
Constantin Enea
Akash Lal (Eds.)

LN
CS

 1
39

66

35th International Conference, CAV 2023
Paris, France, July 17–22, 2023
Proceedings, Part III

Computer Aided
Verification

Lecture Notes in Computer Science 13966
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Constantin Enea · Akash Lal
Editors

Computer Aided
Verification
35th International Conference, CAV 2023
Paris, France, July 17–22, 2023
Proceedings, Part III

Editors
Constantin Enea
LIX, Ecole Polytechnique, CNRS and Institut
Polytechnique de Paris
Palaiseau, France

Akash Lal
Microsoft Research
Bangalore, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-37708-2 ISBN 978-3-031-37709-9 (eBook)
https://doi.org/10.1007/978-3-031-37709-9

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2727-8865
https://orcid.org/0009-0002-4359-9378
https://doi.org/10.1007/978-3-031-37709-9
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2023, the 35th International
Conference on Computer-Aided Verification. CAV 2023 was held during July 19–22,
2023 and the pre-conference workshops were held during July 17–18, 2023. CAV 2023
was an in-person event, in Paris, France.

CAV is an annual conference dedicated to the advancement of the theory and practice
of computer-aided formal analysis methods for hardware and software systems. The
primary focus of CAV is to extend the frontiers of verification techniques by expanding
to new domains such as security, quantum computing, and machine learning. This puts
CAVat the cutting edgeof formalmethods research, and this year’s program is a reflection
of this commitment.

CAV 2023 received a large number of submissions (261). We accepted 15 tool
papers, 3 case-study papers, and 49 regular papers, which amounts to an acceptance
rate of roughly 26%. The accepted papers cover a wide spectrum of topics, from theo-
retical results to applications of formal methods. These papers apply or extend formal
methods to a wide range of domains such as concurrency, machine learning and neu-
ral networks, quantum systems, as well as hybrid and stochastic systems. The program
featured keynote talks by Ruzica Piskac (Yale University), Sumit Gulwani (Microsoft),
and Caroline Trippel (Stanford University). In addition to the contributed talks, CAV
also hosted the CAV Award ceremony, and a report from the Synthesis Competition
(SYNTCOMP) chairs.

In addition to themain conference,CAV2023hosted the followingworkshops:Meet-
ing on String Constraints and Applications (MOSCA), Verification Witnesses and Their
Validation (VeWit), Verification of Probabilistic Programs (VeriProP), Open Problems
in Learning and Verification of Neural Networks (WOLVERINE), Deep Learning-aided
Verification (DAV), Hyperproperties: Advances in Theory and Practice (HYPER), Syn-
thesis (SYNT), FormalMethods forML-Enabled Autonomous Systems (FoMLAS), and
VerificationMentoringWorkshop (VMW). CAV 2023 also hosted a workshop dedicated
to Thomas A. Henzinger for this 60th birthday.

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2023 consisted of 76 members—a com-
mittee of this size ensures that each member has to review only a reasonable number of
papers in the allotted time. In all, the committee members wrote over 730 reviews while
investing significant effort to maintain and ensure the high quality of the conference pro-
gram.We are grateful to the CAV 2023 Program Committee for their outstanding efforts
in evaluating the submissions and making sure that each paper got a fair chance. Like
recent years in CAV, we made artifact evaluation mandatory for tool paper submissions,
but optional for the rest of the accepted papers. This year we received 48 artifact submis-
sions, out of which 47 submissions received at least one badge. The Artifact Evaluation
Committee consisted of 119 members who put in significant effort to evaluate each arti-
fact. The goal of this process was to provide constructive feedback to tool developers and

vi Preface

help make the research published in CAV more reproducible. We are also very grateful
to the Artifact Evaluation Committee for their hard work and dedication in evaluating
the submitted artifacts.

CAV 2023 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2023 a success. We would like to thank Alessandro Cimatti, Isil Dillig, Javier Esparza,
Azadeh Farzan, Joost-Pieter Katoen and Corina Pasareanu for serving as area chairs.
We also thank Bernhard Kragl and Daniel Dietsch for chairing the Artifact Evaluation
Committee.We also thankMohamedFaouziAtig for chairing theworkshop organization
as well as leading publicity efforts, Eric Koskinen as the fellowship chair, Sebastian
Bardin and Ruzica Piskac as sponsorship chairs, and Srinidhi Nagendra as the website
chair. Srinidhi, along with Enrique Román Calvo, helped prepare the proceedings. We
also thankAnkushDesai, EricKoskinen, BurcuKulahciogluOzkan,Marijana Lazic, and
Matteo Sammartino for chairing the mentoring workshop. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2023.

We hope that you will find the proceedings of CAV 2023 scientifically interesting
and thought-provoking!

June 2023 Constantin Enea
Akash Lal

Organization

Conference Co-chairs

Constantin Enea LIX, École Polytechnique, France
Akash Lal Microsoft Research, India

Artifact Co-chairs

Bernhard Kragl Amazon Web Services, USA
Daniel Dietsch Qt Group/University of Freiburg, Germany

Workshop Chair

Mohamed Faouzi Atig Uppsala University, Sweden

Verification Mentoring Workshop Organizing Committee

Ankush Densai AWS CA, USA
Eric Koskinen Stevens Institute of Technology, USA
Burcu Kulahcioglu Ozkan TU Delft, The Netherlands
Marijana Lazic TU Munich, Germany
Matteo Sammartino Royal Holloway, University of London, UK

Fellowship Chair

Eric Koskinen Stevens Institute of Technology, USA

Website Chair

Srinidhi Nagendra Université Paris Cité, CNRS, IRIF, France and
Chennai Mathematical Institute, India

viii Organization

Sponsorship Co-chairs

Sebastian Bardin CEA LIST, France
Ruzica Piskac Yale University, USA

Proceedings Chairs

Srinidhi Nagendra Université Paris Cité, CNRS, IRIF, France and
Chennai Mathematical Institute, India

Enrique Román Calvo Université Paris Cité, CNRS, IRIF, France

Program Committee

Aarti Gupta Princeton University, USA
Abhishek Bichhawat IIT Gandhinagar, India
Aditya V. Thakur University of California, USA
Ahmed Bouajjani University of Paris, France
Aina Niemetz Stanford University, USA
Akash Lal Microsoft Research, India
Alan J. Hu University of British Columbia, Canada
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Alexander Nadel Intel, Israel
Anastasia Mavridou KBR, NASA Ames Research Center, USA
Andreas Podelski University of Freiburg, Germany
Ankush Desai Amazon Web Services
Anna Slobodova Intel, USA
Anthony Widjaja Lin TU Kaiserslautern and Max-Planck Institute for

Software Systems, Germany
Arie Gurfinkel University of Waterloo, Canada
Arjun Radhakrishna Microsoft, India
Aws Albarghouthi University of Wisconsin-Madison, USA
Azadeh Farzan University of Toronto, Canada
Bernd Finkbeiner CISPA Helmholtz Center for Information

Security, Germany
Bettina Koenighofer Graz University of Technology, Austria
Bor-Yuh Evan Chang University of Colorado Boulder and Amazon,

USA
Burcu Kulahcioglu Ozkan Delft University of Technology, The Netherlands
Caterina Urban Inria and École Normale Supérieure, France
Cezara Dragoi Amazon Web Services, USA

Organization ix

Christoph Matheja Technical University of Denmark, Denmark
Claudia Cauli Amazon Web Services, UK
Constantin Enea LIX, CNRS, Ecole Polytechnique, France
Corina Pasareanu CMU, USA
Cristina David University of Bristol, UK
Dirk Beyer LMU Munich, Germany
Elizabeth Polgreen University of Edinburgh, UK
Elvira Albert Complutense University, Spain
Eunsuk Kang Carnegie Mellon University, USA
Gennaro Parlato University of Molise, Italy
Hossein Hojjat Tehran University and Tehran Institute of

Advanced Studies, Iran
Ichiro Hasuo National Institute of Informatics, Japan
Isil Dillig University of Texas, Austin, USA
Javier Esparza Technische Universität München, Germany
Joost-Pieter Katoen RWTH-Aachen University, Germany
Juneyoung Lee AWS, USA
Jyotirmoy Deshmukh University of Southern California, USA
Kenneth L. McMillan University of Texas at Austin, USA
Kristin Yvonne Rozier Iowa State University, USA
Kshitij Bansal Google, USA
Kuldeep Meel National University of Singapore, Singapore
Kyungmin Bae POSTECH, South Korea
Marcell Vazquez-Chanlatte Alliance Innovation Lab

(Nissan-Renault-Mitsubishi), USA
Marieke Huisman University of Twente, The Netherlands
Markus Rabe Google, USA
Marta Kwiatkowska University of Oxford, UK
Matthias Heizmann University of Freiburg, Germany
Michael Emmi AWS, USA
Mihaela Sighireanu University Paris Saclay, ENS Paris-Saclay and

CNRS, France
Mohamed Faouzi Atig Uppsala University, Sweden
Naijun Zhan Institute of Software, Chinese Academy of

Sciences, China
Nikolaj Bjorner Microsoft Research, USA
Nina Narodytska VMware Research, USA
Pavithra Prabhakar Kansas State University, USA
Pierre Ganty IMDEA Software Institute, Spain
Rupak Majumdar Max Planck Institute for Software Systems,

Germany
Ruzica Piskac Yale University, USA

x Organization

Sebastian Junges Radboud University, The Netherlands
Sébastien Bardin CEA, LIST, Université Paris Saclay, France
Serdar Tasiran Amazon, USA
Sharon Shoham Tel Aviv University, Israel
Shaz Qadeer Meta, USA
Shuvendu Lahiri Microsoft Research, USA
Subhajit Roy Indian Institute of Technology, Kanpur, India
Suguman Bansal Georgia Institute of Technology, USA
Swarat Chaudhuri UT Austin, USA
Sylvie Putot École Polytechnique, France
Thomas Wahl GrammaTech, USA
Tomáš Vojnar Brno University of Technology, FIT, Czech

Republic
Yakir Vizel Technion - Israel Institute of Technology, Israel
Yu-Fang Chen Academia Sinica, Taiwan
Zhilin Wu State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of
Sciences, China

Artifact Evaluation Committee

Alejandro Hernández-Cerezo Complutense University of Madrid, Spain
Alvin George IISc Bangalore, India
Aman Goel Amazon Web Services, USA
Amit Samanta University of Utah, USA
Anan Kabaha Technion, Israel
Andres Noetzli Cubist, Inc., USA
Anna Becchi Fondazione Bruno Kessler, Italy
Arnab Sharma University of Oldenburg, Germany
Avraham Raviv Bar Ilan University, Israel
Ayrat Khalimov TU Clausthal, Germany
Baoluo Meng General Electric Research, USA
Benjamin Jones Amazon Web Services, USA
Bohua Zhan Institute of Software, Chinese Academy of

Sciences, China
Cayden Codel Carnegie Mellon University, USA
Charles Babu M. CEA LIST, France
Chungha Sung Amazon Web Services, USA
Clara Rodriguez-Núñez Universidad Complutense de Madrid, Spain
Cyrus Liu Stevens Institute of Technology, USA
Daniel Hausmann University of Gothenburg, Sweden

Organization xi

Daniela Kaufmann TU Wien, Austria
Debasmita Lohar MPI SWS, Germany
Deivid Vale Radboud University Nijmegen, Netherlands
Denis Mazzucato Inria, France
Dorde Žikelić Institute of Science and Technology Austria,

Austria
Ekanshdeep Gupta New York University, USA
Enrico Magnago Amazon Web Services, USA
Ferhat Erata Yale University, USA
Filip Cordoba Graz University of Technology, Austria
Filipe Arruda UFPE, Brazil
Florian Dorfhuber Technical University of Munich, Germany
Florian Sextl TU Wien, Austria
Francesco Parolini Sorbonne University, France
Frédéric Recoules CEA LIST, France
Goktug Saatcioglu Cornell, USA
Goran Piskachev Amazon Web Services, USA
Grégoire Menguy CEA LIST, France
Guy Amir Hebrew University of Jerusalem, Israel
Habeeb P. Indian Institute of Science, Bangalore, India
Hadrien Renaud UCL, UK
Haoze Wu Stanford University, USA
Hari Krishnan University of Waterloo, Canada
Hünkar Tunç Aarhus University, Denmark
Idan Refaeli Hebrew University of Jerusalem, Israel
Ignacio D. Lopez-Miguel TU Wien, Austria
Ilina Stoilkovska Amazon Web Services, USA
Ira Fesefeldt RWTH Aachen University, Germany
Jahid Choton Kansas State University, USA
Jie An National Institute of Informatics, Japan
John Kolesar Yale University, USA
Joseph Scott University of Waterloo, Canada
Kevin Lotz Kiel University, Germany
Kirby Linvill CU Boulder, USA
Kush Grover Technical University of Munich, Germany
Levente Bajczi Budapest University of Technology and

Economics, Hungary
Liangcheng Yu University of Pennsylvania, USA
Luke Geeson UCL, UK
Lutz Klinkenberg RWTH Aachen University, Germany
Marek Chalupa Institute of Science and Technology Austria,

Austria

xii Organization

Mario Bucev EPFL, Switzerland
Mário Pereira NOVA LINCS—Nova School of Science and

Technology, Portugal
Marius Mikucionis Aalborg University, Denmark
Martin Jonáš Masaryk University, Czech Republic
Mathias Fleury University of Freiburg, Germany
Matthias Hetzenberger TU Wien, Austria
Maximilian Heisinger Johannes Kepler University Linz, Austria
Mertcan Temel Intel Corporation, USA
Michele Chiari TU Wien, Austria
Miguel Isabel Universidad Complutense de Madrid, Spain
Mihai Nicola Stevens Institute of Technology, USA
Mihály Dobos-Kovács Budapest University of Technology and

Economics, Hungary
Mikael Mayer Amazon Web Services, USA
Mitja Kulczynski Kiel University, Germany
Muhammad Mansur Amazon Web Services, USA
Muqsit Azeem Technical University of Munich, Germany
Neelanjana Pal Vanderbilt University, USA
Nicolas Koh Princeton University, USA
Niklas Metzger CISPA Helmholtz Center for Information

Security, Germany
Omkar Tuppe IIT Bombay, India
Pablo Gordillo Complutense University of Madrid, Spain
Pankaj Kalita Indian Institute of Technology, Kanpur, India
Parisa Fathololumi Stevens Institute of Technology, USA
Pavel Hudec HKUST, Hong Kong, China
Peixin Wang University of Oxford, UK
Philippe Heim CISPA Helmholtz Center for Information

Security, Germany
Pritam Gharat Microsoft Research, India
Priyanka Darke TCS Research, India
Ranadeep Biswas Informal Systems, Canada
Robert Rubbens University of Twente, Netherlands
Rubén Rubio Universidad Complutense de Madrid, Spain
Samuel Judson Yale University, USA
Samuel Pastva Institute of Science and Technology Austria,

Austria
Sankalp Gambhir EPFL, Switzerland
Sarbojit Das Uppsala University, Sweden
Sascha Klüppelholz Technische Universität Dresden, Germany
Sean Kauffman Aalborg University, Denmark

Organization xiii

Shaowei Zhu Princeton University, USA
Shengjian Guo Amazon Web Services, USA
Simmo Saan University of Tartu, Estonia
Smruti Padhy University of Texas at Austin, USA
Stanly Samuel Indian Institute of Science, Bangalore, India
Stefan Pranger Graz University of Technology, Austria
Stefan Zetzsche Amazon Web Services, USA
Sumanth Prabhu TCS Research, India
Sumit Lahiri Indian Institute of Technology, Kanpur, India
Sunbeom So Korea University, South Korea
Syed M. Iqbal Amazon Web Services, USA
Tobias Meggendorfer Institute of Science and Technology Austria,

Austria
Tzu-Han Hsu Michigan State University, USA
Verya Monjezi University of Texas at El Paso, USA
Wei-Lun Tsai Academia Sinica, Taiwan
William Schultz Northeastern University, USA
Xiao Liang Yu National University of Singapore, Singapore
Yahui Song National University of Singapore, Singapore
Yasharth Bajpai Microsoft Research, USA
Ying Sheng Stanford University, USA
Yuriy Biktairov University of Southern California, USA
Zafer Esen Uppsala University, Sweden

Additional Reviewers

Azzopardi, Shaun
Baier, Daniel
Belardinelli, Francesco
Bergstraesser, Pascal
Boker, Udi
Ceska, Milan
Chien, Po-Chun
Coglio, Alessandro
Correas, Jesús
Doveri, Kyveli
Drachsler Cohen, Dana
Durand, Serge
Fried, Dror
Genaim, Samir
Ghosh, Bishwamittra
Gordillo, Pablo

Guillermo, Roman Diez
Gómez-Zamalloa, Miguel
Hernández-Cerezo, Alejandro
Holík, Lukáš
Isabel, Miguel
Ivrii, Alexander
Izza, Yacine
Jothimurugan, Kishor
Kaivola, Roope
Kaminski, Benjamin Lucien
Kettl, Matthias
Kretinsky, Jan
Lengal, Ondrej
Losa, Giuliano
Luo, Ning
Malik, Viktor

xiv Organization

Markgraf, Oliver
Martin-Martin, Enrique
Meller, Yael
Perez, Mateo
Petri, Gustavo
Pote, Yash
Preiner, Mathias
Rakamaric, Zvonimir
Rastogi, Aseem
Razavi, Niloofar
Rogalewicz, Adam
Sangnier, Arnaud
Sarkar, Uddalok
Schoepe, Daniel
Sergey, Ilya

Stoilkovska, Ilina
Stucki, Sandro
Tsai, Wei-Lun
Turrini, Andrea
Vafeiadis, Viktor
Valiron, Benoît
Wachowitz, Henrik
Wang, Chao
Wang, Yuepeng
Wies, Thomas
Yang, Jiong
Yen, Di-De
Zhu, Shufang
Žikelić, Ɖor -de
Zohar, Yoni

Contents – Part III

Probabilistic Systems

A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic
Uncertainties . 3

Rupak Majumdar, Kaushik Mallik, Mateusz Rychlicki,
Anne-Kathrin Schmuck, and Sadegh Soudjani

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 16
Yican Sun, Hongfei Fu, Krishnendu Chatterjee,
and Amir Kafshdar Goharshady

Compositional Probabilistic Model Checking with String Diagrams
of MDPs . 40

Kazuki Watanabe, Clovis Eberhart, Kazuyuki Asada, and Ichiro Hasuo

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 62
Thom Badings, Sebastian Junges, Ahmadreza Marandi, Ufuk Topcu,
and Nils Jansen

MDPs as Distribution Transformers: Affine Invariant Synthesis for Safety
Objectives . 86

S. Akshay, Krishnendu Chatterjee, Tobias Meggendorfer,
and Ðor -de Žikelić

Search and Explore: Symbiotic Policy Synthesis in POMDPs 113
Roman Andriushchenko, Alexander Bork, Milan Češka,
Sebastian Junges, Joost-Pieter Katoen, and Filip Macák

Security and Quantum Systems

AutoQ: An Automata-Based Quantum Circuit Verifier . 139
Yu-Fang Chen, Kai-Min Chung, Ondřej Lengál, Jyun-Ao Lin,
and Wei-Lun Tsai

Bounded Verification for Finite-Field-Blasting: In a Compiler for Zero
Knowledge Proofs . 154

Alex Ozdemir, Riad S. Wahby, Fraser Brown, and Clark Barrett

xvi Contents – Part III

Formally Verified EVM Block-Optimizations . 176
Elvira Albert, Samir Genaim, Daniel Kirchner,
and Enrique Martin-Martin

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 190
Gourav Takhar and Subhajit Roy

Symbolic Quantum Simulation with Quasimodo . 213
Meghana Sistla, Swarat Chaudhuri, and Thomas Reps

Verifying the Verifier: eBPF Range Analysis Verification . 226
Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana,
and Santosh Nagarakatte

Software Verification

Automated Verification of Correctness for Masked Arithmetic Programs 255
Mingyang Liu, Fu Song, and Taolue Chen

Automatic Program Instrumentation for Automatic Verification 281
Jesper Amilon, Zafer Esen, Dilian Gurov, Christian Lidström,
and Philipp Rümmer

Boolean Abstractions for Realizability Modulo Theories . 305
Andoni Rodríguez and César Sánchez

Certified Verification for Algebraic Abstraction . 329
Ming-Hsien Tsai, Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Bow-Yaw Wang,
and Bo-Yin Yang

Complete Multiparty Session Type Projection with Automata 350
Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey

Early Verification of Legal Compliance via Bounded Satisfiability Checking . . . 374
Nick Feng, Lina Marsso, Mehrdad Sabetzadeh, and Marsha Chechik

Formula Normalizations in Verification . 398
Simon Guilloud, Mario Bucev, Dragana Milovančević, and Viktor Kunčak

Kratos2: An SMT-Based Model Checker for Imperative Programs 423
Alberto Griggio and Martin Jonáš

Making IP = PSPACE Practical: Efficient Interactive Protocols for BDD
Algorithms . 437

Eszter Couillard, Philipp Czerner, Javier Esparza, and Rupak Majumdar

Contents – Part III xvii

Ownership Guided C to Rust Translation . 459
Hanliang Zhang, Cristina David, Yijun Yu, and Meng Wang

R2U2 Version 3.0: Re-Imagining a Toolchain for Specification, Resource
Estimation, and Optimized Observer Generation for Runtime Verification
in Hardware and Software . 483

Chris Johannsen, Phillip Jones, Brian Kempa, Kristin Yvonne Rozier,
and Pei Zhang

Author Index . 499

Probabilistic Systems

A Flexible Toolchain
for Symbolic Rabin Games

under Fair and Stochastic Uncertainties

Rupak Majumdar1, Kaushik Mallik2(B), Mateusz Rychlicki3,
Anne-Kathrin Schmuck1, and Sadegh Soudjani4

1 MPI-SWS, Kaiserslautern, Germany
{rupak,akschmuck}@mpi-sws.org
2 ISTA, Klosterneuburg, Austria

kaushik.mallik@ist.ac.at
3 School of Computing, University of Leeds, Leeds, UK

scmkry@leeds.ac.uk
4 Newcastle University, Newcastle upon Tyne, UK

Sadegh.Soudjani@newcastle.ac.uk

Abstract. We present a flexible and efficient toolchain to symbolically
solve (standard) Rabin games, fair-adversarial Rabin games, and 21/2-
player Rabin games. To our best knowledge, our tools are the first ones to
be able to solve these problems. Furthermore, using these flexible game
solvers as a back-end, we implemented a tool for computing correct-
by-construction controllers for stochastic dynamical systems under LTL
specifications. Our implementations use the recent theoretical result that
all of these games can be solved using the same symbolic fixpoint algo-
rithm but utilizing different, domain specific calculations of the involved
predecessor operators. The main feature of our toolchain is the utilization
of two programming abstractions: one to separate the symbolic fixpoint
computations from the predecessor calculations, and another one to allow
the integration of different BDD libraries as back-ends. In particular, we
employ a multi-threaded execution of the fixpoint algorithm by using the
multi-threaded BDD library Sylvan, which leads to enormous computa-
tional savings.

1 Introduction

Piterman and Pnueli [17] derived the currently best known symbolic algorithm
for solving two-player Rabin games over finite graphs with a theoretical com-
plexity of O(nk+1k!) in time and space, where n is the number of states and k
is the number of pairs in the winning condition. This work did not provide an

Authors ordered alphabetically. R. Majumdar and A.-K. Schmuck are partially sup-
ported by DFG project 389792660 TRR 248-CPEC. A.-K. Schmuck is addition-
ally funded through DFG project (SCHM 3541/1-1). K. Mallik is supported by the
ERC project ERC-2020-AdG 101020093. M. Rychlicki is supported by the EPSRC
project EP/V00252X/1. S. Soudjani is supported by the following projects: EPSRC
EP/V043676/1, EIC 101070802, and ERC 101089047.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 3–15, 2023.
https://doi.org/10.1007/978-3-031-37709-9_1

https://doi.org/10.5281/zenodo.7877791
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_1

4 R. Majumdar et al.

implementation. In a series of papers [3,4,15,16], Mallik et al. showed that this
symbolic algorithm can be extended to solve different automated design ques-
tions for reactive hardware, software, and cyber-physical systems under fair or
stochastic uncertainties. The main contribution of their work is to show that
these extensions only require a very mild syntactic change of the Piterman-
Pnueli fixed-point algorithm (with very little effect on its overall complexity) and
domain-specific realizations of two types of predecessor operators used therein.

Using this insight, we present a toolchain for the efficient symbolic solution
of different extensions of Rabin games. We have created three inter-connected
libraries for solving different parts of the problem from different levels of abstrac-
tion. The first library, called Genie, offers a set of virtual classes to implement
the fixpoint algorithm—abstractly, leaving open (i.e. virtual) the predecessor
computation. Alongside, we created two other libraries, called FairSyn and
Mascot-SDS, where FairSyn solves fair-adversarial [4] and 21/2-player Rabin
games [3], while Mascot-SDS solves abstraction-based control problems [15,16].
FairSyn and Mascot-SDS use the optimized fixpoint computation provided by
Genie, with domain specific implementations of the predecessor operations.

The flexibility of our toolchain comes from two different programming
abstractions in Genie. Firstly, Genie offers multiple high-level optimizations for
solving the Rabin fixpoint, such as parallel execution (requires a thread-safe
BDD library like Sylvan) and an acceleration technique [13], while abstract-
ing away from the low-level implementations of the predecessor functions. As a
result, any synthesis problem using the core Rabin fixpoint of Genie can use
the optimizations without spending any extra implementation effort. We used
these optimizations from FairSyn and Mascot-SDS, and achieved remarkable
computational savings. Secondly, Genie offers easy portability of codes from one
BDD library to another, which is important as different BDD libraries have dif-
ferent pros and cons, and the choice of the best library depends on the needs.
We empirically showed how switching between the two BDD libraries Sylvan
and CUDD impacts the performance of FairSyn and CUDD: overall, the Sylvan-
based experiments were significantly faster, whereas the CUDD-based experiments
consumed considerably lower amount of memory. Using the combined power of
multi-threaded BDD operations using Sylvan and the optimizations offered by
Genie, Mascot-SDS was between one and three orders of magnitude faster than
the state-of-the-art tool in our experiments.

Comparison with Existing Tools: We are not aware of any available tool to
directly solve (normal or stochastic) Rabin games symbolically. However, it is well-
known how to translate stochastic Rabin games into (standard) Rabin games [5],
and Rabin games into parity games, for which efficient solvers exist, e.g. oink [9].
Yet, efficient solutions of stochastic Rabin games via parity games are difficult to
obtain, because: (i) the translation from a stochastic Rabin game to a Rabin game
involves a quadratic blow-up, and the translation from a Rabin game to a parity
game results in an exponential blow-up in the size of the game, (ii) symbolic fix-
point computations become cumbersome very fast for parity games, as the number
of vertices and/or colors in the game graph increases, leading to high computa-
tion times in practice, and (iii) the only known algorithms capable of handling fair

A Flexible Toolchain for Symbolic Rabin Games under Fair 5

and stochastic uncertainties efficiently are all symbolic in nature, while most of
the efficient parity game solvers are non-symbolic. Additionally, unlike the Rabin
fixpoint, the nesting of the parity fixpoint does not enable parallel execution.

While it is well known that for normal parity games, computational tractabil-
ity can be achieved by different non-symbolic algorithms, such as Zielonka’s
algorithm [22], tangle learning [8] or strategy-improvement [19], implemented in
oink [9], it is currently unclear if and how these algorithms allow for the efficient
handling of fair or stochastic uncertainties. We are therefore unable to compare
our toolchain to the translational workflow via parity games in a fair manner.

In the area of temporal logic control of stochastic systems, Mascot-SDS has
two powerful features: (a) it can handle synthesis for the rich class of omega-
regular (infinite-horizon) specifications, and (b) it provides both over- and under-
approximations of the solution, thus enabling a quantitative refinement loop
for improving the precision of the approximation. The features of Mascot-SDS
is compared with other tools in the stochastic category of the recent ARCH
competition (see the report [1] for the list of participating tools). As concluded in
the report of the competition, other state-of-the-art tools in stochastic category
are either limited to a fragment of ω-regular specifications or do not provide
any indication of the quality of the involved approximations. The only tool [10]
that supports ω-regular specifications uses a different alternate non-symbolic
approach, against which Mascot-SDS fares significantly well in our experiments
(see Sect. 4.2). Even if we leave stochasticity aside, our tool implements a new and
orthogonal heuristic for multi-threaded computation of Rabin fixpoints, which
is not considered by other controller synthesis tools [11].

2 Theoretical Background

We briefly state the synthesis problems our toolchain is solving. We follow the
same (standard) notation for two-player game graphs, winning regions, strategies
and μ-calculus formulas, as in [4].

2.1 Solving Rabin Games Symbolically

Given a game graph G = (V, V0, V1, E), a Rabin game is specified using a set
of Rabin pairs R = {(Q1, R1,) , . . . , (Qk, Rk)}, with Qi, Ri ⊆ V for every i ∈
[1; k], and ϕ :=

∨
i∈[1;k](♦�¬Ri ∧ �♦Qi) being the Rabin acceptance condition.

Piterman and Pnueli [17] showed that the winning region of a Rabin game can be
computed using the μ-calculus expression given in (2), where the set transformers
Cpre : 2V → 2V and Apre : 2V × 2V → 2V are defined for every S, T ⊆ V as:

Cpre(S) := {v ∈ V0 | ∃v′ ∈ S . (v, v′) ∈ E}
∪ {v ∈ V1 | ∀v′ ∈ V . (v, v′) ∈ E =⇒ v′ ∈ S} , (1a)

Apre(S, T) :=Cpre(T). (1b)

Fair-Adversarial Rabin Games. A Rabin game is called fair-adversarial
when there is an additional fairness assumption on a set of edges originating from

6 R. Majumdar et al.

The symbolic fixpoint algorithm for solving Rabin games with R =
{(Q1, R1), . . . , (Qk, Rk)} and K = [1; k]:

νYp0 .μXp0 .
⋃

p1∈K

νYp1 .μXp1 .
⋃

p2∈K\{p1}
νYp2 .μXp2

⋃

pk∈K\{p1,...,pk−1}
νYpk

.μXpk
.

⎡

⎣
k⋃

j=0

Cpj

⎤

⎦ , (2)

where
Cpj

:=
(⋂j

i=0 Rpi

)
∩ [(

Qpj ∩ Cpre(Ypj)
) ∪ (

Apre(Ypj , Xpj)
)]

,

and the definitions of Cpre and Apre are problem specific.

Player 1 vertices in G. Let E� ⊆ E∩(V1×V) be a given set of edges, called the live
edges. Given E� and a Rabin winning condition ϕ, we say that Player 0 wins the
fair-adversarial Rabin game from a vertex v if Player 0 wins the (normal) game
for the modified winning condition ϕ� :=

(∧
e=(v,v′)∈E�(�♦v =⇒ �♦e)

)
=⇒

ϕ. Based on the results of Banerjee et al. [4], fair-adversarial Rabin games can
be solved via (2), by defining for every S, T ⊆ V

Cpre(S) := {v ∈ V0 | ∃v′ ∈ S . (v, v′) ∈ E}
∪ {v ∈ V1 | ∀v′ ∈ V . (v, v′) ∈ E =⇒ v′ ∈ S} , (3a)

Apre(S, T) := Cpre(T) ∪ {
v ∈ Cpre(S) ∩ V1 | ∃v′ ∈ T . (v, v′) ∈ E�

}
. (3b)

We see that (3) coincides with (1) if E� is empty.
21/2-Player Rabin Games. A 21/2-player game is played on a game graph
(V, V0, V1, Vr, E), and the only difference from a 2-player game graph is the addi-
tional set of vertices Vr which are called the random vertices. The sets V1, V2,
and Vr partition V . Based on the results of [3] 21/2-Player rabin games can be
solved via (2) by defining for all S, T ⊆ V

Cpre(S) := {v ∈ V0 | ∃v′ ∈ S . (v, v′) ∈ E}
∪ {v ∈ V1 ∪ Vr | ∀v′ ∈ V . (v, v′) ∈ E ⇒ v′ ∈ S} , (4a)

Apre(S, T) := Cpre(T) ∪ {v ∈ Cpre(S) ∩ Vr | ∃v′ ∈ T . (v, v′) ∈ E} . (4b)

2.2 Computing Symbolic Controllers for Stochastic Dynamical
Systems

A discrete-time stochastic dynamical system S is represented using a tuple
(X,U,W, f), where X ⊆ R

n is a continuous state space, U is a finite set of
control inputs, W ⊂ R

n is a bounded set of disturbances, and f : X × U → X is
the nominal dynamics. If xk ∈ X and uk ∈ U are the state and control input of
S at some time k ∈ N, then the state at the next time step is given by:

xk+1 = f(xk, uk) + wk, (5)

where wk is the disturbance at time k which is sampled from W using some
(possibly unknown) distribution. Without loss of generality we assume that W

A Flexible Toolchain for Symbolic Rabin Games under Fair 7

is centered around the origin, which can be easily achieved by shifting f if needed.
A path of S originating at x0 ∈ X is an infinite sequence of states x0x1 . . . for a
given infinite sequence of control inputs u0u1 . . ., such that (5) is satisfied.

Let ϕ be a given Rabin specification—called the control objective—defined
using a finite set of predicates over X. For every controller C : X → U , the
domain of C, written Dom(C), is the set of states from where the property ϕ
can be satisfied with probability 1. For a fixed ϕ, a controller Ĉ is called optimal
if Dom(Ĉ) contains the domain of every other controller C. The problem of com-
puting such an optimal controller for the system in (5) is in general undecidable.
Following [15], we compute an approximate solution instead.

This approximate solution is obtained by a discretization of the state space.
For this, we assume that the state space X is a closed and bounded subset
of the n-dimensional Euclidean space R

n for some n > 0, and use the nota-
tion [[a, b)) to denote the set

∏
i∈[1;n][ai, bi). Now, consider a grid-based dis-

cretization X̂ of X, where X̂ = {[[a, b)) | a, b ∈ R
n = X}. One of the key ingre-

dients of our abstraction process is a function f̂ providing hyper-rectangular
over-approximation of the one-step reachable set of the nominal dynamics f
of the system S: for every grid element x̂ ∈ X̂, we have f̂(x̂, u) = [[a′, b′)) ⊇
{x′ ∈ X | ∃x ∈ x̂ . x′ = f(x, u)}. The function f̂ is known to be available for a
wide class of commonly used forms of the function f , and in our implementa-
tion we assumed that f is mixed-monotone and f̂ is the so-called decomposition
function (see standard literature for details [7]).

Given the over-approximation of the nominal dynamics obtained through
f̂ , we define, respectively, the over- and the under-approximation of the per-
turbed dynamics as g(x̂, u) := W ⊕ f̂(x̂, u) and g(x̂, u) := W � (−f̂(x̂, u)),
where ⊕ and � respectively denote the Minkowski sum and the Minkowski dif-
ference. Next, we transfer g and g to the abstract state space X̂ to obtain,
respectively, the over- and the under-approximation in terms of the abstract
transition function1, i.e., h(x̂, u) :=

{
x̂′ ∈ X̂ | g(x̂, u) ∩ x̂′ �= ∅

}
and h(x̂, u) :=

{
x̂′ ∈ X̂ | g(x̂, u) ∩ x̂′ �= ∅

}
. With h and h available, it was shown by Majumdar

et al. [16] that the over-approximation of the optimal controller can be solved by
using the fixpoint algorithm in (2), where the predecessor operators are defined
for every S, T ⊆ X̂ as

Cpre(S) :=
{

x̂ ∈ X̂ | ∃u ∈ U . h(x̂, u) ⊆ S
}

(6a)

Apre(S, T) :=
{

x̂ ∈ X̂ | ∃u ∈ U . h(x̂, u) ⊆ S ∧ h(x̂, u) ∩ T �= ∅
}

. (6b)

3 Implementation Details

We develop three interconnected tools, Genie, FairSyn, and Mascot-SDS, which
work in close harmony to implement efficient solvers for the solution of (2) with

1 Here we assume that f̂(x̂, u) ⊆ X; otherwise we need to take some extra steps.
Details can be found in the work by Majumdar et al. [16].

8 R. Majumdar et al.

Fig. 1. A schematic diagram of interaction among the three tools. Each block represents
one class in the respective tool, and an arrow from class A to class B denotes that B
depends on A. The dependency within each tool is shown using solid arrows, while the
dependencies of Mascot-SDS and FairSyn on Genie is shown using dashed arrows.

pre-operators defined via (3), (4) and (6), respectively. The tools use binary
decision diagrams (BDD) to symbolically manipulate sets of vertices/states of
the underlying system, and to manage the BDDs, we offer the flexibility to
choose between two of the well-known existing BDD libraries, namely CUDD
[20] and Sylvan [21]. The two libraries have their own merits: while CUDD
has significantly lower memory footprint, Sylvan offers superior computation
speed through multi-threaded BDD operations. Thus, the optimal choice of the
library depends on the size of the problem, the computational time limit, and
the memory budget, and through our implementation it is possible to choose
one or the other by, in some cases, changing only a single line of code and, in
the other cases, changing the value of just one flag. Moreover, we expect that
integrating other BDD libraries having the same basic BDD operations in our
tools will be easy and seamless—thanks to the programming abstraction offered
by Genie. Such extensions will possibly bring more diverse set of computational
strengths for solving the fundamental synthesis problems that we address.

The tools are primarily written using C++, with some small python scripts
implementing parts of visualizations of outputs. The main classes of the three
tools and their interactions are depicted in Fig. 1. We briefly describe the core
functionalities of the tools in the following.

3.1 Genie

Genie implements the fixpoint algorithm (2) in the class BaseFixpoint through
two layers of abstraction. One abstraction is through the virtual definitions of
the Cpre and Apre operators, whose concrete implementations are provided in
the front-end synthesis tools (in our case FairSyn and Mascot-SDS). Using this
abstraction, we implemented two different optimizations for the efficient itera-
tive computation of the Rabin fixpoint in (2)—independently from the actual
implementations of the Apre and Cpre operators. The first optimization is a

A Flexible Toolchain for Symbolic Rabin Games under Fair 9

multi-threaded computation of the Rabin fixpoint, exploiting the fixpoint’s inher-
ent parallel structure due to the independence among different sequences of
(p1, p2, . . .) used to compute

⋃k
j=0 Cpj

. The second optimization is an acceler-
ated computation of the Rabin fixpoint, achieved through bookkeeping of inter-
mediate values of the BDD variables. The core of the acceleration procedure for
general μ-calculus fixpoints was proposed by Long et al. [13], and the details
specific to the fixpoint in (2) can be found in the paper by Banerjee et al. [4].

The other abstraction in Genie is the set of virtually defined low-level BDD
operations in the auxiliary class BaseUBDD, which enable us to easily switch
between different off-the-shelf BDD libraries. The virtual BDD operations in
BaseUBDD are concretely realized in the classes CuddUBDD and SylvanUBDD,
which work as interfaces between, respectively, the CUDD and the Sylvan BDD
libraries. Support for additional BDD libraries can be easily built by creating
new interface classes. More details on the functionalities of Genie can be found
in the longer version of this paper [14].

3.2 FairSyn

The core of FairSyn is written as a header-only library, which offers the infras-
tructure to solve (2) with pre-operators defined via (3) and (4). The main
component of FairSyn is the class Fixpoint, which derives from the class
BaseFixpoint from Genie, and implements the concrete definitions of Cpre
and Apre in (3) and (4).

How to Use: For computing the winning region and the winning strategy in a
fair-adversarial Rabin game (resp. a 21/2-player Rabin game) using FairSyn, one
needs to write a program to create the game as a Fixpoint object. One possible
way of constructing a Fixpoint object is through a synchronous product of a
game graph (an object of class Arena) and a specification Rabin automaton (an
object of class RabinAutomaton) with an input alphabet of sets of nodes of the
Arena object. Following is a snippet:

// typedef Genie::CuddUBDD UBDD; // use this for CUDD
typedef Genie::SylvanUBDD UBDD; // use this for Sylvan
UBDD base;
...
Arena<UBDD> A(base, vars, nodes, sys_nodes, env_nodes, edges,

live_edges); // the game graph
RabinAutomaton<UBDD> R(base, vars, inp_alphabet, filename); // the

specification automaton
Fixpoint<UBDD> Fp(base, "under", A, R); // the synchronous product
// UBDD strategy = Fp.Rabin(true, 20, Fp.nodes_, 0); // sequential

fixpoint solver
UBDD strategy = Fp.Rabin(true, 20, Fp.nodes_, 0,

Genie::ParallelRabinRecurse); // parallel fixpoint solver
...

10 R. Majumdar et al.

where vars is a (possibly initially empty) set of integers which will contain the set
of newly created BDD variables, nodes, sys_nodes, and env_nodes are, respec-
tively, vectors of indices of various types of vertices, edges and live_edges
are, respectively, vectors of the respective types of edges, inp_alphabet is a
std::map object that maps input symbols of the Rabin automaton to the respec-
tive BDDs representing sets of nodes in the Arena, and filename is the name
of the file in which the Rabin automaton is stored (using the standard HOA
format [2]). The game is solved by calling Fp.Rabin, a member function of the
Genie::BaseFixpoint class (see Sect. 3.1).

3.3 Mascot-SDS

The core of Mascot-SDS is also written as a header-only library. It is built on
top of the well-known tool called SCOTS [18], with several classes of Mascot-SDS
still retaining their original identities from SCOTS, owing to the close similarity of
the basic uniform grid-based abstraction used in both tools. The main difference
between the two tools is that Mascot-SDS synthesizes controllers for stochastic
systems, while SCOTS synthesizes controllers for only non-stochastic systems.

The two main classes of Mascot-SDS are called SymbolicSet and
SymbolicModel, which respectively model the abstract spaces obtained through
uniform grid-based discretizations (like X̂ in Sect. 2.2) and the abstract transi-
tion relations (h and h in Sect. 2.2). The abstract transition relations are com-
puted using an auxiliary class called SymbolicModelMonotonic (not shown in
Fig. 1). Notice that we offer the flexibility to use both CUDD and Sylvan while
creating objects from SymbolicSet and SymbolicModel. A Fixpoint object is
a child of the class BaseFixpoint from Genie, which is created by taking a
synchronous product between a SymbolicModel object and a RabinAutomaton
object specifying the control objective given as user input. The class Fixpoint
implements the concrete definitions of the Cpre and Apre operator according
to (6).
How to Use: For ease of use, we have written a pair of tools called Synthesize
and Simulate using the library of Mascot-SDS. Synthesize synthesizes con-
trollers for stochastic dynamical systems whose nominal dynamics is mixed-
monotone, and Simulate visualizes simulated closed-loop trajectories using the
synthesized controller. The inputs to Synthesize include the dynamic model of
the system and the control objective; the latter can be specified either in LTL or
using a Rabin automaton. To use Synthesize, simply use the following syntax:

<path-to-Synthesize binary>/Synthesize <path-to-input-file>/<input.cfg>
<sylvan/cudd flag>

where the <input.cfg> is an input configuration file containing all the inputs,
and the <sylvan/cudd flag> is either 1 or 0 depending on whether the parallel
version using Sylvan is to be run or the sequential version using CUDD.

Some of the main ingredients in the input.cfg file are: (a) the descrip-
tion of the dynamical system’s variable spaces (like state space, input space,

A Flexible Toolchain for Symbolic Rabin Games under Fair 11

etc.) including their discretization parameters, (b) the file where the decompo-
sition function of the nominal dynamics of the system is stored, (c) the abso-
lute value of maximum disturbance, and (d) the specification either as an LTL
formula or as the filename where a Rabin automaton is stored (in HOA for-
mat [2]). The decomposition function is required to be given as a C-compatible
header file so that Synthesize can link to (use) this function at runtime (see
the mascot-sds/examples/ directory for examples). When the specification is
given as a Rabin automaton (over a labeling alphabet of the system states), the
automaton needs to be stored in a file in the HOA format. Alternatively, an LTL
specification can be given, along with a mapping between the atomic predicates
and the states of the system. In that case Synthesize uses Owl [12] to convert
the LTL specification to a Rabin automaton.

The output of Synthesize is a folder called data that contains pieces of the
controller encoded in BDDs and stored in binary files as well as various metadata
information stored in text files. These files can be processed by Simulate to
visualize simulated closed-loop trajectories of the system. The usage of Simulate
is similar to Synthesize:

<path-to-Simulate binary>/Simulate <path-to-input-file>/<input.cfg>
<sylvan/cudd flag>

where the input.cfg file should, in this case, contain information that are
required to simulate the closed-loop, like simulation time steps, the python script
that will plot the state space predicates (see the examples), etc.

4 Examples

We present experimental results, showcasing practical usability of our tools and
comparing performances with the state of the art. All the experiments were run
on a computer with Intel Xeon E7-8857 v2 48 core processor and 1.5 TB RAM.

4.1 Synthesizing Code-Aware Resource Mangers Using FairSyn

We consider a case study introduced by Chatterjee et al. [6]. In this exam-
ple, there are two bounded FIFO queues, namely the broadcast and output
queues, which interact among each other and transmit and receive data packets
through a common network. The two queues are implemented using separate
threads running on a single CPU. For this multi-threaded program, we con-
sider the problem of synthesizing a code-aware resource manager, whose task is
to grant different threads accesses to different shared synchronization resources
(mutexes and counting semaphores). The specification is deadlock freedom across
all threads at all time while assuming a fair scheduler (scheduling every thread
always eventually) and fair progress in every thread (i.e., taking every existing
execution branch always eventually). The resource-manager is code-aware, and
has knowledge about the require and release characteristics of all threads for
different resources. This enables us to avoid deadlocks more effectively than the

12 R. Majumdar et al.

case when the resource-manager does not have access to the code. Chatterjee
et al. [6] showed that the synthesis problem (of the resource manager) can be
reduced to the problem of computing the winning strategy in a 21/2-player game,
which we solved using FairSyn.

Table 1 compares the computational resources for the CUDD and Sylvan-based
implementations of FairSyn; more details can be found in our earlier work [4].
It can be observed that the Sylvan-based implementation is significantly faster,
although it consumes much more memory.

Table 1. Performance of FairSyn; code-aware resource management benchmark.

Broadcast Number Computation Time Peak Memory Usage
and Output of BDD (seconds)
Queue variables
Capacities

CUDD Sylvan CUDD Sylvan

(1, 1) 25 255.33 11.40 292 MiB 671MiB
(2, 1) 27 957.99 29.20 310 MiB 681MiB
(3, 1) 27 903.01 31.13 310 MiB 973MiB
(1, 2) 27 1308.09 39.57 315 MiB 682MiB
(1, 3) 27 1249.37 41.76 309 MiB 681MiB
(2, 2) 29 5127.93 111.62 342 MiB 685MiB
(3, 2) 29 5104.20 114.30 339 MiB 975MiB
(2, 3) 29 5644.09 118.12 341 MiB 975MiB
(3, 3) 29 6156.57 137.56 339 MiB 975MiB

4.2 Synthesizing Controllers for Stochastic Dynamical Systems
Using Mascot-SDS

We use Mascot-SDS to synthesize controllers for two different applications.

A Bistable Switch. First, we compare our tool’s performance against the state-
of-the-art tool called StochasticSynthesis (abbr. SS) [10] on a benchmark example
that was proposed by the authors of SS. In this example, there is a 2-dimensional
nonlinear bistable switch that is perturbed with bounded stochastic noise. There
are two synthesis problems with two different control objectives: one, a safety
objective, and, two, a Rabin objective with two Rabin pairs. The model of the
system and the control objectives can be found in the original paper [10].

The tool SS uses graph theoretic techniques to solve the controller synthesis
problem, which is an alternative approach that is substantially different from our
symbolic fixpoint based technique. In Table 2, we summarize the performance of
Mascot-SDS powered by CUDD and Sylvan, alongside the performance of SS. Both

A Flexible Toolchain for Symbolic Rabin Games under Fair 13

Table 2. Performance comparison between Mascot-SDS and StochasticSynthesis (abbre-
viated as SS) [10] on the bistable switch. Col. 1 shows the specifications and the respec-
tive numbers of Rabin pairs, Col. 2 shows the approximation error ranges (smaller error
means more intense computation), Col. 3, 4, and 5 Col. 6, 7, and 8 compare the peak
memory footprint (as measured using the “time” command) for Mascot-SDS with CUDD,
Mascot-SDS with Sylvan, and SS respectively. “TO” stands for timeout (5 h of cutoff
time).

Spec. upper bound on approx. error Total running time Peak memory footprint
Mascot-SDS SS [10] Mascot-SDS SS [10]
CUDD Sylvan CUDD Sylvan

ϕ1 (1 Rabin pair) 20%–30% 11 s <2 s 27 s 351MiB 79MiB 223MiB
10%–20% 9 s 2 s 43 s 351MiB 105MiB 290MiB
5%–10% 14 s 4 s 1 h 49min 405MiB 251MiB 25 GiB
0%–5% 48 s 10 s TO 553MiB 759MiB TO

ϕ2 (2 Rabin pairs) 20%–30% 21 s <2 s 21 s 324MiB 40MiB 202MiB
10%–20% 26 s 2 s 25 s 371MiB 80MiB 203MiB
5%–10% 37 s 4 s 1min 17 s 436MiB 242MiB 490MiB
0%–5% 2 min 24 s 13 s TO 573MiB 761MiB TO

Table 3. Performance of Mascot-SDS with CUDD
and Sylvan for the table-serving robot experi-
ment.

CUDD Sylvan
Comp. time 1 h 3 min 2min 55 s
Peak memory 673MiB 1.1GiB

Fig. 2. Closed-loop trajecto-
ries for 100 time steps with
kitchen (green), table (blue), and
obstacle (black). (Color figure
online)

Mascot-SDS and SS compute controllers whose domains under-approximate the
optimal controller domains. The second column of Table 2 shows a measure of
the approximation error. For every comparable approximation error bound, both
versions of Mascot-SDS significantly outperformed SS, both time and memory-
wise. In fact, Mascot-SDS with Sylvan was at least an order of magnitude faster
in all instances. This is particularly astonishing, since SS uses a sophisticated
lazy abstraction refinement technique, whereas Mascot-SDS uses a plain uni-
form abstraction which is typically computationally expensive. This shows the
immense potential of our toolchain; we plan to extend Mascot-SDS with lazy
gridding, an orthogonal optimization, in a future release to make further com-
putational savings. For Mascot-SDS itself, as expected, Sylvan was significantly
faster than CUDD. On the other hand, though Sylvan used less memory than
CUDD in the simpler setups (the ones with more error), the memory requirement
of Sylvan quickly grew and surpassed that of CUDD for the more complicated
setup.

14 R. Majumdar et al.

Table-Serving Robot. We consider the controller synthesis problem for a
table-serving robot that needs to satisfy the following specification: �♦kitchen∧
�¬obtsacle∧(�♦request ↔ �♦table), where table, kitchen, obstacle, and request
are predicates over the state space. The robot itself is modeled as the discrete-
time abstraction of the standard 3-dimensional Dubins vehicle [15] with an addi-
tional (i.e., 4th) dimension that records if a request , which is controlled by the
environment, is pending. In Table 3, we summarize the computational resources,
and, in Fig. 2, we show a simulated closed-loop trajectory that was plotted using
our tool Simulate. We observe that Sylvan was much faster, but CUDD consumed
much less memory.

References

1. Abate, A., et al.: ARCH-COMP21 category report: stochastic models. In: 8th Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems, pp.
55–89 (2021)

2. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4_31

3. Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.-K., Soudjani, S.: A direct
symbolic algorithm for solving stochastic Rabin games. In: TACAS 2022. LNCS,
vol. 13244, pp. 81–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99527-0_5

4. Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Fast symbolic
algorithms for omega-regular games under strong transition fairness. TheoretiCS
(to appear) (2023). arXiv preprint arXiv:2202.07480

5. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of stochastic Rabin
and Streett games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 878–890. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468_71

6. Chatterjee, K., De Alfaro, L., Faella, M., Majumdar, R., Raman, V.: Code aware
resource management. Formal Methods Syst. Des. 42(2), 146–174 (2013)

7. Coogan, S., Arcak, M.: Efficient finite abstraction of mixed monotone systems. In:
Proceedings of the 18th International Conference on Hybrid Systems: Computation
and Control, pp. 58–67 (2015)

8. Dijk, T.: Attracting tangles to solve parity games. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 198–215. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2_14

9. Dijk, T.: Oink: an implementation and evaluation of modern parity game solvers.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 291–308.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_16

10. Dutreix, M., Huh, J., Coogan, S.: Abstraction-based synthesis for stochastic sys-
tems with omega-regular objectives. Nonlinear Anal. Hybrid Syst 45, 101204
(2022)

11. Geretti, L., et al.: ARCH-COMP20 category report: continuous and hybrid systems
with nonlinear dynamics. In: Proceedings of the 7th International Workshop on
Applied Verification of Continuous and Hybrid Systems, pp. 49–75 (2020)

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-030-99527-0_5
https://doi.org/10.1007/978-3-030-99527-0_5
http://arxiv.org/abs/2202.07480
https://doi.org/10.1007/11523468_71
https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/978-3-319-89960-2_16

A Flexible Toolchain for Symbolic Rabin Games under Fair 15

12. Křetínský, J., Meggendorfer, T., Sickert, S.: Owl: a library for ω-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
543–550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_34

13. Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved algo-
rithm for the evaluation of fixpoint expressions. In: Dill, D.L. (ed.) CAV 1994.
LNCS, vol. 818, pp. 338–350. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58179-0_66

14. Majumdar, R., Mallik, K., Rychlicki, M., Schmuck, A.K., Soudjani, S.: A flexible
toolchain for symbolic Rabin games under fair and stochastic uncertainties (2023).
https://kmallik.github.io/assets/pdf/cav23-toolpaper.pdf

15. Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Symbolic qualitative con-
trol for stochastic systems via finite parity games. IFAC-PapersOnLine 54(5), 127–
132 (2021)

16. Majumdar, R., Mallik, K., Soudjani, S.: Symbolic controller synthesis for büchi
specifications on stochastic systems. In: Proceedings of the 23rd International Con-
ference on Hybrid Systems: Computation and Control, pp. 1–11 (2020)

17. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: 21st
Annual IEEE Symposium on Logic in Computer Science (LICS’06), pp. 275–284.
IEEE (2006)

18. Rungger, M., Zamani, M.: Scots: a tool for the synthesis of symbolic controllers. In:
Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control, pp. 99–104 (2016)

19. Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369–384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87531-
4_27

20. Somenzi, F.: Cudd: CU decision diagram package release 3.0.0 (2015). https://
github.com/ivmai/cudd

21. van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0_60

22. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1), 135–183 (1998). https://
doi.org/10.1016/S0304-3975(98)00009-7, https://www.sciencedirect.com/science/
article/pii/S0304397598000097

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/3-540-58179-0_66
https://doi.org/10.1007/3-540-58179-0_66
https://kmallik.github.io/assets/pdf/cav23-toolpaper.pdf
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-540-87531-4_27
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
https://doi.org/10.1007/978-3-662-46681-0_60
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://www.sciencedirect.com/science/article/pii/S0304397598000097
https://www.sciencedirect.com/science/article/pii/S0304397598000097
http://creativecommons.org/licenses/by/4.0/

Automated Tail Bound Analysis
for Probabilistic Recurrence Relations

Yican Sun1, Hongfei Fu2(B), Krishnendu Chatterjee3,
and Amir Kafshdar Goharshady4

1 School of Computer Science, Peking University, Beijing, China
sycpku@pku.edu.cn

2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

fuhf@cs.sjtu.edu.cn
3 Institute of Science and Technology, Klosterneuburg, Austria

krishnendu.chatterjee@ist.ac.at
4 Department of Computer Science and Engineering, Hong Kong University of

Science and Technology, Hong Kong, Hong Kong SAR, China
goharshady@cse.ust.hk

Abstract. Probabilistic recurrence relations (PRRs) are a standard for-
malism for describing the runtime of a randomized algorithm. Given a
PRR and a time limit κ, we consider the tail probability Pr[T ≥ κ], i.e.,
the probability that the randomized runtime T of the PRR exceeds κ.
Our focus is the formal analysis of tail bounds that aims at finding a
tight asymptotic upper bound u ≥ Pr[T ≥ κ]. To address this problem,
the classical and most well-known approach is the cookbook method by
Karp (JACM 1994), while other approaches are mostly limited to deriv-
ing tail bounds of specific PRRs via involved custom analysis.

In this work, we propose a novel approach for deriving the com-
mon exponentially-decreasing tail bounds for PRRs whose preprocess-
ing time and random passed sizes observe discrete or (piecewise) uni-
form distribution and whose recursive call is either a single procedure
call or a divide-and-conquer. We first establish a theoretical approach
via Markov’s inequality, and then instantiate the theoretical approach
with a template-based algorithmic approach via a refined treatment of
exponentiation. Experimental evaluation shows that our algorithmic app-
roach is capable of deriving tail bounds that are (i) asymptotically tighter
than Karp’s method, (ii) match the best-known manually-derived asymp-
totic tail bound for QuickSelect, and (iii) is only slightly worse (with a
log log n factor) than the manually-proven optimal asymptotic tail bound
for QuickSort. Moreover, our algorithmic approach handles all examples
(including realistic PRRs such as QuickSort, QuickSelect, DiameterCom-
putation, etc.) in less than 0.1 s, showing that our approach is efficient
in practice.

Due to different academic norms, authors in Mainland China are ordered by contribu-
tion, whereas authors in Austria and Hong Kong SAR are ordered alphabetically. The
code and benchmarks are available at https://github.com/boyvolcano/PRR.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 16–39, 2023.
https://doi.org/10.1007/978-3-031-37709-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_2&domain=pdf
https://github.com/boyvolcano/PRR
https://doi.org/10.1007/978-3-031-37709-9_2

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 17

1 Introduction

Probabilistic program verification is a fundamental area in formal verification [3].
It extends the classical (non-probabilistic) program verification by considering
randomized computation in a program and hence can be applied to the formal
analysis of probabilistic computations such as probabilistic models [14], ran-
domized algorithms [2,9,28,30], etc. In this line of research, verifying the time
complexity of probabilistic recurrence relations (PRRs) is an important sub-
ject [9,30]. PRRs are a simplified form of recursive probabilistic programs and
extend recurrence relations by incorporating randomization such as randomized
preprocessing and divide-and-conquer. They are widely used in analyzing the
time complexity of randomized algorithms (e.g., QuickSort [16], QuickSelect [17],
and DiameterComputation [26, Chapter 9]). Compared with probabilistic pro-
grams, PRRs abstract away detailed computational aspects, such as problem-
specific divide-and-conquer and data-structure manipulations, and include only
key information on the runtime of the underlying randomized algorithm. Hence,
PRRs provide a clean model for time-complexity analysis of randomized algo-
rithms and randomized computations in a general sense.

In this work, we focus on the formal analysis of PRRs and consider the
fundamental problem of tail bound analysis that aims at bounding the proba-
bility that a given PRR does not terminate within a prescribed time limit. In
the literature, prominent works on tail bound analysis include the following.
First, Karp proposed a classic “cookbook” formula [21] similar to Master The-
orem. This method is further improved, extended, and mechanized by follow-
up works [5,13,30]. While Karp’s method has a clean form and is easy to use
and automate, the bounds from the method are known to be not tight (see
e.g. [15,25]). Second, the works [25] and resp. [15] performed ad-hoc custom
analysis to derive asymptotically tight tail bounds for the PRRs of QuickSort
and resp. QuickSelect, respectively. These methods require manual effort and do
not have the generality to handle a wide class of PRRs.

From the literature, an algorithmic approach capable of deriving tight tail
bounds over a wide class of PRRs is a major unresolved problem. Motivated by
this challenge, we have the following contributions to this work:

– Based on Markov’s inequality, we propose a novel theoretical approach to
derive exponentially-decreasing tail bounds, a common type for many ran-
domized algorithms. We further show that our theoretical approach can
always derive an exponentially-decreasing tail bound at least as tight as
Karp’s method under mild assumptions.

– From our theoretical approach, we propose a template-based algorithmic app-
roach for a wide class of PRRs that have (i) common probability distributions
such as (piecewise) uniform distribution and discrete probability distributions
and (ii) either a single call or a divide-and-conquer for the form of the recur-
sive call. The technical novelties in our algorithm lie in a refined treatment
of the estimation of the exponential term arising from our theoretical app-
roach via integrals, suitable over-approximation, and the monotonicity of the
template function.

18 Y. Sun et al.

– Experiments show that our algorithmic approach derives asymptotically
tighter tail bounds when compared with Karp’s method. Furthermore, the tail
bounds derived from our approach match the best-known bound for QuickS-
elect [15], and are only slightly worse by a log log n factor against the optimal
manually-derived bound for QuickSort [25]. Moreover, our algorithm synthe-
sizes each of these tail bounds in less than 0.1 s and is efficient in practice.

A limitation of our approach is that we do not consider the transformation
from a realistic implementation of a randomized algorithm into its PRR repre-
sentation. However, such a transformation would require examining a diversified
number of randomization patterns (e.g., randomized divide-and-conquer) in ran-
domized algorithms and thus is an orthogonal direction. In this work, we focus
on the tail bound analysis and present a novel approach to address this problem.
Due to space limitations, we relegate some details in the extended version [29].

2 Preliminaries

Below we present necessary background in probability theory and the tail bound
analysis problem we consider.

A probability space is a triple (Ω,F ,Pr) such that Ω is a non-empty set termed
as the sample space, F is a σ-algebra over Ω (i.e., a collection of subsets of Ω
that contains the empty set ∅ and is closed under complement and countable
union), and Pr(·) is a probability measure on F (i.e., a function F → [0, 1] such
that Pr(Ω) = 1 and for every pairwise disjoint set-sequence A1, A2, . . . in F , we
have that

∑
i≥1 Pr(Ai) = Pr

(⋃
i≥1 Ai

)
.

A random variable X from a probability space (Ω,F ,Pr) is an F-measurable
function X : Ω → R, i.e., for every d ∈ R, we have that {ω ∈ Ω | X(ω) < d} ∈ F .
We denote E[X] as its expected value; formally, we have E[X] :=

∫
X dPr.

A discrete probability distribution (DPD) over a countable set U is a function
η : U → [0, 1], such that

∑
u∈U η(u) = 1. The support of the DPD is defined as

supp(η) := {u ∈ U | η(u) > 0}. We abbreviate finite-support DPD as FSDPD.
A filtration of probability space (Ω,F ,Pr) is an infinite sequence of {Fn}n≥0

of σ-algebra over Ω such that Fn ⊆ Fn+1 ⊆ F for every n ≥ 0. Intuitively, it
models the information at the n-th step. A discrete-time stochastic process is an
infinite sequence Γ = {Xn}n≥0 of random variables from the probability space
(Ω,F ,Pr). The process Γ is adapted to a filtration {Fn}n≥0 if for all n ≥ 0,
Xn is Fn-measurable. Given a filtration {Fn}n≥0, a stopping time is a random
variable τ : Ω → N, such that for every n ≥ 0, {ω ∈ Ω | τ(ω) ≤ n} ∈ Fn.

A discrete-time stochastic process Γ = {Xn}n∈N adapted to a filtration
{Fn}n∈N is a martingale (resp. supermartingale) if for every n ∈ N, E[|Xn|] < ∞
and it holds a.s. that E [Xn+1 | Fn] = Xn (resp. E [Xn+1 | Fn] ≤ Xn). Intu-
itively, a martingale (resp. supermartingale) is a discrete-time stochastic process
in which for an observer who has seen the values of X0, . . . , Xn, the expected
value at the next step, i.e. E [Xn+1 | Fn], is equal to (resp. no more than) the
last observed value Xn. Also, note that in a martingale, the observed values for

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 19

X0, . . . , Xn−1 do not matter given that E [Xn+1 | Fn] = Xn. In contrast, in a
supermartingale, the only requirement is that E [Xn+1 | Fn] ≤ Xn and hence
E [Xn+1 | Fn] may depend on X0, . . . , Xn−1. Also, note that Fn might contain
more information than just the observations of Xi’s.

Example 1. Consider the classical gambler’s ruin: a gambler starts with Y0 dol-
lars of money and bets continuously until he loses all of his money. If the bets are
unfair, i.e. the expected value of his money after a bet is less than its expected
value before the bet, then the sequence {Yn}n∈N0 is a supermartingale. In this
case, Yn is the gambler’s total money after n bets. On the other hand, if the bets
are fair, then {Yn}n∈N0 is a martingale. 	

We refer to standard textbooks (such as [6,34]) for a detailed treatment of all
the concepts illustrated above.

2.1 Probabilistic Recurrence Relations

In this work, we focus on probabilistic recurrence relations (PRRs) that describe
the runtime behaviour of a single recursive procedure. Instead of having a direct
syntax for a PRR, we propose a mini programming language LRec that cap-
tures a wide class of PRRs that have common probability distributions such
as (piecewise) uniform distributions and discrete probability distributions, and
whose recursive call consists of either a procedure call or two procedure calls in
a divide-and-conquer style. We present the grammar of LRec in Fig. 1.

Fig. 1. The Grammar of LRec

In the grammar, we have two positive-integer valued variables n, v which
stand for the input size and the sampled value in the randomization of the passed
size to the recursive calls of a procedure, respectively. We use b > 0, c, cp to denote
integer constants, and use p to denote the name of the single procedure in the
PRR. We consider arithmetic expressions expr as polynomials over v, v−1, ln v
and n, n−1, ln n (which we call pseudo-polynomials in this work) and common
probability distributions, including (i) the uniform distribution uniform(n) over
{0, 1, . . . , n−1}, (ii) the piecewise uniform distribution muniform(n) that returns
max{i, n− i−1} where i observes the uniform distribution uniform(n), and (iii)
any FSDPD (indicated by discrete) whose probabilities and values are constants
and pseudo-polynomials, respectively. We also support other piecewise uniform

20 Y. Sun et al.

distribution, e.g., the distribution that each v ∈ {0, . . . , n/2} has probability 2
3n

and each v ∈ {n/2 + 1, . . . , n − 1} has probability 4
3n .

The nonterminal proc generates the PRR in the form def p(n; cp) = {comm},
for which cp is an integer constant as the threshold of recursion, meaning that
the procedure halts immediately when n < cp, and comm is the function body
of the procedure. The nonterminal comm generates all statements with one of
the two forms as follows.

– A sampling statement (indicated by sample) followed by first a special expres-
sion pre(expr) that stands for the preprocessing time of expr amount, then
the recursive calls generated by the nonterminal call.

– A probabilistic choice in the form
⊕k

i=1 ci:commi where each statement
commi is executed with probability ci.

We restrict the recursive calls to be either a single recursive call p(v) or
p(size− v), or a divide-and-conquer composed of two consecutive recursive calls
p(v) and p(size − v), for which we consider a general setting that the relevant
overall size size is in the form of the input size n divided by some positive integer
b with possibly an offset c. Choosing b = 1, c = −1 means the normal situation
that the overall size is n − 1, i.e., removing one element from the original input.

Given a PRR p, we use func(p) to represent its function body.
We always assume that the given PRR is well-formed, i.e., every ci in a

probabilistic choice is within [0, 1] and every random passed size (e.g. v, size−v)
falls in [0, n]. Below, we present two examples for PRRs.

Example 2 (QuickSelect). Consider the problem of finding the d-th smallest
element in an unordered array of n distinct elements. A classical randomized
algorithm for solving this problem is QuickSelect [17] with O(n) expected run-
ning time. We model the algorithm as the following PRR:

def p(n; 2) = {sample v ← muniform(n) in {pre(n); invoke p(v); }}

Here, we use p(n; 2) to represent the number of comparisons performed by Quick-
Select over an input of size n, and v is the variable that captures the size of the
remaining array that has to be searched recursively. It observes as the value
max{i, n− 1− i} where the value of i is sampled uniformly from {0, . . . , n−1},
we use muniform(n) to represent this distribution. 	

Example 3 (QuickSort). Consider the classical problem of sorting an array of n
distinct elements. A well-known randomized algorithm for solving this problem
is QuickSort [16]. We model the algorithm as the following PRR.

def p(n; 2) = {sample v ← uniform(n) in {pre(n); invoke p(v); p(n − 1 − v); }}

Here, v and n − 1 − v capture the sizes of the two sub-arrays. 	

Below we present the semantics of a PRR in a nutshell. Consider a PRR

generated by LRec with the procedure name p, a configuration σ is a pair σ =

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 21

(comm, n̂) where comm represents the current statement to be executed and
n̂ ≥ cp is the current value for the variable n. A PRR state μ is a triple 〈σ,C,K〉
for which:

– σ is either a configuration, or halt for the termination of the whole PRR.
– C ≥ 0 records the cumulative preprocessing time so far.
– K is a stack of configurations that remain to be executed.

We use emp to denote an empty stack, and say that a PRR state 〈σ,C,K〉 is final
if K = emp and σ = halt. Note that in a final PRR state 〈halt, C, emp〉, the value
C represents the total execution runtime of the PRR. The semantics of the PRR
is defined as a discrete-time Markov chain whose state space is the set of all PRR
states and whose transition function P, where P(μ, μ′) is the probability that
the next PRR state is μ′ given the current PRR state is μ = ((comm, n̂), C,K).
The probability is determined by the following cases.

– For final PRR states μ, P(μ, μ) := 1 and P(μ, μ′) := 0 for other μ′
= μ. This
means that the PRR stays at termination once it terminates.

– In the divide-and-conquer case comm = sample v ← dist in {pre(e);
invoke p(v); p(s−v)}, we first sample v from the distribution dist. Then, with
probability dist(v), we accumulate the preprocessing time e into the cumula-
tive processing time C. We recursively invoke p(v) and push the remaining
task p(s − v) into the stack. The probability for the single recursion case is
defined analogously. The only difference is that there is no need to push some
recursive call into the stack in the single recursion case.

– In the case comm =
⊕k

i=1 ci : commi, we have that P(μ, μi) = ci for each
1 ≤ i ≤ k for which we have μi := ((commi, n̂), C,K).

With an initial PRR state ((func(p), n∗), 0, emp) where n∗ ≥ cp is the input
size, the Markov chain induces a probability space where the sample space is
the set of all infinite sequences of PRR states, the σ-algebra is generated by all
cylinder sets over infinite sequences of PRR states, and the probability measure
is uniquely determined by the transition function P. We refer to [3] for details.
We use Prn∗ for the probability measure where n∗ ≥ cp is the input size.

We further define the random variable τ such that for any infinite sequence
of PRR states ρ = μ0, μ1, . . . , μt, . . . with each μt = ((commt, n̂t), Ct,Kt),
τ(ρ) equals the first moment that the sequence reaches a final PRR state, i.e.,
τ(ρ) = inf{t | the PRR state μt is final}, for which inf ∅ = ∞. We will always
ensure that τ is almost-surely finite, i.e., Prn∗(τ < ∞) = 1). Note that the
random cumulative processing time Cτ in the PRR state μτ ∈ ρ is the total
execution time of the given PRR.

We formulate the tail bound analysis over PRRs as follows. Given a time
limit α · κ(n∗) symbolic in the initial input n∗ and the coefficient α, the goal of
tail bound analysis is to infer an upper bound u(α, n∗) symbolic in n∗ and α
such that for every input size n∗ and plausible value for α, we have that

Prn∗ [Cτ ≥ α · κ(n∗)] ≤ u(α, n∗). (1)

22 Y. Sun et al.

As tails bounds are often evaluated asymptotically, we focus on deriving tight
u(α, n∗) when α, n∗ are sufficiently large. To compare the magnitude of two tail
bounds, we follow the straightforward way that first treats α as a fixed constant
and compares the bounds over n∗, and then if the magnitude over n∗ is identical,
we take a further comparison over the magnitude on the coefficient α.

Example 4 (Our result on QuickSelect). Continue with Example 2, suppose the
user is interested in the tail bound Pr[Cτ ≥ α · n∗], where Cτ is the running
time of the QuickSelect algorithm over an array with length n∗. Then, Karp’s
method produces the symbolic tail bound as follows.

Pr[Cτ ≥ α · n∗] ≤ exp(1.15 − 0.28 · α)

However, our method can produce the following tail bound.

Pr[Cτ ≥ α · n∗] ≤ exp(2 · α − α · ln α)

Note that our method produces tail bounds with a better magnitude on α. 	

Example 5 (Our result on QuickSort). Continue with Example 3, consider the
tail bound Pr[Cτ ≥ α ·n∗ · ln n∗], where Cτ is the running time of QuickSort over
a length-n∗ array. Then, Karp’s method produces the symbolic tail bound as:

Pr[Cτ ≥ α · n∗ · ln n∗] ≤ exp(0.5 − 0.5 · α),

while our method can produce the bound as:

Pr[Cτ ≥ α · n∗ · ln n∗] ≤ exp((4 − α) · ln n∗)

Note that our method produces tail bounds with a better magnitude on n∗. 	

3 Exponential Tail Bounds via Markov’s Inequality

In this section, we demonstrate our theoretical approach for deriving exponen-
tially decreasing tail bounds based on Markov’s inequality.

Before illustrating our approach, we first translate a PRR in the language
LRec with the single procedure p into the canonical form as follows.

p(n; cp) = pre(S(n)); invoke p(size1(n)); . . . ; p(sizer(n)) (2)

where (i) S(n) is a random variable related to the input size n that represents the
randomized pre-processing time and observes a probability distribution result-
ing from a discrete probability choice of piecewise uniform distributions, and (ii)
invoke p(size1(n)); . . . ; p(sizer(n)) is a statement that is either a single recursive
call p(size1(n)) or a divide-and-conquer p(size1(n)); p(size2(n)) upon the resolu-
tion of the randomization. For the latter, we use a random variable r (which is
either 1 or 2) to represent the number of recursive calls.

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 23

The translation can be implemented by a straightforward recursive procedure
Tf(n, Prog) that takes on input a positive integer n (as the input size) and a
statement Prog (generated by the nonterminal comm) to be processed, Note that
the procedure Tf(n, Prog) outputs the joint distribution of the random value
S(n) and the recursive call p(size1(n)); . . . ; p(sizer(n)) with randomized input
size. These random variables may be dependent.

Our theoretical approach then works directly on the canonical form (2). It
consists of two major steps to derive an exponentially-decreasing tail bound. In
the first step, we apply Markov’s inequality and reduce the tail bound analysis
problem to the over-approximation of the moment generating function E[exp(t ·
Cτ)] where Cτ is the cumulative pre-processing time defined previously and t > 0
is a scaling factor that aids the derivation of the tail bound. In the second step,
we apply Optional Stopping Theorem (a classical theorem in martingale theory)
to over-approximate the expected value E[exp(t ·Cτ)]. Below we fix an PRR with
procedure p in the canonical form (2), and a time limit α · κ(n∗).

Our first step applies Markov’s inequality. Our approach relies on the well-
known exponential form of Markov’s inequality below.

Theorem 1. For every random variable X and any scaling factor t > 0, we
have that Pr[X ≥ d] ≤ E[exp(t · X)]/ exp(t · d).

The detailed application of Markov’s inequality to tail bound analysis
requires to choose a scaling factor t := t(α, n) symbolic in α and n. After choos-
ing the scaling factor, Markov’s inequality gives the following tail bound:

Pr[Cτ ≥ α · κ(n∗)] ≤ E[exp(t(α, n∗) · Cτ)]/ exp(t(α, n∗) · α · κ(n∗)). (3)

The role of the scaling factor t(α, n∗) is to scale the exponent in the term
exp(κ(α, n∗)), and this is in many cases necessary as a tail bound may not be
exponentially decreasing directly in the time limit α · κ(n∗).

An unsolved part in the tail bound above is the estimation of the expected
value E[exp(t(α, n∗)·Cτ)]. Our second step over-approximates the expected value
E[exp(t(α, n∗) · Cτ)]. To achieve this goal, we impose a constraint on the scaling
factor t(α, n) and an extra function f(α, n) and show that once the constraint
is fulfilled, then one can derive an upper bound for E[exp(t(α, n∗) · Cτ)] from
t(α, n) and f(α, n). The theorem is proved via Optional Stopping Theorem.
The theorem requires the almost-sure termination of the given PRR, a natural
prerequisite of exponential tail bound. In this work, we consider PRRs with finite
termination time that implies the almost-sure termination.

Theorem 2. Suppose we have functions t, f : [0,∞) × N → [0,∞) such that

E[exp(t(α, n) · Ex(n | f))] ≤ exp(t(α, n) · f(α, n)) (4)

for all sufficiently large α, n∗ > 0 and all cp ≤ n ≤ n∗, where

Ex(n | f) := S(n) +
∑r

i=1 f(α, sizei(n)).

24 Y. Sun et al.

Then for t∗(α, n∗) := mincp≤n≤n∗ t(α, n), we have that

E[exp(t∗(α, n∗) · Cτ)] ≤ E[exp(t∗(α, n∗) · f(α, n∗))].

Thus, we obtain the upper bound u(α, n∗) := exp(t∗(α, n∗) ·(f(α, n∗)−α ·κ(n∗)))
for the tail bound in (1).

Proof Sketch. We fix a procedure p, and some sufficiently large α and n∗. In
general, we apply the martingale theory to prove this theorem. To construct a
martingale, we need to make two preparations.

First, by the convexity of exp(·), substituting t(α, n) with t∗(α, n∗) in (4)
does not affect the validity of (4).

Second, given an infinite sequence of the PRR states ρ = μ0, μ1, . . . in the
sample space, we consider the subsequence ρ′ = μ′

0, μ
′
1, . . . as follows, where we

represent μ′
i as ((func(p), n̂′

i), C
′
i,K

′
i). It only contains states that are either final

or at the entry of p, i.e., comm = func(p). We define τ ′ := inf{t : μ′
t is final}, then

it is straightforward that C ′
τ ′ = Cτ . We observe that μ′

i+1 represents the recursive
calls of μ′

i. Thus, we can characterize the conditional distribution μ′
i+1 | μi by

the transformation function Tf(n̂, func(p)) as follows.

– We first draw (S, size1, size2, r) from Tf(n̂′
i, func(p)).

– We accumulate S into the global cost. If there is a single recursion (r = 1),
we invoke this sub-procedure. If there are two recursive calls, we push the
second call p(size2) into the stack and invoke the first one p(size1).

Now we construct the super-martingale as follows. For each i ≥ 0, we denote
the stack as K′

i for μ′
i as (func(p), si,1) · · · (func(p), si,qi), where qi is the stack

size. We prove that another process y0, y1, . . . that forms a super-martingale,
where yi := exp

(
t∗(α, n∗) ·

(
C ′

i + f(α, n̂′
i) +

∑qi
j=1 f(α, si,j)

))
. Note that y0 =

exp(t∗(α, n∗) · f(α, n∗)), and yτ ′ = exp(t∗(α, n∗) · C ′
τ ′) = exp (t∗(α, n∗) · Cτ).

Thus we informally have that E [exp (t∗(α, n∗) · Cτ)] = E [yτ ′] ≤ E[y0] =
exp (t∗(α, n∗) · f(α, n∗)) and the theorem follows. 	

It is natural to ask whether our theoretical approach can always find an
exponential-decreasing tail bound over PRRs. We answer this question by show-
ing that under a difference boundedness and a monotone condition, the answer
is yes. We first present the difference boundedness condition (A1) and the mono-
tone condition (A2) for a PRR Δ in the canonical form (2) as follows.

(A1) Δ is difference-bounded if there exist two real constants M ′ ≤ M , such that
for every n ≥ cp, and every possible value (V, s1, . . . , sk) in the support of the
probability distribution Tf(n, func(p)), we have that

M ′ · E[S(n)] ≤ V + (
k∑

i=1

E[p(si)]) − E[p(n)] ≤ M · E[S(n)].

(A2) Δ is expected non-decreasing if E[S(n)] does not decrease as n increases.

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 25

In other words, (A1) says that for any possible concrete pre-processing time V
and passed sizes s1, . . . , sk, the difference between the expected runtime before
and after the recursive call is bounded by the magnitude of the expected pre-
processing time. (A2) simply specifies that the expected pre-processing time be
monotonically non-decreasing.

With the conditions (A1) and (A2), our theoretical approach guarantees a
tail bound that is exponentially decreasing in the coefficient α and the ratio
E[p(n∗)]/E[S(n∗)]. The theorem statement is as follows.

Theorem 3. Let Δ be a PRR in the canonical form (2). If Δ satisfies (A1) and
(A2), then for any function w : [1,∞) → (1,∞), the functions f, t given by

f(α, n) := w(α) · E[p(n)] and t(α, n) :=
λ(α)

E[S(n)]

with λ(α) :=
8(w(α) − 1)

w(α)2(M2 − M1)2

fulfill the constraint (4) in Theorem 2. Furthermore, by choosing w(α) := 2α
1+α in

the functions f, t above and κ(α, n∗) := α · E[p(n∗)], one obtains the tail bound

Pr[Cτ ≥ αE[p(n∗)]] ≤ exp
(

− 2(α − 1)2

α(M2 − M1)2
· E[p(n∗)]
E[S(n∗)]

)

.

Proof Sketch. We first rephrase the constraint (4) as

E

[
exp

(
t(α, n) · (S(n) +

∑r

i=1
f(α, sizei(n)) − f(α, n))

)]
≤ 1

Then we focus on the exponent in the exp(·), by (A1), the exponent is a bounded
random variable. By further calculating its expectation and applying Hoeffiding’s
Lemma [18], we obtain the theorem above. 	

Note that since E[p(n)] ≥ E[S(n)] when n ≥ cp, the tail bound is at least
exponentially-decreasing with respect to the coefficient α. This implies that our
theoretical approach derives tail bounds that are at least as tight as Karp’s
method when (A1) and (A2) holds. When E[p(n)] is of a strictly greater magni-
tude than E[S(n)], our approach derives asymptotically tighter bounds.

Below, we apply the theorem above to prove tail bounds for Quickse-
lect (Example 2) and Quicksort (Example 3).

Example 6. For QuickSelect, its canonical form is p(n; 2) = n+p(size1(n)), where
size1(n) observes as muniform(n). Solving the recurrence relation, we obtain that
E[p(n)] = 4 · n. We further find that this PRR satisfies (A1) with two constants
M ′ = −1,M = 1. Note that the PRR satisfies (A2) obviously. Hence, we apply
Theorem 3 and derive the tail bound for every sufficiently large α:

Pr[Cτ ≥ 4 · α · n∗] ≤ exp
(

−2(α − 1)2

α

)

.

26 Y. Sun et al.

On the other hand, Karp’s cookbook has the tail bound

Pr[Cτ ≥ 4 · α · n∗] ≤ exp (1.15 − 1.12 · α) .

Our bound is asymptotically the same as Karp’s but has a better coefficient. 	

Example 7. For QuickSort, its canonical form is p(n; 2) = n + p(size1(n)) +
p(size2(n)), where size1(n) observes as muniform(n) and size2(n)=n−1−size1(n).
Similar to the example above, we first calculate E[p(n)] = 2 · n · ln n. Note
that this PRR also satisfies two assumptions above with two constants M ′ =
−2 log 2,M = 1. Hence, for every sufficiently large α, we can derive the tail
bound as follows:

Pr[Cτ ≥ 2 · α · n∗ · ln n∗] ≤ exp
(

−0.7(α − 1)2

α
· ln n∗

)

.

On the other hand, Karp’s cookbook has the tail bound

Pr[Cτ ≥ 2 · α · n∗ · ln n∗] ≤ exp (−α + 0.5) .

Note that our tail bound is tighter than Karp’s with a ln n factor. 	

From the generality of Markov’s inequality, our theoretical approach can

handle to general PRRs with three or more sub-procedure calls. However, the tail
bounds derived from Theorem 3 is still not tight since the theorem only uses the
expectation and bound of the given distribution. For example, for QuickSelect,
the tightest known bound exp(−Θ(α · ln α)) [15], is tighter than that derived
from Theorem 3. Below, we present an algorithmic approach that fully utilizes
the distribution information and derives tight tail bounds that can match [15].

4 An Algorithmic Approach

In this section, we demonstrate an algorithmic implementation for our theoretical
approach (Theorem 2). Our algorithm synthesizes the functions t, f through
template and a refined estimation on the exponential terms from the inequality
(4). The estimation is via integration and the monotonicity of the template.
Below we fix a PRR p(n; cp) in the canonical form (2) and a time limit α ·κ(n∗).

Recall that to apply Theorem 2, one needs to find functions t, f that sat-
isfy the constraint (4). Thus, the first step of our algorithm is to have pseudo-
monomial template for f(α, n) and t(α, n) in the following form:

f(α, n) := cf · αpf · lnqf α · nuf · lnvf n (5)
t(α, n) := ct · αpt · lnqt α · nut · lnvt n (6)

In the template, we have pf , qf , uf , vf , pt, qt, ut, vt are given integers, and
cf , ct > 0 are unknown positive coefficients to be solved. For several compatibility
reasons (see Proposition 1 and 2 in the following), we require that uf , vf ≥ 0 and

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 27

ut, vt ≤ 0. We say that the concrete values cf , ct for the unknown coefficients
cf , ct > 0 are valid if the concrete functions f, t obtained by substituting cf , ct for
cf , ct in the template (5) and (6) satisfy the constraint (4) for every sufficiently
large α, n∗ ≥ 0 and all cp ≤ n ≤ n∗.

We consider the pseudo-polynomial template since the runtime behavior
of randomized algorithms can be mostly captured by pseudo-polynomials. We
choose monomial templates since our interest is the asymptotic magnitude of
the tail bound. Thus, only the monomial with the highest degrees matter.

Our algorithm searches the values for pf , qf , uf , vf , pt, qt, ut, vt by an enu-
meration within a bounded range {−B, . . . , B}, where B is a manually specified
positive integer. To avoid exhaustive enumeration, we use the following propo-
sition to prune the search space.

Proposition 1. Suppose that we have functions t, f : [0,∞) × N → [0,∞) that
fulfill the constraint (4). Then it holds that (i)

(pf , qf) ≤ (1, 0) and (pt, qt) ≥ (−1, 0), and (ii)
f(α, n) = Ω(E[p(n)]), f(α, n) = O(κ(n)) and t(α, n) = Ω(κ(n)−1) for any

fixed α > 0, where we write (a, b) ≤ (c, d) for the lexicographic order, i.e.,
(a ≤ c) ∧ (a = c → b ≤ d).

Proof. Except for the constraint that f(α, n) = Ω(E[p(n)]), the other con-
straints simply ensure that the tail bound is exponentially-decreasing. To see
why f(α, n) = Ω(E[p(n)]), we apply Jensen’s inequality [27] to (4) and obtain
f(n) ≥ E[Ex(n|f)] = E[S(n) +

∑r
i=1 f(sizei(n))]. Then we imitate the proof of

Theorem 2 and derive that f(n) ≥ E[p(n)]. 	

Proposition 1 shows that it suffices to consider (i) the choice of uf , vf that

makes the magnitude of f to be within E[p(n)] and κ(n), (ii) the choice of
ut, vt that makes the magnitude of t−1 within κ(n), and (iii) the choice of
pf , qf , pt, qt that fulfills (pf , qf) ≤ (1, 0), (pt, qt) ≥ (−1, 0). Note that an over-
approximation of E[p(n)] can be either obtained manually or derived from auto-
mated approaches [9].

Example 8. Consider the quickselect example (Example 2), suppose we are inter-
ested in the tail bound Pr[Cτ ≥ α ·n], and we enumerate the eight integers in the
template from −1 to 1. Since E[p(n)] = 4 · n, by the proposition above, we must
have that (uf , vf) = (1, 0), (ut, vt) ≥ (−1, 0), (pt, qt) ≥ (−1, 0), (pf , qf) ≤ (1, 0).
This reduces the number of choices for the template from 1296 to 128, where
these numbers are automatically generated by our implementation. A choice is
f(α, n) := cf · α · (ln α)−1 · n and t(α, n) := ct · ln α · n−1. 	

In the second step, our algorithm solves the unknown coefficients ct, cf in
the template. Once they are solved, our algorithm applies Theorem 2 to obtain
the tail bound. In detail, our algorithm computes t∗(α, n∗) as the minimum of
t(α, n) over cp ≤ n ≤ n∗, and by ut, vt ≤ 0, t∗(α, n∗) is simply t(α, n∗), so that
we obtain the tail bound u(α, n∗) = exp(t(α, n∗) · (f(α, n∗) − α · κ(n∗))).

Example 9. Continue with Example 8. Suppose we have successfully found that
cf = 2, ct = 1 is a valid concrete choice for the unknown coefficients in the

28 Y. Sun et al.

template. Then t∗(α, n∗) is t(α, n∗) = lnα · (n∗)−1, and we have the tail bound
u(α, n∗) = exp(2 · α − α · ln α), which has better magnitude than the tail bound
by Karp’s method and our Theorem 3 (See Example 6). 	

Our algorithm follows the guess-and-check paradigm. The guess procedure
explores possible values cf , ct for cf , ct and invokes the check procedure to verify
whether the current choice is valid. Below we present the guess procedure in
Sect. 4.1, and the check procedure in Sect. 4.2.

4.1 The Guess Procedure Guess(f, t)

The pseudocode for our guess procedure Guess(f, t) is given in Algorithm 1. In
detail, it first receives a positive integer M as the doubling and halving number
(Line 1), then iteratively enumerates possible values for the unknown coefficients
cf and ct by doubling and halving for M times (Line 3 – Line 4), and finally
calls the check procedure (Line 5). It is justified by the following theorem.

Theorem 4. Given the template for f(α, n) and t(α, n) as in (5) and (6), if
cf , ct are valid choices, then (i) for every k > 1, k · cf , ct remains to be valid,
and (ii) for every 0 < k < 1, cf , k · ct remains to be valid.

Algorithm 1: Guess Procedure
Input : Template for f(α, n) and

t(α, n) as in (5) and (6)
Output: cf , ct > 0 for (5) and (6)

1 Parameter: M for the maximum steps
of doubling and halving.

2 Procedure Guess(f, t):
3 for ct := 1, 2−1, . . . , 2−M do
4 for cf := 1

2 , 1, 2, . . . , 2M−1 do
5 if CheckCond(cf , ct) then
6 Return (cf , ct)

By Theorem 4, if the check pro-
cedure is sound and complete (i.e.,
CheckCond always terminates and
cf , ct fulfills the constraint (4) iff
CheckCond(cf , ct) returns true), then
the guess procedure guarantees to find
a solution cf , ct (if it exists) when the
parameter M is large enough.

Example 10. Continued with Example 8, suppose M = 2, we enumerate cf

from { 1
2 , 1, 2}, and ct from {1, 1

2 , 1
4}. We try every possible combination, and we

find that CheckCond(2, 1) returns true. Thus, we return (2, 1) as the result. In
Sect. 4.2, we will show how to conclude that CheckCond(2, 1) is true. 	

4.2 The Check Procedure CheckCond(cf , ct)

The check procedure takes as input the concrete values cf , ct for the unknown
coefficients in the template, and outputs whether they are valid. It is the most
involved part in our algorithm due to the difficulty to tackle the validity of the
constraint (4) that involves the composition of polynomials, exponentiation and
logarithms. The existence of a sound and complete decision procedure for such
validity is extremely difficult and is a long-standing open problem [1,33].

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 29

To circumvent this difficulty, the check procedure first strengthens the orig-
inal constraint (4) into a canonical constraint with a specific form, so that a
decision algorithm that is sound and complete up to any additive error applies.
Below we fix a PRR with procedure p in the canonical form (2). We also discuss
possible extensions for the check procedure in Remark 1.

The Canonical Constraint. We first present the canonical constraint Q(α, n)
and how to decide the canonical constraint. The constraint is given by (where
∀∞ means “for all sufficiently large α” or formally ∃α0.∀α ≥ α0)

Q(α, n) := ∀∞α.∀n ≥ cp.

[
k∑

i=1

γi · exp(fi(α) + gi(n)) ≤ 1

]
(7)

subject to:

(C1) For each 1 ≤ i ≤ k, we have γi > 0 is a positive constant, fi(α) is a
pseudo-polynomial in α, and gi(n) is a pseudo-polynomial in n.

(C2) For each 1 ≤ i ≤ k, the exponents for n and ln n in gi(n) are non-negative.

We use QL(α, n) to represent the summation term
∑k

i=1 γi · exp(fi(α) + gi(n))
in (7). Below we show that this can be checked by the algorithm Decide up to
any additive error. We present an overview of this algorithm. We also present
its pseudo-code in Algorithm 2.

The algorithm Decide requires an external function NegativeLB(P (n)) that
takes on input a pseudo-polynomial P (n) and outputs an integer T ∗

n such that
P (n) ≤ 0 for every n ≥ T ∗

n , or output +∞ for the absence of T ∗
n . The idea of this

function is to apply the monotonicity of pseudo-polynomials. With the function
NegativeLB(P (n)), the algorithm Decide consists of two steps as follows.

First, we can change the bound of n from [cp,∞) into [cp, Tn], where Tn is
a constant, without affecting the soundness and completeness. This is achieved
by the observation that either: (i) we can conclude Q(α, n) does not hold, or (ii)
there is an integer Tn such that QL(α, n) is non-increasing when n ≥ Tn. Hence,
it suffices only to consider cp ≤ n ≤ Tn. Below we show how to compute Tn by
case analysis of the limit Mi of gi(n) as n → ∞, for each 1 ≤ i ≤ k.

– If Mi =+∞, then exp(gi(n) + fi(α)) could be arbitrarily large when n → ∞.
As a result, we can conclude that Q(α, n) does not hold.

– Otherwise, by (C2), either gi(n) is a constant function, or Mi =−∞. In both
cases, gi(n) is non-increasing for every sufficiently large n. More precisely,
there exists Li such that g′

i(n) ≤ 0 for every n ≥ Li, where g′
i(n) is the

derivative of gi(n). Moreover, we can invoke NegativeLB(g′
i(n)) to get Li.

Finally, we set Tn as the maximum of Li’s and cp.
Second, for every integer cp ≤ n ≤ Tn, we substitute n with n to eliminate

n in Q(α, n). Then, each exponent fi(α) + gi(n) becomes a pseudo-polynomial
solely over α. Since we only concern sufficiently large α, we can compute the
limit Rn for QL(α, n) as α → ∞. We decide based on the limit Rn as follows.

30 Y. Sun et al.

– If Rn < 1 for every cp ≤n≤L, we conclude that Q(α, n) holds.
– If Rn ≥ 1 for some cp ≤ n ≤ L, we conclude that Q(α, n) does not hold to

ensure soundness.

Algorithm 2: The Decision procedure for canonical constraints
Input : A canonical constraint Q(α, n) in the form of (7)
Output: Decide whether Q(α, n) holds.

1 Procedure Decide(Q(α, n)):
2 Tn := cp; // � The first step
3 for i := 1, 2, . . . , k do
4 Mi := The limit of gi(n) as n → ∞.
5 if Mi = +∞ then
6 Return False
7 else
8 g′

i(n) := the derivative of gi(n)

9 Tn := max{Tn,NegativeLB(g′
i(n))}

10 for n := cp, . . . , Tn do // � The second step
11 R := 0
12 for i := 1, 2, . . . , k do
13 Δ := the limit of fi(α) + gi(n) as α → ∞.
14 if Δ = +∞ then
15 Return False
16 else
17 R := R + γi · exp(Δ)
18 if R ≥ 1 then Return False
19 Return True

Algorithm Decide is sound, and complete up to any additive error, as is
illustrated by the following theorem.

Theorem 5. Algorithm Decide has the following properties:

– (Completeness) If Q(α, n) does not hold for infinitely many α and some n ≥
cp, then the algorithm returns false.

– (Soundness) For every ε > 0, we have that if QL(α, n) ≤ 1 − ε for all suffi-
ciently large α and all n ≥ cp, then the algorithm returns true.

The Strengthening Procedure. Then we show how to strengthen the con-
straint (4) into the canonical constraint (7), so that Algorithm Decide applies.
We rephrase (4) as

E

[
exp(t(α, n) ·

(
S(n) +

∑r

i=1
f(α, sizei(n)) − f(α, n)

)]
≤ 1 (8)

and consider two functions f, t obtained by substituting the concrete values cf , ct

for unknown coefficients into the template (5) and (6). We observe that the joint-
distribution of the random quantities S(n), r ∈ {1, 2} and size1(n), . . . , sizer(n)
in the canonical form (2) over PRRs can be described by several probabilistic
branches {c1 : B1, . . . , ck : Bk}, which corresponds to the probabilistic choice
commands in the PRR. Each probabilistic branch Bi has a constant probability
ci, a deterministic pre-processing time Si(n), a fixed number of subprocedure

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 31

calls ri, and a probability distribution for the variable v. The strengthening first
handles each probabilistic branch, and then combines the strengthening results
of every branch into a single canonical constraint.

The strengthening of each branch is an application of a set of rewriting rules.
Intuitively, each rewriting step over-approximates and simplifies the expectation
term in the LHS of (8). Through multiple steps of rewriting, we eventually obtain
the final canonical constraint. Below we present the details of the strengthening
for a single probabilistic branch with the single recursion case. The divide-and-
conquer case follows a similar treatment, see the extended version for details.

Consider the single recursion case r = 1 where a probabilistic branch has
deterministic pre-processing time S(n), distribution dist for the variable v and
passed size H(v, n) for the recursive call. We have a case analysis on the distri-
bution dist as follows.

— Case I : dist is a FSDPD discrete{c′
1 : expr1, . . . , c′

k : exprk}, where v observes
as expri with probability c′

i. Then the expectation in (8) is exactly:

∑k

i=1
c′
i · exp (t(α, n) · S(n) + t(α, n) · f(α,H(expri, n)) − t(α, n) · f(α, n))

Thus it suffices to over-approximate the exponent Xi(α, n) := t(α, n) · S(n) +
t(α, n) ·f(α,H(expri, n))− t(α, n) ·f(n) into the form subject to (C1)–(C2). For
this purpose, our strengthening repeatedly applies the following rewriting rules
(R1)–(R4) for which 0 < a < 1 and b > 0:

(R1) f(α, H(expri, n)) ≤ f(α, n)

(R2) ln(an − b) ≤ lnn + ln a ln(an + b) ≤ lnn + ln(min{1, a +
b

cp
})

(R3) 0 ≤ n−1 ≤ c−1
p 0 ≤ ln−1 n ≤ ln−1 cp (R4) �n

b
� ≤ n

b
�n

b
	 ≤ n

b
+

b − 1

b

(R1) follows from the well-formedness 0 ≤ H(sizei, n) ≤ n and the monotonicity
of f(α, n) with respect to n. (R2)–(R4) are straightforward. Intuitively, (R1) can
be used to cancel the term f(α,H(sizei, n)) − f(α, n), (R2) simplifies the sub-
expression in ln, (R3) is used to remove floors and ceils, and (R4) to remove n−c

and ln−c n to satisfy the restriction (C2) of the canonical constraint. To apply
these rules, we consider two strategies below.

(S1-D) Apply (R1) and over-approximate Xi(α, n) as t(α, n) · S(n). Then, we
repeatedly apply (R3) to remove terms n−c and ln−c n.

(S2-D) Substitute f and t with the concrete functions f, t and expand
H(expri, n). Then we first apply (R4) to remove all floors and ceils, and
repeatedly apply (R2) to replace all occurrences of ln(an+b) with ln n+lnC
for some constant C. By the previous replacement, the whole term Xi(α, n)
will be over-approximated as a pseudo-polynomial over α and n. Finally, we
eagerly apply (R3) to remove all terms n−c and ln−c n.

32 Y. Sun et al.

Our algorithm first tries to apply (S2-D), if it fails to derive a canonical con-
straint, then we apply the alternative (S1-D) to the original constraint. If both
the strategies fails, we report failure and exit the check procedure.

Example 11. Suppose v observes as {0.5 : n − 1, 0.5 : n − 2}, S(n) :=
ln n, t(α, n) := lnα

lnn , f(α, n) := 4 · α
lnα · n · ln n,H(v, n) := v. We consider

applying both strategies to the first term expr1 := n − 1 and X1(α, n) :=
t(α, n) ·(S(n)+f(α, n−1)−f(α, n)). If we apply (S1-D) to X1, it will be approx-
imated as exp(ln α). If we apply (S2-D) to X1, it will be first over-approximated
as lnα

lnn · (ln n + 4 · α
lnα · v · ln n − 4 · α

lnα · n · ln n), then we substitute v = n − 1
and derive the final result exp(ln α − 4 · α). Hence, both the strategies succeed.

	

— Case II : dist is uniform(n) or muniform(n). Note that H(v, n) is linear with
respect to v, thus H(v, n) is a bijection over v for every fixed n. Hence, if v
observes as uniform(n), then

E[exp(t(α, n) · f(α, H(v, n)))] ≤ 1

n

∑n−1

v=0
exp(t(α, n) · f(α, v)) (9)

If v observes as muniform(n), a similar inequality holds by replacing 1
n with 2

n .
Since f(α, v) is a non-decreasing function with respect to v, we further over-
approximate the summation in (9) by the integral

∫ n

0
exp(t(α, n) · f(α, v))dv.

Example 12. Continue with Example 10, we need to check
t(α, n) = lnα

n and f(α, n) = 2·α
lnα · n. By the inequality (9), we expand the

constraint (8) into 2
n · exp(lnα − 2 · α) · ∑n−1

v=0 exp(2·α·i
n). By integration, it is

further over-approximated as 2
n · exp(ln α − 2 · α) · ∫ n

0
exp(2·α·v

n)dv. 	

Note that we still need to resolve the integration of an exponential function
whose exponent is a pseudo-monomial over α, n, v. Below we denote by dv the
degree on the variable v and by �v the degree of ln v. We first list the situations
where the integral can be computed exactly.

– If (dv, �v) = (1, 0), then the exponent could be expressed as W (α, n) ·v,where
W (α, n) is a pseudo-monomial over α and n. We can compute the integral as
exp(n·W (α,n))−1

W (α,n) and over-approximate it as exp(n·W (α,n))
W (α,n) by removing −1 in

the numerator.
– If (dv, �v) = (0, 1), then the exponent is of the form W (α, n) · ln v. We follow

a similar procedure with the case above and obtain the over-approximation
n·exp(lnn·W (α,n))

W (α,n) .
– If (dv, �v) = (0, 0), then the result is trivially n · exp(W (α, n)).

Then we handle the situation where the exact computation of the integral is
infeasible. In this situation, the strengthening further over-approximates the
integral into simpler forms by first replacing ln v with lnn, and then replac-
ing v with n to reduce the degrees �v and dv. Eventually, the exponent in the

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 33

integral bows down to one of the three situations (where the integral can be
computed exactly) above, and the strengthening returns the exact value of the
integral.

Example 13. Continue with Example 12. We express the exponent as 2·α
n · v.

Thus, we can plug 2·α
n into W (α, n) and obtain the integration result exp(2·α)

2·α/n .

Furthermore, we can simplify the formula in Example 12 as exp(lnα)
α . 	

In the end, we move the term 1
n (or 2

n) that comes from the uniform (or
muniform) distribution and the coefficient term W (α, n) into the exponent. If
we move these terms directly, it may produce ln lnn and ln lnα that comes from
taking the logarithm of ln n and ln α. Hence, we first apply ln cp ≤ ln n ≤ n and
1 ≤ ln α ≤ α to remove all terms ln n and ln α outside the exponent (e.g., lnα

lnn
is over-approximated as α

ln cp
). After the over-approximation, the terms outside

the exponentiation form a polynomial over α and n, we can trivially move these
terms into the exponent by taking the logarithm. Finally, we apply (R4) in Case
I to remove n−c and ln−c n. If we fail to obtain the canonical constraint, the
strengthening reports failure.

Example 14. Continue with Example 13, we move the term α into the expo-
nentiation and simplify the over-approximation result as exp(ln α − ln α) = 1.
As a result, we over-approximate the LHS of (8) as 1 and we conclude that
CheckCond(2, 1) holds. 	

The details of the divide-and-conquer case are similar and omitted. Further-
more, we present how to combine the strengthening results for different branches
into a single canonical constraint. Suppose for every probabilistic branch Bi,
we have successfully obtained the canonical constraint QL,i(α, n) ≤ 1 as the
strengthening of the original constraint (8). Then, the canonical constraint for
the whole distribution is

∑k
i=1 ci · QL,i(α, n) ≤ 1. Intuitively, there is probabil-

ity ci for the branch Bi, thus the combination follows by simply expanding the
expectation term.

A natural question is to ask whether our algorithm can always succeed to
obtain the canonical constraint. We have the proposition as follows.

Proposition 2. If the template for t has a lower magnitude than S(n)−1 for
every branch, then the rewriting always succeeds.

Proof. We first consider the single recursion case. When dist is FSDPD, we can
apply (S1-D) to over-approximate the exponent as t(α, n) · S(n). Since t(α, n)
has a lower magnitude than S(n)−1, by further applying (R3) to eliminate
n−c and ln−c n, we obtain the canonical constraint. If dist is uniform(n) or
muniform(n) , we observe that the over-approximation result for the integral is

34 Y. Sun et al.

either exp(f(α,n))
f(α,n)·t(α,n) (when dv > 0) or lnn·exp(f(α,n))

f(α,n)·t(α,n) (when dv = 0). Thus, we can
cancel the term f(α, n) in the exponent and obtain the canonical constraint by
the subsequent steps. The proof is the same for the divide-and-conquer case. 	

By Proposition 2, we restrict ut, vt ≤ 0 in the template to ensure our algorithm
never fails.

Remark 1. Our algorithm can be extended to support piecewise uniform distri-
butions (e.g. each of 0, . . . , n/2 with probability 2

3n and each of n/2+1, . . . , n−1
with probability 4

3n) by handling each piece separately.

5 Experimental Results

In this section, we evaluated our algorithm over classical randomized algorithms
such as QuickSort (Example 3), QuickSelect (Example 2), DiameterComputa-
tion [26, Chapter 9], RandomizedSearch [24, Chapter 9], ChannelConflictResolu-
tion [22, Chapter 13], examples such as Rdwalk and Rdadder in the literature [7],
and four manually-crafted examples (MC1 – MC4). For each example, we man-
ually compute its expected running time for the prunning.

Fig. 2. Plot for QuickSelect

We implemented our algorithm in C++.
We choose B = 2 (as the bounded range for
the template), M = 4 (in the guess proce-
dure), Q = 8 (for the number of parts in
the integral), and prune the search space by
Theorem 1. All results were obtained on an
Ubuntu 18.04 machine with an 8-Core Intel
i7-7900x Processor (4.30GHz) and 40 GB of
RAM.

We report the tail bound derived by
our algorithm in Table 1, where “Benchmark”
lists the benchmarks, “α·κ(n∗)” lists the time
limit of interest, “Our bound” lists the tail bound by our approach, “Time(s)” lists
the runtime (in seconds) of our approach, and “Karp’s bound” lists the bounds by
Karp’s method. From the table, our algorithm constantly derives asymtotically
tighter tail bounds than Karp’s method. Moreover, all these bounds are obtained
in a few seconds, demonstrating the efficiency of our algorithm. Furthermore, our
algorithm obtains bounds with tighter magnitude than our completeness theo-
rem (Theorem 3) in 9 benchmarks, and bounds with the same magnitude as the
others.

For an intuitive comparison, we also report the concrete bounds and their
plots of our method and Karp’s method. We choose three concrete choices of α
and n∗ and plot the concrete bounds over 10 ≤ α ≤ 15, n∗ = 17. For concrete
bounds, we also report the ratio Karp’s Bound

Our Bound to show the strength of our method.
Due to space limitations, we only report the results for QuickSelect (Example 2)
in Table 2 and Fig. 2.

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 35

Table 1. Experimental Result

Benchmark α · κ(n∗) in (1) Our bound Time(s) Karp’s bound

QuickSelect α · n∗ exp(2 · α − α · ln α) 0.03 exp(1.15 − 0.28 · α)

QuickSort α · n∗ · ln n∗ exp((4 − α) · ln n∗) 0.02 exp(0.5 − 0.5 · α)

L1Diameter α · n∗ exp(α − α · ln α) 0.03 exp(1.39 − 0.69 · α)

L2Diameter α · n∗ · ln n∗ exp(α − α · ln α) 0.03 exp(1.39 − 0.69 · α)

RandSearch α · ln n∗ exp((2 · α − α · ln α) · ln n∗) 0.03 exp(−0.29 · α · ln n∗)

Channel α · n∗ exp((8 − α) · n∗) 0.05 exp(1 − 0.37 · α)

Rdwalk α · n∗ exp((0.5 − α) · n∗) 0.05 exp(0.60 − 0.41 · α)

Rdadder α · n∗ exp((4 − 0.5 · α) · n∗) 0.04 Not applicable

MC1 α · ln n∗ exp((α − α · ln α) · ln n∗) 0.03 exp(−0.69 · α · ln n∗)

MC2 α · ln2 n∗ exp((α − α · ln α) · ln n∗) 0.03 exp(−0.69 · α · ln n∗)

MC3 α · n∗ · ln2 n∗ exp(α − α · ln α) 0.03 exp(1.15 − 0.28 · α)

MC4 α · n∗ exp(2 · α − α · ln α) 0.04 Not applicable

Table 2. Concrete Bounds for QuickSelect

Concrete choice Our bound Karp’s Bound Ratio

α = 10; n∗ = 13 0.0485 0.192 3.96

α = 11; n∗ = 15 0.0126 0.145 11.6

α = 12; n∗ = 17 0.00297 0.110 36.9

6 Related Work

Karp’s Cookbook. Our approach is orthogonal to Karp’s cookbook method [21]
since we base our approach on Markov’s inequality, and the core of Karp’s
method is a dedicated proof for establishing that an intricate tail bound function
is a prefixed point of the higher order operator derived from the given PRR. Fur-
thermore, our automated approach can derive asymptotically tighter tail bounds
than Karp’s method over all 12 PRRs in our benchmark. Our approach could
also handle randomized preprocessing times, which is beyond the reach of Karp’s
method. Since Karp’s proof of prefixed point is ad-hoc, it is non-trivial to extend
his method to handle the randomized cost. Nevertheless, there are PRRs (e.g.,
Coupon-Collector) that can be handled by Karp’s method but not by ours. Thus,
our approach provides a novel way to obtain asymptotically tighter tail bounds
than Karp’s method.

The recent work [30] extends Karp’s method for deriving tail bounds for
parallel randomized algorithms. This method derives the same tail bounds as
Karp’s method over PRRs with a single recursive call (such as QuickSelect) and
cannot handle randomized pre-processing time. Compared with this approach,
our approach derives tail bounds with tighter magnitude on 11/12 benchmarks.

Custom Analysis. Custom analysis of PRRs [15,25] has successfully derived
tight tail bounds for QuickSelect and QuickSort. Compared with the custom
analysis that requires ad-hoc proofs, our approach is automated, has the gen-
erality from Markov’s inequality, and is capable of deriving bounds identical or
very close to the tail bounds from the custom analysis.

36 Y. Sun et al.

Probabilistic Programs. There are also relevant approaches in probabilistic
program verification. These approaches are either based on martingale con-
centration inequalities (for exponentially-decreasing tail bounds) [7,10–12,19],
Markov’s inequality (for polynomially-decreasing tail bounds) [8,23,31], fixed-
point synthesis [32], or weakest precondition reasoning [4,20]. Compared with
these approaches, our approach is dedicated to PRRs (a light-weight representa-
tion of recursive probabilistic programs) and involves specific treatment of com-
mon recursive patterns (such as randomized pivoting and divide-and-conquer) in
randomized algorithms, while these approaches usually do not consider common
recursion patterns in randomized algorithms. Below we have detailed technical
comparisons with these approaches.

– Compared with the approaches based on martingale concentration inequali-
ties [7,10–12,19], our approach has the same root as them, since martingale
concentration inequalities are often proved via Markov’s inequality. However,
those approaches have more accuracy loss since these martingale concentra-
tion inequalities usually make further relaxations after applying Markov’s
inequality. In contrast, our automated approach directly handles the con-
straint after applying Markov’s inequality by having a refined treatment of
exponentiation and hence has better accuracy in deriving tail bounds.

– Compared with the approaches [8,23,31] that derive polynomially-decreasing
tail bounds, our approach targets the sharper exponentially-decreasing tail
bounds and hence is orthogonal.

– Compared with the fixed-point synthesis approach [32], our approach is
orthogonal as it is based on Markov’s inequality. Note that the approach [32]
can only handle 3/12 benchmarks.

– Compared with weakest precondition reasoning [4,20] that requires first spec-
ifying the bound functions and then verifying the bound functions by proof
rules related to fixed-point conditions, mainly with manual efforts, our app-
roach can be automated and is based on Markov’s inequality rather than
fixed point theorems. Although Karp’s method is also based on a particular
tail bound function as a prefixed point and can thus be embedded into the
weakest precondition framework, Karp’s proof of prefixed point requires deep
insight, which is beyond existing proof rules. Moreover, even a slight relax-
ation of the tail bound function into a simpler form in Karp’s method no
longer keeps the bound function to be a prefixed point. Hence, the approach
of the weakest precondition may not be suitable for deriving tail bounds.

Acknowledgement. We thank Prof. Bican Xia for valuable information on the expo-
nential theory of reals. The work is partially supported by the National Natural Science
Foundation of China (NSFC) with Grant No. 62172271, ERC CoG 863818 (ForM-
SMArt), the Hong Kong Research Grants Council ECS Project Number 26208122, the
HKUST-Kaisa Joint Research Institute Project Grant HKJRI3A-055 and the HKUST
Startup Grant R9272.

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 37

References

1. Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-exponential
problems. In: Sendra, J.R., González-Vega, L. (eds.) Symbolic and Algebraic Com-
putation, International Symposium, ISSAC 2008, Linz/Hagenberg, Austria, July
20–23, 2008, Proceedings, pp. 215–222. ACM (2008). https://doi.org/10.1145/
1390768.1390799

2. Aguirre, A., Barthe, G., Hsu, J., Kaminski, B.L., Katoen, J.P., Matheja, C.: A
pre-expectation calculus for probabilistic sensitivity. Proc. ACM Program. Lang.
5(POPL) (2021). https://doi.org/10.1145/3434333

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C., Verscht, L.: A calculus for
amortized expected runtimes. Proc. ACM Program. Lang. 7(POPL), 1957–1986
(2023). https://doi.org/10.1145/3571260

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

6. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)
7. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-

gales. In: CAV, pp. 511–526 (2013)
8. Chatterjee, K., Fu, H.: Termination of nondeterministic recursive probabilistic pro-

grams. CoRR abs/1701.02944 (2017)
9. Chatterjee, K., Fu, H., Murhekar, A.: Automated recurrence analysis for almost-

linear expected-runtime bounds. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 118–139. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9_6

10. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
TOPLAS 40(2), 7:1-7:45 (2018)

11. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Sound and com-
plete certificates for quantitative termination analysis of probabilistic programs.
In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13371, pp. 55–78. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-13185-1_4

12. Chatterjee, K., Novotný, P., Žikelić, -D.: Stochastic invariants for probabilistic ter-
mination. In: POPL 2017, pp. 145–160 (2017)

13. Chaudhuri, S., Dubhashi, D.P.: Probabilistic recurrence relations revisited. Theo-
ret. Comput. Sci. 181(1), 45–56 (1997)

14. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: UAI 2008, pp. 220–229. AUAI Press
(2008)

15. Grübel, R.: Hoare’s selection algorithm: a Markov chain approach. Journal of
Applied Probability 35(1), 36–45 (1998). http://www.jstor.org/stable/3215544

16. Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4(7), 321 (1961)
17. Hoare, C.A.R.: Algorithm 65: find. Commun. ACM 4(7), 321–322 (1961)
18. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.

Am. Stat. Assoc. 58(301), 13–30 (1963)
19. Huang, M., Fu, H., Chatterjee, K.: New approaches for almost-sure termination of

probabilistic programs. In: APLAS, pp. 181–201 (2018)

https://doi.org/10.1145/1390768.1390799
https://doi.org/10.1145/1390768.1390799
https://doi.org/10.1145/3434333
https://doi.org/10.1145/3571260
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-63387-9_6
https://doi.org/10.1007/978-3-319-63387-9_6
https://doi.org/10.1007/978-3-031-13185-1_4
http://www.jstor.org/stable/3215544

38 Y. Sun et al.

20. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1-30:68
(2018). https://doi.org/10.1145/3208102

21. Karp, R.M.: Probabilistic recurrence relations. J. ACM 41(6), 1136–1150 (1994)
22. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley (2006)
23. Kura, S., Urabe, N., Hasuo, I.: Tail probabilities for randomized program runtimes

via martingales for higher moments. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11428, pp. 135–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17465-1_8

24. McConnell, J.J. (ed.): The Analysis of Algorithms: An Active Learning Approach.
Jones & Bartlett Learning (2001)

25. McDiarmid, C., Hayward, R.: Large deviations for quicksort. J. Algorithms 21(3),
476–507 (1996)

26. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

27. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Inc, USA (1987)
28. Smith, C., Hsu, J., Albarghouthi, A.: Trace abstraction modulo probability. Proc.

ACM Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290352
29. Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Automated tail bound analy-

sis for probabilistic recurrence relations. CoRR (2023). http://arxiv.org/abs/2305.
15104

30. Tassarotti, J., Harper, R.: Verified tail bounds for randomized programs. In: ITP,
pp. 560–578 (2018)

31. Wang, D., Hoffmann, J., Reps, T.W.: Central moment analysis for cost accumula-
tors in probabilistic programs. In: Freund, S.N., Yahav, E. (eds.) PLDI 2021: 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20–25, 2021, pp. 559–573. ACM
(2021). https://doi.org/10.1145/3453483.3454062

32. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative analysis
of assertion violations in probabilistic programs. In: Freund, S.N., Yahav, E. (eds.)
PLDI, pp. 1171–1186. ACM (2021)

33. Wilkie, A.J.: Schanuel’s conjecture and the decidability of the real exponential
field. In: Hart, B.T., Lachlan, A.H., Valeriote, M.A. (eds.) Algebraic Model Theory.
NATO ASI Series, vol. 496 pp. 223–230. Springer, Dordrecht (1997). https://doi.
org/10.1007/978-94-015-8923-9_11

34. Williams, D.: Probability with Martingales. Cambridge University Press, Cam-
bridge (1991)

https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1145/3290352
http://arxiv.org/abs/2305.15104
http://arxiv.org/abs/2305.15104
https://doi.org/10.1145/3453483.3454062
https://doi.org/10.1007/978-94-015-8923-9_11
https://doi.org/10.1007/978-94-015-8923-9_11

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 39

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Compositional Probabilistic Model
Checking with String Diagrams of MDPs

Kazuki Watanabe1,2(B) , Clovis Eberhart1,3

, Kazuyuki Asada4 , and Ichiro Hasuo1,2

1 National Institute of Informatics, Tokyo, Japan
{kazukiwatanabe,eberhart,hasuo}@nii.ac.jp

2 The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
3 Japanese-French Laboratory of Informatics, 3527 CNRS, Tokyo, Japan

4 Tohoku University, Sendai, Japan
kazuyuki.asada.b6@tohoku.ac.jp

Abstract. We present a compositional model checking algorithm for
Markov decision processes, in which they are composed in the categori-
cal graphical language of string diagrams. The algorithm computes opti-
mal expected rewards. Our theoretical development of the algorithm is
supported by category theory, while what we call decomposition equali-
ties for expected rewards act as a key enabler. Experimental evaluation
demonstrates its performance advantages.

Keywords: model checking · compositionality · Markov decision
process · category theory · monoidal category · string diagram

1 Introduction

Probabilistic model checking is a topic that attracts both theoretical and practical
interest. On the practical side, probabilistic system models can naturally accom-
modate uncertainties inherent in many real-world systems; moreover, proba-
bilistic model checking can give quantitative answers, enabling more fine-grained
assessment than qualitative verification. Model checking of Markov decision pro-
cesses (MDPs)—the target problem of this paper—has additional practical val-
ues since it not only verifies a specification but also synthesizes an optimal control
strategy. On the theoretical side, it is notable that probabilistic model check-
ing has a number of efficient algorithms, despite the challenge that the problem
involves continuous quantities (namely probabilities). See e.g. [1].

However, even those efficient algorithms can struggle when a model is enor-
mous. Models can easily become enormous—the so-called state-space explosion

The authors are supported by ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), JST. K.W. is supported by the JST grant No.
JPMJFS2136.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 40–61, 2023.
https://doi.org/10.1007/978-3-031-37709-9_3

https://doi.org/10.6084/m9.figshare.22722151.v4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_3&domain=pdf
http://orcid.org/0000-0002-4167-3370
http://orcid.org/0000-0003-3009-6747
http://orcid.org/0000-0001-8782-2119
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-37709-9_3

Compositional Probabilistic Model Checking with String Diagrams of MDPs 41

problem—due to the growing complexity of modern verification targets. Models
that exceed the memory size of a machine for verification are common.

Among possible countermeasures to state-space explosion, one with both
mathematical blessings and a proven track record is compositionality. It takes as
input a model with a compositional structure—where smaller component models
are combined, sometimes with many layers—and processes the model in a divide-
and-conquer manner. In particular, when there is repetition among components,
compositional methods can exploit the repetition and reuse intermediate results,
leading to a clear performance advantage.

Focusing our attention to MDP model checking, there have been many com-
positional methods proposed for various settings. One example is [14]: it stud-
ies probabilistic automata (they are only slightly different from MDPs) and in
particular their parallel composition; the proposed method is a compositional
framework, in an assume-guarantee style, based on multi-objective probabilis-
tic model checking. Here, contracts among parallel components are not always
automatically obtained. Another example is [11], where the so-called hierarchical
model checking method for MDPs is introduced. It deals with sequential compo-
sition rather than parallel composition; assuming what can be called parametric
homogeneity of components—they must be of the same shape while parame-
ter values may vary—they present a model-checking algorithm that computes a
guaranteed interval for the optimal expected reward.

In this work, inspired by these works and technically building on another
recent work of ours [20], we present another compositional MDP model check-
ing algorithm. We compose MDPs in string diagrams—a graphical language of
category theory [15, Chap. XI] that has found applications in computer sci-
ence [3,8,17]—that are more sequential than parallel. Our algorithm computes
the optimal expected reward, unlike [11].

One key ingredient of the algorithm is the identification of compositional-
ity as the preservation of algebraic structures; more specifically, we identify a
compositional solution as a “homomorphisms” of suitable monoidal categories.
This identification guided us in our development, explicating requirements of a
desired compositional semantic domain (Sect. 2).

Another key ingredient is a couple of decomposition equalities for reachabil-
ity probabilities, extended to expected rewards (Sect. 3). Those for reachability
probabilities are well-known—one of them is Girard’s execution formula [7] in
linear logic—but our extension to expected rewards seems new.

The last two key ingredients are combined in Sect. 4 to formulate a composi-
tional solution. Here we benefit from general categorical constructions, namely
the Int construction [10] and change of base [5,6].

We implemented the algorithm (it is called CompMDP) and present its exper-
imental evaluation. Using the benchmarks inspired by real-world problems, we
show that 1) CompMDP can solve huge models in realistic time (e.g. 108 posi-
tions, in 6–130 s); 2) compositionality does boost performance (in some ablation
experiments); and 3) the choice of the degree of compositionality is important.
The last is enabled in CompMDP by the operator we call freeze.

42 K. Watanabe et al.

Fig. 1. String diagrams of MDPs, an example (the Patrol benchmark in Sect. 5).

Fig. 2. Sequential composition ;, sum ⊕, and loops of MDPs, illustrated.

Compositional Description of MDPs by String Diagrams. The calculus
we use for composing MDPs is that of string diagrams. Figure 1 shows an example
used in experiments. String diagrams offer two basic composition operations,
sequential composition ; and sum ⊕, illustrated in Fig. 2. The rearrangement of
wires in A ⊕ B is for bundling up wires of the same direction. It is not essential.

We note that loops in MDPs can be described using these algebraic opera-
tions, as shown in Fig. 2. We extend MDPs with open ends so that they allow
such composition; they are called open MDPs.

The formalism of string diagrams originates from category theory, specifically
from the theory of monoidal categories (see e.g. [15, Chap. XI]). Capturing the
mathematical essence of the algebraic structure of arrow composition ◦ and ten-
sor product ⊗—they correspond to ; and ⊕ in this work, respectively—monoidal
categories and string diagrams have found their application in a wide variety of

Compositional Probabilistic Model Checking with String Diagrams of MDPs 43

scientific disciplines, such as quantum field theory [12], quantum mechanics and
computation [8], linguistics [17], signal flow diagrams [3], and so on.

Our reason for using string diagrams to compose MDPs is twofold. Firstly,
string diagrams offer a rich metatheory—developed over the years together with
its various applications—that we can readily exploit. Specifically, the theory cov-
ers functors, which are (structure-preserving) homomorphisms between monoidal
categories. We introduce a solution functor S : oMDP → S from a category
oMDP of open MDPs to a semantic category S that consists of solutions. We
show that the functor S preserves two composition operations, that is,

S(A ; B) = S(A) ; S(B), S(A ⊕ B) = S(A) ⊕ S(B), (1)

where ; and ⊕ on the right-hand sides are semantic composition operations on
S. The equalities (1) are nothing but compositionality : the solution of the whole
(on the left) is computed from the solutions of its parts (on the right).

The second reason for using string diagrams is that they offer an expressive lan-
guage for composing MDPs—one that enables an efficient description of a number
of realistic system models—as we demonstrate with benchmarks in Sect. 5.

Granularity of Semantics: A Challenge Towards Compositionality Now
the main technical challenge is the design of a semantic domain S (it is a category
in our framework). We shall call it the challenge of granularity of semantics; it
is encountered generally when one aims at compositional solutions.

– The coarsest candidate for S is the original semantic domain; it consists of
solutions and nothing else. This coarsest candidate is not enough most of the
time: when components are composed, they may interact with each other via
a richer interface than mere solutions. (Consider a team of two people. Its
performance is usually not the sum of each member’s, since there are other
affecting factors such as work style, personal character, etc.)

– Therefore one would need to use a finer-grained semantic domain as S, which,
however, comes with a computational cost: in (1), one will have to carry
around bigger data as intermediate solutions S(A) and S(B); their semantic
composition will become more costly, too.

Therefore, in choosing S, one should find the smallest enrichment1 of the original
semantic domain that addresses all relevant interactions between components
and thus enables compositional solutions. This is a theoretical challenge.

In this work, following our recent work [20] that pursued a compositional
solution of parity games, we use category theory as guidance in tackling the
above challenge. Our goal is to obtain a solution functor S : oMDP → S that
preserves suitable algebraic structures (see (1)); the specific notion of algebra of
our interest is that of compact closed categories (compCC).

– The category oMDP organizes open MDPs as a category. It is a compCC,
and its algebraic operations are defined as in Fig. 2.

1 Enrichment here is in the natural language sense; it has nothing to do with the
technical notion of enriched category.

44 K. Watanabe et al.

– For the solution functor S to be compositional, the semantic category S must
itself be a compCC, that is, S has to be enriched so that the compCC opera-
tions (; and ⊕) are well-defined.

– Once such a semantic domain S is obtained, choosing S and showing that it
preserves the algebraic operations are straightforward.

Specifically, we find that S must be enriched with reachability probabilities, in
addition to the desired solutions (namely expected rewards), to be a compCC.
This enrichment is based on the decomposition equalities we observe in Sect. 3.

After all, our semantic category S is as follows: 1) an object is a pair of natural
numbers describing an interface (how many entrances and exits); 2) an arrow is
a collection of “semantics,” collected over all possible (memoryless) schedulers τ ,
which records the expected reward that the scheduler τ yields when it traverses
from each entrance to each exit. The last “semantics” is enriched so that it
records the reachability probability, too, for the sake of compositionality.

Related Work. Compositional model checking is studied e.g. in [4,19,20].
Besides, probabilistic model checking is an actively studied topic; see [1,
Chap. 10] for a comprehensive account. We shall make a detailed comparison
with the works [11,14] that study compositional probabilistic model checking.

The work [14] introduces an assume-guarantee reasoning framework for par-
allel composition ‖, as we already discussed. Parallel composition is out of our
current scope; in fact, we believe that compositionality with respect to ‖ requires
a much bigger enrichment of a semantic domain S than mere reachability prob-
abilities as in our work. The work [14] is remarkable in that its solution to this
granularity problem—namely by assume-guarantee reasoning—is practically sen-
sible (domain experts often have ideas about what contract to impose) and comes
with automata-theoretic automation. That said, such contracts are not always
automatically synthesized in [14], while our algorithm is fully automatic.

The work [11] is probably the closest to ours in the type of composition
(sequential rather than parallel) and automation. However, the technical bases
of the two works are quite different: theirs is the theory of parametric MDPs [18],
which is why their emphasis is on parametrized components and interval solu-
tions; ours is monoidal categories and some decomposition equalities (Sect. 3).

We note that the work [11] and ours are not strictly comparable. On the
one hand, we do not need a crucial assumption in [11], namely that a locally
optimal scheduler in each component is part of a globally optimal scheduler. The
assumption limits the applicability of [11]—it practically forces each component
to have only one exit. The assumption does not hold in our benchmarks Patrol
and Wholesale (see Sect. 5). Our algorithm does not need the assumption since
it collects the semantics of all relevant memoryless schedulers.

On the other hand, unlike [11], our algorithm is not parametric, so it cannot
exploit the similarity of components if they only differ in parameter values. Note
that the target problems are different, too (interval [11] vs. exact here).

Notations. For natural numbers m and n, we let [m,n] := {m,m + 1, . . . , n −
1, n}; as a special case, we let [m] := {1, 2, . . . ,m} (we let [0] = ∅ by convention).
The disjoint union of two sets X,Y is denoted by X + Y .

Compositional Probabilistic Model Checking with String Diagrams of MDPs 45

Fig. 3. Categories of MDPs/MCs, semantic categories, and solution functors.

2 String Diagrams of MDPs

We introduce our calculus for composing MDPs, namely string diagrams of
MDPs. Our formal definition is via their unidirectional and Markov chain (MC)
restrictions. This apparent detour simplifies the theoretical development, allow-
ing us to exploit the existing categorical infrastructure on (monoidal) categories.

2.1 Outline

We first make an overview of our technical development. Although we use some
categorical terminologies, prior knowledge of them is not needed in this outline.

Figure 3 is an overview of relevant categories and functors. The verification
targets—open MDPs—are arrows in the compact closed category (compCC)
oMDP. The operations ;,⊕ of compCCs compose MDPs, as shown in Fig. 2.
Our semantic category is denoted by S, and our goal is to define a solution
functor oMDP → S that is compositional. Mathematically, such a functor with
the desired compositionality (cf. (1)) is called a compact closed functor.

Since its direct definition is tedious, our strategy is to obtain it from a uni-
directional rightward framework Sr : roMDP → Sr, which canonically induces
the desired bidirectional framework via the celebrated Int construction [10]. In
particular, the category oMDP is defined by oMDP = Int(roMDP); so are
the semantic category and the solution functor (S = Int(Sr),S = Int(Sr)).

Going this way, a complication that one would encounter in a direct defini-
tion of oMDP (namely potential loops of transitions) is nicely taken care of by
the Int construction. Another benefit is that some natural equational axioms in
oMDP—such as the associativity of sequential composition ;—follow automat-
ically from those in roMDP, which are much easier to verify.

Mathematically, the unidirectional framework Sr : roMDP → Sr consists of
traced symmetric monoidal categories (TSMCs) and traced symmetric monoidal
functors; these are “algebras” of unidirectional graphs. The Int construction
turns TSMCs into compCCs, which are “algebras” of bidirectional graphs.

Yet another restriction is given by (rightward open) Markov chains (MCs).
See the bottom row of Fig. 3. This MDP-to-MC restriction greatly simplifies our
semantic development, freeing us from the bookkeeping of different schedulers.
In fact, we can introduce (optimal memoryless) schedulers systematically by

46 K. Watanabe et al.

the categorical construction called change of base [5,6]; this way we obtain the
semantic category Sr from S

MC
r .

2.2 Open MDPs

A{ }mr
ml

nr

nl (2)

We first introduce open MDPs; they have open
ends via which they compose. They come with
a notion of arity—the numbers of open ends on
their left and right, distinguishing leftward and
rightward ones. For example, the one on the right
is from (2, 1) to (1, 3).

Definition 2.1 (open MDP (oMDP)). Let A be a non-empty finite set,
whose elements are called actions. An open MDP A (over the action set A) is
the tuple (m,n,Q,A,E, P,R) of the following data. We say that it is from m to
n.

1. m = (mr, ml) and n = (nr, nl) are pairs of natural numbers; they are called
the left-arity and the right-arity, respectively. Moreover (see (2)), elements
of [mr + nl] are called entrances, and those of [nr + ml] are called exits.

2. Q is a finite set of positions.
3. E : [mr +nl] → Q+[nr +ml] is an entry function, which maps each entrance

to either a position (in Q) or an exit (in [nr + ml]).
4. P : Q×A× (Q+[nr +ml]) → R≥0 determines transition probabilities, where

we require
∑

s′∈Q+[nr+ml]
P (s, a, s′) ∈ {0, 1} for each s ∈ Q and a ∈ A.

5. R is a reward function R : Q → R≥0.
6. We impose the following “unique access to each exit” condition. Let exits :

([mr+nl]+Q) → P([nr+ml]) be the exit function that collects all immediately
reachable exits, that is, 1) for each s ∈ Q, exits(s) = {t ∈ [nr + ml] | ∃a ∈
A.P (s, a, t) > 0}, and 2) for each entrance s ∈ [mr + nl], exits(s) = {E(s)}
if E(s) is an exit and exits(s) = ∅ otherwise.
– For all s, s′ ∈ [mr + nl] + Q, if exits(s) ∩ exits(s′) �= ∅, then s = s′.
– We further require that each exit is reached from an identical position

by at most one action. That is, for each exit t ∈ [nr + ml], s ∈ Q, and
a, b ∈ A, if both P (s, a, t) > 0 and P (s, b, t) > 0, then a = b.

Note that the unique access to each exit condition is for technical convenience;
this can be easily enforced by adding an extra “access” position to an exit.

We define the semantics of open MDPs, which is essentially the standard
semantics of MDPs given by expected cumulative rewards. In this paper, it
suffices to consider memoryless schedulers (see Remark 2.1).

Definition 2.2 (path and scheduler). Let A = (m,n,Q,A,E, P,R) be an
open MDP. A (finite) path π(i,j) in A from an entrance i ∈ [mr + nl] to an exit
j ∈ [nr + ml] is a finite sequence i, s1, . . . , sn, j such that E(i) = s1 and for all
k ∈ [n], sk ∈ Q. For each k ∈ [n], π

(i,j)
k denotes sk, and π

(i,j)
n+1 denotes j. The

set of all paths in A from i to j is denoted by PathA(i, j).
A (memoryless) scheduler τ of A is a function τ : Q → A.

Compositional Probabilistic Model Checking with String Diagrams of MDPs 47

Remark 2.1. It is well-known (as hinted in [2]) that we can restrict to memoryless
schedulers for optimal expected rewards, assuming that the MDP in question is
almost surely terminating under any scheduler (†). We require the assumption
(†) in our compositional framework, too, and it is true in all benchmarks in this
paper. The assumption (†) must be checked only for the top-level (composed)
MDP; (†) for its components can then be deduced.

Definition 2.3 (probability and reward of a path). Let A = (m,n,Q,A,
E, P,R) be an open MDP, τ : Q → A be a scheduler of A, and π(i,j) be a
path in A. The probability PrA,τ (π(i,j)) of π(i,j) under τ is PrA,τ (π(i,j)) :=
∏n

k=1 P
(
π
(i,j)
k , τ(π(i,j)

k), π(i,j)
k+1

)
. The reward RwA(π(i,j)) along the path π(i,j) is

the sum of the position rewards, that is, RwA(π(i,j)) :=
∑

k∈[n] R(π(i,j)
k).

Our target problem on open MDPs is to compute the expected cumulative
reward collected in a passage from a specified entrance i to a specified exit j. This
is defined below, together with reachability probability, in the usual manner.

Definition 2.4 (reachability probability and expected (cumulative)
reward of open MDPs). Let A be an open MDP and τ be a scheduler, as
in Definition 2.2. Let i be an entrance and j be an exit.

The reachability probability RPrA,τ (i, j) from i to j, in A under τ , is defined
by RPrA,τ (i, j) :=

∑
π(i,j)∈PathA(i,j) PrA,τ (π(i,j)).

The expected (cumulative) reward ERwA,τ (i, j) from i to j, in A under τ ,
is defined by ERwA,τ (i, j) :=

∑
π(i,j)∈PathA(i,j) PrA,τ (π(i,j)) · RwA(π(i,j)). Note

that the infinite sum here always converges to a finite value; this is because there
are only finitely many positions in A. See e.g. [1].

Remark 2.2. In standard definitions such as Definition 2.4, it is common to
either 1) assume RPrA,τ (i, j) = 1 for technical convenience [11], or 2) allow
RPrA,τ (i, j) < 1, but in that case define ERwA,τ (i, j) := ∞ [1]. These defini-
tions are not suited for our purpose (and for compositional model checking in
general), since we take into account multiple exits, to each of which the reach-
ability probability is typically < 1, and we need non-∞ expected rewards over
those exits for compositionality. Note that our definition of expected reward is
not conditional (unlike [1, Rem. 10.74]): when the reachability probability from i
to j is small, it makes the expected reward small as well. Our notion of expected
reward can be thought of as a “weighted sum” of rewards.

2.3 Rightward Open MDPs and Traced Monoidal String Diagrams

Following the outline (Sect. 2.1), in this section we focus on (unidirectional) right-
ward open MDPs and introduce the “algebra” roMDP of them. The operations
;,⊕, tr of traced symmetric monoidal categories (TSMCs) compose rightward
open MDPs in string diagrams.

48 K. Watanabe et al.

Fig. 4. The trace operator.

Definition 2.5 (rightward open MDP (roMDP)). An open MDP A =
(m,n,Q,A,E, P,R) is rightward if all its entrances are on the left and all its
exits are on the right, that is, m = (mr, 0l) and n = (nr, 0l) for some mr and
nr. We write A = (mr, nr, Q,A,E, P,R), dropping 0 from the arities.

We say that a rightward open MDP A is from m to n, writing A : m → n,
if it is from (m, 0) to (n, 0) as an open MDP.

We use an equivalence relation by roMDP isomorphism so that roMDPs
satisfy TSMC axioms given in Sect. 2.4. See [21, Appendix A] for details.

We move on to introduce algebraic operations for composing rightward open
MDPs. Two of them, namely sequential composition ; and sum ⊕, look like Fig. 2
except that all wires are rightward. The other major operation is the trace oper-
ator tr that realizes (unidirectional) loops, as illustrated in Fig. 4.

Definition 2.6 (sequential composition ; of roMDPs). Let A : m → k
and B : k → n be rightward open MDPs with the same action set A and with
matching arities. Their sequential composition A ;B : m → n is given by A ;B :=(
m,n,QA + QB, A,EA;B, PA;B, [RA, RB]

)
, where

– EA;B(i) := EA(i) if EA(i) ∈ QA, and EA;B(i) := EB(EA(i)) otherwise (if
the A-entrance i goes to an A-exit which is identified with a B-entrance);

– the transition probabilities are defined in the following natural manner

P A;B(sA, a, s′) :=

{
P A(sA, a, s′) if s′ ∈ QA,∑

i∈[k] P
A(sA, a, i) · δEB(i)=s′ otherwise (i.e. s′ ∈ QB + [n]),

P A;B(sB, a, s′) :=

{
P B(sB, a, s′) if s′ ∈ QB + [n],

0 otherwise,

where δ is a characteristic function (returning 1 if the condition is true);
– and [RA, RB] : QA + QB → R≥0 combines RA, RB by case distinction.

Defining sum ⊕ of roMDPs is straightforward, following Fig. 2. See [21,
Appendix A] for details.

The trace operator tr is primitive in the TSMC roMDP; it is crucial in
defining bidirectional sequential composition shown in Fig. 2 (cf. Definition 2.9).

Definition 2.7 (the trace operator trl;m,n over roMDPs). Let A : l+m →
l + n be a rightward open MDP. The trace trl;m,n(A) : m → n of A with respect
to l is the roMDP trl;m,n(A) :=

(
m,n,QA, A,E, P,RA)

(cf. Fig. 4), where

Compositional Probabilistic Model Checking with String Diagrams of MDPs 49

– The entry function E is defined naturally, using a sequence i0, . . . , ik−1 of
intermediate open ends (in [l]) until reaching a destination ik.
Precisely, we let i0 := i + l and ij = EA(ij−1) for each j. We let k to be
the first index at which ik comes out of the loop, that is, 1) ij ∈ [l] for each
j ∈ [k−1], and 2) ik ∈ [l+1, l+n]+QA. Then we define E(i) by the following:
E(i) := ik − l if ik ∈ [l + 1, l + n]; and E(i) := ik otherwise.

– The transition probabilities P are defined as follows. We let prec(t) be the set
of open ends in [l]—those which are in the loop—that eventually enter A at
t ∈ [l + 1, n] + QA. Precisely, prec(t) := {i ∈ [l] | ∃i0, . . . , ik. i0 = i, ij+1 =
E(ij)(for each j), ik = t, i0, . . . , ik−1 ∈ [1, l], ik ∈ [l + 1, n] + QA}. Using this,

P (q, a, q′) :=

{
PA(q, a, q′ + l) +

∑
i∈prec(q′+l) PA(q, a, i) if q′ ∈ [n],

PA(q, a, q′) +
∑

i∈prec(q′) PA(q, a, i) otherwise, i.e. if q′ ∈ QA.

Here QA and [l] are assumed to be disjoint without loss of generality.

Remark 2.3. In string diagrams, it is common to annotate a wire with its type,
such as n−→ for idn : n → n. It is also common to separate a wire for a sum type
into wires of its component types, such as below on the left. Therefore the two
diagrams below on the right designate the same mathematical entity. Note that,
on its right-hand side, the type annotation 1 to each wire is omitted.

m + n
=

m

n A3 2 = A

2.4 TSMC Equations Between roMDPs

Here we show that the three operations ;,⊕, tr on roMDPs satisfy the equational
axioms of TSMCs [10], shown in Fig. 5. These equational axioms are not directly
needed for compositional model checking. We nevertheless study them because
1) they validate some natural bookkeeping equivalences of roMDPs needed for
their efficient handling, and 2) they act as a sanity check of the mathematical
authenticity of our compositional framework. For example, the handling of open
ends is subtle in Sect. 2.3—e.g. whether they should be positions or not—and
the TSMC equational axioms led us to our current definitions.

The TSMC axioms use some “positionless” roMDPs as wires, such as identi-
ties Im (

m
—— in string diagrams) and swaps Sm,n (×). See [21, Appendix A] for

details. The proof of the following is routine. For details, see [21, Appendix B].

Theorem 2.1. The three operations ;,⊕, tr on roMDPs, defined in Sect. 2.3,
satisfy the equational axioms in Fig. 5 up-to isomorphisms (see [21, Appendix A]
for details).
�
Corollary 2.1 (a TSMC roMDP). Let roMDP be the category whose objects
are natural numbers and whose arrows are roMDPs over the action set A modulo
isomorphisms. Then the operations ;,⊕, tr, I,S make roMDP a traced symmet-
ric monoidal category (TSMC).
�

50 K. Watanabe et al.

Fig. 5. The equational axioms of TSMCs, expressed for roMDPs, with some string
diagram illustrations. Here we omit types of roMDPs; see [10] for details.

2.5 Open MDPs and “Compact Closed” String Diagrams

Following the outline in Sect. 2.1, we now introduce a bidirectional “compact
closed” calculus of open MDPs (oMDPs), using the Int construction [10] that
turns TSMCs in general into compact closed categories (compCCs).

The following definition simply says oMDP := Int(roMDP), although it
uses concrete terms adapted to the current context.

Definition 2.8 (the category oMDP). The category oMDP of open MDPs
is defined as follows. Its objects are pairs (mr,ml) of natural numbers. Its arrows
are defined by rightward open MDPs as follows:

an arrow (mr,ml) −→ (nr, nl) in oMDP

an arrow A : mr + nl −→ nr + ml in roMDP, i.e. an roMDP
(3)

where the double lines == mean “is the same thing as.”

The definition may not immediately justify its name: no open MDPs appear
there; only roMDPs do. The point is that we identify the roMDP A in (3)
with the oMDP Ψ(A) of the designated type, using “twists” in Fig. 6. See [21,
Appendix A] for details.

We move on to describe algebraic operations for composing oMDPs. These
operations come from the structure of oMDP as a compCC; the latter, in turn,
arises canonically from the Int construction.

Definition 2.9 (; of oMDPs). Let A : (mr,ml) → (lr, ll) and B : (lr, ll) →
(nr, nl) be arrows in oMDP with the same action set A. Their sequential com-
position A ; B : (mr,ml) → (nr, nl) is defined by the string diagram in Fig. 7,

Compositional Probabilistic Model Checking with String Diagrams of MDPs 51

Fig. 6. Turning oMDPs to roMDPs, and vice versa, via twists.

Fig. 7. String diagrams in roMDP for A ; B, A ⊕ B in oMDP.

formulated in roMDP. Textually the definition is A ; B := trll;mr+nl,nr+ml(
(Sll,mr

⊕ Inl
) ; (A ⊕ Inl

) ; (Ilr ⊕ Sml,nl
) ; (B ⊕ Iml

) ; (Snr,ll
⊕ Iml

)
)
.

The definition of sum ⊕ of oMDPs is similarly shown in the string diagram
in Fig. 7, formulated in roMDP. Definition of “wires” such as identities, swaps,
units (⊂ in string diagrams) and counits (⊃) is easy, too.

Theorem 2.2 (oMDP is a compCC). The category oMDP (Definition 2.8),
equipped with the operations ;,⊕, is a compCC.
�

3 Decomposition Equalities for Open Markov Chains

Here we exhibit some basic equalities that decompose the behavior of (rightward
open) Markov chains. We start with such equalities on reachability probabilities
(which are widely known) and extend them to equalities on expected rewards
(which seem less known). Notably, the latter equalities involve not only expected
rewards but also reachability probabilities.

Here we focus on rightward open Markov chains (roMCs), since the extension
to richer settings is taken care of by categorical constructions. See Fig. 3.

Definition 3.1 (roMC). A rightward open Markov chain (roMC) C from m
to n is an roMDP from m to n over the singleton action set {�}.

For an roMC C, its reachability probability RPrC(i, j) and expected reward
ERwC(i, j) are defined as in Definition 2.4. The scheduler τ is omitted since it
is unique.

Rightward open MCs, as a special case of roMDPs, form a TSMC (Corol-
lary 2.1). It is denoted by roMC.

The following equalities are well-known, although they are not stated in terms
of open MCs. Recall that RPrC(i, k) is the probability of reaching the exit k
from the entrance i in C (Definition 2.4). Recall also the definitions of C ; D
(Definition 2.6) and trl;m,n(E) (Definition 2.7), which are essentially as in Fig. 2
and Fig. 4.

52 K. Watanabe et al.

Proposition 3.1 (decomposition equalities for RPr). Let C : m → l, D :
l → n and E : l + m → l + n be roMCs. The following matrix equalities hold.

[
RPrC;D(i, j)

]
i∈[m],j∈[n]

=
[
RPrC(i, k)

]
i∈[m],k∈[l]

· [
RPrD(k, j)

]
k∈[l],j∈[n]

, (4)[
RPrtrl;m,n(E)(i, j)

]
i∈[m],j∈[n]

=
[
RPrE(l + i, l + j)

]
i∈[m],j∈[n]

+
∑

d∈N
A · Bd · C.

(5)

Here
[
RPrC;D(i, j)

]
i∈[m],j∈[n]

denotes the m × n matrix with the designated com-
ponents; other matrices are similar. The matrices A,B,C are given by A :=[
RPrE(l + i, k)

]
i∈[m],k∈[l]

, B :=
[
RPrE(k, k′)

]
k∈[l],k′∈[l]

, and C :=
[
RPrE(k′, l +

j)
]
k′∈[l],j∈[n]

. In the last line, note that the matrix in the middle is the d-th power.

�

The first equality is easy, distinguishing cases on the intermediate open end
k (mutually exclusive since MCs are rightward). The second says

which is intuitive. Here, the small circles in the diagram correspond to dead
ends. It is known as Girard’s execution formula [7] in linear logic.

We now extend Prop. 3.1 to expected rewards ERwC(i, j).

Proposition 3.2 (decomposition eq. for ERw). Let C : m → l, D : l → n
and E : l + m → l + n be roMCs. The following equalities of matrices hold.

[
ERwC;D(i, j)

]
i∈[m],j∈[n]

=
[
RPrC(i, k)

]
i∈[m],k∈[l]

· [
ERwD(k, j)

]
k∈[l],j∈[n]

+
[
ERwC(i, k)

]
i∈[m],k∈[l]

· [
RPrD(k, j)

]
k∈[l],j∈[n]

,
(6)

[
ERwtrl;m,n(E)(i, j)

]
i∈[m],j∈[n]

=
[
ERwE(l + i, l + j)

]
i∈[m],j∈[n]

+
∑

d∈N
A · Bd · C.

(7)

Here A,B,C are the following m × 2l×2l×2l×2l×n matrices.

A =
([

RPrE(l + i, k)
]
i∈[m],k∈[l]

[
ERwE(l + i, k)

]
i∈[m],k∈[l]

)
,

B =

([
RPrE(k, k′)

]
k∈[l],k′∈[l]

[
ERwE(k, k′)

]
k∈[l],k′∈[l][

0
]
k∈[l],k′∈[l]

[
RPrE(k, k′)

]
k∈[l],k′∈[l]

)

,

C =

([
ERwE(k′, l + j)

]
k′∈[l],j∈[n][

RPrE(k′, l + j)
]
k′∈[l],j∈[n]

)

.

�
Proposition 3.2 seems new, although proving them is not hard once the state-

ments are given (see [21, Appendix C] for details). They enable one to compute
the expected rewards of composite roMCs C ; D and trl;m,nE from those of com-
ponent roMCs C,D, E . They also signify the role of reachability probabilities in

Compositional Probabilistic Model Checking with String Diagrams of MDPs 53

such computation, suggesting their use in the definition of semantic categories
(cf. granularity of semantics in Sect. 1).

The last equalities in Propositions 3.1 and 3.2 involve infinite sums
∑

d∈N
,

and one may wonder how to compute them. A key is their characterization as
least fixed points via the Kleene theorem: the desired quantity on the left side
(RPr or ERw) is a solution of a suitable linear equation; see Proposition 3.3.
With the given definitions, the proof of Propositions 3.1 and 3.2 is (lengthy but)
routine work (see e.g. [1, Thm. 10.15]).

Proposition 3.3 (linear equation characterization for (5) and (7)). Let
E : l + m → l + n be an roMC, and k ∈ [l + 1, l + n] be a specified exit of E.
Consider the following linear equation on an unknown vector [xi]i∈[l+m]:

[
xi

]
i∈[l+m]

=
[
RPrE(i, k)

]
i∈[l+m]

+
[
RPrE(i, j)

]
i∈[l+m],j∈[l]

· [
xj

]
j∈[l]

. (8)

Consider the least solution [x̃i]i∈[l+m] of the equation. Then its part [x̃i+l]i∈[m]

is given by the vector
(
RPrtrl;m,n(E)(i, k − l)

)
i∈[m]

of suitable reachability proba-
bilities.

Moreover, consider the following linear equation on an unknown [yi]i∈[l+m]:

[
yi

]
i∈[l+m]

=
[
ERwE(i, k)

]
i∈[l+m]

+
[
ERwE(i, j)

]
i∈[l+m],j∈[l]

· [
xj

]
j∈[l]

+
[
RPrE(i, j)

]
i∈[l+m],j∈[l]

· [
yj

]
j∈[l]

,
(9)

where the unknown [xj]j∈[l] is shared with (8). Consider the least solution
[ỹi]i∈[l+m] of the equation. Then its part [ỹi+l]i∈[m] is given by the vector of
suitable expected rewards, that is, [ỹi+l]i∈[m] =

(
ERwtrl;m,n(E)(i, k − l)

)
i∈[m]

.

We can modify the linear Eqs. (8,9)—removing unreachable positions,
specifically—so that they have unique solutions without changing the least ones.
One can then solve these linear equations to compute the reachabilities and
expected rewards in (5,7). This is a well-known technique for computing reach-
ability probabilities [1, Thm. 10.19]; it is not hard to confirm the correctness of
our current extension to expected rewards.

4 Semantic Categories and Solution Functors

We build on the decomposition equalities (Proposition 3.2) and define the seman-
tic category S for compositional model checking. This is the main construct in
our framework. Our definitions proceed in three steps, from roMCs to roMDPs to
oMDPs (Fig. 3). The gaps between them are filled in using general constructions
from category theory.

4.1 Semantic Category for Rightward Open MCs

We first define the semantic category S
MC
r for roMCs (Fig. 3, bottom right).

54 K. Watanabe et al.

Definition 4.1 (objects and arrows of SMC
r). The category S

MC
r has natural

numbers m as objects. Its arrow f : m → n is given by an assignment, for each
pair (i, j) of i ∈ [m] and j ∈ [n], of a pair (pi,j , ri,j) of nonnegative real numbers.
There pairs (pi,j , ri,j) are subject to the following conditions.

– (Subnormality)
∑

j∈[n] pi,j ≤ 1 for each i ∈ [m].
– (Realizability) pi,j = 0 implies ri,j = 0.

Fig. 8. An arrow
f : 2 → 2 in S

MC
r .

An illustration is in Fig. 8. For an object m, each
i ∈ [m] is identified with an open end, much like in
roMC and roMDP. For an arrow f : m → n, the
pair f(i, j) = (pi,j , ri,j) encodes a reachability proba-
bility and an expected reward, from an open end i to j;
together they represent a possible roMC behavior.

We go on to define the algebraic operations of SMC
r

as a TSMC. While there is a categorical description of
S
MC
r using a monad [16], we prefer a concrete definition here. See [21, Appendix

D] for the categorical definition of SMC
r .

Definition 4.2 (sequential composition ; of SMC
r). Let f : m → l and g : l →

n be arrows in S
MC
r . Their sequential composition f ; g : m → n of f and g

is defined as follows: letting f(i, j) = (pf
i,j , r

f
i,j) and g(i, j) = (pg

i,j , r
g
i,j), then

f ; g(i) := (pf ;g
i,j , rf ;g

i,j)j∈[n] is given by

[
pf ;g
i,j

]
i∈[m],j∈[n]

=
[
pf
i,k

]
i∈[m],k∈[l]

· [
pg
k,j

]
k∈[l],j∈[n]

,[
rf ;gi,j

]
i∈[m],j∈[n]

=
[
pf
i,k

]
i∈[m],k∈[l]

· [
rgk,j

]
k∈[l],j∈[n]

+
[
rfi,k

]
i∈[m],k∈[l]

· [
pg
k,j

]
k∈[l],j∈[n]

The sum ⊕ and the trace operator tr of SMC
r are defined similarly. To define

and prove axioms of the trace operator (Fig. 5), we exploit the categorical theory
of strong unique decomposition categories [9]. See [21, Appendix D].

Definition 4.3 (SMC
r as a TSMC). S

MC
r is a TSMC, with its operations

;,⊕, tr.

Once we expand the above definitions to concrete terms, it is evident that
they mirror the decomposition equalities. Indeed, the sequential composition ;
mirrors the first equalities in Propositions 3.1 and 3.2. The same holds for the
trace operator, too. Therefore, one can think of the above categorical develop-
ment in Definition 4.2 and Definition 4.3 as a structured lifting of the (local)
equalities in Propositions 3.1 and 3.2 to the (global) categorical structures, as
shown in Fig. 3.

Once we found the semantic domain S
MC
r , the following definition is easy.

Definition 4.4 (SMC
r). The solution functor SMC

r : roMC → S
MC
r is defined

as follows. It carries an object m (a natural number) to the same m; it carries
an arrow C : m → n in roMC to the arrow SMC

r (C) : m → n in S
MC
r , defined by

SMC
r (C)(i, j) :=

(
RPrC(i, j), ERwC(i, j)

)
, (10)

using reachability probabilities and expected rewards (Definition 2.4).

Compositional Probabilistic Model Checking with String Diagrams of MDPs 55

Theorem 4.1 (SMC
r is compositional). The correspondence SMC

r , defined
in (10), is a traced symmetric monoidal functor. That is, SMC

r (C ; D) = SMC
r (C) ;

SMC
r (D), SMC

r (C⊕D) = SMC
r (C)⊕SMC

r (D), and SMC
r (tr(E)) = tr(SMC

r (E)). Here
;,⊕, tr on the left are from Sect. 2.3; those on the right are from Definition 4.3.
�

4.2 Semantic Category of Rightward Open MDPs

We extend the theory in Sect. 4.1 from MCs to MDPs (Fig. 3). In particular,
on the semantics side, we have to bundle up all possible behaviors of an MDP
under different schedulers. We find that this is done systematically by change of
base [5,6]. We use the following notation for fixing scheduler τ .

Definition 4.5 (roMC MC(A, τ) induced by A, τ). Let A : m → n be a
rightward open MDP and τ : QA → A be a memoryless scheduler. The rightward
open MC MC(A, τ) induced by A and τ is (m,n,QA, {�}, EA, PMC(A,τ), RA),
where for each s ∈ Q and t ∈ ([nr +ml]+Q), PMC(A,τ)(s, �, t) := PA(s, τ(s), t).

Much like in Sect. 4.1, we first describe the semantic category Sr in concrete
terms. We later use the categorical machinery to define its algebraic structure.

Definition 4.6 (objects and arrows of Sr). The category Sr has natu-
ral numbers m as objects. Its arrow F : m → n is given by a set {fi : m →
n inSMC

r }i∈I of arrows of the same type in S
MC
r (I is an arbitrary index set).

The above definition of arrows—collecting arrows in S
MC
r , each of which cor-

responds to the behavior of MC(A, τ) for each τ—follows from the change of base
construction (specifically with the powerset functor P on the category Set of sets).
Its general theory gives sequential composition ; for free (concretely described
in Definition 4.7), together with equational axioms. See [21, Appendix D]. Sum
⊕ and trace tr are not covered by general theory, but we can define them analo-
gously to ; in the current setting. Thus, for ⊕ and tr as well, we are using change
of base as an inspiration.

Here is a concrete description of algebraic operations. It applies the corre-
sponding operation of SMC

r in the elementwise manner.

Definition 4.7 (;,⊕, tr in Sr). Let F : m → l, G : l → n, H : l + m → l + n
be arrows in Sr. Their sequential composition F ; G of F and G is given by
F ; G := {f ; g | f ∈ F, g ∈ G} where f ; g is the sequential composition of f
and g in S

MC
r . The trace trl;m,n(H) : m → n of H with respect to l is given by

trl;m,n(H) := {trl;m,n(h) | h ∈ H} where trl;m,n(h) is the trace of h with respect
to l in S

MC
r .

Sum ⊕ in Sr is defined analogously, applying the operation in S
MC
r element-

wise. See [21, Appendix A] for details.

Theorem 4.2. Sr is a TSMC.
�
We now define a solution functor and prove its compositionality.

56 K. Watanabe et al.

Definition 4.8 (Sr). The solution functor Sr : roMDP → Sr is defined as
follows. It carries an object m ∈ N to m, and an arrow A : m → n in roMDP to
Sr(A) : m → n in Sr. The latter is defined in the following elementwise manner,
using SMC

r in Definition 4.4.

Sr(A) :=
{SMC

r (MC(A, τ))
∣
∣ τ : QA → A a (memoryless) scheduler

}
. (11)

Theorem 4.3 (compositionality). The correspondence Sr : roMDP → Sr is
a traced symmetric monoidal functor, preserving ;,⊕, tr as in Thm. 4.1.
�
Remark 4.1 (memoryless schedulers). Our restriction to memoryless schedulers
(cf. Definition 2.2) plays a crucial role in the proof of Theorem4.3, specifically
for the trace operator (i.e. loops, cf. Fig. 4). Intuitively, a memoryful scheduler
for a loop may act differently in different iterations. Its technical consequence
is that the elementwise definition of tr, as in Definition 4.7, no longer works for
memoryful schedulers.

4.3 Semantic Category of MDPs

Finally, we extend from (unidirectional) roMDPs to (bidirectional) oMDPs (i.e.
from the second to the first row in Fig. 3). The system-side construction is already
presented in Sect. 2.5; the semantical side, described here, follows the same Int
construction [10]. The common intuition is that of twists, see Fig. 6.

Definition 4.9 (the semantic category S). We define S = Int(Sr). Con-
cretely, its objects are pairs (mr,ml) of natural numbers. Its arrows are given by
arrows of Sr as follows:

an arrow F : (mr,ml) −→ (nr, nl) in S

an arrow F : mr + nl −→ nr + ml in Sr

(12)

By general properties of Int, S is a compact closed category (compCC).

The Int construction applies not only to categories but also to functors.

Definition 4.10 (S). The solution functor S : oMDP → S is defined by S =
Int(Sr).

The following is our main theorem.

Theorem 4.4 (the solution S is compositional). The solution functor S :
oMDP → S is a compact closed functor, preserving operations ;,⊕ as in

S(A ; B) = S(A) ; S(B), S(A ⊕ B) = S(A) ⊕ S(B).
�
We can easily confirm, from Definitions 4.4 and 4.8, that S computes the

solution we want. Given an open MDP A, an entrance i and an exit j, S returns
the set

{ (
RPrMC(A,τ)(i, j), ERwMC(A,τ)(i, j)

) ∣
∣ τ is a memoryless scheduler

}
(13)

of pairs of a reachability probability and expected reward, under different sched-
ulers, in a passage from i to j.

Compositional Probabilistic Model Checking with String Diagrams of MDPs 57

Remark 4.2 (synthesizing an optimal scheduler). The compositional solution
functor S abstracts away schedulers and only records their results (see (13) where
τ is not recorded). At the implementation level, we can explicitly record sched-
ulers so that our compositional algorithm also synthesizes an optimal scheduler.
We do not do so here for theoretical simplicity.

