execution sandbox. This makes sense, especially if the cost for developing a sully 
secure sandbox is prohibitive or technically impossible. A fully open platform will 
have made the investment to develop a secure sandbox, which will enable onboard-
ing of unknown and per se untrusted partners. This will be even more important if 
apps are deployed not only in the cloud but also on physical assets. In an AIoT 
scenario, the sandbox will need to provide execution capabilities for code as well as 
AI/ML algorithms (Fig. 14.3).

14.1.3  Expert Opinions

The following interview provides insights on AIoT and co-creation from different 
perspectives, including large enterprises, venture capital, and research. The 
experts are:

• Jean-Louis Stasi, Senior Vice President, Strategic Partnerships with Startups, 
Schneider Electric

• Dennis Boecker, Global IoT Innovation Lead at Bosch
• Ken Forster, Executive Director at Momenta (VC)
• Prof. Heiner Lasi, Director Ferdinand-Steinbeis-Institute

Fig. 14.3 AIoT co-creation options
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Dirk Slama: Jean-Louis, how is Schneider Electric managing co-creation?
Jean-Louis Stasi: Schneider Electric has twenty lines of business in different areas 

of energy management and automation – each one roughly with revenues of a 
billion Euros. Each has its own market environment and its own R&D roadmap. 
Each is facing different regulatory requirements, which has a huge impact on 
innovation as well. Take the highly regulated electricity grid market versus fast 
moving areas such as data centers. Each business has its individual set of condi-
tions in which they are operating, and that is nothing new. However, this defines 
the appetite for co-creation for each business differently and the different ecosys-
tems they are focusing on. The starting point is always the same: what is the 
problem that the business is trying to solve? They see the opportunity and the 
value of the market, but they do not have the required skills and resources inter-
nally. They understand that this is going to happen in the next two to three years – 
so they know they have to move fast. Cyber-security is a good example. That is 
the next big thing for every industry customer in the world. If I do it myself, it will 
take me six, seven years. The alternative is to find a start-up as a partner and 
then scale up together. Of course, going into such a partnership mode is a struc-
tural and strategic decision.

DS: So the main rationale for co-creation is time-to-market?
JLS: No, not necessarily. There are other factors, such as a better understanding of 

market cycles or specific use cases. Another aspect is the management of busi-
ness model evolution vs. technological game changes. So I do not want to empha-
size time-to-market only, but the point is it has to solve a real-life problem. It has 
to solve a big problem and has to happen in the next three to five years. Those are 
the three key conditions.

DS: Dennis, what is your take on this from the Bosch perspective?
Dennis Boecker: I agree in general with what has been said already. What I would 

probably emphasize more is that we’re coming from our strategic search fields. 
Many of these strategic search fields are cross-divisional topics, because major 
trends such as mobility, construction and building technologies cannot be limited 
to a single line of business. The strategic search fields agree with the executive 
management, and are aligned with the different lines of business. The interesting 
question then is how you address the different strategic search fields. We have 
identified four different ways of doing this: Corporate Product Innovation, 
Strategic Partnerships, M&A, and Start-up Co-Creation. Corporate Product 
Innovation is an internal approach in which we focus on building up our own 
Intellectual Property (IP) and capabilities. Strategic Partnerships are for big 
projects, taking more a consortial approach. M&A for us is the enhancement of 
our own IP and our core capabilities. Finally, Start-up Co-Creation focuses on 
very concrete portfolio elements, or very specific problems we need to solve. 
Here, time-to- market is usually more important than IP. Say, for example, we are 
involved in a large bid ourselves, where we have identified a gap in our own 
portfolio. A start- up is able to address this very quickly. We can even work on 
several portfolio elements with different start-ups. This is a good way of creating 
an ecosystem. You share a problem, and then you start working on concrete proj-
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ects, either in a more strategic partnership, with start-ups, or even a combination 
thereof.  Co- creation for me is not a one-to-one model, where two companies 
work together to create a specific piece of IP. We truly want to build open ecosys-
tems around our strategic search fields, including multiple partners. And then 
applying any of the four collaboration models which I just explained, depending 
on the situation.

JLS: Interesting. Schneider Electric has a very decentralized model of control. Each 
line of business is pretty much autonomous in their selection of partnership mod-
els and specific partners. So there is no centralization of this element. At the end 
it produces a central result, where each business has its own iteration on that. An 
important element is the intuition between a start-up and the larger structure. A 
start-up is not necessarily three guys in a garage. It can already be scaled by a 
team of 200 engineers, which have already scaled to a certain level of product- 
market fit. As we grow more confident in the potential for scaling their business, 
they become an M&A target for us. However, this is a continuous process, and it 
is not decided in the early stages. It takes some time for a partnership to evolve 
into something more, before it becomes strategically impactful for us at large and 
we are prepared to make a move in the direction of M&A. Another important 
aspect in this is the geographical footprint. Because what we see is of course 
markets are evolving at a different speed, depending on where the innovation is 
happening. Is it US? Is it Europe? Is it China? And each market also has its own 
way to do things. So we also have this dimension that we need to integrate into 
our model because as you develop that globally, there is no one way to do that 
things. Each kind of region has its own specifics, depending on the maturity and 
culture.

DB: I agree with you on the necessary evolution of partnerships. There is definitely 
a chance that the portfolio approach and the respective relationships with the 
ecosystem develop from one quadrant into the other. But in the very beginning, I 
think you need to be very clear if this is something to share with the ecosystem or 
if it is rather something that you want to own the IP ultimately yourself. That is 
something that you need to be very clear about.

DS: Let us switch the perspective from the enterprise side to the start-up side. Ken, 
Momenta is an investment fund that specifically focuses on AIoT companies. 
What are you telling the companies in your portfolio: look for a buyer-seller 
relationship with large enterprises, or focus on strategic partnerships?

Ken Forster: We see it as an ecosystem of many-to-many, with many actors contrib-
uting to the overall value of solutions. Let me first outline the actors and then I 
can reflect on the role Venture Capital plays. I will generalize four key actors in 
the AIoT ecosystem: incubators, innovators, incumbents, and the implementers. 
As investors, we broadly operate as an incubator working to grow young compa-
nies that are often innovators. The large strategic Operational Technology (OT) 
players are generally incumbents. Finally, we have the end users, implementers, 
those leveraging our collective technologies and tools to create business out-
comes. Between these actors, Venture Capital sit at the intersection of innova-
tors, incumbents and implementers accelerating the velocity of innovation. Early 
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stage companies often do not have the resources or experience to dance with the 
elephants of industry, so we bridge the gap, investing behind the innovators to 
accelerate their capabilities to play in the larger ecosystem. While our initial 
value is in providing seed to later-stage capital, the larger value is often the 
acceleration we bring via our AIoT ecosystem networks. As an example, we 
organized a consortium of four of our portfolio companies last year to demon-
strate an intermodal container location and condition monitoring demonstration 
for the U.S. Department of Defense. The pilot demonstrated the use of AIoT tech-
nologies to track the location of containers through the full journey of shipment 
while recording the condition of the cargo within those containers, including 
security. This was truly a team effort with each portfolio company providing a 
critical piece of the solution. The DOD in this case was the implementer actor, 
our portfolio companies the innovators with Momenta acting as the incubator. 
Of course, once product-market fit is demonstrated, the incumbents will often 
play the strongest role: providing the ‘voice of the customer’ backed by their own 
size and momentum to scale up these innovations to the enterprise scale. In sum-
mary, we operate at the Venn of innovation – bridging the innovation of startups 
with the enterprise scale of large industrials. Our tools are capital, securing key 
leadership and teams, and activating partnerships early and often with compa-
nies such as Bosch, Schneider Electric and other market leaders.

DS: Thanks. Now let us look beyond AIoT-enabling technologies for a moment. 
Heiner, another key ingredient to AIoT is data. In your research, you are focusing 
on ecosystems for data sharing to support different AIoT use cases. Care to 
explain?

Heiner Lasi: As you said, an AIoT use case needs data to operate on. If these data 
are created and processed within a single company, everything is fine. However, 
in many cases, you will need to cross these boundaries. Either because you need 
to combine data from different IoT-objects/companies, or because companies 
need to access data from other IoT-objects/companies in order to create business 
value. Let us take a logistics company that is running a fleet of forklifts. The ini-
tial IoT business cases here were very much about operational efficiency. This 
was all internal. But now we are seeing “… as a service” business cases. This 
means that logistics companies and forklift manufacturers must share opera-
tional data. In addition, insurance and finance companies are becoming involved 
in these business cases. On the technical level, emerging concepts such as coop-
erative Data Spaces can help here. However, the issue here is not technical inte-
gration but rather the creation of a partner ecosystem that is developing the 
required levels of trust to share operational data between the partners. This is 
not about technical trust; this is about trust on the business and even the human 
level. Transparency is important. This is what we are trying to address with our 
concept of data coops. These data coops are a manifestation of a data-centric 
ecosystem, with clearly defined rules of engagement, and a data space as the 
underlying technical platform. The rules of engagement must address how – for 
example – the logistics companies, the forklift manufacturers, and the financial 
companies are providing and accessing data, and how the benefits are shared. 
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While AIoT is an important technical enabler in all of this, it really comes down 
to creating an ecosystem of partners who trust each other. And it takes time to 
develop the required level of trust.

JLS: This is an extremely critical point. What we are seeing at Schneider Electric is 
that there is a very strong relationship between the time you connect an asset 
with a sensor, and the time you get tangible business value out of it. Time-to- 
value is of the essence. I think we – all the industrial companies – have a long list 
of IoT use cases which have created zero value. Anything beyond three months, 
you lose the momentum, you lose the sponsorship. If you are thinking too broad, 
try to integrate too many stakeholders, things get too complicated. Every factory 
you talk to is adding new requirement. The conditions in the factories are differ-
ent. The cloud infrastructure is different. The level of knowledge is different. It 
never ends. And suddenly you are caught in the “pilot dead end”.

To Heiner’s point about the data: the challenge is to ensure that these data are 
turned into a tangible benefit for the customer in a very short amount of time. To 
achieve this, you have to maintain OT leadership in the team. You must give them 
the value, which means you also must give them the leadership. If you give the 
leadership to the IT guys, it is finished. That is our experience.

HL: I agree. However, this is not only about IT vs OT. This is also about creating a 
link between business experts from different industry domains, such as OT and 
financial services, e.g., to enable “as a service” business models. In this exam-
ple, you need to combine the experience of running the OT side with the experi-
ence of understanding the inherent financial risks.

JLS: Let us take supply chain visibility, e.g., in the food and beverage industry. This 
is a good example where we need to unify data to obtain increased visibility. It 
took them years to realize that yes, it makes sense to share data, because we have 
the same suppliers and we want to make sure that this food product truly is com-
ing from the right place. It took perhaps five years to reach this level of trust in 
this ecosystem. But then we are coming back to time-to-value: People do not 
have five years to get to the outcome. They have to create value in the next six 
months. So there is this big tension in the AIoT space regarding the time it takes 
to build trust. Maybe eventually there will be a technology such as blockchain to 
intermediate the trust, but I think thus far this has not yet scaled beyond one or 
two verticals. I want to reiterate this, because I think AIoT has been failing in 
many, many cases because of this lack of value in a given time frame. In addition, 
I think we are still on this journey where it takes more value creation to justify a 
vertical integration, end-to-end.

DS: Does this only apply to what we have been calling the long tail of AIoT, or are 
we also talking about the short tail of AIoT here?

DB: Even for the high-impact products on the AIoT short tail, you need to ensure 
that you are delivering value creation along the way. If you have this huge AIoT 
short tail opportunity which you know will take you three to five years to deliver, 
you better make sure that every couple of months on the way to it you show tan-
gible value creation. This is what I was referring to earlier on regarding portfo-
lio achievements and strategic partnerships. On this level, it will take a longer 
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time, and you cannot expect to get the full outcome in three months, because it’s 
just too much and too complex. However, you need those complementary, smaller 
items along the way to show that AIoT makes sense. Admittedly, with physical 
products involved, finding a stable Minimum Viable Product is much more diffi-
cult, but still…

KF: In the past, AIoT products often required full stack solution development. As an 
example, Nest had to develop the full stack of software, hardware and connectiv-
ity to build a smart thermostat. Today, this development is more horizontal allow-
ing solution developers to choose from best of breed components leveraging 
standards. In this momentum from highly vertical development toward more 
horizontal solutions, there is even more opportunity to work with an ecosystem 
of companies that are aligned around domain specific use cases.

HL: We see a similar trend for data coops. Usually, they are initially clustered 
around domain-specific use cases. Therefore, the data coop with the underlying 
data space is the platform, with the different use cases representing long tail 
opportunities. Because there is an upfront investment in setting up the initial 
platform, it is key to immediately show value creation with the first use cases.

JLS: If you are talking about high-impact products such as the first iPhone, I agree. 
They take significantly more time and higher investments. Even if we are talking 
about IT/OT integration, it is important to understand if you are talking about the 
device manufacturer, or the implementer. If you are talking about the manufac-
turer of a new AIoT-enabled device, I agree with your characterization. However, 
if you are talking about the implementation side, where you are addressing many 
factories in different locations, you need to do this in a very consistent and pre-
dictable way. You will need a very simple and easy way, so that every operational 
team can implement this in less than three months. Than you can reach massive 
scale because you are making things so simple. Then, it becomes like the SaaS 
(Software-as-a-Service) model. This is where AIoT today starts to become rele-
vant for industrial companies, because end users are able to scale this up 
themselves.

DS: Thank you all!

14.1.4  Tradeoffs

To conclude the discussion on co-creation and strategic partnerships, let us take a 
short look at the pros and cons. For example, some of the risks and drawbacks 
include:

• Technical, legal and commercial complexity, as well as generally increased 
stakeholder complexity leads to a significant increase in project risks

• Colliding interests can lead to failure or at least unbalanced partnerships
• Limited visibility and lack of transparency can impose significant risks
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Some of the benefits include:

• Significant business and technical synergies
• Unlocking creative potentials that would not be possible within a single company
• Access to markets otherwise not easily accessible
• Combining speed and agility of startups with global reach and execution capa-

bilities of incumbents

Before making a decision on co-creation vs. traditional sourcing, these factors need 
to be carefully weighed.

14.2  Sourcing

The acquisition of the required technologies and resources is probably one of the 
most critical parts of most AIoT projects. Many project leaders – and many procure-
ment departments – do not have much experience in this space, which is why this 
part of the book aims to provide a structured approach to the problem (in combina-
tion with a set of useful templates) (Fig. 14.4).

The approach described here covers typical sourcing challenges, introduces a 
generalized sourcing process for AIoT products/solutions, discusses make vs. buy 
vs. partner, introduces the concept of an AIoT Sourcing BOM, helps define vendor 
selection criteria, covers RFP document creation and management, and finally looks 
at vendor selection.

Fig. 14.4 Sourcing
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14.2.1  Challenges

Before looking at the details of the sourcing strategy and process, we must first 
understand the challenges associated with AIoT sourcing and procurement. An 
AIoT project is often a complex undertaking. On the business side, many different 
stakeholders must be aligned, contradicting requirements must often be managed, 
and existing business processes will have to be re-engineered. On the technology 
side, a multitude of new technologies and methodologies must be made to work 
together. In the case of a line-fit solution, existing or new manufacturing capabilities 
must be aligned with the needs of the AIoT solution. Finally, the solution roll-out 
and service operations must be prepared and managed.

So what can go wrong? A lot, especially if project management does not pay 
close attention to the digital supply chain. Selecting the wrong vendor or the wrong 
technology for all or parts of an AIoT solution can have ripple effects that put the 
entire project in danger. The same applies to over-specifying or underspecifying 
what is needed. Poor implementation services or badly defined SLAs (Service Level 
Agreements) can lead to bad user experience and stability problems. If these prob-
lems are only determined after the roll-out, this can put the entire business at danger. 
The list of sourcing-related challenges also includes issues with adapting to change, 
allowing poor quality for lower costs, ignoring the costs of time, ill-defined sourc-
ing and procurement processes with unclear responsibilities, project management 
issues, complex organizational dependencies, and loopholes in contracts.

Especially for industrial companies, dealing with AIoT-related topics from a 
sourcing point of view can be challenging:

• How can agile development be supported with a matching pricing model and 
contracts?

• How can we deal with new paradigms such as AI and the required SLAs?
• Can AI-based solutions be treated like software-based solutions from a sourcing 

point of view, or do they need a different approach?
• How can dependencies between different suppliers be managed, e.g., for hard-

ware and software?
• How can vendor lock-in be avoided due to ‘accidental’ technical dependencies?

RFPs (Request for Proposals) play an important role in many sourcing projects. 
Depending on the chosen sourcing strategy, a number of different RPFs will be 
required, especially if different technologies and resources will be acquired from 
different suppliers. One should not underestimate how unpredictable and difficult to 
manage RFP projects can be and how often they miss their deadlines. Carefully 
aligning the required RFP projects with your development plans will be a key suc-
cess criterion for your project. One aspect here simply is the timelines for running 
the RFP and securing suitable vendors. Especially in larger enterprises, another 
aspect is the complexities of sourcing decisions in complex political environments.
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14.2.2  AIoT Sourcing Process

The first important step towards successful technology and resource acquisition is 
to define a high-level process, which needs to be aligned with all key stakeholders: 
AIoT project team, procurement, legal, and often senior management. The process 
proposed here is based on the assumption that it will be centered around a Request 
for Proposal (RFP), and has five main elements: sourcing strategy and planning, 
RFI (optional), RFP creation, RFP distribution, and AIoT vendor selection 
(Fig. 14.5).

Procurement strategy and planning need to look at the most important aspects of 
the AIoT solution (including stakeholders, scope, and requirements), as well as the 
implementation project (timeline, key milestones, and budget). As part of the sourc-
ing strategy, the make vs. buy question must be addressed. Depending on the out-
come of this decision, the creation of a specialized Sourcing BOM (a breakdown of 
all required elements of the solution) should be considered. Furthermore, vendor 
profiles, sourcing criteria, and the actual sourcing process (including timelines) 
should be defined.

During the RFP creation phase, a concise RFP document must be created, 
reviewed with all internal stakeholders, and often formally approved.

After completion of the RFP document, it will be distributed to the target 
vendors. In some cases, it will also be made publicly available. Managing the 
RFP process will usually involve a structured Q&A process with all interested 
suppliers.

Finally, the vendor responses must be evaluated. Often, vendors are invited for 
individual vendor presentations. Based on this information, a first set of vendors can 
be preselected. In some cases, smaller Proof-of-Concept projects are done with 

Fig. 14.5 AIoT sourcing process
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these vendors. Based on the outcomes of the PoCs, a short-list can be created. Often, 
the last few vendors are then asked to do a more extensive pilot project. Based on 
the technical and functional evaluation, as well as extensive price negotiations, the 
final selection is then done.

14.2.3  AIoT Sourcing Strategy

Defining the sourcing strategy is an important first step. This section will cover 
strategic sourcing options (make vs. buy. vs partner), the AIoT Bill of Materials, 
the AIoT Sourcing BOM, and finally the alignment with the development 
schedule.

14.2.3.1  Strategic Options: Make vs. Buy vs. Partner

The decision for a specific sourcing strategy is fundamental and will shape your 
AIoT-enabled business for the years to come. Giving up too much control over the 
production process for a strategic product can be as problematic as investing too 
many own resources in the development of commodity technologies and failing to 
build truly differentiating features on top.

So what are the options? For the purpose of our discussion, we have identified 
three strategic sourcing options:

• Internal Development: This option basically assumes that only commodity tech-
nology such as middleware or standard hardware components will be externally 
sourced, but all custom development (including software and hardware) will be 
done internally.

• Acquire & Integrate: This option assumes that only the high-level design and 
component integration will be done internally, while all subcomponents (hard-
ware, software) will be acquired from external sources.

• Turnkey Solution: This option assumes that an external provider will be selected 
to provide a complete solution or product, based on the requirements defined by 
the ordering organization. This can either be a complete custom development, or 
the customization of a standard solution/Commercial-Off-the-Shelf product. 
Typically, in this case, the supplier is responsible not only for the implementa-
tion, but also for the design.

These three options are only examples. Other options, such as co-innovation or 
Build-Operate-Transfer, can also be interesting. However, these three examples 
should provide a good starting point for the discussion in the following 
(Fig. 14.6).
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Fig. 14.6 AIoT sourcing options

So how to decide for the right sourcing option? One key factor is the strategic 
relevance of the AIoT-based product or solution. An auxiliary system with little 
direct impact on the business could probably best be acquired as a turnkey solution. 
A strategic product that will be responsible for a large part of future revenue will 
most likely require much more control over the product’s design and value chain, 
and thus lend itself to the custom development option. The same could hold true for 
an AIoT solution that controls parts of an enterprise’s core processes.

Other factors that must be taken into consideration include the following:

• Organizational capabilities: Does your organization have a proven track record 
in hardware and/or software development? And how about AI and Data Science?

• Resource availability: Do you have the required resources available for the 
required time period? And is it the best use of these resources?

• Could you build it fast enough?
• Could you build it good enough?
• Need for control: How much control does your organization need over the design 

and value chain?
• Would building it internally allow cost reduction (e.g., by utilizing own manufac-

turing lines)?
• Do you want to keep building/maintaining it yourself after the launch/SOP?
• How mature is the supplier market?
• Is there an opportunity for a strategic partnership here?
• Is a well-known supplier brand a potential differentiator?

In many cases, the Make/Buy/Partner question cannot be answered for the entire 
product or solution but needs to be broken down to different components (see dis-
cussion on the Sourcing BOM below). To answer the Make/Buy/Partner question 
for a complex AIoT solution, it is often important to first understand the complete 
breakdown of the solution. This is examined in the discussion of the AIoT Sourcing 
BOM below (Fig. 14.7).
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Fig. 14.7 Sourcing strategy decision

14.2.3.2  The AIoT Bill of Materials

In manufacturing, the bill of materials (BOM) is used for planning the purchasing 
of materials, cost estimation, and inventory management. A BOM is a list of every 
item required to build a product, including raw materials, subassemblies, intermedi-
ate assemblies, subcomponents, and parts. It usually also includes information 
about the required quantities of every item.

There are usually different, specialized BOM-types, including:

• Engineering BOM: developed during the product design phase, often based on 
Computer-Aided Design (CAD) data. Lists the parts and assemblies in the prod-
uct as designed by the engineering team

• Manufacturing BOM: includes all the parts and assemblies required to build the 
finished product. Used as input for the business systems involved in ordering 
parts and building the product, e.g. ERP (Enterprise Resource Planning), MRP 
(Materials Resource Planning), MES (Manufacturing Execution System)

• Sales BOM: used during the sales phase, provides details of a finished product 
prior to its assembly

Given the potential complexity of an AIoT project, we propose the creation of a Sourcing 
BOM as the foundation for the sourcing process. In the following, we start with a discus-
sion of a generic AIoT BOM, followed by the introduction of the Sourcing BOM.

14.2.3.3  Example: ACME Smart Shuttle

To provide a meaningful discussion of the BOM concept for an AIoT product, we 
use the ACME Smart Shuttle example. ACME Smart Shuttle Inc. is a fictitious com-
pany offering a platform to manage shuttle services for schools. Instead of using a 
fixed bus network and fixed bus schedule, ACME Shuttle utilize AIoT to offer much 
more on-demand service to students. Instead of using fixed bus stops, virtual bus 
stops are introduced that can change during the day, depending on demand. Students 
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are using a smartphone app to request a ride to and from the school. These requests 
are then matched against the virtual bus stop system, potentially resulting in the ad- 
hoc creation of new, virtual bus stops. Shuttle buses are equipped with an on-board 
unit to provide bus tracking and AI-based in-vehicle monitoring. The platform in the 
backend utilizes AI to optimize the pick-up order and routing of the shuttle buses. 
Figure  14.8 shows the key elements and stakeholders of the ACME Smart 
Shuttle system.

To return to the BOM discussion, the starting point for the creation of a basic 
BOM structure for an AIoT product or solution is usually an analysis of the archi-
tecture design. Figure 14.9 shows an example of the high-level architecture design 
of the ACME Smart Shuttle solution. Additionally, listed are examples of resources 
required for implementing key elements of the system.

Fig. 14.8 Example: supply chain of our shuttle bus system

Fig. 14.9 Solution architecture as the starting point for BOM breakdown

D. Slama



159

14.2.3.4  Creating the AIoT BOM

A BOM is typically a hierarchical structure; in our case, the 3–5 high-level areas of 
the solution architecture should form the first hierarchy level of the BOM. Note that 
this BOM will include not only hardware, but also software elements, as well as 
network infrastructure. In reality, the BOM for such a project might be comprised 
of multiple, specialized BOMs. The example below indicates how a high-level 
architecture design – such as the one for the ACME Smart Shuttle example from 
before – can be mapped to the initial BOM.

Thinking about required resources in terms of a BOM will be unusual for peo-
ple from the software world. However, the benefit of including not only hardware 
and physical elements in the BOM structure but also software and virtual ele-
ments is that the BOM provides a holistic view of the entire system. This can be 
used not only for the Sourcing BOM but also from the point of view of depen-
dency management, tracing of BOM elements from a security point of view, etc. 
(Fig. 14.10).

14.2.3.5  Make vs. Buy Breakdown

For most AIoT systems, the make vs. buy (vs. partner) decision cannot be applied to 
the entire system. Instead, it must be applied to different entries in the AIoT 
BOM. Fig. 14.11 shows four different scenarios:

Fig. 14.10 AIoT sourcing BOM: creation
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Fig. 14.11 Sourcing BOM with different sourcing scenarios

• Scenario A is a manufacturer working on a strategic new core AIoT product. In 
this case, most BOM items will be custom made internally. Only some items 
such as Edge Platform, WAN, cloud infrastructure and EAI middleware, will be 
sourced externally.

• Scenario B is a manufacturer working on a time-to-market driven project. In this 
case, only hardware-centric BOM items will be sourced internally.

• Scenario C is a software company that takes nearly the inverse position to 
scenario B.

• Finally, scenario D assumes an auxiliary AIoT system, which will be sourced as 
a turnkey solution. Only the preparation of existing applications for integration 
with the new system will be done internally.

14.2.3.6  ACME Smart Shuttle: Outsourcing AI?

ACME Smart Shuttle, Inc. sees AI as a key enabler to build highly differentiated 
product features with a strong customer appeal. Consequently, the team has per-
formed an assessment of the best uses of AI in the system design. The most promis-
ing AI use cases have been discussed with the procurement team as part of the BOM 
creation. A summary of the make vs. buy vs. partner decisions that have been made 
is summarized in Fig. 14.12.
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Fig. 14.12 Outsourcing AI?

Three AI-enabled components have been identified as particularly important to 
the system: Shuttle routing, shuttle ETA forecasting and driver shift planning. 
Ideally, these three components should be developed in-house to retain full control 
and ensure constant optimization. However, the analysis has shown that the engi-
neering management team has no experience hiring and managing a team with the 
required AI skills; furthermore, the required AI experts are not easily available in 
the market. Consequently, the decision was made to opt for a build-operate-transfer 
model: the development and operations support for these components will initially 
be outsourced. Medium- to long-term, ACME Smart Shuttle will then take over the 
team from the external supplier to become part of the in-house organization.

For AI-enabled in-vehicle surveillance and vehicle maintenance, the decision 
was made to buy these components because they are not strong product differentia-
tors and commodity solutions should be available with potentially one exception: 
the automatic detection of violence between students or even vandalism. For this 
particular feature, a co-creation model could be envisioned, assuming that there 
would be a market for such a feature beyond the business scope of ACME Smart 
Shuttle.

14.2.3.7  AIoT Sourcing BOM

The next step is to turn the generic AIoT BOM into an AIoT Sourcing BOM. The 
first thing that needs to be looked at in more detail are the required quantities:

• For hardware components deployed on the assets, the required quantities will 
depend on the number of assets to be supported. This again will depend on 
the business plan. This means most likely the correct strategy here will have 
to foresee different options, like a minimum and a maximum amount required. 
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This will have to be mapped to different contractual options with the 
suppliers.

• Additionally, for software licenses, the number of clients often plays an impor-
tant role. In the case of AIoT, clients can either be human users or assets. Again, 
this will depend on the business plan and require some flexibility to be built into 
the sourcing contracts.

• Finally, for custom developed software, the Sourcing BOM will sometimes have 
to include an estimation of the required development resources (number of 
developers, availability). Alternatively, this is an estimation that can come from 
suppliers, based on the requirements.

Next, for each item in the Sourcing BOM, a sourcing decision will have to be made. 
Sourcing options typically include internal development, management consultan-
cies (e.g., for project management), System Integrators, Commercial Off-the-Shelf 
Software Vendors, Cloud infrastructure providers, engineering companies, manu-
facturers, and telecommunication companies.

A key decision for each element in the Sourcing BOM is the make vs. buy (or 
partner) decision. This decision will depend on a number of different factors:

• Strategic importance of AIoT Solution as a whole and the contribution of each 
BOM item individually

• Internal capabilities: is this something your company can realistically 
do itself?

• Availability of internal resources
• Timing: who can deliver within the required time frame?
• Brand considerations: will having a certain brand for a specific subcomponent 

improve the overall value of the product?
• Overall partner strategy: does it make sense to utilize some companies not only 

as suppliers, but also as potential additional sales channels?

Once quantity and sourcing strategy information has been added to the Sourcing 
BOM, the schedule perspective needs to be added as well. This needs to be care-
fully aligned with the development schedule to avoid roadblocks on the develop-
ment side.

Finally, it is important to note that in a complex AIoT project, not all required 
solution elements may be known from the beginning (or they might be subject to 
change). Agile development methodologies are designed to address volatile 
requirements and solution designs. However, from a sourcing point of view, this 
is obviously very problematic. Frequent changes to the Sourcing BOM will result 
in loss of time and potentially even spending money on the wrong things 
(Fig. 14.13).
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Fig. 14.13 AIoT sourcing BOM: refinement

The following provides some examples of typical elements of an AIoT Sourcing 
BOM specifically from the point of view of AI- and IoT-related components.

AI-specific Sourcing BOM Elements

The following are some examples of typical, AI-specific elements of an AIoT BOM:

• AI platform, including AI-specific hardware and middleware  – for use in the 
cloud/on-premises backend, or the EDGE layer

• Functional components requiring resources with AI-specific skills, including the 
AI engineer, data scientist and AI DevOps engineer

• Outsourced data labeling services, e.g., for manual image classification; beware 
that transferring images with personalized data to other countries for such pro-
cessing services can be prohibited by local regulations.

• AI-specific QA, testing and validation services

IoT-specific Sourcing BOM Elements

The following are some examples of typical, IoT-specific BOM elements:

• IoT-related cloud infrastructure
• EDGE infrastructure (hardware, software)
• Resources with IoT-specific skills, e.g., embedded hardware or software devel-

opment, AIoT project management, etc.
• Telecommunications services, e.g., a global IoT network from a telco carrier 

or an MVNO
• Security-related infrastructure, testing services, operations services and skilled 

resources
• Operations services and support
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14.2.3.8  Schedule Alignment

Aligning the agile development schedule with the sourcing schedule will probably 
be one of the key challenges in any project. This is critical to the success. Final 
sourcing and supplier decisions are often a prerequisite for:

• Achieving architectural stability: For example, the selection of a specific cloud 
or middleware platform can have a significant impact on the solution architecture

• Availability of development tools and environments: Similarly, the setup of 
development tools and environments will usually be supplier-specific, and will 
require an early decision in the project

• Developer availability: The availability of both hardware and software develop-
ers typically also depends on the chosen technology

• Infrastructure setup: Additional infrastructure such as an AI environment or a 
security framework will again depend on the final sourcing decision

• Hardware development: Finally, any hardware-specific development will also 
require sourcing decisions, e.g., for processors, boards, or communica-
tion modules

Figure 14.14 highlights the potential dependencies between the agile development 
schedule and the sourcing schedule.

14.2.4  General Considerations

Before starting the RFP process, a number of other general considerations must be 
made, including the required SLAs and Warranties, pricing models, and vendor 
selection criteria.

Fig. 14.14 Schedule alignment
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14.2.4.1  SLAs and Warranties

A critical decision in the procurement process is the type of contract that is aimed 
for, especially for any kind of custom development:

• Service contract: Typically, time and material
• Contract work: Typically, includes SLAs, maintenance commitments, warran-

ties, etc.

In many situations, the latter will be particularly important for an AIoT solution. 
Warranties typically ensure that a service will perform in accordance with its func-
tional, technical and business specifications. Service Level Agreements (SLAs) 
offer performance metrics and details on the specific consequences of a provider 
who is failing to meet those standards.

Typical SLAs in IT projects include:

• Service availability: Specifies the amount of time a service is available, e.g. 
99.99% (which would imply ~88 hours of average annual downtime)

• Defect rates: Quantification of allowed error rates in a service
• Defect resolution: Addresses the speed by which problems are addressed
• Security: Addresses the security of the service
• Business results: Address the business perspective, e.g., as business pro-

cess metrics

Figure 14.15 shows some examples where this is applied to an AIoT Solution.

14.2.4.2  ACME Smart Shuttle: SLAs for AI?

The ACME Smart Shuttle had previously identified three key components for the 
system, which utilize AI. The decision was made to apply a build-operate-transfer 
model as the sourcing strategy for these three components. This means that compo-
nent development will initially be sourced externally, with the goal to then in-source 

Fig. 14.15 Sourcing BOM SLAs
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the team over time. To ensure that the external team meets the requirements, a set of 
SLAs have been defined. These SLAs differentiate between functional and non-
functional aspects. The functional SLAs are specific to the individual components, 
while the nonfunctional SLAs in this case apply to all three components. Figure 14.16 
provides an overview.

A key issue with SLAs for AI-based components is that AI models usually decay 
over time, due to changes in the input data. Take, for example, the ETA prediction 
function for shuttle buses: this function will heavily depend on map and traffic data. 
If the actual layout of the street grid is changing (e.g., due to construction sites), this 
will probably require the ETA models to be retrained with the updated map data. 
This will have to be reflected in the contract as well: The SLA definitions can only 
apply to models that are regularly retrained.

14.2.4.3  Pricing Models

Another important factor in the sourcing process is the pricing model. In many situ-
ations, the customer will define the required pricing model as part of the 
RFP. However, in some cases, the pricing model can also be defined by the supplier.

In IT development projects, the most common pricing models are Fixed Price and 
Time and Material. A key prerequisite for a Fixed Price project is a stable, complete 
and sufficiently detailed requirements specification and Service Level Agreements. If 
this cannot be provided, then Time and Material might be the only real alternative. 
Variations of the Time and Material approach are the Dedicated Team approach, as 
well as Agile Pricing. In Agile Pricing, often a base price is agreed upon, combined 

Fig. 14.16 ACME smart shuttle SLAs for AI components
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with incentives related to the achievement of individual sprint goals. Another pricing 
option is a model where the supplier participates in the business success of the cus-
tomer, e.g., revenue sharing (‘Outcome-based pricing’). However, getting both sides 
to agree to a fair sharing of risks and rewards can be a difficult undertaking.

Other elements of the AIoT Sourcing BOM will again require completely differ-
ent pricing models. For example, the pricing for telecommunications services will 
often depend on data volumes and other factors. The pricing for custom hardware is 
likely to depend on individual component prices, as well as volume commitments.

14.2.4.4  AIoT Vendor Selection Criteria

Once it is decided which items from the AIoT Sourcing BOM should be externally 
acquired, it is important to create a set of clearly defined selection criteria. The 
Digital Playbook proposes a spreadsheet that includes the AIoT solution in general, 
nonfunctional requirements, functional requirements, and finally the operations and 
maintenance requirements. Each of these criteria should be individually weighted, 
so that later an overall score can be derived for each offer.

In this context, a number of key questions will have to be answered, including the 
following:

• How important is cost relative to the other areas?
• How important is the ratio between functional and non-functional requirements?
• How important is the vendor evaluation, including strategic fit, financial stability, 

long-term maintenance capabilities, etc.?

Figure 14.17 shows an example of a spreadsheet containing key selection criteria.

Fig. 14.17 AIoT sourcing criteria

14 Co-Creation and Sourcing Intro



168

14.2.5  RFP Management

Finally, once the internal alignment is completed, the RFP process starts. This 
includes RFP document creation, RFP document distribution and Q&A process, 
and eventually AIoT vendor selection.

14.2.5.1  RFP Document Creation

The creation of the actual RFP document(s) is a critical part of the sourcing process. 
It is key that an RFP document is as concise as possible, with sufficient detail for 
any contractual agreement based on it. Any gap or inconsistency in the RFP can be 
used further down the path by a supplier for re-negotiation or costly change requests. 
Consequently, the RFP should be written specifically for the situation at hand and 
not a repurposed, generic document. Typical elements in an RFP include:

• Company name, project name, proposal due date
• Project overview
• Scope of work

 – Functional requirements
 – Non-functional requirements

• Quality criteria
• Submission requirements and process

In many cases, it can also make sense to be transparent about the following:

• Evaluation metrics and criteria
• Budget

For the Scope of Work part, it makes sense to reuse many of the Solution Architecture 
design artifacts, e.g. the solution sketch, data domain model, component design, etc. 
However, two key questions must be looked at here:

How many details from the business plan to reveal in the RFP? It can be advanta-
geous to share some details of the business plan with potential suppliers to allow 
them to get a better understanding of the business potential and thus to make better 
offers. However, many companies would feel reluctant to share too many details in 
a document shared with many external stakeholders.

How detailed should the solution design be? Providing a solution design to 
potential suppliers can be a good way to ensure consistent offers from different 
contenders, which closely match the requirements. However, it can also be limiting 
in terms of obtaining different solution proposals with different strengths and weak-
nesses (Fig. 14.18).
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Fig. 14.18 RFP document creation

The Industrial Internet Consortium (IIC) has developed an online tool for creat-
ing an RFP for Industrial Internet solutions. While currently lacking the AI perspec-
tive, this can still be an interesting tool for anybody creating an AIoT RFP document, 
at least for the IoT parts.

14.2.5.2  RFP Document Distribution and Q&A Process

After completion as well as internal review and approval, the RFP document is dis-
tributed to relevant supplier candidates. In some cases, the RFP might also be pub-
licly made available, if this is an internal requirement.

If the process permits this, the receivers of the RFP are likely to come back with 
questions. First, almost any RFP will leave some room for interpretation. Second, 
most suppliers are likely to seek close, personal contact with the acquiring company 
and the sourcing team. It is important that to run a transparent and fair selection 
process, the questions from all potential suppliers are collected, and the answers are 
shared as an update to the RFP with all contestants. This will also help increase the 
quality and comparability of the offers.

14.2.5.3  AIoT Vendor Selection

As part of the selection process, vendors are invited for individual vendor presenta-
tions. Based on this information, a first set of vendors can be preselected. Reference 
calls can provide valuable insights from other customers of the different vendors. In 
some cases, smaller Proof-of-Concept projects are done with these vendors. Based 
on the outcomes of the PoCs, a short list can be created. Often, the last 2–3 vendors 
are then asked to do a more extensive pilot project. Based on the technical and 
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functional evaluation, as well as extensive price negotiations, the final selection is 
then done.

The selection process is often overseen by an evaluation committee, which eval-
uates the recommendation by the operational sourcing team. The evaluation com-
mittee usually includes stakeholders from senior management, business and 
technology experts, as well as representatives from procurement and legal. Members 
of the evaluation committee ideally review the final proposals independently using 
an evaluation spreadsheet as described above. Depending on the complexity and 
criticality of the project, they might also be asked to provide written statements.

Finally, the results will have to be communicated to the contenders. Depending 
on the internal processes of the buyer, different policies might apply here. For exam-
ple, it can make sense to communicate not only the result but also some decisions 
such as the evaluation criteria matrix. This will help suppliers to improve their offers 
in the future. However, it can also lead to unwanted discussions. Developing a good 
(but of course also compliance-rules obeying) relationship to high-quality suppliers 
can be a strategic advantage and might warrant additional effort in the communica-
tion of the selection results.

14.2.6  Legal Perspective

The legal perspective of an AIoT initiative is often closely related to sourcing activi-
ties because customer/supplier relationships need a solid legal foundation. The fol-
lowing interview with Philipp Haas (head of the Expert Group for Digital and New 
Businesses at Bosch’s legal department) provides some insights on the level per-
spective, building on the ACME Smart Shuttle example we introduced earlier 
(Fig. 14.19).

Fig. 14.19 Legal perspective – shuttle bus example
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Dirk: Thanks for joining us today. Tell us a little bit about what you do at Bosch. 
What’s your role?

Philipp: I have been a consultant in the legal department of Bosch for 10 years now, 
and I am currently responsible for the central department for digital and new 
businesses. This includes consulting various smaller legal entities and central 
departments within Bosch. In addition, I’m also heading the expert team for IT 
law. We are also supporting the other colleagues in the legal department with 
respect to digital businesses.

Dirk: Thank you for supporting us with the Digital Playbook. When we started our 
discussions, we learned that the different legal aspects around AIoT are quite 
complex. That is why we said the best way to get a 360-degree view of the legal 
aspects would be to discuss this based on a realistic use case. So from a legal 
point of view, what are the key issues that we need to consider in our ACME 
Smart Shuttle example?

Philipp: I think the most important role is that of the platform operator because they 
sit in the middle of everything and offer the AIoT-enabled product. They have 
contractual relationships to many parties.

Dirk: Good point. Let’s get started with the relationship between the platform oper-
ator and the OEM. What does the platform operator have to look out for from a 
legal perspective?

Philipp: In our scenario, the ACME Smart Shuttle is operating a fleet of shuttle 
buses, which need to be purchased or leased from the OEM. What is very impor-
tant for our platform provider is that he’s not only getting access to the vehicles, 
but that he is also having access to the data in the vehicles. Otherwise it will be 
more difficult to offer data-based services, which is a key assumption in this 
example. So there needs to be an additional agreement for the data generated by 
the vehicles. This means we need a data sharing contract. If the fleet is large 
enough, this could be an individually negotiated contract; alternatively, the plat-
form provider has to agree to the standard offerings, which some OEMs already 
have out there. For example, BMW offers connected drive services, which include 
access to car data.

Dirk: Thanks. So that is our main supplier. What about the other suppliers, anything 
specific to look out for?

Philipp: Almost all IoT use cases today require a cloud provider, typically from the 
US or China. Cloud services are essential for the platform provider because they 
provide the infrastructure for running the software and the AI algorithms. 
Depending on the setting, you choose between software-as-a-service or 
infrastructure- as-a-service, if you need more control. Many of these cloud ser-
vices are highly standardized today, and there will be little room for negotiating 
individual contracts. So selection of a cloud infrastructure player will not only 
be a technical choice but also requires you to look at costs and standard legal 
terms and conditions.

Dirk: And what about the counterpart to the cloud, the edge side of things. For 
example, in our Shuttle Bus example, we are assuming that there will be custom 

14 Co-Creation and Sourcing Intro



172

edge nodes embedded into the buses. What are the relevant aspects from a legal 
point of view with respect to the edge component provider?

Philipp: If the platform operator purchases devices that are responsible for the con-
nectivity – for example, to his back-end – it might be necessary to have an agree-
ment regarding the transport of the data. Such devices typically have a SIM card, 
either as a regular SIM or a built-in SIM card. It makes a difference who is 
responsible for the activation of this card. Therefore, if the device supplier is 
activating the card, it might be necessary that the supplier register as a telecom-
munication provider. The alternative would be, that the platform provider might 
have to conclude an additional contract with a responsible telecommunication 
provider directly. This might also be the case if the supplier is just delivering the 
hardware with a SIM card and the platform operator is responsible for activating 
the hardware (and the SIM). If the platform operator is responsible for activating 
the hardware, we have to examine his role. He then might become a telecommu-
nication provider if he is responsible for the transport of data to his contract 
partners, but in our use case I do not think this will be the case for the platform 
provider.

Dirk: Talking about data in our Shuttle Bus scenario, one option that we have been 
discussing is for the bus operator to out-source the development and training of 
the AI algorithms. This would require the platform operator to make all the 
required data available to a third-party IT development firm. Are there any spe-
cifics that he has to look out for, in particular with respect to the ownership of 
his data?

Philipp: Yes, this is a very typical scenario. You are using the wording “his data”, 
so the first question would be what exactly is “his data”? Does the data we are 
talking about truly belong to him? Legally there is no data ownership. If you’re 
talking about data, there are two key aspects. The first key aspect is, are we talk-
ing about personal data? Because personal data within Europe are subject to the 
GDPR (General Data Protection Regulation), in addition to other international 
data protection laws. It typically means that you are only allowed to process the 
data – including handing it over to a third party for development – if you have a 
legal basis for that. The second key aspect for processing or transferring data are 
the relevant contracts. For example, the contracts that apply when receiving data 
might limit your ability to make these data available to a third party for further 
processing. So you’re only allowed to transfer the data within these boundaries. 
If that is possible, usually there is no other legal protection for the data. In some 
very limited cases, data might also be protected by IP rights.

