Constantin Enea
Akash Lal (Eds.)

Computer Aided
Verification

35th International Conference, CAV 2023
Paris, France, July 17-22, 2023
Proceedings, Part lli

LNCS 13966

@ Springer

Lecture Notes in Computer Science 13966

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen@®, TU Dortmund University, Dortmund, Germany
Moti Yung®, Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Constantin Enea - Akash Lal
Editors

Computer Aided
Verification

35th International Conference, CAV 2023
Paris, France, July 17-22, 2023
Proceedings, Part III

@ Springer

Editors

Constantin Enea Akash Lal
LIX, Ecole Polytechnique, CNRS and Institut Microsoft Research
Polytechnique de Paris Bangalore, India

Palaiseau, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-37708-2 ISBN 978-3-031-37709-9 (eBook)

https://doi.org/10.1007/978-3-031-37709-9
© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2727-8865
https://orcid.org/0009-0002-4359-9378
https://doi.org/10.1007/978-3-031-37709-9
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2023, the 35th International
Conference on Computer-Aided Verification. CAV 2023 was held during July 19-22,
2023 and the pre-conference workshops were held during July 17-18, 2023. CAV 2023
was an in-person event, in Paris, France.

CAV is an annual conference dedicated to the advancement of the theory and practice
of computer-aided formal analysis methods for hardware and software systems. The
primary focus of CAV is to extend the frontiers of verification techniques by expanding
to new domains such as security, quantum computing, and machine learning. This puts
CAV atthe cutting edge of formal methods research, and this year’s program is areflection
of this commitment.

CAV 2023 received a large number of submissions (261). We accepted 15 tool
papers, 3 case-study papers, and 49 regular papers, which amounts to an acceptance
rate of roughly 26%. The accepted papers cover a wide spectrum of topics, from theo-
retical results to applications of formal methods. These papers apply or extend formal
methods to a wide range of domains such as concurrency, machine learning and neu-
ral networks, quantum systems, as well as hybrid and stochastic systems. The program
featured keynote talks by Ruzica Piskac (Yale University), Sumit Gulwani (Microsoft),
and Caroline Trippel (Stanford University). In addition to the contributed talks, CAV
also hosted the CAV Award ceremony, and a report from the Synthesis Competition
(SYNTCOMP) chairs.

In addition to the main conference, CAV 2023 hosted the following workshops: Meet-
ing on String Constraints and Applications (MOSCA), Verification Witnesses and Their
Validation (VeWit), Verification of Probabilistic Programs (VeriProP), Open Problems
in Learning and Verification of Neural Networks (WOLVERINE), Deep Learning-aided
Verification (DAV), Hyperproperties: Advances in Theory and Practice (HYPER), Syn-
thesis (SYNT), Formal Methods for ML-Enabled Autonomous Systems (FOMLAS), and
Verification Mentoring Workshop (VMW). CAV 2023 also hosted a workshop dedicated
to Thomas A. Henzinger for this 60th birthday.

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2023 consisted of 76 members—a com-
mittee of this size ensures that each member has to review only a reasonable number of
papers in the allotted time. In all, the committee members wrote over 730 reviews while
investing significant effort to maintain and ensure the high quality of the conference pro-
gram. We are grateful to the CAV 2023 Program Committee for their outstanding efforts
in evaluating the submissions and making sure that each paper got a fair chance. Like
recent years in CAV, we made artifact evaluation mandatory for tool paper submissions,
but optional for the rest of the accepted papers. This year we received 48 artifact submis-
sions, out of which 47 submissions received at least one badge. The Artifact Evaluation
Committee consisted of 119 members who put in significant effort to evaluate each arti-
fact. The goal of this process was to provide constructive feedback to tool developers and

vi Preface

help make the research published in CAV more reproducible. We are also very grateful
to the Artifact Evaluation Committee for their hard work and dedication in evaluating
the submitted artifacts.

CAV 2023 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2023 a success. We would like to thank Alessandro Cimatti, Isil Dillig, Javier Esparza,
Azadeh Farzan, Joost-Pieter Katoen and Corina Pasareanu for serving as area chairs.
We also thank Bernhard Kragl and Daniel Dietsch for chairing the Artifact Evaluation
Committee. We also thank Mohamed Faouzi Atig for chairing the workshop organization
as well as leading publicity efforts, Eric Koskinen as the fellowship chair, Sebastian
Bardin and Ruzica Piskac as sponsorship chairs, and Srinidhi Nagendra as the website
chair. Srinidhi, along with Enrique Romén Calvo, helped prepare the proceedings. We
also thank Ankush Desai, Eric Koskinen, Burcu Kulahcioglu Ozkan, Marijana Lazic, and
Matteo Sammartino for chairing the mentoring workshop. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2023.

We hope that you will find the proceedings of CAV 2023 scientifically interesting
and thought-provoking!

June 2023 Constantin Enea
Akash Lal

Organization

Conference Co-chairs

Constantin Enea LIX, Ecole Polytechnique, France
Akash Lal Microsoft Research, India

Artifact Co-chairs

Bernhard Kragl Amazon Web Services, USA
Daniel Dietsch Qt Group/University of Freiburg, Germany

Workshop Chair

Mohamed Faouzi Atig Uppsala University, Sweden

Verification Mentoring Workshop Organizing Committee

Ankush Densai AWS CA, USA

Eric Koskinen Stevens Institute of Technology, USA

Burcu Kulahcioglu Ozkan TU Delft, The Netherlands

Marijana Lazic TU Munich, Germany

Matteo Sammartino Royal Holloway, University of London, UK
Fellowship Chair

Eric Koskinen Stevens Institute of Technology, USA
Website Chair

Srinidhi Nagendra Université Paris Cité, CNRS, IRIF, France and

Chennai Mathematical Institute, India

viii Organization

Sponsorship Co-chairs

Sebastian Bardin
Ruzica Piskac

Proceedings Chairs

Srinidhi Nagendra

Enrique Roméan Calvo

Program Committee

Aarti Gupta
Abhishek Bichhawat
Aditya V. Thakur
Ahmed Bouajjani
Aina Niemetz
Akash Lal

Alan J. Hu
Alessandro Cimatti
Alexander Nadel
Anastasia Mavridou
Andreas Podelski
Ankush Desai

Anna Slobodova
Anthony Widjaja Lin

Arie Gurfinkel
Arjun Radhakrishna
Aws Albarghouthi
Azadeh Farzan
Bernd Finkbeiner

Bettina Koenighofer
Bor-Yuh Evan Chang

Burcu Kulahcioglu Ozkan
Caterina Urban
Cezara Dragoi

CEA LIST, France
Yale University, USA

Université Paris Cité, CNRS, IRIF, France and
Chennai Mathematical Institute, India
Université Paris Cité, CNRS, IRIF, France

Princeton University, USA

IIT Gandhinagar, India

University of California, USA

University of Paris, France

Stanford University, USA

Microsoft Research, India

University of British Columbia, Canada

Fondazione Bruno Kessler, Italy

Intel, Israel

KBR, NASA Ames Research Center, USA

University of Freiburg, Germany

Amazon Web Services

Intel, USA

TU Kaiserslautern and Max-Planck Institute for
Software Systems, Germany

University of Waterloo, Canada

Microsoft, India

University of Wisconsin-Madison, USA

University of Toronto, Canada

CISPA Helmholtz Center for Information
Security, Germany

Graz University of Technology, Austria

University of Colorado Boulder and Amazon,
USA

Delft University of Technology, The Netherlands

Inria and Ecole Normale Supérieure, France

Amazon Web Services, USA

Christoph Matheja
Claudia Cauli
Constantin Enea
Corina Pasareanu
Cristina David
Dirk Beyer
Elizabeth Polgreen
Elvira Albert
Eunsuk Kang
Gennaro Parlato
Hossein Hojjat