5 Implementation and Experiments

Meager Semantics. Since our problem is to compute optimal expected rewards,
in our compositional algorithm, we can ignore those intermediate results which
are totally subsumed by other results (i.e. those which come from clearly sub-
optimal schedulers). This notion of subsumption is formalized as an order ≤
between parallel arrows in S

MC
r (cf. Definition 4.1): (pi,j , ri,j)i,j ≤ (p′

i,j , r
′
i,j)i,j if

pi,j ≤ p′
i,j and ri,j ≤ r′

i,j for each i, j. Our implementation works with this mea-
ger semantics for better performance; specifically, it removes elements of Sr(A)
in (11) that are subsumed by others. It is possible to formulate this meager
semantics as categories and functors, compare it with the semantics in Sect. 4,
and prove its correctness. We defer it to another venue for lack of space.

Implementation. We implemented the compositional solution functor S : oMDP
→ S, using the meager semantics as discussed. This prototype implementation
is in Python and called CompMDP.

CompMDP takes a string diagram A of open MDPs as input; they are
expressed in a textual format that uses operations ;,⊕ (such as the textual
expression in Definition 2.9). Note that we are abusing notations here, identify-
ing a string diagram of oMDPs and the composite oMDP A denoted by it.

Given such input A, CompMDP returns the arrow S(A), which is concretely
given by pairs of a reachability probability and expected reward shown in (13)
(we have suboptimal pairs removed, as discussed above). Since different pairs
correspond to different schedulers, we choose a pair in which the expected reward
is the greatest. This way we answer the optimal expected reward problem.

Freezing. In the input format of CompMDP, we have an additional freeze oper-
ator: any expression inside it is considered monolithic, and thus CompMDP
does not solve it compositionally. Those frozen oMDPs—i.e., those expressed by
frozen expressions—are solved by PRISM [13] in our implementation.

Freezing allows us to choose how deep—in the sense of the nesting of string
diagrams—we go compositional. For example, when a component oMDP A0 is
small but has many loops, fully compositional model checking of A0 can be more
expensive than (monolithic) PRISM. Freezing is useful in such situations.

We have found experimentally that the degree of freezing often should not be
extremal (i.e. none or all). The optimal degree, which should be thus somewhere
intermediate, is not known a priori.

However, there are not too many options (the number of layers in compo-
sitional model description), and freezing a half is recommended, both from our
experience and for the purpose of binary search.

58 K. Watanabe et al.

We require that a frozen oMDP should have a unique exit. Otherwise, an
oMDP with a specified exit can have the reachability probability < 1, in which
case PRISM returns ∞ as the expected reward. The last is different from our
definition of expected reward (Remark 2.2).

Research Questions. We posed the following questions.

RQ1. Does the compositionality of CompMDP help improve performance?
RQ2. How much do we benefit from freezing, i.e., a feature that allows us to

choose the degree of compositionality?
RQ3. What is the absolute performance of CompMDP?
RQ4. Does the formalism of string digrams accommodate real-world models,

enabling their compositional model checking?
RQ5. On which (compositional) models does CompMDP work well?

Experiment Setting. We conducted experiments on Apple 2.3 GHz Dual-Core
Intel Core i5 with 16 GB of RAM. We designed three benchmarks, called Patrol,
Wholesale, and Packets, as string diagrams of MDPs. Patrol is sketched in Fig. 1;
it has layers of tasks, rooms, floors, buildings and a neighborhood.

Wholesale is similar to Patrol, with four layers (item, dispatch, pipeline,
wholesale), but their transition structures are more complex: they have more
loops, and more actions are enabled in each position, compared to Patrol. The
lowest-level component MDP is much larger, too: an item in Wholesale has 5000
positions, while a task in Patrol has a unique position.

Packets has two layers: the lower layer models a transmission of 100 packets
with probabilistic failure. The upper layer is a sequence of copies of 2–5 variations
of the lower layer—in total, we have 50 copies—modeling 50 batches of packets

For Patrol and Wholesale, we conducted experiments with varying degree of
identification (DI); this can be seen as an ablation study. These benchmarks
have identical copies of a component MDP in their string diagrams; high DI
means that these copies are indeed expressed as multiple occurrences of the same
variable, informing CompMDP to reuse the intermediate solution. As DI goes
lower, we introduce new variables for these copies and let them look different to
CompMDP. Specifically, we have twice as many variables for DI-mid, and three
(Patrol) or four (Wholesale) times as many for DI-low, as for DI-high.

For Packets, we conducted experiments with different degrees of freezing
(FZ). FZ-none indicates no freezing, where our compositional algorithm digs
all the way down to individual positions as component MDPs. FZ-all freezes
everything, which means we simply used PRISM (no compositionality). FZ-int.
(intermediate) freezes the lower of the two layers. Note that this includes the
performance comparison between CompMDP and PRISM (i.e. FZ-all).

For Patrol and Wholesale, we also compared the performance of CompMDP
and PRISM using their simple variations Patrol5 and Wholesale5. We did not
use other variations (Patrol/Wholesale1–4) since the translation of the models
to the PRISM format blowed up.

Compositional Probabilistic Model Checking with String Diagrams of MDPs 59

Table 1. Experimental results.

exec. time [s]

benchmark |Q| |E| DI-high DI-mid DI-low

Patrol1 108 108 21 42 83

Patrol2 108 108 23 48 90

Patrol3 109 109 22 43 89

Patrol4 109 109 30 60 121

Wholesale1 108 2 · 108 130 260 394

Wholesale2 108 2 · 108 92 179 274

Wholesale3 2 · 108 4 · 108 6 12 23

Wholesale4 2 · 108 4 · 108 129 260 393

exec. time [s]

benchmark |Q| |E| FZ-none FZ-int. FZ-all

(PRISM)

Packets1 2.5 · 105 5 · 105 TO 1 65

Packets2 2.5 · 105 5 · 105 TO 3 64

Packets3 2.5 · 105 5 · 105 TO 1 56

Packets4 2.5 · 105 5 · 105 TO 3 56

Patrol5 108 108 22 22 TO

Wholesale5 5 · 107 108 TO 14 TO

|Q| is the number of positions; |E| is the number
of transitions (only counting action branching,
not probabilistic branching); execution time is
the average of five runs, in sec.; timeout (TO) is
1200 sec.

Results and Discussion. Table 1 summarizes the experiment results.

RQ1. A big advantage of compositional verification is that it can reuse inter-
mediate results. This advantage is clearly observed in the ablation experiments
with the benchmarks Patrol1–4 and Wholesale1–4: as the degree of reuse goes
1/2 and 1/3–1/4 (see above), the execution time grew inverse-proportionally.
Moreover, with the benchmarks Packets1–4, Patrol5 and Wholesale5, we see
that compositionality greatly improves performance, compared to PRISM (FZ-
all). Overall, we can say that compositionality has clear performance advantages
in probabilistic model checking.

RQ2. The Packets experiments show that controlling the degree of composi-
tionality is important. Packet’s lower layer (frozen in FZ-int.) is a large and
complex model, without a clear compositional structure; its fully compositional
treatment turned out to be prohibitively expensive. The performance advan-
tage of FZ-int. compared to PRISM (FZ-all) is encouraging. The Patrol5 and
Wholesale5 experiments also show the advantage of compositionality.

RQ3. We find the absolute performance of CompMDP quite satisfactory. The
Patrol and Wholesale benchmarks are huge models, with so many positions
that fitting their explicit state representation in memory is already nontrivial.
CompMDP, exploiting their succinct presentation by string diagrams, success-
fully model-checked them in realistic time (6–130 s with DI-high).

RQ4. The experiments suggest that string diagrams are a practical modeling
formalism, allowing faster solutions of realistic benchmarks. It seems likely that
the formalism is more suited for task compositionality (where components are
sub-tasks and they are sequentially composed with possible fallbacks and loops)
rather than system compositionality (where components are sub-systems and
they are parallelly composed).

RQ5. It seems that the number of locally optimal schedulers is an important
factor: if there are many of them, then we have to record more in the intermediate
solutions of the meager semantics. This number typically increases when more
actions are available, as the comparison between Patrol and Wholesale.

60 K. Watanabe et al.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Maximizing the conditional

expected reward for reaching the goal. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10206, pp. 269–285. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54580-5 16

3. Bonchi, F., Holland, J., Piedeleu, R., Sobocinski, P., Zanasi, F.: Diagrammatic
algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL),
25:1–25:28 (2019). https://doi.org/10.1145/3290338

4. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In: Pro-
ceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS
’89), Pacific Grove, California, USA, 5–8 June 1989, pp. 353–362. IEEE Computer
Society (1989). https://doi.org/10.1109/LICS.1989.39190

5. Cruttwell, G.S.: Normed spaces and the change of base for enriched categories.
Ph.D. thesis, Dalhousie University (2008)

6. Eilenberg, S., Kelly, G.M.: Closed categories. In: Eilenberg, S., Harrison, D.K.,
MacLane, S., Röhrl, H. (eds.) Proceedings of the Conference on Categorical Alge-
bra: La Jolla 1965, pp. 421–562. Springer, Heidelberg (1966). https://doi.org/10.
1007/978-3-642-99902-4 22

7. Girard, J.Y.: Geometry of interaction I: interpretation of System F. In: Studies in
Logic and the Foundations of Mathematics, vol. 127, pp. 221–260. Elsevier (1989)

8. Heunen, C., Vicary, J.: Categories for Quantum Theory: An Introduction. Oxford
University Press, Oxford (2019)

9. Hoshino, N.: A representation theorem for unique decomposition categories. In:
Berger, U., Mislove, M.W. (eds.) Proceedings of the 28th Conference on the Mathe-
matical Foundations of Programming Semantics, MFPS 2012, Bath, UK, 6–9 June
2012. Electronic Notes in Theoretical Computer Science, vol. 286, pp. 213–227.
Elsevier (2012). https://doi.org/10.1016/j.entcs.2012.08.014

10. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cam-
bridge Philos. Soc. 119(3), 447–468 (1996)

11. Junges, S., Spaan, M.T.J.: Abstraction-refinement for hierarchical probabilistic
models. In: Shoham, S., Vizel, Y. (eds.) CAV 2022, Part I. LNCS, vol. 13371, pp.
102–123. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13185-1 6

12. Khovanov, M.: A functor-valued invariant of tangles. Algebraic Geom. Topol. 2(2),
665–741 (2002)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

14. Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Compositional probabilis-
tic verification through multi-objective model checking. Inf. Comput. 232, 38–65
(2013). https://doi.org/10.1016/j.ic.2013.10.001

15. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Hei-
delberg (1998). https://doi.org/10.1007/978-1-4757-4721-8

16. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

https://doi.org/10.1007/978-3-662-54580-5_16
https://doi.org/10.1007/978-3-662-54580-5_16
https://doi.org/10.1145/3290338
https://doi.org/10.1109/LICS.1989.39190
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1016/j.entcs.2012.08.014
https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/j.ic.2013.10.001
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/0890-5401(91)90052-4

Compositional Probabilistic Model Checking with String Diagrams of MDPs 61

17. Piedeleu, R., Kartsaklis, D., Coecke, B., Sadrzadeh, M.: Open system categorical
quantum semantics in natural language processing. In: Moss, L.S., Sobocinski, P.
(eds.) 6th Conference on Algebra and Coalgebra in Computer Science, CALCO
2015, 24–26 June 2015, Nijmegen, The Netherlands. LIPIcs, vol. 35, pp. 270–
289. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/
10.4230/LIPIcs.CALCO.2015.270

18. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

19. Tsukada, T., Ong, C.L.: Compositional higher-order model checking via ω-regular
games over Böhm trees. In: Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,
Vienna, Austria, 14–18 July 2014, pp. 78:1–78:10. ACM (2014)

20. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: A compositional approach to
parity games. In: Sokolova, A. (ed.) Proceedings 37th Conference on Mathematical
Foundations of Programming Semantics, MFPS 2021, Hybrid: Salzburg, Austria
and Online, 30 August–2 September 2021. EPTCS, vol. 351, pp. 278–295 (2021).
https://doi.org/10.4204/EPTCS.351.17

21. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: Compositional probabilistic
model checking with string diagrams of MDPs (extended version) (2023), to appear
in arXiv

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.4204/EPTCS.351.17
http://creativecommons.org/licenses/by/4.0/

Efficient Sensitivity Analysis
for Parametric Robust Markov Chains

Thom Badings1(B) , Sebastian Junges1 , Ahmadreza Marandi2 ,
Ufuk Topcu3 , and Nils Jansen1

1 Radboud University, Nijmegen, The Netherlands
thom.badings@ru.nl

2 Eindhoven University of Technology, Eindhoven,
The Netherlands

3 University of Texas at Austin, Austin, USA

Abstract. We provide a novel method for sensitivity analysis of para-
metric robust Markov chains. These models incorporate parameters and
sets of probability distributions to alleviate the often unrealistic assump-
tion that precise probabilities are available. We measure sensitivity in
terms of partial derivatives with respect to the uncertain transition prob-
abilities regarding measures such as the expected reward. As our main
contribution, we present an efficient method to compute these partial
derivatives. To scale our approach to models with thousands of parame-
ters, we present an extension of this method that selects the subset of k
parameters with the highest partial derivative. Our methods are based
on linear programming and differentiating these programs around a given
value for the parameters. The experiments show the applicability of our
approach on models with over a million states and thousands of parame-
ters. Moreover, we embed the results within an iterative learning scheme
that profits from having access to a dedicated sensitivity analysis.

1 Introduction

Discrete-time Markov chains (MCs) are ubiquitous in stochastic systems mod-
eling [8]. A classical assumption is that all probabilities of an MC are pre-
cisely known—an assumption that is difficult, if not impossible, to satisfy in
practice [4]. Robust MCs (rMCs), or uncertain MCs, alleviate this assumption
by using sets of probability distributions, e.g., intervals of probabilities in the
simplest case [12,39]. A typical verification problem for rMCs is to compute
upper or lower bounds on measures of interest, such as the expected cumula-
tive reward, under worst-case realizations of these probabilities in the set of
distributions [52,59]. Thus, verification results are robust against any selection
of probabilities in these sets.

This research has been partially funded by NWO grant NWA.1160.18.238 (PrimaVera),
the ERC Starting Grant 101077178 (DEUCE), and grants ONR N00014-21-1-2502 and
AFOSR FA9550-22-1-0403.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 62–85, 2023.
https://doi.org/10.1007/978-3-031-37709-9_4

https://doi.org/10.5281/zenodo.7927993
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_4&domain=pdf
http://orcid.org/0000-0002-5235-1967
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0003-4205-1167
http://orcid.org/0000-0003-0819-9985
http://orcid.org/0000-0003-1318-8973
https://doi.org/10.1007/978-3-031-37709-9_4

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 63

Where to improve my model? As a running example, consider a ground vehicle
navigating toward a target location in an environment with different terrain
types. On each terrain type, there is some probability that the vehicle will slip
and fail to move. Assume that we obtain a sufficient number of samples to
infer upper and lower bounds (i.e., intervals) on the slipping probability on each
terrain. We use these probability intervals to model the grid world as an rMC.
However, from the rMC, it is unclear how our model (and thus the measure of
interest) will change if we obtain more samples. For instance, if we take one more
sample for a particular terrain, some of the intervals of the rMC will change, but
how can we expect the verification result to change? And if the verification result
is unsatisfactory, for which terrain type should we obtain more samples?

Parametric Robust MCs. To reason about how additional samples will change
our model and thus the verification result, we employ a sensitivity analysis [29].
To that end, we use parametric robust MCs (prMCs), which are rMCs whose sets
of probability distributions are defined as a function of a set of parameters [26],
e.g., intervals with parametric upper/lower bounds. With these functions over
the parameters, we can describe dependencies between the model’s states. The
assignment of values to each of the parameters is called an instantiation. Apply-
ing an instantiation to a prMC induces an rMC by replacing each occurrence of
the parameters with their assigned values. For this induced rMC, we compute
a (robust) value for a given measure, and we call this verification result the
solution for this instantiation. Thus, we can associate a prMC with a function,
called the solution function, that maps parameter instantiations to values.

Differentation for prMCs. For our running example, we choose the parameters to
represent the number of samples we have obtained for each terrain. Naturally, the
derivative of this solution function with respect to each parameter (a.k.a. sample
size) then corresponds to the expected change in the solution upon obtaining
more samples. Such differentiation for parametric MCs (pMCs), where parameter
instantiations yield one precise probability distribution, has been studied in [34].
For prMCs, however, it is unclear how to compute derivatives and under what
conditions the derivative exists. We thus consider the following problem:

Problem 1 (Computing derivatives). Given a prMC and a parameter instanti-
ation, compute the partial derivative of the solution function (evaluated at
this instantiation) with respect to each of the parameters.

Our Approach. We compute derivatives for prMCs by solving a parameterized
linear optimization problem. We build upon results from convex optimization
theory for differentiating the optimal solution of this optimization problem [9,15].
We also present sufficient conditions for the derivative to exist.

Improving Efficiency. However, computing the derivative for every parameter
explicitly does not scale to more realistic models with thousands of parameters.
Instead, we observe that to determine for which parameter we should obtain more
samples, we do not need to know all partial derivatives explicitly. Instead, it may
suffice to know which parameters have the highest (or lowest, depending on the
application) derivative. Thus, we also solve the following (related) problem:

64 T. Badings et al.

Fig. 1. Grid world environment (a). The vehicle () must deliver the package ()
to the warehouse (). We obtain the MLEs in (b), leading to the MC in (c).

Problem 2 (k-highest derivatives). Given a prMC with |V | parameters, deter-
mine the k < |V | parameters with the highest (or lowest) partial derivative.

We develop novel and efficient methods for solving Problem 2. Concretely, we
design a linear program (LP) that finds the k parameters with the highest (or
lowest) partial derivative without computing all derivatives explicitly. This LP
constitutes a polynomial-time algorithm for Problem 2 and is, in practice, orders
of magnitude faster than computing all derivatives explicitly, especially if the
number of parameters is high. Moreover, if the concrete values for the partial
derivatives are required, one can additionally solve Problem 1 for only the result-
ing k parameters. In our experiments, we show that we can compute derivatives
for models with over a million states and thousands of parameters.

Learning Framework. Learning in stochastic environments is very data-intensive
in general, and millions of samples may be required to obtain sufficiently tight
bounds on measures of interest [43,47]. Several methods exist to obtain intervals
on probabilities based on sampling, including statistical methods such as Hoeffd-
ing’s inequality [14] and Bayesian methods that iteratively update intervals [57].
Motivated by this challenge of reducing the sample complexity of learning algo-
rithms, we embed our methods in an iterative learning scheme that profits from
having access to sensitivity values for the parameters. In our experiments, we
show that derivative information can be used effectively to guide sampling when
learning an unknown Markov chain with hundreds of parameters.

Contributions. Our contributions are threefold: (1) We present a first algorithm
to compute partial derivatives for prMCs. (2) For both pMCs and prMCs, we
develop an efficient method to determine a subset of parameters with the highest
derivatives. (3) We apply our methods in an iterative learning scheme. We give
an overview of our approach in Sect. 2 and formalize the problem statement in
Sect. 3. In Sect. 4, we solve Problems (1) and (2) for pMCs, and in Sect. 5 for
prMCs. Finally, the learning scheme and experiments are in Sect. 6.

2 Overview

We expand the example from Sect. 1 to illustrate our approach more concretely.
The environment, shown in Fig. 1a, is partitioned into five regions of the same
terrain type. The vehicle can move in the four cardinal directions. Recall that

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 65

Fig. 2. Parametric MC. Fig. 3. Parametric robust MC.

the slipping probabilities are the same for all states with the same terrain. The
vehicle follows a dedicated route to collect and deliver a package to a warehouse.
Our goal is to estimate the expected number of steps f� to complete the mission.

Estimating Probabilities. Classically, we would derive maximum likelihood esti-
mates (MLEs) of the probabilities by sampling. Consider that, using N samples
per slipping probability, we obtained the rough MLEs shown in Fig. 1b and thus
the MC in Fig. 1c. Verifying the MC shows that the expected travel time (called
the solution) under these estimates is f̂ = 25.51 steps, which is far from the
travel time of f� = 21.62 steps under the true slipping probabilities. We want to
close this verification-to-real gap by taking more samples for one of the terrain
types. For which of the five terrain types should we obtain more samples?

Parametric Model. We can model the grid world as a pMC, i.e., an MC with
symbolic probabilities. The solution function for this pMC is the travel time f̂ ,
being a function of these symbolic probabilities. We sketch four states of this
pMC in Fig. 2. The most relevant parameter is then naturally defined as the
parameter with the largest partial derivative of the solution function. As shown
in Fig. 1B, parameter v4 has the highest partial derivative of ∂f̂

∂v4
= 22.96, while

the derivative of v3 is zero as no states related to this parameter are ever visited.

Parametric Robust Model. The approach above does not account for the uncer-
tainty in each MLE. Terrain type v4 has the highest derivative but also the largest
sample size, so sampling v4 once more has likely less impact than for, e.g., v1. So,
is v4 actually the best choice to obtain additional samples for? The prMC that
allows us to answer this question is shown in Fig. 3, where we use (parametric)
intervals as uncertainty sets. The parameters are the sample sizes N1, . . . , N5

for all terrain types (contrary to the pMC, where parameters represent slipping
probabilities). Now, if we obtain one additional sample for a particular terrain
type, how can we expect the uncertainty sets to change?

Derivatives for prMCs. We use the prMC to compute an upper bound f+ on the
true solution f�. Obtaining one more sample for terrain type vi (i.e., increasing
Ni by one) shrinks the interval [g(Ni), ḡ(Ni)] on expectation, which in turn
decreases our upper bound f+. Here, g and ḡ are functions mapping sample

sizes to interval bounds. The partial derivatives ∂f+

∂Ni
for the prMC are also

66 T. Badings et al.

shown in Fig. 1b and give a very different outcome than the derivatives for the
pMC. In fact, sampling v1 yields the biggest decrease in the upper bound f+,
so we ultimately decide to sample for terrain type v1 instead of v4.
Efficient Differentiation. We remark that we do not need to know all derivatives
explicitly to determine where to obtain samples. Instead, it suffices to know
which parameter has the highest (or lowest) derivative. In the rest of the paper,
we develop efficient methods for computing either all or only the k ∈ N highest
partial derivatives of the solution functions for pMCs and prMCs.
Supported Extensions. Our approaches are applicable to general pMCs and prMCs
whose parameters can be shared between distributions (and thus capture depen-
dencies, being a common advantage of parametric models in general [40]). Besides
parameters in transition probabilities, we can handle parametric initial states,
rewards, and policies. We could, e.g., use parameters to model the policy of a
surveillance drone in our example and compute derivatives for these parameters.

3 Formal Problem Statement

Let V = {v1, . . . , v�}, vi ∈ R be a finite and ordered set of parameters. A
parameter instantiation is a function u : V → R that maps a parameter to a real
valuation. The vector function u(v1, . . . , v�) = [u(v1), . . . , u(v�)]� ∈ R

� denotes
an ordered instantiation of all parameters in V through u. The set of polynomials
over the parameters V is Q[V]. A polynomial f can be interpreted as a function
f : R� → R where f(u) is obtained by substituting each occurrence of v by u(v).
We denote these substitutions with f [u].

For any set X, let pFunV (X) = {f | f : X → Q[V]} be the set of functions
that map from X to the polynomials over the parameters V . We denote by
pDistV (X) ⊂ pFunV (X) the set of parametric probability distributions over X,
i.e., the functions f : X → Q[V] such that f(x)[u] ∈ [0, 1] and

∑
x∈X f(x)[u] = 1

for all parameter instantiations u.

Parametric Markov Chain. We define a pMC as follows:

Definition 1 (pMC). A pMC M is a tuple (S, sI , V, P), where S is a finite
set of states, sI ∈ Dist(S) a distribution over initial states, V a finite set of
parameters, and P : S → pDistV (S) a parametric transition function.

Applying an instantiation u to a pMC yields an MC M[u] by replacing each
transition probability f ∈ Q[V] by f [u]. We consider expected reward mea-
sures based on a state reward function R : S → R. Each parameter instantia-
tion for a pMC yields an MC for which we can compute the solution for the
expected reward measure [8]. We call the function that maps instantiations to
a solution the solution function. The solution function is smooth over the set of
graph-preserving instantiations [41]. Concretely, the solution function sol for the
expected cumulative reward under instantiation u is written as follows:

sol(u) =
∑

s∈S

(
sI(s)

∑

ω∈Ω(s)

rew(ω) · Pr(ω,u)
)
, (1)

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 67

where Ω(s) is the set of paths starting in s ∈ S, rew(ω) = R(s0) + R(s1) + · · ·
is the cumulative reward over ω = s0s1 · · · , and Pr(ω,u) is the probability for
a path ω ∈ Ω(s). If a terminal (sink) state is reached from state s ∈ S with
probability one, the infinite sum over ω ∈ Ω(s) in Eq. (1) exist [53].

Parametric Robust Markov Chains. The convex polytope TA,b ⊆ R
n

defined by matrix A ∈ R
m×n and vector b ∈ R

m is the set TA,b = {p ∈ R
n |

Ap ≤ b}. We denote by Tn the set of all convex polytopes of dimension n, i.e.,

Tn = {TA,b | A ∈ R
m×n, b ∈ R

m, m ∈ N}. (2)

A robust MC (rMC) [54,58] is a tuple (S, sI ,P), where S and sI are defined as for
pMCs and the uncertain transition function P : S → T|S| maps states to convex
polytopes T ∈ T|S|. Intuitively, an rMC is an MC with possibly infinite sets of
probability distributions. To obtain robust bounds on the verification result for
any of these MCs, an adversary nondeterministically chooses a precise transition
function by fixing a probability distribution P̂ (s) ∈ P(s) for each s ∈ S.

We extend rMCs with polytopes whose halfspaces are defined by polynomials
Q[V] over V . To this end, let Tn[V] be the set of all such parametric polytopes:

Tn[V] = {TA,b | A ∈ Q[V]m×n, b ∈ Q[V]m, m ∈ N}. (3)

An element T ∈ Tn[V] can be interpreted as a function T : R� → 2(R
n) that

maps an instantiation u to a (possibly empty) convex polytopic subset of Rn.
The set T [u] is obtained by substituting each vi in T by u(vi) for all i = 1, . . . , �.

Example 1. The uncertainty set for state s1 of the prMC in Fig. 3 is the para-
metric polytope T ∈ T2[V] with singleton parameter set V = {N1}, such that

T =
{
[p1,1, p1,2]� ∈ R

2
∣
∣ g

1
(N1) ≤ p1,1 ≤ ḡ1(N1),

1 − ḡ1(N1) ≤ p1,2 ≤ 1 − g
1
(N1), p1,2 + p1,2 = 1

}
.

We use parametric convex polytopes to define prMCs:

Definition 2 (prMC). A prMC MR is a tuple (S, sI , V,P), where S, sI , and V
are defined as for pMCs (Def. 1), and where P : S → T|S|[V] is a parametric and
uncertain transition function that maps states to parametric convex polytopes.

Applying an instantiation u to a prMC yields an rMC MR[u] by replacing each
parametric polytope T ∈ T|S|[V] by T [u], i.e., a polytope defined by a concrete
matrix A ∈ R

m×n and vector b ∈ R
m. Without loss of generality, we consider

adversaries minimizing the expected cumulative reward until reaching a set of
terminal states ST ⊆ S. This minimum expected cumulative reward solR(u),
called the robust solution on the instantiated prMC MR[u], is defined as

solR(u) =
∑

s∈S

(
sI(s) · min

P∈P[u]

∑

ω∈Ω(s)

rew(ω) · Pr(ω,u, P)
)
. (4)

We refer to the function solR : R� → R as the robust solution function.

68 T. Badings et al.

Assumptions on pMCs and prMCs. For both pMCs and prMCs, we assume that
transitions cannot vanish under any instantiation (graph-preservation). That is,
for every s, s′ ∈ S, we have that P (s)[u](s′) (for pMCs) and P(s)[u](s′) (for
prMCs) are either zero or strictly positive for all instantiations u.

Problem Statement. Let f(q1, . . . , qn) ∈ R
m be a differentiable multivariate

function with m ∈ N. We denote the partial derivative of f with respect to q by
∂x
∂q ∈ R

m. The gradient of f combines all partial derivatives in a single vector as
∇qf = [∂f

∂q1
, . . . , ∂f

∂qn
] ∈ R

m×n. We only use gradients ∇uf with respect to the
parameter instantiation u, so we simply write ∇f in the remainder.

The gradient of the robust solution function evaluated at the instantiation u
is ∇solR[u] =

[(
∂solR

∂u(v1)

)
[u], . . . ,

(
∂solR
∂u(v�)

)
[u]

]
. We solve the following problem.

Problem 1. Given a prMC MR and a parameter instantiation u, compute
the gradient ∇solR[u] of the robust solution function evaluated at u.

Solving Problem 1 is linear in the number of parameters, which may lead to
significant overhead if the number of parameters is large. Typically, it suffices to
only obtain the parameters with the highest derivatives:

Problem 2. Given a prMC MR, an instantiation u, and a k ≤ |V |, compute
a subset V � of k parameters for which the partial derivatives are maximal.

For both problems, we present polynomial-time algorithms for pMCs (Sect. 4)
and prMCs (Sect. 5). Section 6 defines problem variations that we study
empirically.

4 Differentiating Solution Functions for pMCs

We can compute the solution of an MC M[u] with instantiation u based on a
system of |S| linear equations; here for an expected reward measure [8]. Let x =
[xs1 , . . . , xs|S|]

� and r = [rs1 , . . . , rs|S|]
� be variables for the expected cumulative

reward and the instantaneous reward in each state s ∈ S, respectively. Then, for
a set of terminal (sink) states ST ⊂ S, we obtain the equation system

xs = 0, ∀s ∈ ST (5a)
xs = rs + P (s)[u]x, ∀s ∈ S\ST . (5b)

Let us set P (s)[u] = 0 for all s ∈ ST and define the matrix P [u] ∈ R
|S|×|S| by

stacking the rows P (s)[u] for all s ∈ S. Then, Eq. (5) is written in matrix form
as (I|S| − P [u])x = r. The equation system in Eq. (5) can be efficiently solved
by, e.g., Gaussian elimination or more advanced iterative equation solvers.

4.1 Computing Derivatives Explicitly

We differentiate the equation system in Eq. (5) with respect to an instantiation
u(vi) for parameter vi ∈ V , similar to, e.g., [34]. For all s ∈ ST , the derivative

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 69

∂xs

∂u(vi)
is trivially zero. For all s ∈ S \ ST , we obtain via the product rule that

∂xs

∂u(vi)
=

∂P (s)x
∂u(vi)

[u] = (x�)�
∂P (s)�

∂u(vi)
[u] + P (s)[u]

∂x

∂u(vi)
, (6)

where x� ∈ R
|S| is the solution to Eq. (5). In matrix form for all s ∈ S, this

yields
(
I|S| − P [u]

) ∂x

∂u(vi)
=

∂Px�

∂u(vi)
[u]. (7)

The solution defined in Eq. (1) is computed as sol[u] = s�
I x�. Thus, the partial

derivative of the solution function with respect to u(vi) in closed form is
(

∂sol

∂u(vi)

)

[u] = s�
I

∂x

∂u(vi)
= s�

I

(
I|S| − P [u]

)−1 ∂Px�

∂u(vi)
[u]. (8)

Algorithm for Problem 1. Let us provide an algorithm to solve 1 for pMCs.
8 provides a closed-form expression for the partial derivative of the solution
function, which is a function of the vector x� in Eq. (5). However, due to the
inversion of (I|S| − P [u]), it is generally more efficient to solve the system of
equations in Eq. (7). Doing so, the partial derivative of the solution with respect
to u(vi) is obtained by: (1) solving Eq. (5) with u to obtain x� ∈ R

|S|, and (2)
solving the equation system in Eq. (7) with |S| unknowns for this vector x�. We
repeat step 2 for all of the |V | parameters. Thus, we can solve Problem 1 by
solving |V | + 1 linear equation systems with |S| unknowns each.

4.2 Computing k-Highest Derivatives

To solve Problem 2 for pMCs, we present a method to compute only the
k ≤ � = |V | parameters with the highest (or lowest) partial derivative with-
out computing all derivatives explicitly. Without loss of generality, we focus on
the highest derivative. We can determine these parameters by solving a combi-
natorial optimization problem with binary variables zi ∈ {0, 1} for i = 1, . . . , �.
Our goal is to formulate this optimization problem such that an optimal value of
z�
i = 1 implies that parameter vi ∈ V belongs to the set of k highest derivatives.

Concretely, we formulate the following mixed integer linear problem (MILP) [60]:

maximize
y∈R|S|, z∈{0,1}�

s�
I y (9a)

subject to
(
I|S| − P [u]

)
y =

�∑

i=1

zi
∂Px�

∂u(vi)
[u] (9b)

z1 + · · · + z� = k. (9c)

Constraint (9c) ensures that any feasible solution to Eq. (9) has exactly k nonzero
entries. Since matrix (I|S|−P [u]) is invertible by construction (see, e.g., [53]), Eq.

70 T. Badings et al.

(9) has a unique solution in y for each choice of z ∈ {0, 1}�. Thus, the objective
value s�

I y is the sum of the derivatives for the parameters vi ∈ V for which
zi = 1. Since we maximize this objective, an optimal solution y�, z� to Eq. (9) is
guaranteed to correspond to the k parameters that maximize the derivative of
the solution in Eq. (8). We state this correctness claim for the MILP:

Proposition 1. Let y�, z� be an optimal solution to Eq. (9). Then, the set
V � = {vi ∈ V | z�

i = 1} is a subset of k ≤ � parameters with maximal derivatives.

The set V � may not be unique. However, to solve Problem 2, it suffices to obtain
a set of k parameters for which the partial derivatives are maximal. Therefore,
the set V � provides a solution to Problem 2. We remark that, to solve Problem 2
for the k lowest derivatives, we change the objective in Eq. (9a) to minimize s�

I y.

Linear Relaxation. The MILP in Eq. (9) is computationally intractable for high
values of � and k. Instead, we compute the set v� via a linear relaxation of
the MILP. Specifically, we relax the binary variables z ∈ {0, 1}� to continuous
variables z ∈ [0, 1]�. As such, we obtain the following LP relaxation of Eq. (9):

maximize
y∈R|S|, z∈R�

s�
I y (10a)

subject to
(
I|S| − P [u]

)
y =

�∑

i=1

zi
∂Px�

∂u(vi)
[u] (10b)

0 ≤ zi ≤ 1, ∀i = 1, . . . , � (10c)
z1 + · · · + z� = k. (10d)

Denote by y+, z+ the solution of the LP relaxation in Eq. (10). For details on
such linear relaxations of integer problems, we refer to [36,46]. In our case, every
optimal solution y+, z+ to the LP relaxation with only binary values z+i ∈ {0, 1}
is also optimal for the MILP, resulting in the following theorem.

Theorem 1. The LP relaxation in Eq. (10) has an optimal solution y+, z+

with z+ ∈ {0, 1}� (i.e., every optimal variable z+i is binary), and every such a
solution is also an optimal solution of the MILP in Eq. (9).

Proof. From invertibility of
(
I|S| − P [u]

)
, we know that Eq. (9) is equivalent to

maximize
z∈{0,1}�

�∑

i=1

zi

(

s�
I

(
I|S| − P [u]

)−1 ∂Px�

∂u(vi)
[u]

)

(11a)

subject to z1 + · · · + z� = k. (11b)

The linear relaxation of Eq. (11) is an LP whose feasible region has integer
vertices (see, e.g., [37]). Therefore, both Eq. (11) and its relaxation Eq. (10)
have an integer optimal solution z+, which constructs z� in Eq. (9). 	

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 71

The binary solutions z+ ∈ {0, 1}� are the vertices of the feasible set of the
LP in Eq. (10). A simplex-based LP solver can be set to return such a solution.1

Algorithm for Problem 2. We provide an algorithm to solve Problem 2 for pMCs
consisting of two steps. First, for pMC M and parameter instantiation u, we solve
the linear equation system in Eq. (7) for x� to obtain the solution sol[u] = s�

I x�.
Second, we fix a number of parameters k ≤ � and solve the LP relaxation in
Eq. (10). The set V � of parameters with maximal derivatives is then obtained as
defined in Proposition 1. The parameter set V � is a solution to Proposition 2.

5 Differentiating Solution Functions for prMCs

We shift focus to prMCs. Recall that solutions solR[u] are computed for the
worst-case realization of the uncertainty, called the robust solution. We derive
the following equation system, where, as for pMCs, x ∈ R

|S| represents the
expected cumulative reward in each state.

xs = 0, ∀s ∈ ST (12a)

xs = rs + inf
p∈P(s)[u]

(
p�x

)
, ∀s ∈ S \ ST . (12b)

Solving Eq. (12) directly corresponds to solving a system of nonlinear equations
due to the inner infimum in Eq. (12b). The standard approach from robust
optimization [12] is to leverage the dual problem for each inner infimum, e.g., as
is done in [20,52]. For each s ∈ S, P(s) is a parametric convex polytope TA,b as
defined in Eq. (3). The dimensionality of this polytope depends on the number of
successor states, which is typically much lower than the total number of states.
To make the number of successor states explicit, we denote by post(s) ⊆ S the
successor states of s ∈ S and define TA,b ∈ T|post(s)|[V] with As ∈ Q

ms×|post(s)|

and bs[u] ∈ Q
ms (recall ms is the number of halfspaces of the polytope). Then,

the infimum in Eq. (12b) for each s ∈ S \ ST is

minimize p�x (13a)
subject to As[u]p ≤ bs[u] (13b)

1�p = 1, (13c)

where 1 denotes a column vector of ones of appropriate size. Let xpost(s) =
[xs]s∈post(s) be the vector of decision variables corresponding to the (ordered)
successor states in post(s). The dual problem of Eq. (13), with dual variables
α ∈ R

ms and β ∈ R (see, e.g., [11] for details), is written as follows:

maximize −bs[u]�α − β (14a)

subject to As[u]�α + xpost(s) + β1 = 0 (14b)
α ≥ 0. (14c)

1 Even if a non-vertex solution y+, z+ is obtained, we can use an arbitrary tie-break
rule on z+, which forces each z+i binary and preserves the sum in Eq. (10d).

72 T. Badings et al.

Fig. 4. Three polytopic uncertainty sets (blue shade), with the vector x, the worst-case
points p�, and the active constraints shown in red. (Color figure online)

By using this dual problem in Eq. (12b), we obtain the following LP with decision
variables x ∈ R

|S|, and with αs ∈ R
ms and βs ∈ R for every s ∈ S:

maximize s�
I x (15a)

subject to xs = 0, ∀s ∈ ST (15b)

xs = rs − (
bs[u]�αs + βs

)
, ∀s ∈ S \ ST (15c)

As[u]�αs + xpost(s) + βs1 = 0, αs ≥ 0, ∀s ∈ S \ ST . (15d)

The reformulation of Eq. (12) to Eq. (15) requires that sI ≥ 0, which is trivially
satisfied because sI is a probability distribution. Denote by x�, α�, β� an optimal
point of Eq. (15). The x� element of this optimum is also an optimal solution of
Eq. (12) [12]. Thus, the robust solution defined in Eq. (4) is solR[u] = s�

I x�.

5.1 Computing Derivatives via pMCs (and When It Does Not
Work)

Toward solving Problem 1, we provide some intuition about computing robust
solutions for prMCs. The infimum in Eq. (12) finds the worst-case point p� in
each set P(s)[u] that minimizes (p�)�x. This minimization is visualized in Fig. 4a
for an uncertainty set that captures three probability intervals p

i
≤ pi ≤ p̄i, i =

1, 2, 3. Given the optimization direction x (arrow in Fig. 4a), the point p� (red
dot) is attained at the vertex where the constraints p

1
≤ p1 and p

2
≤ p2 are

active.2 Thus, we obtain that the point in the polytope that minimizes (p�)�x
is p� = [p

1
, p

2
, 1 − p

1
− p

2
]�. Using this procedure, we can obtain a worst-case

point p�
s for each state s ∈ S. We can use these points to convert the prMC into

an induced pMC with transition function P (s) = p�
s for each state s ∈ S.

For small changes in the parameters, the point p� in Fig. 4a changes smoothly,
and its closed-form expression (i.e., the functional form) remains the same. As
such, it feels intuitive that we could apply the methods from Sect. 4 to compute
partial derivatives on the induced pMC. However, this approach does not always
work, as illustrated by the following two corner cases.
2 An inequality constraint gx ≤ h is active under the optimal solution x� if gx� =
h [15].

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 73

1. Consider Fig. 4b, where the optimization direction defined by x is parallel to
one of the facets of the uncertainty set. In this case, the worst-case point p�

is not unique, but an infinitesimal change in the optimization direction x will
force the point to one of the vertices again. Which point should we choose to
obtain the induced pMC (and does this choice affect the derivative)?

2. Consider Fig. 4c with more than |S| − 1 active constraints at the point p�.
Observe that decreasing p̄3 changes the point p� while increasing p̄3 does not.
In fact, the optimal point p� changes non-smoothly with the halfspaces of the
polytope. As a result, also the solution changes non-smoothly, and thus, the
derivative is not defined. How do we deal with such a situation?

These examples show that computing derivatives via an induced pMC by obtain-
ing each point p�

s can be tricky or is, in some cases, not possible at all. In what
follows, we present a method that directly derives a set of linear equations to
obtain derivatives for prMCs (all or only the k highest) based on the solution to
the LP in Eq. (15), which intrinsically identifies the corner cases above in which
the derivative is not defined.

5.2 Computing Derivatives Explicitly

We now develop a dedicated method for identifying if the derivative of the solution
function for a prMC exists, and if so, to compute this derivative. Observe from
Fig. 4 that the point p� is uniquely defined and has a smooth derivative only in
Fig. 4a with two active constraints. For only one active constraint (Fig. 4b), the
point is underdetermined, while for three active constraints (Fig. 4c), the derivative
may not be smooth. In the general case, having exactly n − 1 active constraints
(whose facets are nonparallel) is a sufficient condition for obtaining a unique and
smoothly changing point p� in the n-dimensional probability simplex.

Optimal Dual Variables. The optimal dual variables α�
s ≥ 0 for each s ∈ S \ ST

in Eq. (15) indicate which constraints of the polytope As[u]p ≤ bs[u] are active,
i.e., for which rows as,i[u] of As[u] it holds that as,i[u]p� = bs[u]. Specifically, a
value of αs,i > 0 implies that the ith constraint is active, and αs,i = 0 indicates
a nonactive constraint [15]. We define Es = [e1, . . . , ems

] ∈ {0, 1}ms as a vector
whose binary values ei ∀i ∈ {1, . . . , ms} are given as ei = [[α�

s,i > 0]].3 Moreover,
denote by D(Es) the matrix with Es on the diagonal and zeros elsewhere. We
reduce the LP in Eq. (15) to a system of linear equations that encodes only the
constraints that are active under the worst-case point p�

s for each s ∈ S \ ST :

xs = 0, ∀s ∈ ST (16a)

xs = rs − (
bs[u]�D(Es)αs + βs

)
, ∀s ∈ S \ ST (16b)

As[u]�D(Es)αs + xpost(s) + βs1 = 0, αs ≥ 0, ∀s ∈ S \ ST . (16c)

Differentiation. However, when does Eq. (16) have a (unique) optimal solution?
To provide some intuition, let us write the equation system in matrix form, i.e.,

3 We use Iverson-brackets: [[x]] = 1 if x is true and [[x]] = 0 otherwise.

74 T. Badings et al.

C
[
x α β

]� = d, where we omit an explicit definition of matrix C and vector d
for brevity. It is apparent that if matrix C is nonsingular, then Eq. (16) has a
unique solution. This requires matrix C to be square, which is achieved if, for
each s ∈ S \ ST , we have |post(s)| = ∑

Es + 1. In other words, the number of
successor states of s is equal to the number of active constraints of the polytope
plus one. This confirms our previous intuition from Sect. 5.1 on a polytope for
|post(s)| = 3 successor states, which required

∑ms

i=1 Ei = 2 active constraints.
Let us formalize this intuition about computing derivatives for prMCs. We

can compute the derivative of the solution x� by differentiating the equation
system in Eq. (16) through the product rule, in a very similar manner to the
approach in Sect. 4. We state this key result in the following theorem.

Theorem 2. Given a prMC MR and an instantiation u, compute x�, α�, β� for
Eq. (15) and choose a parameter vi ∈ V . The partial derivatives ∂x

∂u(vi)
, ∂α

∂u(vi)
,

and ∂β
∂u(vi)

are obtained as the solution to the linear equation system

∂xs

∂u(vi)
= 0, ∀s ∈ ST (17a)

∂xs

∂u(vi)
+ bs[u]�D(Es)

∂αs

∂u(vi)
+

∂βs

∂u(vi)
= −(α�

s)
�D(Es)

∂bs[u]
∂u(vi)

, (17b)

∀s ∈ S \ ST

As[u]�D(Es)
∂αs

∂u(vi)
+

∂xpost(s)

∂u(vi)
+

∂βs

∂u(vi)
1 = −(α�

s)
�D(Es)

∂As[u]
∂u(vi)

, (17c)

∀s ∈ S \ ST .

The proof follows from applying the product rule to Eq. (16) and is provided in
[6, Appendix A.1]. To compute the derivative for a parameter vi ∈ V , we thus
solve a system of linear equations of size |S|+∑

s∈S\ST
|post(s)|. Using Theorem

2, we obtain sufficient conditions for the solution function to be differentiable.

Lemma 1. Write the linear equation system in Eq. (17) in matrix form, i.e.,

C
[

∂x
∂u(vi)

, ∂α
∂u(vi)

, ∂β
∂u(vi)

]�
= d, (18)

for C ∈ R
q×q and d ∈ R

q, q = |S|+∑
s∈S\ST

|post(s)|, which are implicitly given
by Eq. (17). The solution function solR[u] is differentiable at instantiation u if
matrix C is nonsingular, in which case we obtain (∂solR

∂u(vi)
)[u] = s�

I
∂x

∂u(vi)
.

Proof. The partial derivative of the solution function is ∂solR
∂u(vi)

[u] = s�
I

∂x�

∂u(vi
,

where ∂x�

∂u(vi
is (a part of) the solution to Eq. (16). Thus, the solution function

is differentiable if there is a (unique) solution to Eq. (16), which is guaranteed
if matrix C is nonsingular. Thus, the claim in Lemma 1 follows. 	

Algorithm for Problem1. We use Theorem 2 to solve Problem 1 for prMCs,
similarly as for pMCs. Given a prMC MR and an instantiation u, we first solve

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 75

Eq. (15) to obtain x�, α�, β�. Second, we use α�
s to compute the vector Es of

active constraints for each s ∈ S\ST . Third, for every parameter v ∈ V , we solve
the equation system in Eq. (17). Thus, to compute the gradient of the solution
function, we solve one LP and |V | linear equation systems.

5.3 Computing k-Highest Derivatives

We directly apply the same procedure from Sect. 4.2 to compute the parameters
with the k ≤ � highest derivatives. As for pMCs, we can compute the k highest
derivatives by solving a MILP encoding the equation system in Eq. (17) for
every parameter v ∈ V , which we present in [6, Appendix A.2] for brevity. This
MILP has the same structure as Eq. (9), and thus we may apply the same linear
relaxation to obtain an LP with the guarantees as stated in Theorem 1. In other
words, solving the LP relaxation yields the set V � of parameters with maximal
derivatives as in Proposition 1. This set V � is a solution to Problem 2 for prMCs.

6 Numerical Experiments

We perform experiments to answer the following questions about our approach:

1. Is it feasible (in terms of computational complexity and runtimes) to compute
all derivatives, in particular compared to computing (robust) solutions?

2. How does computing only the k highest derivatives compare to computing all
derivatives?

3. Can we apply our approach to effectively determine for which parameters to
sample in a learning framework?

Let us briefly summarize the computations involved in answering these questions.
First of all, computing the solution sol(u) for a pMC, which is defined in Eq.
(1), means solving the linear equation system in Eq. (5). Similarly, computing
the robust solution solR(u) for a prMC means solving the LP in Eq. (15). Then,
solving Problem 1, i.e., computing all |V | partial derivatives, amounts to solving
a linear equation system for each parameter v ∈ V (namely, Eq. (5) for a prMC
and Eq. (17) for a prMC). In contrast, solving Problem 2, i.e., computing a subset
V � of parameters with maximal (or minimal) derivative, means for a pMC that
we solve the LP in Eq. (10) (or the equivalent LP for a prMC) and thereafter
extract the subset of V � parameters using Proposition 1.

Problem 3: Computing the k-highest Derivatives. A solution to Problem 2 is a
set V � of k parameters but does not include the computation of the derivatives.
However, it is straightforward to also obtain the actual derivatives

(
∂sol

∂u(v)

)
[u]

for each parameter v ∈ V �. Specifically, we solve Problem 1 for the k parameters
in V �, such that we obtain the partial derivatives for all v ∈ V �. We remark that,
for k = 1, the derivative follows directly from the optimal value s�

I y+ of the LP
in Eq. (10), so this additional step is not necessary. We will refer to computing
the actual values of the k highest derivatives as Problem 3.

76 T. Badings et al.

Setup. We implement our approach in Python 3.10, using Storm [35] to parse
pMCs, Gurobi [31] to solve LPs, and the SciPy sparse solver to solve equation
systems. All experiments run on a computer with a 4GHz Intel Core i9 CPU
and 64 GB RAM, with a timeout of one hour. Our implementation is available
at https://doi.org/10.5281/zenodo.7864260.

Grid World Benchmarks. We use scaled versions of the grid world from the
example in Sect. 2 with over a million states and up to 10 000 terrain types. The
vehicle only moves right or down, both with 50% probability (wrapping around
when leaving the grid). Slipping only occurs when moving down and (slightly
different from the example in Sect. 2) means that the vehicle moves two cells
instead of one. We obtain between N = 500 and 1 000 samples of each slipping
probability. For the pMCs, we use maximum likelihood estimation (p̄

N , with p̄
the sample mean) obtained from these samples as probabilities, whereas, for the
prMCs, we infer probability intervals using Hoeffding’s inequality (see Q3 for
details).

Benchmarks from Literature. We also use several instances of parametric exten-
sions of MCs and Markov decision processes (MDPs) from standard benchmark
suits [33,44]. We also use pMC benchmarks from [5,23] as these models have
more parameters than the traditional benchmarks. We extend these benchmarks
to prMCs by constructing probability intervals around the pMC’s probabilities.

Results. The results for all benchmarks are shown in [6, Appendix B, Tab. 2–3].

Q1. Computing Solutions vs. Derivatives

We investigate whether computing derivatives is feasible on p(r)MCs. In partic-
ular, we compare the computation times for computing derivatives on p(r)MCs
(Problems 1 and 3) with the times for computing the solution for these models.

0
.0

1

0
.1

1 5 2
0

1
0
0

1
0
0
0

3
0
0
0

0.01

0.1

1

5

20

100

1000

3000

T
im

eo
u
t

Timeout

10× faster

One derivative [s]

C
o
m
p
u
te

so
lu
ti
o
n
[s
]

pMC prMC

0
.0

1

0
.1

1 5 2
0

1
0
0

1
0
0
0

3
0
0
0

0.01

0.1

1

5

20

100

1000

3000

T
im

eo
u
t

Timeout

10× faster

Highest derivative [s]

C
o
m
p
u
te

so
lu
ti
o
n
[s
]

pMC prMC

Fig. 5. Runtimes (log-scale) for computing a single derivative (left, Problem 1) or the
highest derivative (right, Problem 3), vs. computing the solution sol[u]/solR[u].

https://doi.org/10.5281/zenodo.7864260

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 77

Table 1. Model sizes, runtimes, and derivatives for selection of grid world models.

Model statistics Verifying Problem 1 Problem 3 Derivatives

Type |S| |V | #trans sol(R)[u] Time [s] All derivs. [s] k = 1 [s] k = 10[s] Highest Error %
pMC 5000 50 14995 5.07 1.39 3.32 2.64 2.69 1.54e+00 0.0
pMC 5000 100 14995 5.05 1.36 4.17 2.63 2.66 1.28e+00 0.0
pMC 5000 921 14995 4.93 1.87 19.92 4.52 2.87 1.20e+00 0.0
pMC 80000 100 239995 8.01 25.54 98.47 45.18 46.87 1.95e+00 0.0
pMC 80000 1000 239995 8.01 25.64 612.97 48.92 58.20 2.08e+00 0.0
pMC 80000 9831 239995 7.93 25.52 5, 650.25 347.76 1, 343.59 2.10e+00 0.0
pMC 1280000 100 3839995 12.90 902.52 4, 747.43 1, 396.51 1, 507.77 3.32e+00 0.0
pMC 1280000 1000 3839995 12.79 902.67 37, 078.12 1, 550.45 1, 617.27 3.18e+00 0.0
pMC 1280000 10000 3839995 Timeoutb — — — — — —
prMC 5000 100 14995 136.07 23.46 3.55 0.60 1.58 -1.26e-02 -0.0
prMC 5000 921 14995 138.74 29.82 25.23 0.85 1.09 -4.44e-03 -0.0
prMC 20000 100 59995 2,789.77 1, 276.43 15.68 2.40 2.70 -4.96e-01 -0.1
prMC 20000 1000 59995 2,258.41 339.96 159.70 3.53 4.09 -9.51e-02 -0.0
prMC 80000 100 239995 Timeoutb — — — — — —

aExtrapolated from the runtimes for 10 to all |V | parameters.
bTimeout (1 h) occurred for verifying the p(r)MC, not for computing derivatives.

In Fig. 5, we show for all benchmarks the times for computing the solution
(defined in Eqs. (1) and (4)), versus computing either a single derivative for Prob-
lem 1 (left) or the highest derivative of all parameters resulting from Problem 3
(right). A point (x, y) in the left plot means that computing a single derivative
took x seconds while computing the solution took y seconds. A line above the
(center) diagonal means we obtained a speed-up over the time for computing the
solution; a point over the upper diagonal indicates a 10× speed-up or larger.

One Derivative. The left plot in Fig. 5 shows that, for pMCs, the times for
computing the solution and a single derivative are approximately the same. This
is expected since both problems amount to solving a single equation system with
|S| unknowns. Recall that, for prMCs, computing the solution means solving
the LP in Eq. (15), while for derivatives we solve an equation system. Thus,
computing a derivative for a prMC is relatively cheap compared to computing
the solution, which is confirmed by the results in Fig. 5.

Highest Derivative. The right plot in Fig. 5 shows that, for pMCs, computing
the highest derivative is slightly slower than computing the solution (the LP to
compute the highest derivative takes longer than the equation system to compute
the solution). On the other hand, computing the highest derivative for a prMC
is still cheap compared to computing the solution. Thus, if we are using a prMC
anyways, computing the derivatives is relatively cheap.

Q2. Runtime Improvement of Computing only k Derivatives

We want to understand the computational benefits of solving Problem 3 over
solving Problem 1. For Q2, we consider all models with |V | ≥ 10 parameters.

An excerpt of results for the grid world benchmarks is presented in Table 1.
Recall that, after obtaining the (robust) solution, solving Problem 1 amounts
to solving |V | linear equation systems, whereas Problem 3 involves solving a

78 T. Badings et al.

0
.0

1

0
.1

1 5 2
0

1
0
0

1
0
0
0

3
0
0
0

0.01

0.1

1

5

20

100

1000

3000

T
im

eo
u
t

Timeout

10× faster

k = 1 highest derivative [s]

A
ll
d
er
iv
a
ti
v
es

[s
]

pMC prMC

0
.0

1

0
.1

1 5 2
0

1
0
0

1
0
0
0

3
0
0
0

0.01

0.1

1

5

20

100

1000

3000
T
im

eo
u
t

Timeout

10× faster

k = 10 highest derivatives [s]

A
ll
d
er
iv
a
ti
v
es

[s
]

pMC prMC

Fig. 6. Runtimes (log-scale) for computing the highest (left) or 10 highest (right)
derivatives (Problem 3), versus computing all derivatives (Problem 1).

single LP and k equations systems. From Table 1, it is clear that computing k
derivatives is orders of magnitudes faster than computing all |V | derivatives,
especially if the total number of parameters is high.

We compare the runtimes for computing all derivatives (Problem 1) with
computing only the k = 1 or 10 highest derivatives (Problem 3). The left plot
of Fig. 6 shows the runtimes for k = 1, and the right plot for the k = 10 highest
derivatives. The interpretation for Fig. 6 is the same as for Fig. 5. From Fig. 6,
we observe that computing only the k highest derivatives generally leads to
significant speed-ups, often of more than 10 times (except for very small models).
Moreover, the difference between k = 1 and k = 10 is minor, showing that
retrieving the actual derivatives after solving Problem 2 is relatively cheap.

Numerical Stability. While our algorithm is exact, our implementation uses
floating-point arithmetic for efficiency. To evaluate the numerical stability, we
compare the highest derivatives (solving Problem 3 for k = 1) with an empiri-
cal approximation of the derivative obtained by perturbing the parameter by
1 × 103. The difference (column ‘Error. %’ in Table 1 and [6, Appendix B,
Table 2] between both is marginal, indicating that our implementation is suf-
ficiently numerically stable to return accurate derivatives.

Q3. Application in a Learning Framework

Reducing the sample complexity is a key challenge in learning under uncer-
tainty [43,47]. In particular, learning in stochastic environments is very data-
intensive, and realistic applications tend to require millions of samples to provide
tight bounds on measures of interest [16]. Motivated by this challenge, we apply
our approach in a learning framework to investigate if derivatives can be used
to effectively guide exploration, compared to alternative exploration strategies.

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 79

0 250 500 750 1,000
0

50

100

150

200

True solution

Steps (of 25 samples each)

R
o
b
u
st

so
lu
ti
o
n

Derivative

Interval

Uniform

ExpVisits*Width

(a) Slippery grid world.

0 2,500 5,000 7,500 10,000

0.1

0.2

0.3

0.4

True solution

Steps (of 250 samples each)

R
o
b
u
st

so
lu
ti
o
n

Derivative

Interval

Uniform

ExpVisits*Width

(b) Drone motion planning.

Fig. 7. Robust solutions for each sampling strategy in the learning framework for the
grid world (a) and drone (b) benchmarks. Averages values of 10 (grid world) or 5
(drone) repetitions are shown, with shaded areas the min/max.

Models. We consider the problem of where to sample in 1) a slippery grid world
with |S| = 800 and |V | = 100 terrain types, and 2) the drone benchmark from
[23] with |S| = 4179 and |V | = 1053 parameters. As in the motivating example
in Sect. 2, we learn a model of the unknown MC in the form of a prMC, where
the parameters are the sample sizes for each parameter. We assume access to a
model that can arbitrarily sample each parameter (i.e., the slipping probability
in the case of the grid world). We use an initial sample size of Ni = 100 for
each parameter i ∈ {1, . . . , |V |}, from which we infer a β = 0.9 (90%) confidence
interval using Hoeffding’s inequality. The interval for parameter i is [p̂i − εi, p̂i +

εi], with p̂i the sample mean and εi =
√

log 2−log (1−β)
2N (see, e.g., [14] for details).

Learning Scheme. We iteratively choose for which parameter vi ∈ V to obtain 25
(for the grid world) or 250 (for the drone) additional samples. We compare four
strategies for choosing the parameter vi to sample for: 1) with highest derivative,
i.e., solving Problem 3 for k = 1; 2) with biggest interval width εi; 3) uniformly;
and 4) sampling according to the expected number of visits times the interval
width (see [6, Appendix B.1] for details). After each step, we update the robust
upper bound on the solution for the prMC with the additional samples.

Results. The upper bounds on the solution for each sampling strategy, as well as
the solution for the MC with the true parameter values, are shown in Fig. 7. For
both benchmarks, our derivative-guided sampling strategy converges to the true
solution faster than the other strategies. Notably, our derivative-guided strategy
accounts for both the uncertainty and importance of each parameter, which leads
to a lower sample complexity required to approach the true solution.

80 T. Badings et al.

7 Related Work

We discuss related work in three areas: pMCs, their extension to parametric
interval Markov chains (piMCs), and general sensitivity analysis methods.

Parametric Markov Chains. pMCs [24,45] have traditionally been studied in
terms of computing the solution function [13,25,28,29,32]. Much recent litera-
ture considers synthesis (find a parameter valuation such that a specification is
satisfied) or verification (prove that all valuations satisfy a specification). We
refer to [38] for a recent overview. For our paper, particularly relevant are [55],
which checks whether a derivative is positive (for all parameter valuations),
and [34], which solves parameter synthesis via gradient descent. We note that
all these problems are (co-)ETR complete [41] and that the solution function
is exponentially large in the number of parameters [7], whereas we consider a
polynomial-time algorithm. Furthermore, practical verification procedures for
uncontrollable parameters (as we do) are limited to less than 10 parameters.
Parametric verification is used in [51] to guide model refinement by detecting
for which parameter values a specification is satisfied. In contrast, we consider
slightly more conservative rMCs and aim to stepwise optimize an objective.
Solution functions also provide an approach to compute and refine confidence
intervals [17]; however, the size of the solution function hampers scalability.

Parametric interval Markov Chains (piMCs). While prMCs have, to the best of
our knowledge, not been studied, their slightly more restricted version are piMCs.
In particular, piMCs have interval-valued transitions with parametric bounds.
Work on piMCs falls into two categories. First, consistency [27,50]: is there a
parameter instantiation such that the (reachable fragment of the) induced inter-
val MC contains valid probability distributions? Second, parameter synthesis for
quantitative and qualitative reachability in piMCs with up to 12 parameters [10].

Perturbation Analysis. Perturbation analysis considers the change in solution
by any perturbation vector X for the parameter instantiation, whose norm is
upper bounded by δ, i.e., ||X|| ≤ δ (or conversely, which δ ensures the solu-
tion perturbation is below a given maximum). Likewise, [21] uses the distance
between two instantiations of a pMC (called augmented interval MC) to bound
the change in reachability probability. Similar analyses exist for stationary dis-
tributions [1]. These problems are closely related to the verification problem in
pMCs and are equally (in)tractable if there are dependencies over multiple param-
eters. To improve tractability, a follow-up [56] derives asymptotic bounds based on
first or second-order Taylor expansions. Other approaches to perturbation analysis
analyze individual paths of a system [18,19,30]. Sensitivity analysis in (parameter-
free) imprecise MCs, a variation to rMCs, is thoroughly studied in [22].

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 81

Exploration in Learning. Similar to Q3 in Sect. 6, determining where to sample is
relevant in many learning settings. Approaches such as probably approximately
correct (PAC) statistical model checking [2,3] and model-based reinforcement
learning [47] commonly use optimistic exploration policies [48]. By contrast, we
guide exploration based on the sensitivity analysis of the solution function with
respect to the parametric model.

8 Concluding Remarks

We have presented efficient methods to compute partial derivatives of the solu-
tion functions for pMCs and prMCs. For both models, we have shown how to
compute these derivatives explicitly for all parameters, as well as how to compute
only the k highest derivatives. Our experiments have shown that we can compute
derivatives for models with over a million states and thousands of parameters.
In particular, computing the k highest derivatives yields significant speed-ups
compared to computing all derivatives explicitly and is feasible for prMCs which
can be verified. In the future, we want to support nondeterminism in the models
and apply our methods in (online) learning frameworks, in particular for settings
where reducing the uncertainty is computationally expensive [42,49].

References

1. Abbas, K., Berkhout, J., Heidergott, B.: A critical account of perturbation analysis
of markov chains. arXiv preprint arXiv:1609.04138 (2016)

2. Agarwal, C., Guha, S., Kretínský, J., Muruganandham, P.: PAC statistical model
checking of mean payoff in discrete- and continuous-time MDP. In: CAV (2). Lec-
ture Notes in Computer Science, vol. 13372, pp. 3–25. Springer (2022). https://
doi.org/10.1007/978-3-031-13188-2_1

3. Ashok, P., Křetínský, J., Weininger, M.: PAC statistical model checking for markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4_29

4. Badings, T., Simão, T.D., Suilen, M., Jansen, N.: Decision-making under uncer-
tainty: beyond probabilities. Int. J. Softw. Tools Technol. Transf. (2023)

5. Badings, T.S., Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.:
Scenario-based verification of uncertain parametric MDPs. Int. J. Softw. Tools
Technol. Transf. 24(5), 803–819 (2022)

6. Badings, T.S., Junges, S., Marandi, A., Topcu, U., Jansen, N.: Efficient sensitivity
analysis for parametric robust markov chains (extended version). Tech. rep., CoRR,
abs/2305.01473 (2023)

7. Baier, C., Hensel, C., Hutschenreiter, L., Junges, S., Katoen, J., Klein, J.: Para-
metric markov chains: PCTL complexity and fraction-free gaussian elimination.
Inf. Comput. 272, 104504 (2020)

http://arxiv.org/abs/1609.04138
https://doi.org/10.1007/978-3-031-13188-2_1
https://doi.org/10.1007/978-3-031-13188-2_1
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29

82 T. Badings et al.

8. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
9. Barratt, S.: On the differentiability of the solution to convex optimization problems.

arXiv preprint arXiv:1804.05098 (2018)
10. Bart, A., Delahaye, B., Fournier, P., Lime, D., Monfroy, É., Truchet, C.: Reacha-

bility in parametric interval markov chains using constraints. Theor. Comput. Sci.
747, 48–74 (2018)

11. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear programming and network flows.
John Wiley & Sons (2011)

12. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization, Princeton Series
in Applied Mathematics, vol. 28. Princeton University Press (2009)

13. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time markov chains. Inf. Comput. 247, 235–253 (2016)

14. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities - A Nonasymp-
totic Theory of Independence. Oxford University Press, Oxford (2013)

15. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2014)

16. Buckman, J., Hafner, D., Tucker, G., Brevdo, E., Lee, H.: Sample-efficient rein-
forcement learning with stochastic ensemble value expansion. In: NeurIPS, pp.
8234–8244 (2018)

17. Calinescu, R., Ghezzi, C., Johnson, K., Pezzè, M., Rafiq, Y., Tamburrelli, G.: For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Trans. Reliab. 65(1), 107–125 (2016)

18. Cao, X., Chen, H.: Perturbation realization, potentials, and sensitivity analysis of
markov processes. IEEE Trans. Autom. Control 42(10), 1382–1393 (1997)

19. Cao, X., Wan, Y.: Algorithms for sensitivity analysis of markov systems through
potentials and perturbation realization. IEEE Trans. Control Syst. Technol. 6(4),
482–494 (1998)

20. Chen, T., Feng, Y., Rosenblum, D.S., Su, G.: Perturbation analysis in verification
of discrete-time markov chains. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 218–233. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44584-6_16

21. Chonev, V.: Reachability in augmented interval markov chains. In: Filiot, E.,
Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol. 11674, pp. 79–92. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30806-3_7

22. Cooman, G.D., Hermans, F., Quaeghebeur, E.: Sensitivity analysis for finite
markov chains in discrete time. In: UAI, pp. 129–136. AUAI Press (2008)

23. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.: Convex optimization
for parameter synthesis in MDPs. IEEE Trans. Autom. Control 67(12), 6333–6348
(2022)

24. Daws, C.: Symbolic and Parametric Model Checking of Discrete-Time Markov
Chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21

http://arxiv.org/abs/1804.05098
https://doi.org/10.1007/978-3-662-44584-6_16
https://doi.org/10.1007/978-3-662-44584-6_16
https://doi.org/10.1007/978-3-030-30806-3_7
https://doi.org/10.1007/978-3-540-31862-0_21

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 83

25. Dehnert, C., et al.: PROPhESY: a probabilistic parameter synthesis tool. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13

26. Delahaye, B.: Consistency for parametric interval markov chains. In: SynCoP.
OASIcs, vol. 44, pp. 17–32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2015)

27. Delahaye, B., Lime, D., Petrucci, L.: Parameter synthesis for parametric interval
markov chains. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS,
vol. 9583, pp. 372–390. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49122-5_18

28. Fang, X., Calinescu, R., Gerasimou, S., Alhwikem, F.: Fast parametric model check-
ing through model fragmentation. In: ICSE, pp. 835–846. IEEE (2021)

29. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42(1),
75–99 (2016)

30. Fu, M.C., Hu, J.: Smoothed perturbation analysis derivative estimation for markov
chains. Oper. Res. Lett. 15(5), 241–251 (1994)

31. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2023). https://
www.gurobi.com

32. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

33. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0_20

34. Heck, L., Spel, J., Junges, S., Moerman, J., Katoen, J.-P.: Gradient-descent for ran-
domized controllers under partial observability. In: Finkbeiner, B., Wies, T. (eds.)
VMCAI 2022. LNCS, vol. 13182, pp. 127–150. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-94583-1_7

35. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Softw. Tools Technol. Transf. (2021)

36. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In:
Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming
1958-2008, pp. 49–76. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
540-68279-0_3

37. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. 50
Years of integer programming 1958–2008, p. 49 (2010)

38. Jansen, N., Junges, S., Katoen, J.: Parameter synthesis in markov models: a gentle
survey. In: Principles of Systems Design. Lecture Notes in Computer Science, vol.
13660, pp. 407–437. Springer (2022). https://doi.org/10.1007/978-3-031-22337-
2_20

39. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277. IEEE Computer Society (1991)

40. Junges, S., et al.: Parameter synthesis for markov models. CoRR abs/1903.07993
(2019)

https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1007/978-3-662-49122-5_18
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-94583-1_7
https://doi.org/10.1007/978-3-030-94583-1_7
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/978-3-031-22337-2_20
https://doi.org/10.1007/978-3-031-22337-2_20

84 T. Badings et al.

41. Junges, S., Katoen, J., Pérez, G.A., Winkler, T.: The complexity of reachability in
parametric markov decision processes. J. Comput. Syst. Sci. 119, 183–210 (2021)

42. Junges, S., Spaan, M.T.J.: Abstraction-refinement for hierarchical probabilistic
models. In: CAV (1). Lecture Notes in Computer Science, vol. 13371, pp. 102–123.
Springer (2022). https://doi.org/10.1007/978-3-031-13185-1_6

43. Kakade, S.M.: On the sample complexity of reinforcement learning. Ph.D. thesis,
University of London, University College London (United Kingdom) (2003)

44. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

45. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109
(2007)

46. Matousek, J., Gärtner, B.: Integer Programming and LP Relaxation, pp. 29–40.
Springer, Berlin Heidelberg (2007). https://doi.org/10.1007/978-3-540-30717-4_3

47. Moerland, T.M., Broekens, J., Jonker, C.M.: Model-based reinforcement learning:
a survey. CoRR abs/2006.16712 (2020)

48. Munos, R.: From bandits to monte-carlo tree search: The optimistic principle
applied to optimization and planning. Found. Trends Mach. Learn. 7(1), 1–129
(2014)

49. Neary, C., Verginis, C.K., Cubuktepe, M., Topcu, U.: Verifiable and compositional
reinforcement learning systems. In: ICAPS, pp. 615–623. AAAI Press (2022)

50. Petrucci, L., van de Pol, J.: Parameter synthesis algorithms for parametric interval
markov chains. In: Baier, C., Caires, L. (eds.) FORTE 2018. LNCS, vol. 10854, pp.
121–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92612-4_7

51. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Automated experiment
design for data-efficient verification of parametric markov decision processes. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 259–274.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_16

52. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_35

53. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994)

54. Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 394–410. Springer, Heidelberg (2006). https://doi.org/10.1007/
11691372_26

55. Spel, J., Junges, S., Katoen, J.-P.: Finding provably optimal markov chains. In:
TACAS 2021. LNCS, vol. 12651, pp. 173–190. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-72016-2_10

56. Su, G., Feng, Y., Chen, T., Rosenblum, D.S.: Asymptotic perturbation bounds for
probabilistic model checking with empirically determined probability parameters.
IEEE Trans. Software Eng. 42(7), 623–639 (2016)

https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-30717-4_3
https://doi.org/10.1007/978-3-319-92612-4_7
https://doi.org/10.1007/978-3-319-66335-7_16
https://doi.org/10.1007/978-3-642-39799-8_35
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/978-3-030-72016-2_10
https://doi.org/10.1007/978-3-030-72016-2_10

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 85

57. Suilen, M., Simão, T.D., Parker, D., Jansen, N.: Robust anytime learning of markov
decision processes. In: NeurIPS, vol. 35, pp. 28790–28802. Curran Associates, Inc.
(2022)

58. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization.
Oper. Res. 62(6), 1358–1376 (2014)

59. Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain markov decision
processes with temporal logic specifications. In: CDC, pp. 3372–3379. IEEE (2012)

60. Wolsey, L.A.: Integer programming. John Wiley & Sons (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

MDPs as Distribution Transformers: Affine
Invariant Synthesis for Safety Objectives

S. Akshay1(B) , Krishnendu Chatterjee2 , Tobias Meggendorfer2,3 ,
and Ðorđe Žikelić2

1 Indian Institute of Technology Bombay, Mumbai, India
akshayss@cse.iitb.ac.in

2 Institute of Science and Technology Austria (ISTA),
Klosterneuburg, Austria

{krishnendu.chatterjee,dzikelic}@ist.ac.at
3 Technical University of Munich, Munich, Germany

tobias.meggendorfer@cit.tum.de

Abstract. Markov decision processes can be viewed as transformers
of probability distributions. While this view is useful from a practical
standpoint to reason about trajectories of distributions, basic reacha-
bility and safety problems are known to be computationally intractable
(i.e., Skolem-hard) to solve in such models. Further, we show that even
for simple examples of MDPs, strategies for safety objectives over distri-
butions can require infinite memory and randomization.

In light of this, we present a novel overapproximation approach to
synthesize strategies in an MDP, such that a safety objective over the
distributions is met. More precisely, we develop a new framework for
template-based synthesis of certificates as affine distributional and induc-
tive invariants for safety objectives in MDPs. We provide two algorithms
within this framework. One can only synthesize memoryless strategies,
but has relative completeness guarantees, while the other can synthe-
size general strategies. The runtime complexity of both algorithms is in
PSPACE. We implement these algorithms and show that they can solve
several non-trivial examples.

Keywords: Markov decision processes · invariant synthesis ·
distribution transformers · Skolem hardness

1 Introduction

Markov decision processes (MDPs) are a classical model for probabilistic decision
making systems. They extend the basic probabilistic model of Markov chains with
non-determinism and are widely used across different domains and contexts. In the

This work was supported in part by the ERC CoG 863818 (FoRM-SMArt) and the
European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 665385 as well as DST/CEFIPRA/INRIA
project EQuaVE and SERB Matrices grant MTR/2018/00074.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 86–112, 2023.
https://doi.org/10.1007/978-3-031-37709-9_5

https://doi.org/10.5281/zenodo.7922231
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_5&domain=pdf
http://orcid.org/0000-0002-2471-5997
http://orcid.org/0000-0002-4561-241X
http://orcid.org/0000-0002-1712-2165
http://orcid.org/0000-0002-4681-1699
https://doi.org/10.1007/978-3-031-37709-9_5

Invariant Synthesis for Affine Safety Objectives in MDPs 87

verification community, MDPs are often viewed through an automata-theoretic
lens, as state transformers, with runs being sequences of states with certain prob-
ability for taking each run (see e.g., [9]). With this view, reachability probabili-
ties can be computed using simple fixed point equations and model checking can
be done over appropriately defined logics such as PCTL*. However, in several
contexts such as modelling biochemical networks, queueing theory or probabilis-
tic dynamical systems, it is more convenient to view MDPs as transformers of
probability distributions over the states, and define objectives over these distri-
butions [1,5,12,17,44,47]. In this framework, we can, for instance, easily reason
about properties such as the probability in a set of states always being above a
given threshold or comparing the probability in two states at some future time
point. More concretely, in a chemical reaction network, we may require that the
concentration of a particular complex is never above 10%. Such distribution-based
properties cannot be expressed in PCTL* [12], and thus several orthogonal logics
have been defined [1,12,44] that reason about distributions.

Unfortunately, and perhaps surprisingly, when we view them as distribution
transformers even the simplest reachability and safety problems with respect to
probability distributions over states remain unsolved. The reason for this is a
number-theoretical hardness result that lies at the core of these questions. In [3],
it is shown that even with just Markov chains, reachability is as hard as the so-
called Skolem problem, and safety is as hard as the Positivity problem [55,
56], the decidability of both of which are long-standing open problems in linear
recurrence sequences. Moreover, synthesizing strategies that resolve the non-
determinism in MDPs to achieve an objective (whether reachability or safety)
is further complicated by the issue of how much memory can be allowed for the
strategy. As we show in Sect. 3, even for very simple examples, strategies for
safety can require infinite memory as well as randomization.

In light of these difficulties, what can one do to tackle these problems in
theory and in practice? In this paper, we take an over-approximation route to
approach these questions, not only to check existence of strategies for safety but
also synthesize them. Inspired by the success of invariant synthesis in program
verification, our goal is to develop a novel invariant-synthesis based approach
towards strategy synthesis in MDPs, viewed as transformers of distributions. In
this paper, we restrict our attention to a class of safety objectives on MDPs,
which are already general enough to capture several interesting and natural
problems on MDPs. Our contributions are the following:

1. We define the notion of inductive distributional invariants for safety in MDPs.
These are sets of probability distributions over states of the MDP, that (i)
contain all possible distributions reachable from the initial distribution, under
all strategies of an MDP, and (ii) are closed under taking the next step.

2. We show that such invariants provide sound and complete certificates for
proving safety objectives in MDPs. In doing so, we formalize the link between
strategies and distributional invariants in MDPs. This by itself does not help
us get effective algorithms in light of the hardness results above. Hence we
then focus on synthesizing invariants of a particular shape.

88 S. Akshay et al.

3. We develop two algorithms for automated synthesis of affine inductive distri-
butional invariants that prove safety in MDPs, and at the same time, synthe-
size the associated strategies.

– The first algorithm is restricted to synthesizing memoryless strategies
but is relatively complete, i.e., whenever a memoryless strategy and an
affine inductive distributional invariant that witness safety exist, we are
guaranteed to find them.

– The second algorithm can synthesize general strategies as well as memo-
ryless strategies, but is incomplete in general.

In both cases, we employ a template-based synthesis approach and reduce
synthesis to the existential first-order theory of reals, which gives a PSPACE
complexity upper bound. In the first case, this reduction depends on Farkas’
lemma. In the second case, we need to use Handelman’s theorem, a specialized
result for strictly positive polynomials.

4. We implement our approaches and show that for several practical and non-
trivial examples, affine invariants suffice. Further, we demonstrate that our
prototype tool can synthesize these invariants and associated strategies.

Finally, we discuss the generalization of our approach from affine to polynomial
invariants and some variants that our approach can handle.

1.1 Related Work

Distribution-based Safety Analysis in MDPs. The problem of checking
distribution-based safety objectives for MDPs was defined in [5] but a solution
was provided only in the uninitialized setting, where the initial distribution is not
given and also under the assumption that the target set is closed and bounded.
In contrast, we tackle both initialized and uninitialized settings, our target sets
are general affine sets and we focus on actually synthesizing strategies not just
proving existence.

Template-based Program Analysis. Template-based synthesis via the means of
linear/polynomial constraint solving is a standard approach in program analy-
sis to synthesizing certificates for proving properties of programs. Many of these
methods utilize Farkas’ lemma or Handelman’s theorem to automate the synthe-
sis of program invariants [20,27], termination proofs [6,14,23,28,57], reachabil-
ity proofs [8] or cost bounds [16,39,64]. The works [2,18,19,21,22,24,25,62,63]
utilize Farkas’ lemma or Handelman’s theorem to synthesize certificates for
these properties in probabilistic programs. While our algorithms build on the
ideas from the works on template-based inductive invariant synthesis in pro-
grams [20,27], the key novelty of our algorithms is that they synthesize a fun-
damentally different kind of invariants, i.e. distributional invariants in MDPs.
In contrast, the existing works on (probabilistic) program analysis synthesize
state invariants. Furthermore, our algorithms synthesize distributional invari-
ants together with MDP strategies. While it is common in controller synthesis

Invariant Synthesis for Affine Safety Objectives in MDPs 89

to synthesize an MDP strategy for a state invariant, we are not aware of any
previous work that uses template-based synthesis methods to compute MDP
strategies for a distributional invariant.

Other Approaches to Invariant Synthesis in Programs. Alternative approaches
to invariant synthesis in programs have also been considered, for instance via
abstract interpretation [29,30,33,60], counterexample guided invariant synthe-
sis (CEGIS) [7,10,34], recurrence analysis [32,42,43] or learning [35,61]. While
some of these approaches can be more scalable than constraint solving-based
methods, they typically do not provide relative completeness guarantees. An
interesting direction of future work would be to explore whether these alterna-
tive approaches could be used for synthesizing distributional invariants together
with MDP strategies more efficiently.

Weakest Pre-expectation Calculus. Expectation transformers and the weakest
pre-expectation calculus generalize Dijkstra’s weakest precondition calculus to
the setting of probabilistic programs. Expectation transformers were introduced
in the seminal work on probabilistic propositional dynamic logic (PPDL) [45]
and were extended to the setting of probabilistic programs with non-determinism
in [48,52]. Weakest pre-expectation calculus for reasoning about expected run-
time of probabilistic programs was presented in [40]. Intuitively, given a function
over probabilistic program outputs, the weakest pre-expectation calculus can be
used to reason about the supremum or the infimum expected value of the func-
tion upon executing the probabilistic program, where the supremum and the
infimum are taken over the set of all possible schedulers (i.e. strategies) used to
resolve non-determinism. When the function is the indicator function of some
output set of states, this yields the method for reasoning about the probability of
reaching the set of states. Thus, weakest pre-expectation calculus allows reason-
ing about safety with respect to sets of states. In contrast, we are interested in
reasoning about safety with respect to sets of probability distribution over states.
Moreover, while the expressiveness of this calculus allows reasoning about very
complex programs, its automation typically requires user input. In this work, we
aim for a fully automated approach to checking distribution-based safety.

2 Preliminaries

In this section, we recall basics of probabilistic systems and set up our notation.
We assume familiarity with the central ideas of measure and probability theory,
see [13] for a comprehensive overview. We write [n] := {1, . . . , n} to denote the
set of all natural numbers from 1 to n. For any set S, we use S to denote its
complement. A probability distribution on a countable set X is a mapping μ :
X → [0, 1], such that

∑
x∈X μ(x) = 1. Its support is denoted by supp(μ) = {x ∈

X | μ(x) > 0}. We write Δ(X) to denote the set of all probability distributions
on X. An event happens almost surely (a.s.) if it happens with probability 1.
We assume that countable sets of states S are equipped with an arbitrary but
fixed numbering.

90 S. Akshay et al.

Fig. 1. Our running example MDP. It comprises three states S = {A, B, C}, depicted
by rounded rectangles. In state A, there are two actions available, namely a and b. We
have δ(A, a, A) = 1 and δ(A, b, B) = 1, indicated by arrows. States B and C have only
one available action each, thus we omit explicitly labelling them.

2.1 Markov Systems

A (discrete time) Markov chain (MC) is a tuple M = (S, δ), where S is a finite
set of states and δ : S → Δ(S) a transition function, assigning to each state a
probability distribution over successor states. A Markov decision process (MDP)
is a tuple M = (S,Act , δ), where S is a finite set of states, Act is a finite
set of actions, overloaded to yield for each state s the set of available actions
Act(s) ⊆ Act , and δ : S × Act → Δ(S) is a transition function that for each
state s and (available) action a ∈ Act(s) yields a probability distribution over
successor states. For readability, we write δ(s, s′) and δ(s, a, s′) instead of δ(s)(s′)
and δ(s, a)(s′), respectively. By abuse of notation, we redefine S×Act := {(s, a) |
s ∈ S ∧ a ∈ Act(s)} to refer to the set of state-action pairs. See Fig. 1 for an
example MDP. This MDP is our running example and we refer to it throughout
this work to point out some of the peculiarities.

An infinite path in an MC is an infinite sequence ρ = s1s2 · · · ∈ Sω, such
that for every i ∈ N we have δ(si, si+1) > 0. A finite path � is a finite prefix
of an infinite path. Analogously, infinite paths in MDP are infinite sequences
ρ = s1a1s2a2 · · · ∈ (S × Act)ω such that ai ∈ Act(si) and δ(si, ai, si+1) > 0 for
every i ∈ N, and finite paths are finite prefixes thereof. We use ρi and �i to refer
to the i-th state in the given (in)finite path, and IPathsM and FPathsM for the
set of all (in)finite paths of a system M .

Semantics. A Markov chain evolves by repeatedly applying the probabilistic
transition function in each step. For example, if we start in state s1, we obtain the
next state s2 by drawing a random state according to the probability distribution
δ(s1). Repeating this ad infinitum produces a random infinite path. Indeed,
together with an initial state s, a Markov chain M induces a unique probability
measure PrM,s over the (uncountable) set of infinite paths [9].

This reasoning can be lifted to distributions over states, as follows. Suppose
we begin in μ0 = {s1 �→ 0.5, s2 �→ 0.5}, meaning that initially we are in state s1
or s2 with probability 0.5 each. Then, μ1(s′) = μ0(s1) ·δ(s1, s′)+μ0(s2) ·δ(s2, s′),
i.e. the probability to be in a state s′ in the next step is 0.5 times the prob-
ability of moving from s1 and s2 there, respectively. For an initial distribu-
tion, we likewise obtain a probability distribution over infinite paths by setting
PrM,μ0 [S] :=

∑
s∈S μ0(s) · PrM,s[S] for measurable S ⊆ IPathsM.

In contrast to Markov chains, MDPs also feature non-determinism, which
needs be resolved in order to obtain probabilistic behaviour. This is achieved

Invariant Synthesis for Affine Safety Objectives in MDPs 91

by (path) strategies, recipes to resolve non-determinism. Formally, a strategy
on an MDP classically is defined as a function π : FPathsM → Δ(Act),
which given a finite path � = s0a0s1a1 . . . sn yields a probability distribu-
tion π(�) ∈ Δ(Act(sn)) on the actions to be taken next. We write Π to
denote the set of all strategies. Fixing any strategy π induces a Markov chain
Mπ = (FPathsM, δπ), where for a state � = s0a0 . . . sn ∈ FPathsM the succes-
sor distribution is defined as δπ(�, �an+1sn+1) = π(�, an+1) · δ(sn, an+1, sn+1).
(Note that the state space of this Markov chain in general is countably infinite.)
Consequently, for each strategy π and initial distribution μ0 we also obtain a
unique probability measure PrMπ,μ0 on the infinite paths of M. (Technically,
the MC Mπ induces a probability measure over paths in Mπ, i.e. paths where
each element is a finite path of M, however this can be directly projected to a
measure over IPathsM.)

A one-step strategy (also known as memoryless or positional strategy) corre-
sponds to a fixed choice in each state, independent of the history, i.e. a mapping
π : S → Δ(Act). Fixing such a strategy induces a finite state Markov chain
Mπ = (S, δπ), where δπ(s, s′) =

∑
a∈Act(s) π(s)(a) · δ(s, a, s′). We write Π1 for

the set of all one-step strategies.
A sequence of one-step strategies (πi) ∈ Πω

1 induces a general strategy which
in each step i and state s chooses πi(s). Observe that aside from the state, such
a strategy only depends on the current step, also called Markov strategy.

2.2 MDPs as Distribution Transformers

Probabilistic systems typically are viewed as “random generators” for paths, and
we consequently investigate the (expected) behaviour of a generated path, i.e.
path properties. However, in this work we follow a different view, and treat
systems as transformers of distributions. Formally, fix a Markov chain M. For a
given initial distribution μ0, we can define the distribution at step i by μi(s) =
Prμ0 [{ρ ∈ IPathsM | ρi = s}]. We write μi = M(μ0, i) for the i-th distribution and
μ1 = M(μ0) for the “one-step” application of this transformation. Likewise, we
obtain the same notion for an MDP M combined with a strategy π, and write
μi = Mπ(μ0, i), μ1 = Mπ(μ0). In summary, for a given initial distribution, a
Markov chain induces a unique stream of distributions, and an MDP provides
one for each strategy.

This naturally invites questions related to this induced stream of distribu-
tions. In their path interpretation, queries such as reachability or safety, i.e.
asking the probability of reaching or avoiding a set of states, allow for simple,
polynomial time solutions [9,58]. However, the corresponding notions already
are surprisingly difficult in the space of distributions. Thus, we restrict to the
safety problem, which we introduce in the following. Intuitively, given a safe set
of distributions over states H ⊆ Δ(S), we are interested in deciding whether
the MDP can be controlled such that the stream of distributions always remains
inside H.

92 S. Akshay et al.

3 Problem Statement and Examples

Let M = (S,Act , δ) be an MDP and H ⊆ Δ(S) be a safe set. A distribution
μ0 is called H-safe under π if Mπ(μ0, i) ∈ H for all i ≥ 0, and H-safe if there
exists a strategy under which μ0 is safe. We mention two variants of the resulting
decision problem as defined in [5]:

– Initialized safety: Given an initial probability distribution μ0 and safe set H,
decide whether μ0 is H-safe.

– Uninitialized safety: Given a safe set H, decide whether there exists a distri-
bution μ which is H-safe.

Note that we have discussed neither the shape nor the representation of H, which
naturally plays an important role for decidability and complexity.

One may be tempted to think that the initialized variant is simpler, as more
input is given. However, this problem is known to be Positivity-hard1 already
for simple cases and already when H is defined in terms of rational constants!

Theorem 1 ([3]). The initialized safety problem for Markov chains and H
given as linear inequality constraint (H = {μ | μ(s) ≤ r, s ∈ S, r ∈ Q ∩ [0, 1]}),
is Positivity-hard.

Proof. In [3, Corollary 4], the authors show that the inequality version of the
Markov reachability problem, i.e. deciding whether there exists an i such that
μi(s) > r for a given rational r, is Positivity-hard. The result follows by
observing that safety is the negation of reachability.
�

Thus, finding a decision procedure for this problem is unlikely, since it would
answer several fundamental questions of number theory, see e.g. [41,55,56]. In
contrast, the uninitialized problem is known to be decidable for safe sets H given
as closed, convex polytopes (see [5] for details and [1] for a different approach
specific to Markov chains). In a nutshell, we can restrict to the potential fixpoints
of M, i.e. all distributions μ such that μ = Mπ(μ, i) for some strategy π. It
turns out that this set of distributions is a polytope and the problem – glossing
over subtleties – reduces to checking whether the intersection of H with this
polytope is non-empty. However, we note that the solution of [5] does not yield
the witness strategy. In the following, we thus primarily focus on the initialized
question. In Sect. 6, we then show how our approach, which also synthesizes a
witness strategy, is directly applicable to the uninitialized case.

In light of the daunting hardness results for the general initialized problem,
we restrict to affine linear safe sets, i.e. H which are specified by a finite set of
affine linear inequalities. Formally, these sets are of the form H = {μ ∈ Δ(S) |
∧N

j=1(c
j
0 +

∑n
i=1 cj

i · μ(si)) ≥ 0}, where S = {s1, . . . , sn}, cj
i are real-valued

1 Intuitively, the Positivity problem asks for a given rational (or integer or real)
matrix M , whether (Mn)1,1 > 0 for all n [54]. This problem (and its many variants)
has been the subject of intense research over the last 10–15 years, see e.g. [55]. Yet,
quite surprisingly, it still remains open in its full generality.

Invariant Synthesis for Affine Safety Objectives in MDPs 93

constants and N is the number of affine linear inequalities that define H. Our
problem formally is given by the following query.

Problem Statement Given an MDP M, initial distribution μ0, and affine
linear safe set H, (i) decide whether μ0 is H-safe, and (ii) if yes, then syn-
thesize a strategy for M which ensures safety.

Note that the problem strictly subsumes the special case when H is defined in
terms of rational constants, and our approach aims to solve both problems. Also,
note that Theorem 1 still applies, i.e. this “simplified” problem is Positivity-
hard, too. We thus aim for a sound and relatively complete approach. Intuitively,
this means that we restrict our search to a sub-space of possible solutions and
within this space provide a complete answer. To give an intuition for the required
reasoning, we provide an example safety query together with a manual proof.

Example 1. Consider our running example from Fig. 1. Suppose the initial distri-
bution is μ0 = {A �→ 1

3 , B �→ 1
3 , C �→ 1

3} and (affine linear) H = {μ | μ(C) ≥ 1
4}.

This safety query is satisfiable, by, e.g., choosing action b, as we show in the
following. First, observe that the i + 1-th distribution is μi+1(A) = 1

2 · μi(C),
μi+1(B) = μi(A), and μi+1(C) = μi(B) + 1

2μi(C). Thus, we cannot directly
prove by induction that μi(C) ≥ 1

4 , we also need some information about μi(B)
or μi(A) to exclude, e.g., μi = {A �→ 3

4 , C �→ 1
4}, where μi+1 would violate

the safety constraint. We invite the interested reader to try to prove that μ0 is
indeed H-safe under the given strategy to appreciate the subtleties.

We proceed by proving that μi(C) ≥ 1
4 and additionally μi(A) ≤ μi(C)

by induction. The base case follows immediately, thus suppose that μi satis-
fies these constraints. For μi+1(A) ≤ μi+1(C) observe that μi+1(A) = 1

2μi(C)
and μi+1(C) = 1

2μi(C) + μi(B). Since μi(B) ≥ 0, the claim follows. To prove
μi+1(C) ≥ 1

4 observe that μi(A) ≤ 1
2 since μi(A) ≤ μi(C) by induction hypoth-

esis and distributions sum up to 1. Moreover, μi+1(C) = μi(B) + 1
2μi(C) =

1
2μi(B) + 1

2 − 1
2μi(A) by again inserting the fact that distributions sum up to 1.

Then, μi+1(C) = 1
2 − 1

2μi(A) + 1
2μi(B) ≥ 1

2 − 1
2μi(A) ≥ 1

2 − 1
4 ≥ 1

4 . �

Thus, already for rather simple examples the reasoning is non-trivial. To further
complicate things, the structure of strategies can also be surprisingly complex:

Example 2. Again consider our running example from Fig. 1 with initial dis-
tribution μ0 = {A �→ 3

4 , B �→ 1
4} and safe set H = {μ | μ(B) = 1

4}. This
safety condition is indeed satisfiable, however the (unique) optimal strategy
requires both infinite memory as well as randomization with arbitrarily small
fractions! In step 1, we require choosing a with 2

3 and b with 1
3 to satisfy the

safety constraint in the second step, getting μ1 = {A �→ 1
2 , B �→ 1

4 , C �→ 1
4}.

For step 2, we require choosing both a and b with probability 1
2 each, yielding

μ2 = {A �→ 3
8 , B �→ 1

4 , C �→ 3
8}. Continuing this strategy, we obtain at step i

that μi = {A �→ 1
4 + 1

2i+1 , B �→ 1
4 , C �→ 1

2 − 1
2i+1 } and action a is chosen with

probability 1/(2i−1 + 1), converging to 1. �

94 S. Akshay et al.

In the following, we provide two algorithms that handle both examples. Our first
algorithm focusses on memoryless strategies, the second considers a certain type
of infinite memory strategies. Essentially, the underlying idea is to automatically
synthesize a strategy together with such inductive proofs of safety.

4 Proving Safety by Invariants

We now discuss our principled idea of proving safety by means of (inductive)
invariants, taking inspiration from research on safety analysis in programs [20,
27]. We first show that considering strategies which are purely based on the
current distribution over states are sufficient. Then, we show that inductive
invariants are a sound and complete certificate for safety. Together, we obtain
that an initial distribution is H-safe if and only if there exists an invariant set
I and distribution strategy π such that (i) the initial distribution is contained
in I, (ii) I is a subset of the safe set H, and (iii) I is inductive under π, i.e. if
μ ∈ I then Mπ(μ) ∈ I. In the following section, we then show how we search
for invariants and distribution strategies of a particular shape.

4.1 Distribution Strategies

We show that distribution strategies π : Δ(S) → Π1, yielding for each distribu-
tion over states a one-step strategy to take next, are sufficient for the problem
at hand. More formally, we want to show that an H-safe distribution strategy
exists if and only if there exists any H-safe strategy.

First, observe that distribution strategies are a special case of regular path
strategies. In particular, for any given initial distribution, we obtain a uniquely
determined stream of distributions as μi+1 = Mπ(μi)(μi), i.e. the distribution
μi+1 is obtained by applying the one-step strategy π(μi) to μi. In turn, this
lets us define the Markov strategy π̂i(s) = π(μi)(s). For simplicity, we identify
distribution strategies with their induced path strategy.

Next, we argue that restricting to distribution strategies is sufficient.

Theorem 2. An initial distribution μ0 is H-safe if and only if there exists a
distribution strategy π such that μ0 is H-safe under π.

Proof (Sketch). The full proof can be found in [4, Sec. 4.1]. Intuitively, only the
“distribution” behaviour of a strategy is relevant and we can sufficiently replicate
the behaviour of any safe strategy by a distribution strategy.
�

In this way, each MDP corresponds to a (uncountably infinite) transition
system TM = (Δ(S), T) where (μ, μ′) ∈ T if there exists a one-step strategy
π such that μ′ = Mπ(μ). Note that TM is a purely non-deterministic system,
without any probabilistic behaviour. So, our decision problem is equivalent to
asking whether the induced transition system TM can be controlled in a safe
way. Note that TM is uncountably large and uncountably branching.

Invariant Synthesis for Affine Safety Objectives in MDPs 95

4.2 Distributional Invariants for MDP Safety

We now define distributional invariants in MDPs and show that they provide
sound and complete certificates for proving initialized (and uninitialized) safety.

Distributional Invariants in MDPs. Intuitively, a distributional invariant is a
set of probability distributions over MDP states that contains all probability
distributions that can arise from applying a strategy to an initial probability
distribution, i.e. the complete stream μi. Hence, similar to the safe set H, dis-
tributional invariants are also defined to be subsets of Δ(S).

Definition 1 (Distributional Invariants). Let μ0 ∈ Δ(S) be a probability
distribution over S and π be a strategy in M. A set I ⊆ Δ(S) is said to be a
distributional invariant for μ0 under π if the sequence of probability distributions
induced by applying the strategy π to the initial probability distribution μ0 is
contained in I, i.e. if Mπ(μ0, i) ∈ I for each i ≥ 0.

A distributional invariant I is said to be inductive under π, if we furthermore
have that Mπ(μ) ∈ I holds for any μ ∈ I, i.e. if I is “closed” under application
of Mπ to any probability distribution contained in I.

Soundness and Completeness for MDP Safety. The following theorem shows
that, in order to solve the initialized (and uninitialized) safety problem, one can
equivalently search for a distributional invariant that is fully contained in H.
Furthermore, it shows that one can without loss of generality restrict the search
to inductive distributional invariants.

Theorem 3 (Sound and Complete Certificate). Let μ0 ∈ Δ(S) be a prob-
ability distribution over S, π be a strategy in M, and H ⊆ Δ(S) be a safe set.
Then μ0 is H-safe under π if and only if there exists an inductive distributional
invariant I for μ0 and π such that I ⊆ H.

The proof can be found in [4, Sec. 4.2].
Thus, in order to solve the initialized safety problem for μ0, it suffices to

search for (i) a strategy π and (ii) an inductive distributional invariant I for μ0

and π such that I ⊆ H. On the other hand, in order to solve the uninitialized
safety problem, it suffices to search for (i) an initial probability distribution μ0,
(ii) strategy π, and (iii) an inductive distributional invariant I for μ0 and π such
that I ⊆ H. In the following, we provide a fully automated, sound and relatively
complete method of deciding the existence of such an invariant and strategy.

5 Algorithms for Distributional Invariant Synthesis

We now present two algorithms for automated synthesis of strategies and induc-
tive distributional invariants towards solving distribution safety problems in
MDPs. The two algorithms differ in the kind of strategies they consider and,
as a consequence of differences in the involved expressions, also in their com-
pleteness guarantees. For readability, we describe the algorithms in their basic

96 S. Akshay et al.

form applied to the initialized variant of the safety problem and discuss further
extensions in Sect. 6. In particular, our approach is also directly applicable to
the uninitialized variant, as we describe there.

We say that an inductive distributional invariant is affine if it can be speci-
fied in terms of (non-strict) affine inequalities, which we formalize below. Both
algorithms jointly synthesize a strategy and an affine inductive distributional
invariant by employing a template-based synthesis approach. In particular, they
fix symbolic templates for each object that needs to be synthesized, encode
the defining properties of each object as constraints over unknown template
variables, and solve the system of constraints by reduction to the existential
first-order theory of the reals.

For example, a template for an affine linear constraint on distributions Δ(S)
is given by aff(μ) = (c0 + c1 · μ(s1) + · · ·+ cn · μ(sn) ≥ 0). Here, the variables c0
to cn, written in grey for emphasis, are the template variables. For fixed values
of these variables the expression aff is a concrete affine linear predicate over
distributions. Thus, we can ask questions like “Do there exist values for ci such
that for all distributions μ we have that aff(μ) implies aff(Mπ(μ))?”. This is
a sentence in the theory of reals – however with quantifier alternation. As a
next step, template-based synthesis approaches then employ various quantifier
elimination techniques to convert such expressions into equisatisfiable sentences
in, e.g., the existential theory of reals, which is decidable in PSPACE [15].

Difference between the Algorithms. Our two algorithms differ in their appli-
cability and the kind of completeness guarantees that they provide. In terms
of applicability, the first algorithm only considers memoryless strategies, while
the second algorithm searches for distribution strategies specified as fractions
of affine linear expressions. (We discuss an extension to rational functions in
Sect. 6.) In terms of completeness guarantees, the first algorithm is (relatively)
complete in the sense that it is guaranteed to compute a memoryless strategy
and an affine inductive distributional invariant that prove safety whenever they
exist. In contrast, the second algorithm does not provide the same level of com-
pleteness.

Notation. In what follows, we write ≡ to denote (syntactic) equivalence of expres-
sions, to distinguish from relational symbols used inside these expressions, such
as “=”. For example Φ(x) ≡ x = 0 means that Φ(x) is the predicate x = 0.
Moreover, (x1, . . . , xn) denotes a symbolic probability distribution over the state
space S = (s1, . . . , sn), where xi is a symbolic variable that encodes the prob-
ability of the system being in si. We use boldface notation x = (x1, . . . , xn)
to denote the vector of symbolic variables. Thus, the above example would be
written aff(x) ≡ c0 + c1 · x1 + · · · + cn · xn ≥ 0. Since we often require vectors
to represent a distribution, we write x ∈ Δ(S) as abbreviation for the predicate∧n

i=1(0 ≤ xi ≤ 1) ∧ (
∑n

i=1xi = 1).

Algorithm Input and Assumptions. Both algorithms take as input an MDP M =
(S,Act , δ) with S = {s1, . . . , sn}. They also take as input a safe set H ⊆ Δ(S).

Invariant Synthesis for Affine Safety Objectives in MDPs 97

We assume that H is specified by a boolean predicate over n variables as a logical
conjunction of NH ∈ N0 affine inequalities, and that it has the form

H(x) ≡ (x ∈ Δ(S)) ∧
∧NH

i=1
(hi(x) ≥ 0),

where the first term imposes that x is a probability distribution over S and
hi(x) = hi

0 + hi
1 · x1 + · · · + hi

n · xn is an affine expression over x with real-
valued coefficients hi

j for each i ∈ [NH] and j ∈ {0, . . . , n}. (Note that hi
j are not

template variables but fixed values, given as input.) Next, the algorithms take
as input an initial probability distribution μ0 ∈ Δ(S). Finally, the algorithms
also take as input technical parameters. Intuitively, these describe the size of
used symbolic templates, explained later. For the remainder of the section, fix
an initialized safety problem, i.e. an M, safe set H of the required form, and an
initial distribution μ0.

5.1 Synthesis of Affine Invariants and Memoryless Strategies

We start by presenting our first algorithm, which synthesizes memoryless strate-
gies and affine inductive distributional invariants. We refer to this algorithm as
AlgMemLess. The algorithm proceeds in the following four steps:

1. Setting up Templates. The algorithm fixes symbolic templates for the memo-
ryless strategy π and the affine inductive distributional invariant I. Note that
the values of the symbolic template variables at this step are unknown and
are to be computed in subsequent steps.

2. Constraint Collection. The algorithm collects the constraints which encode
that π is a (memoryless) strategy, that I contains the initial probability dis-
tribution μ0, that I is an inductive distributional invariant with respect to
π and μ0, and that I is contained within H. This step yields a system of
affine constraints over symbolic template variables that contain universal and
existential quantifiers.

3. Quantifier Elimination. The algorithm eliminates universal quantifiers from
the above constraints to reduce it to a system of purely existentially quanti-
fied system of polynomial constraints over the symbolic template variables.
Concretely, the first algorithm achieves this by application of Farkas’ lemma.

4. Constraint Solving. The algorithm solves the resulting system of constraints
by using an off-the-shelf solver to compute concrete values for symbolic tem-
plate variables specifying the strategy π and invariant I.

We now describe each step in detail.

Step 1: Setting up Templates. The algorithm sets templates for π and I as
follows:

– Since this algorithm searches for memoryless strategies, the probability of
taking an action aj in state si is always the same, independent of the current
distribution. Hence, our template for π consists of a symbolic template vari-
able psi,aj

for each si ∈ S, aj ∈ Act(si). We write psi,◦ = (psi,a1 , . . . , psi,am
)

to refer to the corresponding distribution in state si.

98 S. Akshay et al.

– The template of I is given by a boolean predicate specified by a conjunction
of NI affine inequalities, where NI is the template size and is an algorithm
parameter. In particular, the template of I looks as follows:

I(x) ≡ (x ∈ Δ(S)) ∧
∧NI

i=1
(ai

0 + ai
1 · x1 + · · · + ai

n · xn ≥ 0).

The first predicate enforces that I only contains vectors that define probability
distributions over S.

Step 2: Constraint Collection. We now collect the constraints over symbolic
template variables which encode that π is a memoryless strategy, that I contains
the initial distribution μ0, that I is an inductive distributional invariant under
π, and that I is contained in H.

– For π to be a strategy, we only need to ensure that each psi,◦ is a probability
distribution over the set of available actions at every state si. Thus, we set

Φstrat ≡
∧n

i=1
(psi,◦ ∈ Δ(Act(si))) .

– For I to be a distributional invariant for π and μ0 as well as to be inductive,
it suffices to enforce that I contains μ0 and that I is closed under application
of π. Thus, we collect two constraints:

Φinitial ≡ I(μ0) ≡
∧NI

i=1
(ai

0 + ai
1 · μ1

0 + . . . ai
n · μn

0 ≥ 0), and

Φinductive ≡ (∀x ∈ R
n. I(x) =⇒ I(step(x))) ,

where step(x)(xi) =
∑

sk∈S,aj∈Act(sk)
psk,aj

· δ(sk, aj , si) ·xj yields the distri-
bution after applying one step of the strategy induced by Φstrat to x.

– For I to be contained in H, we enforce the constraint:

Φsafe ≡ (∀x ∈ R
n. I(x) =⇒ H(x)) .

Step 3: Quantifier Elimination. Constraints Φstrat and Φinitial are purely exis-
tentially quantified over symbolic template variables, thus we can solve them
directly. However, Φinductive and Φsafe contain both universal and existential
quantifiers, which are difficult to handle. In what follows, we show how the
algorithm translates these constraints into equisatisfiable purely existentially
quantified constraints. In particular, our translation exploits the fact that both
Φinductive and Φsafe can, upon splitting the conjunctions on the right-hand side
of implications into conjunctions of implications, be expressed as conjunctions
of constraints of the form

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (affexp(x) ≥ 0).

Here, each affexpi(x) and affexp(x) is an affine expression over x whose affine
coefficients are either concrete real values or symbolic template variables.

Invariant Synthesis for Affine Safety Objectives in MDPs 99

In particular, we use Farkas’ lemma [31] to remove universal quantification
and translate the constraint into an equisatisfiable existentially quantified system
of constraints over the symbolic template variables, as well as fresh auxiliary
variables that are introduced by the translation. For completeness, we briefly
recall (a strengthened and adapted version of) Farkas’ lemma.

Lemma 1 ([31,37]). Let X = {x1, . . . , xn} be a finite set of real-valued vari-
ables, and consider the following system of N ∈ N affine inequalities over X :

Φ :

⎧
⎪⎪⎨

⎪⎪⎩

c10 + c11 · x1 + · · · + c1n · xn ≥ 0
...

cN
0 + cN

1 · x1 + · · · + cN
n · xn ≥ 0

.

Suppose that Φ is satisfiable. Then Φ entails an affine inequality φ ≡ c0+c1 ·x1+
· · ·+cn ·xn, i.e. Φ =⇒ φ, if and only if φ can be written as a non-negative linear
combination of affine inequalities in Φ, i.e. if and only if there exist y1, . . . , yn ≥ 0
such that c1 =

∑N
j=1 yj · cj

1, . . . , cn =
∑N

j=1 yj · cj
n.

Note that, for any implication appearing in Φinductive and Φsafe, the system
of constraints on the left-hand side is simply I(x), and the satisfiability of I(x)
is enforced by Φinitial. Hence, we may apply Farkas lemma to translate each
constraint with universal quantification into an equivalent purely existentially
quantified constraint. In particular, for any constraint of the form

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (affexp(x) ≥ 0),

we introduce fresh template variables y1, . . . , yN and translate it into the system
of purely existentially quantified constraints

(y1 ≥ 0)∧ · · · ∧ (yN ≥ 0)∧ (affexp(x) ≡F y1 · affexp1(x)+ · · ·+ yN · affexpN (x)).

Here, we use affexp(x) ≡F y1 · affexp1(x) + · · · + yN · affexpN (x) to denote
the set of n + 1 equalities over the symbolic template variable and y1, . . . , yN

which equate the constant coefficients as well as the linear coefficients of each
xi on two sides of the equivalence, i.e. exactly those equalities which we obtain
from applying Farkas’ lemma. We highlight that the expressions affexp are only
affine linear for fixed existentially quantified variables, i.e. they are in general
quadratic.

Step 4: Constraint Solving. Finally, we feed the resulting system of existentially
quantified polynomial constraints over the symbolic template variables as well as
the auxiliary variables introduced by applying Farkas’ lemma to an off-the-shelf
constraint solver. If the solver outputs a solution, we conclude that the computed
invariant I is an inductive distributional invariant for the strategy π and initial
distribution μ0, and that I is contained in H. Therefore, by Theorem 3, we
conclude that μ0 is H-safe under π.

100 S. Akshay et al.

Fig. 2. List of constraints generated in Step 2 for Example 1 with NI = 1. The
uppercase letters correspond to variables indicating the distribution in these states,
i.e. A refers to μ(A). These also are the universally quantified variables, which will be
handled by the quantifier elimination in Step 3. The template variables are written in
grey. For readability, we omit the constraints required for state distributions μ ∈ Δ(S),
i.e. A ≥ 0 etc. The actual query sent to the solver in Step 4 after quantifier elimination
comprises 27 constraints with 21 variables.

Theorem 4. Soundness: Suppose AlgMemLess returns a memoryless strategy π
and an affine inductive distributional invariant I. Then, μ0 is H-safe under π.

Completeness: If there exist a memoryless strategy π and an affine inductive
distributional invariant I such that I ⊆ H and μ0 is H-safe under π, then there
exists a minimal value of the template size NI ∈ N such that π and I are produced
by AlgMemLess.

Complexity: The runtime of AlgMemLess is in PSPACE in the size of the
MDP, the encoding of the safe set H and the template size parameter NI ∈ N.

The proof can be found in [4, Sec. 5.1]. We comment on the PSPACE upper
bound on the complexity of AlgMemLess. The upper bound holds since the appli-
cation of Farkas’ lemma reduces synthesis to solving a sentence in the existential
first-order theory of the reals and since the size of the sentence is polynomial in
the sizes of the MDP, the encoding of the safe set H and the invariant template
size Ni. However, it is unclear whether the resulting constraints could be solved
more efficiently, and the best known upper bound on the time complexity of
algorithms for template-based affine inductive invariant synthesis in programs is
also PSPACE [8,27]. Designing more efficient algorithms for solving constraints
of this form would lead to better algorithms both for the safety problem stud-
ied in this work and for template-based affine inductive invariant synthesis in
programs.

Example 3. For completeness, we provide the constraints generated in Step 2
for Example 1 with NI = 1 for readability, i.e. our running example Fig. 1 with
μ0 = {A �→ 1

3 , B �→ 1
3 , C �→ 1

3} and H = {μ | μ(C) ≥ 1
4}, in Fig. 2.

To conclude this section, we emphasize that our algorithm simultaneously
synthesizes both the invariant and the witnessing strategy, which is the key
component to achieve relative completeness.

Invariant Synthesis for Affine Safety Objectives in MDPs 101

5.2 Synthesis of Affine Invariants and General Strategies

We now present our second algorithm, which additionally synthesizes distribution
strategies (of a particular shape) together with an affine inductive distributional
invariant. We refer to it as AlgDist. The second algorithm proceeds in the anal-
ogous four steps as the first algorithm, AlgMemLess. Hence, in the interest of
space, we only discuss the differences compared to AlgMemLess.

Step 1: Setting up Templates. The algorithm sets up templates for π and I. The
template for I is defined analogously as in Sect. 5.1. However, as we now want
to search for a strategy π that need not be memoryless but instead may depend
on the current distribution, we need to consider a more general template. In
particular, the template for the probability psi,aj

of taking an action aj in state
si is no longer a constant value. Instead, psi,aj

(x) is a function of the probability
distribution x of the current state of the MDP, and we define its template to be
a quotient of two affine expressions for each si ∈ S and aj ∈ Act(si):

psi,aj
(x) ≡ num(si, aj)(x)

den(si)(x)
≡ ri,j

0 + ri,j
1 · x1 + · · · + ri,j

n · xn

si
0 + si

1 · x1 + · · · + si
n · xn

.

(In Sect. 6, we discuss how to extend our approach to polynomial expressions for
numerator and denominator, i.e. rational functions.) Note that the coefficients
in the numerator depend both on the state si and the action aj , whereas the
coefficients in the denominator depend only on the state si. This is because we
only use the affine expression in the denominator as a normalization factor to
ensure that psi,ai

indeed defines a probability.

Step 2: Constraint Collection. As before, the algorithm now collects the con-
straints over symbolic template variables which encode that π is a strategy, that
I is an inductive distributional invariant, and that I is contained in H. The
constraints Φinitial, Φinductive, and Φsafe are defined analogously as in Sect. 5.1,
with the necessary adaptation to step(x). For the strategy constraint Φstrat we
now need to take additional care to ensure that each quotient template defined
above does not induce division by 0 and that these values indeed correspond
to a distribution over the available actions. We ensure this by the following
constraint:

Φstrat ≡ ∀x ∈ R
n. I(x) =⇒

∧n

i=1

⎛

⎜
⎜
⎜
⎝

∧

aj∈Act(si)
num(si, aj)(x) ≥ 0 ∧

den(si)(x) ≥ 1 ∧
∑

aj∈Act(si)
num(si, aj)(x) = den(si)(x).

⎞

⎟
⎟
⎟
⎠

.

The first two constraints ensure that all quantities are positive and we never
divide by 0. The third means that the numerators sum up to the denominator.
Together, this ensures the desired result, i.e. psi,◦(x) ∈ Δ(Act(si)) whenever
x ∈ Δ(S). Note that the ≥ 1 constraint for the denominator can be replaced by
an arbitrary constant > 0, since we can always rescale all involved coefficients.

102 S. Akshay et al.

Step 3: Quantifier Elimination. The constraints Φstrat, Φinitial, and Φsafe can be
handled analogously to Sect. 5.1. In particular, by applying Farkas’ lemma these
can be translated into an equisatisfiable purely existentially quantified system
of polynomial constraints, and our algorithm applies this translation.

However, the constraint Φinductive now involves quotients of affine expres-
sions: Upon splitting the conjunction on the right-hand side of the implication
in Φinductive into a conjunction of implications, the inequalities on the right-hand
side of these implications contain templates for strategy probabilities psi,aj

(x).
The algorithm removes the quotients by multiplying both sides of the inequal-
ity by denominators of each quotient. (Recall that each denominator is positive
by the constraint Φstrat.) This results in the multiplication of symbolic affine
expressions, hence Φinductive becomes a conjunction of implications of the form

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (polyexp(x) ≥ 0).

Here, each affexpi(x) is an affine expression over x, but polyexp(x) is now a
polynomial expression over x. Hence we cannot apply a Farkas’ lemma-style
result to remove universal quantifiers.

Instead, we motivate our translation by recalling Handelman’s theorem [38],
which characterizes strictly positive polynomials over a set of affine inequalities.
It will allow us to soundly translate Φinductive into an existentially quantified sys-
tem of constraints over the symbolic template variables, as well as fresh auxiliary
variables that are introduced by the translation.

Theorem 5 ([38]). Let X = {x1, . . . , xn} be a finite set of real-valued variables,
and consider the following system of N ∈ N non-strict affine inequalities over
X :

Φ :

⎧
⎪⎪⎨

⎪⎪⎩

c10 + c11 · x1 + · · · + c1n · xn ≥ 0
...

cN
0 + cN

1 · x1 + · · · + cN
n · xn ≥ 0

.

Let Prod(Φ) = {
∏t

i=1 φi | t ∈ N0, φi ∈ Φ} be the set of all products of finitely
many affine expressions in Φ, where the product of 0 affine expressions is a
constant expression 1. Suppose that Φ is satisfiable and that {y | y |= Φ}, the
set of values satisfying Φ, is topologically compact, i.e. closed and bounded. Then
Φ entails a polynomial inequality φ(x) > 0 if and only if φ can be written as
a non-negative linear combination of finitely many products in Prod(Φ), i.e. if
and only if there exist y1, . . . , yn ≥ 0 and φ1, . . . , φn ∈ Prod(Φ) such that φ =
y1 · φ1 + · · · + yn · φn.

Notice that we cannot directly apply Handelman’s theorem to a constraint

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (polyexp(x) ≥ 0),

since the polynomial inequality on the right-hand-side of the implication is non-
strict whereas the polynomial inequality in Handelman’s theorem is strict. How-
ever, the direction needed for the soundness of translation holds even with the

Invariant Synthesis for Affine Safety Objectives in MDPs 103

non-strict polynomial inequality on the right-hand side. In particular, it clearly
holds that if polyexp can be written as a non-negative linear combination of
finitely many products of affine inequalities, then polyexp is non-negative when-
ever all affine inequalities are non-negative. Hence, we may use the translation
in Handelman’s theorem to translate each implication in Φinductive into a system
of purely existentially quantified constraints.

As Handelman’s theorem does not impose a bound on the number of products
of affine expressions that might appear in the translation, we parametrize the
algorithm with an upper bound K on the maximal number of affine inequalities
appearing in each product. To that end, we define ProdK(Φ) = {

∏t
i=1 φi | 0 ≤

t ≤ K, φi ∈ Φ}. Let MK = |ProdK(Φ)| be the total number of such products
and ProdK(Φ) = {φ1, . . . , φMK

}. Then, for any constraint of the form

∀x ∈ R
n. (affexp1(x) ≥ 0) ∧ · · · ∧ (affexpN (x) ≥ 0) =⇒ (polyexp(x) ≥ 0),

we introduce fresh template variables y1, . . . , yMK
and translate it into the sys-

tem of purely existentially quantified constraints

(y1 ≥ 0) ∧ · · · ∧ (yN ≥ 0) ∧ (polyexp(x) ≡H y1 · φ1(x) + · · · + yMK
· φMK

(x)).

Here, polyexp(x) ≡H y1 ·φ1(x)+ · · ·+yMK
·φMK

(x) denotes the set of equalities
over template variables and y1, . . . , yMK

which equate the constant coefficients
as well as the coefficients of each monomial over {x1, . . . , xk} of degree at most
K on two sides of the equivalence, as specified by Handelman’s theorem.

While our translation into a purely existentially quantified constraints is not
complete due to the non-strict polynomial inequality and due to the parametriza-
tion by K, Handelman’s theorem justifies the translation as it indicates that the
translation is “close to complete” for sufficiently large values of K.

Step 4: Constraint Solving. This step is analogous to Sect. 5.1 and we use an off-
the-shelf polynomial constraint solver to handle the resulting system of purely
existentially quantified polynomial constraints. If the solver outputs a solution,
we conclude that the computed I is an inductive distributional invariant for the
computed strategy π and initial distribution μ0, and that I is contained in H.
Therefore, by Theorem 3, we conclude that μ0 is H-safe under π.

Theorem 6. Soundness: Suppose AlgDist returns a strategy π and an affine
inductive distributional invariant I. Then, π is H-safe for μ0.

Complexity: For any fixed parameter K ∈ N, the runtime of AlgDist is in
PSPACE in the size of the MDP and the template size parameter NI ∈ N.

The proof can be found in [4, Sec. 5.2].

6 Discussion, Extensions, and Variants

With our two algorithms in place, we remark on several interesting details and
possibilities for extensions.

104 S. Akshay et al.

Polynomial Expressions. Our second algorithm can also be extended to synthe-
sizing polynomial inductive distributional invariants, i.e. instead of defining the
invariant I through a conjunction of affine linear expressions we could synthesize
polynomial expressions such as x2

1+x2 ·x3 ≤ 0.5. This can be achieved by using
Putinar’s Positivstellensatz [59] instead of Handelman’s theorem in Step 3. This
technique has recently been used for generating polynomial inductive invariants
in programs in [20], and our translation in Step 3 can be analogously adapted to
synthesize polynomial inductive distributional invariants up to a specified degree.
In the same way, instead of requiring that H is given as a conjunction of affine
linear constraints, we can also handle the case of polynomial constraints. The
same holds true for the probabilities of choosing certain actions psi,aj

(x). While
we have defined these as fractions of affine linear expressions, we could replace
them with rational functions, which we chose to exclude for sake of readability.

Uninitialized and Restricted Initial Case. We remark that we can directly incor-
porate the uninitialized case in our algorithm. In particular, instead of requiring
that I(μ0) holds for the concretely given initial values, we can instead exis-
tentially quantify over the values of μ0(si) and add the constraint that μ0 is
a distribution, i.e. μ0(si) ∈ Δ(S). This does not add universal quantification,
thus we do not need to apply any quantifier elimination for these variables. This
also subsumes and generalizes the ideas of [5], which observes that checking
whether a fixpoint of the transition dynamics lies within H is sufficient. Choos-
ing I = {μ∗} where μ∗ is such a fixpoint satisfies all of our constraints. See [4,
Sec. 6] for details.

Our algorithm is also able to handle the “intermediate” case, as follows. The
uninitialized case leaves absolute freedom in the choice of initial distribution,
while the initialized case concretely specifies one initial distribution. Here, we
could as well impose some constraints on the initial distribution without fixing it
completely, i.e. ask whether there exists an H-safe initial distribution μ0 which
satisfies a predicate Φinit. If Φinit is a conjunction of affine linear constraints, we
can directly handle this query, too. Note that both initialized and uninitialized
are special cases thereof.

Non-Inductive Initial Steps. Instead of requiring to synthesize an invariant which
contains the initial distribution, we can explicitly write down the first k dis-
tributions and only then require an invariant and strategy to be found. More
concretely, the set of distributions that can be achieved in a given step k while
remaining in H can be explicitly computed, denote this set as Δk. For a different
perspective, this describes the set of states reachable in TM within k steps and
corresponds to “unrolling” the MDP for a fixed number of steps. This then goes
hand in hand with the above “restricted initial case”, where we ask whether there
exists an H-safe distribution in Δk. We conjecture that this could simplify the
search for distributional invariants for systems which have a lot of “transient”
behaviour, as observed in searching for invariants for state reachability [11].

Invariant Synthesis for Affine Safety Objectives in MDPs 105

Fig. 3. Our Split toy example. The MDP comprises two disconnected parts. Probability
mass flows from A to B and from C to D under all strategies.

7 Implementation and Evaluation

While the main focus of our contribution lies on the theory, we validate the appli-
cability through an unoptimized prototype implementation. We implemented
our approach in Python 3.10, using SymPy 1.11 [50] to handle and simplify sym-
bolic expressions, and PySMT 0.9 [36] to abstract communication with constraint
solvers. We use z3 4.8 [53] and mathsat 5.6 [26] as back-ends. Our experiments
were executed on consumer hardware (AMD Ryzen 3600 CPU with 16 GB
RAM).

Caveats. While the existential (non-linear) theory of the reals is known to be
decidable, practical algorithms are less explored than, for example, SAT solving.
In particular, runtimes are quite sensitive to minor changes in the input struc-
ture and initial randomization (many solvers apply randomized algorithms). We
observed differences of several orders of magnitude (going from seconds to hours)
simply due to restarting the computation (leading to different initial seeds). Sim-
ilarly, by strengthening the antecedents of implications by known facts, we also
observed significant improvements. Concretely, given that we have constraints of
the form I(x) =⇒ H(x) and I(x) =⇒ Φ(x), we observed that changing the sec-
ond constraint to I(x) ∧ H(x) =⇒ Φ(x) would drastically improve the runtime
even though the two are semantically equivalent.

This suggests that both improvements of our implementation as well as fur-
ther work on constraint solvers are likely to have a significant impact on the
runtime.

Models. Aside from our running example of Fig. 1, which we refer to as Running
here, we consider two further toy examples.

The first model, called Chain, is a Markov chain defined as follows: We con-
sider the states S = {s1, . . . , s10} and set δ(si) = {si+1 �→ 1} for all i < 10 and
δ(s10) = {s9 �→ 1

2 , s10 �→ 1
2}. The initial distribution is given as μ0(si) = 1

10 for
all si ∈ SS and the safe set by H = {μ(s10) ≥ 1

10}. We are mainly interested in
this model to investigate demonstrate applicability to “larger” systems.

The second model, called Split, is an MDP which actually comprises two
independent subsystems. We depict the model in Fig. 3. The initial distribution
is μ0 = {A �→ 1

2 , C �→ 1
2} and the safe set H = {μ(A)+μ(D) ≥ 1

2}. This aims to
explore both disconnected models as well as a safe set which imposes a constraint
on multiple states at once. In particular, observe that initially μ0(D) = 0 but
μi(D) converges to 1 while μi(A) converges to 0, even if choosing action a1.
Thus, the invariant needs to identify the simultaneous flow from A to B and C
to D.

106 S. Akshay et al.

Table 1. Overview of our results for the five considered models. From left to right,
we list the name of the model, the runtime, and size of the invariant, followed by the
number of variables, constraints, and total size of the query passed to the constraint
solvers. For Running, we provided additional hints to the solver to achieve a more
consistent runtime, indicated by the dagger symbol.

Model Runtime NI #Var. #Constr. Size.

Running 3s† 3 92 123 849
Chain 10s 2 69 82 666
Split 3s 3 60 69 571
PageRank 3s 2 44 52 536
Insulin-131I 2s 2 44 52 476

Table 2. The invariants and strategies computed for our models. We omit the invari-
ants for the two real-world scenarios since they are too large to fit.

Model Computed Invariant and Strategy

Running {A ≥ 1
4
, B = 1

4
} π(μ) = {a1 �→ 1

4·µ(A)
, a2 �→ 4·µ(A)−1

4·µ(A)
}

Chain {s9 + s10 ≥ 1
5
, s10 ≥ 1

10
} π = ∅ (Markov chain)

Split {B ≤ D, A + B ≥ C + D, 3 · (C + D) − (A + B) ≥ 1} π = {a �→ 1}

We additionally consider two examples from the literature, namely the
PageRank example from [1, Fig. 3], based on [51], and Insulin-131I, a pharma-
cokinetics system [1, Example 2], based on [17]. Both are Markov chains.

Results. We summarize our findings briefly in Table 1. We again underline that
not too much attention should be put on runtimes, since they are very sensitive
to minimal changes in the model. The evaluation is mainly intended to demon-
strate that our methods are actually able to provide results. For completeness,
we report the size of the invariant NI and the size of the constraint problem
in terms of number of variables, constraints, and operations inside these con-
straints. We also provide the invariants and strategy identified by our method
in Table 2. Note that for Running we used AlgDist, while the other two examples
are handled by AlgMemLess. For Running, we observed a significant dependence
on the initialization of the solvers. Thus we added several “hints”, i.e. known
correct values for some variables. (To be precise, we set the value for eight of the
92 variables.)

Discussion. We remark two related points: Firstly, we observe that very often
most of the involved auxiliary variables introduced by the quantifier elimination
have a value of zero. Thus, a potential optimization is to explicitly set most such
variables to zero, check whether the formula is satisfiable, and, if not, gradually
remove these constraints either at random or guided by unsat-cores if available
(i.e. clauses which are the “reason” for unsatisfiability). Moreover, we observed

Invariant Synthesis for Affine Safety Objectives in MDPs 107

significant differences between the solvers: While z3 seems to be much quicker
to identify unsatisfiability, mathsat usually is better at finding satisfying assign-
ments. Hence, using both solvers in tandem seems to be very beneficial.

8 Conclusion

We developed a framework for defining certificates for safety objectives in
MDPs as distributional inductive invariants. Using this, we came up with two
algorithms that synthesize linear/affine invariants and corresponding memory-
less/general strategies for safety in MDPs. To the best of our knowledge this is
the first time the template-based invariant approach, already known to be suc-
cessful for programs, has been applied to synthesis strategies in MDPs for distri-
butional safety properties. Our experimental results show that affine invariants
are sufficient for many interesting examples. However, the second approach can
be lifted to synthesize polynomial invariants, and hence potentially, a large set of
MDPs. Exploring this could be a future line of work. It would also be interesting
to explore how one can automate distributional invariant synthesis if the safe set
H is specified in terms of both strict and non-strict inequalities. Finally, in terms
of applicability, we would like to apply this approach to solve more benchmarks
and problems, e.g., to synthesize risk-aware strategies for MDPs [46,49].

References

1. Agrawal, M., Akshay, S., Genest, B., Thiagarajan, P.S.: Approximate verification of
the symbolic dynamics of Markov chains. J. ACM 62(1), 2:1-2:34 (2015). https://
doi.org/10.1145/2629417

2. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL), 34:1–34:32 (2018). https://doi.org/10.1145/3158122

3. Akshay, S., Antonopoulos, T., Ouaknine, J., Worrell, J.: Reachability problems
for Markov chains. Inf. Process. Lett. 115(2), 155–158 (2015). https://doi.org/10.
1016/j.ipl.2014.08.013

4. Akshay, S., Chatterjee, K., Meggendorfer, T., -Dor -de Žikelić: MDPs as distribution
transformers: affine invariant synthesis for safety objectives (2023). https://arxiv.
org/abs/2305.16796

5. Akshay, S., Genest, B., Vyas, N.: Distribution-based objectives for markov deci-
sion processes. In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09–12, 2018, pp. 36–45. ACM (2018). https://doi.org/10.1145/3209108.
3209185

6. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1_8

7. Alur, R., et al.: Syntax-guided synthesis. In: Irlbeck, M., Peled, D.A., Pretschner,
A. (eds.) Dependable Software Systems Engineering, NATO Science for Peace and
Security Series, D: Information and Communication Security, vol. 40, pp. 1–25.
IOS Press (2015). https://doi.org/10.3233/978-1-61499-495-4-1

https://doi.org/10.1145/2629417
https://doi.org/10.1145/2629417
https://doi.org/10.1145/3158122
https://doi.org/10.1016/j.ipl.2014.08.013
https://doi.org/10.1016/j.ipl.2014.08.013
https://arxiv.org/abs/2305.16796
https://arxiv.org/abs/2305.16796
https://doi.org/10.1145/3209108.3209185
https://doi.org/10.1145/3209108.3209185
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.3233/978-1-61499-495-4-1

108 S. Akshay et al.

8. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.: Polynomial
reachability witnesses via stellensätze. In: Freund, S.N., Yahav, E. (eds.) PLDI
2021: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20–25, 2021, pp. 772–
787. ACM (2021). https://doi.org/10.1145/3453483.3454076

9. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
10. Batz, K., Chen, M., Junges, S., Kaminski, B.L., Katoen, J., Matheja, C.: Prob-

abilistic program verification via inductive synthesis of inductive invariants. In:
Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023, Part II. LNCS, vol.
13994, pp. 410–429. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30820-8_25

11. Batz, K., Chen, M., Kaminski, B.L., Katoen, J.-P., Matheja, C., Schröer, P.: Lat-
ticed k -induction with an application to probabilistic programs. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 524–549. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81688-9_25

12. Beauquier, D., Rabinovich, A.M., Slissenko, A.: A logic of probability with decid-
able model checking. J. Log. Comput. 16(4), 461–487 (2006). https://doi.org/10.
1093/logcom/exl004

13. Billingsley, P.: Probability and Measure. Wiley, New York (2008)
14. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-

sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988_48

15. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Simon, J.
(ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2–4, 1988, Chicago, Illinois, USA, pp. 460–467. ACM (1988). https://doi.org/
10.1145/62212.62257

16. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland,
OR, USA, June 15–17, 2015, pp. 467–478. ACM (2015). https://doi.org/10.1145/
2737924.2737955

17. Chadha, R., Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Model
checking MDPs with a unique compact invariant set of distributions. In: Eighth
International Conference on Quantitative Evaluation of Systems, QEST 2011,
Aachen, Germany, 5–8 September, 2011, pp. 121–130. IEEE Computer Society
(2011). https://doi.org/10.1109/QEST.2011.22

18. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer (2013). https://doi.org/10.1007/978-3-642-39799-8_34

19. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_1

20. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant
generation for non-deterministic recursive programs. In: Donaldson, A.F., Torlak,
E. (eds.) Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15–20, 2020, pp. 672–687. ACM (2020). https://doi.org/10.1145/3385412.
3385969

https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1007/978-3-030-81688-9_25
https://doi.org/10.1093/logcom/exl004
https://doi.org/10.1093/logcom/exl004
https://doi.org/10.1007/11513988_48
https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1109/QEST.2011.22
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3385412.3385969

Invariant Synthesis for Affine Safety Objectives in MDPs 109

21. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
TOPLAS 40(2), 7:1–7:45 (2018). https://doi.org/10.1145/3174800

22. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Sound and com-
plete certificates for quantitative termination analysis of probabilistic programs.
In: Shoham, S., Vizel, Y. (eds.) CAV 2022, Part I. LNCS, vol. 13371, pp. 55–78.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13185-1_4

23. Chatterjee, K., Goharshady, E.K., Novotný, P., Žikelić, -D.: Proving non-
termination by program reversal. In: Freund, S.N., Yahav, E. (eds.) PLDI 2021:
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20–25, 20211, pp. 1033–1048.
ACM (2021). https://doi.org/10.1145/3453483.3454093

24. Chatterjee, K., Goharshady, E.K., Novotný, P., Zárevúcky, J., Žikelić, -D: On lex-
icographic proof rules for probabilistic termination. In: Huisman, M., Păsăreanu,
C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 619–639. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90870-6_33

25. Chatterjee, K., Novotný, P., Žikelić, -D.: Stochastic invariants for probabilistic
termination. In: POPL, pp. 145–160 (2017). https://doi.org/10.1145/3009837.
3009873

26. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

27. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6_39

28. Colóon, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45319-9_6

29. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.
512973

30. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0_3

31. Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und ange-
wandte Mathematik (Crelles Journal) 1902(124), 1–27 (1902)

32. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: Kaivola, R., Wahl,
T. (eds.) Formal Methods in Computer-Aided Design, FMCAD 2015, Austin,
Texas, USA, September 27–30, 2015, pp. 57–64. IEEE (2015)

33. Feautrier, P., Gonnord, L.: Accelerated invariant generation for C programs with
aspic and c2fsm. In: Delmas, D., Rival, X. (eds.) Proceedings of the Tools for
Automatic Program AnalysiS, TAPAS@SAS 2010, Perpignan, France, September
17, 2010. Electronic Notes in Theoretical Computer Science, vol. 267, pp. 3–13.
Elsevier (2010). https://doi.org/10.1016/j.entcs.2010.09.014

https://doi.org/10.1145/3174800
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1145/3453483.3454093
https://doi.org/10.1007/978-3-030-90870-6_33
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/3-540-45319-9_6
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1016/j.entcs.2010.09.014

110 S. Akshay et al.

34. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust frame-
work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9_5

35. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: Bodík, R., Majumdar, R. (eds.) Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20–22,
2016, pp. 499–512. ACM (2016). https://doi.org/10.1145/2837614.2837664

36. Gario, M., Micheli, A.: Pysmt: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop, vol. 2015 (2015)

37. Gärtner, B., Matousek, J.: Understanding and using linear programming. Univer-
sitext, Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-30717-4

38. Handelman, D.: Representing polynomials by positive linear functions on compact
convex Polyhedra. Pacific J. Math. 132(1), 35–62 (1988)

39. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14:1–14:62 (2012). https://doi.org/10.
1145/2362389.2362393

40. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–30:68
(2018). https://doi.org/10.1145/3208102

41. Karimov, T., Kelmendi, E., Ouaknine, J., Worrell, J.: What’s decidable about dis-
crete linear dynamical systems? In: Raskin, J., Chatterjee, K., Doyen, L., Majum-
dar, R. (eds.) Principles of Systems Design - Essays Dedicated to Thomas A. Hen-
zinger on the Occasion of His 60th Birthday. Lecture Notes in Computer Science,
vol. 13660, pp. 21–38. Springer (2022). https://doi.org/10.1007/978-3-031-22337-
2_2

42. Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.W.: Compositional recurrence
analysis revisited. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18–23, 2017, pp. 248–262. ACM (2017). https://
doi.org/10.1145/3062341.3062373

43. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant
synthesis. Proc. ACM Program. Lang. 2(POPL), 54:1–54:33 (2018). https://doi.
org/10.1145/3158142

44. Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Reasoning about MDPs
as transformers of probability distributions. In: QEST 2010, Seventh International
Conference on the Quantitative Evaluation of Systems, Williamsburg, Virginia,
USA, 15–18 September 2010, pp. 199–208. IEEE Computer Society (2010). https://
doi.org/10.1109/QEST.2010.35

45. Kozen, D.: A probabilistic PDL. In: Johnson, D.S., et al. (eds.) Proceedings of
the 15th Annual ACM Symposium on Theory of Computing, 25–27 April, 1983,
Boston, Massachusetts, USA, pp. 291–297. ACM (1983). https://doi.org/10.1145/
800061.808758

46. Kretínský, J., Meggendorfer, T.: Conditional value-at-risk for reachability and
mean payoff in Markov decision processes. In: Dawar, A., Grädel, E. (eds.) Proceed-
ings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09–12, 2018, pp. 609–618. ACM (2018). https://doi.
org/10.1145/3209108.3209176

https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1007/978-3-540-30717-4
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/3208102
https://doi.org/10.1007/978-3-031-22337-2_2
https://doi.org/10.1007/978-3-031-22337-2_2
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3158142
https://doi.org/10.1145/3158142
https://doi.org/10.1109/QEST.2010.35
https://doi.org/10.1109/QEST.2010.35
https://doi.org/10.1145/800061.808758
https://doi.org/10.1145/800061.808758
https://doi.org/10.1145/3209108.3209176
https://doi.org/10.1145/3209108.3209176

Invariant Synthesis for Affine Safety Objectives in MDPs 111

47. Kwon, Y., Agha, G.A.: Verifying the evolution of probability distributions governed
by a DTMC. IEEE Trans. Software Eng. 37(1), 126–141 (2011). https://doi.org/
10.1109/TSE.2010.80

48. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer, Cham (2005). https://doi.org/
10.1007/b138392

49. Meggendorfer, T.: Risk-aware stochastic shortest path. In: Thirty-Sixth AAAI Con-
ference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, Febru-
ary 22 - March 1, 2022, pp. 9858–9867. AAAI Press (2022). https://ojs.aaai.org/
index.php/AAAI/article/view/21222

50. Meurer, A., et al.: Sympy: symbolic computing in python. PeerJ Comput. Sci. 3,
e103 (2017). https://doi.org/10.7717/peerj-cs.103

51. Mieghem, P.V.: Performance Analysis of Communications Networks and Systems.
Cambridge University Press, Cambridge (2006)

52. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996). https://doi.org/10.1145/
229542.229547

53. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

54. Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In:
Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 21–28.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33512-9_3

55. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence
sequences. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5–7, 2014, pp. 366–379. SIAM (2014). https://doi.org/10.1137/1.
9781611973402.27

56. Ouaknine, J., Worrell, J.: On linear recurrence sequences and loop termination.
ACM SIGLOG News 2(2), 4–13 (2015). https://doi.org/10.1145/2766189.2766191

57. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0_20

58. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994). https://doi.
org/10.1002/9780470316887

59. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univer-
sity Math. J. 42(3), 969–984 (1993)

60. Rodríguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. Sci. Comput. Program. 64(1),
54–75 (2007). https://doi.org/10.1016/j.scico.2006.03.003

61. Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invari-
ants for program verification. In: Bengio, S., Wallach, H.M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018(December), pp. 3–8, 2018. Montréal,
Canada, pp. 7762–7773 (2018). https://proceedings.neurips.cc/paper/2018/hash/
65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html

https://doi.org/10.1109/TSE.2010.80
https://doi.org/10.1109/TSE.2010.80
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://ojs.aaai.org/index.php/AAAI/article/view/21222
https://ojs.aaai.org/index.php/AAAI/article/view/21222
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-33512-9_3
https://doi.org/10.1137/1.9781611973402.27
https://doi.org/10.1137/1.9781611973402.27
https://doi.org/10.1145/2766189.2766191
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1016/j.scico.2006.03.003
https://proceedings.neurips.cc/paper/2018/hash/65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/65b1e92c585fd4c2159d5f33b5030ff2-Abstract.html

112 S. Akshay et al.

62. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in randomized programs. ACM Trans. Program. Lang. Syst.
43(2), 5:1-5:46 (2021). https://doi.org/10.1145/3450967

63. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis
of nondeterministic probabilistic programs. In: McKinley, K.S., Fisher, K. (eds.)
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22–26, 2019, pp.
204–220. ACM (2019). https://doi.org/10.1145/3314221.3314581

64. Zikelic, D., Chang, B.E., Bolignano, P., Raimondi, F.: Differential cost analysis
with simultaneous potentials and anti-potentials. In: Jhala, R., Dillig, I. (eds.) 43rd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2022, San Diego, CA, USA, 13–17 June 2022, pp. 442–457.
ACM (2022). https://doi.org/10.1145/3519939.3523435

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3450967
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/3519939.3523435
http://creativecommons.org/licenses/by/4.0/

Search and Explore: Symbiotic Policy
Synthesis in POMDPs

Roman Andriushchenko1 , Alexander Bork2 , Milan Češka1(B) ,
Sebastian Junges3 , Joost-Pieter Katoen2 , and Filip Macák1

1 Brno University of Technology, Brno, Czech Republic
ceskam@fit.vutbr.cz

2 RWTH Aachen University, Aachen, Germany
3 Radboud University, Nijmegen, The Netherlands

Abstract. This paper marries two state-of-the-art controller synthesis
methods for partially observable Markov decision processes (POMDPs), a
prominent model in sequential decision making under uncertainty. A cen-
tral issue is to find a POMDP controller—that solely decides based on the
observations seen so far—to achieve a total expected reward objective. As
finding optimal controllers is undecidable, we concentrate on synthesising
good finite-state controllers (FSCs). We do so by tightly integrating two
modern, orthogonal methods for POMDP controller synthesis: a belief-
based and an inductive approach. The former method obtains an FSC
from a finite fragment of the so-called belief MDP, an MDP that keeps
track of the probabilities of equally observable POMDP states. The latter
is an inductive search technique over a set of FSCs, e.g., controllers with a
fixed memory size. The key result of this paper is a symbiotic anytime algo-
rithm that tightly integrates both approaches such that each profits from
the controllers constructed by the other. Experimental results indicate a
substantial improvement in the value of the controllers while significantly
reducing the synthesis time and memory footprint.

1 Introduction

A formidable synthesis challenge is to find a decision-making policy that satis-
fies temporal constraints even in the presence of stochastic noise. Markov deci-
sion processes (MDPs) [26] are a prominent model to reason about such poli-
cies under stochastic uncertainty. The underlying decision problems are efficiently
solvable and probabilistic model checkers such as PRISM [22] and Storm [13] are
well-equipped to synthesise policies that provably (and optimally) satisfy a given
specification. However, a major shortcoming of MDPs is the assumption that the
policy can depend on the precise state of a system. This assumption is unreal-
istic whenever the state of the system is only observable via sensors. Partially

This work has been supported by the Czech Science Foundation grant GA23-06963S
(VESCAA), the ERC AdG Grant 787914 (FRAPPANT) and the DFG RTG 2236/2
(UnRAVeL).

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 113–135, 2023.
https://doi.org/10.1007/978-3-031-37709-9_6

https://doi.org/10.5281/zenodo.7874513
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_6&domain=pdf
http://orcid.org/0000-0002-1286-934X
http://orcid.org/0000-0002-7026-228X
http://orcid.org/0000-0002-0300-9727
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0009-0004-4277-2751
https://doi.org/10.1007/978-3-031-37709-9_6

114 R. Andriushchenko et al.

Paynt

Storm

FM
k = {F1, . . . , Fm} MDP MDP(FM

k)
MDP

model checking

candidate FSC
observation-based?

refinement of family

pruning of family

FSC FI

unfold fragment
of belief MDP

cut off
unexplored

beliefs

MDP
model checking

obs.-based
policy on

belief MDP

heuristic bounds

FSC FB

abstr spec holds

spec violated

YES

NO

provide bounds

shrink

Fig. 1. Schematic depiction of the symbiotic approach

observable MDPs (POMDPs) overcome this shortcoming, but policy synthesis for
POMDPs and specifications such as the probability to reach the exit is larger than
50% requires solving undecidable problems [23]. Nevertheless, in recent years, a
variety of approaches have been successfully applied to a variety of challenging
benchmarks, but the approaches also fail somewhat spectacularly on seemingly
tiny problem instances. From a user perspective, it is hard to pick the right app-
roach without detailed knowledge of the underlying methods. This paper sets out
to develop a framework in which conceptually orthogonal approaches symbioti-
cally alleviate each other’s weaknesses and find policies that maximise, e.g., the
expected reward before a target is reached. We show empirically that the com-
bined approach can find compact policies achieving a significantly higher reward
than the policies that either individual approach constructs.

Belief Exploration. Several approaches for solving POMDPs use the notion of
beliefs [27]. The key idea is that each sequence of observations and actions induces
a belief—a distribution over POMDP states that reflects the probability to be in
a state conditioned on the observations. POMDP policies can decide optimally
solely based on the belief. The evolution of beliefs can be captured by a fully
observable, yet possibly infinite belief MDP. A practical approach (see the lower
part of Fig. 1) is to unfold a finite fragment of this belief MDP and make its
frontier absorbing. This finite fragment can be analysed with off-the-shelf MDP
model checkers. Its accuracy can be improved by using an arbitrary but fixed
cut-off policy from the frontier onwards. Crucially, the probability to reach the
target under such a policy can be efficiently pre-computed for all beliefs. This
paper considers the belief exploration method from [8] realised in Storm [13].

Policy Search. An orthogonal approach searches a (finite) space of policies [14,
24] and evaluates these policies by verifying the induced Markov chain. To ensure
scalability, sets of policies must be efficiently analysed. However, policy spaces

Search and Explore: Symbiotic Policy Synthesis in POMDPs 115

explode whenever they require memory. The open challenge is to adequately
define the space of policies to search in. In this paper, we consider the policy-
search method from [5] as implemented in Paynt [6] that explores spaces of
finite-state controllers (FSCs), represented as deterministic Mealy machines [2],
using a combination of abstraction-refinement, counterexamples (to prune sets
of policies), and increasing a controller’s memory, see the upper part of Fig. 1.

Our Symbiotic Approach. In essence, our idea relies on the fact that a policy
found via one approach can boost the other approach. The key observation is that
such a policy is beneficial even when it is sub-optimal in terms of the objective at
hand. Figure 1 sketches the symbiotic approach. The FSCs FI obtained by policy
search are used to guide the partial belief MDP to the target. Vice versa, the
FSCs FB obtained from belief exploration are used to shrinken the set of policies
and to steer the abstraction. Our experimental evaluation, using a large set of
POMDP benchmarks, reveals that (a) belief exploration can yield better FSCs
(sometimes also faster) using FSCs FI from Paynt—even if the latter FSCs
are far from optimal, (b) policy search can find much better FSCs when using
FSCs from belief exploration, and (c) the FSCs from the symbiotic approach are
superior in value to the ones obtained by the standalone approaches.

Beyond Exploration and Policy Search. In this work, we focus on two power-
ful orthogonal methods from the set of belief-based and search-based methods.
Alternatives exist. Exploration can also be done using a fixed set of beliefs [25].
Prominently, HSVI [18] and SARSOP [20] are belief-based policy synthesis
approaches typically used for discounted properties. They also support undis-
counted properties, but represent policies with α-vectors. Bounded policy synthe-
sis [29] uses a combination of belief-exploration and inductive synthesis over paths
and addresses finite horizon reachability. α-vector policies lead to more complex
analysis downstream: the resulting policies must track the belief and do floating-
point computations to select actions. For policy search, prominent alternatives
are to search for randomised controllers via gradient descent [17] or via convex
optimization [1,12,19]. Alternatively, FSCs can be extracted via deep reinforce-
ment learning [9]. However, randomised policies limit predictability, which ham-
pers testing and explainability. The area of programmatic reinforcement learn-
ing [28] combines inductive synthesis ideas with RL. While our empirical evalua-
tion is method-specific, the lessons carry over to integrating other methods.

Contributions. The key contribution of this paper is the symbiosis of belief
exploration [8] and policy search [5]. Though this seems natural, various tech-
nical obstacles had to be addressed, e.g., obtaining FB from the finite fragment
of the belief MDP and the policies for its frontier and developing an interplay
between the exploration and search phases that minimises the overhead. The
benefits of the symbiotic algorithm are manifold, as we show by a thorough
empirical evaluation. It can solve POMDPs that cannot be tackled with either
of the two approaches alone. It outputs FSCs that are superior in value (with
relative improvements of up to 40%) as well as FSCs that are more succinct

116 R. Andriushchenko et al.

(with reduction of a factor of up to two orders of magnitude) with only a small
penalty in their values. Additionally, the integration reduces the memory foot-
print compared to belief exploration by a factor of 4. In conclusion, the proposed
symbiosis offers a powerful push-button, anytime synthesis algorithm producing,
in the given time, superior and/or more succinct FSCs compared to the state-
of-the-art methods.

Fig. 2. (a) and (b) contain two POMDPs. Colours encode observations. Unlabelled
transitions have probability 1. Omitted actions (e.g. γ, δ in state B2) execute a self-
loop. (c) Markov chain induced by the minimising policy σB in the finite abstraction
MB

a of the POMDP from Fig. 2a. In the rightmost state, policy F is applied (cut-off),
allowing to reach the target in ρ steps. (Color figure online)

2 Motivating Examples

We give a sample POMDP that is hard for the belief exploration, a POMDP that
challenges the policy search approach, and indicate why a symbiotic approach
overcomes this. A third sample POMDP is shown to be unsolvable by either
approach alone but can be treated by the symbiotic one.

A Challenging POMDP for Belief-Based Exploration. Consider POMDP
Ma in Fig. 2a. The objective is to minimise the expected number of steps to the
target Ta. An optimal policy is to always take action α yielding 4 expected steps.
An FSC realising this policy can be found by a policy search under 1s.

Belief MDPs. States in the belief MDP MB
a are beliefs, probability distributions

over POMDP states with equal observations. The initial belief is {S �→ 1}. By
taking action α, ‘yellow’ is observed and the belief becomes {L �→ 1

2 , R �→ 1
2}.

Search and Explore: Symbiotic Policy Synthesis in POMDPs 117

Closer inspection shows that the set of reachable beliefs is infinite rendering MB
a

to be infinite. Belief exploration constructs a finite fragment MB
a by exploring

MB
a up to some depth while cutting off the frontier states. From cut-off states,

a shortcut is taken directly to the target. These shortcuts are heuristic over-
approximations of the true number of expected steps from the cut-off state to
the target. The finite MDP MB

a can be analysed using off-the-shelf tools yielding
the minimising policy σB assigning to each belief state the optimal action.

Admissible Heuristics. A simple way to over-approximate the minimal number
of the expected number of steps to the target is to use an arbitrary controller
F and use the expected number of steps under F . The latter is cheap if F is
compact, as detailed in Sect. 4.2. Figure 2c shows a Markov chain induced by
σB in MB

a , where the belief {L �→ 7
8 , R �→ 1

8} is cut off using F . The belief
exploration in Storm [8] unfolds 1000 states of MB

a and finds controller F that
uniformly randomises over all actions in the rightmost state. The resulting sub-
optimal controller FB reaches the target in ≈4.1 steps. Exploring only a few
states suffices when replacing F by a (not necessarily optimal) FSC provided by
a policy search.

A Challenging POMDP for Policy Search. Consider POMDP Mb in
Fig. 2b. The objective is to minimise the expected number of steps to Tb. Its
9-state belief MDP MB

b is trivial for the belief-based method. Its optimal con-
troller σB first picks action γ; on observing ‘yellow’ it plays β twice, otherwise it
always picks α. This is realised by an FSC with 3 memory states. The inductive
policy search in Paynt [5] explores families of FSCs of increasing complexity,
i.e., of increasing memory size. It finds the optimal FSC after consulting about
20 billion candidate policies. This requires 545 model-checking queries; the opti-
mal one is found after 105 queries while the remaining queries prove that no
better 3-state FSC exists.

Reference Policies. The policy search is guided by a reference policy, in this
case the fully observable MDP policy that picks (senseless) action δ in B1 first.
Using policy σB—obtained by the belief method—instead, δ is never taken. As
σB picks in each ‘blue’ state a different action, mimicking this requires at least
three memory states. Using σB reduces the total number of required model-
checking queries by a factor of ten; the optimal 3-state FSC is found after 23
queries.

The Potential of Symbiosis. To further exemplify the limitation of the two
approaches and the potential of their symbiosis, we consider a synthetic POMDP,
called Lanes+, combining a Lane model with larger variants of the POMDPs in
Fig. 2; see Table 2 on page 14 for the model statistics and Appendix C of [3]
for the model description. We consider minimisation of the expected number of
steps and a 15-min timeout. The belief-based approach by Storm yields the
value 18870. The policy search method by Paynt finds an FSC with 2 memory
states achieving the value 8223. This sub-optimal FSC significantly improves the

118 R. Andriushchenko et al.

belief MDP approximation and enables Storm to find an FSC with value 6471.
The symbiotic synthesis loop finds the optimal FSC with value 4805.

3 Preliminaries and Problem Statement

A (discrete) distribution over a countable set A is a function μ : A → [0, 1]
s.t.

∑
a μ(a) = 1. The set supp(μ) := {a ∈ A | μ(a) > 0} is the support of μ. The

set Distr(A) contains all distributions over A. We use Iverson bracket notation,
where [x] = 1 if the Boolean expression x evaluates to true and [x] = 0 otherwise.

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s0, Act,P) with a countable set S of states, an initial state s0 ∈ S, a finite
set Act of actions, and a partial transition function P : S × Act � Distr(S).
Act(s) := {α ∈ Act | P(s, α) �= ⊥} denotes the set of actions available in state
s ∈ S. An MDP with |Act(s)| = 1 for each s ∈ S is a Markov chain (MC).

Unless stated otherwise, we assume Act(s) = Act for each s ∈ S for conciseness.
We denote P(s, α, s′) := P(s, α)(s′). A (finite) path of an MDP M is a sequence
π = s0α0s1α1 . . . sn where P(si, αi, si+1) > 0 for 0 ≤ i < n. We use last(π) to
denote the last state of path π. Let PathsM denote the set of all finite paths
of M . State s is absorbing if supp(P(s, α)) = {s} for all α ∈ Act.

Definition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
M = (M,Z,O), where M is the underlying MDP, Z is a finite set of observations
and O : S → Z is a (deterministic) observation function.

For POMDP M with underlying MDP M , an observation trace of path π =
s0α0s1α1 . . . sn is a sequence O(π) := O(s0)α0O(s1)α1 . . . O(sn). Every MDP
can be interpreted as a POMDP with Z = S and O(s) = s for all s ∈ S.

A (deterministic) policy is a function σ : PathsM → Act. Policy σ is memo-
ryless if last(π) = last(π′) =⇒ σ(π) = σ(π′) for all π, π′ ∈ PathsM . A memo-
ryless policy σ maps a state s ∈ S to action σ(s). Policy σ is observation-based
if O(π) = O(π′) =⇒ σ(π) = σ(π′) for all π, π′ ∈ PathsM . For POMDPs, we
always consider observation-based policies. We denote by Σobs the set of all
observation-based policies. A policy σ ∈ Σobs induces the MC Mσ.

We consider indefinite-horizon reachability or expected total reward prop-
erties. Formally, let M = (S, s0, Act,P) be an MC, and let T ⊆ S be a set
of target states. P

M [s |= ♦T] denotes the probability of reaching T from state
s ∈ S. We use P

M [♦T] to denote P
M [s0 |= ♦T] and omit the superscript if

the MC is clear from context. Now assume POMDP M with underlying MDP
M = (S, s0, Act,P), and a set T ⊆ S of absorbing target states. Without
loss of generality, we assume that the target states are associated with the
unique observation zT ∈ Z, i.e. s ∈ T iff O(s) = zT . For a POMDP M and
T ⊆ S, the maximal reachability probability of T for state s ∈ S in M is
P

M
max [s |= ♦T] := supσ∈Σobs

P
Mσ

[s |= ♦T]. The minimal reachability probabil-
ity P

M
min [s |= ♦T] is defined analogously.

Finite-state controllers are automata that compactly encode policies.

Search and Explore: Symbiotic Policy Synthesis in POMDPs 119

Definition 3 (FSC). A finite-state controller (FSC) is a tuple F =
(N,n0, γ, δ), with a finite set N of nodes, the initial node n0 ∈ N , the action
function γ : N × Z → Act and the update function δ : N × Z × Z → N .

A k-FSC is an FSC with |N | = k. If k=1, the FSC encodes a memoryless policy.
We use FM (FM

k) to denote the family of all (k-)FSCs for POMDP M. For a
POMDP in state s, an agent receives observation z = O(s). An agent following
an FSC F executes action α = γ(n, z) associated with the current node n and
the current (prior) observation z. The POMDP state is updated accordingly to
some s′ with P(s, α, s′) > 0. Based on the next (posterior) observation z′ =
O(s′), the FSC evolves to node n′ = δ(n, z, z′). The induced MC for FSC F is
MF = (S × N, (s0, n0), {α},PF), where for all (s, n), (s′, n′) ∈ S × N we have

PF ((s, n), α, (s′, n′)) = [n′ = δ (n,O(s), O(s′))] · P(s, γ(n,O(s)), s′).

We emphasise that for MDPs with infinite state space and POMDPs, an
FSC realising the maximal reachability probability generally does not exist.
For FSC F ∈ FM with the set N of memory nodes, let P

MF

[(s, n) |= ♦T] :=
P

MF

[(s, n) |= ♦(T × N)] denote the probability of reaching target states T from
state (s, n) ∈ S × N . Analogously, P

MF

[♦T] := P
MF

[♦(T × N)] denotes the
probability of reaching target states T in the MC MF induced on M by F .

Problem Statement. The classical synthesis problem [23] for POMDPs asks:
given POMDP M, a set T of targets, and a threshold λ, find an FSC F such that
P

MF

[♦T] ≥ λ, if one exists. We take a more practical stance and aim instead to
optimise the value P

MF

[♦T] in an anytime fashion: the faster we can find FSCs
with a high value, the better.

Remark 1. Variants of the maximising synthesis problem for the expected total
reward and minimisation are defined analogously. For conciseness, in this paper,
we always assume that we want to maximise the value.

In addition to the value of the FSC F , another key characteristic of the controller
is its size, which we treat as a secondary objective and discuss in detail in Sect. 6.

4 FSCs for and from Belief Exploration

We consider belief exploration as described in [8]. A schematic overview is given
in the lower part of Fig. 1. We recap the key concepts of belief exploration. This
section explains two contributions: we discuss how arbitrary FSCs are included
and present an approach to export the associated POMDP policies as FSCs.

4.1 Belief Exploration with Explicit FSC Construction

Finite-state controllers for a POMDP can be obtained by analysing the (fully
observable) belief MDP [27]. The state space of this MDP consists of beliefs:

120 R. Andriushchenko et al.

probability distributions over states of the POMDP M having the same obser-
vation. Let Sz := {s ∈ S | O(s) = z} denote the set of all states of M with
observation z ∈ Z. Let the set of all beliefs BM :=

⋃
z∈Z Distr(Sz) and denote

for b ∈ BM by O(b) ∈ Z the unique observation O(s) of any s ∈ supp(b).
In a belief b, taking action α yields an updated belief as follows: let

P(b, α, z′) :=
∑

s∈SO(b)
b(s) ·∑s′∈Sz′ P(s, α, s′) denote the probability of observ-

ing z′ ∈ Z upon taking action α ∈ Act in belief b ∈ BM. If P(b, α, z′) > 0,
the corresponding successor belief b′ = �b|α, z′� with O(b′) = z′ is defined
component-wise as

�b|α, z′�(s′) :=

∑
s∈SO(b)

b(s) · P(s, α, s′)

P(b, α, z′)

for all s′ ∈ Sz′ . Otherwise, �b|α, z′� is undefined.

Definition 4 (Belief MDP). The belief MDP of POMDP M is the MDP
MB = (BM, b0, Act,PB), with initial belief b0 := {s0 �→ 1} and transition func-
tion PB(b, α, b′) := [b′ = �b|α, z′�] · P(b, α, z′) where z′ = O(b′).

The belief MDP captures the behaviour of its POMDP. It can be unfolded by
starting in the initial belief and computing all successor beliefs.