Dirk: In our scenario, the IT supplier of the ACME Smart Shuttle uses data from 
different sources, including data from the ACME Smart Shuttle, data from schools 
(e.g., school time tables), and data from third parties (e.g., traffic data). From 
these data, they derive new data via AI, e.g., bus schedules and routes. Does the 
AI and the new data created by the AI automatically belong to the ACME Smart 
Shuttle, because they are paying for it?

Philipp: No. It is highly recommended – I would say even absolutely necessary – to 
have a clear agreement with the IT supplier regarding the results that are created 
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with the data. That is one of the topics I mentioned before, where it is legally not 
easy to determine who contributed to the results and who is the owner with 
respect to the results. That is why it is essential to have an explicit agreement on 
that. In joint development projects, you always have clauses regarding the rights 
to the development results. You also have clauses regarding software, so that, 
that is quite standard. In the newer contracts, we see clauses that explicitly refer 
to data, the right to data, maybe distinguishing between test data and productive 
data, and also with respect to work results that have been created using such data.

Dirk: I do understand the differentiation between software and data. But what about 
the trained AI models – are they data or software, from a legal point of view?

Philipp: An AI model will usually fall in the category of software. Software is defined 
in copyright law, and it is a program for computers that shows the computer what 
the next steps are. A trained AI model usually runs within a software environ-
ment. Maybe it is not a software on its own, it is just part of a software but also 
parts of software are considered as software under the copyright act. So I think 
it will be protected by copyright law, which means that it is possible to have an 
agreement on the usage rights and you can transfer that to the platform provider. 
And the platform provider will, of course try to do that because as you men-
tioned, he paid for it. However, this is not always possible because sometimes, if 
you have very large suppliers who argue that they are also using pre-existing 
works for their work results, it might be not easy to get all exclusive usage rights. 
There might be an individual agreement on who is allowed to do what with the 
work results.

Dirk: OK, let us assume we got all this sorted out, and we now have our platform up 
and running. What about our relationship to the end customer, the students of 
the school?

Philipp: I would say that is pretty straight forward. You offer your services most of 
the time via an app and for that app you need terms of use. We have standards 
that we are using for all different kinds of apps. And that platform provider has 
to comply with the relevant consumer protection laws that give very detailed 
requirements and that are renewed very often. In this year in Europe, we have 
some new consumer protection laws. You can also think about EULA’s (End User 
License Agreements). You can use that in addition to the terms of use. So the 
terms of use cover the usage of the service itself, and the EULA is for the soft-
ware. I do not think that it’s necessary to use both.

Dirk: Another important group of stakeholders in our example are the drivers...
Philipp: In our example, the drivers are employed at platform operators. There 

might also be a service contract with them if they’re independent, but then you 
have to make sure that they are truly independent and not “by-accident” employ-
ees, because this could cause major risks for the platform operator for example 
regarding tax law. The employment contract itself, I would say that is also quite 
standardized but we have this special case here that we need to have an agree-
ment regarding the usage of the data from the shuttle buses. Because data that we 
get out of the vehicles could be contributed by the driver, it means that they are 
personnel related and that is why we need to have an agreement on the usage. 
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This is legally not trivial because the platform operator has to obtain free and 
voluntary consent from his employee. I think in our use case, there is also a good 
justification for the platform provider because the usage of the data is an essen-
tial requirement for his business use case. He cannot operate the platform with-
out that. So the request is absolutely reasonable.

Dirk: Thanks. Anything else that we have to look out for from the perspective of the 
Shuttle Bus platform operator regarding legal aspects?

Philipp: We looked at the contractual relationships and I mentioned new legal 
developments regarding consumer protection laws. The same applies for digital 
business in general. There are many laws that either recently came into force or 
are still in development. I mentioned the telecommunications act that is currently 
revised on the European level. There are various legal drafts regarding platform 
regulation, and already existing platform regulations. The Data Governance Act 
will contain requirements if you want to share data via a platform. The Digital 
Content Directive has already been transformed into German law and such new 
regulations as of January 1, 2022. It makes various requirements for digital 
offers, which also includes software as a service or apps. For example, it con-
tains an obligation to make regular security updates during the lifetime of the 
service. And on the horizon, we also see a regulation for AI. There is a first draft 
from the European Union. This is a very interesting regulation from a legal per-
spective. From the operator’s perspective, it could lead to some new obligations, 
such as checking the data that he is using for the training of the AI models. 
According to the draft, the data have to be free of errors. There is an obligation 
to document the data usage. You have to document the results of the AI system so 
that you can track back exactly why a certain decision has been made by the 
AI. For nearly all AIoT products that are considered “high risk”, this AI regula-
tion will play a large role in the future.

Dirk: And do you see something similar coming up in USA and China as well?
Philipp: In the US, I recently read a statement from the US Department of Commerce 

regarding the AI Regulation, and it did not sound like they want to follow us. They 
seem to have a different approach and are looking with a skeptical eye on our 
regulation and do not think that it is helpful. So no, I don’t expect a similar regu-
lation from the US at the moment. In China, the situation is different. There are 
new security laws put into place and they also regulate the usage of the data. AI 
regulations are not for protecting the individual but more for protecting the inter-
ests of the government and the country. There will be a definition of categories 
for data that fall under these new security laws, but I read that vehicle data will 
be considered as one of the critical data categories. So I think in the future oper-
ating such a platform for China might be only possible within China.

Dirk: Last question. Looking at this from the perspective of the project manager, 
when in the lifetime of their project should they involve legal expertise? And 
what’s the best way to actually embed this legal expertise in the project?

Philipp: Okay, this question is very simple to answer: As early as possible. Because 
there are many legal considerations and I would also say many traps.
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Dirk: So depending on whether the operator operates from within a large organiza-
tion or actually as a startup, how does he go about this? Does he really make 
legal experts part of his team or how does he get access to this expertise?

Philipp: This is a case by case decision. The legal counsel can become part of the 
project team, which has the advantage that he has deep knowledge about the 
technical and business considerations of such an offering. For a startup it might 
be too costly to involve external counsel as part of your project team and let them 
participate in every discussion. You might take a leaner approach and discuss it 
with the counsel and work out a plan at the beginning so that it is clear what has 
to be considered. And then you can go ahead and have regular meetings, discus-
sions with the legal counsel, but not directly include him into every discussion.

Dirk: Great. That was super interesting, thank you very much.
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How to introduce our smart, connected products and solutions to their customers, 
be they external or internal, B2B or B2C? For solutions, this usually involves a 
dedicated rollout process, while for products the Go-to-Market is important 
(Fig. 15.1).

Fig. 15.1 Agile AIoT grid
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15.1  Smart, Connected Solutions: Rollout

Effective management of the rollout process for AIoT-enabled solutions is a key 
success criterion. How exactly this looks like will depend on many factors: is this 
for one site or one asset only, or is this for multiple sites with multiple assets? Is this 
for internal customers only, or for external customers? Will this require customiza-
tions for individual target sites?

We have already discussed several different examples representing different sce-
narios, e.g.,

• Single site, single asset: monitoring of particle collisions at the Large Hadron 
Collider

• Multi-site, multi asset: Rollout of a predictive maintenance solution for escala-
tors in train stations

• Multi-site, multi asset with customization: Rollout of a predictive maintenance 
solution for different users of hydraulic components (requires customization of 
the AI for each customer)

The following describes a generalized process that could be suitable, for example, 
for a multi-site, multi asset situation.

During rollout preparation, a portfolio of all relevant assets and sites (e.g., train 
stations and escalators) must be created. This portfolio must be evaluated and priori-
tized. Based on this assessment, a project plan including rollout schedule and 
resource management must be created.

Rollout execution will then require a generalized plan which can be applied to 
each individual site. In this case, it includes site preparation (e.g., aligning with 
the train station’s facility management, preparing for deployment), asset prepara-
tion (e.g., cordoning off the escalators, enabling access to the required internal 
parts), solution deployment (e.g., deploying an IoT gateway and an ultrasound 
sensor), testing the solution (e.g., simulating a problem with the escalator and 
checking if this is recognized by the solution), and finally transferring everything 
to operations.

Back to the portfolio level, the next area is performance and control. For 
example, this can monitor the rollout of the escalator monitoring solution and 
suggest corrections in case of inefficiencies. Finally, if this is a fixed set of sites/
assets, the rollout project needs to be closed properly. This will include prepar-
ing measures for new assets being onboarded. For example, new escalators 
acquired in the future should also be equipped with the monitoring solutions 
(Fig. 15.2).
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Fig. 15.2 Rollout of AIoT-enabled solutions

15.2  Smart, Connected Products: Go-to-Market

For the Digital OEM, a strong focus on the commercialization of new digital/physi-
cal offerings is key. For an incumbent, this needs to start with a look at existing sales 
and marketing processes, as well as the skills and networks of the existing team. 
How can this be applied to successfully market and sell new, digital/physical offer-
ing? And which changes might be required?

For digital/physical offerings, we often need a much closer alignment between 
the product development and the marketing/sales organization, since both market-
ing and sales functions need to be digital and built directly into the product. This is 
particularly true for any kind of digital subscription services or digitally managed 
physical-feature-on-demand offerings (Fig. 15.3).
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Fig. 15.3 Go-to-market

15.2.1  Example: Physical-Feature-on-Demand

If the new offerings include some kind of fleet/asset/feature-as-a-service element, it 
will be important that the sales organization be adopted accordingly. This will 
include many aspects, including sales commissions and incentives, sales processes, 
and customer engagement.

An interesting on-demand example is seat-heating-on-demand, as shown in 
Fig. 15.4. Traditionally, seat heating is sold as an add-on during the car sales pro-
cess. Only if it is configured in the beginning will the car be equipped with it in 
the factory. The on-demand version assumes that all cars are equipped with the 
seat heating functionality. Customers can then use the car app to activate the fea-
ture on demand. The pricing for the feature could be dynamic, determined by an 
AI. In this example, responsibility for selling this feature would move from the 
sales rep, who is selling the car in the first place, to the team, which is responsible 
for demand generation for digital features. Another aspect is the change from a 
traditional, one- time payment via bank transfer to a subscription model based on 
micropayments.
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Fig. 15.4 Example: seat heating as physical-feature-on-demand

15.2.2  Continuously Improve Commercialization

One cannot expect to get the product/customer fit from the very beginning. So a 
clear focus on the continuous improvement of all relevant aspects of commercial-
ization is required. In the example shown here, three key KPIs have been identified: 
number of signups, how many customers are actively using the freemium services, 
and how many are paying for premium services. There will always be a gap between 
these three KPIs, but of course the challenge is to drive them all up and minimize 
the gap. In order to do this, one will constantly have to monitor the customers along 
their customer journey. AIoT-generated insights can play a key role here, in addition 
to the standard digital analytics channels. The learning from the analysis must be 
applied for the continuous improvement of the offering and its commercialization: 
marketing and sales processes and campaigns can be adapted almost in real-time, 
especially if they are driven through digital channels. The digital product features 
can be adapted usually in a relatively short term, e.g., using Over-the-Air capabili-
ties. Finally, even the physical product can be improved from generation to genera-
tion using the insights from the analysis of the customer journey. Managing this 
continuous improvement process effectively will be key to successfully scaling up 
an AIoT-enabled, digital/physical business (Fig. 15.5).
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Fig. 15.5 AIoT commercialization & continuous improvement
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Providing efficient and effective service operations will be a key success factor for 
any AIoT-enabled product or solution. Depending on the specific nature of the sys-
tem, service operations setup can potentially take very different shapes. For com-
plex, industrial assets, service operations will most likely include direct customer 
interactions via a call center, as well as on-site maintenance or repair services. For 
mass-market consumer products, service operations will most likely be highly auto-
mated and provide only limited field services, if any. Most Field Service Management 
(FSM) organizations will be able to greatly benefit from AIoT-enabled features, 
which provide real-time access and advanced analytics of asset-related field data, or 
even support for predictive or preventive maintenance services.

Since the operations perspective will usually be quite different for the Digital 
OEM vs. the Digital Equipment Operator, this chapter will look at both 
perspectives.

16.1  Digital OEM (Fig. 16.1)

The operations perspective of the Digital OEM and his AIoT-enabled products will 
include a number of different elements. The sales organization will be responsible 
for supporting the new, digital-enabled features and services. The support organiza-
tion must be able to handle the added product complexity. Finally, the DevOps 
organization must be able to continuously enhance and optimize the digital product 
offering.
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Fig. 16.2 AIoT-enabled sales organization

Fig. 16.1 Operations

16.1.1  Sales

Understanding digital transformation from a sales perspective is essential for its 
success. The Digital OEM is presented with many opportunities, which must be 
properly adopted by the sales organization.

AIoT will provide the sales and marketing organization with the opportunity to 
truly understand how customers are using the products in the field. Together with 
other data, e.g., from web analytics, CRM and social media, this will enable the 
sales and marketing organization to better target new and existing customers, e.g., 
for upselling newly available, digital-enabled features (Fig. 16.2).
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16.1.2  Support

Providing AIoT-enabled digital features can significantly increase a product’s com-
plexity. While it should be a core duty of the DevOps team to ensure the best pos-
sible user experience, there is a good chance that the new, digital features will cause 
additional customer requests to the support organization. There is nothing more 
frustrating for a customer buying a smart, connected product – let us say a vacuum 
robot – and then failing to get it to work, e.g., because of a pairing problem, or some 
other issue. Connectivity alone can be a source for many problems, which need to 
be addressed by the support organization. Especially for mass-market products, an 
efficient triage to manage the combination of internet FAQs, automated bots and 
potentially call center services will be important.

The support organization must also be prepared to deal with new, unexpected 
problems. For example, the use of AI in a smart, connected product might lead to 
problems that will initially be very hard to reproduce because the product is no lon-
ger following the deterministic logic encoded in the software (but rather is driven by 
an AI that is a black box in that regard).

Finally, the support organization should be supported with AIoT-enabled prob-
lem analytics and diagnostics. This will have to be provided by the DevOps team, 
which needs to focus not only on the product features but also on how to support the 
rest of the organization with AIoT-based features.

16.1.3  DevOps

While DevOps has the word operations in its name, the focus of the DevOps orga-
nization is usually on developing and operating smart, connected products. As dis-
cussed in the previous section, the focus of the DevOps team is usually on 
continuously improving the features of the product. However, one should not under-
estimate the importance of ensuring that the DevOps organization also supports the 
other parts of the operations side. In particular, the DevOps team will be responsible 
for providing sales, marketing, and support organizations with the required capa-
bilities. Together, they need to identify which additional features – beyond the fea-
tures important and visible to the end-user  – will have to be built. The earlier 
example of seat-heating-on-demand applies here, where the DevOps team will not 
only have to build the feature itself but also implement dynamic pricing together 
with the sales team and build suitable in-app promotions in collaboration with the 
marketing team. Similarly, the DevOps team will be responsible for providing the 
support team with the required data, analytics reports and applications.
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16.2  Digital Equipment Operator (Fig. 16.3)

The Digital Equipment Operator will usually have a different perspective on the 
operations of the AIoT-enabled solution. This will most likely include field services 
related to assets in the field, IT Service Management related to the AIoT solution, 
and supplier management for the AIoT solution.

16.2.1  Field Service Management

Field service management (FSM) focuses on enterprise assets, e.g., operational 
equipment, machines and vehicles. FSM is described by Gartner [16] as a practice 
that “includes the detection of a field service need (through remote monitoring or 
other means, inspection or a customer detecting a fault), field technician scheduling 
and optimization, dispatching, parts information delivery to the field, and process 
support of field technician interactions.”

Fig. 16.3 Service operations

Fig. 16.4 AIoT & field service management
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Figure 16.4 outlines how AIoT and FSM can play together. FSM can benefit 
from AIoT in a number of areas, including:

• Improved triage: Utilize AIoT to determine the severity and priority of asset- 
related incidents.

• Faster identification of required parts: Utilize AIoT for precise identification of 
assets and key parts deployed in the field.

• Inventory tracking: Utilize AIoT to create a precise and real-time inven-
tory update.

• Initiation of automated intelligent dispatch events: Utilize AIoT to better priori-
tize incidents and to provide more information for problem resolution.

• Remote monitoring and diagnostics: Use real-time machine data for asset health 
and performance assessments.

All of this will only be possible if the AIoT project prepares the service operations 
organization accordingly. This will be one of the big challenges of the AIoT project 
management team. How to do this will greatly depend on a number of different fac-
tors, including:

• Is there already an existing organization responsible for FSM?
• If so, how is the organizational relationship between the IoT solution project and 

the existing FSM organization?
• If not, how far is the IoT solution project empowered to actually set up a new 

FSM organization to start operating after the start of production?
• Will the focus be mainly on operational FSM topics, or will it also include stra-

tegic topics such as Asset Performance Management (APM)?

16.2.2  IT Service Management

Another important dimension of AIoT Service Operations will be what is tradition-
ally referred to as IT Service Management (ITSM). AIoT-ITSM will be responsible 
for ensuring the design, planning, delivery, operations, and management of all IT 
services related to the AIoT-enabled system. This means that AIoT-ITSM is not 
concerned with operating assets but rather enables the AIoT-features themselves. A 
well-established standard in the ITSM space is ITIL, the Information Technology 
Infrastructure Library. Without AIoT-ITSM, an AIoT system cannot be operated, 
which will be covered below.

ITIL defines five processes and four functions. The four functions are service 
desk, technical management, application management, and IT operations manage-
ment. The five service operations processes are [17]:

• Access Management: grants authorized users the right to use a service; blocks 
any access request of non-authorized users to the service

• Event Management: captures, filters, and categorizes events to decide the appro-
priate actions to be taken. Events might or might not require an action.
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• Incident Management: Incidents are events that have a negative impact on a ser-
vice or its quality. Incident management helps restore IT service to a working 
state as quickly as possible.

• Problem Management: deals with identifying and addressing problems at their 
root. Multiple incidents can relate to the same problem.

• Request Fulfilment: responsible for acknowledging and processing service 
requests received from users. Usually, these are technical requests, not requests 
related to the functionality of business applications.

To manage all IT assets and other related data, ITIL foresees the use of a so-called 
configuration management database (CMDB) as the central repository for this kind 
of information. However, the complexity of introducing a CMDB should not be 
underestimated. Rouse [18] warns that CMDB projects often fail due to stale and 
unusable data. This is certainly an aspect that needs to be addressed, ideally by 
automating configuration data management as much as possible. Figure 16.5 pro-
vides an overview of how some key ITIL concepts can be applied to the AIoT 
perspective.

Fig. 16.5 AIoT & IT service management

The architecture and organization for the supporting systems of the service oper-
ation will always be highly project-specific. However, the following discussion can 
provide some guidance regarding the architectural setup.

A key question is as follows: will there be separate AIoT-ITSM and FSM orga-
nizations, or will they be merged into one organization? While process-wise there 
might be similarities, the required skills will usually be very different. For example, 
the skills required to deal with the IP configuration of an IoT gateway or to keep a 
time series database running are very different than, for example, the skills required 
to analyze and repair the malfunction of an escalator. Consequently, the project 
must make a deliberate decision on how to organize AIoT-ITSM and FSM.
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16.2.3  Option 1: Separate Systems

If it is decided that AIoT-ITSM and FSM will be two separate organizations, it can 
also make sense to run two separate support systems. As an example, a simplified 
monitoring solution for excavators is shown in Fig. 16.6, using some form of IoT 
gateway on the excavator. Both the FSM application and the AIoT-ITSM applica-
tion have their own databases, receiving data from the gateway/TCU. The AIoT- 
ITSM solution uses some form of CMDB to store information related to the 
configuration items that make up the IoT solution (e.g., an inventory of gateways in 
the field, with related incidents). The FSM solution stores asset-related data, e.g., 
performance data from the hydraulics component of the excavator. Both solutions 
then have their dedicated and specialized staff, which supports their respective 
services.

16.2.4  Option 2: Integrated System

For strategic reasons, it can make sense to integrate AIoT-ITSM and FSM into the 
same organization, supported by an integrated system. In this case shown in 
Fig.  16.7, only one repository is used, which stores both asset-related and IoT 
enablement-related data. The back office supports all functions, and so is the field 
service. Of course, these are only two examples of a potential organizational setup; 
in reality, many other, potentially hybrid combinations could be possible. However, 
these examples serve the purpose of highlighting the issue and the choices an AIoT 
project manager must make.

Fig. 16.6 Architecture: separate systems
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Fig. 16.7 Architecture: integrated systems

16.2.5  Supplier Management

Finally, the operations side also needs to take care of managing the supplier of the 
AIoT-enabled solution. Chances are that the operator will not have development 
resources himself and therefore requires an internal or external supplier to provide 
the solution. In some cases, the operator will have a team within his own organiza-
tion, in which case the DevOps discussion from the previous chapter can also be 
applied here. However, in the likely case that the solution comes from another – 
internal or external – division, then the operator must build an effective supplier 
management function. Duties will include requirements management, sourcing, and 
dealing with additional or changing requirements.

Take, for example, the railway operator example from the Introduction sec-
tion. In this case, the railway operator acquired an AIoT-enabled solution for 
escalator monitoring. It is highly likely that this solution will be externally 
sourced, so supplier management becomes an integral part of the railway opera-
tor’s organization. Ensuring the integration of the external escalator monitoring 
solution with the internal systems of the railway operator will be one key 
responsibility of this team.

Another interesting question will then be who will take on the responsibility 
for the IT service management of the escalator monitoring solution: will this be 
done in-house, or will the railway operator have a long-term support contract 
with the provider of the escalator monitoring solution? If this requires in-depth 
knowledge about other operational systems, then there is a good chance that at 
least parts of system operation (including the IT service management) will be 
in-house.
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Chapter 17
Organization

Dirk Slama

The final perspective in the AIoT Business Execution discussion is on the organi-
zation, which needs to support the creation and operation of AIoT-enabled prod-
ucts or solutions. The organizational setup is a potential Achilles’ heel: if this is 
not done properly, the entire initiative can be derailed. A number of different fac-
tors play a role here, from cultural aspects to proper alignment of the organiza-
tional structure with the key architectural elements of the product or solution. 
Owing to the large differences between Digital OEM and Digital Equipment oper-
ations from the organizational perspective, both will be discussed individually in 
this chapter.

17.1  Digital OEM (Fig. 17.1)

The product organization is ultimately responsible for delivering smart, connected 
products. Given the complexity of a typical AIoT product, as well as the different 
cultures that have to be brought together, building an efficient and effective AIoT 
product organization is not an easy task. This section of the AIoT framework dis-
cusses key challenges and proposes a specific setup that can be easily adapted to fit 
one’s individual needs.
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Fig. 17.1 Product organization

17.1.1  Product Organization

A successful product organization differs significantly from a project organization, 
as we will see in the following. In order to understand the differences, we will first 
look at the typical product lifecycle phases, before discussing how a product vs. a 
project organization typically evolves during this cycle.

17.1.2  Product Lifecycle Perspective

Particularly at the beginning of the new product journey, it is important to take a step 
back and look at the complete product lifecycle to be prepared for the road ahead. 
The lifecycle of most successful products can be described as follows:

• Exploration: During this phase, the initial product is developed, market reception 
is validated, initial customers are acquired, etc. Please note that the popular con-
cept of a Minimum Viable Product (MVP) is more difficult to execute if physical 
product components are involved.

• Growth: The growth phase aims to expand reach, scale sales and continue to 
develop the product to stay competitive

• Maturity: In this phase, the focus is on customer retention and to sustain mar-
ket share

• Decline: Finally, a strategic decision regarding strategic pivoting or phasing out 
has to be made; often the start for a next generation product

The interesting question now is: what must an organization look like to support a 
product through these different phases, and how does the organization itself have to 
evolve? (Fig. 17.2).
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Fig. 17.2 Product lifecycle

Fig. 17.3 Project organisations

17.1.3  Traditional Project Organization

In many incumbent enterprises, the development of a new product often starts as a 
project because from a controlling and administration point of view, setting up a 
project is more lightweight than establishing a new organizational unit. Since in the 
early stages it is often not known whether the product idea will be successful, this is 
quite understandable. If the initial MVP is promising, the project might be trans-
ferred to an internal accelerator. If the product shows the potential to scale from a 
sales point of view, a new line of business may eventually be created (Fig. 17.3).

17 Organization
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In principle, there is nothing wrong with this approach. However, in practice it 
can cause severe problems. To better understand why, let us first quickly summarize 
the key differences between project and product. The table following provides a 
high-level comparison.

17.1.4  Toward the AIoT Product Organisation

In practice, there are a number of common problems associated with starting a new 
product with a project mindset and setup. First, a product should be developed from 
the beginning with product KPIs as the central measurement of success; customer 
satisfaction and customer adoption should be key KPIs from the very beginning. 
Typical project-centric KPIs such as development and go-to-market milestones (as 
well as cost) should be secondary.

Second, a typical project has a fixed start and end date, while a product needs to 
take a longer-term perspective. Especially in manufacturing-centric organizations, it 
is still a common assumption that at the end of the initial development project, the 
product is “ready” and can be handed over to a maintenance and operations team, 
eliminating the costs for expert developers. Such a transition will obviously cripple 
any long-term oriented, continuous advancement of the product (Fig. 17.4).

Fig. 17.4 Toward a real product organisation
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Even if the product is initiated as a project in the early stages, it is key to remem-
ber the following:

• Use product-oriented KPIs from the beginning
• Implement a sustainable team setup with a 4 to 5-year perspective; this will con-

tinually evolve the product beyond the MVP
• View the project only as an administrative vehicle for initiating the product orga-

nization, but follow a product-oriented approach from the beginning

17.1.5  Organizational Culture

A key issue in most AIoT product organizations is the cultural differences typically 
found in heterogeneous teams that need to work together. Developers who are used 
to do frequent, cloud-enabled updates have a very different way of managing proj-
ects compared to manufacturing-centric engineers who know that after the SOP 
(Start-of-Production), any change to a physical asset after it has left the factory usu-
ally involves a costly and painful recall procedure. This “Clash of two worlds” 
within an AIoT product organization should not be underestimated. Actually, make 
this a “Clash of three worlds”: don not forget that the “AI people” usually also have 
a culture which is very different than the culture of the “cloud/software people”.

As shown in Fig. 17.5, different types of organizations typically have different 
types of cultures, even within the same company. Applying a one-size-fits all method 
to such a cultural mix will be difficult. This topic is discussed much more in-depth 
in the Agile AIoT section.

Fig. 17.5 Corporate cultures and Agile setup
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17.2  Digital Equipment Operator (Fig. 17.6)

The organization of the Digital Equipment Operator will usually be very different 
than that of the Digital OEM. The focus is much less on development but mostly on 
integrating the solution with the existing assets and the existing business processes. 
This will be discussed in the following.

17.2.1  Solution Provisioning

This part of the organization will heavily depend on the make vs. buy decision. In many 
cases, the AIoT-enabled solution will be sourced externally (or from a dedicated IT unit 
in the same company). In this case, the organization required will be relatively light-
weight, focusing on requirements and provider management. If the decision is made to 
develop the solution with one’s own resources, the picture obviously looks different.

An interesting example for solution provisioning is discussed in the Bosch 
Chassis Systems Control (CC) case study. In this example, a dedicated team for 
building AIoT-enabled solutions for manufacturing optimization is established. 
This central team supports manufacturing experts in the different Bosch CC facto-
ries. The central team has AI and analytics experts who then team up with the manu-
facturing experts in the different locations to provide customized AIoT solutions.

17.2.2  Solution Retrofit

Particularly in cases where new hardware (e.g. sensor packs) must be deployed to 
existing assets, solution retrofitting becomes a huge issue, and must be supported 
with the right organizational setup. Take, for example, the railway operator who 
wants to roll out the escalator monitoring solutions to thousands of escalators in 

Fig. 17.6 DEO organization
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different train stations around the country. For this rollout, a dedicated rollout/retro-
fit organization will have to be established.

Depending on the complexity of the assets – how they are operationally utilized, 
and the scale of the rollout – this can be quite a significant organization. Of course, 
key questions include: for how long the rollout/solution retrofit organization must 
exist, and how the peak load during the initial rollout should be dealt with. Take, for 
example, an AIoT solution that needs to be retrofitted to all the trains in the railway 
operator’s network. Each train might only get a couple of hours of extra mainte-
nance time every year. This will be quite a challenge for the team responsible for 
applying the retrofit to a fleet of thousands of trains.

17.2.3  Solution Utilization

Ultimately, the utilization of the AIoT-enabled solution is indeed the aspect that is 
of most interest to the Digital Equipment Operator, as it is where the business ben-
efit is generated. Depending on the nature of the solution, this can involve a dedi-
cated organizational unit, or be supported by an existing unit. New, AIoT-enabled 
analytics features might feed into an existing MRO (maintenance, repair and opera-
tions) organization. More advanced features, such as predictive maintenance, may 
already require some changes to the organizational setup because they will most 
likely have a more profound impact on the processes. For example, if the predictive 
maintenance solution actually predicts a potential failure, then the MRO organiza-
tion must pick up this information and react to it. This process could be completely 
different than the traditional, reactive maintenance process.

If the AIoT solution offers a broader set of features to support Asset Performance 
Management (APM), then this will require a dedicated APM team to continually 
execute the performance optimizations.

Finally, if the AIoT solution feeds into other business processes, then business pro-
cess re-engineering must be performed, and the new target processes must be supported 
by a suitable organizational setup. Take, for example, the AIoT-enabled flight path opti-
mization system explained earlier. The introduction of such a system will have a signifi-
cant impact on how the airline operates and touch many of its core processes.
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Part IV
Technical Execution – AIoT Framework

Fig. 1 Overview of AIoT Framework

Technical execution must ensure delivery of the AIoT-enabled product or solution in 
close alignment with the business execution. In the software world, this would usu-
ally be managed with an agile approach to ensure continuous value creation and 
improvement. However, in the AIoT world, we usually face a number of impedi-
ments that will prevent a pure agile setup. These impediments exist because of the 
typical complexity and heterogeneity of an AIoT system, including hardware, soft-
ware, and AI development. In addition, an AIoT system usually includes compo-
nents that have to be "first time right" because they cannot be changed after the Start 
of Production (especially hardware-based components or functionally relevant sys-
tem components). Designing the system and the delivery organization in a way that 
maximizes those areas where continuous improvement can be applied while also 
efficiently supporting those areas where this is not possible is one of the key chal-
lenges of the technical execution.

The technical execution part of the Digital Playbook defines an AIoT Framework 
which looks at ways of supporting this. This starts with looking again at the data, 
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AI, IoT, Digital Twin and hardware perspective from the AIoT 101 chapter, but this 
time with the technical execution perspective ("*.exe").

In addition, this part provides a set of good practices and templates for the design 
of AIoT-enabled products and solutions, the implementation of an agile approach 
for AIoT (including the so-called "Agile V-Model"), AIoT DevOps (including cloud 
DevOps, MLops and DevOps for IoT), Trust & Security, Reliability & Resilience, 
Functional Safety, and Quality Management. Before going into detail, the following 
provides an overview of how all of these fit together, starting with the development 
life-cycle perspective.

Technical Execution – AIoT Framework
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Chapter 18
Development Life-Cycle Perspective
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The development lifecycle of an AIoT-enabled product or solution usually 
includes a number of different sub-elements, which need to be brought together 
in a meaningful way. This chapter discusses this for both products and 
solutions.

18.1  Smart, Connected Products

Smart, connected products usually combine two types of features: physical and 
digital. The physical features are enabled by physical elements and mechanical 
mechanisms. The digital features are supported by sensors and actuators as the 
interface to the physical product, as well as edge and cloud-based components. 
Digital features can be realized as hardware, software or AI.

This means that the development life-cycle of a smart, connected product 
must include physical product development as well as manufacturing engineer-
ing. The development lifecycle of digital features focuses on DevOps for the 
edge components (including MLops for the AI deployed to the edge, DevOps 
for embedded and edge software, and embedded/edge hardware), as well as the 
cloud (including MLops for cloud-based AI and standard DevOps for cloud-
based software).

All of this must be managed with a holistic Product Lifecycle Management 
approach. In most cases, this will require the integration of a number of different 
processes and platforms. For example, the development life cycle of the physical 

© The Author(s) 2023
D. Slama et al. (eds.), The Digital Playbook, 
https://doi.org/10.1007/978-3-030-88221-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88221-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-88221-1_18
mailto:dirk.slama@bosch.com


204

features is traditionally supported by an engineering PLM platform, while software 
development is supported through a CI/CT/CD pipeline (Continuous Integration, 
Continuous Testing, and Continuous Deployment). For AI, these kinds of pipelines 
are different and not yet as sophisticated and mature as in the software world. The 
following will describe how such a holistic lifecycle can be supported (Fig. 18.1).

Fig. 18.1 Lifecycle – product perspective

Topics closely related to this include Cyber Physical Systems (CPS), as well as 
mechatronics. Mechatronics is an interdisciplinary engineering approach that 
focuses on the integration of mechanical, electronic and electrical engineering sys-
tems. The term CPS is sometimes used in the embedded world, sometimes with a 
similar meaning as IoT: integrate sensing and control as well as computation and 
networking into physical assets and infrastructure. Both concepts and the related 
development life-cycles can support smart, connected products.

18.2  Smart, Connected Solutions

For smart, connected solutions supporting the Digital Equipment Operator, the pic-
ture looks slightly different since physical product development is usually not 
within our scope. Sensors, actuators and edge nodes are usually deployed to existing 
assets in the field by using a retrofit approach. This means that the holistic lifecycle 
in this case does not include physical product design and manufacturing engineer-
ing. Other than this, it looks similar to the product perspective, expect that usually 
the required development pipelines will not be as sophisticated and highly auto-
mated as in the case of standardized product development (which typically invests 
more in these areas) (Fig. 18.2).

D. Slama
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Fig. 18.2 Lifecycle – solution perspective
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Chapter 19
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An important element in the development lifecycle is the end-to-end design of the 
product or solution. The design section will provide a set of detailed templates that 
can be used here. These templates support the key viewpoints developed by the 
Digital Playbook: Business Viewpoint, UX Viewpoint, Data/Functional Viewpoint, 
and Implementation Viewpoint. These design viewpoints must be aligned with the 
agile product development perspective, in particular the story map as the top-level 
work breakdown. They will have to be updated frequently to reflect any learning 
from the implementation sprints. This means that they can only have a level of detail 
that permits them to do this (Fig. 19.1).

Fig. 19.1 AIoT design viewpoints
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Chapter 20
AIoT Pipelines

Dirk Slama

Pipelines have become an important concept in many development organizations, 
especially from a DevOps perspective. This chapter introduces the concept of AIoT 
pipelines and discusses pipeline aggregations.

20.1  Definition

There are a number of different definitions for the pipeline concept. On the technical 
level, a good example is the popular development support tool git, which provides a 
set of tools to allow flexible creation of pipelines to automate the continuous inte-
gration process. On the methodological level, for example, the Scaled Agile 
Framework (SAFe) introduces the concept of Continuous Delivery Pipelines (CDP) 
as the automation workflows and activities required to move a new piece of func-
tionality from ideation to release. A SAFe pipeline includes Continuous Exploration 
(CE), Continuous Integration (CI), Continuous Deployment (CD), and Release on 
Demand. This makes sense in principle.

The Digital Playbook is also based on the concept of pipelines. An AIoT pipeline 
helps move a new functionality through the cycle from ideation and design to 
release, usually in a cyclic approach, meaning that the released functionality can 
enter the same pipeline at the beginning to be updated in a subsequent release. The 
assumption is that AIOT pipelines are usually bound to a particular AIoT technical 
platform, e.g., edge AI, edge SW, cloud AI, cloud SW, smartphone apps, etc. Each 
AIoT pipeline usually has an associated pipeline team with skills specific to the 
pipeline and the target platform (Fig. 20.1).
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Fig. 20.1 AIoT pipeline – definition

20.2  Pipeline Aggregations

Due to the complexity of many AIoT initiatives, it can make sense to logically 
aggregate pipelines. This is something that many technical tools with built-in pipe-
line support such as git are providing out of the box. From the point of view of the 
target platform, the aggregation concept also makes sense. Take, for example, an 
edge pipeline that aggregates edge AI components, edge software components, and 
potentially even custom edge hardware into a higher-level edge component. On the 
organizational level, this can mean that a higher-level pipeline organization aggre-
gates a number of pipeline teams. For example, the edge pipeline team consists of 
an edge AI and an edge software team.

This way of looking at an organization can be very helpful to manage complex-
ity. It is important to note that careful alignment of the technical and organizational 
perspectives is required. Usually, it is best to create a 1:1 mapping between techni-
cal pipelines, target platforms and pipeline teams.

Figure 20.2 shows an edge pipeline that aggregates three pipelines, namely edge 
AI, edge HW and edge SW. The combined output of the three lower-level pipelines 
is combined into integrated edge components.

D. Slama
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Fig. 20.2 AIoT pipelines aggregates

20.3  AIoT Pipelines & Feature-Driven Development

Technical pipelines are useful for managing and – at least partially – automating the 
creation of new functionalities within a single technology platform. However, many 
functional features in an AIoT system will require support from components on a 
number of different platforms. Take, for example, the function to activate a vacuum 
robot via the smartphone. This feature will require components on the smartphone, 
the cloud and the robot itself. Each of these platforms is managed by an individual 
pipeline. It is now important to orchestrate the development of the new feature 
across the different pipelines involved. This is best done by assigning new features 
to feature teams, which work across pipelines and pipeline teams. There are a num-
ber of different ways this can be done, e.g., by making the pipeline teams the per-
manent home of technology experts in a particular domain and then creating virtual 
team structures for the feature teams that get the required experts from the technical 
pipelines teams assigned for the duration of the development of the particular fea-
ture. Another approach can be to permanently establish the feature teams and look 
at the technical pipeline teams more as a loose grouping. Unfortunately, different 
technology stacks and cross-technology features tend to require dealing with some 
kind of organizational matrix structure, which must be addressed one way or 
another. There are some examples of how other organizations are looking at this, 
e.g., the famous Spotify model. The Digital Playbook does not make any assump-
tions about how this is addressed in detail but recommends the combination of pipe-
lines/pipelines teams on the one hand, and features/features teams on the other 
(Fig. 20.3).
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Fig. 20.3 AIoT features

Jan Bosch is Professor at Chalmers University and Director of the Software 
Center: There are two different ways in which you’re going to organize. In the 
component- based organizational model, you have the overall system architecture 
and assign teams to the different components and subsystems. The alternative model 
is a feature teams model; you have teams pick work items from the backlog. That 
team can then touch any component in the system and make all the changes they 
need to make to deliver their features. That is, in general, my preferred approach, 
but it is an important caveat. The companies that do this in an embedded systems 
context are associating the required skills typically with work items in the backlog. 
They say whatever team picks this up has to have at least these skills to deliver on 
this feature successfully. So it is not that any team can pick any work item.

20.4  Holistic AIoT DevOps

The pipeline concept must be closely aligned with DevOps. DevOps is a well- 
established set of practices that combine software development and IT operations. 
In more traditional organizations, these two functions used to be in different silos, 
which often caused severe problems and inefficiencies. DevOps focuses on remov-
ing these frictions between development and operations teams by ensuring that 
developer and operations experts are working in close alignment across the entire 
software development lifecycle, from coding to testing to deployment.

An AIoT initiative will have to look at DevOps beyond the more or less well- 
established DevOps for software. One reason is that AI development usually 
requires a different DevOps approach and organization. This is usually referred to 
as MLops. Another reason is that the highly distributed nature of an AIoT system 
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usually requires that concepts such as Over the Air Updates be included, which is 
another complexity usually not found in cloud-centric DevOps organizations. All of 
these aspects will be addressed in the AIoT DevOps section in more detail.

In addition to the DevOps focused on continuous delivery of new features and 
functionalities, an AIoT organization will usually also need to look explicitly at 
security and potentially functional safety, as well as reliability and resilience. These 
different aspects will have to be examined through the cloud and edge software 
perspective, as well as the AI perspective. The Digital Playbook builds on existing 
concepts such as DevSecOps (an extension of DevOps to also cover security) to 
address these issues specifically from an AIoT point of view (Fig. 20.4).

20.5  Managing Different Speeds of Development

One of the biggest challenges in most AIoT projects is managing the different speeds 
of development that can usually be found. For example, hardware and manufacturing- 
related topics usually move much slower (i.e., months) than software or AI develop-
ment (weeks). In some cases, one might even have to deal with elements that change 
on a daily basis, e.g., automatically retrained AI models. To address this, one must 
carefully consider the organizational setup. Often, it can make sense to allow these 
different topics to evolve at their own speed, e.g., by allowing a different sprint regime 
for different pipelines that produce AIoT artifacts and components at different speeds. 
An overview is given in the figure following. Please note that there is often no straight-
forward answer for dealing with AIoT elements that require either very long or very 
short iterations. For example, for very slow moving elements, one can choose very 
long sprints. Alternatively, one can have all teams work with a similar spring cadence 
but allow the slower moving topics to deliver non-deployable artifacts, e.g., updated 
planning and design documents, etc. Similarly, for very fast moving elements the strict 
sprint cadence might be too rigid, so it could be better to allow them to be worked on 
and released ad hoc. For example, like automatically retrained AI models, this makes 
perfect sense since for an automated process no sprint planning seems required.

Fig. 20.4 AIoT pipelines + DevOps
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However, there is a key prerequisite for this to work: dependencies between arte-
facts and components from the different AIoT pipelines have to be carefully man-
aged from a dependency point of view. In general, it is OK for fast moving artefacts 
to depend on slower moving artefacts, but not the other way around – otherwise the 
evolution of the fast moving artefacts will have a negative impact on the slower 
moving artefacts. These dependencies can be of a technical nature (e.g., call depen-
dencies between software components, or deployment dependencies between hard-
ware and software) or of a more organizational nature (e.g., procurement decisions). 
The technical dependencies and how to deal with them will be discussed in more 
detail in the Data/Functional Viewpoint of the Product/Solution Design. Finally, the 
Agile V- Model is introduced later as an option to manage product development 
teams in these types of situations (Fig. 20.5).

Jan Bosch from Chalmers University and the Software Center: This is a key 
question: How do you do a release? There are companies in the earliest develop-
ment stage that do heartbeat-based releases; every component releases every 
third or every fourth week at the end of the agile sprints. You release all the new 
versions of the components simultaneously, so that is one way. However, this 
requires a high level of coordination between the different groups who are build-
ing different subsystems in different parts of the system. This is why many compa-
nies aim to reach a state where continuous integration and testing of the overall 
system is so advanced that any of the components in the system can release at any 
point in time, as long as they have passed the test cases. Then, the teams can start 
to operate on different heartbeats. Some of the leading cloud companies are now 
releasing multiple times a day. This should also be the goal for an AIoT system: 
frequent releases, early validation, less focus on dependency management between 
different teams.

Standard sprint duration, e.g. 3 weeks

Very long sprints

of months
E.g. for hardware/manufacturing

Long sprints
Can be 4-8 weeks

Can be a couple

E.g. for embedded / FUSA

Standard Sprints
Usually 2-4 weeks
Each sprint creates potentially
shippable product increment

Micro sprints
E.g. for daily releases of 
automatically re-trained AI
Models

Micro-sprints could
also be ad-hoc!

[very] long sprints could also be
sequence of standards sprints with
every n-th sprint delivering increments

Dependencies

components

Fig. 20.5 Managing different speeds of development
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The starting point of the discussion on technical execution following will be a deep 
dive into our topics from the AIoT 101 section, namely, AI, Data, Digital Twin, IoT, 
and Hardware: the key ingredients of many AIoT products and solutions. Each topic 
will be specifically looked at from the execution perspective (hence the play with 
“*.exe”), with a focus on both technology and organization. For each topic, we will 
also discuss how the technical pipeline and pipeline organization should be 
addressed and how it can all be integrated (mainly through the IoT perspective) 
(Fig. 21.1).

Fig. 21.1 AIoT.exe

© The Author(s) 2023
D. Slama et al. (eds.), The Digital Playbook, 
https://doi.org/10.1007/978-3-030-88221-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88221-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-88221-1_21
mailto:dirk.slama@bosch.com


218

This will then be followed by a more detailed discussion on AIoT product/solu-
tion design, Agile AIoT, AIoT DevOps, and finally Trust & Security, Functional 
Safety, Reliability & Resilience and Quality Management.

21.1  AI.exe (Fig. 21.2)

Naturally, AI plays a central role in every AIoT initiative. If this is not the case, then 
it is maybe IoT – but not AIoT. In order to get the AI part right, the Digital Playbook 
proposes to start with the definition of the AI-enabled value proposition in the con-
text of the larger IoT system. Next, the AI approach should be fleshed out in more 
detail. Before starting the implementation, one will have to also address skills, 
resources and organizational aspects. Next, data acquisition and AI platform selec-
tion are on the agenda before actually designing and testing the model and then 
building and integrating the AI Microservices. Establishing MLops is another key 
prerequisite for enabling an agile approach, which should include PoC, MVP and 
continuous AI improvements.

21.1.1  Understanding the Bigger Picture

Many AIoT initiatives initially only have a vague idea about the use cases and how 
they can be supported by AI. It is important that this is clarified in the early stages. 
The team must identify and flesh out the key use cases (including KPIs) and how 
they are supported by AIoT. Next, one should identify what kind of analysis or fore-
casting is required to support these KPIs. Based on this, potential sensors can be 
identified to serve as the main data source. In addition, the AIoT system architecture 
must be defined. Both will have implications for the type of AI/ML that can be 
applied (Fig. 21.3).