Ichiro Hasuo

Isil Dillig

Javier Esparza
Joost-Pieter Katoen
Juneyoung Lee
Jyotirmoy Deshmukh
Kenneth L. McMillan
Kristin Yvonne Rozier
Kshitij Bansal
Kuldeep Meel
Kyungmin Bae
Marcell Vazquez-Chanlatte

Marieke Huisman
Markus Rabe

Marta Kwiatkowska
Matthias Heizmann
Michael Emmi
Mihaela Sighireanu

Mohamed Faouzi Atig
Naijun Zhan

Nikolaj Bjorner
Nina Narodytska
Pavithra Prabhakar
Pierre Ganty
Rupak Majumdar

Ruzica Piskac

Organization

Technical University of Denmark, Denmark

Amazon Web Services, UK

LIX, CNRS, Ecole Polytechnique, France

CMU, USA

University of Bristol, UK

LMU Munich, Germany

University of Edinburgh, UK

Complutense University, Spain

Carnegie Mellon University, USA

University of Molise, Italy

Tehran University and Tehran Institute of
Advanced Studies, Iran

National Institute of Informatics, Japan

University of Texas, Austin, USA

Technische Universitdt Miinchen, Germany

RWTH-Aachen University, Germany

AWS, USA

University of Southern California, USA

University of Texas at Austin, USA

Iowa State University, USA

Google, USA

National University of Singapore, Singapore

POSTECH, South Korea

Alliance Innovation Lab
(Nissan-Renault-Mitsubishi), USA

University of Twente, The Netherlands

Google, USA

University of Oxford, UK

University of Freiburg, Germany

AWS, USA

University Paris Saclay, ENS Paris-Saclay and

CNRS, France

Uppsala University, Sweden

Institute of Software, Chinese Academy of
Sciences, China

Microsoft Research, USA

VMware Research, USA

Kansas State University, USA

IMDEA Software Institute, Spain

Max Planck Institute for Software Systems,
Germany

Yale University, USA

ix

X Organization

Sebastian Junges
Sébastien Bardin
Serdar Tasiran
Sharon Shoham
Shaz Qadeer
Shuvendu Lahiri
Subhajit Roy
Suguman Bansal
Swarat Chaudhuri
Sylvie Putot
Thomas Wahl
Tomas Vojnar

Yakir Vizel
Yu-Fang Chen
Zhilin Wu

Radboud University, The Netherlands

CEA, LIST, Université Paris Saclay, France

Amazon, USA

Tel Aviv University, Israel

Meta, USA

Microsoft Research, USA

Indian Institute of Technology, Kanpur, India

Georgia Institute of Technology, USA

UT Austin, USA

Ecole Polytechnique, France

GrammaTech, USA

Brno University of Technology, FIT, Czech
Republic

Technion - Israel Institute of Technology, Israel

Academia Sinica, Taiwan

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of
Sciences, China

Artifact Evaluation Committee

Alejandro Herndndez-Cerezo

Alvin George
Aman Goel
Amit Samanta
Anan Kabaha
Andres Noetzli
Anna Becchi
Arnab Sharma
Avraham Raviv
Ayrat Khalimov
Baoluo Meng
Benjamin Jones
Bohua Zhan

Cayden Codel
Charles Babu M.
Chungha Sung

Clara Rodriguez-Niifiez

Cyrus Liu
Daniel Hausmann

Complutense University of Madrid, Spain

IISc Bangalore, India

Amazon Web Services, USA

University of Utah, USA

Technion, Israel

Cubist, Inc., USA

Fondazione Bruno Kessler, Italy

University of Oldenburg, Germany

Bar Ilan University, Israel

TU Clausthal, Germany

General Electric Research, USA

Amazon Web Services, USA

Institute of Software, Chinese Academy of
Sciences, China

Carnegie Mellon University, USA

CEA LIST, France

Amazon Web Services, USA

Universidad Complutense de Madrid, Spain

Stevens Institute of Technology, USA

University of Gothenburg, Sweden

Daniela Kaufmann
Debasmita Lohar
Deivid Vale

Denis Mazzucato
Dorde Zikeli¢

Ekanshdeep Gupta
Enrico Magnago
Ferhat Erata

Filip Cordoba
Filipe Arruda
Florian Dorfhuber
Florian Sextl
Francesco Parolini
Frédéric Recoules
Goktug Saatcioglu
Goran Piskachev
Grégoire Menguy
Guy Amir
Habeeb P.

Hadrien Renaud
Haoze Wu

Hari Krishnan
Hiinkar Tung

Idan Refaeli
Ignacio D. Lopez-Miguel
Ilina Stoilkovska
Ira Fesefeldt

Jahid Choton

Jie An

John Kolesar
Joseph Scott
Kevin Lotz

Kirby Linvill
Kush Grover
Levente Bajczi

Liangcheng Yu
Luke Geeson
Lutz Klinkenberg
Marek Chalupa

Organization

TU Wien, Austria

MPI SWS, Germany

Radboud University Nijmegen, Netherlands

Inria, France

Institute of Science and Technology Austria,
Austria

New York University, USA

Amazon Web Services, USA

Yale University, USA

Graz University of Technology, Austria

UFPE, Brazil

Technical University of Munich, Germany

TU Wien, Austria

Sorbonne University, France

CEA LIST, France

Cornell, USA

Amazon Web Services, USA

CEA LIST, France

Hebrew University of Jerusalem, Israel

Indian Institute of Science, Bangalore, India

UCL, UK

Stanford University, USA

University of Waterloo, Canada

Aarhus University, Denmark

Hebrew University of Jerusalem, Israel

TU Wien, Austria

Amazon Web Services, USA

RWTH Aachen University, Germany

Kansas State University, USA

National Institute of Informatics, Japan

Yale University, USA

University of Waterloo, Canada

Kiel University, Germany

CU Boulder, USA

Technical University of Munich, Germany

Budapest University of Technology and
Economics, Hungary

University of Pennsylvania, USA

UCL, UK

RWTH Aachen University, Germany

Institute of Science and Technology Austria,
Austria

Xi

xii Organization

Mario Bucev
Mario Pereira

Marius Mikucionis
Martin Jonas
Mathias Fleury

Matthias Hetzenberger
Maximilian Heisinger

Mertcan Temel
Michele Chiari
Miguel Isabel
Mihai Nicola

Mihaly Dobos-Kovics

Mikael Mayer
Mitja Kulczynski
Muhammad Mansur
Mugsit Azeem
Neelanjana Pal
Nicolas Koh

Niklas Metzger

Omkar Tuppe
Pablo Gordillo
Pankaj Kalita
Parisa Fathololumi
Pavel Hudec
Peixin Wang
Philippe Heim

Pritam Gharat
Priyanka Darke
Ranadeep Biswas
Robert Rubbens
Rubén Rubio
Samuel Judson
Samuel Pastva