Deriving FSCs from Finite Belief MDPs. Let TB :=
{
b ∈ BM | O(b) = zT

}

denote the set of target beliefs. If the reachable state space of the belief MDP MB

is finite, e.g. because the POMDP is acyclic, standard model checking techniques
can be applied to compute the memoryless policy σB : BM → Act that selects
in each belief state b ∈ BM the action that maximises P

[
b |= ♦TB]

1. We can
translate the deterministic, memoryless policy σB into the corresponding FSC
FB = (BM, b0, γ, δ) with action function γ(b, z) = σB(b) and update function
δ(b, z, z′) = �b|σB(b), z′� for all z, z′ ∈ Z.2

Handling Large and Infinite Belief MDPs. In case the reachable state space of
the belief MDP MB is infinite or too large for a complete unfolding, a finite
approximation MB is used instead [8]. Assuming MB is unfolded up to some
depth, let E ⊂ BM denote the set of explored beliefs and let U ⊂ BM\E denote
the frontier : the set of unexplored beliefs reachable from E in one step. To
complete the finite abstraction, we require handling of the frontier beliefs. The
idea is to use for each b ∈ U a cut-off value V (b): an under-approximation of the
maximal reachability probability P

MB
max

[
b |= ♦TB]

for b in the belief MDP. We
explain how to compute cut-off values systematically given an FSC in Sect. 4.2.

Ultimately, we define a finite MDP MB = (E ∪U ∪{b�, b⊥}, b0, Act,PB) with
the transition function: PB(b, α) := PB(b, α) for explored beliefs b ∈ E and all
α ∈ Act, and PB(b, α) := {b� �→ V (b), b⊥ �→ 1 − V (b)} for frontier beliefs b ∈ U
and all α ∈ Act, where b� and b⊥ are fresh sink states, i.e. PB(b�, α) := {b� �→ 1}
1 Memoryless policies suffice to maximise the value in a fully observable MDP [26].
2 The assignments of missing combinations where z �= O(b) are irrelevant.

Search and Explore: Symbiotic Policy Synthesis in POMDPs 121

and PB(b⊥, α) := {b⊥ �→ 1} for all α ∈ Act. The reachable state space of MB
is finite, enabling its automated analysis; since our method to compute cut-off
values emulates an FSC, a policy maximising P

MB
max

[
♦(TB ∪ {b�})

]
induces an

FSC for the original POMDP M. We discuss how to obtain this FSC in Sect. 4.3.

4.2 Using FSCs for Cut-Off Values

A crucial aspect when applying the belief exploration with cut-offs is the choice
of suitable cut-off values. The closer the cut-off value is to the actual optimum
in a belief, the better the approximation we obtain. In particular, if the cut-off
values coincide with the optimal value, cutting off the initial state is optimal.
However, finding optimal values is as hard as solving the original POMDP. We
consider under-approximative value functions induced by applying any3 FSC to
the POMDP and lifting the results to the belief MDP. The better the FSC, the
better the cut-off value. We generalise belief exploration with cut-offs such that
the approach supports arbitrary sets of FSCs with additional flexibility.

Let FI ∈ FM be an arbitrary, but fixed FSC for POMDP M. Let ps,n :=
P

MFI [(s, n) |= ♦T] for state (s, n) ∈ S × N in the corresponding induced MC.
For fixed n ∈ N , V (b, n) :=

∑
s∈SO(b)

b(s) · ps,n denotes the cut-off value for
belief b and memory node n. It corresponds to the probability of reaching a
target state in MFI when starting in memory node n ∈ N and state s ∈ S
according to the probability distribution b. We define the overall cut-off value
for b induced by F as V (b) := maxn∈N V (b, n). It follows straightforwardly
that V (b) ≤ P

MB
max

[
b |= ♦TB]

. As values ps,n only need to be computed once,
computing V (b) for a given belief b is relatively simple. However, the complexity
of the FSC-based cut-off approach depends on the size of the induced MC.
Therefore, it is essential that the FSCs used to compute cut-off values are concise.

4.3 Extracting FSC from Belief Exploration

Model checking the finite approximation MDP MB with cut-off values induced
by an FSC FI yields a maximising memoryless policy σB. Our goal is to represent
this policy as an FSC FB. We construct FB by considering both FI and the
necessary memory nodes for each explored belief b ∈ E . Concretely, for each
explored belief, we introduce a corresponding memory node. In each such node,
the action σB(b) is selected. For the memory update, we distinguish between two
cases based on the next belief after executing σB(b) in MB. If for observation
z′ ∈ Z, the successor belief b′ = �b|σB(b), z′� ∈ E , the memory is updated to
the corresponding node. Otherwise, b′ ∈ U holds, i.e., the successor is part of
the frontier. The memory is then updated to the memory node n of FSC FI
that maximises the cut-off value V (b′, n). This corresponds to the notion that
if the frontier is encountered, we switch from acting according to policy σB to
following FI (initialised in the correct memory node). This is formalised as:

3 We remark that [8] considers memoryless FSCs only.

122 R. Andriushchenko et al.

Definition 5 (Belief-based FSC with cut-offs). Let FI = (N,n0, γI , δI)
and MB as before. The belief-based FSC with cut-offs is FB = (E ∪ N, b0, γ, δ)
with action function γ(b, z) = σB(b) for b ∈ E and γ(n, z) = γI(n, z) for n ∈ N
and arbitrary z ∈ Z. The update function δ is defined for all z, z′ ∈ Z by
δ(n, z, z′) = δI(n, z, z′) if n ∈ N , and for b ∈ E with b′ = �b|σB(b), z′� by:

δ(b, z, z′) = b′ if b′ ∈ E , and δ(b, z, z′) = argmaxn∈NV (b′, n) otherwise.

5 Accelerated Inductive Synthesis

In this section, we consider inductive synthesis [5], an approach for finding con-
trollers for POMDPs in a set of FSCs. We briefly recap the main idea, then first
explain how to use a reference policy. Finally, we introduce and discuss a novel
search space for the controllers that we consider in this paper in detail.

5.1 Inductive Synthesis with k-FSCs

In the scope of this paper, inductive synthesis [4] considers a finite family of
FSCs FM

k of k-FSCs with memory nodes N = {n0, . . . , nk−1}, and the family
MFM

k := {MF | F ∈ FM
k } of associated induced MCs. The states for each

MC are tuples (s, n) ∈ S × N . For conciseness, we only discuss the abstraction-
refinement framework [10] within the inductive synthesis loop. The overall image
is as in Fig. 1. Informally, the MDP abstraction of the family MFM

k of MCs is an
MDP MDP(FM

k) with the set S ×N of states such that, if some MC M ∈ MFM
k

executes action α in state (s, n) ∈ S × N , then this action (with the same
effect) is also enabled in state (s, n) of MDP(FM

k). Essentially, MDP(FM
k) over-

approximates the behaviour of all the MCs in the family MFM
k : it simulates an

arbitrary family member in every step, but it may switch between steps.4

Definition 6. MDP abstraction for POMDP M and family FM
k = {F1, . . . ,

Fm} of k-FSCs is the MDP MDP(FM
k) :=

(
S × N, (s0, n0), {1, . . . ,m},PFM

k

)

with
PFM

k ((s, n), i) = PFi .

While this MDP has m actions, practically, many actions coincide. Below, we
see how to utilise the structure of the FSCs. Here, we finish by observing that
the MDP is a proper abstraction:

Lemma 1. [10] For all F ∈ FM
k , P

MDP(FM
k)

min [♦T] ≤ P
MF

[♦T] ≤
P

MDP(FM
k)

max [♦T].

With that result, we can naturally start with the set of all k-FSCs and search
through this family by selecting suitable subsets [10]. Since the number k of
memory nodes necessary is not known in advance, one can iteratively explore
the sequence FM

1 ,FM
2 , . . . of families of FSCs of increasing complexity.

4 The MDP is an game-based abstraction [21] of the all-in-one MC [11].

Search and Explore: Symbiotic Policy Synthesis in POMDPs 123

5.2 Using Reference Policies to Accelerate Inductive Synthesis

Consider the synthesis process of the optimal k-FSC F ∈ FM
k for POMDP

M. To accelerate the search for F within this family, we consider a reference
policy, e.g., a policy σB extracted from an (approximation of the) belief MDP,
and shrink the FSC family. For each observation z ∈ Z, we collect the set
Act[σB](z) := {σB(b) | b ∈ BM, O(b) = z} of actions that were selected by σB in
beliefs with observation z. The set Act[σB](z) contains the actions used by the
reference policy when in observation z. We focus the search on these actions by
constructing a subset of FSCs { (N,n0, γ, δ) ∈ FM

k | ∀n ∈ N, z ∈ Z.γ(n, z) ∈
Act[σB](z)}.

Restricting the action selection may exclude the optimal k-FSC. It also does
not guarantee that the optimal FSC in the restricted family achieves the same
value as the reference policy σB as σB may have more memory nodes. We first
search the restricted space of FSCs before searching the complete space. This
also accelerates the search: The earlier a good policy is found, the easier it is to
discard other candidates (because they are provably not optimal). Furthermore,
in case the algorithm terminates earlier (notice the anytime aspect of our problem
statement), we are more likely to have found a reasonable policy.

Fig. 3. (a) A POMDP where colours and capital letters encode observations; unlabelled
transitions have probability 1/2; omitted actions (e.g. action β in the initial state) are
self-loops; the objective is to minimise the expected number of steps to reach state G.
(b) The optimal posterior-aware 2-FSC. (Color figure online)

Additionally, we could use sets Act[σB] to determine with which k to search.
If in some observation z ∈ Z the belief policy σB uses |Act[σB](z)| distinct
actions, then in order to enable the use of all of these actions, we require at least
k = maxz∈Z |Act[σB](z)| memory states. However, this may lead to families that
are too large and thus we use a more refined view discussed below.

5.3 Inductive Synthesis with Adequate FSCs

In this section, we discuss the set of candidate FSCs in more detail. In particular,
we take a more refined look at the families that we consider.

124 R. Andriushchenko et al.

More Granular FSCs. We consider memory models [5] that describe per-
observation how much memory may be used:

Definition 7 (μ-FSC). A memory model for POMDP M is a function μ : Z →
N. Let k = maxz∈Z μ(z). The k-FSC F ∈ FM

k with nodes N = {n0, . . . , nk−1}
is a μ-FSC iff for all z ∈ Z and for all i > μ(z) it holds: γ(ni, z) = γ(n0, z) and
δ(ni, z, z′) = δ(n0, z, z′) for any z′ ∈ Z.

FM
μ denotes the family of all μ-FSCs. Essentially, memory model μ dictates

that for prior observation z only μ(z) memory nodes are utilised, while the rest
behave exactly as the default memory node n0. Using memory model μ with
μ(z) < k for some observations z ∈ Z greatly reduces the number of candidate
controllers. For example, if |Sz| = 1 for some z ∈ Z, then upon reaching this
state, the history becomes irrelevant. It is thus sufficient to set μ(z) = 1 (for
the specifications in this paper). It also significantly reduces the size of the
abstraction, see Appendix A of [3].

Posterior-aware or Posterior-unaware. The technique outlined in [5] considers
posterior-unaware FSCs [2]. An FSC with update function δ is posterior-unaware
if the posterior observation is not taken into account when updating the memory
node of the FSC, i.e. δ(n, z, z′) = δ(n, z, z′′) for all n ∈ N, z, z′, z′′ ∈ Z. This
restriction reduces the policy space and thus the MDP abstraction MDP(FM

k).
On the other hand, general (posterior-aware) FSCs can utilise information about
the next observation to make an informed decision about the next memory node.
As a result, fewer memory nodes are needed to encode complex policies. Consider
Fig. 3a which depicts a simple POMDP. First, notice that in yellow states Yi we
want to be able to execute two different actions, implying that we need at least

Algorithm 1: Anytime algorithm
Input : POMDP M, set T of target states, timeout values t, tI , tB
Output: Best FSCs FI and FB found so far

1 FI ← ⊥, F ← FM
1 , k ← 0, μ ← {z �→ 1 | z ∈ Z}, FB ← ⊥, σB ← ⊥

2 while not timeout t do
3 while not timeout tI do
4 if F = ∅ then
5 k ← k + 1
6 ∀z ∈ Z : μ(z) ← max{μ(z), k}
7 F ← FM

µ

8 F , FI ← search(F , FI , Act[σB] if P
MFI

[♦T] > P
MFB

[♦T] else ⊥)

9 σB, FB ← explore(tB, FI)

10 if P
MFI

[♦T] ≤ P
MFB

[♦T] and ∃z ∈ Z : μ(z) < |Act[σB](z)| then
11 ∀z ∈ Z : μ(z) ← |Act[σB](z)|
12 F ← FM

µ

13 yield FI , FB

Search and Explore: Symbiotic Policy Synthesis in POMDPs 125

two memory nodes to distinguish between the two states, and the same is true for
the blue states Bi. Second, notice that in each state the visible action always leads
to states having different observations, implying that the posterior observation
z′ is crucial for the optimal decision making. If z′ is ignored, it is impossible
to optimally update the memory node. Figure 3b depicts the optimal posterior-
aware 2-FSC allowing to reach the target within 12 steps on expectation. The
optimal posterior-unaware FSC has at least 4 memory nodes and the optimal
posterior-unaware 2-FSC uses 14 steps.

MDP Abstraction. To efficiently and precisely create and analyse MDP abstrac-
tions, Definition 6 is overly simplified. In Appendix A of [3], we present the
construction for general, posterior-aware FSCs including memory models.

6 Integrating Belief Exploration with Inductive Synthesis

We clarify the symbiotic approach from Fig. 1 and review FSC sizes.

Symbiosis by Closing the Loop. Section 4 shows the potential to improve
belief exploration using FSCs, e.g., obtained from an inductive synthesis loop,
whereas Sect. 5 shows the potential to improve inductive synthesis using policies
from, e.g., belief exploration. A natural next step is to use improved inductive
synthesis for belief exploration and improved belief exploration for inductive
synthesis, i.e., to alternate between both techniques. This section briefly clarifies
the symbiotic approach from Fig. 1 using Algorithm 1.

Table 1. Sizes of different types of FSCs.

FSC class size(γ) size(δ)

k-FSC k · |Z| 2 · ∑
n∈N

∑
z∈Z |post(n, z)|

μ-FSC
∑

z∈Z μ(z) 2 · ∑
z∈Z

∑µ(z)−1
i=0 |post(ni, z)|

posterior-unaware μ-FSC
∑

z∈Z μ(z)
∑

z∈Z μ(z)

FB using FI for cut-offs size(γI) + |E| size(δI) + 2 · ∑
b∈E |post(b, O(b))|

We iterate until a global timeout t: in each iteration, we make both controllers
available to the user as soon as they are computed (Algorithm 1, l. 13). We start
in the inductive mode (l. 3-8), where we initially consider the 1-FSCs represented
in FM

μ . Method search (l. 8) investigates F and outputs the new maximising
FSC FI (if it exists). If the timeout tI interrupts the synthesis process, the
method additionally returns yet unexplored parameter assignments. If F is fully
explored within the timeout tI (l. 4), we increase k and repeat the process. After
the timeout tI , we run belief exploration explore for tB seconds, where we use
FI as backup controllers (l. 9). After the timeout tB (exploration will continue
from a stored configuration in the next belief phase), we use FI to obtain cut-off

126 R. Andriushchenko et al.

values at unexplored states, compute the optimal policy σMB
(see Sect. 4) and

extract the FSC FB which incorporates FI . Before we continue the search, we
check whether the belief-based FSC is better and whether that FSC gives any
reason to update the memory model (l. 10). If so, we update μ and reset the F
(l. 11-12).

The Size of an FSC. We have considered several sub-classes of FSCs and
wish to compare the sizes of these controllers. For FSC F = (N,n0, γ, δ), we
define its size size(F) := size(γ) + size(δ) as the memory required to encode
functions γ and δ. Encoding γ : N × Z → Act of a general k-FSC requires
size(γ) =

∑
n∈N

∑
z∈Z 1 = k ·|Z| memory. Encoding δ : N ×Z×Z → N requires

k·|Z|2 memory. However, it is uncommon that in each state-memory pair (s, n) all
posterior observations can be observed. We therefore encode δ(n, z, ·) as a sparse
adjacency list, i.e., as a list of pairs (z′, δ(n, z, z′)). To define the size of such a
list properly, consider the induced MC MF = (S × N, (s0, n0), {α},PF). Let
post(n, z) :=

{
O(s′) | ∃s ∈ Sz : (s′, ·) ∈ supp(PF ((s, n), α))

}
denote the set of

posterior observations reachable when taking a transition in a state (s, n) of MF

with O(s) = z. Table 1 summarises the resulting sizes of FSCs of various sub-
classes. The derivation is included in Appendix B of [3]. Table 4 on p. 18 shows
that we typically find much smaller μ-FSCs (FI) than belief-based FSCs (FB).

7 Experiments

Our evaluation focuses on the following three questions:

Q1: Do the FSCs from inductive synthesis raise the accuracy of the belief MDP?
Q2: Does exploiting the belief MDP boost the inductive synthesis of FSCs?
Q3: Is the symbiotic approach improving run time, controller’s value and size?

Table 2. Information about the benchmark POMDPs.

Model |S| ∑
Act |Z| Spec. Over-

approx
Model |S| ∑

Act |Z| Spec. Over-
approx.

4 × 3-95 22 82 9 Rmax ≤ 2.24 Drone-4-2 1226 2954 761 Pmax ≤ 0.98

4 × 5 × 2-95 79 310 7 Rmax ≤ 3.26 Drone-8-2 13k 32k 3195 Pmax ≤ 0.99

Hallway 61 301 23 Rmin ≥ 11.5 Lanes+ 2741 5285 11 Rmin ≥ 4805

Milos-97 165 980 11 Rmax ≤ 80 Netw-3-8-20 17k 30k 2205 Rmin ≥ 4.31

Network 19 70 5 Rmax ≤ 359 Refuel-06 208 565 50 Pmax ≤ 0.78

Query-s3 108 320 6 Rmax ≤ 600 Refuel-20 6834 25k 174 Pmax ≤ 0.99

Tiger-95 14 50 7 Rmax ≤ 159 Rocks-12 6553 32k 1645 Rmin ≥ 17.8

Selected Benchmarks and Setup. Our baseline are the recent belief explo-
ration technique [8] implemented in Storm [13] and the inductive (policy) syn-
thesis method [5] implemented in Paynt [6]. Paynt uses Storm for parsing
and model checking of MDPs, but not for solving POMDPs. Our symbiotic

Search and Explore: Symbiotic Policy Synthesis in POMDPs 127

framework (Algorithm 1) has been implemented on top of Paynt and Storm.
In the following, we use Storm and Paynt to refer to the implementation of
belief exploration and inductive synthesis respectively, and Saynt to refer to
the symbiotic framework. The implementation of Saynt and all benchmarks
are publicly available5. Additionally, the implementation and the benchmarks
in the form of an artifact are also available at https://doi.org/10.5281/zenodo.
7874513.

Setup. The experiments are run on a single core of a machine equipped with
an Intel i5-12600KF @4.9GHz CPU and 64GB of RAM. Paynt searches for
posterior-unaware FSCs using abstraction-refinement, as suggested by [5]. By
default, Storm applies the cut-offs as presented in Sect. 4.1. Saynt uses the
default settings for Paynt and Storm while tI = 60s and tB = 10s were taken
for Algorithm 1. Under Q3, we discuss the effect of changing these values.

Benchmarks. We evaluate the methods on a selection of models from [5,7,8]
supplemented by larger variants of these models (Drone-8-2 and Refuel-20), by
one model from [16] (Milos-97) and by the synthetic model (Lanes+) described
in Appendix C of [3]. We excluded benchmarks for which Paynt or Storm
finds the (expected) optimal solution in a matter of seconds. The benchmarks
were selected to illustrate advantages as well as drawbacks of all three synthe-
sis approaches: belief exploration, inductive (policy) search, and the symbiotic
technique. Table 2 lists for each POMDP the number |S| of states, the total
number

∑
Act :=

∑
s |Act(s)| of actions, the number |Z| of observations, the

specification (either maximising or minimising a reachability probability P or
expected reward R), and a known over-approximation on the optimal value com-
puted using the technique from [7]. These over-approximations are solely used
as rough estimates of the optimal values. Table 5 on p. 20 reports the quality
of the resulting FSCs on a broader range of benchmarks and demonstrates the
impact of the non-default settings.

Q1: FSCs provide better approximations of the belief MDP

In these experiments, Paynt is used to obtain a sub-optimal FI within 10s which
is then used by Storm. Table 3 (left) lists the results. Our main finding is that
belief exploration can yield better FSCs (and sometimes faster) using FSCs from
Paynt—even if the latter FSCs are far from optimal. For instance, Storm with
provided FI finds an FSC with value 0.97 for the Drone-4-2 benchmark within
a total of 10s (1s+9s for obtaining FI), compared to obtaining an FSC of value
0.95 in 56s on its own. A value improvement is also obtained if Storm runs
longer. For the Network model, the value improves with 37% (short-term) and
47% (long-term) respectively, at the expense of investing 3s to find FI . For
the other models, the relative improvement ranges from 3% to 25%. A further
value improvement can be achieved when using better FSCs FI from Paynt;

5 https://github.com/randriu/synthesis.

https://doi.org/10.5281/zenodo.7874513
https://doi.org/10.5281/zenodo.7874513
https://github.com/randriu/synthesis

128 R. Andriushchenko et al.

see Q3. Sometimes, belief exploration does not profit from FI . For Hallway, the
unexplored part of the belief MDP becomes insignificant rather quickly, and so
does the impact of FI . Clipping [8], a computationally expensive extension of
cut-offs, is beneficial only for Rocks-12, rendering FI useless. Though even in
this case, using FI significantly improves Short Storm that did not have enough
time to apply clipping.

Q2: Belief-based FSCs improve inductive synthesis

In this experiment, we run Storm for at most 1s, and use the result in Paynt.
Table 3 (right) lists the results. Our main finding is that inductive synthesis can
find much better FSCs—and sometimes much faster—when using FSCs from
belief exploration. For instance, for the 4 × 5 × 2 benchmark, an FSC is obtained
about six times faster while improving the value by 116%. On some larger models,
Paynt alone struggles to find any good FI and using FB boosts this; e.g., the
value for the Refuel-20 model is raised by a factor 20 at almost no run time
penalty. For the Tiger benchmark, a value improvement of 860% is achieved
(albeit not as good as FB itself) at the expense of doubling the run time. Thus:
even a shallow exploration of the belief MDP pays off in the inductive synthesis.
The inductive search typically profits even more when exploring the belief MDP
further. This is demonstrated, e.g., in the Rocks-12 model: using the FSC FB
computed using clipping (see Table 3 (left)) enables Paynt to find FSC FI
with the same (optimal) value 20 as FB within 1s. Similarly, for the Milos-97
model, running Storm for 45s (producing a more precise FB) enables Paynt
to find an FSC FI achieving a better value than controllers found by Storm or
Paynt alone within the timeout. (These results are not reported in the tables.)
However, as opposed to Q1, where a better FSC FI naturally improves the
belief MDP, longer exploring the belief MDP does not always yield a better FI :
a larger MB with a better FB may yield a larger memory model μ, thus inducing
a significantly larger family where Paynt struggles to identify good FSCs.

Q3: The practical benefits of the symbiotic approach

The goals of these experiments are to investigate whether the symbiotic app-
roach improves the run time (can FSCs of a certain value be obtained faster?),
the memory footprint (how is the total memory consumption affected?), the
controller’s value (can better FSCs be obtained with the same computational
resources?) and the controller’s size (are more compact FSCs obtained?).

Value of the Synthesised FSCs. Figure 4 plots the value of the FSCs produced
by Storm, Paynt, and Saynt versus the computation time. Note that for
maximal objectives, the aim is to obtain a high value (the first 4 plots) whereas
for minimal objectives a lower value prevails. From the plots, it follows that the
FSCs from the symbiotic approach are superior in value to the ones obtained by
the standalone approaches. The relative improvement of the value of the resulting
FSCs differs across individual models, similar to the trends in Q1 and Q2. When

Search and Explore: Symbiotic Policy Synthesis in POMDPs 129

Table 3. Left (Q1): Experimental results on how a (quite sub-optimal) FSC FI
computed by Paynt within 10s impacts Storm. (For Drone-8-2, the largest model
in our benchmark, we use 30s). The “Paynt” column indicates the value of FI and
its run time. The “Short Storm” column runs storm for 1s and compares the value
of FSC FB found by Storm alone to Storm using FI . The “Long Storm” column
is analogous, but with a 300s timeout for Storm. In the last row, * indicates that
clipping was used. Right (Q2): Experimental results on how an FSC FB obtained by
a shallow exploration of the belief MDP impacts the inductive synthesis by Paynt. The
“Storm” column reports the value of FB computed within 1s. The “Paynt” column
compares the values of the FSCs FI obtained by Paynt itself to Paynt using the FSCs
FB within a 300s timeout.

Paynt Short Storm Long Storm

Model FI + FI +FI

Drone-4-2 0.94 0.92 0.97 0.95 0.97

Pmax 9s 1s 1s 56s 57s

Network 266.1 186.7 274.5 202.1 277.1

Rmax 3s <1s <1s 26s 33s

Drone-8-2 0.9 0.6 0.96 0.68 0.97

Pmax 28s 3s 3s 101s 103s

4x3-95 1.66 1.62 1.82 1.84 1.88

Rmax 7s <1s <1s 60s 72s

Query-s3 425.2 417.4 430.0 419.6 432.0

Rmax 7s 2s 2s 91s 94s

Milos-97 31.56 37.15 39.15 38.35 40.64

Rmax 3s <1s <1s 42s 42s

Hallway 16.05 13.07 12.63 12.55 12.55

Rmin 9s 1s 1s 160s 167s

Rocks-12 42 38 31.89 20* 20*

Rmin <1s <1s <1s 10s 10s

Storm Paynt

Model FB + FB

4x5x2-95 2.08 0.94 2.03

Rmax <1s 258s 38s

Refuel-20 0.09 <0.01 0.19

Pmax 1s 10s 11s

Tiger-95 50.38 2.99 28.73

Rmax <1s 14s 23s

4x3-95 1.62 1.75 1.84

Rmax <1s 14s 238s

Refuel-06 0.67 0.35 0.67

Pmax <1s <1s 42s

Milos-97 37.15 31.56 39.29

Rmax <1s 3s 215s

Netw-3-8-20 11.93 11.07 10.95

Rmin 1s 185s 271s

Rocks-12 38 42 38

Rmin <1s <1s <1s

comparing the best FSC found by Storm or Paynt alone with the best FSC
found by Saynt, the improvement ranges from negligible (4× 3-95) to around
3%-7% (Netw-3-8-20, Milos-97, Query-s3) and sometimes goes over 40% (Refuel-
20, Lines+). We note that the distance to the (unknown) optimal values remains
unclear. The FSC value never decreases but sometimes does also not increase, as
indicated by Hallway and Rocks-12 (see also Q2). Our experiments (see Table 5)
also indicate that the improvement over the baseline algorithms is typically more
significant in the larger variants of the models. Furthermore, the plots in Fig. 4
also include the FSC value by the one-shot combination of Storm and Paynt.
We see that Saynt can improve the FSC value over the one-shot combination.
This is illustrated in, e.g., the 4× 3-95 and Lanes+ benchmarks, see the 1st and
3rd plots in Fig. 4 (left).

130 R. Andriushchenko et al.

1.7

1.74

1.78

1.82

1.86

1.9

V
al

ue
[R

m
ax

]

4x3-95 •
Saynt FB Saynt FI Storm Paynt Q1 Storm Q2 Paynt

31
33
35
37
39
41
43

V
al

ue
[R

m
ax

]

Milos-97 �

0

0.05

0.1

0.15

0.2

0.25

V
al

ue
[P

m
ax

]

Refuel-20

415

435

455

475

495

515

V
al

ue
[R

m
ax

]

Query-s3 �

0.4

0.8

1.2

1.6

2

·104

V
al

ue
[R

m
in

]

Lanes+
12

13

14

15

16

17

V
al

ue
[R

m
in

]

Hallway

0 2 4 6 8 10 12 14

10

10.4

10.8

11.2

11.6

12

Time [min]

V
al

ue
[R

m
in

]

Network-3-8-20

0 2 4 6 8 10 12 14

8

16

32

64

Time [min]

M
em

or
y

us
ag

e
[G

B
] Avg. memory usage comparison

Saynt

Storm

Fig. 4. Value of the generated FSCs over time. The last graph shows the average
memory usage of Storm and Saynt. The lines ending before the timeout indicate
that the 64GB memory limit was hit. • indicates that Paynt and Saynt synthesised
posterior-aware FSCs.
 indicates that Saynt ran with tI =90s. (Color figure online)

Total Synthesis Time. Saynt initially needs some time for the first iteration
(one inductive and one belief phase) in Algorithm 1 and thus during the begin-
ning of the synthesis process, the standalone tools may provide FSCs of a certain
value faster. After the first iteration, however, Saynt typically provides better
FSCs in a shorter time. For instance, for the Refuel-20 benchmark Saynt swiftly
overtakes Storm after the first iteration. The only exception is Rocks-12 (dis-
cussed before), where Saynt with the default settings needs significantly more
time than Storm to obtain an FSC of the same value.

Search and Explore: Symbiotic Policy Synthesis in POMDPs 131

Table 4. Trade-offs between the value and size in the resulting FSCs FI and FB
found by Saynt. Each cell reports value/size. The first three models have a minimising
objective.
 indicates that Saynt ran with tI =90s.

Models: Lanes+ Hallway Netw-3-8-20 Query-s3
 Refuel-06 Drone-8-2 Refuel-20

FB 4805/8.1k 12.55/2k 10/40k 511.32/7.7k 0.67/84 0.96/237k 0.24/1.5k

FI 6591/34 15.46/86 11.04/4.8k 509.49/26 0.67/156 0.90/6.4k 0.2/362

Memory Footprint. Belief exploration typically has a large memory footprint:
Storm quickly hits the 64GB memory limit on exploring the belief MDP. Saynt
reduces the memory footprint of Storm alone by a factor 3 to 4 , see the bottom
right plot of Fig. 4. The average memory footprint of running Paynt standalone
quickly stabilises around 700MB. The memory footprint of Saynt is thus dom-
inated by the restricted exploration of the belief MDP.

The Size of the Synthesised FSCs. For selected models, Table 4 shows the trade-
offs between the value and size of the resulting FSCs FI and FB found by Saynt.
The experiments show that the FSCs FI provided by inductive synthesis are
typically about one to two orders of magnitude smaller than the belief-based FSCs
FB with only a small penalty in their values. There are models (e.g. Refuel-06)
where a very small FB, having even slightly smaller size than FI , does exist.
The integration mostly reduces the size of FB due to the better approximation
of the belief MDP by up to a factor of two. This reduction has a negligible effect
on the size of FI . This observation further strengthens the usefulness of Saynt
that jointly improves the value of FI and FB. Hence, Saynt gives users a unique
opportunity to run a single, time-efficient synthesis and select the FSC according
to the trade-off between its value and size.

Customising the Saynt Setup. In contrast to the standalone approaches as well
as to the one-way integrations presented in Q1 and Q2, Saynt provides a single
synthesis method that is efficient for a general class of models without tuning its
parameters. Naturally, adjusting the parameters to individual benchmarks can
further improve the quality of the computed controllers: captions of Fig. 4 and
Table 4 describe which non-default settings were used for selected models.

Additional Results

In Table 5, we compare values and sizes of FSCs synthesised by the particular
methods on a broader range of benchmarks. We can see that FSCs FI obtained
by Saynt achieve better values than the controllers computed by Paynt; size-
wise, these better FSCs of Saynt are similar or only slightly bigger. Meanwhile,
for FSCs FB obtained by Saynt, we sometimes observe a significant size reduc-
tion while still improving the value compared to the FSCs produced by Storm.
Two models are notable: On Drone-8-2, Saynt obtains 50% smaller FB while
having a 41% better value. On Network-3-8-20, the size of FB is reduced by 40%
while again providing better value.

132 R. Andriushchenko et al.

Table 5. The quality and size of resulting FSCs provided by Paynt, Storm, and
Saynt within the 15-min timeout. The run times indicate the time needed to find the
best FSC. Non-default settings: ∗ marks experiments where clipping was enabled, •
marks experiments where PAYNT synthesised posterior-aware FSCs,
 marks experi-
ments where integration parameter tI was set to 90 s.

Benchmark Model Size Paynt Storm Saynt
Model Spec. S/ΣAct Z FI Size FB Size FB Size FI Size

Rmax 9 36 999

1.89• 968 1.87• 126
4x3 22 1.81 1.87 283s 120s
95 82 764s 414s 1.89 869 1.79 36

303s 678s
4x5x2

Rmax
79

7
0.94 26 2.08 102 2.08 102 2.03 38

95 310 305s 3s 71s 378s

Pmax 384 768 170k

0.89• 169k 0.87• 2.5k
Drone 1226 0.87 0.84 390s 453s
4-1 3026 665s 110s 0.89 176k 0.79 922

180s 45s
Drone

Pmax
1226

761
0.95 1.5k 0.95 135k 0.97 140k 0.94 1.5k

4-2 3026 900s 110s 194s 1s
Drone

Pmax
13k

3195
0.9 6.4k 0.68 280k 0.96 140k 0.9 6.4k

8-2 32k 260s 98s 247s 30s

Hallway Rmin
61

23
15.54 66 12.55 1.9k 12.55 1.8k 15.46 86

301 26s 916s 263s 293s

Lanes+ Rmin
2741

11
8223 42 18870 8.1k 4805 8.1k 6591 34

5289 118s 376s 173s 114s

Milos-97 Rmax 11 40 823

41.99
 692 35.82
 40
165 31.56 39.03 370s 185s
980 4s 88s 41.55 290 35.41 40

270s 114s

Network Rmax 5 22 2.4k

289.18• 2k 287.23• 54
19 280.33 209.71 395s 106s
70 38s 110s 284.51 1.8k 280.33 22

85s 41s
Netw

Rmin
4589

1173
4.24 2.3k 3.21 34k 3.2 23k 4.19 2.5k

2-8-20 6973 914s 11s 71s 211s
Netw

Rmin
17k

2205
11.04 4.4k 10.27 64k 10 38k 11.04 4.8k

3-8-20 30k 638s 238s 742s 379s

Rmax 6 28 12.9k

511.32
 7.7k 509.49
 26
Query 108 502.3 420.11 566s 362s

s3 320 931s 184s 482.21 7.7k 478.59 28
700s 610s

Refuel
Pmax

208
50

0.35 100 0.67 343 0.67 84 0.67 156
06 565 <1s 182s 178s 84s

Refuel
Pmax

470
66

0.32 132 0.44 534 0.45 140 0.3 142
08 1431 253s 96s 186s 84s

Refuel
Pmax

6834
174

0.02 348 0.15 1.2k 0.24 1.5k 0.2 360
20 24k 922s 468s 386s 173s

Rocks
Rmin

6553
1645

42 3.3k 20∗ 115 20∗ 115 20∗ 3.3k
12 32k <1s 15s 235s 236s

Tiger
Rmax

14
7

7.93 34 50.38 58 50.38 58 31.61 48
95 50 547s <1s 71s 513s

In the following, we further discuss the impact of non-default settings for
selected benchmarks, as presented in Table 5. For instance, using posterior-
aware FSCs generally significantly slows down the synthesis process, however,

Search and Explore: Symbiotic Policy Synthesis in POMDPs 133

for Network and 4× 3-95, it helps improve the value of the default posterior-
unaware FSCs by 2% and 4%, respectively. For the former model, a better FI
also improves FB by about a similar value. In some cases, e.g. for Query-s3, it
is beneficial to increase the parameter tI , giving Paynt enough time to search
for a good FSC FI (the relative improvement is 6%), which also improves the
value of the resulting FSC FB by about a similar value. Tuning tI and tB can
also have an impact on the value-size trade-off, as seen in the Milos-97 model,
where setting longer timeout tI results in finding a 2% better FB with 130% size
increase. A detailed analysis of the experimental results suggests that usually,
it is more beneficial to invest time into searching for good FI that is used to
compute better cut-off values, rather than into deeper exploration of belief MDP.
However, the timeouts still need to allow for multiple subsequent iterations of
the algorithm in order to utilise the full potential of the symbiosis.

8 Conclusion and Future Work

We proposed Saynt, a symbiotic integration of the two main approaches for
controller synthesis in POMDPs. Using a wide class of models, we demonstrated
that Saynt substantially improves the value of the resulting controllers and
provides an any-time, push-button synthesis algorithm allowing users to select
the controller based on the trade-off between its value and size, and the synthe-
sis time.

In future work, we plan to explore if the inductive policy synthesis can also be
successfully combined with point-based approximation methods, such as SAR-
SOP, and on discounted reward properties. A preliminary comparison on dis-
counting properties provides two interesting observations: 1) For models with
large reachable belief space and discount factors (very) close to one, SARSOP
typically fails to update its initial alpha-vectors and thus produces low-quality
controllers. In these cases, SAYNT outperforms SARSOP. 2) For common dis-
count factors, SARSOP beats SAYNT on the majority of benchmarks. This is
not surprising, as the MDP engine underlying SAYNT does not natively sup-
port discounting and instead computes a much harder fixed point. See [15], for
a recent discussion on the differences between discounting and not discounting.

References

1. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic con-
trollers for POMDPs and decentralized POMDPs. Auton. Agent. Multi-Agent Syst.
21(3), 293–320 (2010)

2. Amato, C., Bonet, B., Zilberstein, S.: Finite-state controllers based on Mealy
machines for centralized and decentralized POMDPs. In: AAAI, pp. 1052–1058.
AAAI Press (2010)

3. Andriushchenko, R., Bork, A., Češka, M., Junges, S., Katoen, J.P., Macák,
F.: Search and explore: symbiotic policy synthesis in POMDPs. arXiv preprint
arXiv:2305.14149 (2023)

http://arxiv.org/abs/2305.14149

134 R. Andriushchenko et al.

4. Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P.: Inductive synthesis for
probabilistic programs reaches new horizons. In: TACAS 2021. LNCS, vol. 12651,
pp. 191–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-
2 11

5. Andriushchenko, R., Češka, M., Junges, S., Katoen, J.P.: Inductive synthesis of
finite-state controllers for POMDPs. In: UAI, vol. 180, pp. 85–95. PMRL (2022)

6. Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P., Stupinský, Š: PAYNT: a
tool for inductive synthesis of probabilistic programs. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12759, pp. 856–869. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81685-8 40

7. Bork, A., Junges, S., Katoen, J.-P., Quatmann, T.: Verification of indefinite-horizon
POMDPs. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp.
288–304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 16

8. Bork, A., Katoen, J.-P., Quatmann, T.: Under-approximating expected total
rewards in POMDPs. In: TACAS 2022. LNCS, vol. 13244, pp. 22–40. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99527-0 2

9. Carr, S., Jansen, N., Topcu, U.: Task-aware verifiable RNN-based policies for par-
tially observable Markov decision processes. J. Artif. Intell. Res. 72, 819–847 (2021)

10. Češka, M., Jansen, N., Junges, S., Katoen, J.-P.: Shepherding hordes of Markov
chains. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 172–
190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 10

11. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Aspects Com-
put. 30(1), 45–75 (2018)

12. Cubuktepe, M., Jansen, N., Junges, S., Marandi, A., Suilen, M., Topcu, U.: Robust
finite-state controllers for uncertain POMDPs. In: AAAI, pp. 11792–11800. AAAI
Press (2021)

13. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

14. Hansen, E.A.: Solving POMDPs by searching in policy space. In: UAI, pp. 211–219.
Morgan Kaufmann (1998)

15. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide
to MDP model checking algorithms. In: Sankaranarayanan, S., Sharygina, N. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2023.
Lecture Notes in Computer Science, vol. 13993, pp. 469–488. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30823-9 24

16. Hauskrecht, M.: Incremental methods for computing bounds in partially observable
Markov decision processes. In: AAAI/IAAI, pp. 734–739 (1997)

17. Heck, L., Spel, J., Junges, S., Moerman, J., Katoen, J.-P.: Gradient-descent for ran-
domized controllers under partial observability. In: Finkbeiner, B., Wies, T. (eds.)
VMCAI 2022. LNCS, vol. 13182, pp. 127–150. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-94583-1 7

18. Horak, K., Bosansky, B., Chatterjee, K.: Goal-HSVI: heuristic search value itera-
tion for Goal POMDPs. In: IJCAI, pp. 4764–4770. AAAI Press (2018)

19. Junges, S., et al.: Finite-state controllers of POMDPs via parameter synthesis. In:
UAI, pp. 519–529 (2018)

20. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP plan-
ning by approximating optimally reachable belief spaces. In: Robotics: Science and
Systems. MIT Press (2008)

https://doi.org/10.1007/978-3-030-72016-2_11
https://doi.org/10.1007/978-3-030-72016-2_11
https://doi.org/10.1007/978-3-030-81685-8_40
https://doi.org/10.1007/978-3-030-81685-8_40
https://doi.org/10.1007/978-3-030-59152-6_16
https://doi.org/10.1007/978-3-030-99527-0_2
https://doi.org/10.1007/978-3-030-17465-1_10
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-030-94583-1_7
https://doi.org/10.1007/978-3-030-94583-1_7

Search and Explore: Symbiotic Policy Synthesis in POMDPs 135

21. Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: QEST, pp. 157–166. IEEE Computer Society (2006)

22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

23. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1), 5–34 (2003)

24. Meuleau, N., Kim, K., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: UAI, pp. 417–426. Morgan Kaufmann
(1999)

25. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017). https://doi.org/10.
1007/s11241-017-9269-4

26. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons (1994)

27. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov
processes over a finite horizon. Oper. Res. 21(5), 1071–1088 (1973)

28. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically inter-
pretable reinforcement learning. In: ICML, vol. 80, pp. 5052–5061. PMLR (2018)

29. Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for pomdps with
safe-reachability objectives. In: AAMAS, pp. 238–246. International Foundation for
Autonomous Agents and Multiagent Systems Richland, SC, USA/ACM (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s11241-017-9269-4
https://doi.org/10.1007/s11241-017-9269-4
http://creativecommons.org/licenses/by/4.0/

Security and Quantum Systems

AutoQ: An Automata-Based Quantum
Circuit Verifier

Yu-Fang Chen1(B) , Kai-Min Chung1 , Ondřej Lengál2(B) ,
Jyun-Ao Lin1 , and Wei-Lun Tsai1(B)

1 Institute of Information Science, Academia Sinica,
Taipei, Taiwan

yfc@iis.sinica.edu.tw, alan23273850@gmail.com
2 Faculty of Information Technology, Brno University

of Technology, Brno, Czech Republic
lengal@fit.vutbr.cz

Abstract. We present a specification language and a fully automated
tool named AutoQ for verifying quantum circuits symbolically. The
tool implements the automata-based algorithm from [14] and extends
it with the capabilities for symbolic reasoning. The extension allows to
specify relational properties, i.e., relationships between states before and
after executing a circuit. We present a number of use cases where we
used AutoQ to fully automatically verify crucial properties of several
quantum circuits, which have, to the best of our knowledge, so far been
proved only with human help.

1 Introduction

Recently, quantum computing has received much attention, driven by several
technological breakthroughs [7] and increasing investments. Prototype quan-
tum computers are already available. The opportunities for the general public—
particularly students, researchers, and technology enthusiasts—to access quan-
tum computing devices are rapidly increasing, e.g., through cloud services such as
Amazon Braket [1] or IBM Quantum [2]. Due to the complexity and probabilistic
nature of quantum computing, the chance of errors in quantum programs is much
higher than that of traditional programs, and conventional means for correct-
ness assurance, such as testing, are much less applicable in the quantum world.
Quantum programmers need better tools to help them write correct programs.
Therefore, researchers anticipate that formal verification will play a crucial role
in quantum software quality assurance and have, in recent years, invested signif-
icant effort in this direction [5,11,21,41–43,45,46]. Nevertheless, practical tools
for automated quantum program/circuit verification are still missing.

This paper introduces AutoQ1, a fully automated tool for quantum circuit
verification based on the approach proposed in [14]. In particular, AutoQ checks
the validity of a Hoare-style specification {Pre} C {Post}, where C is a quantum
circuit (a sequence of quantum gates) in the OpenQASM format [17] and the

1 Available at https://github.com/alan23273850/AutoQ.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 139–153, 2023.
https://doi.org/10.1007/978-3-031-37709-9_7

https://doi.org/10.5281/zenodo.7966542
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_7&domain=pdf
http://orcid.org/0000-0003-2872-0336
http://orcid.org/0000-0002-3356-369X
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0001-8560-2147
http://orcid.org/0009-0003-5832-0867
https://github.com/alan23273850/AutoQ
https://doi.org/10.1007/978-3-031-37709-9_7

140 Y.-F. Chen et al.

precondition Pre and postcondition Post represent sets of (pure) quantum states.
The check is done by executing the circuit with all quantum states satisfying Pre
(using a symbolic representation) and testing that all resulting quantum states
are in the set denoted by Post.

AutoQ combines two main techniques to efficiently and effectively represent
and reason about (potentially infinite) sets of quantum states:

1. As in [14], we use tree automata (TAs), finite-state automata accepting lan-
guages of trees, to efficiently represent sets of quantum states: Each quantum
state over n qubits can be seen as a binary decision tree over n variables such
that, e.g., in a 3-qubit circuit with qubits |x1x2x3〉, if the computational basis
state |010〉 in a quantum state has the probability amplitude 1

4 , then there will
be a branch x1

0−→ x2
1−→ x3

0−→ 1
4 in the corresponding tree. The use of TA-

based representation of a set of quantum states has several advantages: (a) It
is concise: e.g., in order to represent the set of all 2n basis states of an n-qubit
quantum circuit, we suffice with a TA with O(n) states and transitions. (b) It
allows to efficiently perform quantum gate operations on the whole set of quan-
tum states represented by a TA at once [14].

2. In this work, we further consider symbolic quantum states, represented by
assigning symbolic values to computational basis states (and having an addi-
tional formula to relate these symbolic values). For instance, we can represent
the set of all n-qubit quantum states where the computational basis |0 . . . 0〉
has a strictly larger probability of measurement than all other basis states by
a symbolic quantum state assigning |0 . . . 0〉 �→ vh and |y1 . . . yn〉 �→ v� for all
y1 . . . yn �= 0 . . . 0, togetherwith the formula |vh|2 > |v�|2∧|vh|2+(2n−1)|v�|2 =
1, where vh and v� are symbolic variables ranging over complex numbers

By combining these two techniques, i.e., using TAs with symbolic variables
in leaves, we can have a representation of all n-qubit quantum states where an
arbitrary basis has a strictly larger amplitude than other basis states using O(n)
states and transitions.

Using such a symbolic encoding is essential to allow us to describe relational
specifications, e.g., it allows us to express properties like “the probability ampli-
tude of the basis state |000〉 is increased after executing the circuit C” (for this,
in the postcondition, we use TAs accepting trees with predicates in leaves, a sub-
class of symbolic tree automata of [36]). Such a property can then be verified
by executing the quantum circuit symbolically in the spirit of symbolic execu-
tion [27] (i.e., such that the values of amplitudes are not complex numbers but,
instead, symbolic terms) and checking whether all trees in the language of the
resulting TA satisfy the desired property (using a modified antichain-based algo-
rithm for testing TA language inclusion [4,10]). Combining TAs and symbolic
variables as the language for quantum predicates allows full automation and
can be used to express many crucial properties of quantum circuits, as we will
demonstrate later. AutoQ is the first tool implementing this approach.

Related Work. Our work belongs to the line of Hoare-style verification of quan-
tum programs, which has been widely discussed in the past [22,29,35,40,44]. This

AutoQ: An Automata-Based Quantum Circuit Verifier 141

family of approaches follows D’Hondt and Panangaden’s suggestion of using var-
ious Hermitian operators as quantum predicates, resulting in a very powerful yet
complete proof system [20]. However, specifying properties using Hermitian oper-
ators is often not intuitive and is inconvenient for automation due to their enor-
mous matrix sizes. Therefore, often these approaches are implemented on top of
proof assistants such as Coq [9] and Isabelle [37] and require significant man-
ual work in proof search. The Qbricks [12] approach alleviates the difficulty of
the proof search by combining state-of-the-art theorem provers with decision pro-
cedures building on top of the Why3 platform [24]. The approach, however, still
requires a significant amount of human intervention.

Regarding other quantum program/circuit/protocol verification tools, circuit
equivalence checkers [5,11,15,26,39] are often quite efficient but less flexible in
specifying the desired property (only equivalence). They are particularly useful
in compiler validation; notable tools include Qcec [11], and Feynman [5]. Quan-
tum model checking supports a rich specification language (flavors of temporal
logic [23,30,38]) and is more suitable for verifying high-level protocols due to the
quite limited scalability [6]. One notable tool in this category is QPMC [23].
Quantum abstract interpretation [32,43] is particularly efficient in processing
large-scale circuits, but it grossly over-approximates the state space (it cannot
verify basic properties of, e.g., Grover’s algorithm) and cannot conclude any-
thing when verification fails. In contrast, AutoQ can be conveniently used for
quantum program development and debugging since it automatically computes
the exact set of reachable states2. The mentioned tools are fully automated but
have different goals or address different parts of the software development cycle
than AutoQ.

Contributions. AutoQ evolved from a simple prototype used for performance
evaluation in [14] into a robust tool. In addition, we added the following major
extensions:

1. We combined the TA specification with symbolic variables, allowing users to
specify advanced relational properties of quantum circuits.

2. We developed a new entailment-checking algorithm for the symbolic TA spec-
ification based on the antichain algorithm for automata language inclusion
testing.

3. We introduced a high-level language to simplify writing TA specifications.

These improvements are pushing the capabilities of AutoQ, and also of practical
quantum circuit verification itself, much further.

Outline. In Sect. 2, we describe our approach to TA-based specification and ver-
ification of quantum circuits. In Sect. 3, we discuss the new entailment-checking
algorithm for the symbolic TA representation. We discuss the architecture of
AutoQ in Sect. 4 and demonstrate the use of the specification language and
AutoQ for automated verification of several case studies in Sect. 5.
2 A predecessor of the presented version of AutoQ has already caught a bug in Qcec,

cf. [3].

142 Y.-F. Chen et al.

Fig. 1. Verification of a circuit C amplifying the amplitude of |00〉 w.r.t. the specifica-
tion {P, ϕ} C {Q} with ϕ : |vh + 3v�| > |2vh|. R is the TA obtained by executing P
on C.

2 Tree Automata-Based Verification of Quantum Circuits

We will begin with minimal formal definitions of the TA-based specification
and demonstrate how to use them to verify quantum circuits in AutoQ with
examples. We assume a basic knowledge of quantum computation (see, e.g., the
classical textbook [31]).

Let us fix a finite set of quantum variables X = {x1, . . . , xn} with a linear order-
ing (we assume x1 < . . . < xn) and a disjoint non-empty leaf alphabet Σ. We will,
in particular, work with Σ = Σt � Σp where Σt is the alphabet of terms and Σp is
the alphabet of predicates in a suitable first-order theory (discussed later).

We use {0, 1}≤n to denote
⋃

0≤i≤n{0, 1}i. A (symbolic binary decision) tree
over X and Σ is a function τ : {0, 1}≤n → (X∪Σ) such that for all positions p ∈
{0, 1}i with i < n, we have τ(p) = xi+1 and for all positions p ∈ {0, 1}n, we have
τ(p) ∈ Σ. An example of a tree τ can be found in Fig. 1b, where Σ = {vh, v�},
τ(ε) = x1, τ(0) = τ(1) = x2, τ(00) = vh, and τ(p) = v� for p ∈ {0, 1}2 \ {00}.

A (symbolic) tree automaton (TA) is a tuple A = (S,Δ, F) where S is a finite
set of states, Δ ⊆ (S ×X× S × S)∪ (S × Σ) is a transition relation, and F ⊆ S

is the set of root (final) states. We denote transitions from Δ as s
xi−→ (s0, s1)

and s
a−→ () respectively. An example of a TA with the set of root states {s} can

be found in Fig. 1a.
A run of A on τ is a function ρ : {0, 1}≤n → S s.t. for all positions p ∈ {0, 1}i

with i < n, it holds that ρ(p)
τ(p)−−−→ (ρ(p.0), ρ(p.1)) ∈ Δ and for all positions

p ∈ {0, 1}n, it holds that ρ(p)
τ(p)−−−→ () ∈ Δ. The run ρ is accepting iff ρ(ε) ∈ F

and the language of A is L(A) = {τ | A has an accepting run on τ}. Observe
that the tree in Fig. 1b is in the language of the TA P in Fig. 1a with the run
ρ such that ρ(ε) = s, ρ(0) = s1, ρ(1) = s0, ρ(00) = s3, and ρ(p) = s2 for
p ∈ {0, 1}2 \ {00}.

Now we are ready to demonstrate how to write specifications of quantum cir-
cuits with TAs using a running example. We assume that C is a 2-qubit circuit that
amplifies the amplitude of the basis state |00〉 (under some constraint ϕ over input

AutoQ: An Automata-Based Quantum Circuit Verifier 143

states) and reduces the amplitudes of other basis states. We first prepare the pre-
condition of C, which consists of a pair (P, ϕ), where P is a TA with the root state
s, a set of terms Σt as the leaf alphabet, and the set of transitions from Fig. 1a,
and ϕ is a first-order constraint over the variables used in Σt. In Σt, we use two
variables over complex numbers, v� and vh, to denote the corresponding amplitude
(low and high). The constraint ϕ states that |vh + 3v�| > |2vh| (required by this
circuit C, cf. Sect. 5.4). Recall that the TA P from Fig. 1a accepts the tree from
Fig. 1b, which in turn represents the quantum state

s = vh |00〉 + v� |01〉 + v� |10〉 + v� |11〉 . (1)

AutoQ will execute the gates in C to transform the TA P to another TA
R capturing the effect of executing C over all quantum states encoded in P.
The algorithm for gate operations is almost the same as the one in [14], except
that now the update of leaf symbols works symbolically (similarly to symbolic
execution [27]: each leaf symbol is a term over vh and v� and quantum gates
change the terms by accumulating the operations that would be performed on
them, potentially simplifying them). In this example, the TA R will accept only
one tree representing the quantum state

s′ = (vh+3v�

2) |00〉 + (vh−v�

2) |01〉 + (vh−v�

2) |10〉 + (vh−v�

2) |11〉 , (2)

Observe that under the precondition ϕ = |vh + 3v�| > |2vh|, the probability of
|00〉 is indeed increased (|vh+3v�

2 |2 > |vh|2). The tree representation of s′ can be
found in Fig. 1c. The TA Q of the postcondition can be found in Fig. 1a. The
leaf alphabet of Q is the set of predicates Σp = {|�| > |vh|, |�| < |v�|} where �
denotes a free variable. Observe that Q accepts the tree from Fig. 1e.

2.1 High-Level Specification Language

In AutoQ, we provide a simple specification language that can be automati-
cally translated to TAs. The language allows users to focus on the properties
they want to express without the need to specify details of the TA structure.
Our language is particularly suitable for describing sets of states with one high
probability branch and other branches with uniformly low or zero probability,
a very common pattern of quantum circuit’s correctness properties. For example,
in the language, we can use (|00〉: vh, |∗〉: v�), where “ |∗〉” denotes “other basis
states,” to define the tree language of the TA in Fig. 1a, which accepts a sin-
gle tree representing the quantum state vh |00〉 + v� |01〉 + v� |10〉 + v� |11〉 from
Fig. 1b. Similarly, we can use (|00〉: |�| > |vh|, |∗〉: |�| < |v�|) to represent the
language of the TA in Fig. 1d. The set of all 2-qubit basis states {|i〉 | i ∈ {0, 1}2}
is expressed as ∃i ∈ {0, 1}2 : (|i〉: 1, |∗〉: 0) (we can see it as a predicate that is
satisfied by the described quantum states). We also allow the tensor product ⊗
operator, which multiplies the amplitude of the product basis states. For exam-
ple, (|00〉: 1, |∗〉: 0)⊗ (|00〉: vh, |∗〉: v�)⊗ (|00〉: 1, |∗〉: 0) represents the (singleton)
set of states compactly {vh |000000〉 + ∑

j∈{01,11,10} v� |00j00〉}.

144 Y.-F. Chen et al.

A more challenging example is to represent the set of states
{

vh |ii000〉 +
∑

j∈{0,1}3∧j �=i

v� |ij000〉
∣
∣
∣
∣ i ∈ {0, 1}3

}

. (3)

Such a set can be described with the help of the ⊗ and ∃ operators as follows:

∃i ∈ {0, 1}3 : (|i〉: 1, |∗〉: 0) ⊗ (|i〉: vh, |∗〉: v�) ⊗ (|000〉: 1, |∗〉: 0). (4)

Below is the grammar of specification spec:

spec ::= state
∣
∣ ∃i ∈ {0, 1}n : state

∣
∣ spec, state

state ::= (|c1〉: t, . . . , |ck〉: t, |∗〉: t)
∣
∣ (|i〉: t, |∗〉: t)

∣
∣ state ⊗ state

t ∈ Σ, n ∈ N, and c1, . . . , ck ∈ {0, 1}n

A spec is ill-formed when a free variable i appears in state, if some basis is
repeated in the rule (|c1〉: t, . . . , |ck〉: t, |∗〉: t), or if the previous rule contains
two bases of different lengths. If all basis states of the given length are specified
in (|c1〉: t, . . . , |ck〉: t, |∗〉: t), the |∗〉: t part is not required any more. The spec-
ification is then converted into a TA using a straightforward algorithm; in the
following we often confuse a TA and its specification.

2.2 Complex Number Representation

In a (pure) quantum state, the amplitude of a basis computational state is a
complex number, and the corresponding probability is the square of the abso-
lute value of the amplitude. For verification, we need an exact representation of
complex numbers that can be used in computers. In AutoQ, we use a subset
of complex numbers that can be expressed by the following algebraic encod-
ing (cf. [14,34,46]):

(1√
2

)
k(a + bω + cω2 + dω3), (5)

where a, b, c, d ∈ Z, k ∈ N, and ω = e
iπ
4 = cos 45◦+i sin 45◦ =

√
2
2 +i

√
2
2 , the unit

vector that makes an angle of 45◦ with the positive real axis in the complex plane.
A complex number is then represented by a quadruple (a, b, c, d) of integers and
a normalization factor k. Although the considered set of complex numbers is only
a small subset of all complex numbers (it is countable, while the set of all complex
numbers is uncountable), the subset is sufficient to describe various standard
quantum gates. Currently, AutoQ supports the set of quantum gates X, H, Y,
Z, S, T, Rx(π

2), Ry(π
2), CNOT, CZ, Toffoli (cf. the list in [14]), which already

includes a set of universal quantum gates. From the Solovay-Kitaev theorem [18],
gates performing rotations of π

2n , used, e.g., in Shor’s algorithm [33] and quantum
Fourier transform (QFT) [16], can be approximated with an error rate ε by
O(log3.97(1ε))-many H, CNOT, and T gates. The algebraic representation is also
sufficient to represent all reachable states in OpenQASM circuits with the set
of supported gates, where the initial basis state is |0 . . . 0〉.

AutoQ: An Automata-Based Quantum Circuit Verifier 145

AutoQ operates on the introduced representation of complex numbers. More
precisely, for a specification {P, ϕ} C {Q}, the leaf symbols of P are quadruples
of integer terms (a, b, c, d). We assume that all leaf symbols of P share a common
normalization factor k, so we do not store the value of k explicitly since it can
be inferred from the fact that the probability sum over all basis states is one.
Instead, we remember a constant natural number value kc, the difference of the
k value between P and R, and use it to normalize the amplitudes. Recall that
R is the TA accepting all states after executing C from some states accepted by
P. The initial value of kc is zero, and each application of H, Rx(π

2), or Ry(π
2)

gates will increase it by one (cf. [14]). We normalize all quadruple leaf symbols
(a, b, c, d) of R by multiplying them with

(
1√
2

)
kc once R is computed.

Next, we show how to compose a specification of our running example from
Fig. 1 using the algebraic representation. The specification can now be written as

P : (|00〉: (va
h, vb

h, vc
h, vd

h), |∗〉: (va
� , vb

� , v
c
� , v

d
�)

Q : (|00〉: |(�1,�2,�3,�4)|2 > |(va
h, vb

h, vc
h, vd

h)|2, |∗〉: |(�1,�2,�3,�4)|2 < |(va
� , vb

� , v
c
� , v

d
�)|2),

where |(a, b, c, d)|2 = |a + bω + cω2 + dω3|2

=
∣
∣a + b(

√
2
2 +

√
2
2 i) + ci + d(−

√
2
2 +

√
2
2 i)

∣
∣2

= (a + b
√
2
2 − d

√
2
2)2 + (b

√
2
2 − c + d

√
2
2)2

2.3 Precise Semantics of the Specification

As mentioned above, for verifying {P, ϕ} C {Q}, we start with a TA P repre-
senting the set of all quantum states satisfying the precondition and compute
a TA R representing the set of states reachable after executing the circuit C.
Then, we test whether R entails Q (w.r.t. ϕ), i.e., whether all reachable states
satisfy the postcondition.

Formally, we say that a tree τ1 is entailed by a tree τ2 w.r.t. a first-order
formula ϕ, denoted as τ1 |=ϕ τ2, if for all positions p ∈ {0, 1}n it holds that
either (i) τ1(p) = τ2(p) or (ii) τ1(p) = (t1, . . . , tk) ∈ Σt, τ2(p) = ψ ∈ Σp, and
ϕ ⇒ ψ[t1/�1] . . . [tk/�k]. We lift the entailment to TAs: A1 |=ϕ A2 iff for all
trees τ1 ∈ L(A1) there exists a tree τ2 ∈ L(A2) s.t. τ1 |=ϕ τ2.3

3 Entailment Checking

We will now describe how we perform the entailment check R |=ϕ Q. Since we
operate with trees and tree automata over symbolic values, we cannot establish
entailment by running a classical TA language inclusion test based on comple-
menting the automaton Q first. Instead, our algorithm for testing the entail-
ment R |=ϕ Q is based on an on-the-fly TA inclusion checking algorithm [4,10],

3 We never have a predicate from Σp on the left-hand side of the entailment test, so
we do not need to test implication between predicates, which would be needed for
a complete procedure.

146 Y.-F. Chen et al.

Algorithm 1: Checking R |=ϕ Q
Input: A TA R = (Sr, Δr, Fr), a TA Q = (Sq, Δq, Fq), a formula ϕ
Output: true if R |=ϕ Q, false otherwise

1 Processed ← ∅;

2 Worklist ← Min{(sr, Uq) | sr
tr−→ () ∈ Δr,

3 Uq = {uq ∈ Qq | uq
tr−→ () ∨ ∃uq

pq−→ () ∈ Δq : ϕ ⇒ pq[tr/�]}};
4 while Worklist
= ∅ do
5 (sr, Uq) ← Worklist .pop();
6 if sr ∈ Fr ∧ Uq ∩ Fq = ∅ then return false ;
7 Processed ← Min(Processed ∪ {(sr, Uq)});
8 tmp ← ({(sr, Uq)} × Processed) ∪ (Processed × {(sr, Uq)});
9 foreach ((s1r, U

1
q), (s

2
r, U

2
q)) ∈ tmp, α ∈ X do

10 Hr ← {s′
r ∈ Qr | s′

r
α−→ (s1r, s

2
r) ∈ Δr};

11 U ′
q ← {sq ∈ Qq | ∃s1q ∈ U1

q , ∃s2q ∈ U2
q : sq

α−→ (s1q, s
2
q) ∈ Δq};

12 foreach s′
r ∈ Hr s.t. (s′

r, U
′
q) /∈ �Processed ∪ Worklist� do

13 Worklist ← Min(Worklist ∪ {(s′
r, U

′
q)});

14 return true;

which avoids complementation. The on-the-fly inclusion-checking algorithm can
be seen as an optimization of the classical construction, which would establish
L(R)∩L(Q) ?= ∅ by first computing the complement Q� of Q (using a bottom-up
TA determinization), followed by computing the intersection A∩ of Q� and R,
and, finally, checking language emptiness of A∩. In particular, the on-the-fly
inclusion checking algorithm can be seen as doing all the operations at once.
Furthermore, the algorithms in [4,10] also make use of the so-called antichains
and TA simulation to prune the explored state space.

Our modification of the inclusion algorithm to test TA entailment, given in
Algorithm 1, mainly differs from [4,10] in the way initial sets of state pairs are
computed on Line 3. In particular, we match a state sr that can perform a leaf
transition over tr in R with the set Uq of all states in Q that can perform a leaf
transition either over tr or over a predicate pq such that ϕ ⇒ pq[tr/�] (we use
pq[tr/�] for a tuple tr to denote the substitution of the tuple’s components into
the corresponding free variables of pq).

After that, the algorithms perform a simultaneous bottom-up traversal
through R (represented by states sr) and the determinized version of Q (rep-
resented by sets of states Uq). For each such pair (sr, Uq), the algorithm first
checks whether sr is a root state and Uq does not contain any root state (cf.
Line 6; this would mean that R accepts some tree that is not accepted by Q).
If this does not hold, then the algorithm tries to find all already processed pairs
that can make a transition with (sr, Uq) (cf. Line 8) and continue from all such
pairs. Each bottom-up successor (s′

r, U
′
q) is then added to Worklist in the case

it has not been seen previously (cf. Line 13).
The algorithm uses the function Min (cf. Lines 3, 7, and 13) to minimize the

sets Worklist and Processed w.r.t. a subsumption relation, and the downward

AutoQ: An Automata-Based Quantum Circuit Verifier 147

closure for �Processed ∪Worklist� on Line 12 to prune the explored state space.
Due to lack of space, we refer to the works [4,10] for more details about these
optimizations.

4 Architecture

Fig. 2. The architecture of AutoQ. The input verifi-
cation problem is {P, ϕ} C {Q}.

We illustrate the architec-
ture of AutoQ in Fig. 2.
The tool is written in
C++ and uses the follow-
ing external tools: the TA
library Vata [28] for effi-
cient testing of TA inclu-
sion (when the postcondi-
tion uses only the term
alphabet Σt) and the SMT
solver Z3 for entailment
checking of leaf symbols in
Algorithm 1. We allow any theory solver supported by Z3. In our experiment, we
use QF_NIRA. AutoQ takes as an input a quantum circuit in the OpenQASM
format accompanied with the specification written as tree automata (.aut files)
or the high-level specification language (.hsl files) introduced in Sect. 2.1.

Preprocessor reads the input files (.aut, .smt, .qasm, and .hsl files), trans-
lates specifications in the .hsl files into tree automata, and stores them using
AutoQ’s internal data structures. Circuit Executor then reads the circuit C and
the TA P and generates another TA R obtained as the result after executing
C from states in P, using the approach of [14] with the symbolic extension dis-
cussed in Sect. 2. AutoQ can also output the TA R for further analysis. Finally,
Entailment Checker checks whether R |=ϕ Q and reports “verified” when the
entailment holds and “bug found” otherwise.

5 Use Cases

In this section, we describe several use cases of quantum algorithms and their
important properties that we were able to verify using AutoQ fully automati-
cally. We focus on the use of symbolic TA in this set of experiments and refer
the readers to [14] for other experimental results. A selection of the obtained
results is given in Table 1. An artifact that allows reproduction of the results is
available as [13].

5.1 Hadamard Square is Identity

Our first use case shows that the single qubit gate C that runs two consecutive
H gates has the same effect as an identity matrix. We use the specification

148 Y.-F. Chen et al.

{P, ϕ} C {Q} with

P : (|0〉: (va, vb, vc, vd), |1〉: (v′
a, v′

b, v
′
c, v

′
d)), ϕ : true,

Q : (|0〉: (�a,�b,�c,�d) = (va, vb, vc, vd), |1〉: (�a,�b,�c,�d) = (v′
a, v′

b, v
′
c, v

′
d)).

In this simple example, the precondition P encodes an infinite number of quan-
tum states, which is not expressible using the technique in [14]. We also included
a buggy version by altering one of the H gates, and AutoQ managed to detect
the injected bug. The results can be found in rows H2 in Table 1.

5.2 Zero Imaginary Part of Amplitudes

One property, which is shared by multiple algorithms, e.g., Bernstein-
Vazirani’s [8] and Grover’s algorithm [25], is that the imaginary part of all
amplitudes of the result is zero.

Let us focus on Bernstein-Vazirani’s algorithm [8], which finds a secret bit-
string s from an oracle using a single query. The algorithm begins with the quan-
tum state |0n〉, where n is the length of s, and ends with the quantum state |s〉.
The amplitudes of all basis states are either zero or one, the imaginary part of the
amplitudes is, therefore, always zero. For a three-qubit circuit C implementing the
algorithm, we can therefore use the specification: {P, ϕ} C {Q} with

P : (|000〉: (1, 0, 0, 0), |∗〉: (0, 0, 0, 0)), ϕ : true, Q : (|∗〉: ψIm),

where ψIm ≡ (�b = −�d ∧ �c = 0) (it will also be used later). In the definition
of P, recall that we use the integer-quadruple representation of complex numbers
(cf. Eq. (5)). In the postcondition Q, the free variables �a,�b,�c,�d are to be
substituted by the corresponding terms in the obtained integer term quadruple
(a, b, c, d) in the entailment check. Note that (a, b, c, d) represents the complex
number (a + b

√
2
2 − d

√
2
2) + i(b

√
2
2 − c + d

√
2
2) (obtained from Eq. (5)). Because

a, b, c, d are all integers, for the imaginary part to be zero, it must hold that
c = 0 and b = −d.

When we run C from P, we obtain a TA R encoding (|010〉: (1, 0, 0, 0),
|∗〉: (0, 0, 0, 0)) and the entailment R |=ϕ Q holds. See the rows BV(n) in Table 1
for the results of verifying the algorithm for circuits with secrets of size n. As in the
previous example, we also included a buggy version to demonstrateAutoQ’s bug-
finding capability. We can see that AutoQ could verify the algorithm for secrets
of a quite large size.

5.3 Probability of Measuring the Correct Answer

Grover’s algorithm [25] assumes a Boolean function f over n bits with only one
satisfying assignment s and an oracle that evaluates f for a given input. The
algorithm finds s with a high probability, say > 0.9, using only O(

√
2n) oracle

queries. The algorithm works iteratively, where each Grover iteration queries the
oracle once and amplifies the amplitude of |s〉. First, let C be a 6-qubit circuit

AutoQ: An Automata-Based Quantum Circuit Verifier 149

Table 1. Results of verifying our use cases with AutoQ. The maximum peak memory
consumption was 52 MiB for GroverAll(9). In most cases, the time of entailment was
negligible, with the exception of GroverAll circuits. For instance, GroverAll(8) takes
2m18 s for entailment checking (70% of the total time) and GroverAll(9) takes 21 m36 s
for entailment checking (85% of the total time).

circuit qubits gates property result time circuit qubits gates property result time

H2 1 2 H2 = I OK 0.22s GroverSingle(3) 6 54 P(Correct) > 0.9 OK 0.34s
H2 (bug) 1 2 H2 = I Bug 0.17s GroverSingle(16) 32 28,159 P(Correct) > 0.9 OK 2m21s
BV(2) 2 6 ψIm OK 0.11s GroverSingle(18) 36 63,537 P(Correct) > 0.9 OK 6m37s
BV(2) (bug) 2 6 ψIm Bug 0.15s GroverSingle(20) 40 141,527 P(Correct) > 0.9 OK 19m57s
BV(100) 100 251 ψIm OK 10.90s GroverIter(2) 3 13 P(Correct) Increased OK 0.40s
BV(1,000) 1,000 2,500 ψIm OK 198m28s GroverIter(18) 36 157 P(Correct) Increased OK 1.95s
GroverAll(3) 9 64 P(Correct) > 0.9 OK 0.40s GroverIter(50) 100 445 P(Correct) Increased OK 47.76s
GroverAll(8) 24 939 P(Correct) > 0.9 OK 3m18s GroverIter(75) 150 671 P(Correct) Increased OK 3m29s
GroverAll(9) 27 1,492 P(Correct) > 0.9 OK 25m16s GroverIter(100) 200 895 P(Correct) Increased OK 10m53s

implementing Grover’s search with the satisfying assignment s = 010, where the
first three qubits of C are the work tape, and the following three are the ancillae.
We use the following specification:

P : (|000000〉:
1, |∗〉:
0) where
1 = (1, 0, 0, 0) and
0 = (0, 0, 0, 0), ϕ : true,

Q : (|010〉: |�a|2 > 0.9 ∧ ψIm, |∗〉: |�a|2 < 0.1 ∧ ψIm) ⊗ (|000〉:
1, |∗〉:
0).
Note that the postcondition Q also checks that all amplitudes in the result of
the algorithm have a zero imaginary part (using ψIm). See rows GroverSingle(n)
in Table 1 for the results on circuits for n-bit functions f and a single oracle.

Next, we also show the correctness of Grover’s algorithm w.r.t. all possible
3-qubit oracles. Let C ′ be a 9-qubit circuit implementing the algorithm, where
the first three qubits are used for oracle generation, and the following six are the
work tape and ancillae, similarly to GroverSingle. Our specification is now

P : ∃i ∈ {0, 1}3 : (|i000000〉:
1, |∗〉:
0), ϕ : true,

Q : ∃i ∈ {0, 1}3 : (|i〉:
1, |∗〉: 0) ⊗ (|i〉: |�a|2 > 0.9 ∧ ψIm, |∗〉: |�a|2 < 0.1 ∧ ψIm)

⊗ (|000〉:
1, |∗〉:
0).
Note that in the postcondition, we use i to relate the oracle value and the value
on the work tape. The results are in rows GroverAll(n) in Table 1.

5.4 Increasing Amplitude of the Correct Answer

Above, we show that we are able to automatically verify moderate-sized circuits
for Grover’s algorithm for the values of n up to 9 (for GroverAll) and 20 (for
GroverSingle), which is quite large, but have difficulties going beyond that. The
size of the circuit is O(

√
2n), which is quite large. Therefore, we also verify the

algorithm w.r.t. a weaker property, which is, that in one iteration, the amplitude
of the correct answer will increase.

Consider a function f over 2 bits with 01 being the only satisfying assignment
and let C be a 4-qubit circuit encoding one Grover iteration, with two qubits as

150 Y.-F. Chen et al.

the work tape and two ancilla qubits. From Grover’s correctness proof [25], we
can derive that when v� > 0∧vh > 0∧ (2n −1)v� > vh, a correct implementation
will increase the probability of |01〉 and reduce others. We specify the verification
problem as follows:

P : (|01〉: (vh, 0, 0, 0), |∗〉: (v�, 0, 0, 0)) ⊗ (|00〉:
1, |∗〉:
0),
ϕ : v� > 0 ∧ vh > 0 ∧ (22 − 1)v� > vh,

Q : (|01〉: |�a| > |vh| ∧ ψIm, |∗〉: |�a| < |v�| ∧ ψIm) ⊗ (|00〉:
1, |∗〉:
0).
The results can be found in rows GroverIter(n) in Table 1. We can see that veri-
fication of one Grover iteration w.r.t. the weaker (but still quite useful) property
scales much better than verification of full Grover’s circuits, scaling to sizes of
n ≥ 100.

6 Conclusion

We presented a specification language for specifying useful properties of quantum
circuits and a tool AutoQ that can establish the correctness of the specification
using an approach combining the technique from [14] with symbolic execution.
Using the tool, we were able to fully automatically verify several important
properties of a selection of quantum circuits. To the best of our knowledge,
for some of the properties, we are the first ones that could verify them fully
automatically.

Acknowledgements. We thank the reviewers for their useful remarks that helped us
improve the quality of the paper. This work was supported by the Czech Ministry of
Education, Youth and Sports project LL1908 of the ERC.CZ programme, the Czech
Science Foundation project GA23-07565S, the FIT BUT internal project FIT-S-23-
8151, and the NSTC QC project under Grant no. NSTC 111-2119-M-001-004- and
112-2119-M-001-006-.

References

1. Aws braket. https://aws.amazon.com/braket/
2. IBM quantum. https://quantum-computing.ibm.com
3. The Qcec repository: Issue #200 (ZX-Checker produces invalid result) (2022).

https://github.com/cda-tum/qcec/issues/200
4. Abdulla, P.A., Chen, Y.-F., Holík, L., Mayr, R., Vojnar, T.: When simulation meets

antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
158–174. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-
2_14

5. Amy, M.: Towards large-scale functional verification of universal quantum circuits.
In: Quantum Physics and Logic (2018)

6. Anticoli, L., Piazza, C., Taglialegne, L., Zuliani, P.: Towards quantum programs
verification: from quipper circuits to QPMC. In: Devitt, S., Lanese, I. (eds.) RC
2016. LNCS, vol. 9720, pp. 213–219. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40578-0_16

https://aws.amazon.com/braket/
https://quantum-computing.ibm.com
https://github.com/cda-tum/qcec/issues/200
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-642-12002-2_14
https://doi.org/10.1007/978-3-319-40578-0_16
https://doi.org/10.1007/978-3-319-40578-0_16

AutoQ: An Automata-Based Quantum Circuit Verifier 151

7. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574(7779), 505–510 (2019). https://doi.org/10.1038/s41586-019-
1666-5, number: 7779 Publisher: Nature Publishing Group

8. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. In: Kosaraju, S.R.,
Johnson, D.S., Aggarwal, A. (eds.) Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, May 16–18, 1993, San Diego, CA, USA, pp.
11–20. ACM (1993). https://doi.org/10.1145/167088.167097

9. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business
Media (2013)

10. Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based
universality and inclusion testing over nondeterministic finite tree automata. In:
Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70844-5_7

11. Burgholzer, L., Wille, R.: Advanced equivalence checking for quantum circuits.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(9), 1810–1824 (2020)

12. Chareton, C., Bardin, S., Bobot, F., Perrelle, V., Valiron, B.: An automated deduc-
tive verification framework for circuit-building quantum programs. In: ESOP 2021.
LNCS, vol. 12648, pp. 148–177. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72019-3_6

13. Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W.: AutoQ: an automata-based
quantum circuit verifier (May 2023). https://doi.org/10.5281/zenodo.7966542

14. Chen, Y., Chung, K., Lengál, O., Lin, J., Tsai, W., Yen, D.: An automata-based
framework for verification and bug hunting in quantum circuits. In: 44th ACM
SIGPLAN Conference on Programming Language Design and Implementation–
PLDI’23. ACM (2023)

15. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New J. Phys. 13(4), 043016 (2011). https://doi.org/10.1088/1367-
2630/13/4/043016

16. Coppersmith, D.: An approximate Fourier transform useful in quantum factoring
(2002). https://doi.org/10.48550/arxiv.quant-ph/0201067

17. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly
language. arXiv preprint arXiv:1707.03429 (2017)

18. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. arXiv preprint quant-
ph/0505030 (2005)

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

20. D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Math. Struct. Com-
put. Sci. 16(3), 429–451 (2006)

21. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: a model checker for quan-
tum programs and protocols. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS,
vol. 9109, pp. 265–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9_17

22. Feng, Y., Ying, M.: Quantum Hoare logic with classical variables. ACM Trans.
Quantum Comput. 2(4), 1–43 (2021)

23. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markov chains. J. Comput.
Syst. Sci. 79(7), 1181–1198 (2013). https://doi.org/10.1016/j.jcss.2013.04.002

24. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/167088.167097
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.5281/zenodo.7966542
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.48550/arxiv.quant-ph/0201067
http://arxiv.org/abs/1707.03429
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-19249-9_17
https://doi.org/10.1007/978-3-319-19249-9_17
https://doi.org/10.1016/j.jcss.2013.04.002
https://doi.org/10.1007/978-3-642-37036-6_8

152 Y.-F. Chen et al.

25. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22–24, 1996, pp.
212–219. ACM (1996). https://doi.org/10.1145/237814.237866

26. Hietala, K., Rand, R., Hung, S.H., Wu, X., Hicks, M.: Verified optimization in a
quantum intermediate representation. arXiv preprint arXiv:1904.06319 (2019)

27. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

28. Lengál, O., Šimáček, J., Vojnar, T.: VATA: a library for efficient manipulation of
non-deterministic tree automata. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 79–94. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28756-5_7

29. Liu, J., Zhan, B., Wang, S., Ying, S., Liu, T., Li, Y., Ying, M., Zhan, N.: Formal ver-
ification of quantum algorithms using quantum hoare logic. In: Dillig, I., Tasiran, S.
(eds.) CAV 2019. LNCS, vol. 11562, pp. 187–207. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25543-5_12

30. Mateus, P., Ramos, J., Sernadas, A., Sernadas, C.: Temporal Logics for Reason-
ing about Quantum Systems, pp. 389–413. Cambridge University Press (2009).
https://doi.org/10.1017/CBO9781139193313.011

31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, USA (2011)

32. Perdrix, S.: Quantum entanglement analysis based on abstract interpretation. In:
International Static Analysis Symposium, pp. 270–282. Springer (2008)

33. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994. pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700

34. Tsai, Y., Jiang, J.R., Jhang, C.: Bit-slicing the Hilbert space: Scaling up accurate
quantum circuit simulation. In: 58th ACM/IEEE Design Automation Conference,
DAC 2021, San Francisco, CA, USA, December 5–9, 2021, pp. 439–444. IEEE
(2021). https://doi.org/10.1109/DAC18074.2021.9586191

35. Unruh, D.: Quantum Hoare logic with ghost variables. In: 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–13. IEEE
(2019)

36. Veanes, M., Bjørner, N.S.: Symbolic tree automata. Inf. Process. Lett. 115(3),
418–424 (2015). https://doi.org/10.1016/j.ipl.2014.11.005

37. Wenzel, M., Paulson, L.C., Nipkow, T.: The isabelle framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_7

38. Xu, M., Fu, J., Mei, J., Deng, Y.: Model checking QCTL plus on quantum Markov
chains. Theor. Comput. Sci. 913, 43–72 (2022). https://doi.org/10.1016/j.tcs.2022.
01.044

39. Xu, M., et al.: Quartz: superoptimization of quantum circuits. In: Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, pp. 625–640 (2022)

40. Ying, M.: Floyd-Hoare logic for quantum programs. ACM Trans. Programm. Lang.
Syst. (TOPLAS) 33(6), 1–49 (2012)

41. Ying, M.: Model checking for verification of quantum circuits. In: International
Symposium on Formal Methods, pp. 23–39. Springer (2021)

42. Ying, M., Feng, Y.: Model Checking Quantum Systems: Principles and Algorithms.
Cambridge University Press (2021)

https://doi.org/10.1145/237814.237866
http://arxiv.org/abs/1904.06319
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-642-28756-5_7
https://doi.org/10.1007/978-3-642-28756-5_7
https://doi.org/10.1007/978-3-030-25543-5_12
https://doi.org/10.1007/978-3-030-25543-5_12
https://doi.org/10.1017/CBO9781139193313.011
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/DAC18074.2021.9586191
https://doi.org/10.1016/j.ipl.2014.11.005
https://doi.org/10.1007/978-3-540-71067-7_7
https://doi.org/10.1016/j.tcs.2022.01.044
https://doi.org/10.1016/j.tcs.2022.01.044

AutoQ: An Automata-Based Quantum Circuit Verifier 153

43. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, pp. 542–558 (2021)

44. Zhou, L., Yu, N., Ying, M.: An applied quantum Hoare logic. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 1149–1162 (2019)

45. Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values?
implementing decision diagrams for quantum computing. In: Pan, D.Z. (ed.) Pro-
ceedings of the International Conference on Computer-Aided Design, ICCAD 2019,
Westminster, CO, USA, November 4–7, 2019. pp. 1–7. ACM (2019). https://doi.
org/10.1109/ICCAD45719.2019.8942057

46. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 38(5), 848–859 (2019). https://
doi.org/10.1109/TCAD.2018.2834427

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
http://creativecommons.org/licenses/by/4.0/

Bounded Verification
for Finite-Field-Blasting

In a Compiler for Zero Knowledge Proofs

Alex Ozdemir1(B), Riad S. Wahby2, Fraser Brown2, and Clark Barrett1

1 Stanford University, Stanford, USA
aozdemir@cs.stanford.edu
2 Carnegie Mellon University,

Pittsburgh, USA

Abstract. Zero Knowledge Proofs (ZKPs) are cryptographic protocols
by which a prover convinces a verifier of the truth of a statement without
revealing any other information. Typically, statements are expressed in
a high-level language and then compiled to a low-level representation on
which the ZKP operates. Thus, a bug in a ZKP compiler can compro-
mise the statement that the ZK proof is supposed to establish. This paper
takes a step towards ZKP compiler correctness by partially verifying
a field-blasting compiler pass, a pass that translates Boolean and bit-
vector logic into equivalent operations in a finite field. First, we define
correctness for field-blasters and ZKP compilers more generally. Next,
we describe the specific field-blaster using a set of encoding rules and
define verification conditions for individual rules. Finally, we connect the
rules and the correctness definition by showing that if our verification
conditions hold, the field-blaster is correct. We have implemented our
approach in the CirC ZKP compiler and have proved bounded versions
of the corresponding verification conditions. We show that our partially
verified field-blaster does not hurt the performance of the compiler or its
output; we also report on four bugs uncovered during verification.

1 Introduction

Zero-Knowledge Proofs (ZKPs) are powerful tools for building privacy-pre-
serving systems. They allow one entity, the prover P, to convince another, the
verifier V, that some secret data satisfies a public property, without revealing
anything else about the data. ZKPs underlie a large (and growing!) set of criti-
cal applications, from billion-dollar private cryptocurrencies, like Zcash [24,53]
and Monero [2], to research into auditable sealed court orders [20], private gun
registries [26], privacy-preserving middleboxes [23], and zero-knowledge proofs
of exploitability [11]. This breadth of applications is possible because of the gen-
erality of ZKPs. In general, P knows a secret witness w, whereas V knows a
property φ and a public instance x. P must show that φ(x,w) = �. Typically,
x and w are vectors of variables in a finite field F, and φ can be any system of
equations over the variables, using operations + and ×. Because φ itself is an
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 154–175, 2023.
https://doi.org/10.1007/978-3-031-37709-9_8

https://doi.org/10.5281/zenodo.7922914
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_8

Bounded Verification for Finite-Field-Blasting 155

input to P and V, and because of the expressivity of field equations, a single
implementation of P and V can serve many different purposes.

Humans find it difficult to express themselves directly with field equations,
so they use ZKP compilers. A ZKP compiler converts a high-level predicate φ′

into an equivalent system of field equations φ. In other words, a ZKP compiler
generalizes a ZKP: by compiling φ′ to φ and then using a ZKP for φ, one obtains
a ZKP for φ′. There are many industrial [3,5,6,14,21,45,55,66] and academic
[4,18,28,29,46,48,50,54,63] ZKP compilers.

The correctness of a ZKP compiler is critical for security— a bug in the
compiler could admit proofs of false statements— but verification is challenging
for three reasons. First, the definition of correctness for a ZKP compiler is non-
trivial; we discuss later in this section. Second, ZKP compilers span multiple
domains. The high-level predicate φ′ is typically expressed in a language with
common types such as Booleans and fixed-width integers, while the output φ is
over a large, prime-order field. Thus, any compiler correctness definition must
span these domains. Third, ZKP compilers are evolving and performance-critical;
verification must not inhibit future changes or degrade compiler performance.

In this work, we develop tools for automatically verifying the field-blaster of
a ZKP compiler. A ZKP compiler’s field-blaster is the pass that converts from a
formula over Booleans, fixed-width integers, and finite-field elements, to a system
of field equations; as a transformation from bit-like types to field equations, the
field-blaster exemplifies the challenge of cross-domain verification.

Our paper makes three contributions. First, we formulate a precise correct-
ness definition for a ZKP compiler. Our definition ensures that a correct compiler
preserves the completeness and soundness of the underlying ZK proof system.1
More specifically, given a ZK proof system where statements are specified in a
low-level language L, and a compiler from a high-level language H to L, if the
compiler is correct by our definition, it extends the ZK proof system’s soundness
and completeness properties to statements in H. Further, our definition is pre-
served under sequential composition, so proving the correctness of each compiler
pass individually suffices to prove correctness of the compiler itself.

Second, we give an architecture for a verifiable field-blaster. In our architec-
ture, a field-blaster is a set of “encoding rules.” We give verification conditions
(VCs) for these rules, and we show that if the VCs hold, then the field-blaster
is correct. Our approach supports automated verification because (bounded ver-
sions of) the VCs can be checked automatically. This reduces both the up-front
cost of verification and its maintenance cost.

Third, we do a case study. Using our architecture, we implement a new
field-blaster for CirC [46] (“SIR-see”), an infrastructure used by state-of-the-
art ZKP compilers. We verify bounded versions of our field-blaster’s VCs using
SMT-based finite-field reasoning [47], and show that our field blaster does not
compromise CirC’s performance. We also report on four bugs that our verifica-
tion effort uncovered, including a soundness bug that allowed the prover to “lie”
about the results of certain bit-vector comparisons. We note that the utility of

1 Roughly speaking, a ZK proof system is complete if it is possible to prove every true
statement, and is sound if it is infeasible to prove false ones.

156 A. Ozdemir et al.

our techniques is not limited to CirC: most ZKP compilers include something
like the field-blaster we describe here.

In the next sections, we discuss related work (Sect. 1.1), give background on
ZKPs and CirC (Sect. 2), present a field-blasting example (Sect. 3), describe our
architecture (Sect. 4), give our verification conditions (Sect. 5), and present the
case study (Sect. 6).

1.1 Related Work

Verified Compilers. There is a rich body of work on verifying the correctness of
traditional compilers. We focus on compilation for ZKPs; this requires different
correctness definitions that relate bit-like types to prime field elements. In the
next paragraphs, we discuss more fine-grained differences.

Compiler verification efforts fall into two broad categories: automated—verif-
ication leveraging automated reasoning solvers—and foundational—manual ver-
ification using proof assistants (e.g., Coq [8] or Isabelle [44]). CompCert [36],
for example, is a Coq-verified C compiler with verified optimization passes
(e.g., [40]). Closest to our work is backend verification, which proves correct the
translation from an intermediate representation to machine code. CompCert’s
lowering [37] is verified, as is CakeML’s [31] lowering to different ISAs [19,57].
While such foundational verification offers strong guarantees, it imposes a heavy
proof burden; creating CompCert, for example, took an expert team eight
years [56], and any updates to compiler code require updates to proofs.

Automated verification, in contrast, does not require writing and maintaining
manual proofs.2 Cobalt [34], Rhodium [35], and PEC [32] are domain-specific
languages (DSLs) for writing automatically-verified compiler optimizations and
analyses. Most closely related to our work is Alive [39], a DSL for expressing
verified peephole optimizations, local rewrites that transform snippets of LLVM
IR [1] to better-performing ones. Alive addresses transformations over fixed types
(while we address lowering to finite field equations) and formulates correctness
in the presence of undefined behavior (while we formulate correctness for ZKPs).
Beyond Alive, Alive2 [38] provides translation validation [41,51] for LLVM [33],
and VeRA [10] verifies range analysis in the Firefox JavaScript engine.

There is also work on verified compilation for domains more closely related
to ZKPs. The Porcupine [15] compiler automatically synthesizes representations
for fully-homomorphic encryption [62], and Gillar [58] proves that optimization
passes in the Qiskit [60] quantum compiler are semantics-preserving. While these
works compile from high-level languages to circuit representations, the correct-
ness definitions for their domains do not apply to ZKP compilers.

Verified Compilation to Cryptographic Proofs. Prior works on verified compi-
lation for ZKPs (or similar) take the foundational approach (with attendant
proof maintenance burdens), and they do not formulate a satisfactory defini-
tion of compiler correctness. PinocchioQ [18] builds on CompCert [36]. The
2 Automated verification generally leverages solvers. This is a particularly appealing

approach in our setting, since CirC (our compiler infrastructure of interest) already
supports compilation to SMT formulas.

Bounded Verification for Finite-Field-Blasting 157

authors formulate a correctness definition that preserves the existential sound-
ness of a ZKP but does not consider completeness, knowledge soundness, or
zero-knowledge (see Sect. 2.2). Leo [14] is a ZKP compiler that produces (partial)
ACL2 [27] proofs of correct compilation; work to emit proofs from its field-blaster
is ongoing.

Recent work defines security for reductions of knowledge [30]. These let P
convince V that it knows a witness for an instance of relation R1 by proving it
knows a witness for an instance of an easier-to-prove relation R2. Unlike ZKP
compilers, P and V interact to derive R2 using V’s randomness (e.g., proving that
two polynomials are nonzero w.h.p. by proving that a random linear combination
of them is), whereas ZKP compilers run ahead of time and non-interactively.

Further afield, Ecne [65] is a tool that attempts to verify that the input to
a ZKP encodes a deterministic computation. It does not consider any notion
of a specification of the intended behavior. A different work [25] attempts to
automatically verify that a “widget” given to a ZKP meets some specification.
They consider widgets that could be constructed manually or with a compiler.
Our focus is on verifying a compiler pass.

2 Background

2.1 Logic

We assume usual terminology for many-sorted first-order logic with equality (
[17] gives a complete presentation). We assume every signature includes the sort
Bool, constants True and False of sort Bool, and symbol family ≈σ (abbreviated
≈) with sort σ × σ → Bool for each sort σ. We also assume a family of condi-
tionals: symbols iteσ (“if-then-else”, abbreviated ite) of sort Bool × σ × σ → σ.

A theory is a pair T = (Σ, I), where Σ is a signature and I is a class of Σ-
interpretations. A Σ-formula is a term of sort Bool. A Σ-formula φ is satisfiable
(resp., unsatisfiable) in T if it is satisfied by some (resp., no) interpretation
in I. We focus on two theories. The first is TBV , the SMT-LIB theory of bit-
vectors [52,61], with signature ΣBV including a bit-vector sort BV[n] for each
n > 0 with bit-vector constants c[n] of sort BV[n] for each c ∈ [0, 2n − 1], and
operators including & and | (bitwise and, or) and +[n] (addition modulo 2n). We
write t[i] to refer to the ith bit of bit-vector t, where t[0] is the least-significant
bit. The other theory is TFp

, which is the theory corresponding to the finite field
of order p, for some prime p [47]. This theory has signature ΣFp

containing the
sort FFp, constant symbols 0, . . . , p − 1, and operators + and ×.

In this paper, we assume all interpretations interpret sorts and symbols in
the same way. We write dom(v) for the set interpreting the sort of a variable
v. We assume that Bool, True, and False are interpreted as {�,⊥}, �, and
⊥, respectively; ΣBV -interpretations follow the SMT-LIB standard; and ΣFp

-
interpretations interpret symbols as the corresponding elements and operations
in Fp, a finite field of order p (for concreteness, this could be the integers modulo
p). Note that only the values of variables can vary between two interpretations.

For a signature Σ, let t be a Σ-term of sort σ, with free variables x1, . . . , xn,
respectively of sort σ1, . . . , σn. We define the function t̂ : dom(x1) × · · · ×

158 A. Ozdemir et al.

Fig. 1. The information flow for a zero-knowledge proof.

dom(xn) → dom(t) as follows. Let x ∈ dom(x1) × · · · × dom(xn). Let M be an
interpretation that interprets each xi as xi. Then t̂(x) = tM (i.e., the interpreta-
tion of t in M). For example, the term t = a∧¬a defines t̂ : Bool → Bool = λx.⊥.
In the following, we follow the convention used above in using the standard font
(e.g., x) for logical variables and a sans serif font (e.g., x) to denote meta-variables
standing for values (i.e., elements of σM for some σ and M). Also, abusing nota-
tion, we’ll conflate single variables (of both kinds) with vectors of variables when
the distinction doesn’t matter. Note that a formula φ is satisfiable if there exist
values x such that φ̂(x) = �. It is valid if for all values x, φ̂(x) = �.

For terms s, t and variable x, t[x �→ s] denotes t with all occurrences of x
replaced with s. For a sequence of variable-term pairs, S = (x1 �→ s1, . . . , xn �→
sn), t[S] is defined to be t[x1 �→ s1] · · · [xn �→ sn].

2.2 Zero Knowledge Proofs

As mentioned above, Zero-knowledge proofs (ZKPs) make it possible to prove
that some secret data satisfies a public property—without revealing the data
itself. See [59] for a full presentation; we give a brief overview here, and then
describe how general-purpose ZKPs are used.

Overview and Definitions. In a cryptographic proof system, there are two parties:
a verifier V and a prover P. V knows a public instance x and asks P to show that
it has knowledge of a secret witness w satisfying a public predicate φ(x,w) from
a predicate class Φ (a set of formulas) (i.e., φ̂(x,w) = �). Figure 1 illustrates the
workflow. First, a trusted party runs an efficient (i.e., polytime in an implicit
security parameter λ) algorithm Setup(φ) which produces a proving key pk and
a verifying key vk. Then, P runs an efficient algorithm Prove(pk, x,w) → π and
sends the resulting proof π to V. Finally, V runs an efficient verification algorithm
Verify(vk, x, π) → {�,⊥} that accepts or rejects the proof. A zero-knowledge
argument of knowledge for class Φ is a tuple Π = (Setup,Prove,Verify) with
three informal properties for every φ ∈ Φ and every x ∈ dom(x),w ∈ dom(w):

– perfect completeness: if φ̂(x,w) holds, then Verify(vk, x, π) holds;
– computational knowledge soundness [9]: an efficient adversary that does not

know w cannot produce a π such that Verify(vk, x, π) holds; and
– zero-knowledge [22]: π reveals nothing about w, other than its existence.

Technically, the system is an “argument” rather than a “proof” because sound-
ness only holds against efficient adversaries. Also note that knowledge soundness
requires that an entity must “know” a valid w′ to produce a proof; it is not enough
for a valid w′ to simply exist. We give more precise definitions in Appendix A.

Bounded Verification for Finite-Field-Blasting 159

Representations for ZKPs. As mentioned above, ZKP applications are manifold
(Sect. 1)—from cryptocurrencies to private registries. This breadth of applica-
tions is possible because ZKPs support a broad class of predicates. Most com-
monly, these predicates are expressed as rank-1 constraint systems (R1CSs).
Recall that Fp is a prime-order finite field (also called a prime field). We will
drop the subscript p when it is not important. In an R1CS, x and w are vectors of
elements in F; let z ∈ F

m be their concatenation. The function φ̂ can be defined
by three matrices A,B,C ∈ F

n×m; φ̂(x,w) holds when Az◦Bz = Cz, where ◦ is the
element-wise product. Thus, φ can be viewed as n conjoined constraints, where
each constraint i is of the form (

∑
j aijzj) × (

∑
j bijzj) ≈ (

∑
j cijzj) (where

the aij , bij and cij are constant symbols from ΣFp
, and the zj are a vector

of variables of sort FFp). That is, each constraint enforces a single non-linear
multiplication.

2.3 Compilation Targeting Zero Knowledge Proofs

To write a ZKP about a high-level predicate φ, that predicate is first compiled to
an R1CS. A ZKP compiler from class Φ (a set of Σ-formulas) to class Φ′ (a set
of Σ′-formulas) is an efficient algorithm Compile(φ ∈ Φ) → (φ′ ∈ Φ′,Extx,Extw).
Given a predicate φ(x,w), it returns a predicate φ′(x′, w′) as well as two efficient
and deterministic algorithms, instance and witness extenders: Extx : dom(x) →
dom(x′) and Extw : dom(x) × dom(w) → dom(w′).3 For example, CirC [46] can
compile a Boolean-returning C function (in a subset of C) to an R1CS.

At a high-level, φ and φ′ should be “equisatisfiable”, with Extx and Extw
mapping satisfying values for φ to satisfying values for φ′. That is, for all x ∈
dom(x) and w ∈ dom(w) such that φ̂(x,w) = �, if x′ = Extx(x) and w′ =
Extw(x,w), then φ̂′(x′,w′) = �. Furthermore, for any x, it should be impossible to
(efficiently) find w′ satisfying φ̂′(Extx(x),w′) = � without knowing a w satisfying
φ̂(x,w) = �. In Sect. 5.1, we precisely define correctness for a predicate compiler.

One can build a ZKP for class Φ from a compiler from Φ to Φ′ and a ZKP for
Φ′. Essentially, one runs the compiler to get a predicate φ′ ∈ Φ′, as well as Extx
and Extw. Then, one writes a ZKP to show that φ̂′(Extx(x),Extw(x,w)) = �. In
Appendix A, we give this construction in full and prove it is secure.

Optimization. The primary challenge when using ZKPs is cost: typically, Prove
is at least three orders of magnitude slower than checking φ directly [64]. Since
Prove’s cost scales with n (the constraint count), it is critical for the compiler
to minimize n. The space of optimizations is large and complex, for two reasons.
First, the compiler can introduce fresh variables. Second, only equisatifiability—
not logical equivalence—is needed. Compilers in this space exploit equisatisfia-
bility heavily to efficiently represent high-level constructs (e.g., Booleans, bit-
vectors, arrays, . . .) as an R1CS.

3 For technical reasons, the runtime of Extx and the size of its description must be
poly(λ, |x|)—not just poly(λ) (Appendix A). .

160 A. Ozdemir et al.

Fig. 2. The architecture of CirC

As a (simple!) example, consider the Boolean computation a ≈ c1 ∨ · · · ∨ ck.
Assume that c′

1, . . . , c
′
k are variables of sort FF and that we add constraints

c′
i(1 − c′

i) ≈ 0 to ensure that c′
i has to be 0 or 1 for each i. Assume further

that (c′
i ≈ 1) encodes ci for each i. How can one additionally ensure that a′

(also of sort FF) is also forced to be equal to 0 or 1 and that (a′ ≈ 1) is a
correct encoding of a? Given that there are k − 1 ORs, natural approaches use
Θ(k) constraints. One clever approach is to introduce variable x′ and enforce
constraints x′(

∑
i c′

i) ≈ a′ and (1 − a′)(
∑

i c′
i) ≈ 0. In any interpretation where

any ci is true, the corresponding interpretation for a′ must be 1 to satisfy the
second constraint; setting x′ to the sum’s inverse satisfies the first. If all ci are
false, the first constraint ensures a′ is 0. This technique assumes the sum does
not overflow; since ZKP fields are typically large (e.g., with p on the order of
2255), this is usually a safe assumption.

CirC. CirC [46] is an infrastructure for building compilers from high-level lan-
guages (e.g., a C subset), to R1CSs. It has been used in research projects [4,12],
and in industrial R&D. Figure 2 shows the structure of an R1CS compiler built
with CirC. First, the front-end of the compiler converts the source program
into CirC-IR. CirC-IR is a term IR based on SMT-LIB that includes: Booleans,
bit-vectors, fixed-size arrays, tuples, and prime fields.4 Second, the compiler
optimizes and simplifies the IR so that the only remaining sorts are Booleans,
bit-vectors, and the target prime field. Third, the compiler lowers the simplified
IR to an R1CS predicate over the target field. For ZKPs built with CirC, the
completeness, soundness, and zero-knowledge of the end-to-end system depend
on the correctness of CirC itself.

3 Overview and Example

To start, we view CirC’s lowering pass as two passes (Fig. 2). The first pass,
“(finite-)field-blasting,” converts a many-sorted IR (representable as a (ΣBV ∪
ΣF)-formula) to a conjunction of field equations (ΣF -equations). The second
pass, “flattening,” converts this conjunction of field equations to an R1CS.

Our focus is on verifying the first pass. We begin with a worked example
of how to field-blast a small snippet of CirC-IR (Sect. 3.1). This example will
illustrate four key ideas (Sect. 3.2) that inspire our field-blaster’s architecture.
4 We list all CirC-IR operators for Booleans, bit-vectors, and prime fields in

Appendix C. Almost all are from SMT-LIB.

Bounded Verification for Finite-Field-Blasting 161

Table 1. New variables and assertions when compiling the example φ.

clause term from φ assertions new variables notes

1 x0 x′
0

w0 w′
0(w

′
0 − 1) ≈ 0 w′

0

x0 ⊕ w0 1 ≈ 1 − w′
0 − x′

0 + 2w′
0x

′
0

2 x1 x′
1,u

w1 w′
1,i(w

′
1,i − 1) ≈ 0 w′

1,i i ∈ [0, 3]

x1 +[4] w1 s′ ≈ x′
1,u +

∑3
i=0 2

iw′
1,i s′

s′
i(s

′
i − 1) ≈ 0 s′

i i ∈ [0, 4]

s′ ≈ ∑4
i=0 2

is′
i

x1 +[4] w1 ≈ w1 s′
i ≈ w′

1,i i ∈ [0, 3]

3 x2 x′
2,u

x2 (bits) x′
2,i(x

′
2,i − 1) ≈ 0 x′

2,i i ∈ [0, 3]

x′
2,u ≈ ∑3

i=0 2
ix′

2,i

x2 & w1 ≈ x2 x′
2,iw

′
1,i ≈ x′

2,i i ∈ [0, 3]

4 x3, w2 x′
3, w

′
2

x3 ≈ w2 × w2 x′
3 ≈ w′

2 × w′
2

3.1 An Example of Field-Blasting

We start with an example CirC-IR predicate expressed as a (ΣBV ∪ΣF)-formula:

φ � (x0 ⊕ w0) ∧ (w1 +[4] x1 ≈ w1) ∧ (x2 & w1 ≈ x2) ∧ (x3 ≈ w2 × w2) (1)

The predicate includes: the XOR of two Booleans (“⊕”), a bit-vector sum, a bit-
vector AND, and a field product. x0 and w0 are of sort Bool, x1, x2, and w1 are
of sort BV[4], and x3 and w2 are of sort FFp. We’ll assume that p
 24. Table 1
summarizes the new variables and assertions we create during field-blasting; we
describe the origin of each assertion and new variable in the next paragraphs.

Lowering Clause One (Booleans). We begin with the Boolean term (x0 ⊕ w0).
We will use 1 and 0 to represent � and ⊥. We introduce variables x′

0 and w′
0 of

sort FFp to represent x0 and w0 respectively. To ensure that w′
0 is 0 or 1, we assert:

w′
0(w

′
0−1) ≈ 0. 5 x0⊕w0 is then represented by the expression 1−x′

0−w′
0+2x′

0w
′
0.

Setting this equal to 1 enforces that x0 ⊕ w0 must be true. These new assertions
and fresh variables are reflected in the first three rows of the table.

Lowering Clause Two and Three (Bit-vectors). Before describing how to bit-
blast the second and third clauses in φ, we discuss bit-vector representations in

5 Later (Sect. 5), we will see that “well-formedness” constraints like this are unnecessary
for instance variables, such as x0. .

162 A. Ozdemir et al.

general. A bit-vector t can be viewed as a sequence of b bits or as a non-negative
integer less than 2b. These two views suggest two natural representations in a
prime-order field: first, as one field element t′u, whose unsigned value agrees with
t (assuming the field’s size is at least 2b); second, as b elements t′0, . . . , t

′
b−1,

that encode the bits of t as 0 or 1 (in our encoding, t′0 is the least-significant
bit and t′b−1 is the most-significant bit). The first representation is simple, but
with it, some field values (e.g., 2b) don’t corresponding to any possible bit-vector.
With the second approach, by including equations t′i(t

′
i−1) ≈ 0 in our system, we

ensure that any satisfying assignment corresponds to a valid bit-vector. However,
the extra b equations increase the size of our compiler’s output.

We represent φ’s w1 bit-wise: as w′
1,0, . . . , w

′
1,3, and we represent the instance

variable x1 as x′
1,u.6 For the constraint w1 +[4] x1 ≈ w1, we compute the sum

in the field and bit-decompose the result to handle overflow. First, we introduce
new variable s′ and set it equal to x′

1,u +
∑3

i=0 2iw′
1,i. Then, we bit-decompose

s′, requiring s′ ≈
∑4

i=0 2is′
i, and s′

i(s
′
i − 1) ≈ 0 for i ∈ [0, 4]. Finally, we assert

s′
i ≈ w′

1,i for i ∈ [0, 3]. This forces the lowest 4 bits of the sum to be equal to w1.
The constraint x2 & w1 ≈ x2 is more challenging. Since x2 is an instance

variable, we initially encode it as x′
2,u. Then, we consider the bit-wise AND.

There is no obvious way to encode a bit-wise operation, other than bit-by-
bit. So, we convert x′

2,u to a bit-wise representation: We introduce witness
variables x′

2,0, . . . , x
′
2,3 and equations x′

2,i(x
′
2,i − 1) ≈ 0 as well as equation

x′
2,u ≈

∑3
i=0 2ix′

2,i. Then, for each i we require x′
2,iw

′
1,i ≈ x′

2,i.

Lowering the Final Clause (Field Elements). Finally, we consider the field equa-
tion x2 ≈ w2 ×w2. Our target is also field equations, so lowering this is straight-
forward. We simply introduce primed variables and copy the equation.

3.2 Key Ideas

This example highlights four ideas that guide the design of our field-blaster:

1. fresh variables and assertions: Field-blasting uses two primitive operations:
creating new variables in φ′ (e.g., w′

0 to represent w0) and adding new asser-
tions to φ′ (e.g., w′

0(w
′
0 − 1) ≈ 0).

2. encodings: For a term t in φ, we construct a field term (or collection of field
terms) in φ′ that represent the value of t. For example, the Boolean w0 is
represented as the field element w′

0 that is 0 or 1.
3. operator rules: if t is an operator applied to some arguments, we can encode

t given encodings of the arguments. For example, if t is x0 ⊕ w0, and x0 is
encoded as x′

0 and w0 as w′
0, then t can be encoded as 1 − x′

0 − w′
0 + 2x′

0w
′
0.

4. conversions: Some sorts can be represented by encodings of different kinds.
If a term has multiple possible encodings, the compiler may need to convert
between them to apply some operator rule. For example, we converted x2

from an unsigned encoding to a bit-wise encoding before handling an AND.
6 We represent w1 bit-wise so that we can ensure the representation is well-formed with

constraints w′
1,i(w

′
1,i −1) ≈ 0. As previously noted, such well-formedness constraints

are not needed for an instance variable like x1.(See footnote 5).

Bounded Verification for Finite-Field-Blasting 163

Table 2. Encodings for each term sort. Only bit-vectors have two encoding kinds.

Variant Contents Semantics
encoded_term kind terms Validity Condition

t: Bool bit f f ≈ ite(t, 1, 0)

t: BV[b] uint f f ≈ ∑
i ite(t[i] ≈ 1[1], 2

i, 0)

t: BV[b] bits f0, . . . , fb−1

∧
i fi ≈ ite(t[i] ≈ 1[1], 1, 0)

t: FF field f t ≈ f

4 Architecture

In this section, we present our field-blaster architecture. To compile a predicate
φ to a system of field equations φ′, our architecture processes each term t in φ
using a post-order traversal. Informally, it represents each t as an “encoding” in
φ′: a term (or collection of terms) over variables in φ′. Each encoding is produced
by a small algorithm called an “encoding rule”.

Below, we define the type of encodings Enc (Sect. 4.1), the five different types
of encoding rules (Sect. 4.2), and a calculus that iteratively applies these rules
to compile all of φ (Sect. 4.3).

4.1 Encodings

Table 2 presents our tagged union type Enc of possible term encodings. Each vari-
ant comprises the term being encoded, its tag (the encoding kind), and a sequence
of field terms. The encoding kinds are bit (a Boolean as 0/1), uint (a bit-vector as
an unsigned integer), bits (a bit-vector as a sequence of bits), and field (a field
term trivially represented as a field term). Each encoding has an intended seman-
tics: a condition under which the encoding is considered valid. For instance, a bit
encoding of Boolean t is valid if the field term f is equal to ite(t, 1, 0).

4.2 Encoding Rules

An encoding rule is an algorithm that takes and/or returns encodings, in order
to represent some part of the input predicate as field terms and equations.

Primitive Operations. A rule can perform two primitive operations: creating
new variables and emitting assertions. In our pseudocode, the primitive func-
tion fresh(name, t, isInst) → x′ creates a fresh variable. Argument isInst is a
Boolean indicating whether x′ is an instance variable (as opposed to a witness).
Argument t is a field term (over variables from φ and previously defined primed
variables) that expresses how to compute a value for x′. For example, to cre-
ate a field variable w′ that represents Boolean witness variable w, a rule can
call fresh(w′, ite(w, 1, 0),⊥). The compiler uses t to help create the Extx and
Extw algorithms. A rule asserts a formula t′ (over primed variables) by calling
assert(t′).

164 A. Ozdemir et al.

Fig. 3. Pseudocode for some bit-vector rules: variable uses a uint encoding for instances
and bit-splits witnesses to ensure they’re well-formed, const bit-splits the constant it’s
given, assertEq asserts unsigned or bit-wise equality, and convert either does a bit-sum
or bit-split.

Rule Types. There are five types of rules: (1) Variable rules variable(t, isInst) →
e take a variable t and its instance/witness status and return an encoding of
that variable made up of fresh variables. (2) Constant rules const(t) → e take a
constant term t and produce an encoding of t comprising terms that depend only
on t. Since t is a constant, the terms in e can be evaluated to field constants (see
the calculus in Sect. 4.3).7 The const rule cannot call fresh or assert. (3) Equality
rules assertEq(e, e′) take two encodings of the same kind and emit assertions that
equate the underlying terms. (4) Conversion rules convert(e, kind′) → e′ take an
encoding and convert it to an encoding of a different kind. Conversions are only
non-trivial for bit-vectors, which have two encoding kinds: uint and bits. (5)
Operator rules apply to terms t of form o(t1, . . . , tn). Each operator rule takes t,
o, and encodings of the child terms ti and returns an encoding of t. Some operator
rules require specific kinds of encodings; before using such an operator rule, our
calculus (Sect. 4.3) calls the convert rule to ensure the input encodings are the
correct kind. Figure 3 gives pseudocode for the first four rule types, as applied
to bit-vectors. Figure 4 gives pseudocode for two bit-vector operator encoding
rules. A field blaster uses many operator rules: in our case study (Sect. 6) there
are 46.

7 Having const(t) return terms that depend on t (rather than directly returning con-
stants) is useful for constructing verification conditions for const.

Bounded Verification for Finite-Field-Blasting 165

Fig. 4. Pseudocode for some bit-vector operator rules. bvZeroExt zero-extends a bit-
vector; for bit-wise encodings, it adds zero bits, and for unsigned encodings, it sim-
ply copies the original encoding. bvMulUint multiplies bit-vectors, all assumed to be
unsigned encodings. We show only the case where the multiplication cannot overflow
in the field: in this case the rule performs the multiplication in the field, and bit-splits
the result to implement reduction modulo 2b. The rules use ff2bv, which converts from
a field element to a bit-vector (discussed in Sect. 6.1).

4.3 Calculus

We now give a non-deterministic calculus describing how our field-blaster applies
rules to compile a predicate φ(x,w) into a system of field equations.

A calculus state is a tuple of three items: (E,A, F). The encoding store E is
a (multi-)map from terms to sets of encodings. The assertions formula A is a
conjunction of all field equations asserted via assert. The fresh variable definitions
sequence F is a sequence consisting of pairs, where each pair (v, t) matches a
single call to fresh(v, t, . . .).

Figure 5 shows the transitions of our calculus. We denote the result of a rule
as A′, F ′, e′ ← r(. . .), where A′ is a formula capturing any new assertions, F ′ is
a sequence of pairs capturing any new variable definitions, and e′ is the rule’s
return value. We may omit one or more results if they are always absent for a
particular rule. For encoding store E, E∪(t �→ e) denotes the store with e added
to t’s encoding set.

There are five kinds of transitions. The Const transition adds an encoding
for a constant term. The const rule returns an encoding e whose terms depend
on the constant c; e′ is a new encoding identical to e, except that each of its
terms has been evaluated to obtain a field constant. The Var transition adds an
encoding for a variable term. The Conv transition takes a term that is already
encoded and re-encodes it with a new encoding kind. The kinds operator returns
all legal values of kind for encodings of a given sort. The Opr transition applies
operator rule r. This transition is only possible if r’s operator kind agrees with o,
and if its input encoding kinds agree with �e. The Finish transition applies when φ
has been encoded. It uses const and assertEq to build assertions that hold when
φ = �. Rather than producing a new calculus state, it returns the outputs of
the calculus: the assertions and the variable definitions.

166 A. Ozdemir et al.

Fig. 5. The transition rules of our rewriting calculus.

To meet the requirements of the ZKP compiler, our calculus must return two
extension function: Extx and Extw (Sect. 2.2). Both can be constructed from the
fresh variable definitions F . One subtlety is that Extx(x) (which assigns values
to fresh instance variables) is a function of x only—it cannot depend on the
witness variables of φ. We ensure this by allowing fresh instance variables to
only be created by the variable rule, and only when it is called with isInst = �.

Strategy. Our calculus is non-deterministic: multiple transitions are possible in
some situations; for example, some conversion is almost always applicable. The
strategy that decides which transition to apply affects field blaster performance
(Appendix D) but not correctness.

5 Verification Conditions

In this section, we first define correctness for a ZKP compiler (Sect. 5.1). Then,
we give verification conditions (VCs) for each type of encoding rule (Sect. 5.2).
Finally, we show that if these VCs hold, our calculus is a correct ZKP compiler
(Sect. 5.3).

5.1 Correctness Definition

Definition 1 (Correctness). A ZKP compiler Compile(φ) → (φ′,Extx,Extw)
is correct if it is demonstrably complete and demonstrably sound.

• demonstrable completeness: For all x ∈ dom(x),w ∈ dom(w) such that
φ̂(x,w) = �,

φ̂′(Extx(x),Extw(x,w)) = �

Bounded Verification for Finite-Field-Blasting 167

• demonstrable soundness: There exists an efficient algorithm Inv(x′,w′) → w

such that for all x ∈ dom(x),w′ ∈ dom(w′) such that φ̂′(Extx(x),w′) = �,

φ̂(x, Inv(Extx(x),w′)) = �

Demonstrable completeness (respectively, soundness) requires the existence
of a witness for φ′ (resp., φ) when a witness exists for φ (resp., φ′); this existence
is demonstrated by an efficient algorithm Extw (resp., Inv) that computes the
witness.

Correct ZKP compilers are important for two reasons. First, since sequential
composition preserves correctness, one can prove a multi-pass compiler is correct
pass-by-pass. Second, a correct ZKP compiler from Φ to Φ′ can be used to
generalize a ZKP for Φ′ to one for Φ. We prove both properties in Appendix A.

Theorem 1 (Compiler Composition). If Compile′ and Compile′′ are correct,
then the compiler Compose(Compile′,Compile′′) (Appendix A) is correct.

Theorem 2 (ZKP Generalization). (informal) Given a correct ZKP com-
piler Compile from Φ to Φ′ and a ZKP for Φ′, we can construct a ZKP for Φ.

5.2 Rule VCs

Recall (Sect. 4) that our language manipulates encodings through five types of
encoding rules. We give verification conditions for each type of rule. Intuitively,
these capture the correctness of each rule in isolation. Next, we’ll show that they
imply the correctness of a ZKP compiler that follows our calculus.

Our VCs quantify over valid encodings. That is, they have the form: “for any
valid encoding e of term t, . . . ” We can quantify over an encoding e by making
each ti ∈ terms(e) a fresh variable, and quantifying over the ti. Encoding validity
is captured by a predicate valid(e, t), which is defined to be the validity condi-
tion in Table 2. Each VC containing encoding variables e implicitly represents a
conjunction of instances of that VC, one for each possible tuple of kinds of e,
which is fixed for each instance. If a VC contains valid(e, t), the sort of t is con-
strained to be compatible with kind(e). For a kind and a sort to be compatible,
they must occur in the same row of Table 2. We define the equality predicate
equal(e, e′) as

∧
i terms(e)[i] ≈ terms(e′)[i].

Encoding Uniqueness. First, we require the uniqueness of valid encodings, for
any fixed encoding kind. Table 3 shows the VCs that ensure this. Each row is a
formula that must be valid, for all compatible encodings and terms. The first two
rows ensure that there is a bijection from terms to their valid encodings (in the
first row, we consider only instances for which kind(e) = kind(e′)). The function
fromTerm(t, kind) → e maps a term and an encoding kind to a valid encoding of
that kind, and the function toTerm(e) → t maps a valid encoding to its encoded
term. The third and fourth rows ensure that fromTerm and toTerm are correctly
defined. We will use toTerm in our proof of calculus soundness (Appendix B)
and we will use fromTerm to optimize VCs for faster verification (Sect. 6.1).

168 A. Ozdemir et al.

Table 3. VCs related to encoding uniqueness.

Property Condition

valid encoding uniqueness (valid(e, t) ∧ valid(e′, t)) → equal(e, e′)

valid encoding uniqueness (valid(e, t) ∧ valid(e, t′)) → t ≈ t′

fromTerm correctness valid(fromTerm(t, kind), t)

toTerm correctness valid(e, toTerm(e))

Table 4. VCs for encoding rules.

Rule Property Condition

Operator Sound (A ∧ ∧
i valid(ei, ti)) → valid(e′, o(t))

e′ ← ro(e) Complete
(
(
∧

i valid(ei, ti)) → (A ∧ valid(e′, o(t)))
)
[F]

Equality Sound (A ∧ ∧
i valid(ei, ti)) → (t1 ≈ t2)

r=(e1, e2) Complete
(
((t1 ≈ t2) ∧ ∧

i valid(ei, ti)) → A
)
[F]

Conversion Sound (A ∧ valid(e, t)) → valid(e′, t)

e′ ← r→(e) Complete ((valid(e, t)) → (A ∧ valid(e′, t))) [F]

Variable Sound (t ∈ w) A → ∃t′. valid(e′, t′)

Sound (t ∈ x) (A → valid(e′, t))[Fx]

e′ ← rv(t) Complete (A ∧ valid(e′, t))[F]

Constant — valid(e, t)

e ← rc(t)

For an example of the valid , fromTerm, and toTerm functions, consider a
Boolean b encoded as an encoding e with kind bit and whose terms consist
of a single field element f . Validity is defined as valid(e, b) = f ≈ ite(b, 1, 0),
toTerm(f) is defined as f ≈ 1, and fromTerm(b, bit) is (b, bit, ite(b, 1, 0)).

VCs for Encoding Rules. Table 4 shows our VCs for the rules of Fig. 5. For each
rule application, A and F denote, respectively, the assertions and the variable
declarations generated when that rule is applied. We explain some of the VCs
in detail.

First, consider a rule ro for operator o applied to inputs t1, . . . , tk. The rule
takes input encodings e1, . . . , ek and returns an output e′. It is sound if the
validity of its inputs and its assertions imply the validity of its output. It is
complete if the validity of its inputs implies its assertions and the validity of its
output, after substituting fresh variable definitions.

Second, consider a variable rule. Its input is a variable term t, and it returns
e′, a putative encoding thereof. Note that e′ does not actually contain t, though
the substitutions in F may bind the fresh variables of e′ to functions of t. For
the rule to be sound when t is a witness variable (t ∈ w), the assertions must
imply that e′ is valid for some term t′. For the rule to be sound when t is an
instance variable (t ∈ x), the assertions must imply that e′ is valid for t, when
the instance variables in e′ are replaced with their definition (Fx denotes F ,

Bounded Verification for Finite-Field-Blasting 169

restricted to its declarations of instance variables).8 For the variable rule to be
complete (for an instance or a witness), the assertions and the validity of e′ for
t must follow from F .

Third, consider a constant rule. Its input is a constant term t, and it returns
an encoding e. Recall that the terms of e are always evaluated, yielding e′ which
only contains constant terms. Thus, correctness depends only on the fact that e
is always a valid encoding of the input t. This can be captured with a single VC.

5.3 A Correct Field-Blasting Calculus

Given rules that satisfy these verification conditions, we show that the calculus
of Sect. 4.3 is a correct ZKP compiler. The proof is in Appendix B.

Theorem 3 (Correctness). With rules that satisfy the conditions of Sect. 5.2,
the calculus of Sect. 4.3 is demonstrably complete and sound (Def. 1).

6 Case Study: A Verifiable Field-Blaster for CirC

We implemented and partially verified a field-blaster for CirC [46]. Our imple-
mentation is based on a refactoring of CirC’s original field blaster to conform
to our encoding rules (Sect. 4.2) and consists of ≈850 lines of code (LOC).9 As
described below, we have (partially) verified our encoding rules, but trust
our calculus (Sect. 4.3, ≈150 LOC) and our flattening implementations (Fig. 2,
≈160 LOC).

While porting rules, we found 4 bugs in CirC’s original field-blaster
(see Appendix G), including a severe soundness bug. Given a ZKP compiled with
CirC, the bug allowed a prover to incorrectly compare bit-vectors. The prover,
for example, could claim that the unsigned value of 0010 is greater than or less
than that of 0001. A patch to fix all 4 bugs (in the original field blaster) has
been upstreamed, and we are in the process of upstreaming our new field blaster
implementation into CirC.

6.1 Verification Evaluation

Our implementation constructs the VCs from Sect. 5.2 and emits them as SMT-
LIB (extended with a theory of finite fields [47]). We verify them with cvc5,
because it can solve formulas over bit-vectors and prime fields [47]. The verifica-
tion is partial in that it is bounded in two ways. We set b ∈ N to be the maximum
bit-width of any bit-vector and a ∈ N to be the maximum number of arguments
to any n-ary operator. In our evaluation, we used a = 4 and b = 4. These bounds
are small, but they were sufficient to find the bugs mentioned above.
8 The different soundness conditions for instance and witness variables play a key role

in the proof of Theorem 3. Essentially: since the condition for instances replaces
variables with their definitions, the validity of the encodings of instance variables
need not be explicitly enforced in A. This is why some constraints could be omitted
in our field-blasting example.(See footnote 5).

9 Our implementation is in Rust, as is CirC.

170 A. Ozdemir et al.

Optimizing Completeness VCs. Generally, cvc5 verifies soundness VCs more
quickly than completeness VCs. This is surprising at first glance. To see why,
consider the soundness (S) and completeness (C) conditions for a conversion
rule from e to e′ that generates assertions A and definitions F :

S � (A ∧ valid(e, t)) → valid(e′, t) C � (valid(e, t) → (A ∧ valid(e′, t)))[F]

In both, t is a variable, e contains variables, and there are variables in e′ and
A that are defined by F . In C, though, some variables are replaced by their
definitions in F—which makes the number of variables (and thus the search
space)—seem smaller for C than S. Yet, cvc5 is slower on C.

The problem is that, while the field operations in A are standard (e.g., +, ×,
and =), the definitions in F use a CirC-IR operator that (once embedded into
SMT-LIB) is hard for cvc5 to reason about. That operator, (ff2bv b), takes a
prime field element x and returns a bit-vector v. If x’s integer representative is
less than 2b, then v’s unsigned value is equal to x; otherwise, v is zero.

The ff2bv operator is trivial to evaluate but hard to embed. cvc5’s SMT-
LIB extension for prime fields only supports +, × and =, so no operator can
directly relate x to v. Instead, we encode the relationship through b Booleans
that represent the bits of v. To test whether x < 2b, we use the polynomial
f(x) =

∏2b−1
i=0 (x−i), which is zero only on [0, 2b−1]. The bit-splitting essentially

forces cvc5 to guess v’s value; further, f ’s high degree slows down the Gröbner
basis computations that form the foundation of cvc5’s field solver.

To optimize verification of the completeness VCs, we reason about
CirC-IR directly. First, we use the uniqueness of valid encodings and the
fromTerm function. Since the VC assumes valid(e, t), we know e is equal to
fromTerm(t, kind(e)). We use this equality to eliminate e from the completeness
VC, leaving:

(A ∧ valid(e′, t))[F][e �→ fromTerm(t, kind(e))]

Since F defines all variables in A and e′, the only variable after substitution
is t. So, when t is a Boolean or small bit-vector, an exhaustive search is very
effective;10 we implemented such a solver in 56 LOC, using CirC’s IR as a library.

For soundness VCs, this approach is less effective. The fromTerm substitution
still applies, but if F introduces fresh field variables, they are not eliminated and
thus, the final formula contains field variables, so exhaustion is infeasible.

Verification Results. We ran our VC verification on machines with Intel Xeon E5-
2637 v4 CPUs.11 Each attempt is limited to one physical core, 8GB memory, and
30min. Figure 6 shows the number of VCs verified by cvc5 and our exhaustive
solver. As expected, the exhaustive solver is effective on completeness VCs for
Boolean and bit-vector rules, but ineffective on soundness VCs for rules that
introduce fresh field variables. There are four VCs that neither solver verifies
10 So long as the exhaustive solver reasons directly about all CirC-IR operators.
11 We omit the completeness VCs for ff2bv. See Appendix C.

Bounded Verification for Finite-Field-Blasting 171

Fig. 6. VCs verified by different solvers. ‘uniq’
denotes the VCs of Table 3; others are from Table 4.
‘C’ denotes completeness; ‘S’: soundness.

Fig. 7. The performance of CirC
with the verified and unverified
field-blaster. Metrics are summed
over the 61 functions in the Z#
standard library.

within 30min: bvadd with (b = 4, a = 4), and bvmul with (b = 3, a = 4) and
(b = 4, a ≥ 3). Most other VCs verify instantly. In Appendix E, we analyze how
VC verification time depends on a and b.

6.2 Performance and Output Quality Evaluation

We compare CirC with our field-baster (“Verified”) against CirC with its original
field-blaster (“Unverified”)12 on three metrics: compiler runtime, memory usage,
and the final R1CS constraint count. Our benchmark set is the standard library
for CirC’s Z# input language (which extends ZoKrates [16,68] v0.6.2). Our
testbed runs Linux with 32GB memory and an AMD Ryzen 2700.

There is no difference in constraints, but the verified field-blaster slightly
improves compiler performance: –8% time and –2% memory (Fig. 7). We think
that the small improvement is unrelated to the fact that the new field blaster is
verified. In Appendix E, we discuss compiler performance further.

7 Discussion

In this work, we present the first automatically verifiable field-blaster. We view
the field-blaster as a set of rules; if some (automatically verifiable) conditions
hold for each rule, then the field-blaster is correct. We implemented a performant
and partially verified field-blaster for CirC, finding 4 bugs along the way.

Our approach has limitations. First, we require the field-blaster to be written
as a set of encoding rules. Second, we only verify our rules for bit-vectors of
bounded size and operators of bounded arity. Third, we assume that each rule
is a pure function: for example, it doesn’t return different results depending on
12 After fixing the bugs we found. See Sect. 6.

172 A. Ozdemir et al.

the time. Future work might avoid the last two limitations through bit-width-
independent reasoning [42,43,67] and a DSL (and compiler) for encoding rules.
It would also be interesting to extend our approach to: a ZKP with a non-
prime field [7,13], a compiler IR with partial or non-deterministic semantics, or
a compiler with correctness that depends on computational assumptions.

Acknowledgements. We appreciate the help and guidance of Andres Nötzli, Dan
Boneh, and Evan Laufer.

This material is in part based upon work supported by the DARPA SIEVE program
and the Simons foundation. Any opinions, findings, and conclusions or recommenda-
tions expressed in this report are those of the author(s) and do not necessarily reflect
the views of DARPA. It is also funded in part by NSF grant number 2110397 and the
Stanford Center for Automated Reasoning.

A Zero-Knowledge Proofs and Compilers

This appendix is available in the full version of the paper [49].

B Compiler Correctness Proofs

This appendix is available in the full version of the paper [49].

C CirC-IR

This appendix is available in the full version of the paper [49].

D Optimizations to the CirC Field-Blaster

This appendix is available in the full version of the paper [49].

E Verified Field-Blaster Performance Details

This appendix is available in the full version of the paper [49].

F Verifier Performance Details

This appendix is available in the full version of the paper [49].

G Bugs Found in the CirC Field Blaster

This appendix is available in the full version of the paper [49].

Bounded Verification for Finite-Field-Blasting 173

References

1. LLVM language reference manual. https://llvm.org/docs/LangRef.html
2. Monero technical specs. https://monerodocs.org/technical-specs/ (2022)
3. Airscript. https://github.com/0xPolygonMiden/air-script
4. Angel, S., Blumberg, A.J., Ioannidis, E., Woods, J.: Efficient representation of

numerical optimization problems for SNARKs. In: USENIX Security (2022)
5. Bellés-Muñoz, M., Isabel, M., Muñoz-Tapia, J.L., Rubio, A., Baylina, J.: Circom: a

circuit description language for building zero-knowledge applications. IEEE Trans-
actions on Dependable and Secure Computing (2022)

6. Bellman. https://github.com/zkcrypto/bellman
7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with

no trusted setup. In: CRYPTO (2019)
8. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:

Coq’Art: the calculus of inductive constructions. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-662-07964-5

9. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC (1988)

10. Brown, F., Renner, J., Nötzli, A., Lerner, S., Shacham, H., Stefan, D.: Towards a
verified range analysis for JavaScript JITs. In: PLDI (2020)

11. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contin-
gent payments revisited: attacks and payments for services. In: CCS (2017)

12. Chen, E., Zhu, J., Ozdemir, A., Wahby, R.S., Brown, F., Zheng, W.: Silph: a
framework for scalable and accurate generation of hybrid MPC protocols (2023)

13. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: EUROCRYPT (2020)

14. Chin, C., Wu, H., Chu, R., Coglio, A., McCarthy, E., Smith, E.: Leo: a program-
ming language for formally verified, zero-knowledge applications (2021). https://
ia.cr/2021/651

15. Cowan, M., Dangwal, D., Alaghi, A., Trippel, C., Lee, V.T., Reagen, B.: Porcupine:
a synthesizing compiler for vectorized homomorphic encryption. In: PLDI (2021)

16. Eberhardt, J., Tai, S.: ZoKrates–scalable privacy-preserving off-chain computa-
tions. In: IEEE Blockchain (2018)

17. Enderton, H.B.: A mathematical introduction to logic. Elsevier (2001)
18. Fournet, C., Keller, C., Laporte, V.: A certified compiler for verifiable computing.

In: CSF (2016)
19. Fox, A., Myreen, M.O., Tan, Y.K., Kumar, R.: Verified compilation of CakeML to

multiple machine-code targets. In: CPP (2017)
20. Frankle, J., Park, S., Shaar, D., Goldwasser, S., Weitzner, D.: Practical account-

ability of secret processes. In: USENIX Security (2018)
21. Goldberg, L., Papini, S., Riabzev, M.: Cairo - a Turing-complete STARK-friendly

CPU architecture (2021). https://ia.cr/2021/0163
22. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive

proof-systems. In: STOC (1985)
23. Grubbs, P., Arun, A., Zhang, Y., Bonneau, J., Walfish, M.: Zero-knowledge mid-

dleboxes. In: USENIX Security (2022)
24. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specifi-

cation. https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.
pdf (2016)

https://llvm.org/docs/LangRef.html
https://monerodocs.org/technical-specs/
https://github.com/0xPolygonMiden/air-script
https://github.com/zkcrypto/bellman
https://doi.org/10.1007/978-3-662-07964-5
https://ia.cr/2021/651
https://ia.cr/2021/651
https://ia.cr/2021/0163
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf

174 A. Ozdemir et al.

25. Jiang, K., Chait-Roth, D., DeStefano, Z., Walfish, M., Wies, T.: Less is more:
refinement proofs for probabilistic proofs. IEEE S&P (2023)

26. Kamara, S., Moataz, T., Park, A., Qin, L.: A decentralized and encrypted national
gun registry. In: IEEE S&P (2021)

27. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-aided reasoning: ACL2 case
studies, vol. 4. Springer, NY (2013). https://doi.org/10.1007/978-1-4757-3188-0

28. Kosba, A., Papadopoulos, D., Papamanthou, C., Song, D.: MIRAGE: succinct
arguments for randomized algorithms with applications to universal zk-SNARKs.
In: USENIX Security (2020)

29. Kosba, A., Papamanthou, C., Shi, E.: xJsnark: A framework for efficient verifiable
computation. In: IEEE S&P (2018)

30. Kothapalli, A., Parno, B.: Algebraic reductions of knowledge (2022). https://ia.cr/
2022/009

31. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A verified implemen-
tation of ML. In: POPL (2014)

32. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: PLDI (2009)

33. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: CGO (2004)

34. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of
compiler optimizations. In: PLDI (2003)

35. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for
dataflow analyses and transformations via local rules. In: POPL (2005)

36. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

37. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

38. Lopes, N.P., Lee, J., Hur, C.K., Liu, Z., Regehr, J.: Alive2: bounded translation
validation for LLVM. In: PLDI (2021)

39. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with Alive. In: PLDI (2015)

40. Mullen, E., Zuniga, D., Tatlock, Z., Grossman, D.: Verified peephole optimizations
for CompCert. In: PLDI (2016)

41. Necula, G.C.: Translation validation for an optimizing compiler. In: PLDI (2000)
42. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards

bit-width-independent proofs in SMT solvers. In: CADE (2019)
43. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards

satisfiability modulo parametric bit-vectors. J. Autom. Reason. 65(7), 1001–1025
(2021)

44. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a proof assistant for higher-
order logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

45. Noir. https://noir-lang.github.io/book/index.html
46. Ozdemir, A., Brown, F., Wahby, R.S.: CirC: Compiler infrastructure for proof

systems, software verification, and more. In: IEEE S&P (2022)
47. Ozdemir, A., Kremer, G., Tinelli, C., Barrett, C.: Satisfiability modulo finite fields.

In: submission (2022). https://ia.cr/2023/091
48. Ozdemir, A., Wahby, R., Whitehat, B., Boneh, D.: Scaling verifiable computation

using efficient set accumulators. In: USENIX Security (2020)
49. Ozdemir, A., Wahby, R.S., Brown, F., Barrett, C.: Bounded verification for finite-

field-blasting. Cryptology ePrint Archive (2023) (Full version)

https://doi.org/10.1007/978-1-4757-3188-0
https://ia.cr/2022/009
https://ia.cr/2022/009
https://doi.org/10.1007/3-540-45949-9
https://noir-lang.github.io/book/index.html
https://ia.cr/2023/091

Bounded Verification for Finite-Field-Blasting 175

50. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. Commun. ACM 59(2), 103–112 (2016)

51. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: TACAS (1998)
52. Ranise, S., Tinelli, C., Barrett, C.: SMT fixed size bit-vectors theory. https://

smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml (2017)
53. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:

Zerocash: decentralized anonymous payments from Bitcoin. In: IEEE S&P (2014)
54. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the

conflict between generality and plausibility in verified computation. In: EuroSys
(2013)

55. Snarky. https://github.com/o1-labs/snarky
56. Stewart, G., Beringer, L., Cuellar, S., Appel, A.W.: Compositional CompCert. In:

POPL (2015)
57. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: The verified

CakeML compiler backend. J. Funct. Programm. 29, E2 (2019)
58. Tao, R., et al.: Giallar: push-button verification for the Qiskit quantum compiler.

In: PLDI (2022)
59. Thaler, J.: Proofs, Arguments, and Zero-Knowledge. Manuscript (2022)
60. The Qiskit authors and maintainers: Qiskit: an open-source framework for quantum

computing (2021). https://doi.org/10.5281/zenodo.2573505. The Qiskit maintain-
ers request that the full list of Qiskit contributors be included in any citation.
Regretfully, we cannot comply, as the list is two pages long

61. Tinelli, C.: SMT core theory. https://smtlib.cs.uiowa.edu/theories-Core.shtml
(2015)

62. Viand, A., Jattke, P., Hithnawi, A.: SoK: fully homomorphic encryption compilers.
In: IEEE S&P (2021)

63. Wahby, R.S., Setty, S., Howald, M., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient
RAM and control flow in verifiable outsourced computation. In: NDSS (2015)

64. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

65. Wang, F.: Ecne: automated verification of ZK circuits (2022). https://0xparc.org/
blog/ecne

66. Zinc. https://zinc.matterlabs.dev/
67. Zohar, Y., et al.: Bit-precise reasoning via Int-blasting. In: CADE (2022)
68. ZoKrates. https://zokrates.github.io/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://github.com/o1-labs/snarky
https://doi.org/10.5281/zenodo.2573505
https://smtlib.cs.uiowa.edu/theories-Core.shtml
https://0xparc.org/blog/ecne
https://0xparc.org/blog/ecne
https://zinc.matterlabs.dev/
https://zokrates.github.io/
http://creativecommons.org/licenses/by/4.0/

Formally Verified EVM
Block-Optimizations

Elvira Albert1 , Samir Genaim1 , Daniel Kirchner2,3 ,
and Enrique Martin-Martin1(B)

1 Complutense University of Madrid, Madrid, Spain
{elvira,samir.genaim}@fdi.ucm.es, emartinm@ucm.es

2 Ethereum Foundation, Zug, Switzerland
daniel.kirchner@ethereum.org

3 University of Bamberg, Bamberg, Germany

Abstract. The efficiency and the security of smart contracts are their
two fundamental properties, but might come at odds: the use of optimiz-
ers to enhance efficiency may introduce bugs and compromise security.
Our focus is on EVM (Ethereum Virtual Machine) block-optimizations,
which enhance the efficiency of jump-free blocks of opcodes by eliminat-
ing, reordering and even changing the original opcodes. We reconcile effi-
ciency and security by providing the verification technology to formally
prove the correctness of EVM block-optimizations on smart contracts using
the Coq proof assistant. This amounts to the challenging problem of
proving semantic equivalence of two blocks of EVM instructions, which is
realized by means of three novel Coq components: a symbolic execution
engine which can execute an EVM block and produce a symbolic state; a
number of simplification lemmas which transform a symbolic state into
an equivalent one; and a checker of symbolic states to compare the sym-
bolic states produced for the two EVM blocks under comparison.

Artifact: https://doi.org/10.5281/zenodo.7863483

Keywords: Coq · Ethereum Virtual Machine · Smart Contracts ·
Optimization · Theorem Proving

1 Introduction

In many contexts, security requirements are critical and formal verification today
plays an essential role to verify/certify these requirements. One of such contexts
is the blockchain, in which software bugs on smart contracts have already caused
several high profile attacks (e.g., [14–17,30,37]). There is hence huge interest and
investment in guaranteeing their correctness, e.g., Certora [1], Veridise [2], apri-
orit [3], Consensys [4], Dedaub [5] are companies that offer smart contract audits
using formal methods’ technology. In this context, efficiency is of high relevance
as well, as deploying and executing smart contracts has a cost (in the corre-
sponding cryptocurrency). Hence, optimization tools for smart contracts have

This work was funded partially by the Ethereum Foundation under Grant ID FY22-
0698 and the Spanish MCI, AEI and FEDER (EU) project PID2021-122830OB-C41.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 176–189, 2023.
https://doi.org/10.1007/978-3-031-37709-9_9

https://doi.org/10.5281/zenodo.7863483
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_9&domain=pdf
http://orcid.org/0000-0003-0048-0705
http://orcid.org/0000-0002-7176-1881
http://orcid.org/0000-0001-9229-1148
http://orcid.org/0000-0002-1664-018X
https://doi.org/10.5281/zenodo.7863483
https://doi.org/10.1007/978-3-031-37709-9_9

Formally Verified EVM Block-Optimizations 177

emerged in the last few years (e.g., ebso [29], SYRUP [12], GASOL [11], the solc
optimizer [9]). Unfortunately, there is a dichotomy of efficiency and correctness:
as optimizers can be rather complex tools (not formally verified), they might
introduce bugs and potential users might be reluctant of optimizing their code.
This has a number of disruptive consequences: owners will pay more to deploy
(non-optimized) smart contracts; clients will pay more to run transactions every
time they are executed; the blockchain will accept less transactions as they are
more costly. Rather than accepting such a dichotomy, our work tries to over-
turn it by developing a fully automated formal verification tool for proving the
correctness of the optimized code.

The general problem addressed by the paper is formally verifying semantic
equivalence of two bytecode programs, an initial code I and an optimization of it
O –what is considered a great challenge in formal verification. For our purpose,
we will narrow down the problem by (1) considering fragments of code that
are jump-free (i.e., they do not have loops nor branching), and by (2) consider-
ing only stack EVM operations (memory/storage opcodes and other blockchain-
specific opcodes are not considered). These assumptions are realistic as working
on jump-free blocks still allows proving correctness for optimizers that work at
the level of the blocks of the CFG (e.g., super-optimizers [11,12,29] and many
rule-based optimizations performed by the Solidity compiler [9]). Considering
only stack optimizations, and leaving out memory and storage simplifications
and blockchain-specific bytecodes, does not restrict the considered programs, as
we work at the smaller block partitions induced by the not handled operations
found in the block (splitting into the block before and after). Even in our nar-
rowed setting, the problem is challenging as block-optimizations can include any
elimination, reorder and even change of the original bytecodes.

Consider the next block I, taken from a real smart contract [8]. The GASOL
optimizer [11], relying on the commutativity of OR and AND, optimizes it to O:

I: PUSH2 0x100 PUSH1 0x1 PUSH1 0xa8 SHL SUB NOT SWAP1 SWAP2 AND PUSH1 0x8 SWAP2 SWAP1
SWAP2 SHL PUSH2 0x100 PUSH1 0x1 PUSH1 0xa8 SHL SUB AND OR PUSH1 0x5

O: PUSH2 0x100 PUSH1 0x1 PUSH1 0xa8 SHL SUB DUP1 NOT SWAP2 PUSH1 0x8 SHL AND
SWAP2 AND OR PUSH1 0x5

This saves 11 bytes because (1) the expression SUB(SHL(168,1),256) –that cor-
responds to “PUSH2 0x100 PUSH1 0x1 PUSH1 0xa8 SHL SUB” – is computed twice;
but it can be duplicated if the stack operations are properly made saving 8 bytes;
and (2) two SWAPs are needed instead of 5, saving 3 more bytes.

This paper proposes a technique, and a corresponding tool, to automatically
verify the correctness of EVM block-optimizations (as those above) on smart con-
tracts using the Coq proof assistant. This amounts to the challenging problem of
proving semantic equivalence of two blocks of EVM instructions, which is realized
by means of three main components which constitute our main contributions (all
formalized and proven correct in Coq): (1) a symbolic interpreter in Coq to sym-
bolically execute the EVM blocks I and O and produce resulting symbolic states
SI and SO, (2) a series of simplification rules, which transform SI and SO into

178 E. Albert et al.

equivalent ones S′
I and S′

O, (3) a checker of symbolic states in Coq to decide if
two symbolic states S′

I and S′
O are semantically equivalent.

2 Background

The Ethereum VM (EVM) [38] is a stack-based VM with a word size of 256-bits
that is used to run the smart contracts on the Ethereum blockchain. The EVM
has the following categories of bytecodes: (1) Stack operations; (2) Arithmetic
operations; (3) Comparison and bitwise logic operations;(4) Memory and stor-
age manipulation;(5) Control flow operations; (6) Blockchain-specific opcodes,
e.g., block and transaction environment information, compute hash, calls, etc.
The first three types of opcodes are handled within our verifier, and handling
optimizations on opcodes of types 4-6 is discussed in Sect. 6.

The focus of our work is on optimizers that perform optimizations only at
the level of the blocks of the CFG (i.e., intra-block optimizations). A well-known
example is the technique called super-optimization [26] which, given a loop-free
sequence of instructions searches for the optimal sequence of instructions that is
semantically equivalent to the original one and has optimal cost (for the consid-
ered criteria). This technique dates back to 1987 and has had a revival [25,31]
thanks to the availability of SMT solvers that are able to do the search efficiently.
We distinguish two types of possible intra-block optimizations: (i) Rule-based
optimizations which consist in applying arithmetic/bitwise simplifications like
ADD(X,0)=X or NOT(NOT(X))=X (see a complete list of these rules in App. A
in [10]); and (ii) Stack-data optimizations which consist in searching for alter-
native stack operations that lead to an output stack with exactly the same data.

Example 1 (Intra-block optimizations). The rule-based optimization (i) X+0 →
X simplifies the block “PUSH1 0x5, PUSH1 0x0, ADD” to “PUSH1 0x5”. On the
other hand, stack-data optimizations (ii) can optimize to “ADD, DUP1” the block
“DUP2, DUP2, ADD, SWAP2, ADD”, as duplicating the operands and repeating
the ADD operation is the same as duplicating the result. Unlike rule-based opti-
mization, stack-data optimizations cannot be expressed as simple patterns that
can be easily recognized.

The first type of optimizations are applied by the optimizer integrated in
the Solidity compiler [9] as rule transformations, and they are also applied by
EVM optimizers in different ways. ebso [29] encodes the semantics of arithmetic
and bitwise operations in the SMT encoding so that the SMT solver searches
for these optimizations together with those of type (ii). Instead, SYRUP [12] and
GASOL [11] apply rule-based optimizations in a pre-phase and leave to the SMT
solver only the search for the second type of optimizations. This classification of
optimizations is also relevant for our approach as (i) will require integrating and
proving all simplification rules correct (Sect. 4.2) while (ii) are implicit within
the symbolic execution (Sect. 4.1). A block of EVM code that has been subject
to optimizations of the two types above is in principle “provable” using our tool.

Formally Verified EVM Block-Optimizations 179

There is not much work yet on formalizing the EVM semantics in Coq. One of
the most developed approaches is [22], which is a definition of the EVM semantics
in the Lem [28] language that can be exported to interactive theorem provers like
Isabelle/HOL or Coq. According to the comparison in [21], this implementation
of EVM “is executable and passes all of the VM tests except for those dealing
with more complicated intercontract execution”. However, we have decided not
to use it for our checker due to three reasons: (a) the generated Coq code from
Lem definitions is not “necessarily idiomatic” and thus it would generate a very
complex EVM formalization in Coq that would make theorems harder to state
and prove; (b) the author of the Lem definition states that “the Coq version of
the EVM definition is highly experimental”; and (c) it is not kept up-to-date.

The other most developed implementation of the EVM semantics in Coq that
we have found is [23]. It supports all the basic EVM bytecodes we consider in our
checker, and looked promising as our departing point. The implementation uses
Bedrock Bit Vectors (bbv) [7] for representing the EVM 256-bit values, as we use as
well. It is not a full formalization of the EVM because it does not support calling or
creation of smart contracts, but provides a function that simulates consequent
application of opcodes to the given execution state, call info and Ethereum
state mocks. The latter two pieces of information would add complexity and
are not needed for our purpose. Therefore, we decided to develop our own EVM
formalization in Coq (presented in Sect. 3) which builds upon some ideas of [23],
but introduces only the minimal elements we need to handle the instructions
supported by the checker. This way the proofs will be simpler and conciser.

3 EVM Semantics in Coq

Our EVM formalization is a concrete interpreter that executes a block of EVM
instructions. For representing EVM words we use EVMWord that stands for the type
“word 256” of the bbv library [7]. For representing instructions we use:

Inductive stack_op_instr := Inductive instr :=
| ADD | PUSH (size: nat) (w: EVMWord)
| MUL | POP
| SUB | DUP (pos: nat)
| DIV | SWAP (pos: nat)
| NOT. | StackInstr (label: stack_op_instr).

Type stack_oper_instr defines instructions that operate only on the stack, i.e.,
each pops a fixed number of elements and pushes a single value back (see
App. B in [10] for the full list). Type instr encapsulates this category together
with the stack manipulation instruction (PUSH, etc.). The type block stands for
“list instr”.

To keep the framework general, and simplify the proofs, the actual imple-
mentation of instructions from stack_op_instr are provided to the interpreter as
input. For this, we use a map that associates instructions to implementations:

Inductive stack_operation :=
| StackOp (comm: bool) (n : nat) (f : list EVMWord → option EVMWord).

180 E. Albert et al.

Definition stack_op_map := map stack_oper_instr stack_operation.

The type stack_operation defines an implementation for a given operation: comm
indicates if the operation is commutative; n is the number of stack elements to
be removed and passed to the operation; and f is the actual implementation.
The type stack_op_map maps keys of type stack_oper_instr to values of type
stack_operation. Suppose evm_add and evm_mul are implementations of ADD and
MUL (see App. C in [10]), the actual stack operations map is constructed as:

Definition evm_stack_opm : stack_op_map :=
ADD |→i StackOp true 2 evm_add; MUL |→i StackOp true 2 evm_mul; ...

In addition, we require the operations in the map to be valid with respect to
the properties that they claim to satisfy (e.g., commutativity), and that when
applied to the right number of arguments they should succeed (i.e., do not return
None). We refer to this property as valid_stack_op_map.

An execution state (or simply state) includes only a stack (currently we
support only stack operations) which is as a list of EVMWord, and the interpreter
is a function that takes a block, an initial state, and a stack operations map,
and iteratively executes each of the block’s instructions:

Definition stack := list EVMWord.
Inductive state :=

| ExState (stk: stack).
Fixpoint concr_int (p: block) (st: state) (ops: stack_op_map): option state := ...

The result can be either Some st or None in case of an error which are caused
only due to stack overflow. In particular, we are currently not taking into account
the amount of gas needed to execute the block. Our implementation follows the
EVM semantics [38], considering the simplicity of the supported operations, the
concrete interpreter is a minimal trusted computing base. In the future, we plan
to test it using the EVM test suite.

4 Formal Verification of EVM-Optimizations in Coq

Two jump-free blocks p1 and p2 are equivalent wrt. to an initial stack size k, if
for any initial stack of size k, the executions of p1 and p2 succeed and lead to
the same state. Formally:

Definition sem_eq_blocks: (p1 p2: block) (k: nat) (ops: stack_op_map) : Prop :=
∀ (in_st: state) (in_stk: stack),
get_stack in_st = in_stk → length in_stk = k →

∃ (out_st : state), concr_int p1 in_st ops = Some out_st ∧
concr_int p2 in_st ops = Some out_st

Note that when concr_int returns None for both p1 and p2, they are not consid-
ered equivalent because in the general case they can fail due to different reasons.
Note also that EVM operations are deterministic, so if concr_int evaluates to
a sucessful final state out_st it will be unique.

An EVM block equivalence checker is a function that takes two blocks, the size
of the initial stack, and returns true/false. Providing the size k of the initial

Formally Verified EVM Block-Optimizations 181

stack is not a limitation of the checker, as this information is statically known
in advance. Note that the maximum stack size in EVM is bounded by 1024, and
that if the execution (of one or both blocks) wrt. to this concrete initial stack
size leads to under/over stack overflow they cannot be reported equivalent. The
soundness of the equivalence checker is stated as follows:

Definition eq_block_chkr_snd (chkr : block → block → nat → bool) : Prop :=
∀ (p1 p2: block) (k: nat),

chkr p1 p2 k = true → sem_equiv_blocks p1 p2 k evm_stack_opm

Given two blocks p1 and p2, checking their equivalence (in Coq) has the fol-
lowing components: (i) Symbolic Execution (Sect. 4.1): it is based on an inter-
preter that symbolically executes a block, wrt. an initial symbolic stack of size k,
and generates a final symbolic stack. It is applied on both p1 and p2 to generate
their corresponding symbolic output states S1 and S2. (ii) Rule optimizations
(Sect. 4.2): it is based on simplification rules that are often applied by program
optimizers, which rewrite symbolic states to equivalent “simpler” ones. This step
simplifies S1 and S2 to S′

1 and S′
2. (iii) Equivalence Checker (Sect. 4.3): it receives

the simplified symbolic states, and determines if they are equivalent for any con-
crete instantiation of the symbolic input stack. It takes into account, for example,
the fact that some stack operations are commutative.

4.1 EVM Symbolic Execution in Coq

Symbolic execution takes an initial symbolic state (i.e., stack) [s0, . . . , sk], a
block, and a map of stack operations, and generates a final symbolic state (i.e.,
stack) with symbolic expressions, e.g., [5+s0, s1, s2], representing the correspond-
ing computations. In order to incorporate rule-based optimizations in a simple
and efficient way, we want to avoid compound expressions such as 5 + (s0 ∗ s1),
and instead use temporal fresh variables together with a corresponding map that
assigns them to simpler expressions. E.g, the stack [5 + (s0 ∗ s1), s2] would be
represented as a tuple ([e1, s2], {e1 �→ 5 + e0, e0 �→ s0 ∗ s1}) where ei are fresh
variables. To achieve this, we define the symbolic stack as a list of elements that
can be numeric constant values, initial stack variables or fresh variables:

Inductive sstack_val : Type :=
| Val (val: EVMWord) | InStackVar (var: nat) | FreshVar (var: nat).

Definition sstack := list sstack_val.

and the map that assigns meaning to fresh variables is a list that maps each
fresh variable to a sstack_val, or to a compound expression:

Inductive smap_val : Type :=
| SymBasicVal (val: sstack_val)
| SymOp (opcode : stack_op_instr) (args : list sstack_val).

Definition smap := list (nat∗smap_val).
Finally, a symbolic state is defined as a SymState term where k is the size of
the initial stack, maxid is the maximum id used for fresh variables (kept for
efficiency), sstk is a symbolic stack, and m is the map of fresh variables.

182 E. Albert et al.

Inductive sstate : Type := | SymState (k maxid: nat) (sstk: sstack) (m: smap).

Example 2 (Symbolic execution). Given p1 ≡“PUSH1 0x5 SWAP2 MUL ADD” and
p2 ≡ “PUSH1 0x0 ADD MUL PUSH1 0x5 ADD”, symbolically executing them with
k=3 we obtain the symbolic states represented by sst1 ≡ ([e′

1, s2], {e′
1 �→ e′

0 +
5, e′

0 �→ s1 ∗ s0}) and sst2 ≡ ([e2, s2], {e2 �→ 5 + e1, e1 �→ e0 ∗ s1, e0 �→ 0 + s0}).
Note that we impose some requirements on symbolic states to be valid. E.g.,

for any element i �→ v of the fresh variables map, all fresh variables that appear
in v have smaller indices than i. We refer to these requirements as valid_sstate.

Given a symbolic (final) state and a concrete initial state, we can convert
the symbolic state into a concrete one by replacing each si by its corresponding
value, and evaluating the corresponding expressions (following their definition in
the stack operations map). We have a function to perform this evaluation that
takes the stack operations map as input:

Definition eval_sstate (in_st: state) (sst: sstate) (ops : stack_op_map)
: option state := ...

Our symbolic execution engine is a function that takes the size of the initial
stack, a block, a map of stack operations, and generates a symbolic final state:

Definition sym_exec (p: block) (k: nat) (ops: stack_op_map) : option sstate := ...

Note that we do not pass an initial symbolic state, but rather we construct it
inside using k. Also, the result can be None in case of failure (the causes are the
same as those of conc_interpreter).

Soundness of sym_exec means that whenever it generates a symbolic state as
a result, then the concrete execution from any stack of size k will succeed and
produce a final state that agrees with the generated symbolic state:

Theorem sym_exec_snd:
∀ (p: block) (k: nat) (ops: stack_op_map) (sst: sstate),

valid_stack_op_map ops →
sym_exec p k ops = Some sst →
valid_sstate sst ∧
∀ (in_st : state) (in_stk : stack),
get_stack in_st = in_stk →
length in_stk = k →

∃ (out_st : state),
concr_int p in_st ops = Some out_st ∧
eval_sstate in_st sst ops = Some out_st

4.2 Simplification Rules

To capture equivalence of programs that have been optimized according to “rule
simplifications” (type (i) in Sect. 2) we need to include the same type of simpli-
fications (see App. A in [10]) in our framework. Without this, we will capture
EVM-blocks equivalence only for “data-stack equivalence optimizations” (type (ii)
in Sect. 2).

Formally Verified EVM Block-Optimizations 183

An optimization function takes as input a symbolic state, and tries to simplify
it to an equivalent state. E.g, if a symbolic state includes ei �→ s3 + 0, we can
replace it by ei �→ s3. The following is the type used for optimization functions:

Definition optim := sstate → sstate∗bool.
Optimization functions never fail, i.e., in the worst case they return the same
symbolic state. This is why the returned value includes a Boolean to indicate if
any optimization has been applied, which is useful when composing optimizations
later. The soundness of an optimization function can be stated as follows:

Definition optim_snd (opt: optim) : Prop :=
forall (sst: sstate) (sst’: sstate) (b: bool),
valid_sstate sst → opt sst = (sst’, b) →

(valid_sstate sst’ ∧
forall (st st’: state), eval_sstate st sst evm_stack_opm = Some st’ →

eval_sstate st sst’ evm_stack_opm = Some st’).

We have implemented and proven correct the most-used simplification rules
(see App. A in [10]). E.g., there is an optimization function optimize_add_zero
that rewrites expressions of the form E + 0 or 0 + E to E, and its soundness
theorem is:

Theorem optimize_add_zero_snd: optim_snd optimize_add_zero.

Example 3. Consider again the blocks of Example 2. Using optimize_add_zero
we can rewrite sst2 to sst2′ ≡ ([e2, s2], {e2 �→ 5 + e1, e1 �→ e0 ∗ s1, e0 �→ s0}),
by replacing e0 �→ 0 + s0 by e0 �→ s0.

Note that the checker can be easily extended with new optimization functions,
simply by providing a corresponding implementation and a soundness proof.
Optimization functions can be combined to define simplification strategies, which
are also functions of type optim. E.g., assuming that we have basic optimization
functions f1,...,fn: (1) Apply f1,...,fn iteratively such that in iteration i function
fi is applied as many times as it can be applied. (2) Apply each fi once in some
order and repeat the process as many times as it can be applied. (3) Use the
simplifications that were used by the optimizer (it needs to pass these hints).

4.3 Stacks Equivalence Modulo Commutativity

We say that two symbolic stacks sst1 and sst2 are equivalent if for every possible
initial concrete state st they evaluate to the same state. Formally:

Definition eq_sstate (sst1 sst2: sstate) (ops : stack_op_map) : Prop :=
∀ (st: state), eval_sstate st sst1 ops = eval_sstate st sst2 ops.

However, this notion of semantic equivalence is not computable in general, and
thus we provide an effective procedure to determine such equivalence by checking
that at every position of the stack both contain “similar” expressions:

Definition eq_sstate_chkr (sst1 sst2: sstate) (ops : stack_op_map) : bool := ...

