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FOREWORD 

Human neurodegenerative diseases rank amongst the most pressing subjects of modern 

Biomedical Science. Despite years of abundant investment, and a large body of 

knowledge generated by many top laboratories worldwide, little advance has been made 

towards the cure of diseases such as, for example, Alzheimer’s, Parkinson’s or ALS. 

Experienced investigators have now battled for decades to find new leads to 
effective treatments. Legions of young students have joined their teams. Over the 
years, the latter have started independent work, building upon both existing 
knowledge as well as their unbiased views of both the pathogenesis and possible 
new therapeutic targets. 

In his delightful book Advice to a young scientist, Sir Peter Medawar pointed out 
that ‘The old-fashioned remedy for hubris was a smart blow on the head with an 
inflated pig's bladder — and this is in the spirit of the rebuke that may have to be 
administered before the young scientist injures himself in the opinions of those 
who would otherwise like him and wish him well’. Such warning notwithstanding, 
it is equally wise to listen to what young scientists have to say. Not only many of 
them are perfectly aware of their standings, but also free of the partisanship we, 
scientists, tend to accumulate as our careers progress. 

The seventeen young scientists who wrote this book got their Ph.D. degreees less than 
twenty, and eleven of them less than ten years ago. They are building their careers 
upon significant contributions to the literature on neurodegeneration. Both through my 
own personal collaboration with some of them, as well as by reading their chapters, I 
believe they should be exempt from the Medawar remedy. It is worth looking into 
their personal perspectives on subjects that range from basic cellular and molecular 
mechanisms to novel therapeutic targets and strategies to cope with neurodegenerative 
disease. Both young and old scientists have much to gain. 

Rafael Linden, M.D., Ph.D. 
Laboratory of Neurogenesis 

Institute of Biophysics 
Federal University of Rio de Janeiro 

Brazil 
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PREFACE 

Human neurodegenerative disorders produce devastating symptoms that enormously 
affect both patients and their relatives. The disease pathologies share specific features, 
such as late onset, accumulation of misfolded proteins that form aggregates in the 
brain and progressive degeneration of specific neuronal populations. Patients may 
suffer from behavioral and physical disorders, as well as severe cognitive impairments. 
The incidence of neurodegenerative diseases has dramatically increased with the aging 
of the population and although neurodegenerative diseases represent a major threat for 
public health, few effective treatments are currently available.  

In order to discover drugs to prevent and treat neurodegenerative diseases, it is 
imperative to decipher the genetic and molecular mechanisms that underlie the onset 
and development of these disorders. Despite many years of research, scientists have 
not yet succeeded in understanding the precise mechanisms that lead to 
neurodegeneration. A number of important questions remain to be answered: how do 
disease-associated proteins cause neuronal dysfunction and death; what underlies 
cell type-specific degeneration; are these diseases age-dependent; are these gender-
specific; are there common pathogenic mechanisms that underlie different 
neurodegenerative disorders; and how can these diseases be prevented and treated? 

In this book we will review the most recent findings on scientific research that 
explored mechanisms and pathways for the diseases. We further explore how the 
current knowledge is being applied to improve the life of neurodegenerative disease 
patients.  

Glaucia Noeli Maroso Hajj Carolina Rezával 

International Research Center Department of Physiology 
AC Camargo Cancer Center Anatomy and Genetics 
National Institute for Translational University of Oxford 
Neuroscience and National UK 
Institute of Oncogenomics (CNPq/MCT/FAPESP)  
São Paulo  
Brazil  
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CHAPTER 1 

The Role of Molecular and Cellular Biology in Neurodegenerative 
Diseases – Learning from Cancer Therapies 

Kil Sun Lee* 

Department of Biochemistry, Federal University of São Paulo, Brazil 

Abstract: Increasing knowledge in molecular and cellular biology along with improved 
imaging technology and surgical instruments has resulted in huge advances in cancer 
therapy. The understanding of several cellular signaling pathways has laid the solid 
foundation for the development of targeted chemotherapy, which in turn, has played critical 
roles in increasing the survival rates of many types of cancer during the last decade. As a 
consequence, molecular diagnostic tests have emerged as an important step in order to plan 
the most appropriate treatment strategies for each case. In this chapter, we will describe 
classical examples of targeted cancer therapies and illustrate how similar approaches could 
benefit the treatment of yet incurable neurodegenerative diseases. 

Keywords: DNA, genome, mutations, polymorphism, risk factors, biomarker, 
targeted therapy, drug discovery, prevention, early intervention, cancer, 
personalized medicine, molecular diagnosis, molecular and cellular biology, 
neurodegenerative diseases, amyloid precursor protein, α-synuclein, 
apolipoprotein E, Aβ-peptide clearance, Alzheimer´s disease, Parkinson´s disease. 

1.1. PERSONALIZED MEDICINE 

From the simple transportation of oxygen molecules to profound chemical 
modifications of macronutrients, every chemical and biological process that 
occurs in our body requires highly coordinated activities of many molecules. 
Unusual modifications of these molecules, whether derived from genetic factors 
or not, can lead to detrimental effects on health. 

The majority of biologically active molecules are endogenously synthesized 
according to the genetic information contained in the deoxyribonucleic acid 
(DNA), a linear polymer composed of 4 types of nucleotide: deoxyadenosine (A), 

*Corresponding author Kil Sun Lee: Department of Biochemistry, Federal University of São Paulo, Brazil;
Tel: 55-11-5576-4438 ext 1958; E-mail: kslee@unifesp.br

© 2015 The Author(s). Published by Bentham Science Publishers
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deoxyguanosine (G), deoxytimidine (T) and deoxycitidine (C). These nucleotides 
essentially differ by their nitrogenous bases, which are often used as a unit of 
measurement to indicate the size of DNA fragments. 

The whole human genome contains approximately 3 billion base pairs [1]. Within 
the genome, each DNA segment that contains a fundamental sequence of 
nucleotides to codify a biologically functional product is called a gene. In most 
cases, these products are proteins, but other molecules, such as RNA (ribonucleic 
acid), can also be a final product of a gene. Most parts of the human genome are 
noncoding sequences with unclear functions, and all known human genes 
(roughly 30,000) are comprised of only 1% of the genome [2, 3]. 

Although there is a huge range of phenotypic diversity between human beings, 
99.9% of the genome of one person is identical to the genome of another [1]. This 
means that all human genetic diversity is comprised only in 0.1% of the genome. 
Most commonly described genetic variations consist of differences in a single 
nucleotide sequence and copy number variations of a particular DNA segment 
resulting in chromosomal structural changes [4-6]. By definition, a difference that 
occurs in more than 1% of any particular population is denominated as a 
polymorphism, while rarer alterations are considered mutations. 

To date, more than 3 million single nucleotide polymorphisms (SNPs) have been 
genotyped [5, 7, 8]. Most of them are localized in noncoding sequence and do not 
influence any known phenotype. However, certain SNPs can alter the amino acid 
sequence of a protein or affect gene expression control, contributing to phenotypic 
variability in many aspects, such as metabolism, susceptibility to diseases and 
response to treatments [9, 10]. 

In addition to SNPs, deletion, insertion, translocation and inversion of DNA 
fragments can occur during DNA replication and recombination. These types of 
alterations generate different copy numbers of particular segments in the genome 
of each individual, which are denominated as copy number variants (CNV) or 
copy number polymorphisms (CNP) [5, 6]. Although the number of CNVs 
identified is much smaller than the number of SNPs, the former encompasses a 
larger content of human genome because each CNV evolves from a few kilobases 
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to mega bases [6, 11, 12]. Unlike SNPs, many CNVs are located within or in 
flaking segments of functional sequences, suggesting that CNVs have a more 
significant contribution to the phenotypic variation [13]. 

Since the complete sequencing of the human genome, extraordinary efforts and 
resources have been invested to unveil information contained in the genome and 
to understand the genetic component of illnesses. However, the cause and cure of 
many diseases are still obscure. The main difficulty is that many diseases 
originate from multiple causes, including both genetic and environmental factors. 
This means that patients diagnosed with the same disease do not necessarily have 
the same set of causes and general pathological aspects of diseases may not 
explain the individual differences in the onset of symptoms, progression of the 
diseases and treatment outcomes. Several milestone studies have helped define 
molecular pathways of many diseases, showing that indeed, completely unrelated 
alterations can result in a similar illness. A prime example of this aspect is 
discussed in Chapter 13, showing that the peripheral neuropathy called Charcot-
Marie-Tooth disease may be caused from mutations in more than 50 different 
genes. However, the phenotypic alterations in the patients are so similar that all 
the conditions are diagnostically grouped as one illness. 

These additional molecular aspects of diseases can help to more precisely 
diagnose and stratify the diseases into several subgroups until each individual case 
is treated as a unique case: this is the main idea of personalized medicine. 
Personalized medicine is clinical practice based on a unique set of clinical, genetic 
and environmental information of an individual [14]. This type of disease 
management will help plan the most appropriate treatment for each case, and 
because the medical decisions will be made based on precise individual 
information, the patients are less likely to experience negative side effects and 
have a higher probability of the desired outcomes. 

Other important concepts of personalized medicine are prevention and early 
intervention of diseases. Many diseases occur due to multiple causes, and each 
one alone may not be sufficient to develop the disease. However, a person who 
carries a feature associated to a specific disease has a higher risk or susceptibility 
to develop that disease. Thus, this person could be advised to avoid additional risk 
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factors or to take preemptive measures. Also, regular monitoring of health 
conditions can allow for the early identification of diseases and more time for 
intervention, which will always result in a better outcome and minimize 
detrimental effects of diseases. 

Any genes or molecules that can specifically indicate the state of health conditions 
are denominated biomarkers. Biomarkers can help predict risks for disease, 
diagnoses, plan treatment strategies and monitor treatment responses. Current 
genomic medicine has validated several biomarkers for diagnosis and treatment 
decision of many diseases such as cancer, cardiovascular disease, 
neurodegenerative diseases, and neuropsychiatric disorders, among others (Table 
1). Although the health condition of an individual should not be examined only by 
biomarkers, quantitative or qualitative analysis of these molecules can greatly 
enhance the precision of clinical practice. 

Table 1: Examples of biomarkers and their use in clinical practice 

Biomarker Description 

HLA-
B*5701 

Presence of HLA-B*5701 allele is strongly associated with the hypersensitivity reaction to 
abacavir, a drug used to treat AIDS. Genetic tests prior to treatment can prevent adverse 
side effects [15]. 

HLA-
B*1502 

Presence of HLA-B*1502 allele is strongly associated with the development of Stevens 
Johnson syndrome and its related diseases in patients treated with carbamazepin, an anti-
convulsant and mood stabilizing drug. Genetic tests prior to treatment can prevent adverse 
side effects [16].  

CYP 
subfamilies 

SNPs of this gene can influence the kinetic of metabolism of several drugs, including 
clopidogrel, an anti-platelet treatment [17].  

UGT1A1 UGT1A1*28 polymorphism is related to toxicity of irinotecan, a topoisomerase inhibitor 
used for metastatic colorectal cancer [18]. 

EGFR and 
KRAS 

Panitumumab, a monoclonal antibody to EGFR, is used as an adjuvant treatment of 
colorectal cancer with high expression of EGFR. The drug is efficacious only for patients 
that do not carry mutations in the KRAS gene [19]. 

BRAF  Metastatic melanoma with substitution of glutamic acid for valine at codon 600 of BRAF 
is eligible for treatment with vemurafenib [20]. 

CD30 Brentuximab vedotin, anti-CD30 conjugated with a cytotoxic drug (monomethylauristatin 
E) is used to treat CD30-positive hematological malignancy [21].  

CFTR Cystic fibrosis is a genetic disorder caused by mutations in the CFTR gene that codify for 
an ion channel. Ivacaftor is a G551D mutation-specific drug for cystic fibrosis [22].  

Factor V  R506Q mutation in Factor V gene (also known as Factor V Leiden) is a risk factor for 
thromboembolism [23]. 
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1.2. PROGRESS IN CANCER TREATMENT 

The investigation of chemicals for systemic cancer treatment started in the early 
20th century. Nitrogen mustard was the first chemical that induced remission in a 
group of lymphoma patients [24]. However, it turned out to be temporary and 
incomplete. Likewise, other drugs developed in the same period showed only 
tantalizing results with short extension of survival [25, 26]. Moreover, most of 
these chemicals had general mechanisms of action, affecting primarily the DNA 
metabolism. This lack of specificity contributed to severe side effects and 
treatment failure [27]. Thus, prior to the 1970s, the removal of a primary tumor 
with generous amounts of surrounding normal tissue, such as in a mastectomy, 
was the preferred method of treatment. For inoperable patients, radiotherapy was 
an option with an extremely low chance for cure or 5-year survival. These 
methods were also very inefficient to defeat metastatic cancer and usually ended 
at patient death [28]. However, after the 1970s, combinatorial drugs were used as 
an adjuvant systemic treatment following surgery or radiotherapy to control 
metastatic diseases or remaining cancerous cells and produced better results [29, 
30]. A combination of drugs that have complementary mechanisms allowed the 
use of low doses of each chemical, reducing side effects [27, 31]. 

Even with scarce knowledge of cancer biology, it was evident that prevention and 
early intervention are the best strategies for cancer management [32]. As a result, 
since the 1970s, cancer research has been dramatically accelerated not only to 
develop more efficacious drugs and more precise surgical instruments, but also to 
improve imaging techniques and other diagnostic methods for early tumor 
detection. Also, campaigns for screening tests have greatly contributed for 
lowering cancer mortality [28, 33]. 

While cancer research continued its rapid advancement, attention shifted from the 
search for environmental carcinogenic chemicals to the investigation of intrinsic 
genetic alterations and signaling pathways that occurred in tumors [34-36]. These 
advances helped incorporate new concepts in cancer definition. Today, cancer can 
be defined as an uncontrolled cell growth accompanied by genetic instability that 
causes progressive genetic alterations [35-37]. In general, these alterations include 
gain-of-function of oncogenes and loss-of-function of tumor suppressors. The 
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discovery of oncogenes and tumor suppressors and their involvement in cell 
cycling and division was the foundation for targeted therapy, i.e. drugs that 
stimulate or inhibit the activity of a specific molecule [33]. 

The first targeted drug was imatinib, an inhibitor of the tyrosine kinase activity of 
the oncogene BCR-ABL [38]. The fusion protein BCR-ABL is originated by 
mutual translocation between chromosome 9 and 22, and it is found in 95% of 
patients with chronic myeloid leukemia. The first report on CML treatment with 
imatinib was promising, with 80% of patients reaching a 5-year survival [39]. 
However, it was intriguing why a small subset of patients did not response to 
imatinib, even though they produced the fusion protein. Even worse, later on, it 
was revealed that patients presented resistance to imatinib after long-term 
treatment. These questions were answered with genetic studies showing that 
patients treated with imatinib acquired other mutations, mostly point mutations 
that increase BCR-ABL phosphorylation [40, 41]. To overcome this secondary 
resistance, also known as acquired resistance, new drugs have been developed. 
Dasatinib and nilotinib are more potent inhibitors of tyrosine kinases and used to 
treat CML with resistance or intolerance to imatinib [42, 43]. This is an example 
where personalized medicine can be practiced, submitting patients to genetic 
testing to check for the presence of the fusion protein prior to treatment with 
imatinib or other related drugs and monitor during treatment for the presence of 
other genetic alterations. Indeed, several studies point out the importance of 
standardizing methods of mutation screening and defining consensus on when to 
screen [44, 45]. 

Like imatinib, there are several drugs that require prior genetic testing for 
application. For example, trastuzumab is a monoclonal antibody indicated for the 
treatment of breast cancer with HER2 gene amplification and/or overexpression, 
which can be detected by fluorescence in situ hybridization or 
immunohistochemistry [46]. Her2 signaling pathway cross-talks with IGF-1 and 
PI3K cascade, and patients that carry genetic alterations that affect these signaling 
molecules would not be eligible for treatment with trastuzumab [47]. 
Overexpression of the EGF family also decreases the efficiency of trastuzumab. 
Because of these intrinsic or acquired mutations that affect the efficiency of the 
drug, a lower percentage of patients respond to this drug [48]. Thus, more 



Learning from Cancer Therapies Young Perspectives for Old Diseases   9 

 

complex genetic tests need to be performed to select eligible patients for treatment 
with trastuzumab. Today, several drugs have been developed to be efficient in 
specific cases but not in others (See examples in Table 1). Thus, analysis of the 
individual genetic component has become a frequent practice in current cancer 
treatment to propose the most appropriate treatment. 

The knowledge of molecular and cellular aspects of cancer advances rapidly, and 
contributes for the stratification of cancer into several smaller subgroups. 
However, the development of new drugs for each case occurs at a relatively slow 
rate. Secondary or acquired mutations are also current problems, which require 
more thorough genetic testing and constant devolvement of new drugs. However, 
a significant portion of cancer cases will become a manageable chronic disease. 

1.3. POSSIBLE TARGETS FOR PERSONALIZED TREATMENT OF 
NEURODEGENERATIVE DISEASES 

The advance in the management of several diseases and perception of the 

importance of a healthy lifestyle by modern society are contributing to global 

aging. Aging, in turn, is a well-established risk factor for several diseases such as 

cancer, cardiovascular diseases and neurodegenerative diseases [49-51]. 

Particularly, neurodegenerative diseases are estimated to increase three-fold by 

2050, resulting in a huge economic burden and emotional challenge to patients 

and their families. In contrast to this problematic scenario, the effective strategy 

for diagnosis and treatment of neurodegenerative diseases is still lacking and 

requires urgent improvement. 

Several problems make a precise diagnose difficult. First, we can evaluate the 

description of physiopathological characteristics of the most common 

neurodegenerative diseases. Memory loss, ataxia and sleep disorders are very 

common symptoms of various types of neurodegenerative diseases. Although 

careful analysis of these symptoms, including their onset and progress, can help 

predict the type of disease, the probability of misdiagnosis has been high [52, 53]. 

Thus, such broad definition and overlap of symptoms between diseases makes it 

difficult to correctly diagnose neurodegenerative diseases. 
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It is possible today to analyze the functional anatomy of the brain, such as cortical 
thickness and hippocampal activity, with the improvements of some imaging 
techniques [54, 55]. Clinical studies have demonstrated that reduction of cortical 
thickness or hippocampal hyperactivation and aberrant synaptic functions have 
been associated with a higher risk for Alzheimer’s disease [56, 57]. However, 
reduction of cortical thickness can be observed in normal aging, and since each 
individual presents different thickness, it is difficult to propose a cutoff value for 
predictive risk. Moreover, different ethnic groups and lifestyle can influence the 
brain anatomy [58]. For example, elderly people subjected to physical exercise or 
memory training show increased cortical thickness when compared to a sedentary 
population [59, 60]. Hyperactivation of hippocampus can also be observed in 
patients with other diseases such as schizophrenia [61]. More recently, dyes that 
react with protein aggregates have also been proposed as a diagnostic method 
[62]. However, considering that many degenerative diseases present protein 
aggregates, the specificity of the dye has to be carefully investigated. 

If the diagnostic methods for neurodegenerative diseases are poor, the therapy is 
even more chaotic. Currently available treatments aim to relieve the symptoms. 
For example, in AD, acetylcholinesterase inhibitors or memantine, an NMDA 
antagonist, are used to improve cognitive function and psychotic drugs in attempt 
to control mood disorders [63]. Levodopa, a dopamine agonist classically used in 
PD treatment, aims to overcome dopaminergic neuronal death [64]. However, 
these treatments do not have disease reversing effects and chronic treatment 
causes severe side effects, such as dyskinesia, hallucination, nausea, vomiting and 
bradyarrhythmias (for additional information see Chapter 2). Thus, if we make an 
analogy with cancer, the management of neurodegenerative diseases is at least 10 
years behind cancer treatment, with diagnosis based on broad pathophysiological 
aspects and symptom relieving treatments with severe side effects [65]. 

The significant progress seen in cancer treatment has been achieved with 
multidisciplinary approaches with focus on molecular and cellular mechanisms. 
This means that revealing the molecular and cellular pathways involved in 
neurodegeneration is an important step for development of biomarkers and drug 
targets. Also, prevention and early diagnosis have been key elements for 
successful treatment of cancer. In neurodegenerative diseases, prevention might 
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be more critical, because regeneration or repopulation of dead neurons is a more 
challenging task than killing abnormally dividing cancer cells. Thus, the 
development of screening tests that can be easily included in a health checkup is 
essential. These screening tests can be affordable imaging techniques, such as 
mammography for breast cancer, or non-invasive molecular tests. 

In this aspect, we already know subset of mutations that are causative of 
neurodegenerative diseases, i.e., the presence of certain mutations indicate an 
extremely high risk to develop the disease. For example, populations that carry 
mutations that affect post-transcriptional modifications or expression level of the 
Amyloid Precursor Protein (APP), Presenilin-1 and Presenilin-2 will develop 
Alzheimer disease [66-68]. Likewise, mutations in -synuclein (SNCA) and 
parkin (PARK2) are causative for Parkinson’s disease, mutations in PrPC (PRNP) 
cause spongiform encephalopathy and expansion of glutamine sequence in 
huntingtin (HTT) is responsible for Huntington’s disease [69-73]. In general, 
carriers of these types of mutations present early-onset diseases. 

Although hereditary neurodegenerative diseases make up only a small percentage 
of patients because they confer extremely high risk for the disease, well designed 
molecular tests for these mutations and application to appropriate populations can 
help identify the diseases early, allowing more time for intervention. Nonetheless, 
the major limitation is still the lack of effective treatment for these particular 
cases. Thus, even with early identification of the risk factor, at least at the present 
time, the patient would not get significant benefit and more dynamic research on 
drug development is urgently required. 

Beyond these causative mutations, there are several polymorphisms that increase 
the risk for diseases. A well established example involves 3 variants of cysteine 
contents in Apolipoprotein E (APOE): apoE2 contains 2 cysteines, apoE3, 1 
cysteine, apoE4, 0 cysteine. Studies have demonstrated that 2 copies of apoE4 
alleles increase the risk for late-onset AD up to 60% [74]. The replacement of 
cysteine at residue 112 of apoE3 by arginine in apoE4 appears to influence 
secondary structure and function of these isoforms [75, 76]. In addition, other 
genes such as angiotensin-converting enzyme (ACE), CD33, Membrane-spanning 
4-domains, subfamily A, member 6A (MS4A6A), Glutathione S-transferase 
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omega-1 and 2 genes have been also associated with increased risk for AD [77-
79]. However, none of them represents as high of a risk factor as the apoE4 allele. 

An increasing number of genome-wide association studies have been published 
during the last decade in order to find risk factors for diverse neurodegenerative 
disorders. Given the broad etiologic diversity of these diseases, searching for 
genetic risk factors is a necessary effort. These studies can help identify still 
unrevealed genetic alterations related to neurological disorder and improve the 
diagnosis of these diseases [80]. However, caution should be taken in order to not 
overestimate the importance of a growing list of genetic risk factors. When 
analyzing these studies, factors such as sample size, magnitude of risks and 
reproducibility of the results in other populations should be considered. Moreover, 
the functional aspects of each genetic alteration should be investigated with the 
same importance, as they can provide information for identification of the best 
target molecule for treatment of the disease. 

Indeed, there are several mechanistic studies that investigate the involvement of 
known biomarkers in neurodegeneration. One of the hallmarks for AD is the 
accumulation of amyloid plaque, A-peptide being the main component. The 
formation of the insoluble Aβ-peptide oligomer depends on the post-translational 
cleavage of APP, a glycosylated transmembrane protein with a single membrane-
spanning region. APP is cleaved by αβ and γ- secretase. Sequential cleavage 
by α- and γ- secretase generate a soluble peptide, while cleavage with β- and γ- 
secretase produce the amyloidogenic peptide [81]. Because the amyloid plaque is 
the cardinal marker of AD and is influenced by genetic factors, the APP 
processing and Aβ clearance are current targets of AD therapy. Indeed, several γ-
secretase inhibitors and monoclonal antibodies against βamyloid showed 
promising results in clinical studies [82-84]. However, failure of clinical trials of a 
γ-secretase inhibitor was recently reported. Although the inhibitor succeeded in 
decreasing Aβ levels up to 50%, it also caused severe side effects in the liver by 
mechanisms unrelated to APP processing [85]. Thus, other derivative chemicals 
or directed drug delivery can be tested as an alternative approach. 

As mentioned above, apoE4 is a strong risk factor for AD. Although the detailed 
mechanism of Aβ clearance is still unclear, it appears to be dependent of apoE 
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isoforms, apoE2 and apoE3 being more efficient in clearance [86, 87]. Thus, 
compounds that can assist the correction of apoE4 structure to apoE3-like 
structure can also be investigated as a potential drug for AD [88]. 

Tau is a cytoskeletal protein that functions to stabilize microtubules. 
Hyperphosphorylation and aggregation of tau is another hallmark of AD [89]. The 
toxicity of tau aggregates is related to loss of function, affecting 
neurotransmission. Tau aggregation and mislocalization appear to be primed by 
A oligomers [62, 90]. GSK-3 is one of the enzymes that phosphorylate tau and 
clinical trials using GSK-3 inhibitors are currently ongoing [68, 91]. However, 
given that GSK-3 has many substrates, significant side effects are predictable. In 
this case, drugs that inhibit tau aggregation such as phenothiazine methylene blue 
or methylene blue can be a better option [92, 93]. Clinical trial results will 
eventually reveal the effectiveness of these drugs. 

The aggregation of α-synuclein is a canonical pathological marker for PD. α-
synuclein is mostly located in presynaptic terminals and is involved in 
neurotransmitter release control [94]. Abnormal accumulation of α-synuclein 
aggregates can lead to synaptic dysfunctions [95]. Thus, maintenance of normal 
functions and removal of toxic aggregates can be one of the target pathways for 
PD. Immunotherapy, where T cells are activated with short peptides to produce 
antibody against synuclein aggregates has been shown as a disease modifying 
treatment and the first clinical trial is in progress [96, 97]. 

Protein aggregates can elicit inflammatory responses and increase mitochondrial 
permeability, leading to oxidative stress, a common phenomenon observed in 
many diseases [98]. Oxidative stress refers to an alteration in the balance between 
oxidative metabolite and enzymes that eliminate these oxidative metabolites. 
Thus, the enzymes that participate in these metabolic pathways or anti-oxidant 
enzymes can be potential candidates for targeted therapy of neurodegenerative 
diseases. During stress oxidative conditions, a transcription factor Nrf2 
translocates into the nucleus, binds to cis-acting antioxidant response regulatory 
element (ARE) and controls the expression of antioxidant genes such as heme 
oxygenase-1 and glutathione S-transferase α4 [99]. Dimethyl fumarate and its 
primary metabolite monomethyl fumarate and other antioxidant compounds can 
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induce the expression of Nrf2, protecting against oxidative stress [100, 101]. 
Thus, Nrf2 is a patented promising target for treatment of neurodegenerative 
diseases [102]. 

Non-pharmacological adjuvant treatments can also be interesting options. A 
higher education level and occupational activities are well known protective 
factors for AD [103]. Physical exercise increases neurotrophic factors, such as 
BDNF, inducing neurogenesis and memory improvement [104, 105], while stress 
has adverse effects on neuronal survival and synaptic plasticity [106, 107]. It has 
been demonstrated that stress hormone and glucocorticoids, induce abnormal 
hyperphosphrylation of tau [108]. Also, sleep deprivation increases Aβ-peptide 
and Aβ plaque, which can be reproduced by infusion of orexin, a neuropeptide 
that regulates arousal [109]. Thus, a healthy lifestyle can be a simple and non-
invasive strategy to reduce the risk for neurodegenerative disease. 

FINAL CONSIDERATIONS 

In this chapter, a subset of molecular targets for some neurodegenerative diseases 
that are currently under clinical trials was presented. Although the cure for 
neurodegenerative diseases has been extensively studied, an effective drug has not 
been validated, while the list of risk factors and biomarkers continues to grow 
rapidly. To effectively translate the genome-wide studies into applicable clinical 
trials, multidisciplinary research needs to be performed more actively with focus 
on functional genomic studies. 

Another important thing to consider is the re-evaluation of failed clinical trials. In 
a clinical trial for trastuzumab, only a small percentage of patients benefited from 
the treatment, thus was considered a failed trial. However, there was a clear 
correlation between HER2 overexpression and responsiveness to treatment, 
suggesting that trastuzumab, in fact, is effective to treat a particular subpopulation 
of breast cancer with well defined genetic alterations. In general, clinical studies 
for neurodegenerative diseases are performed without a thorough selection of 
patients. Indeed, bapineuzumab, a monoclonal antibody that specifically targets β-
amyloid, was considered failed in a phase 2 clinical trial due to a treatment-related 
brain image abnormality. However, further retrospective analysis demonstrated 
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that the imaging abnormality was correlated with apoE4 isoform and high dose 
[110]. Thus, failed drugs in previous clinical trials could be re-evaluated upon a 
stricter patient selection supported by biomarkers and genetic tests. 
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Abstract: Neurodegenerative disorders are an important cause of mortality and 
morbidity in the elderly. The most common neurodegenerative diseases are Alzheimer's 
disease and Parkinson's disease. Lewy body dementia is considered the third most 
frequent. Much less common are frontotemporal dementia, Huntington's disease, 
amyotrophic lateral sclerosis, progressive supranuclear palsy, spinocerebellar ataxias, 
Pick disease and prion disease. There is no therapy that is capable to avoid the 
progression of these disorders. Current pharmacological therapies offer symptomatic 
benefits with very little impact, if any, in modifying the course of these diseases. 
Anticholinesterase drugs are the most frequently used to treat Alzheimer's disease. 
Disease-modifying treatments for Alzheimer's disease are being developed. Levodopa is 
the most effective pharmacological treatment for Parkinson's disease but in long-term 
benefit declines. For this reason, association between levodopa and other forms of 
treatment is the best approach. There is no approved pharmacological treatment for 
most other forms of neurodegenerative diseases except for amyotrophic lateral sclerosis, 
Huntington disease and some forms of cerebellar ataxias. 

Keywords: Adrenoleucodystrophy, Alzheimer's disease, amyotrophic lateral 
sclerosis, ataxia telangiectasia, cerebrotendineous xanthomatosis, fragile-x-
associated tremor ataxia syndrome, Friedreich ataxia, frontotemporal dementia, 
Huntington's disease, Kearns Sayre syndrome, Lewy body dementia, MELAS, non-
pharmacological treatment, Parkinson's disease, pharmacological treatment, Pick 
disease, prion disease, progressive supranuclear palsy, Refsum's disease, 
spinocerebellar ataxias. 

2.1. INTRODUCTION 

Neurodegenerative diseases are caused by a progressive loss of neural cells, 
leading to dysfunction of specific areas of the nervous system [1]. Although 
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epidemiology of neurodegeneration is not a simple task, Alzheimer's disease and 
Parkinson's disease are the most common neurodegenerative diseases [2, 3]. 
Epidemiological studies have shown that Lewy body dementia is the third most 
frequent [4, 5]. Much less common are frontotemporal dementia, Huntington's 
disease, amyotrophic lateral sclerosis, progressive supranuclear palsy, 
spinocerebellar ataxias, Pick disease and prion disease [3]. Neurodegenerative 
disorders are an important cause of mortality and morbidity in the elderly and 
have great impact in our society. Disorder's like Alzheimer's and Parkinson's 
disease generally lead to behavioral alterations like depression and psychosis. 
Although the understanding of the molecular mechanisms underlying neuronal 
loss has progressed in accelerated pass, there is no currently available therapy that 
is capable to avoid the progression of these disorders. 

Current pharmacological therapies offer limited and transient symptomatic 
benefits with very little impact, if any, in modifying the course of these diseases. 
The known pathogenesis of neurodegenerative diseases is multifactorial, thus 
making the conventional monofactorial approach ineffective in slowing the 
progression of neuronal loss. Drugs acting in a single receptor tend to present 
resistance because alterations in number and affinity of receptors can hinder the 
efficacy. The association of environmental and behavioral modification with 
drugs directed to multiple targets would more likely be successful [6]. 

2.2. ALZHEIMER'S DISEASE 

a) Pathophysiology of Alzheimer's Disease 

The main proposed hypothesis to explain the pathophysiology of Alzheimer's 
disease is the amyloid cascade [7]. According to this hypothesis, abnormal 
production or clearance of amyloid β peptide (Aβ) results in extracellular amyloid 
deposition. Amyloid deposition causes hyperphosphorylation of the tau protein 
generating neurofibrillary tangles (NFT), excitotoxicity, inflammation, apoptosis and 
cell death. These events are related to neurotransmitter deficits, which are partly 
responsible for some clinical manifestations. The cleavage of the amyloid precursor 
protein (APP) may occur by two pathways: sequential cleavage by alpha and 
gamma-secretase leading to formation of soluble P3 peptide; or sequential cleavage 
by beta and gamma-secretase leading to the formation of insoluble Aβ peptide. P3 
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protein does not form insoluble aggregates, while Aβ deposits into amyloid plaques 
that are found in Alzheimer’s brains. Supporting this hypothesis, familial autosomal 
dominant forms of Alzheimer's disease that are responsible for less than 5% of all 
cases occur as a result of gene mutations in APP and presenilin (gamma-secretase) 
genes (1 and 2) that increase Aβ formation [8]. 

Another hypothesis is that pathological aggregation of the microtubule-associated 
protein tau is the primary event [9]. NFTs are produced by hyperphosphorylation 
of protein tau that is responsible for stabilizing the axonal cytosqueletton, 
disrupting the axonal transport and leading to cell death. Mutations of the tau gene 
microtubule associated protein tau (MAPT) cause familial frontotemporal 
dementia with Parkinsonism, in which amyloid plaques are not found, suggesting 
that abnormal tau is sufficient for neurodegeneration [9]. Recent data show that 
risk factors to cardiovascular disease are also risk factors for Alzheimer's disease, 
suggesting a vascular contribution for the pathogenesis of the disease. In fact, 
coexistence of ischemic lesions, amyloid plaques and NFT increases the risk of 
dementia (for additional information see Chapter 7). Current pharmacological 
treatments for Alzheimer’s disease are summarized in Table 1. 

b) Cholinesterase Inhibitors 

Patients with Alzheimer's disease have deficit in acetylcholine production which 
is responsible for some of its symptoms. Cholinesterase inhibitors block the 
cholinesterase enzyme that degrades acetylcholine in the synaptic cleft, thus 
increasing acetylcholine levels. Cholinesterase enzyme has two forms: 
acetylcholinesterase and butyrylcholinesterase. Cholinesterase inhibitors improve 
Alzheimer's disease symptoms without avoiding the progression of its clinical 
course. In this regard they are considered symptomatic treatments. The best 
outcomes are on neuropsychiatric alterations, helping to alleviate some symptoms 
and preventing others. Cholinergic side effects are dose-dependent and include 
anorexia, nausea, vomiting, diarrhea, abdominal pain, dizziness, fatigue and 
muscle cramps. If side effects persist and response is not satisfactory, clinical 
practice suggests that switching to a different cholinesterase inhibitor may be an 
option. In case of poor clinical response, another possibility is to add memantine 
without discontinuing the initial medication. Discontinuation of treatment is an 
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option when patient or caregiver decides so, when there is poor adherence to 
treatment, no verifiable response, severe side effects and progression to a stage of 
the disease where there is no benefit of this treatment and presence of 
comorbidities that make its use inappropriate [7]. 

Donepezil is the most used cholinesterase inhibitor worldwide. Donepezil inhibits 
acetylcholinesterase increasing the availability of acetylcholine. According to a 
systematic review, patients treated with donepezil showed significant benefits on 
cognitive, global, functional and behavioral parameters in a dose dependent 
fashion [10]. Side effects were mild and transient including nausea, vomiting, 
diarrhea, dizziness, fatigue, nightmares and anorexia. Rivastigmine inhibits both 
acetylcholinesterase and butyrylcholinesterase. It is available in oral and 
transdermal presentations. Transdermal presentations aim minimizing side effects 
and facilitating administration in less collaborative patients. A systematic review 
showed that rivastigmine improves cognitive, global and functional but not 
behavioral outcome measures [11]. Benefits were observed in people that used 6 
to 12 mg daily. Side effects included nausea, vomiting, diarrhea, anorexia, 
headache, syncope, abdominal pain and dizziness [11]. The highest transdermal 
rivastigmine dose (12mg daily) was as effective as oral rivastigmine but with less 
side effects [12, 13]. In some patients transdermal rivastigmine is associated with 
skin intolerance [13]. Galantamine reversibly inhibits acetylcholinesterase and 
binds to nicotinic receptors enhancing cholinesterase transmission [7]. A 
Cochrane review showed significant effects of galantamine on cognitive, global, 
functional and behavioral parameters [14]. A trial that included mixed vascular 
and Alzheimer's dementia showed a significant benefit of galantamine with 16 to 
24mg daily [15]. Typical cholinergic side effects are present including nausea, 
vomiting, diarrhea, dizziness and anorexia [7]. 

An important pitfall for these treatments, however, is that mild-to-moderate AD 
patients receiving cholinesterase inhibitors show improvement on cognitive 
measures that reach its maximum at 6 months and decays to baseline at 
approximately 12 months. Functions that are lost are generally not recovered. The 
temporary effects of these treatments arrive because anticholinesterase drugs rely 
on intact cholinergic terminals, which continue to degenerate as the disease 
progresses. For this reason direct muscarinic and nicotinic agonists are being 
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developed. Some studies show that direct muscarinic M1 stimulation can also 
decrease Aβ levels possibly slowing the disease progression [16]. 

c) Memantine 

Memantine is a noncompetitive NMDA glutamate receptor antagonist. Its use 
aims to avoid glutamate-related excitotoxicity. A systematic review showed 
significant treatment benefits on cognitive, global and functional aspects. One 
study showed that adding memantine to donepezil treatment leads to additional 
improvement of cognitive, functional and global parameters [17]. In moderate-to-
severe Alzheimer's disease memantine contributes to stabilize cognitive and 
functional symptoms for about 6 months [7, 18]. 

d) Cardiovascular Risk Factors 

According to clinical trials, treatment of hypertension was associated with better 
cognitive outcomes in patients with dementia although not associated to a reduced 
incidence [19]. The same association was not observed for cholesterol lowering 
medications. However, results from these clinical trials are not conclusive due to 
methodological limitations [7]. 

e) Comorbidities 

Patients with Alzheimer's disease suffer from many comorbidities, such as 
depression, cerebrovascular disease and chronic pain. Adequate diagnosis and 
treatment of these conditions contribute to improvement of the clinical picture [7, 
18]. 

f) Disease-Modifying Treatments 

Based on prior animal data, interfering with APP cleavage is a possible target for 
modifying disease progression [7]. Multiple targets have been defined acting in α-
secretase and γ-secretase. Semagacestat is a γ-secretase inhibitor which decreases 
Aβ40/42 plasma concentration. Phase III studies of semagacestat did not slow 
disease progression and worsened cognitive function [7]. 

Aβ peptides have different sizes and Aβ42, consisting of 42 amino acids, is 
considered a more toxic isoform. Aβ42 lowering agents, such as tarenflurbil, can 
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favor the production of shorter forms thus reducing the progression of the disease. 
Unfortunately tarenflurbil did not show beneficial effects in phase III studies [7]. 
Stimulating α-secretase can move APP cleavage towards formation of non-
amyloidogenic peptides. There are ongoing studies with drugs that increase α-
secretase and decrease β-secretase activity [7]. 

Another possible target to reduce Aβ burden is the removal of polymerized Aβ 
peptides. Tramiprosate (homotaurine) is a drug that prevents Aβ aggregation by 
binding to soluble Aβ and preventing its aggregation. It was not very effective in 
clinical trials but some studies showed slowing of hippocampal atrophy. It has 
since been approved as a drug to prevent memory loss, although some data 
suggest it may promote tau protein aggregation. Another mechanism proposed is 
the removal of ions that are necessary for Aβ aggregation, like copper and zinc. 
Substances that interfere with this mechanism are being tested. Other drugs to 
prevent aggregation that are being studied are epigallocatechin and scyllo-inositol. 

Aβ peptides can also be removed by endogenous clearance. Clearance of Aβ from 
the brain occurs by multiple processes, like drainage along perivascular basement 
membrane into the cerebrospinal fluid, transport across vessel walls into 
circulation, P-glycoprotein efflux pump, sequestration of Aβ by soluble low-
density lipoprotein in the circulation to promote efflux of soluble Aβ out of the 
central nervous system, microglial phagocytosis and enzyme mediated 
degradation [8]. In order to promote clearance of Aβ peptides, passive 
immunization with monoclonal antibodies or donor polyclonal immunoglobulin 
are also being tested [16]. Active immunization with AN172 (the first vaccine 
used in humans) had to be terminated due to an aggressive autoimmune response 
leading to meningitis and death [7]. Other vaccines that appear to be safer are now 
in study. Despite many attempts, no agent aiming to reduce amyloidogenesis has 
obtained positive results so far [7]. 

Agents targeted to other mechanisms are also being studied. The most important 
enzyme for the phosphorylation of tau protein is GSK3. Valproic acid and lithium 
can inhibit GSK3 to some degree, but initial studies are not encouraging. Other 
agents being tested are vitamin B3 and methylene blue. Mitochondrial 
stabilization with latrepirdine presented unsuccessful results. Inflammation, 
oxidative stress and excitotoxicity are other possible targets [7]. 
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g) Cognitive Training 

Cognitive training has been proposed as a possible mean of preventing cognitive 
decline as well as a treatment for Alzheimer's disease and other dementias. 
Cognitive training is a set of strategies directed to improve cognition. Although 
previous research has proved the benefit of cognitive training of healthy elderly 
for cognitive functions like memory, attention and reasoning, results for patients 
with cognitive impairment are more conflicting. Cognitive rehabilitation 
techniques for patients with mild-to-moderate Alzheimer's disease directed to 
implicit learning are being tested with significant benefits. Systematic reviews 
concluded that cognitive training is effective for Alzheimer's patients although 
with a moderate effect [20, 21]. Other studies reported less favorable results or no 
effect at all [22]. Brain training games have been proposed as an alternative 
strategy, which do not require a therapist and are less expensive. Some studies 
have shown the benefits of specific brain training software like Brain Test Britain, 
Memori65+ and Nintendo Brain Training that were effective for some individuals 
but generally ineffective for improving cognition in younger adults. Their efficacy 
needs further evaluation for older adults and mild dementia patients [22, 23]. 

Clinical experience shows that informal cognitive training is obtained when 
patients with Alzheimer's disease are not removed from society and family. Social 
contact, performing simple daily tasks and a stimulating environment can help 
patients to develop and maintain cognitive skills [22, 23]. 

h) Sleep Disturbances 

Sleep and wake disturbances are common occurrences in Alzheimer's disease 

[24]. Patients with Alzheimer's disease have sleep disturbances similar to age 
matched elderly, but generally more severe and difficult to treat [22]. The most 
frequent are circadian rhythm disturbances, night wandering, sundowning and 
sleep apnea. Circadian rhythm disturbances are probably due to neuronal loss in 
the hypothalamus that occurs very early in the neuropathological evolution. 
Difficulty to synchronize circadian biological clock is probably related to 
confusion episodes, night wandering and sundowning [24]. Patients with 
Alzheimer's disease have typically reduced percentage and duration of REM 
sleep, which is probably related to loss of cholinergic neurons and memory deficit 
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[25]. Cholinesterase inhibitors can increase the amount of REM sleep which is 
related to cognitive and behavioral improvement [25]. Some studies suggest that 
the incidence of obstructive sleep apnea is higher in Alzheimer's patients and that 
there is a genetic link between both conditions [26]. It was described that 
Alzheimer's patients treated with CPAP (Continuous Positive Airway Pressure) 
show cognitive improvement [27]. A recent clinical trial showed that donepezil 
was beneficial for sleep apnea in Alzheimer's patients, improving apnea-hypopnea 
index and oxygen saturation but the mechanism explaining this improvement is 
still unknown [26]. 

Table 1: Pharmacological Treatment for Alzheimer's Disease 

Substance Mechanism Use 

Donepezil 
[7, 10, 18, 19, 28] 

Inhibits acetylcholinesterase Improve cognitive, functional, global and 
behavioral outcome measures 

Rivastigmine [7, 11, 
12, 13, 18, 19, 28] 

Inhibits acetylcholinesterase 
and butyrylcholinesterase 

Improve cognitive, functional and global 
outcome measures 

Galantamine 
[7, 14, 15, 18, 19, 28] 

Inhibits acetylcholinesterase 
Agonist of nicotine receptor 

Improve cognitive, functional, global and 
behavioral outcome measures 

Memantine 
[17, 29] 

NMDA noncompetitive 
glutamate receptor antagonist 

Improve cognitive, functional and global 
outcome measures 

Homotaurine 
(Tramiprosate, 
Vivimind) [8, 9, 16, 
30] 

Prevents Aβ aggregation Modest effect as memory loss-preventing 
nutraceutical. Reduces hippocampal atrophy [8, 
9, 31].  

Caprylidene 
(Axona) [8, 9, 32, 
33] 

Dietary supplement: 
metabolized into ketone 
bodies 

Caprydilene is specifically indicated for the 
clinical dietary management of the metabolic 
processes associated with mild to moderate 
Alzheimer’s disease. 

2.3. PARKINSON'S DISEASE 

a) Pathophysiology of Parkinson’s Disease 

Parkinson's is a chronic neurodegenerative characterized by resting tremor, 
bradykinesia, cogwheel rigidity and postural instability. Currently there is no 
curative or disease-modifying treatment. Disorders of movement in Parkinson's 
disease result from a deficiency of dopamine stimulation of basal ganglia. This is 
mainly due to the degeneration of dopamine-producing neurons of substantia 
nigra. Deficiencies of other neurotransmitters are present including serotonin and 
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norepinephrine. The two principal pathways within the basal ganglia are direct 
and indirect. In the direct pathway, the cerebral cortex inputs to the striatum, 
which in turn projects inhibitory GABA and substance P efferents into the globus 
pallidus and substantia nigra. The globus pallidus projects GABA efferents to the 
thalamus, which sends excitatory glutamatergic efferents to the cortex. In the 
indirect pathway, the striatum projects inhibitory GABA and enkephalin efferents 
to globus pallidus, which projects GABA efferents to the subthalamic nucleus. 
The subthalamic nucleus sends excitatory glutamatergic projections to the internal 
globus pallidus and the substantia nigra. Pallidus and substantia nigra neurons 
send inhibitory GABA projections to the thalamus thereby inhibiting thalamic 
stimulation of the cortex. Direct and indirect pathways have opposite effects on 
the thalamic input to the cortex. Dopamine is produced in pars compacta of 
substantia nigra. Dopamine acts both in the direct and indirect pathways, but 
dopamine loss results in an overall reduction of thalamic excitatory output to the 
cortex (for additional information see Chapter 8) [34]. 

Clinical aspects of Parkinson's disease are variable due to this complex brain 
circuitry. Evolution of Parkinson's disease can by differentiated in tremor-
predominant and postural instability-predominant forms. Generally, postural 
instability-predominant form is more incapacitating and has worse prognosis [34]. 
Currently used pharmacological therapies for Parkinson’s disease are summarized 
in Table 2. 

b) Levodopa 

Levodopa is the most effective pharmacological treatment for Parkinson's disease. 
Generally speaking, levodopa therapy represented a great progress in Parkinson's 
disease management. Quality of life of patients increased and their mortality rate 
is close to normal elderly. Most Parkinson's patients die from other complications 
like cardiovascular and infectious diseases. Falls with hip fractures are caused by 
postural instability and are related to increased mortality [34]. Initially, levodopa 
provides a stable response but in long-term its benefit declines and fluctuations in 
motor response occur. Long-term studies suggest that it is better to start therapy 
using selegiline and dopamine agonists and to add levodopa when the effects of 
the former are not adequate anymore [34]. 
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Most levodopa is metabolized before it can cross the blood-brain barrier. By this 
reason, levodopa is generally associated with a decarboxylase inhibitor to prevent 
peripheral conversion to dopamine thus reducing side effects and increasing its bio-
availability [34]. The most used associations between levodopa and decarboxylase 
inhibitor are levodopa/carbidopa and levodopa/benserazide. Controlled-release 
preparations have been developed in order to produce fewer fluctuations in plasma 
levels and improve therapeutic response [34]. Peripheral side effects of levodopa 
include nausea, vomiting, hypotension and cardiac dysrhythmias. Careful titration of 
the dose is necessary to reduce side effects. Central side effects are confusion, 
delirium and behavioral changes. Some unconfirmed studies suggest that metabolites 
of levodopa can harm dopaminergic neurons [35]. Complications of levodopa 
treatment include dyskinesias, fluctuations and psychiatric disturbances. Clinical 
fluctuations include on-off syndrome. In this case, the effective period of levodopa 
response becomes progressively shorter. In on-off syndrome, there is sudden loss of 
drug response (off) followed by sudden return (on). Some authors advocate that 
fluctuations and dyskinesia can be managed by increasing the frequency of 
administration. Generally, clinicians resort to dopamine agonists and controlled 
release formulations in order to reduce these complications. The use of levodopa in 
early stages of disease increases the likelihood of complications such as dyskinesia 
and fluctuations [34-36]. A study evaluated whether levodopa/carbidopa/entacapone 
(Stalevo) delays the development of dyskinesia compared to levodopa/carbidopa but 
contrary to what was expected, time to development of dyskinesia was shorter and 
incidence of dyskinesia was higher in the entacapone-treated group. Entacapone-
treated had slightly better symptom control. For this reason entacapone is not 
currently recommended for early Parkinson's disease [34, 36, 37]. 

c) Dopamine Agonists 

Dopamine agonists are used as adjunctive treatment for Parkinson's disease. 
Available dopamine agonists are ergot alkaloids that act in postsynaptic receptors. 
They help the management of rigidity and bradykinesia. Association between 
dopamine agonists and levodopa results in fewer fluctuations [34, 38]. Dopamine 
agonists provide moderate symptomatic efficacy and are effective as monotherapy 
before levodopa is required [34]. Double-blind controlled trials comparing initial 
pramipexole and ropinirole with initial levodopa found no evidence favoring one 
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of these strategies over the other although dyskinesias were slightly less prevalent 
in pramipexole and ropinirole-treated groups [34, 38]. 

d) Anticholinergics 

Anticholinergic drugs improve symptoms of Parkinson's disease by blocking 
cholinergic stimulation. They improve tremor but have little or no effect on 
rigidity and bradykinesia. The most used anticholinergic drugs are biperiden and 
trihexylphenidil. Side effects include memory loss, hallucinations, xerostomia and 
urine retention [34, 38]. 

e) Amantadine 

Amantadine is an antiviral drug that serves as an NMDA antagonist, improving 
parkinsonian symptoms by dopaminergic and anticholinergic actions. It can be 
helpful as an adjunctive treatment in order to reduce fluctuations and dyskinesia [34, 
38]. 

f) Selegiline 

Selegiline is an inhibitor of monoamine oxidase, type B (MAO-B) thought to slow 
the progression of Parkinson's disease. MAO-B inhibition reduces degradation of 
dopamine increasing its availability. It also protects neurons by inhibiting the 
production of free radicals. Selegiline can be used in the early stage of disease in 
order to delay the introduction of dopaminergic drugs [34, 36, 37]. A clinical trial 
showed that after 5 years of combined therapy with levodopa, the placebo group 
was 35% worse than the selegiline-treated and its levodopa doses were 19% 
higher. Generally, most studies suggest that earlier initiation and longer duration 
of selegiline treatment improves long-term outcome [34, 38]. 

g) Advanced Parkinson's Disease 

The pharmacological approach in advanced Parkinson's disease remains a difficult 
issue. The most common motor complications in advanced Parkinson's disease are 
motor fluctuations and dyskinesia [34, 38]. Motor fluctuations occur in the form 
of on-off phenomenon, unpredictable off and failure of on. The two main types of 
dyskinesia are peak dose dyskinesia and diphasic dyskinesia. Progression of 
disease associated to short half-life of levodopa leads to motor fluctuations after 4 
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to 6 years of treatment in 40% of patients [38]. Over time, the duration of benefit 
after a single dose of levodopa shortens. The pathophysiologic explanation is that 
progressive neuronal loss leads to reduced nerve terminals in the striatum 
reducing dopamine storage capacity. Fluctuations in plasma levodopa levels are 
no longer compensated by the striatum resulting in irregular stimulation of 
dopamine receptors that causes long-term changes in neurotransmitter pathways. 
Many strategies have been proposed to treat motor fluctuations. The most simple 
is shortening the interval between levodopa intakes but it can worsen dyskinesias 
and long-term drug outcomes [38]. Another strategy is the co-administration of 
catechol-O-methyltransferase (COMT) inhibitors. Currently available COMT 
inhibitors are entacapone and tolcapone. These drugs increase bioavailability by 
decreasing the peripheral cleavage of levodopa and increasing its half-life. 
Tolcapone is hepatotoxic [38]. Entacapone reduces on-off fluctuations and can be 
useful in advanced Parkinson's disease, improving the patient's quality of life. 
Continuous delivery of dopamine agonists is available in 24-hour formulation of 
ropinirole and transdermal rotigotine that can help to control wearing-off 
phenomenon. Atypical antipsychotics can help the treatment of dyskinesia. 
Clinical trials showed the efficacy and safety of clozapine for this indication. 
Olanzapine, risperidone, quetiapine and aripiprazole have also been tested with 
positive results [38]. 

h) Surgery 

Surgical treatments for Parkinson's disease were developed before the introduction 
of levodopa. Later they were used to overcome some difficulties in medical 
management of advanced Parkinson's disease. Stereotactic ablations focused on the 
pallidothalamic pathway including the globus pallidus and the thalamus. Selective 
lesions of the internal globus pallidus improved dyskinesias and other motor 
symptoms but there was always the risk of permanent motor deficits. Subthalamic 
lesions were also effective but caused hemibalism in some patients [39]. 

Deep brain stimulation was first used to check a specific area before surgical 
lesion. Later it was developed as a reversible alternative to stereotactic ablation. 
Bilateral deep brain stimulation of the subthalamic nuclei and globi pallidi interni 
has been studied in randomized controlled trials. Significant improvement of 



Current Pharmacological and Non-Pharmacological Young Perspectives for Old Diseases   35 

 

motor symptoms was described in patients with deep brain stimulation of the 
subthalamic nuclei and globi pallidi interni, including motor fluctuations and 
tremor. Unilateral stimulation can be considered in specific cases. The amount of 
improvement depends on individual conditions. Stimulation of pedunculopontine 
nucleus has also been selected as a target but outcomes are variable. Some non-
motor symptoms, like cognitive deterioration and mood disorders, may also 
improve, partly because reduction of drug treatment. Mechanisms by which deep 
brain stimulation is effective are not fully understood [39]. 

i) Physical and Phonoaudiologic Therapy 

The therapeutic spectrum for Parkinson's disease include multiple modalities 
besides pharmacological and surgical treatment: psychological, phonoaudiologic 
and physical therapy [34, 40]. Physical therapy is directed to avoid restriction of 
motion range and loss of aerobic capacity. It improves strength and flexibility. 
Low volume and pronunciation problems can be improved by speech therapy. 
When improvement is not possible, adaptive equipment is needed like walkers 
and bed rails. Some studies show modest effects of physical exercise [34, 40]. 
There is evidence that regular exercise can prevent Parkinson's disease and other 
neurodegenerative diseases as well as slow its progression [40]. 

j) Parkinson's Disease with Dementia (PDD) 

Cognitive impairment is recognized as part of Parkinson's disease. Most patients 
develop some degree of cognitive impairment 15 years after diagnosis. Dopamine 
pathway is not the only one affected in Parkinson's disease. Serotonergic deficit 
contributes to mood disorder, noradrenergic to impaired attention and mood, 
cholinergic to deficit in memory, attention and executive functions. In Parkinson's 
disease there is an important loss of cholinergic neurons in the nucleus basalis of 
Meynert. Cholinergic loss was more extensive in dementia with Lewy bodies and 
Parkinson's diseases than in Alzheimer's disease [41]. 

Clinical trials suggested that anticholinesterase drugs including donepezil, 
rivastigmine and galantamine provide improvement in cognition and behavioral 
symptoms without impairment of motor functions in PDD. A placebo controlled trial 
showed that patients on rivastigmine presented sustained improvement for 12 
months in cognitive scales and attention with some adverse effects: nausea and 
vomiting. Worsening of parkinsonian symptoms was more frequent in rivastigmine 
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group (27.3%) than in the placebo group (15.6%) [41]. Rivastigmine was approved 
for PDD in USA and Europe. A more recent trial showed that donepezil is effective 
against cognitive deficit in PDD improving mini-mental state examination (MMSE) 
scores, attention and verbal fluency. Memantine has not yet been tested in a large 
controlled trial but preliminary results show good tolerability and some benefits [41]. 

Table 2: Pharmacological Treatment for Parkinson's Disease 

Substance Mechanism Use 

Levodopa/Carbidopa 
Levodopa/Benserazide 
[34-38, 42-45] 

Dopamine replacement First course of treatment, manage major 
parkinsonian symptoms 

Levodopa/Carbidopa/ 
Entacapone [34-38, 42-45] 

Dopamine replacement + 
COMT inhibitor 

Secondary course, prolong effectiveness 
of levodopa 

Pramipexole (or extended-
release) [34-38, 42-45] 

Dopamine agonist Alone or with levodopa; manage major 
parkinsonian symptoms 

Pergolide [34-38, 42-45] Dopamine agonist Alone or with levodopa; manage major 
parkinsonian symptoms 

Bromocriptine [34-38, 42-45] Dopamine agonist Alone or with levodopa; manage major 
parkinsonian symptoms 

Apomorphine 
(injection) [34-38, 42-45] 

Dopamine agonist With levodopa therapy to treat “off” 
periods 

Rotigotine 
(transdermal) [34-38, 42-46] 

Dopamine agonist Alone or with levodopa; manage major 
parkinsonian symptoms 

Ropinirole [34-38, 42-46] Dopamine agonist Alone or with levodopa; manage major 
parkinsonian symptoms 

Benztropine mesylate 
[42-46] 

Inhibits acetylcholinesterase 
and butyrylcholinesterase 

Secondary medication for tremor 

Trihexyphenidyl [44, 46] Anticholinergic Secondary medication for tremor 

Biperiden [44, 46] Anticholinergic Secondary medication for tremor 

Selegiline [34-38, 42-45] MAO-B inhibitor Alone or with levodopa; controls brain 
metabolism of dopamine. 

Rasagiline [42-45] MAO-B inhibitor Alone or with levodopa; controls brain 
metabolism of dopamine.  

Amantadine [42-45] NMDAglutamate antagonist Secondary medication for tremor, rigidity 
and dyskinesia 

Entacapone [42-45] COMT inhibitor Secondary medication; delays wearing off 
by prolonging effectiveness of levodopa 

Tolcapone [42-45] COMT inhibitor Tertiary medication for motor 
fluctuations; limited in use to those who 
have exhausted other treatment options 

Rivastigmine [41] Anticholinesterase Parkinson's disease with dementia 
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2.4. DEMENTIA WITH LEWY BODIES 

Dementia with Lewy bodies is characterized by progressive cognitive impairment. 
There is a debate whether dementia with Lewy bodies and Parkinson's disease 
with dementia are separate entities. A practical 12-month rule is frequently used: 
onset of dementia within 12 months of parkinsonism is indicative of dementia 
with Lewy bodies, after more than 12 months of parkinsonism is suggestive of 
Parkinson's disease with dementia [47]. At onset, attention deficit and executive 
dysfunction predominate. Later, memory is affected although in a milder way than 
in Alzheimer's disease. Daytime sleepiness and visual hallucinations are early 
symptoms. Parkinsonian symptoms appear throughout the evolution of the 
disease, predominating rigidity, bradykinesia and gait disturbances. REM sleep 
behavior disturbance is characteristic and may precede cognitive disturbance. 
Hypersensitivity to neuropleptics is observed characteristically as an exacerbation 
of parkinsonian symptoms. Dysautonomia is manifest in orthostatic hypotension, 
syncope and urinary incontinence. Psychiatric disturbances are frequent, including 
depression, agitation, hallucinations and aggressiveness (for additional 
information see Chapter 12) [48]. Currenlty used pharmacological treatments for 
other neurodegenerative diseases are summarized in Table 3. 

Treatment is complex, involving cognitive and motor symptoms. In Lewy body 
dementia, loss of cholinergic neurons is more accentuated than in Alzheimer's 
disease. The anticholinesterase drugs donepezil, rivastigmine and galantamine 
have shown positive results for cognitive and psychiatric symptoms including 
apathy and hallucinations. A comparative study has shown similar efficacy for 
these three drugs with no significant deterioration of parkinsonian symptoms. 
Some studies have also shown a beneficial effect of memantine for cognitive and 
psychiatric symptoms [49]. 

Levodopa is well tolerated by patients with Levy body dementia. Low doses 
generally do not affect sleep quality and behavioral aspects. High doses can 
provoke hallucinations and psychotic manifestations. Levodopa treatment is not as 
effective as in Parkinson's disease and long term studies show a lesser motor 
benefit. Dopamine agonists are less useful in dementia with Lewy bodies than in 
Parkinson's disease due to side effects like mental confusion, hallucinations and 
psychotic symptoms [48]. 
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Orthostatic hypotension can be exacerbated by levodopa and dopaminergic 
agonists. Pharmacological adjustment and increased liquid intake are useful 
options. Behavioral symptoms are frequent and more difficult to treat than in 
Alzheimer's patients. Antipsychotic hypersensitivity is present in Lewy body 
dementia, generally causing sedation, immobility, rigidity and postural instability. 
Considering this fact, dosage of antipsychotic drugs must be smaller and slowly 
titrated. Quetiapine and clozapine are better tolerated than risperidone and 
olanzapine. Low doses of quetiapine is the most adequate and efficacious 
antipsychotic treatment for these patients [48]. 

2.5. FRONTOTEMPORAL DEMENTIA 

Frontotemporal dementia is not a single entity. It is a group of disorders in which 
there is a tendency towards asymmetric cortical atrophy in anterior structures of 
the frontal and temporal lobes, sparing the parietal lobe structures. It includes 
three clinical pictures. Behavioral frontotemporal dementia is characterized by 
apathy, disinhibition and loss of empathy leading to socially inappropriate 
behavior. Patients do not take care of diet, personal hygiene, become impulsive 
and careless. Neuroimaging shows focal atrophy of the nondominant 
orbitofrontal, medial frontal and anterior insular cortex. The typical 
histopathological feature is the presence of frontotemporal lobar degeneration 
associated tau aggregates (FTLD-tau), FTLD-TAR DNA-binding protein (FTLD-
TDP) and FTLD fused-in-sarcoma protein (FTLD-FUS) (for additional 
information see Chapter 12). Semantic variant of frontotemporal dementia is 
characterized by word-finding difficulty due to a loss of semantic meaning. 
Additional symptoms are impaired face recognition and inflexible behavior. 
Neuroimaging reveals temporal pole atrophy worse in dominant hemisphere. 
FTLD-TDP is the usual pathophysiological finding. Progressive nonfluent aphasia 
variant is characterized by slow and difficult speech with dysarthria and phonemic 
errors. Basic comprehension is preserved but there is difficulty understanding 
complex sentences. Motor features are orobucal apraxia, tremor and rigidity. 
Neuroimmaging reveals asymmetric dominant frontal opercular and anterior 
insular atrophy with involvement of ipsilateral striatum and subcortical nuclei. 
Neuropathology reveals FTLD-tau in these patients [50]. 
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There is no FDA-approved therapy for frontotemporal dementia. For this reason 
off-label medication prescription is common. Serotonin reuptake inhibitor 
antidepressants and antipsychotic medications are often used [50]. In an open-
label study patients treated with fluoxetine, sertraline or paroxetine showed a 
reduction in depressive symptoms, disinhibition and compulsions [50]. Trazodone 
was effective in a placebo-controlled trial to control behavioral symptoms [50]. 
Antipsychotic medications risperidone and olanzapine have been tested with some 
benefit [50]. Patients with frontotemporal dementia are very sensitive to 
extrapyramidal symptoms of antipsychotic medications. In frontotemporal 
dementia there is a relative preservation of cholinergic neurons suggesting that 
anticholinesterase drugs are not effective to improve cognitive function. On the 
other hand, the improvement of psychiatric symptoms by anticholinesterase drugs 
in Alzheimer's disease raised the possibility of similar effects in frontotemporal 
dementia. The lack of evidence for a benefit of galantamine and rivastigmine and 
the possibility that donepezil may worsen the behavioral variant of frontotemporal 
dementia led to the recommendation to avoid cholinesterase inhibitors in 
frontotemporal dementia. On the other hand, clinical trials showed that memantine 
was beneficial for behavioral symptoms in frontotemporal dementia even though 
more studies are needed to verify the benefit of memantine as a symptomatic 
therapy or a disease modifying therapy [50]. 