Fig. 21.2 Ignite AIoT – artificial intelligence
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Key AIoT Use Cases / Business Case

Product Design
Utilizing Product usage

& performance data

Sales Support
Data and digital
service driven

APM
Asset performance

Management

SMR
Support, Maintenance

& Repair

KPIs

Digital Services
e.g. add-ons to 
physical product

Online Data Stream
Processing Time Series

Data
Geospatial

Data

Offline
Batch Processing

Advanced Analytics Forecasting/Prediction/Planning

Sensors/Measurands
Mechanical: Position, acceleration, pressure,
force, moment, torque, velocity, ...
Electric: charge,current, conductivity, ...
Optical: Wave, amplitude, spectrum l image, video
Acoustic: Wave, amplitude, velocity l speech
Thermal: Temperature, heat flux, ...
Bio-Chemical: component identity & concentration
Radiation: Type, energy, intensity
Magnetic: Magnetic field, flux, permeability

General AI/ML: Supervised/unsupervised/Reinforcement Learning
ML for AIoT-Data: Data stream clustering, pattern mining, anomaly detection, ...

Fig. 21.3 AI value proposition and IoT

21.1.2  The AIoT Magic Triangle

The AIoT Magic Triangle describes the three main driving forces of a typical AIoT 
solution:

• IoT Sensors & data sources: What sensors can be used, taking physical con-
straints, cost and availability into consideration? What does this mean for the 
type of sensor data/measurements which will be available? What other data 
sources can be accessed? And how can relevant data sets be created?

• AIoT system architecture: How does the overall architecture look like, e.g. how 
to distributed data and processing logic between cloud and edge? What kind of 
data management and AI processing infrastructure can be used?

• AI algorithm: Finally, which AI method/algorithm can be used, based on the 
available data and selected system architecture?

The AIoT magic triangle also looks at the main factors that influence these three 
important factors:

• Business requirements/KPIs, e.g., required classification accuracy
• UX requirements, e.g., expected response times
• Technical/physical constraints, e.g., bandwidth and latency (Fig. 21.4)
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Fig. 21.4 The AIoT magic triangle

The AIoT magic triangle is definitely important for anybody working on the AIoT 
short tail (i.e., products), where there are different options for defining any of the 
tree elements of the triangle. For projects focusing on the AIoT long tail, the triangle 
might be less relevant – simply because for AIoT long tail scenarios, the available 
sensor and data sources are often predefined, as is the architecture into which the 
new solutions have to fit. Keep in mind that the AIoT long tail usually involves 
multiple, lower-impact AIoT solutions that share a common platform or environ-
ment, so freedom of choice might be limited.

21.1.3  Managing the AIoT Magic Triangle

As a product/project manager, managing the AIoT magic triangle can be very chal-
lenging. The problem is that the three main elements have very different lifecycle 
requirements in terms of stability and changeability:

• The IoT sensor design/selection must be frozen earlier in the lifecycle, since the 
sensor nodes will have to be sourced/manufactured/assembled – which means 
potentially long lead times

• The AIoT System Architecture must usually also be frozen some time later, since 
a stable platform will be required at some point in time to support development 
and productization

• The AI Method will also have to be fixed at some point in time, while the actual 
AI model is likely to continuously change and evolve. Therefore, it is vital that 
the AIoT System Architecture supports remote monitoring and updates of AI 
models deployed to assets in the field

Figure 21.5 shows the typical evolution of the AIoT magic triangle in the time lead-
ing up to the launch of the system (including the potential Start of Production of the 
required hardware).
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Fig. 21.5 AIoT magic triangle evolution

Especially in the early phase of an AIoT project, it is important that all three 
angles of the AIoT magic triangle are tried out and brought together. A Proof-of- 
Concept or even a more thorough pilot project should be executed successfully 
before the next stages are addressed, where the elements of the magic triangle are 
frozen from a design spec point of view, step by step.

21.1.4  First: Project Blueprint

Establishing a solid project blueprint as early as possible in the project will help 
align all stakeholders and ensure that all are working toward a common goal. The 
project blueprint should include an initial system design, as well as a strategy for 
training data acquisition. A proof-of-concept will help validate the project blueprint.

Proof-of-Concept
In the early stages of the evaluation, it is common to implement a Proof-of-Concept 
(PoC). The PoC should provide evidence that the chosen AIoT system design is 
technically feasible and supports the business goals. This PoC is not to be confused 
with the MVP (Minimal Viable Product). For an AIoT solution or product, the PoC 
must identify the most suitable combination of sensors and data sources, AI algo-
rithms, and AIoT system architecture. Initially, the PoC will usually rely on very 
restricted data sets for initial model training and testing. These initial data sets will 
be acquired through the selected sensors and data sources in a lab setting. Once the 
team is happy that it has found a good system design, more elaborate data sets can 
be acquired through additional lab test scenarios or even initial field tests.

Initial System Design
After the PoC is completed successfully, the resulting system architecture should be 
documented and communicated with all relevant stakeholders. The system architec-
ture must cover all three aspects of the AIoT magic triangle: sensors and data selec-
tion, AIoT architecture, and AI algorithm. As the project goes from PoC to MVP, all 
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the assumptions have to be validated and frozen over time, so that the initial MVP 
can be released. Depending on the requirements of the project (first-time-right vs. 
continuous improvement), the system architecture might change again after the 
release of the MVP.

It should be noted that changes to a system design always come at a cost. This 
cost will be higher the further the project is advanced. Changing a sensor spec after 
procurement contracts have been signed will come at a cost. Changing the design of 
any hardware component after the launch of the MVP will cause issues, potentially 
forcing existing customers to upgrade at extra cost. This is why a well-validated and 
stable system architecture is worth a lot. If continuous improvement is an essential 
part of the business plan, then the system architecture will have to be designed to 
support this. For example, by providing means for monitoring AI model perfor-
mance in the field, allowing for continuous model retraining and redeployment, 
and so on.

Define Strategy for Training Data Acquisition and Testing
In many AI projects, the acquisition of data for model training and testing is one of 
the most critical – and probably one of the most costly – project functions. This is 
why it is important to define the strategy for training data acquisition early on. There 
will usually be a strong dependency between system design and training data 
acquisition:

• Training data acquisition will rely on the system architecture, e.g., sensor selec-
tion. The same sensor, which is defined by the system architecture, will also have 
to be used for the acquisition of the training data.

• The system architecture will have to support training data acquisition. Ideally, 
the systems used for training data acquisition should be the same system, which 
is later put into production. Once the system is launched, the production system 
can often be used to acquire even more data for training and testing.

Training data acquisition usually evolves alongside the system design – both are 
going hand in hand. In the early stages, the PoC environment is used to generate 
basic training data in a simple lab setup. In later stages, more mature system proto-
types are deployed in the field, where they can generate even better and more real-
istic training data, covering an increasing number of real-world cases. Finally, if 
feasible, the production system can generate even more data from an entire produc-
tion fleet.

Advanced organizations are using the so-called “shadow mode” to test model 
improvements in production. In this mode, the new ML model is deployed along-
side the production model. Both models are given the same data. The outputs of the 
new model are recorded but not actively used by the production system. This is a 
safe way of testing new models against real-world data, without exposing the pro-
duction system to untested functionality. Again, methods such as the “shadow 
mode” must be supported by the system design, which is why all of this must go 
hand in hand.
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21.1.5  Second: Freeze IoT Sensor Selection

The selection of suitable IoT Sensors can be a complex task, including business, 
functional and technical considerations. Especially in the early phase of the project, 
the sensor selection process will have to be closely aligned with the other two ele-
ments of the AIoT magic triangle to allow room for experimentation. The following 
summarizes some of the factors that must be weighted for sensor selection, before 
making the final decision:

• Functional feasibility: does the sensor deliver the right data?
• Response speed: does it capture time-sensitive events at the right speed?
• Sensing range: does it cover the required sensing range?
• Repetition accuracy: does it tread similar events equally?
• Adaptability: can the sensor be configured as required, are all required interfaces 

openly accessible?
• Form factor: Size, shape, mounting type
• Suitability for target environment: ruggedness, protection class, temperature 

sensitivity
• Power supply: voltage range, power consumption, electrical connection
• Cost: What is the cost for sensor acquisition? What about additional operations 

costs (direct and indirect)?

Of course, sensor selection cannot be performed in isolation. Especially in the early 
phase, it is important that sensor candidates be tested in combination with potential 
AI methods. However, once the team is convinced on the PoC-level (Proof of 
Concept) that a specific combination of sensors, AI architecture and AI method is 
working, the decision for the sensor is the first one that must be frozen, since the 
acquisition of the sensors will have the longest lead time. Additionally, once this 
decision is fixed, it will be very difficult to change. For more details on the IoT and 
sensors, refer to the AIoT 101 and IoT.exe discussion.

21.1.6  Third: Freeze AIoT System Architecture

The acquisition of an AI platform is not only a technical decision but also encom-
passes strategic aspects (cloud vs. on premises), sourcing, and procurement. The 
latter should not be underestimated, especially in larger companies. The often 
lengthy decision-making processes of technology acquisition/procurement pro-
cesses can potentially derail an otherwise well planned project schedule.

However, what actually constitutes an AI system architecture? Some key ele-
ments are as follows:

• Distributed system architecture: how much processing should be done on the 
edge, how much in the cloud? How are AI models distributed to the edge, e.g., 
via OTA? How can AI model performance be monitored at the edge? This is 

21 AIoT.exe

https://aiotplaybook.org/index.php?title=Internet_of_Things_101
https://aiotplaybook.org/index.php?title=Internet_of_Things


224

discussed in depth in the AIoT 101, as well as the data/functional viewpoint of 
the AIoT Product/Solution Design.

• AI system architecture: How is model training and testing organized? How is 
MLops supported?

• Data pipeline: How are data ingestion, storage, transformation and preparation 
managed? This is discussed in the Data.exe part.

• AI platform: Finally, should a dedicated AI platform be acquired, which supports 
collaboration between different stakeholders? This is discussed at the end of this 
chapter.

21.1.7  Fourth: Acquisition of Training Data

Potentially one of the most resource intensive tasks of an AIoT project is the acqui-
sition of the training data. This is usually an ongoing effort, which starts in the early 
project phase. Depending on the product category, this task will then either go on 
until the product design freeze (“first-time-right”), or even continue as an ongoing 
activity (continuous model improvements). In the context of AIoT, we can identify 
a number of different product categories. Category I is what we are calling mechani-
cal or electro-mechanical products with no intelligence on board. Category II 
includes software-defined products where the intelligence is encoded in hand-coded 
rules or software algorithms. Category III are “first-time-right” products, which 
cannot be changed or updated after manufacturing. For example, a battery-operated 
fire alarm might use embedded AI for smoke analysis and fire detection. However, 
since it is a battery-operated and lightweight product, it does not contain any con-
nectivity, which would be the prerequisite for later product updates, e.g., via 
OTA. Category IV are connected test fleets. These test fleets are usually used to 
support generation of additional test data, as well as validation of the results of the 
model training. A category III product can be created using a category IV test fleet. 
For example, a manufacturer of fire alarms might produce a test fleet of dozens or 
even hundreds of fire alarm test systems equipped with connectivity for testing pur-
poses. This test fleet is then used to help finalizing the “first-time-right” version of 
the fire alarm, which is mass produced without connectivity. Of course, category IV 
test fleets can also be the starting point for developing an AI which then serves as 
the starting point for moving into a production environment with connected assets 
or products in the field. Such a category V system will use the connectivity of the 
entire fleet to continuously improve the AI and re-deploy updated models using 
OTA. Such a self-supervised fleet of smart, connected products is the ideal approach. 
However, due to technical constraints (e.g., battery lifetime) or cost considerations 
this might not always be possible.

This approach of classifying AIoT product categories was introduced by Marcus 
Schuster, who heads the embedded AI project at Bosch. It is a helpful tool to discuss 
requirements and manage expectations of stakeholders from different product cat-
egories. The following will look in more detail at two examples (Fig. 21.6).
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Fig. 21.6 AI product categories

Example 1: “First-Time-Right” Fire Alarm
The first example we want to look at is a fire alarm, e.g., used in residential or com-
mercial buildings. A key part of the fire alarm will be a smoke detector. Since smoke 
detectors usually have to be applied at different parts of the ceiling, one cannot 
always assume that a power line or even internet connectivity will be available. 
Especially if they are battery operated, wireless connectivity usually is also not an 
option, because this would consume too much energy. This means that any 
AI-enabled smoke detection algorithm will have to be “first-time-right, and imple-
mented on a low-power embedded platform. Sensors used for smoke detection usu-
ally include photoelectric and ionization sensors.

In this example, the first product iteration is developed as a proof-of-concept, 
which helps validate all the assumptions which must be made according to the AIoT 
magic triangle: sensor selection, distribution architecture, and AI model selection. 
Once this is stabilized, a data campaign is executed which uses connected smoke 
sensors in a test lab to create data sets for model training, covering as many different 
situations as possible. For example, different scenarios covered include real smoke 
coming from different sources (real fires, or canned smoke detector tester spray), 
nuisance smoke (e.g., from cooking or smoking), as well as no smoke (ambient).

The data sets from this data campaign are then validated and organized as the 
foundation for creating the final product, where the training AI algorithm is then put 
into or onto silicone e.g., using TinyML and an embedded platform, or even by 
creating a custom ASIC (application-specific integrated circuit). This standardized, 
“first-time-right” hardware is then embedded into the mass-manufactured smoke 
detectors. This means that after the Start of Production (SOP), no more changes to 
the model will be possible, at least not for the current product generation (Fig. 21.7).
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Fig. 21.7 Example: “first-time-right” AIoT product (fire alarm)

Example 2: Continuous Improvement of Driver Assistance Systems
The second example is the development of a driver assistance systems, e.g., to sup-
port highly automated driving. Usually, such systems and the situations they have to 
be able to deal with are an order of magnitude more complex than those of a basic, 
first-time-right type of product.

Development of the initial models can be well supported by a simulation envi-
ronment. For example, the simulation environment can simulate different traffic 
situations, which the driver assistance system will have to be able to handle. For this 
purpose, the AI is trained in the simulator.

As a next step, a test fleet is created. This can be, for example, a fleet of normal 
cars, which undergo a retrofit with the required sensors and test equipment. Usually, 
the vehicles in the test fleet are connected, so that test data can be extracted, and 
updates can be applied.

Once the system has reached a sufficient level of reliability, it will become part 
of a production system. From this moment onwards, it will have to perform under 
real-world conditions. Since a production system usually has many more individual 
vehicles than a test fleet, the amount of data which can now be captured is enor-
mous. The challenge now is to extract the relevant data segments from this huge 
data stream which are most relevant for enhancing the model. This can be done, for 
example, by selecting specific “scenes” from the fleet data which represent particu-
larly relevant real-world situations, which the model has not yet been trained on. A 
famous case here is the “white truck crossing a road making a U-turn on a bright, 
sunny day”, since such a scenario has once lead to a fatal accident with a autopilot.

When comparing the “first-time-right” approach with the continuous improve-
ment approach, it is important to notice that the choice of the approach has a funda-
mental impact on the entire product design, and how it evolves in the long term. A 
first-time-right fire alarm is a much more basic product than a vehicle autopilot. The 
former can be trained using a data campaign which probably takes a couple of 
weeks, while the latter takes an entire product organization with thousands of AI 
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and ML experts and data engineers, millions or cars on the road, and billions of test 
miles driven. But then also the value creation is hugely different here. This is why it 
is important for a product manager to understand the nature of this product, and 
which approach to choose (Fig. 21.8).

The AIoT Data Loop
Getting feedback from the performance of the products in the field and applying this 
feedback to improve the AI models is key for ensuring that products are perfected 
over time, and that the models adapt to any potential changes in the environment. 
For connected products, the updated models can be re-deployed via OTA.  For 
unconnected products, the learning can be applied to the next product generation.

The problem with many AIoT-enabled systems is: how to identify areas for 
improvement? With physical products used in the field, this can be tricky. Ideally, 
the edge-based model monitoring will automatically filter out all standard data, and 
only report “interesting” cases to the backend for further processing. But how can 
the system decide which cases are interesting? For this, on usually need to find an 
ingenious approach which often will not be obvious in the first place.

For example, for automated driving, the team could deploy an AI running in so- 
called shadow mode. This means the human driver is controlling the car, and the AI 
is running in parallel, making its own decisions but without actually using them to 
control the car. Every time the AI makes a decision different from the one of the 
human driver, this could be of interest. Or, let us take our vacuum robot example. 
The robot could try to capture situations which indicate sub-optimal product perfor-
mance, e.g., the vacuum being stuck, or even being manually lifted by the home-
owner. Another example is leakage detection for pneumatic systems, using sound 
pattern analysis. Every time the on-site technician is not happy with the system’s 

Fig. 21.8 Example: continuous improvement of AI models (driver assistance)
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recommendations, he could make this known to the system, which in turn would 
capture the relevant data and mark it for further analysis in the back-office.

The processing of the monitoring data which has been identified as relevant will 
often be a manual or at least semi-manual process. Domain experts will analyze the 
data and create new scenarios, which need to be taught to the AI. This will result in 
extensions to existing data sets (or even new data sets), and new labels which repre-
sent the new lessons learned. This will then be used as input to the model re-train-
ing. After this, the re-trained models can be re-deployed or used for the next product 
generation (Fig. 21.9).

This means that in the AIoT Data Loop, data really is driving the development 
process. Marcus Schuster, project lead for embedded AI at Bosch, comments: Data 
driven development will have the same impact on engineering as the assembly line 
had on production. Let’s go about it with the necessary passion.

21.1.8  Fifth: Productize the AI Approach

Based on the lessons learned from the Proof-of-Concept, the chose AI approach 
must now be productized so that it can support real-world deployment. This includes 
refining the model inputs/outputs, choosing a suitable AI method/algorithm, and 
aligning the AI model metrics with UX and IoT system requirements.

Fig. 21.9 The AIoT data loop
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Model Inputs/Outputs
A key part of the system design is the definition of the model inputs and outputs. 
These should be defined as early as possible and without any ambiguity. For the 
inputs, it is important to identify early on which data are realistic to acquire. 
Especially in an AIoT solution, it might not be possible technically or from a cost 
point of view to access certain data that would be ideal from an analytics point of 
view. In the UBI example from above, the obvious choice would be to have access 
to the driving performance data via sensors embedded in the vehicle. This would 
either require that the insurance can gain access to existing vehicle data or that a 
new, UBI-specific appliance be integrated into the vehicle. This is obviously a huge 
cost factor, and the insurance might look for ways to cutting this, e.g., by requiring 
its customer to install a UBI app on their smartphones and try to approximate the 
driving performance from these data instead.

One can easily see that the choice of input data has a huge impact on the model 
design. In the UBI example, data coming directly from the vehicle will have a com-
pletely different quality than data coming from a smartphone, which might not 
always be in the car, etc. This means that UBI phone app data would require addi-
tional layers in the model to determine if the data are actually likely to be valid.

It is also important that all the information needed to determine the model output 
is observable in the input. For example, if very blurry photos are used for manual 
labeling, the human labeling agent would not be able to produce meaningful labels, 
and the model would not be able to learn from it [19].

Choosing the AI Algorithm
The choice of the AI method/algorithm will have a fundamental impact not only on 
the quality of the predictions but also on the requirements regarding data acquisi-
tion/data availability, data management, AI platforms, and skills and resources. If 
the AI method is truly at the core of the AIoT initiative, then these factors will have 
to be designed around the AI methods. However, this might not always be possible. 
For example, there might be existing restrictions with respect to available skills, or 
certain data management technologies that will have to be used.

Figure 21.10 provides an overview of typical applications of AI and the matching 
AI algorithms. The table is not complete, and the space is constantly evolving. 
When choosing an AI algorithm, it is important that the decision is not only based 
on the data science point of view but also simply from a feasibility point of view. An 
algorithm that provides perfect results but is not feasible (e.g., from the performance 
point of view) cannot be chosen.
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Determine category Select between two
categories

Is this A or B: “Does this image
show a cat or not?”

Select between several
categories

Is this A, B or C: “Is this a stop
sign, a sign for incoming traffic or
a do not enter sign?”

Two-class classification algorithms, e.g.:
Support vector machine: Limited number of features
Averaged perceptron: fast training
Neural Networks: high accuracy

Multiclass classification algorithms, e.g.:
Logistic regression: short training times
Neural Network: high accuracy, long training times
Decision forest: high accuracy, short training times

Recommender algorithms, e.g.:
Singular Value Decomposition (SVD): Collaborative filtering to 
capture patterns of interest

Regression algorithms, e.g.:
Linear regression: short training times
Bayesian linear regression: small data sets
Decision forest regression: accurate, short training times
Neural network regression: accurate, long training times

Predict values „For how much money could I 
sell my house?“

Discover structures

Detect anomalies

Analyze media data Text

Images, video

Sound

„Can I group drivers based on
their habits, e.g. acceleration,
top speed or gender for different
fees?“

„Are there isolated extremly big
values which could skew my
model?“

Create automatic response to 
customer email

Identify traffic signs on image

Identify potential leakages in 
pneumatic system

Clustering algorithms, e.g.:
K-Means: simple to implement, but not good at identifying clusters
of varying sizes and density

Anomaly detection algorithms, e.g.:
One class SVM: small number of features
PCA: Short training times

Text analytics algorithms, e.g.:
N-Gram, feature hashing, word2vector

Image analytics algorithms, e.g.:
Densenet: high accuracy, efficient

Audio analytics algorithms, e.g.:
Digitial Signal Processing, Filter Banks, Mel-Frequency Cepstral
Coefficents

Create recommendations

Goals Typical questions / examples Algorithms

Fig. 21.10 AI selection matrix

In the context of an AIoT initiative, it should be noted that the processing of IoT- 
generated sensor data will require specific AI methods/algorithms. This is because 
sensor data will often be provided in the form of streaming data, typically including 
a time stamp that makes the data a time series. For this type of data, specific AI/ML 
methods need to be applied, including data stream clustering, pattern mining, anom-
aly detection, feature selection, multi-output learning, semi-supervised learning, 
and novel class detection [20].

Eric Schmidt, AI Expert at Bosch: “We have to ensure that the reality in the 
field – for example the speed at which machine sensor data can be made accessible 
in a given factory – is matching the proposed algorithms. We have to match these 
hard constraints with a working algorithm but also the right infrastructure, e.g., 
edge vs. batch.”

Aligning AI Model Metrics with Requirements and Constraints
There are usually two key model metrics that have the highest impact on user expe-
rience and/or IoT system behaviour: model accuracy and prediction times.

Model accuracy has a strong impact on usability and other KPIs. For example, if 
the UBI model from the example above is too restrictive (i.e., rating drivers as more 
risk-taking than they actually are), than the insurance might lose customers simply 
because it is pricing itself out of the market. On the other hand, if the model is too 
lax, then the insurance might not make enough money to cover future insur-
ance claims.
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Eric Schmidt, AI Expert at Bosch: “We currently see that there is an increasing 
demand in not only having accurate models, but also providing a quantification of 
the certainty of the model outcome. Such certainty measurements allow – for exam-
ple – for setting thresholds for accepting or rejecting model results”.

Similarly, in autonomous driving, if the autonomous vehicle cannot provide a 
sufficiently accurate analysis of its environment, then this will result (in the worst 
case) in an unacceptable rate of accidents, or (in the best case) in an unacceptable 
rate of requests for avoidable full brakes or manual override requests.

Prediction times tell us how long the model needs to actually make a prediction. 
In the case of the UBI example, this would probably not be critical, since this is 
likely executed as a monthly batch. In the case of the autonomous driving example, 
this is extremely critical: if a passing pedestrian is not recognized in (near-) real 
time, this can be deadly. Another example would be the recognition of a speed lim-
ited by an AIoT solution in a manually operated vehicle: if this information is dis-
played with a huge delay, the user will probably not accept the feature as useful.

21.1.9  Sixth: Release MVP

In the agile community, the MVP (Minimum Viable Product) plays an important 
role because it helps ensure that the team is delivering a product to the market as 
early as possible, allows valuable customer feedback and ensures that the product is 
viable. Modern cloud features and DevOps methods make it much easier to build on 
the MVP over time and enrich the product step-by-step, always based on real-world 
customer feedback.

For most AIoT projects, the launch of the MVP is a much “bigger deal” than in 
a pure software project. This is because any changes to the hardware setup – includ-
ing sensors for generating data processed by an AI – are much harder to implement. 
In manufacturing, the term used is SOP (Start of Production). After SOP, changes to 
the hardware design usually require costly changes to the manufacturing setup. 
Even worse, changing hardware already deployed in the field requires a costly prod-
uct recall. So being able to answer the question “What is the MVP of my smart 
coffee maker, vacuum robot, or electric vehicle” becomes essential.

Jan Bosch is Professor at Chalmers University and Director of the Software 
Center: If we look at traditional development, I think the way in which you are 
representing the “When do I freeze what” is spot on. However, there is a 
caveat. In traditional development, I spend 90% of my energy and time obtain-
ing the first version of the product. So I go from greenfield to first release, and 
I spend as little as possible afterwards. However, I am seeing many companies 
which are shifting toward a model that says “How do I get to a V1 of my prod-
uct with the lowest effort possible?”. Say I am spending 10% on the V1, then 
I can spend 90% on continuously improving the product based on real 
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customer feedback. This is definitely a question of changing the mindset of 
manufacturing companies.

Continuous improvement of software and AI models can be ensured today using 
a holistic DevOps approach, which covers all elements of AIoT: code and ML mod-
els, edge (via OTA) and cloud. This is discussed in more detail in the AIoT DevOps 
section.

Managing the evolution of hardware is a complex topic, which is addressed in 
detail in the Hardware.exe section.

Finally, the actual rollout or Go-to-Market perspective for AIoT-enabled solu-
tions and products is not to be underestimated. This is addressed in the Rollout and 
Go- to- Market section.

21.1.10  Required Skills and Resources

AI projects require special skills, which must be made available with the required 
capacity at the required time, as in any other project situation. Therefore, it is impor-
tant to understand the typical AI-roles and utilize them. Additionally, it is important 
to understand how the AI team should be structured and how it fits into the overall 
AIoT organization.

There are potentially three key roles required in the AI team: Data Scientist, ML 
Engineer, and Data Engineer. The Data Scientist creates deep, new Intellectual 
Property in a research-centric approach that can potentially require a 3 to 12-month 
development time or even longer. So the project will have to make a decision regard-
ing how far a Data Science-centric approach is required and feasible, or in how far 
re-use of existing models would be sufficient. The ML Engineer turns models devel-
oped by data scientists into live production systems. They sit at the intersection of 
software engineering and data science to ensure that raw data from data pipelines 
are properly fed to the AI models for inference. They also write production-level 
code and ensure scalability and performance of the system. The Data Engineer cre-
ates and manages the data pipeline that is required for training data set creation, as 
well as feeding the required data to the trained models in the production systems 
(Fig. 21.11).
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Fig. 21.11 AI roles for AIoT

Another important question is how the AI team works with the rest of the soft-
ware organization. The Digital Playbook proposes the adoption of feature teams, 
which combine all the required skills to implement and deploy a specific feature. On 
the other hand, especially with a new technology such as AI, it is also important that 
experts with deep AI and data skills can work together in a team to exchange best 
practices. Project management has to carefully balance this out.

21.1.11  Model Design and Testing

In the case of the development of a completely new model utilizing data science, an 
iterative approach is typically applied. This will include many iterations of business 
understanding, data understanding, data preparation, modeling, evaluation/testing, 
and deployment. In the case of reusing existing models, the model tuning or – in the 
case of supervised learning models – data labeling should also not be underesti-
mated (Fig. 21.12).
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Fig. 21.13 UBI microservices

Fig. 21.12 Model development

21.1.12  Building and Integrating the AI Microservices

A key architectural decision is how to design microservices for inference and busi-
ness logic. It is considered good practice to separate the inferencing functions from 
the business logic (in the backend, or – if deployed on the asset – also in the edge 
tier). This means that there should be separate microservices for model input provi-
sioning, AI-based inferencing, and model output processing. While decoupling is 
generally good practice in software architecture, it is even more important for 
AI-based services in case specialized hardware is used for inferencing (Fig. 21.13).
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21.1.13  Setting Up MLOps

Automating the AI model development process is a key prerequisite not only from 
an efficiency point of view, but also for ensuring that model development is based 
on a reproducible approach. Consequently, a new type of DevOps is emerging: 
MLOps. With the IoT, MLOps not only have to support cloud-based environments 
but also potentially the deployment and management of AI models on hundreds – if 
not hundreds of thousands – of remote assets. In the Digital Playbook there is a 
dedicated section on Holistic DevOps for AIoT because this topic is seen as so 
important (Fig. 21.14).

21.1.14  Managing the AIoT Long Tail: AI 
Collaboration Platforms

When addressing the long tail of AI-enabled opportunities, it is important to provide 
a means to rapidly create, test and deploy new solutions. Efficiency and team col-
laboration are important, as is reuse. This is why a new category of AI collaboration 
platforms has emerged, which addresses this space. While high-end products on the 
short tail usually require very individual solutions, the idea here is to standardize a 
set of tools and processes that can be applied to as many AI-related problems as 
possible within a larger organization. A shared repository must support the work-
flow from data management over machine learning to model deployment. 
Specialized user interfaces must be provided for data engineers, data scientists and 
ML engineers. Finally, it is also important that the platforms support collaboration 
between the aforementioned AI specialists and domain experts, who usually know 
much less about AI and data science (Fig. 21.15).

Fig. 21.14 Holistic DevOps for AIoT
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Fig. 21.16 Overview of Ignite AIoT framework

Fig. 21.15 AI collaboration platform

21.2  Data.exe (Fig. 21.16)

As part of their digital transformation initiatives, many companies are putting data 
strategies at the center stage. Most enterprise data strategies are a mixture of high- 
level vision, strategic principles, goal definitions, priority setting, data governance 
models, architecture tools and best practices for managing semantics and deriving 
information from raw data.
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Since both AI and IoT are also very much about data, every AIoT initiative 
should also adopt a data strategy. However, it is important to note that this data 
strategy must work on the level of an individual AIoT-enabled product or solution, 
not the entire enterprise (unless, of course, the enterprise is pretty much built around 
said product/solution). This section of the AIoT Framework proposes a structure for 
an AIoT Data Strategy and identifies the typical dependencies that must be managed.

21.2.1  Overview

The AIoT Data Strategy proposed by the AIoT Framework is designed to work well 
for AIoT product/solution initiatives in the context of a larger enterprise. 
Consequently, it focuses on supporting product/solution implementation and long- 
term evolution and tries to avoid replicating typical elements of an enterprise data 
strategy (Fig. 21.17).

The AIoT Data Strategy has four main elements. First, the development of a 
prioritization framework that aims to make the relationship between use cases and 
their data needs visible. Second, management of the data-specific implementation 
aspects, as well as the Data Lifecycle Management. Third, Data Capabilities 
required to support the data strategy. Fourth, a lean and efficient Data Governance 
approach was designed to work on the product/solution level.

Of course, each of these four elements of the AIoT Data Strategy has to be seen 
in the context of the enterprise that is hosting product/solution development: 
Enterprise Business Strategy must be well aligned with the use cases. Data-specific 
implementation projects frequently have to take cross-organization dependencies 

Fig. 21.17 AIoT data strategy
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into consideration, e.g., if data are imported or exported across the boundaries of the 
current AIoT product/solution. Product/solution-specific data capabilities must be 
aligned with the existing enterprise capabilities. Product/solution-specific data gov-
ernance always has to take existing enterprise-level governance into consideration.

21.2.2  Business Alignment & Prioritization

The starting point for business alignment and prioritization should be the actual use 
cases, which are defined and prioritized by business sponsors, or Epics which have 
been prioritized in the agile backlog. Sometimes, Epics might be too coarse grained. 
In this case, Features can be used instead.

For each Use Case/Epic, an analysis from the data perspective should be 
completed:

• What are the actual data needs to support the Use Case/Epic?
• Which of these data is believed to be already available, which must be newly 

acquired?
• How can the required data quality be ensured for the particular use case?
• What are potential financial aspects of the data acquisition?
• How do the use cases support the monetization side of things?
• Is this a case where the required data adds functional value to the use case, or is 

there a direct data monetization aspect to it?
• What are the relationships between the identified data and the other elements of 

the AIoT Data Strategy: Implementation & Data Lifecycle Management, specific 
capabilities applying to this particular kind of data, and Data Governance?

A key aspect of the analysis will be the Data Acquisition perspective. For data that 
can (at least theoretically) be acquired within the boundaries of the AIoT product/
solution organization, the following questions should be answered:

• Is the required technical infrastructure already available?
• Does the team have the required capabilities and resources available?
• Especially in the case of AIoT data acquired via sensors:

• Are new sensors required?
• If so, what is the additional development and unit cost?
• Is there an additional downstream cost from the asset/sensor line-fit point of 

view (i.e. additional manufacturing costs)?
• What is the impact on the business plan?
• What is the impact on the project plan?
• What are the technical risks for new, unknown sensor technologies?
• What are required steps in terms of sourcing and procurement?

For data that need to be acquired from other business units, a number of additional 
questions will have to be answered:
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• Is it technically feasible to access the data (availability of APIs, bandwidth, sup-
port of required data access frequency and volume, etc.)?

• Can the neighboring business unit support your requirements, not only in terms 
of technical access, but also in terms of project support and timelines?

• Are there costs involved in technical implementation and/or data access (internal 
billing)?

• Are there potential limitations or restrictions due to existing internal data gover-
nance guidelines, regional or organizational boundaries, etc.?

For data that have to be acquired from external partners or suppliers, there are typi-
cally a number of additional complexities that will have to be addressed:

• Technical feasibility across enterprise boundaries
• Legal framework required for data access
• SLA insurance
• Billing and cost management

Based on all of the above, the team should be able to assess the overall feasibility 
and costs/efforts involved on a per use case/per data item basis. This information is 
then used as part of the overall prioritization process.

21.2.3  Data Pipeline: Implementation & Data 
Lifecycle Management

Sometimes it can be difficult to separate data-specific implementation aspects from 
general implementation aspects. This is an issue that the AIoT Data Strategy needs 
to deal with to avoid redundant efforts. Typical data-specific implementation and 
Data Lifecycle Management aspects include the following:

• Data Ingestion: In our context, data ingestion should first be seen as moving data 
from outside of our organization’s boundary to within. Second, technical aspects 
such as stream vs. batch processing need to be addressed. Typical data ingestion 
tasks also include cleansing and quality assurance.

• Storage: Depending on the business and technical requirements, data can be 
stored permanently or temporarily, structured or unstructured, with or without 
backup, with cache-only or with operational/transactional support, etc. This 
often needs to be addressed differently for different data types.

• Integration: Data integration is the process of merging data from different sources 
into a single, unified view. In the case of AIoT, this can be – for example – sensor 
data fusion, done close to the sensors in the edge layer. Or it can be – usually on 
a high-level of abstraction – a real-time data stream integration process. Or it can 
be – typically further in the backend – a batch-oriented integration process.

• Transformation: Many projects spend much time with data transformation, since 
this is often a prerequisite for data integration or further data processing. The 
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approaches chosen usually vary widely depending on the format, structure, com-
plexity, and volume of the data being transformed.

• Modeling: Data modeling is usually a key step toward dealing with semantics of 
data and deriving information from raw data. There are different levels of data 
modeling, including conceptual, logical and physical levels. Another important 
type of model building on top of data models is AI/ML models. However, these 
models are usually less data-structure oriented and more mathematical/statisti-
cal models.

• Validation: Data validation is the tool that helps ensure data quality, e.g., by 
applying data cleansing and validation checks. Data validation can use simple, 
local “validation rules” or “validation constraints” that check for correctness and 
meaningfulness (e.g., a date of birth cannot be in the future). In some cases, data 
validation can actually be much more complex, e.g., involving interactions with 
remote systems, or even AI/ML-based validation algorithms.

• Analysis: In many cases, data analysis is a key use case other than, for example, 
transactional use of the data. Generally, data analysis supports the discovery of 
useful information and supports decision-making. Data analysis is a multifaceted 
topic. It is key that the required Data Capabilities are provided to support here.

• Access Control & Security: Finally, effectively ensuring confidentiality and secure 
handling of data must be part of every AIoT data strategy. This includes both IoT data 
coming from assets and data combining from users, other business units, or event 
external data sources. While security is sometimes dealt with on a different level, 
fine-grained data access control must usually be dealt with as part of the data strategy.

Another key aspect of Implementation & Data Lifecycle Management is dealing with 
cross-organizational dependencies. While the earlier data acquisition phase might 
have already answered some of the high-level questions related to this topic, on the 
implementation level efficient stakeholder management is a key success factor. Often, 
earlier agreements with respect to technical data access or commercial conditions, 
will have to be reviewed, revised or refined during the implementation phase. Some 
practitioners say that this can sometimes be more difficult in the case of cross-divi-
sional data integration within one enterprise than across enterprise boundaries.

21.2.4  Data Capabilities and Resource Availability

Data-related capabilities can be important in a number of different areas, including:

• Skills: Data-related skills can include a number of areas, including specific data- 
processing technologies and mathematical, statistical, or algorithmic skills in AI/
ML, etc.

• Technology: For an AIoT product/solution initiative, it is usually important that 
technical management agrees on fixed setup technologies that cover most of the 
required use cases, e.g., batch vs real-time processing, basic analytics vs AI/
ML, etc.
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• Processes & Methods: Depending on the specific environment, this can also be a 
very important aspect. Data-related processes and methods can be specific to a 
certain analytics method, or they can be related to certain processes and methods 
defined by an enterprise organization as mandatory.

Depending on the project requirements, it is also important that specific capabilities 
be supported by appropriate resources. For example, if it is clear that an AIoT proj-
ect will require the development of certain AI/ML algorithms, then the project man-
agement will have to ensure that this particular capability is supported by skilled 
resources that are available during the required time period. Managing the avail-
ability of such highly specialized resources is a topic that can be difficult to align 
with the pure agile project management paradigm and might require longer-term 
planning, involving alignment with HR or sourcing/procurement.

21.2.5  Data Governance

Larger AIoT product/solution initiatives will require Data Governance as part of 
their Data Strategy. This Data Governance cannot be compared with a Data 
Governance approach typically found on the enterprise level. It needs to be light-
weight and pragmatic, covering basic aspects such as:

• Data & Trust Policies: How is this specific AIoT product/solution dealing with 
this topic? This is likely to be very use case specific, so the AIoT initiative will 
have to build on generic enterprise-level requirements but will have to add poli-
cies specific to its own use case.

• Data Architecture: It is not always clear if data architecture is a discipline on its 
own, or if this is simply one facet of the product/solution architecture. For exam-
ple, the AIoT Framework has a dedicated viewpoint to support the combination 
of data and functionality.

• Data Lineage: Data lineages traces where data originate, what happens with it on 
the way, and where it moves over time. Data lineage provides visibility and trans-
parency and can help simplify root cause analysis in the data analytics process. 
Data Governance can either support the central documentation of data lineages 
or provide tools and best practices for implementation teams.

• Metadata Management and Data Catalog: Efficient management of metadata is a 
prerequisite for efficient data processing and analytics. Types of metadata include 
descriptive, structural and administrative. A data catalog can provide support for 
metadata management, together with other tools, such as search.

• Data Model Management: For many AIoT applications, centrally managing a 
high-level data model that describes key entities and their relationships, as well 
as dependencies on different use cases and components, can be of great help in 
creating transparency and improving alignment between different teams. The 
AIoT Framework proposes a lightweight AIoT Domain Model approach. In 
addition, the Data Governance team could also provide tooling and best practices 
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for teams that need more detailed models in their areas. This can also be linked 
back to the Metadata Management and Data Catalog topics.

• API Management: In his famous “API Mandate”, Amazon CEO Jeff Bezos 
declared that “All teams will henceforth expose their data and functionality through 
service interfaces.” at Amazon. This executive-level support for an API- centric 
way of dealing with data exchange (and exposing component functionality) shows 
how important API management has become at the enterprise level. The success of 
an AIoT initiative will also depend strongly on it. If there is no enterprise-wide API 
infrastructure and management approach available, this is a key support element 
that must be provided and enforced by the Data Governance team.

Finally, the Data Governance/Data Strategy team should give itself a setup of KPIs 
by which they can measure their own success and the effectiveness and efficiency of 
the AIoT Data Strategy.

21.3  Digital Twin.exe (Fig. 21.18)

As discussed in Digital Twin 101, a Digital Twin is the virtual representation of a 
real-world physical object. Digital Twins help manage complexity by providing a 
semantically rich abstraction layer, especially for systems with a high level of func-
tional complexity and heterogeneity. As an AIoT project lead, one should start by 
looking at the question “Is a Digital Twin needed, and if so – what kind of Digital 
Twin?” before defining the Digital Twin implementation roadmap.

21.3.1  Is a Digital Twin Needed?

The decision of whether and when to apply the Digital Twin concept in an AIoT 
initiative will depend on at least two key factors: Sensor Data Complexity/Analytics 
Requirements and System Complexity (e.g., the number of different machine types, 
organizational complexity, etc.).

Fig. 21.18 Digital Twin
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If both are low, the system will probably be fine with using Digital Twin more as 
a logical design concept and applying traditional data analytics. Only with increas-
ing sensor data complexity and analytics requirements will the use of AI be required.

High system complexity is an indicator that dedicated Digital Twin implementa-
tion should be considered, potentially utilizing a dedicated DT platform. The reason 
is that a high system complexity will make it much harder to focus on the semantics. 
Here, a formalized DT can help (Fig. 21.19).

21.3.2  If So, What Kind of Digital Twin?

Since Digital Twin is a relatively generic concept, the concrete implementation will 
heavily depend on the type of data that will be used as the foundation. Since Digital 
Twins usually refer to physical assets (at least in the context of our discussions), the 
potential data can be identified along the lifecycle of a typical physical asset: design 
data or digital master data, simulation data, manufacturing/production data, cus-
tomer data, and operational data. For the operational data, it is important to differ-
entiate between data related to the physical asset itself (e.g., state, events, 
configuration data, and history) versus data relating to the environment of the asset.

Depending on the application area, the Digital Twin (DT) can have a different 
focus. The Operational DT will mainly focus on operational data, including the 
internal state and data relating to the environment. PLM-focused DT will combine 
the product/asset design perspective with the operational perspective, sometimes 
also adding manufacturing-related data. The simulation-focused DT will combine 
design data with operational data and apply simulation to it. And finally, the holistic 
DT will combine all of the above (Fig. 21.20).

Fig. 21.19 Conclusions – digital Twin and AIoT
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Fig. 21.20 DT categories

Fig. 21.21 Examples for different DT categories

21.3.3  Examples

The Digital Twin concept is quite versatile, and can be applied to many different use 
cases. Figure 21.21 provides an overview of four concrete examples and how they 
are mapped to the DT categories introduced earlier.
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The drone-based building facade inspection is covered in detail in the TÜV SÜD 
case study. The physics simulation example is covered in the Digital Twin 101 sec-
tion. The following provides an overview of the pneumatic system example, as well 
as the elevator example.

Operational DT: Pneumatic System
Leakage detection for pneumatic systems is a good example for an operational 
Digital Twin. Pneumatic systems provide pressured air to implement different use 
cases, e.g., the drying of cars in a car wash, eliminating bad grains in a stream of 
grains analyzed using high-speed video data analytics, or cleaning bottles in a bot-
tling plant. Experts estimate that pneumatic systems consume 16 billion kilowatt 
hours annually, with a savings potential of up to 50% (mader.eu). In order to address 
this savings potential, an AIoT-enabled leakage detection system can help to iden-
tify and fix leakages at customer sites. One such solution is currently developed by 
the AIoT Lab. This solution is based on a combination of ultrasound sensors and 
edge-ML for sound pattern analysis. The solution can be used on-site to perform an 
analysis of the customer’s pneumatic application for leakages. The results can then 
be used by a service technician to fix the problems and eliminate the leakages 
(Fig. 21.22).

Fig. 21.22 Example: digital Twin for pneumatic system

The foundation for the leakage detection system is an operational Digital Twin. 
Since customers usually don not provide detailed design information about their 
own systems, the focus here is to obtain as much information during the site visit 
and build up the main part of the Digital Twin dynamically while being on site. The 
system is based on Digital Twin data in four domains:

• Domain I includes the components of the AIoT solution itself, e.g., the mobile 
gateways and ultrasound sensors. This DT domain is important to support the 
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system administration, e.g., OTA-based updates of the ML models for sound 
detection.

• Domain II includes the pneumatic components found on-site, including pressure 
generators, pressure tanks, valves, etc. The definitions of these components are 
provided via the product catalogue, and can be selected dynamically on-site.

• Domain III includes the fuselage and how it is mapped to the applications of the 
customer. Key parts of the customer equipment must be identified and included 
in the DT model for documentation purposes. Usually, only those parts of the 
customer equipment are captured that are involved with any of the leakages found.