184 E. Albert et al.

To determine if two stack elements are similar, we follow their definition in the
map if needed until we obtain a value that is not a fresh variable, and then either
(1) both are equal constant values; (2) both are equal initial stack variables; or
(3) both correspond to the same instruction and their arguments are (recur-
sively) equivalent (taking into account the commutativity of operations). E.g.,
the stack elements (viewed as terms) DIV(MUL(s0,ADD(s1,s2)),0x16) and
DIV(MUL(ADD(s2,s1),s0),0x16) are considered equivalent because the oper-
ations ADD and MUL are commutative.

Example 4. eq_sstate_chkr fails to prove equivalence of sst1 and sst2 of Exam-
ple 2, because, when comparing e2 and e′

1, it will eventually check if 0+s0 and s0
are equivalent. It fails because the comparison is rather “syntactic”. However, it
succeeds when comparing sst1 and sst2’ (Example 3), which is a simplification
of sst2.

This procedure is an approximation of the semantic equivalence, and it can
produce false negatives if two symbolic states are equivalent but are expressed
with different syntactic constructions. However, it is sound:

Theorem eq_sstate_chkr_snd:
∀ (sst1 sst2: sstate) (ops : stack_op_map),
valid_stack_op_map ops → valid_sstate sst1 → valid_sstate sst2 →

eq_sstate_chkr sst1 sst2 ops = true → eq_sstate sst1 sst2 ops.

Note that we require the stack operations map to be valid in order to guaran-
tee that the operations declared commutative in ops are indeed commutative. In
order to reduce the number of false negatives, the simplification rules presented
in Sect. 4.2 are very important to rewrite symbolic states into closer syntactic
shapes that can be detected by eq_sstate_chkr.

Finally, given all the pieces developed above, we can now define the block
equivalence checker as follows:

Definition evm_eq_block_chkr (opt: optim) (p1 p2: block) (k: nat) : bool :=
match sym_exec p1 k evm_stack_opm with
| None ⇒ false
| Some sst1 ⇒

match sym_exec p2 k evm_stack_opm with
| None ⇒ false
| Some sst2 ⇒ let (sst2’, _) := opt sst1 in

let (sst1’, _) := opt sst2 in
eq_sstate_chkr sst1’ sst2’ evm_stack_opm

end
end.

It symbolically executes p1 and p2, simplifies the resulting symbolic states by
applying optimization opt, and finally calls eq_sstate_chkr to check if the states
are equivalent. Note that it is important to apply the optimization rules to both
blocks, as the checker might apply optimization rules that were not applied by the
external optimizer. This would lead to equivalent symbolic states with different
shapes that will not be detected by the symbolic state equivalence checker.

Formally Verified EVM Block-Optimizations 185

Table 1. Summary of experiments using GASOL.

#blocks CHKR CHKRs

SIMP Yes Time Yes Time

G
A

S × 36624 36624 2.60 36624 11.76
� 43228 27149 4.69 43109 14.09

#blocks CHKR CHKRs

SIMP Yes Time Yes Time

SI
ZE

× 35754 35754 2.57 35754 12.59
� 32192 31488 2.50 31798 12.17

The above checker is sound when opt is sound:

Theorem evm_eq_block_chkr_snd:
∀ (opt: optim), optim_snd opt → eq_block_chkr_snd (evm_eq_block_chkr opt)

5 Implementation and Experimental Evaluation

The different components of the tool have been implemented in Coq v8.15.2,
together with complete proofs of all the theoretical results (more than 180 proofs
in ∼7000 lines of Coq code). The source code, executables and benchmarks
can be found at https://github.com/costa-group/forves/tree/stack-only and the
artifact at https://doi.org/10.5281/zenodo.7863483. The tool currently includes
15 simplification rules (see App. A in [10]). We have tried our implementation
on the outcome of two optimization tools: (1) the standalone GASOL optimizer
and, (2) the optimizer integrated within the official Solidity compiler solc. For
(1), we have already fully automated the communication among the optimizer
and checker and have been able to perform a thorough experimental evaluation.
While in (2), the communication is more difficult to automate because the CFG
of the original program can change after optimization, i.e., it can make cross-
block optimization. Hence, in this case, we have needed human intervention to
disable intra-block optimizations and obtain the blocks for the comparison (we
plan to automate this usage in the future). For evaluating (2) we have used as
benchmarks 1, 280 blocks extracted from the smart contracts in the semantic
test suite of the solc compiler [6], succeeding to prove equivalence on 1, 045 out
of them. We have checked that the fails are due to the use of optimization rules
not yet implemented by us. As these blocks are obtained from the test suite of
the official solc Solidity compiler, optimized using the solc optimizer, the good
results on this set suggest the validity can be generalized to other optimizers. Now
we describe in detail the experimental evaluation on (1) for which we have used as
benchmarks 147, 798 blocks belonging to 96 smart contracts (see App. D in [10]).

GASOL allows enabling/disabling the application of simplification rules and
choosing an optimization criteria: GAS consumption or bytes SIZE (of the
code) [11]; combining these parameters we obtain 4 different sets of pairs-of-
blocks to be verified by our tool. From these blocks, we consider only those that
were actually optimized by GASOL, i.e., the optimized version is syntactically
different from the original one. In all the cases, the average size of blocks is 8
instructions. Table 1 summarizes our results, where each row corresponds to one

https://github.com/costa-group/forves/tree/stack-only
https://doi.org/10.5281/zenodo.7863483

186 E. Albert et al.

setting out of the 4 mentioned above: Column 1 includes the optimization crite-
ria; Column 2 indicates if rule simplifications were applied by GASOL; Column 3
indicates how many pairs-of-blocks were checked; Columns 4-7 report the results
of applying 2 versions of the checker, namely CHKR corresponds to the checker
that only compares symbolic states and CHKRs corresponds to the checker that
also applies all the implemented rule optimizations iteratively as much as they
can be applied (see Sect. 4.2). For each we report the number of instances it
proved equivalent and the total runtime in seconds. The experiments have been
performed on a machine with an Intel i7-4790 at 3.60 GHz and 16GB of RAM.

For sets in which GASOL does not apply simplification rules (marked with ×),
both CHKR and CHKRs succeed to prove equivalence of all blocks. When sim-
plifications are applied (marked with �), CHKRs succeeds in 99% of the blocks
while CHKR ranges from 63% for GAS to 99% for SIZE. This difference is due
to the fact that GASOL requires the application of rules to optimize more blocks
wrt. GAS (∼ 37% of the total) than wrt. SIZE (∼ 1%). Moreover, all the blocks
that CHKRs cannot prove equivalent have been optimized by GASOL using rules
which are not currently implemented in the checker, so we predict a success rate
of 100% when all the rules in App. A in [10] are integrated. Regarding time,
CHKRs is 3–5 times slower than CHKR because of the overhead of applying
rule optimizations, but it is still very efficient (all 147.798 instances are checked
in 50.61 seconds). As a final comment, thanks to the checker we found a bug in
the parsing component of GASOL, that treated the SGT bytecode as GT. The
bug was directly reported to the GASOL developers and is already fixed [19].

6 Conclusions, Related and Future Work

Our work provides the first tool able to formally verify the equivalence of jump-
free EVM blocks and has required the development of all components within the
verification framework. The implementation is not tied to any specific tool and
could be easily integrated within any optimization tool. Ongoing work focuses
on handling memory and storage optimizations. This extension needs to sup-
port the execution of memory/storage operations at the level of the concrete
interpreter, and design an efficient data structure to represent symbolic mem-
ory/storage. Full handling of blockchain-specific opcodes is straightforward, it
only requires adding the corresponding implementations to the stack operations
map evm_stack_opm. A more ambitious direction for future work is to handle
cross-block optimizations.

There are two approaches to verify program optimizations, (1) verify the cor-
rectness of the optimizations and develop a verified tool, e.g., this is the case of
optimizations within the CompCert certified compiler [24] and a good number of
optimizations that have been formally verified in Coq [13,18,27,32,33], (2) or use
a translation validation approach [20,34–36] in which rather than verifying the
tool, each of the compiled/optimized programs are formally checked to be cor-
rect using a verified checker.We argue that translation validation [34] is the most
appropriate approach for verifying EVM optimizations because: (i) EVM compilers

Formally Verified EVM Block-Optimizations 187

(together with their built-in optimizers) are continuously evolving to adjust to
modifications in the rather new blockchain programming languages, (ii) existing
EVM optimizers use external components such as SMT solvers to search for the
optimized code and verifying an SMT solver would require a daunting effort, (iii)
we aim at generality of our tool rather than restricting ourselves to a specific
optimizer and, as already explained, the design of our checker has been done
having generality and extensibility in mind, so that new optimizations can be
easily incorporated. Finally, it is worth mentioning the KEVM framework [21],
which in principle could be the basis for verifying optimizations as well. However,
we have chosen to develop it in Coq due to its maturity.

References

1. https://www.certora.com/
2. https://veridise.com/
3. https://www.apriorit.com/
4. https://consensys.net/
5. https://www.dedaub.com/
6. https://github.com/ethereum/solidity/tree/develop/test/libsolidity/

semanticTests/externalContracts
7. Bedrock Bit Vectors (bbv) (2018). https://github.com/mit-plv/bbv
8. PausableERC20 Contract (2020). https://etherscan.io/address/

0x32E6C34Cd57087aBBD59B5A4AECC4cB495924356
9. The solc optimizer (2021). https://docs.soliditylang.org/en/v0.8.7/internals/

optimizer.html
10. Albert, E., Genaim, S., Kirchner, D., Martin-Martin, E.: Formally Verified EVM

Block-Optimizations (Extended Version). https://costa.fdi.ucm.es/papers/costa/
AlbertGKMM23_extended.pdf

11. Albert, E., Gordillo, P., Hernández-Cerezo, A., Rubio, A.: A Max-SMT super-
optimizer for EVM handling memory and storage. In: TACAS 2022. LNCS, vol.
13243, pp. 201–219. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99524-9_11

12. Albert, E., Gordillo, P., Rubio, A., Schett, M.A.: Synthesis of super-optimized
smart contracts using max-SMT. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 177–200. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8_10

13. Barrière, A., Blazy, S., Flückiger, O., Pichardie, D., Vitek, J.: Formally verified
speculation and deoptimization in a JIT compiler. Proc. ACM Program. Lang.
5(POPL), 1–26 (2021). https://doi.org/10.1145/3434327

14. Bernardi, T., et al.: Preventing reentrancy bugs - another use case for formal
verification (2020). https://www.certora.com/blog/reentrancy.html

15. Bizga, A.: A hackers’ dream payday: Ledf.me and uniswap lose $25 million worth of
cryptocurrency (2020). https://securityboulevard.com/2020/04/a-hackers-dream-
payday-ledf-me-and-uniswap-lose-25-million-worth-of-cryptocurrency/. [Online;
accessed 11-May-2020]

16. Buterin, V.: CRITICAL UPDATE Re: DAO vulnerability (2016). https://blog.
ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/. Accessed 2-July-
2017

https://www.certora.com/
https://veridise.com/
https://www.apriorit.com/
https://consensys.net/
https://www.dedaub.com/
https://github.com/ethereum/solidity/tree/develop/test/libsolidity/semanticTests/externalContracts
https://github.com/ethereum/solidity/tree/develop/test/libsolidity/semanticTests/externalContracts
https://github.com/mit-plv/bbv
https://etherscan.io/address/0x32E6C34Cd57087aBBD59B5A4AECC4cB495924356
https://etherscan.io/address/0x32E6C34Cd57087aBBD59B5A4AECC4cB495924356
https://docs.soliditylang.org/en/v0.8.7/internals/optimizer.html
https://docs.soliditylang.org/en/v0.8.7/internals/optimizer.html
https://costa.fdi.ucm.es/papers/costa/AlbertGKMM23_extended.pdf
https://costa.fdi.ucm.es/papers/costa/AlbertGKMM23_extended.pdf
https://doi.org/10.1007/978-3-030-99524-9_11
https://doi.org/10.1007/978-3-030-99524-9_11
https://doi.org/10.1007/978-3-030-53288-8_10
https://doi.org/10.1007/978-3-030-53288-8_10
https://doi.org/10.1145/3434327
https://www.certora.com/blog/reentrancy.html
https://securityboulevard.com/2020/04/a-hackers-dream-payday-ledf-me-and-uniswap-lose-25-million-worth-of-cryptocurrency/
https://securityboulevard.com/2020/04/a-hackers-dream-payday-ledf-me-and-uniswap-lose-25-million-worth-of-cryptocurrency/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/

188 E. Albert et al.

17. Daian, P.: Analysis of the DAO exploit (2016). http://hackingdistributed.com/
2016/06/18/analysis-of-the-dao-exploit/

18. Demange, D., Pichardie, D., Stefanesco, L.: Verifying fast and sparse SSA-based
optimizations in Coq. In: Franke, B. (ed.) CC 2015. LNCS, vol. 9031, pp. 233–252.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46663-6_12

19. elexcere: SGT and GT order when parsing. https://github.com/costa-group/gasol-
optimizer/commit/fd78e126c23f192ed6c54aea713b5c94d3c943f5

20. Gourdin, L., Boulmé, S.: Certifying assembly optimizations in Coq by symbolic
execution with hash-consing, p. 2 (2021)

21. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the ethereum
virtual machine. In: 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, July 9–12, 2018, pp. 204–217. IEEE Computer
Society (2018). https://doi.org/10.1109/CSF.2018.00022

22. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.
In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V.,
Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) FC 2017. LNCS, vol.
10323, pp. 520–535. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70278-0_33

23. ivan71kmayshan27: Coq formalisation of the Ethereum Virtual Machine (WIP)
(2020). https://github.com/ivan71kmayshan27/coq-evm

24. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

25. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of
peephole optimizations with alive. Commun. ACM 61(2), 84–91 (2018). https://
doi.org/10.1145/3166064

26. Massalin, H.: Superoptimizer - a look at the smallest program. In: Proceedings of
the Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS II), pp. 122–126 (1987). https://dl.
acm.org/citation.cfm?id=36194

27. Monniaux, D., Six, C.: Simple, light, yet formally verified, global common subex-
pression elimination and loop-invariant code motion. In: Henkel, J., Liu, X. (eds.)
LCTES ’21: 22nd ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, Virtual Event, Canada, 22
June, 2021, pp. 85–96. ACM (2021). https://doi.org/10.1145/3461648.3463850

28. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. ACM SIGPLAN Notices 49(9), 175–188 (2014)

29. Nagele, J., Schett, M.A.: Blockchain superoptimizer. In: Preproceedings of 29th
International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR 2019) (2019). https://arxiv.org/abs/2005.05912

30. Palmer, D.: Spankchain loses $40k in hack due to smart contract bug (2018).
https://www.coindesk.com/spankchain-loses-40k-in-hack-due-to-smart-contract-
bug. Accessed 11 May 2020

31. Sasnauskas, R., et al.: Souper: A Synthesizing Superoptimizer. arXiv:1711.04422
[cs], November 2017

32. Six, C., Boulmé, S., Monniaux, D.: Certified and efficient instruction schedul-
ing: application to interlocked VLIW processors. Proc. ACM Program. Lang.
4(OOPSLA), 129:1–129:29 (2020). https://doi.org/10.1145/3428197

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://doi.org/10.1007/978-3-662-46663-6_12
https://github.com/costa-group/gasol-optimizer/commit/fd78e126c23f192ed6c54aea713b5c94d3c943f5
https://github.com/costa-group/gasol-optimizer/commit/fd78e126c23f192ed6c54aea713b5c94d3c943f5
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-319-70278-0_33
https://github.com/ivan71kmayshan27/coq-evm
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3166064
https://doi.org/10.1145/3166064
https://dl.acm.org/citation.cfm?id=36194
https://dl.acm.org/citation.cfm?id=36194
https://doi.org/10.1145/3461648.3463850
https://arxiv.org/abs/2005.05912
https://www.coindesk.com/spankchain-loses-40k-in-hack-due-to-smart-contract-bug
https://www.coindesk.com/spankchain-loses-40k-in-hack-due-to-smart-contract-bug
http://arxiv.org/abs/1711.04422
https://doi.org/10.1145/3428197

Formally Verified EVM Block-Optimizations 189

33. Six, C., Gourdin, L., Boulmé, S., Monniaux, D., Fasse, J., Nardino, N.: Formally
verified superblock scheduling. In: Popescu, A., Zdancewic, S. (eds.) CPP ’22:
11th ACM SIGPLAN International Conference on Certified Programs and Proofs,
Philadelphia, PA, USA, January 17–18, 2022, pp. 40–54. ACM (2022). https://doi.
org/10.1145/3497775.3503679

34. Tristan, J., Leroy, X.: Formal verification of translation validators: a case study
on instruction scheduling optimizations. In: Necula, G.C., Wadler, P. (eds.) Pro-
ceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2008, San Francisco, California, USA, January 7–12,
2008, pp. 17–27. ACM (2008). https://doi.org/10.1145/1328438.1328444

35. Tristan, J., Leroy, X.: Verified validation of lazy code motion. In: Hind, M., Diwan,
A. (eds.) Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2009, Dublin, Ireland, June 15–21,
2009, pp. 316–326. ACM (2009). https://doi.org/10.1145/1542476.1542512

36. Tristan, J., Leroy, X.: A simple, verified validator for software pipelining. In:
Hermenegildo, M.V., Palsberg, J. (eds.) Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2010,
Madrid, Spain, January 17–23, 2010, pp. 83–92. ACM (2010). https://doi.org/
10.1145/1706299.1706311

37. Turley, C.: imBTC uniswap pool drained for $300k in ETH (2020). https://defirate.
com/imbtc-uniswap-hack/. Accessed 11 May 2020

38. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (Berlin
version 8fea825 - 2022–08-22) (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3497775.3503679
https://doi.org/10.1145/3497775.3503679
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1542476.1542512
https://doi.org/10.1145/1706299.1706311
https://doi.org/10.1145/1706299.1706311
https://defirate.com/imbtc-uniswap-hack/
https://defirate.com/imbtc-uniswap-hack/
http://creativecommons.org/licenses/by/4.0/

SR-SFLL: Structurally Robust Stripped
Functionality Logic Locking

Gourav Takhar(B) and Subhajit Roy

Indian Institute of Technology Kanpur,
Kanpur, India

{tgourav,subhajit}@cse.iitk.ac.in

Abstract. Logic locking was designed to be a formidable barrier to
IP piracy: given a logic design, logic locking modifies the logic design
such that the circuit operates correctly only if operated with the “cor-
rect” secret key. However, strong attacks (like SAT-based attacks) soon
exposed the weakness of this defense. Stripped functionality logic locking
(SFLL) was recently proposed as a strong variant of logic locking. SFLL
was designed to be resilient against SAT attacks, which was the bane
of conventional logic locking techniques. However, all SFLL-protected
designs share certain “circuit patterns” that expose them to new attacks
that employ structural analysis of the locked circuits.

In this work, we propose a new methodology—Structurally Robust
SFLL (SR-SFLL)—that uses the power of modern satisfiability and syn-
thesis engines to produce semantically equivalent circuits that are resilient
against such structural attacks. On our benchmarks, SR-SFLL was able
to defend all circuit instances against both structural and SAT attacks,
while all of them were broken when defended using SFLL. Further, we
show that designing such defenses is challenging: we design a variant of
our proposal, SR-SFLL(0), that is also robust against existing struc-
tural attacks but succumbs to a new attack, SyntAk (also proposed in
this work). SyntAk uses synthesis technology to compile SR-SFLL(0)
locked circuits into semantically equivalent variants that have structural
vulnerabilities. SR-SFLL, however, remains resilient to SyntAk.

Keywords: Logic Locking · SFLL · Program Synthesis

1 Introduction

Semiconductor design houses often outsource the fabrication of the integrated
circuits (IC) to third-party foundries [17]. This allows effective use of the fab-
rication equipment and facilities at the foundry, while the design houses can
concentrate solely on the design. Though this separation of concerns provides
attractive cost benefits, it also opens up certain threats: malicious agents at a
foundry may now fabricate illegal copies of the ICs that can be sold in the gray
market leading to serious loss in revenue for the design house.

Logic locking was proposed as an effective mechanism to combat such intel-
lectual property (IP) threats. Logic locking modifies the original IC in a manner
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 190–212, 2023.
https://doi.org/10.1007/978-3-031-37709-9_10

https://doi.org/10.5281/zenodo.7932543
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_10&domain=pdf
http://orcid.org/0000-0002-8700-3428
http://orcid.org/0000-0002-3394-023X
https://doi.org/10.1007/978-3-031-37709-9_10

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 191

Fig. 1. SFLL-HD locked circuit (ϕ); C is the (unprotected) original circuit. (Color
figure online)

that the circuit operates correctly only after it is activated with a secret key.
This secret key is loaded into tamperproof memory by the design house post-
fabrication. However, soon powerful attacks, especially those involving SAT
solver [23,26,34], were invented to thwart this defense. Since then, more power-
ful defenses were proposed that were resistant to such SAT attacks. One such
SAT-resilient attack that has gained a lot of popularity is Stripped Functionality
Logic Locking (SFLL) [44].

SFLL operates by using the secret key to identify a set of inputs as protected
patterns—the circuit is forced to produce incorrect results if the input matches
any of these protected patterns. The cube stripping circuit (see Fig. 1) is respon-
sible for matching the inputs to the protected patterns. An additional restore
circuit is used to restore the correct functionality for the protected patterns. The
circuit does not operate correctly with an incorrect key as the restore circuit,
then, identifies a different set of patterns to be restored. Though quite potent
against SAT attacks, attackers soon identified certain unique structural patterns
in the design of SFLL that could be leveraged to build attacks via structural
analysis [4,32,40].

In this work, we propose a scheme, Structurally Robust Stripped Functionality
Logic Locking (SR-SFLL), to defend against such structural analysis. SR-SFLL
uses efficient synthesis [33] machinery powered by modern SAT solvers to ensure
that certain structural security constraints are met that ensures its resilience
against the structural attacks.

SR-SFLL operates as follows: (1) identify a “cut” of the original design C

to break the design into two segments C1 and C2 (see Fig. 1), and (2) introduce
a carefully synthesized perturbation unit Q between C1 and C2 (see Fig. 2b).
As the perturbation unit does not have any specific structural signature and
is hidden deep within the original design, our scheme is no more vulnerable to

192 G. Takhar and S. Roy

Fig. 2. Transformation of SFLL locked circuit to SR-SFLL locked circuit.

Table 1. Attack resilience of logic locking techniques: ✔ (resp. ✖) represents resilience
(resp. vulnerability) to attacks.

Attack Anti-SAT SARLock SFLL SR-SFLL(0) SR-SFLL

SAT [34] ✔ ✔ ✔ ✔ ✔

Removal [43] ✖ ✖ ✔ ✔ ✔

AppSAT [30] ✖ ✖ ✔ ✔ ✔

Structural [4,32,40] ✖ ✖ ✖ ✔ ✔

SyntAk (this paper) ✖ ✖ ✖ ✖ ✔

attacks by structural analysis. Further, the location of the “cut” is unknown to
the attacker and the perturbation unit misses any structural pattern, making it
challenging to apply other attacks like removal attack [43].

We argue that designing such a defense scheme is non-trivial: we show
a version (SR-SFLL(0)) of SR-SFLL that is also resistant to structural
attacks. However, we could design a novel structural attack algorithm, Syn-
tAk, that breaks SR-SFLL(0): in our experiments, SyntAk breaks 71.25% of
SR-SFLL(0) locked benchmark instances. Our attack algorithm, SyntAk, is a
novel attack that also uses synthesis machinery to compile an existing circuit to
a semantically equivalent one that is amenable to structural analysis. However,
SR-SFLL is robust against SyntAk.

Table 1 summarizes the resiliency of various logic locking techniques, with
the attacks listed for the rows and the defenses in the columns. For a table
cell (A,D), we use ✖ to show that attack A breaks defense D (in most cases);
the mark ✔ shows that defense D is robust against attack A. The attack and
defense techniques marked with a red background are proposed in this paper.
As SR-SFLL locked circuits remain semantically equivalent to the SFLL locked

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 193

circuits, SR-SFLL locked circuit provides the same security against the SAT-
based [34], removal [43], and AppSAT [30] attacks.

We evaluated SR-SFLL(0), SR-SFLL, and SyntAk on 80 benchmarks
from the ISCAS’85 and MCNC benchmark suites with different numbers of key
inputs and cube stripping functionalities. Our experiments showed that circuits
locked by SR-SFLL are robust to structural attacks—none of the SR-SFLL
locked designs could be broken by existing structural attacks (like SFLLUnlock,
FALL, and GNNUnlock), or by our SyntAk (also proposed in this work). While
the structural attacks failed to recover the structural patterns altogether, Syn-
tAk could not break the SR-SFLL even over two days for circuits that were
locked in less than an hour.

SR-SFLL provides asymmetric advantage to the defender over the attacker
on multiple counts: the secret key K used to lock the circuit, knowledge of the
secret cut where FSC is partitioned, and a much harder synthesis problem (on
attacks using SyntAk).

We make the following contributions to this work:

– We propose, Structurally Robust Stripped Functionality Logic Locking
(SR-SFLL), a new defense against IP threats. In contrast, to SFLL,
SR-SFLL is not vulnerable to attacks via structural analysis;

– We propose a new attack, SyntAk, and show its potency at breaking alter-
nate structural attack resistant designs (SR-SFLL(0)) that use similar ideas
as SR-SFLL but are not designed carefully. This shows the non-triviality of
designing new defenses, and in particular, SR-SFLL;

– We evaluate SR-SFLL(0), and SR-SFLL on circuits from two benchmark
suites against existing structural attacks as well as SyntAk. Our experimen-
tal results show that SR-SFLL is not vulnerable to structural analysis or
SyntAk and the overheads of the technique are low (about 0.18% on aver-
age over SFLL).

2 Background

2.1 Stripped Functionality Logic Locking (SFLL)

Figure 1 shows a stripped functionality logic locked circuit, ϕ. The original circuit
(C) takes a set of input bits, X, and produces an output bit, o1. The SFLL locked
design, ϕ, consumes input bits, X, and a secret key (bits) K to output y.

The core idea of SFLL is to create a functionality stripped circuit (FSC) that
would produce incorrect output for certain protected patterns. The cube stripping
circuit (S) recognizes the protected patterns, and makes the signal sfo high if
any of them is encountered; an XOR gate flips the output of the original circuit
(o1) for these protected patterns (i.e. when sfo is high). Hence, o2 is the correct
output for inputs not in the protected patterns, but the complement of it for the
protected patterns.

The correct functionality is re-established using the restore circuit (R). The
restore circuit accepts (secret) key bits K along with the input X to produce

194 G. Takhar and S. Roy

the signal sro; if the correct key K is supplied, sro is high if and only if the input
is amongst the protected bits. The cube stripping circuit (S) is functionally
equivalent to R but uses a hardcoded key value. Hence, the restore unit restores
the correct output for the protected inputs (via an XOR of o2 and sro). Hence,
the locked circuit now works correctly if the correct key is applied (i.e. the key
K supplied to R matches the hardcoded key in S).

While many possible choices exist for a function that identifies protected
patterns of inputs based on a key, the hamming distance was found to be an
interesting choice [44]. The corresponding variant of SFLL, known as SFLL-
HD, identifies an input (X) as a protected pattern if it has a certain hamming
distance (h) from the key (K).

2.2 SFLL Attacks

SFLL is robust to all known attacks on (conventional) logic locking [4]. How-
ever, subsequently, many structural attacks were proposed that break SFLL.
These attacks use one or more of the structural properties exhibited by SFLL
implementations [4,40]:

1. As the sfo signal is required to invert the signal from the original circuit C

(for protected patterns), which, then, has to be reverted by the restore circuit,
the sfo signal has to be on the boundary of FSC and the restore unit;

2. sfo does not depend on the key inputs;
3. sfo has low activity, i.e. it is 0 most of the time;
4. S and R can be removed from the circuit to restore the functionality of the

original circuit.

All the following attacks assume that they know the hamming distance (h)
used to lock the circuit.

SFLLUnlock. SFLLUnlock [40] uses the first and the second structural proper-
ties (see above) to identify a few signals that may be sfo (referred to as candidate
signals). Next, for each of the candidates, the attack uses the following technique:
it uses SAT solver to extract an input such that the candidate signal is 1; if the
candidate signal is indeed sfo, this input must be a protected pattern (which has
a hamming distance of h with the correct key). Then, it attempts to identify the
correct key as follows:

– use a sequence of bit-flips to identify the bits that are different than the
correct key using the properties of hamming distance;

– set up a system of equations to find the unknown key that must have a
hamming distance of h from the inferred protected patterns.

The inferred key is, finally, validated using a working circuit as an oracle.

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 195

Functional Analysis Attacks on Logic Locking (FALL). The first step of
FALL [32] is to identify a set of candidate signals that may be the output of the
cube stripping circuit i.e. sfo. FALL achieves this by exploiting the first and sec-
ond vulnerabilities of SFLL. To finalize if a signal is sfo (among these candidate
signals), FALL derives a set of lemmas that exploit the functional properties
of hamming distance. FALL proposes three algorithms based on these lemmas
for a specific range of hamming distance values. For example, the AnalyzeUnate-
ness algorithm is only applicable when h = 0, Hamming2D is applicable when
h ≤ |K|/4, and SlidingWindow is for larger hamming distances.

GNNUnlock. GNNUnlock [4] automates the removal of cube stripping circuit
and restore circuit from the locked circuit to obtain the original circuit. For
their analysis, the circuit is transformed into a graph representation where the
nodes of the graph represent the gates, and the edges represent the wires. Each
node in the graph is associated with a feature vector that contains information
that describes its characteristics (in-degree, out-degree, type of gate of the node,
whether the node is connected to key input (K), circuit input (X), or circuit
output (Y), type of gates appearing in the neighborhood on the node, etc.).

GNNUnlock uses graph neural networks [45] to train over the nodes of the
graph to classify the nodes belonging to the original circuit (C), cube stripping
circuit (S), or restore circuit (R). The final step is to remove the nodes classified
as part of S and R from the locked circuit obtaining the original circuit C.

2.3 Analysis of the Structural Attacks on SFLL

FALL and SFLLUnlock are dependent on finding the output of cube stripping
circuit sfo. Hence, hiding/removing sfo from the locked circuit will ensure robust-
ness against such attacks. GNNUnlock works by removing the cube stripping
circuit and restore circuit from the SFLL locked circuit. Hence, removing/hiding
a part or whole of the cube stripping circuit from the locked design makes the
locked design robust to such attacks.

3 Overview

3.1 Preliminaries

Attack Model. We assume that the attacker has access to a functional circuit
(which can be used as an oracle) and knows the hamming distance (h).

Graph Representation of Circuit. We work with the circuit in And Inverter
Graph (AIG) format. An AIG consists of two inputs AND gates and NOT gates.
We construct a graph G from the circuit in AIG format as follows: the gates
in the circuit map to nodes in G. A wire (or signal) connecting gates map to
edges on the graph. The input and output signals are marked as special nodes.

196 G. Takhar and S. Roy

Fig. 3. An example of circuit C and its corresponding graph representation.

If not otherwise specified, we construct the graph of a circuit with the node
representing the final output signal as the start node (we assume a single output
bit in this paper for simplicity). Figure 3b shows the graph of the circuit in
Fig. 3a.

The distance between two nodes (say g1 and y in Fig. 3b) is the (minimum)
number of edges in the path(s) from nodes g1 to y (which is 3, in this case). We
define the depth, d, of a node n as the maximum distance from the start node
(y in Fig. 3b) of the graph to n.

We define a cut on graph G as a partitioning of nodes into two disjoint (con-
nected) subsets such that the inputs and outputs belong to distinct partitions.
A cut is defined by a cut-set, a selection of edges (which are said to cross a cut)
such that its endpoints are in distinct partitions. We define the depth of cut as
the maximum amongst the depths of the nodes in the subset containing the start
node. In the rest of the paper, we refer to cut on a circuit to refer to the cut on
the underlying graph. The dotted red lines show a cut at depth 3 in Fig. 3.

Notations. We show combinational circuits with n inputs X and m outputs
Y as boolean functions Y ↔ C(X), where X is an n-bit vector (x1, x2, . . . , xn),
and Y is an m-bit vector (y1, y2, . . . , ym). We also use the functional notation,
C(X), to denote the output of the circuit C, i.e. the signal Y . We use capital
letters to denote bit-vectors and small letters to denote individual bits. We use
⊕ to denote the XOR gate and ◦ to denote function (or circuit) composition.

We use blackboard-bold capital letters for circuits (like C). We use ϕ for
complete SFLL locked designs and ϕ̂ for complete SR-SFLL(0) or SR-SFLL
locked designs. We use subscripts to denote sub-parts of a circuit. For example,
if we use C to denote the circuit shown in Fig. 3a, we use Ca and Cb to denote
the subcircuits with outputs a (red block) and b (blue block).

3.2 Approach

Recall that the known structural attacks on SFLL exploit the structural char-
acteristics of sfo (see Sect. 2.2). Our defense techniques attempt to synthesize

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 197

Fig. 4. Transformation of SFLL locked circuit to SR-SFLL(0) locked circuit. (Color
figure online)

a circuit that is semantically equivalent to the original circuit but misses these
prominent structural characteristics that make structural attacks feasible.

SR-SFLL(0). SR-SFLL(0) identifies a cut on the FSC, through both the
original circuit (C) and the cube stripping circuit (S), as shown by the red-
dotted line in Fig. 1, separating the inputs (X) and the output (o2) of the FSC.
The cut-set is marked by the wires {A, V } (as shown in Fig. 4a).

Next, it synthesizes a perturbation unit Q (as shown in Fig. 4b) such that it
ensures the following conditions:

– Q is semantically equivalent to the removed circuit, i.e. C2 ⊕ S2;
– No wire in Q is semantically equivalent to the output of S2 (i.e. sfo).

The first condition ensures soundness, that is the functioning of the new
circuit is the same as that of the SFLL locked circuit. The second condition
ensures security as sfo is not present in the new design, and hence, the new
design misses all the structural characteristics (see Sect. 2.2) that made SFLL
vulnerable to attacks.

SyntAk. SR-SFLL(0) is robust to existing attacks as reverse engineering
using the sfo signal is not possible anymore. However, in contrast to exist-
ing attacks that attempt to reverse engineer an existing locked circuit, what if
we synthesize an alternate, semantically equivalent circuit that has a structure
amenable to reverse engineering? Our novel attack employs a similar strategy.

The attack attempts to recover an alternate locked design that exposes the
XOR gate Gxor (as shown in Fig. 5b), in which case it becomes easy to identify the
sfo signal—it must be one of i or j. SyntAk, thus, side-steps the challenge of
reverse engineering the SR-SFLL(0) locked circuit with missing sfo by, instead,
resynthesizing another locked circuit that has an easily identifiable sfo signal.

This algorithm proceeds as follows:

– cut the FSC of SR-SFLL(0) locked circuit into FSC1 and FSC2;

198 G. Takhar and S. Roy

Fig. 5. SyntAk on SR-SFLL(0) locked circuit.

– synthesize a new circuit Pi ⊕ Pj that is semantic equivalent to FSC2.

With sfo clearly identifiable, the existing SFLL attacks now become feasible.
However, this attack may only succeed if the identified cut is such that FSC2

contains the whole of Q. Hence, the attacker may have to “guess” different cuts
(e.g. by progressively increasing the depth of the cut) till the attack succeeds.
We say that the attack succeeds if any of the existing attacks are able to break
the defense with the identified sfo signal in the resynthesized circuit.

The attack is made easier by the fact that it is not required to select a cut
that exactly isolates Q. The attack will still succeed even if some portion of C1

and S1 enters FSC2 (see Fig. 7b). However, the synthesis of Pi ⊕ Pj becomes
increasingly expensive with the increasing size of FSC2.

Further, even with the “right” cut, not all synthesis candidates may yield a
signal semantically equivalent to sfo. Hence, the attacker needs to correctly guess
the cut as well as the correct synthesis candidate for a successful attack. However,
our experiments demonstrate that even with these uncertainties, SyntAk is able
to break SR-SFLL(0) in 71.25% of cases.

SR-SFLL. The primary reason why SyntAk breaks SR-SFLL(0) is that we
are able to synthesize a new circuit Pi ⊕Pj such that there are two XOR gates at
the end of the circuit. If instead, a new circuit that is synthesized introduces the
functionality of S2 in the middle of C, SyntAk would not have been feasible.

Figure 2b shows our improved design for the SR-SFLL locked circuit. Instead
of resynthesizing the circuits C2 and S2, we place a perturbation unit (Q) in
between C1 and C2. The perturbation unit is made to operate semantically
equivalent to the original SFLL locked circuit. The shaded portion, consisting of
S2 (that produces sfo) and one of the XOR gates, is eliminated from the design.

As the attacker is unaware of the location of the perturbation unit, and as
the perturbation unit is not at the end of the circuit, the attacker’s task gets
more challenging: the attacker needs to synthesize a new circuit at the end of the

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 199

Fig. 6. Illustration of SFLL, SR-SFLL(0), and SR-SFLL locked circuits along with
SyntAk on SR-SFLL(0)

design with an XOR gate (that would provide access to sfo) that re-establishes
the functionality of both S2 and C2. On the other hand, the defender only has
to synthesize Q to re-establish the functionality of S2.

SR-SFLL is scalable to large circuits. The scalability of SR-SFLL depends
on the depth of the cut, as the complexity of our synthesis problem only depends
on the circuit that is subjected to (semantically equivalent) rewriting (C2 and
S2 in Fig. 2b). Hence, the size of the base circuit has no impact on the scalability
of SR-SFLL.

Example. Figure 6a shows the SFLL locked version of a circuit. The
SR-SFLL(0) locked version is shown in Fig. 6b: we can see that the sfo sig-
nal (available in the SFLL locked circuit) is not available in the SR-SFLL(0)
locked circuit anymore; hence, it is robust to structural attacks. After applying
SyntAk (Fig. 6c), SyntAk could recover the sfo signal in the synthesized cir-
cuit. Finally, Fig. 6d shows the SR-SFLL locked circuit: it is structurally robust
(does not include sfo) and does not succumb to SyntAk.

SR-SFLL provides a stronger asymmetric advantage versus SR-SFLL(0):
in SR-SFLL(0), both the attack and the defense need to resynthesize the func-
tionalities of C2 and S2 within Q. This prevents the defense from taking deep cuts
for FSC2 to keep the task of synthesizing Q feasible. Hence, SR-SFLL(0) only
holds the advantage of knowing the secret “cut”. On the other hand, SR-SFLL
only needs to synthesize the functionalities of S2 while the attacker would need

200 G. Takhar and S. Roy

to resynthesize the functionalities of both C2 and S2 to recover sfo, making the
synthesis task overly challenging. This gives SR-SFLL a dual advantage of the
knowledge of the secret cut as well as an asymmetric advantage in the synthesis
task.

4 SR-SFLL

4.1 Problem Statement

Given an SFLL locked circuit ϕ(X,K) (where X is the input to the circuit and
K is the key-bits used in the circuit), synthesize a structurally robust locked
circuit ϕ̂(X,K), such that:

(correctness) The altered circuit is semantically equivalent to the original
SFLL locked circuit, that is,

∀X. ∀K. ϕ(X,K) = ϕ̂(X,K) (1)

(security) There does not exist any signal, z, in the altered circuit that is
equivalent to sfo in ϕ; that is,

∀z. ∃X.ϕsfo(X) �= ϕ̂z(X) (2)

The first condition ensures that functionality is preserved, that is, the syn-
thesized circuit ϕ̂ preserves the properties of the input SFLL locked circuit ϕ.
The second condition ensures that structural patterns that were available to
attackers in SFLL, made available through the sfo signal, are not available in ϕ̂.

4.2 Intuition: SR-SFLL

The current synthesis tools do not scale up to the above synthesis task for
the whole locked circuit ϕ̂ (unless the locked circuit is very small). Hence, a
straightforward implementation of the above equations is not feasible.

Instead, we construct the circuit ϕ̂ by synthesizing a “small” circuit Q that
can be introduced within the original circuit C, with Q ◦ C2 preserving the
functionality of S2 ⊕ C2.

We use the following (simplified) description to provide the necessary intu-
ition. Let the functionality of the original circuit (i.e. C) be denoted as f(X),
where X are the circuit inputs. Then, let the stripped functionality circuit (i.e.
S in Fig. 1) be denoted as g, where g is a boolean function that returns true
if and only if it detects the protected input patterns. The functionality of the
circuit ϕo2 in Fig. 1 can then be represented as:

ϕo2 = (f ⊕ g)(X) =
{

f(X) if g(X) = 0
¬f(X) if g(X) = 1 (3)

We “cut” (or partition) f into two functions f1 and f2, such that f = f1 ◦
f2. Then, we synthesize a perturbation unit (Q), with functional definition h,
such that:

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 201

Algorithm 1: SR-SFLL
1 Input : C, λ;
2 S,R ← SFLL(C);
3 C1,C2, S1, S2 ← Cut({C, S}, λ);
4 Q ← Synthesize(C2, S2);
5 if Q == ⊥ then
6 return ⊥
7 end
8 ϕ̂ ← Assemble(C1,C2, S1,R,Q);
9 return ϕ̂(X, K);

(f1 ◦ h ◦ f2)(X) = ϕo2 = (f ⊕ g)(X) =
{

f(X) if g(X) = 0
¬f(X) if g(X) = 1 (4)

We use the definition of g (detector for protected patterns) as used in Eq. 3.
Now, we need to ensure the equivalence of (f ⊕ g), i.e. (f1 ◦ (f2 ⊕ g)), with

that of (f1◦h◦f2). This can be ensured by simply checking for the equivalence of
(f2⊕g) with that of (h◦f2). If the selected f2 is “small”, the task of synthesizing h
becomes feasible.

For simplicity, we do not assume the splitting of g in the above discussion,
but our approach allows that.

4.3 Methodology: SR-SFLL

Algorithm 1 takes the original circuit (C), and a choice for the cut (λ). It first
generates an SFLL locked circuit (Line 2), thereby generating the stripped func-
tionality circuit (S(X)), and the restore unit circuit (R(X,K)).

Identify Cut. The circuit is “cut” (according to λ) to partition the original
circuit C to segments C1 and C2 in Line 3. Similarly, the cube stripping circuit
S is also partitioned into S1 and S2 in Line 3.

1. The edges at which the circuit is cut in the original circuit C(X) are the
outputs for circuit A ↔ C1(X) and the input for circuit o1 ↔ C2(A).

2. The edges at which the circuit is cut in the stripped functionality circuit S(X)
are the output for V ↔ S1(X) and the input for circuit sfo ↔ S2(V).

Synthesize Perturbation Unit Q. We introduce a perturbation unit Q

between C1 and C2 such that this modified circuit (see Fig. 2b) satisfies the
correctness and security properties (see Sect. 4.1).

Accordingly, we pose the synthesis conditions for Q as follows:

∀A ∀V. (C2(A) ⊕ S2(V)) = C2(Q(A, V)) (5)

∀z ∃A ∃V. Qz(A, V) �= S2(V) (6)

202 G. Takhar and S. Roy

Equation 5 imposes the soundness constraint that introducing Q should reinstall
the functionality of C2. Equation 6 is the security constraint against structural
attacks that ensures that none of the signals (z) in Q is equivalent to sfo.

Our algorithm is not complete, that is, our synthesis conditions are stronger
than necessary: the signals A and V are universally quantified over all possibili-
ties, while Q needs to satisfy these conditions only on the possible outputs from
C1 and S1 respectively. Our formulation trades off completeness for scalability.

If Algorithm 1 fails to synthesize a locked circuit (i.e., the algorithm
returns ⊥), the algorithm is run again with a different choice for the cut (λ).

Theorem 1. If Algorithm 1 succeeds (that is, does not return ⊥), the returned
locked circuit ϕ̂(X,K) is both correct and secure.

Proof. For the Algorithm 1 to succeed, the Synthesize function must succeed.
Synthesize succeeds only if the synthesized Q satisfies Eq. 5 and Eq. 6.

– Correctness. As sfo is part of S2, from Eq. 5 and Fig. 2b, Eq. 1 holds when-
ever Eq. 5 holds.

– Security. From Eq. 6 and Fig. 2b, if Eqn 6 holds, so must Eq. 2.

SR-SFLL(0). In case of SR-SFLL(0), we only attempt to synthesize Q to
replace the circuits C2 and S2 (Fig. 4b) instead of synthesizing a new circuit
between C1 and C2. Hence, in this case, the synthesis condition reduces to:

∃Q ∀A ∀V. (C2(A) ⊕ S2(V)) = Q(A, V) (7)

Circuit Optimization. The circuit may be subjected to optimizations (e.g.
using berkeley-abc [1]); however, in that case, the security check (Eq. 2) needs
to be repeated on the optimized circuit to ensure that the optimizations did not
restore the sfo signal. In our experiments, we did perform optimizations on our
circuits, and in no case did the security check fail post-optimization.

5 SyntAk

Algorithm 2 accepts the locked circuit ϕ̂ to return the secret key, Kc. We use
two hyperparameters on the number of attempts on creating cuts (ncuts) and
enumerate synthesis candidates (nsynth).

At Line 3, the algorithm uses structural analysis to identify the functionality
stripped circuit FSC and the restore unit R. Identifying R is reasonably simple
as it is the only part of the locked circuit that uses the key bits K. Hence, one
can perform dependency analysis from the key bits to identify R (as also done
in prior work [32,40]).

Next, the algorithm enters a loop to guess a suitable cut (Line 5). If a new cut
(different than the cuts obtained so far, accumulated in cuts (Line 9)) is found,
it attempts to enumerate synthesis candidates. For every synthesis candidate P

(Line 12), the algorithm assembles the complete circuit (Line 17) as per Fig. 5b.

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 203

Algorithm 2: SyntAk
1 Input : ϕ̂, ncuts, nsynth;
2 cuts ← ∅;
3 FSC,R ← StructAnalyse(ϕ̂);
4 while |cuts| < ncuts do
5 FSC1,FSC2 ← Cut(FSC, cuts);
6 if FSC2 == ⊥ then
7 break;
8 end
9 cuts ← cuts ∪ {〈FSC1,FSC2〉};

10 synths ← ∅;
11 while |synths| < nsynths do
12 P ← Synthesize(FSC2, synths);
13 if P == ⊥ then
14 break;
15 end
16 synths ← synths ∪ {P};
17 ϕ ← Assemble(FSC1,P,R);
18 Kc ← AttackWithSFO(ϕ, {i, k});
19 if Kc �= ⊥ then
20 return Kc;
21 end
22 end
23 end
24 return ⊥;

Fig. 7. SyntAk will not succeed with (a) but may suceed with (b) (cuts shown by
blue boxes). (Color figure online)

Then, it launches an existing structural attack (like FALL, SFLLUnlock) with
the signals {i, j} as potential candidates for the sfo signal (Line 18). If the
existing attacks succeed, the respective key Kc is returned.

204 G. Takhar and S. Roy

The Synthesize procedure synthesizes (i, j) ↔ P (A), such that:

∀A. FSC2(A) = (Pi(A) ⊕ Pj(A)) (8)

That is, it searches for a circuit P that is semantically equivalent to FSC such
that it exposes the sfo signal. This imposition is due to the fact that a new XOR
gate, Gxor (circled XOR gate in Fig. 5b), is forced on the output of P; this is an
attempt to make the new circuit resemble the SFLL circuit in Fig. 1, on which
the existing structural attacks are potent.

However, the algorithm is not complete due to multiple factors:

– The choice of the cut is crucial; the attack only works if FSC2 is such that
the perturbation unit of the locked circuit ϕ̂ is a part of FSC2. The attacker
is thus invited to the challenging task of distinguishing Q (of SR-SFLL(0))
in the locked circuit, ϕ̂. However, the attack is made a bit easier by the fact
that it is not required to select a cut that exactly isolates Q (Fig. 7b). The
attack will still succeed even if some portion of C1 and S1 enters P. However,
the synthesis phase of the attack gets expensive with the size of FSC2; thus,
overly large FSC2 will not succeed either (will fail in Synthesize).

– Every synthesis candidate that satisfies Eq. 8 may not yield sfo: there may
be multiple possible instantiations of P, some, where none of i or j is sfo.

– The synthesis condition (Eq. 8) is overly strong: the synthesized candidate P

is required to satisfy the condition for feasible values of A as emanating from
FSC1 and that of sro from R (in fact, A and sro are correlated as both accept
X). However, the synthesis condition forgoes this precondition for scalability
and universally quantifies the condition on all possible values of A and sro.

Even with the above areas of incompleteness, SyntAk is quite effective in
practice: in our experiments, SyntAk breaks 71.25% of the SR-SFLL(0) locked
circuits. Our experiments use an incremental approach to guessing cuts that
select cuts by progressively increasing the depth (d) of the cut in each round;
all nodes that are at most d distance far from the output are included in FSC2.
However, other schemes (including randomized ones) are also possible.

6 Evaluation

Benchmarks and Setup. We have used 10 circuits from ISCAS’85 [2] and 10
circuits from MCNC [41]. Benchmarks were used for evaluation in most of the
recent work, including SFLL [44], FALL [32], SFLLUnlock [40], and GNNUn-
lock [4]. Each of these designs was locked under four different configurations
to produce SFLL-HD locked versions: 16 and 32 key-bits, each with hamming
distances of 2 and 4 for 16 key-bits and 4 and 8 for 32 key-bits. So, overall, we
perform our evaluations on a benchmark suite of 80 circuit instances.

ISCAS’85 benchmarks are available in bench and MCNC benchmarks are
available in blif (Berkeley Logic Interchange Format) formats. We used Berkeley-
abc to convert blif to the bench format for use by our framework.

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 205

Table 2. Summary of results on all our benchmarks: FL, SU, GU, and SA represent
FALL, SFLLUnlock, GNNUnlock, and SyntAk respectively. Under Robustness, each
cell in the table shows the number of locked circuits successfully broken by the respec-
tive attack (smaller is better). Under Overhd., we show the average (AVG) and the
standard deviation (STD) of the percentage increase in the number of AND gates in
the AIG w.r.t. the SFLL-HD locked design (smaller is better).

Bench. SFLL-HD SR-SFLL(0) SR-SFLL

Robustness Robustness Overhd. % Robustness Overhd. %
FL SU GU FL SU GU SA AVG STD FL SU GU SA AVG STD

ISCAS 40 40 40 0 0 0 29 0.17 0.10 0 0 0 0 0.23 0.14
MCNC 40 40 40 0 0 0 28 0.10 0.03 0 0 0 0 0.12 0.05

We have used the popular SFLL-HD variant of SFLL where the cube strip-
ping function is the hamming distance between the input and the key bits.

We use “cut” at depth 4 for selecting C2 both for SR-SFLL(0) and for
SR-SFLL. For SyntAk, we progressively increase the depth from one till the
attack is successful; we use FALL and SFLLUnlock as the existing attacks on the
circuit resynthesized using SyntAk. We use a timeout of 1 h for SR-SFLL(0)
and SR-SFLL timeout of 1 h; SyntAk uses a time limit of 2 days.

We built our synthesis engine using Berkeley-abc [1] and the Sketch [33]
synthesizer. Sketch, is primarily designed for program synthesis. It discharges
Quantified Boolean formulas (QBF) at the backend to be solved using Berkeley-
abc or Minisat [12]. We found Sketch to be quite an effective tool for our problem.

The rest of our framework is implemented in Python. We use open-source
implementations of SFLLUnlock [40], FALL [32], and GNNUnlock [4] that were
made available by the authors of these tools.

We conduct our experiments on a machine with 12-Core Intel(R) Xeon(R)
Silver CPU E5-2620 CPU @ 2.00GHz with 32GB RAM.

Research Questions. Our experiments were designed to answer the following
research questions:

1. How do the newly proposed SR-SFLL(0) and SR-SFLL compare with the
state-of-the-art SFLL-HD on existing attacks (SAT and structural attacks)?

2. How do SR-SFLL(0) and SR-SFLL stand to the novel SyntAk?
3. What is the overhead of SR-SFLL w.r.t. SFLL-HD?

Both SR-SFLL(0) and SR-SFLL were able to defend against the exist-
ing attacks: SAT, FALL, SFLLUnlock, and GNNUnlock. However, 71.25% of
the benchmarks locked using SR-SFLL(0) were broken by SyntAk, while no
instance defended by SR-SFLL could be broken by SyntAk.

From the AIG of the circuits, we infer that SR-SFLL uses 0.18% (on average)
more AND gates than SFLL-HD locked circuits.

206 G. Takhar and S. Roy

Table 3. Robustness and overhead of SR-SFLL(0) and SR-SFLL with respect to
SFLL-HD locked circuits on a subset of our benchmarks. Benchmark names starting
with “C” are part of ISCAS, rest are part of MCNC benchmarks. The mark ✖ indicates
the attack is successful, ✔ indicates attack is not successful.

Bench. Inst. SFLL-HD SR-SFLL(0) SR-SFLL

(k,h)
FA

L
L

SF
L
L
U

nl
oc

k

G
N

N
U

nl
oc

k

FA
L
L

SF
L
L
U

nl
oc

k
G

N
N

U
nl

oc
k

S
y
n
tA

k

O
ve

rh
ea

d
%

FA
L
L

SF
L
L
U

nl
oc

k
G

N
N

U
nl

oc
k

S
y
n
tA

k

O
ve

rh
ea

d
%

C432 (16,2) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.26 ✔ ✔ ✔ ✔ 0.26
i4 (32,4) ✖ ✖ ✖ ✔ ✔ ✔ ✔ 0.12 ✔ ✔ ✔ ✔ 0.18

C880 (32,8) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.11 ✔ ✔ ✔ ✔ 0.11
apex2 (32,8) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.11 ✔ ✔ ✔ ✔ 0.11
C499 (16,4) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.20 ✔ ✔ ✔ ✔ 0.31
C1908 (32,8) ✖ ✖ ✖ ✔ ✔ ✔ ✔ 0.11 ✔ ✔ ✔ ✔ 0.21
C1355 (32,4) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.10 ✔ ✔ ✔ ✔ 0.21

i9 (16,4) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.14 ✔ ✔ ✔ ✔ 0.21
i7 (16,2) ✖ ✖ ✖ ✔ ✔ ✔ ✔ 0.14 ✔ ✔ ✔ ✔ 0.14

C2670 (16,2) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.31 ✔ ✔ ✔ ✔ 0.31
C3540 (16,2) ✖ ✖ ✖ ✔ ✔ ✔ ✔ 0.19 ✔ ✔ ✔ ✔ 0.25
dalu (32,4) ✖ ✖ ✖ ✔ ✔ ✔ ✔ 0.11 ✔ ✔ ✔ ✔ 0.11
frg2 (16,4) ✖ ✖ ✖ ✔ ✔ ✔ ✔ 0.12 ✔ ✔ ✔ ✔ 0.17
k2 (16,2) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.08 ✔ ✔ ✔ ✔ 0.08
i8 (32,4) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.04 ✔ ✔ ✔ ✔ 0.04

C5315 (32,8) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.06 ✔ ✔ ✔ ✔ 0.12
seq (32,8) ✖ ✖ ✖ ✔ ✔ ✔ ✔ 0.05 ✔ ✔ ✔ ✔ 0.05

C7552 (16,4) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.11 ✔ ✔ ✔ ✔ 0.11
C6228 (32,4) ✖ ✖ ✖ ✔ ✔ ✔ ✔ 0.08 ✔ ✔ ✔ ✔ 0.16
des (32,8) ✖ ✖ ✖ ✔ ✔ ✔ ✖ 0.05 ✔ ✔ ✔ ✔ 0.03

6.1 Robustness of SR-SELL(0) and SR-SELL on Existing Attacks

Table 2 provides a summary of the performance of SFLL-HD, SR-SFLL(0),
and SR-SFLL against existing structural attacks (FALL, SFLLUnlock, and
GNNUnlock) on a representative set of benchmarks: the table shows the number
of instances where the respective attack break the defense. While the struc-
tural attacks (FALL, SFLLUnlock, and GNNUnlock) are able to break all
of these instances for SFLL locked circuits, our structurally robust proposals
(SR-SFLL(0) and SR-SFLL) are resilient against these attacks.

Table 3 shows the results on a representative subset of our benchmarks: ✖
represents the number of instances where the locked circuit gets broken by the
respective attack, and ✔ represents the number of instances where the respective

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 207

Table 4. Overhead of SR-SFLL(0) and SR-SFLL vs SFLL. Overhead calculated
over SFLL-HD locked circuits shown in Table 3. Benchmark names starting with “C”
are part of ISCAS while the rest are part of MCNC benchmarks.

Inst. SR-SFLL(0) SR-SFLL

Benchmark (k, h) Original SFLL-HD # gates Overhead% # gates Overhead%

C432 (16, 2) 209 768 770 0.26 770 0.26
i4 (32, 4) 246 1673 1675 0.12 1676 0.18

C880 (32,8) 327 1754 1756 0.11 1756 0.11
C499 (16, 4) 400 957 959 0.20 960 0.31
C1908 (32, 8) 414 1842 1844 0.11 1846 0.11
apex2 (32, 8) 445 1873 1875 0.11 1875 0.11
C1355 (32, 4) 504 1931 1933 0.10 1935 0.21
C2670 (16, 2) 717 1277 1281 0.31 1281 0.31

i9 (16, 4) 889 1448 1450 0.14 1451 0.21
i7 (16, 2) 904 1463 1465 0.14 1465 0.14

C3540 (16, 2) 1038 1595 1598 0.19 1599 0.25
frg2 (16, 4) 1164 1727 1726 0.12 1727 0.17
dalu (32, 4) 1371 2799 2802 0.11 2802 0.11

C5315 (32, 8) 1773 3201 3203 0.06 3205 0.12
k2 (16, 2) 1998 2558 2560 0.08 2560 0.08

C7552 (16, 4) 2074 2634 2637 0.11 2637 0.11
C6228 (32, 4) 2337 3765 3768 0.08 3771 0.16

seq (32, 8) 2411 3837 3839 0.05 3839 0.05
i8 (32, 4) 3310 4737 4739 0.04 4739 0.04
des (32, 8) 4123 5551 5554 0.05 5553 0.03

defense successfully defends against the attack. As the primary purpose for the
design of SFLL was to be resilient against SAT attacks, it is not surprising
that SAT attack times out on all instances of the SFLL locked designs. As
SR-SFLL(0) and SR-SFLL are functionally equivalent to SFLL, they too are
resilient to SAT attacks.

We also conducted experiments with impractically small key sizes of 5 key bits
(with hamming distance 2). None of the structural analysis based attacks (FALL,
SFLLUnlock, and GNNUnlock) could break either SR-SFLL(0) or SR-SFLL
locked circuits even for these small key sizes.

6.2 Robustness of SR-SELL(0) and SR-SELL on SyntAk

We apply SyntAk on SR-SFLL(0) and SR-SFLL locked circuits to evaluate
their robustness on this attack. We “guess” the cut for SyntAk starting with
a cut at a depth of 1; if the synthesis phase in SyntAk or the subsequent
structural attack (FALL and SFLLUnlock) fails, we reattempt the attack with
the depth increased by one. We use a timeout of 2 days for SyntAk.

208 G. Takhar and S. Roy

On our novel SyntAk attack, SR-SFLL(0) succumbs on 71.25% of the
cases, but SR-SFLL successfully defends against this attack on all instances.
Table 3 shows the performance of some representative benchmarks and Table 2
summarizes the overall results.

6.3 Overhead of SR-SELL(0) and SR-SELL

Table 4 shows the overhead (in terms of the number of AND gates in the AIG)
for SR-SFLL(0) and SR-SFLL over that of SFLL on the benchmarks shown in
Table 3. Table 2 provides a summary of the overheads over all our benchmarks.

SR-SFLL(0) and has almost no additional overhead (average of about
0.14%) and SR-SFLL also has a very low overhead (average of about 0.18%)
over all our benchmarks. This is because while SR-SFLL(0) essentially rewrites
a part of the circuit, SR-SFLL is required to insert additional machinery to sub-
stitute the functionality of S2 within C.

7 Related Work

Initial logic locking schemes [7,10,11] introduced additional logic and new inputs
to the circuit design in order to get the locked circuit. These locked circuits
work correctly when the correct secret key is provided to the circuit by the
designers post IC fabrication. These logic locking techniques are vulnerable to
SAT based attacks [23,26,34]. To overcome the SAT based attacks Anti-SAT [39],
and SARLock [42] were proposed. However, Anti-SAT was broken by SPS [43]
attack. SARLock was broken by App-SAT [30] attack.

SFLL-HD [44] introduces a stripped functionality approach for logic locking
which defend against the above-mentioned attacks. But this is also vulnerable
to the FALL [32], SFLLUnlock [40], and GNNUnlock [4].

HOLL [35] exploits the power of program synthesis tools to generate the
locked circuit by using a “secret” program (using programmable logic like EEP-
ROM) as the key. As the attacker has to synthesize the “secret” program, HOLL
becomes challenging to break. However, the requirement of having an embedded
programming chip makes the approach both complicated and expensive; fur-
ther, every invocation of the circuit requires the program in the slow EEPROM
memory to be executed. Our approach, instead, builds on the popular SFLL
technique and does not need embedded programmable chips.

Program synthesis has seen a significant growth in the recent years. Pro-
gram synthesis algorithms have powered the synthesis of bit-vector programs
[16], heap-manipulations [13,24,27], language parsers [21,31], semantic actions
in attribute grammars [18], abstract transformers [19], automata [5], invari-
ants [6,13,20,22], and even differentially private mechanisms [28]. Program syn-
thesis has also been applied to synthesize bug corpora [29] as well as for debug-
ging [8,9], and repairing buggy programs like fixing incorrect heap manipula-
tions [37,38], or synthesize relevant fences and/or atomic sections in concurrent
programs under relaxed memory models [36].

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 209

There exist boolean functional synthesis tools, like CADET [25], Man-
than [14,15], and BFSS [3], that could have been used for our synthesis task.
However, none of these tools allow us to control the “structure” of the synthe-
sized formula. Hence, we built our synthesis engine using the Sketch synthesizer,
which is designed for program synthesis.

8 Conclusions

SR-SFLL provides security against structural analysis based attacks such as
FALL, SFLLUnlock, and GNNUnlock. The core idea used by SR-SFLL is to
use modern synthesis engines to recover structural patterns that can be exploited
by existing structural analysis based attacks.

SR-SFLL provides an asymmetric advantage to the defender over the
attacker on many counts:

– secret key: Similar to SFLL, SR-SFLL uses a secret key to define a set
of protected input patterns. The locked circuit behaves incorrectly when run
with the wrong key;

– secret cut: The cut used to partition the SFLL locked circuit (where the
synthesized component was inserted) is known to the defender but not to the
attacker;

– challenging synthesis task: While the defender is required to synthesize
a smaller circuit that only establishes the functionality of S2, the attacker is
required to synthesize a much larger circuit that reestablishes the functional-
ities of both C2 and S2 (see Fig. 2b).

As the perturbation unit resides within the original circuit at a location
unknown to the attacker and has no specific structural signature, structural
analysis of the SR-SFLL locked circuit becomes difficult. Also, as SR-SFLL
locked circuits are functionally equivalent to the respective SFLL locked circuits
(see Eqn 1), SR-SFLL retains all the theoretical robustness properties of SFLL.

Acknowledgements. We thank the anonymous reviewers for their valuable inputs.
We are thankful to Google for supporting our research. We also thank Intel for their
support via the Intel PhD Fellowship Program.

References

1. ABC: System for sequential logic synthesis and formal verification. https://github.
com/berkeley-abc/abc. Accessed 2 Jan 2022

2. ISCAS’85 benchmarks. https://filebox.ece.vt.edu/~mhsiao/iscas85.html. Accessed
8 Jan 2022

3. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: What’s hard about
boolean functional synthesis? In: CAV, pp. 251–269. Springer (2018)

4. Alrahis, L., et al.: GNNUnlock: graph neural networks-based oracle-less unlocking
scheme for provably secure logic locking. In: DATE, pp. 780–785. IEEE (2021)

https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc
https://filebox.ece.vt.edu/~mhsiao/iscas85.html

210 G. Takhar and S. Roy

5. Alur, R., D’Antoni, L., Gulwani, S., Kini, D., Viswanathan, M.: Automated grading
of DFA constructions. In: IJCAI, pp. 1976–1982 (2013)

6. Bao, J., Trivedi, N., Pathak, D., Hsu, J., Roy, S.: Data-driven invariant learning
for probabilistic programs. In: CAV, pp. 33–54. Springer (2022)

7. Baumgarten, A., Tyagi, A., Zambreno, J.: Preventing IC piracy using reconfig-
urable logic barriers. IEEE Des. Test Comput. 27(1), 66–75 (2010)

8. Bavishi, R., Pandey, A., Roy, S.: Regression aware debugging for mobile applica-
tions. In: Mobile! 2016, pp. 21–22. ACM (2016)

9. Bavishi, R., Pandey, A., Roy, S.: To be precise: regression aware debugging. In:
OOPSLA, pp. 897–915. ACM (2016)

10. Chakraborty, R.S., Bhunia, S.: Hardware protection and authentication through
netlist level obfuscation. In: IEEE/ACM ICCAD, pp. 674–677. IEEE (2008)

11. Dupuis, S., Ba, P.S., Di Natale, G., Flottes, M.L., Rouzeyre, B.: A novel hard-
ware logic encryption technique for thwarting illegal overproduction and hardware
trojans. In: IEEE IOLTS, pp. 49–54. IEEE (2014)

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

13. Garg, A., Roy, S.: Synthesizing heap manipulations via integer linear programming.
In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 109–127. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9_7

14. Golia, P., Roy, S., Meel, K.S.: Manthan: a data-driven approach for boolean func-
tion synthesis. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
611–633. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_31

15. Golia, P., Slivovsky, F., Roy, S., Meel, K.S.: Engineering an efficient boolean func-
tional synthesis engine. In: IEEE/ACM ICCAD, pp. 1–9. IEEE (2021)

16. Gulwani, S., Jha, S., Tiwari, A., Venkatesan,R.: Synthesis of loop-free programs.
In: PLDI, pp. 62–73. ACM (2011)

17. Hurtarte, J.S., Wolsheimer, E.A., Tafoya, L.M.: Understanding fabless ic technol-
ogy. Newnes (2011)

18. Kalita, P.K., Kumar, M.J., Roy, S.: Synthesis of semantic actions in attribute
grammars. In: IEEE FMCAD, pp. 304–314. IEEE (2022)

19. Kalita, P.K., Muduli, S.K., D’Antoni, L., Reps, T., Roy, S.: Synthesizing abstract
transformers. PACMPL 6(OOPSLA2), 1291–1319 (2022)

20. Lahiri, S., Roy, S.: Almost correct invariants: Synthesizing inductive invariants by
fuzzing proofs. In: ISSTA, pp. 352–364. ACM (2022)

21. Leung, A., Sarracino, J., Lerner, S.: Interactive parser synthesis by example. In:
PLDI, pp. 565–574. ACM (2015)

22. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: PLDI, pp. 42–56. ACM (2016)

23. Plaza, S.M., Markov, I.L.: Solving the third-shift problem in ic piracy with test-
aware logic locking. IEEE TCADICS 34(6), 961–971 (2015)

24. Qiu, X., Solar-Lezama, A.: Natural synthesis of provably-correct data-structure
manipulations. In: OOPSLA, pp. 1–28. ACM (2017)

25. Rabe, M.N., Tentrup, L., Rasmussen, C., Seshia, S.A.: Understanding and extend-
ing incremental determinization for 2QBF. In: Chockler, H., Weissenbacher, G.
(eds.) CAV 2018. LNCS, vol. 10982, pp. 256–274. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96142-2_17

26. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfus-
cation. In: DAC, pp. 83–89 (2012)

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-662-48288-9_7
https://doi.org/10.1007/978-3-030-53291-8_31
https://doi.org/10.1007/978-3-319-96142-2_17
https://doi.org/10.1007/978-3-319-96142-2_17

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 211

27. Roy, S.: From concrete examples to heap manipulating programs. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 126–149. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38856-9_9

28. Roy, S., Hsu, J., Albarghouthi, A.: Learning differentially private mechanisms. In:
S&P, pp. 852–865. IEEE (2021)

29. Roy, S., Pandey, A., Dolan-Gavitt, B., Hu, Y.: Bug synthesis: Challenging bug-
finding tools with deep faults. In: ESEC/FSE, pp. 224–234. ACM (2018)

30. Shamsi, K., Li, M., Meade, T., Zhao, Z., Pan, D.Z., Jin, Y.: AppSAT: Approxi-
mately deobfuscating integrated circuits. In: HOST, pp. 95–100. IEEE (2017)

31. Singal, D., Agarwal, P., Jhunjhunwala, S., Roy, S.: Parse condition: symbolic encod-
ing of LL(1) parsing. In: LPAR, pp. 637–655. EasyChair (2018)

32. Sirone, D., Subramanyan, P.: Functional analysis attacks on logic locking. IEEE
TIFS 15, 2514–2527 (2020)

33. Solar-Lezama, A.: Program sketching. Springer STTT 15, 475–495 (2013)
34. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption

algorithms. In: HOST, pp. 137–143. IEEE (2015)
35. Takhar, G., Karri, R., Pilato, C., Roy, S.: HOLL: program synthesis for higher

order logic locking. In: TACAS 2022. LNCS, vol. 13243, pp. 3–24. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9_1

36. Verma, A., Kalita, P.K., Pandey, A., Roy, S.: Interactive debugging of concurrent
programs under relaxed memory models. In: CGO, pp. 68–80. ACM (2020)

37. Verma, S., Roy, S.: Synergistic debug-repair of heap manipulations. In: ESEC/FSE,
pp. 163–173. ACM (2017)

38. Verma, S., Roy, S.: Debug-localize-repair: a symbiotic construction for heap manip-
ulations. Springer FMSD 58(3), 399–439 (2021)

39. Xie, Y., Srivastava, A.: Anti-SAT: mitigating SAT attack on logic locking. IEEE
TCADICS 38(2), 199–207 (2018)

40. Yang, F., Tang, M., Sinanoglu, O.: Stripped functionality logic locking with ham-
ming distance-based restore unit (SFLL-hd)-unlocked. IEEE TIFS 14(10), 2778–
2786 (2019)

41. Yang, S.: Logic synthesis and optimization benchmarks user guide: version 3.0.
Microelectronics Center of North Carolina (MCNC) (1991)

42. Yasin, M., Mazumdar, B., Rajendran, J.J., Sinanoglu, O.: SARLock: SAT attack
resistant logic locking. In: HOST, pp. 236–241. IEEE (2016)

43. Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Security analysis of anti-
sat. In: ASP-DAC, pp. 342–347. IEEE (2017)

44. Yasin, M., Sengupta, A., Nabeel, M.T., Ashraf, M., Rajendran, J., Sinanoglu, O.:
Provably-secure logic locking: from theory to practice. In: ACM CCS, pp. 1601–
1618 (2017)

45. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: GraphSAINT: graph
sampling based inductive learning method. In: ICLR (2020)

https://doi.org/10.1007/978-3-642-38856-9_9
https://doi.org/10.1007/978-3-030-99524-9_1

212 G. Takhar and S. Roy

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Symbolic Quantum Simulation
with Quasimodo

Meghana Sistla1(B), Swarat Chaudhuri1, and Thomas Reps2

1 The University of Texas at Austin, Austin, TX, USA
mesistla@utexas.edu, swarat@cs.utexas.edu

2 University of Wisconsin-Madison, Madison, WI, USA

reps@cs.wisc.edu

Abstract. The simulation of quantum circuits on classical computers is
an important problem in quantum computing. Such simulation requires
representations of distributions over very large sets of basis vectors, and
recent work has used symbolic data-structures such as Binary Decision
Diagrams (BDDs) for this purpose. In this tool paper, we present Quasi-
modo, an extensible, open-source Python library for symbolic simula-
tion of quantum circuits. Quasimodo is specifically designed for easy
extensibility to other backends. Quasimodo allows simulations of quan-
tum circuits, checking properties of the outputs of quantum circuits,
and debugging quantum circuits. It also allows the user to choose from
among several symbolic data-structures—both unweighted and weighted
BDDs, and a recent structure called Context-Free-Language Ordered
Binary Decision Diagrams (CFLOBDDs)—and can be easily extended
to support other symbolic data-structures.

1 Introduction

Canonical, symbolic representations of Boolean functions—for example, Binary
Decision Diagrams (BDDs) [5]—have a long history in automated system design
and verification. More recently, such data-structures have found exciting new
applications in quantum simulation. Quantum computers can theoretically solve
certain problems much faster than traditional computers, but current quan-
tum computers are error-prone and access to them is limited. The simulation of
quantum algorithms on classical machines allows researchers to experiment with
quantum algorithms even without access to reliable hardware.

Symbolic function representations are helpful in quantum simulation because
a quantum system’s state can be viewed as a distribution over an exponential-
sized set of basis-vectors (each representing a “classical” state). Such a state, as
well as transformations that quantum algorithms typically apply to them, can
often be efficiently represented using a symbolic data-structure. Simulating an
algorithm then amounts to performing a sequence of symbolic operations.

Currently, there are a small number of open-source software systems that
support such symbolic quantum simulation [1,6,8,13,16]. However, the underly-

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 213–225, 2023.
https://doi.org/10.1007/978-3-031-37709-9_11

https://doi.org/10.5281/zenodo.7922448
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_11

214 M. Sistla et al.

ing symbolic data-structure can have an enormous effect on simulation perfor-
mance. In this tool paper, we present Quasimodo,1 an extensible framework
for symbolic quantum simulation. Quasimodo is specifically designed for easy
extensibility to other backends to make it possible to experiment with a variety of
symbolic data-structures. Quasimodo currently supports (i) BDDs [3,5,7], (ii)
a weighted variant of BDDs [9,14], [19, Ch. 5], and (iii) Context-Free-Language
Ordered Binary Decision Diagrams CFLOBDDs [11], a recent canonical repre-
sentation of Boolean functions that has been shown to outperform BDDs in many
quantum-simulation tasks. Quasimodo also has a clean interface that formal-
methods researchers can use to plug in new symbolic data-structures, which
helps to lower the barrier to entry for formal-methods researchers interested in
this area.

Users access Quasimodo through a Python interface. They can define a
quantum algorithm as a quantum circuit using 18 different kinds of quantum
gates, such as Hadamard, CNOT, and Toffoli gates. They can simulate the algo-
rithm using a symbolic data-structure of their own choosing. Users can sample
outcomes from the probability distribution computed through simulation, and
can query the simulator for the probability of a specific outcome of a quan-
tum computation over a set of quantum bits (qubits). The system also allows
for a form of correctness checking: users are allowed to ask for the set of all
high-probability outcomes and to check that these satisfy a given assertion.

Along with Quasimodo, we are releasing a suite of 7 established quantum
algorithms encoded in the input language of Quasimodo. We hope that these
algorithms will serve as benchmarks for future research on symbolic simulation
and verification of quantum algorithms.
Organization. Section 2 gives an overview of quantum simulation. Section 3 gives
a user-level overview of Quasimodo. Section 4 provides background on the sym-
bolic data-structures available in Quasimodo. Section 5 describes the program-
ming model of Quasimodo, and presents experimental results. Section 6 con-
cludes.

2 Background on Quantum Simulation

Quantum algorithms on quantum computers can achieve polynomial to exponen-
tial speed-ups over classical algorithms on specific problems. However, because
so far there are no practical scalable quantum computers, simulation of quan-
tum circuits on classical computers can help in understanding how quantum
algorithms work and scale. A simulation of a quantum-circuit computation
[1,6,8,11,13,19] uses a representation qs of a quantum state and performs oper-
ations on qs that correspond to quantum-circuit operations (gate applications
and measurements on qs).

Simulating a quantum circuit can have advantages compared to executing the
circuit on a quantum computer. For instance, some quantum algorithms perform

1 Quasimodo is available at https://github.com/trishullab/Quasimodo.git.

https://github.com/trishullab/Quasimodo.git

Symbolic Quantum Simulation with Quasimodo 215

Fig. 1. An example of a Quasimodo program that performs a quantum-circuit compu-
tation in which the final quantum state is a GHZ state with 4,096 qubits. The program
verifies that a measurement of the final quantum state has a 50% chance of returning
the all-ones basis-state.

multiple iterations of a particular quantum operator Op (e.g., k iterations, where
k = 2j). A simulation can operate on Op itself [19, Ch. 6], using j iterations of
repeated squaring to create matrices for Op2, Op4, . . ., Op2

j

= Opk. In contrast,
a physical device must apply Op sequentially, and thus performs Op k = 2j

times.
Many quantum algorithms require multiple measurements on the final state.

After a measurement on a quantum computer, the quantum state collapses to
the measured state. Thus, every successive measurement requires re-running the
quantum circuit. However, with a simulation, the quantum state can be preserved
across measurements, and thus the quantum circuit need only be executed once.

3 Quasimodo’s Programming and Analysis Interface

This section presents an overview of Quasimodo from the perspective of a user
of the Python API. A user can define a quantum-circuit computation and check
the properties of the quantum state at various points in the computation. This
section also explains how Quasimodo can be easily extended to include custom
representations of the quantum state.

Example. Figure 1 shows an example of a quantum-circuit computation writ-
ten using the Quasimodo API. To use the Quasimodo library, one needs to

216 M. Sistla et al.

import the package, as shown in line 1. A user can then create a program that
implements a quantum-circuit computation by

– Initializing the quantum state by making a call to QuantumState with an
argument that selects the desired backend data-structure and the number
of qubits in the quantum state. (See line 7.) The example in Fig. 1 uses
CFLOBDD as the backend simulator, but other data-structures can be used
by changing the backend parameter to BDD or WBDD. QuantumState sets
the initial quantum state to the all-zeros basis-state.

– Applying single-qubit gates to the quantum state, such as Hadamard (h),
Pauli-X (x), T-Gate (t), and others. The qubit to which they are to be applied
is specified by passing the qubit number. (See line 8.)

– Applying multi-qubit gates to the quantum state, such as CNOT (cx), Toffoli
(ccx), SWAP (swap), and others. The qubits to which they are to be applied
is specified by passing the qubit numbers. (See line 10.)

Note that queries on the quantum state do not have to be made only at
the end of the program; they can also be interspersed throughout the circuit-
simulation computation.

Quasimodo allows different backend data-structures to be used for repre-
senting quantum states. It comes with BDDs [3,5,7], a weighted variant of BDDs
[9,14], [19, Ch. 5], and CFLOBDDs [11]. Quasimodo also provides an interface
for new backend data-structures to be incorporated by users. All three of the
standard backends provide compressed representations of quantum states and
quantum gates, although—as with all variants of decision diagrams—state rep-
resentations may blow up as a sequence of gate operations are performed.

Quantum Simulation. Quantum simulation problems can be implemented using
Quasimodo by defining a quantum-circuit computation, and then invoking the
API function measure to sample a basis-vector from the final quantum state. For
instance, suppose that the final quantum state is

[
0.5 0 0.5 0.5 0 0 0.5 0

]
. Then

measure would return a string in the set {000, 010, 011, 110} with probability
0.25 for each of the four strings.

Verification. As shown in line 17 of Fig. 1, Quasimodo provides an API call to
inquire about the probability of a specific outcome. The function prob takes as
its argument a mapping from qubits to {0, 1}, which defines a basis-vector e of
interest, and returns the probability that the state would be e if a measurement
were carried out at that point. It can also be used to query the probability of a
set of outcomes, using a mapping of just a subset S of the qubits, in which case
prob returns the sum of all probabilities of obtaining a state that satisfies S.
For example, if the quantum state computed by a 3-qubit circuit over 〈q0, q1, q2〉
is

[
0.5 0 0.5 0.5 0 0 0.5 0

]
, the user can query the probability of states satisfying

q1 = 1 ∧ q2 = 0 by calling prob(1 : 1, 2 : 0), which would return 0.5 (= Pr(q0 =
0 ∧ q1 = 1 ∧ q2 = 0) + Pr(q0 = 1 ∧ q1 = 1 ∧ q2 = 0) = (0.5)2 + (0.5)2).

Given a relational specification R(x, y) and a quantum circuit y = Q(x), this
feature is useful for verifying properties of the form “Pr[R(x,Q(x))] > θ,” where
θ is some desired probability threshold for the user’s application.

Symbolic Quantum Simulation with Quasimodo 217

Debugging Quantum Circuits. Quasimodo additionally provides a feature to
query the number of outcomes for a given probability. This feature is especially
helpful for debugging large quantum circuits—large in-terms of qubit counts—
when most outcomes have similar probabilities.

Consider the case of a quantum circuit whose final quantum state is intended
to be 1√

6

[
1 1 1 0 1 1 1 0

]
. One can check if the final quantum state is the one

intended by querying the number of outcomes that have probability 1
6 . If the

returned value is 6, the user can then check if states 011 and 111 have probability
0 by calling prob({0 : 0, 1 : 1, 2 : 1}) and prob({0 : 1, 1 : 1, 2 : 1}), respectively.
The API function for querying the number of outcomes that have probability
p± ε is measurement counts(p, ε). One can also query the number of outcomes
that have probability ≥ p by invoking the function tail counts(p).

Quasimodo’s API provides the methods get state() and most frequent()
to obtain the quantum state (as a pointer to the underlying data-structure) and
the outcome with the highest probability, respectively.

3.1 Extending Quasimodo

The currently supported symbolic data-structures for representing quantum
states and quantum gates are written in C++ with bindings for Python. All
of the current representations implement an abstract C++ class that exposes
(i) QuantumState, which returns a state object that represents a quantum state,
(ii) eighteen quantum-gate operations, (iii) an operation for gate composition,
(iv) an operation for applying a gate—either a primitive gate or the result of
gate composition—to a quantum state, and (v) five query operations. Users can
easily extend Quasimodo to add a replacement backend by providing an oper-
ation to create a state object, as well as implementations of the seventeen gate
operations and three query operations. Currently, the easiest path is to imple-
ment the custom representation in C++ as an implementation of the abstract
C++ class used by Quasimodo’s standard backends.

4 The Internals of Quasimodo

In this section, we elaborate on the internals of Quasimodo. Specifically,
we briefly summarize the BDD, WBDD, and CFLOBDD data-structures that
Quasimodo currently supports, and illustrate how Quasimodo performs sym-
bolic simulation using these data-structures. For brevity, we illustrate the way
Quasimodo uses these data-structures using the example of the Hadamard gate,

a commonly used quantum gate, defined by the matrix H = 1√
2

[
1 1
1 −1

]
.

Binary Decision Diagrams (BDDs). Quasimodo provides an option to use
Binary Decision Diagrams (BDDs) [3,5,7] as the underlying data-structure. A
BDD is a data-structure used to efficiently represent a function from Boolean
variables to some space of values (Boolean or non-Boolean). The extension of

218 M. Sistla et al.

Fig. 2. Three representations of the Hadamard matrix H = 1√
2

[
1 1
1 −1

]
. (a) A BDD,

(b) a CFLOBDD, and (c) a WBDD. The variable ordering is 〈x0, y0〉, where x0 is the
row decision variable and y0 is the column decision variable.

BDDs to support a non-Boolean range is called Multi-Terminal BDDs (MTB-
DDs) [7] or Algebraic DDs (ADDs) [3]. In this paper, we use “BDD” as a generic
term for both BDDs proper and MTBDDs/ADDs. Each node in a BDD corre-
sponds to a specific Boolean variable, and the node’s outgoing edges represents a
decision based on the variable’s value (0 or 1). The leaves of the BDD represent
the different outputs of the Boolean function. In the best case, BDDs provide
an exponential compression in space compared to the size of the decision-tree
representation of the function.2 Figure 2(a) shows the BDD representation of the
Hadamard matrix H with variable ordering 〈x0, y0〉, where x0 is the row decision
variable and y0 is the column decision variable.

We enhanced the CUDD library [12] by incorporating complex numbers at
the leaf nodes and adding the ability to count paths.

Context-Free-Language Ordered Binary Decision Diagrams (CFLOBDDs).
CFLOBDDs [11] are a binary decision diagram inspired by BDDs, but the two
data-structures are based on different principles. A BDD is an acyclic finite-state
machine (modulo ply-skipping), whereas a CFLOBDD is a particular kind of

2 Technically, the BDD variant that, in the best case, is exponentially smaller than the
corresponding decision tree, is called a quasi-reduced BDD. Quasi-reduced BDDs are
BDDs in which variable ordering is respected, but don’t-care nodes are not removed,
and thus all paths from the root to a leaf have length n, where n is the number of
variables. However, the size of a quasi-reduced BDD is at most a factor of n+1 larger
than the size of the corresponding (reduced, ordered) BDD [15, Thm. 3.2.3]. Thus,
although BDDs can give better-than-exponential compression compared to decision
trees, at best, it is linear compression of exponential compression.

Symbolic Quantum Simulation with Quasimodo 219

single-entry, multi-exit, non-recursive, hierarchical finite-state machine (HFSM)
[2]. Whereas a BDD can be considered to be a special form of bounded-size,
branching, but non-looping program, a CFLOBDD can be considered to be a
bounded-size, branching, but non-looping program in which a certain form of
procedure call is permitted.

CFLOBDDs can provide an exponential compression over BDDs and double-
exponential compression over the decision-tree representation. The additional
compression of CFLOBDDs can be roughly attributed to the following reasons:

– As with BDDs, one level of exponential compression comes from sharing in a
directed-acyclic-graph (i.e., a complete binary tree is folded to a dag).

– In CFLOBDDs, there is a further level of exponential compression from reuse
of “procedures”: the same “procedure” can be called multiple times at differ-
ent call sites.

Such “procedure calls” allow additional sharing of structure beyond what is
possible in BDDs: a BDD can share sub-DAGs, whereas a procedure call in
a CFLOBDD shares the “middle of a DAG”. The CFLOBDD for Hadamard
matrix H, shown in Fig. 2(b), illustrates this concept: the fork node (the node
with a split) at the top right of Fig. 2(b) is shared twice—once during the red
solid path (—) and again during the blue dashed path (− · −). The corresponding
elements of the BDD for H are outlined in red and blue in Fig. 2(a). The cell
entry H[1][1], which corresponds to the assignment {x0 �→ 1, y0 �→ 1}, is shown
in Fig. 2(a) (BDD) and Fig. 2(b) (CFLOBDD) as the paths highlighted in bold
that lead to the value −1√

2
.

Weighted Binary Decision Diagrams (WBDDs). A Weighted Binary Decision
Diagram (WBDD) [9,14], [19, Ch. 5] is similar to a BDD, but each decision
(edge) in the diagram is assigned a weight. To evaluate the represented function
f on a given input a (i.e., a is an assignment in {0, 1}n), the path for a is
followed; the value of f(a) is the product of the weights encountered along the
path. Consider how the WBDD in Fig. 2(c) represents Hadamard matrix H.
The variable ordering used is 〈x0, y0〉, where x0 is the row decision variable and
y0 is the column decision variable. Consider the assignment a = {x0 �→ 1, y0 �→
1}. This assignment corresponds to the path shown in red in Fig. 2(c). The
WBDD has a weight 1√

2
at the root, which is common to all paths. The weight

corresponding to {x0 �→ 1} is 1 and {y0 �→ 1} is -1; consequently, a evaluates to
1√
2

∗ 1 ∗ −1 = −1√
2
, which is equal to the value in cell H[1][1].

WBDDs have been used in a variety of applications, such as verification and
quantum simulation [19]. In the case of quantum simulation, the weights on the
edges of a WBDD are complex numbers. Additionally, the weight on the left-
hand edge at every decision node is normalized to 1; this invariant ensures that
WBDDs provide a canonical representation of Boolean functions. We use the
MQT DD package [19] for backend WBDD support. As distributed, MQT DD
supports at most 128 qubits; we modified it to support up to 231 qubits.

220 M. Sistla et al.

Symbolic Simulation. A symbolic simulation of a quantum circuit-computation
[11,13,19] uses a symbolic representation qs of a quantum state and performs
operations on qs that correspond to quantum-circuit operations.

– A quantum state of n qubits is a vector of size 2n × 1. Its entries are
called amplitudes, and the vector represents the probability distribution given
by the squares of the absolute values of the amplitudes. In Quasimodo,
CFLOBDDs, BDDs, and WBDDs are used to represent functions of the form
f : {0, 1}n → C—i.e., f is a vector holding complex amplitudes.

– A quantum gate performs a linear transformation of a quantum state.
Quantum-gate application is implemented by using a CFLOBDD, BDD, or
WBDD to represent the matrix describing the quantum gate, and performing
a matrix-vector multiplication ([11, Sect. 7.6–Sect. 7.7], [3]) of the gate matrix
and the quantum state.

– For CFLOBDDs, BDDs, and WBDDs, operations like prob, measurement
counts, and tail counts are implemented as exact operations—i.e., no
sampling—via projection and path-counting operations ([11, Sect. 7.8], [5]).
For CFLOBDDs and BDDs, Quasimodo computes prob via an efficient path-
counting operation [11, Sect. 7.8.1 and Sect. 10.1.2, respectively] to obtain the
number of paths leading to each terminal value, and then projects the result
onto the variables of interest (as specified by the user). Quasimodo then
returns the sum of the probabilities of the remaining paths. In the case of
WBDDs as the backend, Quasimodo computes the probability of every node
([19, Ch. 5]) instead of counting paths. To compute measurement counts,
Quasimodo returns the number of paths that lead to the requested prob-
ability value within the provided threshold ε. On querying tail counts,
Quasimodo returns the number of paths that lead to terminal values having
probability prob ≥ p, where p is the requested probability.

– Once path-counts are computed, a measurement from the CFLOBDD,
BDD, or WBDD symbolic representation of a quantum state is a data-
structure traversal that can be carried out in time proportional to
O(max(number of qubits in the circuit, size of argument CFLOBDD))

5 Experiments

In this section, we present some experimental results from using Quasimodo on
seven quantum benchmarks, Greenberger-Horne-Zeilinger state creation (GHZ),
Bernstein-Vazirani algorithm (BV), Deutsch-Jozsa algorithm (DJ), Simon’s algo-
rithm, Grover’s algorithm, Shor’s algorithm (2n + 3 qubits circuit by [4]), and
application of the Quantum Fourier Transform (QFT) to a basis state, for dif-
ferent numbers of qubits. Columns 2–4 of Table 1 show the time taken for run-
ning the benchmarks with CFLOBDDs, BDDs (CUDD 3.0.0 [12]), and WBDDs
(MQT DD v2.1.0 [17]). For each benchmark and number of qubits, we created
50 random oracles and report the average time taken across the 50 runs. For
each run of each benchmark, we performed a measurement at the end of the
circuit computation and checked if the measured outcome is correct. We ran all

Symbolic Quantum Simulation with Quasimodo 221

of the experiments on AWS machines: t2.xlarge machines with 4 vCPUs, 16GB
memory, and a stack size of 8192KB, running on an Ubuntu OS.

One sees that CFLOBDDs scale better than BDDs and WBDDs for the
GHZ, BV, and DJ benchmarks as the number of qubits increases. BDDs perform
better than CFLOBDDs and are comparable to WBDDs for Simon’s algorithm,
whereas WBDDs perform better than BDDs and CFLOBDDs for QFT, Grover’s
algorithm, and Shor’s algorithm.

We noticed that the BDD implementation suffers from precision issues; i.e., if
an algorithm with a large number of qubits contains too many Hadamard gates,
it can lead to extremely low-probability values for each basis state, which are
rounded to 0, which in turn causes leaves that really should hold different minis-
cule values to be coelesced unsoundly, leading to incorrect results. To overcome
this issue, one needs to increase the floating-point precision of the floating-point
package used to represent BDD leaf values. We increased the precision at 512
qubits (∗) and again at 2048 qubits (∗∗).

Part of these results are similar to the work reported in [11]; however, that
paper did not use Quasimodo. The results of the present paper were obtained
using Quasimodo, and we also report results for WBDDs, as well as BDDs and
CFLOBDDs (both of which were used in [11]). The numbers given in Table 1 are
slightly different from those given in [11] because these quantum circuits exclu-
sively use gate operations that are applied in sequence to the initial quantum
state. One can rewrite the quantum circuit to first compute various gate-gate
operations (either Kronecker product or matrix-multiplication operations) and
then apply the resultant gate to the initial quantum state. For example, consider
a part of a circuit defined as follows:

for i in range(0, n):
qc.cx(i, n)

Instead of applying CNOT (cx) sequentially for every i, one can construct a
gate equivalent to cx op = Πn−1

i=0 cx(i, n) and then apply cx op to quantum state
qc as follows:

cx_op = qc.create_cx(0, n)
for i in range(1, n):

tmp = qc.create_cx(i, n)
cx_op = qc.gate_gate_apply(cx_op, tmp)

qc.apply_gate(cx_op)

Quasimodo supports such operations as Kronecker product and matrix
product of two gate matrices. [11] uses such computations for both oracle con-
struction and as part of the quantum algorithm. Table 2 shows the results on
GHZ, BV, and DJ algorithms using the same circuit and oracle construction
used in [11]. However, Simon’s algorithm, Grover’s algorithm, and Shor’s algo-
rithm in [11] use operations outside Quasimodo’s computational model, and

222 M. Sistla et al.

Table 1. Performance of CFLOBDDs, BDDs, WBDDs using Quasimodo; and other
simulators like MQT DDSim, Quimb, and Google Tensor Network (GTN)

Benchmark #Qubits CFLOBDD BDD WBDD MQT DDSim Quimb GTN

Time (sec) Time (sec) Time (sec) Time (sec) Time (sec) Time (sec)

GHZ 8 0.03 0.007 0.008 0.065 0.255 0.003

16 0.03 0.008 0.011 0.068 0.368 0.010

32 0.031 0.008 0.017 0.074 0.932 Memory Error

64 0.032 0.012 0.03 0.087 3.16

128 0.035 0.026 0.06 0.116 12.1

256 0.041 0.1 0.134 Not Supported Memory Error

512 0.053 0.552 0.35

1024 0.078 3.01 1.05

2048 0.13 18.8 3.59

4096 0.239 129.92 13.33

BV 8 0.037 0.007 0.007 0.068 0.288 0.005

16 0.045 0.009 0.009 0.072 0.461 0.017

32 0.06 0.013 0.012 0.082 1.21 Memory Error

64 0.095 0.033 0.019 0.105 4.64

128 0.17 0.116 0.036 Not Supported 20.72

256 0.33 0.42 0.082 Memory Error

512∗ 0.68 2.12 0.235

1024 1.43 10.65 0.753

2048∗∗ 3.1 Timeout (15 min.) 2.76

4096 6.78 10.77

DJ 8 0.037 0.007 0.009 0.069 0.401 0.008

16 0.045 0.01 0.012 0.075 0.873 0.034

32 0.06 0.016 0.019 0.087 2.97 Memory Error

64 0.092 0.042 0.036 0.115 8.63

128 0.16 0.17 0.082 Not Supported 43.53

256 0.3 0.72 0.235 Memory Error

512∗ 0.6 3.9 0.753

1024 1.22 20.92 2.76

2048∗∗ 2.55 Timeout (15 min.) 10.77

4096 5.55 43.94

Simons Alg. 4 0.05 0.014 0.008 0.064 0.272 0.004

8 0.076 0.043 0.015 0.101 0.653 0.02

16 Timeout (15 min.) 9.8 8.89 1.267 2.56 Memory Error

32 Timeout (15 min.) Timeout (15 min.) Timeout (15 min.) 17.34

64 267

QFT 4 0.03 0.007 0.007 0.064 0.023 0.004

8 0.04 0.043 0.009 0.068 0.035 0.012

16 182.34 4.98 0.013 0.103 0.074 0.438

32 Timeout (15 min.) Timeout (15 min.) 0.027 0.154 0.231 Memory Error

64 0.104 0.363 1.64

128 0.498 Not Supported 10.32

256 2.73 103.65

512 17.54 Timeout (15min.)

1024 148.5

Grovers Alg. 4 0.055 0.015 0.019 0.239 Memory Error Memory Error

8 1.62 6.55 0.013 0.145

16 Timeout (15 min.) Timeout (15 min.) 0.369 2.45

32 Timeout (15 min.) Timeout (15 min.)

Shor’s Alg. (15, 2) 4 Timeout (15 min.) Timeout (15 min.) 0.034 2.83 Timeout (15min.) Timeout (15 min.)

Shor’s Alg. (21, 2) 5 Timeout (15 min.) Timeout (15 min.) 0.252 9.35 Timeout (15min.) Timeout (15 min.)

Shor’s Alg. (39, 2) 5 Timeout (15 min.) Timeout (15 min.) 0.766 21.94 Timeout (15min.) Timeout (15 min.)

Shor’s Alg. (69, 4) 6 Timeout (15 min.) Timeout (15 min.) Timeout (15 min.) 204.08 Timeout (15min.) Timeout (15 min.)

Shor’s Alg. (95, 8) 7 Timeout (15 min.) Timeout (15 min.) Timeout (15 min.) 192.05 Timeout (15min.) Timeout (15 min.)

Shor’s Alg. (119, 2) 8 Timeout (15 min.) Timeout (15 min.) Timeout (15 min.) 206.62 Timeout (15min.) Timeout (15 min.)

the results on these benchmarks differ from [11]. (Note that the results reported
in Table 2 do not include the time taken for the construction of the oracle.)

We also compared Quasimodo with three other quantum-simulation tools:
MQT DDSim [18], Quimb [8], and Google Tensor Network (GTN) [10]. MQT

Symbolic Quantum Simulation with Quasimodo 223

Table 2. Performance of CFLOBDDs, BDDs, WBDDs using Quasimodo on an alter-
nate circuit implementation of GHZ, BV, DJ algorithms

Benchmark #Qubits CFLOBDD BDD WBDD

Time (sec) Time (sec) Time (sec)

GHZ 8 0.03 0.008 0.009

16 0.03 0.01 0.011

32 0.034 0.035 0.017

64 0.036 0.194 0.032

128 0.04 1.47 Precision Issue

256 0.05 11.77

512 0.07 Timeout (15 min.)

1024 0.11

2048 0.19

4096 0.36

BV 8 0.001 0.001 0.001

16 0.001 0.001 0.001

32 0.002 0.006 0.001

64 0.003 0.025 0.001

128 0.005 0.089 Precision Issue

256 0.009 0.46

512 0.015 Timeout (15 min.)

1024 0.027

2048 0.049

4096 0.086

DJ 8 0.005 0.001 0.001

16 0.005 0.002 0.001

32 0.005 0.006 0.001

64 0.006 0.025 0.001

128 0.006 0.084 Precision Issue

256 0.007 0.43

512 0.008 Timeout (15 min.)

1024 0.01

2048 0.013

4096 0.019

DDSim is based on WBDDs (using MQT DD), whereas Quimb and GTN are
based on tensor networks. Their performance is shown in columns 6–8 of Table 1.
Note that MQT DDSim does not support more than 128 qubits.

224 M. Sistla et al.

6 Conclusion

In this paper, we presented Quasimodo, an extensible, open-source framework
for quantum simulation using symbolic data-structures. Quasimodo supports
CFLOBDDs and both unweighted and weighted BDDs as the underlying data-
structures for representing quantum states and for performing quantum-circuit
operations. Quasimodo is implemented as a Python library. It provides an API
to commonly used quantum gates and quantum operations, and also supports
operations for (i) computing the probability of a measurement leading to a given
set of states, (ii) obtaining a representation of the set of states that would be
observed with a given probability, and (iii) measuring an outcome from a quan-
tum state.

References

1. Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum comput-
ing (2021). https://doi.org/10.5281/zenodo.2573505

2. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM Trans. Progr. Lang. Syst. 27(4), 786–
818 (2005)

3. Bahar, R.I., et al.: Algebraic decision diagrams and their applications. For-
mal Methods Syst. Des. 10(2/3), 171–206 (1997). https://doi.org/10.1023/A:
1008699807402

4. Beauregard, S.: Circuit for Shor’s algorithm using 2n+3 qubits. arXiv preprint
quant-ph/0205095 (2002)

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comp. C-35(6), 677–691 (1986)

6. Cirq Developers: Cirq (2022). https://doi.org/10.5281/zenodo.7465577. http://
github.com/quantumlib/Cirq/graphs/contributors

7. Fujita, M., McGeer, P.C., Yang, J.C.: Multi-terminal binary decision diagrams:
an efficient data structure for matrix representation. Formal Methods Syst. Des.
10(2/3), 149–169 (1997). https://doi.org/10.1023/A:1008647823331

8. Gray, J.: quimb: a python library for quantum information and many-body cal-
culations. J. Open Source Softw. 3(29), 819 (2018). https://doi.org/10.21105/joss.
00819

9. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs:
efficient quantum function representation and manipulation. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 35(1), 86–99 (2016). https://doi.org/10.1109/
TCAD.2015.2459034

10. Roberts, C., et al.: TensorNetwork: a library for physics and machine learning
(2019)

11. Sistla, M., Chaudhuri, S., Reps, T.: CFLOBDDs: context-free-language ordered
binary decision diagrams. arXiv:2211.06818 (2022)

12. Somenzi, F.: CUDD: CU decision diagram package-release 2.4.0. University of Col-
orado at Boulder (2012)

13. Tsai, Y.H., Jiang, J.H.R., Jhang, C.S.: Bit-slicing the Hilbert space: scaling up
accurate quantum circuit simulation. In: Design Automation Conference (DAC),
pp. 439–444 (2021). https://doi.org/10.1109/DAC18074.2021.9586191

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.5281/zenodo.7465577
http://github.com/quantumlib/Cirq/graphs/contributors
http://github.com/quantumlib/Cirq/graphs/contributors
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.21105/joss.00819
https://doi.org/10.21105/joss.00819
https://doi.org/10.1109/TCAD.2015.2459034
https://doi.org/10.1109/TCAD.2015.2459034
http://arxiv.org/abs/2211.06818
https://doi.org/10.1109/DAC18074.2021.9586191

Symbolic Quantum Simulation with Quasimodo 225

14. Viamontes, G.F., Markov, I.L., Hayes, J.P.: High-performance QuIDD-based sim-
ulation of quantum circuits. In: 2004 Design, Automation and Test in Europe
Conference and Exposition (DATE 2004), 16-20 February 2004, Paris, France, pp.
1354–1355. IEEE Computer Society (2004). https://doi.org/10.1109/DATE.2004.
1269084

15. Wegener, I.: Branching programs and binary decision diagrams. SIAM Monographs
on Disc. Math. and Appl., Society for Industrial and Applied Mathematics (2000)

16. Wille, R., Burgholzer, L., Artner, M.: Visualizing decision diagrams for quantum
computing. In: Design, Automation and Test in Europe (2021)

17. Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values?
Implementing decision diagrams for quantum computing. International Conference
on Computer Aided Design (ICCAD) (2019)

18. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. Trans.
CAD Integr. Circuit. Syst. 38(5), 848–859 (2019). https://doi.org/10.1109/TCAD.
2018.2834427

19. Zulehner, A., Wille, R.: Introducing Design Automation for Quantum Computing.
Springer (2020). https://doi.org/10.1007/978-3-030-41753-6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/DATE.2004.1269084
https://doi.org/10.1109/DATE.2004.1269084
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1007/978-3-030-41753-6
http://creativecommons.org/licenses/by/4.0/

Verifying the Verifier: eBPF Range
Analysis Verification

Harishankar Vishwanathan(B), Matan Shachnai, Srinivas Narayana,
and Santosh Nagarakatte

Rutgers University, New Brunswick, USA
{harishankar.vishwanathan,m.shachnai,

srinivas.narayana,santosh.nagarakatte}@rutgers.edu

Abstract. This paper proposes an automated method to check the cor-
rectness of range analysis used in the Linux kernel’s eBPF verifier. We
provide the specification of soundness for range analysis performed by
the eBPF verifier. We automatically generate verification conditions that
encode the operation of the eBPF verifier directly from the Linux kernel’s
C source code and check it against our specification. When we discover
instances where the eBPF verifier is unsound, we propose a method to
generate an eBPF program that demonstrates the mismatch between the
abstract and the concrete semantics. Our prototype automatically checks
the soundness of 16 versions of the eBPF verifier in the Linux kernel ver-
sions ranging from 4.14 to 5.19. In this process, we have discovered new
bugs in older versions and proved the soundness of range analysis in the
latest version of the Linux kernel.

Keywords: Abstract interpretation · Program verification · Program
synthesis · Kernel extensions · eBPF

1 Introduction

Extended Berkeley Packet Filter (eBPF) enables the Linux kernel to be extended
with user-developed functionality. Historically, eBPF has its roots in a domain-
specific language for efficient packet filtering [53], wherein a user can write a
description of packets that must be captured by the network stack. In its modern
form, eBPF is an in-kernel register-based virtual machine with a custom 64-bit
RISC instruction set. eBPF programs can be Just-in-Time (JIT) compiled to
the native processor hardware with access to a subset of kernel functions and
memory. Programs written in eBPF are widely used in the industry, e.g. for load
balancing [10], DDoS mitigation [38], and access control [12].

eBPF Verifier. A user should be able to attach expressive programs within
the operating system, while ensuring that they are safe to run. For this pur-
pose, Linux has a built-in eBPF verifier [11] which performs a static analysis
of the eBPF program to check safety properties before allowing the program

H. Vishwanathan and M. Shachnai—Equal contribution.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 226–251, 2023.
https://doi.org/10.1007/978-3-031-37709-9_12

https://doi.org/10.5281/zenodo.7931901
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_12

Verifying the Verifier 227

Fig. 1. Agni’s methodology for automatically checking the correctness of the eBPF
verifier on each commit. When we find the kernel to be unsound, we generate an eBPF
program (i.e., a POC) highlighting the mismatch between abstract and concrete seman-
tics. When we are not able to generate a POC, kernel requires a manual verification.

to be loaded. Given that the verifier is executed in a production kernel, any
bug in the verifier creates a huge attack surface for exploits [50,51,62,66] and
vulnerabilities [1–9,23–26,35,43–45].

Abstract Interpretation in the Kernel. The verifier, among other things,
tracks the values of its variables which it subsequently uses to deem memory
accesses to the kernel data structures to be safe. The eBPF static analyzer
employs abstract interpretation [33] with multiple abstract domains to track the
types, liveness, and values of program variables across all executions. It uses five
abstract domains to track the values of variables (i.e., value tracking); four of
them are variants of interval domains and the other is a bitwise domain named
tnum [55,57,65,71]. The kernel implements abstract operators for each of these
domains efficiently. Unlike traditional sound composition of sound operators typ-
ically done with abstract interpretation (i.e., modular reduced products) [31], the
abstract operators are composed in a non-modular fashion. Specifically, the ker-
nel mixes up the implementation of abstract operators in one domain with reduc-
tion operators that combine information across domains (Sect. 3, see Fig. 2(d)).
Further, the Linux kernel does not provide any soundness guarantees for these
operators. This makes the task of verification challenging because each abstract
domain’s correctness individually does not necessarily imply the correctness of
their composition. To the best of our knowledge, there are no existing sound
reduction operators for the abstract domains in the kernel.

This Paper. We propose an automated verification approach to check the sound-
ness of the eBPF verifier for value tracking. To perform soundness checks on every
kernel commit, we automatically generate a formula representing the actions of
the abstract operator from the verifier’s C code rather than manually writing them
(Sect. 5). Figure 1 illustrates our workflow. We develop a general correctness spec-
ification to determine when a non-modular abstract operator that combines mul-
tiple domains is sound (Sect. 4.1). When we checked the validity of the formula
generated from recent versions of the verifier with the correctness specification,
we found that the verifier is unsound. We discovered that the verifier avoids man-

228 H. Vishwanathan et al.

ifesting these soundness bugs through a shared reduction operator that precondi-
tions the input abstract values (Sect. 4.2). Refining our correctness specification
revealed that recent versions of the verifier are indeed sound.

When our refined soundness check fails, we generate a concrete eBPF pro-
gram that demonstrates the mismatch between abstract values maintained by
the verifier and the concrete execution of the eBPF program using program syn-
thesis methods (Sect. 4.3). We call our approach differential synthesis because it
generates programs that exercise the divergence between abstract verifier seman-
tics and concrete eBPF semantics in unsound kernels.

Prototype and Results. We have used our prototype, Agni [18,72]., to auto-
matically check the soundness of 16 kernel versions starting from 4.14 to 5.19.
In this process, we have discovered 27 previously unknown bugs, which have
been subsequently fixed by unrelated patches. For each unsound verifier, we
have generated an eBPF program with at most three instructions that shows
the mismatch between the semantics in ≈ 97% of the cases. The eBPF programs
highlighting the mismatch are smaller than previously known ones. We have also
shown that the newer versions of the kernel verifier are sound with respect to
value tracking. The source code for our prototype is publicly available [18,72].

2 Background on Abstract Interpretation

Abstract interpretation is a form of static analysis that uses abstract values from
an abstract domain to represent sets of values of program variables. For example,
in the interval domain, the abstract value [x, y], with x, y ∈ Z, x ≤ y, tracks the
set of concrete values {z ∈ Z | x ≤ z ≤ y}. Abstract operators concisely represent
the impact of the program’s operations over its variables in the abstract domain.

Abstract Domains, Concretization, and Abstraction. Formally, concrete
values form a partially ordered set (poset) with elements C and ordering relation
�C. The concrete poset is C � 2Z (i.e., power set of integers) with the ordering
relationship �C being the subset relationship ⊆. An abstract domain is also
a poset, with a set of elements A and ordering relation �A. A concretization
function γ:A→C, takes an abstract value a∈A and produces concrete values
c∈C. For example, the interval domain uses the abstract poset A � Z×Z with
the ordering relation [x, y] �A [a, b] ⇔ (a ≤ x) ∧ (b ≥ y).

An abstraction function α:C→A, takes a concrete value c ∈ C and produces an
abstract value a ∈ A. For example, in the interval domain, abstracting the concrete
value {1, 4, 6} produces α({1, 4, 6}) = [1, 6]. Concretizing [1, 6] yields γ([1, 6]) =
{1, 2, 3, 4, 5, 6}. As seen in this example, the abstraction of a concrete value may
over-approximate it to maintain concise representation in the abstract domain. A
value a ∈ A is a sound abstraction of c ∈ C if c �C γ(a). For a sound abstraction a
of c, the smaller the concrete value γ(a), the higher the precision of the abstraction.

Abstract Operators. Intuitively, abstract operators capture the computation
of concrete operators over program variables in the abstract domain. For exam-
ple, in the range domain, the action of concrete unary negation −C(·) may be

Verifying the Verifier 229

abstracted by −A([x, y]) � [−y,−x]. Consider a concrete operation f :Zn →Zn

on a single program variable that is an n-bit value. We can lift f point-wise to
any set c ∈ C, where f(c) � {f(z) | z ∈ c}. An abstract operator g:A→A is a
sound abstraction of f if ∀a ∈ A : f(γ(a)) �C γ(g(a)).

Galois Connection. Abstraction and concretization functions (α, γ) are said to
form a Galois connection if: (1) α is monotonic (i.e. x �C y =⇒ α(x) �A α(y)),
(2) γ is monotonic (a �A b =⇒ γ(a) �C γ(b)), (3) γ ◦ α is extensive (i.e.
∀c ∈ C : c �C γ(α(c))), and (4) α◦γ is reductive (i.e. ∀a ∈ A : α(γ(a)) �A a) [56].

The Galois connection is denoted as (C,�C)−−→
α

γ←−− (A,�A). The existence of
a Galois connection enables reasoning about the soundness and the precision of
any abstract operator. It is in principle possible to compute a sound and precise
abstraction of any concrete operator f through the composition α◦f◦γ. However,
it is computationally expensive, due to the evaluation of the concretization γ.

Combining Multiple Abstract Domains Through Cartesian Product
[31]. Suppose we are given two abstract domains (sets A1,A2) with sound
abstraction functions αA1, αA2 and concretization functions γA1, γA2. The Carte-
sian product abstract domain uses the set P � A1 × A2, and the order-
ing relationship applied separately to each domain: (a1 �A1 b1) ∧ (a2 �A2

b2) ⇒ (a1, a2) �P (b1, b2). The concretization function intersects the results
obtained from concretizing each element in its respective abstract domain:
γP(a1, a2) � γA1(a1) ∩ γA2(a2). For a concrete value c ∈ C, the abstraction
functions are applied domain-wise and combined: αP(c) �

(
αA1(c), αA2(c)

)
. The

Cartesian product domain enjoys a Galois connection (C,�C)−−→
α
P

γ
P←−− (P,�P) build-

ing on the Galois connections of its component abstract domains.
For example, consider the interval domain (A1,�A1 defined as above) and

the parity domain (A2 � {⊥, odd, even,�} with ordering relationships ⊥ �A2

odd, even �A2 �). Suppose at some point the two interpretations produce
abstract values [3, 5] and even in the two domains. The concretization of the
Cartesian product abstract value ([3, 5], even) produces the set {4}, which is
smaller than the concretizations of either abstract value [3, 5] or even in their
respective domains. However, since the abstraction functions are applied domain-
wise, such information cannot be propagated to the abstract values themselves.
For example, it is desirable to propagate information from the abstract value
even in A2 to reduce the interval to [4, 4] in A1.

Reduced Products. Intuitively, we wish to make an abstract value in one
domain more precise using information available in an abstract value in a differ-
ent domain. Suppose we are given an abstract value (a1, a2) from the Cartesian
product domain. A reduction operator [34] attempts to find the smallest abstract
value (a′

1, a
′
2) such that its concretization is the same as that of (a1, a2), i.e.

γA1(a1) ∩ γA2(a2). Formally, the reduction operator ρ:P→P is defined as the
greatest lower bound of all abstract values whose concretization is larger than
that of the given abstract value,

i.e. ρ(a1, a2) �
�

P
{(a′

1, a
′
2) | γP(a1, a2) �C γP(a′

1, a
′
2)}.

However, this definition is impractical to compute even on finite domains.

230 H. Vishwanathan et al.

In general, more “relaxed” versions of reduction operators may be designed
to improve precision with efficient computation. For example, Granger [40]
introduces a set of reduction operators ρ1, ρ2 to reduce each abstract domain
in turn, using information from the other, until a fixed point. The operator
ρ1:A1×A2 →A1 reduces the abstract value in domain A1, while ρ2:A1×A2 →A2

reduces that in A2. The reduction using ρ1 is sound if ∀a1 ∈ A1, a2 ∈ A2 :
γP(ρ1(a1, a2), a2) = γP(a1, a2) (preserve concrete values in the intersection) and
ρ1(a1, a2) �A1 a1 (improve precision). Similarly, reduction using ρ2 is sound if
∀a1 ∈ A1, a2 ∈ A2 : γP(a1, ρ2(a1, a2)) = γP(a1, a2) and ρ2(a1, a2) �A2 a2.

3 Abstract Interpretation in the Linux Kernel

The Linux kernel implements abstract interpretation to check the safety of eBPF
programs loaded into the kernel. The kernel’s algorithms are encoded into a
component called the eBPF verifier, which is a part of the pre-compiled oper-
ating system image. The Linux kernel uses several abstract domains to track
the type, liveness, and values of registers and memory locations used by eBPF
programs. Among these, the abstract domains used by the kernel to track values
are critical since they are used to guard statically against malicious programs
that may access kernel memory. In Linux kernel v5.19 (latest as of this writing),
these analyses constitute roughly 2100 lines of source code in the eBPF verifier.
Implementing such analyses soundly in the kernel is challenging. This part of
the verifier has been a source of several high-profile security vulnerabilities [1–
9,23–26,35,43–45] and exploits [50,51,62,66].

The Linux kernel uses five abstract domains for value tracking, including
intervals in unsigned 64-bit (u64), unsigned 32-bit (u32), signed 64-bit (s64),
signed 32-bit (s32), and tri-state numbers (tnum [61,71]). The kernel does not
provide a formal specification of their abstraction or concretization functions, or
proofs of soundness of the abstract operators. Below, we illustrate the abstract
domains used in the Linux kernel with the unsigned 64-bit interval domain u64

and tristate numbers tnum.

The u64 Domain. The u64 abstract domain tracks an upper and lower bound
of a 64-bit register interpreted as an unsigned 64-bit value. The eBPF verifier
maintains the abstract u64 value as part of its static state for each register.
Figure 2(a) provides a simplified C source code for abstract addition in the u64

domain. The operator takes two abstract values in1 and in2, with the two com-
ponents of each abstract value denoted by the members u64_min and u64_max. The
output abstract value is stored in out. Here, U64_MAX is the largest 64-bit non-
negative integer. The first if condition detects if integer overflows may occur as
a result of addition. If there is overflow, the analysis loses all precision, setting
the 64-bit bounds of the result to the largest abstract value, [0, U64_MAX]. If there
is no overflow (else clause), out is set to the component-wise sum of the bounds
of in1 and in2, similar to unbounded bit-width interval arithmetic [32].

Formally, the abstract domain is Au64 � {[x, y] | (x, y ∈ Z
+
64) ∧ (x ≤u64

y)}, where Z
+
64 is the set of 64-bit non-negative integers, and ≤u64 repre-

sents a 64-bit unsigned comparison. The ordering relationship is (x1 ≥u64

Verifying the Verifier 231

Fig. 2. Excerpts (simplified) from the kernel’s implementation of the abstract opera-
tors for (a) addition (from the function scalar_min_max_add [14]), and (b) bitwise AND
(from scalar_min_max_and [15]). (c) Example of reduced product abstract interpreta-
tion where one may use inductive assertions on abstract operators from each domain,
along with the soundness of reduction operators, to reason about the correctness of
the overall abstraction. The greyed boxes show modular reasoning about components
within the boxes. (d) In the Linux kernel, it is challenging to reason modularly about
the correctness of abstract operators in each domain independently from their pairwise
reductions, since the implementation combines abstraction with reduction. Proving
soundness requires one-shot reasoning about all operations together.

x2) ∧ (y1 ≤u64 y2) ⇔ [x1, y1] �u64 [x2, y2]. The concretization function is
γu64([x, y]) � {z | (z ∈ Z

+
64) ∧ (x ≤u64 z ≤u64 y)}. The abstraction function

is αu64(c) � [minu64(c),maxu64(c)], where c is a member of the powerset of Z+
64,

and minu64(·) and maxu64(·) compute the minimum and maximum over a finite
set c where each element of c is interpreted as a 64-bit unsigned value.

Tristate Numbers (tnums). This abstract domain in the Linux kernel tracks
which bits of a variable are known to be 0, known to be 1, or unknown across
executions of the program. This domain is similar to bitwise domains [55,57,65].
However, the kernel implements this abstract domain efficiently with a tuple of
two unsigned integers (v,m). If m for a particular bit is 1, then the value of that
bit is unknown. If m for a particular bit is 0, then value of that bit is equal to
v’s value for the particular bit. More formally, the abstraction function (αt) is
written using two other functions defined as follows: α&(C) � &

{
c | c ∈ C

}
; and

α|(C) � |
{
c | c ∈ C

}
. Then, αt(C) �

(
α&(C), α&(C)^α|(C)

)
. The concretization

function is written as: γt(P) = γt((P.v, P.m)) �
{
c ∈ Z

+
64 | c & P.m = P.v

}
[71].

Abstract Operators In The Linux Kernel and Challenges in Prov-
ing their Correctness. The Linux kernel implements an abstract operator in
each abstract domain for each arithmetic and logic (ALU) instruction and each
jump instruction in the eBPF instruction set.1 The kernel verifier also provides

1 The ALU instructions include 32 and 64-bit add, sub, mul, div, or, and, lsh,
rsh, neg, mod, xor, arsh and the jump instructions include 32 and 64-bit ja, jeq,
jgt, jge, jlt, jle, jset, jne, jsgt, jsge, jslt, jsle [13].

232 H. Vishwanathan et al.

functions to propagate information between the abstractions (reductions). How-
ever, it does not provide formal underpinnings, e.g. Galois connections. The over-
all analysis appears to be a Reduced Product abstract interpretation (Sect. 2).

However, the key challenge in proving soundness is that the kernel’s operators
combine abstraction with reduction. Consider the excerpt in Fig. 2(b) from the
implementation of the bitwise AND operation in the u64 abstract domain in
the kernel, simplified for clarity. As before, in1 and in2 correspond to the input
abstract values, and out to the output abstract value. The members with names
tnum.* denote the components of the abstract tnum. Before the execution of these
two lines, the tnum abstract output out.tnum.v has already been computed. In
the first line, the lower bound of the u64 result, out.u64_min is updated using the
output abstract value in a different domain (out.tnum.v). Hence, the operation
overall is not (merely) an abstract operator in the u64 domain. In the second
line, the output abstract state out.u64_max is updated using the abstract inputs
in the u64 domain. Reduction operators consume abstract outputs, not inputs.
Hence, the operation overall is not a reduction operator either.

These characteristics apply not just to the kernel’s bitwise AND operation
in the u64 domain. Figure 2(d) shows the structure of several of the kernel’s
abstract operators, compared against the typical structure of product domains
and reduction operators (Fig. 2(c)). The kernel’s algorithms combine abstrac-
tion with reduction, making it challenging to prove their soundness in a mod-
ular fashion. Instead, we must resort to a “one-shot” approach, which attempts
to prove the soundness of the abstraction of an operator in one domain and
the reductions across domains together. We call the kernel’s abstract operators
abstraction/reduction operators in the rest of this paper.

4 Automatic Verification of the Kernel’s Algorithms

Given the non-modular structure of the kernel’s abstract algorithms (Sect. 3),
we cannot use traditional methods to prove their soundness, i.e. by showing the
soundness of each domain and the reductions separately. Further, the kernel’s
algorithms have been evolving continuously with the inclusion of new features
to the eBPF run-time environment. We want our methods to be applicable to
every new update and commit to the Linux kernel.

Hence, our goal is to perform automatic verification using SMT solvers to
prove the soundness of (or find bugs in) the C implementation of Linux’s abstrac-
tion/reduction operators. We work with the input-output semantics of the ker-
nel’s abstraction/reduction operators in first-order logic extracted automatically
from the kernel’s C source code (details of the extraction deferred to Sect. 5).

OverviewofOurApproach.Wedevelop generic soundness specifications for the
Linux kernel’s abstraction/reduction operators, handling arithmetic, logic, and
branching instructions (Sect. 4.1). We find that several kernel operators violate
these soundness specifications. However, many of these violations flag latent bugs
in the kernel’s algorithms—bugs which are not necessarily manifested in concrete
program executions. We observe that the kernel includes a shared “tail” of com-
putation in all of its abstraction/reduction operators. We use this shared compu-

Verifying the Verifier 233

tation to refine our soundness specification by preconditioning the input abstract
states (Sect. 4.2). This refinement enables proving the soundness of several of the
kernel’s operators. However, it still identifies many potential violations of sound-
ness in the kernel. We present a method based on program synthesis to generate
loop-free eBPF programs that manifest the bugs identified by the soundness spec-
ifications, automatically producing programs that have divergent concrete and
abstract semantics. We call this method differential synthesis (Sect. 4.3).

Figure 1 illustrates our entire workflow. Starting from the Linux kernel source
code, our techniques produce concrete eBPF programs that manifest soundness
bugs in the kernel’s algorithms. We have used this procedure to prove the sound-
ness of multiple Linux kernel versions, discovered previously unknown soundness
bugs (i.e. no CVEs assigned, to our knowledge), with validated proof-of-concept
programs triggering those bugs.

4.1 Soundness Specification for Abstraction/Reduction Operators

We present verification conditions that are sufficient to assert the soundness of
abstraction/reduction operators in the Linux kernel.

Preliminaries. Encoding Soundness for a Single Abstract Domain in
SMT. We describe how to encode the soundness condition for an abstract oper-
ator of two operands as an SMT formula, since most eBPF instructions take two
operands. Suppose f :C×C→C is a binary concrete operation (e.g. 64-bit addi-
tion) over the concrete domain (e.g. C � 2Z

+
64). Suppose the operator g:A×A→A

abstracts f . Operator g is sound (Sect. 2) if ∀a1, a2 ∈ A : f(γ(a1), γ(a2)) �C

γ(g(a1, a2)).
We can check soundness with an SMT query as follows. Suppose we have

SMT variables to denote a bitvector x ∈ C and an abstract value a ∈ A. We can
use the concretization function γ to represent the fact that x is included in the
concretization of a. For example, for the u64 domain, we may use the formula
memu64(x, a) � (a.min ≤u64 x) ∧ (x ≤u64 a.max) to assert that x ∈ γ(a).

The input-output relationship of abstract operator g is available as a first-
order logic formula extracted from the kernel source code (Sect. 5). We represent
the resulting formula as ao = absg(ai

1, a
i
2), where ai

1 and ai
2 are input abstract

values and ao is the output abstract value.
The concrete semantics of the eBPF instruction set determines the input-

output relationship of the concrete operation f . For example, the bpf_add64

instruction performs binary addition (with possibility of overflow) of two 64-
bit registers, denoted by +64. The action of this instruction is encoded through
the formula xo = concf (xi

1, x
i
2); for bpf_add64, concf (xi

1, x
i
2) � (xi

1 +64 xi
2).

The concrete ordering relationship �C is just the subset operation ⊆ between
two sets. For two sets S1, S2, we can encode the relationship S1 ⊆ S2 by asserting
that ∀x : x ∈ S1 ⇒ x ∈ S2. Putting all this together, we can check the soundness
of a single abstract operator absg, by using an SMT solver to check the validity
of the formula (i.e., by checking if the negation is unsatisfiable).

∀xi
1, xi

2 ∈ C, ai
1, a

i
2 ∈ A : memA(xi

1, a
i
1) ∧ memA(xi

2, a
i
2) ∧

xo = concf (xi
1, x

i
2) ∧ ao = absg(ai

1, a
i
2) ⇒ memA(xo, ao) (1)

234 H. Vishwanathan et al.

Generalizing Soundness To Abstraction/Reduction Operators Span-
ning Multiple Abstract Domains. For the abstraction/reduction operators in
Linux (Sect. 3), we can no longer assert soundness for an abstract domain purely
using abstract values from that domain. We show how to extend the reasoning
to two abstract domains. Let us denote the two abstract domains by A1 and A2.
An eBPF instruction has two inputs (xi

1, xi
2) and each input has the correspond-

ing abstract value for each abstract domain. Suppose ai
11 and ai

12 correspond to
abstract values for the first input from domains A1 and A2, respectively (similarly,
ai
21 and ai

22 for the second input). Further, the concrete input xi must be in the
intersection of the concretizations of all its abstract values. Hence, the formula
memA1(x

i
1, a

i
11)∧memA2(x

i
1, a

i
12)∧memA1(x

i
2, a

i
21)∧memA2(x

i
2, a

i
22) must hold.

We denote the kernel’s abstraction/reduction operation, extracted from C
source code, as {ao

1, a
o
2} = absg(ai

11, a
i
12, a

i
21, a

i
22). Note that the kernel’s oper-

ation outputs a list of abstract values corresponding to each abstract domain
(unlike Eq. 1). The concrete semantics dictates that xo = concf (xi

1, x
i
2).

To establish the soundness of the abstraction/reduction operator, we ensure
that the concrete output is included in the concretizations of the abstract outputs
in each domain, i.e., memA1(x

o, ao
1)∧ memA2(x

o, ao
2). Putting it all together, we

check the validity of the following SMT formula:

∀xi
1, xi

2 ∈ C, ai
11, ai

21 ∈ A1, ai
12, ai

22 ∈ A2 :

memA1(x
i
1, a

i
11) ∧ memA2(x

i
1, a

i
12) ∧ memA1(x

i
2, a

i
21) ∧ memA2(x

i
2, a

i
22)∧

xo = concf (x
i
1, x

i
2) ∧ {ao

1, a
o
2} = absg(a

i
11, a

i
12, a

i
21, a

i
22)

⇒ (memA1(x
o, ao

1) ∧ memA2(x
o, ao

2)) (2)

The kernel uses five abstract domains (Sect. 3). Extending from two domains to
all five domains is straightforward. It involves the addition of membership queries
for the inputs and the corresponding abstract values (i.e., mem predicate above).
The encoding of each of the kernel’s abstraction/reduction operators returns a
list containing five abstract outputs (one for each domain). Finally, we check that
the concrete output is included in the concretization of each abstract output.

Encoding Arithmetic and Logic (ALU) Instructions. Using the formu-
lation above, we have encoded soundness specifications of abstraction/reduction
operators for 16 eBPF ALU instructions, which include 32 and 64-bit add, sub,

div, or, and, lsh, rsh, neg, mod, xor, arsh. Notably, we exclude the multipli-
cation instruction mul, whose SMT formula involves a bitvector multiplication
operation and a large unrolled loop, making it intractable in the bitvector theory.

Encoding Branch Instructions. We also encoded soundness specifications for
conditional and unconditional branches (jeq, jlt, etc.) on both 64 and 32-bit
register operands. These amount to 20 instructions, for a total of 36 instructions
captured by our encodings. While the soundness of abstracting ALU instructions
follows the general structure of Eq. 2, writing down the soundness conditions for
branches is more involved. Branches do not concretely modify their input regis-
ters. However, the kernel learns new information in the abstract domains using
the branch outcome (true vs. false). For example, in the u64 domain, consider

Verifying the Verifier 235

two abstract registers [1, 5], [3, 3]. Jumping upon an = (equals) comparison shows
that the first register can also be set to [3, 3] in the true case. Indeed, each con-
ditional jump instruction produces four abstract outputs (rather than the usual
one output for ALU instructions), corresponding to updated abstract values for
two registers across two branch outcomes.

We illustrate the encoding of the correctness condition for the jump instruc-
tion for a single abstract domain. Given two concrete operands xi

1 and xi
2, the

concrete interpretation for the jump instruction returns whether the condition
is true or false. When xo = concf (xi

1, x
i
2), xo will be either true or false. The

kernel’s abstraction/reduction operator generates four output abstract values,
ao
1t, a

o
1f , ao

2t, a
o
2f . There are two abstract outputs corresponding to each input.

They reflect the updated abstract value for the true case (e.g., ao
1t is the updated

abstract value of the first input when the branch condition is true), and similarly
for the false case. We represent the kernel’s abstraction/reduction operator for
branch instructions by the formula {ao

1t, a
o
1f , ao

2t, a
o
2f} = absg(ai

1, a
i
2).

Our correctness condition for jumps requires that the inputs are present in
the concretizations of the corresponding abstract value in both the true and false
branch outcomes. The formula below specifies this correctness condition.

∀xi
1, xi

2 ∈ C, ai
1, ai

2 ∈ A : memA(x
i
1, a

i
1) ∧ memA(x

i
2, a

i
2) ∧

xo = concf (x
i
1, x

i
2) ∧ {ao

1t, a
o
1f , a

o
2t, a

o
2f} = absg(a

i
1, a

i
2) ⇒

((xo ⇒ (memA(x
i
1, a

o
1t) ∧ memA(x

i
2, a

o
2t))) ∧ (3)

(¬xo ⇒ (memA(x
i
1, a

o
1f) ∧ memA(x

i
2, a

o
2f))))

The above correctness condition can be extended to multiple domains in a man-
ner similar to Eq. 2. The kernel’s implementation of the abstraction/reduction
operator for a single jump instruction produces 20 output abstract values (2
inputs × 2 branch outcomes × 5 domains).

4.2 Refining Soundness Specification with Input Preconditioning

When we checked the soundness of the kernel’s verifier using the soundness spec-
ifications in Sect. 4.1, we observed that many of the abstract operators are not
sound. However, it is unclear whether these violations are latent unsound behav-
iors, or behaviors that could actually manifest with concrete eBPF programs.
Specifically, the precondition in Eq. 2 is too general, including any combination
of abstract values (across domains) as long as the intersection of their con-
cretizations is non-empty. Indeed, the abstract operators in the Linux kernel are
unsound if each instruction may start from any arbitrary abstract value across
domains. However, these combinations of abstract values may never be encoun-
tered in any eBPF program. Our goal is to refine the soundness specifications
from Sect. 4.1 to minimize reporting latent (but unmanifested) bugs.

Shared Suffix of Abstraction/Reduction Operator. Upon carefully
analyzing the kernel’s abstraction/reduction operators, we observed that
the kernel performs certain common computations—a shared suffix of
abstraction/reduction operations—right before producing each abstract out-
put (Fig. 3(a)). As a concrete example, in kernel version 5.19, the function

236 H. Vishwanathan et al.

reg_bounds_sync is called at the end of each ALU operation [49], updating the
signed domains using the unsigned domains, the u64 bounds from u32 bounds
and tnums, besides other reductions [48].

Fig. 3. (a) The structure of each abstrac-
tion/reduction operator in the kernel can
be conceptualized as having a prefix that
depends on the specific operator, generat-
ing an intermediate output, and a suffix that
is shared across all the operators, result-
ing in the final abstract output. (b) We use
a refined soundness specification that pre-
conditions input abstract values a using the
shared suffix sro(.) of the reduction opera-
tors used in the Linux kernel.

Our key insight is that this shared
suffix of abstraction/reduction has
the effect of preconditioning the ini-
tial abstract values for any subse-
quent instruction, narrowing down
the set of possible abstract val-
ues that a subsequent instruction
may encounter as input. Further, all
eBPF programs start executing from
abstract values where each register in
every domain is either � (any con-
crete value in the domain) or its con-
cretization is a singleton (precisely
known concrete value). We observe
and show using an SMT solver that
the shared suffix computation does
not modify initial values.

Refined Soundness Specifica-
tion by Preconditioning Input
Abstract Values. We can lever-
age shared suffix operations to refine
our soundness specification as fol-
lows. First, let sro(a) denote the abstract outputs of computing the shared suffix
of the abstraction/reduction over the abstract inputs a ∈ A1 ×A2 · · · ×A5. The
SMT formula encoding sro(a) is extracted using our C to SMT encoder (Sect. 5).
The main change from the specifications in Sect. 4.1 is that the shared suffix pre-
conditions the input values to any abstract operator. Hence, for example, the
soundness specification for two abstract domains from Eq. 2 is updated to use
an input abstract value sro(a) as shown below:

∀xi
1, xi

2 ∈ C, ai
11, ai

21 ∈ A1, ai
12, ai

22 ∈ A2 :

(bi11, b
i
12) = sro(ai

11, a
i
12) ∧ (bi21, b

i
22) = sro(ai

21, a
i
22) ∧

memA1(x
i
1, b

i
11) ∧ memA2(x

i
1, b

i
12) ∧ memA1(x

i
2, b

i
21) ∧ memA2(x

i
2, b

i
22) ∧

xo = concf (x
i
1, x

i
2) ∧ {ao

1, a
o
2} = absg(b

i
11, b

i
12, b

i
21, b

i
22)

⇒ (memA1(x
o, ao

1) ∧ memA2(x
o, ao

2)) (4)

It is straightforward to generalize to multiple domains. Refinement eliminated
most of the latent violations reported from Sect. 4.1. We found that the latest
kernel versions are sound with respect to value tracking.

Verifying the Verifier 237

4.3 Automatically Producing Programs Exercising Soundness Bugs

Even after refining the soundness specifications (Sect. 4.2), we still find a few
violations of soundness. It is challenging to determine whether these violations
are “real” (manifested in actual eBPF programs) or latent, since input abstract
values preconditioned by sro still overapproximate the abstract values that may
occur when analyzing actual eBPF programs (Fig. 3(b), Sect. 4.2).

We aim to automatically generate eBPF programs that manifest soundness
bugs (uncovered by the techniques in Sect. 4.2) in an actual kernel verifier exe-
cution. Our problem is a form of differential synthesis: generating programs
whose semantics diverge between the concrete execution and the abstract anal-
ysis. We propose a sound but incomplete approach to generate eBPF programs
that demonstrate soundness violations. We enumerate loop-free programs up to a
bounded length, using an SMT solver to identify concrete and abstract operands
that manifest soundness violations.

Our approach is a combination of well-known existing techniques from enu-
merative [20,52,63] and deductive program synthesis [19,41,58,67]. However,
unlike typical program synthesis problems which have a ∀∃ formula structure
(e.g. meet a specification on all inputs), our problem has a much more tractable
∃ structure, i.e. finding one concrete input and program to trigger a soundness
violation. In this sense, it is more akin to property-directed reachability algo-
rithms used in model checking [22,27].

Preliminaries. The eBPF run-time starts executing eBPF programs with all
live registers holding values that are either precisely known at compile time (e.g.
offsets into valid memory regions) or completely unknown (e.g. contents of packet
memory). For an abstract value a ∈ A1 × A2 · · · × A5, we say that init(a) holds
if a is either singleton (e.g. ∀x ∈ Z

+
64 : [x, x] in u64) or � in each domain Ai.

We refer to such abstract values as initial abstract values. It is straightforward
to write down an SMT formula for init(a) for the kernel’s domains. We say
an abstract value b ∈ A1 × A2 · · · × A5 is reachable if there exists a sequence
of eBPF instructions for which the abstract analysis can produce b for some
register starting from input registers whose abstract values all satisfy init(·).
Overview. Given an abstract operator that violates the soundness specification
in Sect. 4.2, our algorithm finds an eBPF instruction sequence that shows that
the violating input abstract values are reachable. For a bounded program length
k, we enumerate all sequences of eBPF concrete operators (i.e. arithmetic, logic,
and branching instructions) of length k − 1, with the kth instruction being the
violating concrete operator. This enumeration produces the “skeleton” of the pro-
gram, filling out the opcodes, but leaving the operands as well as the data and
control flow undetermined. For each skeleton, we discharge an SMT query that
identifies the concrete and abstract operands for k instructions with well-formed
data and control flow. The first instruction consumes eBPF initial abstract val-
ues. Starting from k = 1, if we cannot find an eBPF program of length k that
manifests the violation, we increment k and try again until a timeout.

Single Instruction Programs (k = 1). As the base case, we check whether
initial abstract values along with suitable concrete values may already violate

238 H. Vishwanathan et al.

soundness (Sect. 4.2). For example, suppose our enumeration generated the 1-
instruction program v = bpf_or(t, u). For simplicity, below we work with just
one abstract domain. Building on Eq. (1), we discharge the SMT formula:

t, u ∈ C, at, au ∈ A :

init(at) ∧ init(au) ∧ memA(t, at) ∧ memA(u, au) ∧
v = concor(t, u) ∧ av = absor(at, au) ∧ ¬(memA(v, av)) (5)

If the formula is satisfiable, the model provides the concrete operands t, u, with
the result that bpf_or(t, u) is an executable eBPF program manifesting the
soundness violation. However, an unsound operator may fail to produce a model
since the necessary abstract operands lie outside the initial abstract values.

Straight-line Programs, Length k > 1. Larger the length of the program k,
larger the set of reachable input abstract values available to manifest a soundness
violation at the kth instruction. We exhaustively enumerate all possible (k −
1)-long instruction sequences. To enable well-formed data flow between the k
instructions, the inputs for each instruction are sourced either from the outputs
of prior instructions or initial abstract values.

For example, consider a two-instruction program (k = 2) generated by the
enumerator: r = bpf_and(p,q); v = bpf_or(t,u), We are looking for sound-
ness violation in bpf_or. The variables p, q, r, t, u, v are concrete values, with
corresponding abstract values ap, aq, · · · , av. The abstract inputs of the first
instruction bpf_and are initial abstract values. The abstract inputs of the last
instruction may be drawn from either ap, aq, ar or the initial abstract values.
We use the formula assign(x, {y1, y2, · · · }) to denote that x is mapped to one of
the variables y1, y2, · · · in both the concrete and abstract domains. We can write
down assign(x, {y1, y2, · · · }) � (x = y1 ∧ ax = ay1) ∨ (x = y2 ∧ ax = ay2) ∨ · · · .
We discharge the following SMT formula to a solver:

p, q, r, t, u, v ∈ C, ap, aq, ar, at, au, av ∈ A :

init(ap) ∧ init(aq) ∧ memA(p, ap) ∧ memA(q, aq) ∧
r = concand(p, q) ∧ ar = absand(ap, aq) ∧ memA(r, ar) ∧

(init(at) ∨ assign(t, {p, q, r})) ∧ (init(au) ∨ assign(u, {p, q, r})) ∧
memA(t, at) ∧ memA(u, au) ∧

v = concor(t, u) ∧ av = absor(at, au) ∧ ¬(memA(v, av)) (6)

A model for the formula produces the concrete and abstract operands for the two
instructions, leading to an executable bug-manifesting program. This approach
is extensible to more instructions and more abstract domains.

Loop-free Programs. Incorporating branch instructions significantly broadens
the set of input abstract values available to the kth instruction, improving the
likelihood of finding a bug-manifesting program at a given length. We turn each
branch into a single-instruction ite whose outputs are available for subsequent
instructions. More concretely, (i) any of the 1 · · · k − 1 instructions may be jump
instructions; (ii) the jump target of a branch instruction in the ith slot for both
outcomes (i.e. true or false) points to the i + 1th slot, and (iii) the abstract

Verifying the Verifier 239

outputs of the branch (e.g. from Eq. (3)) may be used as abstract inputs for
subsequent instructions, similar to arithmetic and logic instructions.

As an example, suppose our enumerator produces r = bpf_jump_gt64(p,q,0);
v = bpf_or(t,u). Here r is a concrete value which is either true or false. We use
0 as the jump target, always pointing branches to the next instruction. There are
four abstract outputs from the jump: apt, aqt for the true branch and apf , aqf for
the false branch (see Sect. 4.1). For convenience, we set the abstract value ao

p (resp.
ao
q) to either apt or apf (resp. aqt or aqf) based on the branch outcome; and also

assert that the corresponding final concrete values po = p and qo = q. Building on
Eq. (3), we ask the SMT solver for a model of the formula:

p, q, t, u, v ∈ C, r ∈ {true, false}, ap, aq, at, au, av ∈ A :

init(ap) ∧ init(aq) ∧ memA(p, ap) ∧ memA(q, aq) ∧
r = concjump_gt64(p, q) ∧ {apt, apf , aqt, aqf} = absjump_gt64(ap, aq) ∧

(r ⇒ (memA(p, apt) ∧ memA(q, aqt) ∧ ao
p = apt ∧ ao

q = aqt)) ∧
(¬r ⇒ (memA(p, apf) ∧ memA(q, aqf) ∧ ao

p = apf ∧ ao
q = aqf)) ∧

(init(at) ∨ assign(t, {po, qo})) ∧ (init(au) ∨ assign(u, {po, qo})) ∧
memA(t, at) ∧ memA(u, au) ∧

v = concor(t, u) ∧ av = absor(at, au) ∧ ¬(memA(v, av)) (7)

Validation of Manifested Soundness Violations. The programs generated
by our approach for bugs with known CVEs were similar to the proof-of-concept
implementations found in these CVEs. For previously unknown bugs, we logged
the kernel verifier’s state as it analyzes eBPF programs and also executed the
eBPF program with the concrete operands produced by the SMT solver. We
compared the parameters in the SMT solver’s model and those from the kernel
verifier and run-time result. This process entailed manually compiling and boot-
ing into each kernel version that we check, and running the generated programs.
For the manifested bugs, we found exact agreement between the SMT model
and the observed behaviors in all cases we checked.

5 C to Logic for Kernel’s Abstract Operators

To prove the soundness of the kernel’s abstract operators, we first have to extract
the input-output semantics of the operators from the kernel’s implementation in
C into first-order logic. It is tedious and error-prone to manually write down the
formulas for each version of the kernel. Further, the verifier’s abstract semantics
can change across versions. Hence, we automatically generate the first-order
logic formula (in SMT-LIB format) directly from the verifier’s C source code.
Modeling C code in general is hard [42,46,64]. However, we observe that it is
sufficient to handle a subset of C for the verifier’s value-tracking routines.

Verifier’s C Code for Value-tracking. The kernel uses two integers to rep-
resent abstract values for each of the five domains (Sect. 3). These 10 integers
are encapsulated in a structure named bpf_reg_state (reg_st for short). The tnum

240 H. Vishwanathan et al.

domain is further encapsulated within reg_st in a struct called tnum. This static
“register state” is maintained for each register in the eBPF program being ana-
lyzed. The kernel has a single top-level function called adjust_scalar_min_max_vals

(adjust_scalar for short) that is called for each abstract operator corresponding to
ALU instructions [16]. This function takes three arguments: opcode and two reg-
ister states named dst and src that track the abstract value in the destination and
source register of the eBPF instruction, respectively. Depending on the opcode,
one of several switch-cases is executed, which leads to instruction-specific func-
tion calls that modify the abstract values in dst and src. None of the functions
updating register state in the call-chain have recursion or loops. The kernel has
a structured way of accessing the members of reg_st. We use these specific fea-
tures to translate C code to logic. The structures of the corresponding functions
for jumps (reg_set_min_max and descendants) are similar.

Preprocessing the Verifier’s C Code. We use the LLVM compiler’s [47]
intermediate representation (IR) because it allows us to handle complex C code
and provides a collection of tools to modify, optimize, and analyze the IR.
Figure 4(a) shows an overview of our tool’s pipeline. Consider the case where we
want to generate the SMT-LIB file for the abstract operator corresponding to the
32-bit bitwise OR instruction (bpf_or32). After obtaining the verifier’s code in IR
(stage 1), we proceed to apply our custom IR-transforming passes (stage 2).
First, we remove functions that are not relevant to our purpose because they do
not modify register state. Next, we inline all the function calls that adjust_scalar

makes. Inlining is possible because there are no recursive functions or loops in
the call-graph. Next, we need to create a slice of the verifier that is only con-
cerned with bpf_or32. We inject an LLVM instruction in the entry basic block of
adjust_scalar which sets the opcode to bpf_or32. LLVM’s optimizer removes all
irrelevant code from this IR with constant propagation and dead-code elimina-
tion. Next, we adapt a transformation pass from Seahorn’s [42] codebase, which
allows us to lower memcpy instructions to a sequence of stores. The result is a
single function in LLVM IR, which captures the action of the abstract operator
given input abstract states (i.e., dst and src) for one instruction (bpf_or32).

The LLVMToSMT Pass. In step 3 , we use the theory of bitvectors to
generate the first-order logic formula for the function obtained from step 2 .
Since we encode everything with bitvectors, we need a memory model to capture
memory accesses. We model memory as a set of two disjoint regions pointed to
by dst and src. Given that the memory is only accessed via the structure reg_st’s
fields, we can further view memory as a set of named registers. This allows us to
model the entire memory as a tree of bitvectors: the leaf nodes store bitvectors
corresponding to the first-class members of reg_st (e.g. for u64_min), the non-leaf
nodes store trees of aggregate types (e.g. for tnum). C struct member accesses
in IR begin with a getelementptr (GEP) instruction, which calculates the pointer
(address) of the struct’s member. We use an indexing similar to that used by
GEP to to identify the bitvector that corresponds to the accessed member.

Handling Straight Line Code and Branches. LLVM’s IR is already in SSA
form. Every IR instruction that produces a value defines a new temporary virtual

Verifying the Verifier 241

Fig. 4. (a) The pipeline for automatically generating an SMT-LIB file from the Linux
kernel’s verifier.c. Shown here is an instance of the pipeline for the bpf_or32 instruc-
tion. (b) The LLVM IR presented as a CFG, overlaid with MemorySSA analysis in
red, for a function adjust_scalar_bpf_or32 that is representative of verifier code for
bpf_or32. It takes as input two structs dst and src and modifies them.

register. We create a fresh bitvector variable when we encounter a temporary in
the IR. Consider a simple addition instruction: %y = add i64 %x, 3. To encode
the instruction, we create a formula that asserts an equality between a fresh
bitvector BVy and the existing one BVx, based on the semantics of the instruction:
BVy == BVx + BVconst3.

To handle branches, we precondition the SMT formula for each basic block
with its path condition. As the IR we analyze does not contain loops, the control
flow graph (CFG) is a directed acyclic graph. Hence, the path condition of each
basic block is a disjunction of path conditions flowing through each incoming
edge into the node corresponding to that block in the CFG. Phi nodes (φ’s) in
SSA merge the values flowing in from various paths. We use the phi instructions
in IR to merge incoming values. We calculate an “edge condition” formula for each
incoming edge to the phi. Then, we encode the phi instruction by appropriately
setting the bitvector to the incoming values based on the edge condition.

Handling Memory Access Instructions. Our tool leverages LLVM’s Mem-
orySSA analysis [17] to handle loads and stores. The MemorySSA pass creates
new versions of memory upon stores and branch merges, associates load instruc-
tions with specific versions, and provides a memory dependence graph between
the memory versions. Figure 4 (b) shows an example CFG in IR overlaid with
MemorySSA analysis (red). We maintain a one-to-one mapping between the dif-
ferent versions of memory presented by MemorySSA, and versions of our memory
model consisting of bitvector-trees. liveOnEntry (line 3) is the memory version

242 H. Vishwanathan et al.

at the start of the function. The bitvectors in the corresponding bitvector-tree
are the input operands for the kernel’s abstract operators.

Every load instruction is annotated with a MemoryUse (e.g.. the load instruc-
tion on line 6 reads from the liveOnEntry memory version), and preceded by a
GEP. Thus, we choose the appropriate bitvector-tree and index into it to obtain
the appropriate bitvector (say BVsrc0). We encode the load instruction as: (BVx1 ==

BVsrc0). A store instruction (e.g. line 12, annotated using a MemoryDef) modifies an
existing memory version (liveOnEntry) to create new version (1). We create a new
bitvector-tree and map it to version 1. The bitvectors in this bitvector-tree are
exactly the same as liveOnEntry’s, except for the bitvector in the location that
the store modifies. The latter bitvector is replaced with the bitvector mapped
to the temporary used for the store. For a MemoryPhi node (e.g. line 18, creating
version 3), we create a new bitvector-tree for the latest memory version (e.g. 3).
Similar to regular phi nodes, we use the edge condition of the incoming edges to
conditionally set each bitvector in the new bitvector-tree to the corresponding
bitvector in the memory version propagated through that edge.

The bitvector-tree corresponding to the active memory version at the point
of the (unique) ret instruction (e.g. 3 in the lend block) contains the output
operands for the kernel’s abstract operators.

6 Experimental Evaluation

Our prototype, Agni [18,72], automatically checks the soundness of the value
tracking algorithms in various versions of the kernel eBPF verifier. It uses LLVM
12 [47] for the C to logic translation and the Z3 SMT solver [36] for checking
formulas. The source code for our prototype is publicly available [18,72]. We
evaluate Agni to determine the effectiveness in checking soundness of the kernel
verifier and the ability to generate eBPF programs that manifest soundness
violations (which we call proof-of-concepts, or POCs).

Checking Soundness Across Kernel Versions. We have automatically
checked the soundness of all combinations of abstract operators and abstract
domains for kernels between versions 4.14 and 5.19. Figure 5(a) provides a sum-
mary of our results. To keep the size of the table short, we only report kernel
versions starting from 4.14 that are known to have a documented CVE or a bug
that is distinct from one in a prior kernel version (4.14, 5.5, 5.7-rc1, 5.8, ...).
We evaluated intermediate kernel versions that are not reported; our tool can
support all kernel versions between 4.14 to 5.19 (the latest as of this writing).

We compare our generic soundness specification (Sect. 4.1, labeled gen in
columns 2,4,6) and the refined one (Sect. 4.2, labeled sro in columns 3,5,7). A
kernel with at least one potentially unsound domain or operator is considered
unsound (columns 2 and 3). Operator+domain pairs that violated the soundness
specification are reported in columns 4 and 5. Those operators that violated
soundness in at least one domain are reported in columns 6 and 7.

All kernel versions including the latest ones are unsound with respect to
the generic soundness specification (column 2). Even in one of the latest ver-

Verifying the Verifier 243

Fig. 5. (a) Soundness violations detected with the generic soundness specification
(Sect. 4.1, labeled gen) in comparison to the refined specification (Sect. 4.2, labeled
sro). We show the number of violating operator+domain pairs (columns 4-5) and
number of unsound operators (columns 6-7) (b) Number of generated POCs and their
lengths for unsound operator+domains after sro checks.

sions of the kernel (v5.19), 6 operators corresponding to bpf_xor64, bpf_xor32,
bpf_and64, bpf_or64, bpf_or32, and bpf_and32 are unsound according to the
generic soundness specification (column 6, row of kernel version 5.19). Refining
the soundness specification enables us to prove the soundness of all operators in
kernels newer than 5.13 (column 3). However, even the latter reports violations
for older kernels. Among those violations, 27 were previously unknown. A single
wrong abstract operator can violate the soundness of many abstract domains (up
to 5). The refined (sro) specification reduces the reported soundness violations
by ≈ 6.8% in potentially unsound kernel versions and by 100% in sound ones.

We observed that the 64-bit jump instructions and 64-bit/32-bit bitwise
instructions exhibited the largest number of soundness violations. The unsound-
ness persisted across multiple kernel versions (until eventually patched).

Generating POCs for Unsound kernels. We evaluate the ability of differ-
ential synthesis (Sect. 4.3) to generate eBPF programs that manifest soundness
bugs. Figure 5(b) summarizes our results. Starting with operator+domain pairs
from soundness violations uncovered by sro (column 2), we report whether all
operator+domain violations were successfully manifested using POCs (column
3) and the lengths of the POCs successfully generated (columns 4,5,6). We pro-
duced a POC for ≈ 97% of soundness violations across kernel versions (validated
as described in Sect. 4.3). The smallest POCs for many violations require multi-
instruction programs. For example, none of the soundness violations in version
5.5 may be manifested with a single eBPF instruction. We generated a POC for
all soundness violations for all but 2 versions of the kernel (for versions 4.14 and
5.5, we generated a POC for all but 3 and 8 violations respectively). The ability
to manifest almost all of the reported sro violations speaks to the significance
and precision of the refinement in the soundness specification. Our differential

244 H. Vishwanathan et al.

synthesis technique may enable developers to experiment with concrete eBPF
programs to validate and debug unsound behaviors in the kernel verifier.

Some bugs in the eBPF verifier are well known security vulnerabilities and
have known POCs [51,62]. We have generated a POC, of equal or lesser size, for
all known CVEs in the kernel versions analyzed. For example, we have generated
a POC for a well known bug with two instructions instead of four [62].

Time Taken to Verify kernels and Generate POCs. We conducted our
experiments on the Cloudlab [37] testbed, using a machine with two 10-core Intel
Skylake CPUs running at 2.20GHz with 192GB of memory. When using the
generic soundness specifications, 90% of the abstract operators (eBPF instruc-
tions) were checked for soundness within ≈ 100 minutes. If deemed unsound,
the refined specification was checked in ≈ 30 minutes for ≈ 90% of the unsound
operators. On the extreme, verifying some operators, as well as finding a POC
for some soundness violations, may take a long time (2000min or more). We
attribute this to the significant size of the SMT-LIB formulas that are gener-
ated. We were able to find POCs for 90% of the soundness violations in kernel
versions 5.7-rc1 through 5.12 within a few hours.

7 Limitations and Caveats

The results in this paper must be interpreted with the following caveats.

Only Range Analysis is Considered. There are other static analyses in the
kernel verifier beyond range analysis (Sect. 1). These include tracking register live-
ness for reading and writing, and detecting speculative execution vulnerabilities.

Coverage of eBPF Abstract Operators. We exclude verifying the soundness
of the abstract operators corresponding to multiplication as they cause our SMT
verifications to time out. This is primarily due to the presence of 64-bit bitvector
multiplication in the SMT encoding of these operators. We have verified their
soundness using 8-bit bitvectors. Our results on (un)soundness cover all other
abstract arithmetic, logic, and branching operators (Sect. 4.1).

Trusted Computing Base. Our C to SMT translation (Sect. 5) and soundness
proofs have software dependencies including the LLVM compiler infrastructure,
the Z3 solver, and our translation passes, which together form our trusted com-
puting base. We have unit tested our C-to-SMT translations extensively. We
validated our synthesized POCs by manually executing them in Linux kernels
running inside the QEMU emulator, replicating the soundness bugs. Despite our
best efforts, it is possible that there are bugs in our software infrastructure.

Incompleteness of Differential Synthesis. The differential synthesis app-
roach is incomplete (Sect. 4.3). If our refined verification condition (Eq. (4)) finds
an operator unsound, and the synthesis is unable to produce a POC, there are
two possibilities. First, there may be long programs which could manifest the
unsound behavior. Our enumerative algorithm currently times out for programs
of length ≥ 4. Second, it is possible that the bug cannot be manifested with
any concrete eBPF program, and is reported due to overapproximation in the
soundness specification.

Verifying the Verifier 245

8 Related Work

Closest Related Work. The two closely related prior works are: (1) a paper
on tnum verification [71], and (2) a recent manuscript on verifying range analy-
sis [21]. The tnum paper explores formal verification for a single abstract domain:
tnums. The recent manuscript [21] also aims to prove the soundness of the eBPF
verifier’s value-tracking. In contrast, our work differs by (1) exposing the non-
modular nature of the abstract operators in the kernel, and (2) proposing a
method to reason about abstract operators for both arithmetic and branches,
(3) automatically generating VCs from kernel source code, and (4) synthesizing
eBPF programs that exercise the divergence of abstract and concrete semantics.

Safety of eBPF Programs And Static Analyzers. eBPF compilation and
interpreter safety has been a site of recent endeavors [59,60,69,73,74]. PRE-
VAIL [39] uses abstract interpretation using the zone abstract domain for check-
ing safety outside the kernel. In contrast, we focus on proving the soundness of
the in-kernel verifier.

Abstract Interpretation And Domain Refinement. Prior work on abstract
interpretation [30,31,33] and value-tracking abstract domains [55,56,68] have
indirectly influenced the eBPF verifier’s design [61,71]. The idea of combin-
ing abstract domains to enhance the precision of abstract representations was
first introduced by Cousot with the reduced product and disjunctive completion
domain refinements [29,34] and further improved by others [70]. A systematic
survey on product abstract operators is also available [28]. Specifically, we tailor
our work to verify the abstract operators in the Linux kernel.

C to First-order Logic. Similar to our approach that generates first-order-
logic formulas from C code, prior tools also generate verification conditions from
C code [42,46,54,64]. A few of them, SMACK [64] and SeaHorn [42], use LLVM
IR for this purpose. These tools support a rich subset of C. They typically model
memory as a linear array of bytes, which is not ideal for modeling kernel source
code. We explore a subset of C that is sufficient to handle kernel code and still
generates queries using only the bitvector theory, which enables us to efficiently
verify soundness for multiple versions of the kernel.

9 Conclusion

We present a fully automated method to verify the soundness of range analy-
sis in the Linux kernel’s eBPF verifier. We are able to check the soundness of
multiple kernel versions automatically because we generate the verification con-
ditions for the abstract operators directly from the kernel C code. We develop
specifications for reasoning about soundness when multiple abstract domains
are combined in a non-modular fashion in the kernel. Our refinement to this
specification, capturing preconditioning in the kernel, proves the soundness of
recent Linux kernels. We also successfully generate concrete eBPF programs

246 H. Vishwanathan et al.

that demonstrate the divergence between abstract and concrete semantics when
soundness checks fail. Our next step is to push for incorporating this approach
in the kernel development process, to help eliminate verifier bugs during code
review.

Acknowledgement. This paper is based upon work supported in part by the National
Science Foundation under FMITF-Track I Grant No. 2019302. We thank the CAV
reviewers, and He Zhu for their valuable feedback. We also thank CloudLab for pro-
viding the research testbed for our experiments.