2.6. PICK'S DISEASE 

Pick's disease accounts for 0.4% to 2% of dementia cases and its onset is before 
65 years age, with no gender preference. It progresses with aphasia and behavioral 
disturbances, rapidly causing disability and death. Neuroimaging shows atrophy 
of the frontal and anterior temporal lobes, confirmed by PET and MRI that reveal 
a marked reduction in perfusion of these areas. The neuropathologic characteristic 
of this disease are Pick bodies and Pick cells. Pick bodies are round, well-
circumscribed cytoplasmic eosinophilic and argyrophilic inclusions. Pick cells are 
large swollen ballooned neurons with vacuolated cytoplasm. There is some 
terminological confusion because some authors use the term Pick's disease only if 
Pick bodies are present whereas others consider the clinical picture and focal 
atrophies as hallmarks. Pick's disease is caused by accumulation of mutations in 
the protein tau, altering its interaction with microtubules and leading to its 
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abnormal phosphorylation and polymerization. In this regard, Pick's disease can 
be classified as a tauopathy [51, 52]. There is no specific pharmacological 
treatment for Pick's disease. Antidepressants and antipsychotics may help to 
control behavioral disturbances that can be dangerous to patient and others. Some 
patients with Pick's disease receive the same medications used to treat Alzheimer's 
disease such as anticholinesterase inhibitors and memantine, but there is no 
conclusive evidence that these medications can help. Speech and occupational 
therapy may improve communication and movement [51, 52]. 

2.7. PROGRESSIVE SUPRANUCLEAR PALSY 

Progressive supranuclear palsy is a neurodegenerative tauopathy that manifests in 
various syndromes. The classical phenotype, named Steele-Richardson-Olszewski 
syndrome, is characterized by bradykinesia, rigidity and tremor, modestly 
responsive to levodopa, which evolves with supranuclear gaze palsy, postural 
instability, reduced eyeblink and swallowing disorders. Cortical signs such as 
amnesia and aphasia tend to be mild in more typical forms. In some atypical 
forms, progressive apraxia of speech, nonfluent aphasia and impaired executive 
functioning may evolve. Neuroimaging may show the hummingbird sign, in 
which mid-saggital images look like a hummingbird. Frontosubcortical 
hypometabolism can be found by PET. There is currently no effective treatment 
for progressive supranuclear palsy. Symptomatic treatment includes levodopa, 
dopamine agonists and anticholinergic drugs which can help to improve rigidity 
and bradykinesia but are not as effective as in Parkinson's disease. 
Antidepressants may help to improve behavioral symptoms. Walking aids and 
exercises may be helpful. Gastrostomy may be necessary to treat swallowing 
disturbance. The main causes of death are pneumonia, fractures and head injuries 
caused by falls. Well treated patients can reach old age [53]. 

2.8. AMYOTROPHIC LATERAL SCLEROSIS 

Amyotrophic lateral sclerosis is characterized by progressive muscle wasting in 
more than one segment of the neuroaxis producing progressive muscle weakness, 
fibrillations, stiffness, and pathological reflexes. Cognitive alterations were found 
in selected populations, typically presenting as subtle deficits in mental flexibility, 
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verbal fluency and abstract reasoning. The main neuropathological characteristic 
of amyotrophic lateral sclerosis is the formation of intraneuronal aggregates of 
phosphorylated neurofilaments. Neurofilaments are a component of neuron's 
cytoskeleton providing support to axonal radial growth. These findings suggest 
that disturbances in the metabolism of neurofilaments lie in the basis of the 
pathogenesis of amyotrophic lateral sclerosis. Degeneration of selective 
populations of motor neurons is observed, including supraspinal motor pathways, 
spinal motor neurons and brainstem. The classical sporadic form accounts for 
most cases. Familial amyotrophic lateral sclerosis accounts for less than 10% of 
cases and can be autosomal dominant or X-linked. More recently a relationship 
between amyotrophic lateral sclerosis and frontotemporal dementia has been 
demonstrated the by the discovery that TDP-43 and FTLD-FUS proteins are 
molecular markers in most amyotrophic lateral sclerosis [54, 55] (for additional 
information see Chapter 10). 

Presently, there is no curative treatment for amyotrophic lateral sclerosis. Riluzole, 
the only FDA-approved drug for this disease, is an antiglutamatergic agent with 
some efficacy to prolong survival and slow disease progression. Some evidence 
shows that patients receiving riluzole present less neuronal loss. The most common 
adverse effects associated to riluzole are asthenia, nausea, dizziness, and a reversible 
elevation of liver enzymes [56]. Many other drugs are being tested: dexpramipexol, 
l-threonine, gabapentin, lamotrigine, nimodipine, TRH etc. Many related symptoms 
need to be addressed: malnutrition, respiratory disturbances, muscle cramps, 
sialorrhea, pain, fatigue, constipation, dysarthria, pseudobulbar affect, depression, 
anxiety and sleep disturbances. Physical and respiratory therapy may be helpful. 
Respiratory support is needed in advanced stages [53, 54]. 

2.9. HUNTINGTON'S DISEASE 

Huntington's disease is a neurodegenerative genetic disorder with autosomal 
dominant inheritance. Its symptoms become evident in middle aged adults and 
include chorea, dystonia, Parkinsonism, tics, myoclonus, depression, apathy, 
anxiety, irritability, psychosis and cognitive deterioration. Genetic mutation 
results in the production of a mutant isoform of a protein called Huntingtin (Htt). 
Huntingtin is related to cell signaling but its mutant form becomes toxic to many 
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types of cells in the brain (for additional information see Chapter 9). There is no 
cure for Huntington´s disease. Tetrabenazine is the only FDA-approved drug for 
chorea and tics in Huntington's disease. Clonazepam may be useful in treating 
dystonia and myoclonus. Psychiatric symptoms can be treated with specific 
medications. Antidepressants like mirtazapine are recommended for depression. 
Atypical neuroleptics are recommended for psychosis and behavioral 
disturbances. As the disease progresses, the patient becomes less autonomous and 
multidisciplinary caregiving becomes vital. There are some evidence supporting 
the utility of physical, occupational and phonoaudiologic therapy [57]. 

2.10. CEREBELLAR ATAXIAS 

Cerebellar ataxias are a group of hereditary neurodegenerative disorders 
characterized by progressive degeneration of the cerebellum, resulting in ataxia and 
incoordination of gait, hands, speech and eye-movements. Involvement of the spinal 
tracts is common, accompanied by diminished vibratory sense and hyperreflexia. 
Extrapyramidal signs, spasticity, cognitive impairment, polyneuropathy, 
ophtalmoplegia and epilepsy may occur. Autosomal dominant cerebellar ataxias are 
classified in 26 different subtypes. Not all types of the disease have similar prognosis 
and severity but it is always progressive and most patients will need a wheelchair in 
advanced stages. Friedreich ataxia (FA) and ataxia telangiectasia (AT) are the most 
common autosomal recessive cerebellar ataxias. Friedreich ataxia is characterized by 
ataxia, dysarthria, absence of deep tendon reflexes, corticospinal signs and has an 
early onset, before 25 years of age. Cardiomiopathy, distal scoliosis, distal muscle 
atrophy and diabetes are common features. The gene for FA (FRDA1) encodes 
frataxin, a mitocondrial protein. FA is thought to be caused by a mitochondrial 
dysfunction. Ataxia teleangectasia is characterized by oculomotor apraxia, ataxia, 
oculocutaneous telangiectases, choreoathetosis and dystonia. Immunodeficiency, 
hypersensitivity to ionizing radiation and predisposition to tumors are also present. 
Other autosomal recessive cerebellar ataxias are abetalipoproteinemia, Charlevoix-
Saguenay ataxic syndrome, Marinesco-Sjögren syndrome, Cayman ataxia among 
others. Some autosomal recessive ataxias are part of a metabolic disorder including 
metachromatic leucodystrophy, cerebrotendineous xanthomatosis (CTX), 
sphingomielin storage disorder, GM1 gangliosidosis, Tay-Sachs disease, Wilson's 
disease, aceruloplasminemia, Refsum's disease, sialidosis, chorea-achanthocytosis 
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and leucoencephalopathy with vanishing white matter. Peripheral neuropathy is seen 
in AT and abetalipoproteinemia. Kaiser-Fleisher ring is characteristic of Wilson 
disease. Retinitis pigmentosa, anosmia polyneuropathy, cerebellar ataxia, deafness 
and ichthyosis are characteristic of Refsum's disease. Cerebrotendineous 
xanthomatosis is characterized by white matter lesions, juvenile cataracts, tendon 
xanthomas, chronic diarrhoea, ataxia, pyramidal signs, dementia, epilepsy and 
polyneuropathy. The most common x-linked cerebellar ataxias are 
adrenoleucodystrophy and fragile-x-associated tremor ataxia syndrome (FXATAS). 
Adrenoleucodystrophy is characterized by cerebellar ataxia and impaired 
adrenocortcal function, sometimes with cognitive decline. FXATAS is characterized 
by intension tremor, gait ataxia, Parkinsonism, polyneuropathy, dementia and 
dysautonomia. Some cerebellar ataxias are of maternal mitochondrial inheritance 
like Kearns Sayre syndrome and MELAS (myopathy, encephalopathy, lactic 
acidosis and stroke-like episodes) [58, 59]. 

In most cases medication is directed to control symptoms of tremor, stiffness, 
depression and spasticity. In autosomal dominant forms acetazolamide and also 
gabapentin have shown some effectiveness for cerebellar signs. In autosomal 
recessive subtypes, daily supplementation of vitamin E prevents 
neurodegeneration. In Refsum's disease, restriction of intake of phytanic acid may 
prevent onset of symptoms. Chenodeoxycholic acid stabilizes CTX. Baclofen and 
botulinum toxin may be used to treat spasticity. Dopaminergic and anticholinergic 
therapy may improve dystonia, tremor and bradykinesia. Muscle cramps can be 
relieved by benzodiazepines. Physical therapy can help patients to maintain 
autonomy and improve their quality of life [58, 59]. 

2.11. PRION DISEASES 

Prion diseases are neurodegenerative diseases caused by an anomalous conformer 
of the prion protein [60-62]. The function of normal prion protein (PrPc) is still 
uncertain but it has been related to a wide range of functions, based on knock-out 
mice studies, including cell signaling, protection against neuronal death, 
neuromuscular conduction, memory formation, regulation of the sleep-
wakefulness cycle and immunomodulation [60-62]. Prion diseases are 
transmissible by inoculation of a misfolded prion-protein (PrPsc) that induces 



44   Young Perspectives for Old Diseases Walter A. S. Moraes 

 

endogenous PrPc to convert into pathologic infectious prion form, in a continuous 
process of exponential growth. PrPsc produces aggregates that accumulate in 
infected tissue causing death. Alternatively, mutations in the endogenous PrPc can 
cause familial forms of the disease [61]. Prion diseases can affect humans and 
animals. Human prion disease variants are Creutzfeld-Jakob disease, Gerstmann-
Straussler-Scheinker syndrome, fatal familial insomnia and kuru [60, 61]. Prion 
diseases can be transmitted from animals to humans by ingestion of infected meat. 
There is no cure for prion diseases, partly because at the time it is detected most 
of the brain damage is already done. Presently there is no early diagnostic test for 
prion diseases. Future treatment targets are directed to avoiding conversion from 
normal to pathological PrP isoforms and to promote neuroprotection [61, 62]. The 
available symptomatic treatments include antidepressants, anxiolytics and 
neuroleptics that can promote temporary relief [60, 61]. 

Table 3: Pharmacological Treatment for Other Neurodegenerative Diseases 

Condition Drugs Use 

Dementia with 
Lewy Bodies 
[47-49] 

No FDA approved for this 
form of dementia.  

Off-label medications: Donepezil, rivastigmine and 
galantamine are effective for cognitive and psychiatric 
symptoms. Levodopa treatment is not as effective as in 
Parkinson's disease. Dopamine agonists cause psychiatric 
symptoms. Antipsychotic drugs cause sedation, rigidity 
and postural instability. Quetiapine is the most adequate 
antipsychotic. 

Frontotemporal 
Dementia [50] 

No FDA approved for this 
form of dementia.  

Off-label medications: Fluoxetine, paroxetine, sertraline 
improve depressive symptoms. Trazodone improves 
behavioral symptoms. Risperidone and olanzapine may 
improve hallucination and psychosis. Anticholinesterase 
drugs are not indicated. Memantine can improve 
cognitive and behavioral symptoms. 

Pick's Disease 
[51, 52] 

No FDA approved for this 
form of dementia. 

Off-label medications: Antidepressants and 
antipsychotics may be helpful to control behavioral 
symptoms. Anticholinesterase inhibitors and memantine 
can improve cognitive and behavioral symptoms. 

Progressive 
Supranuclear 
Palsy (Steele-
Richardson-
Olszewski 
Syndrome) [53] 

No FDA approved for this 
condition. 

Off-label medications: Levodopa, dopamine agonists and 
anticholinergic drugs can improve rigidity and 
bradykinesia. Antidepressants may improve behavioral 
symptoms. 

Amyotrophic 
Lateral Sclerosis 
[54-56] 

Riluzole (antiglutamatergic) Riluzole slow disease progression and prolong survival. 
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Table 3: contd... 

Huntington 
Disease [57] 

Tetrabenazine (vesicular 
monoamine transporter 
inhibitor) 

Tetrabenazine improves chorea and tics. 
Off-label medications: Clonazepam may improve 
dystonia and myoclonus. Mirtazapine can improve 
depressive symptoms. Atypical neuroleptics may be 
useful for behavioral symptoms 

Cerebellar 
Ataxias [58, 59] 

Autosomal recessive types: 
vitamin E 
Refsum's: restriction of 
phytanic acid 
Cerebrotendineous 
xanthomatosis: 
chenodeoxycholic acid 

Off-label symptomatic medications: Acetazolamide and 
gabapentin may improve cerebellar signs in autosomal 
dominant subtypes. Baclofen and botulinum toxin may 
improve spasticity. Dopaminergic and anticholinergic 
therapy may improve dystonia, tremor and bradykinesia. 
Muscle cramps can be relieved by benzodiazepines. 

Prion diseases 
[60-62] 

No FDA approved for these 
conditions. 

Off-label medications: Symptomatic treatment include 
antidepressants, anxiolytics and neuroleptics 
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Abstract: Over the last decades, a large number of experimental models have been 
developed to explore the mechanisms underlying neurodegenerative disorders. Invertebrate 
models of neurodegeneration, such as the fruit fly Drosophila melanogaster and the 
nematode Caenorhabtidis elegans, have emerged as successful complementary systems to 
mammalian models, facilitating identification of relevant pathways and novel disease-
associated genes. These organisms provide reliable systems for identifying genetic 
modifiers of neuropathologies and the interesting possibility of screening and testing 
potential drugs for treatments to prevent and/or alleviate disease symptoms. 

This chapter will focus on the main experimental strategies used in Drosophila 
melanogaster and Caenorhabtidis elegans to study neurodegeneration. Insights from 
forward genetic approaches, transgenic models of human neurodegenerative disorders 
and studies of fly/worm homologs of human disease genes will be presented. The value 
of using invertebrate models for the study of neurodegeneration will be discussed, 
highlighting advantages and limitations associated with these studies. 

Keywords: Alzheimer’s disease, Caenorhabtidis elegans, Drosophila 
melanogaster, drug screening, forward genetics, fruit flies, genetic enhancers, 
genetic screen, genetic suppressors, Huntington’s disease, invertebrate models, 
neurodegenerative diseases, neurodegeneration, neuronal death, Parkinson’s 
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3.1. INTRODUCTION 

Human pedigree analyses and gene linkage studies on families and populations 
with patterns of inherited neurodegenerative diseases have revealed genetic 
mutations responsible for disorders such as Alzheimer’s disease, Amyotrophic 
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lateral sclerosis, Huntington’s disease and Parkinson’s disease [1]. The 
identification of such mutations has opened a new field in neurosciences focused 
on deciphering the function of human disease genes in transgenic animals, with 
the ultimate aim of discovering the mechanisms of the associated neuropathology. 

A large number of experimental disease models based on mutations in homologs 
of human disease-associated genes or direct expression of human 
neurodegenerative-associated disease genes have been established in the past 
years [1-8]. Traditional animal models, such as rodents, seem ideal disease model 
systems given their close evolutionary relationship with humans [6]. Yet, rodents 
are expensive and laborious to maintain. In this respect, invertebrate model 
organisms such as the fruit fly D. melanogaster and roundworm C. elegans are 
excellent alternatives for studying mechanisms of neurodegeneration. These 
simple model systems offer enormous experimental advantages, including short 
generation times, large number of offspring and low cost of maintaining in the 
laboratory. In addition, there exist powerful techniques for manipulating gene 
expression and function that have emerged in worms and flies, including the 
ability to perform large-scale genetic screens and genome-wide analyses of 
genetic interactions based on the modification of a given phenotype [9-11]. 
Finally, compared to vertebrates, Drosophila and C. elegans have the key benefit 
of relatively low genetic redundancy, as genes are usually present in one copy. 
This greatly simplifies genetics studies. 

Despite these clear experimental advantages, it could be argued that invertebrate 
physiology is far too different from human physiology to directly translate 
findings in flies or worms to humans. Indeed, there are important differences that 
should be taken into consideration, e.g., invertebrates have a less complex nervous 
system - with fewer neurons, glia and synapses than the human brain. 
Additionally, worms and flies lack some important components for many 
vertebrate pathological phenomena, such as inflammatory processes and neuronal 
myelination. Nevertheless, flies and worms share many fundamental cellular and 
molecular pathways with mammals, including those governing gene expression, 
cell cycle regulation, membrane trafficking, cellular toxicity and cell death. 
Importantly, the basic structural and functional components of the nervous 
systems are highly conserved between invertebrates and humans, including 
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Synaptic Proteins, ion channels and neurotransmitters (e.g. dopamine, 
acetylcholine, glutamate and GABA) [12-15]. This suggests that the fundamental 
mechanisms underlying neuronal viability and synapse function are evolutionarily 
conserved across species. Interestingly, various human pathological processes 
including cancer, ageing, neurodegeneration and infectious diseases also affect 
flies and worms. In this regard, the annotation of the C. elegans and Drosophila 
genomes revealed that more than 70% of the genes associated with human genetic 
disorders are present in these organisms (http://superfly.ucsd.edu/homophila/; [16-
19]). Importantly, expression of several human neurodegenerative disease-
associated genes in flies or worms recreates key neuropathological features of the 
disease including, in some cases, age-dependent neuronal degeneration, 
vulnerability of specific neuronal types and accumulation of proteins in abnormal 
aggregates [3, 20-26]. This demonstrates important parallels between these 
organisms and humans. These simpler model systems have served as platforms for 
identifying genes and pharmacological compounds that modulate the pathology, 
thus providing insights into the genetic and molecular basis of neurodegeneration 
[3, 4, 20-23, 25, 26]. In addition, unbiased genetic screens in invertebrates have 
uncovered genes not previously suspected to be involved in neuronal maintenance 
and viability, and interestingly, disrupting the function of some of these genes in 
more complex organisms also results in neurodegeneration. These findings 
validate such approaches as a meaningful way to identify conserved genes 
required to maintain nervous system integrity [24, 27, 28]. 

It is thus clear that Drosophila and C. elegans represent valuable model systems 
to study basic mechanisms governing neuronal dysfunction and death associated 
with human diseases. 

3.2. DROSOPHILA MELANOGASTER: BASICS OF A POWERFUL 
GENETIC MODEL SYSTEM 

Over a century of intensive research using Drosophila melanogaster to study 
complex biological processes has generated a vast knowledge about its genetics, 
anatomy and development. This small insect (of about 3 mm in length) lives near 
unripe and rotten fruit in nature (Fig. 1A). Fruit flies develop through embryo, 
larval, and pupal stages followed by metamorphosis into the adult fly. They have 
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a short life cycle, of 10 days at 25 °C, and adults live for ~2–3 months, with the 
potential of producing hundreds of offspring. This is in contrast to rodent models, 
where only a few offspring are produced every 3 to 4 months. Although the fly 
nervous system (Fig. 1B) has ~1 million-fold fewer neurons than the human brain, 
it is still capable of producing many complex behaviors, including mating 
behavior, intra-specific aggression, and learning and memory [29]. The adult fly 
brain contains around 200,000 neurons, including neurons involved in sensory 
perception, integration and motor output. 

 

Figure 1: Fruit flies and worms: their anatomy and nervous system. (A) Image of an adult male and 
female Drosophila melanogaster performing the courtship ritual (top and bottom, respectively). (B) 
The Drosophila nervous system. The adult brain (top) and ventral nerve cord (bottom) are labeled 
with anti-nc82, a synaptic marker (shown in magenta). A sex-specific neuronal circuitry is visualised 
with anti-GFP antibody (shown in green). Scale bar: 100 μm. (C) Caenorhabtidis elegans (L1) larvae, 
soon after hatching. Scale bar: ~50 μm. (D) The C. elegans nervous system. Three types of motor 
neurons are shown in the ventral nerve cord of a triple transgenic animal: B-type motor neuron (DB; 
shown in green), A-type motor neuron (DA; shown in yellow) and D-type motor neuron (DD; shown 
in red). Scale bar: 50 μm. Images in A and B were taken by Carolina Rezával, University of Oxford. 
Pictures in C and D were kindly donated by M Gravato-Nobre, University of Oxford. 



The Greatness of the Smallest Ones Young Perspectives for Old Diseases   53 

Sophisticated genetic techniques, such as random transposon tagging, site-specific 
transgenesis and recombination-mediated genetic engineering allow efficient 
manipulation of gene expression and function. There exist online databases containing 
valuable information regarding different aspects of Drosophila biology, including 
genes, mutations, phenotypes and available stocks (Flybase: http://flybase.org/), as 
well as nervous system anatomy (Flybrain: http://flybrain.neurobio.arizona.edu/; 
flymind) and development (the Interactive Fly: http://www.sdbonline.org/fly/ 
aimain/1adult.htm). 

3.3. C. ELEGANS: BASICS OF A CELLULARLY DEFINED MODEL 
SYSTEM 

C. elegans is a free-living nematode of only ~1 mm in length that lives in temperate 
soil environments (Fig. 1C). These roundworms have a rapid generation cycle (~3 
days), short lifespan (~3 weeks) and two sexes: hermaphrodites (comprising most of 
the population) and males (comprising approximately 0.1% of the total population). 
After hatching, they undergo four larval stages (L1–L4) to become an adult. Under 
non-favorable environmental conditions, such as starvation or stress, C. elegans can 
enter an alternative third larval stage: the “dauer state”. They can persist as stress-
resistant dauer larvae for weeks or even months. When suitable environmental 
conditions are resumed, animals re-enter the life cycle at the fourth larval stage. An 
adult hermaphrodite produces about 300 self-fertilized eggs over a period of 3 days, 
and more than 1,000 eggs after male insemination. 

Worms are straightforward to cultivate and propagate in the laboratory, as thousands 
of them can be reared on small agar-filled Petri plates or liquid media seeded with 
bacteria (e.g. Escherichia coli). In addition, worm strains can be frozen in glycerol, 
allowing for long-term storage. Bioinformatics and functional genomic databases 
providing valuable information of C. elegans are available on line [11], such as 
WormBase (http://www.wormbase.org) and WormAtlas (http://www.wormatlas.org). 

One of the most remarkable features of worms is their transparent body, allowing for 
the visualization of all cells at all stages of development. Indeed, the complete cell 
lineage of C. elegans has been precisely described. The adult consists of 959 somatic 
cells, 302 of which are neurons that include chemosensory, mechanosensory, and 
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thermosensory types [11, 30] (Fig. 1D). In contrast to flies, worms lack a centralized 
brain. Interestingly, the position of each neuron, fate and synaptic connections has 
been characterized in great detail [30, 31], simplifying the study of neurodegenerative 
phenotypes. 

3.4. GENETIC APPROACHES TO STUDY NEURODEGENERATION IN 
FLIES AND WORMS 

There are four interconnected and complementary approaches based on “reverse” 
and “forward” genetics to study neurodegeneration in flies and worms (Fig. 2): 

i. Transgenic models of human diseases 

ii. Loss-of-function of fly or worm homologs of human disease- 
associated genes 

iii. Screen of novel genes involved in neurodegeneration 

iv. Identification of modifiers of neurodegenerative phenotypes 

 

Figure 2: Using invertebrates to study neurodegeneration. The main experimental strategies 
employed in D. melanogaster and C. elegans to study neurodegeneration. These approaches are 
interconnected: a neurodegenerative phenotype caused by either (1) expression of a human disease 
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gene, (2) inactivation of a given disease gene ortholog or (3) mutation of a novel fly/worm 
neurodegenerative gene can be used as a platform to identify genetic enhancers and suppressors, or 
chemical compounds, that modify the original neuropathology. Genetic and chemical modifiers 
identified in forward genetic approaches can be studied in reverse genetic models and vice versa. 

i) Transgenic Models of Human Diseases 

“Reverse” genetics (from causal gene to phenotype) consists of evaluating the 
function of a candidate gene in a given biological process. Once the function of 
the gene has been altered, the effect on the physiology and/or behavior of the 
organism can be subsequently analyzed. Following such approach, wild type or 
mutant human genes previously linked to neurodegenerative disorders can be 
expressed in flies or worms. A successful transgenic model should recapitulate 
behavioral and pathological features of the human neurodegenerative disorder, 
allowing researchers to study the fundamental pathways influenced by 
pathological genes. By overexpressing human disease-associated genes in a 
specific subset of cells or tissues in both flies and worms, lethal effects resulting 
from broad mis-expression can be circumvented. In Drosophila, the GAL4/UAS 
binary system [32] provides a very efficient method for expressing genes in a 
tissue and time-dependent manner. In one parental strain, promoter regions for a 
particular gene drive expression of the yeast transcription factor GAL4 in defined 
tissues or cellular types. The second fly strain bears a transgene under the control 
of the upstream activation sequence (UAS) that is recognized by GAL4. The 
resulting progeny will express the gene of interest only in those tissues or cells 
expressing the GAL4 protein (Fig. 3). In most fly disease models a human 
pathogenic transgene is fused to UAS (UAS-transgene) and expressed in a 
specific pattern. There are several collections of transgenic “GAL4 drivers” 
specific for different tissues or cell-types available to direct the expression of the 
gene of interest (http://flybase.org/). The eye-specific promoter GMR (Glass 
Multimer Reporter) has been extensively used to express pathological transgenes 
in the developing compound eye. This regular structure, composed of highly 
organized eye units known as ommatidia, allows the identification of 
neurodegenerative phenotypes using a standard light microscope or scanning 
electron microscopy to detect altered ommatidial numbers or arrangement that 
typically lead to a “rough” eye phenotype and loss of photoreceptor neurons (Fig. 
4 A-E). Use of GMR-based constructs has been particularly useful for genetic 
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enhancer/suppressor screens [33-35]. Neurodegeneration in the brain can be 
detected by the appearance of vacuoles (holes) (Fig. 4F,G). Specific transgenes 
can be broadly expressed in the brain (e.g. via the pan-neuronal driver elav-GAL4) 
or, alternatively, in specific subsets of neurons (via neuron type-specific drivers, 
such as those for dopaminergic or serotonergic neurons (TH-GAL4 or TRH-GAL4, 
respectively). Thus, it is possible to investigate cell-type-specific death associated 
with the expression of pathological genes. Different modifications of the 
GAL4/UAS system have been developed to further refine tissue specificity as 
well as temporal expression [36, 37]. By employing these techniques, it is 
possible to manipulate biological processes in the adult brain without affecting 
nervous system development. It should be noted, however, that high levels of 
GAL4 protein can trigger neuronal death per se, thus an excess of GAL4 might 
enhance neuronal defects observed in neurodegeneration models [38]. 

 

Figure 3: A powerful genetic tool to study neurodegeneration in flies. The GAL4/UAS system 
allows spatial and temporal gene expression in flies. In fly disease models a human pathogenic 
transgene is fused to a sequence (UAS) recognized by the transcription factor GAL4 (UAS-
transgene). The fly line carrying such transgene is crossed to another one carrying GAL4 under the 
control of a specific promotor (GAL4 driver). The resulting progeny will express the gene in a 
specific cell or tissue type, depending on the GAL4 driver. This system also serves to knockdown 
the expression of an endogenous gene in selected cell types or tissues. In this case, a line 
expressing RNA interference (RNAi) against a specific gene under the control of UAS (UAS-
RNAi) is crossed to the GAL4 driver line. 

C. elegans can also be genetically manipulated to express human transgenes 
associated with neurodegenerative diseases. Generation of transgenic worms is 
relatively simple, low-cost and quick. It usually involves injection of transgenes 
into the gonad of hermaphrodite adults or bombardment with DNA-coated 
microparticles [39]. The MosTIC technique provides a means to engineer single 
copy transgenes at a defined locus in the genome [40]. 
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Figure 4: Neurodegenerative phenotypes in Drosophila melanogaster. The fly compound eye is a 
highly organized structure that allows detecting toxicity very easily under standard light 
microscopy (A-C) or scanning electron microscopy (D-E). Downregulation of the cytoskeleton 
gene enabled (ena) in the eye leads to disorganization of photoreceptor neurons and retinal 
degeneration in GMR-GAL4>ena rev flies (B,C,E). Images of wild-type flies showing normal eye 
morphology are shown in A and D. Neurodegeneration triggered by decreased enabled levels can 
be also detected in adult fly head semi-thin sections of elav-GAL4>enarev flies stained with 
methylene blue by light microscopy. Young (0–3 days) and old (30 days) elav-GAL4>enarev flies 
are shown in F and G, respectively. While the nervous system of young flies is well preserved (F), 
age-dependent degeneration characterized by the occurrence of vacuoles in specific areas of the 
brain is observed in old flies (G). Scale bar: 50 µm. Images (D-G) taken from: Rezaval et al., 
2008. PLoS One 3, e3332. 

Gene expression can be modulated by promoter-driven expression in worms; for 
example, transgenes can be directed to muscle cells (via the unc-54 promoter) or 
particular subsets of neurons, such as dopaminergic neurons (via the dopamine 
transporter dat-1 promoter), or touch neurons (via the mec-7 promoter). The 
transparent nature of C. elegans facilitates in vivo visualization of neurons 
throughout the lifetime of the animal, using fluorescent marker genes, such as the 
jellyfish Green Fluorescent Protein (GFP) [41, 42]. Thus, the effects of genetic 
and pharmacological modulators on neuronal viability can be easily evaluated in 
living worms by detecting signs of cell dystrophy, such as vacuolization and 
protein aggregation [3, 43, 44] (Fig. 5). 
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Figure 5: Neurodegenerative phenotypes in C. elegans. (A-C) Misfolding and aggregation of α-
synuclein in nematodes. Photomicrographs of transgenic C. elegans displaying muscle-specific 
expression of α-synuclein: GFP. (A) Misfolded α-synuclein forms small (arrowhead), medium 
(small arrow) and large aggregates (arrow) in body wall muscle cells. (B) Decreased α- synuclein: 
GFP misfolding is observed when the chaperone TOR-2 is simultaneously expressed, 
demonstrating the utility of this transgenic strain in screening for enhancers/suppressors of 
misfolding. (C) Following RNAi of specific gene targets in worms expressing TOR-2 + α 
synuclein: GFP misfolded α-synuclein is again detected (arrows). (D-E) α-synuclein-induced 
toxicity in dopaminergic neurons in C.elegans. (D) The six dopaminergic neurons in the anterior 
region of C. elegans (four CEP and two ADE neurons) are visualized in a transgenic Pdat-1: GFP 
worm where GFP is under the control of the dopamine transporter promoter. The dendrites of the 
CEPs are indicated with large arrows and the cell bodies of the ADEs are shown with arrowheads. 
(E) CEP and ADE age-dependent degeneration is observed in worms expressing both Pdat-1: GFP 
and Pdat-1:  α-synuclein. A 7-day old worm displays two intact CEP neurons (large arrows), one 
retracting (degenerating) CEP dendrite (small arrow), and one intact ADE neuron (arrowhead). 
The additional CEP and ADE neurons have degenerated and are no longer visible (grey arrow and 
arrowhead represent normal locations of the CEP and ADE, respectively). Images taken from: 
Harrington et al., 2011. Methods 53, 220-225. 

ii) Loss-of-Function of fly or Worm Homologs of Human Disease Genes 

Following a reverse genetic approach, fly or worm genes with similarity to 
specific human familial neurodegenerative disease-associated genes can be 
disrupted and the resulting mutant phenotype investigated. In Drosophila, total or 
partial genetic inactivation can be achieved via (1) transposon-mediated 
mutagenesis [9, 45-49], (2) GAL4/UAS–mediated RNA interference (RNAi) [48, 
50] and (3) homologous recombination-based gene knockout [51-53]. Several 
large-scale P element gene disruption projects have generated thousands of stocks 
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of flies containing single P elements insertions at known locations in the genome. 
Many of these are available in fly stock centers (http://www.flybase.org). P 
elements have become key genetic tools in Drosophila, used not only as mutagens 
but also for in vivo gene tagging and inserting transgenes [9, 48, 49]. 

The second mutational strategy is based on RNA interference (RNAi), the gene-
specific degradation or inhibition of an mRNA that prevents the encoded protein 
from being synthesized. This evolutionarily conserved mechanism was first 
characterized in C. elegans, and is triggered by double stranded RNA (dsRNA) 
that shares sequence identity to a specific mRNA [54]. RNAi is cleaved in vivo 
into short fragments that guide sequence-specific mRNA degradation or 
translational repression. The technique of RNAi, coupled with the availability of 
the complete genomic sequences of Drosophila and C. elegans has made possible 
the rapid study of gene function, both on a single gene level and at a global scale. 
In flies, specific RNAi targeting can be achieved via the GAL4/UAS system: a 
UAS line expressing an RNAi sequence (UAS-RNAi) is used in conjunction with a 
specific GAL4 line to knockdown the expression of the gene in selected cell types 
or tissues. Collections of RNAi knockdown strains targeting ~90% of the entire 
Drosophila melanogaster genome are available to the research community [50]. It 
should be noted, however, that RNAi often results in only partial gene inactivation 
or, in some cases, no inactivation at all. In this regard, the use of the enzyme Dicer 
has greatly improved the efficiency of the RNAi methodology in Drosophila, such 
that dsRNAs are better processed in the presence of this enzyme [55]. 

In the third mutational strategy, homologous recombination-based gene knockout 
allows precise gene targeting to eliminate a specific gene [51, 52, 56]. Gene 
targeting is the modification of an endogenous gene sequence by recombination 
between an introduced DNA fragment and the homologous target gene [57]. This 
method has proven to be a valuable tool for altering genes in mice [58] as well in 
Drosophila [51, 56]. 

Currently, several methods are available for genetic inactivation of genes in  
C. elegans, including i) transposon-mediated mutagenesis and ii) use of RNAi 
[54, 59]. As in Drosophila, transposon-mediated mutagenesis in C. elegans is 
based on active transposable elements to inactivate gene function. In such 
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approaches, transposons are mobilized randomly in a Drosophila or C. elegans 
strain and independent lines are then screened for the presence of a transposon 
insertion in the gene of interest [60, 61]. 

RNAi-based approaches to inactivate gene function have been utilized extensively 
in worms [54, 59]. Specific dsRNA can be delivered into the worm either by 
microinjection, at the single worm level, or by uptake of dsRNA by worms in 
solution (soaking) or feeding worms bacteria engineered to synthesize the specific 
dsRNA. The most reliable method for causing severe gene inhibition is 
microinjection; however, it is more labor intensive than other approaches. Soaking 
and feeding are more suitable methods for high-throughput genomic analyses, as 
large numbers of worms can be treated at once. Since C. elegans neurons are 
refractive to RNAi and not efficiently targeted by bacterial feeding approaches 
[59], techniques that aim to improve RNAi efficiency in neurons have been 
developed, such as selecting mutant strains that are more sensitive to RNAi [62, 
63]. However, it should be noted that strains with intrinsic mutant phenotypes 
could also interfere with the process of interest. 

More recently, homologous recombination methods have been developed to 
specifically disrupt gene function [64]. Yet these approaches are still laborious 
and not amenable for large scaling. 

iii) Screen of Novel Genes Involved in Neurodegeneration 

Classical “forward genetic” screens (from phenotype to causal gene) involve the 
generation of random mutations in the genome, screening of the resulting mutants 
for a specific phenotype and subsequent identification of the affected gene. 
Compared to “reverse genetics”, this approach is an unbiased method as it does 
not require previous knowledge about the nature of the emerging candidates. 
Therefore, unexpected genes and molecular pathways involved in a disease 
pathogenesis can be uncovered, which can be further studied in more complex 
animals. Large collections of mutants can be anatomically analyzed in search for 
“neurodegeneration hallmarks”, such as abnormal accumulation of pathogenic 
proteins and age-dependent neuronal death that can be identified by direct 
examination of the brain. Genetic screens can also be based on the observation 
that neurodegeneration is often associated with neuronal dysfunction that results 
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in altered physiology or behavior. Hence, these approaches select for mutations 
causing neuronal death, reduced lifespan or abnormal behaviors, such as 
progressive incoordination or paralysis [24]. 

How difficult is to produce Drosophila mutations in a large-scale? Ionizing 
radiation and chemical mutagens, such as ethyl methane sulphonate (EMS) or N-
ethyl-N-nitrosourea (ENU) are used to produce mutations in Drosophila. 
However, the identification of the resulting mutations at the DNA level is labor 
intensive, time consuming and consequently not practical on a genome-wide 
basis. In contrast, P element-induced mutations can be rapidly identified on a 
large scale. However, P elements tend to integrate preferentially into specific 
hotspots, thus reducing the proportion of the genome that can be randomly 
targeted. Several genome-wide collections of chemical or transposon-induced 
mutants are currently available from Drosophila stock centers. Alternatively, 
large collections of transgenic RNAi strains are also available and can be 
employed in combination with GAL4 lines to screen for mutant phenotypes [50, 
65]. The RNAi technique overcomes a clear limitation of traditional chemical or 
radiation mutagenesis screens in that it allows the identification of genes that 
generate lethality earlier in development, through restricting gene inactivation in a 
temporal and/or spatial fashion. In addition, the gene responsible for the 
phenotype of interest is already known, making it possible to establish a 
connection between a phenotype and the affected gene rapidly. 

In C. elegans, large mutant libraries are obtained by either (1) chemical mutagenesis, 
such as EMS, diethyl sulfate (DES) or N-nitroso-N-ethylurea (ENU); (2) irradiation 
with X-rays, γ-rays or UV light; (3) transposable element movement. Since chemical 
mutagens are easy to use, efficient and create a wide range of genetic lesions, they 
have been successfully used to generate mutant libraries for PCR-based 
identification of deletions in genes of interest [66]. The C. elegans Gene Knockout 
Consortium (GKC: http://celeganskoconsortium.omrf.org/) and the National 
Bioresource Project (NBRP: http://www.shigen.nig.ac.jp/c.elegans/index.jsp) have 
been established to isolate deletion mutants for all C. elegans genes. As in 
Drosophila, a critical bottleneck for chemical mutagenesis resides in the arduous 
task of genetic mapping and identification of the mutant gene. Transposon-based 
insertional mutagenesis is a strategy complementary to chemical mutagenesis and 
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greatly facilitates identification of mutant genes. However, the identification of 
mutagenic insertions can be complicated by the presence of multiple endogenous 
transposons in the worm genome. In this regard, mobilization of heterologous 
transposons such as the Drosophila mariner transposon Mos1, has provided a more 
efficient way to generate mutations. These mariner elements constitute unique 
transposon insertions in a C. elegans mutant strain and are thus more readily 
localized [67]. Unfortunately, such transposons are not as versatile as P elements in 
Drosophila and are not useful for introducing large DNA fragments into the worm 
genome. The fact that there is also a bias in the sites of mariner insertions in the 
worm’s genome represents an additional caveat. In this regard, the NemaGENETAG 
project (http://elegans.imbb.forth.gr/nemagenetag/) is contributing to expand the 
library containing transposon-tagged mutants in C. elegans. Emerging technologies, 
such as Mos TIC approach for genome engineering, allow the introduction of 
exogenous DNA sequences into predetermined genomic locations [40, 68]. 
Alternative approaches for gene inactivation include the use of RNAi in worms (e.g. 
[69]). RNAi by feeding is the least labor intensive and the most economical method 
used for high throughput genome-wide screenings, allowing large numbers of genes 
to be evaluated simultaneously [70]. Lethal phenotypes at the embryonic stage can 
be avoided by delivering dsRNA into the worms at the first larval stage. The use of 
RNAi libraries has been very effective in screening for a variety of worm 
phenotypes/genes [70]. There are currently two RNAi feeding libraries for C. 
elegans: known as the Ahringer and ORFeome libraries. These libraries are available 
to the public and together, can target about 94% of C. elegans genes. Importantly, 
WormBase contains valuable information about published large-scale RNAi data, 
including genes affected and all RNAi phenotypes. 

iv) Identification of Modifiers of Neurodegenerative Phenotypes 

Once a neurodegenerative phenotype caused by, for example, expression of a human 
disease-associated gene or inactivation of a given disease -associated gene ortholog 
is established, it is possible to perform genetic modifier screens to identify genetic 
enhancers and suppressors that modify the original neuropathology. In addition, 
pharmacological screens can be used to identify drugs that modulate the 
neurodegenerative phenotype and their associated molecular pathways. Therapeutic 
compounds that have been already identified in mammalian systems can also be 
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tested in invertebrate models, allowing for validation of hits and exclusion of 
compounds with unfavorable properties [71-73]. 

Moderate ‘‘high-throughput’’ screens are possible in Drosophila by feeding flies 
with food mixed with different concentrations of neuroactive compounds. The 
lack of a stringent blood-brain barrier in flies simplifies the access of 
pharmacological compounds to the nervous system. An alternative approach to 
deliver pharmacological compounds in a more efficient way consists of direct 
intra-abdominal or intra-thoracic injection into adults. However, this method is 
more laborious and time-consuming [74]. In this regard, microfluidic devices in 
combination with computer-controlled injection systems provide a more 
systematic methodology for injections in fly embryos [75, 76]. 

C. elegans also lacks a functional blood-brain barrier and are sensitive to a wide 
range of human neuroactive drugs [77]. Worms can be grown in liquid medium in 
96-well microtiter plates containing different drugs and rapidly screened for novel 
compounds. Thus nematodes are even more amenable for large therapeutic 
screens than Drosophila [77]. Neuronal viability can be measured with GFP-
based tags in a fluorescent plate reader or, alternatively, worm motor activity can 
be automatically monitored in real time [78]. Both these approaches are amenable 
to high throughput screens and allow the identification of neurotoxic or 
neuroprotective compounds. 

Once a therapeutic drug has been identified in either Drosophila or C. elegans model 
systems, suppressor screens can be carried out to identify molecular partners 
involved in the compound-mediated protection of neurons. Drugs with efficacy in 
invertebrate models, however, need to be validated in mammalian whole-animal 
disease models to be considered as candidates for clinical trials [73]. 

3.5. CONTRIBUTIONS OF FLY AND WORM STUDIES TO UNDER-
STANDING THE MECHANISMS UNDERLYING NEURODEGENERATION 

3.5.1. Insights from Transgenic and Mutant Models of Human Diseases 

Examples of findings associated with pathogenic mechanisms and therapeutic 
implications in flies and worms are offered here to illustrate the value of 
invertebrate models in the study of neurodegeneration. 
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3.5.1.1. Alzheimer’s Disease 

Patients with Alzheimer’s disease suffer from age-dependent memory loss, 
deterioration of cognitive functions and dementia. Progressive neuronal 
degeneration affects specific areas of the brain, such as the frontal cerebral cortex 
and hippocampus [79]. The pathological hallmarks of Alzheimer’s disease are the 
accumulation of extracellular senile plaques (composed mainly of the amyloid 
Aβ42 peptide) and intracellular neurofibrillary tangles (composed of aggregated, 
hyperphosphorylated forms of the microtubule-associated protein Tau) [79]. Aβ42 
peptides are produced by proteolytic cleavage of the amyloid precursor protein 
(APP) transmembrane receptor via the action of β and -secretases. The ß-site 
APP-cleaving enzyme (BACE) cleaves APP at the beta site, and the presenilins, 
PS1 and PS2, participate in APP cleavage at the ɣ site [80]. Genetic analyses of 
familial Alzheimer’s disease identified mutations in the APP, PS1 and PS2 genes; 
these mutations are all associated with abnormal APP processing and Aβ42 
aggregation. Hence, it is believed that Aß42 peptide overproduction is the initial 
trigger of a series of pathogenic events that result in Tau hyperphosphorylation, 
abnormal cellular signaling, and synaptic failure, ultimately leading to neuronal 
death [81-83]. 

Different approaches have been utilized to study the normal function of APP, as 
well as the mechanisms by which APP dysfunction might lead to 
neurodegeneration in flies [4, 72]. Flies carrying loss-of-function mutations of the 
fly homolog of the human APP (dAPPL) display no neurodegeneration but show 
abnormal behaviors that are rescued by the transgenic introduction of human APP 
gene, indicating functional conservation between fly APPL and human APP [84]. 
Additional studies have linked dAPPL with physiological functions such as 
neuronal development and synapse formation [85-87]. Transgenic flies expressing 
wild type and Alzheimer’s disease mutant forms of APP in the fly nervous system 
and retina have revealed interesting findings. APP and dAPPL overexpression 
leads to axonal transport defects [85, 88] that appear to correlate with impaired 
synaptic plasticity [89]. Evidence for dysfunction in axonal transport has also 
been found in other neurodegenerative disease fly models, such as Huntington’s 
disease [90, 91], suggesting a common mechanism of neurodegeneration in 
different diseases. 
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Flies have orthologs of α-secretases [92, 93] and γ-secretase components, such as 
PSN and Nicastrin [94-96]. Although dAPPL lacks the Aβ domain [96b], it has 
been recently shown that processing of dAPPL by the fly β-secretase BACE 
(dBACE) results in neurotoxic Aβ-like fragments, amyloid deposits and 
neurodegeneration [97]. Aβ42 formation and neurotoxicity can be achieved by 
simultaneous expression of human BACE and APP in either the fly retina or 
nervous system [98, 99]. Interestingly, direct expression of human Aβ42 in the fly 
recapitulates aspects of the Alzheimer’s disease pathology, such as age-dependent 
neurodegeneration and accumulation of amyloid plaques [100, 101]. Moreover, 
generation of Aβ42 leads to defective axonal transport [85, 88], mitochondrial 
mislocalisation [102] and synaptic plasticity defects [89]. Aβ42 accumulation has 
been also found to trigger progressive locomotor deficits, abnormal learning and 
reduced lifespan [99, 100, 103, 104]. On the other hand, different studies in flies 
have confirmed experimentally that Aß42 aggregation propensity correlates with 
neurotoxicity [72, 99, 105, 106] and several modifiers of Aβ42 aggregation-
related toxicity have been identified. Some of these include genetic regulators of 
proteolytic processing of APP, such as modulators of PSN activity [107, 108] or 
compounds that interact with amyloid structure and reduce aggregation properties 
of Aβ [103, 109]. These findings highlight the utility of Drosophila models in 
providing indications of pathogenic mechanisms and identifying Alzheimer’s 
disease compounds that target Aß42 aggregation to reduce toxicity. 

As in humans, several studies in Drosophila have implicated heavy metals in the 
development of Aβ-induced pathological processes [110]. One study shows that 
inhibition of zinc transporters reduces Zn++ accumulation in the fly brain, which in 
turn reduces Aβ42 deposits [111]. Thus, manipulation of zinc transporters in 
Alzheimer’s disease brains may represent a novel therapeutic strategy. 

C. elegans contains one APP-related gene (apl-1) that similarly to dAPPL, lacks a 
region equivalent to the Aβ-peptide [112]. Knockout of apl-1 causes 
developmental defects and larval lethality while overexpression produces 
movement defects and reduces viability. Interestingly, RNAi knockdown studies 
revealed a role for apl-1 in synaptic transmission [113]. Similarly to Drosophila, 
Aβ42 peptides have been expressed in C. elegans to study different aspects of 
Alzheimer’s disease. Thus, worms carrying transgenes that drive Aβ42 peptide 
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expression in body wall muscles or neurons have been created [114, 115]. Aβ42 
expression under the control of a muscle-specific promoter leads to intracellular 
amyloid deposits in the muscles, in addition to progressive paralysis and reduced 
lifespan in worms [44, 114-116]. This model has been subsequently used to 
identify binding partners of Aβ that contribute or respond to Aβ toxicity [117-
119]. Interestingly, Aβ deposits induce stress response in worms by promoting 
expression of heat shock proteins. Thus, heat shock chaperone function might 
play a role in modulating intracellular Aβ42 metabolism and toxicity [116-118]. 
Aβ42 accumulation has been also found to induce increased iron levels and 
oxidative stress in human cell and worm models of Alzheimer’s disease [120, 
121]. Carbonyl accumulation, an oxidative damage indicator, also correlates with 
Aβ42 expression in worms. This phenomenon has also been observed in human 
neuronal cultures exposed to Aβ42 and brain tissue from Alzheimer’s disease 
patients [122]. Aβ-expressing nematodes have also served to identify potential 
therapeutic reagents of the Aβ42-related toxicity [23]. Tetracyclines have been 
found to interact with Aβ42 oligomers and prevent their aggregation in Aβ 
transgenic worms [123]. Moreover, these compounds decrease superoxide 
production, and thus oxidative stress, in Alzheimer’s disease nematode models. 
These findings suggest a potential use of these drugs for reducing Aβ aggregates. 
Additional compounds useful for preventing Aβ42 toxicity include coffee extracts 
[124] and extracts from the Ginkgo biloba that have been shown to decrease 
reactive oxygen species (ROS) generated by oxidative stress [125, 126]. 

In alternative approaches, Drosophila and C. elegans models for tauopathy have 
been established to study the pathological properties of intracellular neurofibrillary 
tangles and Tau associated with Alzheimer’s disease. These strategies have been 
recently reviewed and therefore will not be discussed here [3, 21, 23, 127, 128]. 

3.5.1.2. Parkinson’s Disease 

Parkinson’s disease is characterized by age-dependent loss of dopaminergic neurons 
in the brain, resulting in loss of motor capacity, involving tremors, rigidity and 
bradykinesia, as well as cognitive disorders [129]. The progressive degeneration of 
dopamine neurons has been associated with the formation of inclusion bodies called 
Lewy bodies, containing misfolded and aggregated α-synuclein protein [130, 131]. 
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Familial forms of Parkinson’s disease have been linked to mutations in α-synuclein, 
ubiquitin carboxy-terminal hydrolase-L1 and Parkin genes. These findings implicate 
Lewy body components and defects in the degradation of misfolded/aggregated 
proteins in the mechanism of the pathology [131, 132]. 

Expression of wild type and mutant forms of human α-synuclein in flies recapitulate 
key features of Parkinson’s disease such as inclusions of α-synuclein reminiscent of 
Lewy bodies, age-dependent degeneration of dopaminergic neurons and progressive 
motor [133-137]. Expression of Hsp70, a highly conserved molecular chaperone 
involved in refolding of misfolded proteins, can prevent the pathology of α-
synuclein Parkinson’s disease models in flies [134] and mice [138]. Moreover, 
pharmacological treatments involving geldanamycin suppress α-synuclein toxicity in 
flies by inducing the heat shock response [139], suggesting a potential therapy for 
Parkinson’s disease. Notably, human genetic data shows that some polymorphisms 
in Hsp70 are genetic risk factors for Parkinson’s disease [140]. These findings reveal 
a role for abnormal protein folding and aggregation in the disease pathogenesis [134, 
141]. Interestingly, superoxide dismutase activity prevents the death of 
dopaminergic neurons in flies, highlighting the importance of oxidative stress in the 
α-synuclein pathogenesis [142]. In addition to abnormal protein aggregation and 
oxidative damage, altered histone acetylation is involved in Parkinson’s 
pathogenesis. α-synuclein inhibits histone acetylation in the nucleus and induces 
neurotoxicity that can be reverted by histone deacetylase inhibitors [143]. Other 
studies have focused on the role of phosphorylation in the generation of neurotoxic 
isoforms of α-synuclein [144-147], providing new insight into the signaling 
pathways underlying Parkinson’s disease. 

Several genes have been associated with autosomal recessive juvenile parkinsonism, 
including DJ-1, Pink1 and Parkin. Drosophila homologs of these genes exist and 
have been mutated. These mutants are associated with mitochondrial disruptions 
[148], supporting the notion that mitochondrial dysfunction is an important factor 
underlying the pathogenesis [4]. The Parkin gene, an E3 ubiquitin protein ligase, is 
involved in proteasomal degradation of damaged proteins. Drosophila PARK2 null 
mutants exhibit increased oxidative stress, reduced lifespan, behavioral defects and 
age-dependent muscle degeneration associated with neuronal apoptosis and 
mitochondrial pathology [149-151]. Other studies suggest that PINK1 and Parkin act 
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together in a common pathway regulating mitochondrial morphology and function, 
including mitochondrial fission/fusion [152-156]. New Drosophila models of 
mitochondrial dysfunction are emerging to specifically study the mechanisms 
responsible for mitochondria-mediated dopaminergic neuronal loss [157]. 
Biochemical approaches have revealed genetics modulators of Parkin-mediated 
toxicity. For example, glutathione S-transferase (GST) S1 activity is sufficient to 
rescue dopaminergic neuronal death in Parkin mutants, likely by modulating cellular 
response to oxidative stress [151, 158, 159]. In addition, another member of the GST 
family in Drosophila (glutathione S-transferase Omega 1) suppresses the phenotypes 
of parkin and α-synuclein mutants by regulating mitochondrial ATP synthase 
activity [160]. 

Environmental toxins, such as the herbicide paraquat and the pesticide rotenone, 
appear to be risk factors for sporadic Parkinson’s disease. Exposure of flies to such 
environmental contaminants leads to increased oxidative stress through 
mitochondrial pathways. These treatments induce parkinsonian-like symptoms in 
Drosophila, including dopaminergic neuronal death and behavioral abnormalities 
that can be mitigated by adding the antioxidant melatonin. These findings suggest 
that antioxidants may be helpful in the treatment of the Parkinson’s disease 
pathology [161, 162]. 

C. elegans models of Parkinson’s disease have also been generated that examine 
α-synuclein toxicity. α-synuclein::GFP or α-synuclein::YFP (Yellow Fluorescent 
Protein) fusion proteins were expressed specifically in either body-wall muscles, 
the nervous system or specific subsets of neurons, such as motor neurons or 
dopaminergic neurons. Overexpression of wild type and mutant forms of human 
α-synuclein in dopaminergic neurons has been shown to trigger neuronal loss 
accompanied by accumulation of misfolded α-synuclein aggregates in C. elegans 
[163, 164]. Since nematodes have only eight dopaminergic neurons, it is 
straightfoward to examine their integrity over time. Interestingly, α-synuclein 
overexpression renders these worms incapable of reducing their locomotion upon 
the presence of food, a behavioral response controlled by dopaminergic neurons. 
This phenotype can be rescued by re-establishing normal dopamine levels [164]. 
High throughput genomic approaches using α-synuclein transgenic worms have 
uncovered changes in expression of genes associated with components of 
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ubiquitin-proteasomal and mitochondrial systems that may arise as a consequence 
of mitochondrial dysfunction in the Parkinson’s pathology [165]. 

Large-scale RNAi screens in worms have permitted identification of modulators 
of the neurodegenerative phenotype triggered by α-synuclein expression via the 
premature formation of aggregates of fluorescently labelled misfolded proteins in 
vivo [166]. Other studies have identified modifier genes associated with protein 
degradation, lipid metabolism, RNA metabolism, vesicular trafficking and 
endocytosis pathways, in addition to aging-associated genes [166-172]. Several of 
these modifiers have been successfully validated as neuroprotective in 
mammalian systems. An interesting example is VPS-41, a protein involved in 
lysosomal trafficking of Golgi-derived vesicles [173]. The human ortholog of 
VPS-41 (hVPS41) also protects C. elegans neurons and mammalian 
neuroblastoma cells from the toxic effects produced by Parkinson’s disease-
associated toxins [174]. Recent studies suggest that hVPS41 prevents α-synuclein 
toxicity by facilitating clearance of misfolded and aggregated proteins [175]. 

MicroRNAs (miRNAs) are short ribonucleic acid (RNA) molecules that repress 
mRNA translation or mediate mRNA degradation in a sequence-specific manner in 
animals and plants [176]. Interestingly, microRNA regulation has been linked to 
Parkinson’s pathogenic mechanisms in disease worm models, as is the case in 
mammalian systems, suggesting a conserved pathological mechanism across species 
[177]. 

C. elegans have orthologs for various human genes linked to familial Parkinson’s 
disease, including parkin (pdr-1), PINK1 (pink-1) and DJ-1 (djr-1.1, 1.2). 
Mutations in these genes can cause loss of dopaminergic neurons or mitochondrial 
pathology [178, 179]. pdr-1 null mutants exhibit lower levels of ubiquitin 
conjugates, suggesting that alterations in the ubiquitin proteasome system may be 
a causative factor for the pathogenesis of Parkinson’s disease [178]. 

In addition to genetic models of Parkinson’s pathology in worms, the effects of 
environmental agents have also been evaluated. For example, worms exposed to 
either 6-OHDA or rotenone (neurotoxins with harmful effects in rodents [180]), 
show selective degeneration of dopaminergic neurons [167, 181, 182]. Studies 
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using these models demonstrate that restricted diet can prevent dopaminergic 
neuron degeneration [183, 184], suggesting a link between Parkinson’s and 
metabolism. Neurotoxicity models of dopaminergic neuron degeneration have 
also revealed oxidative stress and the protein misfolding are major contributing 
factors in neurodegeneration and disease progression [183, 185]. 

3.5.2. Insights from Neurodegenerative Mutations 

Forward genetic screens have identified a number of interesting mutations that 
cause neuronal dysfunction and death. This strategy has been enormously 
successful in flies. Pioneering studies in neurodegeneration were carried out in 
Seymour Benzer’s laboratory, one of the most influential laboratories in the 
history of Drosophila neurogenetics. Fly mutants such as bubblegum, swiss 
cheese and drop-dead were first isolated in screens selecting for flies with 
defective phototaxis behavior or reduced lifespan, followed by histological 
examination that revealed vacuolization in the brain [186-189]. Bubblegum is 
considered an interesting candidate to study “human-like neurodegeneration 
processes”. It has a mutation in the VLCFA acyl coenzyme A synthetase gene that 
leads to abnormal accumulation of very long chain fatty acids, as it is observed in 
patients with adrenoleukodystrophy (ALD). Moreover, such neurodegenerative 
phenotype can be alleviated by feeding the flies with ‘Lorenzo’s oil’, a treatment 
based on monounsaturated fatty acids used to lower VLCFA levels in ALD 
patients [189]. Other studies have isolated fly mutants on the basis of additional 
neurodegenerative phenotypes, including paralysis induced by high temperature 
or mechanical stress [190, 191] and abnormal circadian rhythms [192]. These and 
additional large-scale genetic screens have identified mutations that interfere with 
mitochondrial function, signal transduction, lipid homeostasis, protein 
homeostasis, channel function, cytoskeleton, oxidative stress response and glial-
neuronal signaling in Drosophila [24, 28]. The characterization of these mutants 
has shown that many of them recapitulate important features of human 
neurodegenerative diseases, i.e., vulnerability of specific neuronal populations and 
progressive degeneration. Interestingly, the importance of some of these genes in 
neurodegeneration has been validated in mammalian disease models (e.g.[193, 
194]). This suggests that this approach may identify novel genes important for 
conserved mechanisms that maintain nervous system integrity. 
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CONCLUDING REMARKS 

The generation of animal models that recapitulate physiologic and pathologic 
conditions in humans are key for biomedical and scientific progress. They provide 
an opportunity to explore the mechanisms underlying disease pathogenesis as well as 
develop effective preventive measures and therapies. During the past decades, 
invertebrate models of neurodegeneration have emerged as successful 
complementary systems to mammalian models, facilitating identification of relevant 
pathways and novel disease-associated genes. It is important to bear in mind, 
however, that invertebrate models have potential caveats and limitations in studying 
the function of human disease genes. They lack a number of disease-related factors 
and biophysical processes that may influence specific pathologies. It follows that 
observations in invertebrates should be subsequently validated in mammals to 
determine their relevance to human diseases. Nevertheless, the conservation of 
important basic biological processes in Drosophila, C. elegans and mammals have 
permitted the recreation of essential pathological features observed in human 
patients, substantiating their enormous potential for dissecting conserved 
pathogenetic mechanisms [3, 4, 20-26]. Moreover, these simple models offer 
extraordinary genetic tools to decipher genetic pathways of disease-genes and to 
discover genetic factors that modulate the neurodegenerative phenotype. Notably, 
findings from worm and fly models of Aβ42 toxicity, polyglutamine repeat proteins 
and α-synuclein have identified conserved chaperone proteins as important 
suppressors of neurotoxicity [117, 118, 134, 195]. These findings suggest that some 
toxic mechanisms might be common to different neurodegenerative diseases. The 
fact that overexpression of glutathione-S-transferase can suppress the toxicity 
associated with either long polyglutamine repeat proteins, α-synuclein 
overexpression or mutations in Parkin also implicates oxidative stress as playing a 
role in different neurodegenerative processes [3, 4, 151, 158-160]. Importantly, 
several genetic modulators identified in enhancer/suppressor screens have been 
validated in mammalian systems [174, 175, 196-200]. In addition, loss-of-function 
studies of endogenous genes homologous to human disease genes in Drosophila and 
C. elegans have yielded new clues to pathogenic mechanisms. For example, 
mitochondrial dysfunction was first linked to defective PINK1/Parkin signalling in 
Drosophila [152, 153, 156]. On the other hand, invertebrate neurodegenerative 
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mutants isolated in forward screens that show characteristic features of progressive 
neurodegeneration have provided valuable insights into conserved genetic pathways 
and mechanisms required for maintaining the structural integrity of the nervous 
system. Indeed, this approach has allowed researchers to identify novel 
neurodegeneration genes, suggesting their human orthologs may also be involved in 
pathological processes [24, 28]. Since collections of genetic mutations in flies and 
worms are constantly expanding, it is reasonable to anticipate that additional disease 
genes will be identified. 

Pharmacological screens in worms and flies have identified potential therapeutic 
compounds. For example, the identification of chaperones and histone deacetylase 
inhibitors as suppressors of neurodegenerative phenotypes in flies has led, in some 
cases, to validation in mouse models and human clinical trials [34, 35, 72, 134, 
139, 141]. Sophisticated and automated techniques that are impractical in 
mammals continue to emerge in invertebrates. These will increasingly facilitate 
high-throughput screens for candidate therapeutic reagents. 

Given the rapid advances in the field of neurodegeneration in Drosophila and C. 
elegans, it is logical to expect an increasing number of high-quality studies that will 
continue to enrich the study of neurodegenerative diseases and complement studies 
in mammalian systems. Futures studies in invertebrates will focus on understanding 
key aspects of the neurodegenerative pathology, including ageing and disease 
susceptibility. Illumination of these processes is essential for diminishing events that 
promote age-associated neuronal decline and disease. Such studies may ultimately 
provide a molecular link between ageing and neurodegeneration. 
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Abstract: All brain functions are controlled by specific synapses where the release of 
neurotransmitters triggers a number of signaling cascades in postsynaptic neurons. One of 
the most important and common events is a transient and very fast intracellular Ca2+ 
increase. Intracellular Ca2+ increase is fundamental for modulation of gene expression, 
neuronal survival and plasticity. In this chapter we will discuss the importance of Ca2+ in 
cells as well as the regulation of physiological functions in various organisms. 
Additionally, we will consider mechanisms used by the cells for Ca2+ homeostasis and for 
increasing intracellular Ca2+ concentration. Finally, the role of Ca2+ in neurodegenerative 
diseases such as Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), Parkinson 
disease (PD), Huntington disease (HD) among others will be discussed in this chapter. 

Keywords: Calcium, Alzheimer’s disease, Parkinson’s disease, Cellular signaling, 
neurodegeneration, neurodegenerative diseases, brain, Inositol Trisphosphate, 
Endoplasmic Reticulum, Voltage gated Ca2+ channels, glutamate receptors, ATP 
receptors, Amyotrophic Lateral Sclerosis, Huntington’s Disease, Multiple Sclerosis, 
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membrane. 

4.1. CALCIUM 

During the evolution of organisms, several molecules, proteins and ions 
emerged as fundamental signaling agents responsible for regulating essential 
functions in cells, organs and the whole organism. Among these agents, the 
calcium ion (Ca2+) is the most versatile as it plays a key role in several aspects 
of cellular physiology. 

Calcium is the most abundant ion in vertebrates (around 30g per kg of body 
weight in humans and other vertebrates). Although calcium is mostly found in 

*Corresponding author Flavio Beraldo: Robarts Research Institute, Western University, London, Ontario,
Canada 1162 Smither RD, London, Ontario, Canada N6G5R8; Tel: 1 2269194266, 1151 Richmond St. N,
N6A 5B7; E-mail: beraldo@yahoo.com

© 2015 The Author(s). Published by Bentham Science Publishers



86   Young Perspectives for Old Diseases Beraldo and Roy 

 

teeth and bones in the form of calcium carbonate [1], Ca2+ plays a pivotal role in 
physiological and biochemical processes of the organisms and cells. 