• Domain IV includes the leakages that are identified during the on-site assess-
ment. These leakages are also captured as Digital Twins, including information 
about the related sound patterns, as well as the position of the leakage relative to 
DT information from domains II and III.

The creation of the Digital Twins happens along these domains: DT data in domain 
I are created once per test equipment pack. Domains II-IV are created dynamically 
and per customer site (Fig. 21.23).

Daniel Burkhardt, Chief Product Owner, AIoT Lab: We have the goal of provid-
ing a solution architecture that enables ML model reuse and holistic AIoT DevOps. 
The implementation of leakage detection based on a Digital Twin of a pneumatic 
system provided us with relevant insights about the requirements and design prin-
ciples for achieving this goal. In comparison to typical software development, reuse 
and AIoT DevOps require design principles such as continuous learning, transfer-
ability, modularization, and openness. Realizing these principles will guarantee the 
ease of use of AIoT for organizations with, e.g., no technological expertise, which in 
the long term leads to more detailed and meaningful Digital Twins and thus more 
accurate and valuable analytics.

Fig. 21.23 Digital Twin – pneumatics example – domains
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Holistic Digital Twin: DT and Elevators
A good example of the use of a holistic Digital Twin approach is elevators, since 
they have a quite long and complex lifecycle that can benefit from this approach. 
What is interesting here as well is the combination of the elevator lifecycle in com-
bination with the building lifecycle, since most elevators are deployed in buildings. 
The example in the following shows how a standard elevator design is fitted into a 
building design. This is a complex process that needs to take into consideration the 
elevator design specification, building design, elevator shaft design, and required 
performance parameters (Fig. 21.24).

The CAD model and EBOM data of the elevator design can be a good foundation 
for the digital twin. To support efficient monitoring of the elevator during the opera-
tions phase, an increasing number of advanced sensors have been applied. These 
include, for example, sensors to monitor elevator speed, braking behavior, position-
ing of the elevator in the elevator shaft, vibrations, ride comfort, doors, etc. Based 
on these data, a dashboard can be provided that provides reports for the physical 
conditions and the elevator utilization.

One pain point for building operators is the usually mandatory on-site inspec-
tions by a third party inspection service. Using advanced remote monitoring ser-
vices based on a digital twin of the elevator, some countries are already allowing 
combination or remote and on-site inspections. For example, instead of 12 on-site 
inspections per year, this could be reduced to 4 on-site inspections with 8 inspec-
tions being performed remotely. This helps save costs and reduces operations inter-
ruptions due to inspection work.

Fig. 21.24 Digital Twin of building and elevator – 3D model
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The Digital Twin concept helps brings together all relevant data, and allows 
semantic mappings between data from different perspectives and created during 
different stages of the lifecycle (Fig. 21.25).

21.3.4  Digital Twin Roadmap

From the execution perspective, a key question is how to design a realistic roadmap 
for the different types of Digital Twins we have looked at here. The following pro-
vides two examples, one from the automotive perspective and one from the building 
perspective.

Operational Digital Twin (Vehicle Example)
Let us assume an OEM wants to introduce the Digital Twin concept as part of their 
Software-defined Vehicle initiative. Over time, all key elements of the vehicle 
should be represented on the software layer as Digital Twin components. How 
should this be approached?

Importantly, this should be done step by step or more precisely use case by use 
case. Developing a Digital Twin for a complex physical product can be a huge 
effort. The risk of doing this without specific use cases and interim releases is that 
the duration and cost involved will lead to a cancellation of the effort before it can 
be finished. This is why it is better to select specific use cases, then develop the 
Digital Twin elements required for them, release this, and show value creation along 
the way. Over time, the Digital Twin can then develop to an abstraction layer that 
will cover the entire asset, hopefully enabling reuse for many different applications 
and use cases (Fig. 21.26).

Fig. 21.25 Holistic DT example – elevator
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Fig. 21.26 DT evolution

Holistic Digital Twin (Building Example)
A good example of use of a holistic Digital Twin concept from design to operation 
and maintenance is the digital building lifecycle:

• During the building design phase, the BIM (Building Information Model) 
approach can help optimize the design with simulation and automated valida-
tion. This way, aspects such as future operational sustainability and capacity 
can be evaluated. Automated design validation provides a higher level of plan-
ning safety.

• During the building construction process, AIoT-enabled solutions such as robot- 
based construction progress monitoring can provide transparency and reliability. 
Meeting budgets and timelines can be better ensured.

• Sub-systems like elevators can also be integrated into the Digital Twin approach, 
as discussed in the previous section.

• Finally, building inspection can be supported by solutions such as the Drone- 
based façade inspection. The results of the façade inspection can be mapped 
back to the Digital Twin, augmenting the planning data with real-world 
as-is data.

The decision for a BIM/Digital Twin-based approach for building and construction 
is strategic. Upfront investments will have to be made, which must be recuperated 
through efficiency increased further downstream. The holistic Digital Twin approach 
here is promising, but requires a certain level of stringency to be successful 
(Fig. 21.27).
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Fig. 21.27 DT evolution – building example

21.3.5  Expert Opinion

The following short interview with Dominic Kurtaz (Managing Director for 
Dassault Systèmes in Central Europe) highlights the experience that a global PLM 
company is currently making with its customers in the area of AIoT and Digital Twins.

Dirk Slama: Welcome Dominic. Can you briefly introduce your company?
Dominic Kurtaz: Dassault Systèmes consists of 20,000 inspired people around the 

world, developing software solutions and supporting clients in the  manufacturing, 
healthcare and life science sector, as well as the infrastructure sector. We help to 
digitally design and manufacture more than 1 in 4 of the physical products you 
touch every day, with a focus on how they are being used by the end users and 
consumers. We believe that the virtual world can enhance and improve the over-
all physical world toward a more sustainable world, which I think is probably a 
good segue to the whole topic of AIoT.

Dirk: In this context, AIoT and Digital Twins can play an important role as enablers. 
What kind of activities and investments are you currently seeing in this space?

Kurtaz: When people think of AIoT or IoT, they immediately think of operational 
performance measurements with sensors, predictive maintenance, and so on. 
Which of course is a very valid application, but we need to think far beyond that. 
This is why I like this concept of a holistic Digital Twin. We need to take a step 
back from IoT right now. When you are looking at the Experience Economy, you 
will see that the value that we perceive as customers and consumers is going 
increasingly away from the actual product itself. Today, it is often much more 
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about the end-to-end experience: how the product is perceived how we select it, 
how we are using it, and how we dispose and recycle the product. The end-to-end 
life cycle experience is clearly important. From my experience, we need to look 
at the IoT through the eyes of the customer and the eyes of the consumer. First, 
we have to understand how business strategies and business execution with AIoT 
can truly support and improve those aspects.

Second, I believe that the Digital Twin is truly becoming pervasive across industries 
and all products. Take, for example, one of the most mundane products that we 
experienced in our lives – the light bulb. If you go back 10 years, it was just this 
item at the end of the shopping list that you grab off from the shop shelf without 
thinking much about it – you bought it, you screwed it in, you turned it on and off, 
and hopefully you would never have to think about that product again for the 
next years…until it breaks.

Today, this is fundamentally changing. I am not just buying a commodity product for 
my house anymore. I am buying something that is part of a connected ecosystem. 
I can set different moods at home using different light configurations. I can use 
smart lighting as part of my home security system. From a business perspective, 
this is a game changer. Light bulb manufacturers are no longer just producing 
light bulbs – today, they are connected to their customers. In the past, we did not 
know our customers or how they were using our products. Today, − enabled by 
the IoT – I can have a direct relationship with my customer. This will change 
things on many levels and opens up new business models.

Thus far, we have only seen the tip of the iceberg: although many of the enabling 
technologies are reaching a good level of maturity, the actual implementations 
are often still very immature and limited to those basic connectivity features – 
but not delivering the holistic Digital Twin experience. For example, I have 
recently bought a new kitchen, including connectivity to my smart home. Now I 
can control and integrate it into my own kitchen facilities. This is really good and 
interesting as well as delivering additional features but I was not able to experi-
ence and understand the value that it can really bring until after I had purchased 
all of those IoT enabled and connected products. And in today’s world, I should 
have been able to use a Digital Twin of the product prior to my buy to fully under-
stand not just the product, but the behavior, the context, the operational aspect of 
that post my buying – and that is simply not yet possible. Take, as another exam-
ple, mobility. As a customer, I should be able to experience all these new features 
such as advanced driver assistance, before I acquire the physical product  – 
enabled by a holistic Digital Twin. I really want to be able to experience in the 
virtual world how these products are going to behave, before using them in the 
physical world. This is also very helpful for product development, because it 
allows us to validate the customer experience in the virtual world – before mak-
ing expensive investments in physical prototypes.

From what I am seeing from our customers, this is not just a hype or a fad. I think it 
is absolutely mission critical for anybody who is designing and manufacturing 
products, and dealing with the digital experience of those products. We see this 
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across all industries where we are operating: manufacturing, healthcare, life 
science, and infrastructure.

Dirk Slama: What are your recommendations from the implementation 
perspective?

Dominic Kurtaz: You need a clear focus on the end user experience that you are 
trying to deliver. This will determine the holistic design philosophy you need to 
apply. Many companies have started with Big Data, and they are now drowning 
in it. The problem is to find and connect the data that are relevant for the end user 
experience. The connection of digital, semantic models with data will open up 
potential for all industries. Of course, this has to be done step-by-step, use case 
by use case – building up the holistic Digital Twin with a clearly value-driven 
approach.

Another key aspect is the alignment between the digital supply chain and the physi-
cal supply chain. For the IT, we have Continuous Integration and Continuous 
Delivery (CI/CD). For the physical product, we have simultaneous engineering 
and closed loop PLM. The challenge is now to close the even bigger loop around 
all of this– bringing IT DevOps together with physical product engineering. This 
is exactly where AIoT and Digital Twin will play an important role. AIoT enables 
new digital/physical product features. And the Digital Twin is the semantic inter-
face between the digital and the physical world. During design and development, 
the Digital Twin helps create the required interfaces at the technical and the 
organizational levels. During runtime, it enables a new customer experience.

21.4  IoT.exe (Fig. 21.28)

The IoT perspective in AIoT is usually much more focused on the physical product 
and/or the site of deployment, as well as the end-to-end system functionality. In this 
context, it makes sense to look at the IoT through the lens of the process that will 
support building, maintaining and enhancing the end-to-end system functionality. 

Fig. 21.28 Ignite AIoT – Internet of Things perspective
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The AIoT Framework is based on the premise that overall an agile approach is desir-
able, but that due to the specifics of an AIoT system, some compromises will have 
to be made. For example, this could concern the development of embedded and 
hardware components, as well as safety and security concerns.

Consequently, the assumption is that there is an overarching agile release train, 
with different (more or less) agile work streams. Each workstream represents some 
of the key elements of the AIoT system, including cloud services, communication 
services and IoT/EDGE components. In addition, AIoT DevOps & Infrastructure as 
well as cross-cutting tasks such as security and end-to-end testing are defined as 
workstreams. Finally, asset preparation is a workstream that represents the interface 
to the actual asset/physical product/site of deployment.

The following provides a more detailed description of each of the standard work 
streams:

• Agile Release Train: Responsible for end-to-end coordination, UX, and system 
architecture; ultimately responsible for ensuring that the AIoT system is imple-
mented, tested, deployed and released

• Cross-Cutting: Addresses tasks that are cutting especially across the cloud and 
IoT/EDGE, including end-to-end security, testing and QA

• AIoT DevOps & Infrastructure: Must provide the infrastructure and processes 
for automating the AIoT system lifecycle, utilizing the AIoT DevOps concepts 
outlined in the AIoT Framework

• Cloud Services: Should more accurately be called Backend services, including 
cloud and on-premises AIoT applications, as well as enterprise system integra-
tion/EAI. Must also address the backend side of Digital Twin, as well as AIoT- 
related business processes

• Communication Services: Must provide LAN and WAN communication ser-
vices. Can involve complex service contract negotiations in case a global AIoT 
WAN is required

• IoT/EDGE Components: Includes responsibility for the development/procure-
ment of all hardware (e.g., gateways, sensors), software, firmware and AI/ML 
execution environments deployed on or near the asset/product

• Asset Preparation: Must ensure that the asset/physical product (or, in the case of 
an AIoT solution, the sites of deployment) are prepared to work with the AIoT 
system. Must include basic tasks such as ensuring power supply and providing 
storage/assembly points for AIoT hardware components

The following will look at both the product and solution perspectives in more detail.

21.4.1  Digital OEM: Product Perspective

This section looks at key milestones for an AIoT-enabled product, along the work 
streams defined earlier:

• Basic prototype/pilot: Must include a combination of what will later become the 
AI-enabled functionality (could be scripted/hard coded at this stage), plus basic 
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system functionality and ideally a rudimentary prototype of the actual asset/
physical product (A/B samples). Should show end-to-end how the different com-
ponents will interact to deliver the desired user experience

• Fully functional prototype: Functional, basic prototype with full AIoT function-
ality and a relatively high level of maturity. Must include first real AI models and 
AI-driven functionality, as well as full asset/physical product functionality (C/D 
samples). After this, both the APIs between the cloud and EDGE should be sta-
ble, as well as the interfaces to the asset/physical product (power lines, antenna 
and gateway fastening, etc.).

• AIoT MVP: This focuses only on the AIoT elements, assuming that the asset/
physical product will no longer undergo any major changes. The AIoT MVP 
must not only be functionally complete, but also ensure that all procurement 
aspects are finalized. Furthermore, a fully automated AIoT DevOps infrastruc-
ture, including cloud, IoT and AI pipelines, should be developed

• SOP (Start of Production): This is the day of no return: the manufacturing lines 
will now start processing assets/physical products and shipping them to custom-
ers around the world. Any changes/fixes on the hardware side will now become 
very costly or nearly impossible. Currently, the required operations support must 
also be fully operational (either providing fully automated online support ser-
vices, or call-center or even on-site field services)

• Cloud SW Updates after SOP: This must utilize the AIoT DevOps pipeline, 
including Continuous Integration and Continuous Testing for quality purposes

• EDTE SW Updates after SOP: Finally, this must utilize the established OTA 
infrastructure to deliver updates to assets in the field (which will have already 
been established in the later stages of system field tests)

Note that this perspective does not differentiate between the hardware engineering 
and manufacturing perspectives of the on-asset AIoT hardware vs. the actual asset/
physical product itself. Furthermore, it also does not differentiate between line-fit 
and retrofit scenarios (Fig. 21.29).

Fig. 21.29 AIoT product perspective
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21.4.2  Digital Equipment Operator: Solution Perspective

An AIoT solution is usually not focused on the design/manufacturing of assets/
physical products. In many cases, assets are highly heterogeneous, and the AIoT 
solution components will be applied using a retrofit approach. Instead of asset prep-
aration, the focus is on site preparation. Additionally, the level of productization is 
usually not as high.

This makes the process and the milestones easier and less complex:

• Pilot: Usually, much more lightweight; could simply be some sensors retrofitted 
to an existing asset, with a WLAN connection to a standard cloud backend

• MVP: Again, more lightweight and most likely also less sophisticated in terms 
of process automation

• Roll-out: Critical part of the process: not only in technical terms but also in terms 
of fulfilling on-site user expectations

• First Cloud SW-Update: Should be automated, utilizing existing standard cloud 
DevOps mechanisms

• First EDGE SW-Update: Can be automated and utilizing OTA, but for small- 
scale solutions; potentially also manual (Fig. 21.30)

21.5  Hardware.exe (Fig. 21.31)

The execution of the hardware implementation can vary widely. For a simple retrofit 
solution using commercial-off-the-shelf hardware components, this will mainly be 
a procurement exercise. For an advanced product with complex, custom hardware, 
this will be a multidisciplinary exercise combining mechanical engineering, electric 
and electronic engineering, control system design, and manufacturing.

Fig. 21.30 AIoT solution perspective
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Fig. 21.31 AIoT hardware

21.5.1  A Multidisciplinary Perspective

The development of custom hardware often requires a multidisciplinary perspec-
tive. Take, for example, the development of the predictive maintenance solution for 
hydraulic systems, introduced in the case study section. Here, the design and manu-
facturing of the actual hydraulic system components is not in scope. However, hard-
ware design and manufacturing still include a number of elements:

• Custom hardware for the Data Acquisition Hub (DAQ)
• A number of custom sensor packages to monitor electric motors, hydraulic 

pumps, tanks, oil quality, filters, and so on
• Custom connecting elements for fitting the sensors onto the hydraulic components

To develop this hardware, a number of different skills are required, including strong 
domain knowledge, knowledge about electronic systems, control systems, and 
embedded compute nodes.

If we go even further and consider real digital/physical products – like a vacuum 
robot or a smart kitchen appliance – we will even need to include mechanical sys-
tems engineering in the equation to build the physical product.

Mechatronics is the discipline that brings all these perspectives together, com-
bining mechanical system engineering, electronic system engineering, control sys-
tem engineering and embedded as well as general IT system engineering. The 
intersection between mechanical systems and electronic systems is often referred to 
as electromechanics. The intersection between electronic systems and control sys-
tems includes control electronics. The intersection between control systems and 
computers includes digital control systems. Mechanical systems usually require 
mechanical CAD/CAM for system design and modelling, as well as validation via 
simulation. Model Based System Engineering (MBSE) supports this with collabo-
ration platforms covering system requirements, design, analysis, verification and 
validation (Fig. 21.32).
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Fig. 21.32 Mechatronics – a multidisciplinary perspective

Fig. 21.33 Embedded hardware design and manufacturing

21.5.2  Embedded Hardware Design and Manufacturing

Embedded hardware design and manufacturing are often at the heart of AIoT devel-
opment because even for a retrofit solution, this is often a key requirement. Even if 
standard microprocessors, CPUs, sensors and communications modules are used, 
they often have to be combined into a custom design to exactly fit the project 
requirements. During the planning phase, hardware requirements are captured in a 
specification document. The analysis and design phase includes feasibility assess-
ment, schematic PCB (Printed Circuit Board) design and layout, and BOM (Bill of 
Material) optimization. Procurement should not be underestimated, including com-
ponent procurement and supply chain setup. The actual board bring-up includes 
hardware assembly, software integration, testing and validation, and certification. 
Manufacturing preparation includes machine configuration, assembly preparation, 
as well as automated inspection. After the SOP (Start of Production), logistics and 
shipment operations as well as customer support will have to be ensured (Fig. 21.33).
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21.5.3  Minimizing Hardware Costs vs. Planning 
for Digital Growth

In the past, almost all digital/physical products have been optimized to minimize the 
hardware costs. This is especially true for mass-market products such as household 
appliances and other consumer products. In these markets, margins are often thin, 
and minimizing hardware costs is essential for the profit margin.

However, the introduction of smartphones has started to challenge this approach. 
Smartphone revenues and profits are now driven to a large extent by apps delivered 
through app stores. Smartphones are often equipped with new capabilities such as 
extra sensors, which have no concrete use cases upon release of the new hardware. 
Instead, manufacturers are betting on the ingenuity of the external developer commu-
nity to make use of these new capabilities and deliver additional, shared revenue via 
apps. This means that the revenue and profit perspective is not limited to the initial 
phone sales; instead, this is looked at through the lens of the total lifetime value.

The same holds true for some car manufacturers: Instead of minimizing the cost for the 
car BOM, they invest more in advanced hardware, even if this hardware is not fully uti-
lized by the software in the beginning. Utilizing Over-the-Air capabilities, OEMs are con-
stantly optimizing and extending the software that uses advanced hardware capabilities.

Of course this can be a huge bet, and it is not always clear whether it will pay off. 
Take, for example, a smart kitchen appliance. Instead of building it according to a 
minimal spec, one can provide a more generous hardware spec, including additional 
sensors (cooking temperature, weight, volume, etc.), which might only be fully uti-
lized after the Start of Production of the hardware – either by providing a partner 
app store or even a fully open app store. In the early stages of such new product 
development, this can be a risk if there is no proof point that partners will jump on 
board – but on the other hand, the upside can be significant (Fig. 21.34).

Fig. 21.34 Minimizing costs vs. planning for digital growth
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21.5.4  Managing System Evolution

One of the biggest challenges for successful products with multiple system compo-
nents is managing the evolution of the system design and its components over time. 
This is already true for the software/AI side, especially from a configuration and 
version management point of view. However, at least here, we can apply as many 
changes as needed, even after the SOP (assuming OTA is enabled for all edge com-
ponents). This is much more difficult for hardware since hardware upgrades are 
significantly costlier than software upgrades. The following looks at some examples 
to discuss this in more detail.

Example 1: Smartphones
Since the release of the first iPhone in 2007, the smartphone industry has constantly 
enhanced their offerings, releasing many new versions of phone hardware, phone 
OS upgrades, core application upgrades, and updates for cloud-based backend ser-
vices. Backward compatibility is a key concern here: smartphone manufacturers are 
interested in continuously evolving and optimizing their offerings. However, it is 
not always possible to ensure backwards compatibility for every change – both on 
the software as well as the hardware side – because managing too many variants 
simply increases complexity to a level where it becomes unmanageable. A key pre-
requisite for managing compatibility across different hardware versions often boils 
down to creating and maintaining standardized interfaces. Examples include the 
interfaces between smartphones and headsets, or smartphones and chargers. How 
open these interfaces are is another topic for debate – some vendors prefer closed 
ecosystems.

Jan Bosch is Professor at Chalmers University and Director of the Software 
Center: Today, all the different hardware and software components of the smart-
phone ecosystem are intrinsically interwoven, forming an integrated digital offer-
ing. I usually don’t care about the individual bits or atoms anymore. I am buying 
into the digital offering as a whole. And this should always be available to me in 
the most current version. This means frequent and proactive software upgrades, 
as well as periodic upgrades of electronics and hardware. I get new, phone every 
one or two years, and I don’t even notice the difference anymore. OK, the camera 
is a little bit better, but basically it’s the same thing, right? And this is a good 
thing. Because I am getting the value from the digital offering, and I don’t care 
how they are handling the mechanics and electronics and the software and the 
AI. I just want the offering, and I am paying for that. Would it be better if I could 
replace only parts of the phone like the battery or the main board? Yes, but in the 
greater scheme of things it is working for me. I am not looking at my smartphone 
as a physical offering anymore. It’s the digital end-to-end offering that I have 
bought into (Fig. 21.35).
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Fig. 21.36 Modern EV HW evolution

Fig. 21.35 Hardware evolution

Example 2: Electric Vehicles and Automated Driving
Another interesting example of system evolution are modern electric vehicles 
(EVs), and especially their Driver Assistance (DA) or Automated Driving (AD) sys-
tems. Early movers such as Tesla are constantly evolving and optimizing their prod-
ucts. Tesla has even gone as far as to develop their own chips and computers both 
for the on-board computers, and for the backend AI-training platforms.

In 2019, Tesla introduced their “Hardware 3.0” or “FSD Computer” (Full Self- 
Driving). This is a custom AI hardware, which replaces the off-the-shelf GPUs that 
Tesla was using until then. Tesla claims that their FSD hardware is by orders of 
magnitude more efficient for AI inference processing, which is needed for DA/AD 
functions. What is also very significant is that Tesla supports upgrades to the new 
hardware for customers with older cars. This requires a level of modularity and 
well-defined interfaces, which is quite advanced.

In 2021, Tesla unveiled its new supercomputer “Dojo”, which is built entirely in-
house, including the Dojo D1 chip. Dojo is optimized for training Tesla’s advanced 
neural networks to support their self-driving technology. Together, these are signifi-
cant, multibillion investments in creating a deeply integrated AI company (Fig. 21.36).
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Jan Bosch from Chalmers University and the Software Center: With cars effec-
tively becoming digital/physical products, we are seeing much more fluidity in this 
space, to match the fast advancements in technology development. Some of the lead-
ing EV manufacturers are taking a very different approach here. For them, the car 
is constantly evolving. The car manufactured in July is an updated version of the car 
manufactured in June. And again, the same in August. Taking this to the extreme, 
they might have two floors on their factory: One floor, they are manufacturing the 
cars according to the latest spec. At the floor below, they are constantly tweaking 
and twisting and doing all kinds of improvements to the car architecture. And when-
ever they are satisfied with the improvements, they bring it up to the manufacturing 
floor to get the update into production. This means that the next version of the car 
will be manufactured with the next version of the mechanics or electronics, or what-
ever it was they have optimized. This might not be a reality for most of the incum-
bent OEMs today. There are of course questions regarding functional safety and 
homologation. However, if you look at the market valuation of some of these more 
agile OEMs, it seems clear that this is where the world is going.

This is also a general mindset thing. Instead of long-term planning where every-
thing is cast in stone for a longer period, we need to look at this as a flow. This relates 
to manufacturing but also to procurement. We need more flexible contracts which 
support this. Instead of focusing on getting the best possible deal for the next 100,000 
sensors, I need a contract to get a flow of sensors, which I can change at any point in 
time. If I then decide to go from one sensor to another or from one hardware board 
to another, I can do this, because everything is set up as a flow system – enabling fast 
and rapid change. This is no longer about the upfront cost for the Bill of Materials. 
This is about the lifetime value that I can create from that system.

You can categorize the companies I am working with into two buckets. The first 
bucket includes the companies that do not want any improvements. They just want 
the system to continue to work as is. So all you do here is bug fixing in the beginning, 
with feedback from early version in the field. But once this is stabilized, you do not 
change the running system. The second bucket includes the companies that are look-
ing for continuous product improvements. For these customers, the most important 
rule is ‘Thou shall be on the latest and greatest version at any point in time’. So you 
do not get to choose between hardware version 17.14, software version 18.15, and 
machine learning model version 19.16. No, you will always have the latest version. 
That is the only way you can manage the complexity here. Let’s say you are doing 
two hardware platform updates a year. This means that in a two-year period, you 
have four versions of the hardware. Customers might obtain a grace period of six 
months before they are forced to upgrade. This means you will always only have two 
or three versions of your hardware platforms that you are supporting at any point in 
time. You must take a very proactive approach to limiting the variance space. 
Otherwise, the complexity will kill you.

Of course you must find a suitable model with your customers. For example, 
many of the car manufacturers that I am working with are initially selling their new 
cars via a leasing model for two to three years. After this, the cars are sold to the 
private market. This is a very typical pattern. What if I could provide an electronics 
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package upgrade after the initial leading period, and thus extend the lifetime of the 
car and increase the value for the next owner. Tesla did exactly this with their 
upgrade option to FSD 3.0, which they are offering to owners of older cars. In the 
future, being able to not only upgrade software and AI but also entire sub-systems, 
including hardware, will be a key differentiator.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
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the copyright holder.
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Chapter 22
AIoT Product/Solution Design

Dirk Slama

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

The idea of a more detailed design document may seem old fashioned to someone 
who is used to working in small, agile development teams. After all, the Agile mani-
festo itself values working software over comprehensive documentation and empha-
sizes the most efficient and effective method of conveying information to and within 
a development team is face-to-face conversation. However, in large-scale, multi- 
team, multisite projects, a certain amount of documentation is required to ensure 
that all teams and stakeholders are aligned and working in synch. Working across 
organizational boundaries will add to the need for more detailed documentation of 
requirements and design decisions. Finally, some types of procurement contracts 
will require detailed specifications and SLAs (see Sourcing_and_Procurement). 

Fig. 22.1 Product/Solution design

© The Author(s) 2023
D. Slama et al. (eds.), The Digital Playbook, 
https://doi.org/10.1007/978-3-030-88221-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88221-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-88221-1_22
https://agilemanifesto.org/
https://agilemanifesto.org/
https://aiotplaybook.org/index.php?title=Sourcing_and_Procurement
mailto:dirk.slama@bosch.com


264

Given that an AIoT-enabled product or solution will contain different building 
blocks, such as AI, hardware, software, embedded components, etc., it is likely that 
it will face many of these constraints. Consequently, the Digital Playbook proposes 
to create and maintain a product/solution architecture that captures key require-
ments and design decisions in a consistent manner (Fig. 22.1).

22.1  AIoT Design Viewpoints and Templates

To provide a consistent and comprehensive design for AIoT-enabled products or 
solutions, the Digital Playbook proposes a set of design viewpoints, each with a 
specific set of design templates:

• Business Viewpoint: Builds on the input from the Business Model, adds KPIs 
and planning details

• UX Viewpoint: Focus on how users are interacting with and experiencing the 
product or solution

• Data/Functional Viewpoint: Focus on the data and functional components of the 
AIoT solution

• Implementation Viewpoint: Adds details on the implementation aspects
• AIoT Product Viewpoint: Mapping to the agile product development perspective

It is important to note that the Digital Playbook does not propose an excessive, 
RUP/waterfall-style level of documentation. The general idea is to provide a com-
prehensive yet lightweight set of design documents that enable efficient communi-
cation between the main stakeholders. The key to success here is to keep the design 
documentation on a level of detail where it is meaningful but not overly complex. 
The agile teams must be able to apply their own mechanism to derive requirements 
for their backlog and provide feedback to the overarching architecture in return. As 
will be discussed in the following, a central story map can be a powerful tool for 
keeping the design decision and the individual sprint backlogs in synch.

22.2  Important Design Considerations

It is important to accept that design documentation can rarely be seen as a stable 
document. The waterfall approach of fixing requirements and design decisions first 
will not work in most cases because of the inherent complexity, volatility of require-
ments and too many external and internal dependencies. The agile V- Model, for 
example, is specifically designed to support continuous updates of the overall sys-
tem design. Each v-sprint (1) in the agile v-model must return to the design and 
match it against the learning from the previous sprint (2). This also means that the 
design documentation cannot be too detailed, since otherwise it will not be possible 
to perform a thorough review during each sprint planning session. The design tem-
plates provided in the Digital Playbook aim to strike a pragmatic balance between 
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comprehensiveness and manageability. The sprint backlogs for the different teams 
must be in synch with the overall design (3).

In most AIoT projects there will be certain parts of the project that will require a 
higher level of stability for the design documentation than others. This is generally 
true for all areas that require more long-term planning, e.g., because of procurement 
or manufacturing requirements, or to manage complex dependencies across organi-
zational boundaries. This is a key problem that the solution design team must 
address. In many cases, this will also require some kind of architectural layering, 
especially from a data/functional viewpoint. In particular, the design must ensure 
that no stable system components have any dependencies on more volatile compo-
nents. Otherwise, the changes to the volatile components will have a ripple effect on 
those components that are supposed to be stable (4) (Fig. 22.2).

Finally, it is important to keep in mind that product/solution design and organi-
zational structure must be closely aligned (Conway's law). The design will usually 
include many features that require support from different technical layers. For 
example, seat-heating-on-demand, which requires a smartphone component, a 
cloud component, and different components on the vehicle to work together to 
deliver this feature. The Digital Playbook is proposing to define feature teams that 
are working across the different technical layers. Properly deriving the setup of 
these feature teams from the product/solution design will be key to success (5).

22.3  ACME:Vac Example

The design section of the Digital Playbook is based on the fictitious ACME:Vac 
example, which is used to illustrate the different viewpoints and design templates. 
Robotic vacuum cleaners — or short robovacs — have become quite popular in the 

Fig. 22.2 AIoT product/solution design and the agile process
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last decade and represent a multibillion dollar market, with a number of different 
players offering a variety of different models. Many of the advanced models today 
utilize AI to optimize robovac operations, including automatic detection of room 
layouts, navigation and cleaning path optimization. As such, they are a very good 
example of a smart, connected product provided by a Digital OEM. Differences 
between the design requirements of an AIoT-enabled product (Digital OEM per-
spective) and a solution (Digital Equipment Operator perspective) are highlighted in 
each section.

22.4  Business Viewpoint (Fig. 22.3)

The Business Viewpoint of the AIoT Product/Solution Design builds on the different 
artifacts created for the Business Model. As part of the design process, the business 
model can be refined, e.g., through additional market research. In particular, the detailed 
design should include KPIs, quantitative planning, and a milestone- based timeline.

22.4.1  Business Model

The business model is usually the starting point of the product/solution design. The 
business model should describe the rationale of how the organization creates, deliv-
ers, and captures value by utilizing AIoT.  The business model design section 
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Fig. 22.3 AIoT business viewpoint

D. Slama

https://aiotplaybook.org/index.php?title=Business_Model_Design
https://aiotplaybook.org/index.php?title=Business_Model_Design


267

provides a good description of how to identify, document and validate AIoT-enabled 
business models. A number of different templates are provided, of which the busi-
ness model canvas is the most important. The business model canvas should include 
a summary of the AIoT-enabled value proposition, the key customer segments to be 
addressed, how customer relationships are built, and the channels through which 
customers are serviced. Furthermore, it should provide a summary of the key activi-
ties, resources and partners required to deliver on the value proposition. Finally, a 
high-level summary of the business case should be provided, including cost and 
revenue structure (Fig. 22.4).

The fictitious ACME:Vac business model assumes that AI and IoT are used to 
enable a high-end vacuum cleaning robot, which will be offered as a premium prod-
uct (not an easy decision - some argue that the mid-range position in this market is 
more attractive). AI will be used not only for robot control and automation but also 
for product performance analysis, as well as analysis of customer behaviour. This 
intelligence will be used to optimize the customer experience, create customer loy-
alty, and identify up-selling opportunities.

22.4.2  Key Performance Indicators

Many organizations use Key Performance Indicators (KPIs) to measure how effec-
tively a company is achieving its key business objectives. KPIs are often used on 
multiple levels, from high-level business objectives to lower-level process or 

ACME:Vac – Business Canvas for Vacuum Robot
Key Partners Key Activities

Key Resources

Contract
manufacturers
Battery suppliers
Smart home
vendors

Design and UX
R&D for robotics
and automation
SW/AI DevOps
Manufacturing
On-line sales and
marketing

Value Proposition
Highly efficient automated cleaning
Automatic support for different
flooring types (carpet, hard floors)
Feature-rich mobile app (floor
maps, no go areas, etc.)
Powerful filter, anti-allergen
Very low noise level

Customer Relationship Customer Segments
Online
24/7 customer
service center
Al-enabled
customer
relationship
optimization 

Private
Households
Office Building
Operators
Office Operators

Channels

Web retailers
Own web store
Retail stores

Brand
SW/AI experts
Product
engineering
Online sales
experts

AIoT
AI / advanced analytics for

Robot automation
Product performance analysis

loT
Robot control and monitoring

Cost Structure
R&D and DevOps costs
Manufacturing infrastructure & employees
Cost of materials and contract manufacturing
General & administration, sales, distribution

Revenue Structure
Pricing: Premium
Upfront revenues: Vacuum robot sales
Add-on sales: Auxiliary add-on equipment
ARR / subcription revenues: Digital add-on features 

Customer behaviour analysis

Fig. 22.4 ACME:Vac business model canvas

22 AIoT Product/Solution Design



268

product- related KPIs. In our context, the KPIs would either be related to an AIoT- 
enabled product or solution.

A Digital OEM that takes a smart, connected product to market usually has KPIs 
that cover business performance, user experience and customer satisfaction, product 
quality, and the effectiveness and efficiency of the product development process.

A Digital Equipment Operator who is launching a smart, connected solution to 
manage a particular process or a fleet of assets would usually have solution KPIs 
that cover the impact of the AIoT-enabled solution on the business process that it is 
supporting. Alternatively, business-related KPIs could measure the performance of 
the fleet of assets and the impact of the solution on that performance. Another typi-
cal operator KPI could be coverage of the solution. For example, in a large, hetero-
geneous fleet of assets, it could measure the number of assets that have been 
retrofitted successfully. UX and customer satisfaction-related KPIs would only 
become involved if the solution actually has a direct customer impact. Solution 
quality and the solution development process would certainly be another group of 
important KPIs (Fig. 22.5).

The figure with KPIs shown here provides a set of example KPIs for the 
ACME:Vac product. The business performance-related KPIs cover the number of 
robovacs sold, the direct sales revenue, recurring revenue from digital add-on fea-
tures, and finally the gross margin.

The UX/customer satisfaction KPIs would include some general KPIs, such 
as Net Promoter Score (results of a survey asking respondents to rate the 

Fig. 22.5 Vacuum robot - product KPIs
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likelihood that they would recommend the ACME:Vac product), System 
Usability Scale (assessment of perceived usability), and Product Usage (e.g., 
users per specific feature). The Task Success Rate KPIs may include how suc-
cessful and satisfied customers are with the installation and setup of the rob-
ovac. Another important KPI in this group would measure how successful 
customers are actually using the robovac for its main purpose, namely, cleaning. 
The Time on Task KPIs could measure how long the robovac is taking for dif-
ferent tasks in different modes.

Product Quality KPIs need to cover a wide range of process- and product-related 
topics. An important KPI is test coverage. This is a very important KPI for AIoT- 
enabled products, since testing physical products in combination with digital fea-
tures can be quite complex and expensive but a critical success factor. Incident 
metrics such as MTBF (mean time before failure) and MTTR (mean time to recov-
ery, repair, respond, or resolve) need to look at the local robovac installations, as 
well as the shared cloud back end. Finally, the number of support calls per day can 
be another important indicator of product quality. Functional product quality KPIs 
for ACME:Vac would include cleaning speed, cleaning efficiency, and recharg-
ing speed.

Finally, the Product Development KPIs must cover all of the different develop-
ment and production pipelines, including hardwire development, product manufac-
turing, software development, and AI development.

22.4.3  Quantitative Planning

Quantitative planning is an important input for the rest of the design exercise. For 
the Digital OEM, this would usually include information related to the number of 
products sold, as well as product usage planning data. For example, it can be impor-
tant to understand how many users are likely to use a certain key feature in which 
frequency to be able to design the feature and its implementation and deployment 
accordingly.

The quantitative model for the ACME:Vac product could include, for example, 
some overall data related to the number of units sold. Another interesting bit of 
information is the expected number of support calls per year because this gives an 
indication for how this process must be set up. Other information of relevance for 
the design team includes the expected average number of rooms serviced per vac-
uum robot, the number of active users, the number of vacuum cleaning runs per day, 
and the number of vacuum cleaner bags used by the average customer per year 
(Fig.22.6).
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Overall Year 1 Year 2 Year 3 Year 4 Year 5

# units sold

#rooms serviced

#active users

#vacuum runs

#vacuum cleaner bags

# support calls

Per Vacuum robot Amount Unit

3

2

2

12

Total

Total

Per day

Per year

150.000

50.000

175.000

50.000

210.000

45.000

250.000

40.000 35.000

300.000

Fig. 22.6 Quantitative plan

For a Digital Equipment Operator, the planning data must at its core include 
information about the number of assets to be supported. However, it can also be 
important to understand certain usage patterns and their quantification. For exam-
ple, a predictive maintenance solution used to monitor thousands of escalators and 
elevators for a railroad operator should be based on a quantitative planning model 
that includes some basic assumptions, not only about the number of assets to be 
monitored, but also about the current average failure rates. This information will be 
important for properly designing the predictive maintenance solution, e.g., from a 
scalability point of view.

22.4.4  Milestones/Timeline

Another key element of the business viewpoint is the milestone-based timeline. For 
the Digital OEM, this will be a high-level plan for designing, implementing and 
manufacturing, launching, supporting, and continuously enhancing the product.

The timeline for the ACME:Vac product differentiates between the physical 
product and the AIoT part (including embedded hardware and software, AI, and 
cloud). If custom embedded hardware is to be designed and manufactured, this 
could also be subsumed under the physical product workstream, depending on the 
organizational setup. The physical product workstream includes a product design 
and manufacturing engineering phase until the Start of Production (SOP). After the 
SOP, this workstream focuses on manufacturing. A new workstream for the next 
physical product generation starting after the SOP is omitted in this example. The 
AIoT workstream generally assumes that an AIoT DevOps model is applied consis-
tently through all phases.
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Key milestones for both the physical product and the AIoT part include the initial 
product design and architecture (result of sprint 0), the setup of the test lab for test-
ing the physical product, the first end-to-end prototype combining the physical 
product with the AIoT-enabled digital features, the final prototype/Minimum Viable 
Product, and finally the SOP.

The following figure also highlights the V-Sprints, which in this example applies 
to both physical product development and the AIoT development. While physical 
product development is unlikely to deliver potentially shippable product increments 
at the end of each V-Sprint, it still assumes the same sprint cadence.

Because sourcing is typically such a decisive factor, the timeline includes mile-
stones for the key sourcing contracts that must be secured. Details regarding the 
procurement process are omitted on this level (Fig. 22.7).

For a Digital Equipment Operator, this plan would focus less on the development 
and manufacturing of the physical product. Instead, it would most likely include a 
dedicated workstream for managing the retrofit of the solution to the existing physi-
cal assets.

22.5  Usage Viewpoint (Fig. 22.8)

The goal of the UX (User Experience) viewpoint is to provide a holistic view of how 
the product or solution will be utilized by the user and other stakeholders. Good UX 
practice usually includes extensive product validation, including usability testing, 
user feedback, pilot user tests, and so on. A good starting point is usually customer 
surveys or interviews. In the case of an AIoT-enabled product or solution it can also 
make sense to include site surveys to better understand the environment of the phys-
ical products or assets.

Fig. 22.7 Example milestone plan
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Fig. 22.8 AIoT usage viewpoint

To ensure realistic and consistent use cases across the design, a set of personas 
should be defined, representing the typical users of the product or solution. 
Revisiting the User Journey from the initial business design helps clarify many 
details. Finally, HMI (Human-Machine Interaction) design, early prototypes and 
wire frames are also essential elements of the UX viewpoint.

22.5.1  Site Surveys and Stakeholder Interviews

To capture and validate requirements, it is common practice for IT projects to per-
form stakeholder interviews. This should also be done in case of an AIoT product/
project.

However, an AIoT project is different in that it also involves physical assets and 
potentially also very specific sites, e.g., a factory. Requirements can heavily depend 
on the type of environment in which assets are deployed. Additionally, usage pat-
terns might vastly differ, depending on the environment. Consequently, it is highly 
recommended for the team responsible for the product design to spend time on-site 
and investigate different usage scenarios in different environments.

While many AIoT solutions might be deployed at a dedicated site, this might not 
be true for AIoT-enabled products. Take, for example, a smart kitchen appliance, 
which will be sold to private households. In this particular case, it can make sense 
to actually build a real kitchen as a test lab to test the usage of the product in a real-
istic environment. Alternatively, in the case of our Vacuum Robot, different 
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scenarios for testing the robot must be made available, including different room 
types and different floor surfaces (wood panels, carpets, etc.).

22.5.2  Personas

Personas are archetypical users of the product or solution. Often, personas represent 
fictitious people who are based on your knowledge of real users. The UX Viewpoint 
should define a comprehensive set of personas that help model the product features 
in a way that takes the perspective of different product users into consideration. By 
personifying personas, the product team will ideally even develop an emotional 
bond to key personas, since they will accompany them through an intense develop-
ment process. A persona does not necessarily need a sophisticated fictitious back-
ground story, but at least it should have a real-world first name and individual icon, 
as shown in Fig. 22.9.

22.5.3  User Journeys

The initial User Journeys from the Business Model design phase can be used as a 
starting point. Often, it can be a good idea in this phase of the product design to cre-
ate individual journey maps for different scenarios, adding more detail to the origi-
nal, high-level journey.

The example user journey for ACME:Vac shown here is not that different from 
most user journey designs found for normal software projects. The main difference 
is that the user journey here is created along the life cycle of the product from the 
customer’s point of view. This includes important phases such as Asset Activation, 
Asset Usage and Service Incidents (Fig. 22.10).

Hillary Hipstress
Tech-savvy,
early adopter
Focus on new
features

Kenny Kid
Potentially looking
at it as a toy
Ad-hoc cleaning of
„small accidents“

Dan the Dog
Curious, potentially even
aggressive towards the
vaccum robot

Clark Clean
Not looking for new gadgets
Potentially sceptical
towards the product
Interested mainly in its
practicality, ease-of-use

Fig. 22.9 AIoT personas
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Fig. 22.10 Customer journey for vacuum robot

From the point of view of a Digital Equipment Operator, the user journey 
most likely focuses less on an end customer but more on the different enter-
prise stakeholders and how they are experiencing the introduction and opera-
tions of the solution. Important phases in the journey here would be the 
solution retrofit, standard operations, and what actually happens in case of an 
incident monitored or triggered by the solution. For example, for a predictive 
maintenance solution, it is important not only to understand the deep algorith-
mic side of it but also how it integrates with an existing organization and its 
established processes.

22.5.4  UX/HMI Strategy

The UX/HMI strategy will have a huge impact on usability. Another important 
factor is the question of how much the supplier will be able to learn about how the 
user is interacting with the product. This is important, for example, for product 
improvements but also potentially for upselling and digital add-on services 
(Fig. 22.11).
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Fig. 22.11 UX/HMI for vacuum robot

The HMI strategy for ACME:Vac seems relatively straightforward at first sight: 
HMI features on the robovac are reduced to a minimum, including only some status 
LEDs and a reset button. Instead, almost all of the user interaction is done via the 
smartphone app. In addition, some basic commands such as starting an ad hoc 
cleaning run are supported via smart home integration.