References

1. bpf: fix incorrect sign extension in check_alu_op(). Accessed 14 Jan 2020. https://
github.com/torvalds/linux/commit/95a762e2c8c942780948091f8f2a4f32fce1ac6f

2. bpf, x32: Fix bug with ALU64 LSH, RSH, ARSH BPF_X shift by
0. Accessed 14 Apr 2021. https://github.com/torvalds/linux/commit/
68a8357ec15bdce55266e9fba8b8b3b8143fa7d2

3. CVE-2017-16996 Mishandling of register truncation. Accessed 22 Jan 2023.
https://nvd.nist.gov/vuln/detail/CVE-2017-16996

4. CVE-2017-17852 Mishandling of 32-bit ALU ops. Accessed 22 Jan 2023. https://
nvd.nist.gov/vuln/detail/CVE-2017-17852

5. CVE-2017-17853 Mishandling of 32-bit ALU ops. Accessed 22 Jan 2023. https://
nvd.nist.gov/vuln/detail/CVE-2017-17853

6. CVE-2017-17864 Mishandled comparison between pointer and unknown data
types. Accessed 14 Jan 2020. https://nvd.nist.gov/vuln/detail/CVE-2017-17864

7. CVE-2018-18445 Mishandling of 32-bit RSH op. Accessed 22 Jan 2023. https://
nvd.nist.gov/vuln/detail/CVE-2018-18445

8. CVE-2020-8835 Mishandling of bounds tracking for 32-bit JMPs. Accessed 22 Jan
2023. https://nvd.nist.gov/vuln/detail/CVE-2020-8835

9. CVE-2021-3490 The eBPF ALU32 bounds tracking for bitwise ops (AND, OR and
XOR) in the Linux kernel did not properly update 32-bit bounds. Accessed 22 Jan
2023. CVE-2021-3490

10. Facebook’s Katran load balancer: Kernel XDP program. Accessed 14
Jan 2020. https://github.com/facebookincubator/katran/blob/master/katran/
lib/bpf/balancer_kern.c

11. Linux BPF verifier. Accessed 14 Jan 2020. https://github.com/torvalds/linux/
blob/master/kernel/bpf/verifier.c

12. Netconf 2018 day 1. Accessed 19 Jan 2020. https://lwn.net/Articles/757201/
13. BPF instruction set. Accessed 14 Jan 2020. https://github.com/iovisor/bpf-docs/

blob/master/eBPF.md (2017)
14. Linux verifier’s abstract u64 addition (kernel v6.0). Accessed 08 Nov 2022. https://

github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L8333 (2022)
15. Linux verifier’s abstract u64 bitwise AND (kernel v6.0). Accessed 08 Nov 2022.

https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L8513 (2022)
16. Linux verifier’s top-level function for value-tracking in scalar for alu instructions

(kernel v6.0): adjust_scalar_min_max_vals: Accessed 27 Jan 2023. https://
github.com/torvalds/linux/blob/90aaef4e35c4a74b0f1593d06e39eda867ef13d3/
kernel/bpf/verifier.c#L10524 (2023)

https://github.com/torvalds/linux/commit/95a762e2c8c942780948091f8f2a4f32fce1ac6f
https://github.com/torvalds/linux/commit/95a762e2c8c942780948091f8f2a4f32fce1ac6f
https://github.com/torvalds/linux/commit/68a8357ec15bdce55266e9fba8b8b3b8143fa7d2
https://github.com/torvalds/linux/commit/68a8357ec15bdce55266e9fba8b8b3b8143fa7d2
https://nvd.nist.gov/vuln/detail/CVE-2017-16996
https://nvd.nist.gov/vuln/detail/CVE-2017-17852
https://nvd.nist.gov/vuln/detail/CVE-2017-17852
https://nvd.nist.gov/vuln/detail/CVE-2017-17853
https://nvd.nist.gov/vuln/detail/CVE-2017-17853
https://nvd.nist.gov/vuln/detail/CVE-2017-17864
https://nvd.nist.gov/vuln/detail/CVE-2018-18445
https://nvd.nist.gov/vuln/detail/CVE-2018-18445
https://nvd.nist.gov/vuln/detail/CVE-2020-8835
https://github.com/facebookincubator/katran/blob/master/katran/lib/bpf/balancer_kern.c
https://github.com/facebookincubator/katran/blob/master/katran/lib/bpf/balancer_kern.c
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://lwn.net/Articles/757201/
https://github.com/iovisor/bpf-docs/blob/master/eBPF.md
https://github.com/iovisor/bpf-docs/blob/master/eBPF.md
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L8333
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L8333
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L8513
https://github.com/torvalds/linux/blob/90aaef4e35c4a74b0f1593d06e39eda867ef13d3/kernel/bpf/verifier.c#L10524
https://github.com/torvalds/linux/blob/90aaef4e35c4a74b0f1593d06e39eda867ef13d3/kernel/bpf/verifier.c#L10524
https://github.com/torvalds/linux/blob/90aaef4e35c4a74b0f1593d06e39eda867ef13d3/kernel/bpf/verifier.c#L10524

Verifying the Verifier 247

17. LLVM’s MemorySSA. Accessed 27 Jan 2023. https://llvm.org/docs/MemorySSA.
html (2023)

18. Verifying the Verifier: eBPF Range Analysis Verification (2023). https://doi.org/
10.5281/zenodo.7931901

19. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018). https://doi.org/10.1145/3208071

20. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. SIGOPS
Oper. Syst. Rev. 40(5), 394–403 (2006). https://doi.org/10.1145/1168917.1168906

21. Bhat, S., Shacham, H.: Formal verification of the linux kernel eBPF verifier
range analysis. Accessed 27 Jan 2023. https://sanjit-bhat.github.io/assets/pdf/
ebpf-verifier-range-analysis22.pdf (2022)

22. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

23. Borkmann, D.: bpf: Fix scalar32_min_max_or bounds tracking.
Accessed 6 Nov 2022. https://github.com/torvalds/linux/commit/
5b9fbeb75b6a98955f628e205ac26689bcb1383e (2020)

24. Borkmann, D.: bpf: Undo incorrect __reg_bound_offset32 handling. Accessed 6
Nov 2022. https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/
commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef (2020)

25. Borkmann, D.: bpf: Fix alu32 const subreg bound tracking on bitwise opera-
tions. Accessed 6 Nov 2022. https://git.kernel.org/pub/scm/linux/kernel/git/bpf/
bpf.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e (2021)

26. Borkmann, D.: bpf: Fix signed_sub, add32_overflows type handling. Accessed
6 Nov 2022. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=bc895e8b2a64e502fbba72748d59618272052a8b (2021)

27. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

28. Cortesi, A., Costantini, G., Ferrara, P.: A survey on product operators in abstract
interpretation. Electr. Proceed. Theoret. Comput. Sci. 129, 325–336 (2013).
https://doi.org/10.4204/eptcs.129.19

29. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and per anal-
ysis of functional languages). In: Proceedings of 1994 IEEE International Confer-
ence on Computer Languages (ICCL1994), pp. 95–112 (1994). https://doi.org/10.
1109/ICCL.1994.288389

30. Cousot, P.: Abstract interpretation based formal methods and future challenges. In:
Wilhelm, R. (ed.) Informatics. LNCS, vol. 2000, pp. 138–156. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44577-3_10

31. Cousot, P.: Lecture 13 notes: MIT 16.399, abstract interpretation. Accessed
16 Apr 2021. http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
lecture_13-abstraction1/Cousot_MIT_2005_Course_13_4-1.pdf (2005)

32. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
Proceedings of the 2nd International Symposium on Programming, Paris, France,
pp. 106–130. Dunod (1976)

33. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. POPL 1977, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973

https://llvm.org/docs/MemorySSA.html
https://llvm.org/docs/MemorySSA.html
https://doi.org/10.5281/zenodo.7931901
https://doi.org/10.5281/zenodo.7931901
https://doi.org/10.1145/3208071
https://doi.org/10.1145/1168917.1168906
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://doi.org/10.1007/3-540-49059-0_14
https://github.com/torvalds/linux/commit/5b9fbeb75b6a98955f628e205ac26689bcb1383e
https://github.com/torvalds/linux/commit/5b9fbeb75b6a98955f628e205ac26689bcb1383e
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bc895e8b2a64e502fbba72748d59618272052a8b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bc895e8b2a64e502fbba72748d59618272052a8b
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.4204/eptcs.129.19
https://doi.org/10.1109/ICCL.1994.288389
https://doi.org/10.1109/ICCL.1994.288389
https://doi.org/10.1007/3-540-44577-3_10
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/lecture_13-abstraction1/Cousot_MIT_2005_Course_13_4-1.pdf
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/lecture_13-abstraction1/Cousot_MIT_2005_Course_13_4-1.pdf
https://doi.org/10.1145/512950.512973

248 H. Vishwanathan et al.

34. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. p. 269–282. POPL 1979, Association for Computing Machin-
ery, New York, NY, USA (1979). https://doi.org/10.1145/567752.567778

35. Cree, E.: bpf/verifier: fix bounds calculation on BPF_RSH. Accessed
6 Nov 2022. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941 (2017)

36. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

37. Duplyakin, D., et al.: The design and operation of cloudLab. In: Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical Conference, pp. 1–14.
USENIX ATC 2019, USENIX Association, USA (2019)

38. Fabre, A.: L4Drop: XDP DDoS mitigations. Accessed 19 Jan 2020. https://blog.
cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/

39. Gershuni, E., et al.: Simple and precise static analysis of untrusted Linux Kernel
extensions. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 1069–1084. PLDI 2019, Associa-
tion for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.
1145/3314221.3314590

40. Granger, P.: Improving the results of static analyses of programs by local decreasing
iterations. In: Shyamasundar, R. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 68–79.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-56287-7_95

41. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
SIGPLAN Not. 46(6), 62–73 (2011). https://doi.org/10.1145/1993316.1993506

42. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification,
pp. 343–361. Springer International Publishing, Cham (2015)

43. Horn, J.: Arbitrary read+write via incorrect range tracking in ebpf. Accessed 19
Jan 2020. https://bugs.chromium.org/p/project-zero/issues/detail?id=1454

44. Horn, J.: BPF: fix 32-bit ALU op verification. Accessed 6 Nov 2022.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?
id=468f6eafa6c44cb2c5d8aad35e12f06c240a812a (2017)

45. Horn, J.: bpf: 32-bit RSH verification must truncate input before the ALU op.
Accessed 6 Nov 2022. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=b799207e1e1816b09e7a5920fbb2d5fcf6edd681 (2018)

46. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

47. Lattner, C., Adve, V.: Llvm: a compilation framework for lifelong program analysis
& transformation. In: International symposium on code generation and optimiza-
tion, 2004. CGO 2004, pp. 75–86. IEEE (2004). https://doi.org/10.1109/CGO.
2004.1281665

48. Linux eBPF maintainers: bounds syncing for abstract registers. Accessed
31 Jan 2023. https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#
L1565 (2023)

49. Linux eBPF maintainers: using bounds syncing at end of alu operations. Accessed
31 Jan 2023. https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#
L9016 (2023)

https://doi.org/10.1145/567752.567778
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941
https://doi.org/10.1007/978-3-540-78800-3_24
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1007/3-540-56287-7_95
https://doi.org/10.1145/1993316.1993506
https://bugs.chromium.org/p/project-zero/issues/detail?id=1454
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=468f6eafa6c44cb2c5d8aad35e12f06c240a812a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=468f6eafa6c44cb2c5d8aad35e12f06c240a812a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b799207e1e1816b09e7a5920fbb2d5fcf6edd681
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b799207e1e1816b09e7a5920fbb2d5fcf6edd681
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L1565
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L1565
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L9016
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L9016

Verifying the Verifier 249

50. Lucas Leong: ZDI-20-1440: An incorrect calculation bug in the Linux Kernel eBPF
verifier. Accessed 22 Jan 2023. https://www.zerodayinitiative.com/blog/2021/1/
18/zdi-20-1440-an-incorrect-calculation-bug-in-the-linux-kernel-ebpf-verifier

51. Manfred Paul: CVE-2020-8835: Linux kernel privilege escalation via improper
eBPF program verification. Accessed 22 Jan 2023. https://www.zerodayinitiative.
com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-
improper-ebpf-program-verification

52. Massalin, H.: Superoptimizer: A look at the smallest program. In: Proceedings
of the Second International Conference on Architectual Support for Programming
Languages and Operating Systems, pp. 122–126. ASPLOS II, Association for Com-
puting Machinery, New York, NY, USA (1987). https://doi.org/10.1145/36206.
36194

53. McCanne, S., Jacobson, V.: The BSD packet filter: a new architec-
ture for user-level packet capture. In: USENIX Winter 1993 Confer-
ence (USENIX Winter 1993 Conference). USENIX Association, San Diego,
CA (1993). https://www.usenix.org/conference/usenix-winter-1993-conference/
bsd-packet-filter-new-architecture-user-level-packet

54. Merz, F., Falke, S., Sinz, C.: LLBMC: bounded model checking of C and C++
programs using a compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27705-4_12

55. Miné, A.: Abstract domains for bit-level machine integer and floating-point opera-
tions. In: WING2012 - 4th International Workshop on invariant Generation, p. 16.
Manchester, United Kingdom (2012). https://hal.science/hal-00748094

56. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpreta-
tion. Found. Trends® Programm. Lang. 4(3–4), 120–372 (2017). https://doi.org/
10.1561/2500000034

57. Monniaux, D.: Verification of device drivers and intelligent controllers: a case study.
In: Proceedings of the 7th ACM & IEEE international conference on Embedded
software, pp. 30–36 (2007). https://doi.org/10.1145/1289927.1289937

58. Mukherjee, M., Kant, P., Liu, Z., Regehr, J.: Dataflow-based pruning for speeding
up superoptimization. Proc. ACM Program. Lang. 4, 3428245 (OOPSLA) (2020).
https://doi.org/10.1145/3428245

59. Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling
symbolic evaluation for automated verification of systems code with serval. In:
Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp.
225–242. SOSP 2019, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3341301.3359641

60. Nelson, L., Van Geffen, J., Torlak, E., Wang, X.: Specification and verification in
the field: Applying formal methods to BPF just-in-time compilers in the Linux
Kernel. In: Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation. OSDI2020, USENIX Association, USA (2020)

61. Onderka, J., Ratschan, S.: Fast three-valued abstract bit-vector arithmetic. In:
Finkbeiner, B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 242–262.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94583-1_12

62. Palmiotti, V.: Kernel pwning with eBPF: a love story. Accessed 31 August 2021.
https://www.graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story

63. Phothilimthana, P.M., Thakur, A., Bodik, R., Dhurjati, D.: Scaling up superopti-
mization. In: Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 297–310.
ASPLOS 2016, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2872362.2872387

https://www.zerodayinitiative.com/blog/2021/1/18/zdi-20-1440-an-incorrect-calculation-bug-in-the-linux-kernel-ebpf-verifier
https://www.zerodayinitiative.com/blog/2021/1/18/zdi-20-1440-an-incorrect-calculation-bug-in-the-linux-kernel-ebpf-verifier
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://doi.org/10.1145/36206.36194
https://doi.org/10.1145/36206.36194
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://www.usenix.org/conference/usenix-winter-1993-conference/bsd-packet-filter-new-architecture-user-level-packet
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/978-3-642-27705-4_12
https://hal.science/hal-00748094
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1145/1289927.1289937
https://doi.org/10.1145/3428245
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1007/978-3-030-94583-1_12
https://www.graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story
https://doi.org/10.1145/2872362.2872387

250 H. Vishwanathan et al.

64. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_7

65. Regehr, J., Duongsaa, U.: Deriving abstract transfer functions for analyzing embed-
ded software. In: Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference
on Language, Compilers, and Tool Support for Embedded Systems, pp. 34–43.
LCTES 2006, Association for Computing Machinery, New York, NY, USA (2006).
https://doi.org/10.1145/1134650.1134657

66. Rick Larabee: eBPF and Analysis of the get-rekt-linux-hardened.c Exploit for
CVE-2017-16995. Accessed 22 Jan 2023. https://ricklarabee.blogspot.com/2018/
07/ebpf-and-analysis-of-get-rekt-linux.html

67. Sasnauskas, R., Chen, Y., Collingbourne, P., Ketema, J., Taneja, J., Regehr, J.:
Souper: a synthesizing superoptimizer. CoRR abs/1711.04422 (2017). https://doi.
org/10.48550/arXiv.1711.04422

68. Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, pp. 46–59. POPL 2017, Association for Computing Machinery, New
York, NY, USA (2017). https://doi.org/10.1145/3009837.3009885

69. Van Geffen, J., Nelson, L., Dillig, I., Wang, X., Torlak, E.: Synthesizing JIT com-
pilers for in-Kernel DSLs. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12225, pp. 564–586. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53291-8_29

70. Venet, A.: Abstract cofibered domains: Application to the alias analysis of untyped
programs. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145, pp.
366–382. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61739-6_53

71. Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S.: Sound, precise,
and fast abstract interpretation with tristate numbers. In: Proceedings of the 20th
IEEE/ACM International Symposium on Code Generation and Optimization, pp.
254–265. CGO 2022, IEEE Press (2022). https://doi.org/10.1109/CGO53902.2022.
9741267

72. Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S.: Agni: verifying
the Verifier (eBPF Range Analysis Verification). Accessed 29 May 2023. https://
github.com/bpfverif/ebpf-range-analysis-verification-cav23 (2023)

73. Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., Tatlock, Z.: Jitk: a trustworthy in-
Kernel interpreter infrastructure. In: Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, pp. 33–47. OSDI2014, USENIX
Association, USA (2014)

74. Xu, Q., Wong, M.D., Wagle, T., Narayana, S., Sivaraman, A.: Synthesizing safe and
efficient kernel extensions for packet processing. In: Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, pp. 50–64. SIGCOMM 2021, Association for Com-
puting Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3452296.
3472929

https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1145/1134650.1134657
https://ricklarabee.blogspot.com/2018/07/ebpf-and-analysis-of-get-rekt-linux.html
https://ricklarabee.blogspot.com/2018/07/ebpf-and-analysis-of-get-rekt-linux.html
https://doi.org/10.48550/arXiv.1711.04422
https://doi.org/10.48550/arXiv.1711.04422
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/3-540-61739-6_53
https://doi.org/10.1109/CGO53902.2022.9741267
https://doi.org/10.1109/CGO53902.2022.9741267
https://github.com/bpfverif/ebpf-range-analysis-verification-cav23
https://github.com/bpfverif/ebpf-range-analysis-verification-cav23
https://doi.org/10.1145/3452296.3472929
https://doi.org/10.1145/3452296.3472929

Verifying the Verifier 251

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Software Verification

Automated Verification of Correctness
for Masked Arithmetic Programs

Mingyang Liu1, Fu Song1,2,3(B), and Taolue Chen4

1 ShanghaiTech University, Shanghai 201210, China
2 Institute of Software, Chinese Academy of Sciences & University of Chinese

Academy of Sciences, Beijing 100190, China
songfu@shanghaitech.edu.cn

3 Automotive Software Innovation Center, Chongqing 400000, China
4 Birkbeck, University of London, London WC1E 7HX, UK

Abstract. Masking is a widely-used effective countermeasure against
power side-channel attacks for implementing cryptographic algorithms.
Surprisingly, few formal verification techniques have addressed a fun-
damental question, i.e., whether the masked program and the original
(unmasked) cryptographic algorithm are functional equivalent. In this
paper, we study this problem for masked arithmetic programs over Galois
fields of characteristic 2. We propose an automated approach based on
term rewriting, aided by random testing and SMT solving. The overall
approach is sound, and complete under certain conditions which do meet
in practice. We implement the approach as a new tool FISCHER and carry
out extensive experiments on various benchmarks. The results confirm
the effectiveness, efficiency and scalability of our approach. Almost all
the benchmarks can be proved for the first time by the term rewriting
system solely. In particular, FISCHER detects a new flaw in a masked
implementation published in EUROCRYPT 2017.

1 Introduction

Power side-channel attacks [42] can infer secrecy by statistically analyzing the
power consumption during the execution of cryptographic programs. The vic-
tims include implementations of almost all major cryptographic algorithms, e.g.,
DES [41], AES [54], RSA [33], Elliptic curve cryptography [46,52] and post-
quantum cryptography [56,59]. To mitigate the threat, cryptographic algorithms
are often implemented via masking [37], which divides each secret value into
(d + 1) shares by randomization, where d is a given masking order. However, it
is error-prone to implement secure and correct masked implementations for non-
linear functions (e.g., finite-field multiplication, module addition and S-Box),

This work is supported by the National Natural Science Foundation of China
(62072309), CAS Project for Young Scientists in Basic Research (YSBR-040), ISCAS
New Cultivation Project (ISCAS-PYFX-202201), an oversea grant from the State Key
Laboratory of Novel Software Technology, Nanjing University (KFKT2022A03), and
Birkbeck BEI School Project (EFFECT).
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 255–280, 2023.
https://doi.org/10.1007/978-3-031-37709-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_13

256 M. Liu et al.

which are prevalent in cryptography. Indeed, published implementations of AES
S-Box that have been proved secure via paper-and-pencil [19,40,58] were later
shown to be vulnerable to power side-channels when d is no less than 4 [24].

While numerous formal verification techniques have been proposed to prove
resistance of masked cryptographic programs against power side-channel attacks
(e.g., [7,13,26,29–32,64]), one fundamental question which is largely left open is
the (functional) correctness of the masked cryptographic programs, i.e., whether
a masked program and the original (unmasked) cryptographic algorithm are
actually functional equivalent. It is conceivable to apply general-purpose pro-
gram verifiers to masked cryptographic programs. Constraint-solving based
approaches are available, for instance, Boogie [6] generates constraints via weak-
est precondition reasoning which then invokes SMT solvers; SeaHorn [36] and
CPAChecker [12] adopt model checking by utilizing SMT or CHC solvers. More
recent work (e.g., CryptoLine [28,45,53,62]) resorts to computer algebra, e.g.,
to reduce the problem to the ideal membership problem. The main challenge of
applying these techniques to masked cryptographic programs lies in the pres-
ence of finite-field multiplication, affine transformations and bitwise exclusive-
OR (XOR). For instance, finite-field multiplication is not natively supported by
the current SMT or CHC solvers, and the increasing number of bitwise XOR
operations causes the infamous state-explosion problem. Moreover, to the best of
our knowledge, current computer algebra systems do not provide the full support
required by verification of masked cryptographic programs.
Contributions. We propose a novel, term rewriting based approach to effi-
ciently check whether a masked program and the original (unmasked) crypto-
graphic algorithm (over Galois fields of characteristic 2) are functional equiva-
lent. Namely, we provide a term rewriting system (TRS) which can handle affine
transformations, bitwise XOR, and finite-field multiplication. The verification
problem is reduced to checking whether a term can be rewritten to normal form
0. This approach is sound, i.e., once we obtain 0, we can claim functional equiv-
alence. In case the TRS reduces to a normal form which is different from 0,
most likely they are not functional equivalent, but a false positive is possible.
We further resort to random testing and SMT solving by directly analyzing the
obtained normal form. As a result, it turns out that the overall approach is
complete if no uninterpreted functions are involved in the normal form.

We implement our approach as a new tool FISCHER (FunctionalIty of
maSked CryptograpHic program verifiER), based on the LLVM framework [43].
We conduct extensive experiments on various masked cryptographic program
benchmarks. The results show that our term rewriting system solely is able
to prove almost all the benchmarks. FISCHER is also considerably more effi-
cient than the general-purpose verifiers SMACK [55], SeaHorn, CPAChecker, and
Symbiotic [22], cryptography-specific verifier CryptoLine, as well as a straight-
forward approach that directly reduces the verification task to SMT solving. For
instance, our approach is able to handle masked implementations of finite-field
multiplication with masking orders up to 100 in less than 153 s, while none of
the compared approaches can handle masking order of 3 in 20min.

Automated Verification of Correctness for Masked Arithmetic Programs 257

In particular, for the first time we detect a flaw in a masked implementation of
finite-field multiplication published in EUROCRYPT 2017 [8]. The flaw is tricky,
as it only occurs for the masking order d ≡ 1 mod 4.1 This finding highlights
the importance of the correctness verification of masked programs, which has
been largely overlooked, but of which our work provides an effective solution.

Our main contributions can be summarized as follows.

– We propose a term rewriting system for automatically proving the functional
correctness of masked cryptographic programs;

– We implement a tool FISCHER by synergistically integrating the term rewrit-
ing based approach, random testing and SMT solving;

– We conduct extensive experiments, confirming the effectiveness, efficiency,
scalability and applicability of our approach.

Related Work. Program verification has been extensively studied for decades.
Here we mainly focus on their application in cryptographic programs, for which
some general-purpose program verifiers have been adopted. Early work [3] uses
Boogie [6]. HACL* [65] uses F* [2] which verifies programs by a combination of
SMT solving and interactive proof assistants. Vale [15] uses F* and Dafny [44]
where Dafny harnesses Boogie for verification. Cryptol [61] checks equivalence
between machine-readable cryptographic specifications and real-world imple-
mentations via SMT solving. As mentioned before, computer algebra systems
(CAS) have also been used for verifying cryptographic programs and arithmetic
circuits, by reducing to the ideal membership problem together with SAT/SMT
solving. Typical work includes CryptoLine and AMulet [38,39]. However, as
shown in Sect. 7.2, neither general-purpose verifiers (SMACK with Boogie and
Corral, SeaHorn, CPAChecker and Symbiotic) nor the CAS-based verifier Cryp-
toLine is sufficiently powerful to verify masked cryptographic programs. Interac-
tive proof assistants (possibly coupled with SMT solvers) have also been used to
verify unmasked cryptographic programs (e.g., [1,4,9,23,27,48,49]). Compared
to them, our approach is highly automatic, which is more acceptable and easier
to use for general software developers.
Outline. Section 2 recaps preliminaries. Section 3 presents a language on which
the cryptographic program is formalized. Section 4 gives an example and an
overview of our approach. Section 5 and Sect. 6 introduce the term rewriting
system and verification algorithms. Section 7 reports experimental results. We
conclude in Sect. 8. The source code of our tool and benchmarks are available at
https://github.com/S3L-official/FISCHER.

2 Preliminaries

For two integers l, u with l ≤ u, [l, u] denotes the set of integers {l, l+1, · · · , u}.
Galois Field. A Galois field GF(pn) comprises polynomials an−1X

n−1 + · · · +
a1X

1 + a0 over Zp = [0, p − 1], where p is a prime number, n is a posi-
tive integer, and ai ∈ Zp. (Here p is the characteristic of the field, and pn

1 This flaw has been confirmed by an author of [8].

https://github.com/S3L-official/FISCHER

258 M. Liu et al.

is the order of the field.) Symmetric cryptography (e.g., DES [50], AES [25],
SKINNY [10], PRESENT [14]) and bitsliced implementations of asymmetric
cryptography (e.g., [17]) intensively uses GF(2n). Throughout the paper, F

denotes the Galois field GF(2n) for a fixed n, and ⊕ and ⊗ denote the addition
and multiplication on F, respectively. Recall that GF(2n) can be constructed
from the quotient ring of the polynomial ring GF(2)[X] with respect to the ideal
generated by an irreducible polynomial P of degree n. Hence, multiplication is
the product of two polynomials modulo P in GF(2)[X] and addition is bitwise
exclusive-OR (XOR) over the binary representation of polynomials. For exam-
ple, AES uses GF(256) = GF(2)[X]/(X8 + X4 + X3 + X + 1). Here n = 8 and
P = X8 + X4 + X3 + X + 1.
Higher-Order Masking. To achieve order-d security against power side-
channel attacks under certain leakage models, masking is usually used [37,60].
Essentially, masking partitions each secret value into (usually d + 1) shares so
that knowing at most d shares cannot infer any information of the secret value,
called order-d masking. In Boolean masking, a value a ∈ F is divided into shares
a0, a1, . . . , ad ∈ F such that a0⊕a1⊕. . .⊕ad = a. Typically, a1, . . . , ad are random
values and a0 = a⊕a1⊕. . .⊕ad. The tuple (a0, a1, . . . , ad), denoted by a, is called
an encoding of a. We write

⊕
i∈[0,d] ai (or simply

⊕
a) for a0⊕a1⊕. . .⊕ad. Addi-

tive masking can be defined similarly to Boolean masking, where ⊕ is replaced
by the module arithmetic addition operator. In this work, we focus on Boolean
masking as the XOR operation is more efficient to implement.

To implement a masked program, for each operation in the cryptographic
algorithm, a corresponding operation on shares is required. As we will see later,
when the operation is affine (i.e. the operation f satisfies f(x⊕y) = f(x)⊕f(y)⊕c
for some constant c), the corresponding operation is simply to apply the original
operation on each share ai in the encoding (a0, a1, . . . , ad). However, for non-
affine operations (e.g., multiplication and addition), it is a very difficult task and
error-prone [24]. Ishai et al. [37] proposed the first masked implementation of
multiplication, but limited to the domain GF(2) only. The number of the required
random values and operations is not optimal and is known to be vulnerable in
the presence of glitches because the electric signals propagate at different speeds
in the combinatorial paths of hardware circuits. Thus, various follow-up papers
proposed ways to implement higher-order masking for the domain GF(2n) and/or
optimizing the computational complexity, e.g., [8,11,21,34,58], all of which are
referred to as ISW scheme in this paper. In another research direction, new
glitch-resistant Boolean masking schemes have been proposed, e.g., Hardware
Private Circuits (HPC1 & HPC2) [20], Domain-oriented Masking (DOM) [35]
and Consolidating Masking Schemes (CMS) [57]. In this work, we are interested
in automatically proving the correctness of the masked programs.

3 The Core Language

In this section, we first present the core language MSL, given in Fig. 1, based on
which the verification problem is formalized.

Automated Verification of Correctness for Masked Arithmetic Programs 259

Fig. 1. Syntax of MSL in Backus-Naur form

A program P in MSL is given by a sequence of procedure definitions and
affine transformation definitions/declarations. A procedure definition starts with
the keyword proc, followed by a procedure name, a list of input parameters, an
output and its body. The procedure body has two blocks of statements, separated
by a special statement shares d+1, where d is the masking order. The first block
〈stmts〉origin, called the original block, implements its original functionality on
the input parameters without masking. The second block 〈stmts〉masked, called
the masked block, is a masked implementation of the original block over the
input encodings x of the input parameters x. The input parameters and output
x, declared using the keywords input and output respectively, are scalar variables
in the original block, but are treated as the corresponding encodings (i.e., tuples)
x in the masked block. For example, input x declares the scalar variable x as
the input of the original block, while it implicitly declares an encoding x =
(x0, x1, . . . , xd) as the input of the masked block with shares d + 1.

We distinguish affine transformation definitions and declarations. The former
starts with the keyword affine, followed by a name f , an input, an output and its
body. It is expected that the affine property ∀x, y ∈ F.f(x⊕y) = f(x)⊕f(y)⊕ c
holds for some affine constant c ∈ F. (Note that the constant c is not explicitly
provided in the program, but can be derived, cf. Sect. 6.2.) The transformation
f is linear if its affine constant c is 0. In contrast, an affine transformation dec-
laration f simply declares a transformation. As a result, it can only be used
to declare a linear one (i.e., c must be 0), which is treated as an uninterpreted
function. Note that non-linear affine transformation declarations can be achieved
by declaring linear affine transformations and affine transformation definitions.
Affine transformation here serves as an abstraction to capture complicated oper-
ations (e.g., shift, rotation and bitwise Boolean operations) and can accelerate
verification by expressing operations as uninterpreted functions. In practice, a
majority of cryptographic algorithms (in symmetric cryptography) can be rep-
resented by a composition of S-box, XOR and linear transformation only.

Masking an affine transformation can simply mask an input encoding in a
share-wise way, namely, the masked version of the affine transformation f(a) is

f(a0 ⊕ a1 ⊕ . . . ⊕ ad) =
{

f(a0) ⊕ f(a1) ⊕ . . . ⊕ f(ad), if d is even;
f(a0) ⊕ f(a1) ⊕ . . . ⊕ f(ad) ⊕ c, if d is odd.

260 M. Liu et al.

This is default, so affine transformation definition only contains the original
block but no masked block.

A statement is either an assignment or a function call. MSL features two
types of assignments which are either of the form x ← e defined as usual or of
the form r ←rand which assigns a uniformly sampled value from the domain
F to the variable r. As a result, r should be read as a random variable. We
assume that each random variable is defined only once. We note that the actual
parameters and output are scalar if the procedure is invoked in an original block
while they are the corresponding encodings if it is invoked in a masked block.

MSL is the core language of our tool. In practice, to be more user-friendly,
our tool also accepts C programs with conditional branches and loops, both
of which should be statically determinized (e.g., loops are bound and can be
unrolled; the branching of conditionals can also be fixed after loop unrolling).
Furthermore, we assume there is no recursion and dynamic memory allocation.
These restrictions are sufficient for most symmetric cryptography and bitsliced
implementations of public-key cryptography, which mostly have simple control
graphs and memory aliases.
Problem Formalization. Fix a program P with all the procedures using order-
d masking. We denote by Po (resp. Pm) the program P where all the masked
(resp. original) blocks are omitted. For each procedure f , the procedures fo and
fm are defined accordingly.

Definition 1. Given a procedure f of P with m input parameters, fm and fo
are functional equivalent, denoted by fm ∼= fo, if the following statement holds:

∀a1, · · · , am, r1, · · · , rh ∈ F, ∀a1, · · · ,am ∈ F
d+1.

(∧

i∈[1,m]
ai =

⊕

j∈[0,d]
ai

j

) → (
fo(a

1, · · · , am) =
⊕

i∈[0,d]
fm(a

1, · · · ,am)i
)

where r1, · · · , rh are all the random variables used in fm.

Note that although the procedure fm is randomized (i.e., the output encoding
fm(a1, · · · ,ami) is technically a random variable), for functional equivalence we
consider a stronger notion, viz., to require that fm and fo are equivalent under
any values in the support of the random variables r1, · · · , rh. Thus, r1, · · · , rh
are universally quantified in Definition 1.

The verification problem is to check if fm ∼= fo for a given procedure f
where

∧
i∈[1,m] ai =

⊕
j∈[0,d] a

i
j and fo(a1, · · · , am) =

⊕
i∈[0,d] fm(a

1, · · · ,am)i
are regarded as pre- and post-conditions, respectively. Thus, we assume the
unmasked procedures themselves are correct (which can be verified by, e.g.,
CryptoLine). Our focus is on whether the masked counterparts are functional
equivalent to them.

4 Overview of the Approach

In this section, we first present a motivating example given in Fig. 2, which com-
putes the multiplicative inverse in GF(28) for the AES S-Box [58] using first-order

Automated Verification of Correctness for Masked Arithmetic Programs 261

Fig. 2. Motivating example, where x denotes (x0, x1).

Boolean masking. It consists of three affine transformation definitions and two
procedure definitions. For a given input x, exp2(x) outputs x2, exp4(x) outputs
x4 and exp16(x) outputs x16. Obviously, these three affine transformations are
indeed linear.

Procedure sec_multo(a, b) outputs a⊗b. Its masked version sec_multm(a,b)
computes the encoding c = (c0, c1) over the encodings a = (a0, a1) and b =
(b0, b1). Clearly, it is desired that c0 ⊕ c1 = a ⊗ b if a0 ⊕ a1 = a and b0 ⊕
b1 = b. Procedure refresh_maskso(x) is the identity function while its masked
version refresh_masksm(x) re-masks the encoding x using a random variable r0.
Thus, it is desired that y0 ⊕ y1 = x if x = x0 ⊕ x1. Procedure sec_exp254o(x)
computes the multiplicative inverse x254 of x in GF(28). Its masked version
sec_exp254m(x) computes the encoding y = (y0, y1) where refresh_masksm is
invoked to avoid power side-channel leakage. Thus, it is desired that y0 ⊕ y1 =
x254 if x0⊕x1 = x. In summary, it is required to prove sec_multm ∼= sec_multo,
refresh_masksm ∼= refresh_maskso and sec_exp254m ∼= sec_exp254o.

4.1 Our Approach

An overview of FISCHER is shown in Fig. 3. The input program is expected
to follow the syntax of MSL but in C language. Moreover, the pre-conditions
and post-conditions of the verification problem are expressed by assume and
assert statements in the masked procedure, respectively. Recall that the input
program can contain conditional branches and loops when are statically deter-
minized. Furthermore, affine transformations can use other common operations
(e.g., shift, rotation and bitwise Boolean operations) besides the addition ⊕ and
multiplication ⊗ on the underlying field F. FISCHER leverages the LLVM frame-
work to obtain the LLVM intermediate representation (IR) and call graph, where

262 M. Liu et al.

FISCHER

C program
LLVM

Framework Call
Graph

LLVM
IR

Result

Func�onal
Equivalence

Checking

Affine
Constant

Compu�ng

Term
Rewri�ng

SMT-based
Solving

Symbolic
Execu�on

Fig. 3. Overview of FISCHER.

all the procedure calls are inlined. It then invokes Affine Constant Computing to
iteratively compute the affine constants for affine transformations according to
the call graph, and Functional Equivalence Checking to check functional equiva-
lence, both of which rely on the underpinning engines, viz., Symbolic Execution
(refer to symbolic computation without path constraint solving in this work),
Term Rewriting and SMT-based Solving.

We apply intra-procedural symbolic execution to compute the symbolic out-
puts of the procedures and transformations, i.e., expressions in terms of inputs,
random variables and affine transformations. The symbolic outputs are treated
as terms based on which both the problems of functional equivalence checking
and affine constant computing are solved by rewriting to their normal forms (i.e.,
sums of monomials w.r.t. a total order). The analysis result is often conclusive
from normal forms. In case it is inconclusive, we iteratively inline affine trans-
formations when their definitions are available until either the analysis result
is conclusive or no more affine transformations can be inlined. If the analysis
result is still inconclusive, to reduce false positives, we apply random testing
and accurate (but computationally expansive) SMT solving to the normal forms
instead of the original terms. We remark that the term rewriting system solely
can prove almost all the benchmarks in our experiments.

Consider the motivating example. To find the constant c ∈ F of exp2 such
that the property ∀x, y ∈ F.exp2(x ⊕ y) = exp2(x) ⊕ exp2(y) ⊕ c holds, by
applying symbolic execution, exp2(x) is expressed as the term x ⊗ x. Thus, the
property is reformulated as (x ⊕ y) ⊗ (x ⊕ y) = (x ⊗ x) ⊕ (y ⊗ y) ⊕ c, from
which we can deduce that the desired affine constant c is equivalent to the term
((x ⊕ y)⊗ (x ⊕ y))⊕ (x ⊗ x)⊕ (y ⊗ y). Our TRS will reduce the term as follows:

((x ⊕ y) ⊗ (x ⊕ y)) ⊕ (x ⊗ x) ⊕ (y ⊗ y) Distributive Law
= (x ⊗ (x ⊕ y)) ⊕ (y ⊗ (x ⊕ y)) ⊕ (x ⊗ x) ⊕ (y ⊗ y) Distributive Law
= (x ⊗ x) ⊕ (x ⊗ y) ⊕ (y ⊗ x) ⊕ (y ⊗ y) ⊕ (x ⊗ x) ⊕ (y ⊗ y) Commutative Law
= (x ⊗ x) ⊕ (x ⊗ y) ⊕ (x ⊗ y) ⊕ (y ⊗ y) ⊕ (x ⊗ x) ⊕ (y ⊗ y) Commutative Law
= (x ⊗ x) ⊕ (x ⊗ x) ⊕ (x ⊗ y) ⊕ (x ⊗ y) ⊕ (y ⊗ y) ⊕ (y ⊗ y) = 0 Zero Law of XOR

For the transformation exp4(x), by applying symbolic execution, it can be
expressed as the term exp2(exp2(x)). To find the constant c ∈ F to satisfy ∀x, y ∈
F.exp4(x⊕y) = exp4(x)⊕exp4(y)⊕c, we compute the term exp2(exp2(x⊕y))⊕
exp2(exp2(x)) ⊕ exp2(exp2(y)). By applying our TRS, we have:

Automated Verification of Correctness for Masked Arithmetic Programs 263

exp2(exp2(x ⊕ y)) ⊕ exp2(exp2(x)) ⊕ exp2(exp2(y))

= exp2(exp2(x) ⊕ exp2(y)) ⊕ exp2(exp2(x)) ⊕ exp2(exp2(y))

= exp2(exp2(x)) ⊕ exp2(exp2(y)) ⊕ exp2(exp2(x)) ⊕ exp2(exp2(y))

= exp2(exp2(x)) ⊕ exp2(exp2(x)) ⊕ exp2(exp2(y)) ⊕ exp2(exp2(y)) = 0

Clearly, the affine constant of exp4 is 0. Similarly, we can deduce that the affine
constant of the transformation exp16 is 0 as well.

To prove sec_multo ∼= sec_multm, by applying symbolic execution, we have
that sec_multo(a, b) = a ⊗ b and sec_multm(a,b) = c = (c0, c1), where c0 =
(a0⊗b0)⊕r0 and c1 = (a1⊗b1)⊕(r0⊕(a0⊗b1)⊕(a1⊗b0)). Then, by Definition 1,
it suffices to check

∀a, b, a0, a1, b0, b1, r0 ∈ F.
(
a = a0 ⊕ a1 ∧ b = b0 ⊕ b1

) →
(
a ⊗ b = ((a0 ⊗ b0) ⊕ r0) ⊕ (

(a1 ⊗ b1) ⊕ (r0 ⊕ (a0 ⊗ b1) ⊕ (a1 ⊗ b0))
))

.

Thus, we check the term
(
(a0 ⊕ a1)⊗ (b0 ⊕ b1)

) ⊕ ((a0 ⊗ b0)⊕ r0)⊕ ((a1 ⊗ b1)⊕
(r0 ⊕ (a0 ⊗ b1)⊕ (a1 ⊗ b0))) which is equivalent to 0 iff sec_multo ∼= sec_multm.
Our TRS is able to reduce the term to 0. Similarly, we represent the outputs
of sec_exp254o and sec_exp254m as terms via symbolic execution, from which
the statement sec_exp254o ∼= sec_exp254m is also encoded as a term, which
can be reduced to 0 via our TRS without inlining any transformations.

5 Term Rewriting System

In this section, we first introduce some basic notations and then present our
term rewriting system.

Definition 2. Given a program P over F, a signature ΣP of P is a set of
symbols F ∪ {⊕,⊗, f1, . . . , ft}, where s ∈ F with arity 0 are all the constants in
F, ⊕ and ⊗ with arity 2 are addition and multiplication operators on F, and
f1, · · · , ft with arity 1 are affine transformations defined/declared in P.

For example, the signature of the motivating example is F ∪
{⊕,⊗, exp2, exp4, exp16}. When it is clear from the context, the subscript P
is dropped from ΣP .

Definition 3. Let V be a set of variables (assuming Σ∩V = ∅), the set T [Σ,V]
of Σ-terms over V is inductively defined as follows:

– F ⊆ T [Σ,V] and V ⊆ T [Σ,V] (i.e., every variable/constant is a Σ-term);
– τ ⊕ τ ′ ∈ T [Σ,V] and τ ⊗ τ ′ ∈ T [Σ,V] if τ, τ ′ ∈ T [Σ,V] (i.e., application of

addition and multiplication operators to Σ-terms yield Σ-terms);
– fj(τ) ∈ T [Σ,V] if τ ∈ T [Σ,V] and j ∈ [1, t] (i.e., application of affine

transformations to Σ-terms yield Σ-terms).

We denote by T\⊕(Σ,V) the set of Σ-terms that do not use the operator ⊕.

264 M. Liu et al.

A Σ-term α ∈ T [Σ,V] is called a factor if τ ∈ F ∪ V or τ = fi(τ ′) for some
i ∈ [1, t] such that τ ′ ∈ T\⊕(Σ,V). A monomial is a product α1 ⊗ · · · ⊗ αk of
none-zero factors for k ≥ 1. We denote by M [Σ,V] the set of monomials. For
instance, consider variables x, y ∈ V and affine transformations f1, f2 ∈ Σ. All
f1(f2(x))⊗f1(y), f1(2⊗f2(4⊗x)), f1(x⊕y) and f1(f2(x))⊕f1(x) are Σ-terms,
both f1(f2(x))⊗f1(y) and f1(2⊗f2(4⊗x)) are monomials, while neither f1(x⊕y)
nor f1(f2(x))⊕f1(x) is a monomial. For the sake of presentation, Σ-terms will be
written as terms, and the operator ⊗ may be omitted, e.g., τ1τ2 denotes τ1 ⊗ τ2,
and τ2 denotes τ ⊗ τ .

Definition 4. A polynomial is a sum
⊕

i∈[1,t] mi of monomials m1 . . . mt ∈
M [Σ,V]. We use P [Σ,V] to denote the set of polynomials.

To simplify and normalize polynomials, we impose a total order on monomials
and their factors.

Definition 5. Fix an arbitrary total order ≥s on V � Σ.
For two factors α and α′, the factor order ≥l is defined such that α ≥l α′ if

one of the following conditions holds:

– α, α′ ∈ F ∪ V and α ≥s α′;
– α = f(τ) and α′ = f ′(τ ′) such that f ≥s f ′ or (f = f ′ and τ ≥p τ ′);
– α = f(τ) such that f ≥s α′ or α′ = f(τ) such that α ≥s f .

Given a monomial m = α1 · · · αk, we write sort≥l
(α1, · · · , αk) for the monomial

which includes α1, · · · , αk as factors, but sorts them in descending order.
Given two monomials m = α1 · · · αk and m′ = α′

1 · · · α′
k′ , the monomial

order ≥p is defined as the lexicographical order between sort≥l
(α1, · · · , αk) and

sort≥l
(α′

1, · · · , α′
k′).

Intuitively, the factor order ≥l follows the given order ≥s on V � Σ, where
the factor order between two factors with the same affine transformation f
is determined by their parameters. We note that if sort≥l

(α′
1, · · · , α′

k′) is a
prefix of sort≥l

(α1, · · · , αk), we have: α1 · · · αk ≥p α′
1 · · · α′

k′ . Furthermore, if
α1 · · · αk ≥p α′

1 · · · α′
k′ and α′

1 · · · α′
k′ ≥p α1 · · · αk, then sort≥l

(α′
1, · · · , α′

k′) =
sort≥l

(α1, · · · , αk). We denote by α1 · · · αk >p α′
1 · · · α′

k′ if α1 · · · αk ≥p α′
1 · · · α′

k′

but sort≥l
(α′

1, · · · , α′
k′) �= sort≥l

(α1, · · · , αk).

Proposition 1. The monomial order ≥p is a total order on monomials.

Definition 6. Given a program P, we define the corresponding term rewriting
system (TRS) R as a tuple (Σ,V,≥s,Δ), where Σ is a signature of P, V is a
set of variables of P (assuming Σ ∩ V = ∅), ≥s is a total order on V � Σ, and
Δ is the set of term rewriting rules given below:

Automated Verification of Correctness for Masked Arithmetic Programs 265

R1
(m′

1, · · · ,m′
k) = sort≥p

(m1, · · · ,mk) �= (m1, · · · ,mk)

m1 ⊕ · · · ⊕ mk �→ m′
1 ⊕ · · · ⊕ m′

k

R3
τ ⊕ τ �→ 0

R5
0τ �→ 0

R2
(α′

1, · · · , α′
k) = sort≥l

(α1, · · · , αk) �= (α1, · · · , αk)
α1 · · · αk �→ α′

1 · · · α′
k

R4
τ0 �→ 0

R6
τ ⊕ 0 �→ τ

R7
0 ⊕ τ �→ τ

R8
τ1 �→ τ

R9
1τ �→ τ

R10
(τ1 ⊕ τ2)τ �→ (τ1τ) ⊕ (τ2τ)

R11
τ(τ1 ⊕ τ2) �→ (ττ1) ⊕ (ττ2)

R12
f(τ1 ⊕ τ2) �→ f(τ1) ⊕ f(τ2) ⊕ c

R13
f(0) �→ c

where m1,m
′
1, · · · ,mk,m

′
k ∈ M [Σ,V], α1, α2, α3 are factors, τ, τ1, τ2 ∈ T [Σ,V]

are terms, f ∈ Σ is an affine transformation with affine constant c.

Intuitively, rules R1 and R2 specify the commutativity of ⊕ and ⊗, respec-
tively, by which monomials and factors are sorted according to the orders ≥p

and ≥l, respectively. Rule R3 specifies that ⊕ is essentially bitwise XOR. Rules
R4 and R5 specify that 0 is the multiplicative zero. Rules R6 and R7 (resp. R8
and R9) specify that 0 (resp. 1) is additive (resp. multiplicative) identity. Rules
R10 and R11 express the distributivity of ⊗ over ⊕. Rule R12 expresses the
affine property of an affine transformation while rule R13 is an instance of rule
R12 via rules R3 and R5.

Given a TRS R = (Σ,V,≥s,Δ) for a given program P, a term τ ∈ T [Σ,V]
can be rewritten to a term τ ′, denoted by τ ⇒ τ ′, if there is a rewriting rule
τ1 �→ τ2 such that τ ′ is a term obtained from τ by replacing an occurrence of the
sub-term τ1 with the sub-term τ2. A term is in a normal form if no rewriting
rules can be applied. A TRS is terminating if all terms can be rewritten to a
normal form after finitely many rewriting. We denote by τ � τ ′ with τ ′ being
the normal form of τ .

We show that any TRS R associated with a program P is terminating, and
that any term will be rewritten to a normal form that is a polynomial, indepen-
dent of the way of applying rules.

Lemma 1. For every normal form τ ∈ T [Σ,V] of the TRS R, the term τ must
be a polynomial m1 ⊕ · · · ⊕ mk such that (1) ∀i ∈ [1, k − 1], mi >p mi+1, and
(2) for every monomial mi = α1 · · · αh and ∀i ∈ [1, h − 1], αi ≥l αi+1.

Proof. Consider a normal form τ ∈ T [Σ,V]. If τ is not a polynomial, then there
must exist some monomial mi in which the addition operator ⊕ is used. This
means that either rule R10 or R11 is applicable to the term τ which contradicts
the fact that τ is normal form.

Suppose τ is the polynomial m1 ⊕ · · · ⊕ mk.

– If there exists i : 1 ≤ i < k such that mi >p mi+1 does not hold, then either
mi = mi+1 or mi+1 >p mi. If mi = mi+1, then rule R3 is applicable to the
term τ . If mi+1 >p mi, then rule R1 is applicable to the term τ . Thus, for
every 1 ≤ i < k, mi >p mi+1.

– If there exist a monomial mi = α1 · · · αh and i : 1 ≤ i < h such that αi ≥l

αi+1 does not hold, then αi+1 >l αi. This means that rule R2 is applicable to
the term τ . Thus, for every monomial mi = α1 · · · αh and every i : 1 ≤ i < h,
αi ≥l αi+1. ��

266 M. Liu et al.

Lemma 2. The TRS R = (Σ,V,≥s,Δ) of a given program P is terminating.

Proof. Consider a term τ ∈ T [Σ,V]. Let π = τ1 ⇒ τ2 ⇒ τ3 ⇒ · · · ⇒ τi ⇒ · · · be
a reduction of the term τ by applying rewriting rules, i.e., τ = τ1. We prove that
the reduction π is finite by showing that all the rewriting rules can be applied
finitely.

First, since rules R1 and R2 only sort the monomials and factors, respectively,
while sorting always terminates using any classic sorting algorithm (e.g., quick
sort algorithm), rules R1 and R2 can only be consecutively applied finitely for
each term τi due to the premises sort≥p

(m1, · · · ,mk) �= (m1, · · · ,mk) and
sort≥l

(α1, · · · , αk) �= (α1, · · · , αk) in rules R1 and R2, respectively.
Second, rules R10, R11 and R12 can only be applied finitely in the reduction

π, as these rules always push the addition operator ⊕ toward the root of the
syntax tree of the term τi when one of them is applied onto a term τi, while the
other rules either eliminate or reorder the addition operator ⊕.

Algorithm 1: Term Normalization
1 Function TermNorm(R, τ , λ):
2 Rewrite τ by iteratively applying rules R3–R13 until no more update;
3 τ ′ ← sort(τ) by iteratively applying rule R2;
4 τ ′ ← sort(τ ′) by iteratively applying rule R1;
5 Rewrite τ ′ by iteratively applying rules R3, R6, R7 until no more update;
6 return τ ′

Lastly, rules R3–9 and R13 can only be applied finitely in the reduction π,
as these rules reduce the size of the term by 1 when one of them is applied onto
a term τi while the rules R10–12 that increase the size of the term can only be
applied finitely.

Hence, the reduction π is finite indicating that the TRS R is terminating. ��
By Lemmas 1 and 2, any term τ ∈ T [Σ,V] can be rewritten to a normal

form that must be a polynomial.

Theorem 1. Let R = (Σ,V,≥s,Δ) be the TRS of a program P. For any term
τ ∈ T [Σ,V], a polynomial τ ′ ∈ T [Σ,V] can be computed such that τ � τ ′.

Remark 1. Besides the termination of a TRS, confluence is another important
property of a TRS, where a TRS is confluent if any given term τ ∈ T [Σ,V]
can be rewritten to two distinct terms τ1 and τ2, then the terms τ1 and τ2 can
be reduced to a common term. While we conjecture that the TRS R associated
with the given program is indeed confluent which may be shown by its local
confluence [51], we do not strive to prove its confluence, as it is irrelevant to the
problem considered in the current work.

Automated Verification of Correctness for Masked Arithmetic Programs 267

6 Algorithmic Verification

In this section, we first present an algorithm for computing normal forms, then
show how to compute the affine constant for an affine transformation, and finally
propose an algorithm for solving the verification problem.

6.1 Term Normalization Algorithm

We provide the function TermNorm (cf. Algorithm 1) which applies the rewriting
rules in a particular order aiming for better efficiency. Fix a TRS R = (Σ,V,≥s,
Δ), a term τ ∈ T [Σ,V] and a mapping λ that provides required affine constants
λ(f). TermNorm(R, τ, λ) returns a normal form τ ′ of τ , i.e., τ � τ ′.

Algorithm 2: Computing Affine Constants
1 Function AffConst(P, R, G):
2 foreach affine transformation f in a topological order of call graph G do
3 if f is only declared in P then
4 λ(f) ← 0;
5 else
6 x ←input of f ;
7 ξ(x) ← symbolicExecution(f);
8 τ ← ξ(x)[x �→ x ⊕ y] ⊕ ξ(x) ⊕ ξ(x)[x �→ y];
9 while True do

10 τ ← TermNorm(R, τ, λ);
11 if τ is some constant c then
12 λ(f) ← c; break;
13 else if g is defined in P but has not been inlined in τ then
14 Inline g in τ ; continue;
15 else if τ does not contain any uninterpreted function then
16 v1, u1, v2, u2 ←random values from F s.t. v1 	= v2 ∨ u1 	= u2;
17 if τ [x �→ v1, y �→ u1] 	= τ [x �→ v2, y �→ u2] then
18 Emit(f is not affine) and Abort;
19 if SMTSolver(∀x.∀y.τ = c)=SAT then
20 λ(f) ←extract c from the model; break;
21 else Emit(f may not be affine) and Abort;
22 return λ;

TermNorm first applies rules R3–R13 to rewrite the term τ (line 2), resulting
in a polynomial which does not have 0 as a factor or monomial (due to rules
R4–R7), or 1 as a factor in a monomial unless the monomial itself is 1 (due to
rules R8 and R9). Next, it recursively sorts all the factors and monomial involved
in the polynomial from the innermost sub-terms (lines 3 and 4). Sorting factors
and monomials will place the same monomials at adjacent positions. Finally,
rules R3 and R6–R7 are further applied to simplify the polynomial (line 5),

268 M. Liu et al.

where consecutive syntactically equivalent monomials will be rewritten to 0 by
rule R3, which may further enable rules R6–R7. Obviously, the final term τ ′ is
a normal form of the input τ , although its size may be exponential in that of τ .

Lemma 3. TermNorm(R, τ, λ) returns a normal form τ ′ of τ . ��

6.2 Computing Affine Constants

The function AffConst in Algorithm 2 computes the associated affine constant
for an affine transformation f . It first sorts all affine transformations in a topo-
logical order based on the call graph G (lines 2–21). If f is only declared in
P, as mentioned previously, we assumed it is linear, thus 0 is assigned to λ(f)
(line 4). Otherwise, it extracts the input x of f and computes its output ξ(x)
via symbolic execution (line 7), where ξ(x) is treated as f(x). We remark that
during symbolic execution, we adopt a lazy strategy for inlining invoked affine
transformations in f to reduce the size of ξ(x). Thus, ξ(x) may contain affine
transformations.

Recall that c is the affine constant of f iff ∀x, y ∈ F.f(x⊕y) = f(x)⊕f(y)⊕c
holds. Thus, we create the term τ = ξ(x)[x �→ x⊕y]⊕ξ(x)⊕ξ(x)[x �→ y] (line 7),
where e[a �→ b] denotes the substitution of a with b in e. Obviously, the term τ
is equivalent to some constant c iff c is the affine constant of f .

The while-loop (lines 9–21) evaluates τ . First, it rewrites τ to a normal form
(line 10) by invoking TermNorm in Alg.1. If the normal form is some constant c,
then c is the affine constant of f . Otherwise, AffConst repeatedly inlines each
affine transformation g that is defined in P but has not been inlined in τ (lines 13
and 14) and rewrites the term τ to a normal form until either the normal form
is some constant c or no affine transformation can be inlined. If the normal form
is still not a constant, τ is evaluated using random input values. Clearly, if τ is
evaluated to two distinct values (line 18), f is not affine. Otherwise, we check the
satisfiability of the constraint ∀x, y.τ = c via an SMT solver in bitvector theory
(line 19), where declared but undefined affine transformations are treated as
uninterpreted functions provided with their affine properties. If ∀x, y.τ = c is
satisfiable, we extract the affine constant c from its model (line 20). Otherwise,
we emit an error and then abort (line 21), indicating that the affine constant of
f cannot be computed. Since the satisfiability problem module bitvector theory
is decidable, we can conclude that f is not affine if ∀x.∀y.τ = c is unsatisfiable
and no uninterpreted function is involved in τ .

Lemma 4. Assume an affine transformation f in P. If AffConst(P,R, G) in
Algorithm 2 returns a mapping λ, then λ(f) is the affine constant of f . ��

6.3 Verification Algorithm

The verification problem is solved by the function Verifier(P) in Algorithm 3,
which checks if fm ∼= fo, for each procedure f defined in P. It first preprocesses
the given program P by inlining all the procedures, unrolling all the loops and

Automated Verification of Correctness for Masked Arithmetic Programs 269

eliminating all the branches (line 2). Then, it computes the corresponding TRS
R, call graph G and affine constants as the mapping λ, respectively (line 3). Next,
it iteratively checks if fm ∼= fo, for each procedure f defined in P (lines 4–23).

For each procedure f , it first extracts the inputs a1, · · · , am of fo that are
scalar variables (line 5) and input encodings a1, · · · ,am of fm that are vectors of
variables (line 6). Then, it computes the output ξ(a1, · · · , am) of fo via symbolic
execution, which yields an expression in terms of a1, · · · , am and affine trans-
formations (line 7). Similarly, it computes the output ξ′(a1, · · · ,am) of fm via
symbolic execution, i.e., a tuple of expressions in terms of the entries of the input
encodings a1, · · · ,am, random variables and affine transformations (line 8).

Recall that fm ∼= fo iff for all a1, · · · , am, r1, · · · , rh ∈ F and for all
a1, · · · ,am ∈ F

d+1, the following constraint holds (cf. Definition 1):

(∧

i∈[1,m]
ai =

⊕

j∈[0,d]
aij

) → (
fo(a1, · · · , am) =

⊕

i∈[0,d]
fm(a1, · · · ,ami)

)

where r1, · · · , rh are all the random variables used in fm. Thus, it creates the term
τ = ξ(a1, · · · , am)[a1 �→ ⊕

a1, · · · , am �→ ⊕
am] ⊕ ⊕

ξ′(a1, · · · ,am) (line 9),
where ai �→ ⊕

ai is the substitution of ai with the term
⊕

ai in the expression
ξ(a1, · · · , am). Obviously, τ is equivalent to 0 iff fm ∼= fo.

Algorithm 3: Verification Algorithm
1 Function Verifier(P):
2 Inline all the procedures, unroll loops and eliminate branches in P;
3 R ← buildTRS(P); G ← buildCallGraph(P); λ ← AffConst(P, R, G);
4 foreach procedure f defined in P do
5 Let a1, · · · , am be the inputs of fo;
6 Let a1, · · · ,am be the input encodings of fm;
7 ξ(a1, · · · , am) ← symbolicExecution(fo);
8 ξ′(a1, · · · ,am) ← symbolicExecution(fm);
9 τ ← ξ(a1, · · · , am)[a1 �→ ⊕

a1, · · · , am �→ ⊕
am] ⊕ ⊕

ξ′(a1, · · · ,am);
10 while True do
11 τ ← TermNorm(R, τ, λ)
12 if τ is some constant c then
13 if c = 0 then Emit(f is correct); break;
14 else Emit(f is incorrect); break;
15 else if g is defined in P but has not been inlined in τ then
16 Inline g in τ ; continue;
17 else if τ does not contain any uninterpreted function then
18 v1, · · · ,vm ←random values from F

d+1;
19 if τ [a1 �→ v1, · · · ,am �→ vm] 	= 0 then
20 Emit(f is incorrect); break;
21 if SMTSolver(τ 	= 0)=UNSAT then
22 Emit(f is correct); break;
23 else Emit(f may be incorrect); break;

270 M. Liu et al.

To check if τ is equivalent to 0, similar to computing affine constants in
Algorithm 2, the algorithm repeatedly rewrites the term τ to a normal form by
invoking TermNorm in Algorithm 1 until either the conclusion is drawn or no
affine transformation can be inlined (lines 10–23). We declare that f is correct if
the normal form is 0 (line 13) and incorrect if it is a non-zero constant (line 14).
If the normal form is not a constant, we repeatedly inline affine transformation
g defined in P which has not been inlined in τ and re-check the term τ .

If there is no definite answer after inlining all the affine transformations, τ
is evaluated using random input values. f is incorrect if τ is non-zero (line 20).
Otherwise, we check the satisfiability of the constraint τ �= 0 via an SMT solver
in bitvector theory (line 21). If τ �= 0 is unsatisfiable, then f is correct. Otherwise
we can conclude that f is incorrect if no uninterpreted function is involved in τ ,
but in other cases it is not conclusive.

Theorem 2. Assume a procedure f in P. If Verifier(P) emits “f is correct”,
then fm ∼= fo; if Verifier(P) emits “f is incorrect” or “f may be incorrect”
with no uninterpreted function involved in its final term τ , then fm �∼= fo. ��

6.4 Implementation Remarks

To implement the algorithms, we use the total order ≥s on V � Σ where all
the constants are smaller than the variables, which are in turn smaller than the
affine transformations. The order of constants is the standard one on integers,
and the order of variables (affine transformations) uses lexicographic order.

In terms of data structure, each term is primarily stored by a directed acyclic
graph, allowing us to represent and rewrite common sub-terms in an optimised
way. Once a (sub-)term becomes a polynomial during term rewriting, it is stored
as a sorted nested list w.r.t. the monomial order ≥p, where each monomial is
also stored as a sorted list w.r.t. the factor order ≥l. Moreover, the factor of the
form αk in a monomial is stored by a pair (α, k).

We also adopted two strategies: (i) By Fermat’s little theorem [63], x2n−1 = 1
for any x ∈ GF(2n). Hence each k in (α, k) can be simplified to k mod (2n − 1).
(ii) By rule R12, a term f(τ1 ⊕ · · · ⊕ τk) can be directly rewritten to f(τ1) ⊕
· · ·⊕ (τk) if k is odd, and f(τ1)⊕ · · ·⊕ f(τk)⊕ c if k is even, where c is the affine
constant associated with the affine transformation f .

7 Evaluation

We implement our approach as a tool FISCHER for verifying masked programs
in LLVM IR, based on the LLVM framework. We first evaluate FISCHER for
computing affine constants (i.e., Algorithm 2), correctness verification, and scal-
ability w.r.t. the masking order (i.e., Algorithm 3) on benchmarks using the
ISW scheme. To show the generality of our approach, FISCHER is then used to
verify benchmarks using glitch-resistant Boolean masking schemes and lattice-
based public-key cryptography. All experiments are conducted on a machine

Automated Verification of Correctness for Masked Arithmetic Programs 271

with Linux kernel 5.10, Intel i7 10700 CPU (4.8GHz, 8 cores, 16 threads) and
40 GB memory. Milliseconds (ms) and seconds (s) are used as the time units in
our experiments.

7.1 Evaluation for Computing Affine Constants

To evaluate Algorithm 2, we compare with a pure SMT-based approach which
directly checks ∃c.∀x, y ∈ F.f(x ⊕ y) = f(x) ⊕ f(y) ⊕ c using Z3 [47],
CVC5 [5] and Boolector [18], by implementing ⊕ and ⊗ in bit-vector the-
ory, where ⊗ is achieved via the Russian peasant method [16]. Technically,
SMT solvers only deal with satisfiability, but they usually can eliminate the
universal quantifiers in this case, as x, y are over a finite field. In partic-
ular, in our experiment, Z3 is configured with default (i.e. (check-sat)),
simplify (i.e. (check-sat-using (then simplify smt))) and bit-blast (i.e.
(check-sat-using (then bit-blast smt))), denoted by Z3-d, Z3-s and Z3-
b, respectively. We focus on the following functions: expi(x) = xi for i ∈
{2, 4, 8, 16}; rotli(x) for i ∈ {1, 2, 3, 4} that left rotates x by i bits; af(x) =
rotl1(x) ⊕ rotl2(x) ⊕ rotl3(x) ⊕ rotl4(x) ⊕ 99 used in AES S-Box; L1(x) =
7x2 ⊕ 14x4 ⊕ 7x8, L3(x) = 7x ⊕ 12x2 ⊕ 12x4 ⊕ 9x8, L5(x) = 10x ⊕ 9x2 and
L7(x) = 4x ⊕ 13x2 ⊕ 13x4 ⊕ 14x8 used in PRESENT S-Box over GF(16) =
GF(2)[X]/(X4 +X +1) [14,19]; f1(x) = x3, f2(x) = x2 ⊕ x ⊕ 1, f3(x) = x ⊕ x5

and f4(x) = af(exp2(x)) over GF(28).

Table 1. Results of computing affine constants, where † means Algorithm 2 needs
SMT solving, ‡ means affineness is disproved via testing, ✗ means nonaffineness, and
Algorithm 2+B means Algorithm 2+Boolector.

Tool exp2 exp4 exp8 exp16 rotl1 rotl2 rotl3 rotl4 af L1 L3 L5 L7 f1 f2 f3 f4

Algorithm 2+Z3-d 3 ms 3 ms 3 ms 3 ms 18 ms† 18 ms† 18 ms† 18 ms† 21 ms† 3 ms 3 ms 3 ms 3 ms 3 ms‡ 3 ms 3 ms‡ 21 ms†

Algorithm 2+Z3-b 3 ms 3 ms 3 ms 3 ms 15 ms† 16 ms† 15 ms† 15 ms† 20 ms† 3 ms 3 ms 3 ms 3 ms 3 ms‡ 3 ms 3 ms‡ 20 ms†

Algorithm 2+B 3 ms 3 ms 3 ms 3 ms 8 ms† 8 ms† 8 ms† 8 ms† 13 ms† 3 ms 3 ms 3 ms 3 ms 3 ms‡ 3 ms 3 ms‡ 14 ms†

Z3-d 181 ms 333 ms 316 ms 521 ms 14 ms 14 ms 14 ms 14 ms 16 ms 113 ms 213 ms 73 ms 194 ms 33 ms 249 ms 38 ms 7.5s
Z3-s 180 ms 373 ms 452 ms 528 ms 12 ms 12 ms 12 ms 12 ms 15 ms 158 ms 202 ms 194 ms 213 ms 28 ms 252 ms 35 ms 7.6s
Z3-b 15 ms 16 ms 18 ms 20 ms 12 ms 12 ms 12 ms 12 ms 79 ms 45 ms 42 ms 21 ms 82 ms 17 ms 22 ms 24 ms 60 ms
Boolector 15 ms 18 ms 12 ms 17 ms 5 ms 5 ms 6 ms 5 ms 71 ms 25 ms 34 ms 27 ms 78 ms 14 ms 15 ms 17 ms 67 ms
CVC5 8.4 s 20.3 s 44.4 s 18.6 s 5 ms 5 ms 5 ms 5 ms 113 ms 158.4 s 263.4 s 43.7 s 214.9 s 92 ms 10.3 s 2.3 s 10.4 s
Result 0 0 0 0 0 0 0 0 99 0 0 0 0 ✗ 1 ✗ 99

The results are reported in Table 1, where the 2nd–8th rows show the exe-
cution time and the last row shows the affine constants if they exist otherwise
✗. We observe that Algorithm 2 significantly outperforms the SMT-based app-
roach on most cases for all the SMT solvers, except for rotli and af (It is not
surprising, as they use operations rather than ⊕ and ⊗, thus SMT solving is
required). The term rewriting system is often able to compute affine constants
solely (e.g., expi and Li), and SMT solving is required only for computing the
affine constants of rotli. By comparing the results of Algorithm 2+Z3-b vs.
Z3-b and Algorithm 2+B vs. Boolector on af, we observe that term rewriting is
essential as checking normal form—instead of the original constraint—reduces
the cost of SMT solving.

272 M. Liu et al.

7.2 Evaluation for Correctness Verification

To evaluate Algorithm 3, we compare it with a pure SMT-based approach
with SMT solvers Z3, CVC5 and Boolector. We also consider several promising
general-purpose software verifiers SMACK (with Boogie and Corral engines),
SeaHorn, CPAChecker and Symbiotic, and one cryptography-specific verifier
CryptoLine (with SMT and CAS solvers), where the verification problem is
expressed using assume and assert statements. Those verifiers are configured in
two ways: (1) recommended ones in the manual/paper or used in the competi-
tion, and (2) by trials of different configurations and selecting the optimal one.
Specifically:

– CryptoLine (commit 7e237a9). Both solvers SMT and CAS are used;
– SMACK v2.8.0. integer-encoding: bit-vector, verifier: corral/boogie (both

used), solver: Z3/CVC4 (Z3 used), static-unroll: on, unroll: 99;
– SEAHORN v0.1.0 RC3 (commit e712712). pipeline: bpf, arch: m64, inline:

on, track: mem, bmc: none/mono/path (mono used), crab: on/off (off used);
– CPAChecker v2.1.1. default.properties with cbmc: on/off (on used);
– Symbiotic v8.0.0. officially-provided SV-COMP configuration with exit-on-

error: on.

The benchmark comprises five different masked programs sec_mult for finite-
field multiplication over GF(28) by varying masking order d = 0, 1, 2, 3, where
the d = 0 means the program is unmasked. We note that sec_mult in [8] is only
available for masking order d ≥ 2.

Table 2. Results on various sec_mult, where T.O. means time out (20 min), N/A
means that UNKNOWN result, and � means that verification result is incorrect.

Order Ref. Algorithm 3 Z3 Boolector CVC5 CryptoLine SMACK SeaHorn CPAChecker Symbiotic
d default simplify bit-blast SMT CAS Boogie Corral

0 [58] 17 ms 29 ms 27 ms 42 ms 25 ms 29 ms 39 ms N/A 29 s 66 s 132 ms T.O 870 s
[11] 20 ms 31 ms ms 31 ms 45 ms 28 ms 33 ms 35 ms N/A 46 s 144 s 128 ms T.O 899 s
[34] 21 ms 33 ms 31 ms 46 ms 29 ms 33 ms 32 ms N/A 23 s 43 s 127 ms T.O 872 s
[21] 18 ms 30 ms 28 ms 25 ms 26 ms 31 ms 32 ms N/A 17 s 56 s 130 ms T.O 876 s

1 [58] 18 ms 298 ms 299 ms 391 s 3.8 s T.O 469 ms N/A T.O T.O 13 s T.O T.O
[11] 20 ms 299 ms 299 ms 1049 s 1.91049 T.O 582 ms N/A T.O T.O 13 s T.O T.O
[34] 24 ms 295 ms 295 ms 1199 s 1.8 s T.O 951 ms N/A T.O T.O 14 s T.O T.O
[21] 20 ms 1180 s 921 s T.O 7.7 s T.O 21 s N/A T.O T.O T.O T.O T.O.

2 [58] 20 ms 4.1 s 4.2 s T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[11] 22 ms 4.2 s 4.4 s T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[8] 30 ms 4.2 s 4.1 s T.O T.O T.O T.O N/A T.O 26 s� T.O T.O T.O
[34] 29 ms 4.2 s 4.2 s T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[21] 22 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O.

3 [58] 21 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[11] 26 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[8] 27 ms T.O T.O T.O T.O T.O T.O N/A T.O 1059 s� T.O T.O T.O
[34] 29 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O
[21] 24 ms T.O T.O T.O T.O T.O T.O N/A T.O T.O T.O T.O T.O

The results are shown in Table 2. We can observe that FISCHER is signifi-
cantly more efficient than the others, and is able to prove all the cases using

Automated Verification of Correctness for Masked Arithmetic Programs 273

our term rewriting system solely (i.e., without random testing or SMT solving).
With the increase of masking order d, almost all the other tools failed. Both
CryptoLine (with the CAS solver) and CPAChecker fail to verify any of the
cases due to the non-linear operations involved in sec_mult. SMACK with Cor-
ral engine produces two false positives (marked by 	 in Table 2). These results
suggest that dedicated verification approaches are required for proving the cor-
rectness of masked programs.

7.3 Scalability of FISCHER

To evaluate the scalability of FISCHER, we verify different versions of sec_mult
and masked procedures sec_aes_sbox (resp. sec_present_sbox) of S-Boxes
used in AES [58] (resp. PRESENT [19]) with varying masking order d. Since
it is known that refresh_masks in [58] is vulnerable when d ≥ 4 [24], a fixed
version RefreshM [7] is used in all the S-Boxes (except that when sec_mult is
taken from [8] its own version is used). We note that sec_present_sbox uses
the affine transformations L1, L3, L5, L7, exp2 and exp4, while sec_aes_sbox
uses the affine transformations af, exp2, exp4 and exp16.

The results are reported in Table 3. All those benchmarks are proved using
our term rewriting system solely except for the three incorrect ones marked
by 	. FISCHER scales up to masking order of 100 or even 200 for sec_mult,
which is remarkable. FISCHER also scales up to masking order of 30 or even
40 for sec_present_sbox. However, it is less scalable on sec_aes_sbox, as it
computes the multiplicative inverse x254 on shares, and the size of the term
encoding the equivalence problem explodes with the increase of the masking
order. Furthermore, to better demonstrate the effectiveness of our term writing
system in dealing with complicated procedures, we first use Algorithm 2 to derive
affine constants on sec_aes_sbox with ISW [58] and then directly apply SMT
solvers to solve the correctness constraints obtained at Line 9 of Algorithm 3.
It takes about 1 s to obtain the result on the first-order masking, while fails to
obtain the result within 20min on the second-order masking.

Table 3. Results on sec_mult and S-Boxes, where T.O. means time out (20 min), and
� means that the program is incorrect.

Ref. d

sec_mult sec_present_sbox sec_aes_sbox
5 10 20 50 100 200 1 2 5 10 20 30 40 1 2 4 5

ISW [58] 23 ms 33 ms 84 ms 1.0s 15s 545s 44 ms 51 ms 93 ms 535 ms 14s 118s T.O. 87 ms 234 ms 25s 160s
ISW [11] 26 ms 44 ms 100 ms 712 ms 7.3s 212s 54 ms 63 ms 110 ms 673 ms 17s 163s T.O. 108 ms 265 ms 23s 142s
ISW [8] 36 ms� 49 ms 109 ms 601 ms 3.2s 18s – 86 ms 142 ms� 237 ms 841 ms 2.4s 5.3s – 559 ms 9.7s 142s�

ISW [34] 34 ms 50 ms 98 ms 518 ms 3.1s 19s 67 ms 91 ms 137 ms 700 ms 20s 173s T.O. 140 ms 571 ms 63s T.O.
ISW [21] 30 ms 109 ms 224 ms 5.0s 152s T.O. 51 ms 61 ms 113 ms 354 ms 2.4s 9.7s 29s 133 ms 269 ms 13s 68s

274 M. Liu et al.

Table 4. Results on sec_mult and S-Boxes for HPC, DOM and CMS.

Ref. d

sec_mult sec_present_sbox sec_aes_sbox
0 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

HPC1 [20] 28 ms 30 ms 32 ms 35 ms 39 ms 42 ms 63 ms 72 ms 84 ms 98 ms 117 ms 104 ms 254 ms 1.8s 13s 67s
HPC2 [20] 23 ms 25 ms 26 ms 28 ms 31 ms 33 ms 57 ms 66 ms 75 ms 92 ms 110 ms 92 ms 244 ms 1.9s 13s 65s
DOM [35] 24 ms 24 ms 25 ms 26 ms 28 ms 29 ms 52 ms 60 ms 67 ms 77 ms 90 ms 80 ms 223 ms 1.8s 12s 66s
CMS [57] – – 24 ms – – – – 53 ms – – – – 211 ms – – –

A highlight of our findings is that FISCHER reports that sec_mult from [8]
and the S-boxes based on this version are incorrect when d = 5. After a careful
analysis, we found that indeed it is incorrect for any d ≡ 1 mod 4 (i.e., 5, 9, 13,
etc.). This is because [8] parallelizes the multiplication over the entire encodings
(i.e., tuples of shares) while the parallelized computation depends on the value
of d mod 4. When the reminder is 1, the error occurs.

7.4 Evaluation for More Boolean Masking Schemes

To demonstrate the applicability of FISCHER on a wider range of Boolean
masking schemes, we further consider glitch-resistant Boolean masking schemes:
HPC1, HPC2 [20], DOM [35] and CMS [57]. We implement the finite-field mul-
tiplication sec_mult using those masking schemes, as well as masked versions
of AES S-box and PRESENT S-box. We note that our implementation of DOM
sec_mult is derived from [20], and we only implement the 2nd-order CMS
sec_mult due to the difficulty of implementation. All other experimental set-
tings are the same as in Sect. 7.3.

The results are shown in Table 4. Our term rewriting system solely is able to
efficiently prove the correctness of finite-field multiplication sec_mult, masked
versions of AES S-box and PRESENT S-box using the glitch-resistant Boolean
masking schemes HPC1, HPC2, DOM and CMS. The verification cost of those
benchmarks is similar to that of benchmarks using the ISW scheme, demonstrat-
ing the applicability of FISCHER for various Boolean masking schemes.

Table 5. Results on sec_add, sec_add_modp and sec_a2b [17], where T.O. means time
out (20 min).

d k

sec_add sec_add_modp sec_a2b
2 3 4 6 8 12 16 2 3 4 6 8 12 2 3 4 6 8 12 16

1 34 ms 38 ms 42 ms 51 ms 61 ms 83 ms 109 ms 97 ms 248 ms 805 ms 7.5s 44s 623s 41 ms 48 ms 55 ms 70 ms 87 ms 121 ms 156 ms
2 35 ms 40 ms 45 ms 55 ms 65 ms 91 ms 124 ms 111 ms 331 ms 1.1s 11s 67s 936s 58 ms 74 ms 93 ms 134 ms 199 ms 523 ms 1.5s
3 36 ms 42 ms 47 ms 58 ms 71 ms 100 ms 139 ms 127 ms 417 ms 1.5s 15s 89s T.O. 73 ms 93 ms 118 ms 182 ms 293 ms 927 ms 3.0s
4 38 ms 44 ms 50 ms 62 ms 76 ms 109 ms 155 ms 144 ms 506 ms 1.9s 18s 112s T.O. 93 ms 130 ms 190 ms 676 ms 3.3s 49s 366s
5 39 ms 45 ms 51 ms 66 ms 81 ms 118 ms 168 ms 160 ms 586 ms 2.2s 22s 136s T.O. 109 ms 159 ms 256 ms 1.1s 6.5s 100s 746s

Automated Verification of Correctness for Masked Arithmetic Programs 275

7.5 Evaluation for Arithmetic/Boolean Masking Conversions

To demonstrate a wider applicability of FISCHER other than masked implemen-
tations of symmetric cryptography, we further evaluate FISCHER on three key
non-linear building blocks for bitsliced, masked implementations of lattice-based
post-quantum key encapsulation mechanisms (KEMs [17]). Note that KEMs are
a class of encryption techniques designed to secure symmetric cryptographic
key material for transmission using asymmetric (public-key) cryptography. We
implement the Boolean masked addition modulo 2k (sec_add), Boolean masked
addition modulo p (sec_add_modp) and the arithmetic-to-Boolean masking con-
version modulo 2k (sec_a2b) for various bit-width k and masking order d, where
p is the largest prime number less than 2k. Note that some bitwise operations
(e.g., circular shift) are expressed by affine transformations, and the modulo
addition is implemented by the simulation algorithm [17] in our implementa-
tions.

The results are reported in Table 5. FISCHER is able to efficiently prove the
correctness of these functions with various masking orders (d) and bit-width (k),
using the term rewriting system solely. With the increase of the bit-width k (resp.
masking order d), the verification cost increases more quickly for sec_add_modp
(resp. sec_a2b) than for sec_add. This is because sec_add_modp with bit-width
k invokes sec_add three times, two of which have the bit-width k + 1, and the
number of calls to sec_add in sec_a2b increases with the masking order d though
using the same bit-width as sec_a2b. These results demonstrate the applicability
of FISCHER for asymmetric cryptography.

8 Conclusion

We have proposed a term rewriting based approach to proving functional equiva-
lence between masked cryptographic programs and their original unmasked algo-
rithms over GF(2n). Based on this approach, we have developed a tool FISCHER
and carried out extensive experiments on various benchmarks. Our evaluation
confirms the effectiveness, efficiency and applicability of our approach.

For future work, it would be interesting to further investigate the theoretical
properties of the term rewriting system. Moreover, we believe the term rewriting
approach extended with more operations may have a greater potential in verify-
ing more general cryptographic programs, e.g., those from the standard software
library such as OpenSSL.

References

1. Affeldt, R.: On construction of a library of formally verified low-level arithmetic
functions. Innov. Syst. Softw. Eng. 9(2), 59–77 (2013)

2. Ahman, D., et al.: Dijkstra monads for free. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, pp. 515–529 (2017)

276 M. Liu et al.

3. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1807–1823 (2017)

4. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans.
Program. Lang. Syst. 37(2), 1–31 (2015)

5. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Pro-
ceedings of the 28th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, vol. 13243, pp. 415–442 (2022). v1.0.0 is
used

6. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

7. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 116–129 (2016)

8. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-
Y.: Parallel implementations of masking schemes and the bounded moment leak-
age model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7_19

9. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1_6

10. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5_5

11. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_22

12. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

13. Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal
verification of masked hardware implementations in the presence of glitches. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 321–
353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_11

14. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

15. Bond, B., et al.: Vale: verifying high-performance cryptographic assembly code. In:
26th USENIX security symposium, pp. 917–934 (2017)

16. Bowden, J.: The Russian peasant method of multiplication. Math. Teach. 5(1),
4–8 (1912)

17. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/Boolean masking conversions for
fun and profit: with application to lattice-based KEMs. IACR Trans. Cryptograph.
Hardw. Embed. Syst., 553–588 (2022)

https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-540-74735-2_31

Automated Verification of Correctness for Masked Arithmetic Programs 277

18. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-
2_16

19. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for s-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-
5_21

20. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.X.: Hardware private circuits: from
trivial composition to full verification. IEEE Trans. Comput. 70(10), 1677–1690
(2020)

21. Cassiers, G., Standaert, F.X.: Trivially and efficiently composing masked gadgets
with probe isolating non-interference. IEEE Trans. Inf. Forensics Secur. 15, 2542–
2555 (2020)

22. Chalupa, M., Jašek, T., Novák, J., Řechtáčková, A., Šoková, V., Strejček, J.: Sym-
biotic 8: beyond symbolic execution. In: Groote, J.F., Larsen, K.G. (eds.) TACAS
2021. LNCS, vol. 12652, pp. 453–457. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-72013-1_31

23. Chen, Y.F., et al.: Verifying curve25519 software. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pp. 299–
309 (2014)

24. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_21

25. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)
26. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermea-

sures against side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24(2), 11
(2014)

27. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: Proceedings
of the 2019 IEEE Symposium on Security and Privacy, pp. 1202–1219 (2019)

28. Fu, Y., Liu, J., Shi, X., Tsai, M., Wang, B., Yang, B.: Signed cryptographic pro-
gram verification with typed cryptoline. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1591–1606 (2019)

29. Gao, P., Xie, H., Song, F., Chen, T.: A hybrid approach to formal verification
of higher-order masked arithmetic programs. ACM Trans. Softw. Eng. Methodol.
30(3), 1–42 (2021)

30. Gao, P., Xie, H., Sun, P., Zhang, J., Song, F., Chen, T.: Formal verification of
masking countermeasures for arithmetic programs. IEEE Trans. Software Eng.
48(3), 973–1000 (2022)

31. Gao, P., Xie, H., Zhang, J., Song, F., Chen, T.: Quantitative verification of masked
arithmetic programs against side-channel attacks. In: Vojnar, T., Zhang, L. (eds.)
TACAS 2019. LNCS, vol. 11427, pp. 155–173. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17462-0_9

32. Gao, P., Zhang, J., Song, F., Wang, C.: Verifying and quantifying side-channel
resistance of masked software implementations. ACM Trans. Softw. Eng. Methodol.
28(3), 1–32 (2019)

33. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15

https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-030-17462-0_9
https://doi.org/10.1007/978-3-030-17462-0_9
https://doi.org/10.1007/3-540-48059-5_15

278 M. Liu et al.

34. Gross, H., Mangard, S.: Reconciling d + 1 masking in hardware and software.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 115–136.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_6

35. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. Cryptology ePrint
Archive (2016)

36. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4_20

37. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

38. Kaufmann, D., Biere, A.: AMulet 2.0 for verifying multiplier circuits. In: TACAS
2021. LNCS, vol. 12652, pp. 357–364. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-72013-1_19

39. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining SAT
and computer algebra. In: Proceedings of the 2019 Formal Methods in Computer
Aided Design, pp. 28–36 (2019)

40. Kim, H.S., Hong, S., Lim, J.: A fast and provably secure higher-order masking of
AES S-Box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 95–
107. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_7

41. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

42. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

43. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the 2nd IEEE/ACM International Sym-
posium on Code Generation and Optimization, pp. 75–86 (2004)

44. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

45. Liu, J., Shi, X., Tsai, M., Wang, B., Yang, B.: Verifying arithmetic in cryptographic
C programs. In: Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, pp. 552–564 (2019)

46. Luo, C., Fei, Y., Kaeli, D.R.: Effective simple-power analysis attacks of elliptic
curve cryptography on embedded systems. In: Proceedings of the International
Conference on Computer-Aided Design, p. 115 (2018)

47. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

48. Myreen, M.O., Curello, G.: Proof pearl: a verified Bignum implementation in x86-
64 machine code. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 66–81. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1_5

49. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 568–582.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_44

https://doi.org/10.1007/978-3-319-66787-4_6
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-030-72013-1_19
https://doi.org/10.1007/978-3-030-72013-1_19
https://doi.org/10.1007/978-3-642-23951-9_7
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-03545-1_5
https://doi.org/10.1007/978-3-540-71209-1_44

Automated Verification of Correctness for Masked Arithmetic Programs 279

50. National Institute of Standards and Technology: Data encryption standard (DES).
FIPS Publication, pp. 46–3, October 1999

51. Newman, M.H.A.: On theories with a combinatorial definition of equivalence.
Annals Math., 223–243 (1942)

52. Örs, S.B., Oswald, E., Preneel, B.: Power-analysis attacks on an FPGA – first
experimental results. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003.
LNCS, vol. 2779, pp. 35–50. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45238-6_4

53. Polyakov, A., Tsai, M., Wang, B., Yang, B.: Verifying arithmetic assembly pro-
grams in cryptographic primitives (invited talk). In: Proceedings of the 29th Inter-
national Conference on Concurrency Theory, pp. 1–16 (2018)

54. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

55. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_7

56. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks
on CCA-secure lattice-based PKE and KEM schemes. IACR Cryptol. ePrint Arch.
2019, 948 (2019)

57. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6_37

58. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_28

59. Schamberger, T., Renner, J., Sigl, G., Wachter-Zeh, A.: A power side-channel
attack on the CCA2-secure HQC KEM. In: Liardet, P.-Y., Mentens, N. (eds.)
CARDIS 2020. LNCS, vol. 12609, pp. 119–134. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-68487-7_8

60. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
61. Tomb, A.: Automated verification of real-world cryptographic implementations.

IEEE Secur. Priv. 14(6), 26–33 (2016)
62. Tsai, M.H., Wang, B.Y., Yang, B.Y.: Certified verification of algebraic properties

on low-level mathematical constructs in cryptographic programs. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1973–1987 (2017)

63. Vinogradov, I.M.: Elements of Number Theory. Courier Dover Publications, New
York (2016)

64. Zhang, J., Gao, P., Song, F., Wang, C.: SCInfer: refinement-based verification
of software countermeasures against side-channel attacks. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 157–177. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96142-2_12

65. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: A
verified modern cryptographic library. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1789–1806 (2017)

https://doi.org/10.1007/978-3-540-45238-6_4
https://doi.org/10.1007/978-3-540-45238-6_4
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-030-68487-7_8
https://doi.org/10.1007/978-3-030-68487-7_8
https://doi.org/10.1007/978-3-319-96142-2_12

280 M. Liu et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Automatic Program Instrumentation
for Automatic Verification

Jesper Amilon1(B), Zafer Esen2(B), Dilian Gurov1(B),
Christian Lidström1(B), and Philipp Rümmer2,3(B)

1 KTH Royal Institute of Technology, Stockholm, Sweden
{jamilon,dilian,clid}@kth.se

2 Uppsala University, Uppsala, Sweden
{zafer.esen,philipp.ruemmer}@it.uu.se

3 University of Regensburg, Regensburg, Germany

Abstract. In deductive verification and software model checking, deal-
ing with certain specification language constructs can be problematic
when the back-end solver is not sufficiently powerful or lacks the required
theories. One way to deal with this is to transform, for verification pur-
poses, the program to an equivalent one not using the problematic con-
structs, and to reason about its correctness instead. In this paper, we
propose instrumentation as a unifying verification paradigm that sub-
sumes various existing ad-hoc approaches, has a clear formal correctness
criterion, can be applied automatically, and can transfer back witnesses
and counterexamples. We illustrate our approach on the automated ver-
ification of programs that involve quantification and aggregation opera-
tions over arrays, such as the maximum value or sum of the elements in
a given segment of the array, which are known to be difficult to reason
about automatically. We implement our approach in the MonoCera
tool, which is tailored to the verification of programs with aggregation,
and evaluate it on example programs, including SV-COMP programs.

1 Introduction

Overview. Program specifications are often written in expressive, high-level
languages: for instance, in temporal logic [14], in first-order logic with quan-
tifiers [28], in separation logic [40], or in specification languages that provide
extended quantifiers for computing the sum or maximum value of array ele-
ments [7,33]. Specifications commonly also use a rich set of theories; for instance,
specifications could be written using full Peano arithmetic, as opposed to bit-
vectors or linear arithmetic used in the program. Rich specification languages
make it possible to express intended program behaviour in a succinct form, and
as a result reduce the likelihood of mistakes being introduced in specifications.

There is a gap, however, between the languages used in specifications and
the input languages of automatic verification tools. Software model checkers, in
particular, usually require specifications to be expressed using program assertions
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 281–304, 2023.
https://doi.org/10.1007/978-3-031-37709-9_14

https://doi.org/10.5281/zenodo.7875416
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_14&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_14

282 J. Amilon et al.

and Boolean program expressions, and do not directly support any of the more
sophisticated language features mentioned. In fact, rich specification languages
are challenging to handle in automatic verification, since satisfiability checks
can become undecidable (i.e., it is no longer decidable whether assertion failures
can occur on a program path), and techniques for inferring program invariants
usually focus on simple specifications only.

To bridge this gap, it is common practice to encode high-level specifica-
tions in the low-level assertion languages understood by the tools. For instance,
temporal properties can be translated to Büchi automata, and added to pro-
grams using ghost variables and assertions [14]; quantified properties can be
replaced with non-determinism, ghost variables, or loops [13,37]; sets used to
specify the absence of data-races can be represented using non-deterministically
initialized variables [18]. By adding ghost variables and bespoke ghost code to
programs [22], many specifications can be made effectively checkable.

The translation of specifications to assertions or ghost code is today largely
designed, or even carried out, by hand. This is an error-prone process, and for
complex specifications and programs it is very hard to ensure that the low-level
encoding of a specification faithfully models the original high-level properties to
be checked. Mistakes have been found even in industrial, very carefully developed
specifications [39], and can result in assertions that are vacuously satisfied by
any program. Naturally, the manual translation of specifications also tends to
be an ad-hoc process that does not easily generalise to other specifications.

This paper proposes the first general framework to automate the translation
of rich program specifications to simpler program assertions, using a process
called instrumentation. Our approach models the semantics of specific complex
operations using program-independent instrumentation operators, consisting of
(manually designed) rewriting rules that define how the evaluation of the opera-
tor can be achieved using simpler program statements and ghost variables. The
instrumentation approach is flexible enough to cover a wide range of different
operators, including operators that are best handled by weaving their evaluation
into the program to be analysed. While instrumentation operators are manually
written, their application to programs can be performed in a fully automatic way
by means of a search procedure. The soundness of an instrumentation operator is
shown formally, once and for all, by providing an instrumentation invariant that
ensures that the operator can never be used to show correctness of an incorrect
program.

Additional instrumentation operator definitions, correctness proofs, and
detailed evaluation results can be found in the accompanying extended report [4].

Motivating Example. We illustrate our approach on the computation of tri-
angular numbers sN = (N2 + N)/2, see left-hand side of Fig. 1. For reasons of
presentation, the program has been normalised by representing the square N*N
using an auxiliary variable NN. While mathematically simple, verifying the post-
condition s == (NN+N)/2 in the program turns out to be challenging even for
state-of-the-art model checkers, as such tools are usually thrown off course by

Automatic Program Instrumentation for Automatic Verification 283

Fig. 1. Program computing triangular numbers, and its instrumented counterpart

the non-linear term N*N. Computing the value of NN by adding a loop in line 16
is not sufficient for most tools either, since the program in any case requires
a non-linear invariant 0 <= i <= N && 2*s == i*i + i to be derived for the
loop in lines 4–12.

The insight needed to elegantly verify the program is that the value i*i can
be tracked during the program execution using a ghost variable x_sq. For this,
the program is instrumented to maintain the relationship x_sq == i*i: initially,
i == x_sq == 0, and each time the value of i is modified, also the variable x_sq
is updated accordingly. With the value x_sq == i*i available, both the loop
invariant and the post-condition turn into formulas over linear arithmetic, and
program verification becomes largely straightforward. The challenge, of course,
is to discover this program transformation automatically, and to guarantee the
soundness of the process. For the example, the transformed program is shown
on the right-hand side of Fig. 1, and discussed in the next paragraphs.

Our method splits the process of program instrumentation into two parts:
(i) choosing an instrumentation operator, which is defined manually, designed to
be program-independent, and induces a space of possible program transforma-
tions; and (ii) carrying out an automatic application strategy to find, among the
possible program transformations, one that enables verification of a program.

An instrumentation operator for tracking squares is shown in Fig. 2, and con-
sists of the declaration of two ghost variables (x_sq, x_shad) with initial value 0,
respectively; four rules for rewriting program statements; and the instrumenta-
tion invariant witnessing correctness of the operator. The rewrite rules use formal
variables x, y, which can represent arbitrary variables in the program (i, N, NN).
An application of the operator to a program will declare the ghost variables
in the form of global variables, and then rewrite some chosen set of program
statements using the provided rules. Since the statements to be rewritten can

284 J. Amilon et al.

Fig. 2. Definition of an instrumentation operator Ωsquare for tracking squares

be chosen arbitrarily, and since moreover multiple rewrite rules might apply to
some statements, rewriting can result in many different variants of a program.
In the example, we rewrite the assignments C, D of the left-hand side program
using rewrite rules (R2) and (R4), respectively, resulting in the instrumented
and correct program on the right-hand side.

Instrumentation operators are designed to be sound, which means that
rewriting a wrong selection of program statements might lead to an instru-
mented program that cannot be verified, i.e., in which assertions might fail,
but instrumentation can never turn an incorrect source program into a correct
instrumented program. This opens up the possibility to systematically search
for the right program instrumentation. We propose a counterexample-guided
algorithm for this purpose, which starts from some arbitrarily chosen instru-
mentation, checks whether the instrumented program can be verified, and oth-
erwise attempts to fix the instrumentation using a refinement loop. As soon as
a verifiable instrumented program has been found, the search can stop and the
correctness of the original program has been shown.

The concept of instrumentation invariants is essential for guaranteeing sound-
ness of an operator. Instrumentation invariants are formulas that can (only)
refer to the ghost variables introduced by an instrumentation operator, and are
formulated in such a way that they hold in every reachable state of every instru-
mented program. To maintain their invariants, instrumentation operators use
shadow variables that duplicate the values of program variables. In the operator
in Fig. 2, the purpose of the shadow variable x_shad is to reproduce the value
of the program variable whose square is tracked (i). The rewriting rules intro-
duce guards to detect incorrect instrumentation (the assertions in (R2), (R3),
(R4)), which are particular cases in which some update of a relevant variable

Automatic Program Instrumentation for Automatic Verification 285

was missed and not correctly instrumented. The use of shadow variables and
guards make instrumentation operators very flexible; in our example, note that
instrumentation tracks the square of the value of i during the loop, but is also
used later to simplify the expression N*N. This is possible because of the instru-
mentation invariant and because i == N holds after termination of the loop,
which is verified through the assertion introduced in line 14.

Contributions and Outline. The operator shown in Fig. 2 is simple, and does
not apply to all programs, but it can easily be generalised to other arithmetic
operators and program statements. The framework presented in this paper pro-
vides the foundation for developing a (extendable) library of formally verified
instrumentation operators. In the scope of this paper, we focus on two speci-
fication constructs that have been identified as particularly challenging in the
literature: existential and universal quantifiers over arrays, and aggregation (or
extended quantifiers), which includes computing the sum or maximum value
of elements in an array. Our experiments on benchmarks taken from the SV-
COMP [8] show that even relatively simple instrumentation operators can sig-
nificantly extend the capabilities of a software model checker, and often make
the automatic verification of otherwise hard specifications easy.

The contributions of the paper are: (i) a general framework for program
instrumentation, which defines a space of program transformations that work
by rewriting individual statements (Sect. 2); (ii) an application strategy search
algorithm in this space, for a given program (Sect. 3); (iii) two instantiations of
the framework—one for instrumentation operators to handle specifications with
quantifiers (Sect. 4.1), and one for extended quantifiers (Sect. 4.2); (iv) machine-
checked proofs of the correctness of the instrumentation operators for quanti-
fiers ∀ and the extended quantifier \max; (v) a new verification tool, Mono-
Cera, that is tailored to the verification of programs with aggregation; and (vi)
an evaluation of our method and tool on a set of examples, including such from
SV-COMP [8] (Sect. 5).

2 Instrumentation Framework

The next two sections formally introduce the instrumentation framework. Later,
we instantiate the framework for quantification and aggregation over arrays. We
split the instrumentation process into two parts:

1. An instrumentation operator that defines how to rewrite program statements
with the purpose of eliminating language constructs that are difficult to rea-
son about automatically, but leaves the choice of which occurrences of these
statements to rewrite to the second part (this section).

2. An application strategy for the instrumentation operator, which can be imple-
mented using heuristics or systematic search, among others. The strategy is
responsible for selecting the right (if any) program instrumentation from the
many possible ones, Sect. 3 is dedicated to the second part.

286 J. Amilon et al.

Table 1. Syntax of the core language.

〈Type〉 ::= Int | Bool | Array 〈Type〉
〈Expr〉 ::= 〈DecimalNumber〉 | true | false | 〈Variable〉

| 〈Expr〉 == 〈Expr〉 | 〈Expr〉 <= 〈Expr〉 | !〈Expr〉 | 〈Expr〉 && 〈Expr〉
| 〈Expr〉 || 〈Expr〉 | 〈Expr〉 + 〈Expr〉 | 〈Expr〉 * 〈Expr〉
| select(〈Expr〉,〈Expr〉) | store(〈Expr〉,〈Expr〉,〈Expr〉)

〈Prog〉 ::= skip | 〈Variable〉 = 〈Expr〉 | 〈Prog〉; 〈Prog〉 | while (〈Expr〉) 〈Prog〉
| assert(〈Expr〉) | assume(〈Expr〉) | if (〈Expr〉) 〈Prog〉 else 〈Prog〉

Even though instrumentation operators are non-deterministic, we shall guaran-
tee their soundness: if the original program has a failing assertion, so will any
instrumented program, regardless of the chosen application strategy; that is,
instrumentation of an incorrect program will never yield a correct program.

We shall also guarantee a weak form of completeness, to the effect that if an
assertion that has not been added to the program by the instrumentation fails
in the instrumented program, then it will also fail in the original program. As a
result, any counterexample (for such an assertion) produced when verifying the
instrumented program can be transformed into a counterexample for the original
program.

2.1 The Core Language

While our implementation works on programs represented as constrained Horn
clauses [12], i.e., is language-agnostic, for readability purposes we present our
approach in the setting of an imperative core programming language with data-
types for unbounded integers, Booleans, and arrays, and assert and assume
statements. The language is deliberately kept simple, but is still close to stan-
dard C. The main exception is the semantics of arrays: they are defined here
to be functional and therefore represent a value type. Arrays have integers as
index type and are unbounded, and their signature and semantics are otherwise
borrowed from the SMT-LIB theory of extensional arrays [6]:

– Reading the value of an array a at index i: select(a, i);
– Updating an array a at index i with a new value x: store(a, i, x).

The complete syntax of the core language is given in Table 1. Programs are
written using a vocabulary X of typed program variables; the typing rules of the
language are given in [4]. As syntactic sugar, we sometimes write a[i] instead
of select(a, i), and a[i] = x instead of a = store(a, i, x).

We denote by Dσ the domain of a program type σ. The domain of an array
type Array σ is the set of functions f : Z → Dσ.

Semantics. We assume the Flanagan-Saxe extended execution model of pro-
grams with assume and assert statements (see, e.g., [23]), in which executing

Automatic Program Instrumentation for Automatic Verification 287

an assert statement with an argument that evaluates to false fails, i.e., termi-
nates abnormally. An assume statement with an argument that evaluates to false
has the same semantics as a non-terminating loop. Partial correctness proper-
ties of programs are expressed using Hoare triples {Pre} P {Post}, which state
that an execution of P , starting in a state satisfying Pre, never fails, and may
only terminate in states that satisfy Post . As usual, a program P is considered
(partially) correct if the Hoare triple {true} P {true} holds.

The evaluation of program expressions is modelled using a function �·�s that
maps program expressions t of type σ to their value �t�s ∈ Dσ in the state s.

2.2 Instrumentation Operators

An instrumentation operator defines schemes to rewrite programs while preserv-
ing the meaning of the existing program assertions. Without loss of generality,
we restrict program rewriting to assignment statements. Instrumentation can
introduce ghost state by adding arbitrary fresh variables to the program. The
main part of an instrumentation consists of rewrite rules, which are schematic
rules r = t � s, where the meta-variable r ranges over program variables, t is
an expression that can contain further meta-variables, and s is a schematic pro-
gram in which the meta-variables from r = t might occur. Any assignment that
matches r = t can be rewritten to s.

Definition 1 (Instrumentation Operator). An instrumentation operator
is a tuple Ω = (G,R, I), where:

(i) G = 〈(x1, init1), . . . , (xk, initk)〉 is a tuple of pairs of ghost variables and
their initial values;

(ii) R is a set of rewrite rules r = t � s, where s is a program operating on the
ghost variables x1, . . . , xk (and containing meta-variables from r = t);

(iii) I is a formula over the ghost variables x1, . . . , xk, called the instrumentation
invariant.

The rewrite rules R and the invariant I must adhere to the following constraints:

1. The instrumentation invariant I is satisfied by the initial ghost values, i.e.,
it holds in the state {x1 �→ init1, . . . , xk �→ initk}.

2. For all rewrites r = t � s ∈ R the following hold:
(a) s terminates (normally or abnormally) for pre-states satisfying I, assum-

ing that all meta-variables are ordinary program variables.
(b) s does not assign to variables other than r or the ghost vari-

ables x1, . . . , xk.
(c) s preserves the instrumentation invariant: {I} s′ {I}, where s′ is s with

every assert(e) statement replaced by an assume(e) statement.
(d) s preserves the semantics of the assignment r = t: the Hoare triple

{I} z = t; s′ {z = r}, where z is a fresh variable, holds.

288 J. Amilon et al.

The conditions imposed in the definition ensure that all instrumentations
are correct, in the sense that they are sound and weakly complete, as we show
below. In particular, the instrumentation invariant guarantees that the rewrites
of program statements are semantics-preserving w.r.t. the original program, and
thus, the execution of any assert statement of the original program has the
same effect before and after instrumentation. Observe that the conditions can
themselves be deductively verified to hold for each concrete instrumentation
operator, and that this check is independent of the programs to be instrumented,
so that an instrumentation operator can be proven correct once and for all.

An instrumentation operator Ω does itself not define which occurrences of
program statements are to be rewritten, but only how they are rewritten. Given
a program P and the operator Ω, an instrumented program P ′ is derived by
carrying out the following two steps: (i) variables x1, . . . , xk and the assignments
x1 = init1; . . . ; xk = initk are added at the beginning of the program, and
(ii) some of the assignments in P , to which a rewriting rule r = t � s in Ω is
applicable, are replaced by s, substituting meta-variables with the actual terms
occurring in the assignment. We denote by Ω(P) the set of all instrumented
programs P ′ that can be derived in this way. An example of an instrumentation
operator and its application was shown Fig. 1 and Fig. 2.

2.3 Instrumentation Correctness

Verification of an instrumented program produces one of two possible results: a
witness if verification is successful, or a counterexample otherwise. A witness con-
sists of the inductive invariants needed to verify the program, and is presented in
the context of the programming language: it is translated back from the back-end
theory used by the verification tool, and is a formula over the program variables
and the ghost variables added during instrumentation. A counterexample is an
execution trace leading to a failing assertion.

Definition 2 (Soundness). An instrumentation operator Ω is called sound
if for every program P and instrumented program P ′ ∈ Ω(P), whenever there
is an execution of P where some assert statement fails, then there also is an
execution of P ′ where some assert statement fails.

Equivalently, existence of a witness for an instrumented program entails exis-
tence of a witness for the original program, in the form of a set of inductive
invariants solely over the program variables. Notably, because of the semantics-
preserving nature of the rewrites under the instrumentation invariant, a witness
for the original program can be derived from one for the instrumented program.
One such back-translation is to add the instrumentation invariant as a conjunct
to the original witness, and to existentially quantify over the ghost variables.

Example. To illustrate the back-translation, we return to the instrumentation
operator from Fig. 2 and the example program from Fig. 1. The witness produced
by our verification tool in this case is the formula:

i = x_shad ∧ x_sq+ x_shad = 2s ∧ N ≥ i ∧ N ≥ 1 ∧ 2s ≥ i ∧ i ≥ 0

Automatic Program Instrumentation for Automatic Verification 289

After conjoining the instrumentation invariant x_sq = x_shad2 and existen-
tially quantifying over the involved ghost variables, we obtain an inductive invari-
ant that is sufficient to verify the original program:

∃xsq, xshad. (i = xshad ∧ xsq + xshad = 2s ∧
N ≥ i ∧ N ≥ 1 ∧ 2s ≥ i ∧ i ≥ 0 ∧ xsq = x2

shad)

Definition 3 (Weak Completeness). The operator Ω is called weakly com-
plete if for every program P and instrumented program P ′ ∈ Ω(P), whenever an
assert statement that has not been added to the program by the instrumentation
fails in the instrumented program P ′, then it also fails in the original program P .

Similarly to the back-translation of invariants, when verification fails, counterex-
amples for assertions of the original program, found during verification of the
instrumented program, can be translated back to counterexamples for the orig-
inal program. We thus obtain the following result.

Theorem 1 (Soundness and weak completeness). Every instrumentation
operator Ω is sound and weakly complete.

Proof. Let Ω = (G,R, I) be an instrumentation operator. Since I is a formula
over ghost variables only, which holds initially and is preserved by all rewrites,
I is an invariant of the fully instrumented program. This entails that rewrites of
assignments are semantics-preserving. Furthermore, since instrumentation code
only assigns to ghost variables or to r (i.e., the left-hand side of the original state-
ment), program variables have the same valuation in the instrumented program
as in the original one. Furthermore, since all rewrites are terminating under I,
the instrumented program will terminate if and only if the original program does.

In the case when verification succeeds, and a witness is produced, weak com-
pleteness follows vacuously. A witness consists of the inductive invariants suffi-
cient to verify the instrumented program. Thus, they are also sufficient to verify
the assertions existing in the original program, since assertions are not rewrit-
ten and all program variables have the same valuation in the original and the
instrumented programs. Since a witness for the instrumented program can be
back-translated to a witness for the original program, any failing assertion in the
original program must also fail after instrumentation, and Ω is therefore sound.

In the case when verification fails, soundness follows vacuously, and if the
failing assertion was added during instrumentation, also weak completeness fol-
lows. If the assertion existed in the original program, since such assertions are
not rewritten, and since program variables have the same valuation in the instru-
mented program as in the original program, then any counterexample for the
instrumented program is also a counterexample for the original program, when
projected onto the program variables. ��

290 J. Amilon et al.

Input: Program P ; statements S; instrumentation space R;
oracle IsCorrect .

Result: Instrumentation r ∈ R with IsCorrect(Pr); Incorrect ; or
Inconclusive.

1 begin
2 Cand ← R;
3 while Cand �= ∅ do
4 pick r ∈ Cand ;
5 if IsCorrect(Pr) then
6 return r;
7 else
8 cex ← counterexample path for Pr;
9 if failing assertion in cex also exists in P then

/* cex is also a counterexample for P */
10 return Incorrect ;
11 else

/* instrumentation on cex may have been incorrect
*/

12 C ′ ← {p ∈ C | insr(p) occurs on cex};
13 Cand ← Cand \ {r′ ∈ Cand | r(s) = r′(s) for all p ∈ C ′};
14 end
15 end
16 end
17 return Inconclusive;
18 end

Algorithm 1: Counterexample-guided instrumentation search

3 Instrumentation Application Strategies

We will now define a counterexample-guided search procedure to discover appli-
cations of instrumentation operators that make it possible to verify a program.

For our algorithm, we assume that we are given an oracle IsCorrect that
is able to check the correctness of programs after instrumentation. Such an
oracle could be approximated, for instance, using a software model checker.
The oracle is free to ignore the complex functions we are trying to eliminate
by instrumentation; for instance, in Fig. 1, the oracle can over-approximate the
term N*N by assuming that it can have any value. We further assume that C
is the set of control points of a program P corresponding to the statements to
which a given set of instrumentation operators can be applied. For each control
point p ∈ C, let Q(p) be the set of rewrite rules applicable to the statement
at p, including also a distinguished value ⊥ that expresses that p is not mod-
ified. For the program in Fig. 1, for instance, the choices could be defined by
Q(A) = Q(B) = {(R1),⊥}, Q(C) = {(R2),⊥}, and Q(D) = {(R4),⊥}, refer-
ring to the rules in Fig. 2. Any function r : C → ⋃

p∈C Q(p) with r(p) ∈ Q(p)

Automatic Program Instrumentation for Automatic Verification 291

Table 2. Extension of the core language with quantified expressions.

〈Expr〉 ::= (λ(〈Variable〉,〈Variable〉).〈Expr〉) (〈Expr〉, 〈Expr〉) |
forall(〈Expr〉,〈Expr〉,〈Expr〉,λ(〈Variable〉, 〈Variable〉).〈Expr〉) |
exists(〈Expr〉,〈Expr〉,〈Expr〉,λ(〈Variable〉, 〈Variable〉).〈Expr〉)

will then define one possible program instrumentation. We will denote the set
of well-typed functions C → ⋃

p∈C Q(p) by R, and the program obtained by
rewriting P according to r ∈ R by Pr. We further denote the control point in
Pr corresponding to some p ∈ C in P by insr(p).

Algorithm 1 presents our algorithm to search for instrumentations that are
sufficient to verify a program P . The algorithm maintains a set Cand ⊆ R of
remaining ways to instrument P , and in each loop considers one of the remaining
elements r ∈ Cand (line 4). If the oracle manages to verify Pr in line 5, due to
soundness of instrumentation the correctness of P has been shown (line 6); if
Pr is incorrect, there has to be a counterexample ending with a failing assertion
(line 8). There are two possible causes of assertion failures: if the failing assertion
in Pr already existed in P , then due to the weak completeness of instrumentation
also P has to be incorrect (line 10). Otherwise, the program instrumentation
has to be refined, and for this from Cand we remove all instrumentations r′ that
agree with r regarding the instrumentation of the statements occurring in the
counterexample (line 13).

Since R is finite, and at least one element of Cand is eliminated in each
iteration, the refinement loop terminates. The set Cand can be exponentially
big, however, and therefore should be represented symbolically (using BDDs, or
using an SMT solver managing the set of blocking constraints from line 13).

We can observe soundness and completeness of the algorithm w.r.t. the con-
sidered instrumentation operators (proof in [4]):

Lemma 1 (Correctness of Algorithm 1). If Algorithm 1 returns an instru-
mentation r ∈ R, then Pr and P are correct. If Algorithm 1 returns Incorrect ,
then P is incorrect. If there is r ∈ R such that Pr is correct, then Algorithm 1
will return r′ such that Pr′ is correct.

4 Instrumentation Operators for Arrays

4.1 Instrumentation Operators for Quantification over Arrays

To handle quantifiers in a programming setting, we extend the language defined
in Table 1 by adding quantified expressions over arrays, as shown in Table 2. As
seen, we also extend the language with a lambda expression over two variables.
The rationale for this is that many quantified properties can be expressed as a
binary predicate with the first argument corresponding to the value of an element
and the second to the index. This allows us to express properties over both the
value of an element and its index. For example, we can express that each element

292 J. Amilon et al.

Fig. 3. Example of program to be verified using a quantified assert statement.

should be equal to its index, as is done in the example program in Fig. 3. In the
program, each element in the array is assigned the value corresponding to its
index, after which it is asserted that this property indeed holds.

Using P(x0,i0) as shorthand for (λ(x,i).P)(x0,i0), the new expressions
can be defined formally as:

�forall(a, l, u, λ(x,i).P)�s = ∀i ∈ [l, u). �P(a[i],i)�s

�exists(a, l, u, λ(x,i).P)�s = ∃i ∈ [l, u). �P(a[i],i)�s

Note that the types of x and a must be compatible and P be a Boolean-valued
expression.

To handle programs such as the one in Fig. 3, we turn to the instrumentation
framework outlined in Sect. 2.2, which we use here to define an instrumentation
operator for universal quantification. The general idea is to instrument programs
with a ghost variable, tracking if some predicate holds for all elements in an
interval of the array, with shadow variables representing the tracked array, and
the bounds of the interval. Naturally, an instrumentation operator for existential
quantification can be defined in a similar fashion. For simplicity, we shall assume
a normal form of programs, into which every program can be rewritten by intro-
ducing additional variables. In the normal form, store, select and forall can
only occur in simple assignment statements. For example, stores are restricted
to occur in statements of the form: a’ = store(a, i, x).

Over such normalised programs, and for a universally quantified expres-
sion forall(a, l, u, λ(x,i)(P)), we define the instrumentation operator
Ω∀,P = (G∀,P , R∀,P , I∀,P) as shown in Fig. 4 over four ghost variables. The array
over which quantification occurs is tracked by qu_ar and the variables qu_lo,
qu_hi represent the bounds of the currently tracked interval. The result of the
quantified expression is tracked by qu_P, whose value is true iff P holds for
all elements in a in the interval [qu_lo, qu_hi). The rewrite rules for stores,
selects and assignments of universally quantified expressions are then defined
as follows. For stores, the first if-branch resets the tracking to the one element
interval [i, i+ 1) when accessing elements far outside of the currently tracked
interval, or if we are tracking the empty interval (as is the case at initialisa-
tion). If an access occurs immediately adjacent to the currently tracked interval

Automatic Program Instrumentation for Automatic Verification 293

Fig. 4. Definition of an instrumentation operator for universal quantification

(e.g., if i = qu_lo − 1), then that element is added to the tracked interval, and
the value of qu_P is updated to also account for the value of P at index i. If
instead the access is within the tracked interval, then we either reset the interval
(if qu_P is false) or keep the interval unchanged (if qu_P is true). Rewrites
of selects are similar to stores, except tracking does not need to be reset when
reading inside the tracked interval. For rewrites of quantified expressions, if the
quantified interval is empty, b is assigned true. Otherwise, assertions check that
the tracked interval matches the quantified interval before assigning t to qu_P.
If qu_P is true, then it is sufficient that quantification occurs over a sub-interval
of the tracked interval, and vice versa if qu_P is false.

294 J. Amilon et al.

The result of applying Ω∀,P to the program in Fig. 3 is shown in [4]. As
exhibited by the experiments in Sect. 5, the resulting program is in many cases
easier to verify by state-of-the-art verification tools. Note that the instrumenta-
tion operator defined is only one possibility among many. For example, one could
track several ranges simultaneously over the array in question, or also track the
index of some element in the array over which P holds, or make different choices
on stores outside of the tracked interval.

The following lemma establishes correctness of the instrumentation operator.
The proof can be found in [4].

Lemma 2 (Correctness of Ω∀,P). Ω∀,P is an instrumentation operator, i.e.,
it adheres to the constraints imposed in Definition 1.

4.2 Instrumentation Operators for Aggregation over Arrays

We now turn to the verification of safety properties with aggregation. As exam-
ples of aggregation, we consider in particular the operators \sum and \max, cal-
culating the sum and maximum value of an array, respectively. Aggregation
is supported in the form of extended quantifiers in the specification languages
JML [33] and ACSL [7], and is frequently needed for the specification of func-
tional correctness properties. Although commonly used, most verification tools
do not support aggregation, so that properties involving aggregation have to
be manually rewritten using standard quantifiers, pure recursive functions, or
ghost code involving loops. This reduction step is error-prone, and represents an
additional complication for automatic verification approaches, but can be han-
dled elegantly using the instrumentation framework. For generality, we formalise
aggregation over arrays with the help of monoid homomorphisms.

Definition 4 (Monoid). A monoid is a structure (M, ◦, e) consisting of a non-
empty set M , a binary associative operation ◦ on M , and a neutral element e ∈
M . A monoid is commutative if ◦ is commutative. A monoid is cancellative if
x ◦ y = x ◦ z implies y = z, and y ◦ x = z ◦ x implies y = z, for all x, y, z ∈ M .

For aggregation, we model finite intervals of arrays using the cancellative
monoid (D∗, ·, ε) of finite sequences over some data domain D. The concatenation
operator · is non-commutative.

Definition 5 (Monoid Homomorphism). A monoid homomorphism is a
function h : M1 → M2 between monoids (M1, ◦1, e1) and (M2, ◦2, e2) with the
properties h(x ◦1 y) = h(x) ◦2 h(y) and h(e1) = e2.

Ordinary quantifiers can be modelled as homormorphisms D∗ → B, so that
the instrumentation in this section strictly generalizes Sect. 4.1. A second clas-
sical example is the computation of the maximum (similarly, minimum) value
in a sequence. For the domain of integers, the natural monoid to use is the
algebra (Z−∞,max,−∞) of integers extended with −∞,1 and the homomor-
phism hmax is generated by mapping singleton sequences 〈n〉 to the value n. A
1 For machine integers, −∞ could be replaced with INT_MIN.

Automatic Program Instrumentation for Automatic Verification 295

third example is the computation of the element sum of an integer sequence,
corresponding to the monoid (Z ,+, 0) and the homomorphism hsum. Similarly,
the number of occurrences of some element can be computed. The considered
monoid in the last two cases of aggregation is even cancellative.

Programming Language with Aggregation. We extend our core program-
ming language with expressions aggregateM,h(〈Expr〉,〈Expr〉,〈Expr〉), and use
monoid homomorphisms to formalise them. Recall that we denote by Dσ the
domain of a program type σ.

Definition 6. Let Array σ be an array type, σM a program type, M a commuta-
tive monoid that is a subset of DσM

, and h : D∗
σ → M a monoid homomorphism.

Let furthermore ar be an expression of type Array σ, and l and u integer expres-
sions. Then, aggregateM,h(ar,l,u) is an expression of type σM , with semantics
defined by:

�aggregateM,h(ar,l,u)�s = h(〈�ar�s(�l�s), �ar�s(�l�s + 1), . . . , �ar�s(�u�s − 1)〉)

Intuitively, the expression aggregateM,h(ar,l,u) denotes the result of applying
the homomorphism h to the slice ar [l .. u − 1] of the array ar . As a convention,
in case u < l we assume that the result of aggregate is h(〈〉). As with array
accesses, we assume also that aggregate only occurs in normalised statements
of the form t = aggregateM,h(ar,l,u).

In our examples, we use derived operations as found in ACSL: \max as short-
hand notation for aggregate(Z−∞,max,−∞),hmax

2, and \sum as short-hand nota-
tion for aggregate(Z,+,0),hsum

.

An Instrumentation Operator for Maximum. For \max, an operator
Ωmax = (Gmax , Rmax , Imax) can be defined similarly to the operator Ω∀,P from
Sect. 4.1, in that the maximum value in a particular interval of the array is
tracked. One key difference is that an extra ghost variable ag_max_idx is added
to track an array index where the maximum value of the array interval is stored,
in order to not have to reset tracking on every store inside of the tracked interval.
A complete definition is proposed in [4].

An Instrumentation Operator for Sum. Cancellative aggregation is aggre-
gation based on a cancellative monoid. Cancellative aggregation makes it possi-
ble to track aggregate values faithfully even when storing inside of the tracked
interval, unlike \max and universal quantification. An example of a cancellative
operator is the aggregate \sum .

The instrumentation operator Ωsum = (Gsum , Rsum , Isum) is defined in
Fig. 5. The instrumentation code tracks the sum of values in the interval, and
2 With a slight abuse of the framework, we assume that Z−∞ is represented by the pro-

gram type Int, mapping −∞ to some fixed integer number. More elegant solutions
are not difficult to devise, but add unnecessary complexity.

296 J. Amilon et al.

Fig. 5. Definition of an instrumentation operator Ωsum for Sum

when increasing the bounds of the tracked interval, the new values are simply
added to the tracked sum. Since \sum is cancellative, when storing inside of
the tracked interval, the previous value at the index being written to is first
subtracted from the sum, before adding the new value, ensuring that the correct
aggregate value is computed. The following correctness result is proved in [4].

Lemma 3. (Correctness of Ωsum). Ωsum is an instrumentation operator,
i.e., it adheres to the constraints imposed in Definition 1.

Deductive Verification of Instrumentation Operators. As stated in
Sect. 2.2, instrumentation operators may be verified independently of the
programs to be instrumented. The operators described in this paper, i.e.
square, universal quantification, maximum, and sum, have been verified in the

Automatic Program Instrumentation for Automatic Verification 297

verification tool Frama-C [15]. The verified instrumentations are adaptations for
the C language semantics and execution model. More specifically, the adapted
operators assume C native arrays, rather than functional ones.

5 Evaluation

5.1 Implementation

To evaluate our instrumentation framework, we have implemented the instru-
mentation operators for quantifiers and aggregation over arrays. The implemen-
tation is done over constrained Horn clauses (CHCs), by adding the rewrite rules
defined in Sect. 4 to Eldarica [30], an open-source solver for CHCs. We also
implemented the automatic application of the instrumentation operators, largely
following Algorithm 1 but with a few minor changes due to the CHC setting.
The CHC setting makes our implementation available to various CHC-based ver-
ification tools, for instance JayHorn (Java) [32], Korn (C) [19], RustHorn
(Rust) [36], SeaHorn (C/LLVM) [26] and TriCera (C) [20].

In order to evaluate our approach at the level of C programs, we extended
TriCera, an open-source assertion-based model checker that translates C pro-
grams into a set of CHCs and relies on Eldarica as back-end solver. TriCera
is extended to parse quantifiers and aggregation operators in its input C pro-
grams and to encode them as part of the translation into CHCs. We call the
resulting toolchain MonoCera. An artefact that includes MonoCera and the
benchmarks is available online [5].

To handle complicated access patterns, for instance a program processing
an array from the beginning and end at the same time, the implementation
can apply multiple instrumentation operators simultaneously; the number of
operators is incremented when Algorithm 1 returns Inconclusive.

5.2 Experiments and Comparisons

To assess our implementation, we assembled a test suite and carried out experi-
ments comparing MonoCera with the state-of-the-art C model checkers CPA-
checker 2.1.1 [11], SeaHorn 10.0.0 [26] and TriCera 0.2. It should be noted
that deductive verification frameworks, such as Dafny and Frama-C, can handle,
for example, the program in Fig. 3 if they are provided with a manually written
loop invariant; however, since MonoCera relies on automatic techniques for
invariant inference, we only benchmark against tools using similar automatic
techniques. We also excluded VeriAbs [1], since its licence does not permit its
use for scientific evaluation.

The tools were set up, as far as possible, with equivalent configurations; for
instance, to use the SMT-LIB theory of arrays [6] in order to model C arrays, and
a mathematical (as opposed to machine) semantics of integers. CPAchecker
was configured to use k-induction [10], which was the only configuration that
worked in our tests using mathematical integers. SeaHorn was run using the
default settings. All tests were run on a Linux machine with AMD Opteron 2220
SE @ 2.8GHz and 6 GB RAM with a timeout of 300 s.

298 J. Amilon et al.

Table 3. Results for MonoCera (Mono), TriCera (Tri), SeaHorn (Sea), and
CPAchecker (CPA). For MonoCera, also statistics are given for verification time
(s), size of the instrumentation search space, and search iterations.

Verification results Ver. time Inst. space Inst. steps
#Tests Mono Tri Sea CPA Min Max Avg Max Avg Max Avg

min 17 9 2 2 2 22 59 33 27 11 55 24
max 12 8 2 3 3 21 285 76 108 21 96 30
sum 26 16 3 3 3 26 245 78 2916 188 284 36
forall 96 30 1 0 2 14 236 91 59049 2446 334 59

Test Suite. The comparison includes a set of programs calculating properties
related to the quantification and aggregation properties over arrays. The bench-
marks and verification results are summarised in Table 3. The benchmark suite
contains programs ranging between 16 to 117 LOC and is comprised of two parts:
(i) 117 programs taken from the SV-COMP repository [9], and (ii) 26 programs
crafted by the authors (min: 6, max: 8, sum: 9, forall: 3).

To construct the SV-COMP benchmark set for MonoCera we gathered
all test files from the directories prefixed with array or loop, and singled out
programs containing some assert statement that could be rewritten using a quan-
tifier or an aggregation operator over a single array. For example, loops

for (int i = 0; i < N; i++) assert(a[i] <= 0);

can be rewritten using forall or max operators. We created a benchmark for
each possible rewriting; for instance, in the case of max, by rewriting the loop
into assert(\max(a, 0, N) <= 0) . The original benchmarks were used for the
evaluation of the other tools, none of which supported (extended) quantifiers.

In (ii), we crafted 9 programs that make use of aggregation or quantifiers,
and derived further benchmarks by considering different array sizes (10, 100 and
unbounded size); one combination (unbounded array inside a struct) had to be
excluded, as it is not valid C. In order to evaluate other tools on our crafted
benchmarks, we reversed the process described for the SV-COMP benchmarks
and translated the operators into corresponding loop constructs.

Results. In Table 3, we present the number of verified programs per instrumenta-
tion operator for each tool, as well as further statistics for MonoCera regarding
verification times and instrumentation search space. The “Inst. space” column
indicates the size of the instrumentation search space (i.e., number of instrumen-
tations producible by applying the non-deterministic instrumentation operator).
“Inst. steps” column indicates the number of attempted instrumentations, i.e.,
number of iterations in the while-loop in Algorithm 1. In our implementation,
the check in Algorithm 1 line 5 can time out and cause the check to be repeated
at a later time with a greater timeout, which can lead to more iterations than
the size of the search space. In [4], we list results per benchmark for each tool.

Automatic Program Instrumentation for Automatic Verification 299

For the SV-COMP benchmarks, CPAchecker managed to verify 1 program,
while SeaHorn and TriCera could not verify any programs. MonoCera ver-
ified in total 42 programs from SV-COMP. Regarding the crafted benchmarks,
several tools could verify the examples with array size 10. However, when the
array size was 100 or unbounded, only MonoCera succeeded.

6 Related Work

It is common practice, in both model checking and deductive verification, to
translate high-level specifications to low-level specifications prior to verification
(e.g., [13,14,18,37]). Such translations often make use of ghost variables and
ghost code, although relatively little systematic research has been done on the
required properties of ghost code [22]. The addition of ghost variables to a pro-
gram for tracking the value of complex expressions also has similarities with the
concept of term abstraction in Horn solving [3]. To the best of our knowledge,
we are presenting the first general framework for automatic program instrumen-
tation.

A lot of research in software model checking considered the handling of stan-
dard quantifiers ∀,∃ over arrays. In the setting of constrained Horn clauses,
properties with universal quantifiers can sometimes be reduced to quantifier-free
reasoning over non-linear Horn clauses [13,37]. Our approach follows the same
philosophy of applying an up-front program transformation, but in a more gen-
eral setting. Various direct approaches to infer quantified array invariants have
been proposed as well: e.g., by extending the IC3 algorithm [27], syntax-guided
synthesis [21], learning [24], by solving recurrence equations [29], backward reach-
ability [3], or superposition [25]. To the best of our knowledge, such methods have
not been extended to aggregation.

Deductive verification tools usually have rich support for quantified spec-
ifications, but rely on auxiliary assertions like loop invariants provided by the
user, and on SMT solvers or automated theorem provers for quantifier reasoning.
Although several deductive verification tools can parse extended quantifiers, few
offer support for reasoning about them. Our work is closest to the method for
handling comprehension operators in Spec# [35], which relies on code annota-
tions provided by the user, but provides heuristics to automatically verify such
annotations. The code instrumentation presented in this paper has similarity
with the proof rules in Spec#; the main differences are that our method is based
on an upfront program transformation, and that we aim at automatically find-
ing required program invariants, as opposed to only verifying their correctness.
The KeY tool provides proof rules similar to the ones in Spec# for some of the
JML extended quantifiers [2]; those proof rules can be applied manually to verify
human-written invariants. The Frama-C system [15] can parse ACSL extended
quantifiers [7], but, to the best of our knowledge, none of the Frama-C plug-
ins can automatically process such quantifiers. Other systems, e.g., Dafny [34],
require users to manually define aggregation operators as recursive functions.

300 J. Amilon et al.

In the theory of algebraic data-types, several transformation-based approaches
have been proposed to verify properties that involve recursive functions or cata-
morphisms [17,31]. Aggregation over arrays resembles the evaluation of recur-
sive functions over data-types; a major difference is that data-types are more
restricted with respect to accessing and updating data than arrays.

Array folds logic (AFL) [16] is a decidable logic in which properties on arrays
beyond standard quantification can be expressed: for instance, counting the num-
ber of elements with some property. Similar properties can be expressed using
automata on data words [41], or in variants of monadic second-order logic [38].
Such languages can be seen as alternative formalisms to aggregation or extended
quantifiers; they do not cover, however, all kinds of aggregation we are interested
in. Array sums cannot be expressed in AFL or data automata, for instance.

7 Conclusion

We have presented a framework for automatic and provably correct program
instrumentation, allowing the automatic verification of programs containing cer-
tain expressive language constructs, which are not directly supported by the
existing automatic verification tools. Our experiments with a prototypical imple-
mentation, in the tool MonoCera, show that our method is able to automati-
cally verify a significant number of benchmark programs involving quantification
and aggregation over arrays that are beyond the scope of other tools.

There are still various other benchmarks that MonoCera (as well as other
tools) cannot verify. We believe that many of those benchmarks are in reach of
our method, because of the generality of our approach. Ghost code is known
to be a powerful specification mechanism; similarly, in our setting, more pow-
erful instrumentation operators can be easily formulated for specific kinds of
programs. In future work, we therefore plan to develop a library of instrumenta-
tion operators for different language constructs (including arithmetic operators),
non-linear arithmetic, other types of structures with regular access patterns such
as binary heaps, and general linked-data structures.

We also plan to refine our method for showing incorrectness of programs
more efficiently, as the approach is currently applicable mainly for verifying
correctness (experiments in [4]). Another line of work is the establishment of
stronger completeness results than the weak completeness result presented here,
for specific programming language fragments.

Acknowledgements. This work has been partially funded by the Swedish Vinnova
FFI Programme under grant 2021-02519, the Swedish Research Council (VR) under
grant 2018-04727, the Swedish Foundation for Strategic Research (SSF) under the
project WebSec (Ref. RIT17-0011), and the Wallenberg project UPDATE. We are also
grateful for the opportunity to discuss the research at the Dagstuhl Seminar 22451 on
“Principles of Contract Languages.”

Automatic Program Instrumentation for Automatic Verification 301

References

1. Afzal, M., Chakraborty, S., Chauhan, A., Chimdyalwar, B., Darke, P., Gupta,
A., Kumar, S., Babu M, C., Unadkat, D., Venkatesh, R.: VeriAbs: verification
by abstraction and test generation (competition contribution). In: TACAS 2020.
LNCS, vol. 12079, pp. 383–387. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45237-7_25

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice, Lec-
ture Notes in Computer Science, vol. 10001. Springer (2016). https://doi.org/10.
1007/978-3-319-49812-6

3. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012.
LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28717-6_7

4. Amilon, J., Esen, Z., Gurov, D., Lidström, C., Rümmer, P.: Automatic pro-
gram instrumentation for automatic verification (extended technical report). CoRR
abs/2306.00004 (2023). https://doi.org/10.48550/arXiv.2306.00004

5. Amilon, J., Esen, Z., Gurov, D., Lidström, C., Rümmer, P.: Artifact for the
CAV 2023 paper “Automatic Program Instrumentation for Automatic Verifica-
tion”, April 2023. https://doi.org/10.5281/zenodo.7875416

6. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available
at www.SMT-LIB.org

7. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

8. Beyer, D.: Progress on software verification: SV-COMP 2022. In: TACAS 2022.
LNCS, vol. 13244, pp. 375–402. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99527-0_20

9. Beyer, D.: SV-Benchmarks: Benchmark Set for Software Verification and Testing
(SV-COMP 2022 and Test-Comp 2022), January 2022. https://doi.org/10.5281/
zenodo.5831003

10. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_42

11. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

12. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2

13. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9_8

14. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

15. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C-A software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-

https://doi.org/10.1007/978-3-030-45237-7_25
https://doi.org/10.1007/978-3-030-45237-7_25
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-28717-6_7
https://doi.org/10.1007/978-3-642-28717-6_7
https://doi.org/10.48550/arXiv.2306.00004
https://doi.org/10.5281/zenodo.7875416
www.SMT-LIB.org
http://frama-c.com/acsl.html
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-319-10575-8

302 J. Amilon et al.

combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33826-7_16

16. Daca, P., Henzinger, T.A., Kupriyanov, A.: Array folds logic. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 230–248. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6_13

17. De Angelis, E., Proietti, M., Fioravanti, F., Pettorossi, A.: Verifying catamorphism-
based contracts using constrained Horn clauses. Theory Pract. Log. Program.
22(4), 555–572 (2022). https://doi.org/10.1017/S1471068422000175’

18. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad
memory code for heterogeneous multicore processors. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 280–295. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12002-2_24

19. Ernst, G.: Korn - software verification with Horn clauses (competition contribu-
tion). In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Paris, France, April 22–27, 2023, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 13994, pp. 559–564. Springer (2023). doi:
https://doi.org/10.1007/978-3-031-30820-8_36

20. Esen, Z., Rümmer, P.: TriCera: Verifying C programs using the theory of heaps.
In: 2022 Formal Methods in Computer Aided Design, FMCAD 2022, Trento, Italy,
October 17 - October 21, 2022 (2022) (To appear)

21. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 259–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4_14

22. Filliâtre, J., Gondelman, L., Paskevich, A.: The spirit of ghost code. Formal Meth-
ods Syst. Des. 48(3), 152–174 (2016). https://doi.org/10.1007/s10703-016-0243-
x

23. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: Hankin, C., Schmidt, D. (eds.) Proceedings of: Symposium
on Principles of Programming Languages (POPL’01), pp. 193–205. ACM (2001).
https://doi.org/10.1145/360204.360220

24. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Learning universally quanti-
fied invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 813–829. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_57

25. Georgiou, P., Gleiss, B., Kovács, L.: Trace logic for inductive loop reasoning. In:
2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel,
September 21–24, 2020, pp. 255–263. IEEE (2020). https://doi.org/10.34727/2020/
isbn.978-3-85448-042-6_33

26. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4_20

27. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: Lahiri, S.K., Wang,
C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 248–266. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4_15

28. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press (2009)

https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-319-41540-6_13
https://doi.org/10.1017/S1471068422000175'
https://doi.org/10.1007/978-3-642-12002-2_24
https://doi.org/10.1007/978-3-031-30820-8_36
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/s10703-016-0243-x
https://doi.org/10.1007/s10703-016-0243-x
https://doi.org/10.1145/360204.360220
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_33
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_33
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-030-01090-4_15

Automatic Program Instrumentation for Automatic Verification 303

29. Henzinger, T.A., Hottelier, T., Kovács, L., Rybalchenko, A.: Aligators for arrays
(tool paper). In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol.
6397, pp. 348–356. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16242-8_25

30. Hojjat, H., Rümmer, P.: The ELDARICA Horn solver. In: FMCAD 2018. pp. 1–7
(2018). https://doi.org/10.23919/FMCAD.2018.8603013

31. K., H.G.V., Shoham, S., Gurfinkel, A.: Solving constrained Horn clauses modulo
algebraic data types and recursive functions. Proc. ACM Program. Lang. 6(POPL),
1–29 (2022). https://doi.org/10.1145/3498722

32. Kahsai, T., Kersten, R., Rümmer, P., Schäf, M.: Quantified heap invariants for
object-oriented programs. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, May 7–12, 2017. EPiC Series in Computing, vol. 46, pp. 368–384.
EasyChair (2017). http://easychair.org/publications/paper/Pmh

33. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In:
Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems, The Kluwer International Series in Engineering and Computer Sci-
ence, vol. 523, pp. 175–188. Springer (1999). https://doi.org/10.1007/978-1-4615-
5229-1_12

34. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

35. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order
SMT solvers. In: Shin, S.Y., Ossowski, S. (eds.) Proceedings of the 2009 ACM
Symposium on Applied Computing (SAC), Honolulu, Hawaii, USA, March 9–12,
2009, pp. 615–622. ACM (2009). https://doi.org/10.1145/1529282.1529411

36. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification
for Rust programs. ACM Trans. Program. Lang. Syst. 43(4), 15:1–15:54 (2021).
10.1145/3462205

37. Monniaux, D., Gonnord, L.: Cell morphing: from array programs to array-free horn
clauses. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 361–382. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_18

38. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004). https://doi.org/10.
1145/1013560.1013562

39. Priya, S., Zhou, X., Su, Y., Vizel, Y., Bao, Y., Gurfinkel, A.: Verifying verified
code. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol. 12971, pp. 187–202.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88885-5_13

40. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22–25 July
2002, Copenhagen, Denmark, Proceedings, pp. 55–74. IEEE Computer Society
(2002). https://doi.org/10.1109/LICS.2002.1029817

41. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683_3

https://doi.org/10.1007/978-3-642-16242-8_25
https://doi.org/10.1007/978-3-642-16242-8_25
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1145/3498722
http://easychair.org/publications/paper/Pmh
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1529282.1529411
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1007/978-3-030-88885-5_13
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/11874683_3

304 J. Amilon et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Boolean Abstractions for Realizability
Modulo Theories

Andoni Rodŕıguez1,2(B) and César Sánchez1

1 IMDEA Software Institute, Madrid, Spain
{andoni.rodriguez,cesar.sanchez}@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. In this paper, we address the problem of the (reactive) realiz-
ability of specifications of theories richer than Booleans, including arith-
metic theories. Our approach transforms theory specifications into purely
Boolean specifications by (1) substituting theory literals by Boolean vari-
ables, and (2) computing an additional Boolean requirement that cap-
tures the dependencies between the new variables imposed by the literals.
The resulting specification can be passed to existing Boolean off-the-shelf
realizability tools, and is realizable if and only if the original specification
is realizable. The first contribution is a brute-force version of our method,
which requires a number of SMT queries that is doubly exponential in
the number of input literals. Then, we present a faster method that
exploits a nested encoding of the search for the extra requirement and
uses SAT solving for faster traversing the search space and uses SMT
queries internally. Another contribution is a prototype in Z3-Python.
Finally, we report an empirical evaluation using specifications inspired
in real industrial cases. To the best of our knowledge, this is the first
method that succeeds in non-Boolean LTL realizability.

1 Introduction

Reactive synthesis [30,31] is the problem of automatically producing a system
that is guaranteed to model a given temporal specification, where the Boolean
variables (i.e., atomic propositions) are split into variables controlled by the
environment and variables controlled by the system. Realizability is the related
decision problem of deciding whether such a system exists. These problems have
been widely studied [17,21], specially in the domain of Linear Temporal Logic
(LTL) [29]. Realizability corresponds to infinite games where players alterna-
tively choose the valuations of the Boolean variables they control. The winning
condition is extracted from the temporal specification and determines which
player wins a given play. A system is realizable if and only if the system player

This work was funded in part by the Madrid Regional Gov. Project “S2018/TCS-
4339 (BLOQUES-CM)”, by PRODIGY Project (TED2021-132464B-I00) funded
by MCIN/AEI/10.13039/501100011033/ and the European Union Next Generation
EU/PRTR, and by a research grant from Nomadic Labs and the Tezos Foundation.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 305–328, 2023.
https://doi.org/10.1007/978-3-031-37709-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_15&domain=pdf
http://orcid.org/0009-0006-3464-8667
http://orcid.org/0000-0003-3927-4773
https://doi.org/10.1007/978-3-031-37709-9_15

306 A. Rodŕıguez and C. Sánchez

has a winning strategy, i.e., if there is a way to play such that the specification
is satisfied in all plays played according to the strategy.

However, in practice, many real and industrial specifications use complex
data beyond Boolean atomic propositions, which precludes the direct use of
realizability tools. These specifications cannot be written in (propositional) LTL,
but instead use literals from a richer domain. We use LTLT for the extension
of LTL where Boolean atomic propositions can be literals from a (multi-sorted)
first-order theory T . The T variables (i.e., non-Boolean) in the specification are
again split into those controlled by the system and those controlled by the envi-
ronment. The resulting realizability problem also corresponds to infinite games,
but, in this case, players chose valuations from the domains of T , which may
be infinite. Therefore, arenas may be infinite and positions may have infinitely
many successors. In this paper, we present a method that transforms a specifica-
tion that uses data from a theory T into an equi-realizable Boolean specification.
The resulting specification can then be processed by an off-the-shelf realizability
tool.

The main element of our method is a novel Boolean abstraction method,
which allows to transform LTLT specifications into pure (Boolean) LTL specifi-
cations. The method first substitutes all T literals by fresh Boolean variables con-
trolled by the system, and then extends the specification with an additional sub-
formula that constrains the combination values of these variables. This method
is described in Sect. 3. The main idea is that, after the environment selects val-
ues for its (data) variables, the system responds with values for the variables
it controls, which induces a Boolean value for all the literals. The additional
formula we compute captures the set of possible valuations of literals and the
precise power of each player to produce each valuation.

Example 1. Consider the following specification ϕ = ◻(R0 ∧ R1), where:

R0 : (x < 2) →◯(y > 1) R1 : (x ≥ 2) → (y < x)

where x is a numeric variable that belongs to the environment and y to the sys-
tem. In the game corresponding to this specification, each player has an infinite
number of choices at each time step. For example, in TZ (the theory of integers),
the environment player chooses an integer for x and the system responds with
an integer for y. This induces a valuation of all literals in the formula, which in
turn induces (also considering the valuations of the literals at other time instants,
according to the temporal operators) a valuation of the full specification.

In this paper, we exploit that, from the point of view of the valuations of
the literals, there are only finitely many cases and provide a systematic man-
ner to compute these cases. This allows us to reduce a specification into a
purely Boolean specification that is equi-realizable. This specification encodes
the (finite) set of decisions of the environment, and the (finite) set of reactions
of the system. ��

Example 1 suggests a naive algorithm to capture the powers of the environ-
ment and system to determine a combination of the valuations of the literals, by

Boolean Abstractions for Realizability Modulo Theories 307

enumerating all these combinations and checking the validity of each potential
reaction. Checking that a given combination is a possible reaction requires an
∃∗∀∗ query (which can be delegated to an SMT solver for appropriate theories).

In this paper, we describe and prove correct a Boolean abstraction method
based on this idea. Then, we propose a more efficient search method for the set
of possible reactions using SAT solving to speed up the exploration of the set of
reactions. The main idea of this faster method is to learn from an invalid reaction
which other reactions are guaranteed to be invalid, and from a valid reaction
which other reactions are not worth being explored. We encode these learnt
sets as a incremental SAT formula that allows to prune the search space. The
resulting method is much more efficient than brute-force enumeration because,
in each iteration, the learning can prune an exponential number of cases. An
important technical detail is that computing the set of cases to be pruned from
the outcome of a given query can be described efficiently using a SAT solver.

In summary, our contributions are: (1) a proof that realizability is decidable
for all LTLT specifications for those theories T with a decidable ∃∗∀∗ fragment;
(2) a simple implementation of the resulting Boolean abstraction method; (3)
a much faster method based on a nested-SAT implementation of the Boolean
abstraction method that efficiently explores the search space of potential reac-
tions; and (4) an empirical evaluation of these algorithms, where our early find-
ings suggest that Boolean abstractions can be used with specifications contain-
ing different arithmetic theories, and also with industrial specifications. We used
Z3 [10] both as an SMT solver and a SAT solver, and Strix [27] as the realizabil-
ity checker. To the best of our knowledge, this is the first method that succeeds
(and efficiently) in non-Boolean LTL realizability.

2 Preliminaries

We study realizability of LTL [26,29] specifications. The syntax of LTL is:

ϕ ::= T
∣
∣ a

∣
∣ ϕ ∨ ϕ

∣
∣ ¬ϕ

∣
∣ ◯ ϕ

∣
∣ ϕ U ϕ

where a ranges from an atomic set of proposition AP, ∨, ∧ and ¬ are the usual
Boolean disjunction, conjunction and negation, and ◯ and U are the next and
until temporal operators. The semantics of LTL associate traces σ ∈ Σω with
formulae as follows:

σ |= T always
σ |= a iff a ∈ σ(0)
σ |= ϕ1 ∨ ϕ2 iff σ |= ϕ1 or σ |= ϕ2

σ |= ¬ϕ iff σ �|= ϕ
σ |=◯ϕ iff σ1 |= ϕ
σ |= ϕ1 U ϕ2 iff for some i ≥ 0 σi |= ϕ2, and for all 0 ≤ j < i, σj |= ϕ1

We use common derived operators like ∨, R, ◇ and ◻.
Reactive synthesis [4,5,14,28,33] is the problem of producing a system from

an LTL specification, where the atomic propositions are split into propositions

308 A. Rodŕıguez and C. Sánchez

that are controlled by the environment and those that are controlled by the
system. Synthesis corresponds to a turn-based game where, in each turn, the
environment produces values of its variables (inputs) and the system responds
with values of its variables (outputs). A play is an infinite sequence of turns. The
system player wins a play according to an LTL formula ϕ if the trace of the play
satisfies ϕ. A (memory-less) strategy of a player is a map from positions into a
move for the player. A play is played according to a strategy if all the moves
of the corresponding player are played according to the strategy. A strategy is
winning for a player if all the possible plays played according to the strategy are
winning.

Depending on the fragment of LTL used, the synthesis problem has different
complexities. The method that we present in this paper generates a formula
in the same temporal fragment as the original formula (e.g., starting from a
safety formula another safety formula is generated). The generated formula is
discharged into a solver capable to solve formulas in the right fragment. For
simplicity in the presentation, we illustrate our method with safety formulae.

We use LTLT as the extension of LTL where propositions are replaced by
literals from a first-order theory T . In realizability for LTLT , the variables that
occur in the literals of a specification ϕ are split into those variables controlled
by the environment (denoted by ve) and those controlled by the system (vs),
where ve ∩ vs = ∅. We use ϕ(ve, vs) to remark that ve ∪ vs are the variables
occurring in ϕ. The alphabet ΣT is now a valuation of the variables in ve ∪ vs.
A trace is an infinite sequence of valuations, which induces an infinite sequence
of Boolean values of the literals occurring in ϕ and, in turn, a valuation of the
temporal formula.

Realizability for LTLT corresponds to an infinite game with an infinite arena
where positions may have infinitely many successors if the ranges of the variables
controlled by the system and the environment are infinite. For instance, in Ex. 1
with T = TZ, valuation ranges over infinite values, and literal (x ≥ 2) can be
satisfied with x = 2, x = 3, etc.

Arithmetic theories are a particular class of first-order theories. Even though
our Boolean abstraction technique is applicable to any theory with a decidable
∃∗∀∗ fragment, we illustrate our technique with arithmetic specifications. Con-
cretely, we will consider TZ (i.e., linear integer arithmetic) and TR (i.e., non-linear
real arithmetic). Both theories have a decidable ∃∗∀∗ fragment. Note that the
choice of the theory influences the realizability of a given formula.

Example 2. Consider Ex. 1. The formula ϕ := R0 ∧ R1 is not realizable for TZ,
since, if at a given instant t, the environment plays x = 0 (and hence x < 2 is
true), then y must be greater than 1 at time t+1. Then, if at t+1 the environment
plays x = 2 then (x ≥ 2) is true but there is no y such that both (y > 1) and
(y < 2). However, for TR, ϕ is realizable (consider the system strategy to always
play y = 1.5).

The following slight modifications of Ex. 1 alters its realizability (R′
1 substi-

tutes R1 by having the T -predicate y ≤ x instead of y < x):

R0 : (x < 2) →◯(y > 1) R′
1 : (x ≥ 2) → (y ≤ x)

Boolean Abstractions for Realizability Modulo Theories 309

Now, ϕ′ = ◻(R0 ∧ R′
1) is realizable for both TZ and TR, as the strategy of the

system to always pick y = 2 is winning in both theories. ��

3 Boolean Abstraction

We solve the realizability problem modulo theories by transforming the spec-
ification into an equi-realizable Boolean specification. Given a specification ϕ
with literals li, we get a new specification ϕ[li ← si] ∧ ◻ϕextra, where si are
fresh Boolean variables and ϕextra ∈ LTLB is a Boolean formula (without tem-
poral operators). The additional sub-formula ϕextra uses the freshly introduced
variables si controlled by the system, as well as additional Boolean variables
controlled by the environment e, and captures the precise combined power of
the players to decide the valuations of the literals in the original formula. We
call our approach Booleanization or Boolean abstraction. The approach is sum-
marized in Fig. 1: given an LTL specification ϕT , it is translated into a Boolean
ϕB which can be analyzed with off-the-shelf realizability checkers. Note that GB

and GT are the games constructed from specifications ϕB and ϕT , respectively.
Also, note that [20] shows that we can construct a game G from a specification
ϕ and that ϕ is realizable if and only if G is winning for the system.

ϕT ϕB

GBGT

Booleanization

�
Thm. 1

�

Realizability
Tool

Fig. 1. The tool chain with the correctness argument.

The Booleanization procedure constructs an extra requirement ϕextra and
conjoins◻ϕextra with the formula ϕ[li ← si]. In a nutshell, after the environment
chooses a valuation of the variables it controls (including e), the system responds
with valuations of its variables (including si), which induces a Boolean value for
all literals. Therefore, for each possible choice of the environment, the system has
the power to choose a Boolean response among a specific collection of responses
(a subset of all the possible combinations of Boolean valuations of the literals).
Since the set of all possible responses is finite, so are the different cases. The extra
requirement captures precisely the finite collection of choices of the environment
and the resulting finite collection of responses of the system for each case.

3.1 Notation

In order to explain the construction of the extra requirement, we introduce some
preliminary definitions. We will use Ex. 1 as the running example.

310 A. Rodŕıguez and C. Sánchez

A literal is an atom or its negation, regardless of whether the atom is a
Boolean variable or a predicate of a theory. Let Lit(ϕ) be the collection of
literals that appear in ϕ (or Lit , if the formula is clear from the context). For
simplicity, we assume that all literals belong the same theory, but each theory
can be Booleanized in turn, as each literal belongs to exactly one theory and we
assume in this paper that literals from different theories do not share variables.
We will use x as the environment controlled variables occurring in Lit(ϕ) and y
for the variables controlled by the system.

In Ex. 1, we first translate the literals in ϕ. Since (x < 2) is equivalent to
¬(x ≥ 2), we use a single Boolean variable for both. The substitutions is:

(x < 2) ← s0 (y > 1) ← s1 (y < x) ← s2
(x ≥ 2) ← ¬s0 (y ≤ 1) ← ¬s1 (y ≥ x) ← ¬s2

After the substitution we obtain ϕ′′ = ◻(RB
0 ∧ RB

1) where

RB

0 : s0 →◯s1 RB

1 : ¬s0 → s2

Note that ϕ′′ may not be equi-realizable to ϕ, as we may be giving too much
power to the system if s0, s1 and s2 are chosen independently without restriction.
Note that ϕ′′ is realizable, for example by always choosing s1 and s2 to be true,
but ϕ is not realizable in LTLTZ

. This justifies the need of an extra sub-formula.

Definition 1 (Choice). A choice c ⊆ Lit(ϕ) is a subset of the literals of ϕ.

The intended meaning of a choice is to capture what literals are true in the
choice, while the rest (i.e., Lit \ c) are false. Once the environment picks values
for x, the system can realize some choice c by selecting y and making the literals
in c true (and the rest false). However, for some values of x, some choices may
not be possible for the system for any y. Given a choice c, we use f(c(x, y)) to
denote the formula: ∧

l∈c

l ∧
∧

l/∈c

¬l

which is a formula with variables x and y that captures logically the set of values
of x and y that realize precisely choice c. We use C for the set of choices. Note
that there are |C| = 2|Lit| different choices. We call the elements of C choices
because they may be at the disposal of the system to choose by picking the right
values of its variables.

A given choice c can act as potential (meaning that the response is possible)
or as antipotential (meaning that the response is not possible). A potential is
a formula (that depends only on x) that captures those values of x for which
the system can respond and make precisely the literals in c true (and the rest of
the literals false). The negation of the potential (i.e., an antipotential) captures
precisely those values of x for which there are no values of y that lead to c.

Definition 2 (Potential and Antipotential). Given a choice c, a potential
is the following formula cp and an antipotential is the following formula ca:

cp(x) = ∃y.f(c(x, y)) ca(x) = ∀y.¬f(c(x, y))

Boolean Abstractions for Realizability Modulo Theories 311

Example 3. We illustrate two choices for Ex. 1. Consider choices c0 = {(x <
2), (y > 1), (y < x)} and c1 = {(x < 2), (y > 1)}. Choice c0 corresponds to
f(c0) = (x < 2) ∧ (y > 1) ∧ (y < x), that is, literals (x < 2), (y > 1) and (y < x)
are true. Choice c1 corresponds to f(c1) = (x < 2) ∧ (y > 1) ∧ (y ≥ x), that is,
literals (x < 2) and (y > 1) being true and (y < x) being false (i.e., (y ≥ x)
being true). It is easy to see the meaning of c2, c3 etc. Then, the potential and
antipotential formulae of e.g., choices c0 and c1 from Ex. 1 are as follows:

cp
0 = ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) ca

0 = ∀y.¬
(

(x < 2) ∧ (y > 1) ∧ (y < x)
)

cp
1 = ∃y.(x < 2) ∧ (y > 1) ∧ (y ≥ x) ca

1 = ∀y.¬
(

(x < 2) ∧ (y > 1) ∧ (y ≥ x)
)

Note that potentials and antipotentials have x as the only free variables. ��

Depending on the theory, the validity of potentials and antipotentials may be
different. For instance, consider cp

0 and theories TZ and TR:

– In TZ: ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) is equivalent to false.
– In TR: ∃y.(x < 2) ∧ (y > 1) ∧ (y < x) is equivalent to (x < 2).

These equivalences can be obtained using classic quantifier elimination proce-
dures, e.g., with Cooper’s algorithm [9] for TZ and Tarski’s method [32] for TR.

A reaction is a description of the specific choices that the system has the
power to choose.

Definition 3 (Reaction). Let P and A be a partition of C that is: P ⊆ C,
A ⊆ C, P ∩ A = ∅ and P ∪ A = C. The reaction react(P,A) is as follows:

react(P,A)(x)
def
=

∧

c∈P

cp ∧
∧

c∈A

ca

The reaction react(P,A) is equivalent to:

react(P,A)(x) =
∧

c∈P

(

∃y.f(c(x, y))
)

∧
∧

c∈A

(

∀y.¬f(c(x, y))
)

.

There are 22
|Lit|

different reactions.
A reaction r is called valid whenever there is a move of the environment for

which r captures precisely the power of the system, that is exactly which choices
the system can choose. Formally, a reaction is valid whenever ∃x.r(x) is a valid
formula. We use R for the set of reactions and VR for the set of valid reactions.
It is easy to see that, for all possible valuations of x the environment can pick,
the system has a specific power to respond (among the finitely many cases).
Therefore, the following formula is valid:

ϕVR = ∀x.
∨

r∈VR

r(x).

312 A. Rodŕıguez and C. Sánchez

Example 4. In Ex. 1, for theory TZ, we find there are two valid reactions (using
choices from Ex. 3):

r1 : ∃x.ca
0 ∧ cp

1 ∧ cp
2 ∧ cp

3 ∧ ca
4 ∧ ca

5 ∧ ca
6 ∧ ca

7

r2 : ∃x.ca
0 ∧ ca

1 ∧ ca
2 ∧ ca

3 ∧ ca
4 ∧ cp

5 ∧ cp
6 ∧ ca

7 ,

where reaction r1 models the possible responses of the system after the envi-
ronment picks a value for x with (x < 2), whereas r2 models the responses to
(x ≥ 2). On the other hand, for TR, there are three valid reactions:

r1 : ∃x.ca
0 ∧ cp

1 ∧ cp
2 ∧ cp

3 ∧ ca
4 ∧ ca

5 ∧ ca
6 ∧ ca

7

r2 : ∃x.cp
0 ∧ cp

1 ∧ cp
2 ∧ ca

3 ∧ ca
4 ∧ ca

5 ∧ ca
6 ∧ ca

7

r3 : ∃x.ca
0 ∧ ca

1 ∧ ca
2 ∧ ca

3 ∧ cp
4 ∧ cp

5 ∧ cp
6 ∧ ca

7

Note that there is one valid reaction more, since in TR there is one more
case: x ∈ (1, 2]. Also, note that c4 cannot be a potential in TZ (not even with a
collaboration between environment and system), whereas it can in TR. ��

3.2 The Boolean Abstraction Algorithm

Boolean abstraction is a method to compute ϕB from ϕT . In this section we
describe and prove correct a basic brute-force version of this method, and later
in Sect. 4, we present faster algorithms. All Boolean abstraction algorithms that
we present on this paper first compute the extra requirement, by visiting the set
of reactions and computing a subset of the valid reactions that is sufficient to
preserve realizability. The three main building blocks of our algorithms are (1)
the stop criteria of the search for reactions; (2) how to obtain the next reaction to
consider; and (3) how to modify the current set of valid reactions (by adding new
valid reactions to it) and the set of remaining reactions (by pruning the search
space). Finally, after the loop, the algorithm produces as ϕextra a conjunction of
cases, one per valid reaction (P,A) in VR.

Algorithm 1: Brute-force
1 Input: ϕT
2 ϕ′ ← ϕT [li ← si] VR ← {}
3 C ← choices(literals(ϕT))
4 R ← 2C

5 for (P,A) ∈ R do
6 if ∃x.react(P,A)(x) then
7 VR ← VR ∪ {(P,A)}

8 ϕextra ← getExtra(VR)
9 return ϕ′ ∧◻(A → ϕextra)

We introduce a fresh variable e(P,A),
controlled by the environment for each
valid reaction (P,A), to capture that the
environment plays values for x that corre-
spond to the case where the system is left
with the power to choose captured pre-
cisely by (P,A). Therefore, there is one
additional environment Boolean variable
per valid reaction (in practice we can enu-
merate the number of valid reactions and
introduce only a logarithmic number of
environment variables). Finally, the extra
requirement uses P for each valid reac-

tion (P,A) to encode the potential moves of the systems as a disjunction of the
literals described by each choice in P . Each of these disjunction contains pre-
cisely the combinations of literals that are possible for the concrete case that
(P,A) captures.

Boolean Abstractions for Realizability Modulo Theories 313

A brute-force algorithm that implements Boolean abstraction method by
exhaustively searching all reactions is shown in Algorithm 1. The building blocks
of this algorithm are:

(1) It stops when the remaining set of reactions is empty.
(2) It traverses the set R according to some predetermined order.
(3) To modify the set of valid reactions, if (P,A) is valid it adds (P,A) to the

set VR (line 7). To modify the set of remaining reactions, it removes (P,A)
from the search.

Finally, the extra sub-formula ϕextra is generated by getExtra (line 8) defined as
follows:

getExtra(VR) =
∧

(P,A)∈VR

(e(P,A) →
∨

c∈P

(
∧

li∈c

si ∧
∧

li /∈c

¬si))

Note that there is an ∃∗∀∗ validity query in the body of the loop (line 6) to
check whether the candidate reaction is valid. This is why decidability of the
∃∗∀∗ fragment is crucial because it captures the finite partitioning of the envi-
ronment moves (which is existentially quantified) for which the system can react
in certain ways (i.e., potentials, which are existentially quantified) by picking
appropriate valuations but not in others (i.e., antipotentials, which are uni-
versally quantified). In essence, the brute-force algorithm iterates over all the
reactions, one at a time, checking whether each reaction is valid or not. In case
the reaction (characterized by the set of potential choices1) is valid, it is added
to VR.

Example 5. Consider again the specification in Ex. 1, with TZ as theory. Note
that the valid reactions are r1 and r2, as shown in Ex. 4, where the potentials of
r1 are {c1, c2, c3} and the potentials of r2 are {c5, c6}. Now, the creation of ϕextra

requires two fresh variables d0 and d1 for the environment (they correspond to
environment decisions (x < 2) and (x ≥ 2), respectively), resulting into:

ϕextra
TZ

:

⎛

⎝

d0 →
(

(s0 ∧ s1 ∧ ¬s2) ∨ (s0 ∧ ¬s1 ∧ s2) ∨ (s0 ∧ ¬s1 ∧ ¬s2)
)

∧
d1 →

(

(¬s0 ∧ s1 ∧ ¬s2) ∨ (¬s0 ∧ ¬s1 ∧ s2)
)

⎞

⎠

For example c2 = {s0} is a choice that appears as potential in valid reaction
r1, so it appears as a disjunct of d0 as (s0 ∧ ¬s1 ∧ ¬s2). The resulting Booleanized
specification ϕB is as follows:

ϕB

TZ
= (ϕ′′ ∧ ◻(AB → ϕextra

TZ
))

��

1 The potentials in a choice characterize the precise power of the system player,
because the potentials correspond with what the system can respond.

314 A. Rodŕıguez and C. Sánchez

Note that the Boolean encoding is extended with an assumption formula
AB = (d0 ↔ ¬d1)∧ (d0 ∨ d1) that restricts environment moves to guarantee that
exactly one environment decision variable is picked. Also, note that a Boolean
abstraction algorithm will output three (instead of two) decisions for the envi-
ronment, but we ackowledge that one of them will never be played by it, since
it gives strictly more power to the system. The complexity of this brute-force
Booleanization algorithm is doubly exponential in the number of literals.

3.3 From Local Simulation to Equi-Realizability

The intuition about the correctness of the algorithm is that the extra requirement
encodes precisely all reactions (i.e., collections of choices), for which there is a
move of the environment that leaves the system with precisely that power to
respond. As an observation, in the extra requirement, the set of potentials in
valid reactions cannot be empty. This is stated in Lemma 1.