Sankalp Gambhir
Sarbojit Das
Sascha Kliippelholz
Sean Kauffman

EPFL, Switzerland

NOVA LINCS—Nova School of Science and
Technology, Portugal

Aalborg University, Denmark

Masaryk University, Czech Republic

University of Freiburg, Germany

TU Wien, Austria

Johannes Kepler University Linz, Austria

Intel Corporation, USA

TU Wien, Austria

Universidad Complutense de Madrid, Spain

Stevens Institute of Technology, USA

Budapest University of Technology and
Economics, Hungary

Amazon Web Services, USA

Kiel University, Germany

Amazon Web Services, USA

Technical University of Munich, Germany

Vanderbilt University, USA

Princeton University, USA

CISPA Helmbholtz Center for Information
Security, Germany

IIT Bombay, India

Complutense University of Madrid, Spain

Indian Institute of Technology, Kanpur, India

Stevens Institute of Technology, USA

HKUST, Hong Kong, China

University of Oxford, UK

CISPA Helmholtz Center for Information
Security, Germany

Microsoft Research, India

TCS Research, India

Informal Systems, Canada

University of Twente, Netherlands

Universidad Complutense de Madrid, Spain

Yale University, USA

Institute of Science and Technology Austria,
Austria

EPFL, Switzerland

Uppsala University, Sweden

Technische Universitit Dresden, Germany

Aalborg University, Denmark

Shaowei Zhu
Shengjian Guo
Simmo Saan
Smruti Padhy
Stanly Samuel
Stefan Pranger
Stefan Zetzsche
Sumanth Prabhu
Sumit Lahiri
Sunbeom So
Syed M. Igbal
Tobias Meggendorfer

Tzu-Han Hsu
Verya Monjezi
Wei-Lun Tsai
William Schultz
Xiao Liang Yu
Yahui Song
Yasharth Bajpai
Ying Sheng
Yuriy Biktairov
Zafer Esen

Additional Reviewers

Azzopardi, Shaun
Baier, Daniel
Belardinelli, Francesco
Bergstraesser, Pascal
Boker, Udi

Ceska, Milan

Chien, Po-Chun
Coglio, Alessandro
Correas, Jesus

Doveri, Kyveli
Drachsler Cohen, Dana
Durand, Serge

Fried, Dror

Genaim, Samir

Ghosh, Bishwamittra
Gordillo, Pablo

Organization xiii

Princeton University, USA

Amazon Web Services, USA

University of Tartu, Estonia

University of Texas at Austin, USA

Indian Institute of Science, Bangalore, India

Graz University of Technology, Austria

Amazon Web Services, USA

TCS Research, India

Indian Institute of Technology, Kanpur, India

Korea University, South Korea

Amazon Web Services, USA

Institute of Science and Technology Austria,
Austria

Michigan State University, USA

University of Texas at El Paso, USA

Academia Sinica, Taiwan

Northeastern University, USA

National University of Singapore, Singapore

National University of Singapore, Singapore

Microsoft Research, USA

Stanford University, USA

University of Southern California, USA

Uppsala University, Sweden

Guillermo, Roman Diez
Goémez-Zamalloa, Miguel
Hernandez-Cerezo, Alejandro
Holik, Lukas

Isabel, Miguel

Ivrii, Alexander

Izza, Yacine

Jothimurugan, Kishor
Kaivola, Roope

Kaminski, Benjamin Lucien
Kettl, Matthias

Kretinsky, Jan

Lengal, Ondre;j

Losa, Giuliano

Luo, Ning

Malik, Viktor

Xiv Organization

Markgraf, Oliver
Martin-Martin, Enrique
Meller, Yael

Perez, Mateo

Petri, Gustavo

Pote, Yash

Preiner, Mathias
Rakamaric, Zvonimir
Rastogi, Aseem
Razavi, Niloofar
Rogalewicz, Adam
Sangnier, Arnaud
Sarkar, Uddalok
Schoepe, Daniel
Sergey, llya

Stoilkovska, Ilina
Stucki, Sandro
Tsai, Wei-Lun
Turrini, Andrea
Vafeiadis, Viktor
Valiron, Benoit
Wachowitz, Henrik
Wang, Chao
Wang, Yuepeng
Wies, Thomas
Yang, Jiong

Yen, Di-De

Zhu, Shufang
Zikeli¢, Porde
Zohar, Yoni

Contents — Part II1

Probabilistic Systems

A Flexible Toolchain for Symbolic Rabin Games under Fair and Stochastic
UNCEITAINTIES . . .t ettt ettt ettt 3
Rupak Majumdar, Kaushik Mallik, Mateusz Rychlicki,
Anne-Kathrin Schmuck, and Sadegh Soudjani

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 16
Yican Sun, Hongfei Fu, Krishnendu Chatterjee,
and Amir Kafshdar Goharshady

Compositional Probabilistic Model Checking with String Diagrams
Of MDD PS .o 40
Kazuki Watanabe, Clovis Eberhart, Kazuyuki Asada, and Ichiro Hasuo

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 62
Thom Badings, Sebastian Junges, Ahmadreza Marandi, Ufuk Topcu,

and Nils Jansen

MDPs as Distribution Transformers: Affine Invariant Synthesis for Safety

ODbJECHIVES oottt ettt e 86
S. Akshay, Krishnendu Chatterjee, Tobias Meggendorfer,
and Porde Zikeli¢

Search and Explore: Symbiotic Policy Synthesis in POMDPs 113

Roman Andriushchenko, Alexander Bork, Milan Ceska,
Sebastian Junges, Joost-Pieter Katoen, and Filip Macdk

Security and Quantum Systems

AUTOQ: An Automata-Based Quantum Circuit Verifier 139
Yu-Fang Chen, Kai-Min Chung, Ondrej Lengdl, Jyun-Ao Lin,
and Wei-Lun Tsai

Bounded Verification for Finite-Field-Blasting: In a Compiler for Zero
Knowledge Proofs i 154
Alex Ozdemir, Riad S. Wahby, Fraser Brown, and Clark Barrett

Xvi Contents — Part II1

Formally Verified EVM Block-Optimizationsoooouna... 176
Elvira Albert, Samir Genaim, Daniel Kirchner,
and Enrique Martin-Martin

SR-SFLL: Structurally Robust Stripped Functionality Logic Locking 190
Gourav Takhar and Subhajit Roy

Symbolic Quantum Simulation with Quasimodo 213
Meghana Sistla, Swarat Chaudhuri, and Thomas Reps

Verifying the Verifier: eBPF Range Analysis Verification 226

Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana,
and Santosh Nagarakatte

Software Verification

Automated Verification of Correctness for Masked Arithmetic Programs 255
Mingyang Liu, Fu Song, and Taolue Chen

Automatic Program Instrumentation for Automatic Verification 281
Jesper Amilon, Zafer Esen, Dilian Gurov, Christian Lidstrom,
and Philipp Riimmer

Boolean Abstractions for Realizability Modulo Theories 305

Andoni Rodriguez and César Sdnchez

Certified Verification for Algebraic Abstraction 329
Ming-Hsien Tsai, Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Bow-Yaw Wang,
and Bo-Yin Yang

Complete Multiparty Session Type Projection with Automata 350
Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey

Early Verification of Legal Compliance via Bounded Satisfiability Checking ... 374
Nick Feng, Lina Marsso, Mehrdad Sabetzadeh, and Marsha Chechik

Formula Normalizations in Verification, 398
Simon Guilloud, Mario Bucev, Dragana Milovancevié, and Viktor Kuncak

Kratos2: An SMT-Based Model Checker for Imperative Programs 423
Alberto Griggio and Martin Jonds

Making IP = PSPACE Practical: Efficient Interactive Protocols for BDD
ALZOTItNMS . oo e 437
Eszter Couillard, Philipp Czerner, Javier Esparza, and Rupak Majumdar

Ownership Guided C to Rust Translationcooiiiiiiinna...
Hanliang Zhang, Cristina David, Yijun Yu, and Meng Wang