Both extracellular and intracellular calcium have fundamental roles in several 
signaling and physiological functions. The elevated extracellular free calcium 
concentration (mM), compared to the low intracellular free calcium concentration 
(nM), results in a Ca2+ electrochemical potential gradient. Minimal changes in these 
concentrations, induced by physiological stimuli that alter the permeability of the 
plasma membrane to these ions, can induce significant fluctuations in the levels of 
cytosolic Ca2+ thereby triggering the activation or inhibition of several physiological 
processes. Ca2+ ions play an important role in several biological functions in 
eukaryotic cells - organization of the cytoskeleton, cellular division and 
differentiation [2-5], opening and closure of stomata guard cells [6], modulation of 
neurotransmitter release from neurons [7], contraction of muscle cells [8], and cell 
death [9], among others (Fig. 1). Moreover, Ca2+ can bind to several proteins 
including calbindin, calmodulin and proteins of the S100 family, which regulate 
Ca2+-dependent metabolic processes. Although Ca2+ plays an important role in 
regulating many cellular processes, high concentrations of Ca2+ in the cytosol can be 
cytotoxic because they promote cellular damage and cell death. Due to the fact that 
many cellular processes, ranging from cellular division and differentiation to cellular 
death, are modulated by an increase in intracellular Ca2+ concentration, these levels 
are tightly regulated via many mechanisms present in the cells. 

 

Figure 1: Physiological roles of Ca2+ 
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4.3. MECHANISMS UTILIZED BY THE EUKARYOTIC CELLS TO 
PROMOTE INCREASE IN FREE INTRACELLULAR CA2+ 

All animal cells [10], vegetal cells [11], fungi [12] and protozoa [13, 14] have 
signaling mechanisms modulated by extracellular stimuli which act through 
proteins on the plasma membrane (receptors) thus leading to an increase in 
intracellular Ca2+ levels through various different ways. There are three main 
mechanisms utilized by the cells to promote intracellular Ca2+ increase in 
response to extracellular stimuli: Voltage-dependent Ca2+ channels (VDCC) or 
voltage-gated Ca2+ channels (VGCC), ligand-gated Ca2+ channels and intracellular 
Ca2+ channels (Ryanodine receptor and InsP3 gated Ca2+ channels). 

4.3.1. Voltage Gated Ca2+ Channels 

The membrane potential is a result of a difference in the electrical charge 
(electrical potential) between the two sides of a membrane. This potential occurs 
due to an excess of positive ions on one side of the membrane and an excess of 
negative ions on the other side. The membrane potential is in the range of -40 mV 
to -80mV (for neurons) and this potential is maintained through the activity of the 
Na+/K+-ATPase pumps (proteins which transport sodium and potassium across 
the plasma membrane using ATP as an energy source). This transport creates two 
concentration gradients: one gradient for sodium, which is found in higher 
extracellular concentrations as well as a gradient for potassium, which has much 
higher intracellular concentrations. In addition, there is a specific transmembrane 
potassium channel, which allows the specific diffusion of K+ through the 
membrane down the concentration gradient promoted by the Na+/K+-ATPase (Fig. 
3). When K+ leaks through the channel, one positive charge moves out of the cell 
thus leaving negative charge inside the cell and adding one positive charge to 
outside. However, this mechanism alone is not enough to maintain the membrane 
potential with positive charges outside and negative charges inside. The Na+/K+-
ATPase plays an essential role in regulating the resting membrane potential by 
pumping 3 sodium ions out of the cell (adding 3 positive charges outside and 
leaving 3 negative charges inside) and 2 K+ ions into the cell (adding 2 positive 
charges inside and leaving 2 negative charges outside). The movement of these 
two ions across the plasma membrane leads to an overall negative charge inside 
and positive charge outside the cell. 
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- ATP (Adenosine-5’-triphophate) receptors - these receptors form a 
large family of receptors known as purinergic receptors, which open 
in response to the binding of extracellular adenosine 5’-trisphosphate 
(ATP). ATP binding to these receptors induces a conformational 
change in the structure of the protein resulting in the opening of the 
ion channel and allowing the influx of cations such as Na2+ and Ca2+ 
[16]. 

- Ionotropic glutamate receptors - Binding of the neurotransmitter 
glutamate, modulates the activity of these ion channels. There are 
three different classes of ionotropic glutamate receptors - NMDA 
receptor (N-Methyl-D-aspartic acid or N-Methyl-D-aspartate), AMPA 
receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
receptor) and kainate receptor. They are believed to play crucial roles 
in neuronal plasticity, learning and memory; however, dysregulation 
of their function can be neurotoxic and appears to be linked 
neurodegeneration [17]. 

4.3.3. InsP3-Gated Ca2+ Channels (Inositol Trisphosphate Receptor) 

Unlike the other Ca2+ channels discussed above (Voltage-gated and ligand-gated 
calcium channels), the InsP3-gated Ca2+ channel or InsP3 receptor (InsP3R) is 
present inside the cell specifically at the membrane of the endoplasmic reticulum. 
The InsP3R has an InsP3 binding domain and binding of InsP3 to the receptor 
evokes a conformational change in the receptor. This leads to Ca2+ efflux from the 
endoplasmic reticulum to the cytosol as the channel pore opens. InsP3 generation 
is the most common, if not the only, mechanism through which events at the 
plasma membrane lead to a mobilization of Ca2+ from intracellular stores. The 
role of InsP3 as a second messenger was first reported in 1983 [18] and, since 
then, several studies have been done to understand the mechanisms regulating 
receptor synthesis and degradation as well as Ca2+ mobilization from the 
endoplasmic reticulum [19]. 

InsP3 formation occurs through a cascade of reactions triggered by the activation 
of a plasma membrane receptor by an agonist (i.e. chemical that binds to a 
receptor and evokes a response by the cells - e.g. hormones, growth factors, 
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neurotransmitters and drugs). The receptors responsible for InsP3 formation are 
known as G protein-coupled receptors (GPCRs), serpentin receptors or G protein-
linked receptors. G protein-coupled receptors are found only in eukaryotes and 
many ligands can promote the activation of these receptors including odors, 
pheromones, hormones, neurotransmitters, peptides and even light. 

These receptors form the largest family of cell surface receptors and are present in 
all eukaryotes. Approximately 4-5% of all proteins coded by the human genome 
are GPCRs and over 90% of GPCRs are expressed in the brain [20]. GPCRs are 
involved in several diseases and 40% of all drugs on the market are designed to 
regulate their function [21]. 

The interaction between the GPCR and the agonist activates another class of 
proteins known as G proteins, which are composed of 3 different subunits ( 
and . In its inactive form (not bound to the agonist), the G protein associated 
with the receptor is reversibly bound to guanosine diphosphate (GDP) and the 
three subunits form a heterotrimer. However, upon GPCR activation, the G-
protein exchanges a molecule of GDP for GTP (guanosine triphosphate) at its  
-subunit. This promotes the dissociation of the G-protein from the receptor and 
dissociation of the trimeric G-protein into its two constituent signaling complexes: 
the  subunit and the dimer. There are 3 main sub-classes of G (Gαs, Gαi/o and 
Gαq/11,), which have distinct signaling cascades, second messengers and functions 
(Table 2). In terms of Ca2+ signaling, Gαq/11 is involved in the transduction of 
external signals sensed by the transmembrane receptors. When an agonist 
activates a Gq-coupled receptor, Gαq/11 is activated and exchanges GDP for GTP. 
This process induces the activation of another protein called phospholipase C, 
which acts to cleave a minor phospholipid component of cell membranes, 
phosphatidylinositol 4,5-bisphosphate (PIP2). This leads to the formation of 
diacylglycerol (DAG) and Inositol 1,4,5-triphosphate (InsP3, IP3). InsP3 binds to 
receptors on the endoplasmic reticulum (InsP3 receptors) and induce Ca2+ release 
(Fig. 6), which can modulate several proteins inside the cell including enzymes, 
transcription factors and ion channels. Moreover, intracellular Ca2+ increase can 
activate Protein Kinase C (PKC), which can also be activated by DAG, and is 
involved in many physiological processes such as memory, secretion of 
neurotransmitters, neuronal excitation, and muscular contraction, among others. 
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4.4. CALCIUM AND NEURODEGENATION 

In this chapter, we have discussed calcium homeostasis, regulation and signaling. 
In addition, we discussed the roles of Ca2+ ions in several physiological processes. 
In this part of the chapter we will focus on how the dysregulation of Ca2+ 
homeostasis can promote neuronal death, which can contribute to 
neurodegenaration. 

Neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington’s Disease (HD) 
and Multiple Sclerosis (MP) present a huge medical, economic and social 
problem. According to the Alzheimer’s Association, the costs for treatment of 
people with Alzheimer’s disease and other dementias in the USA were around 
$183 billion in 2011 and the projections suggests that this cost will increase to 
$1.1 trillion in 2050. Regardless of the tremendous annual investment into 
treatments and research, the process of neurodegeneration is not well understood 
and a substantial effort has been put forth in order to develop effective treatments 
and identify novel targets which may be used for specific therapeutic strategies 
and drug development to reduce disease severity. Interestingly, despite the 
pathological and physiological differences between neurodegenerative diseases, 
there are peculiar similarities indicating that neuronal Ca2+ signaling homeostasis 
is dysregulated in most of these disease states. In neurons, under normal 
physiological conditions, Ca2+ flux across the plasma membrane and mobilization 
from intracellular stores play fundamental roles in neuronal processes such as 
neuronal differentiation and plasticity, synaptic transmission, neurotransmitter 
release, neurite outgrowth, synapse formation and neuronal survival. However, 
several studies have demonstrated that dysregulation of Ca2+ homeostasis 
promotes neuronal death and could be involved in neurodegeneration [22, 23]. 
Importantly, the majority of neurons in our brain differentiated at birth and are not 
regenerated or replaced as we age. Due to the fact that Ca2+ homeostasis and 
signaling can be affected by age, it is logical to speculate that neurons from 
elderly individuals are more susceptible to Ca2+ dysregulation, an idea that would 
explain the high incidence of neurodegenerative diseases in aged persons. 
Interestingly, variations in Ca2+ homeostasis and signaling were found in studies 
comparing neurons from young and old rodents. This difference is essentially due 
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to an increase in Ca2+ release from intracellular stores, an increase in Ca2+ influx 
through the Ca2+ channels at the plasma membrane [24, 25] and by the deficiency 
in Ca2+ buffering by mitochondria in aged neurons as compared to young neurons. 
Remarkably, dysregulation of Ca2+ buffering, dysregulation of mitochondrial 
and/or ER Ca2+ storage capacity and changes in expression and/or activity of Ca2+ 
channels are associated with most neurodegenerative diseases. Therefore, the 
mechanisms involved in Ca2+ dysregulation are being explored as possible targets 
for neurodegenerative diseases treatment [23]. 

4.4.1. Ca2+ and Alzheimer’s Disease 

Biochemically, Alzheimer’s disease is characterized by oligomers and amyloid 
plaques produced by β amyloid peptides (Aβ), and neurofibrillary tangles formed by 
the hyperphosphorylated form of the protein Tau, in brain cells (See chapter 2). 
Interestingly, Aβ accumulation has been associated with Ca2+ dysregulation and 
activation of Ca2+-dependent signaling pathways leading to cell death. For example, 
patients who suffer from sporadic Alzheimer’s disease present greater activation of 
Ca2+-dependent enzymes, such as proteases from the calpain family. When activated 
by intracellular Ca2+, calpains cleave several proteins involved in maintaining the 
normal physiology of neurons thus resulting in neuronal death (apoptosis) [26]. Aβ 
can also induce Ca2+ influx into neurons by inducing the formation of a pore in the 
plasma membrane thus leading to neuronal death [27]. Aβ peptides also alter and/or 
impair PMCA (plasma membrane Ca2+-ATPase) functionality resulting in 
depolarization of the membrane and Ca2+ toxicity via activation of both NMDAR 
(N-methyl-D-aspartate receptor) and voltage-gated Ca2+ channels [28]. In addition, 
there is an increase in the amount of Ca2+ being stored and released from 
intracellular stores (endoplasmic reticulum) by InsP3 [29] and a decrease of 
expression of the Ca2+ buffer calbinding in AD models [30]. 

4.4.2. Calcium and Parkinson Disease 

Parkinson’s disease (PD) is caused mainly by a progressive loss of the dopamine 
neurons associated with deficiency of the neurotransmitter dopamine in specific 
parts of the brain - such as the striatum. Interestingly, few studies have 
demonstrated an association between Ca2+ dysregulation and PD. Some studies 
showed an increase of Ca2+ levels in mitochondria [31], excessive Ca2+ influx via 



Calcium in Homeostasis and Neurodegeneration Young Perspectives for Old Diseases   97 

 

glutamate receptor and or voltage-gated Ca2+ channels and mobilization of Ca2+ 
from intracellular stores. Interestingly some L-type calcium channel blockers have 
been shown as a potential neuroprotective factor in PD [32]. 

4.4.3. Calcium and Amyotrophic Lateral Sclerosis (ALS) 

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease 
affecting basically motor neurons. The affected motor neurons have signs of 
organelle fragmentation, damage by free radicals, impairment of axonal protein 
and disturbance on intracellular Ca2+ homeostasis. Some studies have shown an 
increase in Ca2+ concentration in motor nerves terminals in human ALS muscle. 
In ALS there is an overload of Ca2+ in mitochondria, excitotocity mediated by 
intracellular Ca2+ influx via AMPA (glutamate receptors) and increase of Ca2+ 
mobilization from endoplasmic reticulum [33]. 

4.4.4. Calcium and Huntington’s Disease 

Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor 
changes among others such as cognitive and psychiatric changes. Huntington is a 
genetic disease in which mutations in specific gene - huntingtin gene - is 
responsible for the phenotypes. Huntingtin is a protein involved in several 
physiological processes including Ca2+ homeostasis [34]. It was demonstrated an 
increase of intracellular Ca2+ release in response to modulation of glutamate 
receptors (metabotropic glutamate receptors type I) in HD models. In addition, 
this dysregulation in the Ca2+ levels would be associated to neurodegeneration in 
HD. Some mechanisms responsible for Ca2+ dysregulation have been described: 
a) mutation in the protein Huntingtin would be involved in the sensitization of 
NMDA receptors promoting an increase of Ca2+ influx [35]; b) mutation in 
Huntingtin could lead to a sensitization of InsP3 receptors and destabilization of 
mitochondrial Ca2+ regulation [36]. 

4.4.5. Calcium and Multiple Sclerosis 

Multiple sclerosis is a neurodegenerative disease in which the myelin sheath (fatty 
layer around the axons of the brain and spinal cord which work as an electric 
insulator) is damaged. This neurodegenerative disease is characterized by 
inflammation, demyelination and the death of oligodendrocytes, white matter cells 
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that produce myelin for the myelin sheath [37]. Despite extensive studies 
regarding molecular aspects of multiple sclerosis, little is known about Ca2+ 
signaling and homeostasis in this pathological condition. However, it has been 
demonstrated that Ca2+ homeostasis is dysregulated as several different channels 
including PMCA2 (plasma membrane Ca2+ ATPase 2), Na2+/Ca2+ exchangers and 
SERCA have been implicated as important players in the progression of this 
neurodegenerative disease. Moreover, several studies using animal models have 
suggested that extracellular calcium influx, via VGCCs, can contribute to the 
damage in the white matter. The fact that,calcium channel blockers have been 
found to have a positive effect ameliorating multiple sclerosis symptoms in mice, 
lends further support to this idea [38]. 

CONCLUSION 

As described in this chapter, a fine regulation is needed to maintain the Ca2+ 
homeostasis in the cells. The maintenance of the Ca2+ homeostasis as well as the 
controlled intracellular Ca2+ increase plays critical roles in fundamental functions of 
neuronal cells. However, increase the oxidative stress and accumulation/aggregation 
of proteins related to neurodegenerative disorders such as Alzheimer’s, Parkinson, 
Huntington and prion diseases compromise Ca2+ homeostasis system leading to 
neuronal loss, impairment of neuronal plasticity and neurodegeneration. Despite Ca2+ 
dysregulation is not the always first step in neurodegeneration, most or almost all 
neurodegenerative diseases have, at some point of their progress, an impairment of 
intracellular Ca2+ system leading to neuronal loss. Due the importance of Ca2+ 
regulation a better understanding of molecular and cellular mechanisms to prevent 
disturbances in Ca2+ homeostasis may open new avenues for therapeutic treatment in 
neurodegenerative diseases such as Parkinson’s, Alzheimer’s, ALS and prion diseases. 
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Abstract: Protein misfolding is the hallmark of a large number of neurodegenerative 
diseases and is characterized by the presence of amyloid inclusions composed of 
aggregates of misfolded proteins in specific areas of the brain. The formation of those 
aggregates involves a multistep process that is exacerbated during periods of cellular 
stress. Cells have several mechanisms to regulate protein quality control that also serve 
as a defense line to prevent the accumulation of misfolded proteins; failures in these 
defenses are frequently involved in neurodegeneration. Another intriguing feature of 
neurodegenerative diseases, which have misfolded proteins as etiological agents, is the 
presence of similarities with prion diseases. Prions are unconventional infectious agents 
composed entirely from a misfolded form of a native protein that has the capacity to 
provoke and propagate to neighboring cells or even to other organisms. Nowadays, a 
large body of evidence has shown that most of the misfolded proteins found in 
degenerated brains behave as prion-like proteins, promoting misfolding and 
consequently, the aggregation of native protein forms which can spread to other cells or 
brain regions. However, unlike prion diseases, the prion-like properties of misfolded 
proteins are unable to naturally infect other organisms. Taken together, 
neurodegenerative diseases share many characteristics, of which protein misfolding is 
the most important. This feature has huge therapeutic implications since it raises the 
possibility to treat different diseases with drugs targeted to impair, block or revert 
protein misfolding. 

Keywords: Protein aggregates, oligomers, fibrils, amyloid plaques, tangles, Lewy 
bodies, chaperones, protein degradation, oxidative damage. 

5.1. INTRODUCTION 

The large majority of neurodegenerative diseases addressed in this book share a 
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common mechanism: the misfolding of certain proteins which usually lead to their 
improper clustering, causing cellular toxicity and frequently promoting neuronal 
death. The type of protein misfolding and the affected brain region will determine 
the type of neurodegeneration. For example, a hallmark of Parkinson’s disease 
(PD) is the presence of Lewy’s Bodies that are composed by aggregates of α-
synuclein in the cytoplasm of neurons from the Substantia nigra. 

The aim of this chapter is to present the most accepted hypothesis about the 
mechanisms governing protein misfolding (PM) which has been a matter of 
intensive studies in the last decades. One intriguing aspect of PM is the capacity 
that one misfolded protein molecule has to provoke or induce the misfolding of its 
native counterpart. This phenomenon was first described in prions, infectious 
pathogens composed exclusively of proteins with the ability to convert the normal 
protein isoform found in many cells (but especially in neurons) into de novo 
prions. In recent years, this wave of aggregate spreading was observed in other 
neurodegenerative diseases, such as Parkinson and Alzheimer’s diseases where α-
synuclein and tau behave as prion-like particules converting their native proteins 
into the misfolded form. Until now, there is no evidence showing that these 
diseases, such as prion diseases, are infectious, but there is no denial that other 
misfolded proteins play a role in nucleating aggregates, which in turn can catalyze 
the onset of diseases [1]. 

5.2. PROTEIN MISFOLDING 

The function of a given protein is dependent on its structure, which in turn is 
dependent on its proper folding. At this point, two important considerations can be 
drawn from the misfolding process: it can generate loss- and/or gain-of-function. 
Loss-of-function occurs when misfolded proteins become unable to perform their 
function and, consequently, resulting in an irreversible cell dysfunction status that 
can lead to cell death. Conversely, gain-of-function phenotype is related to an 
acquired toxic activity of aggregates themselves. 

The anatomopathological evidence of PM in neurodegenerative diseases is the 
presence of amyloid structures deposited in the extracellular space or in the 
cytoplasm. The formation of these structures involves a multistep process that is 
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not completely understood. The evidence suggests that the initial event is the 
formation of oligomers, molecular complexes composed of a few monomers of a 
misfolded protein. The formation of protofibrils occurs by direct interaction 
among several oligomers, which are the precursor of fibrils, the main constituents 
of amyloid structures. Fibrils are stable entities which act like seeds, serving as 
active nucleus accelerating polymerization and promoting amyloid growth. The 
driving forces involved in fibrillar aggregation are the hydrophobic or polar 
hydrogen interactions among side-chain groups [2]. 

The major misfolded proteins involved in the most prevalent neurodegenerative 
diseases include tau, β-amyloid and α-synuclein. Tau is the most commonly 
misfolded protein found in neurodegenerative diseases, including Alzheimer’s 
(AD), in some cases of prion diseases (Gerstmann–Sträussler–Scheinker 
syndrome or GSS) and Parkinson’s, Frontotemporal dementia (FTD) and Pick’s 
disease, among others. Tau is a protein that is involved in the stabilization of 
microtubules, controlling cytoskeleton dynamics and its function is modulated by 
phosphorylation. In all cases of brain neurodegeneration, tau is found in its 
misfolded form due to extensive phosphorylation, which causes its aggregation 
and accumulation in filamentous structures called tangles, which are essential for 
neurodegeneration [3]. 

β-amyloid is a small peptide derived from the amyloid precursor protein (APP) 
through the sequential activity of proteases named secretases. While the 
physiological function of Aβ remains elusive, much evidence has addressed that 
Aβ oligomers are the most important toxic agents in AD and major components of 
amyloid plaques, a hallmark of this disease [3]. 

α-Synuclein is the most important component found in the neuronal inclusions 
termed Lewy’s bodies, the major neuropathological feature of Parkinson’s disease 
and related disorders. The normal protein is mainly found in synaptic regions and 
plays a role in synaptic vesicles cycle in active zones [4]. 

Several cellular processes control protein folding and can be directly involved in 
the pathogenesis of neurodegenerative diseases, among which are mechanisms 
associated with transcription and protein synthesis, post-translational 
modifications and degradation, besides chaperones. 
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5.2.1. The Molecular Chaperones 

Chaperones are highly conserved proteins specialized in assisting the folding or 
assembly of other proteins, but are not part of the final functional structure. Since 
chaperones are able to target misfolded proteins, they act like neuroprotective 
agents, preventing initial aberrant protein interactions that culminate in 
aggregation, which trigger pathogenic cascades [5]. Contained within their amino 
acid sequence, proteins have, A priori, all the information necessary to order their 
three-dimensional structure. However, the in vivo microenvironment (intracellular 
or extracellular space) is filled by several molecules that can contribute to 
spontaneous misfolding and aggregation. Thus, very primitive organisms, such as 
bacteria, evolved the chaperone systems to prevent improper protein interactions 
that can trigger incorrect folding. These improper interactions are especially 
abundant in stress conditions, thus chaperones are particularly necessary in 
protection against stress. 

One of the most studied areas of cellular stress is temperature elevation, in such a 
condition, a cellular program called heat shock response is activated, increasing 
the synthesis of heat shock proteins (HSP), a subset of chaperones essential for 
recovery from cellular stress. One important implication of temperature 
maintenance in a disease affected brain is that during fever episodes, for example, 
there may be a change in balance to favor misfolding, thus aggravating the clinical 
situation of a patient. Activation of HSP is not limited to temperature elevation; 
other environmental stress agents, such as chemicals toxins, ultraviolet light 
exposure, starvation, oxygen or water deprivation, promote their synthesis and 
activity to buffer protein misfolding. Unfortunately, under certain pathological 
conditions, the capacity to control protein folding is surpassed and misfolded 
proteins start to accumulate. The involvement of chaperones in neurodegeneration 
is supported by the presence of these proteins in many amyloid inclusions from 
degenerated brain [5]. 

5.2.2. The Protein Degradation Machinery 

Besides controlling protein folding, cells have evolved other mechanisms to destroy 
misfolded proteins: a degradation machinery commonly active in all cell types, the 
ubiquitin-proteasome system (UPS) and lysosome mediated autophagy. Every 
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protein has a period of existence determined by several conjunctures and the ratio of 
synthesis and degradation is referred to as protein turnover, varying from minutes to 
several days, depending on the protein. When chaperone capacity is exceeded, 
protein degradation machinery acts as a second trench to clean up misfolded 
proteins. The major cellular pathway involved in protein degradation is the UPS, 
which is characterized by several enzymes that recognize proteins to be degraded in 
cytoplasm by the conjugation of a small protein called ubiquitin. Ubiquitinated 
proteins are delivered to a complex called proteasome that is composed of a set of 
proteases (enzymes specialized in the degradation of other proteins), which cleaves 
protein substrates to small peptides that can be recycled by cells [6]. 

Proteins can also be degraded in lysosomes, which are small sphere-like 
organelles with a highly acidic lumen and several digestive enzymes (proteases, 
glycosidades, nucleases, lipases, among others). Proteins that are digested by 
lysosomes have to be associated to intracellular vesicles that fuse to lysosomes 
releasing their content into the organelle. Extracellular and membrane-bound 
misfolded proteins can be cleared by this system [7]. 

Together with chaperones, protein degradation machinery is a part of the quality 
control mechanism specialized in recognizing and repairing (chaperones) or 
eliminating misfolded proteins (the ubiquitin-proteasome system and lysosomes). 
Thus, cells maintain protein quality control in a robust and redundant fashion, 
sustaining a complex system of multiple-type components to prevent any 
potentially toxic misfolding event. 

The amyloid plaques found in Alzheimer’s disease, Parkinson’s disease and 
amyotrophic lateral sclerosis, for example, are enriched in chaperones and 
components of the degradation system. The presence of these proteins reflects at 
least two possibilities that can occur simultaneously: the first is a failed attempt of 
cells to revert misfolding or clear the aggregates, and second, the interaction 
among misfolded proteins can be irreversible. An important therapeutic 
implication arises from both possibilities, since cells are very sensitive to the 
presence of these aggregates and/or their intermediates. Can we disturb cell death 
pathways in order to permit cells to tolerate the misfolded proteins? Some studies 
demonstrate that stress pathways are activated by the presence of misfolded 
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proteins, but the pharmacological inhibition of such pathways can prevent cell 
death [8,9]. 

5.3. CELLULAR INSULTS COMMONLY ASSOCIATED WITH PROTEIN 
MISFOLDING 

One of the most accepted hypothesis about the origin of protein misfolding and 
aggregation is the involvement of the excessive generation of free radicals, such 
as reactive species of oxygen (ROS) and nitrogen. These radicals are formed as a 
by-product of oxidative metabolism, having mitochondria as a pivotal agent. 

5.3.1. Mitochondrial Dysfunction 

Mitochondrial dysfunction has been associated with pathogenic processes related 

to neurodegenerative diseases. Mitochondria have a major role in cellular function 

through extensive production of ATP by oxidative phosphorylation. Besides its 

role as cell dynamos, mitochondria are also responsible for other cellular 

functions, such as calcium ion storage, lipid metabolism and regulation of 

programmed cell death [10]. A major implication of this deep integration with cell 

physiology is that in many cases mitochondrial dysfunction results in cell death. 

Aging is one important cause of decreased mitochondrial function. Neurons have 

evolved specialized mechanisms to prevent mitochondria dysfunction and, 

consequently, to decrease the risk of excessive oxidative stress. In aging, deficits 

of antioxidants synthesis occur favoring the occurrence of oxidative insults [10]. 

A dramatic consequence of mitochondrial dysfunction is the formation of ROS, 
since this organelle consumes large amounts of oxygen during oxidative 
phosphorylation. Electrons can escape from the electron transport chain leading to 
the formation of superoxide anions (O2-) that are very reactive and generate 
hydrogen peroxide or hydroxyl radicals. These radicals are able to damage other 
macromolecules such as protein, lipids and nucleic acids. The generation of 
misfolded proteins, as a result of extensive oxidative insult, can result in cell death 
by apoptosis or necrosis [11]. Cells also develop a robust mechanism to self-
protect from oxidative insults, such as scavenger molecules and enzymes, which 
are highly expressed to rapidly quench reactive oxygen species [10]. 
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The most interesting case of oxidative damage associated with protein misfolding 
is a form of ALS (Chapter 10) linked to a mutation in superoxide dismutase 1 
(mSOD1), a pivotal protective enzyme that catalyses the dismutation of 
superoxide into oxygen and hydrogen peroxide. Due to the mutation, the enzyme 
acquires a conformational instability that causes misfolding and leads to decreased 
protein function. Moreover, some evidence suggests that even wild-type SOD1 
can lose its enzymatic activity under cellular stress, which can be associated with 
sporadic forms of ALS [12]. A remarkable consequence of the loss-of-function of 
SOD1 is the increased generation of ROS, which causes motor neuron death 
associated with ALS degeneration. Interestingly, proteome studies revealed that 
the levels of at least 50 mitochondrial proteins were altered, indicating a 
widespread effect of mitochondrial dysfunction in this disease [10]. 

Another important oxidative event associated with protein misfolding and 
degeneration involves the metabolism of the neurotransmitter dopamine [13]. 
Dopamine has a unique chemical structure with a potential risk to be oxidized, 
even in physiological conditions, which yields the generation of toxic 
semiquinone radicals from the dopamine catechol group [14]. This oxidative by-
product will react with α-synuclein on the surface of synaptic vesicles leading to 
its oxidization and consequent accumulation [13]. 

5.3.2. Calcium-Induced Protein Misfolding 

Another proposed mechanism that leads to protein misfolding involves the 
activation of the NMDA receptor, one of the most important receptors to control 
neuronal function. The NMDA receptor is activated by its ligand glutamate, the 
major excitatory neurotransmitter of the mammalian brain. When glutamate 
accumulates in extracellular space, there is an overstimulation of NMDA 
receptors, which is associated with a pathological condition named excitotoxicity 
[15]. The NMDA receptor is an ionic channel coupled receptor (also called 
ionotropic receptor) that is permeable to calcium ions and is required for normal 
neurotransmission. However, a number of chronic or acute pathological 
conditions can lead to the accumulation of glutamate in the synaptic cleft, 
overstimulating the NMDA receptors and causing an overload of cytoplasmic 
calcium. As discussed in Chapter 4, calcium is a very important second messenger 
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in cell signaling and its cytoplasmic levels should be kept in low concentrations 
(pumped to the extracellular milieu or stored in intracellular organelles, such as 
endoplasmic reticulum and mitochondria). During periods of excessive activation 
of the NMDA receptor, calcium levels tend to increase, leading to production of 
damaging free radicals, which in turn will be associated with a cellular stress that 
usually deregulates quality control processes, increasing the probability of 
misfolding-prone proteins to progressively accumulate [16]. 

Another route of calcium influx to cytoplasm is through a transmembrane pore-
like formation which is self-assembled by misfolded proteins that allows a 
deregulated calcium entry that promotes all the aforementioned toxic events [17]. 
These pore-like structures were described with mutant forms of prion protein as 
well as β-amyloid [18] and α-synuclein [19]. 

5.3.3. Inflammation 

Another source of cellular stress in neurodegenerative diseases is the participation 
of the immune system. The misfolded protein aggregates act as irritants, eliciting 
a chronic and intense inflammatory reaction that can lead to neuronal death [2]. 
The presence of extensive areas of astrocyte proliferation and microglial 
activation around inclusions is the main evidence of chronic inflammatory 
reaction. Moreover, accumulation of inflammatory protein in cerebral amyloid 
inclusions was also observed, including complement proteins, inflammatory 
cytokines, proteases and protease inhibitors. Attempts to treat neurodegeneration 
were made using nonsteroidal anti-inflammatory drugs (NSAIDs) in animals and 
humans [2, 20]. Clinical trials were held for short-term periods (maximum of two 
years) with controversial outcomes. Most of them presented minimal effects, with 
benefits only in patients in very early stages of the AD process. Long-term clinical 
trials are necessary to evaluate if NSAIDs would be safe and beneficial to AD 
patients [21]. 

5.3.4. Mutation and Gene Amplification 

Beyond the factors described above, other mechanisms can also contribute to 
protein misfolding. Mutations are perhaps the most studied causes of protein 
misfolding, since changes in the protein sequence usually present dramatic 
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consequences in protein conformation. There are numerous examples: APP, tau, 
α-synuclein, Prion protein, SOD and Huntingtin among other less famous 
proteins. Moreover, another genetic component that may contribute to 
neurodegeneration is gene amplification, which is usually associated with protein 
overexpression. At least two important examples illustrate the importance of gene 
amplification. The best characterized case is the increased incidence of 
Alzheimer’s disease in Down syndrome individuals who have an extra copy of the 
APP locus present on chromosome 21. Down syndrome patients have increased 
rates of APP synthesis, which favors the probability of β-amyloid formation [22]. 
Another important example of gene amplification associated with 
neurodegenerative disease was verified in a family who has a α-synuclein locus 
triplication, which was associated with Parkinson disease [23]. 

5.4. SELF-PROPAGATION OF MISFOLDED PATHOGENIC PROTEINS 

In the last few years, another common aspect from neurodenerative diseases has 
been discussed, a peculiar characteristic which was first described in transmissible 
spongiform encephalopathies, or prion diseases. Prions (PrPSC) are 
unconventional infectious agents composed entirely from the misfolded form of a 
normal and ubiquitous protein called cellular prion protein (PrPC). Interestingly, 
PrPC can be directly converted by PrPSC (in a mechanism still poorly understood) 
into the misfolded form, promoting the formation of new prions. Prions can infect 
other individuals and even other species, causing a fatal neurodegeneration. For 
the discovery of the prion paradigm, Nobel Prizes were awarded on two separate 
occasions, first to Carleton Gajdusek in 1976 for describing kuru, an infectious 
brain disease of the Fore people from Papua, New Guinea and then later to 
Stanley Prusiner in 1998 for elucidating the nature of prions. For many years, the 
prion paradigm of information that can be transmitted without nucleic acid was a 
matter of debate in the scientific community, but recently the unique feature of 
prions have begun to be considered in other neurodegenerative diseases [24]. 

As discussed before, protein misfolding and aggregation in other 
neurodegenerative diseases follow the prototypic prion disease, involving a 
pattern of seeding-nucleation with the consequent formation of small aggregates 
that culminate in oligomer assembly and fibrils as the final product, the main 
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components of amyloid plaques [24]. Additionally, in vitro evidence has shown 
that several proteins implicated in human diseases have their aggregation 
accelerated when in contact with experimental seeds, suggesting that aggregation-
prone proteins have the intrinsic ability to be transmissible. These findings are 
also supported by in vivo models such as cell cultures and transgenic mice, 
showing that transmissibility of protein misfolding has a prion-like behavior. We 
cannot discard that sporadic cases of these diseases can be explained by this 
model; however, this has not been experimentally demonstrated [25]. 

Another common feature among most neurodegenerative diseases is its spread in 
a progressive manner, starting in a small brain region and reaching distant areas of 
the brain, supporting the idea that this spread is accompanied by the diffusion of a 
putative pathogen. This behavior is described in AD, PD, FTD and Huntington´s 
disease. This hypothesis was further reinforced by the evidence that PD patients 
who received fetal mesencephalic nerve cell transplants in order to replenish 
dopamine-releasing cells (in an attempted stem cell therapy, see more in Chapter 
15) presented synuclein inclusions in graft derived cells [26]. This demonstrates 
that synuclein aggregates can be transmitted from host affected cells to healthy 
donor cells, consistent with the idea of the spreading of seeds followed by 
conversion of α-synuclein to a misfolded state. This evidence has a huge 
consequence in the development of treatment strategies to neurodegenerative 
diseases based on stem cell therapy, for instance [27]. 

Accordingly, soluble β-amyloid aggregates derived from transgenic mice were 
able to induce amyloid plaque formation in wild-type animals [28]. In this 
context, it is important to keep in mind that the immune system can also be used 
by aggregates to navigate beyond the brain tissue reaching peripheral nervous 
system and bloodstream, disseminating through the entire body. In accordance 
with these ideas, a study has demonstrated that intra-peritoneal inoculation of 
brain homogenates from AD patients was able to increase the progression of the 
disease pathology in animal models [29]. 

The characterization of key mechanisms involved with the secretion, uptake, 
conversion and toxicity of misfolded protein will shed light to the unknown 
etiology of many of these diseases, permitting the characterization the etiology of 
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sporadic cases, which represent around 90% of cases of all neurodegenerative 
diseases. 

5.4.1. Self-Propagating Misfolded Proteins Involved In Neurodegeneration 

5.4.1.1. Tau Protein 

Tau inclusions found in the diseased brain appear to have a pivotal role in 
neurodegeneration and several factors can trigger their formation. Is not clear 
whether tau aggregates can be self-sustained, but increasing evidence suggests 
that tau inclusions have a pattern of distribution which correlates with aging, 
suggesting that the process starts at transentorhinal cortex spreading to the 
hippocampal formation and the neocortex [3]. An implication of being a 
transmissible agent is the different grades of virulence, which is consistent with 
the idea of prion strains. In the case of tau, strains can be a result of distinct tau 
isoforms (at least six in humans) [30]. 

An important observation, however, is that many studies that had shown the 
putative transmission of protein aggregates in neurodegenerative diseases had 
their conclusions drawn by correlation data, without direct experimental support, 
which is insufficient to conclude that transmission, in fact, occurs. For that reason, 
many researchers are still skeptical about this possibility. However, during the last 
few years, many scientists have dedicated their efforts to prove this possibility [3]. 
The most intriguing findings were when it was demonstrated that brain extracts 
derived from transgenic mice expressing human tau mutations were able to induce 
the assembly of tau protein aggregates and those injected mice presented a spread 
pathology to other brain areas resembling the human disease [31]. 

5.4.1.2. β-Amyloid 

β-Amyloid inclusions are present in the extracellular space, unlike other protein 

aggregates discussed here. However, the mechanisms of aggregate dissemination 

are similar. Several studies have already shown that the inoculation of brain 

extracts from AD patients into the brains of transgenic mice promote aggregation 

and deposition of β-amyloid in a manner consistent with the existence of different 

β-amyloid strains [32-34]. Similar outcomes were obtained with nonhuman 
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primates, which also were inoculated with β-amyloid aggregates from human 

diseased brain and, like prions, synthetic human β-amyloid aggregates were able 

to induce lesions in transgenic mice expressing human APP protein. The 

spreading of aggregates through axonally coupled brain regions are also observed 

in experimentally induced Alzheimer’s disease and culminates with widespread 

areas, such as neocortical and subcortical regions [25]. 

5.4.1.3. α-Synuclein 

As mentioned before, α-synuclein is the major component of Lewy’s bodies, a 
characteristic of PD and correlated diseases. α-synuclein inclusions can present 
pathologically different filamentous morphologies, suggesting that different 
strains can also exist, giving rise to different diseases [3]. Deposits of α-synuclein 
usually appear in enteric and peripheral nervous systems in the early phases of the 
disease. This evidence suggested that PD can originate outside the CNS, very 
much like the most famous form prion diseases, the mad-cow-disease that 
originates by the ingestion of cattle-derived infected meat. The oxidative damage 
promoted by pesticide rotenone (which affects mitochondria) is associated with 
the formation of the pathological form of α-synuclein, suggesting that people 
exposed to this pesticide can be prone to develop PD. Experimental cell-to-cell 
transfer of α-synuclein inclusions was also successfully addressed using cell 
cultures and transgenic mice models [3]. In a behavior that parallels what has been 
observed for β-amyloid, synaptically connected neurons are able to spread α-
synuclein aggregates through retrograde transport, as assessed by inoculation in 
striatum or cortex, producing different patterns of spread [35]. 

In summary, many misfolded proteins have been studied in the aspect of their 
putative transmissibility. The examples listed above show that there is a 
convergence of studies demonstrating that the pathogenesis of neurodegenerative 
diseases share similarities with prion diseases. However, until now, the 
remarkable feature of prions, the infectivity capacity to transfer seeds to other 
organisms, was not demonstrated under natural conditions. One conclusion to be 
drawn is that transmission capability does not mean that these diseases are 
infectious, but taken together those findings are helping researchers to explain 
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intriguing features of these diseases and will also support novel strategies to 
develop new diagnostic tools and effective therapies for these diseases [24]. 

5.5. THERAPEUTICS FOR MISFOLDED PROTEINS DISEASES 

Considering that misfolding and aggregation are shared features in the 
pathogenesis of several neurodegenerative diseases, it is conceivable to expect a 
common therapy targeted to misfolded proteins. Several approaches have been 
proposed in the last years and are based on at least four strategies: first, using 
chemicals to help stabilization of the native protein conformation, thus preventing 
misfolding; second, desestabilization and reversion of protein aggregates; third, 
compounds with the capacity of competitively blocking protein interactions in 
order to prevent the formation of aggregates; fourth, increasing the clearance of 
misfolded proteins through immunization [2, 28]. All these proposed therapies are 
still being researched and at the moment no compound is commercially available, 
albeit some molecules are being tested in humans in clinical trials. However, we 
have to keep in mind that all strategies should be exhaustively tested since many 
potential adverse effects could arise. Since the process of misfolding is still poorly 
understood, the attempts to inhibit one step of misfolding could result in the 
accumulation of putative toxic intermediates worsening the toxicity [36]. 
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Abstract: Mitochondria are key organelles with a critical role as the main source of 
energy supply. Mitochondrial dysfunction can lead to several disorders, including 
neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases and the aging 
process. The mitochondrial respiratory chain is the main source of reactive oxygen 
species and because it is located in the inner mitochondrial membrane, it is also 
susceptible to oxidative damage, as well as other biomolecules in the vicinity, such as 
mitochondrial DNA. Nitric oxide is also found in the mitochondrial matrix and is 
involved in physiological pathways such as induction of apoptosis and generation of 
nitrosative stress. In this review we will discuss the complex mechanisms involved in 
the relationship between mitochondrial dysfunction, oxidative stress and neuronal death. 

Keywords: Free radicals, mitochondrial dysfunction, neurodegenerative diseases, 
neuronal death, nitric oxide, mitochondria, apoptosis, mitochondrial DNA, 
Alzheimer's disease, Parkinson's disease, motor neurons, aging, mutation, electron 
transport, oxidative stress, oxidative phosphorylation, Huntington's disease, 
mitochondrial diseases, superoxide radicals, dementia. 

6.1. INTRODUCTION 

As the population has become older during the last decades, the incidence of 
neurodegenerative diseases have increased as well as our knowledge about the 
complex mechanisms involved in the pathogenesis of neurodegeneration, 
especially neuronal death. Neurodegenerative diseases result from different 
mechanisms and multiple effects determine the clinical severity and progression 
of these diseases. Genetic and environmental factors are involved, but among the 
pathogenic mechanisms, oxidative stress and mitochondrial dysfunction leading to 
neuronal impairment or death are considered important [1]. 
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Mitochondria are key organelles present in almost all cell types and due to their 
critical role as the main source of energy supply, mitochondrial abnormalities can 
lead to diseases and specific organ disturbance. Neuronal and muscle cells are 
among the most susceptible to bioenergetic deficiencies, which is reflected by the 
implication of mitochondrial dysfunction in several neurodegenerative diseases and 
in the aging process [2, 3]. Mitochondrial abnormality is found as a primary defect 
or as a secondary event. To understand how mitochondria are affected in these 
diseases, we first need to review the basic knowledge about mitochondrial structure, 
function and genetics. 

Mitochondria are cytoplasmic organelles composed by two membranes: the outer 
mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). 
The OMM delimitates the organelle from the cytoplasmic content while the IMM is 
a long length membrane with invaginations called cristae, giving a larger surface 
area. The space between the OMM and IMM is the inter-membrane space and the 
internal space formed by the IMM is called the matrix, where most of the 
physiological pathways occur. The main mitochondrial function is performed by the 
respiratory chain or electron transport chain, located in the IMM, composed by four 
multimeric enzyme complexes: Complex I (NADH ubiquinone oxido-reductase), 
Complex II (succinate ubiquinone oxido-reductase), Complex III (ubiquinone 
cytochrome c oxido-reductase) and Complex IV (cytochrome c oxidase); and two 
electron carriers, coenzyme q (or ubiquinone) and cytochrome c. Reducing 
equivalents, produced in the Krebs cycle and beta-oxidation, are passed along the 
electron transport chain, generating energy that is used to pump protons from the 
mitochondrial matrix into the inter-membrane space. During this process, an 
electrochemical proton gradient is created and the protons flow back into the matrix 
through the F0 portion of Complex V (ATP synthase), generating ATP [2]. This 
entire process is denominated oxidative phosphorylation (OXPHOS). Mitochondria 
also have other critical roles including fatty acid oxidation, Krebs cycle, urea 
synthesis, regulation of amino acid cycling, neurotransmitter biosynthesis, regulation 
of cytosolic Ca2+ homeostasis, control of cell death and necrosis [3]. 

As a unique organelle, mitochondrion has its own DNA (mitochondrial DNA, 
mtDNA), a circular, double-stranded molecule with 16,569 bp, containing 13 
structural genes encoding subunits of the respiratory chain, 22 tRNA genes and 2 



Mitochondrial Dysfunction and Free Radicals in Neuronal Death Young Perspectives for Old Diseases   121 

rRNA genes [4]. Since, mtDNA only is not sufficient to provide all the elements 
for mitochondrial formation and functioning, so both genomes, mtDNA and 
nuclear DNA, are needed for proper mitochondrial function. 

Mitochondrial dysfunction has been observed in several disorders due to a 
primary or secondary defect. A primary defect leading to mitochondrial 
dysfunction, is caused by genetic defects leading to abnormalities of the 
OXPHOS, known as mitochondrial disorders [5]. These diseases are caused by 
mutations in mtDNA or nuclear DNA, leading to variable phenotypes, with 
multisystem involvement and frequent neurological manifestations such as 
infantile encephalopathy, dystonia, optical neuropathy, epilepsy, parkinsonism, 
peripheral neuropathy and myopathy. However, these phenotypes do not involve 
an isolated manifestation, as patients usually have other associated manifestations 
such as cardiomyopathy, heart block, retinitis, neuro-sensorial deafness, 
hepatopathy and tubulopathy [5]. The severity of mitochondrial dysfunction and 
mutation load in these patients is much higher than what is found when 
mitochondrial dysfunction is a secondary event. 

6.2. FREE RADICALS IN MITOCHONDRIA 

One of the most important factors associated with the development of 
neurodegenerative diseases is mitochondrial dysfunction caused by oxidative 
damage. During normal electron flow in the respiratory chain, there is a leakage 
of 0.1 to 1% of electrons, making the respiratory chain an important source of free 
radicals [6, 7]. Because respiratory chain complexes are embedded in the IMM, 
several potential targets of reactive oxygen species (ROS) are in close vicinity, 
such as mtDNA and iron-sulfur clusters present in respiratory chain complexes. 
Although electron leakage occurs normally during electron transport through the 
respiratory chain, the presence of defense mechanisms, such as antioxidant 
molecules and scavenger enzymes, are able to avoid oxidative damage. However, 
when the electron flow is disturbed, an increased leak of electrons is expected, 
generating superoxide anions (O2•

-), which leads to formation of H2O2 by 
superoxide dismutases or spontaneous dismutation. Low to intermediate levels of 
H2O2 are involved in the regulation of redox-sensitive signaling and transcription 
of several physiological pathways, whereas high levels are involved in oxidative 
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damage [8]. Oxidative damage is more likely to occur with more reactive radicals, 
generated through other reactions, which include superoxide anion (O2•

-), H2O2, 
hydroxyl radical (•OH) [9] and reactive nitrogen species (RNS), such as nitric 
oxide (NO), nitrite and peroxynitrite [10]. Any kind of free radical can promote 
damage to lipids, mtDNA, proteins, especially those containing transition metals, 
such as iron and copper, which are present in respiratory chain Complex I and IV, 
respectively. Nitration of tyrosine residues in mitochondrial proteins, such as 
cyclophilin D (CyPD) and adenine nucleotide translocator (ANT), can also affect 
the process of apoptosis [9]. 

NO is a unique radical because of the negative effects as a reactive radical itself 
and also how it exerts regulatory roles, such as reversible inhibition of Complex 
IV (cytochrome c oxidase) and control of mitochondrial biogenesis [8, 11]. 
Several studies reported the mitochondrial generation of NO by a mitochondrial 
nitric oxide synthase (NOS); however, the existence and identity of this 
mitochondrial NOS are controversial [6, 7, 12-14]. 

MtDNA is considered more vulnerable due to the lack of protective histones, but 
the organization of mtDNA molecules in nucleoids provides some protection [15]. 
Oxidative damage to mtDNA can promote single or double-strand breaks and 
mispairing leading to point mutations or deletions. Several point mutations, 
insertions and deletions have been described, but in very low amounts, up to 1%, 
which is considered too low to affect cellular mitochondrial function. These 
mutations are age-related and have been considered as a product of oxidative 
damage, but until now this hypothesis is still a matter of debate [16]. 

Respiratory chain complexes I and II are more susceptible to ROS due to the 
presence of several iron-sulfur clusters. The presence of Fe2+ can convert H2O2 
into hydroxyl radical (•OH) or intermediates, which are more harmful [10]. 
Another form of protein damage is from NO, which can generate peroxynitrite 
(ONOO-) and other RNS, leading to interruption of the correct electron flow 
through the respiratory chain by signaling events promoting inhibition of 
respiration or nitrosative modifications such as protein nitration [10]. Nitration of 
tyrosine residues in proteins such as CyPD and ANT can induce apoptosis 
because they are key components of the mitochondrial permeability transition 
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pore (PTP) [9, 10]. Proteins can also be inactivated when modified by protein 
carbonylation [9]. All these modifications affect mitochondrial function and can 
be related to neuronal damage. 

6.3. CELL DEATH 

Cell death is a part of the cellular process for normal development in the nervous 
system. However, cell death can be a response to injury, stress or can be 
associated to pathological conditions, including neurodegenerative diseases [17]. 
Cell death can occur by three different processes: necrosis, apoptosis and 
autophagy [15]. 

Necrosis is the lytic destruction of individual cells, involving cell swelling and 
rupture of cellular membranes, which is biochemically and morphologically 
distinct from apoptosis [17]. 

Apoptosis is an orderly and compartmental dismantling of single cells or groups 
of cells into consumable components for nearby cells. This programmed cell death 
is ATP-driven and often signaled by caspases or other caspase-independent forms 
of programmed cell death. There is no associated cell lysis or inflammation. 
Caspases can be activated by two ways, by the mitochondrial pathway or by the 
death receptor pathway. In the mitochondrial pathway, caspase activation is 
triggered by the release of cytochrome c from mitochondria into the cytosol [18]. 

Autophagy is a lysosomal degradation of damaged or expendable organelles. 
Cytoplasmic constituents, including organelles, are sequestered into double-membrane 
autophagosomes, which subsequently fuse with lysosomes where their contents are 
degraded [19]. Autophagy is part of the physiological processes involving protein and 
organelle turnover and can also be found in pathological conditions. When autophagy 
occurs in mitochondria, the process is denominated mitophagy, which is the recycling 
or elimination of entire dysfunctional mitochondria. Through the process of 
mitophagy, the subset of mitochondria producing the most reactive oxygen species are 
also removed, in order to reduce the oxidative stress [20]. Many cell death stimuli can 
induce more than one mode of cell death depending on the conditions, such as the 
severity and duration of the stress, redox levels and mitochondrial integrity [18]. In 
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order to maintain the energetic supply, there is a continuous removal of non-functional 
mitochondrial subunits by autophagy, but when extensive mitochondrial damage 
exists, cell death is triggered [15]. 

6.4. THE AGING FACTOR 

The vast majority of neurodegenerative diseases are age-related, i.e., 
manifestations occur late in life. So it is reasonable to think that the aging process 
may be an additional factor that predisposes or modulate these diseases. Since the 
mitochondrial theory of aging was first mentioned [21, 22], several studies have 
looked at mitochondrial abnormalities in aged tissues. This theory is based on the 
fact that the respiratory chain is a major source of electrons that are available to 
react with molecular oxygen and generate ROS. These might cause oxidative 
damage to the respiratory chain, leading to abnormal electron flow and increased 
generation of ROS, creating a "vicious cycle". The main evidence supporting this 
theory is the impairment of mitochondrial respiratory chain enzyme activities [23, 
24], increase in oxidative markers in mtDNA [25] and elevation of proportion of 
mtDNA mutations [26, 27]. These abnormalities were found in aged tissues and 
mtDNA mutations accumulate in an exponential manner with age [27]. An 
argument against the involvement of mtDNA mutations in the aging process is 
that the levels of these mutations are very low (<1% of total mtDNA), which is 
not sufficient to lead to mitochondrial impairment. Contrarily, because several 
mutations (deletions, insertions and point mutations) are present in the same cell 
[27-29], it is also argued that the decline in enzyme activities could be due to 
many types of mutations together. Others find that although the mutation load is 
low, mitochondrial impairment in isolated cells could represent a decrease in the 
homeostatic reserve of aged neurons, explaining their increased vulnerability [30]. 
Even though other studies found normal mitochondrial enzyme activities in aged 
tissues [31, 32], in situ studies demonstrate that isolated cells do have 
mitochondrial deficiency, which could be explained by the very small percentage 
of cells presenting deficiency in the whole tissue [33]. When looking at individual 
neurons in substantia nigra, mtDNA deletions are found in higher levels in aged 
individuals, although they account for less than 1% [34]. The study of the 
substantia nigra of an 80 year-old individual showed the presence of 30% neurons 
with cytochrome c oxidase deficiency and with more than 60% of mtDNA 
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deletion [34]. Studies using the mutator mouse, an animal model for premature 
aging with a defective mitochondrial polymerase gamma [35, 36], have 
demonstrated accumulation of mtDNA mutations and mitochondrial deficiency. 

The main hypothesis to explain the accumulation of mtDNA mutations during life 
is that they appear as a result of oxidative damage. However, this hypothesis is 
questioned by several studies and until now is not confirmed. For this reason, a 
new hypothesis has emerged and is based on the idea that mutated mtDNA 
molecules are already present early in life, originated from primordial cells, and 
that the increase of mutated mtDNA molecules occurs due to replication of these 
molecules in post-mitotic tissues [16, 37]. 

6.5. OXIDATIVE DAMAGE AND MITOCHONDRIAL DYSFUNCTION IN 
NEURODEGENERATIVE DISEASES 

Neurodegenerative diseases are characterized by cumulative neuronal damage in 
specific brain areas that lead to neurological deficits when neuronal loss reaches a 
critical limit [38]. The most frequent diseases are Parkinson's disease (PD) and 
Alzheimer's disease (AD), which are associated with respiratory chain 
deficiencies in Complex I and IV, respectively [39-41]. However, the exact roles 
of mitochondria in these diseases are yet to be clarified, though great advances 
have been acquired, especially with studies on animal models. Most recently, 
abnormalities on mitochondrial morphology and dynamics have been discovered 
as important factors in the development of neurodegenerative diseases, including 
Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS) [42, 43]. 

AD is the most common form of dementia and is characterized by the 
extracellular accumulation of senile plaques and the intracellular deposition of 
neurofibrillary tangles of hyperphosphorylated tau protein [44]. It is suggested 
that the amyloid  peptide (A), present in senile plaques, induces oxidative 
damage with association of complex IV deficiency. Studies on transgenic mice 
expressing human mutant amyloid precursor protein (APP) found the association 
of A with mitochondria and mitochondrial dysfunction (lower levels of oxygen 
consumption and reduced activity of respiratory complex III and IV) [45]. The 
presence of A within mitochondria in murine model and AD patients provides a 
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link between mitochondrial dysfunction and pathogenic A [46]. A peptide is a 
product of APP, which is synthesized in the cell bodies of neurons and is 
anterogradely transported via axons to nerve terminals in the brain [46]. Both APP 
and A can affect regular mitochondrial function through direct physical 
interactions with mitochondrial proteins. Studies on transgenic mice demonstrated 
that APP clogged mitochondrial import machinery causing mitochondrial 
dysfunction and energy metabolism impairment [47]. The interaction of A with 
A binding alcohol dehydrogenase (ABAD), a mitochondrial matrix protein, led 
to increased free radical generation and impaired memory in APP mutant mice 
[48]. It was also demonstrated that A interacts with mitochondria leading to 
cytochrome c oxidase inhibition and impaired memory in animal models [49, 50]. 

Additionally, brains of patients with AD had lower level of presequence protease 
(PreP), localized in the mitochondrial matrix and characterized as a mitochondrial 
A degrading enzyme [51]. The reduction was confined to the temporal lobe 
while other areas are not affected. AD brains also presented reduction of Complex 
IV activity and higher levels of 4-hydroxynonenal, an oxidative product, 
suggesting that enhanced ROS production decreased PreP proteolytic activity, 
contributing to A accumulation in mitochondria, leading to mitochondrial 
toxicity and neuronal death [51]. It is hypothesized that the accumulation of A 
leads to reduced mitochondrial membrane potential, including reduced Complex 
IV activity, both reducing ATP levels, followed by enhanced ROS production. 
When the inhibition of mitochondrial function has reached a phenotypic threshold 
and severe energy deprivation appears, the process culminates with mitochondrial 
and synaptic dysfunction [52]. 

Mitochondrial dysfunction in PD is more direct. Mitochondrial involvement in PD 
has long been observed from toxic agents such as MPTP (1-methyl 4-phenyl-1,2,3,6-
tetrahydropyridine) that produced Parkinson's-like syndrome. Its metabolite MPP+ 
enters neuronal mitochondria and selectively inhibits Complex I. Complex I 
deficiency was also found in platelets, muscle and brain from PD patients [41]. 
Inhibition of Complex I creates a biochemical environment with increased 
generation of superoxide, which promotes lipid peroxidation and peroxynitrite 
mediated protein nitration and nitrosylation, culminating with neuronal apoptosis 
[53]. Complex I deficiency also causes alpha-synuclein aggregation and 
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accumulation in dopaminergic neurons, contributing to neuronal death [54]. 
Furthermore, increased NO levels in mitochondrial matrix, due to activation of 
mitochondrial NOS or NO diffusion from cytosolic, leads to peroxynitrite mediated 
nitration, inhibition of Complex I activity, increased production of superoxide and 
trigger of apoptotic signaling [38]. However, it is still unclear why mitochondrial 
dysfunction is restricted to dopaminergic neurons [44]. 

One of the most devastating neurodegenerative diseases is ALS, characterized by 
progressive generalized muscle weakness, atrophy, swallowing disability and 
death due to respiratory failure [55]. ALS is caused by degeneration of upper 
motor neurons in cerebral cortex and lower motor neurons in the brainstem and 
spinal cord [55, 56]. Most of the patients have the sporadic form (90%), while 
only 10% are familial cases [56]. Twenty percent of familial cases are caused by 
mutations in Cu/Zn-superoxide dismutase gene (SOD1), as SOD1 is a scavenger 
enzyme that removes superoxide anions, increased oxidative stress is expected in 
this form. However, the mechanisms of the toxic effects of mutant SOD1 are not 
straightforward and still need to be better clarified. In normal tissues, SOD1 is a 
cytoplasmic enzyme, though mutant SOD1 localizes in mitochondria only in 
affected tissues [57, 58]. It was demonstrated that the localization of mutant 
SOD1 in mitochondria is critical for the pathogenesis of familial ALS because it 
triggers the release of mitochondrial cytochrome c followed by activation of 
caspase cascade, inducing neuronal cell death [57]. Transgenic mice over 
expressing mutant SOD1 in the mitochondrial intermembrane space show many 
but not all ALS-like features [59], which means that other factors are involved in 
the full development of the disease. The proposed involvement of mitochondrial 
dysfunction and neuronal death can be summarized in: (a) mutant SOD1 
accumulates and aggregates in the outer mitochondrial membrane and clogs the 
protein importation machinery, resulting in mitochondrial dysfunction; (b) 
aberrant ROS production is induced by mutant SOD1, leading to oxidative 
damage and impaired respiration and ATP synthesis; (c) mutant SOD1 inhibits 
apoptosis because binds to and aggregates with anti-apoptotic proteins (cytosolic 
heat-shock proteins and mitochondrial Bcl-2) [56]. Furthermore, recent studies 
have demonstrated abnormalities in axonal transport and movement of 
mitochondria along the axons, resulting in depletion of mitochondria from the 
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axons and an accumulation of organelles in clusters along neurites [60, 61]. 
Impaired mitochondrial transport was associated with inability to maintain viable 
neurites and may be critical in motor neurons, where cellular components have to 
move long distances throughout axons, such as in ALS [61]. 

Abnormalities in mitochondrial dynamics and axonal transport have also been 
reported in HD. This is another example of a severe and devastating 
neurodegenerative disease, with late onset and progressive course. It is clinically 
characterized by chorea, psychiatric disturbances and dementia. HD is an 
autosomal dominant disease, caused by a CAG trinucleotide repeat expansion in 
the huntingtin (HTT) gene, with a progressive loss of long projection neurons in 
the cortex and striatum [56]. Several mechanism and pathways have been 
proposed to explain the pathogenesis of HD, including transcriptional 
dysregulation, expanded polyglutamine repeat protein interactions with other 
proteins in the central nervous system, caspase activation, N-methyl-D-aspartate 
receptor (NMDAR) activation, calcium homeostasis abnormalities, abnormal 
mitochondrial bioenergetics and impairment in axonal trafficking [62-64]. 

The findings of mitochondrial abnormalities in brain or neuronal cells, such as 
impairment in respiratory chain complexes activities [62]; mitochondrial 
respiration and ATP production [65, 66], are important evidence of mitochondrial 
involvement in the pathogenesis of HD. Abnormalities in mitochondrial fusion 
and fission have recently been recognized as important factors in the pathogenesis 
and progression of HD [67]. Fragmentation of mitochondria and reduced 
mitochondrial fusion were associated with increased ROS in a study with cortical 
neurons treated with 3-nitropropionic acid (3-NP) [68]. 3-NP is an irreversible 
inhibitor of mitochondrial respiratory complex II, which induces HD-like 
pathology and symptoms in animal models. In this study, a dramatic rise in ROS 
induced mitochondrial fission and neuronal cell death. Furthermore, it was also 
demonstrated that over expression of proteins that stimulate mitochondria fusion 
can decrease the toxicity of mutated huntingtin protein in both cells and animals 
[69]. Additionally, defects in axonal transport, such as abnormal movement of 
mitochondria throughout the neuron, were also reported in cells or animal models 
and can contribute to the morphological defect associated with mutant huntingtin 
expression [42]. 
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CONCLUDING REMARKS 

There is a close relationship between mitochondrial dysfunction, generation of 
free radicals and neuronal death. Although the exact mechanisms of the 
pathogenesis of several diseases are not completely elucidated, great advances 
have been developed regarding the pathogenic pathways involving oxidative 
damage. With this knowledge, potential therapeutic approaches can be developed 
to increase antioxidant protection or restore mitochondrial function. 
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CHAPTER 7 

Alzheimer’s Disease 
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Abstract: Alzheimer’s disease is the leading cause of dementia in the elderly. It is 
characterized by progressive memory loss and deterioration of cognitive ability, as well 
as by the presence of two main histopathological abnormalities in the brain: the amyloid 
plaques and the neurofibrillary tangles. The first is composed mainly of the aggregated 
form of the amyloid-beta peptide, while the latter consists of neuronal cell bodies filled 
with the hyperphosphorylated form of the tau protein. Although several genetic risk 
factors have been identified, the pathological mechanism of this disease remains 
elusive. As a consequence, to the present moment there is no cure to this condition or 
treatment capable of reliably reversing its symptoms. Hereditary forms of the disease 
typically have an early onset, and are predominantly associated with mutations in the 
molecular machinery responsible for the metabolism of a protein known as amyloid-
precursor protein. In spite of the strong evidence suggesting its involvement in the 
pathogenesis of Alzheimer’s disease, very little of the normal physiological role of this 
protein or its pathway is known. A second molecular pathway involved in many cases 
of neurodegenerative conditions, including Alzheimer’s disease, is the cytoskeleton-
associated protein tau. Tau plays an important role in biological processes like axonal 
transport, and much is known about the molecular mechanisms of tau dysfunction in 
disease. However, the precise mechanisms by which both amyloid and tau molecular 
signaling pathways interact in the pathology are not fully understood. As a result, the 
lack of a clear picture of the molecular alterations underlying this disease has 
represented a barrier to the development of effective treatments. In this regard, the two 
available options approved by the U.S. Food and Drug Administration target mostly the 
symptoms and provide unsatisfactory results in the long term. Many research groups in 
both academia and industry have focused efforts in the development of new therapies 
capable of reversing the cognitive impairment of patients with Alzheimer’s disease. 
Several of the emerging therapies had severe side effects and disappointing outcomes in 
terms of improving cognitive levels. However, there are some therapies that have been 
showing more promising results. Further studies and clinical trials are still needed to 
fully address the risks and benefits of new treatments in Alzheimer’s disease. 
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protein, neurofibrillary tangles, amyloid plaques, neuroinflammation, memory, 
learning, memantine, glutamate, NMDA receptors, AMPA receptors, long-term 
potentiation, synaptic transmission, insulin, oxidative stress, excitotoxicity. 