Lemma 1. Let C ∈ C be such that reactC ∈ VR. Then C �= ∅.

Proof. Bear in mind reactC ∈ VR is valid. Let v be such that reactC [x � v] is
valid. Let w be an arbitrary valuation of y and let c be a choice and l a literal.
Therefore: ∧

l[x�v,y�w] is true

l ∧
∧

l[x�v,y�w] is false

¬l

It follows that I[x ← v]∃y.c, so c ∈ C. ��

Lemma 1 is crucial, because it ensures that once a Boolean abstraction algorithm
is executed, for each fresh e variable in the extra requirement, at least one
reaction with one or more potentials can be responded by the system.

Therefore, in each position in the realizability game, the system can respond
to moves of the system leaving to precisely corresponding positions in the
Boolean game. In turn, this leads to equi-realizability because each move can
be simulated in the corresponding game. Concretely, it is easy to see that we
can define a simulation between the positions of the games for ϕT and ϕB such
that (1) each literal li and the corresponding variable si have the same truth
value in related positions, (2) the extra requirement is always satisfied, and (3)
moves of the system in each game from related positions in each game can be
mimicked in the other game. This is captured by the following theorem:

Theorem 1. System wins GT if and only if System wins the game GB. There-
fore, ϕT is realizable if and only if ϕB is realizable.

Proof. (Sketch). Since realizability games are memory-less determined, it is suf-
ficient to consider only local strategies. Given a strategy ρB that is winning in
GB we define a strategy ρT in GT as follows. Assuming related positions, ρT

Boolean Abstractions for Realizability Modulo Theories 315

moves in GT to the successor that is related to the position where ρB moves in
GB. By (3) above, it follows that for every play played in GB according to ρB
there is a play in GT played according to ρT that results in the same trace, and
vice-versa: for every play played in GT according to ρT there is a play in GB

played according to ρB that results in the same trace. Since ρB is winning, so is
ρT . The other direction follows similarly, because again ρB can be constructed
from ρT not only guaranteeing the same valuation of literals and corresponding
variables, but also that the extra requirement holds in the resulting position. ��

The following corollary of Thm. 1 follows immediately.

Theorem 2. Let T be a theory with a decidable ∃∗∀∗-fragment. Then, LTLT
realizability is decidable.

4 Efficient Algorithms for Boolean Abstraction

4.1 Quasi-reactions

The basic algorithm presented in Sect. 3 exhaustively traverses the set of reac-
tions, one at a time, checking whether each reaction is valid. Therefore, the
body of the loop is visited 2|C| times. In practice, the running time of this basic
algorithm quickly becomes unfeasible.

We now improve Alg. 1 by exploiting the observation that every SMT query
for the validity of a reaction reveals information about the validity of other
reactions. We will exploit this idea by learning uninteresting subsequent sets of
reactions and pruning the search space. The faster algorithms that we present
below encode the remaining search space using a SAT formula, whose models
are further reactions to explore.

To implement the learning-and-pruning idea we first introduce the notion of
quasi-reaction.

Definition 4 (Quasi-reaction). A quasi-reaction is a pair (P,A) where P ⊆
C, A ⊆ C and P ∩ A = ∅.

Quasi-reactions remove from reactions the constraint that P∪A = C. A quasi-
reaction represents the set of reactions that would be obtained from choosing
the remaining choices that are neither in P nor in A as either potential or
antipotential. The set of quasi-reactions is:

Q = {(P,A)|P,A ⊆ C and P ∩ A = ∅}

Note that R = {(P,A) ∈ Q|P ∪ A = C}.

316 A. Rodŕıguez and C. Sánchez

Example 6. Consider a case with four choices c0, c1, c2 and c3. The quasi-reaction
({c0, c2}, {c1}) corresponds to the following formula:

∃x.
(

∃y. f(c0(x, y)) ∧ ∀y. ¬f(c1(x, y)) ∧ ∃y. f(c2(x, y))
)

Note that nothing is stated in this quasi-reaction about c3 (it neither acts as a
potential nor as an antipotential). ��

Consider the following order between quasi-reactions: (P,A) � (P ′, A′) holds
if and only if P ⊆ P ′ and A ⊆ A′. It is easy to see that � is a partial order,
that (∅, ∅) is the lowest element and that for every two elements (P,A) and
(P ′, A′) there is a greatest lower bound (namely (P ∩ P ′, A ∩ A′)). Therefore
(P,A) � (P ′, A′) def= (P ∩ P ′, A ∩ A′) is a meet operation (it is associative,
commutative and idempotent). Note that q � q′ if and only if q � q′ = q.
Formally:

Proposition 1. (Q,�) is a lower semi-lattice.

The quasi-reaction semi-lattice represents how informative a quasi-reaction
is. Given a quasi-reaction (P,A), removing an element from either P or A results
in a strictly less informative quasi-reaction. The lowest element (∅, ∅) contains
the least information.

Given a quasi-reaction q, the set Qq = {q′ ∈ Q|q′ � q} of the quasi-reactions

below q form a full lattice with join (P,Q) � (P ′, Q′) def= (P ∪ P ′, Q ∪ Q′). This
is well defined because P ′ and Q, and P and Q′ are guaranteed to be disjoint.

Proposition 2. For every q, (Qq,�,�) is a lattice.

As for reactions, quasi-reactions correspond to a formula in the theory as
follows:

qreact(P,A)(x) =
∧

c∈P

(

∃y.c(x, y)
)

∧
∧

c∈A

(

∀y.¬c(x, y)
)

Again, given a quasi-reaction q, if ∃x.qreactq(x) is valid we say that q is valid,
otherwise we say that q is invalid. The following holds directly from the def-
inition (and the fact that adding conjuncts makes a first-order formula “less
satisfiable”).

Proposition 3. Let q, q′ be two quasi-reactions with q � q′. If q is invalid then
q′ is invalid. If q′ is valid then q is valid.

These results enable the following optimizations.

4.2 Quasi-reaction-based Optimizations

A Logic-Based Optimization. Consider that, during the search for valid
reactions in the main loop, a reaction (P,A) is found to be invalid, that is

Boolean Abstractions for Realizability Modulo Theories 317

react(P,A) is unsatisfiable. If the algorithms explores the quasi-reactions below
(P,A), finding (P ′, A′) � (P,A) such that qreact(P ′,A′), then by Prop. 3, every
reaction (P ′′, A′′) above (P ′, A′) is guaranteed to be invalid. This allows to prune
the search in the main loop by computing a more informative quasi-reaction q
after an invalid reaction r is found, and skipping all reactions above q (and not
only r). For example, if the reaction corresponding to ({c0, c2, c3}, {c1}) is found
to be invalid, and by exploring quasi-reactions below it, we find that ({c0}, {c1})
is also invalid, then we can skip all reactions above ({c0}, {c1}). This includes
for example ({c0, c2}, {c1, c3}) and ({c0, c3}, {c1, c2}). In general, the lower the
invalid quasi-reaction in �, the more reactions will be pruned. This optimization
resembles a standard choosing of max/min elements in an anti-chain.

A Game-Based Optimization. Consider now two reactions r = (P,A) and
r′ = (P ′, A′) such that P ⊆ P ′ and assume that both are valid reactions. Since
r′ allows more choices to the system (because the potentials P determine these
choices), the environment player will always prefer to play r than r′. Formally, if
there is a winning strategy for the environment that chooses values for x (corre-
sponding to a model of reactr), then choosing values for x′ instead (corresponding
to a model of reactr′) will also be winning.

Therefore, if a reaction r is found to be valid, we can prune the search for reac-
tions r′ that contain strictly more potentials, because even if r′ is also valid, it will
be less interesting for the environment player. For instance, if ({c0, c3}, {c1, c2})
is valid, then ({c0, c1, c3}, {c2}) and ({c0, c1, c3, c2}, {}) become uninteresting to
be explored and can be pruned from the search.

4.3 A Single Model-Loop Algorithm (Algorithm 2)

We present now a faster algorithm that replaces the main loop of Algorithm 1
that performs exhaustive exploration with a SAT-based search procedure that
prunes uninteresting reactions. In order to do so, we use a SAT formula ψ with
one variable zi per choice ci, in a DPLL(T) fashion. An assignment v : Vars(ψ) →
B to these variables represents a reaction (P,A) where

P = {ci|v(zi) = true} A = {cj |v(zj) = false}

Similarly, a partial assignment v : Vars(ψ) ⇀ B represents a quasi-reaction.
The intended meaning of ψ is that its models encode the set of interest-
ing reactions that remain to be explored. This formula is initialized with
ψ = true (note that ¬(

∧

zi
¬zi) is also a correct starting point because the

reaction where all choices are antipotentials is invalid). Then, a SAT query
is used to find a satisfying assignment for ψ, which corresponds to a (quasi-
)reaction r whose validity is interesting to be explored. Algorithm 2 shows

318 A. Rodŕıguez and C. Sánchez

Algorithm 2: Model-loop
10 Input: ϕT
11 ϕ′ ← ϕT [li ← si] ; VR ← {}
12 C ← choices(literals(ϕT))
13 R ← 2C ; ψ ← �
14 while SAT(ψ) do
15 m = model(ψ)
16 if ∃x. (toTheory(m, C))

then
17 P ← posVars(m)
18 ψ ← ψ ∧ ¬(

∧

p∈P p)
19 VR ← VR ∪ (et, P)

20 else
21 N ← negVars(m)
22 fh ←

∧

n∈N n
23 if ∃x. toTheory(fh, C)

then
24 ψ ← ψ ∧ ¬m

25 else
26 ψ ← ψ ∧ ¬fh

27 ϕextra ← getExtra(VR)
28 return ϕ′ ∧◻(A → ϕextra)

the Model-loop algorithm. The three
main building blocks of the model-loop
algorithm are:
(1) Algorithm 2 stops when ψ is invalid

(line 14).
(2) To explore a new reaction, Algo-

rithm 2 obtains a satisfying assign-
ment for ψ (line 15).

(3) Algorithm 2 checks the validity of
the reaction (line 16) and enriches
ψ o prune according to what can be
learned, as follows:
– If the reaction is invalid (as a

result of the SMT query in line
16), then it checks the validity of
quasi-reaction q = (∅, A) in line
23. If q is invalid, add the negation
of q as a new conjunction of ψ (line
26). If q is valid, add the negation
of the reaction (line 24). This pre-
vents all SAT models that agree
with one of these q, which corre-
spond to reactions q � r′, includ-
ing r.

– If the reaction is valid, then it is
added to the set of valid reactions

VR and the corresponding quasi-reaction that results from removing the
antipotentials is added (negated) to ψ (line 18), preventing the explo-
ration of uninteresting cases, according to the game-based optimization.

As for the notation in Algorithm 2 (also in Algorithm 3 and Algorithm 4),
model(ψ) in line 15 is a function that returns a satisfying assignment of the SAT
formula ψ, posVars(m) returns the positive variables of m (e.g., ci, cj etc.) and
negVars(m) returns the negative variables. Finally, toTheory(m, C) =

∧

mi
cp
i ∧

∧

¬mi
ca
i (in lines 16 and 23) translates a Boolean formula into its corresponding

formula in the given T theory. Note that unsatisfiable m can be minimized
finding cores.

If r is invalid and (∅, A) is found also to be invalid, then exponentially many
cases can be pruned. Similarly, if r is valid, also exponentially many cases can
be pruned. The following result shows the correctness of Algorithm 2:

Theorem 3. Algorithm 2 terminates and outputs a correct Boolean abstraction.

Proof. (Sketch). Algorithm 2 terminates because, at each step in the loop, ψ
removes at least one satisfying assignment and the total number is bounded by
2|C|. Also, the correctness of the generated formula is guaranteed because, for
every valid reaction in Algorithm 1, either there is a valid reaction found in
Algorithm 2 or a more promising reaction found in Algorithm 2. ��

Boolean Abstractions for Realizability Modulo Theories 319

4.4 A Nested-SAT Algorithm (Algorithm 3)

We now present an improvement of Algorithm 2 that performs a more detailed
search for a promising collection of invalid quasi-reactions under an invalid reac-
tion r.

Algorithm 3: Nested-SAT
29 Input: ϕT
30 ϕ′ ← ϕT [li ← si] ; VR ← {}
31 C ← choices(literals(ϕT))
32 R ← 2C ; ψ ← �
33 while SAT(ψ) do
34 m = model(ψ)
35 if ∃x. (toTheory(m, C))

then
36 P ← posVars(m)
37 ψ ← ψ ∧ ¬(

∧

p∈P P)
38 VR ← VR ∪ (et, P)

39 else
40 N ← negVars(m)
41 ψ ← ψ ∧ ¬m
42 I ← inner loop(m, C)
43 ψ ← ψ ∧ ¬(

∧

i∈I i)

44 ϕextra ← getExtra(VR)
45 return ϕ′ ∧◻(A → ϕextra)

Note that it is not necessary to find
the precise collection of all the smallest
quasi-reactions that are under an invalid
reaction r, as long as at least one quasi-
reaction under r is calculated (perhaps,
r itself). Finding lower quasi-reactions
allow to prune more, but its calculation is
more costly, because more SMT queries
need to be performed. The Nested-SAT
algorithm (Algorithm 3) explores (using
an inner SAT encoding) this trade-off
between computing more exhaustively
better invalid quasi-reactions and the
cost of the search. The three main build-
ing blocks of the nested-SAT algorithm
(see Algorithm 3) are:

(1) It stops when ψ is invalid (as in Algo-
rithm 2), in line 33.

(2) To get the reaction, obtain a satisfy-
ing assignment m for ψ (as in Algo-
rithm 2), in line 34.

(3) Check the validity of the corresponding reaction and prune ψ according to
what can be learned as follows. If the reaction is valid, then we proceed as
in Algorithm 2. If r = (P,A) is invalid (as a result of the SMT query), then
an inner SAT formula encodes whether a choice is masked (eliminated from
P or A). Models of the inner SAT formula, therefore, correspond to quasi-
reactions below r. If a quasi-reaction q found in the inner loop is invalid,
the inner formula is additionally constrained and the set of invalid quasi-
reactions is expanded. If a quasi-reaction q found is valid, then the inner
SAT formula is pruned eliminating all quasi-reactions that are guaranteed
to be valid. At the end of the inner loop, a (non-empty) collection of invalid
quasi-reactions are added to ψ.

The inner loop, shown in Algorithm 4 (where VQ stands for valid quasi-
reactions), explores a full lattice.

320 A. Rodŕıguez and C. Sánchez

Algorithm 4: Inner loop
46 Input: m, C
47 VQ ← {} ; β ← �
48 while SAT(β) do
49 u = model(β)
50 if

∃x. (toTheory inn(u,m, C))
then

51 P ← posVars(u)
52 β ← β ∧ ¬(

∧

p∈P p)

53 else
54 N ← negVars(u)
55 β ← β ∧ ¬(

∧

n∈N n)
56 VQ ← VQ ∪ u

57 return VQ

Also, note that ¬(
∧

zi
¬zi) is, again,

a correct starting point. Consider, for
example, that the outer loop finds
({c1, c3}, {c0, c2}) to be invalid and that
the inner loop produces assignment w0 ∧
w1 ∧ w2 ∧ ¬w3. This corresponds to
c3 being masked producing quasi-reaction
({c1}, {c0, c2}). The pruning system is the
following:

– If quasi-reaction q is valid then the
inner SAT formula is pruned eliminat-
ing all inner models that agree with the
model in the masked choices. In our
example, we would prune all models
that satisfy ¬w3 if q is valid (because
the resulting quasi-reactions will be
inevitably valid).

– If quasi-reaction q is invalid, then we prune in the inner search all quasi-
reactions that mask less than q, because these will be inevitably invalid. In
our example, we would prune all models satisfying ¬(w0 ∧ w1 ∧ w2).

Note that toTheory inn(u,m, C) =
∧

mi∧uj
cp
i ∧

∧

¬mi∧uj
ca
i is not the same func-

tion as the toTheory() used in Algorithm 2 and Algorithm 3, since the inner
loops needs both model m and mask u (which makes no sense to be negated) to
translate a Boolean formula into a T -formula. Also, note that there is again a
trade-off in the inner loop because an exhaustive search is not necessary. Thus,
in practice, we also used some basic heuristics: (1) entering the inner loop only
when (∅, A) is invalid; (2) fixing a maximum number of inner model queries per
outer model with the possibility to decrement this amount dynamically with a
decay; and (3) reducing the number of times the inner loop is exercised (e.g.,
enter the inner loop only if the number of invalid outer models so far is even).

Example 7. We explore the results of Algorithm 3. A possible execution for 2
literals can be as follows:

1. Reaction ({c0, c3}, {c1, c2}) is obtained in line 34, which is declared invalid
by the SMT solver in line 35. The inner loop called in line 42 produces
({c0}, {c1}), ({c3}, {c2}) and ({}, {c1, c2}) as three invalid quasi-reactions,
and their negations are added to the SAT formula of the outer loop in line 43.

2. A second reaction ({c0, c1}, {c3, c4}) is obtained from the SAT solver in line
34, and now the SMT solver query is valid in line 35. Then, ¬(c0 ∧ c1) is
added to the outer SAT formula in line 37.

3. A third reaction ({c2, c3}, {c0, c1}) is obtained in line 33 , which is again valid
in line 35. Similarly, ¬(c2 ∧ c3) is added the outer SAT formula in line 37.

Boolean Abstractions for Realizability Modulo Theories 321

4. A fourth reaction ({c1, c2}, {c0, c3}) is obtained in line 33, which is now
invalid (line 35). The inner loop called in line 42 generates the following cores:
({c1}, {c0}) and ({c2}, {c3}). The addition of the negation of these cores leads
to an unsatisfiable outer SAT formula, and the algorithm terminates.

The execution in this example has performed 4 SAT+SMT queries in the
outer loop, and 3+2 SAT+SMT queries in the inner loops. The brute-force
Algorithm 1 would have performed 16 queries. Note that the difference between
the exhaustive version and the optimisations soon increases exponentially when
we consider specifications with more literals. ��

5 Empirical Evaluation

We perform an empirical evaluation on six specifications inspired by real indus-
trial cases: Lift (Li.), Train (Tr.), Connect (Con.), Cooker (Coo.), Usb (Usb)
and Stage (St.), and a synthetic example (Syn.) with versions from 2 to 7 literals.
For the implementation, we used used Python 3.8.8 with Z3 4.11.

It is easy to see that “clusters” of literals that do not share variables can
be Booleanized independently, so we split into clusters each of the examples.
We report our results in Fig. 2. Each row contains the result for a cluster of
an experiment (each one for the fastest heuristic). Each benchmark is split into
clusters, where we show the number of variables (vr.) and literals (lt.) per cluster.
We also show running times of each algorithm against each cluster; concretely,
we test Algorithm 1 (BF), Algorithm 2 (SAT) and Algorithm 3 (Doub.). For
Algorithm 2 and Algorithm3, we show the number of queries performed; in the
case of Algorithm 3, we also show both outer and inner queries. Algorithm 1
and Algorithm 2 require no heuristics. For Algorithm 3, we report, left to right:
maximum number of inner loops (MxI.), the modulo division criteria (Md.)2, the
number of queries after which we perform a decay of 1 in the maximum number
of inner loops (Dc.), and if we apply the invalidity of (∅, A) as a criteria to enter
the inner loop (A.), where � means that we do and × means the contrary. Also,
⊥ means timeout (or no data).

The brute-force (BF) Algorithm 1 performs well with 3 or fewer literals, but
the performance dramatically decreases with 4 literals. Algorithm 2 (single SAT)
performs well up to 4 literals, and it can hardly handle cases with 6 or more liter-
als. An exception is Lift (1,7) which is simpler since it has only one variable (and
this implies that there is only one player). The performance improvement of SAT
with respect to BF is due to the decreasing of queries. For example, Train (3,6)
performs 13706 queries, whereas BF would need 22

6
= 1.844 · 1018 queries.

All examples are Booleanizable when using Algorithm 3 (two SAT loops),
particularly when using a combination of concrete heuristics. For instance, in

2 This means that the inner loop is entered if and only if the number of invalid models
so far is divisible by Md, and we found Md values of 2, 3 and 20 to be interesting.

322 A. Rodŕıguez and C. Sánchez

Fig. 2. Empirical evaluation results of the different Boolean abstraction algorithms ,
where the best results are in bold and ϕB only refers to best times.

small cases (2 to 5 literals) it seems that heuristic-setups like 3/3/3/0/�3 are
fast, whereas in bigger cases other setups like 40/2/0/� or 100/40/20/× are
faster. We conjecture that a non-zero decay is required to handle large inputs,
since inner loop exploration becomes less useful after some time. However, adding
a decay is not always faster than fixing a number of inner loops (see Syn (2,7)),
but it always yields better results in balancing the number of queries between
the two nested SAT layers. Thus, since balancing the number of queries typically
leads to faster execution times, we recommend to use decays. Note that we
performed all the experiments reported in this section running all cases several
times and computing averages, because Z3 exhibited a big volatility in the models
it produces, which in turn influenced the running time of our algorithms. This
significantly affects the precise reproducibility of the running times. For instance,

3 This means: we only perform 3 inner loop queries per outer loop query (and there
is no decay, i.e., decay = 0), we enter the inner loop once per 3 outer loops and we
only enter the inner loop if (∅, A) is invalid.

Boolean Abstractions for Realizability Modulo Theories 323

Fig. 3. Best numbers of queries for Algorithm 2 and 3 relative to brute-force (Alg.1).

Fig. 4. Comparison of TZ and TR for Syn (2,3) to Syn (2,6).

for Syn(2,5) the worst case execution was almost three times worst than the
average execution reported in Fig. 2. Studying this phenomena more closely is
work in progress. Note that there are cases in which the number of queries of
SAT and Doub. are the same (e.g., Usb(3,5)), which happened when the A.
heuristic had the effect of making the search not to enter the inner loop.

In Fig. 2 we also analyzed the constructed ϕB, measuring the number of valid
reactions from which it is made (Val.) and the time (Tme.) that a realizability
checker takes to verify whether ϕB (hence, ϕT) is realizable or not (expressed
with dark and light gray colours, respectively). We used Strix [27] as the realiz-
ability checker. As we can see, there is a correspondence between the expected
realizability in ϕT and the realizability result that Strix returns in ϕB. Indeed,
we can see all instances can be solved in less than 7 seconds, and the length of the
Boolean formula (characterized by the number of valid reactions) hardly affects
performance. This suggests that future work should be focused on reducing time
necessary to produce Boolean abstraction to scale even further.

Also, note that Fig. 2 shows remarkable results as for ratios of queries required
with respect to the (doubly exponential) brute-force algorithm: e.g., 4792+9941
(outer + inner loops) out of the 1.844·1019 queries that the brute-force algorithm
would need, which is less than its 1 ·10−13% (see Fig. 3 for more details). We also
compared the performance and number of queries for two different theories TZ

and TR for Syn (2,3) to Syn (2,6). Note, again, that the realizability result may
vary if a specification is interpreted in different theories, but this is not relevant
for the experiment in Fig. 4, which suggests that time results are not dominated
by the SMT solver; but, again, from the enclosing abstraction algorithms.

324 A. Rodŕıguez and C. Sánchez

6 Related Work and Conclusions

Related Work. Constraint LTL [11] extends LTL with the possibility of
expressing constraints between variables at bounded distance (of time). The
theories considered are a restricted form of TZ with only comparisons with addi-
tional restrictions to overcome undecidability. In comparison, we do not allow
predicates to compare variables at different timesteps, but we prove decidability
for all theories with an ∃∗∀∗ decidable fragment. LTL modulo theories is studied
in [12,19] for finite traces and they allow temporal operators within predicates,
leading the logic to undecidability.

As for works closest to ours, [7] proposes numerical LTL synthesis using an
interplay between an LTL synthesizer and a non-linear real arithmetic checker.
However, [7] overapproximates the power of the system and hence it is not pre-
cise for realizability. Linear arithmetic games are studied in [13] introducing
algorithms for synthesizing winning strategies for non-reactive specifications.
Also, [22] considers infinite theories (like us), but it does not guarantee success
or termination, whereas our Boolean abstraction is complete. They only con-
sider safety, while our approach considers all LTL. The follow-up [23] has still
similar limitations: only liveness properties that can be reduced to safety are
accepted, and guarantees termination only for the unrealizability case. Similarly,
[18] is incomplete, and requires a powerful solver for many quantifier alterna-
tions, which can be reduced to 1-alternation, but at the expense of the algo-
rithm being no longer sound for the unrealizable case (e.g., depends on Z3 not
answering “unknown”). As for [34], it (1) only considers safety/liveness GR(1)
specifications, (2) is limited to the theory of fixed-size vectors and requires (3)
quantifier elimination (4) and guidance. We only require ∃∗∀∗-satisfiability (for
Boolean abstraction) and we consider multiple infinite theories. The usual main
difference is that Boolean abstraction generates a (Boolean) LTL specification
so that existing tools can be used with any of their internal techniques and algo-
rithms (bounded synthesis, for example) and will automatically benefit from
further optimizations. Moreover, it preserves fragments like safety and GR(1) so
specialized solvers can be used. On the contrary, all approaches above adapt one
specific technique and implement it in a monolithic way.

Temporal Stream Logic (TSL) [16] extends LTL with complex data that can
be related accross time, making use of a new update operator �y ←� fx�, to indi-
cate that y receives the result of applying function f to variable x. TSL is later
extended to theories in [15,25]. In all these works, realizability is undecidable.
Also, in [8] reactive synthesis and syntax guided synthesis (SyGuS) [1] collab-
orate in the synthesis process, and generate executable code that guarantees
reactive and data-level properties. It also suffers from undecidability: both due
to the undecidability of TSL [16] and of SyGus [6]. In comparison, we cannot
relate values accross time but we provide a decidable realizability procedure.

Comparing TSL with LTLT , TSL is undecidable already for safety, the the-
ory of equality and Presburger arithmetic. More precisely, TSL is only known to
be decidable for three fragments (see Thm. 7 in [15]). TSL is (1) semi-decidable
for the reachability fragment of TSL (i.e., the fragment of TSL that only permits

Boolean Abstractions for Realizability Modulo Theories 325

the next operator and the eventually operator as temporal operators); (2) decid-
able for formulae consisting of only logical operators, predicates, updates, next
operators, and at most one top-level eventually operator; and (3) semi-decidable
for formulae with one cell (i.e., controllable outputs). All the specifications con-
sidered for empirical evaluation in Sect. 5 are not within the considered decidable
or semi-decidable fragments. Also, TSL allows (finite) uninterpreted predicates,
whereas we need to have predicates well defined within the semantics of theories
of specifications for which we perform Boolean abstraction.

Conclusion. The main contribution of this paper is to show that LTLT is
decidable via a Boolean abstraction technique for all theories of data with a
decidable ∃∗∀∗ fragment. Our algorithms create, from a given LTLT specifica-
tion where atomic propositions are literals in such a theory, an equi-realizable
specification with Boolean atomic propositions. We also have introduced effi-
cient algorithms using SAT solvers for efficiently traversing the search space. A
SAT formula encodes the space of reactions to be explore and our algorithms
reduce this space by learning uninteresting areas from each reaction explores.
The fastest algorithm uses a two layer SAT nested encoding, in a DPLL(T)
fashion. This search yields dramatically more efficient running times and makes
Boolean abstraction applicable to larger cases. We have performed an empirical
evaluation of implementations of our algorithms. We found empirically that the
best performances are obtained when there is a balance in the number of queries
made by each layer of the SAT-search. To the best of our knowledge, this is the
first method to propose a solution (and efficient) to realizability for general ∃∗∀∗

decidable theories, which include, for instance, the theories of integers and reals.
Future work includes first how to improve scalability further. We plan to

leverage quantifier elimination procedures [9] to produce candidates for the sets
of valid reactions and then check (and correct) with faster algorithms. Also, opti-
mizations based in quasi-reactions can be enhanced if state-of-the-art tools for
satisfiability core search (e.g., [2,3,24]) are used. Another direction is to extend
our realizability method into a synthesis procedure by synthesizing functions
in T to produces witness values of variables controlled by the system given (1)
environment and system moves in the Boolean game, and (2) environment values
(consistent with the environment move). Finally, we plan to study how to extend
LTLT with controlled transfer of data accross time preserving decidability.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Proceedings of Formal Methods in
Computer-Aided Design, (FMCAD) 2013, Portland, OR, USA, October 20–23,
2013, pp. 1–8. IEEE (2013)

2. Bend́ık, J., S. Meel, K.S.: Counting maximal satisfiable subsets. In: Proceedings
of the 35th AAAI Conference on Artificial Intelligence, (AAAI’21), pp. 3651–3660.
AAAI Press (2021)

326 A. Rodŕıguez and C. Sánchez

3. Bend́ık, J., Meel, K.S.: Counting minimal unsatisfiable subsets. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 313–336. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81688-9 15

4. Bloem, R., Chockler, H., Ebrahimi, M., Strichman, O.: Vacuity in synthesis. For-
mal Meth. Syst. Des. 57(3), 473–495 (2021). https://doi.org/10.1007/s10703-021-
00381-5

5. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

6. Caulfield, B., Rabe, M.N., Seshia, S.A., Tripakis, S.: What’s decidable about
syntax-guided synthesis? CoRR, abs/1510.08393 (2015)

7. Cheng, C.-H., Lee, E.A.: Numerical LTL synthesis for cyber-physical systems.
CoRR, abs/1307.3722 (2013)

8. Choi, W., Finkbeiner, B., Piskac, R., Santolucito, M.: Can reactive synthesis and
syntax-guided synthesis be friends? In: Proceedings of the 43rd ACM SIGPLAN
Int’l Conference on Programming Language Design and Implementation (PLD’22),
pp. 229–243. ACM (2022)

9. Cooper, D.W.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7(2), 91–100 (1972)

10. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf.
Comput. 205(3), 380–415 (2007)

12. Rachel Faran, R., Kupferman, O.: LTL with arithmetic and its applications in rea-
soning about hierarchical systems. In: Proceedings of the 22nd International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning, (LPAR-
22.), Awassa, Ethiopia, 16–21 November 2018, vol. 57 of EPiC Series in Comput-
ing, pp. 343–362. EasyChair (2018)

13. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. Proc. ACM
Program. Lang. 2(POPL), 61:1–61:30 (2018)

14. Finkbeiner, B.: Synthesis of reactive systems. In: Esparza, J., Grumberg, O., Sick-
ert, S., eds, Dependable Software Systems Engineering, vol. 45 of NATO Science
for Peace and Security Series - D: Information and Communication Security, pp.
72–98. IOS Press (2016)

15. Finkbeiner, Bernd, Heim, Philippe, Passing, Noemi: Temporal Stream Logic mod-
ulo Theories. In: FoSSaCS 2022. LNCS, vol. 13242, pp. 325–346. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99253-8 17

16. Finkbeiner, B., Klein, F., Piskac, R., Santolucito, M.: Temporal Stream Logic:
Synthesis Beyond the Bools. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 609–629. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 35

17. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
15(5–6), 519–539 (2013)

18. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards Realizability
Checking of Contracts Using Theories. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 173–187. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9 13

19. Gianola, A., Gigante. N.: LTL modulo theories over finite traces: modeling, veri-
fication, open questions. In: Proceedings of the 4th Workshop on Artificial Intelli-
gence and Formal Verification, Logic, Automata, and Synthesis, vol. 3311 of CEUR
Workshop Proceedings, pp. 13–19, CEUR-WS.org (2022)

https://doi.org/10.1007/978-3-030-81688-9_15
https://doi.org/10.1007/s10703-021-00381-5
https://doi.org/10.1007/s10703-021-00381-5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-99253-8_17
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-319-17524-9_13
https://doi.org/10.1007/978-3-319-17524-9_13

Boolean Abstractions for Realizability Modulo Theories 327

20. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

21. Jacobs, S.: The 4th reactive synthesis competition (SYNTCOMP 2017): Bench-
marks, participants & results. In: Proceedings of the 6th Workshop on Synthesis
(SYNT@CAV 2017), vol. 260 of EPTCS, pp. 116–143 (2017)

22. Katis, A., Fedyukovich, G., Gacek, A., Backes, J.D., Gurfinkel, A., Whalen. M.W.:
Synthesis from assume-guarantee contracts using skolemized proofs of realizability.
CoRR, abs/1610.05867 (2016)

23. Katis, A., Fedyukovich, G., Guo, H., Gacek, A., Backes, J., Gurfinkel, A., Whalen,
M.W.: Validity-Guided Synthesis of Reactive Systems from Assume-Guarantee
Contracts. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp.
176–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 10

24. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints An Int. J. 21(2), 223–250 (2016)

25. Maderbacher, B., Bloem, R.:Reactive synthesis modulo theories using abstraction
refinement. In: 22nd Formal Methods in Computer-Aided Design, (FMCAD’22),
pp 315–324. IEEE (2022)

26. Manna, Z., Pnueli, A.: Temporal verification of reactive systems - safety. Springer,
Springer New York, NY (1995). https://doi.org/10.1007/978-1-4612-422-2

27. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit Reactive Synthesis Strikes
Back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

28. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

29. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science (FOCS’77), pp. 46–67. IEEE CS
Press (1977)

30. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th Annual ACM Symposium on Principles of Programming Languages
(POPL’89), pp. 179–190. ACM Press (1989)

31. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

32. Tarski, A.: Theorem proving in arithmetic without multiplication. University of
California Press (1951)

33. Thomas, W.: Church’s Problem and a Tour through Automata Theory. In: Avron,
A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS,
vol. 4800, pp. 635–655. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78127-1 35

34. Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In Proceedings
f the 14th Formal Methods in Computer-Aided Design, (FMCAD 2014), Lausanne,
Switzerland, October 21–24, 2014, pp.19–226. IEEE (2014)

https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1007/978-1-4612-422-2
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/11609773_24
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/978-3-540-78127-1_35
https://doi.org/10.1007/978-3-540-78127-1_35

328 A. Rodŕıguez and C. Sánchez

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Certified Verification for Algebraic Abstraction

Ming-Hsien Tsai4, Yu-Fu Fu2, Jiaxiang Liu5(B), Xiaomu Shi3, Bow-Yaw Wang1,
and Bo-Yin Yang1

1 Academia Sinica, Taipei, Taiwan
{bywang,byyang}@iis.sinica.edu.tw
2 Georgia Institute of Technology, Atlanta, USA

yufu@gatech.edu
3 Institute of Software, Chinese Academy of Sciences,

Beijing, China
xshi0811@gmail.com

4 National Institute of Cyber Security, Taipei, Taiwan
mhtsai208@gmail.com

5 Shenzhen University, Shenzhen, China
jiaxiang0924@gmail.com

Abstract. We present a certified algebraic abstraction technique for verifying
bit-accurate non-linear integer computations. In algebraic abstraction, programs
are lifted to polynomial equations in the abstract domain. Algebraic techniques
are employed to analyze abstract polynomial programs; SMT QF BV solvers are
adopted for bit-accurate analysis of soundness conditions. We explain how to
verify our abstraction algorithm and certify verification results. Our hybrid tech-
nique has verified non-linear computations in various security libraries such as
BITCOIN and OPENSSL. We also report the certified verification of Number-
Theoretic Transform programs from the post-quantum cryptosystem KYBER.

1 Introduction

Bit-accurate non-linear integer computations are infamously hard to verify. Conven-
tional bit-accurate techniques such as bit blasting do not work well for non-linear
computations. Approximation techniques through floating-point computation on the
other hand are inaccurate. Non-linear integer computation nonetheless is essential to
computer cryptography. Analyzing complex non-linear computation in cryptographic
libraries is still one of the most challenging problems of the utmost importance today.

In this paper, we address the verification problem through algebraic abstraction.
In algebraic abstraction, abstract programs are represented by polynomial equations.
Non-linear computation about abstract polynomial programs is analyzed algebraically
and hence more efficiently through techniques from commutative algebra. Algebraic
abstraction however is unsound due to overflow in bounded integer computation. We
characterize soundness conditions with queries using the Quantifier-Free Bit-Vector
(QF BV) logic from Satisfiability Modulo Theories (SMT) [2]. SMT solvers are then
used to check soundness conditions before applying algebraic abstraction.

Our hybrid technique takes advantages of both algebraic and bit-accurate analyses.
Non-linear algebraic properties are verified algebraically. Polynomials are computed
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 329–349, 2023.
https://doi.org/10.1007/978-3-031-37709-9_16

https://doi.org/10.5281/zenodo.7881358
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_16

330 M.-H. Tsai et al.

and analyzed by algorithms from commutative algebra. Coefficients, variables and
arithmetic functions are atomic in such algorithms. Our algebraic analysis is hence very
efficient for non-linear computation. Soundness conditions, on the other hand, require
bit-accurate analysis. Our technique applies SMT QF BV solvers to check soundness
conditions. By combining algebraic with bit-accurate analyses, algebraic abstraction
successfully verifies non-linear computation in real-world cryptographic programs.

Cryptographic programs undoubtedly are widely deployed critical software. Errors
in their verification need to be minimized. To this end, we use the proof assistant
COQ [4] to verify the soundness theorem for algebraic abstraction. To ensure the cor-
rectness of external algebraic and bit-accurate analysis tools, results from external tools
are certified in our technique as well. With verified abstraction and certified external
results, verification of bit-accurate non-linear integer computation through algebraic
abstraction is certified. We explain how to certify our hybrid verification technique.

We evaluate our certified technique with cryptographic programs from secu-
rity libraries in BITCOIN [27], BORINGSSL [8,12], NSS [20], OPENSSL [23] and
PQCRYPTO-SIDH [18]. These programs compute field and group operations in ellip-
tic curve cryptography. We also verify Number-Theoretic Transform (NTT) programs
from the post-quantum cryptosystem KYBER [6]. In lattice-based post-quantum cryp-
tography, computation in polynomial rings is needed. NTT is a discrete variant of the
Fast Fourier Transform used for polynomial multiplication in KYBER. Our certified
algebraic abstraction technique verifies cryptographic programs from elliptic curve and
post-quantum cryptography successfully. Our contributions are summarized as follows.

– We detail algebraic abstraction for checking non-linear modular equations with mul-
tiple moduli;

– We certify algebraic abstraction and its verification;
– We report certified verification results for 39 real-world cryptographic programs in
elliptic curve and post-quantum cryptography.

Related Work. GFVERIF employs an ad hoc technique to verify non-linear computation
in cryptographic programs with a computer algebra system [3]. CRYPTOLINE [9,24,29]
is a tool designed for the specification and verification of cryptographic assembly codes.
Its verification algorithm utilizes computer algebra systems in addition to SMT solvers.
CRYPTOLINE is also leveraged to verify cryptographic C programs [9,17]. The opti-
mized KYBER NTT program for avx2 is verified in [15], but the underlying verifi-
cation algorithm is left unexplained. None of these works certified their verification
results. Users had to trust these verification tools. BVCRYPTOLINE certifies algebraic
abstraction but not soundness conditions [29]. It does not allow multiple moduli in
modular equations either. Particularly, it cannot concisely specify NTT by the Chi-
nese remainder theorem over polynomial rings. Compared with these works, our tech-
nique admits modular equations with multiple moduli in assumptions and assertions,
and is fully certified. To explicate our advantages, consider the specification of mul-
tiplication in the field Zp434/〈x2 + 1〉 where p434 is a prime number. An element
in the field is of the form u0 + u1x where x2 + 1 = 0. To specify r0 + r1x is the
product of u0 + u1x and v0 + v1x, one can write two modular equations with one
modulo: r0 ≡ u0v0 − u1v1 mod [p434] and r1 ≡ u0v1 + u1v0 mod [p434]. With

Certified Verification for Algebraic Abstraction 331

multiple moduli, we write r0 + r1x ≡ (u0 + u1x)(v0 + v1x) mod [p434, x2 + 1]
succinctly. Our simple specifications are most useful for complicated fields such as
Zp381/〈x2 + 1, y3 − x − 1, z2 − y〉. Each element of the complex field is of the form∑

ui,j,kxiyjzk with 0 ≤ i, k < 2 and 0 ≤ j < 3. Twelve modular equations are
needed previously. One modular equation with multiple moduli suffices to specify its
field multiplication in this work. Furthermore, our technique is verified in COQ. The
correctness of our abstraction algorithm and soundness theorem are formally proven in
COQ. We also show how to certify results from external tools. In summary, the cor-
rectness of algebraic abstraction algorithm is verified and answers from external tools
are certified. Verification results are therefore fully certified. We believe this is the best
guarantee a model checker can offer. Our verified model checker is sufficiently practical
to verify industrial cryptographic programs too!

Analysis of linear polynomial programs was discussed, for instance, in [21,22]. The
reduction from the root entailment problem to the ideal membership problem is dis-
cussed in [14]. In this work, the computer algebra system SINGULAR [13] is employed
to compute standard bases of ideals and certificates. The certified SMT QF BV solver
COQQFBV [26] is adopted to certify soundness conditions.

The paper is organized as follows. Section 2 gives the needed backgrounds. It is fol-
lowed by the syntax and semantics of the language TOYLANG. An implementation of
the unsigned Montgomery reduction is given as a running example (Sect. 3). Section 4
presents algebraic abstraction and its verification algorithms. We briefly describe certi-
fied verification of algebraic abstraction in Sect. 5. Section 6 shows experimental results
of real-world cryptographic programs. We conclude in Sect. 7.

2 Preliminaries

Let N and Z denote the set of non-negative and all integers respectively. Fix a set of
variables x. We write Z[x] for the set of polynomials in variables x with coefficients in
Z. A polynomial equation is of the form e = e′ with e, e′ ∈ Z[x]; a polynomialmodular
equation is of the form e ≡ e′ mod [f0, f1, . . . , fm] with e, e′, f0, f1, . . . , fm ∈ Z[x].
A valuation ρ of x is a mapping from x to Z. Given a valuation ρ, a polynomial e
evaluates to the integer e[ρ] by replacing every variable x with ρ(x). A valuation ρ
is a root of the equation e = e′ if (e − e′)[ρ] = 0. A valuation ρ is a root of the
modular equation e ≡ e′ mod [f0, f1, . . . , fm] if (e − e′)[ρ] = z0f0[ρ] + z1f1[ρ] +
· · · + zmfm[ρ] for some z0, z1, . . . , zm ∈ Z. A (modular) equation is an equation or a
modular equation. A system of (modular) equations is a set of (modular) equations. A
root of a system of (modular) equations is a common root of every (modular) equation
in the system. Let Φ be a system of (modular) equations and φ a (modular) equation,
roots of Φ entail roots of φ (written ∀x.Φ =⇒ φ) if all roots of Φ are also roots of φ.
Given Φ and φ, the root entailment problem is to decide whether ∀x.Φ =⇒ φ.

An ideal in Z[x] generated by f0, f1, . . . , fm ∈ Z[x] is defined by
〈f0, f1, . . . , fm〉 = {f0h0 + f1h1 + · · · + fmhm|h0, h1, . . . , hm ∈ Z[x]}. If
〈f0, f1, . . ., fm〉 and 〈g0, g1, . . . , gn〉 are ideals, define their sum 〈f0, f1, . . . , fm〉 +
〈g0, g1, . . . , gn〉 = 〈f0, f1, . . . , fm, g0, g1, . . ., gn〉. For instance, 〈x〉 = {xf |f ∈ Z[x]}
and 〈6〉 + 〈10〉 = 〈2〉. Given f ∈ Z[x] and an ideal I , the ideal membership problem is
to decide whether f ∈ I .

332 M.-H. Tsai et al.

A bit-vector is a bit sequence of a width w. A bit-vector denotes an integer between
0 and 2w − 1 inclusively using the most-significant-bit-first representation. The SMT
QF BV logic defines bit-vector functions. Assume bv0 and bv1 are bit-vectors of width
w. The addition (bvadd bv0 bv1) and subtraction (bvsub bv0 bv1) functions return bit-
vectors of width w representing the sum and difference respectively. The multiplica-
tion function (bvmul bv0 bv1) returns the least significant w bits of the product. The
left shift function (bvshl bv0 n) shifts bv0 to the left by n bits; the logical right shift
function (bvlshr bv0 n) shifts bv0 to the right by n bits. The zero extension func-
tion (zero extend bv0 n) appends n most significant 0’s to bv0. The extraction func-
tion (bvextract h l bv0) extracts bits indexed h to l from bv0 (w > h ≥ l ≥ 0).
An SMT QF BV expression is constructed from bit-vector values, variables, and func-
tions. An SMT QF BV assertion is of the form (assert ⊥), (assert (= be be′)), or
(assert (not (= be be′))) with SMT QF BV expressions be and be′. An SMT QF BV
query is a set of SMT QF BV assertions. A store is a mapping from bit-vector
variables to bit-vector values. An SMT QF BV expression evaluates to a bit-vector
value on a store. An SMT QF BV assertion (assert (= be be′)) is satisfied by a
store if be and be′ evaluate to the same bit-vector value on the store, and otherwise
(assert (not (= be be′))) is satisfied. The SMT QF BV assertion (assert ⊥) is never
satisfied. An SMT QF BV query is satisfiable if all assertions are satisfied by a store.

3 TOYLANG

We consider a register transfer language called TOYLANG to illustrate algebraic
abstraction. For clarity, many programming constructs are removed from TOYLANG.
The language nevertheless is sufficiently expressive to implement Montgomery reduc-
tion [19], an indispensable algorithm found in real-world cryptographic programs.

3.1 Syntax and Semantics

The syntax of TOYLANG is shown in Fig. 1. For simplicity, we assume all numbers are
unsigned and all variables are of widths 1 or w. Variables of width 1 are also called bit
variables. An atom is a number or a variable.

Fig. 1. TOYLANG – Syntax

Certified Verification for Algebraic Abstraction 333

TOYLANG supports several arithmetic instructions: addition (ADD), carrying addi-
tion (ADDS), addition-with-carry (ADC), carrying addition-with-carry (ADCS), sub-
traction (SUB), borrowing subtraction (SUBS), half- (MUL) and full-multiplication
(MULL). Moreover, logical left shift (SHL) and logical right shift (SHR) instructions are
allowed. In addition to assignments, (modular) equations can be specified in assumption
(ASSUME) or assertion (ASSERT) instructions. A program is a sequence of instructions.
We assume ASSERT instructions can only appear at the end of programs. They specify
a (modular) equation to be verified and thus are emphasized with a framed box.

Fig. 2. TOYLANG – Semantics

Let σ be a store. We write σ[v �→ bv] for the store obtained by mapping v to the
bit-vector bv and other variables u to σ(u). [[v]]σ represents the bit-vector σ(v) for any
variable v; otherwise, [[n]]σ is the bit-vector representing the number n of width w.

The semantics of TOYLANG is defined with SMT QF BV bit-vector functions
(Fig. 2). In the figure, (|σ, s, σ′|) denotes that the store σ′ is obtained after executing the
instruction s on the store σ. The addition instruction ADD corresponds to the bit-vector
addition function. For the addition with carry instruction, the carry bit is extended with
w − 1 zeros and added to the sum of the first two operands. The two carrying addi-
tion instructions compute the bit-vector sums of width w + 1. The most significant
bit is stored in the output carry bit. Subtraction instructions are similar; their semantics
are defined with the bit-vector subtraction function bvsub instead. The semantics of SHL

and SHR instructions are defined by corresponding bit-vector functions bvshl and bvlshr

334 M.-H. Tsai et al.

respectively. The semantics of half-multiplication instruction MUL uses the bit-vector
multiplication function bvmul. For full-multiplication, both operands are extended to
width 2w before computing their product.

Fig. 3. Semantics of (Modular) Equations

The ASSUME instruction filters computations by (modular) equations. Figure 3
defines when a store satisfies a (modular) equation. A number n denotes a non-negative
integer. A variable denotes the integer toZ([[v]]σ) represented by the corresponding bit-
vector [[v]]σ in the store. Arithmetic operations denote corresponding integer operations.
Particularly, the integer {|e|}σ is exact and not necessarily less than 2w. Equality denotes
integer equality. σ satisfies e0 ≡ e1 mod [f0, f1, . . . , fm] if {|e0|}σ − {|e1|}σ is in the
ideal generated by {|f0|}σ, {|f1|}σ, . . . , {|fm|}σ . The ASSERT instruction checks if the
current store satisfies the given (modular) equation. The computation resumes if it suc-
ceeds. It is an error if the ASSERT instruction fails.

Fig. 4. Simplified Montgomery Reduction

Montgomery reduction algorithm is widely used to compute remainders without
division [19]. Figure 4a shows a simplified unsignedMontgomery reduction algorithm.1

Suppose we want to compute the remainder of a number 0 ≤ T < R2 modulo N on 64-
bit architectures withR = 264. Montgomery reduction algorithm needs another number
N ′ with NN ′+1 ≡ 0 mod R as an input. It first computes m = ((T mod R)N ′) mod
R and then t = (T + mN)/R. Observe that the remainder and quotient divided by

1 The complete algorithm requires range analysis not discussed in this work.

Certified Verification for Algebraic Abstraction 335

R = 264 amount to bit masking and shifting respectively. Arithmetic division is never
used. To prove tR ≡ T mod N , we first show T + mN ≡ 0 mod R. Observe T +
mN = T + (((T mod R)N ′) mod R)N ≡ T + TN ′N ≡ T (1 + N ′N) ≡ 0 mod R.
Therefore, T + mN is a multiple of R and t = (T + mN)/R is an integer. Hence
tR = T + mN ≡ T mod N .

In the TOYLANG implementation (Fig. 4b), we represent T by two 64-bit variables
TH and TL with T = 264TH +TL. Hence TL = T mod 264.m is computed by the half-
multiplication instruction MUL. The full-multiplication computes the product mN of m
and N . The following two addition instructions compute the sum of T and the product
mN . After adding T , the least significant 64 bits (tL) should be zeros. We hence assert
tL ≡ 0 mod [264]. If the assertion succeeds, tL is in fact 0 since it is a 64-bit variable.
We thus assume tL = 0. The last assertion checks that the result 264(264c + tH) is
indeed congruent to T modulo N .

4 Algebraic Abstraction

Algebraic abstraction is a technique to lift computation to an algebraic domain. In the
abstract algebraic domain, program instructions are transformed to polynomial equa-
tions. Computation in turn is characterized by the roots of systems of polynomial equa-
tions. Algebraic abstraction hence allows us to apply algebraic tools from commutative
algebra. The abstraction technique requires programs in the static single assignment
form. We hence assume input programs are in the static single assignment form.

Fig. 5. Algebraic Abstraction

Figure 5 lifts TOYLANG instructions to polynomial equations. Intuitively, we would
like the semantics of each instruction characterized by roots of corresponding polyno-
mial equations. For instance, v ← ADD a0 a1 is lifted to v = a0 + a1. The ADC

instruction is similar. The carrying addition instruction c : v ← ADDS a0 a1 is lifted to
two equations: c · (c − 1) = 0 and c · 2w + v = a0 + a1. Since c is a carry, it must be
0 or 1, and hence a root of c · (c − 1) = 0. The carrying addition-with-carry instruction
ADCS is similar, as well as subtraction instructions SUB and SUBS.

The half-multiplication instruction v ← MUL a0 a1 is lifted to v = a0 · a1; the full-
multiplication instruction vH : vL ← MULL a0 a1 corresponds to vH ·2w+vL = a0 ·a1.

336 M.-H. Tsai et al.

Fig. 6. Abstract Montgomery Reduction

The logical left shift instruction v ← SHL a n corresponds to v = a · 2n; the logical
right shift instruction v ← SHR a n is lifted to v · 2n = a. The ASSUME q instruction is
lifted to the (modular) equation q. All computations thus must satisfy q. A TOYLANG

program is lifted to the system of (modular) equations from its instructions. The system
of (modular) equations is called the abstract polynomial program. Figure 6 shows the
abstract polynomial program for the Montgomery reduction program.

4.1 Soundness Conditions

Algebraic abstraction in Fig. 5 however is unsound. The TOYLANG semantics is defined
over bounded integers of bit width w. Polynomial equations in algebraic abstraction are
interpreted over integers. When overflow occurs in TOYLANG instructions, for instance,
its computation is not captured by corresponding polynomial equations. Consider the
instruction v ← ADD 2w−1 2w−1. By the TOYLANG semantics, v has the bit-vector
value bvadd [[2w−1]]σ[[2w−1]]σ = 0 after execution. Clearly, 0 is not a root of the equa-
tion v = 2w−1 + 2w−1. The abstraction is unsound.

In order to check soundness for algebraic abstraction, we define soundness condi-
tions for TOYLANG instructions to ensure that all computations are captured by cor-
responding polynomial equations. Intuitively, we give an SMT QF BV query for each
instruction in a TOYLANG program such that the query is satisfiable if and only if the
computation at the instruction can overflow.

To this end, we first use SMT QF BV logic to characterize computations in TOY-
LANG programs. Recall TOYLANG programs are in the static single assignment form.
Figure 7 defines an SMT QF BV query �P � for any TOYLANG program P . Except
the ASSUME instruction, the figure follows the semantics of TOYLANG. For instance,
�v ← ADC a0 a1 d� asserts v equal to the bit-vector sum of a0 and a1 with d extended
by w−1 zeros in the SMT QF BV query. Others are similar. It is not hard to see that all
computations of a TOYLANG program satisfy the corresponding SMT QF BV query.

Lemma 1. Let P be a TOYLANG program without ASSERT instructions and σ, σ′

stores with (|σ, P, σ′|). Then the SMT QF BV query �P � is satisfied by the store σ′.

Certified Verification for Algebraic Abstraction 337

Fig. 7. Soundness Conditions I

Our next task is to define SMT QF BV queries for instructions such that their alge-
braic abstraction is unsound if and only if the corresponding SMT QF BV query is
satisfiable (Fig. 8). The instruction v ← ADD a0 a1 is lifted to v = a0+a1. The abstrac-
tion is unsound when there is carry. That is, (bvextract w w (bvadd (zero extend a0 1)
(zero extend a1 1))) is 1. The instructions ADC and SUB are similar. Algebraic abstrac-
tion for the instructions ADDS, ADCS and SUBS is always sound. Their correspond-
ing SMT QF BV queries are not satisfiable (assert ⊥). For the half-multiplication
v ← MUL a0 a1, its abstraction v = a0 · a1 is unsound when the most signifi-
cant w bits of the product of a0 and a1 are not all zeros. The corresponding SMT
QF BV query is hence (assert (not (= 0 (bvextract (2w − 1) w bvx)))) where bvx
is the bit-vector product of a0 and a1. The abstraction for full-multiplication instruc-
tion is never unsound. For the v ← SHL a0 n instruction, its algebraic abstraction is
unsound if the most significant n bits of a0 are not zeros. The algebraic abstraction of
the v ← SHR a0 n instruction is unsound when the least significant n bits of a0 are not
zeros. Relevant bits are obtained by bvextract respectively. The abstraction for ASSUME

is always sound.
To check soundness of the algebraic abstraction �s� for the instruction s in the

TOYLANG program P s, we apply Lemma 1 to obtain a computation of P through �P �
and check if �s� for s is unsatisfiable. We say the soundness condition for the instruction
s in the TOYLANG program P s holds if �P s� is unsatisfiable. In order to ensure
the soundness of the abstract polynomial program �P � for the TOYLANG program P ,
soundness conditions for all instructions in P must hold. That is, soundness conditions

338 M.-H. Tsai et al.

Fig. 8. Soundness Conditions II

for s in all prefixes P ′ s of P must hold. Define the valuation ρσ of the store σ by
ρσ(v) = toZ([[v]]σ) for every v ∈ x. The next theorem gives the soundness condition.

Proposition 1 (Soundness). Let P be a TOYLANG program without ASSERT instruc-
tions and σ, σ′ stores with (|σ, P, σ′|). ρσ′ is a root of the system of (modular) equations
�P � if soundness conditions for s in every prefix P ′ s of P hold.

We say that the soundness condition for P holds if soundness conditions for s in all
prefixes P ′ s of P hold. Let us take a closer look at the abstract Montgomery reduc-
tion program (Fig. 6). The half-multiplication instruction m ← MUL TL N ′ is lifted to
m = TL · N ′. However, the soundness condition for the instruction requires the most
significant 64 bits of the product to be zeros (Fig. 8). Since TL is arbitrary, the sound-
ness condition does not hold in general. To obtain a sound algebraic abstraction for
Montgomery reduction, we modify the TOYLANG program slightly (Fig. 9).

In the revised program, the first full-multiplication instruction is used to compute
the least significant 64 bits of the product of TL and N ′ (marked by

√
). The most

significant 64 bits of the product are stored in the variable dc (for don’t care). Note that
the soundness condition of the revised program holds trivially. The algebraic abstraction
for the revised Montgomery reduction program is sound by Proposition 1.

4.2 Polynomial Program Verification

Let P be a TOYLANG program without ASSERT instructions. Our goal is to verify
P ASSERT φ with algebraic abstraction. Consider the system of (modular) equations

Φ = �P �. For any stores σ and σ′ with (|σ, P, σ′|), ρσ′ is a root of Φ if the soundness

Certified Verification for Algebraic Abstraction 339

Fig. 9. Abstract Montgomery Reduction (Revised)

condition for P holds by Proposition 1. To verify ASSERT φ on σ′, we need to check if
ρσ′ is also a root of the (modular) equation φ. That is, we want to show if ∀x.Φ =⇒ φ.

Proposition 2. Let P be a TOYLANG program without ASSERT instructions and φ a
(modular) equation. Suppose the soundness condition for P holds. The assertion in
P ASSERT φ succeeds if ∀x.�P � =⇒ φ.

We extend [14] to check the root entailment problem. Recall that Φ is a system of
(modular) equations. We first simplify it to a system of equations. This is best seen by
an example. Consider ∀x y u v.x ≡ y mod [3u2, u + v] =⇒ 0 = 0. We have

∀x y u v.x ≡ y mod [3u2, u + v] =⇒ 0 = 0
iff ∀x y u v.[∃k0 k1(x − y = 3u2 · k0 + (u + v) · k1)] =⇒ 0 = 0
iff ∀x y u v k0 k1.x − y = 3u2 · k0 + (u + v) · k1 =⇒ 0 = 0.

Therefore, it suffices to consider the problem of checking ∀x.Ψ =⇒ φ where Ψ is a
system of equations and φ is a (modular) equation. We solve the simplified problem by
constructing instances of the ideal membership problem.

Let Ψ = {e0 = e′
0, e1 = e′

1, . . . , en = e′
n}. Consider the ideal I = 〈e0 − e′

0, e1 −
e′
1, . . . , en − e′

n〉 generated by the polynomial equations in Ψ . Suppose the polynomial
e − e′ ∈ I . We claim ∀x.Ψ =⇒ e = e′. Indeed, e − e′ = (e0 − e′

0) · h0 + (e1 −
e′
1) · h1 + · · · + (en − e′

n) · hn for some h0, h1, . . . , hn ∈ Z[x] since e − e′ ∈ I .
For any root ρ of Ψ , (e0 − e′

0)[ρ] = (e1 − e′
1)[ρ] = · · · = (en − e′

n)[ρ] = 0. Hence
(e − e′)[ρ] = ((e0 − e′

0) · h0)[ρ] + ((e1 − e′
1) · h1)[ρ] + · · · + ((en − e′

n) · hn)[ρ] = 0.
ρ is also a root of e − e′ = 0 and thus ∀x.Ψ =⇒ e = e′.

Now suppose the polynomial e − e′ ∈ I + 〈f0, f1, . . . , fm〉. We claim ∀x.Ψ =⇒
e ≡ e′ mod [f0, f1, . . . , fm]. Since e − e′ ∈ I + 〈f0, f1, . . . , fm〉, e − e′ = (e0 −
e′
0) · h0 + (e1 − e′

1) · h1 + · · · + (en − e′
n) · hn + f0 · k0 + f1 · k1 + · · · + fm · km

for some h0, h1, . . . , hn, k0, k1, . . . , km ∈ Z[x]. For any root ρ of Ψ , (e − e′)[ρ] =
((e0 − e′

0) · h0)[ρ] + ((e1 − e′
1) · h1)[ρ] + · · · + ((en − e′

n) · hn)[ρ] + f0 · k0[ρ] + f1 ·
k1[ρ] + · · · + fm · km[ρ] = 0 + f0[ρ]k0[ρ] + f1[ρ]k1[ρ] + · · · + fm[ρ]km[ρ]. We again
have ∀x.Ψ =⇒ e ≡ e′ mod [f0, f1, . . . , fm] as required.

Our discussion is summarized as follows.

340 M.-H. Tsai et al.

Fig. 10. Polynomial Programs to Ideals

Proposition 3. Let P be a TOYLANG program without ASSERT instructions and I the
ideal with �P � � I (Fig. 10). Then

1. ∀x.�P � =⇒ e = e′ if e − e′ ∈ I;
2. ∀x.�P � =⇒ e ≡ e′ mod [f0, f1, . . . , fm] if e − e′ ∈ I + 〈f0, f1, . . . , fm〉.

In order to verify (modular) equations with algebraic abstraction, Proposition 1 is
applied to ensure the soundness of abstraction. Proposition 3 then checks whether (mod-
ular) equations indeed are satisfied for abstract polynomial programs. The main theorem
summarizes our theoretical developments.

Theorem 1. Let P be a TOYLANG program without ASSERT instructions, σ, σ′ stores
with (|σ, P, σ′|) and I the ideal with �P � � I . If the soundness condition for P holds,

1. the assertion in P ASSERT e = e′ succeeds provided e − e′ ∈ I;

2. the assertion in P ASSERT e ≡ e′ mod [f0, f1, . . . , fm] succeeds provided e−e′ ∈
I + 〈f0, f1, . . . , fm〉.

The ideal membership problem can be solved by computing Gröbner bases for ide-
als [7]. Many computer algebra systems compute Gröbner bases for ideals with simple
commands. For instance, the groebner command in SINGULAR [13] computes a
Gröbner basis for any ideal by a user-specified monomial ordering. The reduce com-
mand then checks if a polynomial belongs to the ideal via its Gröbner basis.

Recall the abstract polynomial program for revised Montgomery reduction in Fig. 9.
Figure 11a shows the ideal for the abstract polynomial program before ASSUME tL = 0.
To verify the two ASSERT instructions, Figs. 11b and 11c show the instances of the
ideal membership problem corresponding to the two assertions. Observe the ideal 〈tL〉
corresponds to ASSUME tL = 0 in Fig. 11c. Since the soundness condition for the
abstract polynomial program holds trivially (Sect. 4.1), it remains to check the ideal
membership problem. Both instances are verified immediately.

5 Certified Verification

In TOYLANG, we only highlight necessary instructions to verify unsigned Montgomery
reduction. For real-world programs performing non-linear computation, more instruc-
tions are needed and the signed representation of bit-vectors is also used. In order to ver-

Certified Verification for Algebraic Abstraction 341

Fig. 11. Instances of Ideal Membership Problem

ify real-world cryptographic programs, we extend algebraic abstraction with these fea-
tures found in CRYPTOLINE [9,29]. For such complicated languages, algebraic abstrac-
tion can be tedious to implement. Its verification algorithm moreover relies on com-
plex algorithms from computer algebra systems and SMT QF BV solvers. It is unclear
whether these external tools function correctly on given instances. In order to improve
the quality of verification results, we have verified algebraic abstraction with the proof
assistant COQ, and certified results from external tools with COQ and a verified certifi-
cate checker. We briefly describe how to verify our algorithms and certify results from
external tools. Please see the technical report [28] for details.

5.1 Verified Abstraction Algorithm

The proof assistant COQ with the SSREFLECT library [4,11] is used to verify our
algebraic abstraction technique. We define the TOYLANG syntax as a COQ data type
(Fig. 1). The COQ-NBITS theory [26] is adopted to formalize the semantics of TOY-
LANG (Fig. 2). The COQ binary integer theory Z is used to formalize the semantics of
(modular) equations (Fig. 3). We formalize polynomial expressions with integral coef-
ficients by the COQ polynomial expression theory PExpr Z.

To see how our algebraic abstraction algorithm is verified, consider Proposition 2.
Let program be the COQ data type for TOYLANG programs and meqn the data type
for (modular) equations. We define the predicate algsnd : program → Prop for the
soundness condition for a given program (Figs. 7 and 8). Similarly, we define the func-
tion algabs : program → seq meqn for our algebraic abstraction algorithm where
seq meqn is the COQ data type for sequences of meqn (Fig. 5). To write down the
formal statement for Proposition 2, it remains to formalize the root entailment. Let exp
and valuation be the data types for expressions and valuations respectively. Define the
function eval exp : exp → valuation → Z which evaluates an expression to an integer
on a valuation; and eval exps : seq exp → valuation → seq Z evaluates expressions
to integers on a valuation. Consider the predicate eval bexp : meqn → valuation →
Prop defined by

342 M.-H. Tsai et al.

eval bexp (e = e’) rho := eval exp e rho = eval exp e’ rho

eval bexp (e = e’ mod fs) rho := ∃ks, (eval exp e rho) - (eval exp e’ rho) =

zadds (zmuls ks (eval exps fs rho))

where zadds zs := foldl Z.add 0 zs and zmuls xs ys := map2 Z.mul xs ys. The
predicate eval bexp (e = e’) rho checks if the expressions e and e’ evaluate to the same
integer on the valuation rho; eval bexp (e = e’ mod fs) rho checks if the difference
of eval exp e rho and eval exp e’ rho is equal to a linear combination of the integers
eval exps fs rho. The predicate eval bexp meq rho thus checks if rho is a root of the
(modular) equation meq.

We are ready to formalize the root entailment. Consider the predicate entails (Phi
: seq meqn) (psi : meqn) : Prop defined by

∀rho, (∀phi,phi ∈ Phi → eval bexp phi rho) → eval bexp psi rho.

That is, every common root of the system Phi is also a root of psi. The following
proposition formalizes Proposition 2 and is proved in COQ.

Proposition 4. Let P : program be without assert instructions and psi : meqn. If
algsnd P and entails (algabs P) psi, then the assertion in P assert psi succeeds.

To apply this proposition to a given program P and a (modular) equation psi, one
needs to show algsnd P and entails (algabs P) psi in COQ. In principle, both predi-
cates algsnd P and entails (algabs P) psi could be proved manually in COQ. However,
it would be impractical even for programs of moderate sizes. To address this problem,
we establish these predicates through certificates computed by external tools.

5.2 Verification through Certification

To show algsnd P for an arbitrary program P, we follow the certified verification
technique developed in the SMT QF BV solver COQQFBV [26]. More concretely,
we specify our bit-blasting algorithm for soundness conditions in COQ (Figs. 7 and 8).
The algorithm converts soundness conditions to Boolean formulae in the conjunctive
normal form. We then formally verify that soundness conditions hold if and only if the
corresponding Boolean formulae are unsatisfiable in COQ. The constructed Boolean
formulae are sent to the SAT solver KISSAT [5]. For each Boolean formula, KISSAT

checks its satisfiability with a certificate. We then use the verified certificate checker
GRATCHK [16] to validate these certificates.

Our next goal is to show entails (algabs P) psi. More generally, we show entails
Phi psi with arbitrary Phi : seq meqn and psi : meqn via the COQ polynomial ring
theory and the computer algebra system SINGULAR [13]. To this end, we first formu-
late the root entailment of polynomial expressions in the COQ polynomial ring theory.
Recall PExpr Z is the COQ data type for polynomial expressions with integral coef-
ficients. Given integers, the function zpeval : PExpr Z → seq Z → Z evaluates a
polynomial expression to an integer. We formalize the root entailment of polynomial
expressions by the predicate zpentails (Pi : seq (PExpr Z)) (tau : PExpr Z):

∀zs, (∀pi,pi ∈ Pi → zpeval pi zs = 0) → zpeval tau zs = 0.

Certified Verification for Algebraic Abstraction 343

We proceed to connect the root entailment of (modular) equations to the root entail-
ment of polynomial expressions. Let the functions zpexprs of exprs : seq expr →
seq (PExpr Z) and zpexprs of meqns : seq meqn→ seq (PExpr Z) convert expres-
sions and (modular) equations to polynomial expressions respectively (Fig. 10). When
the consequence of root entailment is a modular equation, recall that moduli in the
consequence become ideal generators (Proposition 3). To extract moduli from conse-
quences, define zpexpr of conseq : meqn → PExpr Z × seq (PExpr Z) by

zpexpr of conseq (e = e’) := (e - e’, [::])

zpexpr of conseq (e = e’ mod fs) := (e - e’, zpexprs of exprs fs)

The following COQ lemma shows how to check the root entailment of (modular) equa-
tions through the root entailment of polynomial expressions:

Lemma 2. ∀ (Phi : seq meqn) (psi : meqn), zpentails (Pi ++ zpexprs of meqns
Phi) tau implies entails Phi psi where (tau, Pi) = zpexpr of conseq psi.

Note that moduli in the consequence psi are added to the antecedents Phi.
Our last step is to show zpentails (Pi ++ zpexprs of meqns Phi) tau. Again,

we establish the generalized form zpentails Pi tau for polynomial expressions Pi
and a polynomial expression tau. We prove the predicate by showing that tau can
be expressed as a combination of expressions in Pi. Consider the predicate vali-
date zpentails (Xi : seq (PExpr Z)) (Pi : seq (PExpr Z)) (tau : PExpr Z) defined
by

size Xi = size Pi ∧
ZPeq (ZPnorm tau) (ZPnorm (foldl ZPadd 0 (map2 ZPmul Xi Pi))).

The predicate validate zpentails checks if the Xi and Pi are of the same size. It
then normalizes the polynomials tau and foldl ZPadd 0 (map2 ZPmul Xi Pi) using
ZPnorm. If normalized polynomials are equal (ZPeq), the predicate is true. In foldl
ZPadd 0 (map2 ZPmul Xi Pi), ZPadd and ZPmul are the constructors for polyno-
mial expression addition and multiplication respectively. The expressionmap2 ZPmul
Xi Pi hence returns products of elements in Xi with corresponding elements in Pi. The
expression foldl ZPadd 0 (map2 ZPmul Xi Pi) then computes the sum of these prod-
ucts. The predicate validate zpentails Xi Pi tau therefore checks if tau is equal to a
polynomial combination of expressions in Pi. In other words, tau belongs to the ideal
generated by Pi. Using Lemma 2, we prove the following variant of Proposition 3 in
COQ:

Proposition 5. ∀ Phi psi Xi, validate zpentails Xi (Pi ++ zpexprs of meqns Phi)
tau implies entails Phi psi where (tau, Pi) = zpexpr of conseq psi.

The main difference between Propositions 3 and 5 lies in certifiability. There are
many ways to establish ideal membership. Proposition 5 asks for witnesses Xi to jus-
tify ideal membership explicitly. Most importantly, such Xi need not be constructed
manually. They are in fact computed by external tools. Precisely, these polynomial

344 M.-H. Tsai et al.

expressions are computed by the lift command in the computer algebra system SIN-
GULAR [13]. The lift command computes polynomial expressions representing tau
in the ideal generated by Pi ++ zpexprs of meqns Phi. After SINGULAR computes
these polynomial expressions, we convert them to polynomial expressions Xi in COQ.
The predicate validate zpentails Xi (Pi ++ zpexprs of meqns Phi) tau checks if
tau is indeed represented by Xi using the COQ polynomial ring theory. If the check
succeeds, we obtain entails Phi psi by Proposition 5. Otherwise, the predicate entails
Phi psi is not established. Note that SINGULAR need not be trusted. If Xi is computed
incorrectly, the check validate zpentails Xi (Pi ++ zpexprs of meqns Phi) tau will
fail in COQ. Proposition 5 allows us to show entails Phi psi with certification.

5.3 Optimization

Lots of optimizations are needed and verified to make algebraic abstraction feasible
for TOYLANG programs with thousands of instructions. For instance, the static sin-
gle assignment transformation and program slicing algorithms are both specified and
verified in COQ. Furthermore, the bit blasting algorithm is extended significantly to
check soundness conditions effectively. For example, the soundness condition for the
half-multiplication instruction MUL requires bvmul (Fig. 8). This could not work well
because of complicated non-linear bit-vector computation. To reduce the complexity
of overflow checking in half-multiplication, we implement and verify the algorithm
from [10]. Last but not least, algebraic abstraction almost surely induces ideals with
hundreds of polynomial generators if not thousands. Computing Gröbner bases for such
ideals is infeasible. To address this problem, we develop heuristics to reduce the number
of generators in ideals through rewriting. Our heuristics are also specified and verified
in COQ. These optimizations are essential in our experiments.

6 Evaluation

We have implemented certified algebraic abstraction in the tool COQCRYPTOLINE [1].
COQCRYPTOLINE is built upon OCAML codes extracted from our COQ development.
It calls the computer algebra system SINGULAR [13] and certifies answers from the
algebraic tool. The certified SMT QF BV solver COQQFBV [26] is used to verify
soundness conditions. We choose two classes of real-world cryptographic programs in
experiments. For elliptic curve cryptography, we verify various field or group operations
from BITCOIN [27], BORINGSSL [8,12], NSS [20], OPENSSL [23], and PQCRYPTO-
SIDH [18]. For post-quantum cryptography, we verify the C reference and optimized
Intel avx2 implementations of the Number-Theoretic Transform in the cryptosystem
KYBER [6]. Experiments are conducted on an Ubuntu 22.04.1 Linux server with
3.20GHz 32-core Xeon Gold 6134M and 1TB RAM.

We compare COQCRYPTOLINE with the uncertified CRYPTOLINE [9,24]. Table 1
shows the experimental results. LCL shows the number of instructions. TCCL and TCL

give the verification time of COQCRYPTOLINE and CRYPTOLINE in seconds respec-
tively. %Int shows the percentage of time spent in extracted OCAML programs in
COQCRYPTOLINE. %CAS and %SMT give the percentages of time spent on SINGU-
LAR and COQQFBV respectively.

Certified Verification for Algebraic Abstraction 345

Table 1. Experimental Results on Industrial Cryptographic Programs

Function LCL %Int %SMT %CAS TCCL TCL Function LCL %Int %SMT %CAS TCCL TCL

bitcoin/asm/secp256k1 fe *

mul inner 167 0.13 99.52 0.34 91.96 2.41 sqr inner 151 0.28 99.13 0.59 28.30 1.17

bitcoin/field/secp256k1 fe *

mul inner 132 0.09 98.81 1.11 58.34 1.44 mul int 6 0.14 95.21 4.65 1.17 0.02

negate 10 0.37 95.60 4.04 0.61 0.02 sqr inner 119 0.12 98.60 1.28 34.08 0.91

bitcoin/group/

secp256k1 ge neg 31 1.82 90.48 7.70 0.24 0.03

secp256k1 gej double var.part.14 948 0.53 98.93 0.54 1091.28 25.50

bitcoin/scalar/secp256k1 scalar *

mul 918 1.19 98.26 0.54 167.97 6.28 mul 512 338 0.50 98.51 0.98 36.97 2.20

sqr 929 1.49 97.81 0.70 147.07 5.41 sqr 512 349 0.66 98.10 1.23 27.45 3.11

secp256k1 scalar reduce 104 2.50 91.18 6.32 1.21 0.09

secp256k1 scalar reduce 512 580 1.62 97.50 0.88 47.83 1.88

boringssl/fiat curve25519/fe *

mul impl 114 0.04 99.67 0.29 70.85 1.65 sqr impl 96 0.09 99.38 0.53 25.30 0.75

fe mul121666 54 1.31 95.61 3.08 0.84 0.07

x25519 scalar mult generica 1068 0.27 99.55 0.18 1019.43 279.95

boringssl/fiat curve25519 x86/fe *

mul impl 375 0.38 99.28 0.34 81.67 1.79 sqr impl 299 0.52 99.08 0.40 39.89 0.97

fe mul121666 96 1.96 95.02 3.02 1.07 0.08

x25519 scalar mult generica 3287 0.45 99.40 0.15 4454.87 240.00

nss/Hacl Curve25519 51/

fmul0 127 0.03 99.67 0.30 136.53 31.11 fmul1 67 0.09 98.85 1.06 12.65 0.26

fsqr0 98 0.03 99.64 0.33 75.10 2.90 fsqr20 196 0.06 99.55 0.38 105.24 3.15

fmul20 238 0.06 99.65 0.29 200.54 35.29

point add and doublea 1165 0.13 99.65 0.22 2611.51 355.34

point double 582 0.17 99.49 0.35 975.02 17.06

openssl/curve25519/fe51 *

mul 111 0.06 99.66 0.28 57.91 1.20 sq 93 0.08 99.34 0.58 23.06 0.69

fe51 mul121666 55 1.27 95.95 2.78 0.70 0.07

x25519 scalar multa 1042 0.29 99.54 0.17 912.24 281.26

PQCrypto-SIDH/P434/x86 64/

fpmul434 266 91.74 0.02 8.24 0.39 0.05 fp2mul434 1161 1.10 98.62 0.29 726.40 42.44

PQCrypto-SIDH/P503/arm64/

fpmul 553 2.43 96.19 1.39 249.24 5.49 fpmul-fixed 554 2.39 95.75 1.86 250.41 5.46

PQClean/kyber/NTT

PQCLEAN KYBER512 CLEAN ntt 6273 4.78 34.21 61.01 1113.92 46.54

PQCLEAN KYBER768 AVX2 ntt 8975 5.41 83.63 10.96 433.31 29.63
a One (out of three) modular polynomial equation in post-conditions fails to certify due to stack overflow.

6.1 Field and Group Operation in Elliptic Curves

In elliptic curve cryptography, a rational point on a curve is represented by field ele-
ments from a large finite field. Rational points on the curve form a group. The group
operation in turn is computed by operations in the underlying finite field. In BITCOIN,
the finite field is Zp256k1 with p256k1 = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.
The underlying field for Curve25519 is Zp25519 with p25519 = 2255−19. PQCRYPTO-
SIDH however uses slightly more complicated fieldsZp434/〈x2+1〉 andZp503/〈x2+1〉
with p434 = 2216 · 3137 − 1 and p503 = 2250 · 3159 − 1. Field elements in Zp256k1 and

346 M.-H. Tsai et al.

Zp25519 are represented by multiple limbs of 64-bit numbers. Field multiplication, for
instance, is implemented by a number of 64-bit arithmetic instructions. Field elements
in Zp434/〈x2 + 1〉 and Zp503/〈x2 + 1〉 are of the form u + vx where u, v ∈ Zp434

or Zp503 and x2 = −1. Two moduli are used to specify multiplication for such fields:
p434, x2 + 1 for Zp434/〈x2 + 1〉, and p503, x2 + 1 for Zp503/〈x2 + 1〉. Multiplication
of PQCRYPTO-SIDH is easily specified by modular equations with multiple moduli.

COQCRYPTOLINE verifies every field operation with certification within 12.1min.
Group operations are implemented by field operations. Their certified verification thus
takes more time. The most complicated case x25519 scalar mult generic (3287 instruc-
tions) from BORINGSSL takes about 1.3 h.a In comparison, CRYPTOLINE verifies
the same program in 4 min without certification. In almost all cases, a majority of
time is spent on COQQFBV. Running time for extracted OCAML programs is neg-
ligible. Interestingly, COQCRYPTOLINE finds a bug in the arm64 multiplication code
for Zp503/〈x2 + 1〉 from PQCRYPTO-SIDH. Towards the end of multiplication, the
programmer incorrectly stores the register x25 in memory before adding a carry. After
fixing the bug, COQCRYPTOLINE finishes certified verification in about 5 min.

6.2 Number-Theoretic Transform in Kyber

The United States National Institute of Standards and Technology (NIST) is cur-
rently determining next-generation post-quantum cryptography (PQC) standards. In
July 2022, Crystals-KYBER (or simply KYBER) was announced to be the winner for
key establishment mechanisms.

One of the most critical steps in KYBER is modular polynomial multiplication over
the polynomial ring Rq = Zq[x]/〈x256 + 1〉 with q = 3329. In Rq, coefficients are
elements in the field Zq. A polynomial in Rq is obtained by modulo x256 +1 and hence
has a degree less than 256. Consider x256 ∈ Zq[x]. Since x256 ≡ −1 mod (x256 +
1), x256 is −1 in Rq. Unsurprisingly, polynomial multiplication is one of the most
expensive computations in KYBER. An efficient way to multiply polynomials is through
a discretized Fast Fourier Transform called the Number-Theoretic Transform (NTT).

Recall the Chinese remainder theorem for integers is but a ring isomorphism
between residue systems. For instance, Z42

∼= Z6 × Z7. For polynomial rings, we
have the following ring isomorphism

Zq[x]/〈x2n − ω2〉 ∼= Zq[x]/〈xn − ω〉 × Zq[x]/〈xn + ω〉 (ω ∈ Zq).

Observe that xn is equal to ω in Zq[x]/〈xn −ω〉 for xn ≡ ω mod (xn −ω). Similarly,
xn is equal to −ω in Zq[x]/〈xn + ω〉. Recall polynomials in Zq[x]/〈x2n − ω2〉 have
degrees less than 2n. We can rewrite any polynomial in Zq[x]/〈x2n − ω2〉 as f(x) +
g(x)xn where degrees of f and g are both less than n. The polynomial f(x) + g(x)xn

is then equal to f(x) + ωg(x) in Zq[x]/〈xn − ω〉; and it is equal to f(x) − ωg(x) in
Zq[x]/〈xn+ω〉. NTT computes the following ring isomorphism between Zq[x]/〈x2n−
ω2〉 and Zq[x]/〈xn −ω〉×Zq[x]/〈xn +ω〉 by substituting ±ω for xn in f(x)+g(x)xn:

f(x) + g(x)xn ↔ (f(x) + ωg(x), f(x) − ωg(x)) . (1)

Multiplication in Zq[x]/〈x2n − ω2〉 can therefore be computed by respective multi-
plications in Zq[x]/〈xn ± ω〉 through the isomorphism. That is, a multiplication for

Certified Verification for Algebraic Abstraction 347

polynomials of degrees less than 2n (in Zq[x]/〈x2n − ω2〉) is replaced by two multipli-
cations for polynomials of degrees less than n (in Zq[x]/〈xn ± ω〉).

In KYBER, ring isomorphisms are applied repeatedly until linear polynomials are
obtained. That is, KYBER NTT computes the isomorphism

Rq = Zq[x]/〈x256 + 1〉 ∼= Zq[x]/〈x2 − ζ0〉 × · · · × Zq[x]/〈x2 − ζ127〉 (2)

where ζj’s are the principal 256-th roots of unity. A polynomial of a degree less than 256
is hence mapped via KYBER NTT to 128 linear polynomials, each modulo a different
x2 − ζj . In PQCLEAN [25], a reference C implementation and a hand-optimized Intel
avx2 assembly implementation of KYBER NTT are provided. In addition to degree
reduction, the two implementations utilize signed Montgomery reduction extensively
for efficient multiplication over Zq. We verify whether the two NTT implementations
compute the ring isomorphism correctly.

To specify the correctness requirements of KYBER NTT, one could write down
modular equations (1) according to its computation. Each equation would require
explicit substitution. Thanks to modular equations with multiple moduli, a more
intuitive and mathematical specification based on (2) is also expressible. Let F =
Σ255

k=0fkxk denote the input polynomial in Rq = Zq[x]/〈x256 + 1〉 and the coefficients
fk’s are input variables with −q < fk < q (0 ≤ k < 256). Let Gj = gj,0 +gj,1x be the
j-th final output linear polynomial from the implementations. The modular equations

F ≡ Gj mod [q, x2 − ζj], for all 0 ≤ j < 128

specify the correctness of the KYBER NTT implementations. Observe that our specifi-
cation is almost identical to (2). Modular equations with multiple moduli allow cryp-
tographic programmers to express mathematical specification naturally. They greatly
improve usability and reduce specification efforts in algebraic abstraction.

COQCRYPTOLINE verifies the C reference implementation in about 18.6 min. The
highly optimized avx2 implementation is verified in about 7.2 min. Observe that each
layer of ring isomorphism requires 128 signed Montgomery reductions. KYBER NTT
therefore has 7 × 128 = 896 Montgomery reductions similar to the running example in
Fig. 4b. Algebraic abstraction successfully verifies the two KYBER NTT implementa-
tions within 20 min. In comparison, CRYPTOLINE verifies both NTT implementations
in 1 min without certification.

7 Conclusion

Verification through algebraic abstraction combines both algebraic and bit-accurate
analyses. Non-linear computation is analyzed algebraically; soundness conditions are
checked with bit-accurate SMT QF BV solvers. We describe how to verify the tech-
nique and certify its results. In the experiments, the hybrid technique successfully veri-
fies non-linear integer computation found in cryptographic programs from elliptic curve
and post-quantum cryptography with certification. We plan to explore more applications
of algebraic abstraction in programs from post-quantum cryptography in near future.

348 M.-H. Tsai et al.

Acknowledgments. The authors in Academia Sinica are partially funded by National Sci-
ence and Technology Council grants NSTC110-2221-E-001-008-MY3, NSTC111-2221-E-001-
014-MY3, NSTC111-2634-F-002-019, the Sinica Investigator Award AS-IA-109-M01, the Data
Safety and Talent Cultivation Project AS-KPQ-109-DSTCP, and the Intel Fast Verified Postquan-
tum Software Project. The authors in Shenzhen University and ISCAS are partially funded
by Shenzhen Science and Technology Innovation Commission (JCYJ20210324094202008), the
National Natural Science Foundation of China (62002228, 61836005), and the Natural Science
Foundation of Guangdong Province (2022A1515011458, 2022A1515010880).

References

1. CoqCryptoLine GitHub repository (2023). https://github.com/fmlab-iis/coq-cryptoline
2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).

http://www.smt-lib.org/ (2016)
3. Bernstein, D.J., Schwabe, P.: gfverif. http://gfverif.cryptojedi.org (2015)
4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art:

The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

5. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and treengeling entering the SAT competition 2020. In: Balyo, T., Froleyks, N., Heule,
M., Iser, M., Suda, M.J.M. (eds.) Competition 2020 - Solver and Benchmark Descriptions.
Department of Computer Science Report Series B, vol. B-2020-1, pp. 50–53. University of
Helsinki (2020)

6. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: Smith,
M., Piessens, F. (eds.) IEEE European Symposium on Security and Privacy, pp. 353–367.
IEEE (2018)

7. Buchberger, B., Winkler, F.: Gröbner bases and applications, vol. 17. Cambridge University
Press Cambridge (1998)

8. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code for cryp-
tographic arithmetic - with proofs, without compromises. In: IEEE Symposium on Security
and Privacy, pp. 1202–1219. IEEE (2019)

9. Fu, Y.F., Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Signed cryptographic pro-
gram verification with typed CryptoLine. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J.
(eds.) ACM SIGSAC Conference on Computer and Communications Security, pp. 1591–
1606. ACM (2019)

10. Gok, M., Schulte, M.J., Arnold, M.G.: Integer multipliers with overflow detection. IEEE
Trans. Comput. 55(8), 1062–1066 (2006)

11. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formalized
Reason. 3(2), 95–152 (2010)

12. Google: BoringsSSL (2021). https://boringssl.googlesource.com/boringssl/
13. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Hei-

delberg (2002). https://doi.org/10.1007/978-3-662-04963-1
14. Harrison, J.: Automating elementary number-theoretic proofs using Gröbner bases. In: Pfen-

ning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73595-3 5

15. Hwang, V., et al.: Verified NTT multiplications for NISTPQC KEM lattice finalists: Kyber,
SABER, and NTRU. IACR Trans. Cryptograph. Hardware Embedd. Syst. 2022, 718–750
(2022)

https://github.com/fmlab-iis/coq-cryptoline
http://www.smt-lib.org/
http://gfverif.cryptojedi.org
https://doi.org/10.1007/978-3-662-07964-5
https://boringssl.googlesource.com/boringssl/
https://doi.org/10.1007/978-3-662-04963-1
https://doi.org/10.1007/978-3-540-73595-3_5

Certified Verification for Algebraic Abstraction 349

16. Lammich, P.: Efficient verified (UN)SAT certificate checking. In: de Moura, L. (ed.) CADE
2017. LNCS (LNAI), vol. 10395, pp. 237–254. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63046-5 15

17. Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic in cryptographic C
programs. In: Lawall, J., Marinov, D. (eds.) IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 552–564. IEEE (2019)

18. Microsoft Research: PQCrypto-SIDH (2022). https://github.com/microsoft/PQCrypto-SIDH
19. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44, 519–

521 (1985)
20. Mozilla: Network security services (2021). https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/NSS
21. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process. Lett. 91,

233–244 (2004)
22. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: Leroy,

X. (ed.) POPL, pp. 330–341. ACM (2004)
23. OpenSSL: OpenSSL library. https://github.com/openssl/openssl (2021)
24. Polyakov, A., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic assembly programs

in cryptographic primitives. In: Schewe, S., Zhang, L. (eds.) International Conference on
Concurrency Theory, pp. 1–16. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2018)

25. PQClean: The PQClean project. https://github.com/PQClean/PQClean (2021)
26. Shi, X., Fu, Y.F., Liu, J., Tsai, M.H., Wang, B.Y., Yang, B.Y.: CoqQFBV: a scalable certified

SMT quantifier-free bit-vector solver. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS,
vol. 12760, pp. 149–171. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-
9 7

27. The Bitcoin Developers: Bitcoin source code (2021). https://github.com/bitcoin/bitcoin
28. Tsai, M.H., Fu, Y.F., Shi, X., Liu, J., Wang, B.Y., Yang, B.Y.: Automatic certified verifica-

tion of cryptographic programs with COQCRYPTOLINE . IACR Cryptol. ePrint Arch. 1116
(2022). https://eprint.iacr.org/2022/1116

29. Tsai, M.H., Wang, B.Y., Yang, B.Y.: Certified verification of algebraic properties on low-
level mathematical constructs in cryptographic programs. In: Evans, D., Malkin, T., Xu, D.
(eds.) ACM SIGSAC Conference on Computer and Communications Security, pp. 1973–
1987. ACM (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-63046-5_15
https://github.com/microsoft/PQCrypto-SIDH
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://github.com/openssl/openssl
https://github.com/PQClean/PQClean
https://doi.org/10.1007/978-3-030-81688-9_7
https://doi.org/10.1007/978-3-030-81688-9_7
https://github.com/bitcoin/bitcoin
https://eprint.iacr.org/2022/1116
http://creativecommons.org/licenses/by/4.0/

Complete Multiparty Session Type
Projection with Automata

Elaine Li1 , Felix Stutz2(B) , Thomas Wies1 , and Damien Zufferey3

1 New York University, New York, USA
efl9013@nyu.edu, wies@cs.nyu.edu

2 Max Planck Institute for Software Systems,
Kaiserslautern, Germany
fstutz@mpi-sws.org

3 SonarSource, Geneva, Switzerland
damien.zufferey@sonarsource.com

Abstract. Multiparty session types (MSTs) are a type-based approach
to verifying communication protocols. Central to MSTs is a projection
operator : a partial function that maps protocols represented as global
types to correct-by-construction implementations for each participant,
represented as a communicating state machine. Existing projection oper-
ators are syntactic in nature, and trade efficiency for completeness. We
present the first projection operator that is sound, complete, and efficient.
Our projection separates synthesis from checking implementability. For
synthesis, we use a simple automata-theoretic construction; for checking
implementability, we present succinct conditions that summarize insights
into the property of implementability. We use these conditions to show
that MST implementability is PSPACE-complete. This improves upon
a previous decision procedure that is in EXPSPACE and applies to a
smaller class of MSTs. We demonstrate the effectiveness of our approach
using a prototype implementation, which handles global types not sup-
ported by previous work without sacrificing performance.

Keywords: Protocol verification · Multiparty session types ·
Communicating state machines · Protocol fidelity · Deadlock freedom

1 Introduction

Communication protocols are key components in many safety and operation crit-
ical systems, making them prime targets for formal verification. Unfortunately,
most verification problems for such protocols (e.g. deadlock freedom) are unde-
cidable [11]. To make verification computationally tractable, several restrictions
have been proposed [2,3,10,14,33,42]. In particular, multiparty session types
(MSTs) [24] have garnered a lot of attention in recent years (see, e.g., the sur-
vey by Ancona et al. [6]). In the MST setting, a protocol is specified as a global

E. Li and F. Stutz—equal contribution.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 350–373, 2023.
https://doi.org/10.1007/978-3-031-37709-9_17

https://doi.org/10.5281/zenodo.7878493
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_17&domain=pdf
http://orcid.org/0000-0003-0173-4498
http://orcid.org/0000-0003-3638-4096
http://orcid.org/0000-0003-4051-5968
http://orcid.org/0000-0002-3197-8736
https://doi.org/10.1007/978-3-031-37709-9_17

Complete Multiparty Session Type Projection with Automata 351

type, which describes the desired interactions of all roles involved in the protocol.
Local implementations describe behaviors for each individual role. The imple-
mentability problem for a global type asks whether there exists a collection of
local implementations whose composite behavior when viewed as a communicat-
ing state machine (CSM) matches that of the global type and is deadlock-free.
The synthesis problem is to compute such an implementation from an imple-
mentable global type.

MST-based approaches typically solve synthesis and implementability simul-
taneously via an efficient syntactic projection operator [18,24,34,41]. Abstractly,
a projection operator is a partial map from global types to collections of imple-
mentations. A projection operator proj is sound when every global type G in its
domain is implemented by proj(G), and complete when every implementable
global type is in its domain. Existing practical projection operators for MSTs are
all incomplete (or unsound). Recently, the implementability problem was shown
to be decidable for a class of MSTs via a reduction to safe realizability of glob-
ally cooperative high-level message sequence charts (HMSCs) [38]. In principle,
this result yields a complete and sound projection operator for the considered
class. However, this operator would not be practical. In particular, the proposed
implementability check is in EXPSPACE.

Contributions. In this paper, we present the first practical sound and complete
projection operator for general MSTs. The synthesis problem for implementable
global types is conceptually easy [38] – the challenge lies in determining whether
a global type is implementable. We thus separate synthesis from checking imple-
mentability. We first use a standard automata-theoretic construction to obtain a
candidate implementation for a potentially non-implementable global type. How-
ever, unlike [38], we then verify the correctness of this implementation directly
using efficiently checkable conditions derived from the global type. When a global
type is not implementable, our constructive completeness proof provides a coun-
terexample trace.

The resulting projection operator yields a PSPACE decision procedure
for implementability. In fact, we show that the implementability problem is
PSPACE-complete. These results both generalize and tighten the decidability
and complexity results obtained in [38].

We evaluate a prototype of our projection algorithm on benchmarks taken
from the literature. Our prototype benefits from both the efficiency of existing
lightweight but incomplete syntactic projection operators [18,24,34,41], and the
generality of heavyweight automata-based model checking techniques [28,36]: it
handles protocols rejected by previous practical approaches while preserving the
efficiency that makes MST-based techniques so attractive.

2 Motivation and Overview

Incompleteness of Existing Projection Operators. A key limitation of
existing projection operators is that the implementation for each role is obtained

352 E. Li et al.

Fig. 1. Odd-even: An implementable but not (yet) projectable protocol and its local
implementations

via a linear traversal of the global type, and thus shares its structure. The follow-
ing example, which is not projectable by any existing approach, demonstrates
how enforcing structural similarity can lead to incompleteness.

Example 2.1 (Odd-even). Consider the following global type Goe:

+

{
p→q :o. q→r :o. μt1. (p→q :o. q→r :o. q→r :o. t1 + p→q :b. q→r :b. r→p :o. 0)

p→q :m. μt2. (p→q :o. q→r :o. q→r :o. t2 + p→q :b. q→r :b. r→p :m. 0)

A term p → q : m specifies the exchange of message m between sender p and
receiver q. The term represents two local events observed separately due to
asynchrony: a send event p � q!m observed by role p, and a receive event q � p?m
observed by role q. The + operator denotes choice, μt.G denotes recursion, and
0 denotes protocol termination.

Figure 1a visualizes Goe as an HMSC. The left and right sub-protocols respec-
tively correspond to the top and bottom branches of the protocol. Role p chooses
a branch by sending either o or m to q. On the left, q echoes this message to r.
Both branches continue in the same way: p sends an arbitrary number of o mes-
sages to q, each of which is forwarded twice from q to r. Role p signals the end
of the loop by sending b to q, which q forwards to r. Finally, depending on the
branch, r must send o or m to p.

Figures 1b and 1c depict the structural similarity between the global type Goe

and the implementations for p and q. For the “choicemaker” role p, the reason is
evident. Role q’s implementation collapses the continuations of both branches in
the protocol into a single sub-component. For r (Fig. 1d), the situation is more
complicated. Role r does not decide on or learn directly which branch is taken,
but can deduce it from the parity of the number of o messages received from q:
odd means left and even means right. The resulting local implementation features
transitions going back and forth between the two branches that do not exist in
the global type. Syntactic projection operators fail to create such transitions. �
One response to the brittleness of existing projection operators has been to give
up on global type specifications altogether and instead revert to model checking

Complete Multiparty Session Type Projection with Automata 353

Fig. 2. High-level message sequence charts for the global types of Example 2.2.

user-provided implementations [28,36]. We posit that what needs rethinking is
not the concept of global types, but rather how projections are computed and
how implementability is checked.

Our Automata-Theoretic Approach. The synthesis step in our projection
operator uses textbook automata-theoretic constructions. From a given global
type, we derive a finite state machine, and use it to define a homomorphism
automaton for each role. We then determinize this homomorphism automaton
via subset construction to obtain a local candidate implementation for each role.
If the global type is implementable, this construction always yields an implemen-
tation. The implementations shown in Figs. 1b to 1d are the result of applying
this construction to Goe from Example 2.1. Notice that the state labels in Fig. 1d
correspond to sets of labels in the global protocol.

Unfortunately, not all global types are implementable.

Example 2.2. Consider the following four global types also depicted in Fig. 2:

Gr = +

{
p→q :o. q→r :o. p→r :o. 0

p→q :m. p→r :o. q→r :o. 0
Gs = +

{
p→q :o. r→q :o. 0

p→q :m. r→q :m. 0

G
′
r = +

{
p→q :o. q→r :o. r→p :o. p→r :o. 0

p→q :m. p→r :o. r→q :o. q→r :o. 0
G

′
s = +

{
p→q :o. r→q :b. 0

p→q :m. r→q :b. 0

Similar to Goe, in all four examples, p chooses a branch by sending either o or
m to q. The global type Gr is not implementable because r cannot learn which
branch was chosen by p. For any local implementation of r to be able to execute
both branches, it must be able to receive o from p and q in any order. Because
the two send events p � r!o and q � r!o are independent of each other, they may
be reordered. Consequently, any implementation of Gr would have to permit
executions that are consistent with global behaviors not described by Gr, such
as p→q :m · q→r :o · p→r :o. Contrast this with G′

r, which is implementable. In
the top branch of G′

r, role p can only send to r after it has received from r, which
prevents the reordering of the send events p�r!o and q�r!o. The bottom branch
is symmetric. Hence, r learns p’s choice based on which message it receives first.

For the global type Gs, role r again cannot learn the branch chosen by p.
That is, r cannot know whether to send o or m to q, leading inevitably to dead-
locking executions. In contrast, G′

s is again implementable because the expected
behavior of r is independent of the choice by p. �

354 E. Li et al.

These examples show that the implementability question is non-trivial. To
check implementability, we present conditions that precisely characterize when
the subset construction for G yields an implementation.

Overview. The rest of the paper is organized as follows. Section 3 contains rel-
evant definitions for our work. Section 4 describes the synthesis step of our pro-
jection. Section 5 presents the two conditions that characterize implementability
of a given global type. In Sect. 6, we prove soundness of our projection via a
stronger inductive invariant guaranteeing per-role agreement on a global run of
the protocol. In Sect. 7, we prove completeness by showing that our two condi-
tions hold if a global type is implementable. In Sect. 8, we discuss the complexity
of our construction and condition checks. Section 9 presents our artifact and eval-
uation, and Sect. 10 as well as Sect. 11 discuss related work. Additional details
including omitted proofs can be found in the extended version of the paper [29].

3 Preliminaries

Words. Let Σ be a finite alphabet. Σ∗ denotes the set of finite words over Σ,
Σω the set of infinite words, and Σ∞ their union Σ∗ ∪ Σω. A word u ∈ Σ∗ is a
prefix of word v ∈ Σ∞, denoted u ≤ v, if there exists w ∈ Σ∞ with u · w = v.

Message Alphabet. Let P be a set of roles and V be a set of messages. We define
the set of synchronous events Σsync := {p→q :m | p, q ∈ P and m ∈ V} where
p→ q :m denotes that message m is sent by p to q atomically. This is split for
asynchronous events. For a role p ∈ P, we define the alphabet Σp,! = {p � q!m |
q ∈ P, m ∈ V} of send events and the alphabet Σp,? = {p�q?m | q ∈ P, m ∈ V}
of receive events. The event p � q!m denotes role p sending a message m to q,
and p � q?m denotes role p receiving a message m from q. We write Σp =
Σp,! ∪Σp,?, Σ! =

⋃
p∈P Σp,!, and Σ? =

⋃
p∈P Σp,?. Finally, Σasync = Σ! ∪Σ?. We

say that p is active in x ∈ Σasync if x ∈ Σp. For each role p ∈ P, we define a
homomorphism ⇓Σp

, where x⇓Σp
= x if x ∈ Σp and ε otherwise. We write V(w)

to project the send and receive events in w onto their messages. We fix P and V
in the rest of the paper.

Global Types – Syntax. Global types for MSTs [31] are defined by the grammar:

G ::= 0 |
∑

i∈I

p→qi :mi.Gi | μt. G | t

where p, qi range over P, mi over V, and t over a set of recursion variables.
We require each branch of a choice to be distinct: ∀i, j ∈ I. i �= j ⇒ (qi,mi) �=

(qj ,mj), the sender and receiver of an atomic action to be distinct: ∀i ∈ I. p �= qi,
and recursion to be guarded: in μt.G, there is at least one message between μt
and each t in G. When |I| = 1, we omit

∑
. For readability, we sometimes use

the infix operator + for choice, instead of
∑

. When working with a protocol
described by a global type, we write G to refer to the top-level type, and we

Complete Multiparty Session Type Projection with Automata 355

use G to refer to its subterms. For the size of a global type, we disregard multiple
occurrences of the same subterm.

We use the extended definition of global types from [31] that allows a sender
to send messages to different roles in a choice. We call this sender-driven choice,
as in [38], while it was called generalized choice in [31]. This definition subsumes
classical MSTs that only allow directed choice [24]. The types we use focus on
communication primitives and omit features like delegation or parametrization.
We defer a detailed discussion of different MST frameworks to Sect. 11.

Global Types – Semantics. As a basis for the semantics of a global type G, we
construct a finite state machine GAut(G) = (QG, Σsync , δG, q0,G, FG) where

– QG is the set of all syntactic subterms in G together with the term 0,
– δG is the smallest set containing (

∑
i∈I p→qi :mi.Gi, p→qi :mi, Gi) for each

i ∈ I, as well as (μt.G′, ε,G′) and (t, ε, μt.G′) for each subterm μt.G′,
– q0,G = G and FG = {0}.

We define a homomorphism split onto the asynchronous alphabet:

split(p→q :m) := p � q!m. q � p?m .

The semantics L(G) of a global type G is given by C∼(split(L(GAut(G))))
where C∼ is the closure under the indistinguishability relation ∼ [31]. Two events
are independent if they are not related by the happened-before relation [26].
For instance, any two send events from distinct senders are independent. Two
words are indistinguishable if one can be reordered into the other by repeatedly
swapping consecutive independent events. The full definition is in the extended
version [29].

Communicating State Machine [11]. A = {{Ap}}p∈P is a CSM over P and V if Ap

is a finite state machine over Σp for every p ∈ P, denoted by (Qp, Σp, δp, q0,p, Fp).
Let

∏
p∈P sp denote the set of global states and Chan = {(p, q) | p, q ∈ P, p �= q}

denote the set of channels. A configuration of A is a pair (�s, ξ), where �s is a
global state and ξ : Chan → V∗ is a mapping from each channel to a sequence of
messages. We use �sp to denote the state of p in �s. The CSM transition relation,
denoted →, is defined as follows.

– (�s, ξ)
p�q!m−−−−→ (�s ′, ξ′) if (�sp, p � q!m,�s ′

p) ∈ δp, �sr = �s ′
r for every role r �= p,

ξ′(p, q) = ξ(p, q) · m and ξ′(c) = ξ(c) for every other channel c ∈ Chan.
– (�s, ξ)

q�p?m−−−−→ (�s ′, ξ′) if (�sq, q � p?m,�s ′
q) ∈ δq, �sr = �s ′

r for every role r �= q,
ξ(p, q) = m · ξ′(p, q) and ξ′(c) = ξ(c) for every other channel c ∈ Chan.

In the initial configuration (�s0, ξ0), each role’s state in �s0 is the initial state q0,p

of Ap, and ξ0 maps each channel to ε. A configuration (�s, ξ) is said to be final iff
�sp is final for every p and ξ maps each channel to ε. Runs and traces are defined
in the expected way. A run is maximal if either it is finite and ends in a final

356 E. Li et al.

configuration, or it is infinite. The language L(A) of the CSM A is defined as the
set of maximal traces. A configuration (�s, ξ) is a deadlock if it is not final and has
no outgoing transitions. A CSM is deadlock-free if no reachable configuration is
a deadlock.

Finally, implementability is formalized as follows.

Definition 3.1 (Implementability [31]). A global type G is implementable
if there exists a CSM {{Ap}}p∈P such that the following two properties hold:
(i) protocol fidelity: L({{Ap}}p∈P) = L(G), and (ii) deadlock freedom:
{{Ap}}p∈P is deadlock-free. We say that {{Ap}}p∈P implements G.

4 Synthesizing Implementations

The construction is carried out in two steps. First, for each role p ∈ P, we define
an intermediate state machine GAut(G)↓p that is a homomorphism of GAut(G).
We call GAut(G)↓p the projection by erasure for p, defined below.

Definition 4.1 (Projection by Erasure). Let G be some global type with
its state machine GAut(G) = (QG, Σsync , δG, q0,G, FG). For each role p ∈ P,
we define the state machine GAut(G)↓p = (QG, Σp � {ε}, δ↓, q0,G, FG) where

δ↓ := {q
split(a)⇓Σp−−−−−−−−→ q′ | q

a−→ q′ ∈ δG}. By definition of split(-), it holds that
split(a)⇓Σp

∈ Σp � {ε}.
Then, we determinize GAut(G)↓p via a standard subset construction to obtain
a deterministic local state machine for p.

Definition 4.2 (Subset Construction). Let G be a global type and p be a
role. Then, the subset construction for p is defined as

C (G, p) =
(
Qp, Σp, δp, s0,p, Fp

)
where

– δ(s, a) := {q′ ∈ QG | ∃q ∈ s, q
a−→ ε−→∗ q′ ∈ δ↓}, for every s ⊆ QG and a ∈ Σp

– s0,p := {q ∈ QG | q0,G
ε−→∗ q ∈ δ↓},

– Qp := lfp⊆
{s0,p}λQ.Q ∪ {δ(s, a) | s ∈ Q ∧ a ∈ Σp} \ {∅} , and

– δp := δ|Qp×Σp

– Fp := {s ∈ Qp | s ∩ FG �= ∅}
Note that the construction ensures that Qp only contains subsets of QG whose

states are reachable via the same traces, i.e. we typically have |Qp| � 2|QG|.
The following characterization is immediate from the subset construction;

the proof can be found in the extended version [29].

Lemma 4.3. Let G be a global type, r be a role, and C (G, r) be its subset
construction. If w is a trace of GAut(G), split(w)⇓Σr

is a trace of C (G, r). If u
is a trace of C (G, r), there is a trace w of GAut(G) such that split(w)⇓Σr

= u.
It holds that L(G)⇓Σr

= L(C (G, r)).

Complete Multiparty Session Type Projection with Automata 357

Using this lemma, we show that the CSM {{C (G, p)}}p∈P preserves all behav-
iors of G.

Lemma 4.4. For all global types G, L(G) ⊆ L({{C (G, p)}}p∈P).

We briefly sketch the proof here. Given that {{C (G, p)}}p∈P is deterministic, to
prove language inclusion it suffices to prove the inclusion of the respective prefix
sets:

pref(L(G)) ⊆ pref(L{{C (G, p)}}p∈P)

Let w be a word in L(G). If w is finite, membership in L({{C (G, p)}}p∈P) is imme-
diate from the claim above. If w is infinite, we show that w has an infinite run in
{{C (G, p)}}p∈P using König’s Lemma. We construct an infinite graph Gw(V,E)
with V := {vρ | trace(ρ) ≤ w} and E := {(vρ1 , vρ2) | ∃ x ∈ Σasync . trace(ρ2) =
trace(ρ1) · x}. Because {{C (G, p)}}p∈P is deterministic, Gw is a tree rooted at
vε, the vertex corresponding to the empty run. By König’s Lemma, every infi-
nite tree contains either a vertex of infinite degree or an infinite path. Because
{{C (G, p)}}p∈P consists of a finite number of communicating state machines, the
last configuration of any run has a finite number of next configurations, and Gw is
finitely branching. Therefore, there must exist an infinite path in Gw representing
an infinite run for w, and thus w ∈ L({{C (G, p)}}p∈P).

The proof of the inclusion of prefix sets proceeds by structural induction and
primarily relies on Lemma4.3 and the fact that all prefixes in L(G) respect the
order of send before receive events.

5 Checking Implementability

We now turn our attention to checking implementability of a CSM produced
by the subset construction. We revisit the global types from Example 2.2 (also
shown in Fig. 2), which demonstrate that the naive subset construction does
not always yield a sound implementation. From these examples, we distill our
conditions that precisely identify the implementable global types.

In general, a global type G is not implementable when the agreement on
a global run of GAut(G) among all participating roles cannot be conveyed via
sending and receiving messages alone. When this happens, roles can take locally
permitted transitions that commit to incompatible global runs, resulting in a
trace that is not specified by G. Consequently, our conditions need to ensure
that when a role p takes a transition in C (G, p), it only commits to global runs
that are consistent with the local views of all other roles. We discuss the relevant
conditions imposed on send and receive transitions separately.

Send Validity. Consider Gs from Example 2.2. The CSM {{C (Gs, p)}}p∈P has
an execution with the trace p�q!o·q�p?o·r�q!m. This trace is possible because the
initial state of C (Gs, r), s0,r, contains two states of GAut(Gs)↓r, each of which
has a single outgoing send transition labeled with r�q!o and r�q!m respectively.
Both of these transitions are always enabled in s0,r, meaning that r can send

358 E. Li et al.

r � q!m even when p has chosen the top branch and q expects to receive o
instead of m from r. This results in a deadlock. In contrast, while the state
s0,r in C (G′

s, r) likewise contains two states of GAut(G′
s)↓r, each with a single

outgoing send transition, now both transitions are labeled with r � q!b. These
two transitions collapse to a single one in C (G′

s, r). This transition is consistent
with both possible local views that p and q might hold on the global run.

Intuitively, to prevent the emergence of inconsistent local views from send
transitions of C (G, p), we must enforce that for every state s ∈ Qp with an
outgoing send transition labeled x, a transition labeled x must be enabled in all
states of GAut(G)↓p represented by s. We use the following auxiliary definition
to formalize this intuition subsequently.

Definition 5.1 (Transition Origin and Destination). Let s
x−→ s′ ∈ δp be

a transition in C (G, p) and δ↓ be the transition relation of GAut(G)↓p. We
define the set of transition origins tr-orig(s x−→ s′) and transition destinations
tr-dest(s x−→ s′) as follows:

tr-orig(s x−→ s′) := {G ∈ s | ∃G′ ∈ s′. G x−→∗ G′ ∈ δ↓} and

tr-dest(s x−→ s′) := {G′ ∈ s′ | ∃G ∈ s.G
x−→∗ G′ ∈ δ↓} .

Our condition on send transitions is then stated below.

Definition 5.2 (Send Validity). C (G, p) satisfies Send Validity iff every
send transition s

x−→ s′ ∈ δp is enabled in all states contained in s:

∀s
x−→ s′ ∈ δp. x ∈ Σp,! =⇒ tr-orig(s x−→ s′) = s .

Receive Validity. To motivate our condition on receive transitions, let us revisit
Gr from Example 2.2. The CSM {{C (Gr, p)}}p∈P recognizes the following trace
not in the global type language L(Gr):

p � q!o · q � p?o · q � r!o · p � r!o · r � p?o · r � q?o .

The issue lies with r which cannot distinguish between the two branches in Gr.
The initial state s0,r of C (Gr, r) has two states of GAut(Gr) corresponding to
the subterms Gt := q→ r : o. p→ r : o. 0 and Gb := p→ r : o. q→ r : o. 0 . Here,
Gt and Gb are the top and bottom branch of Gr respectively. This means that
there are outgoing transitions in s0,r labeled with r � p?o and r � q?o. If r takes
the transition labeled r � p?o, it commits to the bottom branch Gb. However,
observe that the message o from p can also be available at this time point if the
other roles follow the top branch Gt. This is because p can send o to r without
waiting for r to first receive from q. In this scenario, the roles disagree on which
global run of GAut(Gr) to follow, resulting in the violating trace above.

Contrast this with G′
r. Here, s0,r again has outgoing transitions labeled with

r�p?o and r�q?o. However, if r takes the transition labeled r�p?o, committing
to the bottom branch, no disagreement occurs. This is because if the other roles

Complete Multiparty Session Type Projection with Automata 359

are following the top branch, then p is blocked from sending to r until after it
has received confirmation that r has received its first message from q.

For a receive transition s
x−→ s1 in C (G, p) to be safe, we must enforce that

the receive event x cannot also be available due to reordered sent messages
in the continuation G2 ∈ s2 of another outgoing receive transition s

y−→ s2.
To formalize this condition, we use the set MB

(G...) of available messages for a
syntactic subterm G of G and a set of blocked roles B. This notion was already
defined in [31, Sec. 2.2]. Intuitively, MB

(G...) consists of all send events q � r!m
that can occur on the traces of G such that m will be the first message added
to channel (q, r) before any of the roles in B takes a step.

Available Messages. The set of available messages is recursively defined on the
structure of the global type. To obtain all possible messages, we need to unfold
the distinct recursion variables once. For this, we define a map getμ from variable
to subterms and write getμG for getμ(G):

getμ(0) := [] getμ(t) := [] getμ(μt.G) := [t �→ G] ∪ getμ(G)

getμ(
∑

i∈I p→qi :mi.Gi) :=
⋃

i∈I getμ(Gi)

The function MB,T
(-...) keeps a set of unfolded variables T , which is empty initially.

MB,T
(0...)

:= ∅ MB,T
(µt.G...)

:= M
B,T∪{t}
(G...) MB,T

(t...)
:=

{
∅ if t ∈ T

M
B,T∪{t}
(getµG(t)...) if t �∈ T

MB,T
(
∑

i∈I p→qi:mi.Gi...)
:=

{⋃
i∈I,m∈V(M

B,T
(Gi...)

\ {qi � p?m}) ∪ {qi � p?mi} if p �∈ B
⋃

i∈I M
B∪{qi},T
(Gi...)

if p ∈ B

We write MB
(G...) for MB,∅

(G...). If B is a singleton set, we omit set notation and

write Mp

(G...) for M
{p}
(G...). The set of available messages captures the possible

states of all channels before a given receive transition is taken.

Definition 5.3 (Receive Validity). C (G, p) satisfies Receive Validity iff no
receive transition is enabled in an alternative continuation that originates from
the same source state:

∀s
p�q1?m1−−−−−→ s1, s

p�q2?m2−−−−−→ s2 ∈ δp.

q1 �= q2 =⇒ ∀ G2 ∈ tr-dest(s
p�q2?m2−−−−−→ s2). q1 � p!m1 /∈ M

p

(G2...) .

Subset Projection. We are now ready to define our projection operator.

Definition 5.4 (Subset Projection of G). The subset projection P(G, p)
of G onto p is C (G, p) if it satisfies Send Validity and Receive Validity. We lift
this operation to a partial function from global types to CSMs in the expected way.

We conclude our discussion with an observation about the syntactic structure
of the subset projection: Send Validity implies that no state has both outgoing
send and receive transitions (also known as mixed choice).

Corollary 5.5 (No Mixed Choice). If P(G, p) satisfies Send Validity, then
for all s

x1−→ s1, s
x2−→ s2 ∈ δp, x1 ∈ Σ! iff x2 ∈ Σ!.

360 E. Li et al.

6 Soundness

In this section, we prove the soundness of our subset projection, stated as follows.

Theorem 6.1. Let G be a global type and {{P(G, p)}}p∈P be the subset projec-
tion. Then, {{P(G, p)}}p∈P implements G.

Recall that implementability is defined as protocol fidelity and deadlock free-
dom. Protocol fidelity consists of two language inclusions. The first inclusion,
L(G) ⊆ L({{P(G, p)}}p∈P), enforces that the subset projection generates at
least all behaviors of the global type. We showed in Lemma 4.4 that this holds
for the subset construction alone (without Send and Receive Validity).

The second inclusion, L({{P(G, p)}}p∈P) ⊆ L(G), enforces that no new
behaviors are introduced. The proof of this direction relies on a stronger induc-
tive invariant that we show for all traces of the subset projection. As discussed
in Sect. 5, violations of implementability occur when roles commit to global runs
that are inconsistent with the local views of other roles. Our inductive invariant
states the exact opposite: that all local views are consistent with one another.
First, we formalize the local view of a role.

Definition 6.2 (Possible run sets). Let G be a global type and GAut(G) be
the corresponding state machine. Let p be a role and w ∈ Σ∗

async be a word. We
define the set of possible runs RG

p (w) as all maximal runs of GAut(G) that are
consistent with p’s local view of w:

RG
p (w) := {ρ is a maximal run of GAut(G) | w⇓Σp

≤ split(trace(ρ))⇓Σp
} .

While Definition 6.2 captures the set of maximal runs that are consistent
with the local view of a single role, we would like to refer to the set of runs that
is consistent with the local view of all roles. We formalize this as the intersection
of the possible run sets for all roles, which we denote as

I(w) :=
⋂

p∈P
RG

p (w) .

With these definitions in hand, we can now formulate our inductive invariant:

Lemma 6.3. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let w be a trace of {{P(G, p)}}p∈P . It holds that I(w) is non-empty.

The reasoning for the sufficiency of Lemma 6.3 is included in the proof of
Theorem 6.1, found in the extended version [29]. In the rest of this section,
we focus our efforts on how to show this inductive invariant, namely that the
intersection of all roles’ possible run sets is non-empty.

We begin with the observation that the empty trace ε is consistent with all
runs. As a result, I(ε) =

⋂
p∈P RG

p (ε) contains all maximal runs in GAut(G). By
definition, state machines for global types include at least one run, and the base
case is trivially discharged. Intuitively, I(w) shrinks as more events are appended

Complete Multiparty Session Type Projection with Automata 361

Fig. 3. Evolution of RG- (-) sets when p sends a message m and q receives it.

to w, but we show that at no point does it shrink to ∅. We consider the cases
where a send or receive event is appended to the trace separately, and show that
the intersection set shrinks in a principled way that preserves non-emptiness. In
fact, when a trace is extended with a receive event, Receive Validity guarantees
that the intersection set does not shrink at all.

Lemma 6.4. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let wx be a trace of {{P(G, p)}}p∈P such that x ∈ Σ?. Then, I(w) = I(wx).

To prove this equality, we further refine our characterization of intersection
sets. In particular, we show that in the receive case, the intersection between the
sender and receiver’s possible run sets stays the same, i.e.

RG
p (w) ∩ RG

q (w) = RG
p (wx) ∩ RG

q (wx) .

Note that it is not the case that the receiver only follows a subset of the sender’s
possible runs. In other words, RG

q (w) ⊆ RG
p (w) is not inductive. The equality

above simply states that a receive action can only eliminate runs that have
already been eliminated by its sender. Figure 3 depicts this relation.

Given that the intersection set strictly shrinks, the burden of eliminating
runs must then fall upon send events. We show that send transitions shrink the
possible run set of the sender in a way that is prefix-preserving. To make this
more precise, we introduce the following definition on runs.

Definition 6.5 (Unique splitting of a possible run). Let G be a global type,
p a role, and w ∈ Σ∗

async a word. Let ρ be a possible run in RG
p (w). We define

the longest prefix of ρ matching w:

α′ := max{ρ′ | ρ′ ≤ ρ ∧ split(trace(ρ′))⇓Σp
≤ w⇓Σp

} .

If α′ �= ρ, we can split ρ into ρ = α · G
l−→ G′ · β where α′ = α · G, G′ denotes

the state following G, and β denotes the suffix of ρ following α · G · G′. We call
α · G

l−→ G′ · β the unique splitting of ρ for p matching w. We omit the role p
when obvious from context. This splitting is always unique because the maximal
prefix of any ρ ∈ RG

p (w) matching w is unique.

362 E. Li et al.

When role p fires a send transition p � q!m, any run ρ = α · G
l−→ G′ · β in

p’s possible run with split(l)⇓Σp
�= p � q!m is eliminated. While the resulting

possible run set could no longer contain runs that end with G′ ·β, Send Validity
guarantees that it must contain runs that begin with α · G. This is formalized
by the following lemma.

Lemma 6.6. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let wx be a trace of {{P(G, p)}}p∈P such that x ∈ Σ! ∩ Σp for some p ∈ P. Let
ρ be a run in I(w), and α · G

l−→ G′ · β be the unique splitting of ρ for p with
respect to w. Then, there exists a run ρ′ in I(wx) such that α · G ≤ ρ′.

This concludes our discussion of the send and receive cases in the inductive
step to show the non-emptiness of the intersection of all roles’ possible run
sets. The full proofs and additional definitions can be found in the extended
version [29].

7 Completeness

In this section, we prove completeness of our approach. While soundness states
that if a global type’s subset projection is defined, it then implements the global
type, completeness considers the reverse direction.

Theorem 7.1 (Completeness). If G is implementable, then {{P(G, p)}}p∈P
is defined.

We sketch the proof and refer to the extended version [29] for the full proof.
From the assumption that G is implementable, we know there exists a witness

CSM that implements G. While the soundness proof picks our subset projection
as the existential witness for showing implementability – thereby allowing us
to reason directly about a particular implementation – completeness only guar-
antees the existence of some witness CSM. We cannot assume without loss of
generality that this witness CSM is our subset construction; however, we must
use the fact that it implements G to show that Send and Receive Validity hold
on our subset construction.

We proceed via proof by contradiction: we assume the negation of Send and
Receive Validity for the subset construction, and show a contradiction to the
fact that this witness CSM implements G. In particular, we contradict protocol
fidelity (Definition 3.1(i)), stating that the witness CSM generates precisely the
language L(G). To do so, we exploit a simulation argument: we first show that
the negation of Send and Receive Validity forces the subset construction to
recognize a trace that is not a prefix of any word in L(G). Then, we show that
this trace must also be recognized by the witness CSM, under the assumption
that the witness CSM implements G.

To highlight the constructive nature of our proof, we convert our proof obli-
gation to a witness construction obligation. To contradict protocol fidelity, it
suffices to construct a witness trace v0 satisfying two properties, where {{Bp}}p∈P
is our witness CSM:

Complete Multiparty Session Type Projection with Automata 363

(a) v0 is a trace of {{Bp}}p∈P , and
(b) the run intersection set of v0 is empty: I(v0) =

⋂
p∈P RG

p (v0) = ∅.

We first establish the sufficiency of conditions (a) and (b). Because {{Bp}}p∈P
is deadlock-free by assumption, every prefix extends to a maximal trace. Thus,
to prove the inequality of the two languages L({{Bp}}p∈P) and L(G), it suffices
to prove the inequality of their respective prefix sets. In turn, it suffices to show
the existence of a prefix of a word in one language that is not a prefix of any
word in the other. We choose to construct a prefix in the CSM language that is
not a prefix in L(G). We again leverage the definition of intersection sets (Defi-
nition 6.2) to weaken the property of language non-membership to the property
of having an empty intersection set as follows. By the semantics of L(G), for
any w ∈ L(G), there exists w′ ∈ split(L(GAut(G))) with w ∼ w′. For any
w′ ∈ split(L(GAut(G))), it trivially holds that w′ has a non-empty intersection
set. Because intersection sets are invariant under the indistinguishability rela-
tion ∼, w must also have a non-empty intersection set. Since intersection sets
are monotonically decreasing, if the intersection set of w is non-empty, then for
any v ≤ w, the intersection set of v is also non-empty. Modus tollens of the chain
of reasoning above tells us that in order to show a word is not a prefix in L(G),
it suffices to show that its intersection set is empty.

Having established the sufficiency of properties (a) and (b) for our witness
construction, we present the steps to construct v0 from the negation of Send and
Receive Validity respectively. We start by constructing a trace in {{C (G, p)p}}p∈P
that satisfies (b), and then show that {{Bp}}p∈P also recognizes the trace, thereby
satisfying (a). In both cases, let p be the role and s be the state for which the
respective validity condition is violated.

Send Validity (Definition 5.2). Let s
p�q!m−−−−→ s′ ∈ δp be a transition such that

tr-orig(s
p�q!m−−−−→ s′) �= s .

First, we find a trace u of {{C (G, p)p}}p∈P that satisfies: (1) role p is in state s
in the CSM configuration reached via u, and (2) the run of GAut(G) on u

visits a state in s \ tr-orig(s
p�q!m−−−−→ s′). We obtain such a witness u from

the split(trace(−)) of a run prefix of GAut(G) that ends in some state in
s \ tr-orig(s

p�q!m−−−−→ s′). Any prefix thus obtained satisfies (1) by definition of
C (G, p), and satisfies (2) by construction. Due to the fact that send transitions
are always enabled in a CSM, u · p � q!m must also be a trace of {{C (G, p)}}p∈P ,
thus satisfying property (a) by a simulation argument. We then argue that
u ·p�q!m satisfies property (b), stating that I(u ·p�q!m) is empty: the negation
of Send Validity gives that there exist no run extensions from our candidate
state in s \ tr-orig(s

p�q!m−−−−→ s′) with the immediate next action p −→ q : m, and
therefore there exists no maximal run in GAut(G) consistent with u · p � q!m.

364 E. Li et al.

Receive Validity (Definition 5.3). Let s
p�q1?m1−−−−−→ s1 and s

p�q2?m2−−−−−→ s2 ∈ δp

be two transitions, and let G2 ∈ tr-dest(s
p�q2?m2−−−−−→ s2) such that

q1 �= q2 and q1 � p!m1 ∈ Mp

(G2...) .

Constructing the witness v0 pivots on finding a trace u of {{C (G, p)}}p∈P such
that both u·p�q1?m1 and u·p�q2?m2 are traces of {{C (G, p)}}p∈P . Equivalently,
we show there exists a reachable configuration of {{C (G, p)}}p∈P in which p can
receive either message from distinct senders q1 and q2. Formally, the local state
of p has two outgoing states labeled with p � q1?m1 and p � q2?m2, and the
channels q1, p and q2, p have m1 and m2 at their respective heads. We construct
such a u by considering a run in GAut(G) that contains two transitions labeled
with q1 −→ p : m1 and q2 −→ p : m2. Such a run must exist due to the negation of
Receive Validity. We start with the split trace of this run, and argue that, from
the definition of M(-) and the indistinguishability relation ∼, we can perform
iterative reorderings using ∼ to bubble the send action q1 � p!m1 to the position
before the receive action p�q2?m2. Then, (a) for u·p�q1?m1 holds by a simulation
argument. We then separately show that (b) holds for p � q1?m1 using similar
reasoning as the send case to complete the proof that u · p � q1?m1 suffices as a
witness for v0.

It is worth noting that the construction of the witness prefix v0 in the
proof immediately yields an algorithm for computing counterexample traces
to implementability.

Remark 7.2 (Mixed Choice is Not Needed to Implement Global Types). Theorem
7.1 basically shows the necessity of Send Validity for implementability. Corollary
5.5 shows that Send Validity precludes states with both send and receive out-
going transitions. Together, this implies that an implementable global type can
always be implemented without mixed choice. Note that the syntactic restric-
tions on global types do not inherently prevent mixed choice states from aris-
ing in a role’s subset construction, as evidenced by r in the following type:
p→ q : l. q→ r :m. 0 + p→ q : r. r→ q :m. 0. Our completeness result thus implies
that this type is not implementable. Most MST frameworks [18,24,31] implicitly
force no mixed choice through syntactic restrictions on local types. We are the
first to prove that mixed choice states are indeed not necessary for completeness.
This is interesting because mixed choice is known to be crucial for the expressive
power of the synchronous π-calculus compared to its asynchronous variant [32].

8 Complexity

In this section, we establish PSPACE-completeness of checking implementability
for global types.

Theorem 8.1. The MST implementability problem is PSPACE-complete.

Complete Multiparty Session Type Projection with Automata 365

Proof. We first establish the upper bound. The decision procedure enumerates
for each role p the subsets of GAut(G)↓p. This can be done in polynomial space
and exponential time. For each p and s ⊆ QG, it then (i) checks membership of s
in Qp of C (G, p), and (ii) if s ∈ Qp, checks whether all outgoing transitions of s
in C (G, p) satisfy Send and Receive Validity. Check (i) can be reduced to the
intersection non-emptiness problem for nondeterministic finite state machines,
which is in PSPACE [44]. It is easy to see that check (ii) can be done in poly-
nomial time. In particular, the computation of available messages for Receive
Validity only requires a single unfolding of every loop in G.

Note that the synthesis problem has the same complexity. The subset con-
struction to determinize GAut(G)↓p can be done using a PSPACE transducer.
While the output can be of exponential size, it is written on an extra tape that is
not counted towards memory usage. However, this means we need to perform the
validity checks as described above instead of using the computed deterministic
state machines.

Second, we prove the lower bound. The proof is inspired by the proof for The-
orem 4 [4] in which Alur et al. prove that checking safe realizability of bounded
HMSCs is PSPACE-hard. We reduce the PSPACE-complete problem of check-
ing universality of an NFA M = (Q,Δ, δ, q0, F) to checking implementability.
Without loss of generality, we assume that every state can reach a final state. We
construct a global type G for p, q and r that is implementable iff L(M) = Δ∗.
For this, we define subterms Gl and Gr as well as Gq for every q ∈ Q and G∗.
We use a fresh letter ⊥ to handle final states of M . We also define p↔q :m as
an abbreviation for p→q :m. q→p :m.

G := Gl + Gr

Gl := p↔q : l . p↔r :go .Gq0

Gq :=

{∑
(a,q′)∈δ(q)(r↔q :a .Gq′) if q /∈ F

r↔q :⊥ . 0 +
∑

(a,q′)∈δ(q)(r↔q :a .Gq′) if q ∈ F

Gr := p↔q :r . p↔r :go .G∗

G∗ := r↔q :⊥ . 0 +
∑

a∈Δ

(r↔q :a .G∗)

The global type G is constructed such that p first decides whether words from
L(M) or from Δ∗ are sent subsequently. This decision is known to p and q but not
to r. The protocol then continues with r sending letters from Δ to q, and p is not
involved. Intuitively, q is able to receive these letters if and only if L(M) = Δ∗.
From Theorems 6.1 and 7.1, we know that {{C (G, p)p}}p∈P implements G if G
is implementable.

We claim that {{C (G, p)p}}p∈P implements G if and only if L(M) = Δ∗.

366 E. Li et al.

First, assume that L(M) �= Δ∗. Then, there exists w /∈ L(M). We can con-
struct the following run of {{C (G, p)p}}p∈P that deadlocks. Role p chooses the
left subterm Gl and, subsequently, r sends w to q. We do a case analysis on
whether w contains a prefix w′ such that w′ /∈ pref(L(M)). If so, sending the
last letter of a minimal prefix leads to a deadlock in {{C (G, p)p}}p∈P , contra-
dicting deadlock freedom. If not, it holds that w is a prefix of a word in L(M).
Still, role r can send ⊥, which cannot be received, also contradicting deadlock
freedom.

Second, assume that L(M) = Δ∗. With this, it is fine that r does not know
the branch. Role q will be able to receive all messages since C (G, q) can receive,
letter by letter, w.⊥ for every w ∈ L(M) from r. Thus, protocol fidelity and
deadlock freedom hold, concluding the proof.

Note that PSPACE-hardness only holds if the size of G does not account
for common subterms multiple times. Because every message is immediately
acknowledged, the constructed global type specifies a universally 1-bounded [23]
language, proving that PSPACE-hardness persists for such a restriction. For our
construction, it does not hold that V(L(Gl)⇓Σq,?

) = L(M). We chose so to have
a more compact protocol. However, we can easily fix this by sending the decision
of r first to p, allowing to omit the messages ⊥ to q. ��

This result and the fact that local languages are preserved by the subset
projection (Lemma 4.3) leads to the following observation.

Corollary 8.2. Let G be an implementable global type. Then, the subset projec-
tion {{P(G, p)}}p∈P is a local language preserving implementation for G, i.e.,
L(P(G, p)) = L(G)⇓Σp

for every p, and can be computed in PSPACE.

Remark 8.3 (MST implementability with directed choice is PSPACE-hard). The-
orem 8.1 is stated for global types with sender-driven choice but the provided
type is in fact directed. Thus, the PSPACE lower bound also holds for imple-
mentability of types with directed choice.

9 Evaluation

We consider the following three aspects in the evaluation of our approach:
(E1) difficulty of implementation (E2) completeness, and (E3) comparison to
state of the art.

For this, we implemented our subset projection in a prototype tool [1,37]. It
takes a global type as input and computes the subset projection for each role.
It was straightforward to implement the core functionality in approximately 700
lines of Python3 code closely following the formalization (E1).

We consider global types (and communication protocols) from seven different
sources as well as all examples from this work (cf. 1st column of Table 1). Our
experiments were run on a computer with an Intel Core i7-1165G7 CPU and used
at most 100MB of memory. The results are summarized in Table 1. The reported
size is the number of states and transitions of the respective state machine, which

Complete Multiparty Session Type Projection with Automata 367

Table 1. Projecting Global Types. For every protocol, we report whether it is imple-
mentable ��� or not ×, the time to compute our subset projection and the generalized
projection by Majumdar et al. [31] as well as the outcome as ��� for “implementable”, ×
for “not implementable” and (×) for “not known”. We also give the size of the protocol
(number of states and transitions), the number of roles, the combined size of all subset
projections (number of states and transitions).

Source Name Impl. Subset Proj. Size |P| Size [31]
(complete) Proj’s (incomplete)

Instrument Contr. Prot. A ��� ��� 0.4ms 22 3 61 ��� 0.2ms
[35] Instrument Contr. Prot. B ��� ��� 0.3ms 17 3 47 ��� 0.1ms

OAuth2 ��� ��� 0.1ms 10 3 23 ��� <0.1ms

[34] Multi Party Game ��� ��� 0.5ms 21 3 67 ��� 0.1ms

[24] Streaming ��� ��� 0.2ms 13 4 28 ��� <0.1ms

[13] Non-Compatible Merge ��� ��� 0.2ms 11 3 25 ��� 0.1ms

[45] Spring-Hibernate ��� ��� 1.0ms 62 6 118 ��� 0.7ms

[31]
Group Present ��� ��� 0.6ms 51 4 85 ��� 0.6ms
Late Learning ��� ��� 0.3ms 17 4 34 ��� 0.2ms
Load Balancer (n = 10) ��� ��� 3.9ms 36 12 106 ��� 2.4ms
Logging (n = 10) ��� ��� 71.5ms 81 13 322 ��� 10.0ms

[38]
2 Buyer Protocol ��� ��� 0.5ms 22 3 60 ��� 0.2ms
2B-Prot. Omit No ��� ��� 0.4ms 19 3 56 (×) 0.1ms
2B-Prot. Subscription ��� ��� 0.7ms 46 3 95 (×) 0.3ms
2B-Prot. Inner Recursion ��� ��� 0.4ms 17 3 51 ��� 0.1ms

New

Odd-even (Example 2.1) ��� ��� 0.5ms 32 3 70 (×) 0.2ms
Gr – Receive Val. Violated (§2) × × 0.1ms 12 3 - (×) <0.1ms
G′

r – Receive Val. Satisfied (§2) ��� ��� 0.2ms 16 3 35 ��� 0.1ms
Gs – Send Val. Violated (§2) × × <0.1ms 8 3 - (×) <0.1ms
G′

s – Send Val. Satisfied (§2) ��� ��� <0.1ms 7 3 17 ��� <0.1ms
Gfold (§10) ��� ��� 0.4ms 21 3 50 (×) 0.1ms
Gunf (§10) ��� ��� 0.4ms 30 3 61 ��� 0.2ms

allows not to account for multiple occurrences of the same subterm. As expected,
our tool can project every implementable protocol we have considered (E2).

Regarding the comparison against the state of the art (E3), we directly com-
pared our subset projection to the incomplete approach by Majumdar et al. [31],
and found that the run times are in the same order of magnitude in general (typ-
ically a few milliseconds). However, the projection of [31] fails to project four
implementable protocols (including Example 2.1). We discuss some of the other
examples in more detail in the next section. We further note that most of the
run times reported by Scalas and Yoshida [36] on their model checking based
tool are around 1 s and are thus two to three orders of magnitude slower.

368 E. Li et al.

10 Discussion

Success of Syntactic Projections Depends on Representation. Let us
illustrate how unfolding recursion helps syntactic projection operators to suc-
ceed. Consider this implementable global type, which is not syntactically pro-
jectable:

Gfold := +

{
p→q :o. μt1. (p→q :o. q→r :o. t1 + p→q :b. q→r :b. 0)

p→q :m. q→r :m. μt2. (p→q :o. q→r :o. t2 + p→q :b. q→r :b. 0)
.

Similar to projection by erasure, a syntactic projection erases events that a role
is not involved in and immediately tries to merge different branches. The merge
operator is a partial operator that checks sufficient conditions for implementabil-
ity. Here, the merge operator fails for r because it cannot merge a recursion
variable binder and a message reception. Unfolding the global type preserves the
represented protocol and resolves this issue:

Gunf := +

⎧⎪⎨
⎪⎩

p→q :o.

{
p→q :b. q→r :b. 0

p→q :o. q→r :o. μt1. (p→q :o. q→r :o. t1 + p→q :b. q→r :b. 0)

p→q :m. q→r :m. μt2. (p→q :o. q→r :o. t2 + p→q :b. q→r :b. 0)

.

(We refer to [29] for visual representations of both global types.) This global type
can be projected with most syntactic projection operators and shows that the
representation of the global type matters for syntactic projectability. However,
such unfolding tricks do not always work, e.g. for the odd-even protocol (Exam-
ple 2.1). We avoid this brittleness using automata and separating the synthesis
from checking implementability.

Entailed Properties from the Literature. We defined implementability for
a global type as the question of whether there exists a deadlock-free CSM that
generates the same language as the global type. Various other properties of
implementations and protocols have been proposed in the literature. Here, we
give a brief overview and defer to the extended version [29] for a detailed analysis.
Progress [18], a common property, requires that every sent message is eventu-
ally received and every expected message will eventually be sent. With deadlock
freedom, our subset projection trivially satisfies progress for finite traces. For infi-
nite traces, as expected, fairness assumptions are required to enforce progress.
Similarly, our subset projection prevents unspecified receptions [14] and orphan
messages [9,21], respectively interpreted in our multiparty setting with sender-
driven choice. We also ensure that every local transition of each role is exe-
cutable [14], i.e. it is taken in some run of the CSM. Any implementation of a
global type has the stable property [28], i.e., one can always reach a configuration
with empty channels from every reachable configuration. While the properties
above are naturally satisfied by our subset projection, the following ones can be
checked directly on an implementable global type without explicitly construct-
ing the implementation. A global type is terminating [36] iff it does not contain
recursion and never-terminating [36] iff it does not contain term 0.

Complete Multiparty Session Type Projection with Automata 369

11 Related Work

MSTs were introduced by Honda et al. [24] with a process algebra semantics,
and the connection to CSMs was established soon afterwards [20].

In this work, we present a complete projection procedure for global types with
sender-driven choice. The work by Castagna et al. [13] is the only one to present
a projection that aims for completeness. Their semantic conditions, however, are
not effectively computable and their notion of completeness is “less demanding
than the classical ones” [13]. They consider multiple implementations, generating
different sets of traces, to be sound and complete with regard to a single global
type [13, Sec. 5.3]. In addition, the algorithmic version of their conditions does
not use global information as our message availability analysis does.

MST implementability relates to safe realizability of HMSCs, which is unde-
cidable in general but decidable for certain classes [30]. Stutz [38] showed that
implementability of global types that are always able to terminate is decidable.1
The EXPSPACE decision procedure is obtained via a reduction to safe realiz-
ability of globally-cooperative HMSCs, by proving that the HMSC encoding [39]
of any implementable global type is globally-cooperative and generalizing results
for infinite executions. Thus, our PSPACE-completeness result both generalizes
and tightens the earlier decidability result obtained in [38]. Stutz [38] also inves-
tigates how HMSC techniques for safe realizability can be applied to the MST
setting – using the formal connection between MST implementability and safe
realizability of HMSCs – and establishes an undecidability result for a variant
of MST implementability with a relaxed indistinguishability relation.

Similar to the MST setting, there have been approaches in the HMSC liter-
ature that tie branching to a role making a choice. We refer the reader to the
work by Majumdar et al. [31] for a survey.

Standard MST frameworks project a global type to a set of local types
rather than a CSM. Local types are easily translated to FSMs [31, Def.11].
Our projection operator, though, can yield FSMs that cannot be expressed
with the limited syntax of local types. Consider this implementable global type:
p→q :o. 0 + p→q :m. p→r :b. 0. The subset projection for r has two final states
connected by a transition labeled r�p?b. In the syntax of local types, 0 is the only
term indicating termination, which means that final states with outgoing tran-
sitions cannot be expressed. In contrast to the syntactic restrictions for global
types, which are key to effective verification, we consider local types unneces-
sarily restrictive. Usually, local implementations are type-checked against their
local types and subtyping gives some implementation freedom [12,16,17,27].
However, one can also view our subset projection as a local specification of the
actual implementation. We conjecture that subtyping would then amount to a
variation of alternating refinement [5].

CSMs are Turing-powerful [11] but decidable classes were obtained for differ-
ent semantics: restricted communication topology [33,42], half-duplex communi-
cation (only for two roles) [14], input-bounded [10], and unreliable channels [2,3].

1 This syntactic restriction is referred to as 0-reachability in [38].

370 E. Li et al.

Global types (as well choreography automata [7]) can only express existentially
1-bounded, 1-synchronizable and half-duplex communication [39]. Key to this
result is that sending and receiving a message is specified atomically in a global
type — a feature Dagnino et al. [19] waived for their deconfined global types.
However, Dagnino et al. [19] use deconfined types to capture the behavior of a
given system rather than projecting to obtain a system that generates specified
behaviors.

This work relies on reliable communication as is standard for MST frame-
works. Work on fault-tolerant MST frameworks [8,43] attempts to relax this
restriction. In the setting of reliable communication, both context-free [25,40]
and parametric [15,22] versions of session types have been proposed to capture
more expressive protocols and entire protocol families respectively. Extending
our approach to these generalizations is an interesting direction for future work.

Acknowledgements. This work is funded in part by the National Science Foundation
under grant 1815633. Felix Stutz was supported by the Deutsche Forschungsgemein-
schaft project 389792660 TRR 248—CPEC.

References

1. Prototype Implementation of Subset Projection for Multiparty Session Types.
https://gitlab.mpi-sws.org/fstutz/async-mpst-gen-choice/

2. Abdulla, P.A., Aiswarya, C., Atig, M.F.: Data communicating processes with unre-
liable channels. In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16,
New York, NY, USA, 5–8 July 2016, pp. 166–175. ACM (2016). https://doi.org/
10.1145/2933575.2934535

3. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with
unbounded, lossy FIFO channels. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0028754

4. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. Theor. Comput. Sci. 331(1), 97–114 (2005). https://doi.org/10.1016/j.tcs.
2004.09.034

5. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

6. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2-3), 95–230 (2016). https://doi.org/10.1561/2500000031

7. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50029-0_6

8. Barwell, A.D., Scalas, A., Yoshida, N., Zhou, F.: Generalised multiparty ses-
sion types with crash-stop failures. In: Klin, B., Lasota, S., Muscholl, A. (eds.)
33rd International Conference on Concurrency Theory, CONCUR 2022, 12–
16 September 2022, Warsaw, Poland. LIPIcs, vol. 243, pp. 35:1–35:25. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/
LIPIcs.CONCUR.2022.35

https://gitlab.mpi-sws.org/fstutz/async-mpst-gen-choice/
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35

Complete Multiparty Session Type Projection with Automata 371

9. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: Aceto, L., de
Frutos-Escrig, D. (eds.) 26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, 1–4 September 2015. LIPIcs, vol. 42, pp. 283–
296. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/
10.4230/LIPIcs.CONCUR.2015.283

10. Bollig, B., Finkel, A., Suresh, A.: Bounded reachability problems are decidable in
FIFO machines. In: Konnov, I., Kovács, L. (eds.) 31st International Conference
on Concurrency Theory, CONCUR 2020, 1–4 September 2020, Vienna, Austria
(Virtual Conference). LIPIcs, vol. 171, pp. 49:1–49:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.49

11. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

12. Bravetti, M., Carbone, M., Zavattaro, G.: On the boundary between decidability
and undecidability of asynchronous session subtyping. Theor. Comput. Sci. 722,
19–51 (2018). https://doi.org/10.1016/j.tcs.2018.02.010

13. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Log. Methods Comput. Sci. 8(1) (2012). https://doi.org/10.2168/
LMCS-8(1:24)2012

14. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005). https://doi.org/10.1016/j.ic.2005.05.006

15. Charalambides, M., Dinges, P., Agha, G.A.: Parameterized, concurrent session
types for asynchronous multi-actor interactions. Sci. Comput. Program. 115-116,
100–126 (2016). https://doi.org/10.1016/j.scico.2015.10.006

16. Chen, T., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness of
subtyping in session types. Log. Methods Comput. Sci. 13(2) (2017). https://doi.
org/10.23638/LMCS-13(2:12)2017

17. Chen, T., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping in
session types. In: Chitil, O., King, A., Danvy, O. (eds.) Proceedings of the 16th
International Symposium on Principles and Practice of Declarative Programming,
Kent, Canterbury, United Kingdom, 8–10, September 2014. pp. 135–146. ACM
(2014). https://doi.org/10.1145/2643135.2643138

18. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduc-
tion to multiparty asynchronous session types. In: Bernardo, M., Johnsen, E.B.
(eds.) SFM 2015. LNCS, vol. 9104, pp. 146–178. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18941-3_4

19. Dagnino, F., Giannini, P., Dezani-Ciancaglini, M.: Deconfined global types for
asynchronous sessions. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021.
LNCS, vol. 12717, pp. 41–60. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-78142-2_3

20. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_10

21. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2_18

22. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Log. Methods Comput. Sci. 8(4) (2012). https://doi.org/10.2168/LMCS-
8(4:6)2012

https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
https://doi.org/10.4230/LIPIcs.CONCUR.2020.49
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-030-78142-2_3
https://doi.org/10.1007/978-3-030-78142-2_3
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012

372 E. Li et al.

23. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundam. Inform. 80(1–3), 147–167 (2007). http://content.iospress.com/
articles/fundamenta-informaticae/fi80-1-3-09

24. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, 7–12 January 2008, pp. 273–284. ACM (2008). https://doi.org/
10.1145/1328438.1328472

25. Keizer, A.C., Basold, H., Pérez, J.A.: Session coalgebras: a coalgebraic view on
regular and context-free session types. ACM Trans. Program. Lang. Syst. 44(3),
18:1–18:45 (2022). https://doi.org/10.1145/3527633

26. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

27. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 441–
457. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_26

28. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_6

29. Li, E., Stutz, F., Wies, T., Zufferey, D.: Complete multiparty session type pro-
jection with automata. CoRR abs/2305.17079 (2023). https://doi.org/10.48550/
arXiv.2305.17079

30. Lohrey, M.: Realizability of high-level message sequence charts: closing the gaps.
Theor. Comput. Sci. 309(1-3), 529–554 (2003). https://doi.org/10.1016/j.tcs.2003.
08.002

31. Majumdar, R., Mukund, M., Stutz, F., Zufferey, D.: Generalising projection
in asynchronous multiparty session types. In: Haddad, S., Varacca, D. (eds.)
32nd International Conference on Concurrency Theory, CONCUR 2021, 24–
27 August 2021, Virtual Conference. LIPIcs, vol. 203, pp. 35:1–35:24. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/
LIPIcs.CONCUR.2021.35

32. Palamidessi, C.: Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Math. Struct. Comput. Sci. 13(5), 685–719 (2003). https://
doi.org/10.1017/S0960129503004043

33. Peng, W., Purushothaman, S.: Analysis of a class of communicating finite state
machines. Acta Informatica 29(6/7), 499–522 (1992). https://doi.org/10.1007/
BF01185558

34. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multi-
party sessions for safe distributed programming. In: Müller, P. (ed.) 31st Euro-
pean Conference on Object-Oriented Programming, ECOOP 2017, 19–23 June
2017, Barcelona, Spain. LIPIcs, vol. 74, pp. 24:1–24:31. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

35. Scalas, A., Yoshida, N.: Mpstk: the multiparty session types toolkit (2018). https://
doi.org/10.1145/3291638

36. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), 30:1–30:29 (2019). https://doi.org/10.1145/3290343

37. Stutz, F.: Artifact for “Complete Multiparty Session Type Projection with
Automata”, April 2023. https://doi.org/10.5281/zenodo.7878493

http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/3527633
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.48550/arXiv.2305.17079
https://doi.org/10.48550/arXiv.2305.17079
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1007/BF01185558
https://doi.org/10.1007/BF01185558
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3291638
https://doi.org/10.1145/3291638
https://doi.org/10.1145/3290343
https://doi.org/10.5281/zenodo.7878493

Complete Multiparty Session Type Projection with Automata 373

38. Stutz, F.: Asynchronous multiparty session type implementability is decidable -
lessons learned from message sequence charts. In: 37th European Conference on
Object-Oriented Programming, ECOOP 2023. LIPIcs (2023). https://arxiv.org/
pdf/2302.11272.pdf

39. Stutz, F., Zufferey, D.: Comparing channel restrictions of communicating state
machines, high-level message sequence charts, and multiparty session types. In:
Ganty, P., Monica, D.D. (eds.) Proceedings of the 13th International Symposium
on Games, Automata, Logics and Formal Verification, GandALF 2022, Madrid,
Spain, 21–23 September 2022. EPTCS, vol. 370, pp. 194–212 (2022). https://doi.
org/10.4204/EPTCS.370.13

40. Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: Garrigue, J.,
Keller, G., Sumii, E. (eds.) Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan, 18–22 Septem-
ber 2016, pp. 462–475. ACM (2016). https://doi.org/10.1145/2951913.2951926

41. Toninho, B., Yoshida, N.: Certifying data in multiparty session types. J. Log.
Algebraic Methods Program. 90, 61–83 (2017). https://doi.org/10.1016/j.jlamp.
2016.11.005

42. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3_21

43. Viering, M., Hu, R., Eugster, P., Ziarek, L.: A multiparty session typing disci-
pline for fault-tolerant event-driven distributed programming. Proc. ACM Pro-
gram. Lang. 5(OOPSLA), 1–30 (2021). https://doi.org/10.1145/3485501

44. Wehar, M.: On the complexity of intersection non-emptiness problems. Ph.D. the-
sis, University of Buffalo (2016)

45. Spring and Hibernate Transaction in Java. https://www.uml-diagrams.org/
examples/spring-hibernate-transaction-sequence-diagram-example.html

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/pdf/2302.11272.pdf
https://arxiv.org/pdf/2302.11272.pdf
https://doi.org/10.4204/EPTCS.370.13
https://doi.org/10.4204/EPTCS.370.13
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1145/3485501
https://www.uml-diagrams.org/examples/spring-hibernate-transaction-sequence-diagram-example.html
https://www.uml-diagrams.org/examples/spring-hibernate-transaction-sequence-diagram-example.html
http://creativecommons.org/licenses/by/4.0/

Early Verification of Legal Compliance
via Bounded Satisfiability Checking

Nick Feng1(B), Lina Marsso1, Mehrdad Sabetzadeh2, and Marsha Chechik1

1 University of Toronto, Toronto, Canada
{fengnick,lmarsso,chechik}@cs.toronto.edu

2 University of Ottawa, Ottawa, Canada
m.sabetzadeh@uottawa.ca

Abstract. Legal properties involve reasoning about data values and
time. Metric first-order temporal logic (MFOTL) provides a rich formal-
ism for specifying legal properties. While MFOTL has been successfully
used for verifying legal properties over operational systems via runtime
monitoring, no solution exists for MFOTL-based verification in early-
stage system development captured by requirements. Given a legal prop-
erty and system requirements, both formalized in MFOTL, the compli-
ance of the property can be verified on the requirements via satisfia-
bility checking. In this paper, we propose a practical, sound, and com-
plete (within a given bound) satisfiability checking approach for MFOTL.
The approach, based on satisfiability modulo theories (SMT), employs a
counterexample-guided strategy to incrementally search for a satisfying
solution. We implemented our approach using the Z3 SMT solver and
evaluated it on five case studies spanning the healthcare, business admin-
istration, banking and aviation domains. Our results indicate that our
approach can efficiently determine whether legal properties of interest are
met, or generate counterexamples that lead to compliance violations.

1 Introduction

Software systems, such as medical systems, are increasingly required to com-
ply with laws and regulations aimed at ensuring safety, security, and data pri-
vacy [1,36]. The properties stipulated by these laws and regulations – which
we refer to as legal properties (LP) hereafter – typically involve reasoning about
actions, ordering and time. As an example, consider the following LP, P1, derived
from a health-data regulation (s.11, PHIPA [20]): “If personal health information
is not accurate or not up-to-date, it should not be accessed”. In this property,
the accuracy and the freshness of the data depend on how and when the data
was collected and updated before being accessed. Specifically, this property con-
strains the data action access to have accurate and up-to-date data values, which
further constrains the order and time of access with respect to other data actions.

System compliance with LPs can be checked on the system design or on
an operational model of a system implementation. In this paper, we focus on
the early stage, where one can check whether a formalization of the system
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 374–396, 2023.
https://doi.org/10.1007/978-3-031-37709-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_18&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_18

Early Verification of Legal Compliance via Bounded Satisfiability Checking 375

requirements satisfies an LP. The formalization can be done using a descriptive
formalism like temporal logic [24,35]. For instance, the requirement (req0) of
a data collection system: “no data can be accessed prior to 15 days after the
data has been collected” needs to be formalized for verifying compliance of P1.
It is important to formalize the data and time constraints of both the system
requirements and LPs, such as the ones of P1 and req0.

Metric first-order temporal logic (MFOTL) enables the specification of data
and time constraints [3] and has an expressive formalism for capturing LPs
and the related system requirements that constrain data and time [1]. Existing
work on MFOTL verification focuses on detecting violations at run-time through
monitoring [1,19], with MFOTL formulas being checked on execution logs. There
is an unmet need for determining the satisfiability of MFOTL specifications, i.e.,
looking for LP violations possible in MFOTL specification. This is important for
designing systems that comply with their legal requirements.

MFOTL satisfiability checking is generally undecidable since MFOTL is an
extension of first-order logic (FOL). Restrictions are thus necessary for making
the problem decidable. In this paper, we restrict ourselves to safety properties.
For safety properties, LP violations are finite sequences of data actions, cap-
tured via a finite-length counterexample. For example, a possible violation of
P1 is a sequence consisting of storing a value v in a variable d, updating d’s
value to v′, then reading d again and not obtaining v′. Since we are interested
in finite counterexamples, bounded verification is a natural strategy to pursue
for achieving decidability. SAT solvers have been previously used for bounded
satisfiability checking of metric temporal logic (MTL) [24,35]. However, MTL
cannot effectively capture quantified data constraints in LPs, hence the solution
is not applicable directly. As an extension to MTL, MFOTL can effectively cap-
ture data constraints used in LP. Yet, to the best of our knowledge, there has
not been any prior work on bounded MFOTL satisfiability checking.

To establish a bound in bounded verification, researchers have predominantly
relied on bounding the size of the universe [13]. Bounding the universe would be
too restrictive because LPs routinely refer to variables with large ranges, e.g.,
timed actions spanning several years. Instead, we bound the number of data
actions in a run, which bounds the number of actions in the counterexample.

Equipped with our proposed notion of a bound, we develop an incremental
approach (IBS) for bounded satisfiability checking of MFOTL. We first trans-
late the MFOTL property and requirements into first-order logic formulas with
quantified relational objects (FOL∗). We then incrementally ground the FOL∗

constraints to eliminate the quantifiers by considering an increasing number of
relational objects. Subsequently, we check the satisfiability of the resulting con-
straints using an SMT solver. Specifically, we make the following contributions:
(1) we propose a translation of MFOTL formulas to FOL∗; (2) we provide a
novel bounded satisfiability checking solution, IBS, for the translated FOL∗ for-
mulas with incremental and counterexample-guided over/ under-approximation.
Note that while our solution to MFOTL satisfibility checking can be applied to
a broader set of applications, in this paper we focus on the legal domain. We

376 N. Feng et al.

Fig. 1. Example requirements and legal property P1 of DCC, with signature Sdata =

(∅, {Collect, Update, Access}, ιdata), where ιdata(Collect) = ιdata(Update) = ιdata(Access) = 2.

Fig. 2. Five traces from the DCC example.

empirically evaluate IBS on five case studies with a total of 24 properties showing
that it can effectively and efficiently find LP violations or prove satisfiability.

The rest of this paper is organized as follows. Sect. 2 provides background and
establishes our notation. Sect. 3 defines the bounded satisfiability checking (BSC)
problem. Sect. 4 provides an overview of our solution and the translation of
MFOTL to FOL∗. Sect. 5 presents our solution; proofs of soundness, termination
and optimality are available in the extended version [11]. Sect. 6 reports on the
experiments performed to validate our bounded satisfiability checking solution
for MFOTL. Sect. 7 discusses related work. Sect. 8 concludes the paper.

2 Preliminaries

In this section, we describe metric first-order temporal logic (MFOTL) [3].
Syntax. Let I be a set of non-empty intervals over N. An interval I ∈ I can
be expressed as [b, b′) where b ∈ N and b′ ∈ N ∪ ∞. A signature S is a tuple
(C,R, ι), where C is a set of constants and R is a finite set of predicate symbols
(for relation), respectively. Without loss of generality, we assume all constants
are from the integer domain Z where the theory of linear integer arithmetic (LIA)
holds. The function ι : R → N associates each predicate symbol r ∈ R with an
arity ι(r) ∈ N. Let Var be a countable infinite set of variables from domain Z

and a term t is defined inductively as t : c | v | t + t | c × t. We denote t̄ as a
vector of terms and t̄ k

x as the vector that contains x at index k. The syntax of
MFOTL formulas is defined as follows: (1) � and ⊥, representing values “true”
and “false”; (2) t = t′ and t > t′, for terms t and t′; (3) r(t1...tι(r)) for r ∈ R and
terms t1...tι(r); (4) φ ∧ ψ, ¬φ for MFOTL formulas φ and ψ; (5) ∃x.(r(t̄ k

x) ∧ φ)

Early Verification of Legal Compliance via Bounded Satisfiability Checking 377

for MFOTL formula φ, relation symbol r ∈ R, variable x ∈ Var and a vector of
terms t̄kx s.t. x = t̄kx[k]; and (6) φ UI ψ (until), φ SI ψ (since), �I φ (next), �I φ
(previous) for MFOTL formulas φ and ψ, and an interval I ∈ I.

We consider a restricted form of quantification (syntax rule (5), above) simi-
lar to guarded quantification [18]. Every existentially quantified variable x must
be guarded by some relation r (i.e., for some t̄, r(t̄) holds and x appears in
t̄). Similarly, universal quantification must be guarded as ∀x.(r(t̄) ⇒ φ) where
x ∈ t̄. Thus, ¬∃x.¬r(x) (and ∀x.r(x)) are not allowed.

The temporal operators UI , SI , �I and �I require the satisfaction of the
formula within the time interval given by I. We write [b,) as a shorthand for
[b,∞); if I is omitted, then the interval is assumed to be [0,∞). Other classical
unary temporal operators ♦I (eventually), �I (always), and �I (once) are defined
as follows: ♦I φ = � UI φ, �I φ = ¬♦I ¬φ, and �I φ = � SI φ. Other common
logical operator such as ∨ (disjunction) and ∀ (universal quantification) are
expressed through negation of ∧ and ∃, respectively.

Example 1. Suppose a data collection centre (DCC) collects and accesses
personal data information with three requirements: req0 stating that no data
is allowed to be accessed before the data ID has been collected for 15 days
(360 hours); req1: data can only be updated after having been collected or last
updated for more than a week (168 hours); and req2: data value can only be
accessed if the value has been collected or updated within a week (168 hours).
The signature Sdata for DCC contains three binary relations (Rdata): Collect,
Update, and Access, such that Collect(d, v), Update(d, v) and Access(d, v) hold
at a given time point if and only if data at id d is collected, updated, and accessed
with value v at this time point, respectively. The MFOTL formulas for P1, req0,
req1 and req2 are shown in Fig. 1. For instance, the formula req0 specifies that if
a data value stored at id d is accessed, then some data must have been collected
and stored at id d at least 360 hours ago (�[360,)]).