It is important that the decision for the HMI strategy will have a huge impact not 
only on usability and customer experience but also on many other aspects, such as 
product evolvability (a physical HMI cannot be easily updated, while an app-based 
HMI can), customer intimacy (easier to learn how a customer is using the product 
via digital platforms), as well as the entire design and development process, includ-
ing manufacturing (none needed for app-based HMI).

However, the risk of completely removing the HMI from the physical product 
should also not be underestimated. For example, in the case of bad connectivity or 
unavailability of a required cloud backend, the entire physical product might become 
entirely unusable.

22.5.5  Mockups/Wireframes/Prototypes

To ensure a good user experience, it is vital to try out and validate different design 
proposals as early as possible. For purely software-based HMI, UI mockups or 
wireframes are a powerful way of communicating the interactive parts of the prod-
uct design, e.g., web interfaces and apps for smartphones or tablets. They should 
initially be kept on the conceptual level. Tools such as Balsamiq offer a comic-style 
way of creating mockups, ensuring that they are not mistaken for detailed UI imple-
mentation designs. The figure shown here provides a mockup for the ACME:Vac 
floor map management feature on the ACME:Vac app based on this style (Fig. 22.12).
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Fig. 22.12 Example 
wireframe for vacuum 
robot smart phone app

It should be noted that the validation of the UX for physical HMI can require the 
actual creation of a physical prototype. Again, this should be done as early as pos-
sible in the design and development phase, because any UX issued identified in the 
early stages will help save money and effort further downstream. For example, 
while the HMI on board the ACME:Vac robot is kept to a minimum, there are still 
interesting aspects to be tested, including docking with the charging station and 
replacement of the garbage bag.

22.6  Data/Functional Viewpoint (Fig. 22.13)

The Data and Functional Viewpoint provides design details that focus on the overall 
functionality of the product or solution, as well as the underlying data architecture. 
The starting point can be a refinement of the AIoT Solution Sketch. A better under-
standing of the data architecture can be achieved with a basic data domain model. 
The component and API landscape is the initial functional decomposition, and will 
have a huge impact on the implementation. The optional Digital Twin landscape 
helps understand how Digital Twin as a concept fit into the overall design. Finally, 
AI Feature Mapping helps identify which features are best suited to an implementa-
tion with AI.
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Fig. 22.13 AIoT Data/Functional viewpoint
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Fig. 22.14 Solution sketch for vacuum robot

22.6.1  AIoT Solution Sketch

The AIoT Solution Sketch from the Business Model can be refined in this perspec-
tive, adding more layers of detail, in a slightly more structured process of presenta-
tion. The solution sketch should include the physical asset or project (the robovac in 
our example), as well as other key assets (e.g., the robovac charging station) and key 
users. Since interactions between the physical assets and the back end are key, they 
should be listed explicitly. The sketch should also include an overview of key UIs, 
the key business processes supported, the key AI and analytics-related elements, the 
main data domains, and external databases or applications (Fig. 22.14).
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22.6.2  Data Domain Model

The Data Domain Model should provide a high-level overview of the key entities of 
the product design, including their relationships to external systems. The Domain 
Model should include approximately a dozen key entities. It does not aim to provide 
the same level of detail as a thorough data schema or object model. Instead, it should 
serve as the foundation for discussing data requirements between stakeholders, 
across multiple stakeholder groups in the product team (Fig. 22.15).

For example, the main data domains that have been identified for the ACME:Vac 
product are the customer, the robovac itself, floor maps and cleaning data. Each of 
these domains is described by listing the 5–10 key entities within. This is typically 
a good level of detail: sufficiently meaningful for planning discussions, without get-
ting lost in detail.

The design team must make a decision on whether the required data from an AI 
perspective should already be included here. This can make sense if AI-related data 
also play an important role in other, non AI-based parts of the system. In this case, 
potential dependencies can be identified and discussed here. If the AI has dedicated 
input sources (e.g., specific sensors that are only used by the AI), then it is most 
likely more interesting at this point what kind of data or information is provided by 
the AI as an output.

22.6.3  Component and API Landscape

To manage the complexity of an AIoT-enabled product or solution, the well- 
established approach of functional decomposition and componentization should be 
applied. The results should be captured in a high-level component landscape, which 
helps visualize and communicate the key functional components.

Functional Decomposition and Componentization
Functional decomposition is a method of analysis that breaks a complex body of 
work down into smaller, more easily manageable units. This “Divide & Conquer” 
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Customer
Personal Data

Account Data
Login
Preferences

Purchasing History
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Fig. 22.15 Data domain model for vacuum robot
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strategy is essential for managing complexity. Especially if the body of work cannot 
be implemented by a single team, splitting the work in a way that it can be assigned 
to different teams in a meaningful way becomes very important. Since a system’s 
architectural structure tends to be a mirror image of the organizational structure, it 
is important that team building follows the functional decomposition process. The 
idea of “feature teams” to support this is discussed in the AIoT Product Viewpoint.

Another key point of functional decomposition is functional scale: without effec-
tive functional decomposition and management of functional dependencies, it will 
be difficult to build a functionally rich application. It does not stop at building the 
initial release. Most modern software-based systems are built on the agile philoso-
phy of continuous evolution. While an AIoT-enabled product or solution does not 
only consist of software — it also includes AI and hardware — enabling evolvabil-
ity is usually a key requirement. Functional decomposition and componentization 
will enable the encapsulation of changes and thus support efficient system evolution.

The logical construct for encapsulating key data and functionality in an AIoT 
system should be the component. From a functional viewpoint, components are 
logical constructs, independent of a particular technology. Later in the implementa-
tion viewpoint, they can be mapped to specific programming languages, AI plat-
forms, or even specific functionality implemented in hardware. Additionally, 
component frameworks such as microservices can be added where applicable 
(Fig. 22.16).
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Fig. 22.16 Functional decomposition and componentization
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The functional decomposition process should go hand in hand with the develop-
ment of the agile story map (see AIoT Product Viewpoint) since the story map will 
contain the official definition of the body of work, broken down into epics and 
features.

The first iteration of the component landscape can actually be very close to the 
story map, since it should truly only focus on the functional decomposition. In a 
second iteration, the logical AIoT components must be mapped to a distributed 
component architecture. This perspective is actually somewhat between the func-
tional and implementation viewpoints. The mapping to the distributed component 
architecture must take a number of different aspects into consideration, including 
business/functional requirements, cost constraints, technical constraints and archi-
tectural constraints.

A key functional requirement simply is availability. In a distributed system, 
remote access to a component always has a higher risk of the component not being 
available, e.g., due to connectivity issues. Other business-driven aspects are organi-
zational constraints (especially if different parts of the distributed system are devel-
oped by different organizational units), physical control and legal aspects (deploying 
critical data or functionality in the field or in certain countries can be difficult). This 
is also closely related to data ownership and data sharing requirements.

Achim Nonnenmacher, expert for Software-defined Vehicle at Bosch comments: 
Because of the availability issues related to distributed applications, many leading 
services are using a capability-based architecture. For example, many smart phones 
have two versions of their key services - one which works with the data and capa-
bilities available on the phone, and one which works only with cloud connectivity. 
For example, you can say “Hey, bring me home”, and the offline phone will still be 
able to provide rudimentary voice recognition and navigation services using the AI 
and map data on the phone. Only if the phone is online will it be able to make full 
use of better cloud-based AI and data. We still have to learn in many ways how to 
apply this to the vehicle-based applications of the future, but this will be important.

Another key distribution aspect is cost constraints. For example, many manufac-
turers of physical products have to ensure that the unit costs are kept to a minimum. 
This can be an argument for deploying computationally intensive functions not on 
the physical product but rather on a cloud back end, which can better distribute 
loads coming from a large number of connected products. Similar arguments apply 
to communication costs and data storage costs.

Furthermore, the distributed architecture will be greatly influenced by technical 
constraints, such as latency (the minimum amount of time for a single bit of data to 
travel across the network), bandwidth (data transfer capacity of the network), per-
formance (e.g., edge vs. cloud compute performance), time sensitivity (related to 
latency), and security.

Finally, a number of general aspects should be considered from the architectural 
perspective. For example, the technical target platform (e.g., software vs. AI) will 
play a role. Another factor is the different speed of development: a single compo-
nent should not combine functionalities that will evolve at significantly different 
speeds. Similarly, one should avoid combining functionality, which only requires 
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standard Quality Management with functionality, which must be treated as func-
tional safety relevant to a single component. In this case, the QM functionality must 
also be treated as functional safety relevant, making it costliest to test, maintain 
and update.

While some of these constraints and considerations are of a more technical 
nature, they need to be combined with more business or functional considerations 
when designing the distributed component architecture.

Component Landscape
The result of the functional decomposition process should be a component land-
scape, which focuses on functional aspects but already includes a high-level distri-
bution perspective.

The example shown in Fig.  22.17 is the high-level component landscape for the 
ACME:Vac product. This component landscape has three swimlanes: one for the rob-
ovac (i.e., the edge platform), one for the main cloud service, and one for the smartphone 
running the ACME:Vac mobile app. The components of the robot include basic robot 
control and sensor access, as well as the route/trajectory calculation. These components 
would most likely be based on an embedded platform, but this level of detail is omitted 
from a functional viewpoint. In addition, the robot will have a configuration component, 
as well as a component offering remote services that can be accessed from the robot 
control component in the cloud. In addition, the cloud contains components for robot 
configuration, user configuration management, map data, and the management of the 
system status and usage history. Finally, the mobile app has a component to manage the 
main app screen, map management, and remote robot configuration.

API Management
In his famous “API Mandate”, Jeff Bezos — CEO of Amazon at the time — declared 
that “All teams will henceforth expose their data and functionality through service 
interfaces.” at Amazon. If the CEO of a major companies gets involved on this level, 
you can tell how important this topic is.
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APIs (Application Programming Interfaces) are how components make data and 
functionality available to other components. Today, a common approach is so-called 
RESTful APIs, which utilize the popular HTTP internet protocol. However, there 
are many different types of APIs. In AIoT, another important category of APIs is 
between the software and the hardware layer. These APIs are often provided as low- 
level c APIs (of course, any c API can again be wrapped in a REST API and exposed 
to remote clients). Most APIs support a basic request/response pattern to enable 
interactions between components. Some applications require a more message- 
oriented, de-coupled way of interaction. This requires a special kind of API.

Regardless of the technical nature of the API, it is good practice to document 
APIs via an API contract. This contract defines the input and output arguments, as 
well as the expected behavior. “Interface first” is an important design approach 
which mandates that before implementing a new application component, one should 
first define the APIs, including the API contract. This approach ensures de-coupling 
between component users and component implementers, which in turn reduces 
dependencies and helps managing complexity. Because APIs are such an important 
part of modern, distributed system development, they should be managed and docu-
mented as key artefacts, e.g. using modern API management tools which support 
API documentation standards like OpenAPI.

From the system design point of view, the component landscape introduced ear-
lier should be augmented with information about the key APIs supported by the 
different components. For example, the component landscape documentation can 
support links to the detailed API documentations in different repositories. This way, 
the component landscape provides a high level description not only of how data and 
functionality is clustered in the system, but also how it can be accessed.

22.6.4  Digital Twin Landscape

As introduced in the Digital Twin 101 section, using the Digital Twins concept can be 
useful, especially when dealing with complex physical assets. In this case, a Digital 
Twin Landscape should be included with the Data/Functional Viewpoint. The Digital 
Twin Landscape should provide an overview of the key logical Digital Twin models 
and their relationships. Relationships between Digital Twin model elements can be 
manifold. They should be used to help define the so-called ““knowledge graph”“across 
different, often heterogeneous data sources used to construct the Digital Twin model.

In some cases, the implementation of the Digital Twin will rely on specific stan-
dards and Digital Twin platforms. The Digital Twin Landscape should keep this in 
mind and only use modeling techniques that will be supported later by the imple-
mentation environment. For example, the Digital Twins Definition Language 
(DTDL) is an open standard supported by Microsoft, specifically designed to sup-
port modeling of Digital Twins. Some of the rich features of DTDL include Digital 
Twin interfaces and components, different kinds of relationships, as well as persis-
tent properties and transient telemetry events.

In the example shown in Fig. 22.18, these modeling features are used to create a 
visual Digital Twin Landscape for the ACME:Vac example. The example 
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differentiates between two types of Digital Twin model elements: system (green) 
and environment (blue). The system elements relate to the physical components of 
the robovac system. Environment elements relate to the environment in which a 
robovac system is actually deployed.

This differentiation is important for a number of reasons. First, the Digital Twin 
system elements are known in advance, while the Digital Twin environment ele-
ments actually need to be created from sensor data (see the discussion on Digital 
Twin reconstruction).

Second, while the Digital Twin model is supposed to provide a high level of 
abstraction, it cannot be seen completely in isolation of all the different constraints 
discussed in the previous section. For example, not all telemetry events used on the 
robot will be directly visible in the cloud. Otherwise, too much traffic between the 
robots and the cloud will be created.

This is why the Digital Twin landscape in this example assigns different types of 
model elements to different components. In this way, the distributed nature of the 
component landscape is taken into consideration, allowing for the creation of real-
istic mapping to a technical implementation later on.

22.6.5  AI Feature Mapping

The final element in the Data/Functional Viewpoint should be an assessment of the 
key features with respect to suitability for implementation with AI. As stated in the 
introduction, a key decision for product managers in the context of AIoT will be 
whether a new feature should be implemented using AI, Software, or Hardware. To 
ensure that the potential for the use of AI in the system is neither neglected nor 
overstated, a structured process should be applied to evaluate each key feature in 
this respect.

Fig. 22.18 Digital twin landscape

22 AIoT Product/Solution Design

https://aiotplaybook.org/index.php?title=Digital_Twin_101
https://aiotplaybook.org/index.php?title=Digital_Twin_101
https://aiotplaybook.org/index.php?title=Digital_OEM


284

In the example shown in Fig. 22.19, the features from the agile story map 
(see AIoT Product Viewpoint) are used as the starting point. For each feature, 
the expected outcome is examined. Furthermore, from an AI point of view, it 
needs to be understood which live data can be made available to potentially 
AI-enabled components, as well as which training data. Depending on this 
information, an initial recommendation regarding the suitability of a given fea-
ture for implementation with AI can be derived. This information can be mapped 
back to the overall component landscape, as indicted by Fig. 22.20. Note also 
that a new component for cloud- based model training is added to this version of 
the component landscape. Not that this level of detail does not describe, for 
example, details of the algorithms used, e.g. Simultaneous Localization and 
Mapping (SLAM), etc.
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22.7  Implementation Viewpoint (Fig. 22.21)

The Implementation Viewpoint must provide sufficient detail to have meaningful 
technical discussions between the different technical stakeholders of the product 
team. However, most design artifacts in this viewpoint will still be on a level of 
abstraction which will hide many of the different details required by the implemen-
tation teams. Nevertheless, it is important to find a common language and under-
standing between the different stakeholders, including a realistic mapping to the 
Data/Functional Viewpoint.

The AIoT Implementation Viewpoint should at least include an End-to-End 
Architecture, details on the planned integration with the physical asset (either fol-
lowing a line-fit or retrofit approach), as well as high-level hardware, software and 
AI architectures.

22.7.1  End-to-End Architecture

The End-to-End Architecture should include the integration of physical assets, as 
well as the integration of existing enterprise applications in the back end. In between, 
an AIoT system will usually have edge and cloud or on-premises back end compo-
nents. These should also be described with some level of detail, including technical 
platforms, middleware, AI and Digital Twin components, and finally the business 
logic itself (Fig. 22.22).
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Fig. 22.23 Asset integration

Fig. 22.22 IoT architecture

22.7.2  Asset Integration

The Asset Integration perspective should provide an overview of the physical parts 
of the product, including sensors, antennas, battery/power supply, HMI, and onboard 
computers. The focus is on how these different elements are integrated with the 
asset itself. For example, where exactly on the asset would the antenna be located, 
where to position key elements such as main board, battery, sensors, etc. Finally, an 
important question will concern wiring for power supply, as well as access to local 
bus systems (Fig. 22.23).
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22.7.3  Hardware Architecture

Depending on the requirements of the AIoT system, custom hardware development can 
be an important success factor. The complexity of custom hardware design and develop-
ment should not be underestimated. From the hardware design point of view, a key 
artefact is usually the schematic design of the required PCBs (Printed Circuit Boards).

The ACME:Vac example shown in Fig.  22.24 includes the main control unit, 
HMI, power management, sensors, wireless connectivity, signal conditioning, and 
finally the control of the different motors.

22.7.4  Software Architecture

The technical software architecture should have a logical layering, showing key 
software components and their main dependencies. For the ACME:Vac example, 
the software architecture would include two main perspectives: the software 
architecture on the robovac (Fig. 22.25) and the backend architecture (not shown).
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Depending on the type of organization, software architecture will be ad hoc or 
follow standards such as the OpenGroup’s [1] framework. TOGAF, for example, 
provides the concept of Architecture and Solution Building Blocks (ABB and SBB, 
respectively), which can be useful in more complex AIoT projects.

The example shown here is generic (like an ABB in TOGAF terms). Not shown 
here is a mapping of the software architecture to concrete products and standards 
(like a TOGAF SBB), which would usually be the case in any project. However, the 
Digital Playbook does not want to favor any particular vendor and is consequently 
leaving this exercise to the reader.

22.7.5  AI Pipeline Architecture

The AI Pipeline Architecture should explain, on a technical level, how data preparation, 
model training and deployment of AI models are supported. For each of these phases, it 
must be understood which AI-specific frameworks are being used, which additional 
middleware, which DBMS or other data storage technology, and which hardware and OS.

Finally, the AI Pipeline Architecture must show how the deployment of trained 
models to cloud and edge nodes is supported. For distributed edge nodes in particu-
lar, the support for OTA (over-the-air) updates should be explained. Furthermore, in 
the case of AI on distributed edge nodes, the architecture must explain how model 
monitoring data are captured and consolidated back in the cloud (Fig. 22.26).

22.7.6  Putting It All Together

The Data/Functional Viewpoint has introduced the concept of functional decompo-
sitioning, including the documentation of the distributed component architecture. 
The Implementation Viewpoint has added different technical perspectives. The 
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different functional components must be mapped to technology-specific pipelines. 
For this, feature teams must be defined that combine the required technical skills/
access to the required technical pipelines for a specific feature (see the AIoT Product 
Viewpoint for a more detailed discussion on feature teams and how they are 
assigned) (Fig. 22.27).

The results from the different technical pipelines are individual technical compo-
nents that must be integrated via different types of interfaces. For example, smart-
phone, cloud and edge components can be integrated via REST interfaces. On the 
edge, embedded components are often integrated via C interfaces. The integration 
between embedded software and hardware is done via different types of Hardware/
Software Interfaces (HSI). Finally, any AIoT hardware components must be physi-
cally integrated with the actual physical product. During the development/testing 
phase, this will usually be a manual process, while later it will be either a standard-
ized retrofit or line-fit process.

All of this will be required to integrate the different components required for a 
specific feature across the different technical pipelines. Multiple features will be 
integrated to form the entire system (or system-of-systems, depending on the com-
plexity or our product or solution).

22.8  Product Viewpoint (Fig. 22.28)

The Product Viewpoint must map the other elements of the Product Architecture to 
the key elements of an agile product organization. The main artefact here is the agile 
story map, which is the highest level structural description of the entire body of 
work. Feature team mapping supports the mapping of the work described in the 
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story map to the teams needed to implement the different product features. Finally, 
for each team and each sprint an individual sprint backlog must be created based on 
the story map and the results of the feature team mappings.

22.8.1  Story Map

It is best practice in the agile community to breakdown a larger body of work into 
specific work items using a hierarchical approach. Depending on the method 
applied, this hierarchy could include themes, epics, features, and user stories.

A story map organizes user stories in a logical way to present the big picture of 
the product. Story maps help ensure that user stories are well balanced, covering all 
important aspects of the planned solution at a similar level of detail. Story maps 
provide a two-dimensional graphical visualization of the Product Backlog. Many 
modern development support tools (such as Jira) support automatic visualization of 
the product backlog as a story map.

The AIoT Framework assumes the following hierarchy:

• Epic: A high-level work description, usually outlining a particular usage scenario 
from the perspective of one of multiple personas

• Feature: A specific feature to support an epic
• User Story: short requirements written from the perspective of an end user

Depending on the complexity of the project and the agile method chosen, this may 
need to be adapted, e.g. by further adding themes as a way of bundling epics.

When starting to break down the body of work, one should first agree on a set of top-
level epics, and ensure that they are consistent, do not overlap, and cover everything that 
is needed. For each epic, a small number of features should be defined. These features 
should functionally be independent (see the discussion on functional decomposition). 
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Finally, features can further be broken down into user stories. User stories are short and 
concise descriptions of the desired functionality told from the perspective of the user.

The example shown in Fig. 22.29 is the story map for the ACME:Vac product. It 
has six epics, including HMI, Cleaning, Maps, Navigation/Sensing, Configuration 
and Status/History. Each epic is broken down into a small number of key features 
supporting the epic. User stories are not shown on this level. Note that this story 
map does not include the entire mechatronic part of the system, including chassis, 
motor, locomotion (climbing over obstacles, etc.), home base, etc. Also, functional 
safety is not included here, which would be another real-world requirement.

22.8.2  Feature Team Mapping

One of the main challenges in almost all product organizations is the creation of 
efficient mapping between the organizational structure and the product structure 
(the same applies to projects and solutions). The problem here is that organizations 
are often more structured around skills (UX, frontend, back end, testing, etc.), while 
product features usually require a mixture of these skills.

Consequently, the Digital Playbook recommends an approach based on feature teams, 
which are assigned on demand to match the requirements of a specific feature. See Agile 
AIoT Organization for a more detailed discussion. Feature teams can exist for longer peri-
ods of time, spanning multiple sprints, if the complexity of the feature requires this.

In the example shown in Fig. 22.30, the user story “Change cleaning mode” (part 
of the cleaning mode configuration feature) is analyzed. The results of the analysis 
show that a number of components on the robovac, the cloud and mobile app must be 
created or extended to support this user story. A similar analysis must be done for all 
other user stories of the overarching feature before a proposal for the supporting fea-
ture team can be made. In this case, the feature team must include a domain expert, an 
embedded developer, a cloud developer, a mobile app developer, and an integration/
test expert. To support the scrum approach, who in the feature team plays the role of 
product (or feature) owner, as well as the scrum master, must be agreed upon.

Fig. 22.29 Example: initial story map
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Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

Fig. 22.30 Mapping user story to components and feature team

22.8.3  Sprint Backlogs

In preparation for each sprint, an individual sprint backlog must be created for each 
team, which is specific to the upcoming sprint. The sprint backlog is derived from 
the story map (essentially the product backlog). The sprint backlog contains only 
those items that are scheduled for implementation during that sprint. The sprint 
backlog can contain user stories to support features but also bug fixes or nonfunc-
tional requirements.

In larger organizations with multiple feature teams, the Chief Product Owner is 
responsible for the overarching story map, which serves as the product backlog. He 
prioritizes product backlog items based on risk, business value, dependencies, size, 
and date needed and assigns them to the individual teams. The teams will usually 
refine them and create their own sprint backlogs, in alignment with the Chief 
Product Owner and the product/feature owners of the individual teams.
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Chapter 23
Agile AIoT

Dirk Slama

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

Being able to address the complexity and volatility of AIoT product/solution devel-
opment in an agile way is a key success factor. This chapter first takes a look at some 
of the key challenges to achieve this, then discusses the Agile V- Model as a way to 
get there, followed by a discussion of the agile AIoT organization.

23.1  Agile Versus AIoT (Fig. 23.1)

Fig. 23.1 AIoT and agility
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23.1.1  Agility Versus AIoT: Impediments

With the emergence of Internet- and Cloud-based development, Agile software development 
has risen to become the de facto standard for many organizations, even though there are still 
many (sometimes religious) debates about how to implement Agile correctly. Software proj-
ects are usually plagued by very high levels of complexity and highly volatile requirements. 
Agile development is addressing this issue by combining collaborative efforts of self-orga-
nizing and cross-functional teams with a strong sense of customer-centricity and focus on 
value creation. Agile promotes continuous exploration, continuous integration and continu-
ous deployment. Scrum — as probably the most prominent Agile method — is based on an 
adaptive planning approach, which combines higher-level epics with a more detailed require-
ments backlog. Detailed requirements (“user stories”) are typically only created for the next 
1–2 sprints ahead. Successful Scrum organizations are very thorough and consequential in 
their Scrum rigor while still supporting adaptive and flexible planning.

Unfortunately, in most AIoT projects, there are some impediments to a fully 
Agile approach, including the following:

• Cultural differences between Cloud-native developers and product/manufactur-
ing type of engineers

• Scalability across multiple, often distributed teams (e.g. AI development, cloud 
and edge/embedded software development, hardware and network engineering)

• Sourcing and external dependencies which require more documentation and 
long-term planning

• The integration of teams working on Artificial Intelligence, which does not yet 
have a proven agile method to support it

• Hardware and embedded software engineering, that play by different rules than 
cloud-based software development

• Components/features which have to be “First Time Right”, e.g., because they will 
be deployed on assets in the field and can no longer be easily changed afterwards

• Functional Safety requirements, which often do not play well with an agile approach

The following will look at each of these impediments in detail, followed by a rec-
ommendation for how to address them in an AIoT product organization (Fig. 23.2).

Fig. 23.2 Agile inhibitors
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Impediment 1: Cultural Incompatibility
The first impediment for the adoption of a pure agile approach in an AIoT-driven 
product organization is the cultural differences typically found in heterogeneous 
teams that need to work together. Developers who are used to work with frequent, 
Cloud-enabled updates have a very different approach to project management than 
manufacturing-centric engineers who know that after the SOP (Start-of-Production) 
any change to a physical asset after it has left the factory involves a costly and pain-
ful recall procedure. As shown in the figure below, different types of organizations 
typically have different types of cultures - even within the same company. Applying 
one-size-fits all methods to such a cultural mix will be difficult (Fig. 23.3).

Depending on the culture found in the organizational units involved in the devel-
opment of the AIoT product, a matching agile approach must be chosen. Approaches 
such as Scrum of Scrums (SoS) or Large Scale Scrum (LeSS) could be a good fit for 
an entrepreneurial culture, which permits a “pure” agile approach. The Scaled Agile 
Framework (SAFe) could be a good fit for organizations that come more from a 
“Command & Control” background, often combined with elements of a more 
matrix-like organization.

Impediment 2: Organizational Scalability
The second impediment is organizational scalability: most “pure” Agile methods 
such as Scrum work best for single, colocated teams. Chances are that an AIoT 
project will be larger, involving multiple teams that are dealing with AI develop-
ment, on-asset components (Edge software, embedded, hardware), the IoT network, 
the backend business logic (cloud or on-premises), and the integration of existing 

Fig. 23.3 Corporate cultures and agile setup

23 Agile AIoT

http://www.ocai-online.com


296

enterprise systems. Given the diversity of these tasks, it also seems likely that the 
teams and team members will be distributed across multiple locations.

Consequently, most AIoT projects will require an Agile method that can be 
scaled beyond a single team and potentially a single location. In the discussion 
above, different approaches for scaled Agile development were introduced, includ-
ing Scrum of Scrums (SoS), Large Scale Scrum (LeSS) and the Scaled Agile 
Framework (SAFe). We will discuss later how they can be adapted to overcome 
some of the other limitations of AIoT development.

Impediment 3: Sourcing & External Dependencies
Many AIoT-enabled products have a complex supply chain, often using different 
suppliers for cloud software, edge software, embedded hardware and software, AI, 
and telecommunications infrastructure. The combination of technical complexity 
and supply chain complexity can be difficult to manage in a purely agile setting. 
Sourcing can already be a complex topic in normal software projects. With the 
added complexities of an AIoT project, any form of Agile organization will have to 
be closely aligned with the sourcing process.

In some organizations, Agile teams will have a high level of autonomy over the 
sourcing process. In a matrix-type organization as described above, a central sourc-
ing team will have a high level of influence and potentially little experience with this 
type of project. If the AIoT product is a large-scale, strategic product, it is very 
likely that procurement will dominate the first one or even two years of develop-
ment. In addition, lead times for hardware acquisition can be much longer than 
those of software components.

Most likely, the greatest challenge from an Agile perspective is that most sourc-
ing projects require extensive documentation of requirements or even solution 
designs. Many procurement organizations still see fixed-price offers as the preferred 
way of sourcing complex solutions. The level of documentation detail needed for 
most fixed-price contracts runs directly diametric to the low-documentation mantra 
of the Agile world.

Consequently, the product team and the procurement team will have to find ways 
to satisfy both of their needs, e.g., through creative solutions such as “fixed-price 
agile contracts” (e.g., a time-and-material contract with a performance-based com-
pensation component based on individual sprint performance).

Finally, another major issue is SLAs (Service Level Agreements) and warranties. 
The buyer typically wants this fixed as early in the development cycle as possible 
(ideally as part of the contract), while the supplier will have a hard time agreeing to 
any SLA or warranty if the requirements are not fixed.

Impediment 4: Artificial Intelligence
While AI is quickly becoming a popular element of modern product development, 
there are currently no well-established methodologies for AI development. Some 
teams are applying methods such as CRISP- DM, KDD, or CPMAI to AI projects. 
However, there is not yet a well-documented and established method available that 
explains how to combine agile and AI. Which is not to say that it cannot be done, 
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but the lack of proven agile methods for AI development is certainly an inhibitor for 
AIoT & Agile.

Impediment 5: Hardware/Embedded
Most AIoT projects require a combination of traditional (back-end) software devel-
opment with some form of edge or embedded software development. In many cases, 
custom hardware development and manufacturing will also be a requirement.

If the edge platform is a powerful, server-like system, e.g. running Linux and 
C++ or even high-level languages, the difference from an Internet or enterprise soft-
ware project might not be as high. However, in many cases, AIoT projects also 
require custom embedded software and hardware, which is a different animal all 
together, and many Agile principles cannot be directly applied. Embedded software 
is typically very technical, e.g., focusing on hardware-specific drivers or controllers, 
running on specialized real-time operating systems. In Addition, hardware develop-
ment follows its own rules. Some differences include:

• Software in general is easier to change than hardware designs
• It is not possible to change hardware after it has been manufactured
• Higher-level hardware designs must often incorporate existing, standardized 

lower-level parts
• The lead times, acquisition times and feedback loops for hardware components 

are much longer
• Time to first full integration test with custom hardware usually significantly lon-

ger than with software

All of the above does not mean that an Agile mindset cannot be applied to embed-
ded hardware/software development. However, an Agile embedded approach will 
have to take these specifics into consideration and adapt the methodology 
accordingly.

Impediment 6: First Time Right
Most AIoT-enabled products have some components and/or features which have to 
be “First Time Right”, e.g., because they will be deployed on assets in the field and 
cannot be easily changed afterwards. This can make it very difficult to apply agile 
principles: in the magic project triangle, the agile approach usually aims to fix the 
time and budget side of things, while the features/scope are seen as variables. For 
First Time Right features, this approach does not work.

Impediment 7: Functional Safety
Finally, if the AIoT-enabled product has Functional Safety requirements, this can 
impose another significant impediment on agility. Many Functional Safety stan-
dards are based on a “requirements first, code later” philosophy, while Agile is 
focused on continuous delivery of working software, but not on extensive documen-
tation and detailed requirements management. The Agile V- Model introduced by 
the AIoT Framework addresses this by providing a bridge between the two worlds.

23 Agile AIoT
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23.1.2  Conclusions

As seen from this discussion, adopting an end-to-end agile approach in an AIoT 
project or AIoT product development organization will not be straightforward. The 
question is - does it make sense at all? An interesting tool to get some answers to 
this question is the Stacey Matrix [21], which is designed to help understand and 
manage the factors that drive complexity in a project (Fig. 23.4).

The Stacey matrix is based on two dimensions: uncertainty of requirements 
(WHAT) and uncertainty of technology (HOW). The matrix has different areas, 
from “simple” (high level of certainty in both dimensions) to “anarchy” (far from 
certain). The matrix is often used to position different methods to these areas. For 
example, simple tasks can be addressed by a basic processing approach. Lean meth-
ods can help optimize well-understood tasks and eliminate waste in these standard-
ized processes. Standard project methods can be utilized up to a certain amount of 
complexity. After this, agile is recommended. For near-chaotic or early-stage proj-
ect phases, design thinking is recommended. This might be slightly black-and- 
white, but you get the picture.

However, the point with many AIoT initiatives is that they will have tasks or sub- 
projects across the entire Stacey matrix. Take, for example, the manual labeling of 
one million images as input for an ML algorithm. This is a highly repetitive task 
with low tech and clear requirements. It seems unlikely that this task will benefit 
hugely from an agile approach. Or take the retrofit rollout of sensor packs to 10,000 
assets in the field. Again, something with clear technical and functional require-
ments. On the other hand, take a “We will use AI to address xyz” statement from a 
management pitch. This will be in the upper right corner and again require a com-
pletely different approach.

Fig. 23.4 Stacey matrix
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Based on his experience as Project Management Process Owner at Bosch, 
Stephan Wohlfahrt has come to the following conclusions: Use Agile wisely, not 
only widely! Always be aware that a plan-driven or hybrid approach might be the 
better fit for a particular project phase or sub project.

An organization that has a lot of experience with both traditional project man-
agement and agile methods is the Project Management Institute (PMI). To address 
the challenges described above, the PMI has developed Disciplined Agile (DA) 
[22], which is a hybrid tool kit that harnesses Agile, Lean, and traditional strategies 
to provide the best way of working (WoW) for a team or organization. DA aims to 
be context-sensitive: rather than prescribing a collection of “best practices”, its goal 
is to teach how to choose and later evolve a fit-for-purpose “WoW”, which is the 
best fit in a given situation.

Scott Ambler is the Chief Scientist of Disciplined Agile at Project Management 
Institute. His advice on AIoT is as follows: To succeed with AIoT, or any compli-
cated endeavor, your team requires a fit-for-purpose approach. AIoT teams address 
complex problems, often ones where life-critical regulations apply and where your 
solution involves both hardware and software development, so you must be prag-
matic in how you choose your WoW. You want to be as effective as you can be, and 
to do that you must choose an appropriate life cycle and practices that support it. 
AIoT teams face a competitive market and a rapidly evolving environment, so you 
must improve continuously via an experimentation-based, validated-learning strat-
egy. Unlike agile frameworks that prescribe a collection of “best practices” DA 
instead teaches you how to choose the practices that are best for you – DA helps you 
to get better at getting better. You want your teams to work in a manner that is best 
for them, which implies that all of your teams will work differently and will con-
stantly evolve how they work.

The following introduces the Agile V-Model, which is a combination of agile 
practices and the V-Model, designed to specifically address many of the challenges 
discussed before. Since the Agile V-Model focuses on the project/product level, it 
can be combined with enterprise practices such as DA.

23.2  Agile AIoT Organization (Fig. 23.5)

The AIoT product organization must combine scaled agile methods with those 
methods that are better suited to address the aforementioned impediments to agility. 
As outlined in the book The Connected Company [23], companies which success-
fully address the fast speed of technical innovation must be more like complex, 
dynamic systems that can learn and adapt over time. The following provides an 
overview of how the Digital Playbook suggests addressing agility in the context 
of AIoT.
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Fig. 23.5 Agile AIoT organization

23.2.1  Industry Best Practices

Many of the Cloud hyper-scalers have adopted best practices for customer-centric, 
agile product innovation. There are many examples from companies like Apple, 
Google, and Amazon. Some of the core elements of these best practices include a 
culture which is open for innovation, agile organizational structures and effective 
support mechanisms.

The organizational culture of these organizations is often described as being cen-
tered around a strong - if not obsessive - customer focus. Empowerment of employ-
ees with a strong “builder” mentality also plays an important role. Another point is 
calculated risk taking, which often goes hand-in-hand with a “fail early, fail often” 
mentality. Especially the latter is a point which is often very difficult to handle for 
companies with an industrial or manufacturing focus.

Another point are organizational structures which support agility. Again, often a 
weak point of large, industrial incumbents. Companies like Amazon are promoting 
small, empowered teams. The term „2 Pizza Team" was coined by Jeff Bezos him-
self - referring to the fact that a team should not include more people than can be fed 
by 2 pizzas. Another important point is single threaded ownership. This means that 
leaders should be able to focus 100% on a single deliverable - without having to 
worry about dependencies to other parts or the organization. This comes along with 
decentral decision making: Avoiding large decision-making bodies as they are 
known from many industrial incumbents, and instead empowering the teams and 
product owners.

These agile organizational structures must be supported by effective mecha-
nisms. Again, looking at an Amazon example, which is the “Working backwards” 
process. In this process, the team starts with creating a press release which describes 
the outcome from the end customer’s perspective, including information about the 
problem, how current solutions are failing, and why the new product will solve this 
problem. Other methods include Design Thinking, Lean UX and Customer Journey 
Mapping.
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Finally, the agile organization must be supported by an architecture which is 
flexible and scalable to support growth and change. For many cloud organizations, 
this means a clear focus on microservices with well-defined APIs as the only means 
for access. In addition, these services must be made available as self-service plat-
forms, to ensure scalability without depending on human administrators or gate-
keepers. For many organizations which are not cloud-native, this is also an issue. 
Furthermore, combining hardware with software in AIoT-enabled products or solu-
tions can also make it very hard to find flexible and easily changeable architectures 
(Fig. 23.6).

23.2.2  Scaled Agile Organizations and AIoT

There are a number of different agile frameworks designed to address the issue of 
scaling agile to a level where it can support larger organizations and multiple teams 
with complex dependencies. Examples include SAFe (the Scaled Agile Framework) 
and Less (Large Scale Scrum). The basic idea of most of these scaled agile 
approaches is to establish a leadership team that usually consists of a lead architect, 
a product manager (or chief product owner), and an engineering lead. Together, they 
help orchestrate the work by agile teams, which usually work relatively indepen-
dently within a loosely coupled, agile organization.

This approach makes sense in general and is followed by the AIoT framework. 
To address the specifics of AIoT, two additions are made:

Fig. 23.6 Industry best practices
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• A dedicated product coordinator is added to the leadership team. This role will 
be responsible for ensuring that all dependencies are properly managed, both 
internally and externally.

• Two types of agile teams are introduced: Feature Teams and AIoT Technical 
Workstreams. The Feature Teams take end-to-end responsibility for functional 
features, and the Technical Workstreams provide the foundations. Sometimes the 
Technical Workstreams are the home for experts with different technical skills 
(cloud, edge, mobile apps, etc.), which are then assigned to different Feature 
Teams, depending on the demand.

Figure 23.7 shows the difference between a standard Scaled Agile Organization and 
the Agile AIoT Product Organization.

23.2.3  Feature Teams Versus Technical Workstreams

An AIoT product usually requires a technical infrastructure that includes cloud and 
edge capabilities, IoT communication services, and an AIoT DevOps infrastructure. 
In addition, many cross-cutting topics, such as end-to-end security, OTA (Over-the- 
Air Updates), etc. must be addressed. This is what the AIoT Technical Workstreams 
will need to provide and maintain.

The Feature Teams are then responsible for building end-to-end functionality 
based on the technical infrastructure. For this to occur in a coordinated way, the 
product manager must work closely with the product owners of the different feature 
teams (to map the end-to-end epics from the story maps to user stories that are man-
aged in the backlogs of the different feature teams). The lead architect must ensure 
that the different feature teams contribute to a consistent end-to-end architecture. 
The product coordinator, the engineering lead, and the different product owners 
should collaborate to manage key dependencies and meet global milestones 
(Fig. 23.8).

Fig. 23.7 Scaled agile organization vs AIoT organization
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Fig. 23.8 AIoT feature teams vs. technical workstreams

23.2.4  Minimum Viable Teams

When setting up a new team — whether a feature team or a technical workstream — 
a key question is how to staff it. This is why the concept of the Minimum Viable 
Team (MVT) is so important. The purpose of the MVT is to make the initial team as 
lean as possible, and allow the core team to pull in additional resources when needed.

Always keep in mind Conway’s Law, which describes the phenomenon where 
the organizational structure becomes the blueprint for the architectural structure. 
For example, if you have a database expert on the team the final design will proba-
bly include a database, regardless of whether one is needed or not. As soon as orga-
nizations decide who will be on the team, they are in effect designing the system.

This can be addressed by the concept of the MVT. The only caveat is that (espe-
cially in larger organizations) it can be difficult to obtain additional resources on 
demand. This is the reason many team leads have a tendency to acquire resources 
when the opportunity arises.

23.2.5  Leadership Roles

The following describes the key leadership roles in the Agile AIoT Product 
Organization: AIoT Product Manager, AIoT Product Engineering Lead, AIoT 
Product Architect, and AIoT Product Coordinator.

AIoT Product Manager
Product Management for smart, connected products can build on existing good 
practices, which are summarized in Fig. 23.9.
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Fig. 23.9 Product management

AIoT Product Engineering Lead
The Product Engineering Lead is effectively responsible for ensuring that the differ-
ent AIoT product teams are together continuously delivering integrated product 
increments. Depending on the chosen setup — loosely coupled teams or a more 
hierarchical organization — they will directly or indirectly coordinate and orches-
trate the delivery of the product increments.

Some of the key tasks include:

• Management of end-to-end product engineering roadmap
• Alignment of product vision with product roadmap and backlogs
• Facilitation of cross-team planning events
• Oversee continuous delivery pipeline and efficient AIoT DevOps - covering edge 

and cloud, as well as code and AI models
• Coordination/support of technology and resource acquisition
• Escalation and tracking of road-blockers
• Ensure UX principles are followed
• Ensure establishment of Quality Management  - including QM for the AI- 

elements of the system
• Creation and tracking of key engineering metrics - including metrics for the AI- 

part of the system
• Coaching and guiding the engineering staff  - ensuring that hardware develop-

ment, traditional software development and AI-development are working 
hand in hand

• Collaboration with a product coordinator on dependency management, risk man-
agement, and cost management

AIoT Product Architect
The AIoT Product Architect must define and maintain the end-to-end architecture 
and design of the product. They must work closely with the different AIoT develop-
ment teams and other key stakeholders, focusing only on architectural decisions that 
are of relevance from a cross-team perspective. Architectural decisions that have no 
impact outside of an individual team should be made by the team itself.
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It is important to note that the AIoT Framework does not propose an exces-
sive, RUP/waterfall-style model depth, as can be seen when looking at the indi-
vidual templates. The general scheme of collaboration between the different 
project stakeholders in the architecture management process is shown in 
Fig. 23.10.

The key to success is to keep the AIoT Solution Architecture on a level of detail 
where it is meaningful, but not overly complex. The agile teams must be able to 
apply their own mechanism (e.g., demand-driven design spikes) to derive require-
ments for their backlog and provide feedback to the overarching architecture 
in return.

AIoT Product Coordinator
To support the Product Manager, Engineering Lead and Product Architect in their 
work, AIoT recommends installing an overall Product Coordinator in a back 
office management role. The key tasks of this coordinator are summarized in 
Fig. 23.11.

Fig. 23.10 AIoT solution architecture process
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Fig. 23.11 AIoT project management

Fig. 23.12 1.0 Agile V-Model.png

PMI PMBOK provides a good description of the different knowledge areas that 
a product coordinator must be able to support.

23.3  Agile V-Model (Fig. 23.12)

The V-Model is a software development method often found in areas with high 
requirements on safety and security, which are common in highly regulated areas. 
Combining the traditional V-Model with a disciplined agile approach promises to 
allow as much agility as possible, while addressing the issues often found in AIoT 
initiatives: complex dependencies, different speeds of development, and the “first 
time right” requirements of those parts of the system which cannot be updated after 
the Start of Production (SOP).
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23.3.1  Recap: The V-Model

The V-model is a systems development lifecycle which has verification and valida-
tion “built in”. It is often used for the development of mission critical systems, e.g., 
in automotive, aviation, energy and military applications. It also tends to be used in 
hardware-centric domains. Not surprisingly, the V-model uses a v-shaped visual 
representation, where the left side of the “V” represents the decomposition of 
requirements, as well as the creation of system specifications (“definition and 
decomposition”). The right side of the “V” represents the integration and testing of 
components. Moving up on the right side, testing usually starts with the basic veri-
fication (e.g., unit tests, then integration tests), followed by validation (e.g., user 
acceptance tests) (Fig. 23.13).

When applying the V-model to AIoT, it needs to take different dimensions into 
consideration; usually including hardware, software, AI, and networking. In addition 
to the standard verification tests (unit tests, integration tests) and validation tests (user 
acceptance and usability tests), the V-model for AIoT also needs to address interoper-
ability testing, performance testing, scalability testing and reliability testing. The 
highly distributed nature of AIoT systems will pose specific challenges here.

Test automation is key to ensure a high level of test efficiency and test coverage. 
On the software side, there are many tools and techniques available to support this. 
In the AI-world, these kinds of tools and techniques are only just beginning to 
emerge, which makes it likely that a more custom approach will be required. In the 
embedded and hardware world, simulation techniques such as Hardware-in-the- 
Loop (HIL), Software-in-the-Loop (SIL) and Model-in-the-Loop (MIL) are well 
established. However, most AIoT products will also require testing of the actual 
physical product and how well they perform in the field in different types of envi-
ronments. Again, this will be a challenge, and some ingenuity will be required to 
automate testing of physical products wherever possible.