7.1. INTRODUCTION 

Among the many forms of dementia that affect individuals in the late stages of life, 
Alzheimer’s disease (AD) is the most common, with current estimates reaching 
more than 25 million cases globally (Alzheimer’s Association, http://www.alz.org). 
Affected individuals typically experience memory loss, learning deficits, cognitive 
impairment and a myriad of emotional symptoms like depression and anxiety. This 
represents a very difficult situation for patients’ families, as there is no cure at 
present, typically requiring long-term management of the symptoms, either at home 
or at institutions. Health care for AD patients imparts a major economic burden to 
society, with costs three- to four-times higher than for individuals without AD 
[http://www.alz.org]. A small (1 – 6%) number of cases can be attributed to inherited 
genetic causes, in which AD develops at early ages and is passed from one 
generation to another in a Mendelian fashion. These are called the familial forms of 
AD, and usually occur before the age of 65. However, most AD cases occur after 65 
years and are weakly associated with a wide range of genes, the most common being 
the lipoprotein ApoE4 [1]. Given the high prevalence of AD among the elderly, age 
is considered the most important risk factor for developing AD [2]. Understanding 
the pathogenesis of AD has become particularly urgent because of the rapidly aging 
world population, and countless efforts have been made in this regard. However, 
after 100 years of its first clinical description, the causes of AD still remain 
controversial, and no effective treatment has been developed. In this book chapter, 
we will summarize the consensus of AD pathophysiology, and touch potential new 
avenues for drug discovery. 

7.2. HISTORY 

In 1906, the German pathologist Dr. Alois Alzheimer reported a case of early-
onset dementia in a 51-year old woman named Auguste D., thus providing the 
first description of the disease that would later be named after him [3]. As 
pictured in her own words: “I have lost myself”, this patient had experienced a 
great extent of memory loss and cognitive impairment. After her death, Dr. 
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Alzheimer autopsied her brain and found two intriguing microscopic 
abnormalities, which later turned out to be the characteristic pathological 
alterations of AD. One of them was the presence of large deposits of amorphous 
material in the space between cells, the “senile plaques”. The other important 
finding was the presence of an anomalous flame-shaped mass within the cell 
bodies of many neurons, the so called “neurofibrillary tangles”, which seemed to 
cause cells to atrophy and die. Many research groups have spent years 
characterizing the effects of the components of the senile plaques (also known as 
“amyloid plaques”) and the neurofibrillary tangles in the brain, features that are 
still considered the main players in AD pathology. 

7.3. PATHOLOGICAL MECHANISMS 

7.3.1. Amyloid-β 

The amyloid plaques are now well characterized as extracellular deposits of protein 
aggregate, surrounded by tissue showing signs of neuronal dystrophy, oxidative 
damage and inflammation. The major component of amyloid plaques is a peptide 
known as Amyloid-beta, or Aβ, which accumulates in the brains of AD patients. The 
discovery of Aβ generated an immense interest around the molecular mechanisms 
involved in its production, as well as its physiological role. As a matter of fact, Aβ is 
just a small fraction of a larger protein called APP (from Amyloid Precursor 
Protein), which is anchored in the plasma membrane of the cell. APP is the core of a 
complex metabolic pathway that is assumed to be involved in intercellular signaling. 
The proteolytic processing of APP by a series of enzymatic complexes called , - 
and -secretases cuts APP into many different fragments in a regulated series of 
steps. These fragments, including Aβ, can be either secreted by the cell or engage in 
intracellular signaling. Thus, Aβ results from a proteolytic cascade involving 
multiple enzymes and associated by-products [4]. 

As evidence of how important the proteins involved in the Aβ pathway are to the 
pathophysiology of AD, virtually all mutations that cause hereditary forms of AD 
are involved in APP processing. The three main genes related to familial AD 
cases encode the proteins APP and presenilins 1 and 2 (both members of -
secretase complex) [4]. Although the physiological functions of APP are still not 
fully understood, it is known to be essential for embryonic development. The 



136   Young Perspectives for Old Diseases Jurgensen and Decker 

family of proteins to which it belongs is known to promote adhesion between 
cells, thereby regulating cell survival, neuronal adhesion and cell migration, and 
thus brain development [5]. 

That initial description of the amyloid plaques led scientists to think for many 
decades that the plaques were directly responsible for the clinical symptoms and 
neurodegeneration in AD. This idea developed into what is called the “classical 
amyloid hypothesis” of AD [6]. According to this hypothesis, Aβ triggered 
neurotoxicity, which caused neuronal death, ultimately leading to clinical 
symptoms. However, studies in transgenic animals that develop the amyloid 
plaques do not entirely corroborate the original hypothesis, as some of these 
animals display normal behavior [7]. Furthermore, many clinical studies have 
documented a poor correlation between the occurrence of clinical symptoms and 
presence of the amyloid plaques in post-mortem tissue [7]. In other words, not all 
patients who displayed symptoms of broad cognitive impairment characteristic of 
Alzheimer’s disease actually have the plaques, and more importantly, amyloid 
plaques are found in the brains of people considered mentally healthy. Thus, a 
revised form of the original hypothesis was proposed [7]. 

Just when scientists were starting to realize that plaques might not be the only 
players in AD pathology, another piece of the puzzle was uncovered. Digging 
through a series of post mortem brain tissue from AD patients using biochemical 
techniques, researchers found soluble forms of Aβ aggregates, which could not 
have been observed with the techniques that were initially used to visualize the 
amyloid plaques. It was soon demonstrated that these forms were toxic to neurons, 
suggesting that it was not the end of the story for Aβ. The small and soluble forms 
of Aβ aggregates also build up and accumulate in the brains of AD patients, and 
are considered much more potent than plaques because, in experimental 
conditions, they can cause damage to neurons at much lower concentrations [8]. 
These soluble aggregates are called Aβ oligomers and are found in a range of 
different sizes and molecular weight, from small units containing only two 
monomers (the individual units of the Apeptide) up to larger ones [9]. 

In terms of diagnostics, some research initiatives have been trying to create 
methods to detect Aβ oligomers in the cerebrospinal fluid of patients, but no 
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effective technology has been developed so far. The greatest progress in this area 
came from recent advances in radiological imaging, which have enabled the 
detection of amyloid plaques in living patients with the use of compounds that 
label amyloid plaques. One of the most extensively investigated and validated 
tracer is Pittsburg compound B (PIB). After injection into the blood stream, PIB 
traverses the blood-brain barrier and binds to the amyloid plaques, due to its high 
affinity for fibrillar Aβ. PIB binding to amyloid plaques can be detected by 
positron emission tomography (PET), an imaging exam routinely employed in 
brain diagnostics. This technique has improved diagnostic accuracy and patient 
selection for clinical trials. Furthermore, it has the ability to detect amyloid 
plaques at very early stages, years before the manifestation of clinical symptoms 
[10]. Early detection might be used to prevent the development of symptoms once 
effective preventive measures become available. 

7.3.2. Tau 

The second major abnormality found by Dr. Alzheimer was the presence of the 
neurofibrillary tangles. These are found inside the cell body of neurons, whose 
axons and dendrites look dystrophic. Just like the amyloid plaques, the 
neurofibrillary tangles are made of aggregated protein, with the difference that a 
protein called Tau is their major constituent. Tau is normally found in the axons 
of neurons, where it associates with one of the components of the neuron’s 
cytoskeleton, the microtubules. Its main function is to promote microtubule 
assembly and stabilization, which is important for normal axonal transport of 
vesicles and organelles. 

In the brains of AD patients, Tau is found in an abnormal configuration: 
conjugated with an excessive amount of phosphate groups (hyperphosphorylated) 
and assuming a different three-dimensional conformation. While Tau is normally 
found as a soluble protein, this hyperphosphorylated form renders insoluble, 
filamentous aggregates that generate the neurofibrillary tangles [11]. The 
mechanisms responsible for the conversion of a normally soluble monomeric 
protein into the insoluble filamentous aggregates have been the subject of intense 
study [12]. It is well established that glycogen synthase kinase (GSK)-3β is the 
major enzyme that phosphorylates Tau. The sites of Tau phosphorylation by 
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GSK3β reside primarily within the microtubule-binding domain. When these sites 
are phosphorylated, the interaction between Tau and microtubules is disrupted. 
This finely regulated mechanism plays a physiological role in the long-term 
dynamics of synaptic function [11]. However, pathological GSK3β overactivation 
creates a permanent shift in the levels of phosphorylated tau, putatively leading to 
the dysregulation of this physiological mechanism and to harmful consequences 
for synaptic function. Furthermore, tau phosphorylation by GSK3β affects 
microtubule stabilization and dynamics. In the long run, hyperphosphorylation 
and aggregation of Tau can lead to microtubule disintegration and severely impair 
axonal transport and synaptic transmission, ultimately contributing to the 
behavioral deficits observed in AD [11]. Because GSK3β is constitutively active, 
its regulation is primarily based on inhibition of its activity through different 
signaling mechanisms, such as the insulin or wnt pathways [12]. It turns out that 
these two pathways can both be inhibited by high levels of Aβ [13]. In fact, 
GSK3β can be activated by fibrillar forms of Aβ, and active GSK3β is found in 
neurofibrillary tangles in postmortem AD brains [7]. These evidences suggest that 
GSK3β could be the link between Aβ and tau in AD. 

The neurofibrillary tangles are better correlates of dementia in AD than the 
amyloid plaques, and thus could be considered the ultimate diagnosis criteria. On 
the other hand, neurofibrillary tangles are a key feature of many other 
neurodegenerative diseases which also result in dementia, such as frontotemporal 
dementia with Parkinsonism on chromosome 17 (FTDP-17) [11]. Nevertheless, 
all tauopathies share the common fact that neurofibrillary tangles are strongly 
associated with cell death, through mechanisms that involve activation of 
caspases, enzymes classically involved in a slow process of cell death. More 
recently, indirect evidence of the existence of Tau oligomers, smaller and soluble 
forms of Tau aggregates, in AD have arisen [11]. Although their existence is not 
confirmed, it would explain neurodegeneration observed in the absence of 
neurofibrillary tangles in an experimental model of tauophathy [11]. 

Overall, it is generally accepted that Tau is involved in AD pathology through 
mechanisms of hyperphosphorylation and aggregation, but whether neurofibrillary 
tangles themselves trigger cell death, or act as a buffer for a more toxic oligomeric 
tau, is still a matter of debate. 
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7.3.3. Synaptic Basis of AD Pathology 

Does Aβ cause memory impairment in AD? This is perhaps the issue that has 
been most extensively approached experimentally in the field. Robust evidence in 
rodents and invertebrate models suggest that Aβ disrupts learning and memory, 
either when synthetic forms are applied exogenously, or in organisms that were 
genetically modified to produce increased amounts of the peptide [2]. 
Corroborating that idea is the fact that Aβ does actually affect the cellular and 
molecular mechanisms that underlie learning and memory [2]. 

In order to better understand how Aβ impairs learning and memory, it is important 
to have an idea of how the nervous system functions. Synapses are the points of 
communication between neurons, which form the basis for the complex functional 
networks in the brain. Most neurophysiological processes rely on synaptic 
transmission to occur. Briefly, upon the arrival of an electric signal, small 
molecules known as neurotransmitters are released from one neuron and 
perceived by the other through specific receptors lying on its surface. These 
receptors are proteins that have the ability to trigger another electric signal in the 
perceiving neuron, so that the information continues to propagate. There are 
different types of neurotransmitters, some being excitatory (as to facilitate 
propagation of electric impulse) and others inhibitory (as to stop this propagation). 
The integration of inhibitory and excitatory synapses in a given neuron is what 
determines functionality of a circuit, and both are important and have to work in a 
coordinate fashion. One key aspect of brain areas related to learning and memory 
is that synapses in these circuits are extremely malleable, or plastic. In other 
words, being plastic means having the ability to strengthen or weaken as a 
consequence of how much they are being activated. Thus, neuronal activity can 
modify neural networks by means of synaptic plasticity, a phenomenon essential 
for many neurological functions. 

The major excitatory neurotransmitter in the brain is glutamate, and plasticity at 
glutamatergic synapses is believed to be crucial for learning and memory [14]. It 
is now widely accepted that Aβ disrupts glutamatergic synaptic transmission and 
prevents plasticity at these synapses [2]. Among the many mechanisms that are 
believed to be involved in the effects of Aβ, a disruption in the homeostasis of 
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intracellular calcium is perhaps the most important. Alters levels of calcium 
mediate the loss of glutamate receptors from the neuronal surface, alters release of 
glutamate from nerve terminals, and activation of many enzymes related to cell 
death [15]. The glutamate receptor subtype NMDA is believed to play a central 
role in the effects of Aβ, as it mediates the abnormal entry of calcium into the cell 
when Aβ is present. Some of the downstream effects of that calcium entry include 
the generation of reactive oxygen species (popularly known as “free radicals”), 
the reduction of glutamate receptors, and the loss of dendritic spines (membrane 
specializations where glutamatergic synapses are preferentially made). In fact, 
evidence suggests that NMDA receptors themselves could be targets of Aβ, which 
binds to neuronal membranes in a very specific way [16]. Altogether, these effects 
are believed to contribute to memory loss in AD, irrespective whether Aβ is the 
primary cause, or an intermediate step in the pathology. It is important to note, 
however, that the neuronal effects of Aβ are highly dependent on concentration, 
the ones reported above happening at pathological concentrations, in the order of 
high nanomolar to micromolar. In contrast, Aβ levels normally found in the 
healthy brain are extremely low, in the picomolar range, and may have opposite 
effects as those observed under pathological levels [17]. Indeed, studies have 
demonstrated that Aβ is normally released from axonal terminals and dendrites 
[18], and this occurs by means of neuronal activity [19, 20]. Furthermore, Aβ has 
been shown to be a positive regulator of presynaptic release of glutamate at 
excitatory synapses in the hippocampus, where it is also essential for the induction 
of activity-dependent forms of plasticity [17]. Altogether, these findings suggest 
that: in normal physiological conditions, Aβ is secreted during neurotransmitter 
release and acts as an important regulator of this process, ultimately playing a role 
in synaptic function; whereas in pathological states, the overproduction of Aβ 
results in synaptic dysfunction, leading to cognitive impairment. 

Another important neurotransmitter that is greatly affected in AD is acetylcholine. 
Dysfunctional cholinergic transmission is thought to underlie, at least in part, 
memory impairment and cognitive deficits in AD [21]. Cholinergic neurons from 
the basal forebrain seem to be particularly susceptible since cholinergic 
dysfunction usually appears in early stages of AD, and there is an extensive loss 
of both cholinergic neurons and acetylcholine receptors in the late stages of the 
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disease. Additionally, there is a large body of evidence suggesting that the 
nicotinic subtype of acetylcholine receptors are targeted by Aβ, which induces 
abnormal activation of these receptors, followed by their internalization and loss 
of function [21]. The large extent of cholinergic dysfunction has important 
consequences in pathology and treatment, which will be discussed in the next 
section. Thus, it is generally accepted that cholinergic dysfunction is a major 
component of AD pathology. 

7.4. THERAPEUTICS 

Unfortunately, to date there is no available treatment capable of curing AD. 
However, there are medications that can help control the symptoms that may 
occur as the disease progresses. Currently, the only approved treatments for AD 
are the acetylcholinesterase inhibitors (AChEIs) and an N-methyl-D-aspartate 
(NMDA) receptor antagonist. We will discuss some important aspects of these 
two approved treatments, and then briefly comment on the most promising 
strategies that are currently being studied for the development of new treatments. 

7.4.1. Approved Treatments for AD 

7.4.1.1. Acetylcholinesterase Inhibitors (AChEIs) 

Patients with AD have low levels of the neurotransmitter acetylcholine, an 
important brain chemical involved in nerve cell communication. AChEIs were the 
first class of drugs ever used to treat AD and are indicated for the mild and 
moderate stages of the disease. These drugs increase the availability of 
acetylcholine at the synapses by preventing its breakdown by the enzyme 
acetylcholinesterase. This enables acetylcholine to work for a longer period of 
time, interact with cholinergic receptors, and affect the uptake, synthesis, and 
release of neurotransmitters. 

The AChEIs approved for mild to moderate symptoms of Alzheimer's disease by 
the U.S. Food and Drug administration (FDA) are donepezil (Aricept®), 
rivastigmine (Exelon®), galantamine (Razadyne®), and tacrine (Cognex®). 
Aricept® is also approved for severe Alzheimer's symptoms. Some drugs might 
display effects beyond the inhibition of acethycholinesterase: Galantamine also 
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modulates nicotinic acetylcholine receptors, and rivastigmine inhibits 
butylcholinesterase, but the importance of these additional properties is unknown. 
Meta analyses have repeatedly found that AChEIs have a modest beneficial effect 
on cognition and memory [22]. 

AChEIs are the first choice of treatment for AD, but they present some 
limitations, such as elevated cost, modest benefits, and short period of 
effectiveness. Furthermore, most AChEIs have considerably short half-lives, and 
may cause side effects, such as nausea, vomiting, diarrhea, weight loss, and 
dizziness, resulting from activation of peripheral cholinergic systems [23]. 

7.4.1.2. N-methyl-D-aspartate (NMDA) Receptor Inhibitor 

Damage from excitatory amino acid neurotransmitters, especially glutamate, can 
produce excitotoxicity and cell death [24]. The receptor mostly involved in 
excitotoxicity is the NMDAR. If NMDAR sites are overactivated, high levels of 
Ca2+ can enter the cell, creating reactive oxygen species and activating specific 
enzymes involved in cell death. Importantly, however, normal NMDA receptor 
activity mediates, in large measure, physiological excitatory synaptic transmission 
in the brain and is therefore crucial for the normal functioning of the nervous 
system. 

In AD it is well characterized that there is an excessive stimulation of glutamate 
receptors, especially of the NMDA subtype. Therefore, antagonists of these 
receptors have held much promise for an effective treatment. Most clinical trials 
involving NMDA receptor antagonists have failed due to unwanted side effects 
induced by the blockage of the normal glutamatergic function. Interestingly, a 
drug called memantine was the first in a novel class of AD medications to act on 
the glutamatergic system. Memantine selectively blocks only excessive 
stimulation by binding to NMDA receptors, suppressing the influx of Ca2+ and 
resulting in a small improvement in cognition and behavior [24-26]. 

Memantine is marketed under the brands Axura® and Akatinol® by Merz 
Pharmaceuticals, Namenda® by Forest Laboratories Inc., Ebixa® and Abixa® by 
Lundbeck and Memox® by Unipharm Inc. While the AChEIs only treated the 
symptoms of mild to moderate AD, Memantine (Namenda®) was the first drug 
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approved in 2003 by the FDA to treat the symptoms of moderate to severe AD. 
Overall data suggest clinically significant effects on cognition, mood, and 
performance of daily activities in more severe cases of AD [27-30] and there is 
little evidence of effect in mild cases of AD [31, 32]. 

Memantine is generally well tolerated; the most common side effects are back 
pain, constipation, diarrhea, dizziness, drowsiness, headache, pain, and weight 
gain. Conversely, despite being a neuroprotective drug, memantine can have 
neurotoxic effects. A study performed in an animal model demonstrated that the 
simultaneous use of donepezil (an AChEIs) and memantine produced a substantial 
increase in neurotoxic reactions [33]. While evidence of such toxicity in humans 
is still preliminary, the simultaneous use of both drugs demands caution. 
Conversely, recent studies show that the combination of an AChEI and 
memantine slow cognitive decline more efficiently than any of these drugs alone, 
and the benefits of the combination therapy seem to persist for years [34]. 

7.4.2. Emerging Therapies 

7.4.2.1. Therapies Against Aβ 

According to the amyloid cascade hypothesis, Aβ has a pivotal role in the patho-
genesis of AD [35]. The key step regulating Aβ generation is the sequential 
proteolytic processing of APP by -secretase (BACE) and γ-secretase proteases. 
When the -secretase pathway is used for APP processing instead, no A is 
produced. Gamma- and -secretases cleave APP in two different spots, separating 
Aβ from its progenitor. These peptides can aggregate into oligomers, and these 
oligomers can clump together to form larger plaques. In every step of the 
aggregation process there are opportunities to control the disease. 

One possible approach involves inhibiting γ- and β-secretases. If these enzymes 
can be prevented from cleaving APP in the first place, there is no generation of 
Aβ, and consequently no toxicity. But targeting these enzymes has proven to be 
tricky, partly because they are not specific to APP, being able to cleave other 
proteins as well. There are 40+ endogenous substrates for γ-secretase whose 
cleavage may play important roles in the adult human, most notably Notch [36]. 
Beta-secretase also cleaves numerous other substrates with important 
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physiological activity, including neuregulin-1, which is involved in myelination 
[37]. 

Many research groups in both academia and industry have synthesized γ- and β-
secretase inhibitors in the hope of developing a therapy able to attenuate the 
abnormal production of Aβ and to halt or even reverse the progression of AD. The 
drug semagacestat (LY450139) – that blocks γ-secretase – was a candidate drug to 
treat AD [38]. It was originally developed by Eli Lilly & Company and Élan 
Corporation plc, with clinical trials conducted by the former. Phase III trials 
included over 3000 patients, but in August 2010 a disappointing interim analysis 
had to put an end to the tests: patients treated with semagacestat did significantly 
worse in cognitive assessment and activities of daily living than did subjects in the 
placebo group. Furthermore, semagacestat is associated with an increased risk of 
skin cancer compared with those who received placebo. 

Beta-secretase inhibitors have been shown to reduce Aβ in animal models and 
may have fewer adverse effects than γ-secretase [39, 40]. The big challenge has 
been to engineer a molecule that is large enough to inhibit the beta-secretase’s 
active binding site but in the same time small enough to pass through the blood–
brain barrier. Due to the complicated inherent chemistry issues, only one 
compound (CTS-21166) has proceeded to clinical testing [41]. Presently, most 
research involves developing secretase inhibitor molecules that will penetrate the 
blood-brain barrier, produce beneficial results, and not produce adverse effects. 

Among all of the approaches targeting AD, the most exciting and advanced is the 
Aβ-targeted immunotherapy. There are two different approaches to generate 
antibodies directed against Aβ: one is active immunization with intact Aβ1-42 and 
small fragments of Aβ conjugated to an unrelated carrier protein, and the second 
is passive immunization administering anti-Aβ antibodies directly [37, 42-44]. 
Using both approaches, Aβ levels in the brain were substantially reduced in phase 
I trial study [45]. 

An abundance of preclinical studies suggest that immunization with Aβ1-42 is able 
prevent or reverse the development of AD pathology [46]. However, a phase II 
clinical trial initiated in 2001 in patients actively immunized with the drug 
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AN1792 was abruptly terminated in January 2002 due to the development of 
serious side effects, as aseptic meningoencephalitis and leukoencephalopathy, in 
6% Aβ1-42 vaccinated patients [47, 48]. Despite this trial termination, follow up 
studies of the trial participants have shown that AN1792 immunization increased 
the clearance of amyloid plaques [49]. 

Building upon lessons learned from the AN1792 trials, many groups from both 
academia and industry have generated novel active and passive Aβ vaccines. Two 
potential examples of monoclonal antibodies against Aβ1-42 peptide are solanezumab 
from Eli Lilly & Company and bapineuzumab from Janssen Pharmaceuticals and 
Pfizer, Inc. (originally developed by Élan Corporation plc). Both drugs were tested 
in phase III trials on thousands of participants with mild-to-moderate AD. However, 
in 2012, bapineuzumab failed to produce significant improvements in cognitive or 
functional performance compared with placebo in patients who did not carry a 
variation of a gene of apolipoprotein (ApoE) ε4, a reported risk factor of AD [1, 50]. 
In October of 2012, results from the phase III trials with solanezumab suggested it 
might modestly slow mental decline, especially in patients with mild disease. 
Overall, these studies missed their main goal of significantly slowing the 
development of disease or improving activities of daily living. Although promising, 
the results with solanezumab did not meet the criteria to win FDA approval. For this 
reason, Eli Lilly & Company is planning to start another large study to confirm the 
results with solanezumab treatment in patients with mild AD. 

Despite having showed promising results in animal models of AD, clinical trials 
with Aβ-targeted immunotherapies have had rather disappointing outcomes. One 
possibility is that treatments that target Aβ should be administered before the 
onset of clinical symptoms, or only during the mild cognitive impairment stage 
(not moderate or even severe stages) [51, 52]. This might explain the failure of 
past immunotherapy trials, as antibodies were administered after the development 
of full-blown AD. 

7.4.3. Therapies Targeting Tau 

Tau research has progressed more slowly than research on Aβ. Partly, this 
happened because of limitations in funding and the overwhelming focus in Aβ. 
Another factor that likely contributed is the difficulty in studying proteins that, 
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like Tau, are essential to maintain the health of cells. As described in the previous 
section of this chapter, Tau associates with tubulin to stabilize axonal 
microtubules during its polymerization in healthy neurons. In AD, however, Tau 
acquires too many phosphate groups, aggregates, and becomes dysfunctional. This 
process results in microtubule collapse and the block of neuronal signaling. Thus, 
inhibition of Tau hyperphosphorylation and promotion of filament disassembly 
represent two viable strategies for disease-modifying therapies [32, 53]. 

One main target in the Tau phosphorylation pathway is GSK-3β, which is up-
regulated in the frontal cortex of AD patients [54], and has been associated with 
an increased risk of AD [55]. The ion lithium, which is regularly prescribed to 
patients with bipolar disorder as lithium carbonate, is an inhibitor of GSK-3β. 
Therefore, it could represent a potential therapeutic strategy in AD. In fact, in a 
case-control study, bipolar geriatric subjects taking lithium had a decreased risk of 
developing AD over a 6-year period compared with an age-matched group not 
taking lithium [56]. However, a phase II clinical trial performed in 71 patients 
with mild AD treated with lithium for 10 weeks was disappointing, not having 
met clinical or biomarker efficacy [57]. Further clinical trials in larger populations 
are warranted in order to further evaluate the effects of lithium in the treatment of 
AD. 

7.4.4. Statins 

Despite numerous studies connecting lipid metabolism to AD pathogenesis, 
relatively few therapeutic approaches have exploited this connection thus far, with 
the exception of drugs affecting cholesterol metabolism, such as statins. 
Disordered cholesterol metabolism is a common feature in many risk factors 
associated with AD [58]. These include hypercholesterolemia, coronary artery 
disease [59, 60], and cerebrovascular disease [61, 62]. 

The biochemical pathway for cholesterol synthesis in all animal cells involves a 
key enzyme known as HMG-CoA reductase. This enzyme has the important 
function of catalyzing the convertion of 3-hydroxy-3-methylglutaryl-CoA into 
mevalonic acid, which is crucial to generate cholesterol. By competitive inhibition 
of HMG-CoA reductase, statins reduce the production of cholesterol and the 
intermediate products called isoprenoids. 
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In addition to reducing cholesterol levels, statins might also influence Aβ 
production and aggregation through other biological mechanisms [63-65]. 
Increasing evidence suggests that inflammation can play an important role in the 
pathogenesis of AD through the activation of microglial cells [8]. Statins can have 
anti-inflammatory effects on macrophagic cell lines, including the downregulation 
of MHC class II molecules [66]. The second evidence is that Aβ might have 
cytotoxic effects on neurons and oligodendrocytes by releasing free radicals from 
activated microglia and astrocytes [67]; as statins inhibit nitric oxide (NO) 
production and inducible nitric oxide synthase (iNOS), they might improve the 
harmful effects of free radicals [68]. Lastly, statins were shown to reduce the 
expression of ApoE, the principal cholesterol carrier in the brain [69]. 

Retrospective case control studies suggest that statins reduce the risk of 
developing AD, but clinical trials and prospective cohort studies have produced 
inconsistent, mixed results [70, 71]. Further studies are clearly needed to fully 
address the risks and benefits of statins use in AD. 

7.4.5. Anti-Inflammatory Drugs 

Neuroinflammation contributes to neuronal damage in the brain and is implicated 
in AD pathogenesis. The presence of activated microglia and inflammatory 
substances such as cytokines and cyclo-oxygenase (COX)-2 enzymes has been 
associated with plaques and tangles found in AD. This field of research initially 
gained a great amount of attention due to the interest in the potential ability of 
anti-inflammatory drugs to prevent AD pathology progression. One study 
performed in 49,349 individuals, who had used nonsteroidal anti-inflammatory 
drug (NSAID) for at least five years, demonstrated that the risk of acquiring AD 
was decreased. Ibuprofen and Indomethacin had the greatest effect, while 
Celecoxib and the Salicylates offered no protection [72, 73]. However, up to now, 
the clinical trials investigating the disease-modifying potential of anti-
inflammatory drugs have been unsuccessful. 

7.4.6. Intranasal Insulin Treatment 

Insulin is critical for normal brain function, and abnormal insulin metabolism has 
been shown to contribute to the development of AD. Brain levels of insulin and its 
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receptor are significant reduced in AD patients. Furthermore, insulin signaling 
was found to be impaired in both postmortem analysis of patients’ brains and in 
animal models of AD [74, 75]. Brain insulin has been pointed as a key component 
of learning and memory [76, 77], suggesting that insulin resistance may contribute 
to cognitive impairment seen in AD. These findings suggest that impaired brain 
insulin signaling plays a critical role in the etiology of this disease and it has been 
hypothesized that raising these levels to normal might help maintain cognitive 
ability. 

Therapeutically, insulin represents an interesting target, as it is known that when 
administered intranasally to humans, insulin bypasses the bloodstream to reach 
the cerebrospinal fluid (CSF) within 10 min without substantial absorption into 
the circulation [78]. Furthermore, studies have demonstrated that such form of 
administration of insulin improves cognitive measurements in healthy subjects 
[79-81], highlighting intranasal insulin as a candidate treatment for AD. 

Pilot studies [82, 83] and a clinical trial [84] in patients with early to mild AD 
treated with intranasal insulin showed promising results with respect to cognitive 
improvement. The clinical trial consisted of 4 months of intranasal insulin 
treatment and the results showed that the ability to memorize episodic items was 
preserved in insulin-treated AD patients, compared to placebo. Interestingly, this 
episodic memory-preserving effect was also observed two months after 
completion of the insulin treatment [84]. Importantly, no significant side effects of 
intranasal insulin administration were reported. 

While these are promising results, caution to interpret these findings is necessary. 
The observed effects were subtle and the period of treatment was relatively short 
compared with the duration of the disease. Therefore, further studies are still 
required to determine the clinical relevance of intranasal insulin treatment. 

7.4.7. Pleiotropic Treatment: Cerebrolysin 

The development of drugs with pleiotropic activity (i.e., acting at different levels 
of the AD pathogenic process) seems to constitute another promising approach. 
One example of a pleiotropic treatment in AD is the drug called Cerebrolysin – a 
neuropeptide preparation that mimics the action of endogenous neurotrophic 
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factors. Several in vitro and in vivo studies have shown that Cerebrolysin has 
neurotrophic effects similar to those of endogenous neurotrophic factors, 
supporting the survival, stability, and function of neurons. 

Several randomized, double-blind, clinical trials using Cerebrolysin showed 
reliable benefits in the overall clinical function and cognition, improvements in 
behavior, and minor effects on daily living activities in patients with mild to 
severe AD [85]. While it is approved for the treatment of AD in 44 countries 
worldwide, being available in an intravenous form with good tolerability, it has 
not yet been approved in the United States. Further studies with Cerebrolysin, 
including longer term trials and exploration of its use in combination with 
AChEIs, are needed to more clearly determine its place in the treatment of AD. 
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Abstract: Parkinson’s disease is a complex neurodegenerative disorder, mainly 
characterized by the loss of dopaminergic neurons in the substantia nigra and their 
projections to the striatum, causing several motor deficits. Neuronal cytoplasmic 
inclusions, named Lewy Bodies, are found in the affected areas. Parkinson’s disease is 
distributed worldwide, affecting all ethnic groups and socioeconomic classes. Protein 
homeostasis is crucial for preventing neurodegeneration. Misfolding of proteins can 
lead to loss or gain of function, resulting in protein dysfunction and causing various 
types of diseases. Five genes containing pathogenic mutations were identified to 
contribute for incorrect protein conformation in Parkinson’s disease. Mitochondrial 
dysfunction and purinergic receptor signaling are also involved in the mechanism of 
disorder. Several types of pharmacological intervention were developed. Dopamine 
agonists are the most common therapeutic agents used currently. N-methyl-D-aspartate 
type glutamate receptor antagonist, monoamine oxidases and anticholinergic drugs can 
be therapeutic alternatives. New techniques and studies have contributed to the 
discovery of new genes and genetic risk factors for Parkinson’s disease. Brain banks 
and imaging analyses can also be very useful tools for understanding the mechanisms of 
disease progression. Current studies on molecular aspects of Parkinson’s disease, 
together with the development of new drugs, techniques and tests to improve diagnosis 
accuracy will bring new perspectives for PD therapies. 
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8.1. BACKGROUND 

Parkinson's disease (PD) is a complex neurodegenerative disease, whose etiology is 
still unknown. It is characterized by the loss of dopaminergic (DA) neurons in the 
substantia nigra pars compacta and their projections to the striatum, causing several 
motor deficits. However, changes are not restricted to the substantia nigra and may 
be present in other brain stem nuclei (e.g., dorsal motor nucleus of the vagus), 
cerebral cortex and peripheral neurons [1]. The presence of degenerative process 
beyond the nigrostriatal system may explain a number of non-motor symptoms and 
signs present in PD, such as olfaction impairment, sleep disturbances, postural 
hypotension, constipation, emotional changes, depression, anxiety, psychotic 
symptoms, cognitive loss, etc. [2]. Neuropsychiatric alterations and cognitive decline 
may also occur at early stages of PD. PD was first described as shaking palsy by 
James Parkinson in 1817. Besides dopaminergic neuronal degeneration, the presence 
of neuronal cytoplasmic inclusions in substantia nigra, locus ceruleus, amygdala 
and the CA2 area of the hippocampus [3] from patients was observed post-mortem. 
These inclusions were named Lewy Bodies (LB) in 1920 by Frederick Lewy. Rolf 
Hassler, in 1938, showed that the substantia nigra was the main cerebral area 
affected, which was already suggested by Konstatin Tretiakoff in 1919. 
Identification of deficiency in the neurotransmitter dopamine in substantia nigra was 
made in 1950 by Arvid Carlsson. It was only in the 60s, after the identification of 
pathological and biochemical changes in the brain of PD patients, that levodopa (L-
3,4-dihydroxyphenylalanine, L-DOPA) was introduced, which represented a major 
advance in PD therapy. L-DOPA is a naturally occurring amino acid, found in young 
vegetables, like various types of beans. L-DOPA is the precursor of the 
catecholamines dopamine, norepinephrine and epinephrine. While dopamine itself is 
not able to cross the blood-brain barrier, L-DOPA is. After entering the central 
nervous system, it is converted into dopamine by aromatic L-amino acid 
decarboxylase, also called DOPA decarboxylase (DDC). Using inhibitors of the 
dopamine converting enzymes, L-DOPA is able to reach the brain and subsequently 
be converted to dopamine, which is released in the synaptic cleft. L-DOPA has a 90-
minute half-life, and this can be a problem because it leads to a peak of dopamine 
release in the synaptic cleft [4]. Clinical benefits were observed for virtually all 
patients, reducing the mortality in PD. However, complications after long-term 
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treatment, like adverse effects, including motor fluctuations, dyskinesia and 
neuropsychiatric complications, became apparent [5, 6]. 

8.2. EPIDEMIOLOGY 

Even though diagnosis of PD is still imprecise, it is estimated that around 
750,000-1 million people in the USA and 120,000–130,000 in the UK have PD, 
and the number of new cases is influenced by diagnostic accuracy. Members of 
the Kaiser Permanente Medical Care Program of Northern California health 
maintenance organization performed a study of age/gender and ethnicity-related 
PD incidence, evaluating 588 newly diagnosed PD patients. They observed that 
PD incidence in men is 91% higher than in women and also increases with age. 
Also, this age/gender-adjusted rate was highest for Hispanics, followed by non-
Hispanic Whites, Asians and Blacks. Among Asians, PD incidence was slightly 
lower among men than women, but in the other groups, PD incidence was twofold 
higher among men than woman [7]. 

PD is a disease of worldwide distribution and affects all ethnic groups and 
socioeconomic classes. It is estimated that the worldwide annual cost with 
antiparkinsonian drugs is around $ 11 billion, which is about 3 to 4 times more 
expensive for patients in the advanced stage of the disease [8, 9]. A prevalence of 
100 to 200 cases per 100,000 in habitants is estimated. The incidence and 
prevalence increase with age [10], and the average age of onset of symptoms is 
approximately 60 years. In young-onset PD, the onset occurs between 20 and 40 
years old, and in juvenile-onset, PD starts below 21 years of age [11]. The risk of 
men to develop PD is about 1.5 times greater than that for women. PD is more 
common in Caucasians, less common in West Africa, and intermediate in China. 
The fact that African and Chinese descendants born in America have higher rates 
of PD than their counterparts in West Africa or China, suggests the role of 
environmental factors. The estimated standardized mortality rate, i.e., the ratio of 
number of deaths in PD patients compared to controls, varies between 1.5 and 2.4. 
PD is not usually a direct cause of death, but a contributory cause in only half of 
the death certificates in PD patients. The primary cause in general is a 
complication such as infection. Studies demonstrated that tremor-dominant 
patients have better survival compared to those without tremor and / or with 
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postural instability and gait disturbance. These observations can be explained, at 
least partially, by the pathological findings showing neurodegeneration in 
different areas in tremor-dominant versus akinetic–rigid type patients. Another 
explanation may be errors in diagnosis. Some tremor patients may not have true 
parkinsonism and have better survival, and akinetic–rigid patients may have a 
rapidly progressive Parkinson-plus syndrome. Estimates from imaging studies 
show that symptoms appear when at least 50% of striatal dopamine is depleted 
and 60–80% of neurons in the substantia nigra are lost. Usually, a dose-related 
improvement in the motor function score is observed when patients initiate 
therapy with L-DOPA. Side effects, such as dyskinesias, traditionally occur in 
50% of patients after 5 years on L-DOPA. In general, 70% patients on 
monotherapy with dopamine agonists remain free of dyskinesia after 5 years. 
However, measurements of motor improvement by the unified PD rating scale 
(UPDRS) showed L-DOPA is more effective than dopamine agonists [12]. 
Several studies suggest that the rate of decline is more rapid initially, and then 
slows in the more advanced disease stages, possibly due to treatment effects that 
influence severity and progression data [4]. 

8.3. GENETIC COMPONENTS 

Although most of PD cases are sporadic, around 10% of PD patients have a 
family history compatible with a monogenic inheritance. There is no clinical 
symptom to distinguish between the sporadic and familial forms, familial PD 
patients are younger than those with sporadic form, at the onset of the symptoms 
[13]. The identification of novel genetic mutations, as well as the study of the 
effects of these mutations in familial PD, can also be relevant to understand 
sporadic PD. In the present scenario of genetic research, five genes containing 
pathogenic mutations were identified. Two of them are autosomal dominant, α-
synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2), and the other three 
underlie autosomal recessive disease, PARKIN, DJ-1 and PTEN-induced putative 
kinase 1 (PINK1) [13]. Another gene, ubiquitin carboxyl-terminal esterase L1 
(UCHL1), also known as PARK5, seems to be involved in PD, but its function 
and importance are still being evaluated. Several studies have reported the roles 
that these genes play in disease development when mutated. Alterations in protein 
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phosphorylation and protein accumulation are some of the phenomena observed in 
studies of genetic mutations. 

8.4. MISFOLDING OF PROTEINS 

Protein homeostasis is a crucial factor in preventing neurodegeneration. Maintaining 
the correct conformation of a protein is necessary for it to exert its functions normally. 
Incorrect conformations of proteins can lead to loss or gain of function, resulting in 
protein dysfunction and causing various types of diseases. The role of chaperones in 
conformational diseases was first shown in trinucleotide repeat expansion diseases, 
such as Huntington´s and spinocerebellar ataxias [14]. Chaperones are specific 
proteins responsible for the correct folding of newly synthesized proteins and also in 
protein refolding, to correct erroneous protein folding [15]. Some chaperones, called 
heat shock cognates (HSCs), are responsible for correct folding in normal cellular 
conditions. However, under conditions of cellular stress, other chaperones, the heat 
shock proteins (HSPs) are expressed and activated [16]. It has been shown that heat-
shock proteins (HSPs) have an important role in neurodegenerative diseases [17, 18]. 
In addition, chaperones and co-chaperones are also involved in degradative pathways, 
such as ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP) 
[19], thus removing the proteins irreversibly ill reeled. UPS is involved in both familial 
and in sporadic PD [20-22]. The UPS includes an ubiquitin activator (E1), an ubiquitin 
conjugator (E2) and an ubiquitin ligase (E3). After ubiquitin addition, target substrates 
are finally degraded by the proteasome [23]. PARKIN is an E3 ubiquitin-protein ligase 
[24] that mediates its own ubiquitination and also of other proteins, such as α-
synuclein-interacting protein synphilin-1, endothelin-associated parkin-like receptor 
(PaelR), cyclin E, α and β tubulin, and the p38 subunit of the aminoacyl-tRNA 
synthetase complex (p38/JTV-1) [25]. Recent studies suggest that up to 50% of 
hereditary PD, and 10% of PD cases with early onset are linked to mutations in the 
PARKIN gene [26-28]. For these reasons, chaperones and co-chaperones have been 
investigated for the development of new therapies for PD [29]. α-synuclein, is a 140 
amino acids protein, belonging to the family of β and γ-synuclein and synoretin, and it 
is highly expressed in both glial and neuronal cells in regions of the neocortex, CA2 
and CA3 regions of the hippocampus and in the substantia nigra of adult brain, 
especially in presynaptic terminals [30-32]. The function of α-synuclein in the healthy 
brain is not yet fully known, but several studies show the accumulation and 
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fibrilization of this protein in LBs. This fact can be observed in cases of PD with 
multiplication of the SNCA gene [33-35]. The fact that the accumulation of α-
synuclein is specifically deleterious to DA neurons appears to be due to the 
stabilization of oligomeric intermediates of α-synuclein by dopamine secreted by DA 
neurons [36]. The formation of oligomers, fibers and small aggregates of α-synuclein 
are initial processes that occur in neurodegeneration in PD. Misfolding of α-synuclein 
and its subsequent aggregation is prevented by the action of chaperones. Several 
studies have confirmed the presence of Hsp70, Hsp40 and Torsin in LB [37-40] 
revealing a possible cellular tentative to control protein aggregation. These studies are 
supported by the fact that up-regulation occurs directly to Hsp70, Hsp40, Hsp27 and in 
response to over expression of α-synuclein in mouse model of PD [41]. PARKIN is a 
465 amino acid protein with characteristics domains of E2-dependent E3 ubiquitin 
ligases (E3s), which are involved in the addition of polyubiquitin chains to proteins 
that will be subsequently degraded by the UPS [24]. Mutations in the PARKIN gene 
are found in 50% of cases of recessive juvenile parkinsonism with early onset (<45 
years) and about 77% of sporadic cases with onset below 20 years [27]. The mutations 
found in the PARKIN gene cause several alterations in its ubiquitination properties 
[42]. Some targets for ubiquitination by PARKIN are synphilin-1 and a glycosylated 
form of α-synuclein [43]. In cases of mutations that lead to inactivation of PARKIN, 
ubiquitination does not occur and the accumulation of atypical proteins results in 
toxicity to DA neurons [44]. A mutation in the UCHL1 gene, located on chromosome 
4p, was identified in a family of German origin [44] and although no other mutation in 
this gene has been reported, a polymorphism was associated with sporadic PD in 
several studies [45, 46]. Searching for substrates of the kinases LRRK2, PINK1 and 
PARKIN, which directly affect the phenotypes observed in PD, have been the limiting 
step for advancing in research. A possible substrate of the kinase activity of LRRK2 is 
the 4E-binding protein (4E-BP) [47], a negative regulator of EIF4E (eukaryotic 
translation initiation factor 4E) which in turn plays a role in regulating protein 
synthesis, especially under conditions of cellular stress. Phosphorylation of 4E-BP 
diminishes its binding to eIF4E, increasing translation. It has been already shown that 
over expression of 4E-BP in Drosophila protects neurons against the toxic effects 
exerted by LRRK2 mutants [47]. Whether 4E-BP is a direct target of LRRK2 in PD is 
still not possible to confirm, since studies showed that 4E-BP is not an excellent 
substrate of LRRK2. Other kinases, such as p38, are much more effective in 
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phosphorylating 4E-BP than LRRK2. DJ-1 is involved in response to oxidative stress, 
but its importance in the DA neuronal death is still unclear. 

8.5. OXIDATIVE STRESS AND MITOCHONDRIAL DYSFUNCTION 

Among the causes of neuronal death, free radicals are one of great importance. 
Although free radicals exist in normal cellular metabolism, in oxidative stress 
conditions, they may have deleterious effects on DNA and influence gene 
expression by modulating intracellular signaling pathways, leading to a diversity 
of diseases. In normal conditions, there are scavenging systems present to protect 
respiring cells from the adverse effects of free radicals. Reduced level of the 
antioxidant glutathione was found in PD, indicative of oxidative stress. 
Maintenance of certain levels of reactive oxygen species (ROS) and other free 
radicals is necessary for the normal physiology of living organisms. Mitochondria 
are largely responsible for ATP production by oxidative phosphorylation [48], and 
most mitochondrial diseases are caused by the impairment of ATP synthesis [49]. 
Therefore, tissues requiring high energy, such as muscle and brain, are most 
affected by bioenergetic changes [49]. In PD, accumulation of iron in the 
substantia nigra favors the formation of free radicals. Also, animal models of PD 
derived from MPTP administration, have a defective mitochondrial function in 
DA neurons. MPTP (1-methyl-4-phenylpyridine) is highly lipophilic and able to 
cross the blood-brain barrier within minutes [50]. The pro-toxin MPTP is oxidized 
to 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+) by monoamine oxidase B 
(MAO-B) in astrocytes and serotonergic neurons, the only cells that contain this 
enzyme. It is then converted to MPP+, probably by spontaneous oxidation, which 
is the active toxic molecule, and released into the extracellular space. MPP+ is a 
high-affinity substrate for the dopamine transporter (DAT), as well as for 
norepinephrine and serotonin transporters [51, 52]. 

In a similar manner, some pesticides may trigger the inhibition of complex I, a 
component of the respiratory chain, also known as NADH coenzyme Q reductase, 
which transfers the electrons to coenzyme Q. As a result of complex I inhibition, 
mitochondrial respiration decreases and allows leakage of free radicals. Failure in 
mitochondrial respiration is closely related to oxidative stress, although it remains 
to be clarified which of these processes comes first [4]. 
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The peroxisome proliferator-activated receptors (PPARs) belong to a subfamily 
of nuclear receptors, which regulates the expression of genes involved in 
metabolic pathways. PPAR-α is expressed in neurons and astrocytes and also in 
macrophages and endothelial and smooth muscle cells. PPAR-α regulates 
negatively the transcription of NF--B, inhibits inducible nitric oxide synthase 
(iNOS) in macrophages and blocks cyclooxygenase-2 (COX-2) expression in 
smooth muscle cells, inhibiting the inflammatory responses. PPAR-α also 
stimulates the expression of catalase and superoxide dismutase, antioxidant 
enzymes involved in the process of free radical elimination. Genes expressed in 
response to the peroxisome proliferator–activated receptor γ coactivator-1α 
(PGC-1α) are less abundant in PD patients. Recently it was demonstrated that 
activation of PGC-1α blocks the loss of DA neurons in cellular models of PD [53] 
and is able to prevent the damage caused by inflammation in Amyotrofic Lateral 
Sclerosis (ALS) [54]. Therefore, activation of PGC-1α may be a new therapeutic 
target in the treatment of diseases related to mitochondrial alterations [55-59]. 

8.6. PURINERGIC RECEPTOR INVOLVEMENT 

P2 receptors are classified into two families, ionotropic P2X and metabotropic 
P2Y receptors. P2X receptors are ATP ion channels, and their agonists include 
ATP and its derivatives α,β-meATP and BzATP. P2X receptors are expressed in a 
wide variety of cell types, like neurons, heart and skeletal muscle, smooth muscle, 
leukocytes and platelets. P2Y receptors are present in almost all human tissues. 
They are G-protein coupled receptors that bind to ATP, ADP, UTP, UDP, NAD+, 
NAADP+, among others [60]. 

To date seven P2X receptors have been cloned (P2X1-7) and twelve P2Y (P2Y1, 
P2Y2, P2Y4-6, and P2Y8-14) from mammals and birds [61, 62]. It has been 
recently shown that P2X7 receptors (P2X7R) are overexpressed in animal models 
for many neurodegenerative diseases, suggesting P2X7R involvement in 
neurodegeneration. Prolonged exposure of P2X7 agonist leads to formation of 
large pores in the plasma membrane, enabling the uptake of large molecules and 
causing cell death [63, 64]. P2X7R plays an important role in the degeneration of 
DA neurons in PD via disruption of ion homeostasis and release of interleukin-1β 
[65, 66]. In the central nervous system, P2X7R are present in microglia and 
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astrocytes, but probably these receptors exist also on damaged DA neurons, since, 
after stimulation of P2X7R, it is possible to find cytosolic pores in the membrane 
of DA neurons. Using P2X7R antagonists caused improvement in distinct animal 
models for neuropathologies. Blocking the activity of P2X7R in spinal cord 
astrocytes reduced neuroinflammation in an ALS model [67]. These data suggest 
the possibility of using blockers P2X7R as therapies for neurodegenerative 
diseases [68]. 

8.7. NEW PERSPECTIVES FOR GENETIC RESEARCH IN PD 

GWAS and NGS (genome-wide association scan and next generation sequencing, 
respectively) consist of new approaches that help to discover new genetic factors 
involved in PD. Studies of genotype-phenotype correlation have been made to 
characterize earliest signs of the disease. The GWAS technique allows the 
association of risk factors for diseases of high complexity, through large scale 
population-based studies. In 2011, investigators from the International Parkinson's 
Disease Genomics Consortium (IPDGC) identified 11 loci for genome-wide 
significance, six of which had been previously identified (MAPT, SNCA, HLA-
DRB5, BST1, GAK and LRRK2), and five new (ACMSD, STK39, 
MCCC1/LAMP3, SYT11 and CCDC62 / HIP1R). The second study of IPDGC, in 
collaboration with the Wellcome Trust Case Control Consortium 2, identified five 
other PD risk loci (PARK16, STX1B, FGF20, and STBD1 GPNMB) [69, 70]. 
Marder and colleagues found that the susceptibility to develop PD is more than 
twice higher in first-degree relatives of PD patients than in first-degree relatives of 
control individuals. Moreover, a relationship between gender and ethnicity was 
also observed. Men and Caucasians seem to be at a higher risk than women and 
African and Hispanics are, respectively [71]. Most attempts to identify the 
susceptibility genes in sporadic PD have followed a candidate gene approach. 
Based on pathological, biochemical and epidemiologic findings, hypotheses on 
the etiology of PD can be generated, and genetic polymorphisms within gene that 
are thought to be involved in these pathways have been examined. Unfortunately, 
no consistent findings have emerged so far. Risk factors can be potential targets 
for novel treatments. A multicenter study investigated the association of 121 
exonic variants in LRRK2 in PD with more than 15000 Individuals of different 
ethnic backgrounds. The results from this study added new information to the 
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GWAS, showing that different variants of the same gene may have independent 
effects on the risk for PD [72]. Mutations in the glucocerebrosidase (GBA) gene 
have an intermediate frequency in PD patients (6.7% in a large European study) 
[73], and those carrying the heterozygous mutations in GBA may be at higher risk 
of developing cognitive impairment [74]. Despite the numerous studies of genetic 
mutations and risk factors involved in PD, applying a genetic approach to achieve 
tailored medicine is still far from being reached. 

8.8. BRAIN BANKS AS TOOLS FOR UNDERSTANDING PD 
MECHANISMS 

Brain banks are vital in the scientific research of PD because they have the facilities 
and the expertise to recruit, classify, preserve and distribute specimens for research, 
abiding by the local ethical and legal framework [75-77]. Post-mortem brain tissue, 
cerebrospinal fluid (CSF) and blood are very useful sources of information to 
understand the molecular basis of the disease and also to validate some biomarkers 
[78]. Brain banks provide available specimens to be used in research on a wide range 
of neurological disorders, since most neurodegenerative diseases are mainly 
observed in humans [79-81]. Pioneering and subsequent studies support the 
importance of molecular and biochemical studies of the brain in human 
neurodegenerative diseases. Using the classification of LB pathology, it was 
observed that there is a correlation between alterations non-motor and 
neuropathological substrates. Stage 1 is characterized by the presence of LBs and 
neurites in the dorsal IX ⁄X motor nuclei and⁄or intermediate reticular zone, with 
myentheric plexus involvement. Stage 2 comprises Stage 1 and affects also the 
medulla oblongata and pontine tegmentum, plus lesions in the caudal raphe nuclei, 
gigantocellular reticular nucleus and ceruleus–subceruleus complex, with 
involvement of the olfactory bulb. Stage 3 comprises Stage 2 plus lesions in the 
substantia nigra pars compacta. Stage 4 is characterized by basal prosencephalon and 
mesocortex pathology and lesions in the midbrain, pons and medulla oblongata. In 
Stage 5 lesions extends to the neocortex, and in Stage 6 sensory and pre-motor areas 
of the neocortex are also affected. Cognitive impairment and dementia barely 
correlate with LB pathology in the cerebral cortex [82], suggesting that other factors 
than mutations in α-synuclein, play key roles in PD. Biochemical alterations were 
already observed at very early stages of the disease. These findings suggest that, 



Parkinson’s Disease Young Perspectives for Old Diseases   165 

besides morphological studies, biochemical approaches are necessary for the 
understanding of PD at the molecular level. For this purpose, human samples 
obtained from brain banks have been used in DNA studies to evaluate methylation 
patterns, mRNA expression, post-translational modifications, lipid composition and 
also to study micro RNAs and metabolomes. It is important to note that autopsy 
specimens should be adequately preserved for avoiding artifacts and guarantee high 
quality of samples. In order to reach the optimal conditions of samples, autopsies 
with a short post-mortem delay and the use of fresh dissection procedures in 
combination with optimized standard operating procedures are necessary [83]. 

8.9. PHARMACOLOGICAL INTERVENTION 

Degeneration of nigrostriatal DA neurons results in a reduction in dopamine 
release and, consequently, changes in motor function. Alterations in dopaminergic 
stimulation alter cholinergic and glutamatergic stimulations and the symptoms 
become more evident. Thus, several types of pharmacological interventions were 
developed. [2, 5, 6, 84]. 

Dopamine agonists can also be used as a monotherapy in early-stage disease, or in 
combination with other drugs at later stages. Dopamine agonists act on 
postsynaptic dopamine receptors, a class of metabotropic G protein-coupled 
receptors that can be divided in two main groups, D1 and D2. The D1-type 
receptors act by Gs protein and activate adenylate cyclase, increasing cAMP 
synthesis, while D2 receptors reduce their activity via Gi protein. Nausea, 
dizziness, swollen ankles, confusion, hallucinations and psychosis are the main 
adverse effects of dopamine agonists. These adverse effects can be minimized 
with low initial doses and gradual dose adjustment [4]. 

Amantadine is a NMDA (N-methyl-D-aspartate) type glutamate receptor antagonist 
that increases dopaminergic transmission and also has a slight antimuscarinic 
activity. Treatment with amantadine provides a minor improvement in PD typical 
bradykinesia, tremor and rigidity. It is mainly used as an anti-dyskinesic agent in 
patients in advanced stages of PD [4]. 

Monoamine oxidases (MAO) are a family of enzymes that catalyze monoamine 
oxidation. Two types of MAO are found in humans, MAO-A and MAO-B. MAO-
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B selective inhibitors (IMAO-B) lazabemide, pargyline, selegiline and rasagiline 
act by preventing the breakdown of monoamine neurotransmitters, such as 
dopamine, increasing their availability in synaptic cleft. This inhibition is 
irreversible, and the reuptake process is dependent on de novo protein synthesis. 
Therefore, MAO-B inhibitors can be used as a therapy to postpone the beginning 
of L-DOPA therapy, or as adjuvants to mitigate the effects of dopamine peaks 
generated by L-DOPA treatment. The rasagiline MAO-B inhibitor is a second 
generation drug, five times more potent than seligiline [4]. 

Catechol-O-methyltransferase (COMT) is an enzyme that makes the inactivation 
of catecholamines, such as dopamine, by the addition of a methyl group. The 
catecholamine L-DOPA, is a substrate of COMT. The main inhibitors of COMT 
(ICOMT), entacapone, stalevo and tolcapone, protect L-DOPA against COMT, 
prolonging the half-life of L-DOPA and, consequently, its action [85]. Generally, 
they are reversible inhibitors, decreasing the metabolic loss of dopamine and also 
increasing the half-life of L-DOPA by 30 to 50%. ICOMT are recommended for 
PD patients treated with L-DOPA in end-dose [4]. 

Anticholinergic drugs act by blocking the binding of acetylcholine to its receptors 
and inhibiting parasympathetic nerve impulses. Anticholinergics are divided in 
antimuscarinic, which comprises most of the anticholinergic drugs, and 
antinicotinic, which acts as muscle relaxing in most cases. Examples of 
anticholinergic drugs are dicycloverine, atropine, benztropine, tiotropium. These 
drugs reduce tremors and rigidity, but have little effect on bradykinesias. It can be 
also used in parkinsonism induced by antipsychotic drugs. 

8.10. DIAGNOSIS 

Disease progression and severity vary from one patient to another [2]. There is 
still no reliable diagnostic test for PD. Although neurologists generally agree that 
PD diagnosis requires a combination of cardinal motor signs (resting tremor, 
bradykinesia, postural changes), a definitive clinical classification standard has 
not been obtained yet. 

Several studies have shown the difficulty to clinically distinguish PD from other 
parkinsonian syndromes. Evaluating brain autopsies of 100 patients clinically 
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diagnosed as having PD, the histopathology was positive for only 75% of the cases 
[86]. On the other hand, neurologists specialized in movement disorders reviewed 
the clinical and pathological diagnoses of 143 PD cases. The positive predictive 
histopathological analysis value of the clinical diagnosis increased to 98% [87]. 

Table 1: Summary of UK PDS Brain Bank Criteria for PD diagnosis 

Step 1: Diagnosis of a 
parkinsonian syndrome 

 

Bradykinesia plus: 

• muscular rigidity 

• rest tremor 

• postural instability unrelated to other primary disease. 

Step 2: Exclusion criteria for PD 

 

History of: 

• repeated strokes with stepwise progression 

• repeated head injury 

• antipsychotic or dopamine-depleting drugs 

• definite encephalitis 

• more than one affected relative 

• sustained remission 

• negative response to L-DOPA 

• unilateral features after 3 years 

• other neurological features 

• exposure to neurotoxin 

• presence of cerebral tumor or communicating 
hydrocephalus on neuroimaging. 

 

Step 3: Supportive criteria for 
PD 

 

Three or more required: 

• unilateral onset 

• excellent response to L-DOPA 

• rest tremor present 

• severe L-DOPA-induced chorea 

• progressive disorder 

• L-DOPA response for over 5 years 

• persistent asymmetry 

• clinical course of over 10 years. 

 

Currently, the criteria of Brain Bank Society UK Parkinson's is the most widely 
used for diagnosis [87]. Based on this database, patients will be diagnosed with 
PD if they present slowness of movement (bradykinesia), one of the criteria in 
step 1, and at least three criteria of step 3, as described below (Table 1). 
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8.11. IMAGING DIAGNOSIS 

8.11.1. Single Photon Emission Computed Tomography 

In single photon emission computed tomography (SPECT), gamma ray isotope 
labeled molecules are given to the patient by intravenous injection. Labeled 
cocaine derivatives, like 123I-β-CIT and 123I-FP-CIT (N-ω-fluoropropyl-2β-
carboxymethoxy-3β-(4-iodophenyl) tropane) have been most often used, although 
only the latter is licensed in the UK. These markers reveal presynaptic dopamine, 
re-absorption site and, therefore, the presynaptic neuron can be visualized in two-
dimensional images. In normal people, with neuroepileptic-induced essential 
tremor or psychogenic parkinsonism, the absorption is normal, but is reduced in 
patients with PD, PD with dementia, multiple system atrophy (MSA) or 
progressive supranuclear palsy (PSP). Considerable evidence supports the use of 
123I-FP-CIT SPECT in people with upper limb postural action tremor and to 
distinguish essential tremor from a dopaminergic deficiency state. 123I-FP-CIT 
SPECT does not have high accuracy in distinguishing PD from other dopamine 
deficiency states, such as MSA and PSP. Future studies may demonstrate the 
value of this technique in the differentiation of neuroleptic medication-induced 
parkinsonism and psychogenic parkinsonism from a dopamine deficiency state. 

8.11.2. Positron Emission Tomography 

In positron emission tomography (PET), a positron emitting isotope labels a marker 
molecule, which is then administered by intravenous injection. The most commonly 
used positron emitter is 18F, which can be linked to dopa or deoxyglucose. The 18F-
fluorodopa is absorbed by the presynaptic DA neurons of the caudate nucleus and 
putamen (striatum). 18F-fluorodeoxyglucose (FDG) is trapped in the target tissues 
and is absorbed by all metabolic active and phosphorylated cells. PET has better 
spatial resolution than SPECT and, therefore, has a great value for differential 
diagnosis. However, the use of PET and FDG for distinguish PD from other 
parkinsonism conditions still requires additional tests for confirmation. Also, the 
ability of PET to differentiate PD from essential tremor was not well reported. PET 
is still a high cost and low-availability technique. 

8.11.3. Magnetic Resonance Imaging 

Structural magnetic resonance imaging (MRI) uses high intensity magnetic field 
to excite the hydrogen atoms present in water molecules and offer two or three-
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dimensional images of the structures. This technique has been used to examine 
structures that are known to be involved in PD, to get valuable information for the 
differential diagnosis. 

8.11.4. Magnetic Resonance Volumetry 

Magnetic resonance volumetry uses the same structural principles of MRI to 
measure the size of three-dimensional volumes of structures, such as substantia nigra 
and basal ganglia nuclei, which are direct affected in PD. Magnetic resonance 
volumetry is capable of detecting volume changes in these structures and make a 
more precise evaluation of the severity of the lesion in PD patients possible [88]. 

8.11.5. Magnetic Resonance Spectroscopy 

Magnetic resonance spectroscopy (MRS) is able to capture signals from distinct 
chemical nuclei inside the body. The most common detected nuclei are H, P, C Na 
and F. MRS is capable to detect diverse metabolites, such as cholines in cell 
membranes, creatine, a compound involved in energy metabolism, inositol, 
glucose and N-acetyl-aspartate, which is associated to the myelin sheathing [89]. 
Currently, MRS is mainly used as a tool for medical research, but it has the 
potential to provide very useful information in clinics and to be helpful in the 
diagnosis of PD and other neurodegenerative diseases [90]. 

8.12. OTHER DIAGNOSIS METHODS 

8.12.1. Acute L-DOPA and Apomorphine Challenge Tests 

Many PD patients show a good response to single doses of oral L-DOPA and/or 
subcutaneous administration of apomorphine. Acute administration of L-DOPA 
and apomorphine are not useful in the differential diagnosis of PD patients from 
those with other types of parkinsonism. Additionally, when used in the early 
stages of the disease, a common situation in clinical practice, acute treatment with 
L-DOPA and apomorphine does not distinguish PD patients from others. 
Moreover, acute apomorphine injection is used to assess whether advanced PD 
patients will still respond to dopaminergic medication [4]. 

8.12.2. Objective Smell Testing 

Olfactory dysfunction is one of the first non-motor symptoms of PD[91]. Around 
80% of people with PD may have an impaired sense of smell (hyposomia) [92]. 
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Since olfactory loss occurs to a lesser extent or is absent in other 
neurodegenerative disorders, such as MSA, corticobasal degeneration and PSP, 
olfactory testing may be useful in differential diagnosis for PD [91]. 

Neurodegenerative diseases, such as PD, must have an effective early diagnosis so 
that treatment can be more effective. However, the current methods for diagnosis of 
PD are not as accurate at the onset of the disease. As a result of the low accuracy in 
diagnosis, PD patients are diagnosed only when symptoms are clinically detectable, 
and patients have already lost 50% to 70% of DA neurons [93]. 

New methods have been developed for premature diagnosis in groups of people 
who have potential risk of developing PD. Quantification of extracellular α-
synuclein in cerebrospinal fluid has been proposed as a biomarker for pre-
symptomatic PD [94, 95]. The production of aptamers to detect active serine 
protease peptidase 6 (KLK6), commonly found in neurodegenerative diseases 
such as PD, should be helpful for the development of new diagnostic and 
therapeutic strategies [96]. 

Current studies on molecular aspects of PD, like genetic mutations and 
environmental factors, together with the development of new drugs, techniques and 
tests to improve diagnosis accuracy, will bring new perspectives for PD therapies. 
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Abstract: Huntington’s disease (HD) is an autosomal dominant neurodegenerative 
disorder caused by a polyglutamine expansion of the huntingtin protein (htt). The 
progressive neuronal cell loss that takes place in the caudate-putamen and neocortical 
regions of HD patients leads to motor, cognitive, and psychiatric function deterioration, 
as well as inevitable death. Although the mutated htt is pointed as the cause of HD, it is 
still unknown how this mutation can promote neurodegeneration. Postmortem analyses 
of HD patient’s brains demonstrate the presence of intracellular inclusions containing 
htt aggregates, which was associated to neuronal death. However, other studies suggest 
that inclusion formation can be neuroprotective by decreasing the levels of toxic soluble 
mutant htt. Moreover, many neurotransmitter systems, such as the glutamatergic, 
dopaminergic, endocannabinoid and trophic factor systems, are also involved in HD 
progression. For example, it has been demonstrated that the glutamatergic system plays 
an important role in the excitotoxic neuronal cell loss that takes place in HD. Despite 
the fact that it is clear that the main cause of HD symptoms is neuronal cell death, no 
therapeutic approach has yet been developed to rescue or avoid neurodegeneration. To 
solve this issue, a number of studies are now focusing on developing drugs that could 
prevent neuronal death, whereas others attempt to implement stem cells to rescue lost 
neurons. Both approaches have the potential to develop a disease modifying therapeutic 
strategy, bringing hope to HD patients. 