Semantics. A first-order (FO) structure D over the signature S = (C,R, ι)
is comprised of a non-empty domain dom(D)
= ∅ and an interpretation for
cD ∈ dom(D) and rD ⊆ dom(D)ι(r) for each c ∈ C and r ∈ R. The semantics of
MFOTL formulas is defined over a sequence of FO structures D̄ = (D0,D1, . . .)
and a sequence of natural numbers representing time τ̄ = (τ0, τ1, . . .), where (a)
τ̄ is a monotonically increasing sequence; (b) dom(Di) = dom(Di+1) for all i ≥ 0
(all Di have a fixed domain); and (c) each constant symbol c ∈ C has the same
interpretation across D̄ (i.e., cDi = cDi+1). Property (a) ensures that time never
decreases as the sequence progresses; and (b) ensures that the domain is fixed
(referred to as dom(D̄)) D̄ is similar to timed words in metric time logic (MTL),
but instead of associating a set of propositions with each time point, MFOTL
uses a structure D to interpret the symbols in the signature S. The semantics
of MFOTL is defined over a trace of timed first-order structures σ = (D̄, τ̄),
where every structure Di ∈ D̄ specifies the set of tuples (rDi) that hold for
every relation r at time τi ∈ τ̄ . Let (D̄, τ̄) denote an MFOTL trace.

378 N. Feng et al.

Fig. 3. MFOTL semantics.

Example 2. Consider the signature Sdata in the DCC example. Let τ1 = 0 and
τ2 = 361, and let D1 and D2 be two first-order structures with rD1 = Collect(0, 0)
and rD2 = Access(0, 0), respectively. The trace σ1 = ((D1,D2), (τ1, τ2)) is a
valid trace shown in Fig. 2 and representing two timed relations: (1) data value
0 collected and stored at id 0 at hour 0 and (2) data value 0 is read by accessing
id 0 at hour 361.

A valuation function v : Var → dom(D̄) maps a set Var of variables to
their interpretations in the domain dom(D̄). For vectors x̄ = (x1,. . . ,xn) and
d̄ = (d1,. . . ,dn) ∈ dom(D̄)n, the update operation v[x̄ → d̄] produces a new
valuation function v′ s.t. v′(xi) = di for 1 ≤ i ≤ n, and v(x′) = v′(x′) for every
x′ /∈ x̄. For any constant c, v(c) = cD. Let D̄ be a sequence of FO structures
over signature S = (C,R, ι) and τ̄ be a sequence of natural numbers. Let φ be
an MFOTL formula over S, v be a valuation function and i ∈ N. A fragment of
the relation (D̄, τ̄ , v, i) |= φ is defined in Fig. 3.

The operators �I , �I , UI and SI are augmented with an interval I ∈ I which
defines the satisfaction of the formula within a time range specified by I relative
to the current time at step i, i.e., τi.

Definition 1 (MFOTL Satisfiability). An MFOTL formula φ is satisfiable
if there exists a sequence of FO structures D̄ and natural numbers τ̄ , and a
valuation function v such that (D̄, τ̄ , v, 0) |= φ. φ is unsatisfiable otherwise.

Example 3. In the DCC example, the MFOTL formula req0 is satisfiable
because (D̄, τ̄ , v, 0) |= req0 (where σ1 = (D̄, τ̄) in Fig. 2). Let req′

0 be another
MFOTL formula: ♦[0,359] ∃j.(Access(0, j)). The formula req′

0 ∧ req0 is unsatisfi-
able because if data stored at id 0 is accessed between 0 and 359 hours, then it
is impossible to collect the data at least 360 hours prior to its access.

3 Bounded Satisfiability Checking Problem

The satisfiability of MFOTL properties is generally undecidable since MFOTL is
expressive enough to describe the blank tape problem [31] (which has been shown

Early Verification of Legal Compliance via Bounded Satisfiability Checking 379

to be undecidable). Despite the undecidability result, we can derive a bounded
version of the problem, bounded satisfiability checking (BSC), for which a sound
and complete decision procedure exists. When facing a hard instance for satisfi-
ability checking, the solution to BSC provides bounded guarantees (i.e., whether
a solution exists within a given bound). In this section, we first define satisfia-
bility checking and then the BSC problem for MFOTL formulas. Satisfiability
checking [32] is a verification technique that extends model checking by replacing
a state transition system with a set of temporal logic formulas. In the following,
we define satisfiability checking of MFOTL formulas.

Definition 2 (Satisfiability Checking of MFOTL Formulas). Let P be
an MFOTL formula over a signature S = (C,R, ι), and let Reqs be a set of
MFOTL requirements over S. Reqs complies with P (denoted as Reqs ⇒ P) iff∧

ψ∈Reqs ψ ∧ ¬P is unsatisfiable. We call a solution to
∧

ψ∈Reqs ψ ∧ ¬P , if one
exists, a counterexample to Reqs ⇒ P .

Example 4. Consider our DCC system requirements and the privacy data prop-
erty P1 stating that if personal health information is not accurate or not up-
to-date, it should not be accessed (see Fig. 1). P1 is not respected by the set
of DCC requirements {req0, req1, req2} because ¬P1 ∧ req0 ∧ req1 ∧ req2 is
satisfiable. The counterexample σ2 (shown in Fig. 2) indicates that data can
be re-collected, and the re-collection does not have the same time restriction
as the updates. If a fourth policy requirement req3 (Fig. 1) is added to pro-
hibit re-collection of collected data, then property P1 would be respected (i.e.,
{req0, req1, req2, req3} ⇒ P1).

Definition 3 (Finite trace and bounded trace). Given a trace σ =
(D̄, τ̄ , v), we use vol(σ) (the volume of σ), to denote the total number of times
that any relation holds across all FO structures in D̄ (i.e.,

∑
r∈R

∑
Di∈D̄(|rDi |)).

The trace σ is finite if vol(σ) is finite. The trace is bounded by volume vb ∈ N

if and only if vol(σ) ≤ vb.

Example 5. The volume of trace σ3 in Fig. 2, vol(σ3) = 3 since there are three
relations: Collect(1, 15), Update(1, 0), and Access(1, 15). Note that the volume
is the total number of tuples that hold for any relation across all time points;
multiple tuples can thus hold for multiple relations for a single time point.

Definition 4 (Bounded satisfiability checking of MFOTL properties).
Let P be an MFOTL property, Reqs be a set of MFOTL requirements, and vb be
a natural number. The bounded satisfiability checking problem determines the
existence of a counterexample σ to Reqs ⇒ P such that vol(σ) ≤ vb.

4 Checking Bounded Satisfiability

In this section, we present an overview of the bounded satisfiability checking
(BSC) process that translates the MFOTL formula into first-order logic with
relational objects (FOL∗) formulas, and looks for a satisfying solution for the
FOL∗ formulas. Then, we provide the translation of MFOTL formulas to FOL∗

and discuss the process complexity.

380 N. Feng et al.

Fig. 4. Overview of the naive and our incremental (IBS) MFOTL bounded satisfiability
checking approaches. Solid boxes and arrows are shared between the two approaches.
Blue dashed arrow is specific to the naive approach. Red dotted arrows and the addi-
tional red output in bracket are specific to IBS. (Color figure online)

4.1 Overview of BSC for MFOTL Formulas

We aim to address the bounded satisfiability checking problem (Definition 4),
looking for a satisfying run σ within a given volume bound vb that limits the
number of relations in σ. First, we translate the MFOTL formulas to FOL∗

formulas. The considered constraints in the formulas include those of the system
requirements and the legal property, and optional data constraints specifying
the data value constraint for a datatype. The data constraints can be defined as
a range, a “small” data set, or the union/intersection of other data constraints.
If data constraints are not specified, then the data value comes from the domain
Z. Note that the optional data constraints do not affect the complexity of BSC,
but they do help prune unrealistic counterexamples. Second, we search for a
satisfying solution to the FOL∗ formula; an SMT solver is used here to determine
the satisfiability of the FOL∗ constraints and the data domain constraints. The
answer from the SMT solver is analyzed to return an answer to the satisfiability
checking problem (a counterexample σ, or”bounded-UNSAT”).

4.2 Translation of MFOTL to First-Order Logic

In this section, we describe the translation target FOL∗, the translation rules
and prove their correctness.

FOL with Relational Object (FOL*). We start by introducing the syntax
of FOL∗. A signature S is a tuple (C,R, ι), where C is a set of constants, R is a
set of relation symbols, and ι : R → N is a function that maps a relation to its
arity. We assume that the domain of constant C is Z, which matches the one for
MFOTL, where the theory of linear integer arithmetic (LIA) holds. Let Var be a
set of variables in the domain Z. A relational object o of class r ∈ R (denoted as
o : r) is an object with ι(r) regular attributes and two special attributes, where
every attribute is a variable. We assume that all regular attributes are ordered
and denote o[i] to be the ith attribute of o. Some attributes are named, and o.x
refers to o’s attribute with the name ‘x’. Each relational object o has two special
attributes o.ext and o.time. The former is a boolean variable indicating whether
o exists in a solution, and the latter is a variable representing the occurrence time
of o. For convenience, we define a function cls(o) to return the relational object’s
class. Let a FOL∗ term t be defined inductively as t : c | v | o[k] | o.x | t+t | c×t

Early Verification of Legal Compliance via Bounded Satisfiability Checking 381

for any constant c ∈ C, any variable v ∈ Var, any relational object o : r, any
index k ∈ [1, ι(r)] and any valid attribute name x. Given a signature S, the
syntax of the FOL∗ formulas is defined as follows: (1) � and ⊥, representing
values “true” and “false”; (2) t = t′ and t > t′, for term t and t′; (3) φf ∧ ψf ,
¬φf for FOL∗ formulas φf and ψf ; (4) ∃o : r · (φf) for an FOL∗ formula φf and
a class r; (5) ∀o : r · (φf) for an FOL∗ formula φf and a class r. The quantifiers
for FOL∗ formulas are limited to relational objects, as shown by rules (4) & (5).
Operators ∨ and ∀ can be defined in FOL∗ as follows: φf ∨ ψf = ¬(¬φf ∧ ¬ψf)
and ∀o : r · φf = ∃o : r · ¬φf . We say an FOL∗ formula is in a negation normal
form (NNF) if negations (¬) do not appear in front of ¬, ∧, ∨, ∃ and ∀. For the
rest of the paper, we assume that every FOL∗ φ is in NNF.

Given a signature S, a domain D is a finite set of relational objects. An
FOL∗ formula grounded in the domain D (denoted by φD) is a quantifier-free
FOL formula that eliminates quantifiers on relational objects using the following
rules: (1) ∃o : r · (φf) to

∨
o′:r∈D(o′.ext ∧ φf [o ← o′]) and (2) ∀o : r · (φf) to∧

o′:r∈D(o′.ext ⇒ φf [o ← o′]). An FOL∗ formula φf is satisfiable in D if there
exists a variable assignment v that evaluates φD to � according to the standard
semantics of FOL. An FOL∗ formula φf is satisfiable if there exists a finite
domain D such that φf is satisfiable in D. We call σ = (D, v) a satisfying
solution to φf , denoted as σ |= φf . Given a solution σ = (D, v), we say a
relational object o is in σ, denoted as o ∈ σ, if o ∈ D and v(o.ext) is true. The
volume of the solution, denoted as vol(σ), is |{o | o ∈ σ}|.
Example 6. Let a be a relational object of class A with attribute name val.
The formula ∀a : A. (∃a′ : A · (a.val < a′.val) ∧ ∃a : A · a.val = 0) has
no satisfying solutions in any finite domain. On the other hand, the formula
∀a : A · (∃a′, a′′ : A · (a.val = a′.val + a′′.val)∧∃a : A · a.val = 5) has a solution
σ = (D, v) of volume 2, with the domain D = (a1, a2) and the value function
v(a1.val) = 5, v(a2.val) = 0 because if a ← a1 then the formula is satisfied by
assigning a′ ← a1, a′′ ← a2; and if a ← a2, then the formula is satisfied by
assigning a′ ← a2, a′′ ← a2.

From MFOTL Formulas to FOL* Formulas. We now discuss the translation
rule from the MFOTL formulas to FOL∗ formulas. Recall that MFOTL semantics
is defined for a time point i on a trace σ = (D̄, τ̄ , v, i), where D̄ = (D1,D2, . . .)
is a sequence of FO structures and τ̄ = (τ1, τ2, . . .) is a sequence of time values.
The time value of the time point i is given by τi, and if i is not specified, then
i = 1. The semantics of the FOL∗ formulas is defined for a domain D where the
information of time is associated with relational objects in the domain. There-
fore, the time point i (and its time value τi) should be considered during the
translation from MFOTL to FOL∗ since the same MFOTL formula at different
time points represents different constraints on the trace σ. Formally, our trans-
lation function translate, abbreviated as T , translates an MFOTL formula
φ into a function f : τ → φf , where τ ∈ N and φf is an FOL∗ formula. The
translation rules are stated in Fig. 5.

382 N. Feng et al.

Fig. 5. Translation rules from MFOTL to FOL∗. TP is an internal class of rela-
tional objects used to represent time values at different time points. The predicate
Next(t1, t2) (Prev(t1, t2)) asserts that t1 is the next (previous) time value of t2.

Representing time points in FOL∗. Since FOL∗ quantifiers are limited to rela-
tional objects, to quantify over time points (which is necessary to capture the
semantics of MFOTL temporal operators such as U), the translated FOL∗ formu-
las use a special internal class of relational objects TP (e.g., ∃o : TP). Relational
objects of class TP capture all possible time points in a trace, and they have
two attributes, ext and time, to record the existence and the value of the time
point, respectively. To ensure that every time value in a solution is represented
by some relational object of TP, we introduce the time coverage FOL∗ axiom.

Axiom 1 (Time coverage). Let φf be an FOL∗ formula and let σ be its solution.
For every relational object o ∈ σ, there exists an object o′ of class TP s.t. o and
o′ share the same time value. Formally, ∀o · (∃o′ : TP · o.time = o′.time).

The translation of �I φ uses function Next(t1, t2) to assert that t1 is the next
time value of t2. Formally, Next(t1, t2) = ∀o : TP · o.time > t2 ⇒ t1 ≤ o.time.
Function Prev(t1, t2) for translation of �I φ is defined similarly.

Definition 5 (Mapping from MFOTL trace to FOL∗ trace). Let an
MFOTL trace (D̄, τ̄) and a valuation function v be given. A function
M((D̄, τ̄), v) → (D, v′) is a mapping between an MFOTL trace and an FOL∗

trace if M satisfies the following rules: (1) for every τi ∈ τ̄ , there exists a rela-
tional object o : TP ∈ D such that τi = v′(o.time); (2) for every structure
Di ∈ D̄, if a tuple t̄ holds for a relation r, (i.e., t̄ ∈ rDi), then there exists a
relational object o : r such that for j ∈ ι(r), t̄[j] = v′(o[j]) and v′(o.time) =
τi ∧ v′(o.ext) = �; (3) for every term t defined for v, v(t) = v′(T (t, τi)).

The inverse of M , denoted as M−1, is defined as follows: (1) τ̄ =
sort({v′(o.time) | o : TP ∈ D · v′(o.ext)}) and (2) for every relational object
o : r, if v′(o.ext), then (v′(o[1]) . . . v′(o[ι(r)])) ∈ rDi , where i is the index of the
time value v′(o.time) in τ̄ .

Early Verification of Legal Compliance via Bounded Satisfiability Checking 383

Lemma 1. Given an MFOTL formula φ, an MFOTL trace (D̄, τ̄), a valuation
function v, and a time point i, the relation (D̄, τ̄ , v, i) |= φ holds iff there exists
a satisfying trace σ = (D, v′) for the formula T (φ, τi).

Proof Sketch. In the proof, we use M and M−1 (see Definition 5) to transform
an MFOTL solution into an FOL∗ trace, and show that it is a solution to the
translated FOL∗ formula (and vice versa).

=⇒ : if (D̄, τ̄ , v, i) |= φ, then it is sufficient to show (D, v′) ← M(D̄, τ̄ , v) is
an FOL∗ solution. To prove (D, v′) is the solution to T (φ, τi), we consider all the
translation rules in Fig. 5. The translated FOL∗ matches the semantics (Fig. 3) of
MFOTL except for the translation of temporal operators (e.g., T(�I φ, τi) and
T (φ UI ψ, τi)) where instead of quantifying over time points (e.g., ∃j and ∀k),
internal relational objects of class TP (o, o′ : TP) are quantified over. By rule
(1) of Dec. 5, every time point and its time value are mapped to some relational
object of class TP. Therefore, the quantifiers on time points can be translated
into the quantifiers on the relational objects of TP. The mapped solution (D, v′)
also satisfies Axiom 1 because if a tuple t̄ holds for some relation r at some time
τ in the MFOTL trace (D̄, τ̄), then there exists a time point i ∈ [1, |τ̄ |] such that
τi = τ . Therefore, by rule (1) of M , τi is represented by some o : TP.

⇐=: if (D, v′) |= T (φ, τi), then it is sufficient to show that the MFOTL trace
(D̄, τ̄ , v) ← M−1(D, v′) satisfies φ at point i (i.e., (D̄, τ̄ , v, i) |= φ). To prove
(D̄, τ̄ , v, i) |= φ, we consider all the translation rules in Fig. 5. The translated
FOL∗ formula matches the semantics of MFOTL (Fig. 3) except for the difference
between the time points and the relational objects of class TP. By Axiom 1,
every relational object’s time is captured by some time point, and by rule (2) of
M−1, every relational object is mapped onto some structure Di at some time τi

by M . Therefore, (D̄, τ̄ , v, i) |= φ. ��
Theorem 1 (Translation Correctness). Given an MFOTL formula φ and an
MFOTL trace σ, let M(σ) be the FOL∗ solution mapped from σ using function M
(Definition 5). Then (1) σ |= φ if and only if M(σ) |= T (φ), and (2) vol(σ) =
vol(M(σ)) − |{o : TP ∈ M(σ)}|, where |{o : TP ∈ M(σ)}| is the number of
relational objects of the internal class TP in the solution M(σ).

Proof. Statement (1) of Thm. 1 is a direct consequence of Lemma 1. Statement
(2) is the result of rule (2) in Definition 5 because every relational object in
the FOL∗ solution, except for the internal ones, i.e., o : TP, has a one-to-one
correspondence to tuples that hold for some relation in the MFOTL solution. ��

For the rest of the paper, we assume that the internal relational objects of
class TP do not count toward the volume of the FOL∗, i.e., vol(σ) = vol(T (σ)).

Example 7. Consider a formula exp = � ∀d·(A(d) =⇒ ♦[5,10] B(d)), where A
and B are unary relations. The translated FOL∗ formula T (exp) is: ∀o : TP ·∀a :
A·(o.time = a.time ⇒ ∃o′ : TP·b : B·o′.time = b.time∧a[1] = b[1]∧ o.time+5 ≤
o′.time ≤ o.time + 10). Since o.time = a.time and o′.time = b.time, we can
substitute o.time and o′.time with a.time and b.time in T (exp), respectively.
Then, the formula contains no reference to o and o′, and we can safely drop

384 N. Feng et al.

the quantified o and o′ (we can drop existential quantified TP relational object
because of the time coverage axiom). The simplified formula is: ∀a : A · ∃b :
B · a[1] = b[1] ∧ a.time + 5 ≤ b.time ≤ a.time + 10.

This is important for designing system requirements that comply with LPs.

Given an MFOTL property P and a set Reqs of MFOTL requirements, and
a volume bound vb, the BSC problem can be solved by searching for a satisfying
solution v′ for the FOL∗ formula T (¬P)

∧
ψ∈Reqs T (ψ) in a domain D with at

most vb relational objects.

4.3 Checking MFOTL Satisfiability: A Naive Approach

Below, we define a naive procedure NBS (shown in Fig. 4) for checking satisfia-
bility of MFOTL formulas translated into FOL∗. We then discuss the complexity
of this naive procedure. Even though we do not use NBS in this paper, its com-
plexity constitutes an upper bound for our approach proposed in Sect. 5.
Searching for a satisfying solution. Let φf be an FOL∗ formula translated
from an MFOTL formula φ, and let vb be the volume bound. NBS solves φf

via quantifier elimination. The number of relational objects in any satisfying
solution of φf should be at most vb. Therefore, NBS grounds the FOL∗ formulas
within a domain of vb relational objects (see Sect. 4.2), and then uses an SMT
solver to check satisfiability of the grounded formula. If the domain has multiple
classes of relational objects, we can unify them by introducing a “superposition”
class whose attributes are the union of the attributes of all classes and a special
“name” attribute to indicate the class represented by the superposition.
Complexity. The size of the quantifier-free formula is O(vbk), where k is the
maximum depth of quantifier nesting. Since the background theory used in φ
is restricted to linear integer arithmetic, solving the formula is NP-hard [29].
Because T (Tab. 5) is linear in the size of the formula φ, NBS is NP-complete
w.r.t. the size of the grounded formula, vbk.

5 Incremental Search for Bounded Counterexamples

The naive BSC approach (NBS) proposed in Sect. 4.3 is inefficient for solv-
ing the translated FOL∗ formulas given a large bound n due to the size of the
ground formula. Moreover, NBS cannot detect unbounded unsatisfiability, and
cannot provide optimality guarantees on the volume of counterexamples which
are important for establishing the proof of unbounded correctness and localiz-
ing faults [15], respectively. In this section, we propose an incremental procedure
IBS, which can detect unbounded unsatisfiability and provide the shortest coun-
terexamples. An overview of IBS is given in Fig. 4.

IBS maintains an under-approximation of the search domain and the FOL∗

constraints. It uses the search domain to ground the FOL∗ constraints, and an
SMT solver to determine the satisfiability of the grounded constraints. It ana-
lyzes the SMT result and accordingly either expands the search domain, refines

Early Verification of Legal Compliance via Bounded Satisfiability Checking 385

the FOL∗ constraints, or returns an answer to the satisfiability checking problem
(a counterexample σ, “bounded-UNSAT”, or “UNSAT”). The procedure contin-
ues until an answer is obtained (σ or UNSAT), or until the domain exceeds the
bound vb, in which case a “bounded-UNSAT” answer is returned.

In the following, we describe IBS in more detail. We explain the key compo-
nent of IBS, computing over- and under-approximation queries, in Sect. 5.1. We
discuss the algorithm itself in Sect. 5.2 and illustrate it in Sect. 5.3. We prove its
soundness, completeness, and solution optimality in the extended version [11].

5.1 Over- and Under-Approximation

NBS grounds the input FOL∗ formulas in a fixed domain D (fixed by the bound
vb). Instead, IBS under-approximates D to D↓ such that D↓ ⊆ D. With D↓,
we can create an over- and an under-approximation query to the bounded sat-
isfiability checking problem. Such queries are used to check the satisfiability of
FOL∗ formulas with domain D↓. IBS starts with a small domain D↓ and grad-
ually expands it until either SAT or UNSAT is returned, or the domain size
exceeds some limit (bounded-UNSAT).

Over-approximation. Let φf be an FOL∗ formula, and D↓ be a domain of rela-
tion objects. The procedure Ground, G(φf , D↓), encodes φf into a quantifier-
free FOL formula φg s.t. the unsatisfiability of φg implies the unsatisfiability of
φf . We call φg an over-approximation of φf . The procedure G (Algorithm 2)
recursively traverses the syntax tree of the input FOL∗ formula from top to
bottom.

To eliminate the existential quantifier in ∃o : r · φ′
f (L:1), G creates a new

relational object o′ of class r (L: 2), and replaces o with o′ in φ′
f (L:3). To

eliminate the universal quantifier in ∀o : r · φ′
f (L: 4), G grounds the formula

in D↓. More specifically, G expands the quantifier into a conjunction of clauses
where each clause is o′.ext ⇒ φ′

f [o ← o′] (i.e., o is replaced by o′ in φ′
f) for each

relational object o′ of class r in D↓ (L: 5). Intuitively, an existentially quantified
relational object is instantiated with a new relational object, and a universally
quantified relational object is instantiated with every existing relational object
of the same class in D↓, which does not include the ones instantiated during G.

Lemma 2 (Over-approximation Query). For an FOL∗ formula φf , and a
domain D↓, if φg = G(φf ,D↓) is UNSAT, then so is φf .

Under-Approximation. Let φf be an FOL∗ formula, and D↓ be a domain.
The over-approximation φg = G(φf ,D↓) contains a set of new relational objects
introduced by G (L:2), denoted by NewRs. Let NoNewR(NewRs, D↓) be
constraints that enforce that every new relational object o1 in NewRs be
semantically equivalent to some relational objects o2 in D↓. Formally: the
predicate NoNewR(NewRs,D↓) is defined as

∧
o1∈NewRs

∨
o2∈D↓(o1 ≡ o2),

where the semantically equivalent relation between o1 and o1 (i.e., o1 ≡ o2)
is defined as cls(o1) = cls(o2) and

∧ι(cls(o))
i=1 (o1[i] = o2[i]) ∧ o1.ext =

o2.ext ∧ o1.time = o2.time (where the cls(o) returns the class of o). Let
φ⊥

g = φg ∧ NoNewR(NewRs,D↓). If φ⊥
g has a satisfying solution, then there

386 N. Feng et al.

is a solution for φf . We call φ⊥
g an under-approximation of φf and denote the

procedure for computing it by UnderApprox(φf ,D↓).

Lemma 3 (Under-Approximation Query). For an FOL∗ formula φf , and
a domain D↓, let φg = G(φf ,D↓) and φ⊥

g = UnderApprox(φf ,D↓). If σ is a
solution to φ⊥

g , then there exists a solution to φf .

Algorithm 1. IBS: search for a bounded (by vb) solution to T (¬P)
∧

ψ∈Reqs T (ψ).

Input an MFOTL formula ¬P , and MFOTL requirements Reqs = {ψ1, ψ2, ...} .

Optional Input vb, the volume bound, and data constraints Tdata.

Output a counterexample σ, UNSAT or bounded-UNSAT.

1: Reqsf ← { ψf = T (ψ) | ψ ∈ Reqs}
2: ¬Pf ← T (¬P)
3: Reqs↓ ← ∅ //initially empty requirement

4: D↓ ← ∅ //initially empty domain
5: while
 do
6: φ↓ ← ¬Pf ∧ Reqs↓
7: φg ← G(φ↓, D↓) //over-approx.

8: φ⊥
g ← UnderApprox(φ↓, D↓) //under-

approx.
9: if Solve(φg ∧ Tdata) = UNSAT then

10: return UNSAT
11: σ ← Solve(φ⊥

g ∧ Tdata)

12: if σ = UNSAT then //expand D↓
13: σmin ← Minimize(φg)
14: //expand based on σmin

15: D↓ += {o | o ∈ σmin}
16: if vol(σmin) > vb then
17: return bounded-UNSAT
18: else //check all requirements
19: if σ |= ψf for ψf ∈ Reqsf then

20: return σ
21: else
22: lesson ← ψf for some σ �|= ψf

23: Reqs↓.add(lesson)

Algorithm 2. G: ground a NNF FOL∗ formula φf in a domain D↓.
Input an FOL∗ formula φf in NNF, and a domain of relational objects D↓ .

Output a grounded quantifier-free formula φg over relational objects.

1: if match (φf , ∃o : r · φ′
f) then //process the existential operator

2: o′ ← NewAct(r) //create a new relational object of class r
3: return o′.ext ∧ G (φ′

f [o ← o′], D↓)

4: if match (φf , ∀o : r · φ′
f) then //process the universal operator

5: return
∧

[o′:r]∈D↓ o′.ext ⇒ G (φ′
f [o ← o′], D↓)

6: if match (φf , φ′
f op ψ′

f where op = ∧ | ∨) then return G(φ′
f , D↓) op G(ψ′

f , D↓)

7: return φf //case where φf is quantifier-free, including ¬φ′
f where φ′

f is atomic (NNF)

The proofs of Lemma 2 and 3 are in the extended version [11].
Suppose, for some domain D↓, that an over-approximation query φg for an FOL∗

formula φf is satisfiable while the under-approximation query φ⊥
g is UNSAT.

Then, the solution to φg provides hints on how to expand D↓ to potentially
obtain a satisfying solution for φf , as captured in Corollary 1.

Corollary 1 (Necessary relational objects). For an FOL∗ formula φf and
a domain D↓, let φg and φ⊥

g be the over- and under-approximation queries of
φf based on D↓, respectively. Suppose φg is satisfiable and φ⊥

g is UNSAT, then
every solution to φf contains some relational object in formula φg but not in D↓.

Early Verification of Legal Compliance via Bounded Satisfiability Checking 387

5.2 Counterexample-Guided Constraint Solving Algorithm

Let an MFOTL formula ¬P (to find a satisfiable counterexample to P), a set of
MFOTL requirements Reqs, an optional volume bound vb, and optionally a set
of FOL∗ data domain constraints Tdata be given. IBS, shown in Algorithm 1,
searches for a solution σ to ¬P ∧ ∧

ψ∈Reqs ψ (with respect to Tdata) bounded by
vb, as a counter-example to

∧
ψ∈Reqs ψ ⇒ P (Definition 2). bounded by vb. If

no such solution is possible regardless of the bound, IBS returns UNSAT. If no
solution can be found within the given bound, but a solution may exist for a
larger bound, then IBS returns bounded-UNSAT. If vb is not specified, IBS will
perform the search unboundedly until a solution or UNSAT is returned.

IBS first translates ¬P and every ψ ∈ Reqs into FOL∗ formulas in Reqsf ,
denoted by ¬Pf and ψf , respectively. Then IBS searches for a satisfying solution
to ¬Pf ∧ ∧

ψf∈Reqsf
ψf in the domain D of volume, which is at most vb. Instead

of searching in D directly, IBS searches for a solution to ¬Pf ∧ ∧
ψf∈Reqs↓

ψf in
D↓ (denoted by φ↓) where Reqs↓ ⊆ Reqsf and D↓ ⊆ D. IBS initializes Reqs↓ and
D↓ as empty sets (LL:3-4). Then, for the FOL∗ formula φ↓, IBS creates an over-
and under-approximation query φg (L:7) and φ⊥

g (L:8), respectively (described
in Sect. 5.1). IBS first solves the over-approximation query φg by querying an
SMT solver (L:9). If φg is unsatisfiable, then φ↓ is unsatisfiable (Lemma 2), and
IBS returns UNSAT (L:10).

If φg is satisfiable, then IBS solves the under-approximation query φ⊥
g (L:11).

If φ⊥
g is unsatisfiable, then the current domain D↓ is too small, and IBS expands

it (LL:12-18). This is because the satisfiability of φg indicates the possibility of
finding a satisfying solution after adding at least one of the new relational objects
in the solution to φg to D↓ (Corollary 1). The domain D↓ is expanded by adding
all relational objects o′ in the minimum (in terms of volume) solution σmin

to φg (L:13). To obtain σmin, we follow MaxRes [28] methods: we analyze the
UNSAT core of φ⊥

g and incrementally weaken φ⊥
g towards φg (i.e., the weakened

query φ⊥′
g is an “over-under approximation” that satisfies φ⊥

g ⇒ φ⊥′
g ⇒ φg)

until a satisfying solution σmin is obtained for the weakened query. However, if
the volume of σmin exceeds vb (L:16), then bounded-UNSAT is returned (L:17).
UNSAT core-guided domain expansion has also been explored for unfolding the
definition of recursive functions [30,37].

On the other hand, if φ⊥
g yields a solution σ, then σ is checked on Reqsf

(L:19). If σ satisfies every ψf in Reqsf , then σ is returned (L:20). If σ violates
some requirements in Reqsf , then the violating requirement lesson is added to
Reqs↓ to be considered in the search for the next solutions (L:23).

If IBS does not find a solution or does not return UNSAT, it means that
no solution is found because D↓ is too small or Reqs↓ are too weak. IBS then
restarts with the expanded domain D↓ or the refined set of requirements Reqs↓.
It computes the over- and under-approximation queries (φg and φ⊥

g) again, and
repeats the steps. See Sect. 5.3 for an illustration of IBS.

Remark 1. IBS finds the optimal solution because it looks for the minimum
solution σmin to the over-approximation query φg (L:13) and uses it for domain

388 N. Feng et al.

expansion (L:15). However, looking for σmin adds cost. If solution optimality is
not required, IBS can be configured to heuristically find a solution σ to φg such
that vol(σ) ≤ vb. The greedy best-first search (gBFS) finds a solution to φg that
minimizes the number of relational objects that are not already in D↓, and then
uses it to expand D↓. We configured a non-optimal version of IBS (nop) that
uses gBFS heuristics and evaluated its performance in Sect. 6.

5.3 Illustration of IBS

Suppose a data collection centre (DCC) collects and accesses personal data infor-
mation with two requirements: req1: data value can only be updated after having
been collected or last updated for more than a week (168 hours); and req2: data
can only be accessed if has been collected or updated within a week (168 hours).
The signature Sdata for DCC contains three binary relations (Rdata): Collect,
Update, and Access, such that Collect(d, v), Update(d, v) and Access(d, v) hold
at a given time point if and only if data at ID d is collected, updated, and accessed
with value v at this time point, respectively. The MFOTL formulas for P1, req1
and req2 are shown in Fig. 1. Suppose IBS is invoked to find a counterexample
for property P1 (shown in Fig. 1) subject to requirements Reqs = {req1, req2}
with the bound vb = 4. IBS translates the requirements and the property to
FOL∗ and initializes Reqs↓ and D↓ to empty sets. For each iteration, we use φg

and φ⊥
g to represent the over- and under-approximation queries computed on

LL:7-8, respectively.

1st iteration: D↓ = ∅ and Reqs↓ = ∅. Three new relational objects are intro-
duced to φg (due to ¬P1): access1, collect1, and update1 such that: (C1) access1
occurs after collect1 and update1;(C2) access1.d = collect1.d = update1.d;(C3)
access1.v
= collect1.v ∧access1.v
= update1.v; and (C4) either collect1 or update1
must be in the solution. φg is satisfiable, but φ⊥

g is UNSAT since D↓ is an empty
set. We assume D↓ is expanded by adding access1 and update1.

2nd iteration: D↓ = {access1, update1} and Reqs↓ = ∅. The over-
approximation φg stays the same, but φ⊥

g becomes satisfiable since access1 and
update1 are in D↓. Suppose the solution is σ4 (see Fig. 2). However, σ4 violates
req2, so req2 is added to Reqs↓.

3rd iteration: D↓ = {access1, update1} and Reqs↓ = {req2}. Two new rela-
tional objects are introduced in φg (due to req2): collect2 and update2 such that
(C5) collect2.time ≤ access1.time ≤ collect2.time + 168; (C6) update2.time ≤
access1.time ≤ update2.time+168; (C7) access1.d = collect2.d = update2.d; (C8)
access1.v = collect2.v = update2.v; and (C9) collect2 or update2 is in the solu-
tion. The new φg is satisfiable, but φ⊥

g is UNSAT because update2
∈ D↓ and
update1
= update2 (C8 conflicts with C3). Therefore, D↓ needs to be expanded.
Assume collect2 is added to D↓.

4th iteration: D↓ = {access1, update1, collect2} and Reqs↓ = {req2}. The over-
approximation φg stays the same, but φ⊥

g becomes satisfiable since collect2 is in

Early Verification of Legal Compliance via Bounded Satisfiability Checking 389

D↓. Suppose the solution is σ3 (see Fig. 2). Since σ3 violates req1, req1 is added
to Reqs↓.

5th iteration: D↓ = {access1, update1, collect2} and Reqs↓ = {req1, req2}. The
following constraints are added to φg (due to req1): (C9) ¬(update2.time−168 ≤
collect1.time ≤ update2.time). Since (C9) conflicts with (C8), (C7) and (C1),
update2 cannot be in the solution to φg. The over-approximation φg is satisfiable
if collect1 (introduced in the 1st iteration) or update2 (3rd iteration) are in the
solution. However, φ⊥

g is UNSAT since D↓ does not contain collect1 or update2.
Thus, D↓ is expanded. Assume update2 is added to D↓.

6th iteration: D↓ = {access1, update1, collect2, update2}, Reqs↓ = {req1, req2}.
The following constraints are added to φg (C10) update2.time ≥ update1.time +
168 (due to req1) and (C11) update2.time ≤ update1.time (due to ¬P). Since
(C10) conflicts with (C11), update2 cannot be in the solution to φg. Thus, φg

is satisfiable only if collect1 is in the solution. However, φ⊥
g is UNSAT because

collect1
∈ D↓. Therefore, D↓ is expanded by adding collect1.

final iteration: D↓ = {access1, update1, collect2, update2, collect1} and
Reqs↓ = {req1, req2}. The under-approximation φ⊥

g becomes satisfiable, and
yields the solution σ5 in Fig. 2 which satisfies both req1 and req2.

6 Evaluation

To evaluate our approach, we developed a prototype tool, called LEGOS, that
implements our MFOTL bounded satisfiability checking algorithm, IBS (Algo-
rithm 1). It includes Python API for specifying system requirements and MFOTL
safety properties. We use pySMT [14] to formulate SMT queries and Z3 [8] to
check their satisfiability. The implementation and the evaluation artifacts are
included in the supplementary material [12]. In this section, we evaluate the effec-
tiveness of our approach using five case studies, aiming to answer the following
research question: How effective is our approach at determining the bounded sat-
isfiability of MFOTL formulas? We measure effectiveness in terms of the ability
to determine satisfiability (i.e., the satisfying solution and its volume, UNSAT,
or bounded UNSAT), and performance, i.e., time and memory usage.
Cases studies. The five case studies considered in this paper are summarized
below: (1) PHIM (derived from [1,10]): a computer system for keeping track of
personal health information with cost management; (2) CF@H1: a system for
monitoring COVID patients at home and enabling doctors to monitor patient
data; (3) PBC [4]: an approval policy for publishing business reports within a
company; (4) BST [4]: a banking system that processes customer transactions;
and (5) NASA [26]: an automated air-traffic control system design that aims to
avoid aircraft collisions.2 Table 1 gives their statistics. For each case study, we

1 https://covidfreeathome.org/.
2 The requirements and properties for the NASA case study are originally expressed

in LTL, which is subsumed by MFOTL.

https://covidfreeathome.org/

390 N. Feng et al.

record the number of requirements, relations, relation arguments, and properties,
denoted as #reqs, #rels, #args, and #props, respectively. Additionally, Table 1
shows initial configurations used in our experiments, with number of custodians
(#c), patients (#p), and data (#d) for PHIM; number of users (#u), and data
(#d) for CF@H and PBC; number of employees (#e), customers (#c), transac-
tions (#t), and the maximum amount for a transaction (sup) for BST; number
of ground-separated (#GSEP) and of the self-separating aircraft (#SSEP) for
NASA.

Table 1. Case study statistics.

Names Case study statistics Configuration
#reqs #rels #args #props

PHIM 18 22 [1 − 4] 6 #c = 2, #p = 2
#d = 5

CF@H 45 28 [2 − 3] 7 #u = 2, #d = 10

PBC 14 7 [1 − 2] 1 #u = 5, #d = 10

BST 10 3 [1 − 3] 3 #e = 1, #c = 2
#t = 4, sup = 10

NASA 194 10 [6 − 79] 6 #GSEP = 3
#SSEP = 0
#GSEP = 2
#SSEP = 2

Table 2. Performance comparison between IBS
and nuXmv on case study NASA.

NASA configuration 1 configuration 2
IBS nuXmv IBS nuXmv

out. time mem out. time mem out. time mem out. time mem
(sec) (MB) (sec) (MB) (sec) (MB) (sec) (MB)

na1 U 0.80 154 U 0.88 82 U 0.13 141 U 1.65 90
na2 U 0.16 141 U 0.47 70 U 0.15 141 U 1.50 90
na3 U 0.16 141 U 0.49 83 U 0.13 141 U 1.48 90
na4 U 0.77 80 U 0.54 83 U 0.15 66 U 1.43 91
na5 U 0.14 140 U 0.52 82 U 0.15 141 U 1.43 90
na6 U 0.03 62 U 0.57 72 U 0.03 62 U 1.40 90

Case studies were selected for (i) the purpose of comparison with existing
works (i.e., NASA); (ii) checking whether our approach scales with case studies
involving data/time constraints (PBC, BST, PHIM and CF@H); or (iii) eval-
uating the applicability of our approach with real-word case studies (CF@H
and NASA). In addition to prior case studies, we include PHIM and CF@H
which have complex data/time constraints. The number of requirements for the
five case studies ranges between ten (BST) and 194 (NASA). The number of
relations present in the MFOTL requirements ranges from three (BST) to 28
(CF@H), and the number of arguments in these relations ranges from 1 (PHM,
PBC, and BST) to 79 (NASA).
Experimental setup. Given a set of requirements, data constraints and prop-
erties of interest for each case study, we measured the run-time (time) and peak
memory usage (mem.) of performing bounded satisfiability checking of MFOTL
properties, and the volume volσ (the number of relational objects) of the solution
(σ) with (op) and without (nop) the optimality guarantees (see Remark 1 for
finding non-optimal solutions). We conduct two experiments: the first one evalu-
ates the efficiency and scalability of our approach; the second one compares our
approach with satisfiability checking. Since there is no existing work for check-
ing MFOTL satisfiability, we compared with LTL satisfiability checking because
MFOTL subsumes LTL. To study the scalability of our approach, our first exper-
iment considers four different configurations obtained by increasing the data
constraints of the case-study requirements. The initial configuration (small) is
described in Table 1 and the initial bound is 10. The medium and large configura-
tions are obtained by multiplying the initial data constraints and volume bound

Early Verification of Legal Compliance via Bounded Satisfiability Checking 391

Table 3. Run-time performance for four case studies and 18 properties. We record
the outcome (out.) of the algorithm with (op) or without (nop) the optimal solution
guarantee: UNSAT (U), bounded-UNSAT (b-U), or the volume of the counterexample
σ (a natural number, corresponding to volσ). We consider four different configura-
tions: small (see Tab. 6), medium (x10), big (x100), and unbounded (∞) data domain
constraints and volume bound. Volume differences between op and nop are bolded.

case studies small medium big unbounded

out. Time Mem out. Time Mem out. Time Mem out. Time Mem

(sec) (MB) (sec) (MB) (sec) (MB) (sec) (MB)

nop | op nop | op nop | op nop | op nop | op nop | op nop | op nop | op nop | op nop | op nop | op nop | op

PHIM ph1 U 0.04 | 0.03 29 | 29 U 0.03 | 0.03 136 | 136 U 0.04 | 0.04 136 | 136 U 0.06 | 0.05 64 | 64

ph2 U 0.03 | 0.03 138 | 138 U 0.03 | 0.03 136 | 137 U 0.03 | 0.04 136 | 136 U 0.05 | 0.06 64 | 61

ph3 U 0.03 | 0.03 134 | 137 U 0.03 | 0.03 138 | 138 U 0.05 | 0.05 137 | 138 U 0.06 | 0.06 64 | 64

ph4 U 0.04 | 0.04 136 | 138 U 0.04 | 0.04 138 | 135 U 0.05 | 0.05 138 | 138 U 0.06 | 0.07 64 | 64

ph5 U 0.02 | 0.02 135 | 135 U 0.02 | 0.02 608 | 608 56 | 56 30.51 | 30.51 390 | 390 56 | 56 21.64 | 21.60 393 | 390

ph6 b-U 0.18 | 0.20 139 | 139 U 0.72 | 0.82 144 | 144 U 0.88 | 0.70 142 | 142 U 0.91 | 0.91 70 | 70

ph7 U 0.11 | 0.11 139 | 139 29 | 29 13.80 | 1905.40 193 | 599 30 | 29 20.25 | 682.22 193 | 601 32 | 29 20.96 | 1035.87 123 | 383

CF@H cf1 b-U 4.80 | 6.90 114 | 176 U 2.87 | 3.55 81 | 86 U 2.98 | 1.71 85 | 76 U 1.71 | 0.74 74 | 68

cf2 b-U 0.87 | 0.93 70 | 70 14 | 14 3.21 | 425.41 79 | 334 14 | 14 2.40 | 778.36 76 | 80 14 | 14 3.32 | 16.97 80 | 205

cf3 b-U 1.38 | 1.31 145 | 145 16 | 16 6.05 | 90.78 168 | 403 16 | 16 3.54 | 371.65 157 | 846 16 | 16 5.35 | 24.07 86 | 164

cf4 b-U 1.52 | 0.73 74 | 68 14 | 14 4.54 | 65.59 90 | 261 14 | 14 5.63 | 57.30 95 | 261 14 | 14 5.65 | 1227.02 89 | 294

cf5 8 | 8 1.20 | 1.17 146 | 147 8 | 8 0.48 | 0.54 141 | 142 8 | 8 0.69 | 0.57 141 | 141 8 | 8 0.72 | 0.76 69 | 69

cf6 8 | 8 1.06 | 1.16 146 | 147 8 | 8 0.52 | 0.61 142 | 142 8 | 8 0.60 | 0.73 141 | 141 8 | 8 0.72 | 0.72 69 | 69

cf7 U 0.58 | 0.58 141 | 142 U 0.38 | 0.36 140 | 141 U 0.47 | 0.44 140 | 141 U 0.30 | 0.34 66 | 67

PBC pb1 U 0.04 | 0.04 29 | 140 U 0.16 | 0.17 140 | 139 9 | 9 0.28 | 0.29 141 | 141 9 | 9 0.27 | 0.28 67 | 67

BST bs1 U 0.04 | 0.03 64 | 63 U 0.29 | 0.24 70 | 68 U 0.31 | 0.30 69 | 68 U 0.25 | 0.25 69 | 69

bs2 2 | 2 0.04 | 0.04 62 | 64 2 | 2 0.04 | 0.04 62 | 62 2 | 2 0.04 | 0.04 64 | 64 2 | 2 0.04 | 0.04 64| 64

bs3 U 0.02 | 0.02 62 | 62 5 | 5 0.4 | 0.9 70 | 73 5 | 5 0.39 | 0.85 70 | 74 5 | 5 0.40 |0.70 70 | 72

by ten and hundred, respectively. The last (unbounded) configuration does not
bound either the data domain or the volume. As we noted earlier in Sect. 4, the
purpose of adding data constraints is to avoid unrealistic counterexamples. For
example, the NASA case study uses a data set for specifying the possible system
control modes and uses data ranges to restrict the possible measures from the
aircraft (e.g., aircraft’s trajectory). In the other case studies, data constraints are
realistic data ranges (e.g., a patient’s account balance should be non-negative).
To study the performance of our approach relative to existing work, our second
experiment considers two configurations of the NASA case study verified in [24]
using the state-of-the-art symbolic model checker nuXmv [6]3. We compare our
approach’s result against the reproduced result of nuXmv verification. For both
experiments, we report the analysis outcomes, i.e., the volume of the satisfy-
ing solution (if one exists), UNSAT, or bounded UNSAT; and performance, i.e.,
time and memory usage. The experiments were conducted using a ThinkPad X1
Carbon with an Intel Core i7 1.80 GHz processor, 8 GB of RAM, and running
64-bit Ubuntu GNU/Linux 8.
Results of the first experiment are summarized in Table 3. Out of the 72
trials, our approach found 31 solutions. It also returned five bounded-UNSAT
answers, and 36 UNSAT answers. The results show that our approach is effec-
tive in checking satisfiability of case studies with different sizes. More precisely,

3 LEGOS solved all configurations from the NASA case study; see the results in [12].
For comparison, we report only on the configurations that are explicitly supported
by nuXmv.

392 N. Feng et al.

we observe that it takes under three seconds to return UNSAT and between
.04 seconds (bs2:medium) and 32 min (ph7:medium:op) to return a solution. In
the worst case, op took 32 min for checking ph7 where the property and require-
ments contain complex constraints. Effectively, ph7 requires the deletion of data
stored at id 10, while the cost of deletion increases over time under PHIM’s
requirements. Therefore, the user has to perform a number of actions to obtain
a sufficient balance to delete the data. Additionally, each action that increases
the user’s balance has its own preconditions, effects, and time cost, making the
process of choosing the sequence of actions to meet the increasing deletion cost
non-trivial.

We can see a difference in time between cf2 ‘big’ and ‘unbounded’, this is
because the domain expansion followed two different paths and one produces sig-
nificantly easier SMT queries. Since our approach is guided by counterexamples
(i.e., the path is guided by the solution from the SMT solver (Algorithm1-L:13)),
our approach does not have direct control over the exact path selection. In future
work, we aim to add optimizations to avoid/backtrack from hard paths.

We observe that the data-domain constraint and volume bound used in dif-
ferent configurations do not affect the performance of IBS when the satisfiability
of the instances does not depend on them, which is the case for all the instances
except for ph6−7:small, cf1−3:small, and bs3:small. As mentioned in Sect. 4, the
data-domain constraint ensures that satisfying solutions have realistic data val-
ues. For ph1−ph4, the bound used in the small, medium and large configurations
creates additional constraints in the SMT queries for each relational object, and
therefore results in a larger peak memory than the unbounded configuration.

Finding the optimal solution (by op), in contrast to finding a satisfying solu-
tion without the optimal guarantee (by nop), imposes a substantial computa-
tional cost while rarely achieving a volume reduction. The non-optimal heuristic
nop often outperformed the optimal approach for satisfiable instances. Out of
31 satisfiable instances, nop solved 12 instances 3 times faster, 10 instances 10
times faster and seven instances 20 times faster than op. Compared to the non-
optimal solution, the optimal solution reduced the volume for only two instances:
ph7:large and ph7:unbounded by one (3%) and three (9%), respectively. On all
other satisfying instances, op and nop both find the optimal solutions. When
there is no solution, both op and nop are equally efficient.
Results of the second experiment are summarized in Table 2. Our approach
and nuXmv both correctly verified that all six properties were UNSAT in both
NASA configurations. We observe that the performance of our approach is com-
parable to nuXmv for the first configuration with .10 to .20 seconds of difference
on average. Yet, for the second configuration, our approach terminates in less than
0.20 seconds and nuXmv takes 1.50 seconds on average. We conclude that our app-
roach’s performance is comparable to that of nuXmv for LTL satisfiability check-
ing even though our approach is not specifically designed for LTL.
Summary. In summary, we have demonstrated that our approach is effective
at determining the bounded satisfiability of MFOTL formulas using case studies
with different sizes and from different application domains. When restricted to

Early Verification of Legal Compliance via Bounded Satisfiability Checking 393

LTL, our approach is at least as effective as the existing work on LTL satisfiabil-
ity checking which uses a state-of-the-art symbolic model checker. Importantly,
IBS can often determine satisfiability of instances without reaching the volume
bound, and its performance is not sensitive to the data domain. On the other
hand, IBS’s optimal guarantee imposes a substantial computational cost while
rarely achieving a volume reduction over non-optimal solutions obtained by nop.
We need to investigate the trade-off between optimality and efficiency, as well
as evaluate the performance of IBS on a broader range of benchmarks.

7 Related Work

Below, we compare with the existing approaches that address the satisfiability
checking of temporal logic and first-order logic.
Satisfiability checking of temporal properties. Temporal logic satisfiabil-
ity checking has been studied for the verification of system designs. Satisfiability
checking for Linear Temporal Logic (LTL) can be performed by reducing the
problem to model checking [35], by applying automata-based techniques [25],
or by SAT solving [5,21–23]. Satisfiability checking for metric temporal logic
(MTL) [32] and its variants, e.g., mission-time LTL [24] and signal temporal
logic [2], has been studied for the verification of real-time system designs. These
existing techniques are inadequate for our needs: LTL and MTL cannot effec-
tively capture quantified data constraints commonly used in legal properties.
MFOTL does not have such a limitation as it extends MTL and LTL with first-
order quantifiers, thereby supporting the specification of data constraints.
Finite model finding for first-order logic. Finite-model finders [7,33] look
for a model by checking universal quantifiers exhaustively over candidate models
with progressively larger domains; we look for finite-volume solutions using a sim-
ilar approach. On the other hand, we consider an explicit bound on the volume
of the solution, and are able to find the solution with the smallest volume. SMT
solvers support quantifiers with quantifier instantiation heuristics [16,17] such as
E-matching [9,27] and conflict-based instantiation [34]. Quantifier instantiation
heuristics are nonetheless generally incomplete, whereas, in our approach, we
obtain completeness by bounding the volume of the satisfying solution.

8 Conclusion

In this paper, we proposed an incremental bounded satisfiability checking app-
roach, called IBS, aimed to enable verification of legal properties, expressed in
MFOTL, against system requirements. IBS first translates MFOTL formulas to
first-order logic with relational objects (FOL∗) and then searches for a satis-
fying solution to the translated FOL∗ formulas in a bounded search space by
deriving over- and under-approximating SMT queries. IBS starts with a small
search space and incrementally expands it until an answer is returned or until the
bound is exceeded. We implemented IBS on top of the SMT solver Z3. Experi-
ments using five case studies showed that our approach is effective for identifying

394 N. Feng et al.

errors in requirements from different application domains. Our approach is cur-
rently limited to verifying safety properties. In the future, we plan to extend our
approach so that it can handle a broader spectrum of property types, including
liveness and fairness. IBS’s performance and scalability depend crucially on how
the domain of relational objects is maintained and expanded. As future work,
we would like to study the effectiveness of other heuristics to improve IBS’s
scalability (e.g., random restart and expansion with domain-specific heuristics).
We also aim to study how to learn/infer MFOTL properties during search to
further improve the efficiency of our approach.

References

1. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider,
S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 681–699. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29959-0 33

2. Bae, K., Lee, J.: Bounded model checking of signal temporal logic properties using
syntactic separation. Proc. ACM Program. Lang. 3(POPL), 51:1–51:30 (2019).
https://doi.org/10.1145/3290364

3. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 1

4. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

5. Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., Pietro, P.S.:
Constraint LTL satisfiability checking without automata. J. Appl. Log. 12(4), 522–
557 (2014). https://doi.org/10.1016/j.jal.2014.07.005

6. Cavada, R., et al.: The nuXmv Symbolic Model Checker. In: CAV, pp. 334–342
(2014)

7. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite
model finding. In: Proceedings of the CADE-19 Workshop: Model Computation-
Principles, Algorithms, Applications, pp. 11–27. Citeseer (2003)

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005). https://doi.org/10.1145/1066100.1066102

10. Feng, N., Marsso, L., Garavel, H.: Health record. Model checking context model
(MCC’21), Dept. of Computer Science - University of Toronto (2021). https://mcc.
lip6.fr/pdf/HealthRecord-form.pdf

11. Feng, N., Marsso, L., Sabetzadeh, M., Chechik, M.: Early verification of legal
compliance via bounded satisfiability checking (2023). https://arxiv.org/abs/2209.
04052

12. Feng, N., Marsso, L., Sabetzadeh, M., Chechik, M.: Supplementary material for:
early verification of legal compliance via bounded satisfiability checking (2023).
https://github.com/agithubuserseva/IBSC

13. Garavel, H., Graf, S.: Formal methods for safe and secure computers systems.
Altros (2013)

https://doi.org/10.1007/978-3-030-29959-0_33
https://doi.org/10.1145/3290364
https://doi.org/10.1007/978-3-642-14295-6_1
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1016/j.jal.2014.07.005
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1066100.1066102
https://mcc.lip6.fr/pdf/HealthRecord-form.pdf
https://mcc.lip6.fr/pdf/HealthRecord-form.pdf
https://arxiv.org/abs/2209.04052
https://arxiv.org/abs/2209.04052
https://github.com/agithubuserseva/IBSC

Early Verification of Legal Compliance via Bounded Satisfiability Checking 395

14. Gario, M., Micheli, A.: PYSMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT Workshop 2015 (2015)

15. Gastin, P., Moro, P., Zeitoun, M.: Minimization of counterexamples in SPIN. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 92–108. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6 7

16. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 167–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73595-3 12

17. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

18. Hallé, S., Villemaire, R.: Runtime Enforcement of Web Service Message Contracts
with Data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012). https://doi.org/10.
1109/TSC.2011.10

19. Hublet, F., Basin, D.A., Krstic, S.: Real-time policy enforcement with metric first-
order temporal logic. In: Atluri, V., Pietro, R.D., Jensen, C.D., Meng, W. (eds.)
Computer Security - ESORICS 2022–27th European Symposium on Research in
Computer Security, Copenhagen, Denmark, September 26–30, 2022, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 13555, pp. 211–232. Springer
(2022). https://doi.org/10.1007/978-3-031-17146-8 11

20. Legislative Assembly of Ontario: Personal Health Information Protection Act
(PHIPA) (2004). https://www.ontario.ca/laws/statute/04p03

21. Li, J., Pu, G., Zhang, L., Vardi, M.Y., He, J.: Accelerating LTL satisfiability check-
ing by SAT solvers. J. Log. Comput. 28(6), 1011–1030 (2018). https://doi.org/10.
1093/logcom/exy013

22. Li, J., Pu, G., Zhang, Y., Vardi, M.Y., Rozier, K.Y.: SAT-based explicit LTLf
satisfiability checking. Artif. Intell. 289, 103369 (2020). https://doi.org/10.1016/
j.artint.2020.103369

23. Li, J., Rozier, K.Y., Pu, G., Zhang, Y., Vardi, M.Y.: SAT-based explicit LTLf satis-
fiability checking. In: The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pp. 2946–2953. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.
33012946

24. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for mission-time LTL. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 3–22. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 1

25. Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTL Satisfiability checking revisited.
In: Proceedings of the 20th International Symposium on Temporal Representation
and Reasoning, Pensacola, FL, USA, 2013, pp. 91–98. IEEE Computer Society
(2013). https://doi.org/10.1109/TIME.2013.19

26. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing different
functional allocations in automated air traffic control design. In: Formal Methods in
Computer-Aided Design (FMCAD’2015), Austin, Texas, USA, pp. 112–119. IEEE
(2015)

27. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 13

https://doi.org/10.1007/978-3-540-24732-6_7
https://doi.org/10.1007/978-3-540-73595-3_12
https://doi.org/10.1007/978-3-540-73595-3_12
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1109/TSC.2011.10
https://doi.org/10.1109/TSC.2011.10
https://doi.org/10.1007/978-3-031-17146-8_11
https://www.ontario.ca/laws/statute/04p03
https://doi.org/10.1093/logcom/exy013
https://doi.org/10.1093/logcom/exy013
https://doi.org/10.1016/j.artint.2020.103369
https://doi.org/10.1016/j.artint.2020.103369
https://doi.org/10.1609/aaai.v33i01.33012946
https://doi.org/10.1609/aaai.v33i01.33012946
https://doi.org/10.1007/978-3-030-25543-5_1
https://doi.org/10.1109/TIME.2013.19
https://doi.org/10.1007/978-3-540-73595-3_13

396 N. Feng et al.

28. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the 28th International Conference on Artificial Intel-
ligence (AAAI’14), Québec City, Canada, pp. 2717–2723. AAAI Press (2014).
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513

29. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981). https://doi.org/10.1145/322276.322287

30. Passmore, G., et al.: The Imandra automated reasoning system (System Descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 464–471. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 30

31. Post, E.L.: Recursive Unsolvability of a Problem of Thue. J. Symb. Log. 12(1),
1–11 (1947). https://doi.org/10.2307/2267170

32. Pradella, M., Morzenti, A., San Pietro, P.: Bounded satisfiability checking of metric
temporal logic specifications. ACM Trans. Softw. Eng. Methodol. 22(3), 20:1–20:54
(2013). https://doi.org/10.1145/2491509.2491514

33. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38574-2 26

34. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of
quantified formulas in SMT. In: Formal Methods in Computer-Aided Design
(FMCAD’2014), Lausanne, Switzerland, pp. 195–202. IEEE (2014). https://doi.
org/10.1109/FMCAD.2014.6987613

35. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73370-6 11

36. Shan, L., Sangchoolie, B., Folkesson, P., Vinter, J., Schoitsch, E., Loiseaux, C.:
A survey on the application of safety, security, and privacy standards for depend-
able systems. In: Proceedings of the 15th European Dependable Computing Con-
ference (EDCC’2019), Naples, Italy, pp. 71–72. IEEE (2019). https://doi.org/10.
1109/EDCC.2019.00023

37. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 23

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
https://doi.org/10.1145/322276.322287
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.2307/2267170
https://doi.org/10.1145/2491509.2491514
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1109/FMCAD.2014.6987613
https://doi.org/10.1109/FMCAD.2014.6987613
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1109/EDCC.2019.00023
https://doi.org/10.1109/EDCC.2019.00023
https://doi.org/10.1007/978-3-642-23702-7_23
http://creativecommons.org/licenses/by/4.0/

Formula Normalizations in Verification

Simon Guilloud(B) , Mario Bucev, Dragana Milovančević ,
and Viktor Kunčak

School of Computer and Communication Sciences, EPFL, Station 14, 1015 Lausanne,
Switzerland

{simon.guilloud,mario.bucev,dragana.milovancevic,viktor.kuncak}@epfl.ch

Abstract. We apply and evaluate polynomial-time algorithms to com-
pute two different normal forms of propositional formulas arising in veri-
fication. One of the normal form algorithms is presented for the first time.
The algorithms compute normal forms and solve the word problem for
two different subtheories of Boolean algebra: orthocomplemented bisemi-
lattice (OCBSL) and ortholattice (OL). Equality of normal forms decides
the word problem and is a sufficient (but not necessary) check for equiva-
lence of propositional formulas. Our first contribution is a quadratic-time
OL normal form algorithm, which induces a coarser equivalence than the
OCBSL normal form and is thus a more precise approximation of propo-
sitional equivalence. The algorithm is efficient even when the input for-
mula is represented as a directed acyclic graph. Our second contribution
is the evaluation of OCBSL and OL normal forms as part of a verification
condition cache of the Stainless verifier for Scala. The results show that
both normalization algorithms substantially increase the cache hit ratio
and improve the ability to prove verification conditions by simplification
alone. To gain further insights, we also compare the algorithms on hard-
ware circuit benchmarks, showing that normalization reduces circuit size
and works well in the presence of sharing.

1 Introduction

Algorithms and techniques to solve and reduce formulas in propositional logic
(and its generalizations) are a major field of study. They have prime relevance in
SAT and SMT solving algorithms [2,8,31], in optimization of logical circuit size
in hardware [25], in interactive theorem proving where propositional variables
can represent assumptions and conclusions of theorems [23,35,43], for decision
procedures in automated theorem proving [13,26,37,41,42], and in every sub-
field of formal verification in general [27]. The propositional problem of satis-
fiability is NP-complete, whereas validity and equivalence are coNP-complete.
While heuristic techniques give useful results in practice, in this paper we investi-
gate guaranteed worst-case polynomial-time deterministic algorithms. Such algo-
rithms can serve as building blocks of more complex functionality, without cre-
ating an unpredictable dependency.

Recently, researchers proposed the use of certain non-distributive comple-
mented lattice-like structures to compute normal forms of formulas [20]. These
results appear to have a practical potential, but they have not been experi-
mentally evaluated. Moreover, the proposed completeness characterization is in
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 398–422, 2023.
https://doi.org/10.1007/978-3-031-37709-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_19&domain=pdf
http://orcid.org/0000-0001-8179-7549
http://orcid.org/0009-0003-0795-881X
http://orcid.org/0000-0001-7044-9522
https://doi.org/10.1007/978-3-031-37709-9_19

Formula Normalizations in Verification 399

terms of “orthocomplemented bisemilattices” (OCBSL), which have a number
of counterintuitive properties. For example, the structure is not a lattice and
does not satisfy the absorption laws x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x. As
a consequence, there is no natural semantic ordering on formulas corresponding
to implication, with x ∧ y = x and x ∨ y = y inducing two different relations.

Inspired by these limitations, we revisit results on lattices, which are much
better behaving structures. We strengthen the OCBSL structure with the
absorption law to consider the class of ortholattices, as summarized in Table 1.
Ortholattices (OL) have a natural partial order for which ∧,∨ act as the great-
est lower bound and the least upper bound. They also satisfy de Morgan’s law,
allowing the elimination of one of the connectives in terms of the other two. On
the other hand, ortholattices do not, in general, satisfy the distributivity law,
which sets them apart from Boolean algebras.

We present a new algorithm that computes a normal form for OL in quadratic
time. The normal form is strictly stronger than the one for OCBSL: there are
terms in the language {∧,∨,¬} that are distinct in OCBSL, but are equal in OL.
Checking equality of OL normal forms thus more precisely approximates propo-
sitional formula equivalence. Both normal forms can be thought of as strength-
ening of the negation normal form.

Table 1. Laws of algebraic structures with signature (S,∧,∨, 0, 1,¬). Structures satis-
fying laws L1–L8 and L1’–L8’ were called orthocomplemented bisemilattices (OCBSL)
in [20]. Those OCBSL that additionally satisfy L9 and L9’ are ortholattices (OL).

L1: x ∨ y = y ∨ x L1’: x ∧ y = y ∧ x

L2: x ∨ (y ∨ z) = (x ∨ y) ∨ z L2’: x ∧ (y ∧ z) = (x ∧ y) ∧ z

L3: x ∨ x = x L3’: x ∧ x = x

L4: x ∨ 1 = 1 L4’: x ∧ 0 = 0

L5: x ∨ 0 = x L5’: x ∧ 1 = x

L6: ¬¬x = x L6’: same as L6

L7: x ∨ ¬x = 1 L7’: x ∧ ¬x = 0

L8: ¬(x ∨ y) = ¬x ∧ ¬y L8’: ¬(x ∧ y) = ¬x ∨ ¬y
L9: x ∨ (x ∧ y) = x L9’: x ∧ (x ∨ y) = x

Example 1. Consider the formula x ∧ (y ∨ z). An OCBSL algorithm finds it
equivalent to

x ∧ ¬(¬y ∧ ¬z) ∧ x

but it will consider these two formulas non-equivalent to

x ∧ (u ∨ x) ∧ (y ∨ z)

The OL algorithm will identify the equivalence of all three formulas, thanks to
the laws (L9, L9’). It will nonetheless consider them non-equivalent to

(x ∧ y) ∨ (x ∧ z)

which a complete but exponential worst-case time algorithm for Boolean algebra
equalities, such as one implemented in SAT solvers, will identify as equivalent.

400 S. Guilloud et al.

A major practical question is the usefulness of such O(n log(n)2) (OCBSL)
and O(n2) (OL) algorithms in verification. Are they as predictably efficient as
the theoretical analysis suggests? What benefits do they provide as a component
of verification tools? To answer these questions, we implement both OCBSL and
OL algorithms on directed acyclic graph representations of formulas. We deploy
the algorithms in tools that manipulate formulas, most notably verification con-
ditions in a program verifier, as well as combinational Boolean circuits.

Contributions. We make the following contributions:

– We present the first algorithm computing a normal form of ortholattice (OL)
terms. The algorithm preserves the quadratic time for the decision problem
of equality in free ortholattices [7]. The quadratic time remains even when
the formula is given in a shared (DAG) representation.

– We implement and experimentally evaluate both the new algorithm for the
OL normal form and a previously known (weaker) OCBSL algorithm (shown
to run in quasilinear time). Our evaluation (Sect. 6) includes:

• behavior on randomly generated formulas;
• scalability evaluation on normalizing circuits of size up to 108 gates;
• normalization for simplification and caching of verification conditions

when using the Stainless verifier, with both hard benchmarks (such as
a compression algorithm) and collections of student submissions for pro-
gramming assignments.

We show that OCBSL and OL both have notable potential in practice.

1.1 Related Work

The overarching perspective behind our paper is understanding polynomial-time
normalization of boolean algebra terms. Given (co)NP-hardness of problems
related to Boolean algebras, we look at subtheories given by a subset of Boolean
algebra axioms, including structures such as lattices. Lattices themselves have
many uses in program abstraction, including abstract interpretation [11] and
model checking [14,18]. The theory of the word problem for lattices has been
studied already by Whitman [44], who proposed a quadratic solution for the
word problem for free lattices. Lattices alone do not incorporate the notion of a
complement (negation). Whitman’s algorithm has been adapted and extended
to finitely presented lattices [17] and other variants, and then to free ortholat-
tices by Bruns [7]. We extend this last result to not only decide equality, but
also to compute a normal form for free ortholattices and to circuit (DAG) rep-
resentation of terms. An efficient normal form does not follow from an efficient
equivalence checking, as there are many formulas in the same equivalence class.
Normal form is particularly useful in applications such as formula caching, which
we evaluate in Sect. 6. For a weaker theory of OCBSL, the normal form algo-
rithm was introduced in [20], without any experimental evaluation. The theory
of ortholattices, even if it adds only one more axiom, is notably stronger and
better understood. The underlying lattice structure makes it possible to draw on
the body of work on using lattices to abstract systems and enable algorithmic
verification. The support for graphs (instead of only terms) as a representation

Formula Normalizations in Verification 401

is of immense practical relevance, because expanding circuits into trees without
the use of auxiliary variables creates structures of astronomical size (Sect. 6).

A notable normal form that decides equality for propositional logic (thus also
accounting for the distributivity law) are reduced ordered binary decision dia-
grams (ROBDDs) [9]. ROBDDs are of great importance in verification, but can
be exponential in the size of the initial formula. Circuit synthesis and verification
tools such as ABC [6] use SAT solvers to optimize sub-circuits [45], which is an
approach to choose a trade-off between the completeness and cost of exponential-
time algorithm. Boolean algebras are in correspondence with boolean rings,
which replace the least upper bound operation ∨ with the symmetric differ-
ence ⊕ (defined as (p∧¬q)∨ (¬p∧ q) and satisfying x⊕x = 0, corresponding to
the exclusive or in the two-element case). There have been proposals to exploit
the boolean ring structure in verification [12]. Polynomials over rings can also be
used to obtain a normal form, but the polynomial canonical forms that we are
aware of are exponential-sized. SMT solvers [2,34] extend SAT solvers, which
makes them worst-case exponential (at best). We expect that our approach and
algorithms could be used for preprocessing or representation, especially in non-
clausal variants of SMT solvers [24,39]. In our evaluation, we apply formula
normal forms to the problem of caching of verification conditions. Caching is
often used in verification tools, including Dafny [28] and Stainless [22]. Our
caching works on formulas and preserves the API of a constraint solver. It is
thus fine grained and can be added to a program verifier or analyzer, regardless
of whether it uses any other, domain-specific, forms of caching [29].

2 Preliminaries

We present definitions and results necessary for the presentation of the ortho-
lattice (OL) normal form algorithm. We assume familiarity with term rewriting
and representation of terms as trees and directed acyclic graphs [15,20]. We use
first-order logic with equality (whose symbol is =). We write A |= F to mean
that a first-order logic formula F is a consequence of (thus provable from) the
set of formulas A.

Definition 1 (Terms). Consider an algebraic signature S. We use TS(X) to
denote the set of terms over S with variables in X (typically an arbitrary count-
ably infinite set, unless specified otherwise). Terms are constructed inductively
as trees. Leaves are labeled with constant symbols or variables. Nodes are labeled
with function symbols. If the label of a node is a commutative function, the chil-
dren of the node are considered as a set (non-ordered) and otherwise as a list
(ordered). We assume that commutative symbols are denoted as such in the sig-
nature.

Definition 2 (The Word Problem). Consider an algebraic signature S and
a set of equational axioms E on S (for example the theory of lattices or ortholat-
tices). The word problem for E is the problem of determining, given two terms
t1 and t2 ∈ TS(X), whether E � t1 = t2.

402 S. Guilloud et al.

Definition 3 (Normal Form). Consider an algebraic signature S and a set of
equational axioms E on S. A function f : TS(X) �→ TS(X) produces a normal
form for E iff: ∀t1, t2 ∈ TS(X), E |= t1 = t2 is equivalent to f(t1) = f(t2).

For Z an arbitrary non-empty set and (∼) ⊆ Z × Z an equivalence relation on
X we use a common notation: if x ∈ Z then [x]∼ = {y ∈ Z | x ∼ y}. Let
Z/∼ = {[x]∼ | x ∈ Z}.

We now briefly review key concepts of free algebras. Let S be a signature
and E be an equational theory over this signature. Consider an equivalence
relation on terms p ∼E q ⇐⇒ (E |= p = q), and note that TS(X)/∼E

is itself
an E-algebra. A freely generated E-algebra, denoted FE(X), is an algebra
generated by variables in X and isomorphic to TS(X)/∼E

, i.e. in which only
the laws of all E-algebra hold. There is always a homomorphism from a freely
generated E-algebra to any other E-algebra over X.

The set of terms TS(X) is also called the term algebra over S. It is the alge-
bra of all terms that contains no identity other than syntactic equality. Given a
(possibly free) algebra A over S and generated by X, there is a natural homomor-
phism κA, in a sense an evaluation function, from TS(X) to A. The word problem
for a theory E then consists in, given p, q ∈ TS(X), deciding if E |= p = q, that
is, κFE

(t1) = κFE
(t2).

In the sequel, we continue to use = to denote the equality symbol inside
formulas as well as the usual identity of mathematical objects. We use == to
specifically denote the computer-performed operation of structural equality on
trees and sets, whereas === denotes reference equality of objects, meaning that
a === b if and only if a and b denote the same object in memory. The distinction
between == and === is relevant because == is a larger relation but may take
linear or worse time to compute, whereas we assume === is constant time.

Lattices. Lattices [4] are well-studied structures with signature (∧,∨) satisfying
laws L1–L3, L9, L1’–L3’ and L9’ from Table 1. In particular, they do not have
a complement operation, ¬, in the signature. Lattices can also be viewed as a
special kind of partially ordered sets with an order relation defined by (a ≤
b) ⇐⇒ (a ∧ b = a), where the last condition is also equivalent to (a ∨ b = b),
given the axioms of lattices. When applied to two-element Boolean algebras,
this order relation corresponds to logical implication in propositional logic. A
bounded lattice is a lattice with maximal and minimal elements 1 and 0. The
word problem for lattices has been solved by Whitman [44] through an algorithm
to decide the ≤ relation and is based on the following properties of free lattices:

(1) s1 ∨ ... ∨ sm ≤ t ⇐⇒ ∀i.si ≤ t
(2) s ≤ t1 ∧ ... ∧ tn ⇐⇒ ∀j.s ≤ tj
(3) s1 ∧ ... ∧ sm ≤ y ⇐⇒ ∃i.si ≤ y
(4) x ≤ t1 ∨ ... ∨ tn ⇐⇒ ∃j.x ≤ tj

s ≤ t ⇐⇒ (∃i.si ≤ t) ∨ (∃j.s ≤ tj),
with s = (s1 ∧ ... ∧ sm) and t = (t1 ∨ ... ∨ tn) (w)

Formula Normalizations in Verification 403

where x and y denote variables and s and t terms. The first four properties are
direct consequences of the axioms of lattices. (w) above is Whitman property and
holds in free lattices (not in all lattices). Applying the above rules recursively
decides the ≤ relation.

Orthocomplemented Bisemilattices (OCBSL). OCBSL [20] are also a
weakening of Boolean algebras (and, in fact, a subtheory of ortholattices). They
satisfy laws L1–L8, L1’–L8’ but not the absorption law (L9, L9’). This implies
in particular that OCBSL do not have a canonical order relation as lattices do,
but rather have two, in general distinct, relations:

a ≤ b ⇐⇒ a ∧ b = a
a � b ⇐⇒ a ∨ b = b

If we add absorption axioms, a ∧ b = a implies a ∨ b = (a ∧ b) ∨ b = b (and
dually), so the structure becomes a lattice. The algorithm presented in [20] does
not rely on lattice properties. Instead, it is proven that the axioms of OCBSL
can be extended to a term rewriting system which is confluent and terminating,
and hence admits a normal form. Using variants of algorithms on labelled trees
to handle commutativity, this normal form can be computed in quasilinear time
O(n log2(n)). In contrast, in the case of free lattices, there exists no confluent
and terminating term rewriting system [16].

3 Deriving an Ortholattice Normal Form Algorithm

Ortholattices [3, Chapter II.1] are structures satisfying laws L1–L9, L1’–L9’ of
Table 1. An ortholattice (OL) need not be a Boolean algebra, nor an orthomod-
ular lattice; the smallest example of such OL is “Benzene” (O6), with elements
{0, a, b,¬b,¬a, 1} where a ≤ b [5]. The word problem for free ortholattices, which
checks if a given equation is true, has been shown to be solvable in quadratic
time by Bruns [7]. In this section, we go further by presenting an efficient com-
putation of normal forms, which reduces the word problem to syntactic equality.
In addition, normal forms can be efficiently used for formula simplification and
caching, unlike equality procedure itself.

Definition 4. For a set of variables X, we define a disjoint set of the same
cardinality X ′ with a bijective function (·)′ : X �→ X ′. Denote by L the theory of
bounded lattices and OL the theory of ortholattices. Define FL, FOL to be their
free lattices and TL and TOL to be the sets of terms over their respective signature.
Define ≤L as the relation on TL such that s ≤L t ⇐⇒ κFL

(s) ≤ κFL
(t) and

≤OL analogously by s ≤OL t ⇐⇒ κFOL
(s) ≤ κFOL

(t), where κ denotes natural
homomorphisms as introduced in the previous section.

Note: p ≤OL q ⇐⇒ (EOL |= (p ∧ q = q)) where EOL is the set of axioms of
Table 1.

404 S. Guilloud et al.

3.1 Deciding ≤OL by Reduction to Bounded Lattices

We consider TL(X ∪ X ′) as a subset of TOL(X) via the injective inclusion on
variables mapping x �→ x and x′ �→ ¬x. We also define a function δ : TOL(X) →
TL(X ∪X ′) as transformation into negation normal form, using laws L6 (double
negation elimination), L8 and L8’ (de Morgan’s laws).

We define a set R ⊆ TL(X ∪X ′) of terms reduced with respect to the contra-
diction laws (L7 and L7’). These imply that, e.g., given a term a∨b, if ¬b ≤ (a∨b),
then from as b ≤ a ∨ b, we have 1 = b ∨ ¬b ≤ (a ∨ b). The following inductive
definition induces an algorithm to check x ∈ R, meaning that such reductions
do not apply inside x:

0, 1, x, x′ ∈ R (for x ∈ X)
a ∨ b ∈ R ⇐⇒ a ∈ R, b ∈ R, δ(¬a) �L a ∨ b, δ(¬b) �L a ∨ b
a ∧ b ∈ R ⇐⇒ a ∈ R, b ∈ R, δ(¬a) �L a ∧ b, δ(¬b) �L a ∧ b

Above, ≤L is the order relation on lattices, x ≥L y denotes y ≤L x, and �L,
�L are the negations of those conditions: x �L y iff not x ≤L y, whereas x �L y
iff not y ≤L x.

We also define β : TL(X ∪ X ′) → R by:

β(0) = 0, β(1) = 1, β(x) = x, β(x′) = x′ (for x ∈ X)

β(a ∨ b) =

{
β(a) ∨ β(b) if β(a) ∨ β(b) ∈ R

1 otherwise

β(a ∧ b) =

{
β(a) ∧ β(b) if β(a) ∧ β(b) ∈ R

0 otherwise

Example 2. We have β((x∧¬y)∨(¬x∨y)) = 1 because δ(¬(x∧¬y)) = ¬x∨y
and ¬x ∨ y ≤L (x ∧ ¬y) ∨ ¬x ∨ y.

Note that it is generally not sufficient to check only for δ(¬a) �L b for
larger examples. In particular, if δ(¬a) is itself a conjunction, by Whitman’s
property, the condition δ(¬a) � (a ∨ b) is not in general equivalent to having
either δ(¬a) �L b or δ(¬a) �L a.

We next reformulate the theorem from Bruns [7]. A key construction from
the proof is the following Lemma.

Lemma 1. R/∼L
is an ortholattice isomorphic to FOL(X).

Theorem 1. Let s, t ∈ TOL(X). Then, s ≤OL t ⇐⇒ β(δ(s)) ≤L β(δ(t)).

Proof. We sketch and adapt the original proof. Intuitively, computing β(δ(s)) ≤L

β(δ(t)) should be sufficient to compute the ≤OLrelation: δ reduces terms to
normal forms modulo rules L6 (double negation elimination) and L8, L8’ (De
Morgan’s Law), and then β takes care of rule L7 (contradiction). The only
rules left are rules from (bounded) lattices, which should be dealt with by
≤L. From Lemma 1, the fact that β factors in the evaluation function κFOL

Formula Normalizations in Verification 405

(i.e. is equivalence preserving) and properties of free algebras, it can be shown
that κFOL

= γ ◦ N∼L
◦ β ◦ δ, where N∼L

(x) = [x]∼L
, and γ : R/∼L

→ FOL(X) is
an isomorphism. Hence

κFOL
(s) ≤ κFOL

(t) ⇐⇒ β(δ(s))/∼L
≤ β(δ(t))/∼L

which is equivalent to s ≤OL t ⇐⇒ β(δ(s)) ≤L β(δ(t)).

3.2 Reduction to Normal Form

To obtain a normal form for TOL(X), we will compose δ and β with a normal
form function for TL(X ∪ X ′). A disjunction a = a1 ∨ ... ∨ am (and dually for a
conjunction) is in normal form for ≤L if and only if the following two properties
hold [15, p. 17]:

1. if ai = (ai1 ∧ ... ∧ ain), then for all j, aij �≤ a
2. (a1, ..., an) forms an antichain (if i �= j then ai � aj)

We now show how to reduce a term in R so that it satisfies both properties
using function ζ that enforces property 1, and then η that additionally enforces
property 2. The functions operate dually on ∧ and ∨; we specify them only on
∨ cases for brevity.

Enforcing Property 1. Define ζ : R → R recursively such that:

ζ(a1 ∨ ... ∨ am) =

⎧⎪⎨
⎪⎩

ζ(a1 ∨ ... ∨ aij ∨ ... ∨ am) if ai = (ai1 ∧ ... ∧ ain)
and aij ≤L a1 ∨ ... ∨ am

ζ(a1) ∨ ... ∨ ζ(am) otherwise

(dually for ∧). It follows that s ∼L ζ(s) for every term s because aij ≤L a1 ∨
...∨am implies a1 ∨ ...∨am = a1 ∨ ...∨am ∨aij and ai ∨aij = aij by absorption.

Enforcing Property 2 (Antichain). Define η : R → R such that

η(a1 ∨ ... ∨ am) =

{
η(a1 ∨ ... ∨ ai−1 ∨ ai+1 ∨ ... ∨ am) if ai ≤L aj , i �= j

η(a1) ∨ ... ∨ η(am) otherwise

We have s ∼L η(s) for every term s because ai ≤L aj means ai ∨ aj = aj .

Example 3. We have: η(ζ([(a ∨ b) ∧ (a ∨ c)] ∨ b)) = η((a ∨ b) ∨ b) = a ∨ b.
Indeed, the first equality follows from

(a ∨ b) ≤L [(a ∨ b) ∧ (a ∨ c)] ∨ b

and the second from b ≤L (a ∨ b).

406 S. Guilloud et al.

Denote by R′ the subset of R containing the terms satisfying property 1 and
R′′ the subset of R′ of terms satisfying property 2. It is easy to see that ζ is
actually R → R′ and η can be restricted to R′ → R′′. Moreover s, t ∈ R′′ and
s ∼L t implies s = t. Recall that ∀w ∈ TOL(X).β(δ(w)) ∈ R. Since β and δ are
equivalence preserving, ∀w1, w2 ∈ TOL(X)

w1 ∼OL w2 ⇐⇒ β(δ(w1)) ∼OL β(δ(w2))

Moreover, since (by Lemma 1) R/∼L
is an ortholattice, we have

β(δ(w1)) ∼OL β(δ(w2)) ⇐⇒ β(δ(w1)) ∼L β(δ(w2))

i.e. in R, ∼OL≡∼L. Then,

β(δ(w1)) ∼L β(δ(w2)) ⇐⇒ η(ζ(β(δ(w1))) ∼L η(ζ(β(δ(w2))))

and since both η(ζ(β(δ(w1))) ∈ R′′ and η(ζ(β(δ(w2))) ∈ R′′

η(ζ(β(δ(w1))) = η(ζ(β(δ(w2))))

We finally conclude:

Theorem 2. NFOL = η ◦ ζ ◦ β ◦ δ is a computable normal form function for
ortholattices.

3.3 Complexity and Normal Form Size

Before presenting the algorithm in more detail, we argue why the normal form
function from the previous section can be computed efficiently. We assume a
RAM model and hence that creating new nodes in the tree representation of
terms can be done in constant time.

Note that the size of the output of each of δ, β, ζ and η is linearly bounded
by the size of the input. Thus, the asymptotic runtime complexity of the com-
position is the sum of the runtimes of these functions. Recall that δ (negation
normal form) is computable in linear time and ζ and η are both computable
in worst-case quadratic time, plus the time needed to compute ≤L. Then, β,
R and ≤L are each computable in constant time plus the time needed for the
mutually recursive calls. While a direct recursive implementation would be expo-
nential, observe that the computation time of R and β is proportional to the
total number of times they get called on. If we store (memoize) the results of the
functions for each different input, this time can be bounded by the total num-
ber of different sub-nodes that are part of the input or which we create during
the algorithm’s execution. Similarly, ≤L needs to be applied to, at worst, every
pair of such sub-nodes. Consequently, if we memoize the result of each of these
functions at all their calls, we may expect to obtain at most quadratic time to
compute them on all the sub-nodes of a formula.

The above argument is, however, not entirely sufficient, because comput-
ing R(a ∧ b) requires creating the new nodes ¬a and ¬b and then computing

Formula Normalizations in Verification 407

their negation normal form, which again creates new nodes. Indeed, note that,
for memoization, we need to rely on reference (pointer) equality, as structural
equality would take a linear amount of time to compute (for a total cubic time).
Hence, to obtain quadratic time and space, we need to be able to negate a node
in negation normal form without creating new nodes too many new nodes in
memory. To do so, define op : TL(X ∪ X ′) → TL(X ∪ X ′) by

op(x) = x′ op(a ∧ b) = op(a) ∨ op(b)
op(x′) = x op(a ∨ b) = op(a) ∧ op(b)

op(a) is functionally equal to δ(¬a), but has the crucial property that

children(op(τ)) === op[children(τ)]

Where τ denotes a formal conjunction or disjunction and children(τ) is the set
of children of τ as a tree. op can be efficiently memoized. Moreover, it can be
bijectively memoized: if op(a) = b we shall also store op(b) = a. We thus obtain
op(children(op(τ))) === children(τ). In this approach we are guaranteed to
never instantiate any node beyond the n subnodes of the original formula (in
negation normal form) and their opposite for a total of 2n nodes. Hence, we only
ever needed to call op, R and β on up to 2n different inputs and ≤ on up to 4n2

different inputs, guaranteeing a final quadratic running time.

Minimal Size. Finally, as none of δ, β, ζ and η ever increase the size of the for-
mula (in terms of the number of literals, conjunctions and disjunctions), neither
does NFOL. Consequently, for any term w, NFOL(w) is one of the smallest terms
equivalent to w. Indeed, let wmin = w such that wmin is a term of smallest size
in the equivalence class of w. In particular, NFOL(wmin) cannot be smaller than
wmin (because wmin is minimal in the class) nor larger (because NFOL is size
non-increasing). Since NFOL(w) = NFOL(wmin), NFOL(w) is of minimal size.

Theorem 3. The normal form from Theorem 2 can be computed by an algo-
rithm running in time and space O(n2). Moreover, the resulting normal form is
guaranteed to be smallest in the equivalence class of the input term.

4 Algorithm with Memoization and Structure Sharing

To obtain a practical realization of Theorem 3, we need to address two main
challenges. First, as explained in the previous section, we need to memoize the
result of some functions to avoid exponential blowup. Second, we want to make
the procedure compatible with structure sharing, since it is an important feature
for many applications.

By memoization we mean modifying a function so that it saves the result of
the calls for each argument, so that they can be found without future recompu-
tations. Results of function calls can be stored in a map. For single-argument
functions we find it is typically more efficient to introduce a field in each object

408 S. Guilloud et al.

to hold the result of calling a function on it. Under structure sharing we under-
stand the possibility to reuse subformulas multiple times in the description of a
logical expression. In case of signature ∧,∨,¬, such expressions can be viewed as
combinational Boolean circuits. We represent such terms using directed acyclic
graph (DAG) reference structures instead of tree structures.

Circuits can be exponentially more succinct than equivalent formulas, but not
all formula rewrites are efficient in the presence of structure sharing (consider
for example, rules with substitution such as x ∧ F � x ∧ F [x := 1], where F
may also be referred to somewhere else). Structure sharing is thus non-trivial to
maintain throughout all representations and transformations. Indeed, making a
naive recursive modification of a circuit will unfold the DAG into a tree, often
causing an exponential increase in space. Doing so optimally also requires the
use of memoization. Moreover, the choice of representations and datastructures
is critical.

We show that it is possible to make both algorithms fully compatible with
structure sharing without ever creating node duplicates. The algorithm ensures
that the resulting circuits will contain a smaller number of subnodes, preserve
equivalence, and enforce that two circuits have the same representation if and
only if they describe the same term (by the laws of OL).

Algorithm 1: Datastructure for Formulas

1 numberOfFormulas ← 0
2 Datastructure AIGFormula
3 val uniqueId: Int ← numberOfFormulas++ // get fresh ID on node creation

4 var inverse:AIGFormula ← null

5 var normal:AIGFormula ← null
6 var smaller: Set[Int] ← ∅ // sparse bitset

7 var notSmaller: Set[Int] ← ∅ // sparse bitset

8 case Variable(id:String, polarity:Bool) of AIGFormula
9 case Literal(polarity:Bool) of AIGFormula

10 case Conjunction(children:List[AIGFormula], polarity:Bool) of AIGFormula

11 val Positive: Bool = True; val Negative: Bool = False

Algorithm 2: Computing Negations

1 def inverse(τ) // AIGFormula -> AIGFormula

2 if isDefined(τ .inverse) then

3 return τ .inverse

4 else
5 τ̄ ← τ .copy(polarity = !τ .polarity)

6 τ .inverse ← τ̄

7 τ̄ .inverse ← τ
8 return τ̄

Formula Normalizations in Verification 409

Algorithm 3: Computing ≤
1 def ≤(τ , π) // AIGFormula -> AIGFormula -> Bool

2 if τ .smaller contains π.uniqueId then return True

3 else if τ .notSmaller contains π.uniqueId then return False

4 else
5 r ← match (τ , π) :

6 case (lhs, Conjunction(children, Positive)) :

7 ∀c ∈ children. τ≤c
8 case (Conjunction(children, Negative), rhs) :

9 ∀c ∈ children. inverse(c)≤π
10 case (Variable(id), Conjunction(children, Negative) :
11 ∃c ∈ children. τ≤inverse(c)

12 case (Conjunction(children, Positive), Variable(id)) :
13 ∃c ∈ children. c≤π

14 case (Conjunction(tauCh, Positive), Conjunction(piCh, Negative)) :

// would cause exponential explosion without memoization:

15 (∃c ∈ tauCh. c≤π) ∨ (∃c ∈ piCh. τ≤inverse(c))

16 case (Variable(id1), Variable(id2)) :

17 id1 == id2

18 if r then τ .smaller += π.uniqueId

19 else τ .notSmaller += π.uniqueId
20 return r

Pseudocode. Algorithms 1, 2, 3, 4 present pseudocode implementation of the
normal form function from Theorem 2. To more easily maintain structure shar-
ing and gain performance, we move away from the negation normal form rep-
resentation and prefer to use a representation of formulas similar to AIG (And-
Inverter Graph) where a formula is either a Conjunction, a Variable or a Literal
and contains a boolean value telling if the formula is positive or negative (see
Algorithm 1). This implies that δ needs to transform arbitrary Boolean formulas
into AIGFormulas instead of negation normal forms. Fortunately, AIGFormula
can be efficiently translated to NNF (and back) so we can view them as an
alternative representation of terms in TL(X ∪ X ′). For the sake of space, we do
not show the reduction from general formula trees on the signature (∧,∨,¬) and
work directly with AIGFormulas, but the implementation needs memoization to
avoid exponential duplication in presence of structure sharing.

Recall that computing R requires taking the negation of some formulas, and
projecting them back into TL(X ∪ X ′) with δ. Using AIGFormula makes it
possible to always take the negation of a formula in constant time and space.
The corresponding function inverse(τ) is in Algorithm 2, and corresponds to
the op function from the previous section. The memoization ensures that for
all τ , inverse(inverse(τ)) === τ , and our choice of data structure ensures that
children(inverse(τ)) === children(τ). Those two properties guarantee that any
sequence of access to children and inverses of τ will always yield a formula object
within the original DAG, or its single inverse copy. In particular, regardless of
structure sharing in the input structure, we never need to store in memory more

410 S. Guilloud et al.

than twice the total number of formula nodes in the input. As explained in
Sect. 3.3, a similar condition could be made to hold with NNF, but we believe it
is more complicated and less efficient when implemented.

Function ≤ in Algorithm 3 is based on Whitman’s algorithm adapted to
AIGFormula. For memoization, because the function takes two arguments, we
store in each node the set of nodes it is smaller than or not using two sets. Note
that storing and accessing values in a set (even a hash set) is only as efficient as
computing the equality relation on two objects is. Because structural equality
== takes linear time to compute, we use referential equality with the uniqueId
of each formula (declared in Algorithm 1). We found that using sparse bit sets
yields the best performances.

The simplify function in Algorithm 4 makes a one-level simplification of a
conjunction node, assuming that its children have already been simplified. We
present the case when τ is positive. It works in three steps. The subfunction zeta
corresponds to the ζ function from the previous section. It both flattens consecu-
tive positive conjunctions and applies a transformation based on a strengthened
version of the absorption law. Then at line 13, we filter out the nodes which are
smaller than some other node, for example if c ≤ b then a ∧ b ∧ c becomes a ∧ c.
This corresponds to function η. Finally, line 16 applies the contradiction law, i.e.
if a∧ b∧ c ≤ ¬a then a∧ b∧ c becomes 0. Note again that checking only if either
b ≤ ¬a or c ≤ ¬a holds is not sufficient (see for example the case a = (¬b ∨ ¬c).
This corresponds to the β function. The correspondence with the three functions
ζ, η and β is not exact; all computations are done in a single traversal over the
structure of the formula, rather than in separate passes as the composition ◦ of
functions in Theorem 2 might suggest.

Importance of Structure Sharing. As detailed in Sect. 6, our implementation
finished in a few tenths of a second on circuits containing approximately 105 And
gates, but whose expanded formula would have size over 102000, demonstrating
the compatibility of the algorithm with structure sharing. For this, we must
ensure at every phase and for every intermediate representation, from parsing of
the input to exporting the solution, that no duplicate node is ever created. This is
achieved, again, using memoization. The complete and testable implementation
of both the OL and OCBSL algorithms in Scala is available at https://github.
com/epfl-lara/lattices-algorithms.

5 Application to More Expressive Logics

This section outlines how we use OCBSL and OL algorithms in program verifica-
tion. Boolean Algebra is not only relevant for pure propositional logic; it is also
the coreof more complex logics, such as the ones used for verification of software.

https://github.com/epfl-lara/lattices-algorithms
https://github.com/epfl-lara/lattices-algorithms

Formula Normalizations in Verification 411

Algorithm 4: Computing normal form

1 def simplify(τ) // Conjunction -> AIGFormula

// Assume τ is positive

// (In negative cases, some nodes must be inverted and ≤ reversed.)

2 newChildren ← List()
3 def zeta(child)

4 match child :

5 case PositiveConjunction :
6 newChildren.add(child.Children)

7 case child:NegativeConjunction :

8 gc ← child.children.find(gc 	→ τ≤ gc)
9 if isDefined(gc) then zeta(gc)

10 else newChildren.add(child)

11 for child ← τ .children do

12 zeta(child)

13 children’ ← // filter out redundant children smaller than another child

14 if children’.size == 0 then return Literal(True)

15 else if children’.size == 1 then return children’.head

16 else if ∃ c ∈ children’. τ≤ inverse(c) then return Literal(False)
17 else return Conjunction(newChildren)

18

19 def NFOL(τ) // AIGFormula -> AIGFormula

20 if isDefined(τ .normal) then return τ .normal
21 else

22 τ .normal ← match τ :
23 case Variable(id, True): τ
24 case Variable(id, False): inverse(NFOL(inverse(τ)))

25 case Conjunction(children, polarity): simplify(children map NFOL

polarity)

26 return τ .normal

Propositional terms appear as subexpressions of the program (as members of the
Boolean type), but also in verification conditions corresponding to correctness
properties. This section highlights key aspects of such a deployment.

We consider programs containing let bindings, pattern matching, algebraic
data types, and theories including numbers and arrays. Let bindings typically
arise when a variable is set in a program, but is also introduced in program
transformations to prevent exponential increase in the size of program trees.
Since OCBSL and OL are compatible with a DAG representation—fulfilling a
similar role to let bindings—they can similarly “see through” bindings without
breaking them or duplicating subexpressions.

If-then-else and pattern matching conditions can be analyzed and used by the
algorithms, possibly leading to dead-branch removal or condition simplification.
Extending OCBSL and OL to reason about ADT sorts further increases the
simplification potential for pattern matching. For instance, given assumptions
φ, a scrutinee s and an ADT constructor identifier id of sort S, we are interested
in determining whether s is an instance of the constructor id. A trivial case

412 S. Guilloud et al.

includes checking the form of s. Otherwise, we can run OCBSL or OL to check
whether φ =⇒ (s is id) holds. If φ =⇒ (s is id) fails, we instead test
whether φ =⇒ ¬(s is id′) for all id′ �= id ∈ S. We may also negatively
answer to the query if φ =⇒ (s is id′) for some id′ �= id ∈ S.

The original OCBSL algorithm presented in [20] achieves quasi-linear time
complexity by assigning codes to subnodes such that equivalent nodes (by the
laws of OCBSL) have the same codes. This is not required for the OL algorithm
as it is quadratic anyway, but can still be done to allow common subexpres-
sion elimination. This is similar to hash-consing, but more powerful, as it also
eliminates expressions which are equivalent with respect to OCBSL or OL.

Of particular relevance is the inclusion of underlying theories such as numbers
or arrays. OL has an advantage over OCBSL in terms of extensibility. Namely,
OL makes it possible to implement more properties of theories through expan-
sion of its ≤OL relation (Algorithm 3) with inequalities between syntactically
distinct atomic formulas. For example, if <I and ≤I are relations on mathe-
matical integers in the theory of the SMT solver, our implementation deduces
that (x <I y) ≤OL (x ≤I y) using the rule z + a <I 0 =⇒ z + b ≤I 0
when b ≤I a + 1, instantiated with z = x − y and a = b = 0. In one of
our benchmarks, this simple rule led OL to simplify a verification condition
(VC) of the form ¬(x <I y ∧ φ1 ∧ x >I y ∧ φ2) to true, which was of interest
because φ1, φ2 were large. This simplification is performed at line 16 of Algo-
rithm 4 with τ = x <I y ∧ x >I y ∧ φ, where we have c = x >I y because
τ ≤OL (x ≤I y) ⇐= (x <I y) ≤OL (x ≤I y). In contrast, OCBSL was not able
to do the simplification because it is not able to systematically check for inequal-
ities of subterms. For arrays, our implementation also checks for the property
i �= j ≤OL a[i := v](j) = a(j). Combined with two other rules, related to con-
gruence, OL performs particularly well for array-intensive benchmarks such as
SortedArray. Note that in OCBSL we may encode a weak form of implication
by specifying (giving the same code to) φ ∧ ψ = φ or φ ∨ ψ = ψ, but unlike the
OL encoding, this does not even allow simplifying formulas such as φ ∧ τ ∧ ¬ψ
without a specific check, which would require quadratic time in general.

Other Extensions. Beyond program verification, we suspect OL or OCBSL
based techniques to be extendable in applications such as type checkers, inter-
active and automated theorem provers using first order, higher order, temporal
and modal logics, SMT solvers or lattice problems in abstract interpretation.
Unidirectional rules which may be particularly relevant for automated theorem
proving include [f(x) = f(y)] ≤OL [x = y], [∀x, P (x)] ≤OL P (t), and P ≤OL Q
when P → Q is a known theorem. In the context of quantified logics and lambda
calculus, both algorithms are compatible with de Bruijn index representation of
bound variables. Both algorithms can be used as partial simplification before or
while applying more powerful but possibly incomplete heuristic simplification
methods, such has the simplification rule x ∧ F [x] � x ∧ F [x := 1] (which, if
viewed as an equality axiom, turns OL into Boolean algebra).

Formula Normalizations in Verification 413

6 Evaluation

Our experimental evaluation comprises three parts. First, we analyze the behav-
ior of the OL and OCBSL algorithms on large random formulas, to understand
the feasibility of using them for normalization. Second, we evaluate the algo-
rithms on combinatorial circuits [1]. Third and most importantly, we show their
impact through a new simplifier for verification conditions of the Stainless [22]
verifier. The goal of the simplifier is to avoid the need to invoke a solver for some
of the formulas by reducing them to True, as well as to normalize them before
storing them in a persistent cache file. The cache avoids the need to repeatedly
prove previously proven verification conditions. By improving normalization, we
improve the cache hit rate. We conduct all experiments on a server with 2×
Intel�Xeon�CPU E5-2680 v2 at 2.80 GHz, 40 cores including hyperthreading
and 64 GB of memory.

6.1 Randomly Generated Propositional Formulas

We first evaluate the two algorithms on randomly generated formulas. We mea-
sure the running time and the reduction in formula size. We build the random
formulas as follows.

Definition 5. A random formula is parameterized by a size s and a set of avail-
able variables X = {x1, ..., xn}. Given a size s, if s ≤ 1 then pick uniformly at
random a variable from X or its negation and return it. Otherwise, pick t such
that 0 < t < s − 1 and generate two formulas φ1 and φ2 of sizes t and s − 1 − t.
Return uniformly at random And(φ1, φ2) or Or(φ1, φ2).

Running Time. We show in Fig. 1a the approximate running time of both
algorithms for various sizes of formulas. We ran the experiment 21 times for each
formula size category and took the median. For comparison with a theoretically
linear time process, we also give the running time of the corresponding negation
normal form transformation. These implementations do not come with low-level
optimizations and are intended for demonstrating usability in practice, and do
not serve as a competitive indicator.

Fig. 1. (a) Median running time of NNF and the two algorithms (log-log scale). (b)
Median size of the normalized formulas relative to the original in NNF. |X| = 50
variables.

414 S. Guilloud et al.

Size Reduction. For a fairer comparison, we apply a basic simplification (flat-
tening and transformation into negation normal form) to random formulas before
computing their size. We compare the number of connectors before and after the
simplification for both algorithms. We show the relative improvements of the OL
and OCBSL algorithms compared to the original formulas for various sizes of
formulas and 50 variables. We have run both algorithms 21 times and report the
median results in Figs. 1b.

It is interesting to note that the OL normal form is consistently and signif-
icantly smaller than the OCBSL normal form, i.e. the Absorption law actually
allows non-trivial reductions in size. This confirms that, in general, there is a
trade-off between the two algorithms between speed and simplification strength.

6.2 Computing Normal Forms for Hardware Circuits

Moving towards more realistic formulas, we assess the scalability of OCBSL and
OL on the EPFL Combinatorial Benchmark [1] comprising 10 arithmetic circuits
designed to challenge optimization tools, with up to 108 gates.

Table 2. Results on the EPFL Combinatorial Benchmark. OL times-out for hyp after
1h.

adder bar div hyp log2 max mult sin sqrt square

of gates 50173 72704 107 108 107 107 107 106 107 107

OCBSL Ratio 1.00 0.703 0.777 0.961 0.700 0.861 0.867 0.652 0.661 0.927

OL Ratio 1.00 0.703 0.777 – 0.697 0.861 0.865 0.647 0.661 0.927

OCBSL Time [s] 0.142 0.182 0.866 2.06 0.564 0.189 0.442 0.255 0.362 0.365

OL Time [s] 0.276 0.338 706 – 339 0.319 73.8 15.7 256 36.0

We run the experiment five times. We report the median running time and
the relative size after optimization in Table 2. We observe that the OCBSL algo-
rithm is close to as good as the OL algorithm in all cases, and, moreover, that it
is very time-efficient even for problems with hundreds of millions of gates. The
OL algorithm sometimes performs slightly better and is pretty much as time-
efficient for not too large inputs, but becomes significantly more time-consuming
for inputs with more than approximately 106 gates. Those results suggest on one
hand that OCBSL may be a more suitable reduction technique on some appli-
cations with very large formulas, depending on their internal structures. It also
suggests that both algorithms work well in practice with Boolean circuits mak-
ing heavy use of structure sharing. Indeed, the expanded form of, for example,
the adder circuit would have about 22000 nodes.

6.3 Caching Verification Conditions in Stainless

We implement the approach described in Sect. 5 by modifying the Stainless veri-
fier [22,40]1, a publicly available tool for building formally verified Scala programs.
1 https://github.com/epfl-lara/stainless/.

https://github.com/epfl-lara/stainless/

Formula Normalizations in Verification 415

Our implementation adds two new simplifiers to Stainless: OCBSL-backed
and OL-backed. They are part of Stainless release v0.9.82 and are selectable by
the command line options --simplifier=ocbsl and --simplifier=ol respec-
tively. For the OL simplifier, we have extended the ≤OL relation with 12 simple
arithmetic and array rules.

We experimentally compare the two new simplifiers to the existing one (which
we denote Old). We use two groups of benchmarks: (1) six Stainless case studies
from the Bolts repository3 that take a significant amount of time to verify,
and (2) nine benchmark sets from automated grading of student assignments.
Together, this constitutes around 84’000 lines of Scala code, specifications, and
auxiliary assertions. We report the following metrics: the size of the VCs after
simplification, the number of cache hits, the number of VCs simplified to 1, the
wall-clock time and the cumulative solving time. The wall-clock time comprises
the full Stainless pipeline, from parsing the program to outputting the result,
passing by solver calls and VC simplification.

Fig. 2. VCs (tree) size scatter plot from all benchmarks for Old, OCBSL and OL.

Evaluation on Bolts Case Studies. We consider the following case studies
from the mentioned Bolts repository:

– LongMap (9613 VCs, 7091 LOC), a mutable hash map, 64-bit integer keys,
open addressing, formalized by Samuel Chassot (EPFL) and proven to behave
equivalently to a list of (key, value) pairs.

– A type checker for System F [19] (5040 VCs, 2501 LOC) formalized in Stain-
less by Andrea Gilot and Noé De Santo (EPFL). Among the key properties
proven are type judgment uniqueness, preservation and progress.

– QOI (4487 VCs, 2812 LOC), an implementation of the Quite OK Image for-
mat. Decoding an encoded image is shown to yield the original image [10].

– RedBlack, a red-black tree (764 VCs, 796 LOC).
– SortedArray (472 VCs, 429 LOC), a mutable array preserving order on inser-

tion. Developed for use in a simplified model of part of a file system [21].

2 https://github.com/epfl-lara/stainless/releases/tag/v0.9.8.
3 https://github.com/epfl-lara/bolts.

https://github.com/epfl-lara/stainless/releases/tag/v0.9.8
https://github.com/epfl-lara/bolts

416 S. Guilloud et al.

– ConcRope (408 VCs, 621 LOC), a Conc-Tree rope [36], supporting amortized
constant time append and prepend operation, based on a Leon formalization
[30].

We report the VCs size measurement in Fig. 2, where we aggregate the results
from all benchmarks. Figure 2a reveals a couple of VCs with an increased size.
Inspection of these VCs shows the reason is due to the new simplifiers always
inlining “simple expressions”, such as field projection on free variables, instead
of having them bound. On average, OCBSL and OL decrease the size of the VCs
by 37% compared to Old. OL reduces the size of the VCs slightly compared to
OCBSL (Fig. 2b).

(a) Cache hits in a single run (b) VCs simplified to 1

(c) Cumulative solving time

(d) Wall-clock time

Fig. 3. Old, OCBSL and OL results for cache hits, VCs reduced to 1, solving and run-
ning time. (c), (d) are normalized with respect to Old. In (c), the gray boxes represent
the time spared due to extra cache hits and VCs reduced to 1 compared to Old.

In Fig. 3a, we report the cache hit ratio. For the new simplifiers, reducing the
formula size has the desired effect of noticeably increasing the hit ratio, especially
for 4 out of 6 benchmarks. The additional power of OL helps for System F and
SortedArray.

We report in Fig. 3c not only the solving time for the two simplifiers (normal-
ized with respect to Old), but also the solving time saved thanks to additional
cache hits and VCs simplified to 1. ConcRope and RedBlack do not benefit
from the new simplifiers, while the other benchmarks do in various degrees. For
LongMap, adding the two ratios yields a ratio of ≈ 1, implying the reduced solving

Formula Normalizations in Verification 417

time is due to extra caching. The solver did not benefit from the new simplifiers
for non-cached VCs. The System F benchmark shows a ratio exceeding 1, mean-
ing that OCBSL and OL did not help the solver more than the extra time they
took to run. For QOI and SortedArray, the combined ratio is less than 1: the
new simplifiers helped the solver for non-cached VCs. OL performs significantly
better than OCBSL in the SortedArray benchmark, thanks to the extension of
the ≤OL relation with array rules. We note that 25% of QOI VCs have a size of
more than 880, against 480 for the second benchmark (SortedArray), and 450
for the third (LongMap).

Turning our attention to Fig. 3d, we note that the time spared to solver calls
is essentially compensated for more work on the new simplifiers on three of the
benchmarks. Moreover, LongMap, SortedArray and especially QOI have a net
benefit over Old.

OCBSL and OL simplifiers show the greatest improvement on large VCs.
Note that the outcome of a Stainless run highly depends on user-provided asser-
tions, which were hand-tuned under the Old simplifier. It is thus possible that
new simplifiers have a disadvantage because they were not used during the ver-
ification process. The additional power provided by the new simplifiers may
make writing such intermediate assertions easier and faster, so we expect the
full advantage of new simplifiers in newly developed verified software.

Table 3. Results on programming assignments

Benchmark filter max mirror mem sigma nat uniq formula lambda

Submissions 210 216 96 136 734 381 147 677 782

Cumulative LOC 2367 3452 1165 1987 8347 8950 3648 19226 17958

VCs 820 844 387 560 1528 2653 1352 9865 5922

Solver Calls Old 28 81 44 77 75 133 264 1037 1115

OCBSL 19 79 43 75 58 133 251 1033 1069

OL 18 79 42 74 50 131 251 1032 1066

VCs reduced to 1 Old 211 302 95 151 4 886 381 1322 1320

OCBSL 211 302 95 151 6 890 381 1327 1322

OL 213 302 95 151 794 890 381 1332 1322

Cache Hits Old 581 461 248 332 1449 1634 707 7506 3487

OCBSL 590 463 249 334 1464 1630 720 7505 3531

OL 589 463 250 335 684 1632 720 7501 3534

VCs (tree) Size Old 6705 5576 3077 5097 47759 15378 12144 126968 78962

OCBSL 6479 5546 3073 5063 49775 14514 11465 125289 75837

OL 6457 5546 2982 5000 34173 14482 11444 125037 75307

Solving Time [s] Old 2.48 5.61 3.72 5.79 4.17 7.97 14.27 118.61 108.42

OCBSL 1.91 5.22 3.52 5.75 3.43 5.73 14.27 102.48 104.27

OL 1.70 4.92 3.06 5.34 3.66 7.03 13.57 134.73 104.60

Total Time [m:s] Old 0:27 0:36 0:16 0:21 0:59 14:02 1:36 51:01 115:39

OCBSL 0:29 0:38 0:17 0:22 1:04 14:33 1:37 50:08 120:48

OL 0:29 0:38 0:16 0:22 1:10 14:43 1:46 58:05 116:09

418 S. Guilloud et al.

Evaluation on Programming Assignments. We additionally evaluate our
approach on benchmarks consisting of many student solutions for several pro-
gramming assignments. We consider benchmarks from [32,33], obtained by trans-
lation of student solutions in OCaml [38]. In this evaluation, we only prove ter-
mination of all student solutions, which is one of the bottlenecks when proving
correctness of students solutions. We annotated all benchmarks with explicit
decreasing measures. Stainless generates verification conditions that require the
measure to decrease in recursive calls. Caching is particularly desirable in this
scenario, with many programs and a high degree of similarity. Table 3 shows our
evaluation results, comparing the two new simplifiers (OCBSL and OL) to the
old one.

First, we note that moving from Old to OCBSL to OL reduces the number of
calls to the solver. Furthermore, many new VCs are proven valid by normaliza-
tion alone (reduced to 1). The largest benefit of OL is in the sigma benchmark,
where the subsumption of linear arithmetic literals in the simplifier substan-
tially increases the number of formulas proven by normalization: from 6 (0.4%)
in OCBSL to 794 (52%) for OL.

The new simplifiers improve the number of cache hits, even if not as much
as for the Bolts case studies. The smaller reduction is because there is a high
degree of similarity across the submissions, so the Old simplifier already achieves
a large percentage of cache hits. Note also that a smaller number of cache hits
in the sigma benchmark is because many of the VCs are proven valid by the
simplifier, avoiding the need to consult the cache or the solver in first place.

Second, we notice a slight reduction in the overall VC size, with a couple of
exceptions where OCBSL resulted in a size increase due to inlining. Thanks to
formulas proven by normalization and improved cache hits, the overall solving
time decreases in several benchmarks. The wall clock running time is approxi-
mately unchanged, but we expect such benefits in the future.

7 Conclusion

We proposed a new approach to simplify and reason about formulas, based on
algorithms which are sound and complete for the normal form problem (and the
word problem) of two subtheories of Boolean algebra. These algorithms are sound
but incomplete for Boolean algebras (and thus for the two-element boolean alge-
bra of propositional logic). We introduced and proved the correctness of a new
algorithm to compute normal forms in a theory of ortholattices, which do not
enforce the distributivity law but only its weaker variation, absorption. Our algo-
rithm runs in time O(n2). A weaker subtheory, OCBSL, gives up the absorption
law. The disadvantage of OCBSL is a weaker normal form, whereas the advan-
tage is that we know of an algorithm running in subquadratic time, O(n log(n)2).
We evaluated both algorithms, using them to reduce the size of large random
formulas and combinatorial circuits, showing that they work well with structure
sharing. We also implemented the algorithms in the Stainless verifier, where
computing normal forms reduced the size of formulas given to the solver and

Formula Normalizations in Verification 419

improved the cache hit ratio. Our experimental evaluation confirmed that the
tradeoff between normal form strength and the asymptotic complexity remains
visible in practice. We found both algorithms useful in practice. OCBSL normal-
ization has excellent running time even for very large circuits, so we believe it
can replace the simpler negation normal form and syntactic equality checking at
low cost in essentially all applications. The quadratic cost of the OL algorithm
is too prohibitive on circuits over 107 gates. However, this was not a problem for
its application to verification conditions in Stainless, where its added precision
and the ability to compare atomic formulas made it more effective in normal-
izing certain formulas to True and increasing cache hits. In some of the most
difficult case studies, such as Quite OK Image Format [10], these improvements
translated into substantial reduction of the wall clock time. Such measurable
improvements, combined with theoretical guarantees, make the OL and OCBSL
algorithms an appealing building block for verification systems.

References

1. Amarù, L., Gaillardon, P.E., De Micheli, G.: The EPFL combinational benchmark
suite. In: Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS) (2015). https://github.com/lsils/benchmarks

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman,
D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9 24

3. Beran, L.: Orthomodular Lattices (An Algebraic Approach). Springer, Dordrecht
(1985). https://doi.org/10.1007/978-94-009-5215-7

4. Birkhoff, G.: Lattice Theory, AMS Colloquium Publications, 3rd edn., vol. 25.
AMS (1973)

5. Bonzio, S., Chajda, I.: A note on orthomodular lattices. Int. J. Theor. Phys. 56,
3740–3743 (2017). https://doi.org/10.1007/s10773-016-3258-6

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

7. Bruns, G.: Free ortholattices. Can. J. Math. 28(5), 977–985 (1976). https://doi.
org/10.4153/CJM-1976-095-6

8. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 12

9. Bryant, R.E.: Binary decision diagrams. In: Clarke, E., Henzinger, T., Veith, H.,
Bloem, R. (eds.) Handbook of Model Checking, pp. 191–217. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-10575-8 7

10. Bucev, M., Kunčak, V.: Formally verified quite OK image format. In: Formal Meth-
ods in Computer-Aided Design (FMCAD) (2022)

11. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho,
A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming Languages, San Antonio, Texas, USA,
January 1979, pp. 269–282. ACM Press (1979). https://doi.org/10.1145/567752.
567778

https://github.com/lsils/benchmarks
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-94-009-5215-7
https://doi.org/10.1007/s10773-016-3258-6
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.4153/CJM-1976-095-6
https://doi.org/10.4153/CJM-1976-095-6
https://doi.org/10.1007/978-3-642-12002-2_12
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778

420 S. Guilloud et al.

12. Dershowitz, N., Hsiang, J., Huang, G.-S., Kaiss, D.: Boolean rings for intersection-
based satisfiability. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 482–496. Springer, Heidelberg (2006). https://doi.org/10.
1007/11916277 33

13. Duarte, A., Korovin, K.: Implementing superposition in iProver (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 24

14. Even-Mendoza, K., Asadi, S., Hyvärinen, A.E.J., Chockler, H., Sharygina, N.:
Lattice-based refinement in bounded model checking. In: Piskac, R., Rümmer, P.
(eds.) VSTTE 2018. LNCS, vol. 11294, pp. 50–68. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03592-1 4

15. Freese, R., Jezek, J., Nation, J.: Free Lattices, Mathematical Surveys and Mono-
graphs, vol. 42. American Mathematical Society, Providence (1995). https://doi.
org/10.1090/surv/042

16. Freese, R., Jezek, J., Nation, J.B.: Term rewrite systems for lattice theory. J. Symb.
Comput. 16(3), 279–288 (1993). https://doi.org/10.1006/jsco.1993.1046

17. Freese, R., Nation, J.B.: Finitely presented lattices. Proc. Am. Math. Soc. 77(2),
174–178 (1979). https://doi.org/10.2307/2042634

18. Genet, T., Le Gall, T., Legay, A., Murat, V.: A completion algorithm for lattice tree
automata. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 134–145.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39274-0 13

19. Girard, J.Y.: Une extension de L’interpretation de Gödel a L’analyse, et son appli-
cation a L’elimination des coupures dans L’analyse et la theorie des types. In: Fen-
stad, J. (ed.) Proceedings of the Second Scandinavian Logic Symposium, Studies
in Logic and the Foundations of Mathematics, vol. 63, pp. 63–92. Elsevier (1971).
https://doi.org/10.1016/S0049-237X(08)70843-7

20. Guilloud, S., Kunčak, V.: Equivalence checking for orthocomplemented bisemilat-
tices in log-linear time. In: TACAS 2022. LNCS, vol. 13244, pp. 196–214. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99527-0 11

21. Hamza, J., Felix, S., Kunčak, V., Nussbaumer, I., Schramka, F.: From verified Scala
to STIX file system embedded code using Stainless. In: Deshmukh, J.V., Havelund,
K., Perez, I. (eds.) NFM 2022. LNCS, vol. 13260, pp. 393–410. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-06773-0 21. http://infoscience.epfl.ch/
record/292424

22. Hamza, J., Voirol, N., Kunčak, V.: System FR: formalized foundations for the
Stainless verifier. Proc. ACM Program. Lang. 3, 1–30 (2019). https://doi.org/10.
1145/3360592

23. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9 4

24. Jain, H., Bartzis, C., Clarke, E.: Satisfiability checking of non-clausal formulas
using general matings. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol.
4121, pp. 75–89. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 10

25. Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: Finding efficient circuits using
SAT-solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 32–44.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 5

26. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

https://doi.org/10.1007/11916277_33
https://doi.org/10.1007/11916277_33
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-03592-1_4
https://doi.org/10.1007/978-3-030-03592-1_4
https://doi.org/10.1090/surv/042
https://doi.org/10.1090/surv/042
https://doi.org/10.1006/jsco.1993.1046
https://doi.org/10.2307/2042634
https://doi.org/10.1007/978-3-642-39274-0_13
https://doi.org/10.1016/S0049-237X(08)70843-7
https://doi.org/10.1007/978-3-030-99527-0_11
https://doi.org/10.1007/978-3-031-06773-0_21
http://infoscience.epfl.ch/record/292424
http://infoscience.epfl.ch/record/292424
https://doi.org/10.1145/3360592
https://doi.org/10.1145/3360592
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/11814948_10
https://doi.org/10.1007/978-3-642-02777-2_5
https://doi.org/10.1007/978-3-642-39799-8_1

Formula Normalizations in Verification 421

27. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-540-74105-3

28. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment.
In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) Proceedings 1st Workshop
on Formal Integrated Development Environment, F-IDE 2014. EPTCS, Grenoble,
France, 6 April 2014, vol. 149, pp. 3–15 (2014). https://doi.org/10.4204/EPTCS.
149.2

29. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 380–397.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 22

30. Madhavan, R., Kulal, S., Kuncak, V.: Contract-based resource verification for
higher-order functions with memoization. In: ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL) (2017). https://doi.org/
10.1145/3009837.3009874

31. Merz, S., Vanzetto, H.: Automatic verification of TLA+ proof obligations with SMT
solvers. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 289–
303. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6 23

32. Milovancevic, D., Kuncak, V.: Proving and disproving equivalence of func-
tional programming assignments (artifact) (2023). https://doi.org/10.5281/
zenodo.7810840

33. Milovancevic, D., Kunčak, V.: Proving and disproving equivalence of func-
tional programming assignments. In: ACM SIGPLAN Conference Programming
Language Design and Implementation (PLDI) (2023). https://doi.org/10.1145/
3591258

34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

35. Naumowicz, A., Korni�lowicz, A.: A brief overview of Mizar. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
67–72. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9 5

36. Prokopec, A., Odersky, M.: Conc-trees for functional and parallel programming. In:
Shen, X., Mueller, F., Tuck, J. (eds.) LCPC 2015. LNCS, vol. 9519, pp. 254–268.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29778-1 16

37. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 49

38. Song, D., Lee, W., Oh, H.: Context-aware and data-driven feedback generation
for programming assignments. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021, pp. 328–340. Association for Computing
Machinery, New York (2021). https://doi.org/10.1145/3468264.3468598

39. Suter, P.: Non-clausal satisfiability modulo theories. Technical report, M.Sc. thesis,
EPFL (2008). http://infoscience.epfl.ch/record/126445

40. Voirol, N., Kneuss, E., Kuncak, V.: Counter-example complete verification for
higher-order functions. In: Scala Symposium (2015). https://doi.org/10.1145/
2774975.2774978

41. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tour-
ret, S.: Making higher-order superposition work. In: Platzer, A., Sutcliffe, G. (eds.)
CADE 2021. LNCS (LNAI), vol. 12699, pp. 415–432. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5 24

https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.4204/EPTCS.149.2
https://doi.org/10.4204/EPTCS.149.2
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1145/3009837.3009874
https://doi.org/10.1145/3009837.3009874
https://doi.org/10.1007/978-3-642-28717-6_23
https://doi.org/10.5281/zenodo.7810840
https://doi.org/10.5281/zenodo.7810840
https://doi.org/10.1145/3591258
https://doi.org/10.1145/3591258
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-03359-9_5
https://doi.org/10.1007/978-3-319-29778-1_16
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1145/3468264.3468598
http://infoscience.epfl.ch/record/126445
https://doi.org/10.1145/2774975.2774978
https://doi.org/10.1145/2774975.2774978
https://doi.org/10.1007/978-3-030-79876-5_24

422 S. Guilloud et al.

42. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02959-2 10

43. Wenzel, M., Paulson, L.C., Nipkow, T.: The isabelle framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 7

44. Whitman, P.M.: Free lattices. Ann. Math. 42(1), 325–330 (1941). https://doi.org/
10.2307/1969001

45. Zhang, H.T., Jiang, J.H.R., Mishchenko, A.: A circuit-based SAT solver for logic
synthesis. In: 2021 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1–6 (2021). https://doi.org/10.1109/ICCAD51958.2021.
9643505

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-540-71067-7_7
https://doi.org/10.2307/1969001
https://doi.org/10.2307/1969001
https://doi.org/10.1109/ICCAD51958.2021.9643505
https://doi.org/10.1109/ICCAD51958.2021.9643505
http://creativecommons.org/licenses/by/4.0/

Kratos2: An SMT-Based Model Checker
for Imperative Programs

Alberto Griggio1(B) and Martin Jonáš1,2

1 Fondazione Bruno Kessler, Trento, Italy
griggio@fbk.eu

2 Masaryk University, Brno, Czechia
martin.jonas@mail.muni.cz

Abstract. This paper describes Kratos2, a tool for the verification of
imperative programs. Kratos2 operates on an intermediate verification
language called K2, with a formally-specified semantics based on smt,
allowing the specification of both reachability and liveness properties. It
integrates several state-of-the-art verification engines based on sat and
smt. Moreover, it provides additional functionalities such as a flexible
Python api, a customizable C front-end, generation of counterexamples,
support for simulation and symbolic execution, and translation into mul-
tiple low-level verification formalisms. Our experimental analysis shows
that Kratos2 is competitive with state-of-the-art software verifiers on a
large range of programs. Thanks to its flexibility, Kratos2 has already
been used in various industrial projects and academic publications, both
as a verification back-end and as a benchmark generator.

1 Introduction

We present Kratos2, a tool for the verification of real-world imperative pro-
grams. Kratos2 is a complete rewrite and redesign of Kratos [17], improving and
extending it in multiple directions. First, Kratos2 introduces a simple yet expres-
sive intermediate language called K2, with a formally-specified semantics based
on Satisfiability Modulo Theories (smt), which is parametric on the underlying
smt theory. K2 is expressive enough to capture most of the features of real-world
C programs, such as pointers, dynamic memory allocation, floating-point data
types, and bit-precise semantics of bounded integers, which the old version of the
tool could not handle (being limited to C programs without pointers and recur-
sion, and in which C integers were interpreted as mathematical integers). Kratos2
comes with a separate C front-end c2Kratos that can translate C programs to
K2. Second, Kratos2 includes a variety of state-of-the-art verification back-ends
based on either symbolic model checking or symbolic execution with sat and smt
solvers. Besides reachability properties, Kratos2 also supports various forms of

A. Griggio has been partly supported by the project “AI@TN” funded by the
Autonomous Province of Trento and by the PNRR project FAIR - Future AI Research
(PE00000013), under the NRRP MUR program funded by the NextGenerationEU. M.
Jonáš has been partly supported by the Czech Science Foundation grant GA23-06506S.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 423–436, 2023.
https://doi.org/10.1007/978-3-031-37709-9_20

https://doi.org/10.5281/zenodo.7890411
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_20&domain=pdf
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0003-4703-0795
https://doi.org/10.1007/978-3-031-37709-9_20

424 A. Griggio and M. Jonáš

liveness properties, which can be used to encode termination and more complex
linear-time temporal properties. Third, Kratos2 implements an interactive inter-
preter, which can simulate K2 programs using non-deterministic inputs provided
either by the user or by external oracles. Kratos2 also supports counterexample
reconstruction, another feature not available in the original Kratos.

The new intermediate language K2 enables modular translation of C pro-
grams into various verification languages. Namely, Kratos2 can be used for trans-
lating C programs into nuXmv [14], vmt [20], aiger [9], Btor2 [31], Con-
strained Horn Clauses (chcs) [11], or Boogie [29] formats. Additionally, Kratos2
comes with a Python api for construction and manipulation of K2 programs,
which the users can leverage to implement custom front-ends and generators of
K2 programs and also additional translators from K2 to other formalisms.

Although Kratos2 has not been described in a publication until now, it has
already been successfully used in several research and industrial projects. In
particular, Kratos2 has been used as a back-end for the verification of automotive
software in the context of the autosar platform [15,16]; of C code automatically
generated from aadl specifications by the taste development environment [12];
and for verification of C code for railway interlocking systems automatically
generated from the specifications in a controlled natural language [1]. Kratos2
has also been used as a benchmark generator to produce symbolic transition
systems from C programs [30].

The rest of the paper is structured as follows. The functionalities offered by
Kratos2 from the user perspective are described in Sect. 2; Sect. 3 introduces K2,
describing its syntax and formal semantics. The internal architecture of Kratos2,
with details about its main components, is presented in Sect. 4; implementation
notes and experimental evaluation on C programs from the annual software ver-
ification competition sv-comp are provided in Sect. 5. Finally, Sect. 6 concludes
the paper and presents directions for future developments.

2 Functional View

In this section we provide a high-level overview of the functionalities available
in Kratos2. More details will then be provided in the following sections.

An Intermediate Language for Imperative Programs. The core of Kratos2
is built around an idealized language for imperative programs called K2. Unlike
common high-level real-world programming languages, K2 has a simple and clean
semantics based on first-order logic modulo theories that is fully formally spec-
ified. The K2 language, similar in spirit to other intermediate verification lan-
guages proposed in the literature such as Boogie [29] or Why3 [26] (although
less feature rich than the two), is at the same time simple enough to be easily
manipulated and translated into formalisms used by sat-based and smt-based
verification back-ends on one hand, and expressive enough to efficiently capture

Kratos2: An SMT-Based Model Checker for Imperative Programs 425

a significant subset of C on the other, as demonstrated also by our experimental
results on standard sv-comp benchmarks (see Sect. 5).

Verification of Safety and Liveness with Multiple Back-Ends. Kratos2
implements multiple state-of-the-art verification algorithms based on sat and
smt, supporting both bit-precise reasoning over machine integers and floating-
point numbers as well as higher-level reasoning based on, e.g., mathematical
integers, real numbers, and uninterpreted functions, depending on the combina-
tions of theories used in the input K2 program under analysis. Moreover, Kratos2
supports not only the verification of safety properties (via a reduction to reach-
ability of designated “error” program locations), but it also supports liveness
properties such as proving that a specific program location is reached a finite
number of times in all executions, or that it is always visited infinitely often in
all infinite executions.

A Python api for Program Manipulations. Kratos2 provides a rich and
flexible Python api for parsing, printing, and manipulating K2 programs and
expressions, which can be used to implement converters from high-level languages
to K2 or to directly generate K2 programs from user-specific applications.

A Customizable C Front-End. Kratos2 comes with a front-end for C pro-
grams which supports a wide range of customization options for controlling the
translation from C to K2. These range from the choice of theories to use to encode
C data types (e.g., bit-vectors or unbounded integers), to the use of customized
program transformations or the injection of new built-in functions with special
meaning (such as special assume, malloc, or memset built-ins). Thanks to its
plug-in architecture, the front-end can be easily customized for domain-specific
subsets of C, for example to implement special optimization passes that are safe
only in the given context, or to automatically inject properties to the code based
on specification files (as is, e.g., the case in sv-comp [3]).

Encoding into Multiple Formalisms. Kratos2 can be used as an encoder
or benchmark generator because it can translate imperative programs written
in C or in K2 into other formalisms, including symbolic transition systems in
nuXmv [14], vmt [20], aiger [9] or Btor2 [31] formats, Constrained Horn
Clauses (chcs) [11], or other intermediate verification languages like Boogie [29].

Simulation and Symbolic Execution. Finally, Kratos2 can be used as an
interpreter, allowing an (interactive) simulation of K2 programs and their sym-
bolic execution, as an alternative to the verification back-ends based on model
checking.

3 The K2 Language

In this section we introduce K2, the intermediate verification language used by
Kratos2. We present its abstract syntax, formally define its semantics, and discuss
its support for safety and liveness properties.

426 A. Griggio and M. Jonáš

Fig. 1. Abstract syntax of K2 statements and expressions.

Fig. 2. Abstract syntax of K2 programs.

Abstract Syntax. We denote lists of elements with an overbar, i.e., ·. If a is a
list, |a| is its length, and if i is a natural number, ai is the i-th element of a. If
e is an element, a · e is the list obtained by appending e at the end of a.

Definition 1 (Variables and Functions). A variable is a symbol with an
associated sort, as in the multi-sorted first-order logic. A function is a tuple
〈f, a, r, l, σ〉, where:
– f , a symbol, is the name of the function;
– a, a list of variables, are the formal parameters;
– r, a list of variables, are the return variables;
– l, a list of variables, are the local variables;
– σ, a list of statements generated by the grammar of Fig. 1, are the body.

Given a list of variables v, we define syms(v) as the corresponding set of
symbols. Given a function 〈f, a, r, l, σ〉, we denote with syms(f) the set syms(a)∪
syms(r)∪syms(l). We extend the definition to lists of statements σ in the natural
way. We now describe K2 programs, whose abstract syntax is shown in Fig. 2.

Kratos2: An SMT-Based Model Checker for Imperative Programs 427

Definition 2 (Programs). A program P is a tuple 〈g, F, ι, e〉, where:
– g, a list of variables, are the global variables;
– F is a partial mapping from symbols to functions;
– ι, a formula, is the constraint on initial states;
– e, a symbol in dom(F), is the entry point.

Semantics. We use the standard notions of theory, interpretation, model, and
satisfaction from many-sorted first-order logic and smt [2]. In the following, we
assume that we have fixed a theory T with equality that contains at least the sort
Bool. Given an interpretation μ that is a model for T , we define the evaluation
of an expression e (generated by the grammar of Fig. 1) under μ, denoted μ[e],
as μ[e] = μ(v) for e = var v and μ[e] = μ(o)(μ[p1], . . . , μ[pn]) for e = op o p and
n = |p|. We denote with μ[v �→ e] the interpretation that maps v to e, and that
agrees with μ everywhere else, and with μ[\v] any interpretation that agrees
with μ on all the symbols except v. Finally, if e is of sort Bool, we write μ |= e
to denote that e evaluates to true under μ.

Definition 3 (Program states). Pairs 〈f, i〉 where f is a function name and
i is a natural number are called program locations. A state of a program P is a
pair s = 〈G,C〉 where:

– G is an interpretation for the global variables of P ;
– C is the current call stack, a list of triples 〈f, i, L〉, where 〈f, i〉 is a program

location and L is an interpretation of syms(f), i.e., of parameters, return
variables, and local variables of F (f).

A state s is initial if and only if G |= ι, |C| = 1 and C1 = 〈e, 1, L〉 for some
L. Given a state s with C|C| = 〈f, i, L〉, we define the current interpretation μ

for s as μ(v) = G(v) for v ∈ syms(g) and as μ(v) = L(v) otherwise.

We define the semantics for programs as a set of transition rules of the form
s

σ−→ s′, where s, s′ are states and σ is a statement. We then call a path of a
program P any sequence of transitions (possibly infinite) s0

σ0−→ . . .
σi−→ si+1 . . .

that complies with the transition rules and where s0 is an initial state.
The rules are shown in Fig. 3. In the definitions, we fix a program P =

〈g, F, ι, e〉 and use the following convenience functions, where f is a function
name and i a natural number: arg(f, i) returns the variable ai of the function
F (f); ret(f, i) returns the variable ri of the function F (f); stmt(f, i) returns the
statement σi of F (f); stmts(f) returns the list of statements σ of F (f).

Reachability and Liveness. We then say that a state s is reachable in P iff
there exists a finite path s0

σ0−→ . . .
σn−−→ s that ends in s. Similarly, a program loca-

tion 〈f, i〉 is reachable iff there exists a path as above in which σn = stmt(f, i)1.
1 Note that here we assume w.l.o.g. that all statements in a program are different,

even when they are structurally equal, so the above definition is unambiguous.

428 A. Griggio and M. Jonáš

Fig. 3. Transition rules. In all the rules, µ denotes the current interpretation for the
left-hand state of the rule.

Conversely, if no such path exists, then 〈f, i〉 is unreachable. The location 〈f, i〉
is infinitely-often reachable iff there exists an infinite path s0

σ0−→ . . .
σi−→ si+1 . . .

in which for all indices j there exists an index k > j such that σk = stmt(f, i).
If no such path exists, then 〈f, i〉 is eventually unreachable. Finally, we say that
〈f, i〉 is live iff it is infinitely-often reachable in all infinite paths of P .

In K2, queries about reachability or liveness of program locations are
expressed via annotations of label statements. Annotations are metadata that
are attached to statements, in the form of key-value pairs, which do not affect
the semantics of the program, but are meant to provide additional information
that can be used by tools that manipulate the K2 program. Specifically, Kratos2
uses the following annotations to define properties:

error <id>: holds iff all labels annotated with the same <id> are unreachable;
notlive <id>: holds iff all labels annotated with the same <id> are eventually

unreachable;
live <id>: holds iff all labels annotated with the same <id> are live.

These basic properties can be easily used to represent more common higher-level
properties of programs, such as assertions and termination. For example, asser-
tions can be reduced to reachability with a combination of assume and jump
statements, whereas termination can be checked by adding a final self loop over a

Kratos2: An SMT-Based Model Checker for Imperative Programs 429

label with an attached live annotation. Finally, eventual unreachability can be
used to encode arbitrary ltl properties using the standard automata-theoretic
approach combined with a symbolic encoding of the accepting automaton such
as [22].2

3.1 Example

We conclude this section with a simple example of a C program and its equiv-
alent formulation in K2. Both versions are shown in Fig. 4. Most of the code
is translated in a fairly direct way (with conditional statements and structured
loops translated into nondeterministic jumps constrained by assumptions). How-
ever, since in K2, unlike in C, global variables are uninitialized by default, the
K2 program contains an additional setup function (called init_and_main in
the example) that sets glbl to zero before calling the original main. Another
point to highlight is the use of the :error annotation (highlighted in bold) to
model the C assertion.

4 Architectural View

This section describes the main components of Kratos2 and the flow of infor-
mation among them. From the high-level point of view, Kratos2 is composed
of the front-end c2Kratos, which converts the input C program to the K2 lan-
guage, and of the core Kratos2, which is responsible for parsing, simplifications,
transformations, and verification of K2 code. This separation helps to keep the
core Kratos2 simple, as it does not have to handle the complex semantic nuances
of C. Moreover, it makes it easy to add front-ends for new languages by writing
a separate translator from the language in question to K2.

The front-end c2Kratos reads the input C file, builds its abstract syntax tree
(ast) and then builds the corresponding K2 code in two passes. In the first
pass, it converts the ast to an extended K2. Compared to the standard K2,
the extended K2 also has primitives for pointers, records, complex loops, and
compound instructions. These are removed in the second pass, by converting
pointers to operations over maps, records to multiple variables, complex loops
to sequences of assignments, jump instructions, and assumptions, and compound
instructions to sequences of basic assignments to auxiliary variables.

The core Kratos2 consists of several components, whose relationships are
visualized in Fig. 5:

2 In the case of ltl properties, the question arises as to what to consider as an atomic
step of the program. This is both crucial and application-dependent: for example, in
embedded software consisting of a “transition function” that is executed periodically,
it might make sense to consider each call to such function as one step, whereas in
other contexts a more fine-grained notion of step might be needed. K2 (and Kratos2)
makes no commitment about this, providing only the support for eventual unreach-
ability of label statements, which can always be defined unambiguously.

430 A. Griggio and M. Jonáš

Fig. 4. Example C program and its K2 translation.

cfg builder and simplifier reads the input K2 file and builds the correspond-
ing interprocedural control flow graph (cfg). It then performs several simplifica-
tions of the cfg, such as constant propagation and lightweight slicing. The result
can be used either by the interpreter, symbolic executor, or one of the encoders.
The simplified cfg can also be converted back into a K2 representation.

Interpreter interprets the cfg using the externally provided inputs to guide
the execution. The inputs contain new values for all havoc commands and also
destination labels for all nondeterministic jump commands. The inputs can be
provided by the user, a random generator, or by one of the verification engines.
The last option is used for counterexample reconstruction and validation.

Transition system encoder encodes the cfg to a symbolic transition system
over a suitable theory. The encoder first inlines all function calls in the program.
It then encodes the resulting inlined program using large block encoding [4],
which allows encoding larger acyclic subgraphs of the cfg by a single transition
formula. The resulting transition system can be verified by one of the available
verification back-ends, or converted to a textual representation in one of the
available output formats (vmt [20], nuXmv [14], Btor2 [31], or aiger [9]).3

3 Depending on the features of the input K2 program, some of the verification back-
ends or output formats might not be available. E.g., sat-based engines are not
available if the K2 program contains some infinite-state variables.

Kratos2: An SMT-Based Model Checker for Imperative Programs 431

Fig. 5. Architecture of Kratos2.

chc encoder converts the cfg to a set of Constrained Horn Clauses [11]. In
contrast to the transition system encoder, the chc encoder supports interproce-
dural analysis and recursive functions, encoded as a set of non-linear chcs as
described, e.g., in [28].

Symbolic executor implements a classical symbolic execution algorithm with
iterative deepening to avoid getting stuck in long uninteresting branches. It sup-
ports (possibly recursive) K2 programs over arbitrary combinations of integers,
reals, bit-vectors, floats, and arrays.

smt-based engines encompass several smt-based verification algorithms of
symbolic transition systems. For reachability properties, Kratos2 implements
standard bounded model checking (bmc) [7], k-induction [32], and IC3 with
implicit predicate abstraction [18]. For liveness properties, we use a procedure
combining liveness-to-safety reduction with ranking functions synthesis [23].

sat-based engines encompass several verification algorithms of finite-state
symbolic transition systems. Namely, for transition systems over the theory of
bit-vectors and floats, Kratos2 offers bmc, k-induction, and different variants
of IC3 [13], working over the bit-blasted Boolean transition system, for both
reachability and liveness properties. Additionally, Kratos2 implements a dedi-
cated engine for reachability properties in transition systems over the theory of
bit-vectors, floats, and arrays similar to [10,30].

5 Implementation and Experimental Evaluation

Implementation. Core Kratos2 is implemented in C++ on top of the Math-
SAT5 [19] smt solver and the nuXmv [14] symbolic model checker. The sat-based
verification engine additionally makes use of the MiniSat [25] and CaDiCaL [8]
sat solvers. The front-end c2Kratos is implemented in Python and relies on
pycparser for parsing of the input C program. Kratos2 is freely available for
non-commercial purposes from https://kratos.fbk.eu.

https://kratos.fbk.eu

432 A. Griggio and M. Jonáš

Table 1. Solved benchmarks by the three compared tools. Column U shows the number
of solved unsafe benchmarks, S of safe benchmarks, and W of wrong results.

CPAchecker Kratos2 VeriAbs
Family U S W U S W U S W

arrays 70 5 0 75 7 0 106 261 0
bitvectors 13 31 0 13 33 0 14 31 0
combinations 295 36 0 282 47 0 277 77 0
controlflow 39 36 0 40 37 0 40 47 0
eca 223 481 0 210 365 0 467 600 0
floats 41 356 0 43 350 0 43 393 0
heap 71 118 1 67 102 0 70 120 0
loops 152 334 2 159 307 0 192 427 0
productlines 265 332 0 262 315 0 260 322 0
recursive 40 36 1 43 28 0 46 41 0
sequentialized 347 108 0 361 68 0 361 123 0
xcsp 50 52 0 51 51 0 52 52 0
Total 1606 1925 4 1606 1710 0 1928 2494 0

Experimental Setup. We performed an experimental evaluation to answer two
research questions: Is the K2 language expressive enough to efficiently represent
realistic C programs? Do the engines implemented in Kratos2 offer reasonable
performance on realistic verification tasks? To this end, we considered all the
C programs from the ReachSafety category of the 2022 edition of the annual
software verification competition sv-comp [3].The category consists of 5400 C
programs divided into 12 benchmark families. We compared Kratos2 with Veri-
Abs 1.4.2 [24] and CPAchecker 2.2 [5], respectively the winner and runner-up
of the ReachSafety category of sv-comp 2022. Similarly to the approach used
by CPAchecker, we executed Kratos2 in sequential portfolio mode, which succes-
sively runs symbolic execution, smt-based IC3, sat-based IC3, and smt-based
bmc with predetermined time-outs for each of the engines.

The experiments were performed on several identical pcs equipped with Intel
Core i7-8700 cpu @ 3.20GHz and 32GiB of ram. Each execution was limited
to use a single cpu core, 15min of cpu time, and 8GiB of ram. For reliable
benchmarking, all experiments were executed using BenchExec [6]. A replica-
tion package describing the details of the setup is available at https://doi.org/
10.5281/zenodo.7890411.

Results. To answer the first research question, we observe that from the total
5400 benchmarks, only 56 were not converted to K2 by c2Kratos due to unsup-
ported floating point built-ins or features such as variable length arrays.

To answer the second research question, Table 1 shows the numbers of solved
benchmarks by the individual tools and quantile plots in Fig. 6 show their run-
ning times. The results show that Kratos2 is competitive with CPAchecker on
all benchmark families except for eca. It is also competitive with VeriAbs on
most benchmark families. There are 23 benchmarks uniquely solved by Kratos2,
48 by CPAchecker, and 1039 by VeriAbs. Moreover, both Kratos2 and VeriAbs
produced no wrong results, unlike most other participants of sv-comp.

https://doi.org/10.5281/zenodo.7890411
https://doi.org/10.5281/zenodo.7890411

Kratos2: An SMT-Based Model Checker for Imperative Programs 433

productlines recursive sequentialized xcsp

eca floats heap loops

arrays bitvectors combinations controlflow

0.1 1 10 100 1000 0.1 1 10 100 1000 0.1 1 10 100 1000 0.1 1 10 100 1000

0

25

50

75

0

200

400

600

0
25
50
75

100

0

100

200

300

0
50

100
150

0
100
200
300
400
500

0
10
20
30
40

0
100
200
300
400

0

25

50

75

0
100
200
300

0

300

600

900

0

200

400

600

Wall time (s)

So
lv

ed
 b

en
ch

m
ar

ks
CPAchecker Kratos2 VeriAbs

Fig. 6. Quantile plots of solved benchmarks for all three compared tools in individual
benchmark families. The plot shows the number of benchmarks (y-axis) that were
solved within the given number of seconds (x-axis).

We remark that CPAchecker is an established and optimized software verifier
that regularly scores high in software verification competitions, and that VeriAbs
implements algorithm selection heuristics, using both its own custom engines and
external state-of-the-art verifiers. As such, it is not surprising that it performs
much better than Kratos2 and CPAchecker on some of the families.

We conclude that the K2 language is expressive enough to efficiently capture a
significant subset of C used in realistic programs. Furthermore, the verification
engines implemented in Kratos2 mostly offer a performance comparable with
state-of-the-art software verifiers.

6 Conclusions and Future Work

We have described Kratos2, a mature software verifier for imperative programs
written in K2, a new intermediate verification language with a formal semantics
based on smt. Kratos2 is a complete rewrite of the original Kratos tool, offering
significant extensions in functionalities and performance. The tool has already
been successfully applied in various contexts, both industrial and academic.

As future work, we will consolidate the (currently alpha-quality) implemen-
tation of the esst algorithm of the original Kratos [21] to handle multithreaded
programs with cooperative scheduling. We will also investigate a tighter integra-
tion with chc solvers to better handle recursive programs, as well as improved
techniques to handle arrays and pointers such as [27,33]. On the language side,
we plan to add support for contracts and pre-/post-conditions via annotations.

434 A. Griggio and M. Jonáš

References

1. Amendola, A., et al.: A model-based approach to the design, verification and
deployment of railway interlocking system. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2020. LNCS, vol. 12478, pp. 240–254. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-61467-6_16

2. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Appli-
cations, vol. 336, pp. 1267–1329. IOS Press (2021)

3. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Beyer, D. (ed.)
TACAS 2022. LNCS, vol. 13244, pp. 375–402. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99527-0_20

4. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: FMCAD, pp. 25–32. IEEE (2009)

5. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

6. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019)

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

8. Biere, A., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba entering the
SAT Competition 2021. In: Proceedings of SAT Competition 2021 - Solver and
Benchmark Descriptions, volume B-2021-1 of Department of Computer Science
Report Series B, pp. 10–13. University of Helsinki (2021)

9. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical report
11/2, Institute for Formal Models and Verification, Johannes Kepler University
(2011)

10. Bjesse, P.: Word-level sequential memory abstraction for model checking. In:
Cimatti, A., Jones, R.B. (eds.) Formal Methods in Computer-Aided Design,
FMCAD 2008, Portland, Oregon, USA, 17–20 November 2008, pp. 1–9. IEEE
(2008)

11. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2

12. Bombardelli, A., et al.: COMPASTA: extending TASTE with formal design and
verification functionality. In: Seguin, C., Zeller, M., Prosvirnova, T. (eds.) IMBSA
2022. LNCS, vol. 13525, pp. 21–27. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-15842-1_2

13. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

14. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9_22

15. Cimatti, A., et al.: A comprehensive framework for the analysis of automotive
systems. In: MoDELS, pp. 379–389. ACM (2022)

https://doi.org/10.1007/978-3-030-61467-6_16
https://doi.org/10.1007/978-3-030-61467-6_16
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-031-15842-1_2
https://doi.org/10.1007/978-3-031-15842-1_2
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22

Kratos2: An SMT-Based Model Checker for Imperative Programs 435

16. Cimatti, A., et al.: EVA: a tool for the compositional verification of AUTOSAR
models. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS,
vol. 13994, pp. 3–10. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30820-8_1

17. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos – a
software model checker for SystemC. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 310–316. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1_24

18. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Formal Methods Syst. Des. 49(3), 190–218
(2016). https://doi.org/10.1007/s10703-016-0257-4

19. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

20. Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB language and tools. In: SMT.
CEUR Workshop Proceedings, vol. 3185, pp. 80–89. CEUR-WS.org (2022)

21. Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking with explicit
scheduler and symbolic threads. Log. Methods Comput. Sci. 8(2) (2012)

22. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
Formal Methods Syst. Des. 10(1), 47–71 (1997)

23. Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: Infinite-state liveness-
to-safety via implicit abstraction and well-founded relations. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 271–291. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41528-4_15

24. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: a tool for scalable verification by
abstraction (competition contribution). In: TACAS 2021. LNCS, vol. 12652, pp.
458–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_32

25. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

26. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

27. Garcia-Contreras, I., Gurfinkel, A., Navas, J.A.: Efficient modular SMT-based
model checking of pointer programs. In: SAS 2022. LNCS, vol. 13790, pp. 227–
246. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22308-2_11

28. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416. ACM (2012)

29. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12002-2_26

30. Mann, M., Irfan, A., Griggio, A., Padon, O., Barrett, C.W.: Counterexample-
guided prophecy for model checking modulo the theory of arrays. Log. Methods
Comput. Sci. 18(3) (2022)

31. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 587–
595. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_32

https://doi.org/10.1007/978-3-031-30820-8_1
https://doi.org/10.1007/978-3-031-30820-8_1
https://doi.org/10.1007/978-3-642-22110-1_24
https://doi.org/10.1007/978-3-642-22110-1_24
https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-41528-4_15
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-031-22308-2_11
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-319-96145-3_32

436 A. Griggio and M. Jonáš

32. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X_8

33. Vick, C., McMillan, K.L.: Synthesizing history and prophecy variables for symbolic
model checking. In: Dragoi, C., Emmi, M., Wang, J. (eds.) VMCAI 2023. LNCS,
vol. 13881, pp. 320–340. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-24950-1_15

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-031-24950-1_15
https://doi.org/10.1007/978-3-031-24950-1_15
http://creativecommons.org/licenses/by/4.0/

Making IP = PSPACE Practical: Efficient
Interactive Protocols for BDD Algorithms

Eszter Couillard1 , Philipp Czerner1(B) , Javier Esparza1 ,
and Rupak Majumdar2

1 Technical University of Munich, Munich, Germany
{coillar,czerner,esparza}@in.tum.de

2 Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern, Germany

rupak@mpi-sws.org

Abstract. We show that interactive protocols between a prover and a
verifier, a well-known tool of complexity theory, can be used in practice
to certify the correctness of automated reasoning tools.

Theoretically, interactive protocols exist for all PSPACE problems.
The verifier of a protocol checks the prover’s answer to a problem instance
in probabilistic polynomial time, with polynomially many bits of commu-
nication, and with exponentially small probability of error. (The prover
may need exponential time.) Existing interactive protocols are not used
in practice because their provers use naive algorithms, inefficient even for
small instances, that are incompatible with practical implementations of
automated reasoning.

We bridge the gap between theory and practice by means of an inter-
active protocol whose prover uses BDDs. We consider the problem of
counting the number of assignments to a QBF instance (#CP), which
has a natural BDD-based algorithm. We give an interactive protocol for
#CP whose prover is implemented on top of an extended BDD library.
The prover has only a linear overhead in computation time over the nat-
ural algorithm.

We have implemented our protocol in blic, a certifying tool for #CP.
Experiments on standard QBF benchmarks show that blic is compet-
itive with state-of-the-art QBF-solvers. The run time of the verifier is
negligible. While loss of absolute certainty can be concerning, the error
probability in our experiments is at most 10−10 and reduces to 10−10k

by repeating the verification k times.

This work was supported by an ERC Advanced Grant (787367: PaVeS), by the
Deutsche Forschungsgemeinschaft project 389792660 TRR 248—CPEC, and by
the Research Training Network of the Deutsche Forschungsgemeinschaft (DFG)
(378803395: ConVeY).
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 437–458, 2023.
https://doi.org/10.1007/978-3-031-37709-9_21

https://doi.org/10.5281/zenodo.7877702
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_21&domain=pdf
http://orcid.org/0009-0005-3609-1738
http://orcid.org/0000-0002-1786-9592
http://orcid.org/0000-0001-9862-4919
http://orcid.org/0000-0003-2136-0542
https://doi.org/10.1007/978-3-031-37709-9_21

438 E. Couillard et al.

1 Introduction

Automated reasoning tools often underlie our assertions about the correctness
of critical hardware and software components. In recent years, the scope and
scalability of these techniques have grown significantly.

Automated reasoning tools are not immune to bugs. If we are to trust their
verdict, it is important that they provide evidence of their correct behaviour. A
substantial amount of research has gone into proof-producing automated reason-
ing tools [4,14,16,22,23]. These works define a notion of “correctness certificate”
suitable for the reasoning problem at hand, and adapt the reasoning engine to
produce independently checkable certificates. For example, SAT solvers produce
either a satisfying assignment or a proof of unsatisfiability in some proof system,
e.g. resolution (see [16] for a survey). Extending such certificates beyond boolean
SAT is an active area of current research [3,4,18,24,29].

In the worst case, the size of certificates grows exponentially in the size of
the input, even for boolean unsatisfiability (unless NP = coNP). If users have
limited computational or communication resources, transferring and checking
large certificates becomes a burden. Large certificates are not just a theoretical
curiosity. In practice, resolution proofs for complex SAT problems may run to
petabytes [15]. Ideally, we would prefer “small” certificates (polynomial in the
size of the input) which can be checked independently in polynomial time.

The IP = PSPACE theorem proves that certification with polynomial ver-
ification time is possible for any problem in PSPACE, provided one trades off
absolute certainty for certainty with high probability [27]. The complexity class
IP consists of those languages for which there is a polynomial-round, complete
and sound interactive protocol [1,2,13,20]—a sequence of interactions between a
(computationally unbounded) prover and a (computationally bounded) verifier
after which the verifier decides whether the prover correctly performed a compu-
tation. The protocol is complete if, whenever an input belongs to the language,
there is an honest prover who can convince a polynomial-time randomised ver-
ifier in a polynomial number of rounds. The protocol is sound if, whenever an
input does not belong to the language, the Verifier will reject the input with
high probability—no matter what certificates are provided to the Verifier. That
is, a “Prover” cannot fool the certification process.

Since every language in PSPACE has an interactive protocol, there are interac-
tive protocols for UNSAT, QBF, counting QBF, safety verification of concurrent
state machines, etc. Observe that the prover of a protocol may perform expo-
nential time computations (which is unavoidable unless P = PSPACE), but the
verifier only requires polynomial time in the original input.

If interactive protocols provide a foundation for small and efficiently verifiable
certificates (at least for problems in PSPACE), why are they not in widespread
practice? We believe the reason to be the following: for asymptotic complexity
purposes, it suffices to use honest provers with best-case exponential complexity
that naively enumerate all possibilities. Such provers are incompatible with auto-
mated reasoning tools, which use more sophisticated data structures and heuris-
tics to scale to real-world examples. So we need to make practical algorithms

Efficient Interactive Protocols for BDD Algorithms 439

for automated reasoning efficiently certifying. We call an algorithm efficiently
certifying if, in addition to computing the output, it can execute the steps of an
honest prover in an interactive protocol with only polynomial overhead over its
running time.

In this paper, we show that algorithms using reduced ordered binary decision
diagrams (henceforth called BDDs) [9] can be made efficiently certifying. We
consider #CP, the problem of computing the number of satisfying assignments
of a circuit with partial evaluation (CP). Besides boolean nodes, a CP contains
partial evaluation nodes π[x:=false] (resp., π[x:=true]) that take a boolean predicate
as input, say ϕ, and output the result of setting x to false (resp., true) in ϕ. #CP
generalises SAT, QBF, and counting SAT (#SAT), and has a natural algorithm
using BDDs: Compute BDDs for each node of the circuit in topological order,
and count the accepting paths of the final BDD.

The theoretical part of the paper proceeds in two steps. First, we present
CPCertify, a complete and sound interactive protocol for #CP. CPCertify
is similar to the SumCheck protocol [20]. It involves encoding boolean formulas
as polynomials over a finite field. The prover is responsible for producing certain
polynomials from the original circuit and evaluating them at points of the field
chosen by the verifier. These polynomials are either multilinear (all exponents
are at most 1) or quadratic (at most 2).

Second, we show that an honest prover in CPCertify can be implemented
on top of a suitably extended BDD library. The run times of the certifying BDD
algorithms are only a constant overhead over the computation time without
certification—they depend linearly on the total number of nodes of the interme-
diate BDDs computed by the prover to solve the #CP instance. We use two key
insights. The first is an encoding of multilinear polynomials as BDDs; we show
that the intermediate BDDs represent all the multilinear polynomials a prover
needs during the run of CPCertify. The second shows that the quadratic poly-
nomials correspond to intermediate steps during the computation of the interme-
diate BDDs. We extend BDDs with additional “book-keeping” nodes that allow
the prover to also compute the quadratic polynomials while solving the problem.
So computing the polynomials required by CPCertify has zero additional cost;
the only overhead is the cost of evaluating the polynomials at the field points
chosen by the verifier.

We have implemented a certifying #CP solver based on our extended BDD
library. Our experiments show that the solver is competitive with state-of-the-art
non-certifying QBF solvers, and can outperform certifying QBF solvers based
on BDDs. The number of bytes exchanged between the prover and the veri-
fier are an order of magnitude smaller, and Verifier’s run time several orders
of magnitude smaller, than current encodings of QBF proofs, while bounding
the error probability to below 10−10. Thus, our results open the way for practi-
cally efficient, probabilistic certification of automated reasoning problems using
interactive protocols.

Additional Related Work. Proof systems for SAT and QBF remain an active
area of research—both in theoretical proof complexity and in practical tool devel-

440 E. Couillard et al.

opment. Jussila, Sinz, and Biere [17,28] showed how to extract extended reso-
lution proofs from BDD operations. This is the basis for proof-producing SAT
and QBF solvers based on BDDs [6–8]. As in our work, the proof uses inter-
mediate nodes produced in the construction of the BDD operations. We focus
on interactive certification instead of extended resolution proofs, which can be
exponentially larger than the input formula.

Recently, Luo et al. [21] consider the problem of providing zero-knowledge
proofs of unsatisfiability, a motivation similar but not equal to ours. Their tech-
niques require the verifier to work in time polynomial in the proof, which can be
exponentially bigger than the input formula. In contrast, the verifier of CPCer-
tify runs in polynomial time in the input. Since any language in PSPACE has a
zero knowledge proof [5], our protocol can in principle be made zero knowledge.
Whether that system scales in practice is left for future work.

Full Version. Detailed proofs can be found in the full version of the paper [11].

2 Preliminaries

The Class IP. An interactive protocol between a Prover and a Verifier con-
sists of a sequence of interactions in which a Verifier asks questions to a Prover,
receives responses to the questions, and must ultimately decide if a common
input x belongs to a language. The computational power of the Prover is
unbounded but the Verifier is a randomised, polynomial-time algorithm.

Formally, let P, V denote (deterministic) Turing machines.
We say that (r;m1, ...,m2k) is a k-round interaction, with r,m1, ...,m2k ∈

{0, 1}∗, if mi+1 = V (r,m1, ...,mi) for even i and mi+1 = P (m1, ...,mi) for odd
i. We think of r as an additional sequence of bits given to Verifier V that is chosen
randomly. The output out(P, V)(x, r, k) is defined as m2k, where (r;m1, ...,m2k)
is the unique k-round interaction with m1 = x.

A language L belongs to IP if there are V, PH and polynomials p1, p2, p3, s.t.
V (r, x,m2, ...,mi) runs in time p1(|x|) for all r, x,m2, ...,mi, and, for each x and
an r ∈ {0, 1}p2(|x|) chosen uniformly at random:

1. (Completeness) x ∈ L implies out(PH , V)(x, r, p3(|x|)) = 1 with probability
1, and

2. (Soundness) x /∈ L implies that for all P we have out(P, V)(x, r, p3(|x|)) = 1
with probability at most 2−|x|.

Intuitively, in an interactive protocol, a computationally unbounded Prover
interacts with a randomised polynomial-time Verifier for k rounds. In each round,
Verifier sends probabilistic “challenges” to Prover, based on the input and the
answers to prior challenges, and receives answers from Prover. At the end of k
rounds, Verifier decides to accept or reject the input. The completeness property
ensures that if the input belongs to the language L, then there is an “honest”
Prover PH who can always convince Verifier that indeed x ∈ L. If the input does
not belong to the language, then the soundness property ensures that Verifier

Efficient Interactive Protocols for BDD Algorithms 441

rejects the input with high probability no matter how a (dishonest) Prover tries
to convince them.

It is known that IP = PSPACE [20,27], that is, every language in PSPACE
has a polynomial-round interactive protocol. The proof exhibits an interactive
protocol for the language QBF of true quantified boolean formulae; in particular,
the honest Prover is a polynomial space, exponential time algorithm that uses a
truth table representation of the formula to implement the protocol.

Polynomials. Interactive protocols make extensive use of polynomials over some
prime finite field F.

Let X be a finite set of variables. We use x, y, z, . . . for variables and p, q, . . .
for polynomials. When we write a polynomial explicitly, we write it in brackets,
e.g. [3xy − z2]. We write 1 and 0 for the polynomials [1] and [0], respectively.
We use the following operations on polynomials:

– Sum, difference, and product. Denoted p+ q, p− q, p · q, and defined as usual.
For example, [3xy−z2]+ [z2 +yz] = [3xy+yz] and [x+y] · [x−y] = [x2 −y2].

– Partial evaluation. Denoted π[x:=a] p, it returns the result of setting variable
x to the field element a in the polynomial p, e.g. π[x:=5][3xy−z2] = [15y−z2].