R2U2 Version 3.0: Re-Imagining a Toolchain for Specification, Resource
Estimation, and Optimized Observer Generation for Runtime Verification
in Hardware and Software i
Chris Johannsen, Phillip Jones, Brian Kempa, Kristin Yvonne RoZier,
and Pei Zhang

Author Index e

Probabilistic Systems

®

Check for
updates

A Flexible Toolchain
for Symbolic Rabin Games
under Fair and Stochastic Uncertainties

Rupak Majumdar!, Kaushik Mallik?(®), Mateusz Rychlicki®,

CAV Anne-Kathrin Schmuck!, and Sadegh Soudjani* CAV
Eﬁ,’,{',fgt?(',n ! MPI-SWS, Kaiserslautern, Germany Eﬁt’gﬁ;n

* {rupak, akschmuck}@mpi-sws.org * ok Kk
2 ISTA, Klosterneuburg, Austria

kaushik.mallik@ist.ac.at
3 School of Computing, University of Leeds, Leeds, UK
scmkry@leeds.ac.uk
4 Newcastle University, Newcastle upon Tyne, UK
Sadegh.Soudjani@newcastle.ac.uk

Abstract. We present a flexible and efficient toolchain to symbolically
solve (standard) Rabin games, fair-adversarial Rabin games, and 2!/2-
player Rabin games. To our best knowledge, our tools are the first ones to
be able to solve these problems. Furthermore, using these flexible game
solvers as a back-end, we implemented a tool for computing correct-
by-construction controllers for stochastic dynamical systems under LTL
specifications. Our implementations use the recent theoretical result that
all of these games can be solved using the same symbolic fixpoint algo-
rithm but utilizing different, domain specific calculations of the involved
predecessor operators. The main feature of our toolchain is the utilization
of two programming abstractions: one to separate the symbolic fixpoint
computations from the predecessor calculations, and another one to allow
the integration of different BDD libraries as back-ends. In particular, we
employ a multi-threaded execution of the fixpoint algorithm by using the
multi-threaded BDD library Sylvan, which leads to enormous computa-
tional savings.

1 Introduction

Piterman and Pnueli [17] derived the currently best known symbolic algorithm
for solving two-player Rabin games over finite graphs with a theoretical com-
plexity of O(n*'k!) in time and space, where n is the number of states and k
is the number of pairs in the winning condition. This work did not provide an

Authors ordered alphabetically. R. Majumdar and A.-K. Schmuck are partially sup-
ported by DFG project 389792660 TRR 248-CPEC. A.-K. Schmuck is addition-
ally funded through DFG project (SCHM 3541/1-1). K. Mallik is supported by the
ERC project ERC-2020-AdG 101020093. M. Rychlicki is supported by the EPSRC
project EP/V00252X/1. S. Soudjani is supported by the following projects: EPSRC
EP/V043676/1, EIC 101070802, and ERC 101089047.

© The Author(s) 2023

C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 3-15, 2023.
https://doi.org/10.1007/978-3-031-37709-9_1

https://doi.org/10.5281/zenodo.7877791
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_1

4 R. Majumdar et al.

implementation. In a series of papers [3,4,15,16], Mallik et al. showed that this
symbolic algorithm can be extended to solve different automated design ques-
tions for reactive hardware, software, and cyber-physical systems under fair or
stochastic uncertainties. The main contribution of their work is to show that
these extensions only require a very mild syntactic change of the Piterman-
Pnueli fixed-point algorithm (with very little effect on its overall complexity) and
domain-specific realizations of two types of predecessor operators used therein.

Using this insight, we present a toolchain for the efficient symbolic solution
of different extensions of Rabin games. We have created three inter-connected
libraries for solving different parts of the problem from different levels of abstrac-
tion. The first library, called Genie, offers a set of virtual classes to implement
the fixpoint algorithm—abstractly, leaving open (i.e. virtual) the predecessor
computation. Alongside, we created two other libraries, called FairSyn and
Mascot-SDS, where FairSyn solves fair-adversarial [4] and 21/2-player Rabin
games 3], while Mascot-SDS solves abstraction-based control problems [15,16].
FairSyn and Mascot-SDS use the optimized fixpoint computation provided by
Genie, with domain specific implementations of the predecessor operations.

The flexibility of our toolchain comes from two different programming
abstractions in Genie. Firstly, Genie offers multiple high-level optimizations for
solving the Rabin fixpoint, such as parallel execution (requires a thread-safe
BDD library like Sylvan) and an acceleration technique [13], while abstract-
ing away from the low-level implementations of the predecessor functions. As a
result, any synthesis problem using the core Rabin fixpoint of Genie can use
the optimizations without spending any extra implementation effort. We used
these optimizations from FairSyn and Mascot-SDS, and achieved remarkable
computational savings. Secondly, Genie offers easy portability of codes from one
BDD library to another, which is important as different BDD libraries have dif-
ferent pros and cons, and the choice of the best library depends on the needs.
We empirically showed how switching between the two BDD libraries Sylvan
and CUDD impacts the performance of FairSyn and CUDD: overall, the Sylvan-
based experiments were significantly faster, whereas the CUDD-based experiments
consumed considerably lower amount of memory. Using the combined power of
multi-threaded BDD operations using Sylvan and the optimizations offered by
Genie, Mascot-SDS was between one and three orders of magnitude faster than
the state-of-the-art tool in our experiments.

Comparison with Existing Tools: We are not aware of any available tool to
directly solve (normal or stochastic) Rabin games symbolically. However, it is well-
known how to translate stochastic Rabin games into (standard) Rabin games [5],
and Rabin games into parity games, for which efficient solvers exist, e.g. oink [9].
Yet, efficient solutions of stochastic Rabin games via parity games are difficult to
obtain, because: (i) the translation from a stochastic Rabin game to a Rabin game
involves a quadratic blow-up, and the translation from a Rabin game to a parity
game results in an exponential blow-up in the size of the game, (ii) symbolic fix-
point computations become cumbersome very fast for parity games, as the number
of vertices and/or colors in the game graph increases, leading to high computa-
tion times in practice, and (iii) the only known algorithms capable of handling fair

A Flexible Toolchain for Symbolic Rabin Games under Fair 5

and stochastic uncertainties efficiently are all symbolic in nature, while most of
the efficient parity game solvers are non-symbolic. Additionally, unlike the Rabin
fixpoint, the nesting of the parity fixpoint does not enable parallel execution.

While it is well known that for normal parity games, computational tractabil-
ity can be achieved by different non-symbolic algorithms, such as Zielonka’s
algorithm [22], tangle learning [8] or strategy-improvement [19], implemented in
oink [9], it is currently unclear if and how these algorithms allow for the efficient
handling of fair or stochastic uncertainties. We are therefore unable to compare
our toolchain to the translational workflow via parity games in a fair manner.

In the area of temporal logic control of stochastic systems, Mascot-SDS has
two powerful features: (a) it can handle synthesis for the rich class of omega-
regular (infinite-horizon) specifications, and (b) it provides both over- and under-
approximations of the solution, thus enabling a quantitative refinement loop
for improving the precision of the approximation. The features of Mascot-SDS
is compared with other tools in the stochastic category of the recent ARCH
competition (see the report [1] for the list of participating tools). As concluded in
the report of the competition, other state-of-the-art tools in stochastic category
are either limited to a fragment of w-regular specifications or do not provide
any indication of the quality of the involved approximations. The only tool [10]
that supports w-regular specifications uses a different alternate non-symbolic
approach, against which Mascot-SDS fares significantly well in our experiments
(see Sect. 4.2). Even if we leave stochasticity aside, our tool implements a new and
orthogonal heuristic for multi-threaded computation of Rabin fixpoints, which
is not considered by other controller synthesis tools [11].