Keywords: Apoptosis, BDNF, Ca2+, caspases, cell death, chorea, dopamine, 
dopamine receptors, endocannabinoids, glutamate, huntingtin, Huntington’s 
disease, mGluR5, mouse model, neurotransmission, NMDAR, protein aggregates, 
striatum, 9-THC, trophic factors. 

INTRODUCTION 

George Huntington, in 1872, was responsible for the first description of 
Huntington's disease (HD), which was recognized as a hereditary disease 
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underlying severe neurological symptoms [1]. Nowadays, it is well established 
that HD is an autosomal dominant neurodegenerative disorder characterized by 
progressive neuronal cell loss in the caudate-putamen and neocortical regions of 
the brain, leading to deterioration of motor, cognitive, and psychiatric functions, 
and inevitably leading to death [2, 3]. Cognitive and personality alterations are 
early symptoms, followed by chorea and loss of balance. HD patients may 
experience mood swings and depression in the beginning, but these symptoms 
may lessen as the disease progresses. However, affective disorders can be very 
common among HD patients, with documented rates of major depression as high 
as 50% [4] and mania or hypomania as high as 12% [4, 5]. HD early signs of 
cognitive impairment include having difficulties driving, learning new facts, and 
remembering belongings. As the disease progresses, accomplishing intellectual 
tasks becomes increasingly difficult. Chorea is the most characteristic symptom of 
HD, causing difficulties walking and increasing the likelihood of falls. Movement 
difficulties are associated with both involuntary and voluntary movement, 
progressively worsening over time. The most common causes of death are 
infections, such as pneumonia, and injuries related to falls. 

9.1. HUNTINGTON´S DISEASE AND THE HUNTINGTIN PROTEIN 

HD is caused by a polyglutamine expansion in the amino-terminal region of the 
huntingtin (htt) protein [6]. In the human genome, the htt gene is present in the 
chromosome 4 and the exon-1 of htt normally contains between 6 and 35 CAG 
repeats, whereas HD patients exhibit 36 or more CAG repeats [6]. Importantly the 
length of the polyglutamine repeat inversely correlates with the age of disease onset 
and directly correlates with the severity of symptoms [7]. However, patient sex, 
environmental factors and genetic modifiers can alter HD onset and progression. 

Although htt mutation has been discovered more than 20 years ago, the 
mechanisms responsible for mutant htt pathogenicity are still largely unknown. So 
far, it is still unclear why the mutant protein, which is expressed throughout the 
body, promotes selective loss of striatal medium sized spiny neurons (MSNs). 
Moreover, it is still not clear whether a lack of function of the htt protein or a gain 
of toxic function of the mutant htt plays the most important role in HD pathology. 
Htt knockout in mice leads to embryonic lethality as a result of increased 
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apoptosis and heterozygous mice exhibit severe cognitive deficits due to 
morphological changes in the subthalamic nucleus of the basal ganglia [8, 9]. Htt 
antiapoptotic effect is likely due to both inhibition of caspase-3 activity and 
activation of prosurvival pathways involving the kinase Akt [10, 11]. On the other 
hand, mutant htt triggers a cascade that leads to neuronal dysfunction through 
oxidative stress, transcriptional dysregulation, glutamate excitotoxicity, activation 
of apoptotic cascade, mitochondrial dysfunction, and energy depletion [12-15]. 

Similarly to what is observed in other neurodegenerative diseases such as 
Alzheimer´s disease (AD), HD is characterized by protein aggregates that 
accumulate within cells. Immunohistochemical analyses of postmortem brain 
tissue of HD patients demonstrate the presence of intracellular inclusions 
containing htt aggregates, which are associated with the selective loss of striatal 
MSNs [16, 17]. HD MSNs present in the striatum, containing GABA and 
enkephalin, are affected early in the disease and are the primary neurons targeted 
in HD. Over time, htt aggregates and inclusions spread to the remainder of the 
basal ganglia with subsequent dissemination through the cortex and substantia 
nigra. Importantly, htt aggregate formation and neuronal loss strongly correlate 
with HD symptom severity [18]. 

Aggregates are formed mostly from the amino-terminal fragments containing the 
polyglutamine repeats, which are cleaved of polyglutamine expanded htt and 
accumulate in neurites, cytoplasm, and nuclei. Considerable evidence indicates 
that htt cleavage by caspases is important in HD pathogenesis [19]. A transgenic 
mouse model expressing mutant htt identical to that expressed by YAC128 mice, 
except for a point mutation rendering mutant htt resistant to caspase-6 cleavage, is 
resistant to the excitotoxicity, neurodegeneration, and behavioral characteristics of 
YAC128 mice [20, 21]. These data strongly indicate that mutant htt proteolysis is 
required for the formation of toxic htt fragments. 

Although a number of studies indicate that htt aggregates contribute to synaptic 
damage in HD, it has been suggested that inclusion formation protects neurons 
from cell death, possibly by decreasing the levels of toxic soluble forms of mutant 
htt [22, 23]. Supporting this hypothesis, a recent report shows that synaptic 
activity dependent on N-methyl-D-aspartate glutamate receptor (NMDAR) 
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increases htt inclusion formation and diminishes mutant htt toxicity [24]. In 
contrast, activation of extrasynaptic NMDARs increases the vulnerability of 
neurons expressing mutant htt to cell death and activates cell signaling pathways 
that can disaggregate mutant htt [24]. Thus, it is not clear whether htt aggregation 
contributes to neuronal cell death or promotes neuroprotection. 

9.2. NEURONAL CELL DEATH IN HUNTINGTON´S DISEASE 

HD symptoms are caused by the neuronal cell loss that takes place in the striatum 
and neocortical regions of the brain. The striatum, comprised of the caudate 
nucleus and putamen, represents the major “input” stage of the basal ganglia, 
being mainly composed of projection neurons (up to 95%) and a much smaller 
number of interneurons (approximately 5%). Striatal projection neurons are all 
GABAergic and morphologically characterized by a long axon, medium-sized cell 
bodies, and spiny dendrites, hence the commonly used term of medium sized 
spiny neurons (MSNs) [25, 26]. MSNs represent the main and earliest striatal cell 
type affected in HD, whereas striatal interneurons are typically unaffected or only 
mildly affected at late stages of the disease. Although less affected than striatal 
neurons, cortical neurons might also undergo cell death due to htt mutation. 
Interestingly, in the cortex, as in the striatum, large pyramidal projection neurons 
are preferentially lost and small interneurons are preserved in HD [27, 28]. Htt is 
widely expressed in the brain and in non-neuronal tissues and not particularly 
enriched in the striatum [29, 30]. Thus, it is still unknown why MSNs are 
particularly affected in HD. 

Although htt mutation is well established as the cause of HD, it is still unclear 
how the mutated htt protein promotes neuronal cell death (Fig. 1). Recent 
publications indicate that htt aggregate might not be the major cause of neuronal 
death, but that mutated htt toxic effects could play an important role in neurotoxic 
processes [16, 17, 22, 23]. Mutated htt can alter gene transcription, induce 
apoptosis, and disrupt key neuronal functions such as proteasomal function, 
ubiquitination, axonal transport, endocytosis, and synaptic transmission [12-15]. 
Moreover, polyglutamine expanded htt can increase intracellular Ca2+ levels, 
which may contribute to the neuronal cell death that takes place in HD. NMDAR 
sensitization can be induced by mutant htt protein, increasing Ca2+ influx into the 
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Mutant huntingtin protein promotes mitochondrial Ca2+ abnormalities early in HD 
pathogenesis in a direct manner, as incubation of mitochondria from normal human 
lymphoblast with a polyglutamine-expanded protein fragment recapitulates the 
mitochondrial Ca2+ defect observed in HD [33]. It has also been shown that the 
huntingtin protein binds to the outer membrane of human immortalized cells 
mitochondria and of cultured striatal cells mitochondria from WT and transgenic 
mice [34]. In addition, binding of mutated huntingtin protein, but not of wild type, 
enhances sensitivity to Ca2+-induced opening of the MPT, promoting the release of 
cytochrome c from mitochondria obtained from normal liver [34]. Mitochondria is 
important for buffering cytoplasmic Ca2+ and increased neuronal Ca2+ can modify 
mitochondrial ATP production by uncoupling oxidative phosphorylation [38]. 
Increased cytoplasmic Ca2+ may promote discharge of the mitochondrial membrane 
potential, opening of the mitochondrial permeability transition (MPT) pore, release 
of cytochrome c, and activation of cell death pathways [38]. Mitochondrial 
dysfunction resulting from Ca2+ overload, prolonged membrane depolarization or 
impaired electron transfer chain is the main source of intracellular reactive oxidative 
species [39, 40]. Interestingly, a link between NMDAR stimulation and 
mitochondria deregulation has been established, as the reduced mitochondrial ATP 
levels and decreased ATP/ADP ratio found in mutant htt-containing striatal cells is 
normalized by blocking NMDA receptor-mediated Ca2+ influx [41]. 

Recently published data indicate that, in addition to the deleterious effect 
generated by the mutated htt protein, the mutant CAG htt repeats are toxic at the 
RNA level [42]. Transcripts containing long CUG and CAG repeats form hairpins 
structures that are substrate for the ribonuclease dicer, generating short RNA 
duplexes and activating RNA interference (RNAi) response [43]. The 21 
nucleotide long fragments generated by dicer act as endogenous siRNAs and 
trigger downstream silencing effects [43]. The expanded htt exon-1 mRNA 
containing 40 or more CAG repeats induces cell death and increases levels of 21 
nucleotide long CAG-repeated small RNAs [42]. Importantly, the higher the 
number of CAG repeats, the greater is cell toxicity [42]. 

9.3. HUNTINGTON’S DISEASE AND THE GLUTAMATERGIC SYSTEM 

Glutamate, the major excitatory neurotransmitter in the brain, is essential for a 
wide variety of physiological processes, such as memory, cognition and neuronal 
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cell development. Nevertheless, glutamate has also been implicated in the 
pathogenesis and neuronal cell loss that takes place in HD [44-47]. Glutamate 
exerts its actions by activating ionotropic glutamate receptors, which are ligand-
gated ion channels that mediate fast excitatory neurotransmission, and 
metabotropic glutamate receptors (mGluRs), which are members of the G protein-
coupled receptor (GPCR) family [48-52]. Three different types of ionotropic 
glutamate receptors have been identified, NMDA, AMPA, and kainate receptors, 
and eight distinct mGluRs, which are divided into three subgroups based on 
sequence homology and G protein coupling-specificity [47, 48, 53, 54]. Group I 
mGluRs (mGluR1 and mGluR5) promote activation of phospholipase C (PLC) 
via Gαq/11, whereas Group II (mGluR2 and mGluR3) and Group III (mGluR4, 
mGluR6, mGluR7 and mGluR8) mGluRs inhibit adenylyl cyclase via Gαi. 

Excitotoxicity is a very well-known process of neuronal cell death, and also plays 
an important role in many CNS disorders, including ischemia, trauma, and 
neurodegenerative disorders, such as AD, HD, and Parkinson’s disease (PD) [55, 
56]. Excitotoxicity occurs as a result of increased release of extracellular 
glutamate or a reduction in its removal from the synaptic cleft, which causes 
glutamate receptor over-stimulation and increased Ca2+ levels, as well as 
mitochondria dysfunction and cell death [57, 58]. Increased Ca2+ levels induced 
by glutamate stimulation is mainly achieved by activation of NMDAR and, to a 
lesser degree, by Group I mGluRs, which are coupled to Ca2+ release from 
intracellular stores [50, 54]. 

It has been shown that NMDARs play a role in the excitotoxic neuronal cell loss 
that occurs in HD. Post-mortem brain tissue from HD patients in the early 
symptomatic phase exhibit loss of striatal NMDARs, suggesting that striatal 
neurons expressing high levels of NMDAR are more susceptible and are lost early 
during disease progression [59, 60]. The role of NMDAR in HD can be further 
highlighted by the fact that a mouse model of HD was generated by injecting the 
NMDAR agonist quinolinic acid into the striatum [61, 62]. This HD mouse model 
recapitulates many HD features, including HD-like lesions and symptoms. 
Furthermore, the reason why MSNs are more susceptible in HD appears to be 
dependent on the type of NMDARs that these neurons express. Mutant htt protein 
is capable of sensitizing NMDARs that are comprised of the NR1A/NR2B, but 
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not NR1A/NR2A [31, 63]. Interestingly, although other brain structures express 
combinations of both NR2A and NR2B with a variety of NR1 splice variants, 
MSNs essentially express the NR1A and NR2B subunits [64-66]. Thus, the type 
of NMDAR subunit expressed might underlie the preferential death of MSNs in 
the striatum. 

Recent published data indicate that synaptic NMDAR activity drives neuroprotective 
gene transcription, promoting neuronal resistance to mutant htt-mediated cell death 
[24]. In contrast, stimulation of extrasynaptic NMDARs increases the vulnerability 
of neurons expressing mutant htt to cell death [24]. In agreement with these findings, 
it has also been demonstrated that extrasynaptic NMDAR expression and current are 
increased in the striatum of an HD mouse [67]. Moreover, nuclear CREB activation 
was reduced in HD mouse striatum [67]. Thus, the balance between synaptic and 
extrasynaptic NMDAR activity may be crucial to determine neuronal cell survival in 
Huntington's disease. In support to this hypothesis, low concentrations of the 
NMDAR antagonist, memantine, which maintain physiological synaptic activity 
while blocking excessive extrasynaptic NMDAR stimulation, lessen mutated htt-
mediated excitotoxicity [24, 67]. 

It is not yet clear whether Group I mGluRs have a role in HD. However, a direct link 
between htt and Group I mGluRs has been established, as mGluR1/5 interacts with 
both htt and optineurin, which is also an htt-interacting protein [68, 69]. 
Nevertheless, the role of mGluR5 in HD-mediated neuronal cell death is very 
controversial. Treatment of an HD transgenic mouse model with an mGluR5 
antagonist increases survival [70]. In addition, disturbed Ca2+ signaling and 
apoptosis observed in primary cultured striatal neurons from an HD mouse model 
has been attributed to activation of mGluR1/5 and NMDAR containing the NR2B 
subunit [35, 36]. Nevertheless, data from other groups have provided evidence that 
Group I mGluRs activation can be protective. For example, NMDA-mediated 
excitotoxicity can be attenuated when cortical neuronal cultures are consecutively 
incubated two times with the group I mGluRs agonist, DHPG (3,5-
dihydroxyphenylglycine) [71]. In rat hippocampal slices, mGluR1 activation by 
DHPG protects CA1 hippocampal cells [72]. In addition, it has been demonstrated 
that mGluR1/5 signaling is modified in a mouse model of HD during the 
presymptomatic phase of the disease and that these alterations have a protective role 



Huntington’s Disease Young Perspectives for Old Diseases   185 

 

[69, 73]. Activation of mGluR1/5 expressed in striatal neurons from a mouse model 
of HD leads to high levels of Ca2+ release from intracellular compartments, which 
can contribute to excitotoxic processes (Fig. 2) [35, 73]. However, mGluR1/5 
stimulation also leads to activation of other signaling pathways important for cell 
survival, such as extracellular signal-regulated kinase (ERK) and AKT [74-76]. 
Interestingly, mGluR5 activation leads to higher levels of ERK and AKT activation 
in HD than in control neurons (Fig. 2) [73]. In addition to its known neuroprotective 
role, Akt can promote phosphorylation of mutant htt protein, which leads to reduced 
htt aggregate formation and neuronal cell death, providing an extra protective 
pathway in HD [10, 77]. Thus, depending on the context of activation, group I 
mGluR stimulation is found to be either neurotoxic or neuroprotective. 

 

Figure 2: Cell signaling pathways activation by Group I mGluRs. Group I mGluRs activate the 
hydrolysis of PIP2 by phospholipase C (PLC) following the activation of the heterotrimeric G 
protein Gαq resulting in increases of intracellular diacylglycerol (DAG) and InsP3 (IP3) levels. 
InsP3 activates the InsP3 receptor (IP3R) resulting in increased intracellular Ca2+ concentrations 
which in conjunction with DAG activate protein kinase C (PKC). PKC activation can lead to the 
activation of ERK1/2 phosphorylation and the phosphorylation of the NMDA receptor. Homer 
interacts with the carboxyl-tail of Group I mGluRs and can either contribute to the activation of 
Akt via PI3 kinase (PI3K) or can directly regulate NMDA receptor activity via its association with 
Shank. Adapted from: Ribeiro et. al, Molecular Neurobiology, 2011, 43:1-11. 
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9.4. HUNTINGTON’S DISEASE AND THE DOPAMINERGIC SYSTEM 

Striatal MSNs receive glutamatergic input from the cortex and dopaminergic input 
from the substantia nigra [78]. Additionally, a number of reports indicate that 
dopamine might play a role in HD-mediated neuronal death and chorea symptoms 
[79]. In agreement with the hypothesis that dopamine plays a role in HD, 
tetrabenazine, which is a dopamine antagonist with anti-chorea properties, is the 
only FDA approved drug to treat HD patients [80]. Dopamine receptors are highly 
expressed in MSNs and the expression levels of D1 and D2 dopamine receptors 
are reduced in HD basal ganglia even before any neuronal cell death can be 
observed [81, 82]. Moreover, mouse models of HD show a corresponding loss of 
D2 dopamine receptor expression early in the progression of neuronal pathology 
[83, 84]. Thus, dopamine receptors are markers of early HD-related alterations. 

Increased levels of extracellular dopamine observed in knockout mice for the 
dopamine transporter leads to both spontaneous striatal death and behavioral 
alterations that resemble HD [85]. Moreover, exacerbation of HD symptoms and 
augmentation of neuropil aggregate formation occur when these mice are mated to 
a knock-in HD mouse model [86]. Stimulation of primary cultured striatal neurons 
with dopamine leads to the activation of pro-apoptotic pathways, formation of htt 
aggregates, and disturbance of mitochondria via D2 dopamine receptor activation 
[87, 88]. In addition to increase aggregate formation, dopamine also intensifies 
mutant htt toxicity in striatal neurons through the production of reactive oxygen 
species (ROS), which activates the pro-apoptotic c-Jun amino-terminal kinase 
(JNK)/c-Jun pathway [87]. Highlighting the importance of D2 receptor in HD, it 
has been demonstrated that haloperidol, which is a D2 receptor antagonist, 
protects striatal neurons from mutated htt toxicity [89]. Moreover, D2 receptor 
knock-down using siRNA abrogates the deleterious effects produced by dopamine 
[90]. Aggregate formation prompted by D2 activation involves a Rho/ROCK 
signaling pathway, as ROCK activity inhibition reverses D2-mediated aggregate 
formation, neuritic retraction and neuronal cell death induced by mutant htt [90]. 

Dopamine and glutamate can also synergistically induce apoptosis of MSNs via 
increased Ca2+ signaling, as stimulation of MSNs from a transgenic mouse model 
of HD with both glutamate and dopamine leads to high levels of cell death [91, 
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92]. Moreover, it has been shown that mutant htt increases the sensitivity of 
striatal cells to dopamine and glutamate inputs by altering a common NMDAR 
and D1 dopamine receptor downstream pathway such is Cyclin-dependent kinase 
5 (Cdk5) [92]. Cdk5 activation by p35 is essential for brain development [93]. 
However, Cdk5 becomes a cell death inductor when it binds to p25, the calpain-
mediated cleaved product of p35 [94]. Increased intracellular Ca2+ promoted by 
stimulation of both NMDA and dopamine receptors leads to higher calpain 
activity that results in enhanced cleavage of p35 into p25 [94]. As mutated htt 
protein leads to high levels of intracellular Ca2+ by sensitizing NMDARs and 
InsP3Rs, p25 can increase in HD to levels that will exacerbate neuronal cell death 
processes [92]. 

9.5. HUNTINGTON’S DISEASE AND THE CANNABINOID SYSTEM 

Endocannabinoids (ECs), as well as 9-tetrahydrocanabinol (9-THC), can bind 
and activate two cannabinoid receptors named CB1 and CB2 [95, 96]. Five ECs 
have been identified thus far, including anandamide (AEA) and 2- arachidonoyl 
glycerol (2-AG), which are the two most studied ECs [97, 98]. ECs acts as 
retrograde messengers at many synapses in the central nervous system, which 
means that ECs are released by postsynaptic neurons and act predominantly at 
presynaptic neurons [99]. This retrograde signaling pathway has emerged as being 
important in synaptic plasticity and in numerous neurophysiological functions 
such as pain, appetite, learning and memory, and motor functions [100-103]. 
Moreover, as brain regions involved in cognition and motor activity express high 
levels of CB1 receptors, it has been suggested that ECs play a role in a variety of 
CNS disorders, especially neurodegenerative diseases [104]. 

Within the basal ganglia, the main function of the cannabinoid system is to 
modulate GABAergic and glutamatergic synapses through a retrograde signaling 
mechanism [105]. Thus, activation of EC receptors has profound effects on the 
control of movement [106, 107]. For example, AM404, which is an anandamide 
transport inhibitor, reduces the stimulation of motor behaviors elicited by the 
selective D2 receptor agonist quinpirole [107]. The role of ECs in movement 
control implicates this system in movement disorders such as HD. Glass et al. 
[108] were the first to provide evidence linking EC signaling with HD, as they 
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demonstrated loss of about 97% of CB1 receptors in the substantia nigra of human 
HD brains [108]. In HD patients, deficiency of CB1 receptor levels precede the 
loss of D1 and D2 dopamine receptors and occur even before the onset of major 
HD symptoms [82]. In transgenic mouse models of HD, the decrease in CB1 
receptor mRNA takes place before the onset of motor symptoms [109]. Moreover, 
CB1 receptor expression levels continue to decrease as disease progresses [110]. 
Interestingly, it has been reported in the R6/1 transgenic model of HD that 
environmental enrichment upregulates CB1 receptor binding and provides 
behavioral improvement [111]. In agreement with these data, it has also been 
shown that lack of CB1 receptor expression aggravates the motor performance of 
a transgenic mouse model of HD [112]. These data indicate that early loss of CB1 
receptor may be detrimental in HD and that activation of CB1 receptor pathways 
could afford protection. 

9.6. HUNTINGTON’S DISEASE AND TROPHIC FACTORS 

Trophic factors, such as brain-derived neurotrophic factor (BDNF), play a crucial 
role in neuronal survival and function [113]. Wild-type, but not mutant, huntingtin 
can increase vesicular transport and transcription of BDNF [114, 115]. Thus, 
mutation of the htt protein results in decreased BDNF transcription and axonal 
transport, which negatively affect the survival of both striatal and cortical neurons 
[114, 115]. Moreover, mutated htt also decreases BDNF secretion by cortical 
astrocytes [116]. Wild-type htt increases BDNF transcription by sequestering the 
repressor element-1 transcription factor/neuron restrictive silencer factor 
(REST/NRSF), the transcription factor that binds to the neuron restrictive silencer 
element (NRSE) on BDNF promoter II [117]. Wild-type huntingtin interaction 
with REST/NRSF is much stronger than that of mutated htt, which might explain 
why less BDNF is transcribed in HD [117]. 

Most of BDNF neuroprotective effects are mediated by the receptor tyrosine 
kinase-B (TrkB)-induced activation of pro-survival signaling pathways, including: 
PLC-γ, Ras/MEK/MAPK and PI3K/Akt pathways [118]. In accordance with that, 
it has been shown that BDNF protects cortical neurons from 3-NP toxicity 
through the activation of PI3K and ERK1/2 intracellular signaling pathways 
resulting in decreased mitochondrial abnormalities and apoptosis [119]. In striatal 
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neurons, it has been demonstrated that BDNF alters the expression of genes 
involved in striatal neurite outgrowth by activating the MEK/ERK1/2 signalling 
pathway [120]. 

It has been shown that BDNF is capable of preventing the death of MSNs in a 
quinolinic acid model of HD and in a 3-NP-induced toxicity mouse model, which 
are HD mouse models that exhibit movement alterations, cognitive deficits and 
neuronal loss similar to those seen in HD patients [121-123]. Intrastriatal BDNF 
delivery and selective forebrain over expression of BDNF reverse cortical and 
striatal injury, and improve motor performance in transgenic HD mice [124-127]. 
Moreover, super-expression of BDNF by striatal astrocytes of an HD transgenic 
mouse model delays the onset of the HD-related motor phenotype [128]. Thus, 
increased levels of BDNF ameliorate HD-related symptoms. 

9.7. THERAPEUTIC PERSPECTIVES IN HUNTINGTON´S DISEASE 

Tetrabenazine, which is the only FDA-approved drug to treat HD, acts primarily 
through reversible inhibition of the vesicular monoamine transporter 2 (VMAT2), 
a presynaptic neuronal transporter responsible for concentrating monoamines into 
vesicles [129, 130]. Inhibition of VMAT2 results in presynaptic dopamine 
depletion, with lesser reductions in norepinephrine and serotonin [131]. 
Tetrabenazine reduces chorea, but has detrimental effects on cognition and 
depression [132]. Antipsychotics are also employed to control chorea; however, as 
tetrabenazine, they have no disease modifying actions [132]. Thus, the 
development of a therapeutic strategy to delay HD progression is a very important 
undertaking currently. 

The conspicuous role of NMDARs in neuronal excitotoxic cell death has led to 
the development of NMDAR antagonists such as ketamine, amantadine, and 
memantine for treating neurological disorders caused by neuronal cell death. 
Riluzole, which is approved to treat amyotrophic lateral sclerosis, is known for 
reducing excitotoxicity via suppression of glutamatergic neurotransmission and 
has potential as a disease modifying drug. Animal models of HD treated with 
riluzole exhibited reduced striatal degeneration and improved associated motor 
dysfunction [133-135]. Moreover, riluzole was found to increase HD serum 
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concentration of BDNF, which is a factor important for striatal neuronal survival 
and that has its concentration reduced in HD [136, 137]. However, ketamine and 
riluzole have been tested in HD patients and these drugs were found to have little 
or no symptomatic benefit [138-140]. In a number of studies, amantadine seems to 
alleviate chorea, although suppression of chorea varied widely among patients 
[141]. Nevertheless, evidence from other double-blind crossover trials has shown 
insignificant results between amantadine and placebo [142, 143]. This mixed body 
of evidence leads to uncertainty regarding amantadine's efficacy for routine use in 
HD. 

Neuronal culture studies demonstrate that the positive or negative consequences 
of NMDAR activity are determined by the subcellular location of the receptor [24, 
144, 145]. According to these studies, stimulation of synaptic NMDARs results in 
the activation of prosurvival pathways, although stimulation of extrasynaptic 
NMDARs privileges cell death. Memantine, different than other NMDAR 
antagonists, preferentially blocks extrasynaptic NDMARs [146]. In agreement 
with these hypothesis, it has been shown that treatment of a transgenic mouse 
model of HD with low doses of memantine blocks excessive NMDAR stimulation 
(extrasynaptic) without affecting physiological synaptic transmission (synaptic), 
ameliorating neuropathological and behavioral symptoms related to HD [24, 67]. 
A pilot study indicates that HD patients exhibit diminished chorea following 
memantine 20 mg/day treatment for 3 months [147]. However, no improvements 
in cognitive, behavioral, and functional aspects were observed [147]. Despite the 
uncertain symptomatic results with memantine, its potential as a neuroprotective 
drug has led to further clinical trials that are currently underway to investigate 
memantine and its effects on cognitive and behavioral functions in HD patients 
with cognitive impairment. 

Drugs acting on the cannabinoid system have also been tested in HD. Botanical 
extracts enriched in either 9-THC or cannabidiol (CBD), which are the main 
components of the cannabis-based medicine Sativex, provide neuroprotection in 
rat models of HD [148, 149]. The administration of 9-THC- and CBD-enriched 
botanical extracts ameliorates HD-mediated effects, such as down-regulation of 
CB1 receptor and IGF-1 expression, and up-regulation of calpain expression, 
whereas it completely reverses the reduction in superoxide dismutase-1 
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expression [148]. Interestingly, these effects were not blocked by selective 
antagonists of either CB1 or CB2 receptors, indicating that the protective effects 
are caused by the antioxidant and cannabinoid receptor-independent properties of 
these phytocannabinoids [148, 149]. CBD has also been studied in rats lesioned 
with malonate, a model of striatal atrophy. CBD alone did not provide protection 
in rats injured with malonate, as only CB2 receptor agonists were effective [150]. 
However, the combination of CBD with 9-THC used in Sativex was highly 
effective in preserving striatal neurons in this model in a mechanism involving 
both CB1 and CB2 receptors [151]. CBD combined with 9-THC is currently 
facing phase II-clinical trials. 

Therapeutic approaches targeting an increase in BDNF might be a strategy to slow 
or prevent HD [152]. Research on BDNF and HD has focused on drugs that could 
boost BDNF production, as this trophic factor does not cross the blood-brain 
barrier. Moreover, the positive modulator of AMPA glutamate receptors, 
ampakine, is capable of up-regulating endogenous BDNF levels, rescuing 
neuronal plasticity and diminishing learning problems observed in a HD mouse 
model [153]. However, ampakine treatment has no positive effect on motor 
alterations. However, as ampakines do not pose major adverse effects, this class 
of drugs may represent a good option for treating the cognitive decline that occur 
in HD, as well as for preventing neuronal cell loss [153]. 

Intrastriatal injections of adenovirus encoding BDNF demonstrated 
neuroprotection of striatal neurons in quinolinic-acid lesioned rats [154]. 
Moreover, cells that express and continuously release BDNF have been 
engineered as a new tool to boost BDNF levels [121, 123, 155, 156]. One of these 
studies demonstrates that BDNF-secreting cells do not provide robust 
neuroprotection [155]. However, other studies have demonstrated that BDNF-
secreting cells provide improvement in motor performance and reduction of 
striatal neurons damage [121, 123, 156]. These data highlight the importance of 
cell transplantation and also BDNF for the treatment of neurodegenerative 
diseases, such as HD. 

A potential approach to restore striatal MSNs includes the use of stem cells that 
could be surgically transplanted into the striatum of HD patients. A number of 
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small pilot studies have demonstrated the feasibility of this strategy, but as the 
majority of studies have used human fetal tissues, ethical controversies and 
regulatory constraints have limited this approach [157-162]. Striatal neurons have 
been differentiated from human embryonic stem cells (hESCs) and it has been 
shown that these neurons were capable of integrating into the host neural circuitry 
and correct motor deficits in a rodent model of striatal degeneration [163-165]. 
However, although a number of studies demonstrate that cell transplantation is a 
potential option to treat HD, the benefits of this intervention does not last for long 
periods of time. A cell transplantation trial demonstrated that 3 of 5 patients 
exhibited motor and cognitive stabilization or improvement up to 2 years post-
intervention; however, the benefits dissipated between 4 and 6 years following 
surgery [157, 158]. In another trial, modest improvements were realized in 6 out 
of 7 patients, but again lasting for only 2 years [159, 160]. Larger clinical trials 
are currently being conducted to further evaluate the clinical efficacy of 
neurotransplantation in HD [166, 167]. 

The recent landmark discovery that somatic cells can be reprogrammed into 
induced pluripotent stem cells (iPSCs) creates a new strategy to treat 
neurodegenerative diseases [168]. A recent report demonstrates that iPSCs 
derived from HD patient fibroblasts can be corrected by replacing the expanded 
CAG repeat with a normal repeat using homologous recombination, and that 
correction of HD-iPSCs normalizes pathogenic HD signaling pathways and 
reverses disease phenotypes such as susceptibility to cell death and altered 
mitochondrial bioenergetics in a HD mouse model [169]. iPSCs, differently than 
hESCs, do not face ethical constraints as they are not produced from embryonic 
human cells. Moreover, iPSCs are patient specific and will not activate host 
immune responses [170]. Future technical developments will be important to 
make the use of iPSCs feasible to restore striatum loss and ameliorate HD-related 
symptoms in patients. 

As the genetic alteration underlying HD involves one single gene, inhibiting htt 
expression is a promising therapeutic option. Antisense oligonucleotides that 
block htt expression have been shown to alleviate symptoms and prolong survival 
in mouse HD models [171-173]. However, as HD is dominantly inherited, patients 
exhibit both wild-type and mutant htt alleles. Blocking expression of both wild-
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type and mutant htt might have deleterious effects [8, 9]. Thus, allele selective 
inhibition could afford improved therapeutic efficacy. It has recently been shown 
that single-stranded RNA targeting the htt CAG repeat is capable of inhibiting 
mutant htt allele expression selectively [174]. Future clinical trials will be 
important to demonstrate whether htt silencing can delay HD progression in 
patients. Although gene silencing appears to be an attractive and promising future 
therapy for HD, delivery of oligos to the central nervous system is still a concern. 
RNA oligos do not cross the blood brain barrier and would have to be introduced 
to the cerebral spinal fluid during the entire life of HD patients to be effective. 

9.8. CONCLUDING REMARKS 

The identification of the mutation that causes HD in 1993 was crucial to develop 
animal models to study the disease and to better understand HD mechanisms. HD, 
as other neurodegenerative diseases, is a very complex disorder involving many 
neurotransmitter systems and different areas of the brain. Although it is clear that 
the main cause of HD symptoms is the neuronal cell death that takes place in the 
caudate-putamen and neocortical regions of the brain, no therapeutic approach has 
yet been developed to rescue or avoid neuronal cell loss. A number of studies 
focus on developing drugs that could prevent neuronal death, whereas others 
attempt to implement stem cells to rescue lost neurons. Both approaches have the 
potential do develop a disease modifying therapeutic strategy, bringing hope to 
HD patients. 
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CHAPTER 10 

Amyotrophic Lateral Sclerosis: A Role for Non-Neuronal Cells 

Ana G. Barbeito* 

Institut Pasteur de Montevideo, Laboratorio de Neurodegeneración, Uruguay 

Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder 
characterized by the progressive degeneration of both upper and lower motor neurons 
leading to paralysis and finally to death. Non-neuronal cells, including glial cells, have 
been shown to actively participate in the physiopathological process occurring in ALS. 
Experiments using chimeric mice expressing ALS-linked mutations suggest that 
neighboring non-neuronal cells modulate disease phenotype. In this review, recent 
findings involving the role of astrocytes, microglia and of other non-neuronal cells will 
be discussed. The study of motor neuron microenvironment could lead to a better 
understanding of the physiopathology of ALS to find new pathways to slow down 
motor neuron degeneration. 

Keywords: Amyotrophic lateral sclerosis, ALS, amyotrophia, animal models, 
astrocytes, CNS, glial cells, microglia, motor neuron, motor neuron disease, 
neurodegeneration, neuroinflammation, neuroprotection, neurotoxicity, non-cell 
autonomous, non-neuronal cells, progressive paralysis, SOD1, spinal cord, 
transgenic mice. 

10.1. INTRODUCTION 

Amyotrophic lateral sclerosis (ALS), originally described by Charcot in 1869, is 
the most prevalent type of adult motor neuron disease, characterized by the 
progressive dysfunction and degeneration of both upper motor neurons in the 
brain cortex and lower motor neurons located in the brainstem nuclei and ventral 
spinal cord. The degeneration results in progressive paralysis, muscle atrophy and 
death due to respiratory failure after 2-5 years of symptoms onset [1, 2]. The 
disease has an annual incidence of 1-2 per 100,000 and represents a major cause 
of acquired non-traumatic disability [3]. The average age of clinical onset of ALS 
is 55-60 years old, with male gender, increasing age and family history being the 
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main risk factors [4-6]. The variability in clinical disease duration is large, with 
some patients dying within months after onset and others surviving for more than 
two decades [7]. 

In the past years several lines of investigation have demonstrated that ALS is a 
heterogeneous syndrome rather than a unique disease [2]. Whereas certain brain 
functions, including oculomotor and sphincter function, are relatively spared, ALS 
may be associated with non-motor symptoms, like cognitive dysfunction (20–50% 
of cases). For instance, frontotemporal dementia (FTD), a degenerative disorder 
of the frontal and anterior temporal lobes, occurs in 5–15% of ALS patients, 
characterized by marked executive dysfunction and behavior change [8] and these 
patients have a shorter survival [9]. 

The cause of the disease remains unknown for the majority of sporadic cases of 
ALS. There is currently no effective disease-modifying treatment other than 
Riluzole, which only has a modest effect on survival [10]. An improved 
understanding of the pathophysiology of ALS has potential for novel and more 
effective therapeutic intervention. 

10.2. GENETIC CAUSES OF ALS 

ALS is classified as hereditary or familial ALS (FALS) and sporadic ALS (SALS) 
with similar clinical characteristics. FALS accounts for 5% of patients if only 
first-degree relatives are taken into account; this percentage increases when 
distant relatives are included [11] and is mostly of autosomal dominant 
inheritance [reviewed in 12]. The most frequent cause of FALS are the recently 
described intronic GGGGCC repeat expansions in the chromosome 9 open 
reading frame 72 (C9ORF72) [13, 14]. C9ORF72 repeat expansions were found 
to be linked both to ALS and frontotemporal dementia and accounted for around 
40% of patients with familial ALS worldwide and 6% of patients with sporadic 
ALS [15, 16]. 

Mutations in the gene encoding the antioxidant enzyme Cu/Zn superoxide 
dismutase-1 (SOD1) are the second most frequent cause of familial forms of ALS 
(15%) [17]. SOD1 is an enzyme composed of 153 amino acids and is involved in 
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free radical scavenging, in which more than 150 different mutations (mostly 
missense mutations) have been reported to be pathogenic [12]. Toxicity of mutant 
SOD-1 involves a dominant gain-of-function rather than a merely diminished 
superoxide-scavenging activity [1, 18, 19]. This is supported by findings showing 
that deletion of mouse endogenous SOD1 gene did not lead to an ALS phenotype 
[20] and patients carrying either an active or inactive form of the enzyme both 
develop ALS. Transgenic mice and rats expressing SOD1 [21-26] recapitulate many 
features of ALS pathology and represent the main model for studying this disease at 
present. Importantly, the expression of the human wild-type SOD1 at similar levels 
[21, 23] did not lead to ALS phenotypes. Several disease mechanisms have been 
proposed in the SOD1 animal models of the disease that include: protein 
aggregation, oxidative stress, glutamate excitotoxicity, mitochondrial dysfunction, 
axonopathy, endosomal trafficking and neuroinflammatory processes [1, 27-33]. 

Other genetic causes of FALS include mutations in TARDBP [34-38]. This gene 
encodes for TAR DNA-binding protein 43 (TDP43), a protein present in 
ubiquitin-positive, tau-negative, neuronal inclusions in most patients with ALS or 
FTD [39]. A wide number of the mutations are missense mutations, located in 
exon 6 of TARDBP, which encodes the C-terminal glycine-rich part of the 
protein; however few mutations are deletions that give rise to a protein truncated 
at the C-terminal [12, 40]. Remarkably, TARDBP mutations can lead to ALS with 
or without FTD but only rarely to FTD alone [12]. TDP43, belongs to a family of 
heterogenous ribonucleoproteins that bind DNA and RNA and is normally located 
in the nucleus, where it has been shown to be involved in transcription, RNA 
splicing and transport [40]. In mutations associated with ALS, there is a shift of 
TDP43 from the nucleus to the cytoplasm, and the normal nuclear TDP43 staining 
is lost, together with a propensity to aggregate [41]. Finally, mutations in fused in 
sarcoma/translated in liposarcoma (FUS/TLS) gene, that encodes for another 
RNA processing protein, is another cause of familial ALS [42, 43]. Importantly, 
these two types of mutations led to the hypothesis of RNA processing 
abnormalities as a cause of ALS [42, 43]. 

10.3. ANIMAL MODELS OF ALS 

Rodent models expressing mutants forms of SOD1 represent the most studied and 
used models at present. Shortly after the discovery of SOD1 mutations in FALS 



208   Young Perspectives for Old Diseases Ana G. Barbeito 

 

[17] a transgenic mouse model (SOD1G93A) of SOD1–ALS was developed, 
expressing approximately 20–24 copies of the human coding sequence with the 
G93A mutation, under control of the human SOD1 promoter [21]. Since the 
development of this model, over twenty other SOD1 models have been created 
and SOD1 transgenic rodents have been used as the primary models for studying 
ALS. The animals present with an adult-onset progressive paralysis, characterized 
by loss of motor neurons in the ventral horn, axonal and mitochondrial 
dysfunction, muscle denervation, and astrocytic and microglial activation [21-26]. 
Overexpression of mutant SOD1 is not limited to mice, as transgenic rats have 
also been developed that recapitulate many features of ALS, resembling those 
described on mice [25, 44, 45]. 

In order to rule out the possibility that the disease phenotype may be the result of 
overexpression of SOD1 per se, lines of transgenic mice overexpressing the 
human wild type protein have also been created [21, 46]. Although animals appear 
to undergo a multisystem dying-back axonopathy, no lines of transgenic wild-type 
SOD1 mice have succumbed to ALS-like symptoms to date [47, 48]. 

Following the identification of ALS causative mutations in the gene TARDBP 
encoding TAR DNA-binding protein 43 (TDP43), knock-out mice and mice 
overexpressing wild-type or mutant forms of TARDBP were developed to 
determine whether mutations in TARDBP cause ALS due to a loss-of-function or 
gain-of-function mechanisms [49-54]. However, even if some of these new animal 
models of ALS present motor neuron degeneration and several studies are being 
published about the role of non-neuronal cells in the disease, this chapter will only 
address the mutant SOD1 rodent models. 

10.4. NON-CELL AUTONOMOUS MECHANISMS IN ALS 

ALS is a non-cell autonomous disease. This concept emerged from important 
works that showed that motor neuron degeneration is non-cell autonomous and 
other non-neuronal cells (i.e.: microglial cells, astrocytes) actively participate in 
the degenerative process [reviewed in 1, 55]. These discoveries were possible 
through transgenic mice that selectively express mutant SOD1 in one exclusive 
cell type or at the contrary where mutant SOD1 was ablated from a specific cell 
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type. For example, when mutant SOD1 was exclusively expressed in mouse motor 
neurons, this was not sufficient to lead to neurodegeneration [56, 57]. Indeed, only 
after increasing the expression of mutant SOD1 a late effect of motor neuron 
degeneration could be observed [58]. Moreover, selective expression of mutant 
SOD1 in astrocytes and microglia also fails to induce motor neuron degeneration 
[59, 60], even though a recent publication showed that the transplantation of glial-
restricted precursor cells expressing mutant SOD1 that differentiate into 
astrocytes is able to induce the death of motor neurons in rats [61]. These 
transgenic animals expressing mutant SOD1 in only one cell type, evidence that 
the contribution of multiple cell types is needed for motor neuron degeneration. 
Interestingly, an original approach using chimeric mice expressing both wild-type 
and mutant SOD1 consolidated the non-cell autonomous disease concept, indeed 
motor neurons expressing mutant SOD1 lived longer when surrounded by wild-
type non neuronal cells, delaying disease onset and extending life-span of 
chimeric mice [62]. On the contrary, decreasing expression of mutant SOD1 in 
motor neurons led mainly to a late disease onset without affecting majorly disease 
progression [63-66]. 

These approaches also permitted to elucidate whether glial cells as well as other 
non-neuronal cells participate in the degenerating process. I will describe below 
what is known about the role of astrocytes and microglia in the neurodegenerative 
process occurring in ALS. 

a) Role of Microglia in ALS 

Microglia and astrocytes participate on the neuroinflammatory process. Activation 
of microglial cells and astrocytes occurs in several neurodegenerative diseases 
including ALS, and is characterized by a phenotypic change involving 
proliferation as well as morphological and functional modifications (e.g.: 
induction of pro-inflammatory molecules). There is a marked activation or 
proliferation of microglia and activation of astrocytes in ALS patients [67] as well 
as in mouse models of ALS [68, 69]. 

Microglial cells, are the macrophages of the CNS, and were originally described 
by del Rio Ortega, a Cajal student, in 1919, and further described by Penfield in 
1925 [70]. Microglia cells are the intrinsic immune effector cells of the central 
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nervous system (CNS) [71]. Under physiological conditions “resting” or as 
proposed by Hanisch & Kettenmann [72] “surveying” microglial cells are actively 
screening their microenvironment in order to maintain the normal function of the 
CNS [72-75]. Importantly this “resting” or “surveying state” is an active state and 
involves besides the continuous scanning of their environment the constant 
communication with surrounding cells of the CNS. The chemokine fraktalkine, 
and its receptor CX3CR1, as well as CD200-CD200R, and SIRPα-CD47 actively 
maintains microglial cells in a resting state [76-78]. Upon damage or stress to the 
CNS, microglia become activated, a response that normally participate in 
repairing the altered tissue. However its chronic persistence can be deleterious and 
participate in the degenerative process of many neurodegenerative diseases 
including ALS [79]. Microglia response to an activating signal is heterogeneous 
and depends on the nature of the stimulus, and generally includes phagocytosis, 
release of neurotoxic factors such as nitric oxide and superoxide, release of pro-
inflammatory or anti-inflammatory cytokines, neurotransmitters as well as 
neurotrophic factors [72, 80]. 

Microglial activation is well documented in both ALS affected areas from patients 
and animal models of ALS [68, 81-83]. Intense microglial activation has been 
broadly demonstrated already at early stages of the disease and increases with 
disease progression up to end-stage in mouse and rat models for ALS [68, 83-87]. 
Turner et al. [67] brought in vivo evidence of microglia activation. In this paper 
the authors detected diffuse cerebral microglial activation in vivo during the 
progression of the disease in ALS patients by PET imaging coupled to [11C](R)-
PK11195 a ligand for the ‘‘peripheral benzodiazepine binding site’’ which is 
expressed by activated microglia. They showed evidence of diffusely increased 
microglial activation in both motor and ‘‘extra-motor’’ cerebral regions in a small 
subset of ALS patients compared to control subjects [67]. 

An important role for microglia in ALS was depicted in studies using a genetic 
approach in mice bearing the SOD1G37R or SOD1G85R mutation. Decreasing the 
expression of mutant SOD1 specifically in macrophage/microglia altered the 
progression of the disease by increasing the late disease phase and overall survival 
[64, 66]. Similar results were obtained using an alternative technique to replace 
mutant microglia with wild-type microglia and study their involvement in motor 
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neuron disease by using PU.1 knock-out mice, which lack macrophages, B and T 
cells, neutrophils and microglia [60]. They were able to show first, that after bone 
marrow transplant derived from a SOD1G93A mice to PU.1-/- mouse, mutant 
microglia were not able to induce motor neuron degeneration. Second, while 
transplanting WT bone marrow to double mutant SOD1G93A/PU.1-/-, mice 
replenished their spinal cord with wild type microglia, and showed an extended 
survival which was due to a prolongation of disease duration, as onset was not 
altered. However it remains to be clarified if other immune cells participate in this 
increased survival, as T cells were shown to modify ALS pathology. 

b) Role of Astrocytes in ALS 

Important publications of the last years shed light onto astrocyte’s role in motor 
neuron degeneration [65, 88-91]. Astrocytes were first shown to display a decreased 
expression of glutamate transporter GLT1 [25, 28, 92] favoring glutamate-induced 
excitotoxicity in ALS. Further evidence for a role of astrocyte in ALS came for 
experiences of astrocyte cell cultures carrying SOD1G93A showing toxicity towards 
isolated motor neurons [88, 89, 93]. In vivo evidence for an active role of astrocytes 
in ALS pathology came from decreasing the expression of SOD1G37R specifically in 
astrocytes, which delays the progressive phase of the disease and increases survival 
of mutant SOD1 transgenic mouse [65]. Conversely, increasing astrocytes’ 
antioxidant defenses by overexpression of the transcription factor Nrf2 extended the 
lifespan of SOD1G93A mice [90]. Moreover, transplantation of lineage-restricted 
astrocyte precursors into cervical spinal cord delayed progression of mutant SOD1-
mediated disease after onset, which highlights the role of astrocytes on disease 
progression, and support a future for cell therapies [91]. 

c) Role of Other Non-Neuronal Cells 

Whereas motor neuron expression of mutant SOD1 determine the onset of the 
disease, microglia and astrocyte expression determine the progressive phase of the 
disease. However, I will briefly mention the role of other cells that have been 
shown to participate of the degenerative process in ALS. 

Schwann cells, the peripheral myelinating cells, have been shown to participate on 
ALS pathogenesis. Decreasing the expression of the dismutase active SOD1G37R 
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specifically in Schwann cells accelerated the progression of the disease and was 
associated with diminished levels of insulin-like growth factor 1 [94]. This apparent 
contradictory result, suggests that mutant dismutase active SOD1 overexpression, 
due to its antioxidant enzyme activity, is rather protective than toxic in this cell type. 
On the other hand, the overexpression of the dismutase-active mutant SOD1G93A 
selectively in Schwann cells driven by the myelin protein zero (P0) promoter did not 
affect motor performance nor overall survival of mice [95]. These results suggest 
that mutant active SOD1 accumulation within Schwann cells is not deleterious (and 
even beneficial) to motor neurons in ALS mice. 

Within the muscle, the role of mutant SOD1 expression in disease is still 
controversial. Indeed a decrease in the expression of mutant SOD1 in muscle had 
no consequences on ALS disease onset or progression [96, 97]. On the other hand, 
the expression of mutant SOD1 selectively in skeletal muscle caused damage to 
muscle, in a similar way of what is observed in ALS SOD1 disease models [98]. 

The vasculature is altered in SOD1 rodent models of ALS, with modifications of 
the blood brain barrier permeability early in disease characterized by loss of tight 
junctions between endothelial cells, which allow the leakage of potentially 
neurotoxic blood components and microhemorrhages [99-102]. Importantly, 
decreasing the expression of mutant SOD1 within endothelial cells does not affect 
ALS disease course [101]. Finally, blood-spinal cord barrier dysfunction was also 
reported in ALS patient cases with erythrocyte extravasation and pericyte 
reductions [103, 104]. 

T-lymphocytes also play a role in ALS disease. Human ALS cases and mice 

(mSOD1) tissue showed evidence of T-lymphocyte infiltration [81, 84, 105, 106]. 

In contrast, B-cells could not be identified nor in the spinal cord of ALS mice 

[107] nor in human ALS spinal cords [105, 108] and mutant SOD1 mice deficient 

in B lymphocytes develop ALS in a similar way than control mice [109]. In order 

to shed light onto the role of adaptive immunity in ALS, different studies with 

mice were used to show the involvement of T cells in ALS. Firstly, SOD1G93A 

mice that lack functional CD4 T- and B-cells (RAG2-/- mice) showed an 

accelerated disease (though opposite results were obtained by Tada et al. [110]) 
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that was in part reverted by SOD1G93A or WT bone marrow transplant, showing that 

lymphocytes had a beneficial effect on the disease [111]. Similar results were 

obtained when mutant SOD1G93A mice were bred onto a TCRβ-/- background 

(mice that are deficient in T cells), accelerating disease progression [107]. This 

study also suggests that T cells play an endogenous neuroprotective role in ALS 

by modulating in microglia a beneficial inflammatory response upon 

neurodegeneration by increasing the expression of protective factors like IGF-1 

and decreasing pro-inflammatory cytokines such as IL-6 [107, 112]. Lymphoid 

deficits including impaired T-cell function and increased death was described in 

the SOD1G93A mutant mice [113]. In order to correct them, mutant SOD1 mice 

were reconstituted with donor lymphocytes showing that T regulatory cells (Treg) 

and T effector cells (Teff) from wild-type donor mice, but not naïve T 

lymphocytes, increased mice survival. Tregs were predominantly responsible for 

increasing the time to disease onset, whereas Teff for decreasing the progression 

of the disease (increasing the time from onset to death) [113]. Finally, the 

neuroprotective role of Tregs is supported by studies in ALS patients, where the 

numbers of Tregs and FoxP3, a transcription factor required for Treg function, 

were inversely correlated with disease progression rates [112, 114]. 

Oligodendrocytes are the myelinating cells of the CNS, however, they were 
recently shown to also provide metabolic support to neurons by the lactate 
transporter monocarboxylic acid transporter 1 (MCT1) [115, 116]. 
Oligodendrocytes have been implicated in ALS and MCT1 has been shown to be 
downregulated in the motor cortex of ALS patients and in the spinal cord of 
SOD1G93A mice [117]. Oligodendrocytes were shown to be dysmorphic and 
degenerate in ALS [118, 119]. In response to this, new oligodendrocytes are 
continuously generated through an increased rate of proliferation and 
differentiation of NG2 glia/oligodendrocyte precursors. However, their 
differentiation is affected leading to dysfunctional cells with impaired myelinating 
capacity [118, 119]. Moreover, selective removal of mutant SOD1G37R from 
oligodendrocyte progenitors prolonged survival in mice mostly due to a delay in 
disease onset [119]. Oligodendrocyte’s lineage cells are thus affected in both 
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human patients with ALS and mutant SOD1 mice and may participate on motor 
neuron degeneration [117, 118]. 

CONCLUDING REMARKS 

Overall these studies permitted to conclude that non-neuronal cells play an 
important role in the disease, however the mechanisms underlying cell 
neurotoxicity in ALS are currently unknown. Of note these mechanisms are of 
invaluable importance for understanding the pathogenesis of ALS and for novel 
therapeutical intervention during the symptomatic phase of the disease. 

ACKNOWLEDGEMENTS 

Declared none. 

CONFLICT OF INTEREST 

The author confirms that this chapter contents have no conflict of interest. 

REFERENCES 

[1] Boillée S, Vande Velde C and Cleveland DW. ALS: a disease of motor neurons and their 
noneuronal neighbors. Neuron 2006, 52: 39-59. 

[2] Corcia P, Pradat PF, Salachas F, Bruneteau G, Forestier Nl, Seilhean D, Hauw JJ, 
Meininger V. Causes of death in a post-mortem series of ALS patients. Amyotroph Lateral 
Scler 2008, 9: 59–62. 

[3] Logroscino G, Traynor BJ, Hardiman O, Chiò A, Mitchell D, Swingler RJ, Millul A, Benn 
E, Beghi E, EURALS. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol 
Neurosurg Psychiatry 2010, 81(4):385-90. 

[4] Haverkamp LJ, Appel V, Appel SH. Natural history of amyotrophic lateral sclerosis in a 
database population. Validation of a scoring system and a model for survival prediction. 
Brain 1995, 118 (3):707-19. 

[5] Andersen PM, Borasio GD, Dengler R, Hardiman O, Kollewe K, Leigh PN, Pradat PF, 
Silani V, Tomik B, EALSC Working Group. Good practice in the management of 
amyotrophic lateral sclerosis: clinical guidelines. An evidence-based review with good 
practice points. EALSC Working Group. Amyotroph Lateral Scler 2007, 8(4):195-213. 

[6] Scott KM, Abhinav K, Stanton BR, Johnston C, Turner MR, Ampong MA, Sakel M, Orrell 
RW, Howard R, Shaw CE, Leigh PN, Al-Chalabi A. Geographical clustering of 
amyotrophic lateral sclerosis in South-East England: a population study. 
Neuroepidemiology 2009, 32(2):81-8. 



Amyotrophic Lateral Sclerosis Young Perspectives for Old Diseases   215 

 

[7] Forsgren L. Almay BG, Holmgren G, Wall S. Epidemiology of motor neuron disease in 
northern Sweden. Acta Neurol Scand 1983, 68:20–9. 

[8] Neary D, Snowden JS, Mann DM. Classification and description of frontotemporal 
dementias. Ann N Y Acad Sci 2000, 920:46–51. 

[9] Olney RK, Murphy J, Forshew D, Garwood E, Miller BL, Langmore S, Kohn MA, Lomen-
Hoerth C. The effects of executive and behavioral dysfunction on the course of ALS. 
Neurology 2005, 65:1774–7. 

[10] Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis 
(ALS)/motor neuron disease (MND). Amyotroph Lateral Scler Other Motor Neuron Disord 
2003; 4(3):191-206. 

[11] Byrne S, Walsh C, Lynch C, Bede P, Elamin M, Kenna K, McLaughlin R, Hardiman O. 
Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J 
Neurol Neurosurg Psychiatry 2011; 82(6):623-7. 

[12] Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we 
really know? Nat Rev Neurol 2011; 11:603-15. 

[13] DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC 
hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked 
FTD and ALS. Neuron 2011; 72:245–256. 

[14] Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, 
Laaksovirta H, van Swieten JC, Myllykangas L, et al. A hexanucleotide repeat expansion in 
C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72:257–268. 

[15] Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chiò A, Restagno G, 
Nicolaou N, Simon-Sanchez J, van Swieten JC et al. Frequency of the C9orf72 
hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and 
frontotemporal dementia: a cross-sectional study. Lancet Neurol 2012; 11(4). 

[16] Rademakers R, van Blitterswijk M. Motor neuron disease in 2012: Novel causal genes and 
disease modifiers. Nat Rev Neurol 2013; 9(2):63-4. 

[17] Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto 
J, O'Regan JP and Deng HX, et al. Mutations in Cu/Zn superoxide dismutase gene are 
associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62. 

[18] Cleveland DW, Liu J. Oxidation versus aggregation—how do SOD1 mutants cause ALS? 
Nat Med 2000 6 1320– 1321. 

[19] Beckman JS, Estevez AG, Crow JP, Barbeito L. Superoxide dismutase and the death of 
motoneurons in ALS, Trends Neurosci 2001; 24 S15–S20. 

[20] Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, 
Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD. Motor neurons in Cu/Zn 
superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after 
axonal injury. Nat Genet 1996; 13(1):43-7. 

[21] Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, 
Hentati A, Kwon YW, Deng HX, et al. Motor neuron degeneration in mice that express a 
human Cu,Zn superoxide dismutase mutation. Science 1994; 264: 1772-1775. 

[22] Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing 
an altered murine superoxide dismutase gene provide an animal model of amyotrophic 
lateral sclerosis. Proc Natl Acad Sci USA 1995; 92:689–693. 

[23] Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, 
Cleveland DW, Price DL. An adverse property of a familial ALS-linked SOD1 mutation 



216   Young Perspectives for Old Diseases Ana G. Barbeito 

 

causes motor neuron disease characterized by vacuolar degeneration of mitochondria. 
Neuron 1995; 14:1105–1116. 

[24] Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, 
Rothstein JD, Borchelt DR, Price DL, Cleveland DW. ALS-linked SOD1 mutant G85R 
mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-
containing inclusions. Neuron 1997; 18:327–338. 

[25] Howland D.S, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, 
Psaltis G, DeGennaro LJ. Cleveland D.W and Rothstein J.D. Focal loss of the glutamate 
transporter EAAT2 in a transgenic model of SOD1 mutant-mediated amyotrophic lateral 
sclerosis (ALS). Proc. Natl Acad Sci USA 2002), 99: 1604-1609. 

[26] Wang J, Xu G, Gonzales V, Coonfield M, Fromholt D, Copeland NG, Jenkins NA, 
Borchelt DR. Fibrillar inclusions and motor neuron degeneration in transgenic mice 
expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 
2002; 10:128–138. 

[27] Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature 
1993; 364:584. 

[28] Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial 
glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 1995; 38: 73-84. 

[29] Crow JP, Sampson JB, Zhuang Y, Thompson JA, Beckman JS. Decreased zinc affinity of 
amyotrophic lateral sclerosisassociated superoxide dismutase mutants leads to enhanced 
catalysis of tyrosine nitration by peroxynitrite. J Neurochem 1997; 69:1936–1944. 

[30] Higgins CMJ, Jung C, Ding H, Xu Z. Mutant Cu, Zn Superoxide dismutase that causes 
motoneuron degeneration is present in mitochondria in the CNS. J Neurosci 2002; 
22:RC215. 

[31] Ligon LA, LaMonte BH, Wallace KE, Weber N, Kalb RG, Holzbaur EL. Mutant 
superoxide dismutase disrupts cytoplasmic dynein in motor neurons. NeuroReport 2005; 
16:533–536. 

[32] Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral 
sclerosis. Ann Neurol 2009; 65 Suppl 1:S3-‐9. 

[33] Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, 
Fontaine BA, Lemay N, McKenna-Yasek D, Frosch MP, Agar JN, Julien JP, Brady ST, 
Brown RH Jr. Wild-type and mutant SOD1 share an aberrant conformation and a common 
pathogenic pathway in ALS. Nat Neurosci 2010; Nov,13(11):1396-403. 

[34] Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, 
Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, 
Miller CC, Nicholson G, Shaw CE. TDP-43 mutations in familial and sporadic 
amyotrophic lateral sclerosis. Science 2008; 319:1668–1672. 

[35] Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, Xu YF, Stewart H, Kelley BJ, 
Kuntz K, Crook RJ, Sreedharan J, Vance C, Sorenson E, Lippa C, Bigio EH, Geschwind 
DH, Knopman DS, Mitsumoto H, Petersen RC, Cashman NR, Hutton M, Shaw CE, Boylan 
KB, Boeve B, Graff-Radford NR, Wszolek ZK, Caselli RJ, Dickson DW, Mackenzie IR, 
Petrucelli L, Rademakers R. Novel mutations in TARDBP (TDP-43) in patients with 
familial amyotrophic lateral sclerosis. PLoS Genet 2008; 4(9):e1000193. 

[36] Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, Hatanpaa KJ, 
White CL 3rd, Bigio EH, Caselli R, Baker M, Al-Lozi MT, Morris JC, Pestronk A, 



Amyotrophic Lateral Sclerosis Young Perspectives for Old Diseases   217 

 

Rademakers R, Goate AM, Cairns NJ. TDP-43 A315T mutation in familial motor neuron 
disease. Ann Neurol 2008; 63:535–538. 

[37] Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, 
Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, Pradat PF, Camu W, Meininger V, 
Dupre N, Rouleau GA. TARDBP mutations in individuals with sporadic and familial 
amyotrophic lateral sclerosis. Nat Genet 2008; 40:572–574. 

[38] Yokoseki A, Shiga A, Tan CF, Tagawa A, Kaneko H, Koyama A, Eguchi H, Tsujino A, 
Ikeuchi T, Kakita A, Okamoto K, Nishizawa M, Takahashi H, Onodera O. TDP-43 
mutation in familial amyotrophic lateral sclerosis. Ann Neurol 2008; 63(4):538-42. 

[39] Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, 
Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, 
Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM. Ubiquitinated TDP-43 
in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 
130–133. 

[40] Lee EB, Lee VM & Trojanowski JQ. Gains or losses: molecular mechanisms of TDP-43-
mediated neurodegeneration. Nature Rev Neurosci 2012; 13: 38–50. 

[41] Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD. TDP-43 is intrinsically 
aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate 
aggregation and increase toxicity. J Biol Chem. 2009 Jul 24,284(30):20329-39. Erratum in: 
J Biol Chem 2009; 11,284(37):25459. 

[42] Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis 
A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, 
de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, 
McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr. Mutations in the 
FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 
2009; 323:1205–1208. 

[43] Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith 
B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi 
A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE. 
Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis 
type 6. Science 2009; 323:1208–1211. 

[44] Nagai M, Aoki M, Miyoshi I, Kato M, Pasinelli P, Kasai N, Brown RH Jr, Itoyama Y. Rats 
expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic 
lateral sclerosis: associated mutations develop motor neuron disease. J Neurosci 2001; 
21(23):9246-54. 

[45] Aoki M, Kato S, Nagai M, Itoyama Y. Development of a rat model of amyotrophic lateral 
sclerosis expressing a human SOD1 transgene. Neuropathology 2005; 25(4):365-70. 

[46] Dal Canto MC, Gurney ME. Neuropathological changes in two lines of mice carrying a 
transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human 
SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res 1995; 676(1):25-
40. 

[47] Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London 
J, Holstege JC. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes 
mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and 
accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis 
mutant SOD1. Neurobiol Dis 2000; 7(6 Pt B):623-43. 



218   Young Perspectives for Old Diseases Ana G. Barbeito 

 

[48] Jaarsma D. Swelling and vacuolisation of mitochondria in transgenic SOD1-ALS mice: a 
consequence of supranormal SOD1 expression? Mitochondrion 2006; 6(1):48-9. 

[49] Kraemer BC, Schuck T, Wheeler JM, Robinson LC, Trojanowski JQ, Lee VM, 
Schellenberg GD. Loss of murine TDP-43 disrupts motor function and plays an essential 
role in embryogenesis. Acta Neuropathol 2010; 119: 409–419. 

[50] Arnold ES, Ling SC, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D, 
Kordasiewicz HB, McAlonis-Downes M, Platoshyn O, Parone PA, Da Cruz S, Clutario 
KM, Swing D, Tessarollo L, Marsala M, Shaw CE, Yeo GW, Cleveland DW. ALS-linked 
TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease 
without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S A 2013; 
110(8):E736-45. 