Fig. 23.13 V-Model

23 Agile AIoT



308

23.3.2  Evolution: The Agile V-Model

The AIoT framework aims to strike a good balance between the agile software 
world and the less agile world of often safety-critical, complex and large(r)-scale 
AIoT product development with hardware and potentially manufacturing elements. 
Therefore, it is important to understand how an agile method works well together 
with a V + V-centric approach such as the V-model. The logical consequence is the 
Agile V-model. Combining agile development with the V-model is not a contradic-
tion. They can both work very well together, as shown in the figure following:

• Agile methods use story maps including epics, themes, features and user stories 
for logical decomposition. This maps well to the left side of the V

• Continuous Integration / Continuous Test / Continuous Delivery are inherently 
agile methods, that map well to the right side of the V

• The key assumption is that the V-model is not used like one large waterfall 
approach. Instead, the Agile V-model must ensure that the sprints themselves 
will become Vs according to the V-model (Fig. 23.14)

There are two options to implement the latter:

• Each sprint becomes a complete V, including development and integration/test
• The agile schedule introduces the concept of dedicated integration sprints.
• One V becomes 2 sprints: one development sprint, one integration sprint
• There are pros and cons to both approaches
• The complexity and scale of the project will surely play a role in determining the 

best setup

For most projects / product teams, it is recommended that development and integra-
tion are combined in a single sprint (“v-sprint”). Only for projects with a very high 
level of complexity and dependencies, e.g., between components developed by 

Fig. 23.14 Agile V Model

D. Slama



309

different organizations, is it recommended to alternate between development and 
integration sprints. The latter approach is likely to add inefficiencies to the develop-
ment process, but could be the only approach to effectively deal with alignment 
across organizational boundaries.

23.3.3  The ACME:Vac Vacuum Robot Example

To illustrate the use of the Agile V-Model, the realistic yet fictitious ACME:Vac 
example is introduced. This is a robot vacuum cleaning system that combines a 
smart, connected vacuum robot with a cloud-based back end, as well as a smart app 
for control.

Modern robot vacuum cleaners are very intelligent, connected products. Even 
the most basic versions provide collision, wheel, brush and cliff sensors. More 
advanced versions use visual sensors combined with a VSLAM algorithm (Visual 
Simultaneous Location and Mapping). The optical system can identify landmarks 
on the ceiling, as well as judge the distance between walls. The most advanced 
systems utilize LIDAR technology (Light Detection and Ranging) to map out 
their environment, identify room layouts and obstacles, and serve as input for 
computing efficient routes and cleaning methods. For example, the robot can 
decide to make a detour vs. switching into the built-in “climb over obstacle”-
mode. Another example is the automatic activation of a “carpet boost” mode. 
IoT-connectivity to the cloud enables integration with user interface technology 
such as smart mobile devices or smart home appliances for voice control (“clean 
under the dining room table”). Edge AI algorithms deployed on the robot are used 
to control these processes in advanced models. A complete design of the 
ACME:Vac is provided in the Product / Solution Design section (Fig. 23.15).

Fig. 23.15 Example: robot vacuum cleaner
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Fig. 23.16 Sprint Zero

Fig. 23.17 Example: initial story map

23.3.4  Applying the Agile V-Model to ACME:Vac

The following provides a description of how the ACME:Vac example is developed 
using the Agile V-Model. This discussion will start with a look at a “Sprint 0”, 
where the foundations are laid. Then a “Sprint n” is discussed in detail, with an 
outlook on the transition to the next sprint (“Sprint n+”).

Sprint 0
Many scrum masters are starting their projects with a “Sprint 0” as a preparation 
sprint to initiate the project (ignoring the quasi-religious discussion whether this is 
a good practice or a "cardinal sin" for the moment, since we have to start some-
where...). In the case of ACME:Vac, two working results arise: the initial story map 
and the initial component architecture. These will be important elements for the 
planning of the subsequent sprints (Fig. 23.16).

Initial Story Map
According to the story map structure proposed by the AIoT Framework, the story 
map for the vacuum robot system includes epics and features on the top level. The 
epics include Human/Machine Interfaces, the actual cleaning functions, manage-
ment of the maps for the areas to be cleaned, navigation/sensing, system configura-
tion, and status/history (Fig. 23.17).
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Initial Component Architecture
The Component Architecture for the ACME:Vac highlights the key functional com-
ponents in three clusters: the robot itself (Edge), the cloud back end, and the smart-
phone app. On the robot, two embedded components provide control over the robot 
functions, as well as access to the sensor data. Higher-level components include the 
control of the robot movements (based on AI/ML, potentially with a dedicated hard-
ware), the robot configuration, as well as remote access to the robot APIs. The cloud 
services include basic services for managing map data, status/history data, as well 
as user and robot configuration data. The robot control component enables remote 
access to the robot. Finally, the smart phone/mobile app provides components for 
robot configuration and map management, all accessible via the main screen of the 
app (Fig. 23.18).

Note that — in line with the agile “working code over documentation” philoso-
phy — the component architecture documentation does not need to be very detailed. 
Only the main functional components are listed here. Depending on the project, 
usage dependencies can be added if such levels of detail are deemed relevant and the 
maintenance of the information is realistic.

Sprint n
Next, we want to jump right into the middle of the ACME:Vac development by fast- 
forwarding to a “Sprint n”, which will focus on a single feature to illustrate the 
approach in general (Fig. 23.19).

Fig. 23.18 Example: initial component architecture
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User Story
As a “registered user of the system”
I want to “change the cleaning mode”
So that “the robot will clean in the selected
mode (silent, standard, or power mode)”

Acceptance Criteria
The robot will always use the cleaning
mode last selected by the user
This was tested in the test lab using the
standard test user, with a dedicated test
scenario for this user story which covers all
possible combinations of switching from 
one mode at another
User Guide was updated

Configuration

Cleaning
Mode

Cleaning
Schedule

User Account Wifi

Software 
Updates

Definition of Done
Cross-use case criteria

Scheduled cleaning must
use current cleaning
mode

Generic criteria:
Unit test passed
Code reviewed
Non-functional 
requirements met, e.g.
performance, scalability,
robustness, security

Fig. 23.20 Example user story

Fig. 23.19 Agile V-Model

The example will show how a sprint is executed in the agile V-Model, including:

User Story & Acceptance Criteria
In this example, we are focusing on the ACME:Vac Epic “Configuration”. This 
includes features such as “Cleaning Mode” (e.g. silent, standard, or power mode), 
“Cleaning Schedule Management”, “User Account Management”, “WiFi 
Configuration”, as well as “Software Update Management”. The Definition of Done 
provides higher level acceptance criteria.

In our example we focus on the “Cleaning Mode” feature. This contains a Use 
Story “change cleaning mode”, including some acceptance criteria specific to this 
user story. The intention is that the user can select different cleaning modes via his 
smart phone app, which will then be supported by both the ad-hoc as well as the 
scheduled cleaning modes (Fig. 23.20).
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Mapping User Story to Components and Feature Team
Having defined the user story, the next step is to identify which components are 
required for the story. The “Change Cleaning Mode” story will require a robot con-
figuration component on the smartphone. This will need to interact with the robot 
configuration component in the cloud. In order to record the change, an interaction 
with the status / history component is required. Finally, the remote service compo-
nent on the robot will receive the selected mode, and configure the robot accord-
ingly (Fig. 23.21).

Based on the analysis of the functional components, the required members of the 
feature team for this user story can be identified. They include a domain expert, an 
embedded developer for the components on the robot, a cloud developer, a mobile 
app developer, and an integration/test expert. Note that some organizations strive to 
employ full-stack developers. However, in this case it seems unlikely that a single 
developer will have all the required skills.

Implementation and CI/CT/CD
Implementation in an AIoT initiative can include many components, including soft-
ware development, AI/ML development, data management, HW design and engi-
neering, or even manufacturing setup. The various tasks often have to be executed 
at different development speeds, e.g., because hardware is usually not evolving as 
fast as software. Because of this, it might not always be possible to create a poten-
tially shippable product increment. The Agile V-Model recommends that if this is a 
case, at least mockup implementations of the public interfaces should be provided 
for integration testing.

Each sprint needs to fully support Continuous Integration, Continuous Testing 
and Continuous Deployment (CI/CT/CD), with the limitations just discussed in 
mind. A key element of CI is component integration, which usually should be done 
with a focus on different user stories, i.e., it should focus on integrating and testing 

Fig. 23.21 Mapping user story to components and feature team
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the set of components required for a particular user story. This often means that 
these components are embedded into an environment which simulates auxiliary 
components and/or production data. This should be handled automatically by the CI 
(Continuous Integration) infrastructure.

If the component integration including tests was successful, the components can 
be integrated into the entire system. This means integrating all components which 
are changed or created by the current sprint need to be integrated in order to create 
the next, potentially shippable increment of the system.

Verification & Validation
For some people in the agile community, Verification & Validation (V&V) is con-
sidered to be an outdated concept, while for many people with an enterprise and/or 
functional safety background, it is good practice. The Agile V-Model aims for a 
pragmatic view on this. Componentization (see the Divide & Conquer section) must 
support an approach where functional components with different levels of QM/
functional safety requirements are separated accordingly, so that the most suitable 
V&V approaches can be applied individually.

Traditionally, validation is supposed to answer the question “Are we building the 
right product?”, while verification focuses on “Are we building the product right?”, 
even though the boundary between these questions can be blurry.

In the Agile V-Model, verification differentiates between the micro and the 
macro-level. The micro-level is defined by the Acceptance Criteria of the individual 
user stories, while the macro-level is focusing on the Definition of Done, which usu-
ally applies across individual user stories. Validation, on the other hand, focuses on 
user acceptance. In AIoT, this can involve quite laborious lab and field tests 
(Fig. 23.22).

Fig. 23.22 V&V details – explanation
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Sprint n + 1
At the end of a sprint, the sprint retrospective should summarize any key findings 
from the sprint’s V&V tasks that need to be carried over to the next sprint. For 
example, findings during User Acceptance Tests might require a change to a user 
story. Or a feature team might have decided on an ad hoc change to the planned 
component architecture. These kinds of findings must either be reflected by changes 
to the backlog (for user story definitions), or by updating the architecture plans and 
documentation.

Summary
In summary, the Agile V-Model is designed to support the adoption of agile prac-
tices in an AIoT environment, where we usually find some significant inhibitors of 
a “pure” agile approach. Each v-sprint combines a normal, agile sprint with a sprint- 
specific planning element. This allows us to address the complexities inherent to 
most AIoT initiatives, as well as the typical V&V requirements often found in AIoT.

At the end of each sprint, the sprint results must be compared to the original 
sprint goals. Story maps and component landscapes must be adapted according to 
the results of this process. The updated version then serves as input to the planning 
of the next sprint (Fig. 23.23).

23.3.5  Decoupling Development

To master the complexity of an AIoT product or solution, it is important to apply an 
effective “Divide & Conquer” strategy. This requires decoupling both on the devel-
opment and on the technical level. In order to decouple the development, an 
interface- first strategy must be implemented. This will allow for the development 
and testing of components independently of each other, until they have reached a 
level of maturity so that they can be fully integrated and tested.

Fig. 23.23 Verification and validation – details
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This will also be especially important in AIoT because it will not always be pos-
sible to test all components in the context of the full system. This is why many AIoT 
developments utilize different test simulation approaches. These can range from 
simple interface simulations (e.g., via REST tools) to sophisticated virtual simula-
tions (e.g., allowing us to test an algorithm for autonomous driving in a virtual 
world). Since field tests can be time-consuming and expensive, this is important in 
AIoT (Fig. 23.24).

23.3.6  Stakeholders and Collaboration

The Agile V-Model aims to support collaboration between different stakeholders 
who are involved in the execution. Very often, this will involve cross-company col-
laboration, e.g., if certain parts of the AIoT system are developed by different com-
panies. It is important to think about which tools should be used for efficient 
stakeholder collaboration, both within individual stakeholder groups and between 
them. The figure following provides some examples. Finally, on the technical level 
it is important to note that the Agile V-Model must support the different AIoT pipe-
lines, as introduced earlier (Fig. 23.25).

Architectural Planning
Plan new services / changes to existing
ones

Interfaces & Mockups
Define interface definitions, mockup-2-mockup
tests with meaning ful testdata, including
complex component interaction sequences

Decoupled Development & Testing
E.g. Smartphone  App development,
testing against mockup vacuum robot (UAT).
Indenpendently develop / test robot components.

Component Integration & Testing
Integrate Smartphone App with cloud
Components + fully functioning
Vacuum Robot

Smartphone
App

Cloud Service

Edge
Service
(Robot)

Fig. 23.24 Decoupling development

Fig. 23.25 Agile V-Model: stakeholders and toolchain
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23.3.7  Agile V-Model and AIoT

Finally, this discussion should conclude by mentioning what is probably the biggest 
difference between a “normal” software project and an AIoT project: the Start of 
Production, or SOP. This is the point in time when mass production of the smart, 
connected products is starting, and they are leaving the factory to be deployed in the 
field. Alternatively, the start of the roll-out of retrofitting the AIoT solution to exist-
ing assets in the field. Any required changes to the hardware configuration of the 
product or solution will now be extremely difficult to achieve (usually involving 
costly product recalls, which nobody wants). In a world where manufacturers want 
to utilize the AIoT to constantly stay in contact with their products after they have 
reached the customer, and provide the customer with new digital services and appli-
cations — rolled out via OTA — it becomes extremely important to understand that 
the V&V process does not stop with the SOP, at least not for anything that is soft-
ware. With software -defined vehicles, software-defined robots, and software- 
defined everything, this is quickly becoming the new normal (Fig. 23.26).

23.3.8  Issues and Concerns

The proposed Agile V-Model approach has provoked intense discussions between 
advocates of the different worlds. Some of the arguments against the approach have 
been captured in Fig. 23.27. Some comments and counterarguments are included as 
well. We hope that the discussion will continue, and we will be able to capture more 
pros and cons (Fig. 23.27).

Fig. 23.26 Agile V-Model and SOP
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Fig. 23.27 Issues and concerns regarding the Agile V-Model

23.3.9  Expert Opinion

Sebastian Helbeck is a VP and Platform Owner Power Tools Drive Train at Bosch 
Power Tools. The following his summarizes his thoughts on this topic.

Dirk Slama: Do you see the agile world (cloud, etc.) and the waterfall world (e.g., 
embedded) currently working well together? What are the issues?

Sebastian Helbeck: What I am seeing is that many projects are currently developed 
parallel in these two worlds. This is based on the fact that in many cases either 
the embedded or the non-embedded part already exists, and the other part needs 
to be developed. In the future this needs to be done more seamlessly.

DS: How much do these worlds need about each other, and how can we ensure this?
SH: Currently everybody is focusing on understanding and fulfilling their own con-

tributions and the interfaces around. In the future, the interfaces will change and 
will be even more complex. Edge computing will be a key driver here. 
 Consequently, we need to have better knowledge about our own contributions 
and how they relate to the other side. As an analogy, FPGA technology can be 
used, which has tremendously changed the interfaces between HW and 
embedded SW.

DS: Can the different methods coexist, or do we need a common approach?
SH: Currently, they coexist and it works, but it is not ideal. This is why as the next 

step, we need to bring the different approaches closer together due to the differ-
ent maturities of the product parts. To unleash the full power of AIoT, we need to 
rethink this and have to adopt a more holistic approach.

DS: Which role can the Agile V-Model play here?
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SH: It can potentially play an important role here. It will combine the two worlds 
with a holistic view to give all the included stakeholders a transparent overview 
of the complete system. For the future, we might need to think about a new name 
since the combination of the worlds will bring us to a new dimension of under-
standing of our AIoT systems.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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Chapter 24
Holistic AIoT DevOps

Dirk Slama

D. Slama (*) 
Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

The introduction of DevOps — together with Continuous Integration/Continuous 
Delivery (CI/CD) — has fundamentally changed the way software is developed, 
integrated, tested, and deployed. DevOps and CI/CD are key enablers of agile devel-
opment. However, today’s DevOps practices predominantly focus on cloud and 
enterprise application development. For successful AIoT products, DevOps will 
need to be extended to include AI and IoT (Fig. 24.1).

Fig. 24.1 AIoT - DevOps and infrastructure
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24.1  Agile DevOps for Cloud and Enterprise Applications

DevOps organizations breakdown the traditional barriers between development and 
operations, focusing on cross-functional teams that support all aspects of develop-
ment, testing, integration and deployment. Successful DevOps organizations avoid 
overspecialization and instead focus on cross-training and open communication 
between all DevOps stakeholders.

DevOps culture is usually closely aligned with agile culture; both are required 
for incremental and explorative development.

Continuous Integration / Continuous Delivery (CI/CD) emphasize automation 
tools that drive building and testing, ultimately enabling a highly efficient and agile 
software life cycle. The Continuous Integration (CI) process typically requires com-
mitment of all code changes to a central code repository. Each new check-in triggers 
an automated process that rebuilds the system, automatically performs unit tests, 
and executes automated code-quality checks. The resulting software packages are 
deployed to a CI server, with optional notification of a repository manager.

Continuous Testing (CT) goes beyond simple unit tests, and utilizes complex test 
suites that combine different test scripts to simulate and test complex interactions 
and processes.

Finally, Continuous Delivery (CD) uses Infrastructure- as- Code (IaC) concepts to 
deploy updated software packages to the different test and production environments 
(Fig. 24.2).

Agile Software Development

Sprints
Developers

Backlog Increments

Commit
(code)

Code
Respository

Build/
Unit Test/

Code Quality

CI Server/
Repository
Manager

CI Server/
Repository
Manager

Continuous Feedback

Continuous Delivery

QA / UAT /
Production 

Provisioning

Continuous Testing

Tickets/
Tracking/

Test materics

CI Server Test 
Suites

Test 
Scripts

Agile
DevOps

Continuous Integration

Fig. 24.2 Agile DevOps for cloud and enterprise applications
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24.2  Agile DevOps for AI: MLOps

The introduction of AI to the traditional development process is adding many new 
concepts, which create challenges for DevOps:

• New roles: data scientist, AI engineer
• New artefacts (in addition to code): Data, Models
• New methods/processes: AI/data-centric, e.g., “Agile CRISP-DM”, Cognitive 

Project Management for AI (CPMAI)
• New AI tools + infrastructure

The development of AI-based systems also introduces a number of new require-
ments from a DevOps perspective:

• Reproducibility of models: Creating reproducible models is a key prerequisite 
for a stable DevOps process

• Model validation: Validating models from a functional and business perspec-
tive is key

• Explainability (XAI, or ‘explainable AI’): How to ensure that the results of the 
AI are comprehensible for humans?

• Testing and test automation: AI requires new methods and infrastructure
• Versioning: Models, code, data
• Lineage: Track evolution of models over time
• Security: Deliberately skewed models as new attack vector/adversarial attacks
• Monitoring and retraining: Model decay requires constant monitoring and retraining

Figure 24.3 provides an overview of how an AI-specific DevOps process can help in 
addressing many of the issues outlined above.

AI/ML Model Creation

Preparation Experimentation

Data
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Data

Training Reproduceability

Data Sets

Continuous Delivery

Model Monitoring

QA / UAT /
Production

Provisioning CI Server/
Repository
Manager
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Continuous Testing
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Al/ML Model
Packaging

Al/ML Model
Repository

CI Server /
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Fig. 24.3 AI DevOps
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24.3  Agile DevOps for IoT

Finally, we need to look at the DevOps challenges from an IoT point of view. The 
main factors are:

• OTA: Over- the- Air updates (OTA) require a completely different infrastructure 
and process than traditional, cloud-based DevOps approaches

• Embedded Software & Hardware: The lifecycle of embedded hardware and soft-
ware is very different from cloud-based software. Testing and test automation are 
possible, but require special efforts and techniques.

The OTA update process is described in more detail here. The figure following pro-
vides a high-level overview. The OTA Update process usually comprises three 
phases. During the authoring phase, new versions of the software (or AI models or 
other content) are created. The distribution phase is responsible for physical distri-
bution (e.g., between different global regions) and the management of update cam-
paigns. Finally, once arrived on the asset, the local distribution process ensures that 
the updates are securely deployed, and the updated system is validated (Fig. 24.4).

Looking again at the four quadrant DevOps overview, this time from the IoT 
perspective, a number of differences compared to the standard DevOps approach 
can be seen:

• Agile development is structured to match the needs of an IoT organization, as 
discussed here

• Continuous Integration (CI) will usually have to cover a much more diverse set 
of development environments since it needs to cover cloud and embedded 
development
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Fig. 24.4 OTA overview
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• Continuous Testing (CT) will have to address the test automation of embedded 
components, e.g. by utilizing different abstraction and simulation techniques 
such as HIL (hardware in the loop), SIL (software in the loop) and MIL (model 
in the loop)

• Continuous Delivery (CD) will have to utilize OTA not only for the production 
system but also for Quality Assurance and User Acceptance Tests

Finally, all of the above will also have to be examined from the perspective of 
Verification and Validation (Fig. 24.5).

24.4  Agile DevOps for AIoT

The AIoT DevOps approach will need to combine all three perspectives outlined in 
the previous sections: Cloud DevOps, AI DevOps and IoT DevOps. Each of these 
three topics in itself is complex, and integrating the three into a single, homoge-
neous and highly automated DevOps approach will be one of the main challenges 
of each AIoT product. However, without succeeding in this effort, it will be nearly 
impossible to deliver an attractive and feature-rich product that can also evolve over 
time, as far as the limitations of hardware deployed in the field will allow. Utilizing 
OTA to evolve the software and AI deployed on the assets in the field will be a key 
success factor for smart, connected products in the future.
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Chapter 25
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Digital Trust (or trust in digital solutions) is a complex topic. When do users deem 
a digital product truly trustworthy? What if a physical product component is added, 
as in smart, connected products? While security is certainly a key enabler of Digital 
Trust, there are many other aspects that are important, including ethical consider-
ations, data privacy, quality and robustness (including reliability and resilience). 
Since AIoT-enabled products can have a direct, physical impact on the well-being 
of people, safety also plays an important role (Fig. 25.1).

Safety is traditionally closely associated with Verification and Validation; which 
has its own, dedicated section in Ignite AIoT. The same holds true for robustness 
(see Reliability and Resilience). Since security is such a key enabler, it will have its 
own, dedicated discussion in this chapter, followed by a summary of AIoT Trust 

Fig. 25.1 Ignite AIoT - trust & security
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Policy Management. Before delving into this, we first need to understand the AI and 
IoT-specific challenges from a security point of view.

25.1  Why Companies Invest in Cyber Security (Fig. 25.2)

25.2  AI-Related Trust and Security Challenges

As excited as many business managers are about the potential applications of AI, 
many users and citizens are skeptical of its potential abuses. A key challenge with 
AI is that it is per se not explainable: there are no more explicitly coded algorithms, 
but rather “black box” models that are trained and fine-tuned over time with data 
from the outside, with no chance of tracing and “debugging” them the traditional 
way at runtime. While Explainable AI is trying to resolve this challenge, there are 
no satisfactory solutions available.

One key challenge with AI is bias: while the AI model might be statistically cor-
rect, it is being fed training data that include a bias, which will result in (usually 
unwanted) behaviour. For example, an AI-based HR solution for the evaluation of 
job applicants that is trained on biased data will result in biased recommendations.

While bias is often introduced unintentionally, there are also many potential 
ways to intentionally attack an AI-based system. A recent report from the Belfer 
Center describes two main classes of AI attacks: Input Attacks and Poisoning 
Attacks.

Input attacks: These kinds of attacks are possible because an AI model never 
covers 100% of all possible inputs. Instead, statistical assumptions are made, and 
mathematical functions are developed to allow creation of an abstract model of the 
real world derived from the training data. So-called adversarial attacks try to exploit 
this by manipulating input data in a way that confuses the AI model. For example, a 
small sticker added to a stop sign can confuse an autonomous vehicle and make it 
think that it is actually seeing a green light.

Fig. 25.2 Why companies invest in cyber security
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Poisoning attacks: This type of attack aims at corrupting the model itself, typi-
cally during the training process. For example, malicious training data could be 
inserted to install some kind of backdoor in the model. This could, for example, be 
used to bypass a building security system or confuse a military drone.

25.3  IoT-Related Trust and Security Challenges

Since the IoT deals with the integration of physical products, one has to look beyond 
the cloud and enterprise perspective, including networks and physical assets in the 
field. If a smart connected product is suddenly no longer working because of techni-
cal problems, users will lose trust and wish back the dumb, non-IoT version of it. If 
hackers use an IoT-connected toy to invade a family’s privacy sphere, this is a viola-
tion of trust beyond the normal hacked internet account. Consequently, addressing 
security and trust for any IoT-based product is key.

The OWASP (The Open Web Application Security Project, a nonprofit founda-
tion) project has published the OWASP IoT Top 10, a list of the top security con-
cerns that each IoT product must address:

• Weak Guessable, or Hardcoded Passwords
• Insecure Network Services
• Insecure Ecosystem Interfaces (Web, backend APIs, Cloud, and mobile 

interfaces)
• Lack of Secure Update Mechanism (Secure OTA)
• Use of Insecure or Outdated Components
• Insufficient Privacy Protection
• Insecure Data Transfer and Storage
• Lack of Device Management
• Insecure Default Settings
• Lack of Physical Hardening

Understanding these additional challenges is key. However, to address them  — 
together with the previously discussed AI-related challenges  — a pragmatic 
approach is required that fits directly with the product team’s DevOps approach. 
The result is sometimes also referred to as DevSecOps, which will be introduced in 
the following.

25.4  DevSecOps for AIoT

DevSecOps augments the DevOps approach, integrating security practices into all 
elements of the DevOps cycle. While traditionally many security teams are central-
ized, in the DevSecOps approach it is assumed that security is actually delivered by 
the DevOps team and processes. This starts with Security-by-Design, but also 

25 Trust & Security
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includes integration, testing and delivery. From an AIoT perspective, the key is to 
ensure that DevSecOps addresses all challenges presented by the different aspects 
of AIoT: AI, cloud/enterprise, network, and IoT devices/assets. Figure  25.3 pro-
vides an overview of the proposed AIoT DevSecOps model for AIoT.

DevSecOps needs to address each of the four DevOps quadrants. In addition, 
Security Planning was added as a fifth quadrant. The following will look at each of 
these five quadrants in detail.

25.5  Security Planning for AIoT

Security Planning for AIoT must first determine the general approach. Next, Threat 
Modeling will provide insights into key threats and mitigation strategies. Finally, 
the security architecture and setup must be determined. Of course, this is an iterative 
approach, which requires continuous evaluation and refinement.

25.5.1  DevSecOps Approach

The first step toward enabling DevSecOps for an AIoT product organization is to 
ensure that key stakeholders agree on the security method used and how to integrate 
it with the planned DevOps setup. In addition, clarity must be reached on resources 
and roles:

• Is there a dedicated budget for DevSecOps (training, consulting, tools, infra-
structure, certification)?

Fig. 25.3 DevSecOps for AIoT
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• Will there be a dedicated person (or even team) with their security hat on?
• How much time is each developer expected to spend on security?
• Will the project be able to afford dedicated DevSecOps training for the develop-

ment teams?
• Will there be a dedicated security testing team?
• Will there be external support, e.g., an external company performing the penetra-

tion tests?
• How will security-related reporting be set up during development and operations?

25.6  Threat Modeling

Threat Modeling is a widely established approach for identifying and predicting 
security threats (using the attacker’s point of view) and protecting IT assets by 
building a defense strategy that prepares the appropriate mitigation strategies. 
Threat models provide a comprehensive view of an organization’s full attack sur-
face and help to make decisions on how to prioritize security-related investments.

There are a number of established threat modeling techniques available, includ-
ing STRIDE and VAST. Figure 25.4 describes the overall threat modeling process.

First, the so-called Target of Evaluation (ToE) must be defined, including secu-

rity objectives and requirements, as well as a definition of assets in scope.
Second, the Threats & Attack Surfaces must be identified. For this, the STRIDE 

model can be used as a starting point. STRIDE provides a common set of threats, as 
defined in fig. 25.5 (including AIoT-specific examples).

Fig. 25.4 Threat modeling

Fig. 25.5 STRIDE
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The STRIDE threat categories can be used to perform an in-depth analysis of the 
attack surface. For this purpose, threat modeling usually uses component diagrams 
of the target system and applies the threat categories to it. An example is shown in 
fig. 25.6.

Finally, the potential severity of different attack scenarios will have to be evalu-
ated and compared. For this process, an established method such as the Common 
Vulnerability Scoring System (CVSS) can be used. CVSS uses a score from zero to 
ten to help rank different attack scenarios. An example is given in fig. 25.7.

Next, the product team needs to define a set of criteria for dealing with the risks 
on the different levels, e.g.
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• High risk: Fixed immediately
• Medium risk: Fixed in next minor release
• Low risk: Fixed in next major release

To manage the identified and classified risks, a risk catalog or risk register is created 
to track the risks and the status. This would usually be done as part of the overall 
defect tracking.

25.6.1  Security Architecture & Setup

Securing an AIoT system is not a single task, and the results of the threat modeling 
exercise are likely to show attack scenarios of very different kinds. Some of these 
scenarios will have to be addressed during the later phases of the DevSecOps cycle, 
e.g., during development and testing. However, some basic security measures can 
usually already be established as part of the system architecture and setup, including:

• Basic security measures, such as firewalls and anti-virus software
• Installation of network traffic monitors and port scanners
• Hardware-related security architecture measures, e.g., Trusted Platform Module 

(TPM) for extremely sensitive systems

These types of security-related architecture decisions should be made in close align-
ment with the product architecture team, early in the architecture design.

25.6.2  Integration, Testing, and Operations

In DevSecOps, the development teams must be integrated into all security-related 
activities. On the code-level, regular code reviews from a security perspective can 
be useful. On the hardware-level, design and architecture reviews should be per-
formed from a security perspective as well. For AI, the actual coding is usually only 
a small part of the development. Model design and training play a more important 
role and should also be included in regular security reviews.

Continuous Integration has to address security concerns specifically on the 
code level. Code-level security tests/inspections include:

• Before compilation/packaging: SAST can be used for Static Application Security 
Testing.

• IAST (Interactive application security testing) uses code instrumentation, which 
can slow down performance. Individual decisions about enabling/disabling it 
will have to be made as part of the CI process.

Security testing includes tests with a specific focus on testing for security vulner-
abilities. These can include:
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• Applications, e.g., DAST (Dynamic Application Security Testing)
• Hardware-related security tests
• AI model security tests
• End-to-End System, e.g., manual and automated penetration tests

Secure operations have to include a number of activities, including:

• Threat Intelligence
• Infrastructure and Network Testing (including Secure OTA)
• Security tests in the field
• RASP: Runtime Application Self-Protection
• Monitor/Detect/Response/Recover

25.6.3  Minimum Viable Security

The key challenge with security planning and implementation is to find the right 
approach and the right level of required resource investments. If too little attention 
(and % of project resources and budget) is given to security, then there is a good 
chance that this will result in a disaster - fast. However, if the entire project is domi-
nated by security, this can also be a problem. This relates to the resources allocated 
to different topics, but also to the danger of over-engineering the security solutions 
(and in the process making it too difficult to deliver the required features and usabil-
ity). Figuring out the Minimum Viable Security is something that must be done 
between product management and security experts. Also, it is important that this is 
seen as an ongoing effort, constantly reacting to new threats and supporting the 
system architecture as it evolves.

25.7  Trust Policy Management for AIoT

In addition to security-related activities, an AIoT product team should also consider 
taking a proactive approach toward broader trust policies. These trust policies can 
include topics such as:

• Data sharing policies (e.g., sharing of IoT data with other stakeholders)
• Transparency policies (e.g., making data sharing policies transparent to end users)
• Ethics-related policies (e.g., for AI-based decisions)

Taking a holistic view of AIoT trust policies and establishing central trust policy 
management can significantly contribute to creating trust between all stakeholders 
involved.
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Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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Ensuring a high level of robustness for AIoT-based systems is usually a key require-
ment. Robustness is a result of two key concepts: reliability and resilience (“R&R”). 
Reliability concerns designing, running and maintaining systems to provide consis-
tent and stable services. Resilience refers to a system’s ability to resist adverse 
events and conditions (Fig. 26.1).

Ensuring reliability and resilience is a broad topic that ranges from basics such 
as proper error handling on the code level up to georeplication and disaster recovery. 
In addition, there are some overlaps with Security, as well as Verification and 
Validation. This chapter first discusses reliability and resilience in the context of 
AIoT DevOps and then looks at the AI and IoT specifics in more detail.

Fig. 26.1 Ignite AIoT - Reliability & Resilience
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26.1  R&R for AIoT DevOps

Traditional IT systems have been using reliability and resilience engineering meth-
ods for decades. The emergence of hyperscaling cloud infrastructures has taken this 
to new levels. Some of the best practices in this space are well documented, for 
example, Google’s Site Reliability Engineering approach for production systems 
[24]. These types of systems need to address challenges such as implementing 
recovery mechanisms for individual IT services or entire regions, dealing with data 
backups, replication, clustering, network load-balancing and failover, georedun-
dancy, etc.

The IoT adds to these challenges because parts of the system are imple-
mented not in the data center but rather as hardware and software components 
that are deployed in the field. These field deployments can be based on sophis-
ticated EDGE platforms or on some very rudimentary embedded controllers. 
Nevertheless, IT components deployed in the field often play by different 
rules — and if it is only for the fact that it is much harder (or even technically 
or economically impossible) to access them for any kind of unplanned physical 
repairs or upgrades.

Finally, AI is adding further challenges in terms of model robustness and model 
performance. As will be discussed later, some of these challenges are related to the 
algorithmic complexity of the AI models, while many more arise from complexities 
of handling the AI development cycle in production environments, and finally add-
ing the specifics of the IoT on top of it all.

Ensuring R&R for AIoT-enabled systems is usually not something that can be 
established in one step, so it seems natural to integrate the R&R perspective into the 
AIoT DevOps cycle. Naturally, the R&R perspective must be integrated with each 
of the four AIoT DevOps quadrants. From the R&R perspective, agile development 
must address not only the application code level but also the AI/model level, as well 
as the infrastructure level. Continuous Integration must ensure that all R&R-specific 
aspects are integrated properly. This can go as far as preparing the system for Chaos 
Engineering Experiments (Fig. 26.2) [25]. Continuous Testing must ensure that all 
R&R concepts are continuously validated. This must include basic system-level 
R&R, as well as AI and IoT-specific R&R aspects. Finally, Continuous Delivery/
Operations must bring R&R to production. Some companies are even going to the 
extreme to conduct continuous R&R tests as part of their production systems (one 
big proponent of this approach is Netflix, where the whole Chaos Engineering 
approach originated).
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Fig. 26.2 R&R DevOps for AIoT

Fig. 26.3 Analyze Rate Act

26.1.1  R&R Planning: Analyze Rate Act

While it is important that R&R is treated as a normal part of the AIoT DevOps 
cycle, it usually makes sense to have a dedicated R&R planning mechanism, which 
looks at R&R specifically. Note that a similar approach has also been suggested for 
Security, as well as Verification & Validation. It is important that none of these three 
areas is viewed in isolation, and that redundancies are avoided.

The AIoT Framework proposes a dedicated Analyze/Rate/Act planning process 
for R&R, embedded into the AIoT DevOps cycle, as shown in Fig. 26.3.
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The “Analyze” phase of this process must take two key elements into 
consideration:

• R&R metrics/KPIs: A performance analysis and evaluation of the actual live 
system. This must be updated and used as input for each iteration of the planning 
process. In the early phases, the focus will be more on how to actually define the 
R&R KPIs and acquire related data, while in the later phases this information 
will become an integral part of the R&R planning process.

• Component/Dependency Analysis (C/DA): Utilizing existing system documen-
tation such as architecture diagrams and flowcharts, the R&R team should 
 perform a thorough analysis of all the components in the system, and their poten-
tial dependencies. From this process, a list of potential R&R Risk Areas should 
be compiled (“RA list”).

The RA list can contain risks at different levels of granularity, ranging from risks 
related to the availability of individual microservices up to risks related to the avail-
ability of entire regions. The RA list must also be compared to the results of the 
Threat Modeling that comes out of the DevSecOps planning process. In some cases, 
it can even make sense to join these two perspectives into a single list or risk 
repository.

The “Rate” phase must look at each item from the RA list in detail, including the 
potential impact of the risk, the likelihood that it occurs, ways of detecting issues 
related to the risk, and ways for resolving them. Finally, a brief action plan should 
describe a plan for automating the detection and resolution of issues related to the 
risk, including a rough effort estimate. Based on all of the above, a rating for each 
item in the RA list should be provided.

The “Act” phase starts with prioritizing and scheduling the most pressing issues 
based on the individual ratings. Highly rated issued must then be transferred to the 
general development backlog. This will likely include additional analysis of depen-
dencies to backlog items more related to the application development side of things.

26.1.2  Minimum Viable R&R

Similar to the discussion on Minimum Viable Security, project management must 
carefully strike a balance between investments in R&R and other investments. A 
system that does not support basic R&R will quickly frustrate users or even 
worse — result in lost business or actual physical harm. However, especially in 
the early stages of market exploration, the focus must be on features and usability. 
Determining when to invest in R&R as the system matures is a key challenge for 
the team.
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26.2  Robust, AI-Based Components in AIoT

The AI community is still in the early stages of addressing reliability, resilience and 
related topics such as robustness and explainability of AI-based systems. H. Truong 
provides the following definitions (Fig. 26.3) [26] from the ML perspective:

• Robustness: Dealing with imbalanced data and learning in open-world(out-of- 
distribution) situations

• Reliability: Reliable learning and reliable inference in terms of accuracy and 
reproducibility of ML models; uncertainties/confidence in inferences; reliable 
ML service serving

• Resilience: bias in data, adversary attacks in ML, resilience learning, computa-
tional Byzantine failures

In the widely cited paper on Hidden Technical Debt in Machine Learning Systems 
(Fig. 26.4) [27], the authors emphasize that only a small fraction of real-world ML 
systems are composed of ML code, while the required surrounding infrastructure is 
vast and complex, including configuration, data collection, feature extraction, data 
verification, machine resource management, analysis tools, process management 
tools, serving infrastructure, and monitoring.

The AIoT Framework suggests differentiating between the online and offline 
perspectives of the AI-based components in the AIoT system. The offline perspec-
tive must cover data sanitation, robust model design, and model verification. The 
online perspective must include runtime checks (e.g., feature values out of range or 
invalid outputs), an approach for graceful model degradation, and runtime monitor-
ing. Between the online and offline perspectives, a high level of automation must be 
achieved, covering everything from training to testing and deployments.

Mapping all of the above R&R elements to an actual AIoT system architecture is 
not an easy feat. Acquiring high-quality test data from assets in the field is not 
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always easy. Managing the offline AI development and experimentation cycle can 
rely on standard AI engineering and automation tools. However, model deploy-
ments to assets in the field rely on nonstandard mechanisms, e.g., relying on OTA 
(over- the- air) updates from the IoT toolbox. Dealing with multiple instances of 
models deployed onto multiple assets (or EDGE instances) in the field is something 
that goes beyond standard AI processing in the cloud. Finally, gathering  — and 
making sense of — monitoring data from multiple instances/assets is beyond today’s 
well-established AI engineering principles (Fig. 26.5).

26.2.1  Reliability & Resilience for IoT

The IoT specifics of Reliability & Resilience also need to be addressed. For the 
backend (cloud or enterprise), of course, most of the standard R&R aspects of 
Internet/cloud/enterprise systems apply. Since the IoT adds new categories of cli-
ents (i.e., assets) to access the back ends, this has to be taken into consideration from 
an R&R perspective. For example, the IoT backend must be able to cope with mal-
functioning or potentially malicious behaviour of EDGE or embedded components.

For the IoT components deployed in the field, environmental factors can play a 
significant role, which requires extra ruggedness for hardware components, which 
can be key from the R&R perspective. Additionally, depending on the complexity of 
the EDGE/embedded functions, many of the typical R&R features found in modern 
cloud environments will have to be reinvented to ensure R&R for components 
deployed in the field.

Finally, for many IoT systems — especially where assets can physically move — 
there will be much higher chances of losing connectivity from the asset to the 
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backend. This typically requires that both backend and field-based components 
implement a certain degree of autonomy. For example, an autonomous vehicle must 
be able to function in the field without access to additional data (e.g., map data) 
from the cloud. Equally, a backend asset monitoring solution must be able to func-
tion, even if the asset is currently not connected. For example, asset status informa-
tion must be augmented with a timestamp that indicates when this information was 
last updated (Fig. 26.6).
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Quality Management (QM) is responsible for overseeing all activities and tasks 
needed to maintain a desired level of quality. QM in Software Development tradi-
tionally has three main components: quality planning, quality assurance, and quality 
control. In many agile organizations, QM is becoming closely integrated with the 
DevOps organization. Quality Assurance (QA) is responsible for setting up the 
organization and its processes to ensure the desired level of quality. In an agile orga-
nization, this means that QA needs to be closely aligned with DevOps. Quality 
Control (QC) is responsible for the output, usually by implementing a test strategy 
along the various stages of the DevOps cycle. Quality Planning is responsible for 
setting up the quality and test plans. In a DevOps organization, this will be a con-
tinuous process (Fig. 27.1).

Fig. 27.1 Ignite AIoT - Artificial Intelligence

© The Author(s) 2023
D. Slama et al. (eds.), The Digital Playbook, 
https://doi.org/10.1007/978-3-030-88221-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88221-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-88221-1_27
mailto:dirk.slama@bosch.com


346

QM for AIoT-enabled systems must take into consideration all the specific 
challenges of AIoT development, including QM for combined hardware/soft-
ware development, QM for highly distributed systems (including edge compo-
nents in the field), as well as any homologation requirements of the specific 
industry. Verification & Validation (V&V) usually plays an important role as 
well. For safety relevant systems (e.g., in transportation, aviation, energy grids), 
Independent Verification & Validation (IV&V) via an independent third party 
can be required.

27.1  Verification & Validation

Verification and validation (V&V) are designed to ensure that a system meets the 
requirements and fulfills its intended purpose. Some widely used Quality 
Management Systems, such as ISO 9000, build on verification and validation as key 
quality enablers. Validation is sometimes defined as the answer to the question “Are 
you building the right thing?” since it checks that the requirements are correctly 
implemented. Verification can be expressed as “Are you building the product 
right?” since it relates to the needs of the user. Common verification methods 
include unit tests, integration tests and test automation. Validation methods include 
user acceptance tests and usability tests. Somewhere in between verification and 
validation we have regression tests, system tests and beta test programs. Verification 
usually links back to requirements. In an agile setup, this can be supported by link-
ing verification tests to the Definition of Done and the Acceptance Criteria of the 
user stories (Fig. 27.2).

Fig. 27.2 Quality Control
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27.2  Quality Assurance and AIoT DevOps

So how does Quality Assurance fit with our holistic AIoT DevOps approach? First, 
we need to understand the quality-related challenges, including functional and non-
functional. Functional challenges can be derived from the agile story map and sprint 
backlogs. Non-functional challenges in an AIoT system will be related to AI, cloud 
and enterprise systems, networks, and IoT/edge devices. In addition, previously 
executed tests, as well as input from ongoing system operations, must be taken into 
consideration. All of this must serve as input to the Quality Planning. During this 
planning phase, concrete actions for QA-related activities in development, integra-
tion, testing and operations will be defined.

QA tasks during development must be supported both by the development team, 
and by any dedicated QA engineers. The developers usually perform tasks such as 
manual testing, code reviews, and the development of automated unit tests. The QA 
engineers will work on the test suite engineering and automation setup.

During the CI phase (Continuous Integration), basic integration tests, automated 
unit tests (before the check-in of the new code), and automatic code quality checks 
can be performed.

During the CT phase (Continuous Testing), many automated tests can be per-
formed, including API testing, integration testing, system testing, automated UI 
tests, and automated functional tests.

Finally, during Continuous Delivery (CD) and operations, User Acceptance Test 
(UATs) and lab tests can be performed. For an AIoT system, digital features of the physical 
assets can be tested with test fleets in the field. Please note that some advanced users are 
now even building test suites that are embedded with the production systems. For example, 
Netflix became famous for the development of the concept of chaos engineering. By let-
ting loose an “army” of so-called Chaos Monkeys onto their production systems, they 
forced the engineers to ensure that their systems withstand turbulent and unexpected con-
ditions in the real world. This is now referred to as "Chaos Engineering" (Fig. 27.3).

Fig. 27.3 Quality Assurance and AIoT DevOps
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27.3  Quality Assurance for AIoT

What are some of the AIoT-specific challenges for QA? The following looks at QA 
& AI, as well as the integration perspective. AI poses its own set of challenges on 
AI. And the integration perspective is important since an AIoT system, by its very 
nature, will be highly distributed and consist of multiple components.

27.3.1  QA & AI

QA for AI has some aspects that are very different from traditional QA for software. 
The use of training data, labels for supervised learning, and ML algorithms instead 
of code with its usual IF/THEN/ELSE-logic poses many challenges from the QA 
perspective. The fact that most ML algorithms are not "explainable" adds to this.