2 Theoretical Background

We briefly state the synthesis problems our toolchain is solving. We follow the
same (standard) notation for two-player game graphs, winning regions, strategies
and p-calculus formulas, as in [4].

2.1 Solving Rabin Games Symbolically

Given a game graph G = (V,Vp, V1, E), a Rabin game is specified using a set
of Rabin pairs R = {(Q1, R1,),...,(Qk, Rr)}, with Q;, R; C V for every i €
[1; k], and ¢ = \/ie[l;k](ODﬂRi A O0Q;) being the Rabin acceptance condition.
Piterman and Pnueli [17] showed that the winning region of a Rabin game can be
computed using the p-calculus expression given in (2), where the set transformers
Cpre : 2V — 2V and Apre : 2V x 2V — 2V are defined for every S,7 C V as:

Cpre(S) ={veVy | €8.(v,v)eE}
UfveWV |[YWeV.(wv)eE = v eS}, (la)
Apre(S,T) :==Cpre(T). (1b)

Fair-Adversarial Rabin Games. A Rabin game is called fair-adversarial
when there is an additional fairness assumption on a set of edges originating from

6 R. Majumdar et al.

The symbolic fixpoint algorithm for solving Rabin games with R =
{(Q1,R1),...,(Qx, Ri)} and K = [L; k]:

k
VYpo -t Xpg - U vYp, uXp, - U VYpo i Xpy- - U vYp, uXp, - |:U ij:| ,(2)
p1EK p2€K\{p1} prEK\{P1: - Pr_1} =0

where o
ij = (ﬂf:o RPi) n [(ij n OpT@(ij)) U (Apre(ij,ij))})

and the definitions of Cpre and Apre are problem specific.

Player 1 vertices in G. Let E* C EN(Vy xV) be a given set of edges, called the live
edges. Given E* and a Rabin winning condition o, we say that Player 0 wins the
fair-adversarial Rabin game from a vertex v if Player 0 wins the (normal) game

for the modified winning condition ¢ = (/\e:(v,v/)eEf (O0v = DOe)) =

. Based on the results of Banerjee et al. [4], fair-adversarial Rabin games can
be solved via (2), by defining for every S, T C V

Cpre(S) ={veVy| I e€S.(v,v)eE}
UfveV YW eV . (v)eFE = v €8S}, (3a)
Apre(S,T) == Cpre(T) U {v € Cpre(S)NVy | ' €T . (v,v') € E*}. (3b)

We see that (3) coincides with (1) if E* is empty.

21/>-Player Rabin Games. A 2!/2-player game is played on a game graph
(V, Vo, V1, V,., E), and the only difference from a 2-player game graph is the addi-
tional set of vertices V,. which are called the random vertices. The sets Vi, V5,

and V, partition V. Based on the results of [3] 21/2-Player rabin games can be
solved via (2) by defining for all S,T CV

Cpre(S) ={veVy | €S.(v,0)eE}
Ufv e UV, |W eV . (vd)eE=1v¢eS}, (4a)
Apre(S,T) == Cpre(T)U{v € Cpre(S)NV, | I €T . (v,0') € E}. (4b)

2.2 Computing Symbolic Controllers for Stochastic Dynamical
Systems

A discrete-time stochastic dynamical system S is represented using a tuple
(X, U,W, f), where X C R"™ is a continuous state space, U is a finite set of
control inputs, W C R” is a bounded set of disturbances, and f: X x U — X is
the nominal dynamics. If z¥ € X and u* € U are the state and control input of
S at some time k£ € N, then the state at the next time step is given by:

xk+1 —_ f(.%‘k,uk) + wk’ (5)

where w® is the disturbance at time k which is sampled from W using some
(possibly unknown) distribution. Without loss of generality we assume that W

A Flexible Toolchain for Symbolic Rabin Games under Fair 7

is centered around the origin which can be easily achieved by shifting f if needed.
A path of S originating at #° € X is an infinite sequence of states z%z! ... for a
given infinite sequence of control inputs u%u! ..., such that (5) is satlsﬁed.

Let ¢ be a given Rabin spemﬁcatlon—called the control objective—defined
using a finite set of predicates over X. For every controller C': X — U, the
domain of C, written Dom(C), is the set of states from where the property ¢
can be satisfied with probability 1. For a fixed ¢, a controller C is called optimal
if Dom(C‘) contains the domain of every other controller C'. The problem of com-
puting such an optimal controller for the system in (5) is in general undecidable.
Following [15], we compute an approximate solution instead.

This approximate solution is obtained by a discretization of the state space.
For this, we assume that the state space X is a closed and bounded subset
of the n-dimensional Euclidean space R™ for some n > 0, and use the nota-
tion [[a, b)) to denote the set [];c(,,lai,bi). Now, consider a grid-based dis-

cretization X of X, where X = {[a,b)) | a,b € R" = X}. One of the key ingre-
dients of our abstraction process is a function f providing hyper-rectangular
over-approximation of the one-step reachable set of the nominal dynamics f
of the system S: for every grid element 7 € X, we have f (x u) = [a', V) D
{z/€eX |3z €.z’ = f(x,u)}. The function f is known to be available for a
wide class of commonly used forms of the function f, and in our implementa-
tion we assumed that f is mixed-monotone and f is the so-called decomposition
function (see standard literature for details [7]).

__ Given the over-approximation of the nominal dynamics obtained through
f, we define, respectively, the over- and the under-approximation of the per-
turbed dynamics as G(Z,u) = W @ f(Z,u) and g(Z,u) = W © (—f(&,u)),
where @ and © respectively denote the Minkowski sum and the Minkowski dif-
ference. Next, we transfer g and g to the abstract state space X to obtain,
respectively, the over- and the under-approximation in terms of the abstract

transition function', i.e., h(Z,u) == {fE’ € X |g@u) N7 @} and h(Z,u) =
{’f’ eX| g(Z,u) Nz # Q]}. With h and h available, it was shown by Majumdar

et al. [16] that the over-approximation of the optimal controller can be solved by
using the fixpoint algorithm in (2), where the predecessor operators are defined

for every 5,7 C X as
Cpre(S) = {f €eX|uelU.h@u)C S} (6a)

Apre(S,T) = {556 X|3ueU. h@u) CSALEu)NT # (Z)}. (6b)

3 Implementation Details
We develop three interconnected tools, Genie, FairSyn, and Mascot-SDS, which
work in close harmony to implement efficient solvers for the solution of (2) with

! Here we assume that f(i’\, u) C X; otherwise we need to take some extra steps.
Details can be found in the work by Majumdar et al. [16].

8 R. Majumdar et al.

CUDD [20] Sylvan [21]

| Genie |

k2
CuddUBDD SylvanUBDD
BaseUBDD
BaseFixpoint (Virtual BDD class)

Virtual fixpoint class —
T T 1 1
Tl --o-o----ooo: $oim------------------ !
—————————————— e
T T--F----------- 7 , 1 1
1 | s 1 1
¥ Y Y Y Y Y
Fixpoint Fixpoint
Arena Cpre and Apre SymbolicSet SymbolicModel Cpre and Apre
defined as in (3) defined as in (6)
FairSyn Mascot-SDS

Fig. 1. A schematic diagram of interaction among the three tools. Each block represents
one class in the respective tool, and an arrow from class A to class B denotes that B
depends on A. The dependency within each tool is shown using solid arrows, while the
dependencies of Mascot-SDS and FairSyn on Genie is shown using dashed arrows.

pre-operators defined via (3), (4) and (6), respectively. The tools use binary
decision diagrams (BDD) to symbolically manipulate sets of vertices/states of
the underlying system, and to manage the BDDs, we offer the flexibility to
choose between two of the well-known existing BDD libraries, namely CUDD
[20] and Sylvan [21]. The two libraries have their own merits: while CUDD
has significantly lower memory footprint, Sylvan offers superior computation
speed through multi-threaded BDD operations. Thus, the optimal choice of the
library depends on the size of the problem, the computational time limit, and
the memory budget, and through our implementation it is possible to choose
one or the other by, in some cases, changing only a single line of code and, in
the other cases, changing the value of just one flag. Moreover, we expect that
integrating other BDD libraries having the same basic BDD operations in our
tools will be easy and seamless—thanks to the programming abstraction offered
by Genie. Such extensions will possibly bring more diverse set of computational
strengths for solving the fundamental synthesis problems that we address.