[51] Stallings NR, Puttaparthi K, Luther CM, Burns DK, Elliott JL. Progressive motor weakness 
in transgenic mice expressing human TDP-43. Neurobiol Dis 2010; 40(2):404-14. 

[52] Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice 
develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 
2009; 106(44):18809-14. 

[53] Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I, Smits V, Ceuterick-de 
Groote C, Van Broeckhoven C, Kumar-Singh S. TDP-43 transgenic mice develop spastic 
paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar 
degeneration. Proc Natl Acad Sci U S A 2010; 107(8):3858-63. 

[54] Zhou H, Huang C, Chen H, Wang D, Landel CP, Xia PY, Bowser R, Liu YJ, Xia XG. 
Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS 
Genet 2010; 6(3):e1000887. 

[55] Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in 
neurodegenerative disorders: ALS and beyond. J Cell Biol 2009; 187(6):761-72. 

[56] Pramatarova A, Laganière J, Roussel J, Brisebois K, Rouleau GA. Neuron-specific 
expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor 
impairment. J Neurosci 2001; 21(10):3369-74. 

[57] Lino MM, Schneider C, Caroni P. Accumulation of SOD1 mutants in postnatal 
motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci 
2002; 22(12):4825-32. 

[58] Jaarsma D, Teuling E, Haasdijk ED, De Zeeuw CI & Hoogenraad CC. Neuron-specific 
expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral 
sclerosis in transgenic mice. J. Neurosci 2008; 2075–2088. 

[59] Gong YH, Parsadanian AS, Andreeva A, Snider WD, Elliott JL. Restricted expression of 
G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause 
motoneuron degeneration. J Neurosci 2000; 20(2):660-5. 

[60] Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR and 
Appel SH. Wild-type microglia extend survival in PU.1 knockout mice with familial 
amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 2006; 103: 16021-16026. 

[61] Papadeas ST, Kraig SE, O'Banion C, Lepore AC, Maragakis NJ. Astrocytes carrying the 
superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron 
degeneration in vivo. Proc Natl Acad Sci U S A 2011; 108(43):17803-8. 

[62] Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillée S, Rule M, McMahon AP, 
Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW. 



Amyotrophic Lateral Sclerosis Young Perspectives for Old Diseases   219 

 

Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. 
Science 2003; 302(5642):113-7. 

[63] Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, Wong LF, Bilsland 
LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M. Silencing 
mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an 
ALS model. Nat Med 2005; 11(4):429-33. 

[64] Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G 
and Cleveland DW. Onset and progression in inherited ALS detremined by motor neurons 
and microglia. Science 2006; 312: 1389-1392. 

[65] Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, 
Cleveland DW, Goldstein LS. Mutant SOD1 in cell types other than motor neurons and 
oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci USA 2008; 
105: 7594-7599. 

[66] Wang L, Sharma K, Grisotti G, Roos RP. The effect of mutant SOD1 dismutase activity on 
non-cell autonomous degeneration in familial amyotrophic lateral sclerosis. Neurobiol Dis 
2009; 35: 234-240. 

[67] Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati 
RB. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: 
an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 2004; 15: 601-
609. 

[68] Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to 
disease onset and progression in a transgenic model of familial ALS. Glia 1998; 23: 249-
256. 

[69] Weydt P, Yuen EC, Ransom BR, Moller T Increased cytotoxic potential of microglia from 
ALS-transgenic mice. Glia 2004; 48: 179-182. 

[70] Rezaie P, Male D. Mesoglia & microglia--a historical review of the concept of 
mononuclear phagocytes within the central nervous system. J Hist Neurosci 2002; 
11(4):325-74. 

[71] Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res 2005; 81(3):302-13. 
[72] Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the 

normal and pathologic brain. Nat Neurosci 2007; 10:1387–1394. 
[73] Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 

1996; 19: 312-318. 
[74] Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic 

surveillants of brain parenchyma in vivo. Science 2005; 308: 1314-1318. 
[75] Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan 

WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 
2005; 8: 752-758. 

[76] Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd 
G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff 
RM. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 9: 
917-924. 

[77] Bessis A, Bechade C, Bernard D, Roumier A. Microglial control of neuronal death and 
synaptic properties. Glia 2007; 55: 233-238. 

[78] Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola 
ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD. Down-regulation of the 



220   Young Perspectives for Old Diseases Ana G. Barbeito 

 

macrophage lineage through interaction with OX2 (CD200). Science 2000; 290: 1768-
1771. 

[79] Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease--a double-edged 
sword. Neuron 2002; 35: 419-432. 

[80] Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002; 
40: 133-139. 

[81] Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in amyotrophic 
lateral sclerosis brain and spinal cord tissue. Am J Pathol 1992; 140: 691-707. 

[82] Nguyen MD, Julien JP, Rivest S. Induction of proinflammatory molecules in mice with 
amyotrophic lateral sclerosis: no requirement for proapoptotic interleukin-1beta in 
neurodegeneration. Ann Neurol 2001; 50: 630-639. 

[83] Elliott JL. Cytokine upregulation in a murine model of familial amyotrophic lateral 
sclerosis. Brain Res Mol Brain Res 2001; 95: 172-178. 

[84] Alexianu ME, Kozovska M, Appel SH. Immune reactivity in a mouse model of familial 
ALS correlates with disease progression. Neurology 2001; 57: 1282-1289. 

[85] Olsen MK, Roberds SL, Ellerbrock BR, Fleck TJ, McKinley DK, Gurney ME. Disease 
mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal 
cord. Ann Neurol 2001; 50: 730-740. 

[86] Fendrick SE, Xue QS, Streit WJ. Formation of multinucleated giant cells and microglial 
degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene. J 
Neuroinflammation 2007; 4: 9. 

[87] Gowing G, Philips T, Van Wijmeersch B, Audet JN, Dewil M, Van Den Bosch L, Billiau 
AD, Robberecht W, Julien JP. Ablation of proliferating microglia does not affect motor 
neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide 
dismutase. J Neurosci 2008; 28: 10234-10244. 

[88] Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S. 
Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor 
neurons. Nat Neurosci 2007; 10: 615-622. 

[89] Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K. Non-cell autonomous effect 
of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 2007; 
10: 608-614. 

[90] Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA. Nrf2 activation in astrocytes 
protects against neurodegeneration in mouse models of familial amyotrophic lateral 
sclerosis. J Neurosci 2008; 28: 13574-13581. 

[91] Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS, Rothstein JD, Maragakis NJ. Focal 
transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron 
disease. Nat Neurosci 2008; 11: 1294-1301. 

[92] Pardo AC, Wong V, Benson LM, Dykes M, Tanaka K, Rothstein JD, Maragakis NJ. Loss 
of the astrocyte glutamate transporter GLT1 modifies disease in SOD1(G93A) mice. Exp 
Neurol 2006; 201: 120-130. 

[93] Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L. Increased glutathione 
biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron 
apoptosis. J Neurochem 2006; 97: 687-696. 

[94] Lobsiger CS, Boillee S, McAlonis-Downes M, Khan AM, Feltri ML, Yamanaka K, 
Cleveland DW. Schwann cells expressing dismutase active mutant SOD1 unexpectedly 
slow disease progression in ALS mice. Proc Natl Acad Sci USA 2009; 106: 4465-4470. 



Amyotrophic Lateral Sclerosis Young Perspectives for Old Diseases   221 

 

[95] Turner BJ, Ackerley S, Davies KE, Talbot K. Dismutase-competent SOD1 mutant 
accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS 
model mice. Hum Mol Genet 2010; 19(5):815-24. 

[96] Miller TM, Kim SH, Yamanaka K, Hester M, Umapathi P, Arnson H, Rizo L, Mendell JR, 
Gage FH, Cleveland DW, Kaspar BK. Gene transfer demonstrates that muscle is not a 
primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis. 
Proc Natl Acad Sci USA 2006; 103: 19546-19551. 

[97] Towne C, Raoul C, Schneider BL, Aebischer P. Systemic AAV6 delivery mediating RNA 
interference against SOD1: neuromuscular transduction does not alter disease progression 
in fALS mice. Mol Ther 2008; 16(6):1018-25. 

[98] Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S, Belia 
S, Wannenes F, Nicoletti C, Del Prete Z, Rosenthal N, Molinaro M, Protasi F, Fanò G, 
Sandri M, Musarò A. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. 
Cell Metab 2008; 8:425–436. 

[99] Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H, Sanberg PR. 
Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 
mice modeling ALS. PLoS One 2007; 2(11):e1205. 

[100] Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O'Banion MK, Stojanovic K, Sagare A, 
Boillee S, Cleveland DW, Zlokovic BV. ALS-causing SOD1 mutants generate vascular 
changes prior to motor neuron degeneration. Nat Neurosci 2008; 11(4):420-2 (2008). 

[101] Zhong Z, Ilieva H, Hallagan L, Bell R, Singh I, Paquette N, Thiyagarajan M, Deane R, 
Fernandez JA, Lane S, Zlokovic AB, Liu T, Griffin JH, Chow N, Castellino FJ, Stojanovic 
K, Cleveland DW, Zlokovic BV. Activated protein C therapy slows ALS-like disease in 
mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J Clin 
Invest 2009; 119: 3437-3449. 

[102] Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Matsuura T, 
Abe K. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic 
lateral sclerosis. J Neurosci Res 2011; 89(5):718-28. 

[103] Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Blood-spinal 
cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta 
Neuropathol 2013; 125(1):111-20. 

[104] Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MC, Haller E, Frisina-Deyo A, 
Mirtyl S, Sallot S, Saporta S, Borlongan CV, Sanberg PR. Impaired blood-brain/spinal cord 
barrier in ALS patients. Brain Res 2012; 1469:114-28. 

[105] Troost D, Van den Oord JJ, Vianney de Jong JM. Immunohistochemical characterization of 
the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 
1990; 16: 401-410. 

[106] Lampson LA, Kushner PD, Sobel RA. Major histocompatibility complex antigen 
expression in the affected tissues in amyotrophic lateral sclerosis. Ann Neurol 1990; 28: 
365-372. 

[107] Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, Vartanian TK, Brown RH, Jr., 
Carroll MC. T lymphocytes potentiate endogenous neuroprotective inflammation in a 
mouse model of ALS. Proc Natl Acad Sci USA 2008; 105: 17913-17918. 

[108] Engelhardt JI, Tajti J, Appel SH. Lymphocytic infiltrates in the spinal cord in amyotrophic 
lateral sclerosis. Arch Neurol 1993; 50: 30-36. 



222   Young Perspectives for Old Diseases Ana G. Barbeito 

[109] Naor S, Keren Z, Bronshtein T, Goren E, Machluf M, Melamed D. Development of ALS-
like disease in SOD-1 mice deficient of B lymphocytes. J. Neurol 2009; 256, 1228–1235.

[110] Tada S, Okuno T, Yasui T, Nakatsuji Y, Sugimoto T, Kikutani H, Sakoda S. Deleterious
effects of lymphocytes at the early stage of neurodegeneration in an animal model of
amyotrophic lateral sclerosis. J Neuroinflammation 2011; 8(1):19.

[111] Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial
neuroprotection, slow disease progression, and modify glial morphology in an animal
model of inherited ALS. Proc Natl Acad Sci USA 2008; 105: 15558-15563.

[112] Beers DR, Henkel JS, ZhaoW,Wang J, Huang A, Wen S, Liao B, Appel SH Endogenous
regulatory T lymphocytes ameliorate disease in amyotrophic lateral sclerosis in mice and
correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain
2011; 134: 1293-1314.

[113] Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, Przedborski
S, Gendelman HE. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral
sclerosis mice. PLoS One 2008; 3: e2740.

[114] Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, Zhao W, Moore DH,
Powell SZ, Appel SH. Regulatory T lymphocytes mediate amyotrophic lateral sclerosis
progression and survival. EMBO Mol Med 2013; 5(1):64-79.

[115] Nave KA & Trapp BD. Axon-glial signaling and the glial support of axon function. Annu
Rev Neurosci 2008; 31, 535–561.

[116] Nave KA. Myelination and support of axonal integrity by glia. Nature 2010; 468: 244–52.
[117] Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin

L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD. Oligodendroglia metabolically
support axons and contribute to neurodegeneration. Nature 2012; 487: 443–8.

[118] Philips T, Bento-Abreu A, Nonneman A, Haeck W, Staats K, Geelen V, Hersmus N,
Küsters B, Van Den Bosch L, Van Damme P, Richardson WD, Robberecht W.
Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain
2013; 136(Pt 2):471-82.

[119] Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles
DE. Degeneration and impaired regeneration of gray matter oligodendrocytes in
amyotrophic lateral sclerosis. Nat Neurosci 2013; 16(5):571-9.

. 

© 2015 The Author(s). Published by Bentham Science Publisher. This is an open access chapter published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode  

https://creativecommons.org/licenses/by/4.0/


Young Perspectives for Old Diseases, 2015, 223-250 223 

Glaucia Noeli Maroso Hajj (Ed) 

CHAPTER 11 

Multiple Sclerosis: An Overview 
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Abstract: Multiple sclerosis is a chronic, inflammatory, immune-mediated disease of the 
central nervous system. Current evidence indicates that a complex genetic trait associated 
with environmental factors probably triggers MS. The hypothesis is that the inflammatory 
response starts when CNS protein-specific CD4+ T cells become activated in the periphery, 
cross the blood/brain barrier, and induce CNS autoimmunity. A disturbed balance between 
cells that induce or cause demyelination and regulatory T cells capable of suppressing these 
auto-reactive T cells underlie MS pathogenesis. Inflammation and oxidative stress are 
major causes of tissue damage in the CNS. Diagnostic criteria include paraclinical 
laboratory assessments emphasizing the principle of lesions disseminated in time and 
space. Cerebrospinal fluid analysis remains mandatory in order to support the diagnosis and 
differentiate MS from other diseases. Disease modifying therapies (DMT) are available for 
MS patients like recombinant Interferon β (IFN-β) and Glatiramer Acetate (GA) that 
present similar clinical outcomes showing reduction in patient’s annual number of relapses, 
MRI T2 lesion load reduction and delay of disability. Recently, a monoclonal humanized 
antibody, Natalizumab, was re-launched showing a larger reduction in annual number of 
relapses and MRI lesions in the CNS. Besides, Fingolimod (FTY720) was also introduced 
as the first oral drug with similar effects. Corticosteroids are the first line therapy for acute 
MS exacerbations. The parenteral use of Cyclophosphamide, Mitoxantrone and Cladribine 
may benefit some patients with aggressive disease. Oral immunosuppressive drugs 
(azathioprine, mycophenolatemofetil and methotrexate) have also been reserved for 
patients whose disease progression cannot be controlled by DMTs. 
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11.1. MULTIPLE SCLEROSIS: THE DOUBLE EDGED SWORD OF 
IMMUNE SYSTEM 

Multiple sclerosis (MS) is a chronic, inflammatory, immune-mediated disease of 
the central nervous system (CNS), usually occurring in young adults, and it is 
more common in females. The inflammatory response in the central nervous 
system (CNS) may cause the demyelination and loss of oligodendrocytes, 
neurons, and axons [1]. Traditionally it has been thought that MS is an 
inflammatory disease primarily localized in the white matter of the brain and 
spinal cord. However, recent studies have identified gray matter inflammatory 
lesions in MS patients that appear at the earliest stages of the disease [1, 2]. 

The incidence of the disease varies worldwide, with a prevalence that ranges 
between 2 and 150 per 100,000 depending on the specific population. There are 
few reliable epidemiologic studies about MS in Latin America [3, 4]. However, 
the number of new cases is increasing especially in the southern area of South 
America. Clinical symptoms of MS depend on the site of neurologic lesions. The 
first relapse of the disease is designated clinically isolated syndrome (CIS). 
Usually, CIS is followed by a relapsing and remitting course (RRMS), which is 
characterized by recurring attacks or exacerbations of existing deficits (relapses) 
followed by partial or full recovery (remission). After approximately 10 years, 
half of these patients convert to the secondary progressive (SPMS) phase of the 
disease, in which there is acceleration of disability, with continuous progression 
of the neurologic deficits. A fewer percentage (10%) of MS patients will present a 
progressive course since the beginning, which is called primary progressive MS 
(PPMS). 

According to 2010 revisions to the McDonald Criteria, magnetic resonance imaging 
(MRI) of the CNS can support, supplement, or even replace some clinical criteria 
[5]. MRI findings could be integrated to the clinical presentation to demonstrate 
dissemination of lesions in both space and time. Based on work of the European 
MAGNIMS research group, dissemination in space (DIS) can be demonstrated with 
at least one T2 lesion in at least 2 of 4 locations (juxtacortical, periventricular, 
infratentorial and spinal cord) with lesions within the symptomatic region excluded 
in patients with brainstem or spinal cord syndromes [5]. Dissemination in time (DIT) 
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can be demonstrated with the appearance of a new T2 and/or gadolinium-enhancing 
lesion(s) on follow-up MRI compared to a reference or baseline scan performed at 
initial clinical event irrespective of the timing of its acquisition [6]. Another DIT 
criterion is that the simultaneous presence of asymptomatic gadolinium-enhancing 
and non-enhancing lesions at any time on the baseline MRI can substitute the 
following-up scan to confirm it [6]. 

11.2. PATHOLOGY OF MS 

11.2.1. White Matter Pathology 

In terms of pathology, patients with MS demonstrate white and gray matter 
lesions. The white matter plaques are usually located in the subcortical or 
periventricular white matter, optic nerve, brainstem and spinal cord, 
characterizing the classical MS pathology [7]. The plaques arise from an intense 
inflammation, demyelination, gliosis, and axonal injury. The focal inflammatory 
demyelinating lesions are characterized by perivascular infiltrates of CD8+ T 
lymphocytes, CD4 T lymphocytes [8, 9] gamma delta (γδ) T lymphocytes [10] 
monocytes and few B cells and plasma cells. Moreover, in the active lesions, 
macrophages containing myelin debris, complement’s components and 
immunoglobulins are observed [11]. The inflammatory response in RRMS 
correlates with gadolinium-enhancing MRI lesions, while the inflammation in 
SPMS phase of the disease has no MRI lesions [12]. In the SPMS, a diffuse 
inflammation of normal appearing white matter and extensive axonal injury are 
observed [13]. 

11.2.2. Grey Matter Pathology in MS 

Abnormalities of the cortical gray matter (GM) can be found since the earliest phase 
of the disease [14-17] and evolve with its progression to the secondary phase of MS 
[18]. Numerous studies have demonstrated that the changes in GM are related to 
both physical disability and cognitive impairment [19-22]. Cortical lesions occur 
early in CIS and relapsing-remitting MS, as well as in PPMS. Lesions increase in 
number and sizes through the progression of the disease [23, 24]. According to 
previous pathological studies, GM lesions comprise 26% of all lesions identified in 
the central nervous system (CNS) [25], and more frequently, they have been found 
in the frontal and temporal cortex, affecting the motor (30-40%) and cingulate areas 
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(10%) [26]. Also the subcortical GM could be affected, more frequently 
encompassing the thalamus, basal ganglia, hypothalamus, hippocampus, cerebellum 
and spinal cord [16-21]. Mechanisms such as Wallerian degeneration secondary to 
demyelination and axonal transection, damage caused by reactive oxygen species 
and nitric oxide or energy failure from mitochondrial are among the factors currently 
attributed to cause the neurodegeneration observed in MS [27-29]. Although 
inflammation is less pronounced in GM than in the white matter, its damaging 
lesions mediated by the immune response cannot be excluded. A recent study 
demonstrated the presence of CD8 T lymphocytes in perivascular space in the GM’s 
biopsy of MS patients [2]. Moreover, T-cell mediated autoimmunity directed against 
contactin-2, which is present specifically within the GM, was also identified as a 
factor contributing to the GM pathology [30]. 

11.3. GENETICS AND ENVIRONMENTAL RISK FACTORS RELATED 
TO MS 

The etiology of MS remains unknown. However, it is highly unlikely that the 
disease results from a single causative event. Current evidence indicates that a 
complex genetic trait associated with environmental factors probably triggers MS. 
The risk factors may act many years before the development of the disease [31]. 
Genetic epidemiological studies indicate that the genetic susceptibility must be an 
important condition to start the disease. Familial aggregation studies showed that 
the risk of developing MS is higher for people with family member’s cases, 
especially for first-degree relatives (10-25 times). Moreover, monozygotic twins 
of MS patients have more than 100 times higher risk of developing the disease 
when compared to the general population [32]. 

MS is more common in women than men. However, up to now, no relevant MS-
associated gene has been found in the X chromosome [33]. The increased risk in 
women may be related to the female physiology or a higher susceptibility to 
environmental factors. The female to male ratio for MS incidence ranges up to 3:1 
worldwide. This ratio seems to have increased during the last decades. However, 
the greater incidence in females does not mean a more aggressive disease course 
or poorer outcome in this gender. Instead, males exhibit a shorter time and a 
younger age for conversion to the secondary progressive MS and to a faster GM 
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atrophy and cognitive dysfunction. Thus, disease progression and 
neurodegeneration are faster in men [34]. The obvious candidate to explain this 
heterogeneity would be the hormonal difference between the genders. However, 
no conclusive results have shown a strong correlation of hormones and the 
incidence or progression of the disease so far. In addition, the increase in the sex 
ratio for MS over the past suggests that MS susceptibility could be influenced by 
sex-specific correlation of genetic-environmental interactions. 

The high discordance rate among monozygotic twins, the north to south gradient 
of MS incidence and, especially, the migratory studies indicate the potential 
environmental influence to MS development. The first and maybe the strongest 
evidence for a role of environmental factors influencing MS are the migratory 
studies pointing to different risks of developing MS regarding the MS prevalence 
of the site you arrive to live. In general, people who migrate to one area before 15 
years of age will have the same risk to develop MS as the population of that area. 
If people migrate after 15 years of age, they will have the risks of their original 
site. Although the role of many environmental factors has been studied in the last 
decades, only infections, latitude/vitamin D and certain social behavior (e.g., 
smoking habit) were related to increased risks of MS development [35]. 

Sunlight exposure and serum vitamin D levels are the most likely explanation for 
the association of MS with world’s latitude. The main source of vitamin D is UV 
radiation exposure (~95%) and only a small part is given by food intake (~5%). 
There is a strong correlation between sunlight exposure and MS incidence 
worldwide. Although the minor part of vitamin D is given by food intake, some 
studies show a decrease of the MS risk in population with a vitamin D rich diet. 
For example, in Norway, the incidence of MS is higher inland compared to the 
seaside population. The most suitable explanation is the high consumption of fish 
oil by the seaside population, which is rich in vitamin D [36]. Furthermore, 
mothers who have lower sunlight exposure during the first three months of 
pregnancy give birth children with a higher risk developing MS later in life. 
Although the mechanisms by which vitamin D can be beneficial to MS incidence 
and/or progression are not completely elucidated, many studies have shown a 
preferential immunomodulatory action of vitamin D. Many studies were done in 
the animal model experimental autoimmune encephalomyelitis (EAE) of MS. 
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Studies have shown that treatment with vitamin D, or its active form 1,25-
dihidroxy vitamin D (1,25-OH Vitamin D), induces tolerogenic dendritic cells 
(DCs) and regulatory T cells. These regulatory T cells modulate the 
proinflammatory T-effectors cells (Th1 and Th17) [37, 38]. 

The natural question is if vitamin D supplementation attenuates MS activity. The 
current studies have shown a beneficial effect of vitamin D supplementation, but 
these are small and not controlled. Interestingly, the last International MS 
Genetics Consortium study has confirmed a significant polymorphism of vitamin 
D receptor in MS patients. The polymorphic vitamin D receptor may result in 
poor vitamin D assimilation. Indeed, the best results from clinical trials came from 
high-dose supplementation studies [38]. 

Infections are among the most studied and biologically plausible environmental 
factors related to MS pathogenesis, especially viral infections. The most accepted 
theory is that some infectious agents may present a molecular mimicry with 
myelin compounds. Prominent candidates have included measles, rubella, mumps, 
herpes simplex virus (HSV) 1 and 2, varicella zoster virus and Epstein Barr virus 
(EBV). Between those viruses, only EBV appears to have a strong relationship to 
MS. Many studies have shown that people with MS are more likely to be EBV 
seropositive (99%) than healthy controls (85-95%), suggesting that the disease 
may be triggered by a prior EBV infection, although this link remains 
controversial. Interestingly, the timing of infection seems to play a role in MS 
incidence. Pediatric cases of EBV infection present a weaker correlation with MS. 
However, infections during adult life, particularly those associated with clinical 
infectious mononucleosis (IM), shows associations with a four-fold in MS risk, 
presenting a mean interval to MS onset of 14 years after IM [39]. 

The increase of MS incidence in the last century has also pointed out the 
possibility of social behavior being a contributing factor to MS. This includes diet, 
pollution, smoking habit, trauma, chemical agents, organic solvents and various 
occupational hazards. Smoking and obesity are the most studied social behavior 
factors. Although it is highly improbable that smoking alone would account for 
the worldwide variation of MS prevalence, individuals who carry HLA-B1*1501 
and smoke, presented a higher risk to develop MS. This relationship seems also to 
be dose-dependent to MS risk. 
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Ethnic origin appears to play a role in the MS incidence. MS is more common in 
Northern Europe, Canada and the USA, especially in Caucasians. African 
Americans, Native Americans, South Americans and Asians have lower incidence of 
MS. A genetic association of certain genes related to the major histocompatibility 
complex (MHC) with MS has long been known. The first genetic risk factor 
discovered was HLA region during the 1970’s. The strongest association was first 
found with human leucocyte antigen (HLA) DR2 isotype, which was lately better 
refined with DNA-based typing methods to the DRB1*1501. Each copy of this allele 
increases MS risk around three-fold in the European population. Recent studies have 
pointed out five alleles in three different loci in HLA region: the HLA-DRB1*1501, 
*0301 and *0801 alleles, the HLA-A*0201 allele and the HLA-DPB1*0301. Theses 
alleles could represent changes in MS risk between 26 to 200%. On the other hand, 
protection from disease may be associated to some HLA class II alleles [40-43]. 
Many years after the discovery of the DR2 allele, other non-HLA genes were also 
related to MS (e.g. interleukin-7 receptor , interleukin 2 receptor , C-type lectin-
domain family 16 member A, CD58, tumor-necrosis-factor receptor superfamily 
member 1A, interferon regulatory factor 8 and CD6). In 2011, the largest genome-
wide study so far made by the International MS Genetics Consortium evaluated 
9772 MS cases and 17376 shared controls. This study ended up with more than 1 
million single-nucleotide polymorphism (SNPs), confirmed the association of 23 
previously reported loci and identified 29 new candidates [44]. Most of these genes 
have an immune function or are involved in immunological pathways and many of 
them were also described in association with other autoimmune diseases. These 
results reinforce the existence of similar mechanisms between some, if not all, 
autoimmune disease, as it is not rare to find MS patients with other autoimmune 
diseases. Although the knowledge about genetic risk factors has increased 
enormously in the last decade, some gaps still need to be filled, for example, how 
genetic factors influence the age of onset, the evolution and severity of the disease. 

11.4. IMMUNE RESPONSE IN MS 

The classical description of MS pathology involving perivascular immune cells 
infiltrating the CNS has long supported an autoimmune disease etiology for MS. 
Moreover, the ability of immune directed therapies to favorably impact MS 
patients emphasizes the pathogenic role of immune responses. 
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To avoid autoimmune reactions, auto reactive lymphocytes have to be deleted or 
rendered tolerant [45]. Several mechanisms are involved in the central and 
peripheral compartments to induce and maintain tolerance. Defects in these 
mechanisms are associated with the activation of immune responses against auto-
antigen. Central tolerance occurs in the thymic medulla through depleting self-
reactive T-cell colonies by negative selection (clonal deletion) [46] and producing 
CD4+ natural regulatory T cells (nTregs) [47-49]. 

The Aire gene in mTECs regulate, in part, the presentation of peripheral tissue-
specific self-antigens, so-called “promiscuous gene expression”, contributing for 
efficiency of negative selection [50]. A previous study has demonstrated that 
AIRE-deficient mice showed an earlier development of myelin oligonucleotide 
glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) 
indicating that abnormalities in the induction of central tolerance may be decisive 
to the development of autoimmunity in the CNS [51]. To control immune 
responses to auto-antigen that are not expressed in the thymus or may escape 
negative selection, different mechanisms of tolerance are involved in the 
periphery during the entire lifespan. Mechanisms of peripheral tolerance include 
cell death with consequent clonal deletion, development of a state of T cell 
unresponsiveness, and active suppression mediated by Tregs. Dendritic cells 
(myeloid or plasmacytoid) producing immuno-modulatory cytokines IL-10 and 
TGF-β or the expression of the tolerogenic molecules indoleamine 2,3-
dioxygenase (IDO) or ILTs can regulate several of these processes [52-53]. 

The focal demyelinating plaque in active MS lesions is formed by inflammatory 
immune cells such as T and B lymphocytes, activated macrophages and microglia 
[54]. The idea of MS as a CD4+ T lymphocyte disease has been reassessed, and 
the role of CD8+ T cells, B cells, and innate immunity has been emphasized. The 
hypothesis that CD4+ T lymphocyte can initiate the inflammatory response in MS 
is confirmed by observations from the EAE model. EAE can be transferred to 
naïve mice through implantation of CD4+ T cell from a diseased animal. CD4+ T 
cells reactive to many CNS proteins, including myelin associated glycoprotein 
(MAG), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein 
(MOG), and proteolipid protein (PLP), can be isolated either from MS patients or 
healthy individuals [55]. CNS protein-specific CD4+ T cells become activated in 
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the periphery, cross the blood/brain barrier, and induce CNS autoimmunity [55]. 
However, recent studies have shown that dendritic cells and macrophages 
containing residues of myelin were found in the lymph nodes of patients with MS, 
showing that cells containing myelin also leave the CNS and sensitize T 
lymphocytes in the periphery [56]. 

In addition to the cytokines produced by Th1 or Th17 lymphocytes, products of 
other cells such as osteopontin (OPN) may contribute to inflammatory response in 
MS. An increasing body of evidence suggests that OPN may play a role in the 
pathogenesis of MS [57], inducing cells that cause demyelination (auto reactive 
effector T-cells, mainly Th1 and Th17) and down regulating regulatory CD4+ and 
CD8+ T cells that are capable of suppressing these auto-reactive T cells [58]. 
Patients RR-MS have shown a diminished T regulatory function [59]. 

Besides the effector role of CD4+ T lymphocytes, CD8+ T cells also contribute to 
pathogenesis in MS, although the precise role of these cells remains to be 
elucidated. CD8+ T cells have been identified interacting with antigen presenting 
cells mainly at the margin of chronic and active lesions [60]. MHC class I proteins 
are expressed within the MS lesion on astrocytes, oligodendrocytes, and neurons, 
which suggests that CD8+ T cells could directly interact with these cell types 
within the CNS [61-63]. Activated CD8+ T cells have been observed within the 
CNS tissue and CSF of MS patients [64], and analysis of some cases of acute MS 
have shown granzyme B-expressing CD8+ T cells close to oligodendrocytes or 
demyelinated axons. In addition, a classical study demonstrated the existence of 
CD8+ T cells specific for many CNS proteins such as MBP, MAG and PLP in 
MS patients [65]. CD8+ T cells specific to myelin antigen are capable of killing 
neuronal cells and releasing proinflammatory cytokines such as TNF-α and IFN-γ, 
suggesting that these cells may participate in tissue damage in the CNS. Recently, 
the presence of inflammatory response with increasing number of perivascular 
CD8+ T cells was described in the gray matter of patients MS with clinically 
isolated syndrome (CIS), suggesting the contribution of these cells to a destructive 
CNS immune response even in the early phase of the disease [2]. 

B cells are also proposed to play a dual role in the pathogenesis of MS. They 
contribute to the induction of the autoimmune response but also mediate the 
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resolution of the CNS inflammatory infiltrate [66]. Besides producing 
autoantibodies, B cells can function as professional antigen-presenting cells, able 
to activate CD4+T-cell-specific responses through MHC class II, which 
contribute to the inflammatory response in MS. Moreover, B cells also influence 
the T-cell response through cytokine and chemokine production [67]. Increase of 
both B-lymphocyte and plasma cell in CSF correlates positively with lesions in 
MS [68]. Pathologic studies showed the presence of lymphoid neogenesis, ectopic 
B-cell germinal center structures, in the meningeal space of SPMS patients and 
this observation indicates a more severe course of the disease. Moreover, a 
gradient of neuronal loss in the cortical layers were found associated with these B-
cell aggregates and subpial cortical lesions, suggesting that release of soluble 
factors across the inflamed meninges may cause cortical damage [69]. In addition, 
infections in B cells may contribute to perpetuate the inflammatory response in 
MS. Some studies demonstrated the presence of latent EBV infection in a high 
percentage of brain-infiltrating B and plasma cells in MS [70], particularly, in 
meningeal B-cell follicles where viral reactivation was observed. 

While the adaptive immune response initiates autoimmune inflammation, innate 
immune cells are critical for sustaining the response that leads to pathology or the 
repair of tissue damage caused by the inflammatory response [71, 72]. Various cell 
types that compose the innate immune system share antigen recognition ability 
through their receptors that do not undergo rearrangement and have no 
immunological memory. Cells in innate immune response such as phagocytic cells 
(neutrophil, macrophages, glia and dendritic cells), mast cells, γδ T lymphocytes and 
natural killer cells participate actively in the inflammation of central nervous system. 

Dendritic cells (DCs) act at the interface of innate and adaptive immunity, playing 
an essential role in the initiation of effective T cell-mediated immune responses. 
Paradoxically, DCs also have the potential to exert powerful negative regulatory 
effects on the immune system [73]. Among innate immune cells, DCs are 
uniquely specialized to acquire, process, and present antigens to elicit 
helper/effector T cell responses via MHC-peptide/T-cell receptor (TCR) 
interactions and concomitant co-stimulatory signals (B7/CD28). DCs are the only 
professional APC that can prime naïve T cells and cross-present endocyted 
antigenic peptides on both MHC class I or class II molecules. 
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Although in vitro experiments have shown that DCs in the CNS could arise from 
resident microglia in the presence of growth factor, several studies have been 
demonstrated the transmigration of DCs from blood into the CNS. This cell 
population is usually not present in the healthy brain, however, they have been found 
to accumulate in the CNS parenchyma during inflammatory response [74] and they 
are emerging as important players in CNS autoimmunity, specifically in MS. Indeed, 
microglia and astrocytes were initially regarded as local antigen presenting cells of 
the CNS [75-76]. However, mature DC markers have been consistently found in the 
inflamed meninges and perivascular cuffs of most active MS lesions examined. The 
identification of dendritic cells in the CNS of patients with MS [77] suggests that 
macrophages and dendritic cells that enter the CNS by crossing the blood-brain 
barrier are important antigen presenting cells for in situ restimulation and full 
activation of auto reactive T cells [78]. This strongly supports the view that DCs 
participate in neuroinflammatory autoimmune responses. 

11.4.1. Reactive Oxygen and Nitrogen Species - Intracellular Products 
Causing Tissue Damage in MS 

Inflammation and oxidative stress within the central nervous system are important 
players on thr chronic tissue damage in MS. Invading inflammatory cells, as well 
as resident central nervous system cells, produce a number of reactive oxygen and 
nitrogen species, which cause demyelination and axonal loss [79]. 

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated 
as part of normal cellular physiology. However, the overproduction or a failure of 
antioxidant mechanisms of these species cause damage to lipids, proteins and 
nucleic acids, leading to cell death (for additional information on this topic please 
see Chapter 7). Neurons are constantly exposed to low levels of these 
oxidative/nitrative species which rapidly may induce repair and protection 
mechanisms. During inflammation, however, these defenses may not be sufficient 
to neutralize the oxidative/nitrative stress (e.g. superoxide ions, hydrogen 
peroxide, nitric oxide, and peroxynitrite) and damage to the cells may occur, 
contributing to tissue damage in MS. High levels of NO, peroxynitrite, and 
superoxide have all been demonstrated in spinal fluid from patients with MS [80]. 
Human microglia is one of the most potent producers of superoxide [81], and 
these cells are activated and recruited during inflammatory demyelinating to 
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lesions within the CNS. There is also evidence for increased ROS production in 
EAE, especially by macrophages and microglial cells, and higher levels of 
superoxide affecting the brain areas. It has also been described that peroxynitrite 
is formed very early in the course of EAE and correlates with disease activity. In 
addition, ROS also may cause neuronal mitochondrial dysfunction, which may 
lead to cell death, as shown in some neurodegenerative diseases, including MS. 
Mitochondria are essential to neuronal viability and function, throughout their 
roles in ATP production and intracellular calcium regulation among others [82]. 

Oligodendrocytes are susceptible to ROS-mediated damage at levels which 
generally do not affect other cells such as astrocytes or macrophages. The iron 
found in oligodendrocytes in high levels may react with hydrogen peroxide 
contributing to the formation of the highly toxic peroxynitrite, which may explain 
this susceptibility of oligodendrocytes. Furthermore, hydrogen peroxide produced 
in peroxisomes and accumulated in oligodendrocytes contribute to the failure of 
long-term repair of myelin and to the axonal loss associated with the progressive 
phase of MS. In addition, pre-oligodendrocytes appear to be significantly more 
sensitive to oxidative stress compared to mature oligodendrocytes impairing 
further repair and remyelination [83]. 

Nitric oxide (NO) is produced in the nervous system in response to inflammation 
through the induction of nitric oxide synthase (iNOS). It has been demonstrated 
that there is increased iNOS production in the CNS of animals with EAE [83]. 
iNOS mRNA has been identified in MS plaques and macrophages, astrocytes, and 
microglia within active MS lesions expressing high levels of iNOS and 
endothelial NOS. There is also evidence that increased proinflammatory cytokine 
production in MS, such as TNF-α and INF-γ, contribute to a NO increase. 
Moreover, higher levels of NO have been demonstrated within the peripheral 
monocytes of patients with MS. Other reactive species such as nitrite and nitrate 
levels are elevated in the CSF of patients with MS and peroxynitrite is found in 
brain areas of demyelination and inflammation. 

11.4.2. Beneficial Effects of Inflammation in CNS 

The neurotoxic properties of inflammation are thought to be at least partially 
responsible for the axonal damage observed either in white matter or grey matter 
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in MS [2, 7]. However, as mentioned before, a number of recent studies have 
proposed that autoimmune inflammation can have a neuroprotective role in the 
CNS [84]. Previous studies demonstrated that myelin-autoreactive T cells show 
neuroprotective effects in vivo, and activated antigen-specific human T cells and 
other immune cells produce neurotropic factors that are involved in the protection 
of CNS [85, 86] (For additional information, please see Chapter 17). BDNF 
supports remyelination after both peripheral and CNS injury, and in addition, can 
downregulate the expression of MHC molecules in hippocampal slices, acting as 
an immunomodulator agent [87]. 

Traditionally, neurons have been considered the major cellular source of BDNF in 
the CNS [88]. However, recent studies demonstrated the production of substantial 
amounts of BDNF also in immune cells [89]. Actively demyelinating lesions 
present a higher percentage of BDNF‐immunoreactive cells when compared to 
inactive lesions, in addition to neurons located in the vicinity of these active 
lesions, as well as reactive astrocytes [90]. This neurotrophin‐mediated 
neuroimmune signalling network could be a major factor that helps to preserve 
axons in a microenvironment insulted by inflammatory response. Thus, it should 
be considered as a beneficial aspect of neuroinflammation that could be preserved 
therapeutically or even reinforced using immunomodulatory treatment regimen. 

11.5. CEREBROSPINAL FLUID IN MS 

As we have seen in the beginning of this chapter, MS presents a variable clinical 
presentation and no diagnostic laboratory test. Diagnostic criteria include 
paraclinical laboratory assessments emphasizing the principle of lesions 
disseminated in time and space [5]. Cerebrospinal fluid (CSF) analysis remains 
mandatory in order to support the diagnosis and to differentiate MS from other 
diseases that can mimic it. The lack of typical findings on MRI and CSF 
examination should raise suspicion that MS is not present, since very few patients 
with MS have a normal MRI of the brain or normal CSF [5]. 

The heterogeneity observed in MS results in delays to the definite diagnosis. 
Extensive studies are made in the field of biomarkers to improve the diagnostic 
discrimination. CSF is very often the most accessible material and changes in its 
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composition may reflect pathological processes of MS such as inflammation, 
demyelination, neuro-axonal loss, gliosis and regeneration. Even though there is 
no standard diagnostic CSF test, multiple parameters can indicate the probability 
of MS. On the other hand, there is no definite relationship between the 
abnormalities in the CSF routine examination and the clinical course, duration, or 
severity of the disease [91]. 

CSF analysis is based on microscopic examination of white blood cells (WBCs), 
total protein concentrations, glucose level and specific albumin and 
immunoglobulin measurements. In this way, it is possible to identify CSF-specific 
cell types (lymphoid cells, plasma cells, activated B cells and polymorphonuclear 
cells), which are critical in the diagnosis of many infectious and inflammatory 
neurological disorders. In MS, two-thirds of patients have a normal CSF cell 
count and a low level of mononuclear pleocytosis is found in one third of the 
cases [92]. These cells, reach the CNS migrating from the systemic circulation 
across an inflammation modified are responsible for the intrathecal IgG synthesis 
(oligoclonal IgG bands. A permeable BBB in the early pathogenesis of MS and 
intrathecal production of oligoclonal bands are important processes occurring 
prior to a clinical manifestation of MS [93]. 

The evaluation of BBB permeability is more precise by CSF/serum albumin ratio, 
as albumin can be measured in the CSF and it is not produced in the CNS. An 
intact blood-CSF barrier is associated with a CSF/serum albumin ratio < 8x10-3. 
The albumin quotient is the basis for quantitation of the intrathecal 
immunoglobulin response. Almost all inflammatory neurological disorders, 
accompanied by humoral immune reactions, are characterized by IgG synthesis. 
Intrathecal IgA and IgM synthesis provide additional diagnostic cues in acute 
inflammatory diseases of the CNS. In this context, various formulas were devised 
to calculate the intrathecally produced IgG fraction in the CSF [94, 95], which has 
similar diagnostic sensitivity in association with MS. After the introduction of the 
empirical ratio diagram [94], which revealed a non-linear relationship between 
IgG and albumin ratio, a graphic and quantitative illustration of the intrathecal 
IgG synthesis became possible. 

There are two techniques to the detection of intrathecal IgG synthesis in MS. In 
quantitative analysis (hyperbolic function), each patient is compared with a large 
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100mg/ dl) are more consistent with an infectious or neoplastic 
process. 

 Normal to slightly elevated albumin ratio (up to 10x10-3). The 
CSF/serum albumin quotient is preferred to detect a blood-CSF barrier 
(BCB) dysfunction. 

 Intrathecal IgG synthesis (qualitative detection). Oligoclonal IgG 
bands are detectable in 95% of MS cases. 

 Intrathecal synthesis of antibodies against measles, rubella and the 
varicella-zoster virus (MRZ reaction) in 94% of MS patients. 

The routine CSF analysis helps to distinguish between other causes of 
inflammation that mimic MS. Positive CSF findings can be important to support 
the inflammatory demyelinating nature of the underlying condition. However, it is 
not specific for MS. Clinical findings and imaging results with the help of positive 
CSF findings (MS-specific CSF profile) may provide typical parameters to 
confirm the diagnosis of MS and for a decision in favor of immunosuppressive 
therapy at an earlier stage of the disease. 

11.5.1. Surrogate Markers 

Since MS lesions are rarely biopsied, the detection of unusual substances or 
identification of further parameters in the CSF may serve as surrogate markers. 
These CSF markers reflect a systemic T-cell proliferation, production of 
proinflammatory cells in the CNS, activation of inflammatory cells of the CNS, 
edema, demyelination, remyelination, axonal damage or neuronal atrophy. 

The search for biomarkers including those possibly present in the CSF which 
could predict and assess the course as well as response to treatment in a particular 
MS patient has not yet been successful. Beyond the oligoclonal bands, no CSF 
marker has been routinely implemented in the CSF analysis [97, 98]. Promising 
markers in the CSF by new technologies (proteomic pattern analysis) have so far 
been investigated but the benefit of these markers for the individual patient still 
has to be demonstrated [98]. Some findings suggest that CSF proteomic pattern 
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analysis can increase the accuracy of disease diagnosis of MS-related disorders 
and will aid physicians in appropriate therapeutic decision-making [99]. 

11.5.2. Markers for Inflammation and Immune Dysfunction 

CSF levels of proinflammatory cytokines (IFN-γ, TNFα, lymphotoxin, IL-4, IL-5) 
are usually elevated in MS patients. Increased tumor necrosis factor alpha (TNFα) 
levels in the CSF correlated with the clinical disease activity and gadolinium-
enhacing lesions in MRI. Anti-inflammatory cytokines (IL-10, transforming 
growth factor beta - TGF-β) are up-regulated during periods of remission [100]. 

11.5.3. Markers for the Alteration of the Blood-Brain-Barrier 

Altered concentrations of circulating adhesion molecules and matrix 
metalloproteinases (MMPs) are indicators of an alteration of the blood-brain 
barrier [101]. 

11.5.4. Markers for Demyelination 

Elevated CSF levels of MBP and peptides similar to MBP correlated with acute 
myelin damage in CNS during acute relapses. Autoantibodies against myelin 
(anti-MOG, anti-MBP, anti-PLP) also belong to this category of markers [102]. 

11.5.5. Markers for Remyelination 

These markers are increased following an exacerbation and the most studied are 
neuronal cell adhesion molecule (N-CAM), growth factor ciliary neurotrophic 
factor (CNTF), brain-derived neurotrophic factor (BDNF), nerve growth factor 
(NGF) and neurotrophin 3 (NT-3) [103]. 

11.5.6. Markers for Activation and Damage of Glial Cells 

Glial proteins can be detected in CSF when cells are damaged and/or activated. 
S100b and glial fibrillary acidic protein (GFAP) concentrations are increased in 
patients with major disability [104]. 

11.5.7. Markers for Neurodegeneration 

Neuro-specific enolase (NSE) levels in the CSF are usually normal in MS 
patients. However, increased levels of neurofilaments and tau protein 
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concentrations in the CSF were found in MS patients, revealing axonal damage in 
the early phase of MS [105]. 

11.6. MS TREATMENT 

Disease modifying therapies (DMT) are available for MS patients. They have in 
general an anti-inflammatory effect, but only partially control the disease [106]. 
Recombinant Interferon β (IFN-β) and Glatiramer Acetate (GA) were the first 
Food and Drug Administration (FDA) approved DMTs and represent the most 
frequent therapeutic intervention prescribed for patients with relapsing-remitting 
MS (RRMS). Interferon beta-1b was approved in 1993, GA in 1996, 
intramuscular interferon beta-1a in 1997, and subcutaneous interferon beta-1a in 
2002 [107]. Treatment with GA seems to restore the impaired maturation and 
altered regulatory function of pDCs and promote a shift between the pro-
inflammatory Th1 to the anti-inflammatory Th2 effector cells in MS [108]. IFN-β 
treatment decreased activated pDCs to produce proinflammatory cytokines (e.g. 
IFN-α, IL-6, TNF-α), and chemokines (e.g. CCL3, CCL4, and CCL5) [109]. Also, 
IFN-β induces restoration of regulatory T-cell function by an increase in newly 
generated naïve regulatory T cells. This effect may potentially lead to impaired 
trafficking of activated pDCs to the CNS and, afterwards, attraction of Th1 and 
Th17 lymphocytes, which would diminish formation of new demyelinating 
lesions [109]. 

DMTs present similar clinical outcomes showing approximately 30% reduction in 
patient’s annual number of relapses, MRI T2 lesion load reduction and delay of 
disability [110-112]. There are subsets of patients that respond different to 
therapy, which could be related to genetic background that determines differences 
in cell migration, proliferation, differentiation, antigen presentation and cytokine 
regulation, and also to appearance of neutralizing antibodies to INF-β [113]. 
Neutralizing antibodies have the potential to partially or completely reduce drug 
efficacy, rendering interferon biologically inactive [114]. 

DMTs are usually safe and well tolerated. The side effects related to INF-β 
therapy most commonly encountered in clinical practice include redness and 
burning at the injection site, flu-like symptoms and hematologic abnormalities, 
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including leukopenia, thrombocytopenia and liver enzyme elevation. Thus, the 
patients have to perform routine blood studies, including complete blood cell 
count and liver function tests every 3 to 6 months [115]. Also, the physician 
should be aware of the possible emergence or worsening of clinical depression 
with the initiation of IFN therapy. Regarding side effects related to GA therapy, it 
includes injection site reaction, induration, itching and lipoatrophy. Also, 
approximately 10% of patients may develop post injection reactions including 
infrequent episodes of self-limited idiosyncratic chest tightness, palpitations, 
anxiety, dyspnea and flushing, which usually appears after several months of 
treatment [115]. Routine blood studies are not necessary during GA therapy. 

In 2006, a monoclonal humanized antibody, Natalizumab was re-launched on the 
market after approval by FDA to the treatment of RRMS, showing approximately 
70% reduction in annual number of relapses and 80-90% reduction in MRI lesions 
in the brain and spinal cord [116]. However, the performances of the different 
drugs are not directly comparable because of the methodological differences 
existing in trials and absence of head-to-head comparative data [116]. 

Natalizumab binds to α4 subunit from α4β1 and α4β7 integrin expressed on 
activated T cells surface. This blockage avoids the binding of T cells to 
endothelial receptors VCAM-1 and CAM-1, consequently reducing migration of 
T cells across the blood brain barrier and their activation by osteopontin and 
fibronectin, reducing inflammatory response [117]. Neutralizing antibodies 
against natalizumab could also appear, reducing the drug efficacy and raising the 
risks of anaphylactic/anaphylactoid reaction during its infusion [117]. In one 
pivotal trial, two patients developed progressive multifocal leukoencephalopathy 
(PML), disease caused by JC virus infection [114]. FDA then recommended that 
Natalizumab should be restricted to selected patients with RRMS, such as those 
who failed to respond to or do not tolerate other disease modifying therapies, or 
those who present with a particularly aggressive initial disease course [118]. In 
one study, the estimated risk of PML was 1 per 1,000 patients treated for an 
average of 17.9 months (95% CI: 0.2 to 2.8 per 1,000), and this risk may increase 
with increased exposure time to therapy [119]. 

Fingolimod (FTY720) was approved by the FDA in 2010 as the first orally 
administered drug to treat RRMS. Fingolimod is a sphingosine-1-phophate 
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receptor modulator that inhibits naïve T and central memory T lymphocytes, but 
not effector memory T cells, to exit lymphoid tissue, preventing auto reactive T 
lymphocytes from entering the CNS. After phosphorylation, the drug binds four 
of five subtypes of sphingosine 1 phosphate (S1P) receptors and causes down 
regulation of the binding of S1P to its receptor. Without this receptor, 
lymphocytes are retained within the lymph nodes. Fingolimod shows 54% 
reduction in the annualized relapse rate, 30% reduction in the risk of disability 
progression and 82% reduction in MRI inflammatory activity [120]. Adverse 
events include bradycardia following treatment initiation, infrequent and transient 
first- and second-degree atrio-ventricular conduction block, small increases in 
blood pressure, hypertension, macular edema and elevation in liver transaminases. 
There were two fatal infections (disseminated primary varicella zoster and herpes 
simplex encephalitis) raising questions about susceptibility to herpes virus 
infection [121] upon treatment. As with all new drugs, post marketing 
pharmacovigilance will be essential to ensure long-term safety and efficacy [122]. 

11.6.1 Treatment of a Relapse 

Corticosteroids are the first-line therapy for acute MS exacerbations. The largest 

controlled trial indicating that corticosteroids were effective in MS relapse was 

the Optic Neuritis Treatment Trial (ONTT). This study showed faster clinical 

recovery and better visual field results, contrast vision and color vision at 6 

months in patients treated with IV methylprednisolone (1g daily for 3 days) 

followed by an 11-day oral steroid course, than patients treated with oral 

prednisone alone (1mg/kg day for 14 days), or oral placebo [123]. This trial 

provided evidence that acute attacks of demyelination should be treated with high-

dose corticosteroid rather than low-dose regimens and, therefore, most RRMS 

trials usually use 1g of IV methylprednisolone daily for 3 to 5 days [107]. 

Corticosteroids are potent anti-inflammatory drugs reducing edema and aiding in 

the stabilization of the blood brain barrier. Side effects include elevations in blood 

glucose, CSF glucose and blood pressure. Patients could present dyspepsia, 

changes in mood, insomnia, and psychosis. Rarely, corticosteroids can also cause 

avascular necrosis of femur and susceptibility to infections [107]. 
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11.6.2 Immunosuppressive Drugs 

The parenteral use of Cyclophosphamide, Mitoxantrone and Cladribine may 
benefit some patients with aggressive disease [107]. Mitoxantrone was approved 
by FDA in cases of rapidly worsening RRMS, secondary progressive MS and 
progressive relapsing MS, but its use has declined over time because of increased 
risks to develop therapy-related acute leukemia and impaired left ventricular 
ejection fraction, leading to congestive heart failure [124]. 

Oral immunosuppressive drugs have also been reserved for patients, in whom 
disease progression cannot be controlled by established DMTs or because of 
serious side effects or specific contraindications to initiate them. The most used 
drugs are azathioprine, mycophenolatemofetil and methotrexate, with some 
studies indicating a reduction in the number of relapses from years 1 to 3, and 
reducing the rate of disability. However, the lack of large clinical trials and head-
to-head studies comparing existing DMTs do not support the routine use of these 
agents [107]. 
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Abstract: Dementia with Lewy Bodies (DLB) and Frontotemporal Dementia (FTD) are 
clinically characterized mainly by gradual progressive impairment of behavior and 
cognitive functions. The accurate diagnosis of both disorders are very difficult due to 
significant overlap with other neurodegenerative symptoms. Here, in the chapter, we 
discuss the last. 
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12.1. DEMENTIA WITH LEWY BODIES 

Dementia with Lewy bodies (DLB) is a progressive and disabling 
neurodegenerative disorder affecting the patient’s movement, cognition, mood 
and autonomic function [1]. Although estimates of its prevalence vary from 0-5% 
of the general population, DLB is thought to be the second most common type of 
dementia, accounting for 0-30.5% of all dementia patients [2]. DLB was named 
after α-synuclein protein aggregates, observed in the brain of affected individuals, 
known as Lewy bodies. Unlike other neurodegenerative diseases such as 
Alzheimer's (AD) and Parkinson's (PD), DLB was only described in the mid 
1990's (although Lewy bodies had been described as early as 1912). In 1996, a 
consortium first presented diagnostic criteria for DLB [3]. According to a later 
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report published by this consortium, DLB should be diagnosed when subjects 
present dementia plus two or more of the following symptoms: fluctuating 
cognition with pronounced variations in attention and alertness, recurring visual 
hallucinations that are typically well-formed and detailed, and spontaneous 
features of Parkinsonism [4]. Suggestive features may include rapid-eye 
movement sleep behaviour disorder, severe neuroleptic sensitivity and low 
dopamine uptake in the basal ganglia, as demonstrated by neuroimaging. 

Performing a differential diagnosis of DLB is difficult due to significant overlap 
with AD and PD symptoms, most notably a drop in cholinergic neurons (observed 
in AD) and dopaminergic neurons (observed in PD) [5,6]. However, performing 
an accurate diagnosis is crucial to establishing a correct prognosis and likely 
clinical course for the patient – especially given that subjects with DLB, as 
opposed to AD or PD subjects, tend to present hypersensitivity to antipsychotic 
drugs affecting the dopaminergic and cholinergic systems, rendering the treatment 
of psychotic symptoms in DLB extremely difficult [7]. Finally, accurate diagnosis 
is also important for patient/family counselling as well as recruitment for clinical 
trials of new therapies. 

Careful cognitive assessment may lead to differential diagnosis between DLB and 
AD. As opposed to subjects with AD, DLB patients present consistent impairment 
of attention/executive functioning and/or visuo-spatial functioning, yet language 
and memory are often mostly preserved [8]. There may also be differences 
regarding memory impairment, which, while common in AD, do not seem as 
prominent in early-stage DLB [9]. Results suggest that the best model for 
differentiating DLB from AD in early-stage dementia includes visual 
hallucinations and visuo-spatial/constructional dysfunction, but not 
extrapyramidal signs [10]. 

Clinical management of DLB patients is further complicated by their 
neuropsychiatric profile and extrapyramidal signs. Management should focus on 
establishing an accurate diagnosis and identifying the target symptoms that 
concern patients and caregivers. A four-stage, problem-oriented approach to DLB 
management has been described previously by Barber [11]. Although there are no 
specific pharmacological treatments, symptoms may be managed using 
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medications commonly used for AD and PD patients, such as lowest effective 
dose of levodopa for Parkisonism and cholinesterase inhibitors for 
neuropsychiatric and cognitive symptoms [12]. Non-pharmacological strategies 
for cognitive symptoms include explanation, education, reassurance, orientation 
and memory prompts, attention cues and targeted behavioural interventions [13]. 
Other therapeutic strategies – such as electroconvulsive therapy [14], repetitive 
transcranial magnetic stimulation and transcranial direct current stimulation [15], 
and deep-brain stimulation, which has been shown to be effective in PD [16] – 
remain to be tested in patients with DLB. 

Considerable uncertainty exists regarding the progression and survival of DLB 
patients. Some results indicate that the rate of decline and mortality in DLB is 
similar to that of Alzheimer’s disease, while others indicate shorter survival 
periods for patients with DLB. It is important to note that, as yet, no predictive 
factors of a more severe clinical course or decreased survival have been identified 
[1,4]. 

At the cellular level, DLB is defined by the presence of Lewy bodies and Lewy 
neurites, which consist of α-synuclein protein aggregates. In DLB, accumulation 
of α-synuclein is observed throughout the brain, including the cortex. α-Synuclein 
is an abundant 140-residue neuronal protein, that, under physiological conditions, 
is found mainly in neuronal presynaptic terminals, close to synaptic vesicles. 
Levels of α-synuclein are regulated by a balance of synthesis, degradation, and 
secretion, and a major factor possibly driving the aggregation and neurotoxic 
effects of α-synuclein is the total protein concentration [17]. Protein accumulation 
leads to neurotoxic effects such as loss of cholinergic and dopaminergic neurons 
throughout brain areas. Accumulation of α-synuclein is associated with complex 
machinery that involves lysosomal function and impairment of autophagic 
pathways, although it remains unclear whether impairment is a cause or a 
consequence of this aggregation. Other possibilities are currently under 
consideration, including mitochondrial damage, caspase activation, lysosomal 
leakage, fragmentation of the Golgi apparatus, interference with synaptic vesicle 
transport and function, and interference with gene transcription and signaling. 
Changes in the cholinergic system have also been observed, such as reduction of 
post-mortem choline acetyltransferase, a presynaptic enzyme responsible for 
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acetylcholine synthesis in the brain [18]. Amyloid plaques seem to play an 
important role in neuronal loss given that amyloid-positive DLB and AD patients 
present very similar patterns of cortical atrophy in the parahippocampal area and 
lateral temporal and parietal cortices, whereas amyloid-negative DLB/PDD 
patients have no significant cortical atrophy [19]. For a more detailed description 
of amyloid plaques, please see Chapter 8. 

An explanation for the cellular aberrations observed in DLB would be mutated or 
polymorphic genes throughout the human genome leading to dysfunctional 
proteins. Recent studies have shown familial aggregation [20] as well as a familial 
form of DLB linked to the segregation of genes on the long arm of chromosome 2 
(position 2q35-q36) [21]. As expected, most genetic association studies have 
focused on proteins associated with synucleins (GBA, SNCA, SNCB and SNCG), 
amyloid plaques (APP, PSEN1 and PSEN2) and other genes previously associated 
with increased risk for AD (APOE), However, mutations in these genes explain 
only a small number of clinically diagnosed DLB patients. Moreover, familial co-
segregation with disease was often not obtained for these mutations, resulting in 
incomplete genetic evidence for pathogenicity [22,23]. Therefore, it is generally 
accepted that the genetic etiology of DLB is complex, and most probably results 
from the interplay of genetic and environmental risk factors. 

In light of the limited sensitivity of current methods of clinical diagnosis, it is 
important to establish additional markers that, when combined with clinical 
assessment, can improve diagnostic accuracy [24]. Although genetic studies have 
not yet identified any reliable markers, other molecules have been investigated as 
potential biomarkers of DLB disease state or prognosis. Literature from the past 
few decades has suggested that routine cerebral spinal fluid (CSF) biomarkers 
may be effectively used for diagnosing not only AD but also DLB cases. CSF beta 
amyloid Aβ42, suggested to be inversely related to amyloid plaque deposition 
density, is significantly lower in DLB patients when compared to controls, but is 
no different than that of AD patients. It is important to note that, at this time, 
neither observation has reached the necessary levels of sensibility or specificity 
that would allow for their translation into clinical practice. Other CSF markers 
still require further study regarding levels of amyloid Aβ38, α-synuclein, 
magnesium, calcium, cocaine- and amphetamine-regulated transcript (CART), 
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DK-1 (coded by PARK7 gene), dihydroxyphenylacetic acid/dopamine and 
homovanillic acid/dopamine ratios that are markers of dopamine metabolism. 
Preliminary results with these markers have shown considerable heterogeneity 
that may be associated with heterogeneous inclusion criteria of subjects (e.g. 
diagnostic criteria, time of illness, age at onset), methodological differences in 
biomarker quantification, and lack of pathological confirmation and/or underlying 
genetic differences [22]. Furthermore, studies using non-CSF biomarkers, for 
instance proteins expressed in blood cells, serum levels and large-scale genomic, 
proteomic and lipidomic assays, are still incipient while common for other 
diseases like AD and PD. 

Functional imaging studies using single‐photon emission computed tomography 
(SPECT) and positron emission tomography (PET) are important tools to better 
understand the pathophysiological mechanisms at the root of DLB and its 
differences from AD and PD. Many neuroimaging studies have revealed severe 
degeneration of the nigrostriatal dopaminergic circuit, also observed in PD, but 
not in AD [6]. In fact, dopaminergic alteration is so frequently observed in these 
cases that lower dopaminergic uptake in the basal ganglia has been included as a 
suggestive feature for diagnostic purposes, although false positives may occur in 
patients with forms of Parkinsonism with associated dementia. Another 
experimental imaging technique uses N‐(3‐fluoropropyl)‐2β‐carbomethoxy‐3β‐(4‐
iodophenyl)nortropane (FP‐CIT), a probe with a known affinity for dopamine 
transporters. This technique has been reported as greatly improving DLB 
detection sensitivity [25-27]. Other potential biomarkers include 18F-fluoro-L-
dihydroxyphenylalanine ([18F] fluorodopa) PET, which assesses the integrity of 
the nigrostriatal pathway; 18F-fluorodeoxyglucose [18F]FDG PET, which 
assesses metabolic deficits; and abnormal MIBG (meta‐iodobenzylguanidine) 
imaging, which assesses sympathetic cardiac denervation [24]. 

Several other neuroimaging studies have been conducted in view of evaluating 
functional and structural alterations in DLB patients, although results still require 
further replication. It has been suggested that, contrary to patients with AD, 
patients with DLB do not present hippocampal atrophy in magnetic resonance 
imaging (MRI) or cortical uptake in amyloid PET [8]. DLB occipital lobes seem 
to present a smaller increase of blood perfusion (hyperperfusion) than AD lobes, 
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and occipital metabolism in DLB is lower than that of AD and control subjects, 
although the overall brain metabolism profiles of DLB subjects appear to be 
comparable to those of their AD counterparts [24]. DLB subjects also present 
more prominent occipital lobe hypometabolism as compared to FTD patients, who 
present hypometabolism of the frontal and temporal cortices. Furthermore, 
compared to Parkinson’s disease dementia, DLB patients present reduced anterior 
metabolism [28]. Studies using structural MRI and functional MRI have indicated 
that DLB patients present global grey matter atrophy in the temporal, parietal, 
middle and inferior gyri and occipital lobe, while occipital lobe structure remains 
unaltered [29]. 

All things considered, studies on the diagnosis, epidemiology and 
pathophysiology of DLB are much scarcer than those on more prominent 
neurodegenerative disorders such as AD and PD. Future directions in research are 
focused on the genetic background and epidemiology of DLB in various 
populations, as well as in the improved understanding of biomarkers, 
pathophysiology and use of neuroimaging. A growing body of clinical and 
pathological evidence supports the notion that AD, DLB and PD with dementia 
are different members of the same disease continuum [23]. Thus, a deeper 
understanding of any one of these diseases would further elucidate mechanisms 
underlying DLB, with consequent improvement of DLB clinical management. 