From the perspective of the final system, QA of the AI-related services usually 
focuses on functional testing, considering AI-based services a black box (“Black 
Box Testing“) which is tested in the context of the other services that make up the 
complete AIoT system. However, it will usually be very difficult to ensure a high 
level of quality if this is the only test approach. Consequently, QA for AI services in 
an AIoT system also requires a "white box" approach that specifically focuses on 
AI-based functionality.

In his article “Data Readiness: Using the ‘Right’ Data” (Sect. 27.3.1) [28], Alex 
Castrounis describes the following considerations for the data used for AI models:

• Data quantity: does the dataset have sufficient quantity of data?
• Data depth: is there enough varied data to fill out the feature space (i.e., the num-

ber of possible value combinations across all features in a dataset)?
• Data balance: does the dataset contain target values in equal proportions?
• Data representativeness: Does the data reflect the range and variety of feature 

values that a model will likely encounter in the real world?
• Data completeness: does the dataset contain all data that have a significant rela-

tionship with and influence on the target variable?
• Data cleanliness: has the data been cleaned of errors, e.g., inaccurate headers or 

labels, or values that are incomplete, corrupted, or incorrectly formatted?

In practice, it is important to ensure that cleaning efforts in the test dataset are not 
causing situations where the model cannot deal with errors or inconsistencies when 
processing unseen data during the inference process.

In addition to the data, the model itself must also undergo a QA process. Some 
of the common techniques used for model validation and testing include the 
following:

• Statistical validation examines the qualitative and quantitative foundation of 
the model, e.g., validating the model’s mathematical assumptions
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• The holdout method is a basic type of cross-validation. The dataset is split into 
two sets, the training set and the test set. The model is trained on the training set. 
The test set is used as “unseen data” to evaluate the skill of the model. A common 
split is 80% training data and 20% test data.

• Cross-validation is a more advanced method used to estimate the skill of an ML 
model. The dataset is randomly split into k “folds” (hence “k fold cross- 
validation”). One fold is used as the test set, the k-1 for training. The process is 
repeated until each fold has been used once as the test set. The results are then 
summarized with the mean of the model skill scores.

• Model simulation embeds the final model into a simulation environment for 
testing in near-real-world conditions (as opposed to training the model using the 
simulation).

• Field tests and production tests allow for testing of the model under real-world 
conditions. However, for models used in functional safety-related environments, 
this means that in the case of badly performing models, a safe and controlled 
degradation of the service must be ensured (Fig. 27.4).

27.3.2  Integrated QA for AIoT

At the service level, AI services can usually be tested using the methods outlined in 
the previous section. After the initial tests are performed by the AI service team, it 
is important that AI services be integrated into the overall AIoT product for real- 
world integration tests. This means that AI services are integrated with the remain-
ing IoT services to build the full AIoT system. This is shown in Fig. 27.5. The fully 
integrated system can then be used for User Acceptance Tests, load and scalability 
tests, and so on.
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Fig. 27.5 QA for AIoT

Fig. 27.6 AIoT and Homologation

27.4  Homologation

Usually, the homologation process requires the submission of an official report to 
the approval authority. In some cases, a third-party assessment must be included as 
well (see Independent Verification & Validation above). Depending on the product, 
industry and region, the approval authorities will differ. The result is usually an 
approval certificate that can either relate to a product (“type”) or the organization 
that is responsible for creating and operating the product.

Since AIoT combines many new and sometimes emerging technologies, the 
homologation process might not always be completely clear. For example, there are 
still many questions regarding the use of OTA and AI in the automotive approval 
processes of most countries.

Nevertheless, it is important for product managers to have a clear picture of the 
requirements and processes in this area, and that the foundation for efficient homol-
ogation in the required areas is ensured early on. Doing so will avoid delays in 
approvals that can have an impact on the launch of the new product (Fig. 27.6).
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Part V of the Digital Playbook provides a number of case studies to illustrate many 
of the concepts discussed thus far in more detail and from a real-world application 
perspective. The first case study, from Bosch and Microsoft, looks at AIoT in a 
global, high-volume manufacturing network. This is a good example of a "harvest-
ing" type of AIoT organization, as introduced in the AIoT long-tail discussion. The 
second case study, from TÜV SÜD, looks at Drone-based facade inspection. The 
third case study, from Bosch Rexroth, is looking at Predictive Maintenance for 
Hydraulic Components. The last case study examines how Bürkert addresses the 
long tail of AIoT using the BaseABC method.

Each of these case studies highlights different aspects of AIoT. Some of them are 
more AIoT Short Tail opportunities, while others are more Long Tail opportunities. 
Figure 1 shows their positions relative to each other. The large hadron collider case 
study is not included in this book rendition of the Digital Playbook. It can be found 
online here. The vacuum robot example is discussed in detail in the AIoT Product / 
Solution Design section.

Part V
Case Studies

Fig. 1 Long and Short Tail of AIoT Case Studies
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Chapter 28
AIoT in a Global, High-Volume 
Manufacturing Network (Bosch 
and Microsoft)

Dirk Slama
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28.1  Introduction

Bosch Chassis Systems Control (CC) is a division of Bosch that develops and manu-
factures components, systems and functions in the field of vehicle safety, vehicle 
dynamics and driver assistance. The products from Bosch CC combine cameras, radar 
and ultrasonic sensors, electric power steering and active or passive safety systems to 
improve driver safety and comfort. Bosch CC is a global organization with twenty 
factories around the world. Very high volumes, combined with a high product variety, 
characterize Bosch CC production. Large numbers of specially designed and commis-
sioned machines are deployed to ensure high levels of automation. Organized in a 
global production network, plants can realize synergies at scale (Fig. 28.1).
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braking Systems

9000 connected
machines

3900 MES users

450 servers

90 databases

Global production
network20 factories

Fig. 28.1 Overview Bosch CC Case Study
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Naturally, IT plays an important role in product engineering, process develop-
ment, and manufacturing. Bosch CC has more than 90 databases, 450 servers, and 
9000 machines connected to them. A total of 3900 users are accessing the central 
MES system (Manufacturing Execution System) to track and document the flow of 
materials and products through the production process.

28.2  Phase I: Data-Centric Continuous Improvement

Like most modern manufacturing organizations, Bosch CC strives to continually 
improve product output and reduce costs while maintaining the highest levels of 
quality. One of the key challenges of doing this in a global product network is to 
standardize and harmonize. The starting point for this is actually the machinery and 
equipment in the factories, especially the data that can be accessed from it. Over the 
years, Bosch CC has significantly invested in such harmonization efforts. This was 
the prerequisite for the first data-centric optimization program, which focused on 
EAI (Enterprise Application Integration, with a focus on data integration), as well 
as BI (Business Intelligence, with a focus on data visualization). Being able to make 
data in an easily accessible and harmonized way available to the production staff 
resulted in a 13% output increase per year in the last five years. The data-centric 
continuous improvement program was only possible because of the efforts in stan-
dardizing processes, machines and equipment and making the data for the 9000 
connected machines easily accessible to staff on the factory floor. The data-centric 
improvement initiative mainly focuses on two areas:

• Descriptive Analytics (Visual Analytics): What happened?
• Diagnostic Analytics (Data Mining): Why did it happen?

The program is still ongoing, with increasingly advanced diagnostic analytics.

28.3  Phase II: AI-Centric Continuous Improvement

Building on the data-centric improvement program is the next initiative, the 
AI-centric Continuous Improvement Program. While the first wave predominantly 
focused on gaining raw information from the integrated data layer, the second wave 
applied AI and Machine Learning with a focus on:

• Predictive Analytics (ML): What will happen?
• Prescriptive Analytics (ML): What to do about it?

As of the time of writing, this new initiative has been going on for two years, with 
the first results coming out of the initial use cases, supporting the assumption that 
this initiative will add at least a further 10% in annual production output increase 
(Fig. 28.2).
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Fig. 28.3 Bosch CC: Closed-Loop Optimization

28.4  Closed-Loop Optimization

The approach taken by the Bosch CC team fully supports the Bosch AIoT Cycle, 
which assumes that AI and IoT support the entire product lifecycle, from product 
design over production setup to manufacturing. The ability to gain insights into 
how products are performing in the field provides an invaluable advantage for 
product design and engineering. Closing the loop with machine building and 
development departments via AI-gained insights enables the creation of new, 
more efficient machines, as well as product designs better suited to efficient pro-
duction. Finally, applying AI to machine data gained via the IoT enables root 
cause analysis for production inefficiencies, optimization of process conditions, 
and bad part detection and machine maintenance requirement predictions 
(Fig. 28.3).
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28.5  Program Setup

A key challenge of the AI-driven Continuous Improvement program is that the opti-
mization potential cannot be found in a single place, but is rather hidden in many 
different places along the engineering and manufacturing value chain. To achieve 
the goal of a 10% output increase, hundreds of AIoT use cases have to be identified 
and implemented every year. This means that this process has to be highly industri-
alized (Fig. 28.4).

To set up such an industrialized approach, the program leadership identified a 
number of success factors, including:

• Establishment of a global team to coordinate the efforts across all factories in the 
different regions and provide centralized infrastructure and services

• Close collaboration with the experts in the different regions, working together 
with experts from the global team in so-called tandem teams

The global team started by defining a vision and execution plan for the central AIoT 
platform, which combines an AI pipeline with central cloud compute resources as 
well as edge compute capabilities close to the lines on the factory floors.

Next, the team started to work with the regional experts to identify the most rel-
evant use cases. Together, the global team and regional experts prioritize these use 
cases. The central platform is then gradually advanced to support the selected use 
cases. This ensures that the platform features always support the needs of the use 
case implementation teams. The tandem teams consist of central platform experts as 
well as regional process experts. Depending on the type of use case, they include 
Data Analysts, and potentially Data Scientists for the development of more complex 
models. Data Engineers support the integration of the required systems, as well as 
potentially required customization of the AI pipeline. The teams strive to ensure that 
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Global Platform
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Global 
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Fig. 28.4 Bosch CC AIoT Program Setup
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the regionally developed use cases are integrated back into the global use case port-
folio so that they can be made accessible to all other factories in the Bosch CC 
global manufacturing network.

28.6  AIoT Platform and AI Pipeline

The AIoT platform being built by Bosch CC combines traditional data analytics 
capabilities with advanced AI/ML capabilities. The data ingest layer integrates data 
from all relevant data sources, including MES and ERP. Both batch and real-time 
ingest are supported. Different storage services are available to support the different 
input types. The data analytics layer is running on Microsoft Azure, utilizing 
Tableau and Power BI for visual analytics. For advanced analytics, a machine learn-
ing framework is provided, which can utilize dedicated ML compute infrastructure 
(GPUs and CPUs), depending on the task at hand. The trained models are stored in 
a central model repository. From there, they can be deployed to the different edge 
nodes in the factories. Local model monitoring helps to gain insights into model 
performance and support alerting. The AI pipeline supports an efficient CI/CD pro-
cess and allows for automated model retraining and redeployment (Fig. 28.5).

28.7  Expert Opinions

In the following interview with Sebastian Klüpfel (Bosch CC central AI platform 
team) and Uli Homann (Corporate Vice President at Microsoft and a member of the 
AIoT Editorial Board), some insights and lessons learned were shared.

Dirk Slama: Sebastian, how did you get started with your AI initiative?
Sebastian Klüpfel: Since 2000, we have been working on the standardization and 

connection of our manufacturing lines worldwide. Our manufacturing stations pro-
vide a continuous flow of data. For each station, we can access comprehensive 

Fig. 28.5 Bosch CC AIoT Architecture
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information about machine conditions, quality-relevant data and even individual 
sensor values. By linking the upstream and downstream production stages on a data 
side, we achieve a perfect vertical connection. For example, for traceability reasons 
we store 2500 data points per ABS/ESP part (ABS: Anti-Locking Brake, ESP: 
Electronic Stability Program). We use these data as the basis for our continuous 
improvement process. Thus, in the ABS/ESP manufacturing network, we were able 
to increase the production rate by 13% annually over the last 18 years. All of this 
was accomplished just by working on the lower part of the I4.0 pyramid: the data 
access/information layer.

DS: Could you please describe the ABS/ESB use case in more detail?
SK: This was our first use case. Our first use case for AI in manufacturing is at 

the end of the ABS/ESP final assembly, where all finished parts are checked for 
functionality. To date, during this test process, each part has been handled and 
tested separately. Thus, the test program did not recognize whether a cause for a 
bad test result was a real part defect or just a variation in the testing process. As a 
result, we started several repeated tests on bad tested parts to ensure that the part 
was faulty. A defective was thus tested up to four times until the final result was 
determined. This reduced the output of the line because the test bench was operating 
on its full capacity by repeated tests. By applying AI, we reduce the bottleneck at the 
test bench significantly. Based on the first bad test result, the AI can detect whether 
a repeated test is useful or not. In case of variations in the testing process, we start 
a second test, and thus, we save the right part as a “good part”. On the other hand, 
defective parts are detected and immediately rejected. Thus, unnecessary repeated 
checks are avoided. The decision of whether a repeated test makes sense is made by 
a neuronal net, which is trained on a large database and is operated closely to the 
line. The decision is processed directly on the machine. This was the first implemen-
tation of a closed loop with AI in our production. Our next AI use case was also in 
the ABS/ESP final assembly. Here we have recognized a relation between bad tested 
parts at the test bench and the caulking process at the beginning of the line. With AI, 
we can detect and discharge these parts at the beginning of the line, before we 
install high-quality components such as the engine and the control unit.

DS: What about the change impact on your organization and systems?
SK: With the support from our top management, new roles and cooperation mod-

els were established. The following roles were introduced and staffed to implement 
AI use cases:

• Leadership: management and domain leaders need to understand strategic rel-
evance, advantages, limits, and an overview of tools.

• Citizen Data Scientist: work on an increasingly data-driven field and uses ana-
lytical tools applied to its domain. Therefore, a basic understanding and knowl-
edge of Big Data and machine learning is necessary.

• Data Engineer: builds Big Data systems and knows how to connect to these sys-
tems and machine learning tools. Therefore, deep knowledge of IT systems and 
development is necessary.
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• Data Scientist: develops new algorithms and methods with deep knowledge in 
existing methods. Therefore, the data scientist must be up-to-date and have 
know-how in the CRISP-DM analytics project lead.

We want to use the acquired data in combination with AI with the maximum ben-
efit for the profitability of our plant (data-driven organization). Only through the 
interaction and change in the working methods of people, machines and processes/
organization can we create fundamentally new possibilities to initiate improvement 
processes and achieve productivity increases. We rely on cross-functional teams 
from different domains to guarantee quick success.

DS: What were the major challenges you were facing?
SK: For the implementation of these and future AI use cases, we rely on a uni-

form architecture. Without this architecture, the standardized and industrialized 
implementation of AI use cases is not possible. The basis is the detailed data for 
every manufacturing process, which are acquired from our standardized and con-
nected manufacturing stations. Since 2000, we have implemented an MES 
(Manufacturing Execution System) that enables holistic data acquisition. The data 
is stored in our cloud (Data Lake). As a link between our machines and the cloud, 
we use proven web standards. After an intensive review of existing cloud solutions 
internally and externally, we decided to use the external Azure Cloud from Microsoft. 
Here, we can use as many resources as we need for data storage, training of AI 
models and preprocessing of data (Data Mart). We also scale financially, and we 
only create costs where we have a benefit. Thus, we can also offer the possibility to 
analyze the prepared data of our Data Mart via individually created evaluations 
and diagrams (Tableau, PowerBI). We run our trained models in an edge applica-
tion close to our production lines. By using this edge application, we bring the deci-
sions of the AI back to the line. For the connection of the AI to the line, only minimal 
adjustments to the line are necessary, and we guarantee a fast transfer of new use 
cases to other areas.

DS: How does your ROI look like for the first use cases?
SK: Since an AI decides on repeated tests on the testing stations of the ABS/ESP 

final assembly, we can detect 40% of the bad parts after the first test cycle. Before 
introducing the AI solution, the bad parts always went through four test cycles. 
Since the test cells are the bottleneck stations on the line, the saved test cycles can 
increase the output of the line, reduce cycle time, increase quality and reduce error 
costs. This was proven on a pilot line. The rollout of the AI solution offers the poten-
tial for an increase in output of approximately 70,000€ per year and a cost reduc-
tion of nearly one million (since no additional test stations are needed to be 
purchased for more complex testing). This was only the beginning. With our stan-
dardized architecture, we have the foundation for a quick and easy implementation 
of further AI use cases. By implementing AI in manufacturing, we expect an increase 
in productivity of 10% in the next five years.

DS: What are the next steps for you?
SK: Our vision is that in the future, we will fully understand all cause-effect rela-

tions between our product, machine and processes and create a new way of learning 
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with the help of artificial intelligence to assist our people in increasing the produc-
tivity of our lines. To achieve this, the following steps are planned and are already 
in progress:

• Pioneering edge computing: First, we are working on a faster edge application. 
We have to bring the decisions from AI even faster to the manufacturing station. 
For the first use cases, our edge-application is still sufficient. However, for AI use 
cases for short-cycle assembly lines (approximately 1  second cycle time), the 
actual edge solution is no longer sufficient. Here, we are already working on 
solutions to deliver the predictions back to the line within fractions of a second 
even for such use cases.

• Automated machine learning: 80% of our data are already preprocessed auto-
matically. Our target is to further increase the automation rate. In addition, we 
have ideas how to automate the selection of the right ML model with an appro-
priate hyper parameter search. Of course, we are also working on an automated 
analysis of ML decisions to monitor the health status of models in production.

• Implement more use cases: Our architecture is designed for thousands of AI use 
cases. We have to identify and implement these. By doing so, we ensure that we 
do not implement show cases. We want to implement real use cases for our 
Digital Factory, including:

• Predict process parameters: learn optimal process parameters from prior 
processes (e.g. prior to final assembly)

• Adaptive tolerances
• Bayesian network: We want to train a Bayesian network on all parameters of 

the HU9 final assembly. This means that influences and relations can be read 
from the graph. Relations are much deeper than pairwise correlations.

DS: What are the key lessons learned thus far?
SK: For a continuous improvement program like ours, KI must be industrialized: 

we have been proven right with our approach to make AI applicable on a large scale 
instead of individual “lighthouse projects”, which are not easily adaptable to other 
use cases. Another key success factor is the standardized architecture: by storing all 
the data in a cloud, we can ensure a holistic view of the data across all factories in 
our global manufacturing network and use this view to train the models centrally 
with all the required data at hand. Next, we can take the trained models and deploy 
them on the edge layer as close to the actual production lines as possible. To work 
quickly and efficiently on the implementation of AI use cases, new competence and 
work models must be established. The most important thing is that digital transfor-
mation must be a part of corporate strategy. After all, digital transformation can 
succeed only if all employees work together toward the path of a data-driven 
organization.

DS: Uli, what is your perspective on this?
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Uli Homann: In this project, Bosch shows first-hand how to streamline opera-
tions, cut costs, and accelerate innovation across the entire product life-cycle by 
driving change holistically across culture, governance, and technology. Through 
partnership with Microsoft, Bosch is unlocking the convergence of OT and IT. The 
holistic approach provided by the Digital Playbook enables a continuous feedback 
loop that helps teams turn AI-driven data insights into business value at scale.

DS: Thank you, both!
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Chapter 29
Drone-Based Facade Inspection 
(TUEV SUED)

Dirk Slama

This case study describes a drone-based system for automated building façade 
inspection that utilizes AIoT for drone management and image-analytics. The sys-
tem was developed by the Real Estate & Infrastructure Division of TÜV SÜD.

29.1  Building Façades and Related Challenges

Building façades are an important aspect of buildings, both from an architec-
tural as well as from an engineering perspective. Building façades have a 
huge impact not only on aesthetics but also on energy efficiency and safety. 
Especially in high-rise buildings, the façade can be quite complex, combin-
ing a number of different materials, including concrete, glass, steel, poly-
mers and complex material mixes.

Problems with building façades can arise during construction as well as dur-
ing the building operations phase. Typical problems include cracks in different 
materials, concrete spalling, corrosion, delamination, decolorization, efflores-
cence, peeling and flaking, chalking, hollowness, sealant deterioration, and so 
on. While some of these problems only have an impact on the optics of the 
buildings, others can have a quite severe impact on safety, e.g., because of 
façade elements falling down from high heights, increased risk of fires, or even 
complete collapses.
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29.2  Façade Inspection

Façade inspection is an integral part of building maintenance, especially for high- 
rise buildings. It helps to verify the integrity of the building structure and ensures 
safety for its occupants and people passing by. However, conventional manual 
façade inspection can be time, labor and cost intensive, and disruptive for building 
occupants, and dangerous for inspectors due to difficult access at height. Finally, the 
results of manual façade inspection can be subjective, depending on the expertise of 
the inspector.

In some countries, regular façade inspections are required by regulators. 
Regulations usually differ depending on building size and age. For example, in 
Singapore, buildings older than 20 years old and over 13 meters in height have to 
undergo façade inspections every 7 years. In other countries, the requirements for 
periodic façade inspections are driven more by building insurance companies.

29.3  Automated Façade Inspection

Automated façade inspection solutions must accurately scan the exterior of build-
ings, e.g., utilizing drones to carry high-resolution cameras. The Smart Façade 
Inspection service of TÜV SÜD caters to building owners and operators of large 
high-rise buildings and helps construction companies ensure façade quality and 
monitor construction progress.

29.3.1  Customer Journey

The customer journey of the automated façade inspection solution starts with the 
customer request for the service. Based on the customer information provided, the 
service operator (TÜV SÜD) will prepare the required documentation and apply 
with the required authorities for drone flight approvals. On-site inspection will be 
carried out by a specialized drone operations team. The data, inspection results and 
a 3D model of the façade will be made available via a specialized cloud platform.

29.3.2  Customer Benefits

Customer benefits include:

• The results are available in a fraction of the time compared to conventional 
inspection
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• Digital representation of the façade and whole building facilitates building 
operation

• Automated digital workflow and data benchmarking improve service quality and 
interoperability

• Domain experts for standards and best practice, ensuring up-to-date compliance 
to continually evolving regulations

29.4  Implementation with AIoT

At the core of the operational system is a smart piloting system for the drone, which 
ensures both operational safety and high-quality visual inspection. The acquired 
data are securely managed by TÜV SÜD’s inspection platform, which automati-
cally masks any private information to protect your privacy.

The AI-based solution assists professional engineers in delivering detailed, accu-
rate and compliant inspection reports. The software constructs a 3D model of the 
building façade, which helps to better understand the building structure and auto-
matically locate the detected defects on the building.

The TÜV SÜD Drone Façade Inspection application provides access to all the 
data, report findings, and 3D model at any time. Repairs and follow-ups can be 
seamlessly managed through the platform to improve efficiency and save costs.

29.4.1  Solution Sketch

Principle stakeholders for operations of the drone in the field include the drone 
pilot, safety officer, and domain expert. Professional engineers are supporting in the 
backend. Customer stakeholders include building owners, facility managers, and 
regulators.

The drone is equipped with a number of sensors to support both flight opera-
tions and building façade scanning. These flight support sensors include IMU, 
UWB, Lidar and stereo cameras. The drone carries thermal sensors and a visual 
camera as the main payload for building façade data capture. On the drone, AI 
is mainly used for drone positioning, collision avoidance and path planning. 
This is supported by a smart controller device used by the drone pilot on 
the ground.

A number of backend applications support the management, processing, analysis 
and visualization of the captured data. Domain experts and professional engineers 
can add their domain expertise as well.

29 Drone-Based Facade Inspection (TUEV SUED)
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29.4.2  Drone Control

A key feature of the solution is advanced drone control, which provides semi- 
automated path control for scanning the building surface, supporting complex urban 
environments. Multimodal sensor fusion is used for navigation. Autopath planning 
supports inspection and obstacle avoidance and operational safety of the drone and 
ensures high-quality image capture for visual inspection.

To support this, the drone carries a miniature, high-performance Inertial 
Measurement Unit (IMU) and Attitude Heading Reference System (AHRS). The 
Lidar sensor provides stereo data for dense short range on path obstacle detection 
(30  m). The system also has two stereo cameras for sparse long-range obstacle 
detection (120 m).

29.4.3  Drone Data Analysis: Façade Inspection

Another key application of AI is drone data analysis, which is used for creating 
façade inspection reports. First, the raw façade data are preprocessed, e.g., anony-
mizing the captured data. Second, an AI-enhanced image analysis tool is applied to 
visual and thermal data. Finally, the meta-data are analyzed, utilizing AI to identify 
individual façade elements, different types of defects, and even detailed defect 
attributes.

29.5  Expert Opinion

The following discussion will provide insights into the TÜV SÜD Drone-based 
Building Façade Inspection project from Marc Grosskopf (Business Unit Manager, 
Building Lifecycle Services, TÜV SÜD, Germany) and Martin Saerbeck (CTO 
Digital Services, TÜV SÜD, Singapore).

Dirk Slama: Marc, what were — or are — some of the biggest challenges in this 
project?

Marc Grosskopf: Only opportunities, no challenges! However, all kidding aside: 
of course this is an iterative process, from the initial pilots to the global roll-out 
which we are currently preparing. In the early stages, challenges tend to be more 
common on the technology and sourcing side. Then, you are quickly getting into 
regulatory aspects, customer acceptance, data quality, internal acceptance and pro-
cesses, regional differences, etc. So it is never getting boring.

DS: Martin, from the CTO perspective, what were some of the initial 
challenges?

Martin Saerbeck: On the technology side, we have two main aspects: Drone- 
based image capturing and the data platform. For drones, it is very much about 
striking a good balance between cost, flight capabilities, and the quality of the 
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sensors, and of course establishing a supply chain that can support us globally. For 
the data platform, we need to be able to support stakeholders with different back-
grounds, roles and responsibilities. The user interface must be intuitive even if back-
end AI algorithms can be quite complex.

MG: Yes, do not forget that we have quite a complex constituency — drone oper-
ators, data scientists, domain experts, customers, and so on — all need to be sup-
ported by the central Façade Inspection Platform.

DS: Let’s start by looking at the drones and drone operations...
MS: Of course you need to get the initial platform setup correctly. There are 

many powerful drone platforms available, but we need to adapt them to our needs, 
and not the other way around. One example is implementing automated flight path 
control to ensure façade coverage and high quality images. But perhaps the greatest 
challenge is keeping up with the constant flux of technology and changing regula-
tory requirements in different regions. Take, just as an example, free-flying vs. teth-
ered (i.e., cable-bound drones). There are many different opinions on what should 
happen if the tether fails: Are we allowed to automatically switch over to the drone 
battery for safe landing or not? How much time do we have until we need to trigger 
an emergency routine? What exactly constitutes a tether failure? The list goes on. 
For us, it is important to be directly involved in standardization committee work, 
both locally and globally.

MG: Technical people tend to focus on the “sexy” stuff first: AI, automation, image 
analysis, and so on. However, we also need to look at drone maintenance, firmware 
updates and battery management. Of course, on-site support such as system setup, 
traffic management, etc. At the end of the day, this process needs to be so efficient and 
effective that the overall process is cheaper than the manual process. We need to 
ensure that we have enough in-house knowledge before we can source this regionally. 
We cannot take any shortcuts because we need a solid foundation and have to avoid 
building up technical debt because of cost-driven supplier situations.

DS: Let’s talk about the backend platform. What does this look like?
MG: It depends on who you talk to. For drone pilots and on-site staff, the plat-

form mainly needs to support the management of image uploads. For domain 
experts, we need an efficient way of reviewing and labeling the image material. This 
process is now increasingly supported by AI. Finally, we have end customers who 
access the platform to obtain the final results and reports. As an added challenge, 
they want to use the platform to monitor and manage building defects in the current 
project and for future comparison of quality development.”

DS: Does this mean the platform is not magically smart and fully automates the 
inspection process from the start via image analysis?

MG: It gives us a fully digital process from the beginning, since we now have a 
process for efficiently capturing and managing the image data. This is already an 
important step. We are now gradually using our huge network of building façade 
domain experts to label relevant data and then use this to train the system. This 
means over time we get more and more automation. Initially, by prefiltering huge 
amounts of data, domain experts only have to review relevant image data. So this 
leads to more automated classification.
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DS: How does this look like?
MS: Based on the labeled data from domain experts, our data scientists are 

accessing the platform via standard developer tools to build a library of defect 
detection algorithms. These algorithms vary depending on the defect type and the 
façade materials. For example, cracks need different detection algorithms than 
spallings; glass façades are different than metal or concrete.

DS: When can you retrain, and when do you have to develop new algorithms?
MS: It depends. For example, for cracks in different concrete types, we can use 

transfer learning to a certain extent. However, detecting and evaluating cracks in 
glass requires models that we essentially train from scratch.

DS: What about privacy?
MS: This is a very important point. Especially if the drone is likely to inadver-

tently capture people throughout the scanning process (e.g., standing behind win-
dows), we need to automatically identify and anonymize this. Privacy preservation 
is key. We spent considerable effort on this portion.

DS: So how are your scaling this up for global roll-out?
MG: First, we have to ensure regional support for the drone service. This means 

dealing with local regulations, finding local service partners, suppliers and so on. 
Then, we have to ensure that our processes can be easily replicated: how do you 
execute a drone-based building scan, how are our domain experts working with the 
data, how can our central competence center in Singapore best support the regions 
with reusable fault detection algorithms, and how do we best onboard and support 
our customers in the regions?

DS: Your current focus is on building façades. Can you apply your lessons 
learned also to other use cases?

MS: Sure. Let us take, for example, building construction progress monitoring. 
There are many similarities here. This is an area where we are following a similar 
approach, together with our partner Contillio, which is focusing on Lidar and AI for 
analyzing the construction progress and mapping this back to the original BIM mod-
els. Of course you can also take a similar approach to inspection of power plants, 
bridges, solar panels, etc. A lot is happening, but we have to take it step by step!

DS: Thank you, Marc and Martin!
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Chapter 30
Predictive Maintenance for Hydraulic 
Components (Bosch Rexroth)

Dirk Slama
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Ferdinand Steinbeis Institute, Berlin, Germany
e-mail: dirk.slama@bosch.com

Predictive Maintenance has long been the holy grail of the IoT. However, experi-
ence has also shown that successfully implementing predictive maintenance for 
industrial use cases is harder than one might think, from finding a sustainable busi-
ness model to actually delivering the technical implementation. This case study 
provides an account of a successful predictive maintenance implementation for 
hydraulic systems from the perspective of Bosch Rexroth, a leading supplier in this 
field (Fig. 30.1).

30.1  Hydraulic Systems

A hydraulic system uses pressurized fluids (usually mineral oil) to drive actuators to 
produce linear or rotational movements. Example use cases include hydraulic exca-
vators, hydraulic presses, mining conveyor belts, shredders, hydraulic lifts, etc. 

Fig. 30.1 ODiN Case Study
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Hydraulic components include cylinders and motors (to produce linear or rotational 
movements) and hydraulic power units to supply pressurized fluid to actuators. 
These consist of pumps, coolers, tank, etc. Valves are used to control the fluid flow 
and pressure. Hydraulic oil is not only used for power transmission but also serves 
as a lubricant and cooling fluid.

Benefits of hydraulic systems include:

• Simple generation of high forces (> 1x106 N) and torques (> 1x106 Nm)
• High power density
• Accurate control of high forces
• Robustness
• Simple, cheap and fast overload protection (Pressure Control Valve)

Hydraulic equipment vendors such as Bosch Rexroth supply machine builders with 
hydraulic components and systems either directly or via sales partners. Machine 
builders utilize hydraulic equipment to build industrial machinery, e.g., a hydraulic 
press, a plastic injection molding machine, or a conveyor belt for heavy loads. This 
machinery is operated by different types of operators. The hydraulic equipment 
vendor would usually also offer these operators different services, including spare 
parts, field service, and repairs. Without predictive maintenance, these services 
would naturally be reactive, i.e., only triggered after a problem with the hydraulic 
equipment in the field. This can lead to significant production outages. For example, 
the outage of a hydraulic component powering a conveyor belt at a mining site could 
lead to a shutdown of the entire mining operation (Fig. 30.2).

30.2  Typical Problem Scenarios

What are the typical issues with hydraulic systems and components? A main reason 
for wear and breakdowns is contaminated hydraulic oil (by contaminants such as 
particles and water). This can lead to wear, which in turn can lead to reduced 

Fig. 30.2 Current Situation
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efficiency (e.g., increased volumetric losses in pumps, external leakage in cylinders 
due to worn seals) or malfunction (e.g., blocked valve spool). The result is lower 
efficiency or malfunction and increased breakdown probability. Breakdowns can be 
expensive: while the exact costs are usually use case specific, target customers for 
Predictive Maintenance typically have downtime costs exceeding 10.000 €/hour 
(Fig. 30.3).

Often, downtime is reduced by built-in redundancy. However, this cannot fully 
guarantee availability: cylinders are typically not redundant, a pump breakdown can 
contaminate the hydraulic fluid and cause other damage, such as valve malfunction 
due to contamination by particles. Cleaning the hydraulic fluid after a breakdown 
and replacing all damaged components can be very time consuming (this may take 
weeks). Large, expensive machines often do not have a replacement machine to 
continue production after a sudden breakdown. With no advance warning, diagnosis 
of the causes and decisions on necessary maintenance measures can take a long 
time. Existing fail-safes in the machine are built to shut down the machine after a 
catastrophic failure and protect the operators and the environment but rarely contain 
advance warning features.

30.3  Predictive Maintenance: Issues and Solutions

A key problem for building a predictive maintenance solution for hydraulic compo-
nents is the complex, individual machine behavior:

• Many different products are produced with the same machine
• Hydraulics are usually only a small part of the whole machine
• Upgrades/changes to the machine after years of operation, e.g., new cooler
• Environmental effects: e.g., temperature, vibration
• Individual changes applied by machine operator

Fig. 30.3 Hydraulic systems: typical problem scenarios
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The result is that in most situations, there are initially insufficient data for building 
an end-to-end AI solution. This is why the Rexroth team has taken an approach 
where AI-based anomaly detection is used to find interesting data patterns. This is 
combined with human experts to diagnose the anomaly and subsequently make 
customer-specific maintenance recommendations.

30.4  What Can Be Measured, and What Can Be Learned 
from It?

A key question for building a predictive maintenance solution is: what can be mea-
sured, and what can be learned from it to detect wear at an early stage? In hydrau-
lics, wear is a key issue. However, wear is very difficult to measure directly in 
practice. Wear processes and component/system functions must be understood in 
detail in order to determine the correct sensors for data collection. Indirect indica-
tion of wear is typically achieved using multiple sensors. Additionally, sensors for 
measuring the operating point of the components are required since many values, 
such as leakage and vibration, are operating point dependent. Commercially avail-
able sensors are used to reduce costs.

A good example is the external leakage on pumps and motors: Flow meters for 
leakage flow measurement, operating point: Pressure, speed, displacement, tem-
perature. Another example is cavitation on pumps (suction flow of the pump is 
lower than vapour pressure due to contamination, excess speed, dissolved air in the 
hydraulic fluid, etc. Oil vapour bubbles are imploded during the transition to the 
high-pressure side and cause wear when this happens close to metal parts (e.g., 
distributor plate). Structure borne sound measurements with accelerometers are 
used to detect changes in the frequency spectrum of the structure borne sound. The 
operating point (pressure, speed and displacement) also has to be included.

30.4.1  Why Not Simple Rules-Based Analysis?

The next question is how to analyse this. Does it have to be AI, or could a simpler, 
rule-based or analytical model be applied? The problem with these approaches is 
complexity. While the hydraulic components are standardized, this does not apply 
to the machines built using them. Consequently, this would require new rules for 
each machine individually or models to be created and model parameters to be 
tweaked for each application, meaning a very high individual effort per customer. 
Furthermore, machine operation (e.g., dynamic operating points, variable envi-
ronmental effects, changes in production, retrofits and modifications to the 
machine, etc.) would make the rules very complex and error prone, resulting in 
false alarms.

D. Slama



375

30.4.2  Why ML-Based Anomaly Detection, But Not 
Prescriptive Analytics/Automated Recommendations?

Because of the high complexity and missing labeled failure data of the individual 
customer environments, it has proven not to be feasible to apply an end-to-end AI 
approach, e.g., using deep learning with nonanalytic feature extraction using CNNs 
(Convolutional Neural Networks).

Consequently, the solution chosen by the Rexroth team is based on “classi-
cal” ML, using feature extraction (using domain-specific methods) and unsu-
pervised Learning. Complex dependencies between features are solved by 
ML.  The result is a working anomaly detection, but potentially with many 
possible causes.

This means that in addition to automated anomaly detection, a human expert is 
required for failure diagnosis and maintenance recommendation due to individual 
applications. It is also possible that changes were made to the machine, which can-
not be measured with sensors (e.g., new cooling water supply) or that machine 
operators have changed the settings or are producing different products on the same 
machine (Fig. 30.4).

The resulting approach is a two-step analysis process:

 1. Machine Learning-based anomaly detection: Classic domain knowledge-based 
feature extraction + Machine Learning. Algorithm scans the data for interesting 
patterns. Output metrics, e.g., system behavior, are calculated and visualized on 
a GUI for human experts. Dashboards provide a quick overview of machine 
behavior.

 2. Human experts diagnose suspicious data patterns based on general domain 
experience and application/customer-specific know-how. Sometimes it is 
necessary to ask the customer for further details (e.g., if mechanical modifi-
cations have been made to the machine or settings/parameters have been 
changed). This manual work is necessary as not everything can be captured 
in the data.

Fig. 30.4 ML Approach for Hydraulics Maintenance Predictions
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30.5  The ODiN Solution Offering

Based on the capabilities but also the limitations of the ML-based approach, the 
Bosch Rexroth team decided to build the ODiN solution, which is a predictive main-
tenance service consisting of:

• Application of a specific sensor package to be retrofitted into the customer machine
• Data acquisition unit and IoT gateway for cloud connectivity
• AI pipeline in the cloud
• Personal service support in case of anomalies and quarterly status reports
• Optional additional services, e.g., spare parts management, field service, repairs

The maintenance contract is signed with the machine operator. Maintenance can be 
carried out by Rexroth, a Rexroth service partner, the customer or a maintenance 
contractor. Maintenance contract templates are country unit specific and may be 
customer specific. The contract always contains an appendix detailing data use 
(Fig. 30.5).

30.5.1  Customer Offering

The offered solution is a one stop shop for predictive maintenance covering every-
thing from application-specific engineering to maintenance recommendations and 
data transmission as well as a secure operation of the data platform. A monthly fee 
is charged for the service, and parts of the contract are charged as a one-time pay-
ment (e.g., installation of data acquisition) (Fig. 30.6).
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■

Fig. 30.5 Predictive maintenance solution
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Fig. 30.6 Predictive maintenance offering: as-a-service

Fig. 30.7 Lifecycle Perspective

30.5.2  Lifecycle Perspective

The target customers are machine operators with high downtime costs. These 
machines are typically already in the field and have been operating for many years. 
Existing sensors do not provide enough data for a reliable diagnosis. Therefore, a 
retrofit sensor package and data acquisition unit must be installed onsite. After com-
missioning, data are sent to the cloud and stored on Bosch servers to be analyzed. 
ML-based anomaly detection provides insights into general machine behavior, and 
a human expert will offer maintenance recommendations to customers if required. 
Additionally, experience from field data is fed back to the continuous development 
of the ODiN platform and analytics solution (Fig. 30.7).

30.5.3  Customizing the ML Solution

Because of the high level of heterogeneity found at customer sites, efficient custom-
ization of the solution is important. The approach taken will be explained in the 
following.
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Development and Customization Processes The solution is developed using two 
parallel processes: the generic development process, and the customer-specific cus-
tomization process. They are defined as two individual cycles: the AI DevOps cycle 
and the AI application cycle. These two are carried out by separate teams. The AI 
application team is responsible for implementing customer projects from customer 
acquisition all the way to monitoring the running applications. The task of the AI 
DevOps team is to continuously develop the analytics pipeline and deliver improved 
versions for the service as well as operation of the analytics platform (Fig. 30.8).

Technical Approach A single, generic, analytics pipeline for anomaly detection is 
used for all applications. This enables scaling, as no customer-specific program-
ming is required. The pipeline has the following steps:

• Data export: export data from the big data store for analysis
• Preprocessing: domain-specific preprocessing and feature extraction
• Anomaly detection: automated Machine Learning model generation for anomaly 

detection. The first model is always generated with the first data batch. Subsequent 
batches are applied to the model, and new model generation with the current data 
batch is triggered if the error exceeds a predefined limit. This results in a model 
library with each model describing a specific machine behavior. These behaviors 
can be manually labeled to create metrics for visualization in the next pipe-
line step

• Post-processing: generation of metrics for visualization and monitoring of 
applications

• Publishing: Calculated metrics and logs are published to kafka

The pipeline is configured for each application via a JSON configuration file, 
which contains sections for each pipeline step. This enables application-specific 
analyses without customized programming work (Fig. 30.9).

Fig. 30.8 Customization Process
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Fig. 30.9 Customization Details: Technical Approach

30.6  Customer Example

Lafarge Holcim is a global supplier of cement and aggregates ( crushed stone, gravel 
and sand), as well as ready-mix concrete and asphalt. In their cement manufacturing 
facility in Bulacan, Philippines, Lafarge Holcim’s challenge was to monitor the key 
indicators of the hydraulically operated clinker cooler in order to detect possible 
failures in good time.

A clinker cooler is an essential component of cement production. If it stops 
working, the entire production must stop within five minutes. Therefore, the sensors 
on the hydraulic system were installed in such a way that they send the essential 
physical quantities to the ODiN platform for analysis. Employees of Lafarge Holcim 
are receiving regular reports about the system behavior of their machine. A local 
service partner interprets the information provided by the ODiN system and gives 
recommendations for action to the maintenance technicians on site.

Feedback from Lafarge Holcim: Now we are able to learn much more about our 
own equipment than we did before. We can predict, we can see the health of the 
machine. We will install it to other hydraulic units within our business. With ODiN, 
we can be more proactive in capturing all the equipment data, making better 
decisions.

30.7  Summary and Lessons Learned

The following provides a summary and key lessons learned:

• Retrofitting sensors are necessary for required data quality; specialized data 
acquisition needed
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• Application specific anomalies, modification in the machine or the production 
process by operators, etc. cause generic Machine Learning models to fail

• Building a working generic analytics pipeline for anomaly detection is possible, 
however, with application-specific configuration

• Manual model labeling by experts is necessary
• A human expert is required for failure diagnosis due to complex machine 

behavior

Perhaps the most important lesson learned in this project is that due to insufficient 
data for generic, end-to-end ML solutions, a low-cost solution for Predictive 
Maintenance of heterogeneous industrial environments is not realistic. Consequently, 
the team decided to offer a full service contract together with personalized support 
to maximize customer value. The combination of human expertise with ML-based 
anomaly detection enables a reliable and efficient Predictive Maintenance solution 
for the customer, helping to significantly reduce downtime and improve OEE 
(Overall Equipment Effectiveness).
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Chapter 31
BaseABC: Addressing the AIoT Long Tail 
in I4.0 (Bürkert)

Nikolai Hlubek

This case study highlights how Bürkert Fluid Control Systems, a successful I4.0 
SME, masters the AIoT long tail by applying the BaseABC method. The case study 
was authored by Dr. Nikolai Hlubek, who works as a Senior Data Scientist at 
Bürkert Fluid Control Systems and develops new data-driven products. The author 
has a PhD in physics and has been using data science for more than 15 years to 
tackle various topics. As an example, before joining Bürkert Fluid Control Systems, 
he developed a real-time ionospheric monitoring service for the German 
Aerospace Center.

31.1  Introduction to Bürkert

Bürkert Fluid Control Systems develops and manufactures modules and systems for 
the analysis and control of fluids and gases. Examples of typical products include 
large process valves for the food and beverage industry, small electrodynamic valves 
for pharmaceutical applications, mass flow controllers, sensors for contactless flow 
measurement based on surface acoustic waves, and sensors to measure the water 
quality of drinking water. Bürkert is a 100% family-owned company that employs 
approximately 3000 people, has a consolidated turnover of ~560 M€, is headquar-
tered in Ingelfingen (Germany), and has locations in 36 countries worldwide 
(Fig. 31.1).
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Fig. 31.1 Introduction to Bürkert

Bürkert products have a moderate level of complexity, which means they can be 
developed in small project teams of usually less than 10 people over the course of one 
year. However, Bürkert has a very large portfolio of such products. This portfolio 
structure places Bürkert at the long tail of AIoT, where it has to manage product vari-
ants in a very efficient way. Therefore, product development at Bürkert is truly a good 
testbed for any AIoT long-tail development process, as the entire process is repeated 
many times in a relatively short period of time, due to the parallel development of 
many small products and the relatively short development time. The approach is now 
a well-documented best practice at Bürkert, as will be explained in the following.