The tools are primarily written using C++, with some small python scripts
implementing parts of visualizations of outputs. The main classes of the three
tools and their interactions are depicted in Fig. 1. We briefly describe the core
functionalities of the tools in the following.

3.1 Genie

Genie implements the fixpoint algorithm (2) in the class BaseFixpoint through
two layers of abstraction. One abstraction is through the virtual definitions of
the Cpre and Apre operators, whose concrete implementations are provided in
the front-end synthesis tools (in our case FairSyn and Mascot-SDS). Using this
abstraction, we implemented two different optimizations for the efficient itera-
tive computation of the Rabin fixpoint in (2)—independently from the actual
implementations of the Apre and Cpre operators. The first optimization is a

A Flexible Toolchain for Symbolic Rabin Games under Fair 9

multi-threaded computation of the Rabin fixpoint, exploiting the fixpoint’s inher-
ent parallel structure due to the independence among different sequences of
(p1,p2,...) used to compute U?:o Cp;- The second optimization is an acceler-
ated computation of the Rabin fixpoint, achieved through bookkeeping of inter-
mediate values of the BDD variables. The core of the acceleration procedure for
general p-calculus fixpoints was proposed by Long et al. [13], and the details
specific to the fixpoint in (2) can be found in the paper by Banerjee et al. [4].

The other abstraction in Genie is the set of virtually defined low-level BDD
operations in the auxiliary class BaseUBDD, which enable us to easily switch
between different off-the-shelf BDD libraries. The virtual BDD operations in
BaseUBDD are concretely realized in the classes CuddUBDD and SylvanUBDD,
which work as interfaces between, respectively, the CUDD and the Sylvan BDD
libraries. Support for additional BDD libraries can be easily built by creating
new interface classes. More details on the functionalities of Genie can be found
in the longer version of this paper [14].

3.2 FairSyn

The core of FairSyn is written as a header-only library, which offers the infras-
tructure to solve (2) with pre-operators defined via (3) and (4). The main
component of FairSyn is the class Fixpoint, which derives from the class
BaseFixpoint from Genie, and implements the concrete definitions of Cpre
and Apre in (3) and (4).

How to Use: For computing the winning region and the winning strategy in a
fair-adversarial Rabin game (resp. a 21/2-player Rabin game) using FairSyn, one
needs to write a program to create the game as a Fixpoint object. One possible
way of constructing a Fixpoint object is through a synchronous product of a
game graph (an object of class Arena) and a specification Rabin automaton (an
object of class RabinAutomaton) with an input alphabet of sets of nodes of the
Arena object. Following is a snippet:

// typedef Genie::CuddUBDD UBDD; // use this for CUDD
typedef Genie::SylvanUBDD UBDD; // use this for Sylvan
UBDD base;

Arena<UBDD> A(base, vars, nodes, sys_nodes, env_nodes, edges,
live_edges); // the game graph

RabinAutomaton<UBDD> R(base, vars, inp_alphabet, filename); // the
specification automaton

Fixpoint<UBDD> Fp(base, "under", A, R); // the synchronous product

// UBDD strategy = Fp.Rabin(true, 20, Fp.nodes_, 0); // sequential
fixpoint solver

UBDD strategy = Fp.Rabin(true, 20, Fp.nodes_, O,
Genie::ParallelRabinRecurse); // parallel fixpoint solver

10 R. Majumdar et al.

where vars is a (possibly initially empty) set of integers which will contain the set
of newly created BDD variables, nodes, sys_nodes, and env_nodes are, respec-
tively, vectors of indices of various types of vertices, edges and live_edges
are, respectively, vectors of the respective types of edges, inp_alphabet is a
std: :map object that maps input symbols of the Rabin automaton to the respec-
tive BDDs representing sets of nodes in the Arena, and filename is the name
of the file in which the Rabin automaton is stored (using the standard HOA
format [2]). The game is solved by calling Fp.Rabin, a member function of the
Genie: :BaseFixpoint class (see Sect. 3.1).

3.3 Mascot-SDS

The core of Mascot-SDS is also written as a header-only library. It is built on
top of the well-known tool called SCOTS [18], with several classes of Mascot-SDS
still retaining their original identities from SCOTS, owing to the close similarity of
the basic uniform grid-based abstraction used in both tools. The main difference
between the two tools is that Mascot-SDS synthesizes controllers for stochastic
systems, while SCOTS synthesizes controllers for only non-stochastic systems.
The two main classes of Mascot-SDS are called SymbolicSet and
SymbolicModel, which respectively model the abstract spaces obtained through
uniform grid-based discretizations (like X in Sect.2.2) and the abstract transi-
tion relations (h and h in Sect.2.2). The abstract transition relations are com-
puted using an auxiliary class called SymbolicModelMonotonic (not shown in
Fig. 1). Notice that we offer the flexibility to use both CUDD and Sylvan while
creating objects from SymbolicSet and SymbolicModel. A Fixpoint object is
a child of the class BaseFixpoint from Genie, which is created by taking a
synchronous product between a SymbolicModel object and a RabinAutomaton
object specifying the control objective given as user input. The class Fixpoint
implements the concrete definitions of the Cpre and Apre operator according
to (6).
How to Use: For ease of use, we have written a pair of tools called Synthesize
and Simulate using the library of Mascot-SDS. Synthesize synthesizes con-
trollers for stochastic dynamical systems whose nominal dynamics is mixed-
monotone, and Simulate visualizes simulated closed-loop trajectories using the
synthesized controller. The inputs to Synthesize include the dynamic model of
the system and the control objective; the latter can be specified either in LTL or
using a Rabin automaton. To use Synthesize, simply use the following syntax:

<path-to-Synthesize binary>/Synthesize <path-to-input-file>/<input.cfg>
<sylvan/cudd flag>

where the <input.cfg> is an input configuration file containing all the inputs,
and the <sylvan/cudd flag> is either 1 or 0 depending on whether the parallel
version using Sylvan is to be run or the sequential version using CUDD.

Some of the main ingredients in the input.cfg file are: (a) the descrip-
tion of the dynamical system’s variable spaces (like state space, input space,

A Flexible Toolchain for Symbolic Rabin Games under Fair 11

etc.) including their discretization parameters, (b) the file where the decompo-
sition function of the nominal dynamics of the system is stored, (c) the abso-
lute value of maximum disturbance, and (d) the specification either as an LTL
formula or as the filename where a Rabin automaton is stored (in HOA for-
mat [2]). The decomposition function is required to be given as a C-compatible
header file so that Synthesize can link to (use) this function at runtime (see
the mascot-sds/examples/ directory for examples). When the specification is
given as a Rabin automaton (over a labeling alphabet of the system states), the
automaton needs to be stored in a file in the HOA format. Alternatively, an LTL
specification can be given, along with a mapping between the atomic predicates
and the states of the system. In that case Synthesize uses Owl [12] to convert
the LTL specification to a Rabin automaton.