12.2. FRONTOTEMPORAL DEMENTIA 

Frontotemporal dementia (FTD) is clinically characterized mainly by gradual 
progressive impairment of behavior, personality and/or language. In general, FTD 
patients display severe deficits in their judgement and insight, decreased interest 
in their surroundings, verbal and physical aggressiveness, negligence of personal 
hygiene, hyperorality and stereotypical behavior [30]. These features are grouped 
into syndromes of symptoms which may overlap as the disease progresses. The 
two most common syndromes are behavioral variant (bvFTD) and primary 
progressive aphasia (PPA). PPA can be divided into two language variants: 
progressive nonfluent aphasia (PNFA) and semantic dementia (SD) [31]. 
Additionally, there is a significant subset of FTD patients who present 
Parkinsonism, suggesting the coexistence of FTD and motor neuron disease 
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(FTD-MND) [32]. FTD patients share many common features with patients of 
Alzheimer’s disease (AD). However, compared to patients diagnosed with AD, 
FTD patients have relative preservation of memory [30]. Although FTD is less 
common than AD, it accounts for almost 50% of all cases of dementia diagnosed 
before age 60. Furthermore, at present, neither disease is curable and the drugs 
that are currently used for AD treatment lead to severe side-effects when used on 
patients with FTD [33]. 

Macroscopically, the neuropathological features of FTD are heterogeneous. In 
contrast with controls and AD patients, the FTD patients commonly present 
selective asymmetrical degeneration of the frontal and temporal lobes [34]. This 
specific pathological characteristic presented by FTD patients is often called 
‘frontotemporal lobar degeneration’ (FTLD) [35]. 

The genetic and pathological features of FTD are also heterogeneous, however, 
knowledge of the molecular and neuropathological features of FTD has increased 
considerably over the past five years. Many studies using animal models have 
proven very useful in understanding the mechanisms of FTD. Furthermore, thanks 
to genetic associative studies and especially to pathological studies, we are now 
able to divide FTLD into three main subgroups, based on the abnormal 
intracellular accumulation of a disease-specific protein: 

A. FTLD-tau, which presents aggregation of hyperphosphorylated tau 
protein; 

B. FTLD-TDP, which presents ubiquitination of TAR DNA-binding 
protein 43 (TDP); 

C. FTLD-FUS, which is associated with mutations of the fused in 
sarcoma (FUS) [35]. 

Nevertheless, better molecular and biochemical characterization of FTD will help 
in the development of tools for better diagnosis and pharmacological treatment. In 
this chapter we will review the clinical, genetic and neuropathological features of 
FTD and its subgroups. 
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12.2.1. FTLD-tau 

Several studies have demonstrated a strong genetic component to FTD. Family 
history of FTD is present in 25-50% of cases, which suggests a strong hereditary 
factor for the disease. At the moment, certain mutations in different genes, such as 
two genes in chromosome 17 – namely, progranulin (PGRN) and microtubule-
associated tau (MAPT) genes – are well investigated [36]. The MAPT gene is 
located on chromosome 17q21.1 and many studies have shown that MAPT 
mutations are linked to 5-20% of cases of familial FTD. Imaging studies have 
demonstrated an association of MAPT mutations and morphological alterations in 
FTD patients. For example, patients with MAPT mutations present focal temporal 
lobe atrophy. However, there are variations between different MAPT mutations 
and the morphological alterations in the brain [37]. Interestingly, genetic 
associative studies also demonstrate associations between mutations in the MAPT 
gene and clinical features of FTD. For example, MAPT mutations were shown to 
be associated with bvFTD [31]. Furthermore, as mentioned previously, some FTD 
patients display symptoms of Parkinsonism, and genetic associative studies have 
demonstrated correlations of MAPT mutations with FTD comorbidities. For 
example, both intronic and exonic mutations were identified in MAPT in FTD 
patients with Parkinsonism. 

At first, due to different studies having shown an association of mutations in 
chromosome 17 with FTD with Parkinsonism, this subgroup was known as 
FTDP-17. However, after a better characterization of the subgroup, the gene 
MAPT was implicated in the disease. This gene encodes the tau protein and, 
consequently, this subgroup was renamed and is now known as FTLD-tau. It is 
the best understood of the subgroups. 

Tau is a protein with multiple serine and threonine residues which can be 
phosphorylated by many kinases. Physiologically, tau is localized mainly in the 
axons and its function is to stabilize the microtubules through its C-terminus 
binding domain. Additionally, through the N-terminus projection domain, it 
regulates the microtubules’ interaction with other proteins of the cytoskeleton as 
well as with proteins in the membrane [38, 39]. The brains of FTD patients 
present neurofibrillary lesions and neuronal and synaptic loss at specific sites. The 
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neurofibrillary lesions are found in both cell bodies and apical dendrites, and 
contain neurofibrillary tangles (NFTS). These NFTS are aggregates of the 
hyperphosphorylated protein tau in neurons and glia [40]. When it is 
hyperphosphorylated, tau dissociates from cellular microtubules. The dissociated 
hyperphosphorylated tau forms aggregates that are deposited inside of neurons as 
NFTs. Depolymerisation of the microtubules is also present [41]. 

Today, many of the mutations found in FTLD-tau patients have been replicated in 
biological models for scientific studies, such as transgenic mice, flies and 
Caenorhabditis elegans, helping in the understanding of the biological 
mechanisms involved in this pathology [42] (for additional information see 
Chapter 3). For example, transgenic mice expressing the human FTD mutant 
P301L tau, which is the longest brain tau isoform containing exons 2 and 3 as well 
as four microtubule-binding repeats, have been shown to display 
hyperphosohorylation of tau, aggregates and NFT-formation [43]. Other studies 
have demonstrated that mice expressing the human P301L tau only in 
oligodendrocytes and astrocytes present neuronal impairments and axonal 
degeneration [44]. Furthermore, Drosophila melanogaster and C. elegans 
expressing mutant tau also present behavioural alterations, synaptic abnormalities 
and neuronal loss [45,46]. Taken together, these studies demonstrate that the 
mutations in chromosome 17 associated with FTD cause neurodegeneration. 

12.2.2. FTLD-TDP 

FTLD-tau is the best understood of all the FTLD subgroups. However, most cases 
of FTD are characterized by the pathological ubiquitination of proteins. 
Ubiquitination is a post-translational modification that involves a covalent bond 
between a target protein and an ubiquitin residue. When ubiquitin is added to a 
protein, it activates cascades that can recycle, destroy or transport the proteins to 
specific intracellular locations. Because of the ubiquitination of proteins and 
absence of tau protein aggregation, this subgroup was previously called FTLD-U. 
This subgroup is sometimes also known as FTDU-17 because of associations of 
these pathological features with mutations in chromossome 17. However, recent 
post-mortem studies of FTLD patients have shown inclusions in the hippocampus, 
substantia nigra, basal ganglia, extramotor cerebral cortex, lower motor neurons 
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of the brainstem and spinal cord formed by an ubiquitinated form of the TAR 
DNA-binding protein 43 (TDP-43) [35]. For this reason, after the identification of 
the TDP-43 as the ubiquitinated pathological protein, the subgroup has been 
renamed FTLD-TDP. Today we know that, similarly to tau, TDP-43 inclusions 
are formed by ubiquitinated, hyperphosphorylated and carboxyl-terminally 
truncated TDP-43 [47]. 

TDP-43 is a highly conserved protein located mainly in the nucleus. It regulates 
RNA functions through mRNA stabilization and transportation as well as through 
splicing control [48]. When TDP-43 is hyperphosphorylated, ubiquitinated or has 
the N-terminal truncated, it becomes pathological, aggregating and forming 
inclusions in the cell cytoplasm. However, the effects of these structural 
alterations in TDP-43 function are still unknown, though studies of patients with 
FTLD-TDP and animal models suggest that both loss of function and gain of 
function mechanisms can cause inclusions and cell death. It is also interesting to 
note that many studies show that the brains of amyotrophic lateral sclerosis (ALS) 
patients present the same phenotype, also with TDP-43 ubiquitination [49], which 
would seem to suggest that ALS and FTLD are closely related. 

Many of the neuropathological phenotypes mentioned above, such as the TDP-43 
positive inclusions, are associated with mutations in the PGRN and C9orf72 genes 
[35]. The PGRN gene is in chromosome 17q21.32 and, so far, 69 PGRN 
mutations were found to be associated with familial FTD [50]. Furthermore, the 
clinical features bvFTD, corticobasal syndrome (CBS) and progressive 
supranuclear palsy syndrome (PSPS) are also associated with PGRN mutations 
[31]. Imaging studies have also shown PGRN mutations to be associated with 
asymmetrical fronto-temporo-parietal atrophy. 

The PGRN gene codes for the PGRN protein, which is the precursor of granulin 
(GRN). The PGRN protein suffers a posttranslational process and forms the 
peptide GRN, which has a neuroprotective function [50]. GRN is a growth factor 
that is expressed in many cell types, including neurons. It activates intracellular 
pathways involved in cell differentiation and neurite outgrowth, such as GSK3β 
and Wnt [51]. GRN also binds to sortilin (SORT1), a receptor for neurotrophic 
factors in the brain [52]. This interaction, which appears to take place through 
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endocytosis, modulates PGRN levels in the brain and in plasma. Recent studies 
have also demonstrated that GRN binds to tumor necrosis factor α receptors 
acting as antagonist, modulating inflammation [53]. In vitro studies suggest that 
PRGN deficiency might mediate the caspase 3 cleavage of TDP-43, suggesting a 
link between PGRN and TDP-43 [36]. 

Currently, we know that pathogenic mutations in the PGRN gene cause 
haploinsufficiency, leading to a decrease of PGRN levels in serum, plasma and 
cerebrospinal fluid. Many factors that regulate the function of PGRN are also 
associated with FTD. For example, the microRNAs miR.29b and miR.107 and the 
uncharacterized transmembrane protein 106B (TMEM106B) regulate the 
expression of PGRN [35]. 

Another mutation with a strong association to FTLD-TDP and ALS occurs in the 
gene C9orf72. This gene is located in chromosome 9p and the mutation is a non-
Mendelian inheritance of a GGGGCC hexanucleotide repeat located in a 
noncoding region of C9orf72 [54]. These expanded 700-1,600 GC-rich repeat 
units interfere in the protein expression of C9orf72, but the exact minimal repeat 
size required for the disease manifestation is still unknown. C9orf72 is present in 
the cytoplasm of neurons and in the nucleus of fibroblasts, but this protein is still 
uncharacterized and its function remains unknown. There are two different 
isoforms of the predicted protein – however, the relative expression of each, in 
different regions of the brain, has not yet been studied. Although these findings 
support the loss-of-function theory, studies have shown an accumulation of GC-
rich transcripts in the frontal cortex of C9orf72 patients. This suggests a possible 
toxic RNA gain-of-function [54]. 

The genetic associative studies for the C9orf72 gene also support the hypothesis 

that FTD and ALS are closely related. For example, the average C9orf72 mutation 

frequencies reported in European and North American populations for familial 

FTD is 21%, and 37% for familial ALS [35]. However, the clinical presentation of 

patients with this mutation is heterogeneous and highly variable between and 

within families. Clinically, FTD patients with this mutation present memory 

disorder, psychosis, extrapyramidal movement disorder and cerebellar signs. The 
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symptoms are cumulative with disease progression. Macroscopically, the patients 

present symmetrical bilateral atrophy, mainly in the frontotemporal regions, but 

also involving other regions of the brain. However, the unique characteristic 

feature of patients with this mutation is the presence of neuronal inclusions in the 

cerebellar granule cell layer, hippocampal pyramidal neurons and other 

neuroanatomical sites [35] – although several studies failed to observe any 

atypical distribution or accumulation of C9orf72 in the brains of FTD patients. 

Furthermore, a recent study showed that this GGGGCC hexanucleotide repeat 

upstream expansion generates inclusions containing poly-(Gly-Ala), poly-(Gly-

Pro) and poly-(Gly-Arg) [55]. 

12.2.3. FTLD-FUS 

The last main subgroup of FTD is FTLD-FUS. FUS is part of the FET protein 

family, which are multifunctional DNA/RNA-binding proteins. Physiologically, 

these proteins are ubiquitously expressed and are usually localized in the nucleus 

of the cells. These proteins are imported to the nucleus by transportin-mediated 

mechanisms. Studies investigating the protein extracts from FTLD-FUS brain 

have shown an increase in the solubility of all FET proteins [56]. Thus, structural 

alterations in FET-family proteins, including arginine methylation and 

phosphorylation, might affect intracellular transport and thereby increase the 

chances of inclusion formation [35]. 

Because of the presence of FUS-positive inclusions and tau/TDP-43 negative 
inclusions, this condition was named the FTLD-FUS subgroup [35]. Recent 
studies have shown an association of mutations in the fused in sarcoma (FUS) 
gene with ALS [57]. However, it seems that FUS mutations are rarely associated 
with FTLD-FUS [58]. Also, imaging studies have shown that patterns of atrophy 
are less clear in patients with FUS mutations [59]. Interestingly, in contrast with 
ALS, FTLD-FUS presents co-accumulation of the proteins from the FET family 
EWS (Ewing sarcoma breakpoint region 1) and TAF15 (TATA-binding protein-
associated factor 2N) and FUS inclusions [60]. It would therefore seem that the 
pathological mechanisms of FTLD-FUS may involve alterations in all FET 
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proteins. For this reason, in the near future, this subgroup may be renamed FTLD-
FET. 

Although many studies have shown a genetic association of mutations in the FET 
family with ALS, none of these demonstrated a genetic association of the 
mutations with FTLD-FUS, suggesting that FTLD-FUS is a sporadic disease [61]. 

CONCLUSION 

We now know FTD to be a complex syndrome that can be divided into many 
subtypes based on clinical, genetic and pathological features. Over the past few 
years, a remarkable increase in our knowledge of the genetic, biochemical and 
pathological bases of FTD has helped us to better characterize the disorder. Animal 
models have also played a key role in dissecting the molecular and signalling 
pathways involved in FTD. Nevertheless, further investigation of the bases of FTD 
remains necessary in order to define specific biomarkers for the different subtypes of 
FTDL and, ultimately, to develop new and more effective therapeutic targets. 
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Abstract: Peripheral nerves connect the central nervous system with peripheral tissues 
in the body and are therefore crucial for all living animals to communicate with the 
environment. Due to the length of their axons, peripheral neurons are extremely 
vulnerable to insults. Inherited peripheral neuropathies comprise a large group of 
disorders characterized by progressive loss of axons or myelin that affect motor, sensory 
and/or autonomic nerves. Charcot-Marie-Tooth disease is the most common form of 
these inherited peripheral neuropathies. Peripheral nerves can also be damaged by a 
wide variety of stressors such as inflammation, infection, trauma, systemic disease, 
toxins/drugs and metabolic disturbances giving rise to several clinical subtypes of the 
disease. These disorders are referred to as acquired peripheral neuropathies. Ongoing 
research is focused on unraveling the pathogenic mechanisms underlying these 
debilitating diseases in order to find possible therapeutic strategies. So far, no drug 
therapy has been proven effective and patients have to rely on symptomatic treatments 
that are largely insufficient. Although there is no existing cure for peripheral 
neuropathies to date, some encouraging advances have been made which are also 
discussed in this chapter. 
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13.1. INTRODUCTION 

The peripheral nervous system (PNS) consists of all parts of the nervous system 
that reside outside the central nervous system (CNS), formed by the brain and the 
spinal cord. The PNS can be subdivided into the visceral PNS also called the 
autonomic nervous system and into the somatic PNS [1]. 

Internal organs, blood vessels and glands are innervated by the visceral PNS and a 
distinction between motor and sensory visceral nerves can be made. The sensory 
axons collect information from organs, blood vessels and glands and send it to the 
CNS. The motor nerves control the contraction of smooth and cardiac muscles. 
These nerves also play a crucial role in the normal functioning of the glands. All 
nerves that connect the CNS to skin, joints and muscles are innervated by the 
somatic PNS. The motor nerves of the somatic PNS coordinate the skeletal 
muscle contraction and relaxation, while the sensory nerves and their axons 
receive information from skin, muscles and joints. The axons of the motor and 
sensory nerves are part of the PNS. On the other hand, the cell bodies of the motor 
neurons reside within the spinal cord while the cell bodies of the sensory neurons 
lie outside the CNS in the ‘Dorsal Root Ganglia’ (DRG) [1]. 

Unlike the CNS, peripheral nerves are not protected by the bone of the spine or 
the skull or by a tight blood - brain barrier. Only an incomplete blood-nerve 
barrier surrounds them. Therefore, peripheral nerves are more vulnerable to toxins 
and mechanical injuries. In this chapter, disorders of the PNS will be discussed 
that can affect both the visceral and the somatic nerves. 

Neuropathies are characterized by a progressive length-dependent loss of nerve 
functioning and are a heterogeneous collection of disorders that occur as the PNS 
is damaged. Peripheral neuropathies are heterogeneous in etiology, pathology and 
clinical presentation that hamper their unifying classification and epidemiological 
studies. These disorders are classified as ‘inherited peripheral neuropathies’ 
(IPNs) when there is evidence for a genetic origin. On the other hand, 
inflammation, infectious diseases, trauma, ischemic insults, exposure to 
toxins/drugs and metabolic disturbances can also cause peripheral neuropathies. 
These disorders are categorized as ‘acquired peripheral neuropathies’ (APNs). 
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The first part of this chapter will focus on inherited peripheral neuropathies by 
discussing their classification and the clinical aspects of the different subtypes. 
We will also discuss recent advances in the understanding of potential underlying 
pathogenic mechanisms. Furthermore, we will highlight current treatment options 
for these patients together with experimental therapies that have shown beneficial 
effects in either slowing down or reversing the phenotype of transgenic mouse 
models of IPN. The second part will highlight the current knowledge regarding 
some of the more than 100 known acquired peripheral neuropathies. We will 
focus on Guillain-Barré syndrome and ‘Human Immunodeficiency Virus’ (HIV)-
induced neuropathies as typical examples of neuropathies associated with 
immunity and infectious diseases, respectively. We will also discuss examples of 
neuropathies associated with endocrine disorders (diabetic neuropathy), with 
systemic disease (critical illness neuropathy), with nutritional deficiencies 
(alcohol-induced neuropathy) and with chemotherapy (vincristine-, taxane- and 
bortezomib-induced neuropathies). 

13.2. INHERITED PERIPHERAL NEUROPATHIES 

IPNs are characterized by progressive length-dependent degeneration of 
peripheral nerves and are further subdivided into three main groups. Patients 
suffer from ‘Hereditary Motor and Sensory Neuropathies’ (HMSN) also known as 
Charcot-Marie-Tooth disease (CMT) when both motor and sensory nerves are 
affected. ‘Hereditary Motor Neuropathies’ (HMN) are characterized by 
predominant motor deficits while ‘Hereditary Sensory and Autonomic 
Neuropathies’ (HSAN) are diagnosed when clinical signs involve sensory and/or 
autonomic nerves (Fig. 1). This classification is merely based on clinical findings 
and was made before any underlying genetic cause was discovered [2-4]. The first 
causative genetic alteration identified as underlying cause of CMT type 1A, was 
the duplication of the ‘Peripheral Myelin Protein 22’ gene (PMP22), discovered 
about 20 years ago [5-7]. At present, gene defects in more than 50 genes are 
known to give rise to peripheral neuropathies and the identification of causative 
genes gives more insight into the underlying molecular mechanisms (for an 
overview of currently known causative genes: http://neuromuscular.wustl.edu/; 
http://www.molgen.ua.ac.be/CMTMutations). However, IPNs are characterized 
by genetic heterogeneity which means that one particular IPN phenotype can be 
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adult patients although less well studied in children with CMT [10]. For instance, 
children aged from 5 to 18 years with varying types and severity of CMT exhibit 
lower physical, psychological and social well being than the general pediatric 
population [11]. In order to get better insights into the disease, it is essential to 
know the underlying genetic causes and to understand the pathogenic mechanism. 

The first clear description of CMT was made almost simultaneously in 1886 by 3 
neurologists: Jean Martin Charcot and Pierre Marie in France and Howard Henry 
Tooth in the United Kingdom [12]. The main characteristics of CMT are a 
combination of lower motor neuron and sensory defects [13]. The disease onset of 
CMT typically occurs during the first two decades of life and signs follow a slow 
“stocking-and-gloves” progression over time [8, 14]. Typical motor problems 
consist of distal muscle atrophy and weakness that first affect the intrinsic foot 
muscles and the peroneal muscles. Next, disease progresses up to the hands and 
forearms. The first manifestations become more severe and even scoliosis – a 
deformation of the spine – and skeletal deformities of feet and hands (including 
pes cavus, hammertoes and clawed hands) are observed. These symptoms cause 
steppage gait, difficulties in walking and running, muscle cramps and hand tremor 
[3, 15-17]. The sensory signs follow the same progression pattern but mainly 
affect feet and hands. CMT patients can suffer from negative sensory signs 
including loss of pain sensation and the absence of feeling vibration and touch. 
Furthermore, deep-tendon reflexes can be reduced or absent. Also positive 
sensory signs are observed and these include pain of the lower limbs and lumbar 
spine and paraesthesia, defined as a sensation of burning, prickling or itching of 
the skin without any obvious cause [18]. Depending on the severity of the disease, 
patients can become wheelchair-bound in later disease stages. 

At present, CMT patients are subdivided into two main groups based on nerve 
conduction velocities (NCVs) of peripheral nerves. This provides a framework for 
both diagnostic and research purposes (Fig. 2). CMT1 (or HMSNI) is primarily a 
demyelinating form of the disease characterized by decreased NCV (<38 m s-1) 
[19]. A nerve biopsy of the nervus suralis from these patients shows myelin 
abnormalities with onion-bulb formation. This phenomenon appears when 
recurrent demyelination and re-myelination of peripheral nerves occurs as is seen 
in several human diseases like diabetic neuropathy and CMT [17]. The second 
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If clear signs of both demyelination and axonal loss are observed, the disease is 
classified as an intermediate form of CMT and referred to as ‘Dominant 
Intermediate’ or ‘Recessive Intermediate’ CMT (DI- or RI-CMT) [17]. If only 
motor neurons and their axons are affected and thus the sensory signs are absent 
both clinically and electrophysiologically, the disease is referred to as ‘distal 
Hereditary Motor Neuropathy’ (distal HMN) [19]. CMT can be further subdivided 
according to the inheritance pattern and the underlying gene defect. Table 1 gives 
an overview of all CMT subtypes. 

Table 1: Overview of different forms of CMT with the associated locus/gene(s) and OMIM 
reference number 

 OMIM number Locus Associated gene Reference(s) 

CMT1 (dominant & demyelinating)  

CMT1A 118220 17p12 PMP22 [5, 6, 21] 

CMT1B 118200 1q23.3 MPZ [238, 239] 

CMT1C 601098 16p13.13 LITAF [240] 

CMT1D 607678 10q21.3 EGR2 [241] 

CMT1E 118300 
17p12 
1q23.3 

PMP22 
MPZ 

[242] 

CMT1F 607734 8p21.2 NEFL [243] 

CMT1 --- 14q32.1 FBLN5 [244] 

CMT4 (recessive & demyelinating)  

CMT4A 214400 8q13-q21.1 GDAP1 [101] 

CMT4B1 601382 11q22 MTMR2 [84] 

CMT4B2 604563 11p15.4 SBF2/MTMR13 [89] 

CMT4C 601596 5q23 KIAA1985 (SH3TC2) [245] 

CMT4D 601455 8q24.3 NDRG1 [246] 

CMT4E 605253 10q21.1-10q22.1 EGR2 [241] 

CMT4F 145900 19q13.2 PRX [247] 

CMT4G 605285 10q23.2 HK1 [248] 

CMT4H 609311 12p11.21 FGD4 [249] 

CMTX (X-linked)  

CMTX1 302800 Xq13.1 GJB1/Cx32 [250] 

CMTX2 302801 Xp22.2 Unknown [251, 252] 

CMTX3 302802 Xq26 Unknown [253] 

CMTX4 310490 Xq24-q26.1 AIFM1 [254] 

CMTX5 311070 Xq22.3 PRPS1 [255] 
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Table 1: contd.... 

DI-CMT (dominant intermediate)  

CMT DIA 606483 10q24.1-q25.1 Unknown [256] 

CMT DIB 606482 19p13.2 DNM2 [257] 

CMT DIC 608323 1p35.1 YARS [74] 

CMT DID 607791 1q23.3 MPZ [258] 

CMT DIE 614455 14q32.33 INF2 [71] 

RI-CMT (recessive intermediate)  

CMT RIA 608340 8q21.11 GDAP1 [259] 

CMT RIB 613641 16q23.1 KARS [260] 

CMT2 (dominant axonal)  

CMT 2A2 609260 1p36.22 MFN2 [96] 

CMT 2B 600882 3q21.3 RAB7 [108] 

CMT 2C 606071 12q24.11 TRPV4 [261] 

CMT 2D 601472 7p14.3 GARS [73] 

CMT 2E 607684 8p21.2 NEFL [57] 

CMT 2F 606595 7q11.23 HSPB1 [262] 

CMT 2G 608591 12q12-13.3 Unknown [263] 

CMT 2I 607677 1q23.3 MPZ [264] 

CMT 2J 607736 1q23.3 MPZ [265] 

CMT 2K 607831 8q21.1 GDAP1 [105] 

CMT 2L 608673 12q24.3 HSPB8 [266, 267] 

CMT 2M 606482 19p13.2 DNM2 [268] 

CMT 2N 613287 16q22.1 AARS [75] 

CMT 2O 614228 14q32.31 DYNC1H1 [47] 

CMT 2P 614436 9q33.3 LRSAM1 [269] 

CMT 2 --- 10p13-14 DHTKD1 [270] 

CMT 2 --- 11p11-11q13.3 BSCL2 [271] 

CMT2 (recessive axonal)  

CMT 2B1 605588 1q22 LMNA [272, 273] 

CMT 2B2 605589 19q13.33 MED25 [274, 275] 

CMT 2H 607731 8q13-q21.1 GDAP1 [276] 

CMT 2K 607831 8q13-q21.1 GDAP1 [277] 

CMT 2B5 --- 8p21.2 NEFL [278] 

AR-CMT 608634 7q11.23 HSPB1 [279] 

CMT 2P 614436 9q33.3 LRSAM1 [269] 
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All known forms of CMT are characterized by Mendelian inheritance and 
complete penetrance although the severity and the extent of the disease can vary 
between affected members of the same family [16]. Autosomal dominant forms 
account for 90% of all CMT cases reported in Northern Europe, the United 
Kingdom (UK) and the United States (US), but X-linked inheritance is also 
observed [17]. Approximately 80% of the cases are classified as CMT1, while 
20% of patients are categorized as CMT2 [20]. Other forms of CMT are 
considered to be rare. CMT is known as a genetically heterogeneous disorder and 
thus far, over 50 different genes have been associated with CMT (Fig. 2 and Table 
1) [17, 18]. 

13.2.2. Molecular Mechanisms Causing Charcot-Marie-Tooth disease and 
Hereditary Motor Neuropathy 

13.2.2.1. Gene Mutations Affecting Myelination of Peripheral Nerves 

Mutations in a number of genes that play a role in myelination of peripheral 
nerves by Schwann cells are found to cause different subtypes of CMT. These 
genes include ‘Peripheral Myelin Protein 22’ (PMP22), ‘Myelin Protein Zero’ 
(MPZ), ‘Early Growth Response 2’ (EGR2), ‘N-myc Down-Regulated Gene-1’ 
(NDRG1), ‘Periaxin’ (PRX) and ‘Connexin-32’ (Cx32 or GBJ1). We will discuss 
their normal function as well as possible pathogenic mechanisms. 

In 50% of all CMT cases the underlying genetic defect is an intra-chromosomal 
duplication of a region containing the PMP22 gene [5, 6]. However, not only 
duplications but also point mutations in PMP22 have been reported to cause 
autosomal dominant CMT1A [21]. PMP22 is mainly expressed in Schwann cells 
and plays a role in formation and maintenance of the myelin sheets [22]. More 
insight into the pathogenic mechanism came from two CMT1A mouse models 
harboring spontaneous heterozygous mutations in endogenous Pmp22: Trembler 
(Tr) mice expressing p.G150D Pmp22 and Trembler J (Tr-J) mice with a p.L16P 
mutation in Pmp22 [23, 24]. Malfunctioning of myelinating Schwann cells can 
have a deleterious effect on peripheral nerve axons. In Tr mice, demyelination 
decreased neurofilament phosphorylation but increased neurofilament density, 
leading to a decrease of both slow axonal transport and axon diameter [25]. 
Moreover, demyelination also affected the microtubule cytoskeleton [26]. The 
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microtubules in peripheral axons of Tr mice appeared unstable and the 
composition and phosphorylation of microtubule-associated proteins was altered 
[26]. In addition, Schwann cells of Tr-J mice displayed an up-regulated 
endosomal-lysosomal pathway in combination with the presence of Pmp22-
containing aggregates [27, 28]. 

PMP22 is known to interact with MPZ that mediates membrane adhesion in 
myelin sheaths and this interaction is also required for proper myelination [29]. 
Interestingly, mutations in MPZ can not only cause demyelinating CMT 
(CMT1B), but can also be the underlying gene defect of axonal CMT (CMT2I and 
CMT2J) or DI-CMT [30]. It is proposed that a change in PMP22 expression 
levels leads to a disturbance in the balance of PMP22/MPZ levels causing myelin 
abnormalities [31]. 

One of the factors regulating the expression of PMP22 and MPZ is EGR2. This 
transcription factor is important for myelin development and maintenance by 
Schwann cells of the peripheral nervous system [32]. Moreover, EGR2 controls 
the expression of a large number of myelin-associated genes [33]. Mutations in 
EGR2 can result in dominant or recessive demyelinating CMT (CMT1D and 
CMT4E, respectively. Dominant mutations in EGR2 negatively influence the 
activation of myelin-associated genes like PMP22 and MPZ in Schwann cells by 
wild-type EGR2 [34]. 

Autosomal recessive mutations in NDRG1 are the underlying cause of CMT4D or 

HMSN-Lom (HMSN-L). NDRG1 is highly expressed in the cytoplasm of 

Schwann cells but is not detected in motor and sensory neurons [35]. The exact 

physiological function of NDRG1 is not yet fully understood. NDRG1 was linked 

to a number of cellular processes. For instance, through identification of its 

interaction partners, apolipidproteins APO-AI and APO-AII, NDRG1 would be 

implicated in cellular trafficking of lipids, reverse cholesterol transport but also 

endosomal recycling [36, 37]. NDRG1 is present at early stages of myelin 

degradation but is depleted at the end of this process [35]. Involvement of 

NDRG1 in myelin maintenance is further supported by the phenotype of Ndrg1 

deficient mice. These mice exhibit normal myelination of sciatic nerves shortly 
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after birth, while later in life demyelination and degeneration of peripheral nerves 

becomes apparent [38, 39]. Despite myelin abnormalities, Ndrg1-deficient mice 

do not fully replicate human CMT4D suggesting that the pathogenic mechanism 

of mutant NDRG1 is not simply a ‘loss-of-function’. 

Another protein involved in proper myelination of the peripheral nerves is 
periaxin (encoded by PRX). This protein is expressed at the surface of Schwann 
cells and is part of the dystroglycan complex through its interaction with 
‘Dystrophin-Related Protein 2’ (DRP2) [40]. The PRX-DRP2 interaction is 
responsible for linking the basal lamina of the extracellular matrix to the 
cytoskeleton of Schwann cells [40, 41]. Mutations in PRX give rise to autosomal 
recessive demyelinating CMT (CMT4F) and Déjèrine-Sottas neuropathy, a 
subtype of CMT also named HMSN type III. It is proposed that mutations 
generate a truncated protein leading to a ‘loss-of-function’ mechanism with 
disruption of the PRX-DRP2 complex [42]. 

Closely packed pairs of transmembrane channels, the connexons, form gap 

junctions consisting of different connexins. Connexins mediate and regulate the 

exchange of ions and small metabolites between adjacent cells. More than 400 

different mutations in CX32, also named ‘Gap-Junction Beta-1’ (GJB1), can be 

the genetic cause of both demyelinating and axonal X-linked forms of CMT 

(CMTX1). The disease course in affected males can be severe while heterozygous 

females are usually less affected or are only carriers [43]. Different types of 

mutations have been described (nonsense, missense, frame-shift or deletions) all 

leading to a ‘loss-of-function’ of CX32. However, the pathogenic mechanism can 

be different. Some mutations lead to non-functional channels or abolish the CX32 

expression, while others cause retention of CX32 in the endoplasmic reticulum 

(ER) or Golgi apparatus or an abnormal cellular distribution of CX32 thereby 

altering the biophysical functions or the trafficking of the protein within the cell 

[41, 43]. Cx32-deficient mice closely mimic the CMTX1 phenotype seen in 

humans [44, 45]. Interestingly, this phenotype could be rescued by the Schwann 

cell-specific expression of Cx32, indicating a Schwann cell based pathogenic 

mechanism [46]. 
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13.2.2.2. Gene Mutations Affecting Cytoskeletal Structures and Proper Motor 
Protein Functioning 

Not only genes composing the cytoskeleton or nuclear membrane are mutated in 
CMT, but also mutations in genes encoding motor proteins and molecular 
chaperones that bind these cytoskeletal components are the underlying cause of 
HMSN. Here we discuss both normal function and possible pathogenic 
mechanisms regarding ‘Dynein, Cytoplasmic 1, Heavy chain 1’ (DYNC1H1), 
Dynactin subunit-1 (DCTN1), ‘Lamin A/C’ (LMNA), ‘Neurofilament Light-
chain’ (NEFL), ‘small Heat Shock Proteins B1/B3/B8’ (HSPB1/HSPB3/HSPB8) 
and ‘Inverted Formin 2’ (INF2). 

Mutations in DYNC1H1 lead to axonal CMT, while mutations in the p150glued 
subunit of dynactin give rise to distal HMN [47, 48]. The dynactin-complex is 
required for microtubule-based retrograde axonal transport of vesicles and 
organelles, mediated by dynein [49]. Binding assays show a reduced binding of 
mutant dynactin-1 to microtubules leading to axonal transport deficits [48]. 

Furthermore, genes composing the cytoskeleton or the nuclear membrane have 
also been implicated in CMT. Lamin A/C (LMNA) belongs to the family of 
lamins constituting the nuclear lamina, important for the structure of the nuclear 
envelope and these proteins also interact with chromatin [50, 51]. Autosomal 
recessive mutations give rise to CMT2B1 in humans [52]. A knock-in mouse 
model homozygous for p.R298C LMNA does not develop a peripheral 
neuropathy but showed downregulation of LMNA and upregulation of Pmp22 
specifically in sciatic nerve [53]. In contrast, targeted disruption of Lmna in mice 
caused a reduction in axon density and an increase in the axon diameter and the 
number of non-myelinated axons [54]. As a consequence, these mice can serve as 
a model for mutant LMNA induced CMT2 [54]. Interestingly, lamin B2, an 
intermediate filament protein, is locally translated in axons while it is also 
associated with the nuclear membrane [55]. Inhibition of the local axonal 
translation of lamin B2 leads to axonal degeneration and disruption of 
mitochondria as lamin B2 is also associated with mitochondria [55]. 

Mutations in another component of the intermediate filaments, NEFL, can lead to 
the development of demyelinating, axonal and intermediate forms of CMT 
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depending on the underlying mutations [56, 57]. Studies involving CMT2-causing 
mutations in NEFL showed disruption of neurofilament assembly and 
neurofilament aggregation but also mitochondrial dysfunction has been reported 
[58, 59]. Co-expression of wild-type HSPB1 with mutant NEFL leads to less 
pronounced aggregation and decreases mutant NEFL-induced loss of the motor 
neuron survival [58]. 

Mutations in HSPB1 lead to the development of CMT2 or distal HMN. CMT2-
causing mutant HSPB1 also disrupts NEFL assembly and leads to the formation 
of NEFL- and HSPB1-containing aggregates [60]. HSPB1, primarily known as a 
molecular chaperone, belongs to the family of small heat shock proteins (small 
HSPs) but also interacts with components of the cytoskeleton including subunits 
of microtubules, intermediate filaments and microfilaments [61]. Some mutant 
HSPB1s displayed increased binding to tubulin and these microtubules showed 
increased resistance to cold- and nocodazole-induced depolymerization in the 
presence of mutant HSPB1 [62, 63]. Moreover, a transgenic mouse model for 
CMT2 and distal HMN over-expressing mutant HSPB1 showed decreased 
acetylated tubulin levels in peripheral nerves together with axonal transport 
defects of mitochondria [64]. Furthermore, also dominant mutations in other 
family members of the HSPs, including HSPB3 and HSPB8, lead to the 
development of CMT or distal HMN [65, 66]. Missense mutations in HSPB8 
cause neurite degeneration in primary motor neuron culture although no signs of 
apoptosis were present. Fibroblasts from distal HMN patients carrying HSPB8 
mutations show aggregation of mutant HSPB8 together with a reduced 
mitochondrial membrane potential [67, 68]. Interestingly, overexpression of 
mutant HSPB8 in a motorneuron-like cell line impaired autophagy. 
Autophagosomes co-localized with protein aggregates in this cell line but failed to 
fuse with the lysosomes. These defects in autophagy were also observed in 
fibroblasts from distal HMN patients with mutations in HSPB8 [69]. 

INF2 is involved in actin dynamics as it mediates actin filament assembly by 
accelerating actin nucleation and elongation at the barbed end through its ‘Formin 
Homology 2’ (FH2) domain. The C-terminal region of INF2 is required for 
depolymerization of actin filaments [70]. An autosomal dominant intermediate 
form of CMT can also be associated with renal diseases like focal segmental 
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glomerulosclerosis and this particular phenotype is caused by mutations in INF2 
[71]. Interestingly, INF2 is strongly expressed in podocytes and Schwann cells 
and interacts with an actin-regulating Rho-GTPase, CDC42, and myelin and 
lymphocyte protein (MAL) [72]. The aforementioned proteins are all involved in 
myelin formation and maintenance. Mutant INF2 causes disruption of cytoskeletal 
organization, enhanced binding with MAL and mislocalization of INF, MAL and 
CDC42 [71]. 

13.2.2.3. Gene Mutations Altering RNA Metabolism 

Mutations in genes encoding ‘Aminoacyl-tRNA Synthetases’ (ARS), including 
‘Tyrosine-tRNA Synthetase’ (YARS), ‘Lysine-tRNA Synthetase’ (KARS), 
‘Alanine-tRNA Synthetase’ (AARS) and ‘Glycyl-tRNA Synthetase’ (GARS), 
cause autosomal dominant forms of CMT including DI-CMT and CMT2 but also 
RI-CMT [73-75]. 

These enzymes catalyze the binding of tRNA molecules with their cognate amino 
acids, a process crucial for proper RNA translation into proteins [76]. In addition, 
mutations in the mitochondrial isoform of ‘Aspartyl-tRNA Synthetase’ (DARS) lead 
to an axonal neuropathy in some patients [77]. Some mutations in GARS and YARS 
affect the enzymatic activity although it is still under debate whether this is part of 
the pathogenic mechanism since it is not the case for all mutations [78]. An N-Ethyl-
N-nitroso-ureum (ENU)-induced mouse model for CMT2 carrying an endogenous 
mutation in Gars did not show a reduced enzymatic activity of Gars [78]. One study 
suggested that the underlying defect is a dose-dependent toxic ‘gain-of-function’ 
since overexpression of wild-type GARS could not rescue the dominant neuropathy 
in two mutant Gars-induced mouse models [79]. It has been shown that endogenous 
GARS localizes in granules present in the nucleus. In addition, smaller GARS-
containing granules was also found in the cell body and in neurites of mouse motor 
neuron cell lines [80]. Interestingly, some mutations in GARS and YARS lead to 
different protein localization compared to wild-type protein [74, 80]. 

13.2.2.4. Gene Mutations Affecting Membrane Trafficking 

‘Lipopolysaccharide-Induced Tumor Necrosis Factor-Alpha Factor’ (LITAF) - also 
named ‘Small Integral Membrane Protein of Lysosome/late Endosome’ (SIMPLE) - 
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is a potential E3 ubiquitin ligase of the RING finger motif-containing E3 subfamily. 
Patients carrying dominant mutations in LITAF develop demyelinating CMT 
(CMT1C) [81]. A Schwann cell based pathogenic mechanism was proposed since 
LITAF is highly expressed in Schwann cells although the proper function of LITAF 
remains elusive [41]. LITAF has been detected in the plasma membrane, Golgi 
apparatus and lysosomal membrane [41]. LITAF interacts with ‘Neural Precursor 
Cell Expressed, Developmentally Down-regulated 4’ (NEDD4), an E3 ubiquitin 
ligase that is responsible for the regulation of lysosomal degradation of membrane 
proteins by mono-ubiquitination. Furthermore, LITAF interacts with ‘Tumor 
Susceptibility Gene 101’ (TSG101) that acts downstream of NEDD4 and is involved 
in lysosomal sorting of ubiquitinated proteins into multivesicular bodies and 
subsequent degradation [82]. How mutations lead to the development of CMT1C is 
currently unclear but it has been shown that some of the mutations do not affect the 
interaction with NEDD4 and TSG101, nor lead to an altered subcellular localization 
[82]. However, recently it was shown that CMT-causing mutations in SIMPLE 
impair the signaling and trafficking of ErbB (epidermal growth factor receptor) by a 
dominant-negative mechanism resulting in a prolonged ERK1/2 signaling 
downstream of the ErbB receptors [83]. 

Autosomal recessive mutations in the genes encoding ‘Myotubularin-related 
Proteins 2 and 13’ (MTMR2 and MTMR13) lead to phenotypically similar 
subtypes of CMT (CMT4B1 and CMT4B2, respectively) [84]. The substrates of 
MTMR2 and MTMR13 are phosphatidyl-inositol 3-phosphate (PI-3-P) en 
phosphatidyl-inositol 3,5-bisphosphate (PI-3,5-P2), respectively and these 
phospho-inositides are regulators of endocytosis, membrane homeostasis and 
vesicular transport [41]. MTMR2 is the enzymatic active family member and 
mutations lead to a reduced phosphatase activity, while wild-type MTMR13 is 
functionally inactive [85]. Mtmr2-null mice develop a progressive neuropathy and 
Schwann cell-specific deletion also results in myelin abnormalities. These 
findings indicate a Schwann-cell based mechanism underlying the disease and are 
in line with the human phenotype [86]. Another binding partner of MTMR2 is 
NEFL which, as described above, also causes CMT [87, 88]. 

SH3TC2/KIAA1985 encodes the ‘SH3 Domain and Tetratricopeptide Repeat-
containing Protein 2’ which is highly expressed in brain, spinal cord and 
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peripheral nerve Schwann cells. This protein is anchored to the plasma membrane 
and also localizes to the perinuclear endocytotic compartment, more specifically 
in early endosomes, late endosomes and clathrin-coated vesicles close to the trans-
Golgi network. Autosomal mutations have been reported to be the underlying 
gene defect of CMT4C [89]. Missense mutations affect the localization in 
endosomes and the plasma membrane, while nonsense mutations do not alter the 
intracellular distribution. Neuropathy-causing mutations disrupting the interaction 
with the small guanosine triphosphatase Rab11 link SH3TC2 to endosomal 
recycling of internalized membranes and receptors back to the plasma membrane 
[90]. 

The small GTPase ‘Ras-related Protein Rab-7’ (RAB7) plays an important role in 
the endocytotic trafficking by controlling the conversion of late endosomes to 
lysosomes [91]. It is also involved in the long-distance retrograde transport of 
endosomal vesicles containing several neurotrophins [92]. Mutant RAB7 
disrupted the neurite outgrowth in neuroblastoma cell lines and rat primary 
neurons [93]. Furthermore, mutations in RAB7 impaired the GTPase activity and 
increased the nucleotide exchange rate, but slowed down the hydrolysis of GTP 
[93-95]. Interestingly, HSAN type V and HSAN type IV are caused by mutation 
in β-nerve growth factor (β-NGF) and its receptor TrkA which are transported by 
the RAB7-mediated endocytotic sorting. 

13.2.2.5. Gene Mutations Affecting Mitochondrial Function 

Mutations in the genes encoding ‘Mitofusin-2’ (MFN2) and ‘Ganglioside-induced 
Differentiation-associated Protein-1’ (GDAP1) can give rise to distinct subtypes 
of CMT. Moreover, dominant mutations in MFN2 are the most common cause of 
CMT2 [96]. 

MFN2 is involved in mitochondrial fusion and regulation of mitochondrial 
oxidative function and also interacts with the Miro/Milton complex that serves as 
an adaptor for mitochondria to link them with motor proteins [97]. Mutant MFN2 
disrupts axonal transport of mitochondria in cultured dorsal root ganglion (DRG) 
neurons that overexpress mutant MFN2 [98]. Furthermore, nervus suralis biopsies 
of patients carrying mutations in MFN2 are characterized by an accumulation and 
degeneration of mitochondria [98, 99]. Fibroblasts from patients showed a 
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mitochondrial energy coupling defect with a reduced mitochondrial membrane 
potential, while ATP production was unaffected [100]. 

GDAP1 also plays a role in mitochondrial fusion and fission. Recessive mutations 
lead to demyelinating or intermediate CMT (CMT4A and RI-CMT), while 
dominant mutation give rise to CMT2K [101-104]. Dominant mutations lead to a 
decrease in mitochondrial respiratory chain complex I activity and decreased ATP 
production in patient-derived fibroblasts. Defects in mitochondrial morphology 
were also observed [105]. 

13.3. HEREDITARY SENSORY AND AUTONOMIC NEUROPATHIES 

‘Hereditary Sensory Neuropathies’ (HSN), also known as ‘Hereditary Sensory 
and Autonomic Neuropathies’ (HSAN) are a group of clinically and genetically 
heterogeneous disorders that predominantly affect the axons of sensory and 
autonomic nerves. However, varying motor involvement can be present making 
the distinction between CMT and HSAN sometimes difficult [106]. As an 
example, a large American family displaying features of an inherited axonal 
neuropathy was classified as CMT2B with the locus assigned to the gene 
encoding RAB7 [107, 108]. However, the presence of ulcerations and 
amputations as a consequence of sensory deficits argues in favor of the 
classification as HSAN type I [109]. 

Typical symptoms are altered pain and temperature sensation leading to chronic 
skin ulcerations on feet and hands [110]. Severe complications consist of 
osteomyelitis, spontaneous fractures, neuropathic arthropathy and the necessity of 
amputation of the affected limb [110, 111]. Autonomic deficits are variable, often 
unique to a HSAN subtype and can include altered sweating (hyperhidrosis or 
anhidrosis), cardiovascular dysregulation, postural hypotension and 
gastrointestinal motility problems [112]. 

The first classification of HSAN - made by Dyck and colleagues before the first 
gene defects were discovered - was based on the age of onset, mode of inheritance 
and the degree of sensory and/or autonomic involvement, resulting in five main 
subtypes: HSAN type I to V (Fig. 3) [2]. HSAN type I can be distinguished from 
the other subtypes by its autosomal dominant inheritance pattern, a juvenile or 
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adulthood disease onset and minor autonomic deficits [113]. In some cases, motor 
symptoms are apparent making this form very similar to CMT as described 
earlier. The other subtypes (HSAN type II – V) are inherited in an autosomal 
recessive manner and typically show congenital or early-in-life disease onset 
[113]. HSAN type II, also referred to as congenital sensory neuropathy, has a very 
low worldwide prevalence [113]. There is predominantly sensory involvement 
with loss of pain, temperature and touch sensation and typical complications like 
auto-amputations, ulcerations and loss of deep tendon reflexes. The earliest 
problems are due to autonomic disturbances like gastro-esophageal reflux, feeding 
problems and apnea [110, 113]. HSAN type III, also known as ‘Familial 
Dysautonomia’ (FD) or Riley-Day syndrome is predominantly autonomic and 
extremely rare in most populations. However, it appears very frequently in 
Ashkenazi Jews where 1 in 30 people are FD carriers and an estimated disease 
incidence of 1 in 3600 births [114, 115]. Patients typically suffer from a 
‘dysautonomic crisis’ that is characterized by episodes of nausea and vomiting, 
cardiovascular dysregulation such as hypertension and tachycardia, increase in 
gastrointestinal secretions and negative personality changes. These signs appear in 
about 40% of the FD patients and can occur with different intervals [113]. 
Congenital insensitivity to pain with anhidrosis (CIPA) is another description for 
HSAN type IV with a true sensory and autonomic involvement and with several 
hundreds of reported cases [113]. HSAN type V is phenotypically very similar to 
HSAN type IV and differs as patients suffering from the latter displays anhidrosis 
and mental retardation [110, 116]. Recently, another subtype has been described, 
HSAN type VI, with symptoms very similar to familial dysautonomia although 
the disease course is more severe [112]. 

Common to all subtypes of HSAN is the complete penetrance although the disease 
expression can vary considerably. Moreover, the lack of axon flare in response to 
intradermal histamine injection is a typical feature in most HSAN patients and is 
therefore used as a diagnostic tool [112, 113]. During this test, a dosage of 
histamine phosphate is injected intradermally which leads in healthy patients to a 
bright red histamine flare due to capillary vasodilatation. This response is due to 
an axon reflex within dermal nerves and is dependent on unmyelinated C-fibers. 
However, in some HSAN type II and HSAN type V patients having largely 
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methylation, motor proteins and transcriptional elongation. This diversity hampers 
the search for a general pathogenic mechanism underlying the different HSAN 
subtypes. An overview of the known causative genes is shown in Fig. 3. 

Heterozygous missense mutations in SPTLC1 and SPTLC2 (encoding ‘Serine 
Palmitoyltransferase Long Chain’ subunit 1 and 2) cause HSAN type IA and 
HSAN type IC and these patients are phenotypically indistinguishable [117-120]. 
SPTLC1 and SPTLC2 encode subunits of the ‘Serine Palmitoyltransferase’ (SPT) 
which catalyzes the first and rate-limited step in the biosynthesis of sphingolipids 
by condensation of L-serine with palmitoyltransferase-CoA [121]. No mutations 
in another subunit of SPT (SPTLC3) have been identified [119]. So far, five 
mutations in SPTLC1 have been reported and all lead to a reduced in vitro 
enzymatic SPT activity, although not affecting the de novo sphingolipid 
biosynthesis and cellular sphingolipid content [122]. Mutant SPTLC1 or SPTLC2 
lead to a shift in substrate specificity from L-serine to L-alanine or L-glycine 
generating two toxic deoxysphingolipids. These metabolites accumulate in the cell 
due to the lack of a hydroxyl group and the subsequent failure of degeneration 
[123, 124]. Elevated levels of these toxic deoxysphingolipids were also detected 
in plasma of HSAN type I patients and in mice expressing mutant SPTLC1. These 
data suggest that reversing the change in substrate specificity of SPT could be a 
possible therapeutic strategy. 

Mutations in ‘Atlastin-1’ (ATL1) are a frequent cause of ‘Hereditary Spastic 
Paraplegia’ (HSP) [125]. HSP is characterized by degeneration of upper motor 
neurons, muscle weakness and spasticity of the lower limbs [126, 127]. In some 
cases, mutations in ATL1 are also associated with a sensory neuropathy (HSAN 
type ID). The HSAN causing-mutations are scattered throughout ATL1 and no 
clear correlation between the localization of the mutations and the resulting 
phenotype (HSAN type I or HSP) could been found [119]. ATL1, a dynamin-like 
GTPase, is mostly localized to vesicular tubular complexes and cis-Golgi 
cisternae and mutations are known to interfere with vesicle trafficking in 
ER/Golgi and in Golgi morphogenesis [128, 129]. In vitro studies showed that 
mutations in ATL1 have a dominant-negative effect on the GTPase activity but 
further research is needed to elaborate the pathogenic mechanism(s) [130]. 
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HSAN type IE is often associated with early-onset dementia and sensorineuronal 
hearing loss resulting from mutations in the DNA-methyltransferase 1 (encoded 
by DNMT1) [131]. Missense mutations in DNMT1 are localized in the DNA-
targeting sequence domain responsible for the chromatin binding during the S-
phase and the maintenance of this binding during G2 and M phase of mitosis. 
Mutant DNMT1 has been shown to possess decreased enzymatic activity but also 
to be misfolded causing the protein to be retained in the cytoplasm, premature 
degradation and therefore failure of binding to the heterochromatin during M 
phase and after the S phase. In addition, genomic DNA from patients showed 
global hypomethylation although local hypermethylation was also present [131]. 

The first causative mutations for HSAN type II were discovered in HSN2, a gene 

consisting of one exon with a neuronal-specific expression especially in DRG and 

sciatic nerves [132]. Later on, it was discovered that this gene resides in the intron 

8 of WNK1 and is expressed as a tissue-specific isoform of the serine/threonine-

protein kinase WNK1 [133]. WNK1 belongs to the family of serine/threonine 

kinases that regulate the sodium, potassium and chloride homeostasis and is also 

able to downregulate TRPV4 expression, an ion channel responsible for 

temperature, osmo- and mechanosensation [134, 135]. Interestingly, patients 

heterozygous for WNK1 mutations display an increased cold/heat and pain 

response [136]. A yeast-two-hybrid screen identified kinesin-like protein, KIF1A, 

as an interaction partner of WNK1 [133]. Additional genome-wide homozygosity 

mapping and subsequent sequencing revealed that truncations in KIF1A are also 

responsible for HSAN type IIC in humans [137]. KIF1A, also known as ‘Axonal 

Transport of Synaptic Vesicles’ (ATSV) is a molecular motor protein responsible 

for the anterograde transport of synaptic vesicles. The most common mutation 

occurs in an alternative splice variant of KIF1A expressed specifically in neurons 

[137]. The pathogenic mechanism of KIF1A mutations is poorly understood. It 

was suggested that KIF1A could be responsible for the transport of WNK1 since 

both proteins interact. However, knock down of KIF1A did not affect the 

subcellular localization of WNK1 in cultured DRG neurons. Conversely, it was 

suggested that WNK1 plays a role in the unloading of KIF1A transported vesicles 

as the expression of both proteins seems to be enriched at the axon tip [137]. 
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Mutations in FAM134B, part of a family of three genes (FAM134A, FAM134B, 
FAM134C) give rise to HSAN type IIB. At present, not much is known about the 
normal function of the gene products or the pathogenic mechanism behind these 
mutations [138, 139]. FAM134B is highly expressed in sensory and autonomic 
ganglia and is localized to the cis-Golgi. Moreover, knockdown of FAM134B 
induced apoptosis in primary dorsal root ganglion neurons and caused structural 
changes to the Golgi apparatus [139]. 

HSAN type III, also known as ‘Familial Dysautonomia’ (FD) or Riley-Day 
syndrome is in most cases caused by mutations in IKBKAP (‘IκB Kinase 
Complex-associated Protein’ or ‘Elongator Complex Protein 1’, ELP1) which 
plays a role in the transcriptional elongation [140, 141]. The most common 
mutation, accounting for 99.5% of all cases, causes a splice defect at the 5’ splice 
site of intron 20 leading to the skipping of exon 20 although varying levels of 
wild-type IKAP are still expressed. This splice defect occurs tissue-specific since 
in lymphoblasts and fibroblasts of affected patients the wild-type RNA is 
primarily found, while the mutant RNA is more abundant in brain tissue [141]. As 
this splice mutation explains the majority of all FD cases, it forms the basis for 
rapid screening of possible carriers in the population. Moreover, the varying 
expression levels of wild-type IKAP argue in favor of increasing the expression 
levels of IKAP as a therapeutic strategy (see below) [141]. Recently, the first 
mouse model for FD was created and it was shown that varying mutant IKAP 
expression levels can modulate the disease severity of FD [142]. 

Missense, nonsense, frame-shift and splice-site mutations in NTRK1 

(‘Neurotrophic Tyrosine Kinase Receptor, type 1’), encoding the high-affinity 

nerve growth receptor TrkA have been reported as the cause of HSAN type IV. 

The mutations are scattered along TrkA and the corresponding pathogenic 

mechanisms widely differ, but all point to defects in molecular signaling [110]. 

Interestingly, one of the TrkA ligands, β-NGF, which plays a role in development 

and function of nociceptive and sympathetic sensory neurons is also involved in 

HSAN [143]. Mutations in β-NGF lead to HSAN type V in humans. Moreover, 

mutations in TrkA have also been reported in a family diagnosed with HSAN type 

V [144]. 
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Recently, a new subtype of HSAN was reported [112]. Within a large 
consanguineous family from Ashkenazi Jewish origin three children displayed 
clinical features of familial dysautonomia although the disease course and 
outcome was more severe [112]. Dysautonomic symptoms including absent 
tearing, blotching, feeding difficulties and absent deep tendon reflexes were 
present. Additional contractures were also described together with severe 
psychomotor retardation and early death. This new form of HSAN is now referred 
to as lethal autonomic sensory neuropathy. Homozygosity mapping revealed that 
the disease was caused by a mutation in the DST gene which encodes a 
cytoskeletal linker protein dystonin. Dystonin belongs to the family of plakin 
proteins, known for the linkage of cytoskeletal proteins (intermediate filaments, 
actin microfilaments and microtubuli) [145]. The frame-shift mutation leads to the 
generation of an unstable mRNA transcript and is predicted to cause the loss of 
part of the C-terminus of the dystonin protein [112]. Further research is needed to 
explore how this frame-shift mutation leads to neurodegeneration of the peripheral 
nervous system. 

13.3.2. Therapeutic Interventions to Treat Inherited Peripheral Neuropathies 

To date, treatment of inherited peripheral neuropathies only consists of supportive 
measures and is in most cases insufficient to ease all the symptoms. CMT patients 
can rely on rehabilitation, orthics, symptomatic drug therapy of pain and the 
surgical corrections of foot and hand deformities [145-147]. Patients suffering 
from HSAN need supportive treatment of the ulcerations, osteomyelitis and 
amputations. Genetic testing is applied in case of familial dysautonomia since 
99.5% of all cases are caused by a splice-site mutation in IKBKAP. This FD 
carrier screening has a great influence on the number of patients suffering from 
FD as a large number of affected pregnancies are avoided or terminated in early 
phase [148]. 

Most research and clinical studies are focused on CMT1A pathology caused by 
PMP22 gene duplication. The most commonly used models are transgenic 
animals, either mice or rats, overexpressing PMP22. These animal models 
recapitulate peripheral demyelination, axonal loss and subsequent muscle atrophy 
as seen in CMT1A patients carrying the PMP22 mutation [149, 150]. 
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Progesterone promotes myelination in the peripheral nervous system and 
stimulates the PMP22 and MPZ expression in Schwann cell cultures [151-153]. 
Therefore, the progesterone receptor could be a potential therapeutic target in 
CMT1A. Treatment of PMP22 overexpressing rats with a progesterone antagonist 
(onapristone) leads to a clinical and neuropathological improvement of the 
CMT1A phenotype and had a protective effect on axonal loss [154, 155]. 
However, onapristone is known to be too toxic to treat humans [156]. As a 
consequence, the development of new progesterone antagonists with less toxic 
side effects in humans should be considered. 

Ascorbic acid is well known for its effects on the formation of the collagen- and 
laminin-containing extracellular matrix in Schwann cell/DRG co-cultures and 
promotes Schwann cell-dependent myelination [157-160]. In vivo experiments 
confirmed that ascorbic acid promotes myelination of the PNS. On the other hand, 
mice in which the sodium-dependent vitamin C transporter-2 is disrupted 
develops sensorimotor impairment due to hypo-myelination and collagen 
formation defects in the peripheral nerves by lowered uptake of ascorbic acid 
[161]. Administration of ascorbic acid to PMP22-overexpressing mice partially 
corrects their motor defects through re-myelination of peripheral axons combined 
with a decrease in the PMP22 expression levels [162]. Despite these promising 
results, three clinical trials have failed to prove beneficial effects of ascorbic acid 
supplementation to CMT1A patients [163-165]. Recently, a large multicenter, 
randomized, double-blind study was conducted and found no evidence that 
ascorbic acid was beneficial for CMT1A patients [166]. 

Neurotrophins belong to a family of growth factors that support survival and 
differentiation of neuronal populations and modulate plasticity of the nervous 
system but also play an important role in the myelination of the peripheral 
nervous system [167, 168]. A member of this family, ‘Neurotrophin 3’ (NT3), 
which is known to promote axonal growth and to inhibit myelination during 
development, has been tested in two different animal models for CMT1A and in 
one pilot clinical trial conducted on CMT1A patients [169]. NT3 administration 
resulted in stimulation of axonal regeneration in both animal models. The pilot 
clinical trial was conducted as a double-blind randomized, placebo-controlled 
study in which eight CMT1A patients intradermally received either placebo or 
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NT3 during 6 months. This treatment increased the number of small diameter 
solitary myelinated fibers in sural nerve biopsies of these patients (considered an 
indication of axonal regeneration) and reduced sensory loss [169]. However, 
further studies are required to assess the mode of action of NT3 on myelination 
and on the peripheral neuropathy in the TrJ mice as administration of exogenous 
NT3 decreased MPZ levels in sciatic nerves of these mice while suppression of 
endogenous NT3 signaling enhanced myelin formation [170]. Tyrosine kinase 
receptor-C (TrkC) is the major target of NT3 while NT3 also binds to another 
member of the same family, tyrosine kinase receptor-B (TrkB). The altered 
neurofilament density and phosphorylation found in TrJ mice suggests the 
involvement of serine/threonine kinase signal transduction. Therefore, agonistic 
antibodies targeting TrkB and TrkC were tested as possible therapeutic strategy 
[25, 169]. Treatment of TrJ mice with these antibodies improved CMAP 
amplitudes, grip strength, regeneration response to injury and the myelination 
defects [169]. 

There is currently no evidence for effective drug therapies for axonal forms of 
CMT. However, our recent study provides some insights into a possible 
therapeutic strategy for CMT2 and distal HMN. Mutant HSPB1 overexpressing 
mice developed key features of human CMT2 and distal HMN dependent on the 
mutation expressed [64]. Overexpression of mutant HSPB1 caused mitochondrial 
transport defects in cultured DRG neurons which was associated with a decrease 
of acetylated tubulin levels in peripheral nerve from symptomatic mutant HSPB1-
expressing mice. Histone deacetylase 6 (HDAC6) is known for its tubulin 
deacetylating activity and its role in autophagy [171]. HDAC6 inhibition using 
small drug-like molecules in mutant HSPB1 mice restored acetylated tubulin 
levels and the axonal transport defects and induced a significant improvement of 
the CMT2 phenotype [64]. These data suggest that HDAC6 inhibitors could be 
used as a possible therapeutic approach for axonal CMT. 

HSAN are very rare disorders limiting the development of a specific drug therapy 
for these patients. Moreover, the incidence of FD is decreasing since genetic 
prenatal diagnosis is available. Carrier testing helps to avoid or to early terminate 
affected pregnancies [148]. On the contrary, in case of HSAN type I and FD 
identification of the specific gene defect and the underlying pathogenic 
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mechanism facilitates the development of a specific drug therapy, which will be 
discussed below. 

HSAN type I is associated with dominant mutations in SPTLC1 or SPTLC2 [117, 
118]. These mutations induce a shift in the substrate specificity of SPTLC1 from 
L-serine to L-alanine leading to the accumulation of toxic deoxysphingolipids 
[123]. It was hypothesized that supplementation of L-serine has beneficial effects 
in the transgenic mouse model for HSAN type I and patients suffering from 
HSAN type I. Transgenic mice expressing mutant (p.C133W) SPTLC1 received 
an L-serine enriched diet which reduced levels of the deoxysphingolipid 
metabolites to wild-type levels. Moreover, motor and sensory performance 
improved in treated animals. Conversely, administration of an L-Alanine enriched 
diet worsened the phenotype of p.C133W SPTLC1-expressing mice [172]. Based 
on these findings, a pilot clinical trial with HSAN type I patients was conducted. 
Fourteen patients all carrying the same p.C133W mutation in SPTLC1 received 
either a low or high dose of L-serine during 10 weeks. In both groups, plasma 
levels showed decreased levels of deoxysphingolipids. Neurological parameters in 
these patients were not examined. However, some patients reported improvements 
in relation to sensation, skin, hair and nail problems [172]. 

In most cases, familial dysautonomia is caused by a homozygous mutation in the 
IKBKAP gene, leading to partial skipping of exon 20 and a tissue-specific 
deficiency of IKAP/ELP1. Recently, it has been shown that kinetin (6-
furfurylaminopurine), a dietary supplement, is able to rescue the splicing defect 
and to increase the expression of IKBKAP protein in FD fibroblasts and 
lymphoblast transformed cell lines. Moreover, animal studies showed that kinetin 
is well absorbed orally and is distributed in blood plasma and in the CNS and that 
it is not a clastogenic agent [173]. Following these promising results, an initial 
clinical trial was conducted in patients homozygous for the most common 
mutation (IV20+6T>C). This trial showed that the drug was well tolerated and 
could alter mRNA splicing in FD patients [173]. 

13.4. ACQUIRED PERIPHERAL NEUROPATHIES 

While inherited peripheral neuropathies are the most common inherited disorder 
of the peripheral nervous system, they only represent a small proportion of 
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neuropathic patients. Acquired peripheral neuropathies are by far more common. 
Over 100 different types of acquired neuropathies have been described, and many 
of them are secondary to other insults (Table 2). 

In this part of the chapter, we will briefly summarize these types and highlight 
some that might share mechanistic commonalities with inherited peripheral 
neuropathies (Table 2). 