– Degree reduction. Denoted δx p. It reduces the degree of x in all monomials
of the polynomial to 1. For example, δx[x3y + 3x2 + 7z2] = [xy + 3x + 7z2].

A (partial) assignment is a (partial) mapping σ : X → F. We write Πσ p
for π[x1:=σ(x1)]...π[xk:=σ(xk)] p, where x1, ..., xk are the variables for which σ is
defined. Additionally, we call σ binary if σ(x) ∈ {0, 1} for each x ∈ X.

Binary and Multilinear Polynomials. A polynomial is multilinear in x if
the degree of x in p is 0 or 1. A polynomial is multilinear if it is multilinear
in all its variables. For example, [xy − y2] is multilinear in x but not in y, and
[3xy − 2zy] is multilinear. A polynomial p is binary if Πσ p ∈ {0,1} for every
binary assignment σ. Two polynomials p, q are binary equivalent, denoted p ≡b q,
if Πσ p = Πσ q for every binary assignment σ. (Note that non-binary polynomials
can be binary equivalent.)

3 Circuits with Partial Evaluation

We introduce circuits with partial evaluation (CP), a compact representation of
quantified boolean formulae, and formulate #CP, the problem of counting the
number of satisfying assignments of a CP. #CP generalises QBF, the satisfiabil-
ity problem for quantified boolean formulas. Figure 1 shows an example of a CP.
Informally, it is a directed acyclic graph whose nodes are labelled with variables,
boolean operators, or partial evaluation operators π[x:=b]. Intuitively, π[x:=b]ϕ sets
the variable x to the truth value b in the formula ϕ. In this way, each node of a cir-
cuit stands for a boolean function, and the complete circuit stands for the boolean
function of the root. Figure 1 shows the formulae represented by each node.

Definition 1. Let X denote a finite set of variables and S ⊆ X. A circuit with
partial evaluation and variables in S (S-CP) has the form

442 E. Couillard et al.

– true, false, or x, where x ∈ S,
– ¬ϕ, ϕ ∧ ψ, or ϕ ∨ ψ, where ϕ,ψ are S-CPs, or
– π[y:=b] ϕ, where y ∈ X \ S, b ∈ {true, false}, and ϕ is an (S ∪ {y})-CP.

The set of free variables of a S-CP ϕ is free(ϕ) := S. The children of a CP are
inductively defined as follows: true, false, and x have no children; the children of
ϕ ∧ ψ and ϕ ∨ ψ are ϕ and ψ; and the only child of ¬ϕ and π[y:=b] ϕ is ϕ. The
set of descendants of ϕ is the smallest set M containing ϕ and all children of
every element of M . The size of ϕ is |ϕ| := |M |.

Fig. 1. A CP (Sect. 3), the boolean functions
represented by each node (in boxes), and the
arithmetisation of the formulae (Sect. 4.1).

We represent a CP ϕ as a directed
acyclic graph. The nodes of the
graph are the descendants of ϕ.
A CP ϕ encodes a boolean pred-
icate Pϕ, which maps assignments
σ : free(ϕ) → {false, true} to a truth
value Pϕ(σ) ∈ {false, true}. It does so
in the obvious manner, e.g., Px(σ) :=
σ(x), Pϕ∧ψ(σ) := Pϕ(σ) ∧ Pψ(σ),
etc. We use π[x:=b] as partial eval-
uation operator, so Pπ[x:=b]ϕ(σ) :=
Pϕ(σ∪{x 	→ b}). Intuitively, π[x:=b] ϕ
replaces each occurrence of x in ϕ
by b. An assignment σ satisfies ϕ if
Pϕ(σ) = true. We define the macros

∀xϕ := π[x:=0] ϕ ∧ π[x:=1] ϕ

∃xϕ := π[x:=0] ϕ ∨ π[x:=1] ϕ

Figure 1 shows a CP for the quanti-
fied boolean formula ∀y(¬x ∨ (x ∧ y)).

We consider the following problem:

#CP Input CP ϕ.
Output The number of satisfying assignments of ϕ.

Given a quantified boolean formula, we can use the macros for quantifiers to
construct in linear time an equivalent CP, i.e., a CP with the same satisfying
assignments. Similarly, #SAT instances can also be reduced to #CP.

Structure of the Rest of the Paper. In Sect. 4, we give an interactive pro-
tocol for #CP called CPCertify. In Sect. 5, we implement an honest Prover
for CPCertify on top of an extended BDD-based algorithm for #CP. The
prover runs in time polynomial in the size of the largest BDD for any of the
subcircuits of the initial circuit. Together, these results yield our main result,
Theorem 1, showing that any BDD-based algorithm can be modified to run an
interactive protocol with small polynomial overhead. Finally, Sect. 6 presents
empirical results.

Efficient Interactive Protocols for BDD Algorithms 443

4 An Interactive Protocol for #CP

In this section we describe an interactive protocol for #CP, following the Sum-
Check protocol of [20]. Section 4.1 introduces arithmetisation, a technique to
transform #CP into an equivalent problem about polynomials. Section 4.2 shows
how to transform #CP into an equivalent problem about evaluating polynomials
of low degree. Finally, Sect. 4.3 presents an interactive protocol for this problem.

4.1 Arithmetisation

We define a mapping [[·]] that assigns to each CP ϕ a polynomial [[ϕ]] over the
variables free(ϕ), called the arithmetisation of ϕ:

– [[true]] := 1; [[false]] := 0; [[x]] := [x] for every x ∈ X; and [[¬ϕ]] := 1 − [[ϕ]];
– [[ϕ ∧ ψ]] := [[ϕ]] · [[ψ]]; and [[ϕ ∨ ψ]] := [[ϕ]] + [[ψ]] − [[ϕ]] · [[ψ]];
– [[π[x:=b] ϕ]] := π[x:=[[b]]][[ϕ]], with x ∈ free(ϕ), b ∈ {true, false}.

Figure 1 also shows the polynomials corresponding to the nodes of the CP.
Let F be a fixed prime finite field. Given an arbitrary truth assignment

σ : X → {true, false}, let σ : X → F be the binary assignment given by σ(x) = 1
if σ(x) = true and σ(x) = 0 if σ(x) = false, where 0 and 1 denote the additive and
multiplicative identities in F. The mapping [[·]] is defined to satisfy the following
property, whose proof is immediate:

Proposition 1. Let ϕ be an S-CP encoding some boolean predicate Pϕ. Then
Pϕ(σ) = Πσ [[ϕ]] for every truth assignment σ to S.

So, intuitively, the polynomial [[ϕ]] is a conservative extension of the predicate
Pϕ: It returns the same values for all binary assignments. Accordingly, in the
rest of the paper we abuse language and write σ instead of σ for the binary
assignment corresponding to the truth assignment σ.

Observe that #CP can be reformulated as follows: given a CP ϕ, compute
the number of binary assignments σ s.t. Πσ[[ϕ]] = 1.

4.2 Degree Reduction

Given a CP ϕ, its associated polynomial can have degree exponential in the
height of ϕ. Since we are ultimately interested in evaluating polynomials over
binary assignments, and since x2 = x for x ∈ {0, 1}, we can convert polynomials
to low degree without changing their behaviour on binary assignments.

For this, we use a degree-reduction operator δx for every variable x. The
operator δxp reduces the exponent of all powers of x in p to 1. For example,
δx[x2y + 3xy2 − 2x3y2 + 4] = [xy + 3xy2 − 2xy2 + 4]. Observe that δxp ≡b p.
Instead of working on the input CP directly, we first convert it into a circuit with
partial evaluation and degree reduction by inserting degree-reduction operators
after binary operations. This ensures all intermediate polynomials obtained by
arithmetisation have low degree.

444 E. Couillard et al.

Definition 2. A circuit with partial evaluation and degree reduction over the
set S of variables (S-CPD) is defined in the same manner as an S-CP, extended
as follows:

– if ϕ is an S-CPD and x ∈ S, then δxϕ is an S-CPD,
– [[δxϕ]] := δx[[ϕ]], and
– ϕ is the only child of δxϕ.

For an S-CPD ϕ we define free(ϕ), |ϕ|, children, descendants, and the graphical
representation as for S-CPs.

Fig. 2. CPD and polynomials
for the CP of Fig. 1.

We convert a CP ϕ into a CPD conv(ϕ) by
adding a degree-reduction operator for each free
variable before any binary operation.

Definition 3. Given a CP ϕ with free(ϕ) =
{x1, ..., xk}, its associated CPD conv(ϕ) is
inductively defined as follows:

– conv(false) = false, conv(true) := true,
– conv(¬ψ) := ¬ conv(ψ), conv(π[x:=b] ψ) :=

π[x:=b] conv(ψ), and
– conv(ψ1 � ψ2) := δx1 ...δxk

(conv(ψ1) �
conv(ψ2)), for � ∈ {∨,∧}.

Figure 2 shows the CPD conv(ϕ) for the CP
ϕ of Fig. 1, together with the polynomials corre-
sponding to each node.

We collect some basic properties of CPDs:

Lemma 1. Let ϕ be a CP.

(a) [[conv(ϕ)]] is a binary multilinear polynomial
and [[conv(ϕ)]] ≡b [[ϕ]].

(b) For every descendant ψ of conv(ϕ), [[ψ]] has
maximum degree 2.

CPDs have another useful property. Recall
that given a CP ϕ we are interested in its number
of satisfying assignments. The next lemma shows
that this number can be computed by evaluating
the polynomial [[conv(ϕ)]] on a single input.

Lemma 2. A CP ϕ with n free variables has m < |F| satisfying assignments iff
Πσ[[conv(ϕ)]] = m · 2−n, where σ is the assignment satisfying σ(x) := 2−1 in the
field F for every variable x.1

1 Any prime field F with |F| > 2 has an element c such that 2c = 1.

Efficient Interactive Protocols for BDD Algorithms 445

4.3 CPCertify: An Interactive Protocol for #CP

We describe an interactive protocol, called CPCertify, for a CP ϕ with n
free variables. Let X denote the variables used in ϕ. Prover and Verifier fix a
finite field with at least m + 1 elements, where m is an upper bound on the
number of assignments (e.g. m = 2n). Prover tries to convince the Verifier that
Πσ[[conv(ϕ)]] = K for some K ∈ F.

In the protocol, Verifier challenges Prover to compute polynomials of the
form Πσ([[ψ]]), where ψ is a node of the CPD conv(ϕ) and σ : free(ψ) → F

is a (non-binary!) assignment; we call the expression Πσ[[conv(ψ)]] a challenge.
Observe that all assignments are chosen by Verifier. Prover answers with some
k ∈ F. We call the expression Πσ[[conv(ψ)]] = k a claim, or the answer to the
challenge Πσ[[conv(ψ)]].

CPCertify consists of an initialisation and a number of rounds, one for each
descendant of conv(ϕ). Rounds are executed in topological order, starting at the
root, i.e. at conv(ϕ) itself. The structure of a round for a node ψ of conv(ϕ)
depends on whether ψ is an internal node (including the root), or a leaf.

At each point, Verifier keeps track of a set C of claims that must be checked.

Initialisation. Verifier sends Prover the challenge Πσ[[conv(ϕ)]], where σ(x) :=
2−1 for every x ∈ free(ϕ). Prover returns the claim Πσ[[conv(ϕ)]] = K for some
K ∈ F. (By Lemma 2, this amounts to claiming that ϕ has K · 2n satisfying
assignments.) Verifier initialises C := {Πσ[[conv(ϕ)]] = K}.

Round for an Internal Node. A round for an internal node ψ runs as follows:

(a) Verifier collects all claims {Πσi
[[ψ]] = ki}m

i=1 in C relating to ψ, with assign-
ments σ1, . . . , σm : free(ψ) → F and k1, ..., km ∈ F. (Initially ψ = conv(ϕ)
and the only claim is Πσ[[conv(ϕ)]] = K.)

(b) If m > 1, Verifier interacts with Prover to compute a unique claim Πσ[[ψ]] =
k such that very likely2 the claim is true only if all claims {Πσi

[[ψ]] = ki}m
i=1

are true. For this, Verifier sends a number of challenges, and checks that
the answers are consistent with the prior claims. Based on these answers,
Verifier then derives new claims. (See “Description of step (b)” below.)

(c) Verifier interacts with Prover to compute a claim Πσ′ [[ψ′]] = k′ for each child
ψ′ of ψ. This is similar to (b): if Πσ[[ψ]] �= k, i.e. the unique claim from (b)
does not hold, then very likely one of the resulting claims will be wrong.
Depending on the type of ψ, the claims are computed based on the answers
of Prover to challenges sent by Verifier. (See “Description of step (c)” below.)

(d) In total, Verifier removed the claims {Πσi
[[ψ]] = ki}m

i=1 from C, and replaced
them by one claim Πσ′ [[ψ′]] = k′ for each child ψ′ of ψ.

Observe that, since a node ψ can be a child of several nodes, Verifier may collect
multiple claims for ψ, one for each parent node.

Round for a Leaf. If ψ is a leaf, then ψ = x for a variable x, or ψ ∈ {true, false}.
Verifier removes all claims {Πσi

[[ψ]] = ki}m
i=1 from C, computes the values ci :=

Πσi
[[ψ]], and rejects if ki �= ci for any i.

2 The precise bound on the failure probability will be given in Proposition 2.

446 E. Couillard et al.

Observe that if all claims made by Prover about leaves are true, then very
likely Prover’s initial claim is also true.

Description of Step (b). Let {Πσi
[[ψ]] = ki}m

i=1 be the claims in C relating to
node ψ. Verifier and Prover conduct step (b) as follows:

(b.1) While there exists x ∈ X s.t. σ1(x), . . . , σm(x) are not pairwise equal:
(b.1.1) For every i ∈ {1, ...,m}, let σ′

i denote the partial assignment which is
undefined on x and otherwise matches σi. Verifier sends the challenges
{Πσ′

i
[[ψ]]}m

i=1 to Prover. Prover answers with claims {Πσ′
i
[[ψ]] = pi}m

i=1.
Note that p1, . . . , pm are univariate polynomials with free variable x.

(b.1.2) Verifier checks whether ki = π[x:=σi(x)] pi holds for each i. If not, Ver-
ifier rejects. Otherwise, Verifier picks r ∈ F uniformly at random and
updates σi(x) := r and ki := π[x:=r]pi for every i ∈ {1, ...,m}.

(b.2) If after exiting the loop the values k1, ..., km are not pairwise equal, Verifier
rejects. Otherwise (that is, if k1 = k2 = · · · = km), the set C now contains
a unique claim Πσ[[ψ]] = k relating to ψ.

Example 1. Consider the case in which X = {x}, and Prover has made two
claims, Πσ1 [[ψ]] = k1 and Πσ2 [[ψ]] = k2 with σ1(x) = 1 and σ2(x) = 2. In step
(b.1.1) we have σ′

1 = σ′
2 (both are the empty assignment), and so Verifier sends

the challenge [[ψ]] to Prover twice, who answers with claims [[ψ]] = p1 and [[ψ]] =
p2. In step (b.1.2) Verifier checks that p1(1) = k1 and p2(2) = k2 hold, picks a
random number r, and updates σ1(x) := σ2(x) := r and k1 := p1(r), k2 := p2(r).
Now the condition of the while loop fails, so Verifier moves to (b.2) and checks
k1 = k2.

Description of Step (c). Let Πσ[[ψ]] = k be the claim computed by Verifier in
step (b). Verifier removes this claim from C and replaces it by claims about the
children of ψ, depending on the structure of ψ:

(c.1) If ψ = ψ1 � ψ2, for a � ∈ {∨,∧}, then Verifier sends Prover challenges
Πσ[[ψi]] for i ∈ {1, 2}, and Prover sends claims Πσ[[ψi]] = ki back. Verifier
checks the consistency condition k = π[x:=k1]π[y:=k2][[x � y]], rejecting if it
does not hold. If the condition holds, the claim Πσ[[ψi]] = ki is added to C,
to be checked in the round for ψi.

(c.2) If ψ = ¬ψ′, then Verifier adds the claim Πσ[[ψ′]] = 1 − k to ψ′.
(c.3) If ψ = π[x:=b] ψ

′, Verifier sets σ′ := σ ∪ {x 	→ b} and adds the claim
Πσ′ [[ψ′]] = k to C.

(c.4) If ψ = δxψ′, then Verifier sends Prover the challenge Πσ′ [[ψ′]], where
σ′ denotes the partial assignment which is undefined on x and other-
wise matches σ. Prover returns the claim p := Πσ′ [[ψ′]]. Observe that p
is a univariate polynomial over x. Verifier checks the consistency condi-
tion π[x:=σ(x)]δx p = k, rejecting if it does not hold. If it holds, Verifier
picks an r ∈ F uniformly at random, conducts the updates σ(x) := r and
k := π[x:=r] p, and adds Πσ[[ψ′]] = k to the set of claims about ψ′.

Efficient Interactive Protocols for BDD Algorithms 447

This concludes the description of the interactive protocol. We now show
CPCertify is complete and sound.

Proposition 2 (CPCertify is complete and sound). Let ϕ be a CP with
n free variables. Let Πσ[[conv(ϕ)]] = K be the claim initially sent by Prover to
Verifier. If the claim is true, then Prover has a strategy to make Verifier accept.
If not, for every Prover, Verifier accepts with probability at most 4n|ϕ|/|F|.

If the original claim is correct, Prover can answer every challenge truthfully
and all claims pass all of Verifier’s checks. So Verifier accepts. If the claim is not
correct, we proceed round by round. We bound the probability that the Verifier
is tricked in a single step to at most 2/|F| using the Schwartz-Zippel Lemma.
We then bound the number of such steps to 2n|ϕ| and use a union bound.

5 A BDD-Based Prover

We assume familiarity with reduced ordered binary decision diagrams (BDDs)
[9]. We use BDDs over X = {x1, . . . , xn}. We fix the variable order x1 < x2 <
. . . < xn, i.e. the root node would decide based on the value of xn.

Definition 4. BDDs are defined inductively as follows:

– 〈true〉 and 〈false〉 are BDDs of level 0;
– if u �= v are BDDs of level �u, �v and i > �u, �v, then 〈xi, u, v〉 is a BDD of

level i;
– we identify 〈xi, u, u〉 and u, for a BDD u of level �i and i > �u.

The level of a BDD w is denoted �(w). The set of descendants of w is the
smallest set S with w ∈ S and u, v ∈ S for all 〈x, u, v〉 ∈ S. The size |w| of w is
the number of its descendants.

The arithmetisation of a BDD w is the polynomial [[w]] defined as follows:
[[〈true〉]] := 1, [[〈false〉]] := 0 and [[〈x, u, v〉]] := [1 − x] · [[u]] + [x] · [[v]].

Figure 3 shows a BDD for the boolean function ϕ(x, y, z) = (x ∧ y ∧ ¬z) ∨
(¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) and the arithmetisation of each node.

BDDSolver: A BDD-based Algorithm for #CP. An instance ϕ of #CP
can be solved using BDDs. Starting at the leaves of ϕ, we iteratively compute
a BDD for each node ψ of the circuit encoding the boolean predicate Pψ. At
the end of this procedure we obtain a BDD for Pϕ. The number of satisfying
assignments of ψ is the number of accepting paths of the BDD, which can be
computed in linear time in the size of the BDD.

For a node ψ = ψ1 � ψ2, given BDDs representing the predicates Pϕ1 and
Pϕ2 , we compute a BDD for the predicate Pϕ := Pϕ1 � Pϕ2 , using the Apply�
operator on BDDs. We name this algorithm for solving #CP “BDDSolver.”

448 E. Couillard et al.

Fig. 3. A BDD and its arithmeti-
sation. For 〈x, u, v〉, we denote the
link from x to v with a solid edge
and x to u with a dotted edge. We
omit links to 〈false〉.

From BDDSolver to CPCertify. Our
goal is to modify BDDSolver to play the
role of an honest Prover in CPCertify with
minimal overhead. In CPCertify, Prover
repeatedly performs the same task: evaluate
polynomials of the form Πσ[[ψ]], where ψ is
a descendant of the CPD conv(ϕ), and σ
assigns values to all free variables of ψ except
possibly one. Therefore, the polynomials have
at most one free variable and, as we have
seen, degree at most 2.

Before defining the concepts precisely, we
give a brief overview of this section.

– First (Proposition 3), we show that BDDs
correspond to binary multilinear polyno-
mials. In particular, BDDs allow for effi-
cient evaluation of the polynomial. As
argued in Lemma 1(a), for every descendant ψ of ϕ, the CPD conv(ψ) (which
is a descendant of conv(ϕ)) evaluates to a multilinear polynomial. In particu-
lar, Prover can use standard BDD algorithms to calculate the corresponding
polynomials Πσ[[ψ]] for all descendants ψ of conv(ϕ) that are neither binary
operators nor degree reductions.

– Second (the rest of the section), we prove a surprising connection: the inter-
mediate results obtained while executing the BDD algorithms (with slight
adaptations) correspond precisely to the remaining descendants of conv(ϕ).

The following proposition proves that BDDs represent exactly the binary
multilinear polynomials.

Proposition 3. (a) For a BDD w, [[w]] is a binary multilinear polynomial. (b)
For a binary multilinear polynomial p there is a unique BDD w s.t. p = [[w]].

5.1 Extended BDDs

During the execution of CPCertify for a given CPD conv(ϕ), Prover sends
to Verifier claims of the form Πσ[[ψ]], where ψ is a descendant of conv(ϕ), and
σ : X → F is a partial assignment. While all polynomials computed by CPCer-
tify are binary, not all are multilinear: some polynomials have degree 2. For
these polynomials, we introduce extended BDDs (eBDDs) and give eBDD-based
algorithms for the following two tasks:

1. Compute an eBDD representing [[ψ]] for every node ψ of conv(ϕ).
2. Given an eBDD for [[ψ]] and a partial assignment σ, compute Πσ[[ψ]].

Efficient Interactive Protocols for BDD Algorithms 449

Fig. 4. A node of a CP (�) gets a
chain of degree reduction nodes in
the associated CPD.

Computing eBDDs for CPDs: Informal
Introduction. Consider a CP ϕ and its asso-
ciated CPD conv(ϕ). Each node of ϕ induces
a chain of nodes in conv(ϕ), consisting of
degree-reduction nodes δx1 , . . . , δxn

, followed
by the node itself (see Fig. 4). Given BDDs
u and v for the children of the node in the
CP, we can compute a BDD for the node
itself using a well-known BDD algorithm
Apply�(u, v) parametric in the boolean oper-
ation � labelling the node [9]. Our goal
is to transform Apply� into an algorithm
that computes eBDDs for all nodes in the
chain, i.e. eBDDs for all the polynomials
p0, p1, . . . , pn of Fig. 4.

Roughly speaking, Apply�(u, v) recur-
sively computes BDDs w0 = Apply�(u0, v0)
and w1 = Apply�(u1, v1), where ub and vb are the b-children of u and v, and
then returns the BDD with w0 and w1 as 0- and 1-child, respectively.3

Most importantly, we modify Apply� to run in breadth-first order. Figure 5
shows a graphical representation of a run of Apply∨(u, v), where u and v are the
two BDD nodes labelled by x. Square nodes represent pending calls to Apply�.
Initially there is only one square call Apply∨(u, v) (Fig. 5, top left). Apply∨ calls
itself recursively for u0, v0 and u1, v1 (Fig. 5, top right). Each of the two calls
splits again into two; however, the first three are identical (Fig. 5, bottom left),
and so reduce to two. These two calls can now be resolved directly; they return
nodes true and false, respectively. At this point, the children of Apply�(u, v)
become 〈y, true, true〉 = true, and 〈y, true, false〉, which exists already as well
(Fig. 5, bottom right).

We look at the diagrams of Fig. 5 not as a visualisation aid, but as graphs
with two kinds of nodes: standard BDD nodes, represented as circles, and product
nodes, represented as squares. We call them extended BDDs. Each node of an
extended BDD is assigned a polynomial in the expected way: the polynomial
[[u]] of a standard BDD node u with variable x is x · [[u1]] + (1 − x) · [[u0]], the
polynomial [[v]] of a square ∧-node v is [[v0]] · [[v1]], etc. In this way we assign to
each eBDD a polynomial. In particular, we obtain the intermediate polynomials
p0, p1, p2, p3 of the figure, one for each level in the recursion. In the rest of the
section we show that these are precisely the polynomials p0, p1, . . . , pn of Fig. 4.

Thus, in order to compute eBDDs for all nodes of a CPD conv(ϕ), it suffices
to compute BDDs for all nodes of the CP ϕ. Since we need to do this anyway
to solve #CP, the polynomial certification does not incur any overhead.

3 In fact, this is only true when u and v are nodes at the same level and
Apply�(u0, v0) �= Apply�(u1, v1), but at this point we only want to convey some
intuition.

450 E. Couillard et al.

Fig. 5. Run of Apply∨(u, v), but with recursive calls evaluated in breadth-first order.
All missing edges go to node false.

Extended BDDs. As for BDDs, we define eBDDs over X = {x1, . . . , xn} with
the variable order x1 < x2 < ... < xn.

Definition 5. Let � be a binary boolean operator. The set of eBDDs (for �) is
inductively defined as follows:

– every BDD is also an eBDD of the same level;
– if u, v are BDDs (not eBDDs!), then 〈u � v〉 is an eBDD of level l where

l := max{�(u), �(v)}; we call eBDDs of this form product nodes;
– if u �= v are eBDDs and i > �(u), �(v), then 〈xi, u, v〉 is an eBDD of level i;
– we identify 〈xi, u, u〉 and u for an eBDD u and i > �(u).

The set of descendants of an eBDD w is the smallest set S with w ∈ S and
u, v ∈ S for all 〈u � v〉 , 〈x, u, v〉 ∈ S The size of w is its number of descendants.
For u, v ∈ {〈true〉 , 〈false〉} we identify 〈u � v〉 with 〈true〉 or 〈false〉 according
to the result of �, e.g. 〈〈true〉 ∨ 〈false〉〉 = 〈true〉, as true ∨ false = true. The
arithmetisation of an eBDD for a boolean operator � ∈ {∧,∨} is defined as for
BDDs, with the extensions [[〈u ∧ v〉]] = [[u]]·[[v]] and [[〈u ∨ v〉]] = [[u]]+[[v]]−[[u]]·[[v]].

Example 2. The diagrams in Fig. 5 are eBDDs for � := ∨. Nodes of the form
〈x, u, v〉 and 〈u ∨ v〉 are represented as circles and squares, respectively. Con-
sider the top-left diagram. Abbreviating x ⊕ y := (x ∧ ¬y) ∨ (¬x ∧ y) we get
[[Apply∨(u, v)]] = [[(x ⊕ y) ∧ (x ∧ y)]] = [[x ⊕ y]] · [[x ∧ y]] = (x(1 − y) + (1 − x) ·
y − xy(1 − x)(1 − y)) · xy, which is the polynomial p0 shown in the figure.

Efficient Interactive Protocols for BDD Algorithms 451

Table 1. On the left: Algorithm computing eBDDs for the sequence [[w]], δxn [[w]],
δxn−1δxn [[w]], . . ., δx1 · · · δxn [[w]] of polynomials. On the right: Recursive algorithm to
evaluate the polynomial represented by an eBDD at a given partial assignment. P (w)
is a mapping used to memoize the polynomials returned by recursive calls.

ComputeEBDD(w)

Input: eBDD w
Output: sequence w0, ..., wn of eBDDs
w0 := w; output w0

for i = 0, · · · , �(w) − 1 do
wi+1 := wi

for every node 〈u � v〉 of wi

at level n − i do
for b ∈ {0, 1} do

ub := π[xn−i:=b] u
vb := π[xn−i:=b] v
tb := 〈ub � vb〉

wi+1 := wi+1 [〈u � v〉 / 〈xn−i, t0, t1〉]
output wi+1

EvaluateEBDD(w, σ) =: Eσ(w)

Input: eBDD w; assignment σ : X → F

Output: Πσ[[w]]

if P (w) is defined return P (w)
if w ∈ {〈true〉 , 〈false〉} return [[w]]
if w = 〈u ∧ v〉

P (w) := Eσ(u) · Eσ(v)
if w = 〈u ∨ v〉

P (w) := Eσ(u) + Eσ(v) − Eσ(u)Eσ(v)
if w = 〈x, u, v〉 and σ(x) undefined

P (w) := [1 − x] · Eσ(u) + [x] · Eσ(v)
if w = 〈x, u, v〉 and σ(x) = s ∈ F

P (w) := [1 − s] · Eσ(u) + [s] · Eσ(v)
return P (w)

Computing eBDDs for CPDs. Given a node of a CP corresponding to a
binary operator �, Prover has to compute polynomials p0, δx1p0, . . . , δxn

...δx1p0
corresponding to the nodes of the CPD shown on the right. We show that
Prover can compute these polynomials by representing them as eBDDs. Table 1
describes an algorithm that gets as input an eBDD w of level n, and outputs a
sequence w0, w1, ..., wn+1 of eBDDs such that w0 = w; [[wi+1]] = δxn−i

[[wi]] for
every 0 ≤ i ≤ �(w) − 1; and wn+1 is a BDD. Interpreted as sequence of eBDDs,
Fig. 5 shows a run of this algorithm.

Notation. Given an eBDD w and eBDDs u, v such that �(u) ≥ �(v), we let w[u/v]
denote the result of replacing u by v in w. For an eBDD w = 〈xi, w0, w1〉 and
b ∈ {0, 1} we define π[xi:=b]w := wb, and for j > i we set π[xj :=b]w := w. (Note
that [[π[xj :=b]w]] = π[xj :=b][[w]] holds for any j where it is defined.)

Proposition 4. Let ψ1, ψ2 denote CPs and u1, u2 BDDs with [[ui]] = [[ψi]], i ∈
{1, 2}. Let w := 〈u1 � u2〉 denote an eBDD. Then ComputeEBDD(w) satisfies
[[w0]] = [[ψ1 � ψ2]] and [[wi+1]] = δxn−i

[[wi]] for every 0 ≤ i ≤ n− 1; moreover, wn

is a BDD with wn = Apply�(u1, u2). Finally, the algorithm runs in time O(T),
where T ∈ O(|u1| · |u2|) is the time taken by Apply�(u1, u2).

Evaluating Polynomials Represented as eBDDs. Recall that Prover must
evaluate expressions of the form Πσ[[ψ]] for some CPD ψ, where σ assigns values
to all variables of ψ except for possibly one. We give an algorithm to evaluate
arbitrary expressions Πσ[[w]], where w is an eBDD, and show that if there is
at most one free variable then the algorithm takes linear time in the size of ψ.
The algorithm is shown on the right of Table 1. It has the standard structure of
BDD procedures: It recurs on the structure of the eBDD, memoizing the result
of recursive calls so that the algorithm is called at most once with a given input.

452 E. Couillard et al.

Proposition 5. Let w denote an eBDD, σ : X → F a partial assignment, and
k the number of variables assigned by σ. Then EvaluateEBDD evaluates the
polynomial Πσ[[w]] in time O(

poly(2n−k) · |w|).

5.2 Efficient Certification

In the CPCertify algorithm, Prover must (a) compute polynomials for all
nodes of the CPD, and (b) evaluate them on assignments chosen by Verifier.
In the last section we have seen that ComputeEBDD (for binary operations
of the CP), combined with standard BDD algorithms (for all other operations),
yields eBDDs representing all these polynomials—at no additional overhead,
compared to a BDD-based implementation. This covers part (a). Regarding (b),
recall that all polynomials computed in (a) have at most one variable. Therefore,
using EvaluateEBDD we can evaluate a polynomial in linear time in the size
of the eBDD representing it.

The Verifier CPCertify is implemented in a straightforward manner. As the
algorithm runs in polynomial size w.r.t. the CP (and not the computed BDDs,
which may be exponentially larger), incurring overhead is less of a concern.

Theorem 1 (Main Result). If BDDSolver solves an instance ϕ of #CP
with n variables in time T , with T > n|ϕ|, then

(a) Prover computes eBDDs for all nodes of conv(ϕ) in time O(T),
(b) Prover responds to Verifier’s challenges in time O(nT), and
(c) Verifier executes CPCertify in time O(n2|ϕ|), with failure probability at

most 4n|ϕ|/|F|.
As presented above, EvaluateEBDD incurs a factor-of-n overhead, as every

node of the CPD must be evaluated. In our implementation, we use a caching
strategy to reduce the complexity of Theorem 1(b) to O(T).

Note that the bounds above assume a uniform cost model. In particular,
operations on BDD nodes and finite field arithmetic are assumed to be O(1).
This is a reasonable assumption, as for a constant failure probability log |F| ≈
log n. Hence the finite field remains small. (It is possible to verify the number of
assignments even if it exceeds |F|, see below.)

5.3 Implementation Concerns

We list a number of points that are not described in detail in this paper, but
need to be considered for an efficient implementation.

Finite Field Arithmetic. It is not necessary to use large finite fields. In par-
ticular, one can avoid the overhead of arbitrarily sized integers. For our imple-
mentation we fix the finite field F := Zp, with p = 261 − 1 (the largest Mersenne
prime to fit in 64 bits).

Incremental eBDD Representation. Algorithm ComputeEBDD computes
a sequence of eBDDs. These must not be stored explicitly, otherwise one incurs

Efficient Interactive Protocols for BDD Algorithms 453

a space-overhead. Instead, we only store the last eBDD as well as the differences
between each subsequent element of the sequence. To evaluate the eBDDs, we
then revert to a previous state by applying the differences appropriately.

Evaluation Order. It simplifies the implementation if Prover only needs to
evaluate nodes of the CPD in some (fixed) topological order. CPCertify can
easily be adapted to guarantee this, by picking the next node appropriately in
each iteration, and by evaluating only one child of a binary operator ψ1 � ψ2.
The value of the other child can then be derived by solving a linear equation.

Efficient Evaluation. As stated in Theorem 1, using EvaluateEBDD Prover
needs Ω(nT) time to respond to Verifier’s challenges. In our implementation
we instead use a caching strategy that reduces this time to O(T). Essentially,
we exploit the special structure of conv(ϕ): Verifier sends a sequence of chal-
lenges Πσ0δx1 ...δxn

w,Πσ1δx2 ...δxn
w, ...,Πσn

w, where assignments σi and σi+1

differ only in variables xi and xi+1. The corresponding eBDDs likewise change
only at levels i and i + 1. We cache the linear coefficients of eBDD nodes that
contribute to the arithmetisation of the root top-down, and the arithmetised
values of nodes bottom up. As a result, only levels i, i + 1 need to be updated.

Large Numbers of Assignments. If the number of satisfying assignments
of a CP exceeds |F|, Verifier would not be able to verify the count accurately.
Instead of choosing |F| ≥ 2n, which incurs a significant overhead, Verifier can
query the precise number of assignments, and then choose |F| randomly. This
introduces another possibility of failure, but (roughly speaking) it suffices to
double log |F| for the additional failure probability to match the existing one.
Our implementation does not currently support this technique.

6 Evaluation

We have implemented an eBDD library, blic (BDD Library with Interactive Cer-
tification)4, that is a stand-in replacement for BDDs but additionally performs
the role of Prover in the CPCertify protocol. We have also implemented a
client that executes the protocol as Verifier. The eBDD library is about 900
lines of C++ code and the CPCertify protocol is about 400 lines. We have
built a prototype certifying QBF solver in blic, totalling about 2600 lines of code.
We aim to answer the following questions in our evaluation:

RQ1. Is a QBF solver with CPCertify-based certification competitive? If so,
how high is the overhead of implementing CPCertify on top of the
BDD operations?

RQ2. What is the amount of communication for Prover and Verifier in execut-
ing the CPCertify protocol, what is the time requirement for Verifier,
and how do these numbers compare to proof sizes and proof checking
times for certificates based on resolution and other proof systems?

4 https://gitlab.lrz.de/i7/blic.

https://gitlab.lrz.de/i7/blic

454 E. Couillard et al.

Fig. 6. (a) Time taken on instances (dashed lines are y = 100x and y = 0.01x), (b)
Cost of generating a certificate over computing the solution, (c) Time to verify the
certificate, (d) Size of certificates

RQ1: Performance of blic. We compare blic with CAQE, DepQBF, and PGB-
DDQ, three state-of-the-art QBF solvers. CAQE [10,29] does not provide any
certificates in its most recent version. DepQBF [12,19] is a certifying QBF solver.
PGBDDQ [7,25] is an independent implementation of a BDD-based QBF solver.
Both DepQBF and PGBDDQ provide specialised checkers for their certificates,
though PGBDDQ can also proofs in standard QRAT format. Note that PGBDDQ
is written in Python and generates proofs in an ASCII-based format, incurring
overhead compared to the other tools.

We take 172 QBF instances (all unsatisfiable) from the Crafted Instances
track of the QBF Evaluation 2022.5 The Prenex CNF track of the QBF com-
petition is not evaluated here. It features instances with a large number of vari-
ables. BDD-based solvers perform poorly under these circumstances without
additional optimisations. Our overall goal is not to propose a new approach for

5 CAQE and DepQBF were the winner and runner-up in this category. The configu-
ration we used differs from the competition, as described in the full version of the
paper [11].

Efficient Interactive Protocols for BDD Algorithms 455

Table 2. Comparison of certificate generation, bytes exchanged between prover and
verifier, and time taken to verify the certificate on a set of QBF benchmarks from
[7]. “Solve time” is time taken to solve the instance and to generate a certificate (sec-
onds), “Certificate” is the size of proof encoding for PGBDDQ, and bytes exchanged by
CPCertify for blic, and “Verifier time” is time to verify the certificate (Verifier’s run
time for blic and time taken by qchecker).

Instance Solve time (s) Certificate (MiB) Verifier time (s)
n result blic PGBDDQ blic PGBDDQ blic qchecker

10 sat 0.03 3.67 1.20 8.48 0.01 3.80
10 unsat 0.03 3.66 1.20 8.45 0.01 3.83
15 sat 0.13 18.07 4.12 44.25 0.02 18.45
15 unsat 0.13 18.14 4.11 44.20 0.02 18.55
20 sat 0.54 82.92 11.59 198.54 0.07 80.28
20 unsat 0.53 83.02 11.64 198.76 0.06 79.05
25 sat 1.56 261.16 23.94 566.95 0.14 238.99
25 unsat 1.55 261.25 23.86 565.36 0.15 237.94
40 sat 25.22 4863.71 132.43 7464.96 0.95 5141.08
40 unsat 25.25 4827.06 132.67 7467.84 0.99 5463.54

solving QBF, but rather to certify a BDD-based approach, so we wanted to focus
on cases where the existing BDD-based approaches are practical.

We ran each benchmark with a 10min timeout; all tools other than CAQE
were run with certificate production. All times were obtained on a machine
with an Intel Xeon E7-8857 CPU and 1.58 TiB RAM6 running Linux. See the
full version of the paper [11] for a detailed description. blic solved 96 out of
172 benchmarks, CAQE solved 98, DepQBF solved 87, and PGBDDQ solved 91.
Figure 6(a) shows the run times of blic compared to the other tools. The plot
indicates that blic is competitive on these instances, with a few cases, mostly
from the Lonsing family of benchmarks, where blic is slower than DepQBF by
an order of magnitude. Figure 6(b) shows the overhead of certification: for each
benchmark (that finishes within a 10min timeout), we plot the ratio of the time to
compute the answer to the time it takes to run Prover in CPCertify. The dotted
regression line shows CPCertify has a 2.8× overhead over computing BDDs.
For this set of examples, the error probability never exceeds 10−8.9 (10−11.6

when Lonsing examples are excluded); running the verifier k times reduces it to
10−8.9k.

RQ2: Communication Cost of Certification and Verifier Time. We
explore RQ2 by comparing the number of bytes exchanged between Prover and
Verifier and the time needed for Verifier to execute CPCertify with the number
of bytes in an QBF proof and the time required to verify the proof produced by
DepQBF and PGBDDQ, for which we use QRPcheck [24,26] and qchecker [7,25],
respectively. Note that the latter is written in Python.

6 blic uses at most 60 GiB on the shown benchmarks, 5 GiB when excluding timeouts.

456 E. Couillard et al.

We show that the overhead of certification is low. Figure 6(c) shows the run
time of Verifier—this is generally negligible for blic, except for the Lonsing and
KBKF families, which have a large number of variables, but very small BDDs.
Figure 6(d) shows the total number of bytes exchanged between Prover and
Verifier in blic against the size of the proofs generated by PGBDDQ and DepQBF.
For large instances, the number of bytes exchanged in blic is significantly smaller
than the size of the proofs. The exception are again the Lonsing and KBKNF
families of instances. For both plots, the dotted line results from a log-linear
regression.

In addition to the Crafted Instances, we compare against PGBDDQ on a
challenging family of benchmarks used in the PGBDDQ paper (matching the
parameters of [7, Table 3]); these are QBF encodings of a linear domino placing
game.7 Our results are summarised in Table 2. The upper bound on Verifier
error is 10−9.22. We show that blic outperforms PGBDDQ both in overall cost
of computing the answer and the certificates as well as in the number of bytes
communicated and the time used by Verifier.

Our results indicate that giving up absolute certainty through interactive
protocols can lead to an order of magnitude smaller communication cost and
several orders of magnitude smaller checking costs for the verifier.

7 Conclusion

We have presented a solver that combines BDDs with an interactive protocol.
blic can be seen as a self-certifying BDD library able to certify the correctness of
arbitrary sequences of BDD operations. In order to trust the result, a user must
only trust the verifier (a straightforward program that poses challenges to the
prover). We have shown that blic (including certification time) is competitive
with other solvers, and Verifier’s time and error probabilities are negligible.

Our results show that IP = PSPACE can become an important result not only
in theory but also in the practice of automatic verification. From this perspec-
tive, our paper is a first step towards practical certification based on interactive
protocols. While we have focused on BDDs, we can ask the more general ques-
tion: which practical automated reasoning algorithms can be made efficiently
certifying? For example, whether there is an interactive protocol and an effi-
cient certifying version of modern SAT solving algorithms is an interesting open
challenge.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2006). https://theory.cs.princeton.edu/complexity/
book.pdf

7 DepQBF only solved 1 of 10 instances within 120 min, and is thus not compared.

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf

Efficient Interactive Protocols for BDD Algorithms 457

2. Babai, L.: Trading group theory for randomness. In: Sedgewick, R. (ed.) Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, 6–8 May
1985, Providence, Rhode Island, USA, pp. 421–429. ACM (1985). https://doi.org/
10.1145/22145.22192

3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_12

4. Barbosa, H., et al.: Flexible proof production in an industrial-strength SMT solver.
In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385,
pp. 15–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6_3

5. Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rog-
away, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2_4

6. Bryant, R.E., Biere, A., Heule, M.J.H.: Clausal proofs for pseudo-boolean reason-
ing. In: TACAS 2022. LNCS, vol. 13243, pp. 443–461. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99524-9_25

7. Bryant, R.E., Heule, M.J.H.: Dual proof generation for quantified boolean formulas
with a BDD-based solver. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS
(LNAI), vol. 12699, pp. 433–449. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-79876-5_25

8. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-
based SAT solver. In: TACAS 2021. LNCS, vol. 12651, pp. 76–93. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72016-2_5

9. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35(8), 677–691 (1986)

10. CAQE (2023). https://github.com/ltentrup/caqe. Accessed 03 Feb 2023
11. Couillard, E., Czerner, P., Esparza, J., Majumdar, R.: Making IP=PSPACE prac-

tical: efficient interactive protocols for BDD algorithms. CoRR abs/2305.11813
(2023). https://doi.org/10.48550/arXiv.2305.11813

12. DepQBF (2017). https://github.com/lonsing/depqbf. Accessed 03 Feb 2023
13. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive

proof-systems (extended abstract). In: Sedgewick, R. (ed.) Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, 6–8 May 1985, Providence,
Rhode Island, USA, pp. 291–304. ACM (1985). https://doi.org/10.1145/22145.
22178

14. Henzinger, T.A., Necula, G.C., Jhala, R., Sutre, G., Majumdar, R., Weimer, W.:
Temporal-safety proofs for systems code. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 526–538. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45657-0_45

15. Heule, M.: Everything’s bigger in Texas: “the largest math proof ever”. In:
Benzmüller, C., Lisetti, C.L., Theobald, M. (eds.) GCAI 2017, 3rd Global Confer-
ence on Artificial Intelligence, Miami, FL, USA, 18–22 October 2017. EPiC Series
in Computing, vol. 50, pp. 1–5. EasyChair (2017). https://doi.org/10.29007/gdw8

16. Heule, M.J.H.: Proofs of unsatisfiability. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 635–668. IOS Press (2021). https://doi.
org/10.3233/FAIA200998

17. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving
with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 54–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_8

https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1007/978-3-319-09284-3_12
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-030-99524-9_25
https://doi.org/10.1007/978-3-030-79876-5_25
https://doi.org/10.1007/978-3-030-79876-5_25
https://doi.org/10.1007/978-3-030-72016-2_5
https://github.com/ltentrup/caqe
https://doi.org/10.48550/arXiv.2305.11813
https://github.com/lonsing/depqbf
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.29007/gdw8
https://doi.org/10.3233/FAIA200998
https://doi.org/10.3233/FAIA200998
https://doi.org/10.1007/11814948_8

458 E. Couillard et al.

18. Katz, G., Barrett, C.W., Tinelli, C., Reynolds, A., Hadarean, L.: Lazy proofs for
DPLL(T)-based SMT solvers. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Meth-
ods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, 3–6
October 2016, pp. 93–100. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.
7886666

19. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_23

20. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992). https://doi.org/10.1145/146585.
146605

21. Luo, N., Antonopoulos, T., Harris, W.R., Piskac, R., Tromer, E., Wang, X.: Prov-
ing UNSAT in zero knowledge. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2022, Los Angeles, CA, USA, 7–11 November 2022, pp.
2203–2217. ACM (2022). https://doi.org/10.1145/3548606.3559373

22. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44585-4_2

23. Necula, G.: Proof-carrying code. In: Principles of Programming Languages, pp.
106–119. ACM Press (1997)

24. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based cer-
tificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 430–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31612-8_33

25. PGBDDQ (2023). https://github.com/rebryant/pgbdd. Accessed 03 Feb 2023
26. QRPcheck (2023). http://fmv.jku.at/qrpcheck/. Accessed 03 Feb 2023
27. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). https://doi.org/10.

1145/146585.146609
28. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev,

D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006). https://doi.org/10.1007/11753728_60

29. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I.
(eds.) SAT 2019. LNCS, vol. 11628, pp. 388–405. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9_27

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/FMCAD.2016.7886666
https://doi.org/10.1109/FMCAD.2016.7886666
https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/3548606.3559373
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-642-31612-8_33
https://github.com/rebryant/pgbdd
http://fmv.jku.at/qrpcheck/
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1007/11753728_60
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27
http://creativecommons.org/licenses/by/4.0/

Ownership Guided C to Rust Translation

Hanliang Zhang1, Cristina David1, Yijun Yu2, and Meng Wang1(B)

1 University of Bristol, Bristol, UK
{pd21541,cristina.david,meng.wang}@bristol.ac.uk

2 The Open University, Milton Keynes, UK
yijun.yu@open.ac.uk

Abstract. Dubbed a safer C, Rust is a modern programming language
that combines memory safety and low-level control. This interesting com-
bination has made Rust very popular among developers and there is a
growing trend of migrating legacy codebases (very often in C) to Rust. In
this paper, we present a C to Rust translation approach centred around
static ownership analysis. We design a suite of analyses that infer owner-
ship models of C pointers and automatically translate the pointers into
safe Rust equivalents. The resulting tool, Crown, scales to real-world
codebases (half a million lines of code in less than 10 s) and achieves a
high conversion rate.

1 Introduction

Rust [33] is a modern programming language which features an exciting combi-
nation of memory safety and low-level control. In particular, Rust takes inspi-
ration from ownership types to restrict the mutation of shared state. The Rust
compiler is able to statically verify the corresponding ownership constraints and
consequently guarantee memory and thread safety. This distinctive advantage
of provable safety makes Rust a very popular language, and the prospect of
migrating legacy codebases in C to Rust is very appealing.

In response to this demand, automated tools translating C code to Rust
emerge from both industry and academia [17,26,31]. Among them, the industrial
strength translator C2Rust [26] rewrites C code into the Rust syntax while pre-
serving the original semantics. The translation does not synthesise an ownership
model and thus is not able to do more than replicating the unsafe use of pointers
in C. Consequently, the Rust code must be labelled with the unsafe keyword
which allows certain actions that are not checked by the compiler. More recent
work focuses on reducing this unsafe labelling. In particular, the tool Laertes [17]
aims to rewrite the (unsafe) code produced by C2Rust by searching the solu-
tion space guided by the type error messages from the Rust compiler. This is
impressive, as for the first time proper Rust code beyond a line-by-line direct
conversion from the original C source may be synthesised. On the other hand,
the limit of the trial-and-error approach is also clear: the system does not sup-
port the reasoning of the generation process, nor create any new understanding
of the target code (other than the fact that it compiles successfully).
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 459–482, 2023.
https://doi.org/10.1007/978-3-031-37709-9_22

https://doi.org/10.5281/zenodo.7966511
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_22&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_22

460 H. Zhang et al.

In this paper, we take a more principled approach by developing a novel
ownership analysis of pointers that is efficient (scaling to large programs (half
a million LOC in less than 10 s)), sophisticated (handling nested pointers and
inductively-defined data structures), and precise (being field and flow sensitive).
Our ownership analysis makes a strengthening assumption about the Rust own-
ership model, which obviates the need for an aliasing analysis. While this assump-
tion excludes a few safe Rust uses (see discussion in Sect. 5), it ensures that the
ownership analysis is both scalable and precise, which is subsequently reflected
in the overall scalability and precision of the C to Rust translation.

The primary goal of this analysis is of course to facilitate the C to Rust
translation. Indeed, as we will see in the rest of the paper, an automated trans-
lation system is built to encode the ownership models in the generated Rust
code which is then proven safe by the Rust compiler. However, in contrast to
trying the Rust compiler as common in existing approaches [17,31], this analy-
sis approach actually extracts new knowledge about ownership from code, which
may lead to other future utilities including preventing memory leaks (currently
allowed in safe Rust), identifying inherently unsafe code fragments, and so on.
Our current contributions are:

– design a scalable and precise ownership analysis that is able to handle complex
inductively-defined data structures and nested pointers. (Section 5)

– develop a refactoring technique for Rust leveraging ownership analyses to
enhance code safety. While in this paper we focus on applying our technique
to the translation from C to Rust, it can be used to improve the safety of any
unsafe Rust code. (Section 6)

– implement a prototype tool (Crown, standing for C to Rust OWNership
guided translation) that translates C code into Rust with enhanced safety.
(Section 7)

– evaluate Crown with a benchmark suite including commonly used data
structure libraries and real-world projects (ranging from 150 to half a million
LOC) and compare the result with the state-of-the-art. (Section 8)

2 Background

We start by giving a brief introduction of Rust, in particular its ownership system
and the use of pointers, as they are central to memory safety.

2.1 Rust Ownership Model

Ownership in Rust denotes a set of rules that govern how the Rust compiler
manages memory [33]. The idea is to associate each value with a unique owner.
This feature is useful for memory management. For example, when the owner
goes out of scope, the memory allocated for the value can be automatically
recycled.

Ownership Guided C to Rust Translation 461

1 let mut v = ...
2 let mut u = v; // ownership is transferred to u

In the above snippet, the assignment of v to u also transfers ownership, after
which it is illegal to access v until it is re-assigned a value again.

This permanent transfer of ownership gives strong guarantees but can be
cumbersome to manage in programming. In order to allow sharing of values
between different parts of the program, Rust uses the concept of borrowing,
which refers to creating a reference (marked by an ampersand). A reference
allows referring to some value without taking ownership of it. Borrowing gives
the temporary right to read and, potentially, uniquely mutate the referenced
value.

This concept of time creates another dimension of ownership management
known as lifetime. For mutable references (as marked by mut in the above exam-
ples), only one reference is allowed at a time. But for immutable references (the
ones without the mut marking), multiple of them can coexist as long as there
isn’t any mutable reference at the same time. As one can expect, this interaction
of mutable and immutable references, and their lifetimes is highly non-trivial. In
this paper, we focus on analysing mutable references.

2.2 Pointer Types in Rust

Rust has a richer pointer system than C. The primitive C-style pointers (written
as *const T or *mut T) are known as raw pointers, which are ignored by the
Rust compiler for ownership and lifetime checks. Raw pointers are a major source
of unsafe Rust (more below). Idiomatic Rust instead advocates box pointers
(written as Box<T>) as owning pointers that uniquely own heap allocations,
as well as references (written as &mut T or & T as discussed in the previous
subsection) as non-owning pointers that are used to access values owned by
others. Rust also offers smart pointers for which the borrow rules are checked
at runtime (e.g. RefCell<T>). We aim for our translation to maintain CPU
time without additional runtime overhead, and therefore we do not refactor raw
pointers into RefCell<T>s.

C-style array pointers are represented in Rust as references to arrays and slice
references, with array bounds known at compile time and runtime, respectively.
The creation of meta-data such as array bounds is beyond the scope of ownership
analysis. In this work, we keep array pointers as raw pointers in the translated
code.

2.3 Unsafe Rust

As a pragmatic design, Rust allows programs to contain features that cannot
be verified by the compiler as memory safe. This includes dereferencing raw
pointers, calling low level functions, and so on. Such uses must be marked with

462 H. Zhang et al.

the unsafe keyword and form fragments of unsafe Rust. It is worth noting that
unsafe does not turn off all compiler checks; safe pointers are still checked.

Unsafe Rust is often used to implement data structures with complex shar-
ing, overcome incompleteness issues of the Rust compiler, and support low-level
systems programming [2,18]. But it can also be used for other reasons. For exam-
ple, c2rust [26] directly translates C pointers into raw pointers. Without unsafe
Rust, the generated code would not compile.

3 Overview

In this section, we present an overview of Crown via two examples. The first
example provides a detailed description of the push method for a singly-linked
list, whereas the second shows a snippet from a real-world benchmark.

Fig. 1. Pushing into a singly-linked list

3.1 Pushing into a Singly-Linked List

The C code of function push in Fig. 1a allocates a new node where it stores the
data received as argument. The new node subsequently becomes the head of list.
This code is translated by c2rust to the Rust code in Fig. 1b. Notably, the c2rust
translation is syntax-based and simply changes all the C pointers to *mut raw

pointers. Given that dereferencing raw pointers is considered an unsafe operation
in Rust (e.g. the dereferencing of new_node at line 16 in Fig. 1b), the push method
must be annotated with the unsafe keyword (alternatively, it could be placed
inside an unsafe block). Additionally, c2rust introduces two directives for the two
struct definitions, #[repr(C)] and #[derive(Copy, Clone)]. The former keeps
the data layout the same as in C for possible interoperation, and the latter instructs
that the corresponding type can only be duplicated through copying.

Ownership Guided C to Rust Translation 463

While c2rust uses raw pointers in the translation, the ownership scheme in
Fig. 1b obeys the Rust ownership model, meaning that the raw pointers could be
translated to safe ones. A pointer to a newly allocated node is assigned to new_node
at line 15. This allows us to infer that the ownership of the newly allocated node
belongs to new_node. Then, at line 18, the ownership is transferred from new_node
to (*list).head. Additionally, if (*list).head owns any memory object prior
to line 17, then its ownership is transferred to (*new_node).next at line 17. This
ownership scheme corresponds to safe pointer use: (i) each memory object is asso-
ciated with a unique owner and (ii) it is dropped when its owner goes out of scope.
As an illustration for (i), when the ownership of the newly allocated memory is
transferred from new_node to (*list).head at line 18, (*list).head becomes
the unique owner, whereas new_node is made invalid and it is no longer used. For
(ii), given that argument list of push is an output parameter (i.e. a parameter
that can be accessed from outside the function), we assume that it must be owning
on exit from the method. Thus, no memory object is dropped in the push method,
but rather returned to the caller.

Crown infers the ownership information of the code translated by c2rust,
and uses it to translate the code to safer Rust in Fig. 1c. As explained next,
Crown first retypes raw pointers into safe pointers based on the ownership
information, and then rewrites their uses.

Retyping Pointers in Crown. If a pointer owns a memory object at any point
within its scope, Crown retypes it into a Box pointer. For instance, in Fig. 1c,
local variable new_node is retyped to be Option<Box<Node>> (safe pointer types
are wrapped into Option to account for null pointer values). Variable new_node
is non-owning upon function entry, becomes owning at line 13 and ownership is
transferred out again at line 16.

For struct fields, Crown considers all the code in the scope of the struct
declaration. If a struct field owns a memory object at any point within the scope
of its struct declaration, then it is retyped to Box. In Fig. 1b, fields next and
head are accessed via access paths (*new_node).next and (*list).head, and
given ownership at lines 17 and 18, respectively. Consequently, they are retyped
to Box at lines 4 and 9 in Fig. 1c, respectively.

A special case is that of output parameters, e.g. list in our example. For
such parameters, although they may be owning, Crown retypes them to &mut
in order to enable borrowing. In push, the input argument list is retyped to
Option<&mut List> .

Rewriting Pointer Uses in Crown. After retyping pointers, Crown rewrites
their uses. The rewrite process takes into consideration both their new type and
the context in which they are being used. Due to the Rust semantics, the rewrite
rules are slightly intricate (see Sect. 6). For instance, the dereference of new_node
at line 14 is rewritten to (*new_node).as_deref_mut().unwrap() as it needs to
be mutated and the optional part of the Box needs to be unwrapped. Similarly,
at line 15, (*list).head is rewritten to be ((*list.as_deref_mut()).unwrap
()).head.take() as the LHS of the assignment expects a Box pointer.

464 H. Zhang et al.

After the rewrite performed by Crown, the unsafe block annotation is not
needed anymore. However, Crown does not attempt to remove such annota-
tions. Notably, safe pointers are always checked by the Rust compiler, even
inside unsafe blocks.

3.2 Freeing an Argument List in bzip2

We next show the transformation of a real-world code snippet with a loop struc-
ture: a piece of code in bzip2 that frees argument lists. bzip2 defines a singly-
linked list like structure, Cell, that holds a list of argument names. In Fig. 2,
we extract from the source code a snippet that frees the argument lists. Here,
the local variable argList is an already constructed argument list, and Char is
a type alias to C-style characters. As a note, Cell in Figs. 2b and 2c does not
refer to Rust’s std::cell::Cell.

Fig. 2. Freeing an argument list

Crown accurately infers an ownership scheme for this snippet. Firstly, own-
ership of argList is transferred to aa, which is to be freed in the subsequent
loop. Inside the loop, ownership of link accessed from aa is firstly transferred
to aa2, then ownership of name accessed from aa is released in a call to free.
After the conditional, ownership of aa is also released. Last of all, aa regains
ownership from aa2.

Handling of Loops. For loops, Crown only analyses their body once as that
will already expose all the ownership information. For inductively defined data
structures such as Cell, while further unrolling of loop bodies explores the data
structures deeper, it does not expose any new struct fields: pointer variables and
pointer struct fields do not change ownership between loop iterations. Addition-
ally, Crown emits constraints that equate the ownership of all local pointers at
the loop entry and exit. For example, the ownership statuses of aa and aa2 at
loop entry are made equal with those at loop exit, and inferred to be owning
and non-owning, respectively.

Ownership Guided C to Rust Translation 465

Handling of Null Pointers. It is a common C idiom for pointers to be
checked against null after malloc or before free: if !p.is_null() free(p)
;. This could be problematic since the then-branch and the else-branch would
have conflicting ownership statuses for p. We adopt a similar solution as [24]: we
insert an explicit null assignment in the null branch if !p.is_null() free
(p); else p = ptr::null_mut();. As we treat null pointers as both owning
and non-owning, the ownership of p will be dictated by the non-null branch,
enabling Crown to infer the correct ownership scheme.

Translation. With the above ownership scheme, Crown performs the rewrites
as in Fig. 2c. Note that we do not attempt to rewrite name since it is an array
pointer (see Sect. 7 for limitations).

4 Architecture

In this section, we give a brief overview of Crown’s architecture. Crown takes
as input a Rust program with unsafe blocks, and outputs a safer Rust program,
where a portion of the raw pointers have been retyped as safe ones (in accordance
to the Rust ownership model), and their uses modified accordingly. In this paper
we focus on applying our technique to programs automatically translated by
c2rust, which maintain a high degree of similarity to the original C ones, where
the C syntax is replaced by Rust syntax.

Crown applies several static analyses on the MIR of Rust to infer properties
of pointers:

– Ownership analysis: computes ownership information about the pointers
in the code, i.e. for each pointer it infers whether it is owning/non-owning at
particular program locations.

– Mutability analysis: infers which pointers are used to modify the object
they point to (inspired by [22,25]).

– Fatness analysis: distinguishes array pointers from non-array pointers
(inspired by [32]).

The results of these analyses are summarised as type qualifiers [21]. A type
qualifier is an atomic property (i.e., ownership, mutability, and fatness) that
‘qualifies’ the standard pointer type. These qualifiers are then utilised for pointer
retyping. For example, an owning, non-array pointer is retyped to Box . After
pointers have been retyped, Crown rewrites their usages accordingly.

5 Ownership Analysis

The goal of our ownership analysis is to compute an ownership scheme for a
given program that obeys the Rust ownership model, if such a scheme exists. The
ownership scheme contains information about whether pointers in the program
are owning or non-owning at particular program locations. At a high-level, our
analysis works by generating a set of ownership constraints (Sect. 5.2), which are

466 H. Zhang et al.

then solved by a SAT solver (Sect. 5.3). A satisfying assignment for the ownership
constraints is an ownership scheme that obeys the Rust semantics.

Our ownership analysis is flow and field sensitive, where the latter enables
inferring ownership information for pointer struct fields. To satisfy field sensitiv-
ity, we track ownership information for access paths [10,14,29]. An access path
represents a memory location by the way it is accessed from an initial, base
variable, and comprises of the base variable and a sequence of field selection
operators. For the program Fig. 1b, some example access paths are new_node
(consists only of the base variable), (*new_node).next, and (*list).head.

Our analysis associates an ownership variable with each access path, e.g. p has
associated ownership variable Op, and (*p).next has associated ownership vari-
able O(∗p).next. Each ownership variable can take the value 1 if the corresponding
access path is owning, or 0 if it is non-owning. By ownership of an access path
we mean the ownership of the field (or, more generally, pointer) accessed last
through the access path, e.g. the ownership of (*new_node).next refers to the
ownership of field next.

5.1 Ownership and Aliasing

One of the main challenges of designing an ownership analysis is the interaction
between ownership and aliasing. To understand the problem, let us consider
the pointer assignment at line 3 in the code listing below. We assume that the
lines before the assignment allow inferring that q, (*q).next and r are owning,
whereas p and (*p).next are non-owning. Additionally, we assume that the lines
after the assignment require (*p).next to be owning (e.g. (*p).next is being
explicitly freed). From this, an ownership analysis could reasonably conclude that
ownership transfer happens at line 3 (such that (*p).next becomes owning), and
the inferred ownership scheme obeys the Rust semantics.

1 let p, r, q : *mut Node;
2 // p and (*p).next non-owning; q, (*q).next and r owning

3 (*p).next = r;
4 // (*p).next must have ownership

Let’s now also consider aliasing. A possible assumption is that, just before line
3, p and q alias, meaning that (*p).next and (*q).next also alias. Then, after
line 3, (*p).next and (*q).next will still alias (pointing to the same memory
object). However, according to the ownership scheme above, both (*p).next
and (*q).next are owning, which is not allowed in Rust, where a memory

object must have a unique owner. This discrepancy was not detected by the
ownership analysis mimicked above. The issue is that the ownership analysis
ignored aliasing. Indeed, ownership should not be transferred to (*p).next if
there exists an owning alias that, after the ownership transfer, continues to point
to the same memory object as (*p).next.

Precise aliasing information is very difficult to compute, especially in the
presence of inductively defined data structures. In the current paper, we alle-
viate the need to check aliasing by making a strengthening assumption about

Ownership Guided C to Rust Translation 467

the Rust ownership model: we restrict the way in which pointers can acquire
ownership along an access path, thus limiting the interaction between ownership
and aliasing. In particular, we introduce a novel concept of ownership mono-
tonicity. This property states that, along an access path, the ownership values
of pointers can only decrease (see Definition 1, where is prefix(a, b) returns true
if access path a is a prefix of b, and false otherwise – e.g. is prefix (p, (*p).next)
= true). Going back to the previous code listing, the ownership monotonicity
implies that, for access path (*p).next we have Op ≥ O(*p).next, and for access
path (*q).next we have Oq ≥ O(*q).next. This means that, if (*p).next is
allowed to take ownership, then p must already be owning. Consequently, all
aliases of p must be non-owning, which means that all aliases of (*p).next,
including (*q).next, are non-owning.

Definition 1 (Ownership monotonicity). Given two access paths a and b,
if is prefix(a, b), then Oa ≥ Ob.

Ownership monotonicity is stricter than the Rust semantics, causing our analysis
to reject two scenarios that would otherwise be accepted by the Rust compiler
(see discussion in Sect. 5.4). In this work, we made the design decision to use
ownership monotonicity over aliasing analysis as it allows us to retain more
control over the accuracy of the translation. Conversely, using an aliasing analysis
would mean that the accuracy of the translation is directly dictated by the
accuracy of the aliasing analysis (i.e. false alarms from the aliasing analysis [23,
40] would result in Crown not translating pointers that are actually safe). With
ownership monotonicity, we know exactly what the rejected valid ownership
schemes are, and we can explicitly enable them (again, see discussion in Sect. 5.4).

5.2 Generation of Ownership Constraints

During constraint generation, we assume a given k denoting the length of the
longest access path used in the code. This enables us to capture the ownership
of all the access paths exposed in the code. Later in this section, we will discuss
the handling of loops, which may expose longer access paths.

Next, we denote by P the set of all access paths in a program, base var(a)
returns the base variable of access path a, and |a| computes the length of the access
path a in terms of applied field selection operators from the base variable. In the
context of the previous code listing, base var((*p).next) = p, base var(p) = p,
|p| = 1 and |(*p).next| = 2. Then, we define ap(v, lb, ub) to return the set of
access paths with base variable v and length in between lower bound lb and upper
bound ub: ap(v, lb, ub) = {a ∈ P|base var(a) = v ∧ lb ≤ |a| ≤ ub}. For illustra-
tion, we have ap(p, 1, 2) = {p, (*p).next}.

Ownership Transfer. The program instructions where ownership transfer can
happen are (pointer) assignment and function call. Here we discuss assignment
and, due to space constraints, we leave the rules for interprocedural ownership
analysis in the extended version [41]. Our rule for ownership transfer at assign-
ment site follows Rust’s Box semantics: when a Box pointer is moved, the

468 H. Zhang et al.

Fig. 3. Ownership constraint generation for assignment

object it points to is moved as well. For instance, in the following Rust pseu-
docode snippet:

1 let p,q: Box<Box<i32>>;
2 p = q; // ownership transfer occurs

3 // the use of q and *q is disallowed

when ownership is transferred from q to p, *q also loses ownership. Except for
reassignment, the use of a Box pointer after it lost its ownership is disallowed,
hence the use of q or *q is forbidden at line 3.

Consequently, we enforce the following ownership transfer rule: if ownership
transfer happens for a pointer variable (e.g. p and q in the example), then it
must happen for all pointers reachable from that pointer (e.g. *p and *q). The
ownership of pointer variables from which the pointer under discussion is reach-
able remains the same (e.g. if ownership transfer happens for some assignment
*p = *q in the code, then q and p retain their respective previous ownership
values).

Possible Ownership Transfer at Pointer Assignment: The ownership transfer rule
at pointer assignment site is captured by rule ASSIGN in Fig. 3. The judgement
C � p = q; ⇒ C ′ denotes the fact that the assignment is analysed under the set
of constraints C, and generates C ′. We use prime notation to denote variables
after the assignment. Given pointer assignment p = q, a and b represent all the
access paths respectively starting from p and q, whereas c and d denote the access
paths from the base variables of p and q that reach p and q, respectively. Then,
equality Oa′ + Ob′ = Ob captures the possibility of ownership transfer for all
access paths originating at p and q: (i) If transfer happens then the ownership
of b transfers to a′ (Oa′ = Ob and Ob′ = 0). (ii) Otherwise, the ownership
values are left unchanged (Oa′ = Oa and Ob′ = Ob). The last two equalities,
Oc′ = Oc∧Od′ = Od, denote the fact that, for both (i) and (ii), pointers on access
paths c and d retain their previous ownership. Note that “+” is interpreted as
the usual arithmetic operation over N, where we impose an implicit constraint
0 ≤ O ≤ 1 for every ownership variable O.

C Memory Leaks: In the ASSIGN rule, we add constraint Oa = 0 to C ′ in order
to force a to be non-owning before the assignment. Conversely, having a own-
ing before being reassigned via the assignment under analysis signals a memory

Ownership Guided C to Rust Translation 469

leak in the original C program. Given that in Rust memory is automatically
returned, allowing the translation to happen would change the semantics of the
original program by fixing the memory leak. Instead, our design choice is to dis-
allow the ownership analysis from generating such a solution. As we will explain
in Sect. 8, we intend for our translation to preserve memory usage (including
possible memory leaks).

Simultaneous Ownership Transfer Along an Access Path: One may observe that
the constraints generated by ASSIGN do not fully capture the stated ownership
transfer rule. In particular, they do not ensure that, whenever ownership transfer
occurs from p to q, it also transfers for all pointers on all access paths a and
b. Instead, this is implicitly guaranteed by the ownership monotonicity rule, as
stated in Theorem 1.

Theorem 1 (Ownership transfer). If ownership is transferred from p to q,
then, by the ASSIGN rule and ownership monotonicity, ownership also transfers
between corresponding pointers on all access paths a and b: Oa′ = Ob and Ob′ =
0. (proof in the extended version [41])

Ownership and Aliasing: We saw in Sect. 5.1 that aliasing may cause situations
in which, after ownership transfer, the same memory object has more than one
owner. Theorem 2 states that this is not possible under ownership monotonicity.

Theorem 2 (Soundness of pointer assignment under ownership mono-
tonicity). Under ownership monotonicity, if all allocated memory objects have
a unique owner before a pointer assignment, then they will also have a unique
owner after the assignment. (proof in the extended version [41])

Intuitively, Theorem 2 enables a pointer to acquire ownership without hav-
ing to consider aliases: after ownership transfer, this pointer will be the unique
owner. The idea resembles that of strong updates [30].

Additional Access Paths: As a remark, it is possible for p and q to be accessible
from other base variables in the program. In such cases, given that those access
paths are not explicitly mentioned at the location of the ownership transfer, we
do not generate new ownership variables for them. Consequently, their current
ownership variables are left unchanged by default.

Ownership Transfer Example. To illustrate the ASSIGN rule, we use the
singly-linked list example below, where we assume that p, q are both of type *mut
Node. Therefore, we will have to consider the following four access path p, q,

(*p).next, (*q).next. In SSA-style, at each line in the example, we generate
new ownership variables (by incrementing their subscript) for the access paths
mentioned at that line. For the first assignment, ownership transfer can happen
between p and q, and (*p).next and (*q).next, respectively. For the second
assignment, ownership can be transferred between (*p).next and (*q).next,
while p and q must retain their previous ownership.

470 H. Zhang et al.

1 p = q; // Op1 = 0 ∧ Op2 + Oq2 = Oq1 ∧
2 // O(∗p1).next = 0 ∧ O(∗p2).next + O(∗q2).next = O(∗q1).next
3 (*p).next = (*q).next;
4 // Op3 = Op2 ∧ Oq3 = Oq2 ∧
5 // O(∗p2).next = 0 ∧ O(∗p3).next + O(∗q3).next = O(∗q2).next

Besides generating ownership constraints for assignments, we must model
the ownership information for commonly used C standard function like malloc,
calloc, realloc, free, strcmp, memset, etc. Due to space constraints, more
details about these, as well as the rules for ownership monotonicity and inter-
procedural ownership analysis are provided in the extended version [41].

Handling Conditionals and Loops. As mentioned in Sect. 3.2, we only anal-
yse the body of loops once as it is sufficient to expose all the required ownership
variables. For inductively defined data structures, while further unrolling of loop
bodies increases the length of access paths, it does not expose any new struct
fields (struct fields do not change ownership between loop iterations).

To handle join points of control paths, we apply a variant of the SSA con-
struction algorithm [6], where different paths are merged via φ nodes. The value
of each ownership variable must be the same on all joined paths, or otherwise
the analysis fails.

5.3 Solving Ownership Constraints

The ownership constraint system consists of a set of 3-variable linear constraints
of the form Ov = Ow + Ou, and 1-variable equality constraints Ov = 0 and
Ov = 1.

Definition 2 (Ownership constraint system). An ownership constraint
system (P,Δ,Σ,Σ¬) consists of a set of ownership variables P that can have
either value 0 or 1, a set of 3-variable equality constraints Δ ⊆ P × P × P , and
two sets of 1-variable equality constraints, Σ,Σ¬ ⊆ P . The equalities in Σ are
of the form x = 1, whereas the equalities in Σ¬ are of the form x = 0.

Theorem 3 (Complexity of the ownership constraint solving). Decid-
ing the satisfiability of the ownership constraint system in Definition 2 is NP-
complete. (proof in the extended version [41]).

We solve the ownership constraints by calling a SAT solver. The ownership
constraints may have no solution. This happens when there is no ownership
scheme that obeys the Rust ownership model and the ownership monotonicity
property (which is stricter than the Rust model for some cases), or the original
C program has a memory leak. In the case where the ownership constraints have
more than one solution, we consider the first assignment returned by the SAT
solver.

Due to the complex Rust semantics, we do not formally prove that a satisfying
assignment obeys the Rust ownership model. Instead, this check is performed
after the translation by running the Rust compiler.

Ownership Guided C to Rust Translation 471

5.4 Discussion on Ownership Monotonicity

As mentioned earlier in Sect. 5, ownership monotonicity is stricter than the Rust
semantics, causing our analysis to potentially reject some ownership schemes
that would otherwise be accepted by the Rust compiler. We identified two such
scenarios:

(i) Reference output parameter: This denotes a reference passed as a function
parameter, which acts as an output as it can be accessed from outside the func-
tion (e.g. list in Fig. 1a). For such parameters, the base variable is non-owning
(as it is a reference) and mutable, whereas the pointers reachable from it may be
owning (see example in Fig. 1c, where (*node).head gets assigned a pointer to a
newly allocated node). We detect such situations and explicitly enable them. In
particular, we explicitly convert owning pointers p to &mut(*p) at the translation
stage.

(ii) Local borrows: The code below involving a mutable local borrow is not con-
sidered valid by Crown as it disobeys the ownership monotonicity: after the
assignment, local_borrow is non-owning, whereas *local_borrow is owning.

1 let local_borrow = &mut n;
2 *local_borrow = Box::new(1);

While we could explicitly handle the translation to local borrows, in order to
do so soundly, we would have to reason about lifetime information (e.g. Crown
would have to check that there is no overlap between the lifetimes of different
mutable references to the same object). In this work, we chose not to do this and
instead leave it as future work (as also mentioned under limitations in Sect. 7). It
was observed in [13] that scenario (i) is much more prevalent than scenario (ii).
Additionally, we observed in our benchmarks that output parameter accounts
for 93% of mutable references (hence the inclusion of a special case enabling the
translation of scenario (i) in Crown).

6 C to Rust Translation

Crown uses the results of the ownership, mutability and fatness analyses to
perform the actual translation, which consists of retyping pointers (Sect. 6.1)
and rewriting pointer uses (Sect. 6.2).

6.1 Retyping Pointers

As mentioned in Sect. 2.2, we do not attempt to translate array pointers to safe
pointers. In the rest of the section, we focus on mutable, non-array pointers.

The translation requires a global view of pointers’ ownership, whereas infor-
mation inferred by the ownership analysis refers to individual program locations.
For the purpose of translation, given that we refactor owning pointers into box
pointers, a pointer is considered (globally) owning if it owns a memory object at
any program location within its scope. Otherwise, it is (globally) non-owning.

472 H. Zhang et al.

When retyping pointer fields of structs, we must consider the scope of the struct
declaration, which generally transcends the whole program. Within this scope,
each field is usually accessed from several base variables, which must all be taken
into consideration. For instance, given the List declaration in Fig. 1b and two
variables l1 and l2 of type *mut List. Then, in order to determine the own-
ership status of field next, we have to consider all the access paths to next
originating from both base variables l1 and l2.

The next table shows the retyping rules for mutable, non-array pointers,
where we wrap safe pointer types into Option to account for null pointer values:

Non-array pointers

Owning Option<Box<T>>

Non-owning *mut T or Option<&mut T>

The non-owning pointers that are kept as raw pointers *mut T correspond
to mutable local borrows. As explained in Sects. 5.4 and 7, Crown doesn’t cur-
rently handle the translation to mutable local borrows due to the fact that we do
not have a lifetime analysis. Notably, this restriction does not apply to output
parameters (which covers the majority of mutable references), where we trans-
late to mutable references. The lack of a lifetime analysis means that we also
can’t handle immutable local borrows, hence our translation’s focus on mutable
pointers.

6.2 Rewriting Pointer Uses

The rewrite of a pointer expression depends on its new type and the context
in which it is used. For example, when rewriting q in p = q, the context will
depend on the new type of p. Based on this new type, we can have four contexts:
BoxCtxt which requires Box pointers, MutCtxt which requires &mut references,
ConstCtxt which requires & references, and RawCtxt which requires raw pointers.
For example, if p above is a Box pointer, then we rewrite q in a BoxCtxt.

Then, the rewrite takes place according to the following table, where columns
correspond to the new type of the pointer to be rewritten, and rows represent
possible contexts1.

Option<Box<T>> Option<&mut T> *mut T

BoxCtxt p.take() ⊥ Some(Box::from_raw(p))

MutCtxt p.as_deref_mut() p.as_deref_mut() p.as_mut()

ConstCtxt p.as_deref() p.as_deref() p.as_ref()

RawCtxt to_raw(&mut p) to_raw(&mut p) p

Our translation uses functions from the Rust standard library, as follows:

1. When Option<Box<T>> is passed to a BoxCtxt, we expect a move, and con-
sequently we use take to replace the value inside the option with None;

2. We use as_deref and as_deref_mut in order to not consume the original
option, and we create new options with references to the original ones;

1 The cell marked as ⊥ is not applicable due to our treatment of output parameter.

Ownership Guided C to Rust Translation 473

3. as_mut and as_ref converts raw pointers to references;
4. Box::from_raw converts raw pointers into Box pointers.

We also define the helper function to_raw that transform safe pointers into
raw pointers:

fn to_raw<T>(b: &mut Option<Box<T>>) -> *mut T {

b.as_deref_mut().map(|b| b as *mut T).unwrap_or(null_mut())

}

Here, we explain to_raw for a Box argument (the explanation for &mut is the
same because of the polymorphic nature of as_deref_mut):

1. To convert Option<Box<T>>, we first mutably borrow the entire option as
denoted by the mutable borrow argument of the helper function. This is
needed because Option is not copyable, and it would be otherwise consumed;

2. as_deref_mut converts &mut Option<Box<T>> to Option<&mut T>;
3. map converts the optional part of the reference into an option of raw pointers;
4. Finally, unwrap_or returns the Some value of the option, or a null pointer

std::ptr::null_mut() if the value is None.

Dereferences: When a pointer p is dereferenced as part of a larger expression
(e.g. (*p).next), we need an additional unwrap().

Box pointers check: Rust disallows the use of Box pointers after they lost
their ownership. As this rule cannot be captured by the ownership analysis,
such situations are detected at translation stage, and the culpable Box pointers
are reverted back to raw pointers.

For brevity, we omitted the slightly different treatment of struct fields that
are not of pointer type.

7 Challenges of Handling Real-World Code

We designed Crown to be able to analyse and translate real-world code, which
poses significant challenges. In this section, we discuss some of the engineering
challenges of Crown and its current limitations.

7.1 Preprocessing

During the transpilation of C libraries, c2rust treats each file as a separate com-
pilation unit, which gets translated into a separate Rust module. Consequently,
struct definitions are duplicated, and available function definitions are put in
extern blocks [17]. We apply a preprocessing step similar to the resolve-imports
tool of Laertes [17] that links those definitions across files.

474 H. Zhang et al.

7.2 Limitations of the Ownership Analysis

There are a few C constructs and idioms that are not fully supported by
our implementation, for which Crown generates partial ownership constraints.
Crown’s translation will attempt to rewrite a variable as long as there exists
a constraint involving it. As a result, the translation is in theory neither sound
nor complete: it may generate code that does not compile (though we have not
observed this in practice for the benchmarks where Crown produces a result –
see Sect. 8) and it may leave some pointers as raw pointers resulting in a less than
optimal translation. We list below the cases when such a scenario may happen.

Certain Unsafe C Constructs. For type casts, we only generate ownership trans-
fer constraints for head pointers; for unions we assume that they contain no
pointer fields and consequently, we generate no constraints; similarly, we gener-
ate no constraints for variadic arguments. We noticed that unions and variadic
arguments may cause our tool to crash (e.g. three of the benchmarks in [17], as
mentioned in Sect. 8). Those crashes happen when analysing access paths that
contain dereferences of union fields (where we assumed no pointer fields), and
when analysing calls to functions with variadic arguments where a pointer is
passed as argument.

Function Pointers. Crown does not generate any constraints for them.

Non-standard Memory Management in C Libraries. Certain C libraries wrap
malloc and free, often with static function pointers (pointers to allocator/deal-
locator are stored in static variables), or function pointers in structs. Crown
does not generate any constraints in such scenarios. In C, it is also possible to
use malloc to allocate a large piece of memory, and then split it into several
sub-regions assigned to different pointers. In our ownership analysis, only one
pointer can gain ownership of the memory allocated by a call to malloc. Another
C idiom that we don’t fully support occurs when certain pointers can point to
either heap allocated objects, or statically allocated stack arrays. Crown gener-
ates ownership constraints only for the heap and, consequently, those variables
will be left under-constrained.

7.3 Other Limitations of Crown

Array Pointers. For array pointers, although Crown infers the correct owner-
ship information, it does not generate the meta data required to synthesise Rust
code.

Mutable Local Borrows. As explained in the last paragraph of Sect. 6.1, Crown
does not translate mutable non-owning pointers to local mutable references as
this requires dedicated analysis of lifetimes. Note that Crown does however
generate mutable references for output parameters.

Access Paths that Break Ownership Monotonicity. As discussed in Sect. 5.4, own-
ership monotonicity may be stricter in certain cases than Rust’s semantics.

Ownership Guided C to Rust Translation 475

8 Experimental Evaluation

We implement Crown on top of the Rust compiler, version nightly-
2023-01-26. We use c2rust with version 0.16.0. For the SAT solver, we rely
on a Rust-binding of z3 [20] with version 0.11.2. We run all our experiments
on a MacBook Pro with an Apple M1 chip, with 8 cores (4 performance and 4
efficiency). The computer has 16 GB RAM and runs macOS Monterey 12.5.1.

Benchmark Selection. To evaluate the utility of Crown, we collected a
benchmark suite of 20 programs (Table 1). These include benchmarks from
Laertes [17]’s accompanying artifact [16] (marked by * in Table 1)2, and addi-
tionally 8 real-world projects (binn, brotli, buffer, heman, json.h, libtree,
lodepng, rgba) together with 4 commonly used data structure libraries (avl,
bst, ht, quadtree).

Functional and Non-functional Guarantees. With respect to functional
properties, we want the original program and the refactored program to be
observationally equivalent, i.e. for each input they produce the same output.
We empirically validated this using all the available test suites (i.e. for libtree,
rgba, quadtree, urlparser, genann, buffer in Table 1). All the test suites con-
tinue to pass after the translation. For nonfunctional properties, we intend to
preserve memory usage and CPU time, i.e. we don’t want our translation to
introduce runtime overhead. We also validated this using the test suites.

Table 1. Benchmarks information

Benchmark Files Structs Functions LOC Benchmark Files Structs Functions LOC

Avl 1 2 11 229 libcsv* 1 6 23 976

binn 1 5 165 4426 libtree 1 18 32 2610

brotli 30 237 867 537723 libzahl* 49 65 108 4655

bst 1 1 6 154 lil* 2 9 136 5670

buffer 2 3 42 1207 lodepng 1 19 236 14153

bzip2* 9 39 126 14829 quadtree 5 14 31 1216

genann* 6 10 27 2410 rgba 2 3 19 1855

heman 24 52 302 13762 robotfindskitten* 1 8 18 1508

ht 1 3 10 264 tulipindicators* 111 18 229 22363

json.h 1 13 53 3860 urlparser* 1 1 21 1379

8.1 Research Questions

We aim at answering the following research questions.

2 We excluded json-c, optipng, tinycc where Crown crashes because of the uses of
unions and variadic arguments as discussed in Sect. 7. Additional programs (qsort,
grabc, xzoom, snudown, tmux, libxml2) are mentioned in the paper [17] but are either
missing or incomplete in the artifact [16].

476 H. Zhang et al.

RQ1. How many raw pointers/pointer uses can Crown translate to safe
pointers/pointer uses?
RQ2. How does Crown’s result compare with the state-of-the-art [17]?
RQ3. What is the runtime performance of Crown?

RQ 1: Unsafe pointer reduction. In order to judge Crown’s efficacy, we
measure the reduction rate of raw pointer declarations and uses. This is a direct
indicative of the improvement in safety, as safe pointers are always checked by
the Rust compiler (even inside unsafe regions). As previously mentioned, we
focus on mutable non-array pointers. The results are presented in Table 2, where
#ptrs counts the number of raw pointer declarations in a given benchmark,
#uses counts the number of times raw pointers are being used, and the Laertes
and Crown headers denote the reduction rates of the number of raw pointers
and raw pointer uses achieved by the two tools, respectively. For instance, for
benchmark avl, the rate of 100% means that all raw pointer declarations and
their uses are translated into safe ones. Note that the “-” symbols on the row
corresponding to robotfindskitten are due to the fact that the benchmark
contains 0 raw pointer uses.

The median reduction rates achieved by Crown for raw pointers and raw
pointer uses are 37.3% and 62.1%, respectively. Crown achieves a 100% reduc-
tion rate for many non-trivial data structures (avl, bst, buffer, ht), as well
as for rgba. For brotli, a lossless data compression algorithm developed by
Google, which is our largest benchmark, Crown achieves reduction rates of
21.4% and 20.9%, respectively. The relatively low reduction rates for brotli and
a few other benchmarks (tulipindicators, lodepng, bzip2, genann, libzahl)
is due to their use of non-standard memory management strategies (discussed
in detail in Sect. 7).

Notably, all the translated benchmarks compile under the aforementioned
Rust compiler version. As a check of semantics preservation, for the benchmarks
that provide test suites (libtree, rgba, quadtree, urlparser, genann, buffer),
our translated benchmarks pass all the provided tests.

RQ 2: Comparing with state-of-the-art. The comparison of Crown with
Laertes [17] is also shown in Table 2, with bold font highlighting better results.
The data on Laertes is either directly extracted from the artifact [16] or has
been confirmed by the authors through private correspondence. We can see that
Crown outperforms the state-of-the-art (often by a significant degree) in most
cases, with lodepng being the only exception, where we suspect that the reason
also lies with non-standard memory management strategies mentioned before.
Laertes is less affected by this as it does not rely on ownership analysis.

RQ 3: Runtime performance. Although our analysis relies on solving a con-
straint satisfaction problem that is proven to be NP-complete, in practice the
runtime performance of Crown is consistently high. The execution time of the
analysis and the rewrite for the whole benchmark suite is within 60 s (where the
execution time for our largest benchmark, brotli, is under 10 s).

Ownership Guided C to Rust Translation 477

Table 2. Reduction of (mutable, non-array) raw pointer declarations and uses

Benchmark #ptrs Laertes Crown #uses Laertes Crown

avl 8 0.0% 100.0% 41 0.0% 100.0%

binn 103 46.6% 65.0% 247 62.3% 71.3%

brotli 846 0.0% 21.4% 3686 0.0% 20.9%

bst 5 0.0% 100.0% 22 0.0% 100.0%

buffer 38 0.0% 100.0% 56 0.0% 100.0%

bzip2* 126 14.3% 26.2% 2946 2.2% 3.7%

genann* 28 0.0% 7.1% 160 0.0% 15.0%

heman 360 30.3% 35.0% 926 50.2% 60.2%

ht 6 33.3% 100.0% 28 42.9% 100.0%

json.h 128 2.3% 23.4% 647 1.2% 62.1%

libcsv* 20 65.0% 70.0% 141 97.9% 97.9%

libtree 48 29.2% 39.6% 227 33.0% 62.1%

libzahl* 87 2.2% 16.1% 279 4.1% 16.8%

lil* 202 9.2% 18.8% 1018 51.4% 69.4%

lodepng 227 46.3% 44.9% 1232 40.4% 37.7%

quadtree 33 0.0% 42.4% 117 0.0% 48.7%

rgba 6 83.3% 83.3% 12 100.0% 100.0%

robotfindskitten* 1 0.0% 0.0% 0 – –

tulipindicators* 134 0.0% 0.7% 625 0.0% 0.0%

urlparser* 9 0.0% 11.1% 40 0.0% 45.0%

9 Related Works

Ownership Discussion. Ownership has been used in OO programming to
enable controlled aliasing by restricting object graphs underlying the runtime
heap [11,12] with efforts made in the automatic inference of ownership infor-
mation [1,4,39], and applications of ownership to memory management [5,42].
Similarly, the concept of ownership has also been applied to analyse C/C++ pro-
grams. Heine et al. [24] inferred pointer ownership information for detecting
memory leaks. Ravitch et al. [37] apply static analysis to infer ownership for
automatic library binding generation. Giving the different application domains,
each of these works makes different assumptions. Heine et al. [24] assumes
that indirectly-accessed pointers (i.e. any pointer accessed through a path, like
(*p).next) cannot acquire ownership, whereas Ravitch et al. [37] assumes that
all struct fields are owning unless explicitly annotated. We took from [24] its
handling of flow sensitivity, but enhanced it with the analysis of nested point-
ers and inductively defined data structures, which we found to be essential for
translating real-world code. The analysis in [24] assigns a default “non-owning”
status to all indirectly accessed pointers. This rules out many interesting data
structures such as linked lists, trees, hash tables, etc., and commonly used idioms
such as passing by reference. Conversely, in our work, we rely on a strengthening
assumption about the Rust ownership model, which allows handling the afore-
mentioned scenarios and data structures. Lastly, the idea of ownership is also

478 H. Zhang et al.

broadly applied in concurrent separation logic [7–9,19,38]. However, these works
are not aimed as automatic ownership inference systems.

Rust Verification. The separation logic based reasoning framework Iris [28]
was used to formalise the Rust type system [27], and verify Rust programs [34].
While these works cover unsafe Rust fragments, they are not fully automatic.
When restricting reasoning to only safe Rust, RustHorn [35] gives a first-order
logic formulation of the behavior of Rust code, which is ameanable to fully auto-
matic verification, while Prusti [3] leverages Rust compiler information to gener-
ate separation logic verification conditions that are discharged by Viper [36]. In
the current work, we provide an automatic ownership analysis for unsafe Rust
programs.

Type Qualifiers. Type qualifiers are a lightweight, practical mechanism for
specifying and checking properties not captured by traditional type systems. A
general flow-insensitive type qualifier framework has been proposed [21], with
subsequent applications analysing Java reference mutability [22,25] and C array
bounds [32]. We adapted these works to Rust for our mutability and fatness
analyses, respectively.

C to Rust Translation. We have already discussed c2rust [26], which is an
industrial strength tool that converts C to Rust syntax. c2rust does not attempt
to fix unsafe features such as raw pointers and the programs it generates are
always annotated as unsafe. Nevertheless it forms the bases of other translation
efforts. CRustS [31] applies AST-based code transformations to remove superflu-
ous unsafe labelling generated by c2rust. But it does not fix the unsafe features
either. Laertes [17] is the first tool that is actually able to automatically reduce
the presence of unsafe code. It uses the Rust compiler as a blackbox oracle
and search for code changes that remove raw pointers, which is different from
Crown’s approach (see Sect. 8 for an experimental comparison). The subsequent
work [15] develops an evaluation methodology for studying the limitations of
existing techniques that translate unsafe raw pointers to safe Rust references.
The work adopts a new concept of ‘pseudo safety’, under which semantics preser-
vation of the original programs is no longer guaranteed. As explained in Sect. 8,
in our work, we aim to maintain semantic equivalence.

10 Conclusion

We devised an ownership analysis for Rust programs translated by c2rust that
is scalable (handling half a million LOC in less than 10 s) and precise (han-
dling inductive data structures) thanks to a strengthening of the Rust ownership
model, which we call ownership monotonicity. Based on this new analysis, we
prototyped a refactoring tool for translating C programs into Rust programs.
Our experimental evaluation shows that the proposed approach handles real-
world benchmarks and outperforms the state-of-the-art.

Ownership Guided C to Rust Translation 479

References

1. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program under-
standing. In: Proceedings of the 17th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA ’02, pp.
311–330. Association for Computing Machinery, New York, NY, USA (2002).
https://doi.org/10.1145/582419.582448

2. Astrauskas, V., Matheja, C., Poli, F., Müller, P., Summers, A.J.: How do program-
mers use unsafe rust? Proc. ACM Program. Lang. 4(OOPSLA) (2020). https://
doi.org/10.1145/3428204

3. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA) (oct
2019). https://doi.org/10.1145/3360573

4. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation.
In: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’03, pp. 213–223. Association for Computing
Machinery, New York, NY, USA (2003). https://doi.org/10.1145/604131.604156

5. Boyapati, C., Salcianu, A., Beebee, W., Rinard, M.: Ownership types for safe
region-based memory management in real-time Java. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementa-
tion. PLDI ’03, pp. 324–337. Association for Computing Machinery, New York,
NY, USA (2003). https://doi.org/10.1145/781131.781168

6. Briggs, P., Cooper, K.D., Harvey, T.J., Simpson, L.T.: Practical improvements to
the construction and destruction of static single assignment form. Softw. Pract.
Exper. 28(8), 859–881 (1998)

7. Brookes, S.: Variables as resource for shared-memory programs: semantics and
soundness. Electron. Notes Theor. Comput. Sci. 158, 123–150 (2006). https://doi.
org/10.1016/j.entcs.2006.04.008

8. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.
375(1–3), 227–270 (2007). https://doi.org/10.1016/j.tcs.2006.12.034

9. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Sci-
ence. p. 366–378. LICS ’07, IEEE Computer Society, USA (2007). https://doi.org/
10.1109/LICS.2007.30

10. Cheng, B.C., Hwu, W.M.W.: Modular interprocedural pointer analysis using access
paths: design, implementation, and evaluation. In: Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design and Implementation.
PLDI ’00, pp. 57–69. Association for Computing Machinery, New York, NY, USA
(2000). https://doi.org/10.1145/349299.349311

11. Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership types: a survey. In:
Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification. LNCS, vol. 7850, pp. 15–58. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36946-9 3

12. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protec-
tion. In: Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA ’98, pp. 48–64.
Association for Computing Machinery, New York, NY, USA (1998). https://doi.
org/10.1145/286936.286947

13. Das, M.: Unification-based pointer analysis with directional assignments. In: Pro-
ceedings of the ACM SIGPLAN 2000 Conference on Programming Language

https://doi.org/10.1145/582419.582448
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3360573
https://doi.org/10.1145/604131.604156
https://doi.org/10.1145/781131.781168
https://doi.org/10.1016/j.entcs.2006.04.008
https://doi.org/10.1016/j.entcs.2006.04.008
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1145/349299.349311
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/286936.286947

480 H. Zhang et al.

Design and Implementation. PLDI ’00, pp. 35–46. Association for Computing
Machinery, New York, NY, USA (2000). https://doi.org/10.1145/349299.349309

14. De, A., D’Souza, D.: Scalable flow-sensitive pointer analysis for java with strong
updates. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 665–687. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31057-7 29

15. Emre, M., Boyland, P., Parekh, A., Schroeder, R., Dewey, K., Hardekopf, B.: Alias-
ing limits on translating c to safe rust. Proc. ACM Program. Lang. 7(OOPSLA1)
(2023). https://doi.org/10.1145/3586046

16. Emre, M., Schroeder, R.: Artifact for “translating c to safer rust”, September 2021.
https://doi.org/10.5281/zenodo.5442253

17. Emre, M., Schroeder, R., Dewey, K., Hardekopf, B.: Translating C to safer rust.
Proc. ACM Program. Lang. 5(OOPSLA), 1–29 (2021). https://doi.org/10.1145/
3485498

18. Evans, A.N., Campbell, B., Soffa, M.L.: Is rust used safely by software developers?
In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. ICSE ’20, pp. 246–257. Association for Computing Machinery, New
York, NY, USA (2020). https://doi.org/10.1145/3377811.3380413

19. Feng, X.: Local rely-guarantee reasoning. In: Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’09, pp. 315–327. Association for Computing Machinery, New York, NY, USA
(2009). https://doi.org/10.1145/1480881.1480922

20. Fitzgerald, N., Hoare, G., Mitchener, B., Puri, S.: Rust bindings to the z3 SMT
solver. https://crates.io/crates/z3

21. Foster, J.S., Johnson, R., Kodumal, J., Aiken, A.: Flow-insensitive type qualifiers.
ACM Trans. Program. Lang. Syst. 28(6), 1035–1087 (2006). https://doi.org/10.
1145/1186632.1186635

22. Greenfieldboyce, D., Foster, J.S.: Type qualifier inference for java. In: Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications. OOPSLA ’07, pp. 321–336. Associa-
tion for Computing Machinery, New York, NY, USA (2007). https://doi.org/10.
1145/1297027.1297051

23. Hackett, B., Aiken, A.: How is aliasing used in systems software? In: Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. SIGSOFT ’06/FSE-14, pp. 69–80. Association for Computing
Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1181775.1181785

24. Heine, D.L., Lam, M.S.: A practical flow-sensitive and context-sensitive C and
C++ memory leak detector. In: Cytron, R., Gupta, R. (eds.) Proceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation 2003, San Diego, California, USA, 9–11 June 2003, pp. 168–181. ACM
(2003). https://doi.org/10.1145/781131.781150

25. Huang, W., Milanova, A., Dietl, W., Ernst, M.D.: Reim & reiminfer: checking
and inference of reference immutability and method purity. In: Proceedings of the
ACM International Conference on Object Oriented Programming Systems Lan-
guages and Applications. OOPSLA ’12, pp. 879–896. Association for Computing
Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2384616.2384680

26. inc., I.: c2rust. https://github.com/immunant/c2rust
27. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: Rustbelt: securing the foun-

dations of the rust programming language. Proc. ACM Program. Lang. 2(POPL)
(2017). https://doi.org/10.1145/3158154

https://doi.org/10.1145/349299.349309
https://doi.org/10.1007/978-3-642-31057-7_29
https://doi.org/10.1145/3586046
https://doi.org/10.5281/zenodo.5442253
https://doi.org/10.1145/3485498
https://doi.org/10.1145/3485498
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/1480881.1480922
https://crates.io/crates/z3
https://doi.org/10.1145/1186632.1186635
https://doi.org/10.1145/1186632.1186635
https://doi.org/10.1145/1297027.1297051
https://doi.org/10.1145/1297027.1297051
https://doi.org/10.1145/1181775.1181785
https://doi.org/10.1145/781131.781150
https://doi.org/10.1145/2384616.2384680
https://github.com/immunant/c2rust
https://doi.org/10.1145/3158154

Ownership Guided C to Rust Translation 481

28. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28(e20) (2018). https://doi.org/10.1017/S0956796818000151,
https://hal.science/hal-01945446

29. Lerch, J., Späth, J., Bodden, E., Mezini, M.: Access-path abstraction: scaling
field-sensitive data-flow analysis with unbounded access paths (t). In: 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 619–629 (2015). https://doi.org/10.1109/ASE.2015.9

30. Lhoták, O., Chung, K.C.A.: Points-to analysis with efficient strong updates. In:
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. POPL ’11, pp. 3–16. Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1926385.1926389

31. Ling, M., Yu, Y., Wu, H., Wang, Y., Cordy, J.R., Hassan, A.E.: In rust we trust -
a transpiler from unsafe C to safer rust. In: 44th IEEE/ACM International Con-
ference on Software Engineering: Companion Proceedings, ICSE Companion 2022,
Pittsburgh, PA, USA, 22–24 May 2022, pp. 354–355. ACM/IEEE (2022). https://
doi.org/10.1145/3510454.3528640

32. Machiry, A., Kastner, J., McCutchen, M., Eline, A., Headley, K., Hicks, M.: C to
checked c by 3c. Proc. ACM Program. Lang. 6(OOPSLA1) (2022). https://doi.
org/10.1145/3527322

33. Matsakis, N.D., Klock, F.S.: The rust language. In: Proceedings of the 2014 ACM
SIGAda Annual Conference on High Integrity Language Technology. HILT ’14,
pp. 103–104. Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2663171.2663188

34. Matsushita, Y., Denis, X., Jourdan, J.H., Dreyer, D.: Rusthornbelt: a seman-
tic foundation for functional verification of rust programs with unsafe code. In:
Proceedings of the 43rd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation. PLDI 2022, pp. 841–856. Association
for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3519939.3523704

35. Matsushita, Y., Tsukada, T., Kobayashi, N.: Rusthorn: CHC-based verification for
rust programs. ACM Trans. Program. Lang. Syst. 43(4) (2021). https://doi.org/
10.1145/3462205

36. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

37. Ravitch, T., Jackson, S., Aderhold, E., Liblit, B.: Automatic generation of library
bindings using static analysis. In: Hind, M., Diwan, A. (eds.) Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2009, Dublin, Ireland, 15–21 June 2009, pp. 352–362. ACM
(2009). https://doi.org/10.1145/1542476.1542516

38. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPoPP ’06, pp.
129–136. Association for Computing Machinery, New York, NY, USA (2006).
https://doi.org/10.1145/1122971.1122992

39. Wolff, F., B́ılý, A., Matheja, C., Müller, P., Summers, A.J.: Modular specifica-
tion and verification of closures in rust. Proc. ACM Program. Lang. 5(OOPSLA)
(2021). https://doi.org/10.1145/3485522

https://doi.org/10.1017/S0956796818000151
https://hal.science/hal-01945446
https://doi.org/10.1109/ASE.2015.9
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1145/3510454.3528640
https://doi.org/10.1145/3510454.3528640
https://doi.org/10.1145/3527322
https://doi.org/10.1145/3527322
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/1542476.1542516
https://doi.org/10.1145/1122971.1122992
https://doi.org/10.1145/3485522

482 H. Zhang et al.

40. Wu, J., Hu, G., Tang, Y., Yang, J.: Effective dynamic detection of alias analysis
errors. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2013, pp. 279–289. Association for Computing Machinery,
New York, NY, USA (2013). https://doi.org/10.1145/2491411.2491439

41. Zhang, H., David, C., Yu, Y., Wang, M.: Ownership guided c to rust translation
(2023). https://doi.org/10.48550/arXiv.2303.10515

42. Zhao, T., Baker, J., Hunt, J., Noble, J., Vitek, J.: Implicit ownership types for
memory management. Sci. Comput. Program. 71(3), 213–241 (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2491411.2491439
https://doi.org/10.48550/arXiv.2303.10515
http://creativecommons.org/licenses/by/4.0/

R2U2 Version 3.0: Re-Imagining a Toolchain
for Specification, Resource Estimation,
and Optimized Observer Generation
for Runtime Verification in Hardware

and Software

Chris Johannsen1(B), Phillip Jones1, Brian Kempa1, Kristin Yvonne Rozier1,
and Pei Zhang2

1 Iowa State University, Ames, USA
{cgjohann,phjones,bckempa,

kyrozier}@iastate.edu
2 Google LLC, Sunnyvale, USA

Abstract. R2U2 is a modular runtime verification framework capable of mon-
itoring sets of specifications in real time and in resource-constrained environ-
ments. Such environments demand that a runtime monitor be fast, easily integrat-
able, accessible to domain experts, and have predictable resource requirements.
Version 3.0 adds new features to R2U2 and its associated suite of tools that meet
these needs including a new front-end compiler that accepts a custom specifi-
cation language, a GUI for resource estimation, and improvements to R2U2’s
internal architecture.

1 Tool Overview

R2U2 (Realizable Responsive Unobtrusive Unit) is a modular framework for hard-
ware (FPGA) and software (C and C++) real-time runtime verification (RV). R2U2
runs online, during system execution, with minimal overhead. (It also runs offline, over
simulated data streasms or recorded data logs.) R2U2 is stream-based; given a runtime
requirement ϕ and an input computation π of sensor and software values at each times-
tamp i, R2U2 returns the verdict (true or false) for all i as to whether π, i |= ϕ.
We call this output stream an execution sequence [34]; it is a stream of two-tuples
〈verdict, time〉 for every time i. R2U2 encodes specifications as observers (a set of
which we call a configuration) via an optimized algorithm with published proofs of
correctness, time, and space [18,20,34].

Figure 1 depicts a standard R2U2 workflow. To integrate R2U2 into a target system,
we first need a validated set of runtime requirements. Given the system’s resource con-
straints, the Configuration Compiler for Property Organization (C2PO) creates an opti-
mized encoding of the input set of requirements as an R2U2 configuration. Users can

This work was funded by NSF CAREER Award CNS-1552934, NASA-ECF NNX16AR57G,
NASA Cooperative Agreement Grant #80NSSC21M0121, and NSF:CPS Award 2038903.
Thanks to the NASA Lunar Gateway Vehicle System Manager team for novel feature requests.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 483–497, 2023.
https://doi.org/10.1007/978-3-031-37709-9_23

https://doi.org/10.5281/zenodo.7889284
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_23&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_23

484 C. Johannsen et al.

Fig. 1. Workflow for verifying a specification using R2U2. Red shaded boxes denote runtime
components and blue shaded boxes denote design-time components. Note that for validation, the
runtime components can run offline, e.g., by replacing the data stream with a log file of simulated
data. Users formalize their system requirements as MLTL formulas within a C2PO specification,
use C2PO to generate an R2U2 configuration, then monitor the verdicts R2U2 outputs based on
the configuration and data stream. (Color figure online)

swap configurations monitored by R2U2 at runtime, during system execution, based on
system state, mission phase, or to upgrade the specification version – all without recom-
piling and redeploying the R2U2 engine, a key feature for systems that require onerous
code change certifications, or e.g., systems that need to be launched into space and then
dynamically updated as their hardware degrades.

R2U2 fills the unique gap in the RV community described by its name [39]:

REALIZABILITY R2U2 analyzes generic, re-usable specifications in Mission-Time
Linear Temporal Logic (MLTL) [20,34], a variant of LTL with closed integer-
bounded intervals on the temporal operators. MLTL excels at capturing require-
ments conceptualized as timelines, as is common in aerospace operational concepts,
e.g., [1,11,45]. At its core, R2U2 specifications combine either a future-time or
past-time MLTL formula with simple signal comparators [34]. New optional exten-
sions provide additional features, such as simple set-level reasoning [5]. R2U2’s
hardware implementation, written in VHDL, avoids overburdening limited com-
puting resources by utilizing Field Programmable Gate Arrays (FPGAs) to mon-
itor in parallel with the system under absolute timing guarantees. R2U2’s two
software implementations avoid hardware integration and software instrumentation
challenges at the cost of (minimal) compute resources on the host system and are
designed to be suitable for different environments. The C version forgoes mem-
ory allocation and bounds checking to provide fast deterministic results for real-
time controllers under stringent certifiability criteria; alternatively, the C++ ver-
sion makes full use of dynamic memory, templates, and runtime checks for max-
imum flexibility without monitor tuning. Additionally, the implementations differ
significantly in architecture to provide fault independence. The three monitor imple-
mentations enable on-board (embedded) and on-ground execution, integration with
multiple human-machine interaction paradigms, cross-validation, or triple modular
redundancy voting strategies to increase system trust.

RESPONSIVENESS R2U2 provides two levels of responsiveness. At a system level,
runtime reconfiguration of the monitor without a lengthy re-compilation (and re-
certification) process keeps R2U2 responsive to the system’s needs even as the
mission, platform, or requirements evolve. At a specification level, R2U2’s asyn-
chronous (event-triggered) observers provably report both true and false ver-
dicts (rather than only reporting property violations) in the first timestamp where

R2U2 Version 3.0 485

there is sufficient information to evaluate π, i |= ϕ, thus monitoring integrity,
safety, and security requirements in real-time. Since the monitor’s response time
is a function of the specification and known a priori, higher-level autonomous sys-
tem health and decision-making controllers can rely on R2U2 verdicts to provide a
tight bound on mitigation triggering or other reactive behaviors.

UNOBTRUSIVENESS R2U2’s multi-architecture, multi-platform design enables effec-
tive runtime verification while respecting crucial unobtrusiveness properties of
embedded systems, including functionality (no change in behavior), certifiability
(bounded time and memory under safety cases), timing (no interference with timing
guarantees), and tolerances (respect constraints on size, weight, power, bandwidth,
and overhead). R2U2 obeys unobtrusiveness constraints, provably fitting into tight
resource limits and operational constraints frequently encountered in space mis-
sions. It can operate without code instrumentation or insight into black-box sub-
components such as ITAR, restricted, or closed-source modules [29].

User Base. After an extensive survey of all currently-available verification tools,
NASA’s Lunar Gateway Vehicle SystemManager (VSM) team selected R2U2 for oper-
ational verification [8–10]; R2U2 is currently operating in the NASA core Flight Sys-
tem/core Flight Executive (cFS/cFE) [28] VSM environment. R2U2 is embedded in
the space left over on the FPGA controlling NASA’s Robonaut2’s knee to provide real-
time fault disambiguation [18], interfacing via the Robot Operating System (ROS) [31].
R2U2 is running on a UAS Traffic Management (UTM) system [5], where it recently
detected a flight-plan timing fault. JAXA is running R2U2 on a 2021 autonomous satel-
lite mission with a requirement for a provable memory bound of 200KB [30]. R2U2
recently verified a CubeSat communications system [24], an open-source UAS [16], a
sounding rocket [15], and a high-altitude balloon [23]. The CySat-I satellite uses R2U2
for autonomous fault recovery [2]. In the recent past, R2U2 was used in NASA’s Auton-
omy Operating System (AOS) for UAS [22] (where it flew on NASA’s S1000 octocopter
[21]), the NASA Swift UAS [13,34,36,43], and the NASA DragonEye UAS [41,44].
R2U2 aided in NASA embedded system battery prognostics [42] and a case study on
small satellites and landers [35]. R2U2 has also proven useful for monitoring and diag-
nosis of security threats on-board NASA UAS like the DragonEye [27,40]. R2U2 was
cataloged by the user community in a 2018 taxonomy of RV tools [12,39], and appeared
in a 2020 Institute of Information Security (ETH Zürich, Switzerland) case study [33].
R2U2 is open-source, dual licensed under MIT1 and Apache-2.0.2

2 Compiler and Specification Language

Specification is a notoriously difficult aspect of RV [37]; verification results are only
meaningful if the input specifications are correct and complete with respect to the sys-
tem requirements. An RV engine is only usable if system engineers can validate that it
monitors its given requirements as they expect, so they can clearly explain when and
why different RV verdicts occur. In consultation with outside groups using R2U2 on

1 https://choosealicense.com/licenses/mit/.
2 https://choosealicense.com/licenses/apache-2.0/.

https://choosealicense.com/licenses/mit/
https://choosealicense.com/licenses/apache-2.0/

486 C. Johannsen et al.

Table 1. Overview of changes to the R2U2 specification syntax for a basic temperature limit
requirement, where Temp is located at index 0 of the input signal vector. This is not an exhaustive
comparison but covers directly equivalent features, while Fig. 2 and the remainder of Sect. 2 detail
new capabilities.

Feature Previous Syntax [39] C2PO Syntax

Declare Signal Temp = 0;
Fix name to signal index

INPUT
Temp: float;

Declare name/type, signal index handled
separately

Define Macro N/A DEFINE
Temp_Limit = 97;

Improves readability and maintenance

Define Struct N/A STRUCT
Alarm = { T: float; };

Enables data organization

Atomic Checker OVERTEMP = float(Temp) >
97;

In-lined constants, signal type determined
by function name

ATOMIC
OVERTEMP = Temp >
Temp_Limit;

All declared names available, uses known
signal types

MLTL Formula G[0,3] !OVERTEMP; FTSPEC
G[0,3] !OVERTEMP;

Requires temporal tense declared
(FTSPEC or PTSPEC)

real systems [8,14,30], we developed a new specification language and an accompany-
ing formula-set compiler. The language’s and compiler’s features make specifications
easier to read and write, improving user productivity and easing validation to address
the challenges of specification in RV.

2.1 New Specification Language

Previous versions of R2U2 used a specification language derived from the implemen-
tation of the hardware runtime engine. While sufficiently expressive for the creation
of R2U2 configurations, it utilized a restricted syntax that supported only basic MLTL
operators and single-operator expressions over non-Boolean data types. Writing spec-
ifications that are transparent and easy to validate could be difficult without in-depth
knowledge of R2U2’s architecture [17].

The new SMV-inspired [26] specification language allows users the option to write
specifications more naturally with support for compound expressions over complex data
types including sets and C-like structs as well as sections for defining structs, variables,
macros, and MLTL formulas. C2PO supports Boolean, struct, and parametric set types

R2U2 Version 3.0 487

Fig. 2. Sample C2PO specification file using structs (lines 2–3, 12–13), sets (lines 3, 15–16), and
set aggregation operators (lines 22–23). The specification on lines 19–20 captures the English
requirement, “The active times for rq0 and rq1 shall differ by no more than 10.0 s,” and the
specification on lines 22–26 captures the English requirement, “For each request r of each arbiter
in ArbSet, r’s status shall be GRANT or REJECT within the next 5 s and until then shall be
WAITING.”

with configurable integer and floating point types. To run R2U2 in software, users select
a C standard type for each of the integer and float types e.g., an unsigned 16-bit inte-
ger (uint16_t) and double-precision floating point (double). If targeting hardware
(FPGA implementation), users can configure integer and float types to a bit-width sup-
ported by the target system. Table 1 presents a comparison between the old [39] and
new syntaxes and Fig. 2 presents a sample file for monitoring a request-handling system.

To create an R2U2 configuration, C2PO generates an Abstract Syntax Tree (AST)
representation of the input, performs type checking, applies optimizations and rewriting
rules, then outputs the corresponding R2U2 configuration. R2U2 does not use automata
to encode temporal logic observers (as reported erroneously elsewhere [12]); instead
C2PO traverses the AST to produce assembly-like imperative evaluation instructions
for the R2U2 monitor to executed at runtime.

In order to meet the demands of a wide range of systems, R2U2 Version 3.0 includes
many optional features that are specific to one of the three implementations that can
be enabled during system integration. For example, the Booleanizer module computes
arbitrary non-Boolean expressions in the C implementation of R2U2, but this feature is
not an option in the C++ or hardware implementations. C2PO allows users to enable
or disable such features according to the capabilities of their target systems and chosen
R2U2 implementation.

488 C. Johannsen et al.

2.2 Assume-Guarantee Contract Support

Assume Guarantee Contracts (AGCs) provide a template for structuring and validat-
ing complex requirements in aerospace operational concepts [3]. AGCs feature a guard
or trigger clause called the “assumption” and a system invariant called the “guaran-
tee;” they have been used to structure both English and formal (e.g., temporal logic)
requirements by projects including the NASA Lunar Gateway Vehicle System Man-
ager [10]. R2U2 V3.0 now directly supports AGCs with an input syntax for expressing
AGCs in C2PO and an output format for R2U2 that provides granular interpretation of
verdicts, as presented in [17]. The input syntax for declaring an AGC is assumption
=> guarantee where the semantics for this logical implication provides three dis-

tinct cases: the AGC is “inactive” if the assumption is false, “true” if both the assump-
tion and guarantee are true, and “false” otherwise. When the optional AGC feature is
enabled, R2U2 produces three-valued verdicts to represent the state of the AGCs in a
clear format; otherwise R2U2 interprets logical implications in the standard way (where
false → true results in the verdict true rather than inactive).

2.3 Set Aggregation

A common pattern in real-world specifications applies an identical formula to vari-
ous input signals, such as testing all temperature sensors for an overheat condition. A
naive encoding of these specifications in MLTL can be excessively large to the point
of obscuring intent while providing ample opportunity for copy-paste errors, typos, or
incomplete updates to variables – all of which are difficult for humans to spot dur-
ing validation. C2PO mitigates this issue by supporting set aggregation operators that
compactly encode these expressions as sets of streams with a predicate applied to each
element [14].

To illustrate, consider the specification in Fig. 2. The direct encoding of this speci-
fication without the “foreach” operator is

(rq0.status == W) U[0,5] (rq0.status == G || rq0.status == R) &&
(rq1.status == W) U[0,5] (rq1.status == G || rq1.status == R) &&
(rq2.status == W) U[0,5] (rq2.status == G || rq2.status == R) &&
(rq3.status == W) U[0,5] (rq3.status == G || rq3.status == R)

Contrast this with the more compact encoding using the “foreach” operator on lines 22−
26 in Fig. 2. The latter retains the intent of the English-level requirement while being
semantically equivalent to the direct encoding. This concise representation both eases
validation by improving readability and reduces the potential for errors by avoiding
replicated values that require simultaneous updates.

2.4 Common Subexpression Elimination

C2PO uses an AST as the intermediate representation of its input and can therefore
use optimization techniques common in compiler design such as Common Subexpres-
sion Elimination (CSE) [6]. Similarly to applying the isomorphism elimination rule for
Binary Decision Trees [4], Common Subexpression Elimination (CSE) prunes all but

R2U2 Version 3.0 489

one instance of any identical AST subtrees, reusing the result from that subtree for
monitoring multiple requirements without wasting memory and execution time by rep-
resenting it redundantly. Analysis of CSE on randomly-generated MLTL requirements
resulted in a speed-up of 37% and required 4.3% less memory [18]. We expect larger
savings in human-authored requirement specifications, however, due to reuse of both
common specification patterns and structures in the underlying system. For example,
a non-trivial subexpression might represent a system’s confidence in its navigational
fix and many specifications might depend on the navigation state, thus re-using this
subexpression.

3 Resource Estimation GUI

As R2U2’s user base expands, so does the variance in the domain expertise of these
specification authors; R2U2 V3.0 therefore enables resource-aware requirements spec-
ification by users without experience with the performance trade-offs of syntactically
different but semantically equivalent temporal logic encodings. The R2U2 Configura-
tion Explorer is a web application that provides visual feedback from C2PO about the
resource costs of specifications, e.g., in the form of MLTL formulas; see Fig. 3. With
a short feedback loop on critical parameters like execution time, memory, and relative
formula size, all a user needs to understand is what resources are available on their
target system (not R2U2 itself) to write performant specifications that fit the available
resources.

Fig. 3. R2U2 Configuration Explorer web application: 1) C2PO specification input; 2) C2PO
options; 3) C2PO output; 4) AST visualization; 5) AST node data; 6) R2U2 instruction; 7) C
engine speed and memory calculator; 8) FPGA speed and size calculator; 9) FPGA design size
vs maximum timestamp value.

490 C. Johannsen et al.

3.1 C2PO Feedback

Feedback from C2PO (elements 1–6 in Fig. 3) allows users to visualize the intermediate
representation of a given input specification as well as the effects of optimizations and
options on their final R2U2 configurations. Properties such as the memory required to
represent specifications with differently-sized temporal intervals, or syntactically dif-
ferent but functionally similar checks, can be unintuitive for users to compute on the
fly. The AST visualization provides transparency into this process for users unfamiliar
with R2U2’s implementation via an interactive web-based interface suited to experi-
mentation with different variations of a possible specification.

3.2 Software Resource Calculator

The software resource calculator (element 7 in Fig. 3) provides users of the R2U2 soft-
ware implementations with an estimate of the time and memory required to evaluate
one time step of a specification in the worst case.

Software Worst-Case Execution Time. The highly optimized nature of R2U2’s soft-
ware implementations makes runtime performance highly dependent on the target plat-
form’s architecture, C/C++ compiler version, and make environment factors; e.g., the
length of the current working directory name can impact cache alignment. We use a
simplified computing model to provide an estimation of the computing speed based on
the number of CPU cycles required for each operation on the target platform. Users can
edit these clock cycle values in the GUI, e.g., to test for platform-specific latencies. The
estimated worst-case execution time (WCET) in software Wsw of an AST node g is:

Wsw(g) =
∑

c∈Cg

(Wsw(c)) + Cycles(g.type) (1)

where Cg are the children nodes of g and Cycles is a dictionary mapping AST node
types to a corresponding number of clock cycles. For instance, Cycles(∧) = 10 cycles
by default.

Software Memory Requirements. R2U2 uses Shared Connection Queues (SCQs) to
store verdict-timestamp pairs for each node in the AST. SCQs are single-writer, many-
reader circular buffers that buffer the results of dependent temporal expressions that
might not be evaluated at the same timestamp. The total SCQ size for a specification
is the total number of SCQ slots required by the specification multiplied by the size of
one slot. The required number of SCQ slots for a node g is:

size(g.Queue) = max(max{s.wpd | ∀s ∈ Sg} − g.bpd, 0) + 1 (2)

where g.Queue is the output SCQ of g, s.wpd is the worst-case propagation delay of
node s, s.bpd is the best-case propagation delay of node s, and Sg is the set of sibling
nodes of g. The propagation delays of a node represent the minimum and maximum

R2U2 Version 3.0 491

number of time steps needed to evaluate the node and are defined recursively in Defini-
tion 4 of [18]. Intuitively, a node requires enough memory such that its results will not
be overwritten before they are consumed by a parent node. The total SCQ memory of
an AST is the sum of the sizes of SCQs of all nodes in the AST.

SCQ memory is an estimation of the actual total memory usage, but is typically the
largest and most constraining memory type, e.g., as compared to instruction or pointer
memory. The R2U2 C implementation statically fixes all memory sizes in advance to
avoid dynamic allocation, so the SCQ sizing feedback is useful for: (1) selecting an
initial size based on expected usage and; (2) verifying a configuration will fit on a
deployed monitor with a fixed SCQ limit.

3.3 Hardware Resource Calculator

The hardware resource calculator (elements 8 − 9 in Fig. 3) provides estimations for
hardware WCET (Whw), total SCQmemory slots, and a graph for visualizing estimated
FPGA resource requirements - Look-Up Tables (LUT) and Block RAMs (BRAM).
Required resources depend on the type of FPGA architecture. The GUI accepts clock
rate, LUT-type, timestamp length, and node sizing as parameters to better match the
estimate to a target platform. This approach was validated on Virtex-5 and Zynq7000
FPGA platforms as well as the ACTEL ProASIC3L used for Robonaut2 in [18].

HardwareWorst-Case Execution Time. The GUI computes the estimatedWhw using
a more precise method than in Sect. 3.2 by taking into account SCQ usage during execu-
tion. The R2U2 hardware implementation’s estimated worst-case execution time (Whw)
of an AST node g is:

Whw(g) =
∑

c∈Cg

(Whw(c)) + Latencyinit(g.type)

+ Latencyeval(g.type) ∗
∑

c∈Cg

(size(c.Queue))
(3)

where Latencyinit, Latencyeval are dictionaries mapping AST node types to micro-
second latencies corresponding to the initial and evaluation times of the node respec-
tively. The multiplication accounts for evaluation of each buffered input from the child
node, up to the queue size in the worst case.

Hardware Memory Requirements. The hardware resource calculator provides the
explicit number of SCQ slots required for the collection of specifications in the specifi-
cation set (aka configuration) using Formula 2 and summing sizes required for all AST
nodes.

FPGAs use BRAMs to implement an R2U2 monitor’s SCQ memory, where the size
and number of ports of the BRAMs limit the queue depth of the BRAMs. To compute
the required number of BRAMs, let d be the total SCQ size, w be the bit width of each
verdict-timestamp pair, wmax be the widest bit width the BRAM can accommodate,

492 C. Johannsen et al.

and D(w) be the maximum queue depth of a BRAM with verdict-timestamp pair bit
width w. The required number of cascaded BRAMs is:

NBRAM (w, d) = 	 d

D(wmax)

 ∗ mod(w,wmax) + 	 d

D(rem(w,wmax))

 (4)

Hardware LUT Requirements. Each R2U2 operator requires a constant number of
comparator and adder/subtractor LUTs, configured by the user in the GUI. The GUI
accounts for scaling based on the LUT type and uses the bit width of each verdict-
timestamp pair w to estimate total LUT usage. The total number of required comparator
LUTs (Ncmp) and adder/subtractor LUTs (Nadd) are:

Ncmp(w) =

⎧
⎪⎨

⎪⎩

4 ∗ w if LUT-3

2 ∗ w if LUT-4

w if LUT-6

Nadd(w) =

{
2 ∗ w if LUT-3 or LUT-4

w if LUT-6

4 Runtime Engine Improvements

To better serve mission-critical systems that must satisfy strict flight certification
requirements (such as NASA’s VSM [8–10]), we have made a number of improvements
to the internal architecture of the C version of R2U2 that provide memory assurances
and flexibility as well as extended computational abilities. Figure 4 depicts this updated
architecture.

Static Memory Arenas. The R2U2 V3.0C version uses only statically-allocated mem-
ory. This avoids the many pitfalls of allocating memory (slow allocator calls, fragmenta-
tion, leaks, out-of-memory errors, etc.) and guarantees the amount of memory required
for the entire execution of R2U2 up front. Additionally, many mission-critical systems
either do not have or do not permit dynamic memory allocation, e.g., to satisfy require-
ments for flight certification [32]. R2U2 now runs unmodified on these platforms as
well as traditional systems.

Each type of memory (yellow boxes of Fig. 4) has a predefined “arena” with a max-
imum size set during integration of the monitor with the target platform. When a user
loads an R2U2 configuration, R2U2 fills the slots of these arenas in sequence until the
arena is full.

Monitor Type Parameterization. Complimentary to the switch to static memory, the
internals of the reasoning engine are now fully parameterized. A single header file
allows users to adjust maximum values, bit widths, and even internal types. Proper
tuning has performance benefits, but crucially allows users to fit R2U2 to use the exact
amounts of resources available on a target system. For example, limiting the size of
the gaps between timestamps, e.g., in cases where the specification will be either reset
frequently or evaluated infrequently, allows more SCQs to fit in the same amount of
memory permitting larger formula sets with functionally similar behavior.

R2U2 Version 3.0 493

Fig. 4. Internal architecture of an R2U2 monitor. Orange boxes are streams of data, yellow boxes
are memory arenas, and blue boxes are modules. Arrows entering and exiting blue boxes denote
read and write relationships respectively. The red arrows denote relationships that are only active
upon startup i.e., when R2U2 populates instruction memory and configures SCQ memory. (Color
figure online)

Arbitrary Data Flow. R2U2 initially worked as a stack of engines, at each timestamp
passing results from the Atomic Checker (AT) to the Temporal Logic engine (TL), then
passing the TL verdicts through the Bayesian Network (BN) layer to produce that time-
stamp’s verdict [34]. Now, R2U2 can connect these engines in any order. This simplifies
configuration generation from the perspective of C2PO, enabling arbitrary ordering of
instructions. Atomic checker properties can now accept results of temporal logic formu-
las as input, for example, without adding a confusing step delay in the verdict stream.

AT Checker Extended Mode. The C version of the atomic checker has an extended
mode allowing for additional comparisons and filters beyond the standard hardware-
compatible set. In extended mode, the atomic checker produces Boolean “atomics”
from conditionals, where each conditional compares the result of a filter to either a
constant or another input signal. Filters are predefined functions such as simple data
type casts (bool, int, float, etc.) or mathematical functions like rate, moving average, or
absolute angle difference. For example:

• a5 := abs_diff_angle(s3,105) < 50; checks if the absolute difference
between the data of signal 3 and the value 105 when treated as angles is below 50.

• a43 := int(s32) == s33; checks that the values of signals 32 and 33 are in
agreement when treated as integers.

Booleanizer. The R2U2 V3.0C implementation includes a new general-purpose com-
puting module that uses a three-address code representation [7] called the Booleanizer
that can take the place of the AT checker. This module enables arbitrary expressions
over non-Boolean data types using arithmetic, bitwise, and relational operators as well
as extended set aggregation operators such as “forexactlyn” or “foratmostn” operators.

494 C. Johannsen et al.

5 Discussion

R2U2’s toolchain now provides an effective means by which to formalize, validate,
and verify system requirements in real time, giving users control and transparency of
the memory and feature set of their target-specific monitors. We have combined the
collection of capabilities from previously-published R2U2 case studies into one modu-
lar, centralized implementation that we have rigorously evaluated for correctness (e.g.,
using [19,38]).

C2PO and its new specification language enable higher-level abstractions for users
that make the specification development process faster, more transparent, and less
reliant on a deep understanding of R2U2’s underlying algorithms. The new GUI front-
end allows up-front specification design and resource usage estimation by system
designers so that users can rapidly prototype specifications before downloading and
using R2U2. These improvements make specifying, validating, and monitoring system
requirements easier and more accessible to the systems that stand to benefit most from
RV. Since specification is the biggest bottleneck to formal methods and autonomy [37],
this is an important feature for an RV engine.

It is now much easier to integrate R2U2 into production environments, like NASA
cFS/cFE [25,28] or ROS [31], due to the unified front end compiler, expanded engine
capabilities, and better user tooling. Recently R2U2 has launched on several real-life,
full-scale air and space missions, largely enabled by these advancements. This major
upgrade lays a solid foundation for expanded RV capabilities and integration into a
wider array of missions and embedded architectures.

References

1. Ryan, J.C., Cummings, M.L., Roy, N., Banerjee, A., Schulte, A.: Designing an Interactive
Local and Global Decision Support System for Aircraft Carrier Deck Scheduling. AIAA
Infotech (2011)

2. Aurandt, A., Jones, P., Rozier, K.Y.: Runtime verification triggers real-time, autonomous
fault recovery on the CySat-I. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA For-
mal Methods. NFM 2022. LNCS, vol. 13260, pp. 816–825. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-06773-0_45

3. Badger, J.M., Strawser, P., Claunch, C.: A distributed hierarchical framework for autonomous
spacecraft control. In: 2019 IEEE Aerospace Conference, pp. 1–8. IEEE (2019)

4. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE TC C–35(8),
677–691 (1986)

5. Cauwels, M., Hammer, A., Hertz, B., Jones, P.H., Rozier, K.Y.: Integrating runtime verifica-
tion into an automated UAS traffic management system. In: Muccini, H., et al. (eds.) ECSA
2020. CCIS, vol. 1269, pp. 340–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59155-7_26

6. Cooper, K., Eckhardt, J., Kennedy, K.: Redundancy elimination revisited. In: 2008 Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 12–21
(2008)

7. Cooper, K.D., Torczon, L.: Engineering a Compiler. Elsevier (2011)
8. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a verification view for an autonomous real-

time system architecture. In: Proceedings of SciTech Forum. p. Online. 2021–0566, AIAA,
January 2021. https://doi.org/10.2514/6.2021-0566

https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-030-59155-7_26
https://doi.org/10.1007/978-3-030-59155-7_26
https://doi.org/10.2514/6.2021-0566

R2U2 Version 3.0 495

9. Dabney, J.B.: Using assume-guarantee contracts in autonomous spacecraft. Flight Software
Workshop (FSW), February 2021. https://www.youtube.com/watch?v=zrtyiyNf674

10. Dabney, J.B., Rajagopal, P., Badger, J.M.: Using assume-guarantee contracts for develop-
mental verification of autonomous spacecraft. Flight Software Workshop (FSW), February
2022. https://www.youtube.com/watch?v=HFnn6TzblPg

11. Erzberger, H., Heere, K.: Algorithm and operational concept for resolving short-range con-
flicts. Proc. IMechE G J. Aerosp. Eng. 224(2), 225–243 (2010). https://doi.org/10.1243/
09544100JAERO546, http://pig.sagepub.com/content/224/2/225.abstract

12. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verifica-
tion tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 241–262.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_14

13. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and Bayesian network reason-
ers on-board FPGAs: flight-certifiable system health management for embedded systems. In:
Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 215–230. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_18

14. Hammer, A., Cauwels, M., Hertz, B., Jones, P., Rozier, K.Y.: Integrating runtime verification
into an automated UAS traffic management system (2021). https://doi.org/10.1007/s11334-
021-00407-5

15. Hertz, B., Luppen, Z., Rozier, K.Y.: Integrating runtime verification into a sounding rocket
control system. In: Proceedings of the 13th NASA Formal Methods Symposium (NFM
2021), May 2021. http://temporallogic.org/research/NFM21/

16. Johannsen, C., et al.: OpenUAS Version 1.0. IEEE, Athens, Greece (Virtual), June 2021
17. Kempa, B., Johannsen, C., Rozier, K.Y.: Improving usability and trust in real-time verifica-

tion of a large-scale complex safety-critical system. Ada User Journal (2022)
18. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online runtime

verification for fault disambiguation on Robonaut2. In: Bertrand, N., Jansen, N. (eds.) FOR-
MATS 2020. LNCS, vol. 12288, pp. 196–214. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-57628-8_12 https://research.temporallogic.org/papers/KZJZR20.pdf

19. Li, J., Rozier, K.Y.: MLTL benchmark generation via formula progression. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 426–433. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03769-7_25

20. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for mission-time LTL. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 3–22. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25543-5_1

21. Lowry, M., Bajwa, A., Quach, P., Karsai, G., Rozier, K., Rayadurgam, S.: Autonomy Oper-
ating System for UAVs, April 2017. https://nari.arc.nasa.gov/sites/default/files/attachments/
15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf

22. Lowry, M., Bajwa, A.: Autonomy Operating System (AOS) for UAVs. Proposal Presentation,
NASA Ames Research Center, Moffett Field, California, June 2015

23. Luppen, Z., et al.: Elucidation and analysis of specification patterns in aerospace system
telemetry. In: In: Deshmukh, J.V., Havelund, K., Perez, I. (eds) NASA Formal Methods.
NFM 2022. LNCS, vol. 13260, pp. 527–537. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06773-0_28

24. Luppen, Z.A., Lee, D.Y., Rozier, K.Y.: A case study in formal specification and runtime
verification of a CubeSat communications system. In: SciTech. AIAA, Nashville, TN, USA,
January 2021

25. McComas, D.: NASA/GSFC’s Flight Software Core Flight System. In: Flight Software
Workshop. Southwest Research Institute, San Antonio, Texas, November 2012

26. McMillan, K.L.: The SMV Language. Cadence Berkeley Labs, pp. 1–49 (1999)

https://www.youtube.com/watch?v=zrtyiyNf674
https://www.youtube.com/watch?v=HFnn6TzblPg
https://doi.org/10.1243/09544100JAERO546
https://doi.org/10.1243/09544100JAERO546
http://pig.sagepub.com/content/224/2/225.abstract
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/s11334-021-00407-5
https://doi.org/10.1007/s11334-021-00407-5
http://temporallogic.org/research/NFM21/
https://doi.org/10.1007/978-3-030-57628-8_12
https://doi.org/10.1007/978-3-030-57628-8_12
https://research.temporallogic.org/papers/KZJZR20.pdf
https://doi.org/10.1007/978-3-030-03769-7_25
https://doi.org/10.1007/978-3-030-03769-7_25
https://doi.org/10.1007/978-3-030-25543-5_1
https://doi.org/10.1007/978-3-030-25543-5_1
https://nari.arc.nasa.gov/sites/default/files/attachments/15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf
https://nari.arc.nasa.gov/sites/default/files/attachments/15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf
https://doi.org/10.1007/978-3-031-06773-0_28
https://doi.org/10.1007/978-3-031-06773-0_28

496 C. Johannsen et al.

27. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: Monitoring and Diagnosis of Secu-
rity Threats for Unmanned Aerial Systems, pp. 1–31, April 2017. https://doi.org/10.1007/
s10703-017-0275-x

28. NASA: core Flight System (cFS) Background and Overview (2014). https://cfs.gsfc.nasa.
gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf

29. NASA: NASA Export Control Program Operations Manual (2015). https://nodis3.gsfc.nasa.
gov/NPR_attachments/N_AII_2190_0001.pdf

30. Okubo, N.: Using R2U2 in JAXA program. Electronic correspondence (November-
December 2020). series of emails and zoom call from JAXA to PI with technical questions
about embedding R2U2 into an autonomous satellite mission with a provable memory bound
of 200KB

31. Open Robotics: Robot Operating System (ROS) (2021). https://www.ros.org/
32. Radio Technical Commission for Aeronautics: DO-333 - formal methods supplement to DO-

178C and DO-278A (2011). https://www.rtca.org/content/standards-guidance-materials
33. Raszyk, M., Basin, D., Traytel, D.: Multi-head monitoring of metric dynamic logic. In: Hung,

D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 233–250. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59152-6_13

34. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs
for system health management of real-time systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8_24

35. Rozier, K.Y.: R2U2 in space: system and software health management for small satellites. In:
Spacecraft Flight Software Workshop (FSW), December 2016. https://www.youtube.com/
watch?v=OAgQFuEGSi8, https://www.youtube.com/watch?v=OAgQFuEGSi8

36. Rozier, K.Y., Schumann, J., Ippolito, C.: Intelligent Hardware-Enabled Sensor and Software
Safety and Health Management for Autonomous UAS. Technical Memorandum NASA/TM-
2015-218817, NASA, NASA Ames Research Center, Moffett Field, CA 94035, USA, May
2015

37. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and autonomy. In:
Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48869-1_2

38. Rozier, K.Y.: On the evaluation and comparison of runtime verification tools for hardware
and cyber-physical systems. In: Proceedings of International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-
CUBES), Seattle, WA, USA, vol. 3, pp. 123–137. Kalpa Publications, September 2017.
https://easychair.org/publications/paper/877G

39. Rozier, K.Y., Schumann, J.: R2U2: tool overview. In: Proceedings of International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Ver-
ification Tools (RV-CUBES), Seattle, WA, USA, vol. 3, pp. 138–156. Kalpa Publications,
September 2017. https://easychair.org/publications/paper/Vncw

40. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of security
threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 233–249. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-
3_15

41. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime analysis with R2U2: a tool exhibi-
tion report. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 504–509.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_35

42. Schumann, J., Roychoudhury, I., Kulkarni, C.: Diagnostic reasoning using prognostic infor-
mation for unmanned aerial systems. In: Proceedings of the 2015 Annual Conference of the
Prognostics and Health Management Society (PHM2015) (2015)

https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf
https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf
https://nodis3.gsfc.nasa.gov/NPR_attachments/N_AII_2190_0001.pdf
https://nodis3.gsfc.nasa.gov/NPR_attachments/N_AII_2190_0001.pdf
https://www.ros.org/
https://www.rtca.org/content/standards-guidance-materials
https://doi.org/10.1007/978-3-030-59152-6_13
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://www.youtube.com/watch?v=OAgQFuEGSi8
https://www.youtube.com/watch?v=OAgQFuEGSi8
https://www.youtube.com/watch?v=OAgQFuEGSi8
https://doi.org/10.1007/978-3-319-48869-1_2
https://easychair.org/publications/paper/877G
https://easychair.org/publications/paper/Vncw
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-46982-9_35

R2U2 Version 3.0 497

43. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.:
Towards real-time, on-board, hardware-supported sensor and software health management
for unmanned aerial systems. In: Proceedings of the 2013 Annual Conference of the Prog-
nostics and Health Management Society (PHM2013), pp. 381–401, October 2013

44. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.:
Towards real-time, on-board, hardware-supported sensor and software health management
for unmanned aerial systems. Int. J. Prognostics Health Manage. (IJPHM) 6(1), 1–27 (2015)

45. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination protocol for
an automated air traffic control system. Sci. Comput. Program. J. 96(3), 337–353 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Abdulla, Parosh Aziz I-184
Akshay, S. I-266, I-367, III-86
Albert, Elvira III-176
Alistarh, Dan I-156
Alur, Rajeev I-415
Amilon, Jesper III-281
Amir, Guy II-438
An, Jie I-62
Anand, Ashwani I-436
Andriushchenko, Roman III-113
Apicelli, Andrew I-27
Arcaini, Paolo I-62
Asada, Kazuyuki III-40
Ascari, Flavio II-41
Atig, Mohamed Faouzi I-184

B
Badings, Thom III-62
Barrett, Clark II-163, III-154
Bastani, Favyen I-459
Bastani, Osbert I-415, I-459
Bayless, Sam I-27
Becchi, Anna II-288
Beutner, Raven II-309
Bisping, Benjamin I-85
Blicha, Martin II-209
Bonchi, Filippo II-41
Bork, Alexander III-113
Braught, Katherine I-351
Britikov, Konstantin II-209
Brown, Fraser III-154
Bruni, Roberto II-41
Bucev, Mario III-398

C
Calinescu, Radu I-289
Češka, Milan III-113
Chakraborty, Supratik I-367

Chatterjee, Krishnendu III-16, III-86
Chaudhuri, Swarat III-213
Chechik, Marsha III-374
Chen, Hanyue I-40
Chen, Taolue III-255
Chen, Yu-Fang III-139
Choi, Sung Woo II-397
Chung, Kai-Min III-139
Cimatti, Alessandro II-288
Cosler, Matthias II-383
Couillard, Eszter III-437
Czerner, Philipp III-437

D
Dardik, Ian I-326
Das, Ankush I-27
David, Cristina III-459
Dongol, Brijesh I-206
Dreossi, Tommaso I-253
Dutertre, Bruno II-187

E
Eberhart, Clovis III-40
Esen, Zafer III-281
Esparza, Javier III-437

F
Farzan, Azadeh I-109
Fedorov, Alexander I-156
Feng, Nick III-374
Finkbeiner, Bernd II-309
Fremont, Daniel J. I-253
Frenkel, Hadar II-309
Fu, Hongfei III-16
Fu, Yu-Fu II-227, III-329

G
Gacek, Andrew I-27
Garcia-Contreras, Isabel II-64

© The Editor(s) (if applicable) and The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 499–502, 2023.
https://doi.org/10.1007/978-3-031-37709-9

https://doi.org/10.1007/978-3-031-37709-9

500 Author Index

Gastin, Paul I-266
Genaim, Samir III-176
Getir Yaman, Sinem I-289
Ghosh, Shromona I-253
Godbole, Adwait I-184
Goel, Amit II-187
Goharshady, Amir Kafshdar III-16
Goldberg, Eugene II-110
Gopinath, Divya I-289
Gori, Roberta II-41
Govind, R. I-266
Govind, V. K. Hari II-64
Griggio, Alberto II-288, III-423
Guilloud, Simon III-398
Gurfinkel, Arie II-64
Gurov, Dilian III-281

H
Hahn, Christopher II-383
Hasuo, Ichiro I-62, II-41, III-40
Henzinger, Thomas A. II-358
Hofman, Piotr I-132
Hovland, Paul D. II-265
Hückelheim, Jan II-265

I
Imrie, Calum I-289

J
Jaganathan, Dhiva I-27
Jain, Sahil I-367
Jansen, Nils III-62
Jeż, Artur II-18
Johannsen, Chris III-483
Johnson, Taylor T. II-397
Jonáš, Martin III-423
Jones, Phillip III-483
Joshi, Aniruddha R. I-266
Jothimurugan, Kishor I-415
Junges, Sebastian III-62, III-113

K
Kang, Eunsuk I-326
Karimi, Mahyar II-358
Kashiwa, Shun I-253
Katoen, Joost-Pieter III-113
Katz, Guy II-438
Kempa, Brian III-483
Kiesl-Reiter, Benjamin II-187

Kim, Edward I-253
Kirchner, Daniel III-176
Kokologiannakis, Michalis I-230
Kong, Soonho II-187
Kori, Mayuko II-41
Koval, Nikita I-156
Kremer, Gereon II-163
Křetínský, Jan I-390
Krishna, Shankaranarayanan I-184
Kueffner, Konstantin II-358
Kunčak, Viktor III-398

L
Lafortune, Stéphane I-326
Lahav, Ori I-206
Lengál, Ondřej III-139
Lette, Danya I-109
Li, Elaine III-350
Li, Haokun II-87
Li, Jianwen II-288
Li, Yangge I-351
Li, Yannan II-335
Lidström, Christian III-281
Lin, Anthony W. II-18
Lin, Jyun-Ao III-139
Liu, Jiaxiang II-227, III-329
Liu, Mingyang III-255
Liu, Zhiming I-40
Lopez, Diego Manzanas II-397
Lotz, Kevin II-187
Luo, Ziqing II-265

M
Maayan, Osher II-438
Macák, Filip III-113
Majumdar, Rupak II-187, III-3, III-437
Mallik, Kaushik II-358, III-3
Mangal, Ravi I-289
Marandi, Ahmadreza III-62
Markgraf, Oliver II-18
Marmanis, Iason I-230
Marsso, Lina III-374
Martin-Martin, Enrique III-176
Mazowiecki, Filip I-132
Meel, Kuldeep S. II-132
Meggendorfer, Tobias I-390, III-86
Meira-Góes, Rômulo I-326
Mell, Stephen I-459
Mendoza, Daniel II-383

Author Index 501

Metzger, Niklas II-309
Meyer, Roland I-170
Mi, Junri I-40
Milovančević, Dragana III-398
Mitra, Sayan I-351

N
Nagarakatte, Santosh III-226
Narayana, Srinivas III-226
Nayak, Satya Prakash I-436
Niemetz, Aina II-3
Nowotka, Dirk II-187

O
Offtermatt, Philip I-132
Opaterny, Anton I-170
Ozdemir, Alex II-163, III-154

P
Padhi, Saswat I-27
Păsăreanu, Corina S. I-289
Peng, Chao I-304
Perez, Mateo I-415
Preiner, Mathias II-3
Prokop, Maximilian I-390
Pu, Geguang II-288

R
Reps, Thomas III-213
Rhea, Matthew I-253
Rieder, Sabine I-390
Rodríguez, Andoni III-305
Roy, Subhajit III-190
Rozier, Kristin Yvonne III-483
Rümmer, Philipp II-18, III-281
Rychlicki, Mateusz III-3

S
Sabetzadeh, Mehrdad III-374
Sánchez, César III-305
Sangiovanni-Vincentelli, Alberto L. I-253
Schapira, Michael II-438
Schmitt, Frederik II-383
Schmuck, Anne-Kathrin I-436, III-3
Seshia, Sanjit A. I-253
Shachnai, Matan III-226
Sharma, Vaibhav I-27

Sharygina, Natasha II-209
Shen, Keyi I-351
Shi, Xiaomu II-227, III-329
Shoham, Sharon II-64
Siegel, Stephen F. II-265
Sistla, Meghana III-213
Sokolova, Maria I-156
Somenzi, Fabio I-415
Song, Fu II-413, III-255
Soudjani, Sadegh III-3
Srivathsan, B. I-266
Stanford, Caleb II-241
Stutz, Felix III-350
Su, Yu I-40
Sun, Jun II-413
Sun, Yican III-16

T
Takhar, Gourav III-190
Tang, Xiaochao I-304
Tinelli, Cesare II-163
Topcu, Ufuk III-62
Tran, Hoang-Dung II-397
Tripakis, Stavros I-326
Trippel, Caroline II-383
Trivedi, Ashutosh I-415
Tsai, Ming-Hsien II-227, III-329
Tsai, Wei-Lun III-139
Tsitelov, Dmitry I-156

V
Vafeiadis, Viktor I-230
Vahanwala, Mihir I-184
Veanes, Margus II-241
Vin, Eric I-253
Vishwanathan, Harishankar III-226

W
Waga, Masaki I-3
Wahby, Riad S. III-154
Wang, Bow-Yaw II-227, III-329
Wang, Chao II-335
Wang, Jingbo II-335
Wang, Meng III-459
Watanabe, Kazuki III-40
Wehrheim, Heike I-206
Whalen, Michael W. I-27
Wies, Thomas I-170, III-350

502 Author Index

Wolff, Sebastian I-170
Wu, Wenhao II-265

X
Xia, Bican II-87
Xia, Yechuan II-288

Y
Yadav, Raveesh I-27
Yang, Bo-Yin II-227, III-329
Yang, Jiong II-132
Yang, Zhengfeng I-304
Yu, Huafeng I-289
Yu, Yijun III-459
Yue, Xiangyu I-253

Z
Zdancewic, Steve I-459
Zelazny, Tom II-438
Zeng, Xia I-304
Zeng, Zhenbing I-304
Zhang, Hanliang III-459
Zhang, Li I-304
Zhang, Miaomiao I-40
Zhang, Pei III-483
Zhang, Yedi II-413
Zhang, Zhenya I-62
Zhao, Tianqi II-87
Zhu, Haoqing I-351
Žikelić, Ðor -de III-86
Zufferey, Damien III-350

	 Preface
	 Organization
	 Contents – Part III
	Probabilistic Systems
	A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic Uncertainties
	1 Introduction
	2 Theoretical Background
	2.1 Solving Rabin Games Symbolically
	2.2 Computing Symbolic Controllers for Stochastic Dynamical Systems

	3 Implementation Details
	3.1 Genie
	3.2 FairSyn
	3.3 Mascot-SDS

	4 Examples
	4.1 Synthesizing Code-Aware Resource Mangers Using FairSyn
	4.2 Synthesizing Controllers for Stochastic Dynamical Systems Using Mascot-SDS

	References

	Automated Tail Bound Analysis for Probabilistic Recurrence Relations
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Recurrence Relations

	3 Exponential Tail Bounds via Markov's Inequality
	4 An Algorithmic Approach
	4.1 The Guess Procedure Guess(f,t)
	4.2 The Check Procedure CheckCond(cf,ct)

	5 Experimental Results
	6 Related Work
	References

	Compositional Probabilistic Model Checking with String Diagrams of MDPs
	1 Introduction
	2 String Diagrams of MDPs
	2.1 Outline
	2.2 Open MDPs
	2.3 Rightward Open MDPs and Traced Monoidal String Diagrams
	2.4 TSMC Equations Between roMDPs
	2.5 Open MDPs and ``Compact Closed'' String Diagrams

	3 Decomposition Equalities for Open Markov Chains
	4 Semantic Categories and Solution Functors
	4.1 Semantic Category for Rightward Open MCs
	4.2 Semantic Category of Rightward Open MDPs
	4.3 Semantic Category of MDPs

	5 Implementation and Experiments
	References

	Efficient Sensitivity Analysis for Parametric Robust Markov Chains
	1 Introduction
	2 Overview
	3 Formal Problem Statement
	4 Differentiating Solution Functions for pMCs
	4.1 Computing Derivatives Explicitly
	4.2 Computing k-Highest Derivatives

	5 Differentiating Solution Functions for prMCs
	5.1 Computing Derivatives via pMCs (and When It Does Not Work)
	5.2 Computing Derivatives Explicitly
	5.3 Computing k-Highest Derivatives

	6 Numerical Experiments
	7 Related Work
	8 Concluding Remarks
	References

	MDPs as Distribution Transformers: Affine Invariant Synthesis for Safety Objectives
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Markov Systems
	2.2 MDPs as Distribution Transformers

	3 Problem Statement and Examples
	4 Proving Safety by Invariants
	4.1 Distribution Strategies
	4.2 Distributional Invariants for MDP Safety

	5 Algorithms for Distributional Invariant Synthesis
	5.1 Synthesis of Affine Invariants and Memoryless Strategies
	5.2 Synthesis of Affine Invariants and General Strategies

	6 Discussion, Extensions, and Variants
	7 Implementation and Evaluation
	8 Conclusion
	References

	Search and Explore: Symbiotic Policy Synthesis in POMDPs
	1 Introduction
	2 Motivating Examples
	3 Preliminaries and Problem Statement
	4 FSCs for and from Belief Exploration
	4.1 Belief Exploration with Explicit FSC Construction
	4.2 Using FSCs for Cut-Off Values
	4.3 Extracting FSC from Belief Exploration

	5 Accelerated Inductive Synthesis
	5.1 Inductive Synthesis with k-FSCs
	5.2 Using Reference Policies to Accelerate Inductive Synthesis
	5.3 Inductive Synthesis with Adequate FSCs

	6 Integrating Belief Exploration with Inductive Synthesis
	7 Experiments
	8 Conclusion and Future Work
	References

	Security and Quantum Systems
	AutoQ: An Automata-Based Quantum Circuit Verifier
	1 Introduction
	2 Tree Automata-Based Verification of Quantum Circuits
	2.1 High-Level Specification Language
	2.2 Complex Number Representation
	2.3 Precise Semantics of the Specification

	3 Entailment Checking
	4 Architecture
	5 Use Cases
	5.1 Hadamard Square is Identity
	5.2 Zero Imaginary Part of Amplitudes
	5.3 Probability of Measuring the Correct Answer
	5.4 Increasing Amplitude of the Correct Answer

	6 Conclusion
	References

	Bounded Verification for Finite-Field-Blasting
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Logic
	2.2 Zero Knowledge Proofs
	2.3 Compilation Targeting Zero Knowledge Proofs

	3 Overview and Example
	3.1 An Example of Field-Blasting
	3.2 Key Ideas

	4 Architecture
	4.1 Encodings
	4.2 Encoding Rules
	4.3 Calculus

	5 Verification Conditions
	5.1 Correctness Definition
	5.2 Rule VCs
	5.3 A Correct Field-Blasting Calculus

	6 Case Study: A Verifiable Field-Blaster for CirC
	6.1 Verification Evaluation
	6.2 Performance and Output Quality Evaluation

	7 Discussion
	A Zero-Knowledge Proofs and Compilers
	B Compiler Correctness Proofs
	C CirC-IR
	D Optimizations to the CirC Field-Blaster
	E Verified Field-Blaster Performance Details
	F Verifier Performance Details
	G Bugs Found in the CirC Field Blaster
	References

	Formally Verified EVM Block-Optimizations
	1 Introduction
	2 Background
	3 EVM Semantics in Coq
	4 Formal Verification of EVM-Optimizations in Coq
	4.1 EVM Symbolic Execution in Coq
	4.2 Simplification Rules
	4.3 Stacks Equivalence Modulo Commutativity

	5 Implementation and Experimental Evaluation
	6 Conclusions, Related and Future Work
	References

	SR-SFLL: Structurally Robust Stripped Functionality Logic Locking
	1 Introduction
	2 Background
	2.1 Stripped Functionality Logic Locking (SFLL)
	2.2 SFLL Attacks
	2.3 Analysis of the Structural Attacks on SFLL

	3 Overview
	3.1 Preliminaries
	3.2 Approach

	4 SR-SFLL
	4.1 Problem Statement
	4.2 Intuition: SR-SFLL
	4.3 Methodology: SR-SFLL

	5 SyntAk
	6 Evaluation
	6.1 Robustness of SR-SELL(0) and SR-SELL on Existing Attacks
	6.2 Robustness of SR-SELL(0) and SR-SELL on SyntAk
	6.3 Overhead of SR-SELL(0) and SR-SELL

	7 Related Work
	8 Conclusions
	References

	Symbolic Quantum Simulation with Quasimodo
	1 Introduction
	2 Background on Quantum Simulation
	3 Quasimodo's Programming and Analysis Interface
	3.1 Extending Quasimodo

	4 The Internals of Quasimodo
	5 Experiments
	6 Conclusion
	References

	Verifying the Verifier: eBPF Range Analysis Verification
	1 Introduction
	2 Background on Abstract Interpretation
	3 Abstract Interpretation in the Linux Kernel
	4 Automatic Verification of the Kernel's Algorithms
	4.1 Soundness Specification for Abstraction/Reduction Operators
	4.2 Refining Soundness Specification with Input Preconditioning
	4.3 Automatically Producing Programs Exercising Soundness Bugs

	5 C to Logic for Kernel's Abstract Operators
	6 Experimental Evaluation
	7 Limitations and Caveats
	8 Related Work
	9 Conclusion
	References

	Software Verification
	Automated Verification of Correctness for Masked Arithmetic Programs
	1 Introduction
	2 Preliminaries
	3 The Core Language
	4 Overview of the Approach
	4.1 Our Approach

	5 Term Rewriting System
	6 Algorithmic Verification
	6.1 Term Normalization Algorithm
	6.2 Computing Affine Constants
	6.3 Verification Algorithm
	6.4 Implementation Remarks

	7 Evaluation
	7.1 Evaluation for Computing Affine Constants
	7.2 Evaluation for Correctness Verification
	7.3 Scalability of FISCHER
	7.4 Evaluation for More Boolean Masking Schemes
	7.5 Evaluation for Arithmetic/Boolean Masking Conversions

	8 Conclusion
	References

	Automatic Program Instrumentation for Automatic Verification
	1 Introduction
	2 Instrumentation Framework
	2.1 The Core Language
	2.2 Instrumentation Operators
	2.3 Instrumentation Correctness

	3 Instrumentation Application Strategies
	4 Instrumentation Operators for Arrays
	4.1 Instrumentation Operators for Quantification over Arrays
	4.2 Instrumentation Operators for Aggregation over Arrays

	5 Evaluation
	5.1 Implementation
	5.2 Experiments and Comparisons

	6 Related Work
	7 Conclusion
	References

	Boolean Abstractions for Realizability Modulo Theories
	1 Introduction
	2 Preliminaries
	3 Boolean Abstraction
	3.1 Notation
	3.2 The Boolean Abstraction Algorithm
	3.3 From Local Simulation to Equi-Realizability

	4 Efficient Algorithms for Boolean Abstraction
	4.1 Quasi-reactions
	4.2 Quasi-reaction-based Optimizations
	4.3 A Single Model-Loop Algorithm (Algorithm 2)
	4.4 A Nested-SAT Algorithm (Algorithm 3)

	5 Empirical Evaluation
	6 Related Work and Conclusions
	References

	Certified Verification for Algebraic Abstraction
	1 Introduction
	2 Preliminaries
	3 ToyLang
	3.1 Syntax and Semantics

	4 Algebraic Abstraction
	4.1 Soundness Conditions
	4.2 Polynomial Program Verification

	5 Certified Verification
	5.1 Verified Abstraction Algorithm
	5.2 Verification through Certification
	5.3 Optimization

	6 Evaluation
	6.1 Field and Group Operation in Elliptic Curves
	6.2 Number-Theoretic Transform in Kyber

	7 Conclusion
	References

	Complete Multiparty Session Type Projection with Automata
	1 Introduction
	2 Motivation and Overview
	3 Preliminaries
	4 Synthesizing Implementations
	5 Checking Implementability
	6 Soundness
	7 Completeness
	8 Complexity
	9 Evaluation
	10 Discussion
	11 Related Work
	References

	Early Verification of Legal Compliance via Bounded Satisfiability Checking
	1 Introduction
	2 Preliminaries
	3 Bounded Satisfiability Checking Problem
	4 Checking Bounded Satisfiability
	4.1 Overview of BSC for MFOTL Formulas
	4.2 Translation of MFOTL to First-Order Logic
	4.3 Checking MFOTL Satisfiability: A Naive Approach

	5 Incremental Search for Bounded Counterexamples
	5.1 Over- and Under-Approximation
	5.2 Counterexample-Guided Constraint Solving Algorithm
	5.3 Illustration of IBS

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Formula Normalizations in Verification
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Deriving an Ortholattice Normal Form Algorithm
	3.1 Deciding OL by Reduction to Bounded Lattices
	3.2 Reduction to Normal Form
	3.3 Complexity and Normal Form Size

	4 Algorithm with Memoization and Structure Sharing
	5 Application to More Expressive Logics
	6 Evaluation
	6.1 Randomly Generated Propositional Formulas
	6.2 Computing Normal Forms for Hardware Circuits
	6.3 Caching Verification Conditions in Stainless

	7 Conclusion
	References

	Kratos2: An SMT-Based Model Checker for Imperative Programs
	1 Introduction
	2 Functional View
	3 The K2 Language
	3.1 Example

	4 Architectural View
	5 Implementation and Experimental Evaluation
	6 Conclusions and Future Work
	References

	Making IP=PSPACE Practical: Efficient Interactive Protocols for BDD Algorithms
	1 Introduction
	2 Preliminaries
	3 Circuits with Partial Evaluation
	4 An Interactive Protocol for #CP
	4.1 Arithmetisation
	4.2 Degree Reduction
	4.3 CPCertify: An Interactive Protocol for #CP

	5 A BDD-Based Prover
	5.1 Extended BDDs
	5.2 Efficient Certification
	5.3 Implementation Concerns

	6 Evaluation
	7 Conclusion
	References

	Ownership Guided C to Rust Translation
	1 Introduction
	2 Background
	2.1 Rust Ownership Model
	2.2 Pointer Types in Rust
	2.3 Unsafe Rust

	3 Overview
	3.1 Pushing into a Singly-Linked List
	3.2 Freeing an Argument List in bzip2

	4 Architecture
	5 Ownership Analysis
	5.1 Ownership and Aliasing
	5.2 Generation of Ownership Constraints
	5.3 Solving Ownership Constraints
	5.4 Discussion on Ownership Monotonicity

	6 C to Rust Translation
	6.1 Retyping Pointers
	6.2 Rewriting Pointer Uses

	7 Challenges of Handling Real-World Code
	7.1 Preprocessing
	7.2 Limitations of the Ownership Analysis
	7.3 Other Limitations of Crown

	8 Experimental Evaluation
	8.1 Research Questions

	9 Related Works
	10 Conclusion
	References

	R2U2 Version 3.0: Re-Imagining a Toolchain for Specification, Resource Estimation, and Optimized Observer Generation for Runtime Verification in Hardware and Software
	1 Tool Overview
	2 Compiler and Specification Language
	2.1 New Specification Language
	2.2 Assume-Guarantee Contract Support
	2.3 Set Aggregation
	2.4 Common Subexpression Elimination

	3 Resource Estimation GUI
	3.1 C2PO Feedback
	3.2 Software Resource Calculator
	3.3 Hardware Resource Calculator

	4 Runtime Engine Improvements
	5 Discussion
	References

	Author Index