The output of Synthesize is a folder called data that contains pieces of the
controller encoded in BDDs and stored in binary files as well as various metadata
information stored in text files. These files can be processed by Simulate to
visualize simulated closed-loop trajectories of the system. The usage of Simulate
is similar to Synthesize:

<path-to-Simulate binary>/Simulate <path-to-input-file>/<input.cfg>
<sylvan/cudd flag>

where the input.cfg file should, in this case, contain information that are
required to simulate the closed-loop, like simulation time steps, the python script
that will plot the state space predicates (see the examples), etc.

4 Examples

We present experimental results, showcasing practical usability of our tools and
comparing performances with the state of the art. All the experiments were run
on a computer with Intel Xeon E7-8857 v2 48 core processor and 1.5 TB RAM.

4.1 Synthesizing Code-Aware Resource Mangers Using FairSyn

We consider a case study introduced by Chatterjee et al. [6]. In this exam-
ple, there are two bounded FIFO queues, namely the broadcast and output
queues, which interact among each other and transmit and receive data packets
through a common network. The two queues are implemented using separate
threads running on a single CPU. For this multi-threaded program, we con-
sider the problem of synthesizing a code-aware resource manager, whose task is
to grant different threads accesses to different shared synchronization resources
(mutexes and counting semaphores). The specification is deadlock freedom across
all threads at all time while assuming a fair scheduler (scheduling every thread
always eventually) and fair progress in every thread (i.e., taking every existing
execution branch always eventually). The resource-manager is code-aware, and
has knowledge about the require and release characteristics of all threads for
different resources. This enables us to avoid deadlocks more effectively than the

12 R. Majumdar et al.

case when the resource-manager does not have access to the code. Chatterjee
et al. [6] showed that the synthesis problem (of the resource manager) can be
reduced to the problem of computing the winning strategy in a 21! /2-player game,
which we solved using FairSyn.

Table 1 compares the computational resources for the CUDD and Sylvan-based
implementations of FairSyn; more details can be found in our earlier work [4].
It can be observed that the Sylvan-based implementation is significantly faster,
although it consumes much more memory.

Table 1. Performance of FairSyn; code-aware resource management benchmark.

Broadcast | Number | Computation Time | Peak Memory Usage
and Output | of BDD | (seconds)
Queue variables
Capacities

CUDD Sylvan CUDD Sylvan
(1, 1) 25 255.33 | 11.40 292 MiB | 671 MiB
(2, 1) 27 957.99 | 29.20 310 MiB | 681 MiB
(3, 1) 27 903.01| 31.13 310 MiB | 973 MiB
(1, 2) 27 1308.09 | 39.57 315 MiB | 682 MiB
(1, 3) 27 1249.37| 41.76 309 MiB | 681 MiB
(2, 2) 29 5127.93 | 111.62 342 MiB | 685 MiB
(3, 2) 29 5104.20 | 114.30 339 MiB | 975 MiB
(2, 3) 29 5644.09 | 118.12 341 MiB | 975 MiB
(3, 3) 29 6156.57 | 137.56 339 MiB | 975 MiB

4.2 Synthesizing Controllers for Stochastic Dynamical Systems
Using Mascot-SDS

We use Mascot-SDS to synthesize controllers for two different applications.

A Bistable Switch. First, we compare our tool’s performance against the state-
of-the-art tool called StochasticSynthesis (abbr. SS) [10] on a benchmark example
that was proposed by the authors of SS. In this example, there is a 2-dimensional
nonlinear bistable switch that is perturbed with bounded stochastic noise. There
are two synthesis problems with two different control objectives: one, a safety
objective, and, two, a Rabin objective with two Rabin pairs. The model of the
system and the control objectives can be found in the original paper [10].

The tool SS uses graph theoretic techniques to solve the controller synthesis
problem, which is an alternative approach that is substantially different from our
symbolic fixpoint based technique. In Table 2, we summarize the performance of
Mascot-SDS powered by CUDD and Sylvan, alongside the performance of SS. Both

A Flexible Toolchain for Symbolic Rabin Games under Fair 13

Table 2. Performance comparison between Mascot-SDS and StochasticSynthesis (abbre-
viated as SS) [10] on the bistable switch. Col. 1 shows the specifications and the respec-
tive numbers of Rabin pairs, Col. 2 shows the approximation error ranges (smaller error
means more intense computation), Col. 3, 4, and 5 Col. 6, 7, and 8 compare the peak
memory footprint (as measured using the “time” command) for Mascot-SDS with CUDD,
Mascot-SDS with Sylvan, and SS respectively. “TO” stands for timeout (5h of cutoff
time).

Spec. upper bound on approx. error | Total running time Peak memory footprint
Mascot-SDS SS [10] Mascot-SDS SS [10]
CUDD Sylvan CUDD Sylvan
¢1 (1 Rabin pair) | 20%-30% 11s <2s 27s 351 MiB | 79 MiB | 223 MiB
10%—-20% 9s 2s 43s 351 MiB | 105 MiB | 290 MiB
5%—10% 14s 4s 1h49 min | 405 MiB | 251 MiB | 25 GiB
0%-5% 48s 10s TO 553 MiB | 759 MiB | TO
(2 (2 Rabin pairs) | 20%-30% 21s <2s 21s 324 MiB | 40MiB | 202 MiB
10%-20% 26s 2s 25s 371 MiB | 80 MiB | 203 MiB
5%-10% 37s 4s 1min 17s | 436 MiB | 242 MiB | 490 MiB
0%-5% 2min24s|13s TO 573MiB | 761 MiB | TO

Table 3. Performance of Mascot-SDS with CUDD
and Sylvan for the table-serving robot experi-
ment.

CUDD Sylvan
Comp. time 1h3min | 2min55s Fig.2. Closed-loop trajecto-
Peak memory | 673 MiB | 1.1 GiB ries for 100 time steps with

kitchen (green), table (blue), and
obstacle (black). (Color figure
online)

Mascot-SDS and SS compute controllers whose domains under-approximate the
optimal controller domains. The second column of Table 2 shows a measure of
the approximation error. For every comparable approximation error bound, both
versions of Mascot-SDS significantly outperformed SS, both time and memory-
wise. In fact, Mascot-SDS with Sylvan was at least an order of magnitude faster
in all instances. This is particularly astonishing, since SS uses a sophisticated
lazy abstraction refinement technique, whereas Mascot-SDS uses a plain uni-
form abstraction which is typically computationally expensive. This shows the
immense potential of our toolchain; we plan to extend Mascot-SDS with lazy
gridding, an orthogonal optimization, in a future release to make further com-
putational savings. For Mascot-SDS itself, as expected, Sylvan was significantly
faster than CUDD. On the other hand, though Sylvan used less memory than
CUDD in the simpler setups (the ones with more error), the memory requirement
of Sylvan quickly grew and surpassed that of CUDD for the more complicated
setup.

14 R. Majumdar et al.

Table-Serving Robot. We consider the controller synthesis problem for a
table-serving robot that needs to satisfy the following specification: OO kitchen A
O-obtsacle AN(OOrequest — OO table), where table, kitchen, obstacle, and request
are predicates over the state space. The robot itself is modeled as the discrete-
time abstraction of the standard 3-dimensional Dubins vehicle [15] with an addi-
tional (i.e., 4th) dimension that records if a request, which is controlled by the
environment, is pending. In Table 3, we summarize the computational resources,
and, in Fig. 2, we show a simulated closed-loop trajectory that was plotted using
our tool Simulate. We observe that Sylvan was much faster, but CUDD consumed
much less memory.