Table 2: Overview of the different types of acquired peripheral neuropathies 

Neuropathy associated with Type 

Immunity 

Guillain-Barré Syndrome 
Acquired Chronic Demyelinating Polyneuropathy 
Sensory and Autonomic Neuropathies 
Vasculitic Neuropathies 
Neuropathies associated with Autoimmune Connective Tissue Diseases 
Sarcoidosis 
Idiopathic Perineuritis 
Hypereosinophiilia Syndrome 
Isaac’s Syndrome 

Infections 

Human Immunodeficiency Virus 
Leprosy 
Lyme disease 
Diphtheria 
Human T-lymphotropic Virus-1 
Cytomegalovirus 
Epstein-Barr virus 
Herpes Varicella Zoster virus 
Hepatitis B and C 

Endocrinopathies 

Diabetes mellitus 
Hypoglycemia 
Acromegaly 
Hypothyroidism 

Systemic disease 

Critical illness polyneuropathy 
Uremic neuropathy 
Gastrointestinal diseases 
Liver diseases 
Chronic Obstructive Pulmonary Disease 
Gout 
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Table 2: contd.... 

Malignancies 

Paraneoplastic neuropathies 
Croptygenic sensory or sensorimotor neuropathy 
Neuropathy related to tumor infiltration 
Noninfiltrative neuropathies 
Acquired amyloidosis 
Monoclonal gammopathy 
Bone Marrow transplantation 
Graft-vs-Host disease 

Toxins 

Chemotherapy 
Other medications 
Industrial and environmental agents 
Heavy metal intoxication 

Nutritional deficiencies 

Alcoholic neuropathy 
Vitamin B (thiamine, pyridoxine, cobalamin) 
Folic acid 
Vitamin E 
Postgastrectomy syndromes 
Hypophosphatemia 
Jamaican neuropathy 

13.4.1. Neuropathies Associated with Immunity 

Immune-mediated polyneuropathies comprise a large group of peripheral 

neuropathies including Guillain-Barré syndrome and related disorders including 

‘Acute Motor-Sensory Axonal Neuropathy’ (AMSAN) and ‘Acute Motor Axonal 

Neuropathy’ (AMAN). Other neuropathies associated with immunological 

pathogenesis include ‘Chronic Inflammatory Demyelinating Polyneuropathy’ 

(CIDP), multifocal motor neuropathy, vasculitic neuropathies, neuropathies 

associated with autoimmune connective tissue disease (such as rheumatoid 

arthritis and systemic lupus erythematosus) and sarcoidosis (Table 2). These 

disorders are induced by an immune attack against epitopes located in Schwann 

cells or in the axoplasm depending on the nature (demyelinating or axonal) of the 

neuropathy. Activated macrophage infiltration and complement activation is 

frequently observed [174-176]. 
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‘Guillain-Barré Syndrome’ (GBS) is often referred to by its synonym acute 
inflammatory demyelinating polyradiculopathy, which is a more descriptive name 
for the pathogenic process underlying the phenotype. GBS is the most common 
cause of acute generalized weakness affecting 1-4 per 100,000 annually [177]. 
GBS can occur at any age, with a peak age of onset in the third to fourth decade of 
life [177]. In general, affected humans note numbness and tingling in distal parts 
of both the lower and upper limbs. Progressive muscle weakness is mild but can 
be severe in such an extent that assisted ventilation is required in 30% of the cases 
[177]. GBS usually progresses over a period of 2-4 weeks [177]. Most patients 
gradually recover over several months. Some cases (approximately 5%) die as a 
result of respiratory distress, pulmonary embolism or cardiac arrhythmias [177]. 

Two animal models have been developed that mimic some of the key features of 
GBS. Sensitization of rabbits with ganglioside GM1 or GM1-like lipo-
oligosaccharides of a bacterial Campylobacter strain from GBS patients caused 
binding of anti-GM1 antibodies to the nodes of Ranvier and activation of the 
complement system [178, 179]. These events resulted in the formation of a 
membrane-attack-complex followed by the disappearance of the sodium channel 
cluster at the nodes of Ranvier which is in line with the reduced nerve conduction 
[178, 179]. Secondary axonal degeneration was observed in later stages of the 
phenotype in this model. The second animal model was generated by the passive 
transfer of anti-GM1 or anti-GD1 antibodies to mice leading to an axonal GBS-
like phenotype [180, 181]. Treatment of these mice with a monoclonal antibody 
that blocks the cleavage of one of the complement elements prevented 
dysfunction and structural nerve damage [182]. 

While the exact nature of the epitope responsible for the immune attack is still 
unknown, the observations made in the animal models provide evidence in favor 
of a pathogenic role for anti-ganglioside antibodies and the involvement of the 
complement system in the underlying mechanism causing GBS. To date, GBS 
cases are treated by immunotherapy either by plasma exchange (which removes 
antibodies and the complement system in a non-specific fashion) or by 
intravenous immune globulin injection (which neutralizes pathogenic antibodies 
and inhibits autoantibody-mediated complement activation) [177]. A combination 
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of both plasma exchange and immune globulin treatment was not significantly 
better than a plasma exchange or immune globulin treatment alone [177]. 

13.4.2. Neuropathies Associated with Infections 

An estimated 50-60% of individuals affected with the human immunodeficiency 
virus (HIV) developed HIV-associated neuropathy [183]. Of these, many are 
symptomatic with numbness, pain and paresthesia. The clinical presentation of 
HIV-associated neuropathy is similar to other forms of acquired neuropathies. It is 
characterized by a symmetrical and length-dependent degeneration of myelinated 
and unmyelinated nerve fibers [183]. The neuropathy mainly affects distal sensory 
nerves, but as disease progresses weakness of the intrinsic foot muscles may occur 
[183]. 

The virus, the immune response to the virus and the anti-retroviral drugs (in 
particular the nucleoside reverse transcriptase inhibitors) are all potentially 
neurotoxic [183]. These factors could act either alone or in combination to cause 
the HIV-induced neuropathy [183]. 

The neurotoxic effect of HIV is probably indirect, as neurons do not express CD4 
receptors which are required for viral entry [184, 185]. However, research has 
focused on HIV gene products, such as the glycoprotein gp120, and their negative 
effects on various cell types within the nervous system. Local and acute exposure 
to gp120 induced axonal swelling and increased expression of pro-inflammatory 
cytokines at the site of application [186]. 

In vitro studies using primary neurons showed that the neurotoxic effects of gp120 
may be directly mediated by the activation of chemokine receptors on the 
membrane of neurons, or indirectly by activating Schwann cells and peripheral 
macrophages. Exposure of co-cultures of Schwann cells and DRG neurons to 
gp120 caused neurite degeneration and neuronal apoptosis [187]. Several reports 
indicated that the inflammatory mediators released by HIV-infected macrophages 
may contribute to the indirect neurotoxicity of the virus [185, 188, 189]. 

Both non-human primate and feline models of HIV (infected with the simian or 
feline immunodeficiency virus, respectively) showed reduced axonal density and 
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dying-back of the distal parts of peripheral nerves and accumulating macrophages, 
confirming the abrogating role of the inflammatory reaction in HIV-associated 
neuropathy [190, 191]. 

In addition, there is a growing body of evidence indicating that antiretroviral 
drugs widely used in the treatment of HIV infections may cause neuropathy, and 
suggests a pivotal role for mitochondrial dysfunction. Several models, both in 
vitro and in vivo, showed that antiretroviral drugs had negative effects on neurite 
outgrowth, mitochondrial DNA synthesis and neuronal survival [1, 190-195]. 

Models of virus and drug-induced HIV-associated neuropathy thus provided 
significant insights into the pathogenic processes underlying the disease. These 
models support the idea that both direct and indirect mechanisms of viral toxicity 
are involved, with indirect damage due to inappropriate activation of 
inflammatory cells and subsequent release of inflammatory cytokines in 
peripheral nerves. To date, potential targets to either prevent or attenuate the 
development of the neuropathy or to treat symptoms of the neuropathy have not 
yet been identified. However, the animal models that are currently used in this 
field of research could provide excellent tools to investigate and identify new and 
efficacious targets to treat this debilitating neuropathy. 

13.4.3. Neuropathies Associated with Endocrinopathies 

Diabetic neuropathy is a common and severe complication that is more persistent 
in type 2 than in type 1 diabetes [196]. Approximately 50-60% of diabetic cases 
develop progressive length-dependent peripheral axonal loss in a distal to 
proximal pattern [196-198]. Large myelinated and unmyelinated sensory axons 
are predominantly affected [196-198]. Symptomatic muscle weakness tends to 
develop in later disease stages [199]. Reduced blood flow due to loss of 
autonomic nerve fibers may contribute to the development of diabetic neuropathy 
[196]. Diabetic neuropathy is the leading cause of diabetes-related hospital 
admissions [197]. Both hyperglycemia and dyslipidemia are associated with 
diabetes [197]. Both are thought to cause aberrant alterations in energy balance 
and metabolism leading to cellular injury and neuropathy [196, 197]. However, 
there are no experimental data that confirm changes in bioenergetics as the cause 
of diabetic neuropathy [196, 197]. 
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In diabetes, the high oxidative environment and the accumulation of 
carbohydrates accelerate the formation of ‘Advanced Glycation End-products’ 
(AGEs) [200]. Advanced glycation is a non-enzymatic process that chemically 
modifies proteins, lipids and nucleic acids by adding reactive carbohydrate groups 
to exposed sites [196]. AGEs can cause the development of diabetic neuropathy in 
two ways. First, advanced glycation tends to decrease the biological function of 
proteins, thus inhibiting neuronal activity [201]. Second, extracellular lipid and 
protein AGEs bind to cell surface receptors, particularly the receptor for AGE 
(RAGE), initiating inflammatory signaling cascade that further increases 
oxidative and nitrosative stress and increases neuronal cell injury [202, 203]. The 
importance of AGE in the development of diabetic neuropathy has been 
confirmed using AGE inhibitors and through studies of RAGE knockout mice 
[204, 205]. Therapeutically targeting RAGE or targeted disruption of RAGE 
significantly reduced diabetic neuropathy in mice [206]. Although the exact 
functional role of RAGE is unknown, these data could indicate that AGEs are a 
valid therapeutic target to prevent or reverse diabetic neuropathy. 

While neurons are not relying on insulin signaling for glucose uptake, there is 
evidence suggesting that peripheral insulin resistance might contribute to 
neuropathy [207]. Application of insulin to primary cortical neurons blunted the 
cellular signaling in response to subsequent exposure to insulin [208]. 
Furthermore, clinical data indicate a positive correlation between the degree of 
insulin resistance and the onset of complications (including neuropathy) 
independent of glycemia levels. 

Current treatment strategies consist of targeting hyperglycemia and pain 
management [196]. Several other therapeutic interventions are being investigated 
including cytoprotective therapies (reducing cell death, providing trophic 
support), therapies that inhibit the NADPH oxidase (a key enzyme in the 
generation of oxidative and nitrosative stress in diabetic neuropathy) and therapies 
that reduce neuro-inflammation [196]. 

13.4.4. Neuropathies Associated with Systemic Disease 

In this part, we will discuss neuropathy associated with critical illness as an 
example of systemic disease-associated neuropathies (Table 2). ‘Intensive Care 
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Unit-Acquired Weakness’ (ICUAW) is an increasingly recognized and important 
clinical consequence of critical illness characterized by skeletal muscle wasting 
and weakness [209, 210]. In the most severe cases, complete paralysis occurs and 
30-40% of patients in the intensive care unit develop long-term disability [209, 
210]. A significant number of patients who are intubated for more than 7 days 
(52-57%), and many patients with sepsis or systemic inflammatory response 
syndrome (68-100%) develop ICUAW [209-211]. 

It has been suggested that many factors contribute to ICUAW including 
neuropathy, altered muscle integrity, sarcoplasmic reticulum dysfunction, 
electrical in-excitability and finally bioenergetic failure and oxidative stress [209]. 
Based on electrophysiological findings, ICUAW patients predominantly display 
axonal loss rather than prolonged conduction times [209]. However, given the 
rapid course of symptom onset after sepsis, it is unlikely that the loss of muscle 
mass is only due to neuropathy [209]. Moreover, despite the reduction in 
amplitudes of the CMAPs and SNAPs, nerve histology is in general normal 
suggesting that there are functional rather than structural abnormalities [212, 213]. 
As a consequence, it is generally accepted that ICUAW results from both 
neuronal and muscular damage [209]. 

13.4.5. Neuropathies Associated with Nutritional Deficiencies 

As a typical example of a neuropathy associated with “nutritional deficiencies”, 
we will focus on alcoholic neuropathy (Table 2). Peripheral neuropathy is a 
frequent complication (12-50%) of chronic alcohol abuse [214]. Alcoholic 
neuropathy is characterized by a symmetric polyneuropathy pattern predominantly 
affecting the lower extremities [214]. Clinically, positive sensory signs (including 
hyperalgesia) and weakness in distal parts of the lower extremities are common 
features of alcoholic neuropathy [214]. Distal axonal loss involves both 
myelinated and unmyelinated fibers [214]. Although the neuropathy develops 
slowly, a combination of malnutrition and alcoholism may accelerate the 
progression [214]. 

Both in vitro and in vivo studies showed that long-term exposure to ethanol 
reduces axonal transport [215, 216]. Exposure to ethanol caused a reduction in 
neurofilament abundance and an increase in phosphorylated neurofilaments [217, 
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218]. Phosphorylation of microtubule-associated proteins was also altered by 
ethanol [219] and hepatoma-derived cells showed changes in acetylation of 
microtubules after exposure to alcohol [220]. 

Ethanol also modulates intracellular signaling cascades involving ‘Protein Kinase 
A’ (PKA) and ‘Protein Kinase C’ (PKC) [221]. As both enzymes have been 
implicated in pain responses, they may be associated with painful symptoms in 
alcoholic neuropathy [222]. Inhibition of PKC attenuated hyperalgesia in a rat 
model of alcoholic neuropathy [223]. 

Vitamin B has also been tested for treating peripheral neuropathy [224]. However, 
there is insufficient evidence to determine whether vitamin B is beneficial. 

13.4.6. Neuropathies Associated with Chemotherapy 

Induction of peripheral neuropathy is a common complication of chemotherapy to 
treat several types of malignancies (Table 2). Despite the high prevalence, little is 
known about the underlying mechanism causing chemotherapy-induced 
neuropathies. Chemotherapy usually causes sensory neuropathy, and involvement 
of motor or autonomic modalities depend on the compound used for 
chemotherapy [225-227]. Commonly, induction of neuropathy is apparent weeks 
to months after (first) exposure and may continue despite drug withdrawal [225-
227]. In general, the neurotoxic effects of chemotherapy are reversible when 
recognized early during treatment [225-227]. Progressive weakness, paresthesia 
and loss of deep tendon reflexes are common clinical features. Sensory 
impairment and autonomic deficits including impotence and orthostatic 
hypotension may occur. Severe irreversible damage can occur if drug treatment is 
continued [225-227]. Three typical examples of chemotherapy-induced 
neuropathies include vincristine-, taxane- and bortezomib-induced neuropathies. 
Overall, these drugs induce an axonal neuropathy in a dose-dependent, cumulative 
manner [225-227]. In most cases, axonal degeneration is mild and complete 
regeneration may occur after drug withdrawal. Demyelinating neuropathies 
resulting from drug toxicity are far less common [225-227]. 

Vincristine is a well-recognized neurotoxic chemotherapeutic agent. This 
compound specifically binds to tubulin and blocks its polymerization into 
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microtubules, arresting in this way mitosis in metaphase. Taxanes (paclitaxel 
(Taxol®) and docetaxel (Taxotere®)) are anti-neoplastic compounds that promote 
the assembly of microtubules and stabilize their formation by preventing de-
polymerization. Intravenous injection of vincristine in rabbits caused 
accumulation of organelles at the nodes of Ranvier in sciatic nerves [228, 229]. 
Subsequent degeneration of organelles is thought to contribute to axonal 
degeneration after vincristine treatment [230]. Other studies using rats showed 
that intra-neural administration of vincristine caused a reversible blockade of 
retrograde axonal transport mediated by dynein (a gene associated with IPNs) 
[231]. Similarly, sub-epineural injection of Taxol completely inhibited slow 
axonal transport of tubulin in rat sciatic nerves, while transport of neurofilaments 
was unaffected [232]. These observations were the first to suggest that slow 
transport involves an equilibrium between polymerized and depolymerized forms 
of axonal cytoskeletal structures. Fast axonal transport (such as transport of 
lysosomes, vesicles and mitochondria) seems to be largely unaffected by taxol 
[232]. It was also suggested that taxol affects fast axonal transport in early stages 
(immediately following administration) due to structural blockade of 
accumulating tubulin polymers [233, 234]. 

Bortezomib is a proteasome inhibitor that has a beneficial effect against recurrent 
or newly diagnosed multiple myeloma [235]. Bortezomib is responsible for a 
predominant small fiber painful axonal sensory distal neuropathy [235]. As an 
inhibitor of the proteasome, bortezomib causes the accumulation of toxic 
(aggregated) proteins eventually leading to cell death. Furthermore, up-regulation 
of pro-apoptotic proteins, down-regulation of several proteins involved in DNA 
repair pathways and induction of the unfolded protein response have been 
observed in pre-clinical studies [236]. Furthermore, proteasome inhibition 
impaired microtubule nucleation and organization suggesting that axonal transport 
defects and cytoskeletal disorganization might contribute to the development of 
bortezomib-induced neuropathy [237]. Interestingly, several genes encoding 
proteins involved in proteolytic pathways have been associated with motor neuron 
disorders and IPNs (such as ‘Ubiquilin 2’ in amyotrophic lateral sclerosis and the 
E3 ubiquitin ligase LRSAM1 in axonal CMT). Finally, inhibition of the 
proteasome system activates HDAC6 which plays a crucial role in axonal 
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transport and in autophagy [171]. All together, these observations suggest that 
proteasomal inhibition might affect axonal integrity in chemotherapy-induced 
neuropathies. 

CONCLUSION AND FUTURE PERSPECTIVES 

So far, numerous genes underlying IPNs have been identified and the list of 
candidate causative genes and loci is still increasing. A lot of research is ongoing 
to find the exact pathogenic mechanisms of these mutant genes and how this leads 
to different subtypes of IPNs. This is challenging since IPNs are characterized by 
a large clinical and genetic heterogeneity. Similarly, a very wide range of APNs 
have been described, and most of these show clinical heterogeneity. Moreover, the 
exact pathogenic mechanism underlying these neuropathies is still poorly 
understood for most of them. We are convinced that the development of cell 
culture and animal models for both inherited and acquired peripheral neuropathies 
is necessary and will help in the search for common underlying pathogenic 
mechanisms. Hopefully, the identification of these common pathways will pave 
the way for the development of therapeutic strategies. 
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LIST OF ABBREVIATIONS 

AARS = Alanine-tRNA synthetase 

AGE = Advanced Glycation End-products 
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AMAN = Acute Motor Axonal Neuropathy 

AMSAN = Acute Motor-Sensory Axonal Neuropathy 

APN = acquired peripheral neuropathies 

ARS = aminoacyl-tRNA synthetase 

ATL1 = Atlastin-1 

ATSV = Axonal Transport of Synaptic Vesicles 

CIDP = Chronic Inflammatory Demyelinating Polyneuropathy 

CMAP = compound muscle action potential 

CMT = Charcot-Marie-Tooth disease 

CNS = central nervous system 

Cx32 = Connexin-32 

DARS = Aspartyl-tRNA Synthetase 

DCTN1 = Dynactin subunit 1 

DI-CMT = Dominant Intermediate Charcot-Marie-Tooth disease 

Distal HMN = distal Hereditary Motor Neuropathy 

DNMT1 = DNA-methyltransferase 1 

DRG = Dorsal Root Ganglia 

DRP2 = Dystrophin-Related Protein 2 

DYNC1H1 = Dynein, Cytoplasmic 1, Heavy chain 1 

EGR2 = Early Growth Response 2 
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ELP1 = Elongator Complex Protein 1 

ENU = N-Ethyl-N-nitroso-ureum 

FD = Familial Dysautonomia 

FH2 = Formin Homology 2 

GARS = Glycyl-tRNA synthetase 

GBJ1 = Gap-Junction Bèta-1 

GBS = Guillain-Barré Syndrome 

GDAP1 = Ganglioside-induced Differentiation-associated Protein-1 

HDAC6 = Histone deacetylase 6 

HIV = Human Immunodeficiency Virus 

HMSN = Hereditary Motor and Sensory Neuropathies 

HSAN = Hereditary Sensory and Autonomic Neuropathy 

HSN = Hereditary Sensory Neuropathies 

HSP = Hereditary Spastic Paraplegia 

HSPB1 = small Heat Shock Protein B1 

HSPB3 = small Heat Shock Protein B3 

HSPB8 = small Heat Shock Protein B8 

ICUAW = Intensive Care Unit-Acquired Weakness 

IKBKAP = IκB Kinase Complex-associated Protein 

INF2 = Inverted Formin 2 
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IPN = inherited peripheral neuropathies 

KARS = Lysine-tRNA synthetase 

KIF1A = Kinesin-like protein 1A 

LITAF = Lipopolysaccharide-Induced Tumor Necrosis Factor-Alpha Factor 

LMNA = Lamin A/C 

MAL = myelin and lymphocyte protein 

MFN2 = Mitofusin-2 

MPZ = Myelin Protein Zero 

MTMR13 = Myotubularin-related Protein 13 

MTMR2 = Myotubularin-related Protein 2 

NCV = nerve conduction velocities 

NDRG1 = N-myc Down-Regulated Gene-1 

NEDD4 = Neural Precursor Cell Expressed, Developmentally Down-
regulated 4 

NEFL = Neurofilament Light-chain 

NT3 = Neurotrophin 3 

NTRK1 = Neurotrophic Tyrosine Kinase Receptor, type 1 

PI-3,5-P2 = phosphatidyl-inositol 3,5-bisphosphate 

PI-3-P = phosphatidyl-inositol 3-phosphate 

PKC = Protein Kinase C 
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PMP22 = Peripheral Myelin Protein 22 

PNS = peripheral nervous system 

PRX = Periaxin 

RAB7 = Ras-related Protein Rab-7 

RAGE = Receptor for AGE 

RI-CMT = Recessive Intermediate Charcot-Marie-Tooth disease 

SH3TC2 = SH3 Domain and Tetratricopeptide Repeat-containing Protein 2 

SIMPLE = Small Integral Membrane Protein of Lysosome/late Endosome 

SNAP = sensory nerve action potential 

SPT = Serine Palmitoyltransferase 

SPTLC1 = Serine Palmitoyltransferase Long Chain subunit 1 

SPTLC2 = Serine Palmitoyltransferase Long Chain subunit 2 

SPTLC3 = Serine Palmitoyltransferase Long Chain subunit 3 

Tr = Trembler 

Tr-J = Trembler J 

TrkA = Tyrosine kinase receptor-A 

TrkB = Tyrosine kinase receptor-B 

TrkC = Tyrosine kinase receptor-C 

TSG101 = Tumor Susceptibility Gene 101 

UK = United Kingdom 
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US = United States 

WNK1 = Protein kinase with no lysine 1 

YARS = Tyrosine-tRNA synthetase 
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Abstract: Increasing knowledge of the neurobiological basis of synaptic plasticity and 
memory has opened new venues for the development of cognitive-enhancing drugs that 
could be used in the treatment of memory loss associated with neurological and 
psychiatric disorders. Neuromodulatory systems influencing memory formation include 
stress hormones as well as a range of neurotransmitter and neuropeptide signaling 
pathways. Here, we review some of the findings on memory enhancement by drugs 
acting on neuromodulatory systems and discuss the possible implications for the 
development of cognitive enhancers. 
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14.1. INTRODUCTION 

Deficits in cognitive function accompany many neurodegenerative, 
neurodevelopmental, and psychiatric disorders, including Alzheimer’s (AD), 
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Parkinson’s (PD), and Huntington’s diseases (HD), autism, and schizophrenia. In 
addition, moderate memory impairment during aging (mild cognitive impairment, 
MCI) might represent an intermediate state between normal aging and dementia 
and indicate the onset of AD. Memory loss associated with aging and neurological 
disorders constitutes a growing unmet medical need for which no adequate 
treatment is yet available. Cognitive enhancement through pharmacological 
stimulation of neuronal mechanisms involved in synaptic plasticity and memory 
formation has been put forward as a strategy to improve memory dysfunction. The 
advancement in our understanding of the molecular basis of neural plasticity and 
memory has opened many avenues for the discovery and development of 
cognitive-enhancing drugs. In this chapter, we review some of the therapeutic 
targets currently under investigation for the development of candidate cognitive 
enhancers, focusing on neuromodulatory mechanisms that regulate memory 
formation. 

Most of the evidence reviewed here was provided by preclinical research using 
animal models, in which behavioral outcomes assumed to represent specific 
aspects of memory are measured. Although the translation from preclinical 
experiments to the clinical setting in this field is rather complex and has important 
limitations, these models have allowed the characterization of mechanisms and 
pathways, both at the molecular and brain systems levels, that can be used as 
targets for cognitive enhancement. 

14.2. MOLECULAR BASIS OF SYNAPTIC PLASTICITY AND MEMORY 

The current view of memory formation and storage as a process resulting from 
modifications in the strength of synaptic connections has originally emerged from 
the cellular connectionist approach proposed by Santiago Ramon y Cajal, and 
was further developed as a model of learning based on synaptic plasticity by 
Konorski and Donald Hebb in the late 1940s (reviewed in [1]). A seminal 
experimental demonstration of synaptic plasticity was provided by Bliss and 
Lomo in 1973. They showed a persistent increase in synaptic response in the 
hippocampus as a result of high-frequency stimulation, a phenomenon named 
long-term potentiation (LTP) [2]. Over the past decades, a consistent body of 
evidence has indicated that synaptic plasticity processes based on, or similar to, 
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LTP mediate the formation and storage of many types of memory. Moreover, the 
use of a variety of model organisms including the fruit fly Drosophila, the sea 
snail Aplysia, rats, and mice has significantly contributed to identify highly 
conserved basic molecular mechanisms underlying or influencing neural plasticity 
and memory [1, 3, 4]. The introduction of transgenic and knockout mouse models, 
including spatially and temporally restricted modifications, contributed to the 
identification of molecular pathways mediating LTP and memory, allowing the 
examination of the consequences of genetic disruption or stimulation of selective 
mechanisms in discrete neuronal populations [5, 6]. 

The hippocampus, a brain area first shown to be involved in the formation of new 
memories by human studies conducted in the 1950s by Brenda Milner (reviewed 
in [7], has been the target of many preclinical studies on synaptic plasticity and 
memory. The induction of LTP in the rat dorsal hippocampus was prevented by 
blocking the N-methyl-D-aspartate (NMDA) type of glutamate receptor, which is 
associated with a channel permeable to calcium and sodium ions. Importantly, 
intracerebral administration of an NMDA receptor antagonist impaired 
hippocampus-dependent spatial memory in rats, indicating that hippocampal 
NMDA receptor activation is required for both LTP and memory formation [8]. 
Extensive evidence now indicates that activation of NMDA receptors, along with 
other types of glutamate receptors (α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid, AMPA, and metabotropic, (mGluR, receptors), constitute a trigger 
that can initiate a sequence of downstream signaling events underlying synaptic 
plasticity and learning [9]. 

Downstream of NMDA receptor activation, protein kinase cascades are 
stimulated, leading to transcription factor phosphorylation, expression of 
immediate-early genes, and de novo protein synthesis. Protein kinase pathways 
with established roles in LTP and memory include the calcium-calmodulin-
dependent protein kinase II (CaMKII), phospholipase C (PLC)/protein kinase C 
(PKC), cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP 
response element binding protein (CREB), mitogen-activated protein kinase 
(MAPK)/extracellular signal-regulated protein kinase (ERK), and 
phosphatidylinositol 3-kinase (PI3K) pathways. Immediate-early genes associated 
with memory formation include c-fos, Arc, and zif268. Other mechanisms that 
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can contribute to this process include brain-derived neurotrophic factor (BDNF), 
acting on TrkB, which is a member of the receptor tyrosine kinase (RTK) family. 
The ultimate outcome of this cascade of biochemical events and alterations in 
gene expression is the reinforcement of selective subgroups of synapses, and the 
growth of new synaptic connections [3, 4, 6, 10-12]. The initial phase of memory 
formation after learning, classically considered to last for up to a few hours, is 
called consolidation. The long-term persistence of memory after the initial 
consolidation stage involves additional mechanisms, including the atypical protein 
kinase C isoform, protein kinase Mzeta (PKMz) [13]. 

On the basis of the knowledge on crucial molecular components of memory 
formation, pharmacological cognitive-enhancing strategies have been developed 
and tested. For example, drugs that stimulate NMDA and AMPA glutamate 
receptors have been investigated as memory facilitators in both animal and human 
studies. The drug d-cycloserine, which stimulates NMDA receptors by acting as a 
partial agonist at its glycine binding site, has been evaluated in Alzheimer’s 
disease patients [14, 15]. Ampakines, which stimulate AMPA receptors, have also 
been developed as candidate cognitive enhancers [16, 17]. However, there are 
several challenges for the development of clinically acceptable glutamate receptor 
stimulators, including the risk of facilitating neuronal damage by excessive 
NMDA receptor stimulation, through the process known as excitotoxicity [18]. 
Memantine, a noncompetitive NMDA receptor antagonist currently used in the 
treatment of Alzheimer’s disease, probably have neuroprotective and antioxidant 
actions that result in beneficial effects on cognition [19, 20]. 

14.3. NEUROMODULATORY MECHANISMS REGULATING MEMORY 
FORMATION 

The molecular mechanisms and events described above are believed to be part of 
the core set of neural plasticity events underlying memory formation. However, 
memory strength is also influenced by a variety of other signaling molecules and 
pathways. Evidence that memory consolidation in animals can be enhanced by 
administration, after learning, of a number of chemical agents has consistently 
indicated that the mammalian brain has endogenous systems that enable the 
enhancement of emotionally significant memories. For example, hormones 
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released in response to novel and arousing experiences, including epinephrine and 
corticosterone, vasopressin, and beta-endorphin, directly or indirectly regulate 
brain activity after learning to stimulate the mechanisms related to memory 
consolidation. Also, a number of neurotransmitters (including catecholamines and 
acetycholine) and neuropeptides, as well as epigenetic mechanisms regulating 
gene expression at the nuclear level, such as chromatin-modifying enzymes, can 
be considered regulatory mechanisms that influence neuronal gene expression and 
alter synaptic plasticity, resulting in enhanced memory strength [4, 21, 22]. Below 
we will focus on selected examples of cognitive enhancement based on 
stimulation of some of these modulatory systems. Many other neurotransmitter 
and signaling pathways play a modulatory role in memory formation and have 
been investigated as targets for cognitive enhancement. Current targets include 
receptors and transporters for GABA, cannabinoids, serotonin, glucocorticoids, 
and adenosine. Fig. 1 shows a schematic of selected mechanisms influencing 
memory formation. 

 

Figure 1: Selected molecular mechanisms that are involved in underlying and regulating memory 
formation and can be targeted for the development of cognitive enhancers. 
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Glutamate activates NMDA along with AMPA and mGluR receptors, triggering 
cellular calcium entry and stimulation of protein kinase pathways including 
CaMKII, PLC/PKC, cAMP/PKA/CREB, MAPK, and PI3K. This leads to 
activation of transcription factors incuding CREB and IEGs such as c-fos, Arc, 
and zif268. At the nuclear level, gene expression related to memory formation is 
facilitated by chromatin relaxation induced by histone acetylation. This cascade of 
molecular events is regulated by a range of mechanisms including neurotrophins 
acting on the Trk members of the RTK family, noradrenaline activation of beta-2 
receptors, dopamine acting on D1/D5 receptors, acetylcholine stimulation of 
nAchRs, and GPCRs activated by neuropeptides. Targeting these systems in 
experimental models in a way that stimulates excitatory receptors, protein kinase 
signaling, and gene expression, leads to memory enhancement and amelioration of 
cognitive deficits associated with brain disorders. 

14.4. COGNITIVE ENHANCERS TARGETING MEMORY 
MODULATORY PATHWAYS 

14.4.1. Catecholamine Receptor Systems and the cAMP/PKA/CREB 
Pathway 

It has been known since the 1970s that epinephrine injections after learning can 
facilitate memory in rats [23]. The effects of epinephrine on memory are probably 
mediated by the ascending vagus nerve and result in activation of the 
noradrenergic system in the brain. Stimulation of the noradrenergic system within 
the basolateral amygdala (BLA) is required for peripheral epinephrine to enhance 
memory [24]. Intracerebral administration of noradrenaline in selected brain areas 
including the hippocampus and the BLA can also enhance memory consolidation 
[25]. Moreover, rats given epinephrine injections show a more persistent memory 
retention compared to control animals [26]. 

This evidence strongly indicates that central activation of the noradrenergic 
system, either directly or triggered by peripheral epinephrine release, can enhance 
memory formation and persistence. Thus, drugs stimulating noradrenergic 
receptors might be investigated as potential cognitive enhancers. In fact, memory 
in rats can be enhanced by administration, into the BLA, of the beta-2 
adrenoceptor agonist clenbuterol, the alpha-2 adrenoceptor antagonist idazoxan, 
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or the non-selective alpha-adrenoceptor agonist phenylephrine combined with the 
alpha-2 adrenoceptor antagonist yohimbine [27-29]. 

In addition to noradrenaline, another catecholamine, dopamine, has been shown to 
importantly influence memory formation. Early studies showed memory-
enhancing effects of amphetamine, which acts partially by stimulating 
dopaminergic transmission, and the effects of agents that act at specific subtypes 
of dopamine receptors have been investigated. Memory consolidation in rats is 
increased by intracerebral administration of the D1/D5 receptor agonist SKF 
38393 [30, 31]. SKF 38393 also rescues age-related deficits in synaptic plasticity 
and memory in mice [32]. In contrast, when pharmacological manipulation of D2 
and D3 receptor antagonists is used, often memory enhancement is observed after 
receptor blockade by antagonists [33, 34]. About ten years ago, some of the 
leading candidate cognitive-enhancing drugs targeting dopamine receptors 
included dihydrexidine, a D1/D5 receptor agonist, and A-412997, a D4 receptor 
agonist [35-38]. Currently many other agonists and antagonists at D1/D5 
receptors are available and under investigation (see [39-41] for further details). 

Noradrenaline and dopamine receptors are coupled to stimulation of the 
cAMP/PKA/CREB signaling pathway downstream of receptor activation. Agents 
that act intracellularly to directly stimulate this pathway are among the first 
candidate drugs developed with the aim of ameliorating cognitive function in 
humans [42-45]. Activation of beta-adrenergic or D1/D5 receptors leads to 
increases in cAMP levels as a result of enhanced adenylyl cyclase activity. cAMP 
in turn activates PKA, which recruits MAPK and translocates to the nucleus, 
phosphorylating and activating the transcription factor CREB, resulting in altered 
gene expression. 

Cognitive-enhancing drugs stimulating the cAMP/PKA/CREB pathway include 
phosphodiesterase type 4 (PDE4) inhibitors. PDE4 is an enzyme that catalyzes 
hydrolysis of cAMP. Rolipram, a prototypical PDE4 inhibitor widely used over 
the last fifteen years in studies focusing on memory and LTP enhancement, 
ameliorates memory deficits in rodent models of cognitive dysfunction [32, 46-
49]. More recently, studies in rats and mice shown similar enhancing effects of 
newer drugs that target PDE5, such as zaprinast and icariin [50-52]. 
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14.4.2. Cholinergic Receptors 

Acetylcholinesterase inhibitors (AChEi) including donepezil, rivastigmine, and 
galantamine are established in the treatment of Alzheimer’s disease. In 
experimental animals, memory consolidation can be enhanced by AChEis or 
muscarinic cholinergic receptor agonists (e.g., oxotremorine) [53]. Also, on the 
basis of the well-documented cognitive-enhancing effects of nicotine, other drugs 
that stimulate nicotinic cholinergic receptors have been developed as potential 
memory enhancers [54]. 

14.4.3. Neuropeptide Systems 

Neuropeptides, which can be released from neurons as co-transmitters, represent 
an important class of neuromodulatory molecules in the brain. Several 
neuropeptides have been shown to regulate memory formation and expression, 
including neuropeptide Y, neuropeptide S, vasoactive intestinal peptide (VIP), 
somatostatin, substance P, vasopressin, adrenocorticotropin (ACTH), 
cholecystokinin (CCK), oxytocin, galanin, corticotrophin-releasing hormone 
(CRH), bombesin-like peptides, and endogenous opioids such as beta-endorphins. 
Most neuropeptides act by activating membrane receptors of the G protein-
coupled (GPCR) receptor family, leading to stimulation of intracellular protein 
kinase signaling pathways [55-59]. 

A number of recombinant neuropeptides and synthetic peptides are currently 
available as experimental cognitive enhancers. As an example, recombinant 
bombesin (an amphibian peptide that displays biological actions similar to its 
homolog gastrin-releasing peptide (GRP), a mammalian neuropeptide) enhances 
hippocampal memory retention in rats and rescues a memory deficit produced by 
beta-amyloid peptide (25-35) in the hippocampus, whereas a GRP receptor 
antagonist impairs memory [60, 61]. 

14.4.4. Chromatin-Modifying Mechanisms 

Signaling triggered by neuronal receptors and mediated by intracellular pathways 
ultimately leads to alterations in gene expression. In the nucleus, the levels of 
gene expression are also regulated epigenetically by an additional set of 
mechanisms. Epigenetic regulation involves chromatin remodeling, histone 
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modification, and DNA methylation. One of the more exciting recent advances in 
the field of experimental drug-induced cognitive enhancement was the discovery 
that agents that act at the epigenetic level to facilitate gene expression, particularly 
by inducing chromatin relaxation through inhibition of histone deacetylases 
(HDACs), can enhance memory formation. Histone acetylation increases 
accessibility for transcriptional regulatory proteins, whereas deacetylation 
mediated by HDACs promotes chromatin condensing and reduces transcription. 
Increased histone acetylation might be a molecular feature associated with 
stronger memories [62], and systemic or intracerebral administration of HDAC 
inhibitors including sodium butyrate, trichostatin A, and valproic acid enhances 
memory and rescues experimental memory loss in rats and mice [63-66]. The 
memory-enhancing effects of HDACis might be mediated primarily by target 
genes regulated by the CREB:CREB-binding protein (CBP) transcriptional 
complex [67]. 

14.5. THE CHALLENGE OF TRANSLATING EXPERIMENTAL 
MEMORY ENHANCEMENT TO THE CLINICAL SETTING 

As illustrated by the examples reviewed above, experimental drug-induced 
memory enhancement in animals can be relatively easily obtained in the 
laboratory through the manipulation of a range of neurochemical systems. 
However, and despite the growing need for therapies that can alleviate the 
cognitive dysfunction associated with brain disorders, so far this extensive body 
of neurobiological research has failed to deliver clinically successful cognitive 
enhancers developed on the basis of the biology and neurochemistry of memory 
formation. Several factors contribute to the high complexity of translating 
findings from the bench to patients in this field. First, although the fundamental 
brain processes underlying neural plasticity and memory are highly conserved 
across species, cognitive processing and dysfunction in humans is clearly much 
more complex than in animals, and experimental models focus on very specific 
aspects of memory function [68]. One obvious challenge is to rescue memory loss 
in a selective way that is beneficial for the patient, without at the same time 
promoting the storage or expression of unnecessary and unwanted (e.g., 
traumatic) information. Second, drugs acting on neuromodulatory systems can 
produce different, and under some conditions opposite, effects on the different 
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phases and types of memory. For example, stimulators of noradrenergic or 
glucocorticoid receptors typically enhance memory formation when given after 
training but can impair memory expression before retrieval. Finally, the 
mnemonic effects of neuromodulatory drugs can be affected by relatively subtle 
aspects related to learning, such as novelty, contextual information, and stress 
levels. These limitations will need to be addressed to allow the significant 
advances in the knowledge on the fundamental mechanisms of memory to give 
rise to new treatments for cognitive dysfunction. 
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Abstract: Notwithstanding the past decades of research, efficient treatments for 
neurodegenerative diseases do not exist. However, stem cell therapies have become 
increasingly attractive options for a broad spectrum of human neurodegenerative diseases. 
Diverse classes of stem cells, such as embryonic stem cells (ESCs), neural stem cells 
(NSCs), mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) can 
be useful as a source material for understanding the basic biology of cellular differentiation, 
disease modeling, and provide novel sources for autologous cellular therapies in 
neurodegenerative diseases. Indeed, the transplantation of stem cells or their derivatives 
and the mobilization of endogenous stem cells have been proposed in animal models of 
neurodegenerative disease as therapeutic mechanisms to restore function. In this chapter, 
we discuss some general issues relating to the scientific basis of stem cell–based therapies 
and their prospects in neurological disorders including Parkinson’s disease, Alzheimer’s 
disease, Huntington’s disease and Amyotrophic lateral sclerosis. 

Keywords: Alzheimer’s disease, Amyotrophic lateral sclerosis, embryonic stem 
cells (ESCs), Huntington’s Disease, induced pluripotent stem cells (iPSCs), 
mesenchymal stem cells (MSCs), Neural stem cells (NPCs), Neurotrophic factors, 
Parkinson’s Disease, neural progenitor cells, stem cells, treatment, cell therapy. 

15.1. INTRODUCTION 

Despite decades of research, effective treatments for neurodegenerative diseases 
do not exist. However, cellular therapies present themselves as new attractive 
options and the application of stem cell research for a broad spectrum of human 
neurodegenerative diseases is rapidly growing. 

As the functional units for growth and regeneration in many, though not all 
tissues, stem cells hold a position of significant importance for maintaining proper 
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tissue function. Stem cells are defined as undifferentiated cells with prolonged 
self-renewal capacity, and depending on their origin, are able to differentiate into 
multiple cellular lineages or all cell types of the body [1]. Mammalian stem cells 
can be classified according to cell types that they can generate, and by the strategy 
used for their derivation. Stem cell classes comprise of embryonic stem cells 
(ESCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs) and induced 
pluripotent stem cells (iPSCs) [2, 3]. 

These diverse classes of stem cells can be a useful source material for 
understanding the basic biology of cellular differentiation, disease modeling, and 
provide novel sources for autologous cellular therapies in neurodegenerative 
diseases. 

ESCs are derived from the inner cell mass of a developing blastocyst (early 
embryo) and can be experimentally isolated from mouse, monkey and human. 
These cells may be expanded in culture while retaining pluripotency and possess 
the capacity to give rise to various organs and tissues [4, 5]. When moral and 
ethical reasons are taken into account, the use of human embryonic stem cells in 
disease therapy is not justified, since other alternatives for regenerative medicine 
are already available and will be discussed below. 

NSCs can be isolated from the fetal, neonatal, and adult neural tissues and 
propagate in culture [6, 7]. NSCs are multipotent cells capable to differentiate into 
three major cell types of Central Nervous System (CNS), neurons, astrocytes and 
oligodendrocytes. In humans, neuronal precursor cells in the adult brain have been 
found at two major NSC niches: the dentate gyrus of the hippocampus and the 
subventricular zone of the olfactory bulb, although a very small number of stem 
cells might also exist in other brain regions [8]. The proliferation and 
differentiation of NSCs are precisely regulated by a complex system composed of 
a large number of morphogens, growth factors, surrounding cells, transcription 
factors, among others. Neurons derived from these cells contribute to learning, 
memory, and the autonomous repair of the brain under pathological conditions 
(for review see [1]). Indeed, alterations in adult neurogenesis are frequently 
observed in neurodegenerative disorders such as Alzheimer’s disease (AD), 
Parkinson’s disease (PD), and Huntington´s disease (HD) and the transplantation 
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of neurons obtained from NSCs cultured in vitro have been used for cellular 
replacement in neurological diseases to ameliorate neurodegeneration [1]. 

MSCs can easily be obtained from various tissues, such as bone marrow, adipose 
tissue, placenta and umbilical cord, cartilage, and expanded vigorously until the 
tissues differentiate into specific cell lineages [9-19]. Transplantation of MSCs into 
the injured brain may provide therapeutic benefits. MSCs transplanted into the brain 
have been demonstrated to promote functional recovery by producing trophic factors 
that induce survival and regeneration of host neurons. MSCs are immunocompatible 
by nature and there are no ethical issues related to their use [20]. 

Recently, a new class of pluripotent stem cells, iPSCs (induced pluripotent stem 
cells), has been generated from adult somatic cells such as fibroblasts by 
introduction of embryogenesis-related transcription factors [21]. The original 
strategy utilized Oct 3/4, Klf, Sox2 and c-Myc [21], and various groups are now 
reprogramming adult somatic cells using several approaches to delivery 
embryonic transcription factors such as vector, virus, protein or RNA [22-24]. The 
iPSCs share many properties with human ESCs, such as morphology, the ability 
of indefinite growth and pluripotency, but they are not identical since they display 
differences in gene expression signatures [25]. iPSCs now can be derived from a 
variety of cell lineages and are able to differentiate into certain cell types 
including neurons. Indeed, patient-specific iPSCs are already applied in disease 
modeling, drug testing and discovery and provide novel sources for autologous 
cellular therapies [26]. Hence, cellular reprogramming is the most promising 
approach due to the fact that it allows the generation of patient-specific stem cells, 
which in turn can be differentiated in neural lineages and open a vast new territory 
in looking for effective treatments for neurological diseases. 

More recently, a study has shown that either human fibroblasts or iPSCs can 
efficiently be converted into functional induced neuronal cells (iNCs) through a 
forced expression of a combination of three neural lineage-specific transcription 
factors, Ascl1, Brn2 and Myt1l [27]. Moreover, human fibroblast can be 
effectively reprogrammed into dopaminergic neuron-like cells by expression of 
five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 [28]. 
Concerning possible clinical applications, the major disadvantage of iNCs is the 
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lack of expandability, generating a limited cell number. Indeed, several open 
questions have arisen with iNCs, but they represent great promises for both cell 
replacement and cell modeling of neurodegenerative diseases. 

Indeed, the transplantation of stem cells or their derivatives and the mobilization 
of endogenous stem cells have been proposed in animal models of 
neurodegenerative disease as therapeutic mechanisms to restore function [29]. For 
instance, it might be possible to replace lost neurons or glial cells by 
transplantation of stem cell pre-differentiated in vitro to different stages of 
maturation. The stimulation of endogenous neural stem cells to form new neurons 
or glial cells in the adult CNS can represent an alternative for cell replacement. 
Additionally, a functional enhancement might be achieved with the release of 
neuroprotective molecules by grafted stem cells [30]. 

There is also evidence from clinical trials that cell replacement in human 
neurological diseases can lead to symptomatic relief [29]. 

Here, we discuss some general issues relating to the scientific basis of stem cell–
based therapies and their prospects in PD, AD, HD and ALS disorders. 

15.2. PARKINSON’S DISEASE 

Parkinson’s disease results from the extensive loss of dopamine (DA) neurons in 
the substantia nigra [31, 32]. Current treatment options include therapies that 
propose to increase dopamine levels by providing a dopamine precursor L-
dihydroxyphenyl alanine (L-DOPA), but long-term administration of L-DOPA 
has become increasingly ineffective with PD progression [33]. More recently, 
surgical deep brain stimulation has been adopted as a successful treatment for PD 
patients [34]. 

Contrarily, cellular approaches for PD focus on the cell replacement of lost DA 
neurons. Since the late 1980s, successful cellular therapies for PD have utilized 
human fetal ventral midbrain tissue as a source of DA neurons to transplant into 
the striatum of PD patients with advanced disease [35-38]. However, potential 
limitation of using fetal tissue for transplantation includes ethical concerns and 
religious questions, and the ability to obtain adequate amounts of fetal tissues for 
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treatment. In addition, reports have pointed out that the survival of transplanted 
fetal mesencephalic cells in the patients’ brain was very low [39]. To circumvent 
these difficulties, ESCs, iPSCs, MSCs or NSCs have been utilized for large-scale 
generation of neurons with DA phenotype as a practical and effective alternative 
for transplantation. 

Although there are also considerable safety concerns for ESCs related to their 
potential for tumor formation or neural overgrowth, previous studies have 
described that DA neurons derived from ESCs have shown efficacy in PD animal 
models. DA neurons generated from mouse ESCs after treatment with specific 
mitogens and signaling molecules such as fibroblast growth factor 8 (FGF8) and 
sonic hedgehog, [40, 41], have shown electrophysiological and behavioral 
properties expected of neurons from the midbrain. Additionally, the modulation of 
Nurr1 [42, 43] or Bcl-XL [44] expression in murine ESCs or co-culture with a 
mouse bone marrow stromal cell line [45] induces midbrain dopaminergic 
neurons. In a very recent study, transgenic mouse ESCs line induced at the middle 
stage (Nurr1 positive cells) of DA differentiation was particularly suitable for 
grafting since it had the greatest amount of DA neuron survival and behavioral 
improvement in parkinsonian mice [46]. 

Interestingly, the striatum transplantation of DA neurons generated from monkey 
ESCs attenuated neurological symptoms in a primate model for PD [47]. DA 
neurons were also generated from undifferentiated human NSCs derived from fetal 
brain and induced behavioral improvement in parkinsonian monkeys [48]. Recently, 
studies have reported that functional human DA neurons can efficiently be engrafted 
in animal models of Parkinson's inducing clear behavior recovery [49-51]. 

Diverse evidence has shown that the transplantation of NSCs cultured in vitro into 
brain damage areas may be an ideal vehicle for cell replacement and production of 
neurotrophic factors to protect injured neurons and/or to stimulate neuronal 
growth in patients with neurological diseases [2, 52]. Distinct research groups 
have described that immortalized hNSC generated from fetal human brain cells 
infected with a retroviral vector encoding v-myc oncogene shows multipotent 
differentiation properties, due their capacity of neural differentiation in vitro and 
in vivo [52, 53]. Indeed, both immortalized human and mouse NSC lines, HB1.F3 



346   Young Perspectives for Old Diseases Lopes and Cruz 

and C17.2 respectively, transduced with tyrosine hydroxylase (TH) and GTP 
cyclohydrolase 1 (GTPCH1) genes, for production of L-DOPA, induced 
functional improvement in a rat model of PD following transplantation into the 
striatum [54-56]. 

Another approach based on the use of patient-specific DA neurons derived from 
iPSCs may provide an ideal cellular source for transplantation therapy for PD 
since it would eliminate ethical concerns associated with ESCs and their progeny 
and would avoid immune reactions. However, before application can be 
considered in patients, the production, growth and functionality of the DA 
neurons derived from iPSCs and also the potential risk of teratoma formation in 
vivo should be determined [57, 58]. 

A study has reported that DA neurons generated from iPSCs derived from 
fibroblasts functionally integrated in the host brain and were able to improve 
behavior in a rat model of PD upon transplantation into the adult brain [59]. 
Strikingly, a study that directly compared the differentiation and cellular properties 
of human iPSCs generated by different reprogramming methods, virus- and protein-
based, showed that DA neurons derived from protein-based are functional, and when 
transplanted into striatum, significantly rescued motor deficits in a rodent PD model 
[60]. More recently, the combination of five transcriptional factors Mash1, Ngn2, 
Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into 
DA neuron-like cells. They also showed properties of DA uptake and production, 
exhibited DA neuron-specific electrophysiological profiles and provided 
symptomatic relief in a rat PD model [28]. 

Recent advances in deriving iPSCs from patients offer new possibilities for 
biomedical research and clinical applications for autologous transplantation. The 
generation of iPSCs from patients with PD has been described in three reports 
[61-63]. Patient-derived iPSCs from individuals with sporadic PD were 
differentiated into dopaminergic neurons but failed to show an obvious difference 
in phenotype compared to control cells [61]. Some evidence has shown that 
fibroblasts from genetic PD (mutations in the PINK1 gene) can be reprogrammed 
and differentiated into dopaminergic neurons, indicating that mutation did not 
affect the ability of patient fibroblasts to be induced into iPSCs [62]. Thus, this 
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approach could be used to investigate the function of endogenous mutations and 
for further studies of PD pathogenesis [62]. In another study, DA neurons 
generated from iPSCs from PD patients could be transplanted into the PD animal 
model and survive in high numbers, showing arborization and mediating 
functional effects [63]. 

Although studies maintain cellular replacement based on DA neurons derived 
from iPSCs [64] or DA neurons directly converted from fibroblasts [28] as a 
viable approach for treating PD, environmental enrichment may also support 
existing DA neurons to prevent further degeneration. Neurotrophic factor-based 
therapy through direct delivery or viral-based systems demonstrated the potential 
for excellent ameliorative properties in PD [65, 66]. Remarkably, transplantation 
of MSCs or NPCs, genetically modified to produce growth factors such as BDNF, 
VEGF, GDNF, and IGF-I, protect both dopamine neurons and striatal neurons 
undergoing degeneration in rodent models of Parkinson’s [67-73]. Thus, both 
cellular replacement and environmental enrichment present important 
consequences to improve efficacy for PD therapy [3]. 

15.3. ALZHEIMER’S DISEASE 

Alzheimer’s disease (AD), the most frequent form of dementia, is characterized 
by degeneration and loss of neurons and synapses throughout the brain, memory 
loss and cognitive decline [74]. The brain pathology in AD is characterized by 
intracellular neurofibrillary tangles (composed by phosphorylated tau protein) and 
extracellular deposition of plaques composed of amyloid  (A) peptides, which 
represents a proteolytic cleavage product of larger amyloid precursor protein 
(APP) [74-76]. 

Based on the amyloid cascade hypothesis, various ‘‘anti-amyloid drugs’’ targeting 
different pathways of A production and/or aggregation have been developed and 
tested in clinical trials with AD patients. In general, these candidates have so far 
failed to produce the expected therapeutic breakthroughs. However, proteinases 
such as neprilysin [77]; insulin degrading enzyme [78, 79]; cathepsin B [80] and 
plasmin [81] were successfully used as therapeutic agents to reduce A levels in 
the AD brain. Indeed, intracerebrally injected fibroblasts overexpressing human 
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neprilysin revealed robust clearance of amyloid plaques at the site of engraftment 
in the brain of A transgenic mice [82]. 

In this context, MSCs present a promising therapeutic vehicle to reduce A 
deposits in AD patients. Intracerebral transplantation of BM-MSCs into double-
transgenic mice (APP/PS1), a model of age-dependent AD, promoted microglial 
activation, rescued cognitive impairment, and reduced A and tau pathology in 
the AD brain [83, 84]. Together, these results revealed that BM-MSCs, by 
unknown mechanism(s), are able to modulate microglial cells which in turn 
mediate A reduction and rescue AD-like pathology [20]. Furthermore, in vitro 
co-culture of primary hippocampal neurons with MSCs from umbilical cord blood 
reduced the apoptosis induced by A. Furthermore, in a mouse AD model, MSCs 
treatment causes restoration of learning/memory function [85]. 

Previous studies have described that nerve growth factor (NGF) is required to 
prevent the degeneration of cholinergic neurons and to enhance memory in AD-
like animal models [86-89]. Indeed, a phase I clinical trial of ex vivo NGF gene 
delivery was performed in individuals with mild Alzheimer’s disease, implanting 
autologous fibroblasts genetically modified to express human NGF into the 
forebrain and the study analysis suggested improvement in the rate of cognitive 
decline [90]. In a chronic AD animal model, NSCs, stably transduced with hNGF, 
was engrafted into the cerebral cortex and presented a significant improvement in 
learning and memory function [91]. In other studies, the transplantation of mouse 
ESC-derived NPCs improves cognitive function in rat models of Alzheimer [92]. 

Therapeutic delivery of brain derived neurotrophic factor (BDNF) has also been 
explored as a promising candidate for Alzheimer's disease [93]. Aged transgenic 
mice that express pathogenic forms of amyloid precursor protein, presenilin, and 
tau presented an enhancement in cognitive function after brain transplantation 
with mouse NSCs expressing BDNF [94]. 

Remarkably, a range of recent studies have used NSCs as a valuable source of cells 
for cell replacement and gene transfer for AD therapy due to their migratory capacity 
after brain transplantation [95, 96]. In fact, iPSCs have not yet been used in AD 
therapy models. However, recently, primary fibroblasts from patients with familial 
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Alzheimer’s disease have been reprogrammed and differentiated in functional 
neuronal cells, providing a human cell-based model of AD that would be crucial for 
drug discovery as well as for investigating mechanisms of the disease [97]. 

15.4. HUNTINGTON’S DISEASE 

Huntington’s disease is an autosomal dominant polyglutamine disorder 
characterized by the accumulation of the nucleotides CAG in the huntingtin gene. 
This disease causes cellular dysfunction and loss at numerous CNS sites including 
the striatum. HD manifests with involuntary motor activity, cognitive impairment 
and emotional disturbances. Despite the known genetic basis for HD, the 
mechanisms involved in the pathogenesis of HD remain essentially unknown and 
this impedes effective therapeutic interventions. A major motivation for research 
into the treatment of HD has centered on reparative strategies using cell 
replacement, manipulation of endogenous stem cells and/or neurogenesis, or 
trophic factor administration on the striatum [98]. 

A pioneer study of a human cellular therapy trial using fetal neural stem cells 
allografts showed motor and cognitive improvement in HD patients [99]. Earlier 
studies in HD animals models reported that fetal striatal grafts improve motor and 
cognitive dysfunction [100]. Interestingly, striatal grafts survived with apparent 
integration in the striatum of a transgenic mouse model of HD, which in turn 
presented modest behavioral effects after surgery [101]. The latter study is consistent 
with a clinical trial that demonstrates that grafts from human fetal striatal tissue in 
HD patients can survive and differentiate, and are unaffected by the disease process 
[102]. In addition, transplantation of striatal grafts of human fetal stem cells elicits 
behavioral and anatomical recovery in a rodent model of HD [103]. Additionally, 
human ESC-derived neural precursors can lead to a behavioral recovery, as well as 
neuronal differentiation, in the pre-clinical model of HD [104]. 

Cell therapies in HD patients using human fetal-derived cells have shown clinical 
success. Nonetheless, a recent study has reported a graft overgrowth, composed 
by neurons and glia, in a HD patient who received fetal neural transplantation and 
reminds researchers of the potential risk of mass lesion development with this 
procedure [105]. The use of fetal-derived striatal cells for transplantation into the 
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degenerative adult brain is safe and partially effective in terms of functional 
response, although ethical and practical considerations in terms of cell source of 
human fetus-derived allografts should be regarded. Thus, alternative strategies for 
cell therapy using NSCs in HD have been initiated [106] in animal models of HD, 
although still only a few studies have demonstrated a functional outcome. 

The implantation of NSCs into striatum of an HD rat model of prior to lesion 
formation demonstrated significantly improved motor performance and increased 
resistance to striatal neuron damage compared with control [107]. This result 
indicates that early intervention using cell transplantation could be effective in 
pre-clinical HD patients carrying the mutant HD gene. Thus, functional 
improvements confirmed by isolated cell types provide similar functional benefits 
to those observed with fetal tissue, although mechanisms of cellular therapy 
protection were not examined. 

In another study, the transplantation of autologous bone marrow stem cells in the 
damaged striatum of a rat HD model significantly reduced working memory 
deficits [108], suggesting that growth factors could be released by transplants 
allowing cell surviving. To address the role of environmental enrichment in 
cellular therapy for HD, NSCs/NPCs and MSCs have been genetically modified to 
overexpress and release neuroprotective trophic factors such as nerve growth 
factor (NGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic 
factor (CTNF) and glia cell-derived neurotrophic factor (GDNF) [109]. 

In an earlier transplantation study, genetically modified NSCs producing NGF or 
BDNF showed a protective effect of the neostriatum against excitotoxic damage 
[110]. NPCs expressing GDNF, transplanted into HD rodents, protected neurons 
and promoted functional recovery [67, 111]. In a recent study and according with 
NPCc data, MSCs overexpressed BDNF had also significant ameliorative effects 
on disease progression in a HD mouse model [112]. Collectively, the use of stem 
cells engineered to overexpress a range of neurotrophic factors in transplantation 
studies in HD models confers benefits reducing disease progression. 

Although recent evidence has demonstrated improvements in motor and cognitive 
functions observed in HD animal models following stem cell transplantation, 
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further studies are now required to address relevant questions regarding the 
availability and safety of stem cells for clinical trials. 

15.5. AMYOTROPHIC LATERAL SCLEROSIS (ALS) 

Amyotrophic lateral sclerosis (ALS), is a relentlessly neurodegenerative disorder 
characterized by degeneration and loss of motor neurons in the cerebral cortex, 
brain stem and spinal cord, leading to loss of coordination and muscle strength. 
Multiple pathogenetic mechanisms are likely involved in ALS, which makes the 
development of conventional drug therapies difficult [113]. To date there is no 
effective treatment for ALS patients and stem cells represent a new therapeutic 
approach offering both cellular replacement and trophic support on motor neuron 
survival and function. 

NPCs are normally produced in the CNS in response to the loss of motor neuron 
in ALS [114], but to date, endogenous NPC populations have proven insufficient 
to reverse the disease condition in ALS [114]. However, several studies have 
tested the capacity of exogenous stem cells transplanted into the lumbar spinal 
cord to rescue ALS animal models. There is increasing evidence that it is possible 
to generate functional motor neurons in culture from stem cells (ESCs and NPCs) 
able to populate the embryonic spinal cord, extend axons, and form synapses with 
target muscles [27, 115, 116]. The incorporation of NSCs, isolated from SVZ of 
the adult mice and differentiated into cholinergic neurons, into animal ALS spinal 
cords delayed the onset of the disease [117, 118]. Human embryonic germ cells 
transplanted into the cerebrospinal fluid of rats with motor neuron injury migrated 
into the spinal cord restoring neurologic function via enhancement of host neuron 
survival and function [119]. NSCs grafts isolated from human fetal spinal cord 
were also effective in delaying the onset and disease progression in a mouse ALS 
model since these cells integrate into the diseased spinal cord and establish 
synaptic connections with host neurons, one of the most fundamental 
requirements for motor neuron replacement [120]. Recent evidence showed that 
human spinal cord NSCs derived from human fetus were transplanted into the 
spinal cord of rats in an ALS model, and the neurological function of NSC-
transplanted animals was well preserved, but disease onset was not different from 
the untreated controls and the overall animal survival was also not affected [121]. 
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Interestingly, results of an ongoing phase I trial of intraspinal injections of fetal-
derived neural stems cells in ALS-patients showed that the treatment has no 
surgical complications and patients’ clinical status was stable after transplantation 
with no evidence of disease progression [122]. A previous study described that 
iPSCs isolated from an ALS patient [123] that possess properties of embryonic 
stem cells, which were successfully directed to differentiate into motor neurons, 
could be an ideal cellular source for screening new drug candidates [123]. The 
potential of growth factors to mediate neuroprotection on motor neurons in ALS 
models has been investigated and three methods for growth factor delivery have 
been used: direct application, viral delivery and stem cell-based delivery. Several 
studies report stem cell production of growth factors including GDNF, BDNF, 
IGF, and VEGF [117, 120, 124]. These studies demonstrated that NPCs secreting 
growth factors integrate normally into the spinal cord, survive, differentiate and 
provide long-term production of growth factors, which support neuroprotection 
for existing neurons. 

Several groups have demonstrated that intraparenchymal delivery of hMSCs is 
safe and can delay loss of motor neurons in ALS mouse model [125, 126]. 
hNPCs, modified to secrete GDNF, survived and improved maintenance of 
lumbar spinal cord neurons of ALS rodents model [127, 128]. 

A human cellular therapy trial has already demonstrated progress in ALS 
treatment by intraspinal cord injection of MSCs. Autologous transplantation of 
bone marrow-derived MSCs into the thoracic spinal cord showed no significant 
acute or late side effects and four of the patients showed significant slowing of the 
linear decline of forced vital capacity [129]. In fact, the development of new stem 
cell lines is required in attempt to expand our understanding about the potential 
use of stem cells in ALS. 

CONCLUSION AND FUTURE PERSPECTIVE 

The development of cell-based therapies for neurodegenerative diseases that 
currently lack effective treatment is still at an early stage. However, as we have 
shown in this chapter, considerable progress has been made in this direction and a 
continuous improvement in developing approaches to generate distinct type of 
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neurons from human stem cells, for cell replacement therapy in neurodegenerative 
disorders, is needed. Strategies used to develop stem-cell based therapies for 
neurodegenerative diseases discussed in this chapter are illustrated in Fig. 1. 
Herein, we have shown that findings generated in the laboratory are now slowly 
being translated into timid clinical trials that have aimed either at cell replacement 
or at neural tissue delivery of therapeutic molecules using stem cells as a carrier. 
Still, many basic issues remain to be solved and mechanisms which regulate the 
proliferation, migration, differentiation survival and function of stem cells and 
their derivatives need to be elucidated. Despite the many challenges for cell 
therapy lying ahead, we are still optimistic that stem cells have great potential to 
cure human neurological diseases. 

 

Figure 1: Cellular therapy for neurodegenerative diseases. Different sources of cells give rise to 
neural precursor cells (NPCs), the most common stem cell source to get neurons for 
neurodegenerative disorders cellular therapy. NPCs can be provided directly by fetal tissue graft or 
indirectly by somatic and stem cell differentiation. Genetic reprogramming of somatic cells 
originates induced neuronal (iN) cells directly or induced pluripotent stem cells (iPS) that can be 
differentiated into NPCs. Another class of stem cell, mesenchymal stem cells (MSCs), can be 
directly used in patient treatment. 
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