31.2  BaseABC

31.2.1  BaseABC

Figure 31.2 illustrates the BaseABC method that Bürkert uses as a workflow for its 
data science projects. The workflow does not distinguish between information visu-
alization, algorithm development or machine learning, as the fundamental steps are 
the same in all cases. The workflow is highly iterative. The workflow is restarted 
anytime a new insight arises from a step that has implications for a previous step. 
For a new idea, the initial completion of the workflow will deliver a technological 
demonstrator. Successive iterations will build on this and deliver a prototype, a min-
imal viable product and finally a saleable product. Due to the iterative nature of the 
workflow, it can be stopped anytime with the minimum amount of time and money 
invested, should it become clear that the data science project would not be able to be 
transitioned into a sustainable business model.
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Fig. 31.2 BaseABC method for I4.0 data science projects

The workflow starts with a business question. Such a business question could be 
a pain point for a customer, which can be mitigated by a new product that uses addi-
tional data. It could also be an idea for improving an existing product by using data 
science tools. It could also be an enhancement of an existing data-driven product in 
the field in the form of continuous learning. The next step is to define a data collec-
tion strategy and to implement that strategy, i.e., acquire data. We check whether 
the data are already available, whether we need to generate it, what quality we 
require and what tools are necessary to collect the data. Then we collect the data 
using the defined strategy. Then, storage and access to the data must be considered. 
We store the acquired data in such a way that access in the following steps is easy, 
computationally efficient and future proof. An exploratory analysis of the acquired 
data follows. A domain expert checks the data for consistency and completeness. He 
or she investigates isolated issues with some of the datasets, if any, and decides if 
these datasets need to be acquired again.

If all these prerequisites are in place, a data scientist begins the work in the 
advanced analytics step. He or she tries to find a solution to the business question 
with the help of data science tools. Once the data scientist has found a solution, we 
build a product as quickly as possible. The first iteration is, of course, a technology 
demonstrator. A prototype, a minimal viable product and the actual saleable product 
follow in consecutive iterations. When the product is ready, we communicate the 
result. In an early iteration, this is an internal review of the technology demonstra-
tor. In later iterations, a pilot customer obtains a prototype for testing and feedback. 
Finally, this step will mark the introduction of a new data-driven product.

An example of a product that we developed at Bürkert using this workflow is a 
diagnostic application for a solenoid valve (Bürkert type 6724). These valves are 
small electrodynamic valves for different media, such as air and water, and can be 
used in dosing applications as shown in Fig. 31.3. In a typical variant, they are held 
closed by a spring and opened for as long as a current is applied. The behavior of the 
current during the opening of the valve - the so-called inrush current - can be used 
for diagnostics. The counter-electromotive force is a part of the inrush current and 
is proportional to the actuator movement. Therefore, it is possible to assess the 
dynamics of the actuator by a cheap current measurement using the actuator of the 
valve as a sensor. In particular, it is possible to check if the valve truly opened or if 
some blockage occurred without the need for any external sensors.

31 BaseABC: Addressing the AIoT Long Tail in I4.0 (Bürkert)
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Fig. 31.3 Bürkert valve type 6724 in a typical dosing application
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Fig. 31.4 Raw current measurement for the first few milliseconds when switching an electromag-
netic valve (Bürkert type 6724). The blue solid and gray dashed-dotted lines show the switching 
current for a working valve. The orange dashed line shows the switching current for a blocked valve

The graph in Fig. 31.4 shows an example of such current curves. It shows two curves 
where the valve fully opens (100% stroke) and a curve where the valve only partially 
opens (50% stroke), i.e. where the fluidic channel is blocked. We can see that all curves 
are quite different from each other. In particular, the two good state curves (100% stroke) 
are different in shape. The reason for this is that the counter- electromotive force is only 
a part of the inrush current, and its exact shape depends on many internal parameters 
(diaphragm type, coil type, …) and external parameters (temperature, pressure, …). A 
possibility to estimate the movement of the actuator is by using a curve shape analysis 
of the inrush current for a data set that contains measurements with suitable combina-
tions of all parameters. This is a standard machine learning task. We will use this exam-
ple in the following to explain the workflow in detail.
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31.2.2  Pipeline

Bürkert envisions the workflow as a pipeline. The complete workflow is started over 
every time new insights arise from a step that requires an adjustment of previous 
steps. We then ask for each step if we need to adjust it, based on the new insights. 
For this to be feasible, the implementation of the workflow must be automated as 
much as possible. Any manual task required during the workflow represents a pain 
point that makes it unlikely that the workflow will actually work as a pipeline.

In other words, the time, effort and cost of going through the workflow repeat-
edly must be as low as possible. Otherwise, people will just find excuses and either 
not do necessary adjustments or find workarounds that introduce a long-term main-
tenance burden. Of course, not every step can be automated, e.g., rechecking the 
business question. However, most of the time, this is also not necessary and we are 
good enough if the most time-consuming steps acquire data, storage and access and 
advanced analytics of the final solution are mostly automated. In the case of the 
business question it is usually sufficient to check if the new insight affects the busi-
ness question, which is most often not the case. In the following, we illustrate this 
idea of a pipeline with examples that highlight how a step can lead to new insights 
that require an adjustment of the previous steps:

After coming up with a business question, we need to consider how to acquire 
the necessary data. It may turn out that it is not possible to obtain such data. For 
example, a client might not be willing to share the required data because it contains 
their trade secrets. Without an update to the business question, which must now 
include a way to protect the client’s secrets, the workflow cannot continue.

A domain expert that explores the acquired data might notice that the data have 
certain issues. The measured data could show drift due to changes in ambient tem-
perature. In this case, the data must be measured again under controlled environ-
mental conditions, as any follow-up analysis of bad data is scientifically unsound 
and a waste of time for the data scientist.

After we built a prototype and provided it to a pilot customer, they may request 
an additional feature that requires additional data and an update to the solution 
implemented in the advanced analytics step. The customer may want to operate the 
device in a different temperature range. Thus, we need to acquire additional data in 
this temperature range and adopt our solution accordingly, hence rerunning the 
pipeline.

All these examples show that the data science workflow is repeated many times. 
This justifies the requirement that the workflow must be as automated as possible so 
that simple adjustments to the product stay simple in the implementation. We want 
to react quickly to customer requests without working more.

Up until a minimal viable product is ready, each step and iteration is a stop crite-
rion for the whole project. Therefore, we strive to keep the number of complex tools 
at a minimum in order to keep the initial costs and the maintenance burden small.

For our diagnostics project of a solenoid valve at Bürkert, we automated the data 
acquisition by developing an automated measurement setup using LabView. We 
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made the explorative analysis easy for the domain expert by providing a tool for 
quick visualization of current curves. We automated the advanced analytics step so 
that any stored data would automatically be detected and would go into the classi-
fier. The classifier could then be deployed to the technological demonstrator and 
later to the prototype automatically.

31.3  Details for Individual Steps

In the following, we will explain the individual steps of the data science pipeline in 
more detail.

31.3.1  Business Question

The business question is the starting point for the data science pipeline. A good 
business question has a well-defined idea and measurable objectives. It includes a 
basic idea for the acquisition of useful data.

Example Project The business question for our example project was as follows: Is 
it possible to build a classifier that reports successful valve opening if more than 
90% flow is achieved and reports an error for any smaller flow by monitoring the 
inrush current only? The classifier should work for all conditions allowed by the 
valve datasheet. Data acquisition should be done by laboratory measurements. This 
question is visualized in Fig. 31.5. It shows the inputs and outputs of the classifier 
that is to be developed. The parameters are not input to the classifier but complica-
tions that make the classification more complex.

Fig. 31.5 Task of the data science project that we use as an example to illustrate BaseABC. The 
input to and required output of the classifier are shown. The parameters are not input to the classi-
fier, but complications that make the classification more complex
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31.3.2  Acquire Data

We define a strategy for the acquisition of the data and metadata. This means we 
check whether the data are already available, whether we need to generate it, what 
quality we require and what tools are necessary to collect the data. Then, we acquire 
the data and ensure accurate tracking of provenance.

Design of Experiment If we acquire the data through measurements, each experi-
ment costs time and money. To optimize the number of required experiments for a 
maximum variance in the dependent variables, the design of the experimental 
method can be used.

Data Provenance Metadata will always be necessary to understand our data and to 
track how we obtained our data. When we acquire the data, we need to document 
our setup and the process of acquisition. Both documents will serve as an explana-
tion for our data. For the setup, we need to document which devices and tools we 
used, how we connected the devices and so on. For the process, we need to docu-
ment how we acquired the data, in which order we acquired the data, when we 
acquired the data, which environmental conditions we used and so on. In short, we 
need to use good laboratory practice.

We save the resulting data sets and corresponding metadata in a structured form. 
Data sets and metadata must be automatically readable and parsable.

Labeling We label data during the data acquisition step if labeling is necessary and 
if it is possible. Labeling at a later stage always introduces the danger of hind-
sight bias.

Example Project Valve experts at Bürkert defined which range of parameters and 
fault states are relevant. We modified a valve so we could simulate fault states. We 
automated the acquisition of the current curves. In total, we acquired approximately 
50,000 current curves for 12 parameters. Our automated setup stores the data (cur-
rent curves) and metadata (internal and external parameters of the measurement) in 
the same measurement file. We generate one file of approximately 3 MB per mea-
surement, which netted us with approximately 150  GB of overall data for the 
project.

31.3.3  Storage/Access

The best way for storage and access is to use the principles for fair data [29]. They 
state that the data should be findable, accessible, interoperable and reusable. Any 
storage solution that will fulfill these requirements is sufficient.

If a data archive system is not used and the data are stored on a fileserver, the 
storage should be set to read-only after some initial time that is reserved for quick 
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fixes. This guarantees that any following data analysis will be reproducible because 
it uses the same data.

The data should be stored in a form that is easy to handle. For many projects, this 
means using a database is unnecessary. In our experience, for everything up to a few 
100 GB, storage on a file server and lazy loading were computationally efficient, 
easy to handle and did not have the maintenance burden that a database would have 
introduced.

Example Project In our example project, we stored the files of our measurements 
on a file server. We compiled the metadata in tabular form with links to the data files. 
Using these links, we employed a strategy of lazy loading, i.e., loading the measure-
ment data of the relevant curve into main memory only when required. Since we 
used a server-based approach for the data analysis, with the server in the same data 
center as the data, access to the data was fast. We profiled access times using our 
lazy loading strategy against using a NoSQL database. The results showed that the 
database was not faster.

31.3.4  Explanatory Analysis

Before any in-depth analysis of the data starts, we perform simple visualizations of 
the acquired data to obtain an overview of it. A domain expert uses these simple 
visualizations to check the data for consistency and investigates some isolated issues 
if such issues are present in the data.

Example Project We examined some of the current curves using simple plots of 
current versus time. For some data sets, a domain expert observed that the current 
curves had an inflection point at an unexpected position. Further analysis with the 
help of a data scientist revealed that all data sets with this feature belonged to a 
particular valve. Analysis of that valve revealed that it performs its function like the 
other valves but has a much higher friction due to manufacturing tolerances. This 
insight leads to an update of the data acquisition step with an additional parameter.

31.3.5  Advanced Analytics

Once the data and metadata are available and of good quality, a data scientist uses 
her or his tools of the trade during the advanced analytics step. A measurable objec-
tive exists in the form of the business question.

Data Visualization A first step of the analysis is usually to create a meaningful 
visualization of the data. During the exploratory analysis step, the domain expert 
was looking at individual datasets alone. In this step, the data scientist should design 
a visualization that encompasses all of the data. For example, this can be achieved 
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by clustering algorithms such as principal component analysis for datasets that con-
sist of sets of measurement curves.

Find Numerical Solution Once the data scientist has gained an overview of the 
data, he or she searches for a suitable solution to the objective set by the business 
question. The solution can be in the form of an algorithm or a machine-learning 
model. It also does not matter whether the machine-learning model is a greedy 
model such as kNN, a shallow learning model such as a support vector machine, a 
random forest or gradient boosting, or a deep learning model. The data scientist has 
all information at hand to find the best solution to the business question. Best in this 
sense is the simplest solution that can solve the business question. If performance 
metrics are involved, usually speed of evaluation, model accuracy and reliability 
and required computational resources need to be balanced for an optimal solution.

Baseline Solution The data scientist should always evaluate her or his solution 
against a simple baseline solution. This is required to prove that a more complex 
solution is necessary at all. By comparing the final solution to the baseline solution, 
the gain in efficiency can easily be shown.

Document Results and Failures When data scientists try to find a solution, they 
will naturally encounter dead ends. Some methods might not work at all or might 
not work as expected. Machine learning methods are likely to find several solutions 
of varying quality. We document all these results and failures. All results are docu-
mented so that the best result can be selected. As stated in chapter- Find numerical 
solution, the best result is not necessarily the one with the highest accuracy, as other 
considerations such as computational efficiency or reliability can be of higher prior-
ity. All failures and dead ends should also be documented. There are several reasons 
for this. First, the failure might be due to some mistake on the part of the data scien-
tist and a future evaluation could correct this mistake. Second, by documenting that 
a method did not work this method does not need to be tested in similar future 
analysis tasks. This prevents someone from making the same mistakes again. Third, 
if conditions change, this method could suddenly work. If it has been documented 
under which assumptions the method failed, it can be assessed if it is worth trying 
the method again.

Archive Data Analysis and Tools The result of the advanced analytics step will be 
a solution to the business question. Either this solution will be incorporated in a 
product or a business decision will be based on that solution. To maintain a product 
or justify a business decision it must be possible to reproduce the exact solution at a 
later date. This is only possible if the data are preserved, the analytical work of the 
data scientist is preserved and the tools that the data scientist used are preserved. 
Data preservation is a prerequisite in the step Storage/Access. The analytical work 
of the data scientist must be stored in an archive system such as Subversion or Git. 
The tools must be stored in exactly the same version that the data scientist used. For 
programming languages, the libraries used must also be taken into account.
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Analytics Expert Review The data analysis should be reviewed by another analyt-
ics expert. This can be done either in a tool-assisted fashion using a code review tool 
such as Upsource or Phabricator on each increment of work or by a walkthrough of 
the analysis after a part of the analysis has been completed.

Example Project To obtain an initial visualization of the overall data we used 
principal component analysis and colored the data according to the parameters we 
had defined. Figure 31.6 shows such a plot for the first two principal components 
colored by the parameter temperature. The complete visualization would encom-
pass the first four principal components and individual plots for all parameters.

Then, we developed our classifier using Jupyter notebooks [30]. These note-
books have the advantage that they can combine code for data analysis and explana-
tory text can include interactive figures and contain the results of the data analysis. 
They are a powerful tool for handling steps 3.5.1 through 3.5.5 in one view. The 
notebooks run on and are stored on a server. The source code in the notebooks is 
automatically exported when changes are made to the notebook. We archive the 
notebooks and the source code. The archive system is connected to a code review 
tool. We review each increment of work.

To work with reproducible tools, we use a virtual environment with fixed ver-
sions of the Python programming language and its libraries. This virtual environ-
ment is registered to the Jupyter notebook server and can be selected by a notebook 
for an analysis task. When the use of a new or updated library is required, we create 
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a new virtual environment with the required version of the Python programming 
language and libraries, fix the versions and link it to the Jupyter notebook server. As 
a result, the existing notebooks use the old virtual environment and keep function-
ing. For new notebooks, the new or old environment can be selected.

Figure 31.7 shows our resulting classifier tested against an independent ground 
truth. Each point is a measurement with different parameters. For some measure-
ments, a valve blockage was simulated. The classifier divides the measurements into 
good (circles, above the dashed line) and faulty (crosses, below the dashed line) 
states. Coded by color is the actual stroke, which was independently obtained by a 
laser distance measurement. This ground truth shows that the classifier did classify 
all the tested cases correctly. This figure and the underlying classifier are the work 
products of the data scientist from the advanced analytics step. This is the result, 
which we hand over to the next step.

31.3.6  Build Product

When the data scientist finds a solution to the business question, he or she should 
isolate the required method to solve the question. The method can be an algorithm 
or a machine-learning model.

Deployment To ensure that the workflow functions as a pipeline the final solution 
of the data scientist should be in a way that it updates itself when new data are avail-
able. Additionally, it should be possible to integrate the solution into the product 
that is built in this step in an automated fashion.
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Fig. 31.7 Classification of valve stroke into good (circles, above the dashed line) and faulty states 
(crosses below the dashed line) based on the shape of the current curve. Coded by color is the 
actual stroke, which was independently acquired by a laser distance measurement
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This product will usually be a technology demonstrator in the first iteration of 
this workflow. In later iterations of this workflow, a prototype and minimal viable 
product might follow.

Domain Expert Review The technological demonstrator, prototype or product 
should always be checked by a domain expert. This review should be a black box 
review of the data scientist’s solution. The domain expert should only evaluate the 
effectiveness of the demonstrator with regard to the business question.

Example Project The figure- Classification of valve stroke into good and faulty 
states above was the direct result of the advanced analytics step and used as initial 
technology demonstrator. In its first iterations, it contained a few measurements that 
were not classified correctly. The domain experts determined that the measurements 
were for valve states that were not allowed by the datasheet of the valve. Thus, after 
removing these faulty measurements from the dataset and redoing the analysis, we 
obtained the ideal classifier as shown in the figure.

Since this is a new technology, we decided to build a technology demonstrator in 
hardware. This demonstrator consists of a valve where the stroke can be reduced by 
an added screw to simulate blocking. The valve is connected to compressed air, and 
a flow sensor measures the resulting flow to obtain a reference measurement to be 
used as ground truth. The current is measured by a microcontroller, which also per-
forms the classification. It shows the result by a simple LED. This technological 
demonstrator is important because it shows the effect of the technology without the 
mathematical details that are only accessible to an analytics expert.

31.3.7  Communicate Result

Once a technological demonstrator, prototype or minimal viable product is ready, it 
should be presented to a larger audience. This has multiple purposes. Inside a com-
pany, it is necessary to demonstrate the effect of the new technology on an audience 
that is not familiar with the details and gather feedback. It might also inspire people 
to use the technology for different products. Outside of the company, it is necessary 
to inform the technology to find pilot customers for field validation.

Field Validation Technological demonstrators will usually be shown around inter-
nally or at exhibitions to gather some initial feedback on the technology. If a proto-
type is available, field validation is the next logical step. This will present a 
real-world usage for the prototype. It will give valuable insights that more often than 
not lead to necessary adjustments of earlier steps of the BaseABC.

Business Case Review All the collected feedback should lead to an answer to the 
business question, whether the developed technology is able to solve the business 
question and whether the business question correctly addresses a customer issue. 
One might argue that the detailed identification of the customer issue should be 
earlier; however, real-world examples have proven time and time again that most 
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customers can define their needs the best if they are given a prototype that deals with 
their issue. This is the main reason this workflow aims at automation and iteration 
toward an adoptable prototype as early as possible.

Example Project We patented the technology for the diagnostics of the inrush cur-
rent. The initial business question spawned a number of follow-up projects with 
slightly different business questions, which all try to capitalize on the technology in 
one way or the other.

Pilot customers evaluated prototype circuit boards. Such a board has a microcon-
troller that measures the current and classifies valve switching. Customer feedback 
showed that these prototypes address customer needs.

The technology is ready for integration into systems, designed for specific cus-
tomer applications, and a project to develop a standard product, which is done as 
another iteration of BaseABC, is on its way.

31.4  FAQs

31.4.1  Why Is There No Step for Continuous Training

Training a machine learning model on historical data and deploying it assumes that 
the new data will be similar to the historical data. Sometimes this is not the case, and 
the machine-learning model needs to be adapted to retain its accuracy and reliabil-
ity. This concept is called continuous training.

Within the BaseABC workflow, this is not an extension of an existing workflow. 
In some cases – mostly when the data-driven product is cloud based - it is just a 
rerun of the existing pipeline. If the data-driven product involves an edge device and 
access to new data is difficult, we handle it as a separate business question that uses 
its own pipeline. This is justified because, for example, the data acquisition and stor-
age usually differ drastically in such a case from the initial model training. Typically, 
the initial training is against a large data set and happens with some powerful infra-
structure involved. Later, data collection and computationally less expensive model 
refinement occurred on the edge device.

31.4.2  Why Is There No Step for Monitoring an Existing 
Data-Driven Product

Similar to continuous training, the BaseABC workflow treats the monitoring of a 
data-driven product as an individual business question. It requires the acquisition of 
appropriate monitoring data – usually containing a ground truth, a storage location 
(edge device or cloud) and a suitable performance metric for monitoring the predic-
tion quality that the data scientist has to find.
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EXPERTISE:
• AIoT
• Business Development
• Product Management

ERIC SCHMIDT, BOSCH CENTER FOR ARTIFICIAL INTELLIGENCE
EXPERT

Eric Schmidt is an AI consultant and data scientist at the Bosch Center for Artificial 
Intelligence (BCAI). He initiates and implements data-driven solutions in various 
areas, ranging from engineering to manufacturing and supply chain management. 
Eric holds degrees in both computer science and business administration.

EXPERTISE:
• AIoT
• Machine Learning
• Business Development

HAAS PHILIPP, ROBERT BOSCH GMBH
EXPERT

Dr. Philipp Haas is a lawyer at Robert Bosch GmbH in the legal department. He 
heads the Expert Group for Digital and New Businesses. His field of activity for 
many years has included the drafting and negotiation of software license agreements.

EXPERTISE:
• Law

MARC GROSSKOPF, TÜV SÜD
EXPERT

Marc started at TÜV SÜD in 2006 in the structural engineering department focusing 
on qualification and technical design. He has vast experience in dealing with 
demanding construction projects in a wide variety of industries. Prior to his current 
role, Marc was the department head for the Real Estate & Infrastructure division in 
South Korea. From 2017 on Marc has been assigned as business unit manager, for 
TÜV SÜD global activities in the field of building lifecycle solutions focusing on 
digital service integration.

EXPERTISE:
• Construction Projects

MARTEN OBERPICHLER, BOSCH
EXPERT

Marten Oberpichler is a working student at Bosch - Central Department IoT and 
Digitalization. After his Bachelor of Science, he started his Master of Science in 
Industrial Engineering in 2018. Marten has over two years of work experience 
at Bosch.
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EXPERTISE:
• AIoT

RALPH NELIUS, DEUTSCHE POST AG
EXPERT

Ralph Nelius loves to build great products in agile teams. After various stints as a 
software engineer, consultant and enterprise architect, he now works as a product 
owner at Deutsche Post on AI topics.

EXPERTISE:
• Product Development
• Analytics
• AI

DR. MARTIN SAERBECK, TÜV SÜD
EXPERT

In his role as CTO Digital Service at TÜV SÜD, Dr. Saerbeck oversees the technol-
ogy roadmap and key implementation projects of digital testing services, including 
the use and assessment of AI. He has a long track record in academia and industry 
in the domains of smart sensor networks, robotics, and AI. After completing his 
PhD with Philips Research, Dr. Saerbeck started an interdisciplinary research team 
on human-machine interaction within the Institute of High Performance Computing 
on novel technologies for aerospace, manufacturing and retail.

EXPERTISE:
• Smart sensors
• Robotics
• AI

DR. NIKOLAI HLUBEK, BÜRKERT FLUID CONTROL SYSTEMS
EXPERT

Nikolai works as a Senior Data Scientist at Bürkert Fluid Control Systems and 
develops new data-driven products. He has a PhD in physics and has been using data 
science for more than 15 years to tackle various topics. As an example, before join-
ing Bürkert Fluid Control Systems, he developed a real-time ionospheric monitor-
ing service for the German Aerospace Center.

EXPERTISE:
• Data Science
• Product development
• Methodology

DANIEL BURKHARDT, FERDINAND-STEINBEIS-INSTITUT
EXPERT

Daniel is a researcher at the Ferdinand Steinbeis Institute with focus on the design 
of data-driven solution. Discovering patterns in data by the means of new 
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technologies will tell us more about society, culture, and the environment. Mined 
properly, we will receive valuable insights that support us to create better, more 
precise and trustful solutions. While following this vision, Daniel aims at creating a 
tool that supports companies to design such innovative solutions. In this context, he 
leads with great motivation the AIoT Lab in Heilbronn, Germany and the IIC 
German Regional Team with the goal to transfer research findings into practical 
applications. He draws his inspiration from experiences during his Master study in 
Information Systems, Trainee program at Bosch GmbH and numerous digitalisation 
projects at the Ferdinand Steinbeis Institute.

EXPERTISE:
• Information Systems
• Digital transformation

HARINDERPAL HANSPAL, MOMENTA
EXPERT

Harinderpal (Hans) Hanspal is a Venture Partner at Momenta, a venture firm invest-
ing in industrial startups at the intersection of industry and digital. He has 25+ years 
of experience as a technology startup founder, corporate executive, entrepreneur, 
and, more recently, a venture capital investor driving business and product transfor-
mations in the technology, industrial, and telecom industries. He has held sales, 
product, and corporate strategy leadership roles at GE, Pivotal Software, VMware, 
and EMC (now DellEMC). As co-founder and COO of Nurego, an Industrial IoT 
Monetization startup, he helped grow from conception to a successful exit to GE. In 
his spare time, he leads Seattle's 4200+ member IoT Hub Meetup group.

EXPERTISE:
• Corporate Innovation
• Industrial Startups

 Expert Network

JUAN GARCIA, MM1
EXPERT

Juan Sebastian Trujillo Garcia is a senior consultant at mm1. During his studies in 
economics he collected experience in business development, IT, and consulting 
trough different internships for enterprises like Daimler AG and Deutsche Telekom. 
For three years he has been working as a consultant for mm1.

EXPERTISE:
• Data Analysis
• Data Science
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ALEXANDER WILLINEK, EVACO GMBH
EXPERT

More than 18 years of passion in BI projects  – these are years in retrospect for 
Alexander Willinek, where he has gained a wealth of experience with a lot of pas-
sion and curiosity. As a programmer, he loves the situations where he develops solu-
tions for customers in the first row, even if these are becoming increasingly rare in 
his current job as managing director and founder of EVACO GmbH.

EXPERTISE:
• Business Development
• Business Intelligence

ARNE FLICK, REPEATMOBILE
EXPERT

As CEO of repeatmobile, Arne has a strong focus on modernizing the employee 
learning experience and fostering transformational trainings. Together with his 
team, Arne develops digital solutions to significantly increase the learning transfer 
of trainings & seminars. Arne has over 20 years of experience in digital learning 
projects with national and international stock market listed companies. He is active 
in the Industrial IoT Ecosystem as forum speaker for Industry 4.0 of SIBB and DLT 
speaker of IoT+[Network] and formed educational joint-ventures with the IOTA 
Foundation, IoT ONE and DroneMasters under the name “IoT ONE Academy”.

EXPERTISE:
• Digital Learning
• DLT
• IIoT

BENJAMIN LINNIK, OPITZ CONSULTING
EXPERT

Benjamin Linnik is a senior data engineer at Opitz Consulting. During his academic 
career, he has acquired profound knowledge in mathematics, physics and computer 
science. He uses his analytical skills to precisely grasp complex business and tech-
nical issues and to design customer-oriented IT solutions. During his Ph.D. Benjamin 
contributed to the development of a particle detector for a heavy-ion experiment at 
the international particle accelerator facility FAIR. For this purpose, he evaluated 
data statistically in order to ensure the suitability of the used components. Benjamin 
also used to automate complex (laboratory) workflows.

EXPERTISE:
• Machine Learning
• Computer Science
• Programming
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CHRISTIAN WEISS, HOLISTICON AG
EXPERT

As a consultant, coach and trainer, Christian deals with the topics of business pro-
cess management and agile project management. In particular, it is important to him 
to support large companies in the introduction of nimble, automated business pro-
cesses and agile practices. Social concerns often play a major role in the implemen-
tation of ideas, for which he has developed a sensitive sense and sensitivity over 
the years.

EXPERTISE:
• UML
• BPMN

CHRISTOPH VOIGT, NEXOCRAFT GmbH
EXPERT

Christoph Voigt is the IoT & AI Solution Manager at nexocraft GmbH, where he 
offers customised solutions for those who want to delve into the world of AI. He is 
a graduate engineer in electrical engineering, who, having discovered AI as a new 
basis for modern automation technology in recent years, works closely with cus-
tomers to implement the new AI Controller and offers client-specific solutions.

EXPERTISE:
• Machine Learning
• Automation technology

DANIEL WERTH, FERDINAND-STEINBEIS-INSTITUT
EXPERT

Daniel Werth is Senior Researcher and Director Multilateral Ecosystems at the 
Ferdinand Steinbeis Institute. In transfer-oriented projects in digital-based ecosys-
tems, he strives to generate new added value for companies and added value to 
society. Daniel has over 15 years of experience in medium-sized companies, with a 
focus on wholesale and new services/business transformation. He received his doc-
torate from the LMU Munich in the field of business psychology.

EXPERTISE:
• Business Transformation
• Multilateral Ecosystems

PROF. DR. DIETLAND ZÜHLKE, TH KÖLN
EXPERT

Prof. Dr. Dietlind Zühlke is a professor for applied mathematics at the TH Köln 
since 2019. Before Dietlind worked at the TH Köln, she was a data science manager 
at Horn & Company Data Analytics. She was primarily responsible for projects for 
the conception and implementation of data science and machine learning applica-
tions, for the development of machine learning competences as well as programs for 
the transformation towards data-driven companies. Dietlind studied Computer 
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Science with a focus on Artificial Neural Networks at the Universities of Leipzig 
and Bonn. She earned a PhD in Computational Intelligence from the University of 
Groningen, Netherlands.

EXPERTISE:
• Data mining
• Machine Learning
• Algorithms

DIRK CASPER, OPITZ CONSULTING
EXPERT

Dirks motivation is to develop and implement viable and sustainable solutions 
together with customers and partners. From the brainstorming, development, proj-
ect management and sales of IT solutions as well as change facilitation, he has 
worked through all roles. Together with connectivity partners and sensor manufac-
turers, he designed solutions for customers, identified suitable IOT platforms and 
helped developing complete ecosystems. At Opitz Consulting he is part of the AI 
core team and responsible for NLP, NLU, chat and voice bots. This also in combina-
tion with technologies such as augmented reality.

EXPERTISE:
• AIoT
• NLP
• NLU

ERIK WALENZA-SLABE, IOT ONE
EXPERT

As CEO of IoT ONE, Erik researches the impact of industrial digitalization on his 
client’s businesses and supports them to define and implement their digitalization 
strategies. He has worked in China for eleven years where he is an active member 
of the Chinese innovation ecosystem. Aside from his role at IoT ONE, Erik is chair 
of the Technology and Innovation Committee at the American Chamber of 
Commerce, and Shanghai Director of Startup Grind, the world's largest community 
of entrepreneurs.

EXPERTISE:
• Industrial digitalization

FERMIN FERNANDEZ, ROBERT BOSCH TOOL CORPORATION
EXPERT

Fermin Fernandez is Director of Innovation at Bosch U.S. and Managing Director 
of the Chicago Connectory, an innovation center with a vibrant community of entre-
preneurs and experts around IoT technologies and business ideas. Fermin has been 
with Bosch for 20+ years and has led technology projects in many locations around 
the world and diverse business units. He is an assessor for internal project manager 
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certifications and holds an MBA from Wayne State University and an Industrial 
Engineering Bachelor degree.

EXPERTISE:
• IoT
• Industrial Engineering

GENE WANG, BOSCH.IO CHINA
EXPERT

Strategic Consultant of IoT & Digital Transformation. Gene Wang, the General 
Manager of Bosch.IO China, has been active in IoT market for more than 10 years, 
and provides consultant services and helps customers on their digital transformation 
strategy and new IoT business model with innovative technologies and solutions. 
Besides, Gene has more than 25 years’ experience in Energy Area, and he held vari-
ous positions at GE Energy.

EXPERTISE:
• IoT
• Smart Energy
• Industry 4.0

HAJO NORMANN, ACCENTURE
EXPERT

Hajo’s interest in business-focused, enterprise-wide, cross siloed bundles of func-
tionality arose in 2001 while he was responsible for a shared service platform at a 
large German bank as an architect and technical team lead. For many years he is 
helping to motivate, designing and implementing solutions successfully at various 
customers and work on choosing the right mix of tools, on setting up a successful 
modernization, sourcing & vendor strategy, and sharing Integration Architecture 
principles, design guidelines, and best practices. Haj has worked as a consultant, 
sales consultant, management consultant, technical team lead, and architect in large 
project teams in banking, retail, government, and telcos.

EXPERTISE:
• BPM
• Methodology
• SOA Design Pattern

HEINER DUFFING, ROBERT BOSCH GMBH
EXPERT

Heiner has more than 25 years’ experience in purchasing and partially business 
development in various business areas (Steel, Automotive, Consumer, Renewables) 
and countries. Strong focus has been to find market innovations and develop start-
 up suppliers/products to reliable serial partners, including the negotiation of fitting 
contracts. Currently he leads the Purchasing of Software and Engineering Services 
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for Bosch products. He holds a degree as Diplom-Wirtschaftsingenieur from TU 
Darmstadt.

EXPERTISE:
• Business development
• Purchase
• Logistics

DR. HOLGER KENN, MICROSOFT
EXPERT

As Director of Business Strategy in Microsoft’s Business Development, Strategy 
and Ventures organization, Holger is responsible for defining and implementing 
strategy and investments in artificial intelligence, mixed reality and silicon ranging 
from tiny edge devices to global datacenter networks. Holger also represents 
Microsoft in industry bodies such as the OPC Foundation, the Industrial Internet 
Consortium, and the Digital Twins Consortium. Before joining Microsoft, Holger 
held several academic positions in wearable computing, robotics and AI research. 
He holds a Ph.D. in computer science and has more than 20 years of experience in 
artificial intelligence and the software industry.

EXPERTISE:
• Strategy and Ventures
• Business Development

JIM MORRISH, FOUNDING MEMBER, TRANSFORMA INSIGHTS
EXPERT

Jim is a respected Digital Transformation and Internet of Things industry expert, 
with over 20 years’ experience of strategy consulting, operations management and 
telecoms research. Previously he was a Founder and the Chief Research Officer of 
Machina Research, the world's leading IoT analyst firm, which was acquired by 
Gartner in 2016. He is a co-author of the Ignite IoT framework on which the Ignite 
AIoT framework is based.

EXPERTISE:
• AIoT Business Models

JÖRN EDLICH, MM1
EXPERT

Jörn Edlich is a senior manager at mm1. He is responsible on digital, IoT-based 
services in the mobility and energy industry and focuses on the IT-security aspects 
of IoT-architectures. He graduated with a diploma degree in Electrical Engineering 
and Communication Technology at RWTH Aachen University in 2006.

EXPERTISE:
• Telecommunications
• Business Development
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KAI HACKBARTH, BOSCH.IO
EXPERT

Kai Hackbarth is Business Owner Industrial at Bosch.IO, and also co-chair of the 
OTA SIG at the Industrial Internet Consortium. Kai has many years’ experience 
with IoT applications and architectures. He also has served as a Director of the 
OSGi Alliance for many years.

EXPERTISE:
• OTA
• Security

DR. KATHARINA MATTES, MM1
EXPERT

Dr. Katharina Mattes is a manager at mm1. After her diploma in business economics 
and her Ph.D. in innovation management she worked for VDMA, as head of coordi-
nation office. VDMA is a mechanical engineering industry association. Her work 
was about Industry 4.0 Baden-Wuerttemberg and gave her over 3 years of experi-
ence in Industry 4.0. In 2020 she also did her professional scrum master and started 
working for mm1.

EXPERTISE:
• Industry 4.0
• Business Engineering

KIM KORDEL, BOSCH.IO
EXPERT

Kim Kordel is a senior business development manager for new IoT business at 
Bosch.IO. In her former position as an IoT business consultant and trainer for IoT 
business models at Bosch.IO she developed and taught methodology for building 
IoT business models. With this methodology she developed new digital business for 
internal and external customers. Kim also co-initiated and set-up the Bosch Startup 
Harbour, the incubation program for external startups for Bosch. Now Kim is 
responsible to establish new IoT business for the energy domain.

EXPERTISE:
• IoT Business
• Ecosystem Business Models

LAURENZ KIRCHNER, MM1
EXPERT

Laurenz Kirchner is a partner at mm1 with a consulting focus on driving digital 
growth, helping his clients to become truly connected businesses. As a trained archi-
tect, MBA and experienced management consultant (including eight years 
McKinsey), Laurenz is a hybrid thinker with a strong ability to combine creative 
problem solving with solid business judgement. His consulting projects center on 
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innovation, the development of digital products and ecosystems as well as data 
strategies for the Internet of Things.

EXPERTISE:
• Driving Digital Growth
• Architecture

PROF. LIRONG ZHENG, FUDAN UNIVERSITY
EXPERT

Lirong Zheng received his Ph.D. degree from the Royal Institute of Technology 
(KTH), Stockholm, Sweden in 2001. Afterwards he worked at KTH as a research 
fellow, associate professor and full professor, expert of Ericsson etc. He is a distin-
guished professor since 2010 at Fudan University, Shanghai China. Currently, he 
holds the directorship of Shanghai Institute of Intelligent Electronics and Systems, 
Fudan University. His research experience and interest includes ambient intelli-
gence and internet-of-things, and applications in industry and Fintech etc. He has 
authored more than 400 publications and servers as steering board member of 
International Conference on Internet-of-Things.

EXPERTISE:
• AIoT
• IoT and Edge Computing
• BlockChain

MARCUS SCHUSTER, ROBERT BOSCH GMBH
EXPERT

As a Project Director for embedded AI Marcus Schuster runs a cross-cutting project 
within the Robert Bosch Group, which creates prototypic realizations of products 
with embedded AI based core functions. He leads a diverse team of AI experts, 
embedded and backend SW engineers, architects, hardware developers and project 
managers. Marcus did his PhD on superconducting electronics, and joined Bosch in 
2005. Since then he held various management positions in quality, business devel-
opment and both HW and SW engineering.

EXPERTISE:
• Embedded AI

MARC HABERLAND, CLARIBA
EXPERT

Marc has more than 18 years’ experience in Business Intelligence (BI), analytics, 
strategy management and Enterprise Performance Management (EPM) across tele-
communication, education, healthcare, manufacturing, banking and public sectors. 
Marc leads a team of 70+ BI and analytics experts who deliver innovative, reliable 
and high-quality data driven digital transformation solutions, providing customers 
with clarity and actionable insight to improve business performance and develop 
new business models for long-term, sustainable competitive advantage.
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EXPERTISE:
• BI
• EPM

MICHAEL HOHMANN, BSH HAUSGERÄTE GMBH
EXPERT

Dr. Michael Hohmann works as a Systems Engineer in the field of autonomous 
cleaning robots at BSH. After studies in Mechanical Engineering and Measurement 
Science at TU Ilmenau he joined the Bosch Roxxter development team at BSH 
robotics department.

EXPERTISE:
• Robotics and Architecture

DR. MICHAEL WENIGER, DEUTSCHEPOST DHL GROUP
EXPERT

Dr. Michael Weniger is a Senior Data Scientist at Deutsche Post DHL Group. 
During his time at Deutsche Post he collected over 4 years of experience in Artificial 
Intelligence and Deep Learning. Michael graduated with a Diploma in Mathematics 
and holds a PhD in probability-theoretical weather and climate models.

EXPERTISE:
• Machine Learning
• AI
• Deep Learning

PABLO ENDRES, SEVENSHIFT
EXPERT

Pablo Endres, Founder of SevenShift GmbH. Experienced security consultant and 
Professional Hacker. Pablo’s career has taken place mostly doing security in a vari-
ety of industries, like Cloud Service providers, Banks, Telecommunications, contact 
centers, and universities. He holds a degree in computer engineering, as well as a 
handful security certifications. Pablo has founded multiple companies in different 
continents and enjoys hacking, IoT, teaching, working with new technologies, start-
ups, collaborating with Open Source projects and being challenged.

EXPERTISE:
• IoT Security
• Management of IT Projects

PETER KLEMENT, AVANADE DEUTSCHLAND GMBH
EXPERT

As Digital Enterprise Advisory Lead, Peter is responsible for helping clients to 
leverage digital innovations to create business value following the Triple Bottomline 
concept. Before joining Avanade, Peter built the IoT Practice for DXC.technology 
in Australia and New Zealand and was active for many years in the Industrial 
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Internet Consortium. He is also Vice President of the MIT Club of Germany, where 
he is responsible for partnerships and programs. Peter das a MS in Computer 
Science for the University of Applied Science in Munich and an MBA degree from 
the MIT Sloan School of Management.

EXPERTISE:
• IoT

PETER LINDLAU, TOMORROW LABS GMBH
EXPERT

Peter Lindlau is working for over 4 years at Tomorrow Labs as an operative partner 
and has many years of experience with the implementation of IT projects. His cur-
rent focus (for about six years) is the implementation of Industry 4.0 projects. Peter 
is the project manager of the BMBF funding project "eApps4Production".

EXPERTISE:
• Business Development
• Business Strategy

DR. ROBERT XIE, BOSCH COOPERATE RESEARCH
EXPERT

Research Expert of IoT Applications Head of IoT@Life program and group leader 
for IoT & I4.0 at the Bosch Research and Technology Center in China. Before join-
ing Bosch, Robert was an Assistant Professor at Shanghai Jiao Tong University 
focusing on medical robotics and sensor systems. As an alumni of the Bosch 
Accelerator Program, he not only collaborates closely with Business Units for joint 
development, but also explore commercialization of IoT products and solutions 
with scalable, repeatable and profitable business models.

EXPERTISE:
• IoT
• Sensor Systems
• Computer Visions

PROF. DR. THOMAS BARTZ-BEIELSTEIN, TH KÖLN
EXPERT

Director of the Institute for "Data Science, Engineering and Analytics" and Professor 
for Applied Mathematics at TH Köln. More than 20 years’ experience in simulation, 
optimization, machine learning and AI.

EXPERTISE:
• Machine Learning
• Modelling and Simulation

SANGAMITHRA PANNEER SELVAM, 
FERDINAND-STEINBEIS-INSTITUT
EXPERT
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Sangamithra is a working student at Ferdinand Steinbeis Institut. She has one year 
of experience working on AIoT framework and AIoT laboratory: Pneumatic sys-
tems  use case. After her bachelor's degree, she moved to Germany to pursue her 
masters in Electrical Engineering, majoring in Smart Information Processing at the 
University of Stuttgart.

EXPERTISE:
• AIoT
• Data Science

STEPHAN WOHLFAHRT, ROBERT BOSCH GMBH
EXPERT

As Director and Corporate Process Owner Project Management at Bosch, Stephan 
is responsible for the general project management guidelines and company-wide 
PM qualification offerings of the Bosch Group, including predictive/plan driven, 
agile, and hybrid approaches. He has more than 20 years of experience in project 
management and organizational development and is a representative in PMI’s 
Global Executive Council.

EXPERTISE:
• Project management
• Agile planning

THOMAS JAKOB, DRAEGER
EXPERT

As Chief Operating Officer for the Africa, Asia, and Australia region, Thomas sup-
ports its customers and the organization to scale efficiently, leveraging leading-edge 
technologies and digitalization also to drive transition to the new economy. For 
close to nine years, he was before spearheading the development of AIoT solutions 
and business models as Regional President of Bosch.IO in Asia Pacific. With master 
degrees in both electrical engineering and business administration, Thomas has 
more than 20 years of experience in senior management positions in industries such 
as IT and telecommunications, manufacturing and management consulting.

EXPERTISE:
• IT
• Telecommunications
• Digitalization

TORSTEN WINTERBERG, INNOVATION HUB BERGISCHES 
RHEINLAND e.V./OPITZ CONSULTING Deutschland GMBH
EXPERT

Torsten Winterberg holds degrees in electrical engineering, computer science and 
business administration. As Director of Business- and IT-Innovation he is respon-
sible for future topics at OPITZ CONSULTING. Torsten is a consultant and coach 
for “everything new”, his focus is on software-driven solutions, AI, IoT, innovative 
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capabilities, digital business models, solution concepts and architectures. In addi-
tion, Torsten is actively developing the Innovation Hub Bergisches RheinLand 
e.V. as managing director.

EXPERTISE:
• AIoT
• Architecture
• Digital Business Models

DR. ACHIM NONNENMACHER, ROBERT BOSCH GMBH
EXPERT

Achim’s goal is to improve the experience of vehicle users, OEMs, and software 
developers by accelerating the innovation cycles in the automotive industry. At 
Bosch Connected Mobility Solutions he is responsible for product and portfolio of 
the Software-defined Vehicle. Before this, he drove product innovations in the 
mobility sector by validating business, technology hypotheses and user needs at 
scale. Achim holds a PhD in computational mathematics from Swiss Institute of 
Technology (EPFL) and an executive education on Innovation Acceleration from 
UC Berkeley.

EXPERTISE:
• Automotive
• Product development
• Business Strategy

HANNAH ABELEIN, MM1
EXPERT

Dr. Hannah Abelein is a Manager for Research and Knowledge Management at 
mm1. During her PhD thesis in software engineering, she gained experience in the 
fields of managing large-scale IT Projects in various industries and studied how the 
communication between the various roles can improve project success. As a con-
sulted she work for various clients mainly in the digitalization area, such as DHL, 
Deutsche Bank, Adidas and Thomson Reuters. In addition, she founded and is the 
content lead for the AI Circle – a network for practical exchange on AI Projects

EXPERTISE:
• Consultant
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