References

1. Abate, A., et al.: ARCH-COMP21 category report: stochastic models. In: 8th Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems, pp.
55-89 (2021)

2. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Pasareanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479-486. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 31

3. Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.-K., Soudjani, S.: A direct
symbolic algorithm for solving stochastic Rabin games. In: TACAS 2022. LNCS,
vol. 13244, pp. 81-98. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99527-0 5

4. Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Fast symbolic
algorithms for omega-regular games under strong transition fairness. TheoretiCS
(to appear) (2023). arXiv preprint arXiv:2202.07480

5. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The complexity of stochastic Rabin
and Streett games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 878-890. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 71

6. Chatterjee, K., De Alfaro, L., Faella, M., Majumdar, R., Raman, V.: Code aware
resource management. Formal Methods Syst. Des. 42(2), 146-174 (2013)

7. Coogan, S., Arcak, M.: Efficient finite abstraction of mixed monotone systems. In:
Proceedings of the 18th International Conference on Hybrid Systems: Computation
and Control, pp. 58-67 (2015)

8. Dijk, T.: Attracting tangles to solve parity games. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 198-215. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2 14

9. Dijk, T.: Oink: an implementation and evaluation of modern parity game solvers.
In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 291-308.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 16

10. Dutreix, M., Huh, J., Coogan, S.: Abstraction-based synthesis for stochastic sys-
tems with omega-regular objectives. Nonlinear Anal. Hybrid Syst 45, 101204
(2022)

11. Geretti, L., et al.: ARCH-COMP20 category report: continuous and hybrid systems
with nonlinear dynamics. In: Proceedings of the 7th International Workshop on
Applied Verification of Continuous and Hybrid Systems, pp. 49-75 (2020)

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-030-99527-0_5
https://doi.org/10.1007/978-3-030-99527-0_5
http://arxiv.org/abs/2202.07480
https://doi.org/10.1007/11523468_71
https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/978-3-319-89960-2_16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A Flexible Toolchain for Symbolic Rabin Games under Fair 15

Kietinsky, J., Meggendorfer, T., Sickert, S.: Owl: a library for w-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
543-550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 34
Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved algo-
rithm for the evaluation of fixpoint expressions. In: Dill, D.L. (ed.) CAV 1994.
LNCS, vol. 818, pp. 338-350. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58179-0_ 66

Majumdar, R., Mallik, K., Rychlicki, M., Schmuck, A.K., Soudjani, S.: A flexible
toolchain for symbolic Rabin games under fair and stochastic uncertainties (2023).
https://kmallik.github.io/assets/pdf/cav23-toolpaper.pdf

Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Symbolic qualitative con-
trol for stochastic systems via finite parity games. IFAC-PapersOnLine 54(5), 127—
132 (2021)

Majumdar, R., Mallik, K., Soudjani, S.: Symbolic controller synthesis for biichi
specifications on stochastic systems. In: Proceedings of the 23rd International Con-
ference on Hybrid Systems: Computation and Control, pp. 1-11 (2020)

Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: 21st
Annual IEEE Symposium on Logic in Computer Science (LICS’06), pp. 275-284.
IEEE (2006)

Rungger, M., Zamani, M.: Scots: a tool for the synthesis of symbolic controllers. In:
Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control, pp. 99-104 (2016)

Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369-384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87531-
4 27

Somenzi, F.: Cudd: CU decision diagram package release 3.0.0 (2015). https://
github.com /ivmai/cudd

van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677-691. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 60

Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1), 135-183 (1998). https://
doi.org/10.1016/S0304-3975(98)00009-7, https://www.sciencedirect.com/science/
article/pii/S0304397598000097

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/3-540-58179-0_66
https://doi.org/10.1007/3-540-58179-0_66
https://kmallik.github.io/assets/pdf/cav23-toolpaper.pdf
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-540-87531-4_27
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
https://doi.org/10.1007/978-3-662-46681-0_60
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
https://www.sciencedirect.com/science/article/pii/S0304397598000097
https://www.sciencedirect.com/science/article/pii/S0304397598000097
http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Automated Tail Bound Analysis
for Probabilistic Recurrence Relations

Yican Sun®, Hongfei Fu?(®) | Krishnendu Chatterjee?,
and Amir Kafshdar Goharshady*

! School of Computer Science, Peking University, Beijing, China
sycpku@pku.edu.cn
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China
fuhf@cs.sjtu.edu.cn
3 Institute of Science and Technology, Klosterneuburg, Austria
krishnendu.chatterjee@ist.ac.at
4 Department of Computer Science and Engineering, Hong Kong University of
Science and Technology, Hong Kong, Hong Kong SAR, China
goharshady@cse.ust.hk

Abstract. Probabilistic recurrence relations (PRRs) are a standard for-
malism for describing the runtime of a randomized algorithm. Given a
PRR and a time limit &, we consider the tail probability Pr[T" > k], i.e.,
the probability that the randomized runtime 7" of the PRR exceeds x.
Our focus is the formal analysis of tail bounds that aims at finding a
tight asymptotic upper bound u > Pr[T" > k]. To address this problem,
the classical and most well-known approach is the cookbook method by
Karp (JACM 1994), while other approaches are mostly limited to deriv-
ing tail bounds of specific PRRs via involved custom analysis.

In this work, we propose a novel approach for deriving the com-
mon exponentially-decreasing tail bounds for PRRs whose preprocess-
ing time and random passed sizes observe discrete or (piecewise) uni-
form distribution and whose recursive call is either a single procedure
call or a divide-and-conquer. We first establish a theoretical approach
via Markov’s inequality, and then instantiate the theoretical approach
with a template-based algorithmic approach via a refined treatment of
exponentiation. Experimental evaluation shows that our algorithmic app-
roach is capable of deriving tail bounds that are (i) asymptotically tighter
than Karp’s method, (ii) match the best-known manually-derived asymp-
totic tail bound for QuickSelect, and (iii) is only slightly worse (with a
loglogn factor) than the manually-proven optimal asymptotic tail bound
for QuickSort. Moreover, our algorithmic approach handles all examples
(including realistic PRRs such as QuickSort, QuickSelect, DiameterCom-
putation, etc.) in less than 0.1s, showing that our approach is efficient
in practice.

Due to different academic norms, authors in Mainland China are ordered by contribu-
tion, whereas authors in Austria and Hong Kong SAR are ordered alphabetically. The
code and benchmarks are available at https://github.com/boyvolcano/PRR.

© The Author(s) 2023

C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 16-39, 2023.
https://doi.org/10.1007/978-3-031-37709-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_2&domain=pdf
https://github.com/boyvolcano/PRR
https://doi.org/10.1007/978-3-031-37709-9_2

Automated Tail Bound Analysis for Probabilistic Recurrence Relations 17

1 Introduction

Probabilistic program verification is a fundamental area in formal verification [3].
It extends the classical (non-probabilistic) program verification by considering
randomized computation in a program and hence can be applied to the formal
analysis of probabilistic computations such as probabilistic models [14], ran-
domized algorithms [2,9,28,30], etc. In this line of research, verifying the time
complexity of probabilistic recurrence relations (PRRs) is an important sub-
ject [9,30]. PRRs are a simplified form of recursive probabilistic programs and
extend recurrence relations by incorporating randomization such as randomized
preprocessing and divide-and-conquer. They are widely used in analyzing the
time complexity of randomized algorithms (e.g., QuickSort [16], QuickSelect [17],
an